
Application of Microsoft

Kinect in controlling

computer Keyboard and

Mouse input

 Antti Salopuro

Lahti University of Applied Sciences, Finland

Sources

http://msdn.microsoft.com/en-us/library/hh855347.aspx

http://www.microsoft.com/en-us/kinectforwindows/develop/resources.aspx

http://www.renauddumont.be/post/2012/06/01/Kinect-SDK-15-Face-
tracking-in-Csharp

http://msdn.microsoft.com/en-us/library/jj130970.aspx (Face tracking)

Webb, J & Ashley, J., Beginning Kinect Programming with the Microsoft
Kinect SDK, Apress, 2012

Miles, R, Learn the Kinect API, Microsoft, 2012

http://channel9.msdn.com/coding4fun/projects/Coding4Fun-Kinect-Toolkit

http://inputsimulator.codeplex.com/

https://github.com/jera/lazyconsumer/blob/master/NativeMethods.cs

http://kinectmerrychristmas.codeplex.com/ (sample project of AR)

http://www.codeplex.com/site/search?query=Kinect&ac=4 (All Kinect
sample projects at codeplex)

http://msdn.microsoft.com/en-us/library/hh855347.aspx
http://msdn.microsoft.com/en-us/library/hh855347.aspx
http://msdn.microsoft.com/en-us/library/hh855347.aspx
http://msdn.microsoft.com/en-us/library/hh855347.aspx
http://www.microsoft.com/en-us/kinectforwindows/develop/resources.aspx
http://www.microsoft.com/en-us/kinectforwindows/develop/resources.aspx
http://www.microsoft.com/en-us/kinectforwindows/develop/resources.aspx
http://www.microsoft.com/en-us/kinectforwindows/develop/resources.aspx
http://www.renauddumont.be/post/2012/06/01/Kinect-SDK-15-Face-tracking-in-Csharp
http://www.renauddumont.be/post/2012/06/01/Kinect-SDK-15-Face-tracking-in-Csharp
http://www.renauddumont.be/post/2012/06/01/Kinect-SDK-15-Face-tracking-in-Csharp
http://www.renauddumont.be/post/2012/06/01/Kinect-SDK-15-Face-tracking-in-Csharp
http://www.renauddumont.be/post/2012/06/01/Kinect-SDK-15-Face-tracking-in-Csharp
http://www.renauddumont.be/post/2012/06/01/Kinect-SDK-15-Face-tracking-in-Csharp
http://www.renauddumont.be/post/2012/06/01/Kinect-SDK-15-Face-tracking-in-Csharp
http://www.renauddumont.be/post/2012/06/01/Kinect-SDK-15-Face-tracking-in-Csharp
http://www.renauddumont.be/post/2012/06/01/Kinect-SDK-15-Face-tracking-in-Csharp
http://www.renauddumont.be/post/2012/06/01/Kinect-SDK-15-Face-tracking-in-Csharp
http://www.renauddumont.be/post/2012/06/01/Kinect-SDK-15-Face-tracking-in-Csharp
http://www.renauddumont.be/post/2012/06/01/Kinect-SDK-15-Face-tracking-in-Csharp
http://www.renauddumont.be/post/2012/06/01/Kinect-SDK-15-Face-tracking-in-Csharp
http://www.renauddumont.be/post/2012/06/01/Kinect-SDK-15-Face-tracking-in-Csharp
http://www.renauddumont.be/post/2012/06/01/Kinect-SDK-15-Face-tracking-in-Csharp
http://www.renauddumont.be/post/2012/06/01/Kinect-SDK-15-Face-tracking-in-Csharp
http://msdn.microsoft.com/en-us/library/jj130970.aspx
http://msdn.microsoft.com/en-us/library/jj130970.aspx
http://msdn.microsoft.com/en-us/library/jj130970.aspx
http://msdn.microsoft.com/en-us/library/jj130970.aspx
http://channel9.msdn.com/coding4fun/projects/Coding4Fun-Kinect-Toolkit
http://channel9.msdn.com/coding4fun/projects/Coding4Fun-Kinect-Toolkit
http://channel9.msdn.com/coding4fun/projects/Coding4Fun-Kinect-Toolkit
http://channel9.msdn.com/coding4fun/projects/Coding4Fun-Kinect-Toolkit
http://channel9.msdn.com/coding4fun/projects/Coding4Fun-Kinect-Toolkit
http://channel9.msdn.com/coding4fun/projects/Coding4Fun-Kinect-Toolkit
http://inputsimulator.codeplex.com/
http://inputsimulator.codeplex.com/
https://github.com/jera/lazyconsumer/blob/master/NativeMethods.cs
https://github.com/jera/lazyconsumer/blob/master/NativeMethods.cs
http://kinectmerrychristmas.codeplex.com/
http://kinectmerrychristmas.codeplex.com/
http://www.codeplex.com/site/search?query=Kinect&ac=4
http://www.codeplex.com/site/search?query=Kinect&ac=4

Kinect Samples

http://www.youtube.com/watch?v=kalo57_hWsQ&feature=youtu.be
http://www.youtube.com/watch?v=f5Ep3oqicVU
http://www.youtube.com/watch?v=CYJjQgV0mZY

Contents

1. Kinect development system setup

2. General application development with Kinect

• Augmented reality

3. Controlling the mouse and keyboard with Kinect
joint positions

4. Face tracking

5. Speech recognition

KINECT DEVELOPMENT SYSTEM

SETUP – TOOLS REQUIRED

PART I

Kinect setup

Software libraries required

System setup

Application setup

Namespaces required

Software libraries required

MS Kinect for Windows runtime & SDK v1.7 & Developer toolkit

(http://www.microsoft.com/en-us/kinectforwindows/develop/)

Coding4Fun Kinect Toolkit
(http://channel9.msdn.com/coding4fun/projects/Coding4Fun-Kinect-Toolkit)

scaling joint positions to some given frame, for example screen

transferring the image frame to wpf ImageSource control format

Input Simulator (http://inputsimulator.codeplex.com/)

for sending keyboard commands to the computer

Windows forms provide also a method SendKeys, but it only simulates text entry, not

actual keystrokes

NativeMethods.cs for commanding the mouse

(https://github.com/jera/lazyconsumer/blob/master/NativeMethods.cs)

Handy library if working with avatars etc. game features: XNA 4.0

(http://www.microsoft.com/download/en/details.aspx?id=23714)

http://www.microsoft.com/en-us/kinectforwindows/develop/
http://www.microsoft.com/en-us/kinectforwindows/develop/
http://www.microsoft.com/en-us/kinectforwindows/develop/
http://www.microsoft.com/en-us/kinectforwindows/develop/
http://channel9.msdn.com/coding4fun/projects/Coding4Fun-Kinect-Toolkit
http://channel9.msdn.com/coding4fun/projects/Coding4Fun-Kinect-Toolkit
http://channel9.msdn.com/coding4fun/projects/Coding4Fun-Kinect-Toolkit
http://channel9.msdn.com/coding4fun/projects/Coding4Fun-Kinect-Toolkit
http://channel9.msdn.com/coding4fun/projects/Coding4Fun-Kinect-Toolkit
http://channel9.msdn.com/coding4fun/projects/Coding4Fun-Kinect-Toolkit
http://inputsimulator.codeplex.com/
http://inputsimulator.codeplex.com/
https://github.com/jera/lazyconsumer/blob/master/NativeMethods.cs
http://www.microsoft.com/download/en/details.aspx?id=23714

System and application setup

Install

MS Kinect for Windows SDK 1.7

Create a new project in Visual Studio as standard C# WPF

application

Add project references to required namespaces

Solution Explorer/References/Add Reference/ .NET or Browse

Include required namespaces to your classes with using directive:

using Microsoft.Kinect;

using Coding4Fun.Kinect.Wpf;

using WindowsInput;

using System.Windows.Forms;

using System.Diagnostics;

Add class NativeMethods.cs to your project (Solution Explorer)

WPF APPLICATION DEVELOPMENT

WITH KINECT SDK GESTURE

CONTROL

PART II

Sample application

Controls for adjusting the camera elevation

angle

Image control for showing the color or depth

image

Canvas control for showing two ellipses

connected to hand positions

Radiobuttons to select what is shown

Color, depth, only ellipses

First sample application UI

 Title="MainWindow" Height="845" Width="1432" Loaded="Window_Loaded">

<Grid>

 <Image Height="773" HorizontalAlignment="Left" Margin="12,12,0,0" Name="image" Stretch="Fill" VerticalAlignment="Top" Width="1058" />

 <Button Content="Camera up" Height="113" HorizontalAlignment="Left" Margin="1186,39,0,0" Name="CamUpButton" VerticalAlignment="Top" Width="174"
Click="CamUpButton_Click" />

 <Button Content="Camera down" Height="124" HorizontalAlignment="Left" Margin="1186,169,0,0" Name="CamDownButton" VerticalAlignment="Top" Width="174"
Click="CamDownButton_Click" />

 <StackPanel Height="132" HorizontalAlignment="Left" Margin="1186,389,0,0" Name="stackPanel1" VerticalAlignment="Top" Width="163">

 <StackPanel.BindingGroup>

 <BindingGroup Name="ImageToShowGroup" SharesProposedValues="True" />

 </StackPanel.BindingGroup>

 <RadioButton Content="Color" Height="20" Name="ColorRadioButton" Margin="3" FontSize="14" IsChecked="True" HorizontalAlignment="Left"
Checked="ColorRadioButton_Checked" />

 <RadioButton Content="Depth" Height="22" Name="DepthRadioButton" Margin="3" FontSize="14" Width="91" HorizontalAlignment="Left"
Checked="DepthRadioButton_Checked" />

 <RadioButton Content="None" FontSize="14" Height="24" Name="NoneRadioButton" Width="91" HorizontalAlignment="Left"
Checked="NoneRadioButton_Checked" />

 </StackPanel>

 <Canvas Height="773" HorizontalAlignment="Left" Margin="12,12,0,0" Name="canvas" VerticalAlignment="Top" Width="1058">

 </Canvas>

</Grid>

Copy - paste

the XAML to

create the UI

First sample application

 public partial class MainWindow : Window

 {

 private KinectSensor camDevice;

 private const int skeletonCount = 6;

 private Skeleton[] allSkeletons = new Skeleton[skeletonCount];

 private Ellipse rightEllipse, leftEllipse;

 private CoordinateMapper myMapper;

 public MainWindow()

 {

 … …

It is useful to define a global reference for
the sensor object and for the collection of
the skeletons…

..and for the two ellipses drawn on hands

..and coordinate mapper, which is required
when converting data between color and
depth images

Global references

Sensor initialisation tasks

Get access to the sensor
camDevice = KinectSensor.KinectSensors[0];

Create global object for mapping the
coordinates

myMapper = new CoordinateMapper(camDevice);

Start sensor device
camDevice.Start();

Enable required video streams
Color, depth and skeleton streams

Hook FrameReady events to event handlers

Sensor initialization code
private void Window_Loaded(object sender, RoutedEventArgs e)

{

 try

 {

 camDevice = KinectSensor.KinectSensors[0];

 myMapper = new CoordinateMapper(camDevice);

 camDevice.Start();

 }

 catch (Exception ex)

 {

 System.Windows.MessageBox.Show("Could not find Kinect camera: " +
ex.Message);

 }

 camDevice.DepthStream.Enable(DepthImageFormat.Resolution640x480Fps30);

 camDevice.ColorStream.Enable(ColorImageFormat.RgbResolution640x480Fps30);

 camDevice.SkeletonStream.Enable(new TransformSmoothParameters()

 {

 Correction = 0.5f,

 JitterRadius = 0.05f,

 MaxDeviationRadius = 0.05f,

 Prediction = 0.5f,

 Smoothing = 0.5f

 });

 camDevice.AllFramesReady += camera_AllFramesReady;

Hook this method to
event Loaded of

object MainWindow

Sensor initialization code

Wrap all initialisation

statements inside try-

catch blocks

Depth and color streams require

resolution settings, skeleton stream

may take smoothing parameters

Hook an event handler to
AllFramesReady event, we
implement this later

Sensor initalisation is best
done together with the
Window_Loaded event
handler

private void Window_Loaded(object sender, RoutedEventArgs e)

{

 try

 {

 camDevice = KinectSensor.KinectSensors[0];

 myMapper = new CoordinateMapper(camDevice);

 camDevice.Start();

 }

 catch (Exception ex)

 {

 System.Windows.MessageBox.Show("Could not find Kinect camera: " +
ex.Message);

 }

 camDevice.DepthStream.Enable(DepthImageFormat.Resolution640x480Fps30);

 camDevice.ColorStream.Enable(ColorImageFormat.RgbResolution640x480Fps30);

 camDevice.SkeletonStream.Enable(new TransformSmoothParameters()

 {

 Correction = 0.5f,

 JitterRadius = 0.05f,

 MaxDeviationRadius = 0.05f,

 Prediction = 0.5f,

 Smoothing = 0.5f

 });

 camDevice.AllFramesReady += camera_AllFramesReady;

Sensor parameters specific to

Kinect for Windows sensor
The XBOX 360 game version of Kinect sensors is
applicable at distances beyond 1.5m and assumes the
player is in standing position

With Kinect for Windows sensors the sensor can be set
on a near mode allowing distances as low as 30 cm
being measured

Moreover the sensor can be set to near mode where
lower joints are being neglected and detection of
skeleton easier happens on seated person

camDevice.SkeletonStream.EnableTrackingInNearRange = true;
camDevice.SkeletonStream.TrackingMode = SkeletonTrackingMode.Seated;

With XBOX sensor version setting these
parameters will end in exception

private void Window_Closed(object sender, EventArgs e)

{

 camDevice.Stop();

}

Sensor resource release

Sensor resources are

released in the

Window_Closed event

handler

private void CamDownButton_Click(object sender, RoutedEventArgs e)

{

 try

 {

 if (camDevice.ElevationAngle > camDevice.MinElevationAngle + 5)

 camDevice.ElevationAngle -= 5;

 }

 catch

 {

 System.Windows.MessageBox.Show("Elevation angle change not succesful");

 }

}

Camera elevation angle adjustment

Event handlers

for the Camera

up/down buttons

private void createEllipses()

{

 rightEllipse = new Ellipse();

 canvas.Children.Add(rightEllipse);

 rightEllipse.Height = 50;

 rightEllipse.Width = 50;

 rightEllipse.Fill = Brushes.Aqua;

 leftEllipse = new Ellipse();

 canvas.Children.Add(leftEllipse);

 leftEllipse.Height = 50;

 leftEllipse.Width = 50;

 leftEllipse.Fill = Brushes.PaleVioletRed;

}

Method to add two ellipses on

canvas control

This method need
to be called before
processing the
corresponding joint
data

Canvas is a control on
WPF UI where it is

possible to draw

Event handlers hooked on events

An event is a message sent by an object to
signal the occurrence of an action

Event handlers can be hooked on these events

Event handler hooked to an event is a method run
every time the event happens

Event handler must have the correct signature, i.e.
correct set of input parameters

Each image stream triggers an event every
time a new image frame has been captured

Events raised by image frame

objects

Each different frame triggers an event every time a

new frame has been captured

ColorFrameReady

DepthFrameReady

SkeletonFrameReady

There exists also an event triggered after all different

image frames have been renewed

AllFramesReady

In this sample application we will only implement event

handler for this event

AllFramesReady event handler

tasks in this application

1. Get access to and plot color or depth image
frame on image control

Image plotted depends on radio button selection

2. Get access to skeleton frame and one skeleton
data in it

3. Get access to joints of both hands of the found
skeleton

4. Draw ellipses on both hands (on canvas)

The exact position of ellipses depend on the
background image (color or depth)

private void camera_AllFramesReady(object source, AllFramesReadyEventArgs e)
{
 ColorImageFrame colorImageFrame = null;
 DepthImageFrame depthImageFrame = null;
 SkeletonFrame skeletonFrame = null;

 try
 {
 colorImageFrame = e.OpenColorImageFrame();
 depthImageFrame = e.OpenDepthImageFrame();
 skeletonFrame = e.OpenSkeletonFrame();

 if (DepthRadioButton.IsChecked.Value)
 image.Source = depthImageFrame.ToBitmapSource();
 else
 if (ColorRadioButton.IsChecked.Value)
 image.Source = colorImageFrame.ToBitmapSource();
 else
 image.Source = null;
 //Continue

1. Get access to and plot color or

depth image frame on image control

private void camera_AllFramesReady(object source, AllFramesReadyEventArgs e)
{
 //image source processing was here

 skeletonFrame = e.OpenSkeletonFrame();

 if (skeletonFrame != null)
 {
 if ((this.allSkeletons == null) ||
 (this.allSkeletons.Length != skeletonFrame.SkeletonArrayLength))
 {
 this.allSkeletons = new Skeleton[skeletonFrame.SkeletonArrayLength];
 }

 skeletonFrame.CopySkeletonDataTo(this.allSkeletons);

 foreach (Skeleton sd in allSkeletons)
 {
 if (sd.TrackingState == SkeletonTrackingState.Tracked)
 {
 //Now sd will refer to a tracked skeleton
 //continue processing skeleton data

2. Get access to skeleton frame

and to one skeleton data in it

private void camera_AllFramesReady(object source, AllFramesReadyEventArgs e)
{
 //image source processing was here

 SkeletonFrame skeletonFrame = e.OpenSkeletonFrame();

 if (skeletonFrame != null)
 {
 if ((this.allSkeletons == null) ||
 (this.allSkeletons.Length != skeletonFrame.SkeletonArrayLength))
 {
 this.allSkeletons = new Skeleton[skeletonFrame.SkeletonArrayLength];
 }

 skeletonFrame.CopySkeletonDataTo(this.allSkeletons);

 foreach (Skeleton sd in allSkeletons)
 {
 if (sd.TrackingState == SkeletonTrackingState.Tracked)
 {
 //Now sd will refer to a tracked skeleton
 //continue processing skeleton data

2. Get access to skeleton frame

and to one skeleton data in it

Get access to the

skeleton array, this need

to be done only once

Get access to the

skeleton frame

Search for the first

skeleton being

tracked

3. Get access to joints of both

hands of the found skeleton (sd)

But what is the

skeleton and what

are the joints?

// global reference to the skeleton array
private const int skeletonCount = 6;
private Skeleton[] allSkeletons = new Skeleton[skeletonCount];

Skeleton array

// get current skeleton data to the array after

skeletonFrame.CopySkeletonDataTo(this.allSkeletons);

skeletonFrame

object offers the

method

CopySkeletonData

for getting access to

the skeleton array

The

skeletonFrame

object of the

sensor includes

an array of max 6

skeleton objects

Done already
on slide Global

references

Done on step 2

Skeleton sd;

if (allSkeletons[0].TrackingState == SkeletonTrackingState.Tracked)

 sd = allSkeletons[0];

Get access to skeleton

foreach (Skeleton sd in allSkeletons)

{

 if (sd.TrackingState == SkeletonTrackingState.Tracked)

 {

Once the skeleton

array has been

found, the active

skeleton can be

picked from it, for

example, by direct

index value…

… or by taking
the first one
found being

tracked

Skeleton class properties

ClippedEdges
which parts of the skeleton are clipped
by the edges of the frame

Position
skeleton position in X-Y-Z space

TrackingId
TrackingState

NotTracked, PositionOnly,
Tracked

Joints
Collection of 20 different body points

Joints is the skeleton

property containing the

positions of different

body parts

Joint class properties

JointType

Enum type for indexing the specific

joints in the array of joints

Position

skeleton position in X-Y-Z space

TrackingState

NotTracked, Inferred,

Tracked
Inferred joint is
not currently seen

by the sensor

JointType enumeration
Name Description

AnkleLeft Left ankle.

AnkleRight Right ankle.

ElbowLeft Left elbow.

ElbowRight Right elbow.

FootLeft Left foot.

FootRight Right foot.

HandLeft Left hand.

HandRight Right hand.

Head Head.

HipCenter Center, between hips.

HipLeft Left hip.

HipRight Right hip.

KneeLeft Left knee.

KneeRight Right knee.

ShoulderCenter Center, between shoulders.

ShoulderLeft Left shoulder.

ShoulderRight Right shoulder.

Spine Spine.

WristLeft Left wrist.

WristRight Right wrist.

Position property

Location of the physical

part in the human body in

3D space

X, Y, Z

X = Horizontal position measured as the distance, in meters from

the Kinect along the X Axis.

Y = Vertical position measured as the distance, in meters from the

Kinect along the Y Axis.

Z = Distance from Kinect measured in meters

Joint position coordinate system

The origo of the X-Y coordinate system is roughly at the
center point of the taken image

From the camera point of view X coordinate value increases to
the left (from human point of view to the right) vertical
centerline being the zero axis.

Correspondingly Y value
increases upwards, zero axis
being the horizontal
centerline.

Max and Min values of X and
Y depend therefore on the
human distance from the
camera.

Joint position coordinate system

The origo of the X-Y coordinate system is roughly at the
center point of the taken image

From the camera point of view X coordinate value increases to
the left (from human point of view to the right) vertical
centerline being the zero axis.

Correspondingly Y value
increases upwards, zero axis
being the horizontal
centerline.

Max and Min values of X and
Y depend therefore on the
human distance from the
camera.

foreach (Skeleton sd in allSkeletons)

{

 if (sd.TrackingState == SkeletonTrackingState.Tracked)

 {

 Joint LeftHand = sd.Joints[JointType.HandLeft];

 Joint RightHand = sd.Joints[JointType.HandRight];

 //Continue only if both hands are being tracked

 if (RightHand.TrackingState == JointTrackingState.Tracked &&

 LeftHand.TrackingState == JointTrackingState.Tracked)

 {

3. Get access to joints of both

hands of the found skeleton (sd)

foreach (Skeleton sd in allSkeletons)

{

 if (sd.TrackingState == SkeletonTrackingState.Tracked)

 {

 Joint LeftHand = sd.Joints[JointType.HandLeft];

 Joint RightHand = sd.Joints[JointType.HandRight];

 //Continue only if both hands are being tracked

 if (RightHand.TrackingState == JointTrackingState.Tracked &&

 LeftHand.TrackingState == JointTrackingState.Tracked)

 {

3. Get access to joints of both

hands of the found skeleton (sd)

References to

both hands

enum type

JointType to pick

the wished joint

Make sure both

hands are being

tracked

//Continue only if both hands are being tracked
if (RightHand.TrackingState == JointTrackingState.Tracked &&
 LeftHand.TrackingState == JointTrackingState.Tracked)
{

 if (rightEllipse == null || leftEllipse == null)
 createEllipses();

 if (DepthRadioButton.IsChecked.Value)
 {
 plotOnDepthImage(RightHand, DepthImageFormat.Resolution640x480Fps30, rightEllipse, canvas);
 plotOnDepthImage(LeftHand, DepthImageFormat.Resolution640x480Fps30, leftEllipse, canvas);
 }
 else
 {
 plotOnColorImage(RightHand, ColorImageFormat.RgbResolution640x480Fps30, rightEllipse, canvas);
 plotOnColorImage(LeftHand, ColorImageFormat.RgbResolution640x480Fps30, leftEllipse, canvas);
 }

4. Draw ellipses on both hands (on

canvas control)

//Continue only if both hands are being tracked
if (RightHand.TrackingState == JointTrackingState.Tracked &&
 LeftHand.TrackingState == JointTrackingState.Tracked)
{

 if (rightEllipse == null || leftEllipse == null)
 createEllipses();

 if (DepthRadioButton.IsChecked.Value)
 {
 plotOnDepthImage(RightHand, DepthImageFormat.Resolution640x480Fps30, rightEllipse, canvas);
 plotOnDepthImage(LeftHand, DepthImageFormat.Resolution640x480Fps30, leftEllipse, canvas);
 }
 else
 {
 plotOnColorImage(RightHand, ColorImageFormat.RgbResolution640x480Fps30, rightEllipse, canvas);
 plotOnColorImage(LeftHand, ColorImageFormat.RgbResolution640x480Fps30, leftEllipse, canvas);
 }

4. Draw ellipses on both hands (on

canvas control)

Select the correct

image format by

radiobuttons

On the very first

frame initialise the

two ellipses

These plot methods take the

given joint position, calculate

the corresponding location

on the target image and draw

the given UI – element on

canvas… BUT HOW?

Coordinate systems of joint position

and UI – control are different

0

Y

X

+

+ -

-

X

Y

+

+

Coordinate Y - axis directions are

opposite between joint image

and target UI - component

Origo points

positioned in a

different way as

well

MapSkeletonPointToColorPoint(SkeletonPoint, ColorImageFormat)

MapSkeletonPointToDepthPoint(SkeletonPoint, DepthImageFormat)

CoordinateMapper class has 2 methods to map position from

joint coordinates to pixel coordinates of images or UI - panels

Mapping joint position on image

In addition, there exists corresponding methods for mapping

from depth to skeleton point and from depth to color images

MapDepthPointToSkeletonPoint

MapDepthPointToColorImagePoint

Rescaling from color (or depth)

image to UI – element (canvas)

By default, the source

and target rectangles are

not of the same sizes

480

640

345

507

COLOR IMAGE

CANVAS

Rescaling from color (or depth)

image to UI – element (canvas)

480

640

345

507

COLOR IMAGE

CANVAS

𝑢𝑥 = 𝑓𝑥 𝑘𝑥 = 𝑘𝑥 ×
𝑢𝑥1

𝑘𝑥1

𝑢𝑦 = 𝑓𝑦 𝑘𝑦 = 𝑘𝑦 ×
𝑢𝑦1

𝑘𝑦1

Rescaling requires

multiplication of the color

image coordinate with relation

of the target and source image

size
𝑘𝑥, 𝑘𝑦

𝑢𝑥, 𝑢𝑦 𝑘𝑥1, 𝑘𝑦1

𝑘𝑥0, 𝑘𝑦0

𝑢𝑥1, 𝑢𝑦1

𝑢𝑥0, 𝑢𝑦0

plotOnColorImage(RightHand, //joint
 ColorImageFormat.RgbResolution640x480Fps30, //resolution of the image
 rightEllipse, //UI element
 canvas); //target UI canvas

//Function implementation
private void plotOnColorImage(Joint myJoint, ColorImageFormat myFormat, UIElement myObject, Canvas

tgtCanvas)
{
 //Transform the joint position from skeleton coordinates to color image position

 ColorImagePoint colP = myMapper.MapSkeletonPointToColorPoint(myJoint.Position, myFormat);

 //Define the UI element (ellipse) top left corner position inside the canvas
 Canvas.SetTop(myObject, (double)colP.Y / camDevice.ColorStream.FrameHeight * tgtCanvas.Height -

myObject.RenderSize.Height / 2);

 Canvas.SetLeft(myObject, (double)colP.X / camDevice.ColorStream.FrameWidth * tgtCanvas.Width -

myObject.RenderSize.Width / 2);
}

Plotting UI element on a canvas

and on a position of a joint

This call was added on previous slide

This implementation plots on color image, make similar method
for depth image by changing the word Color to word Depth

//Function implementation
private void plotOnColorImage(Joint myJoint, ColorImageFormat myFormat, UIElement myObject, Canvas

tgtCanvas)
{
 //Transform the joint position from skeleton coordinates to color image position
 ColorImagePoint colP = myMapper.MapSkeletonPointToColorPoint(myJoint.Position, myFormat);

 //Define the UI element (ellipse) top left corner position inside the canvas
 Canvas.SetTop(myObject, (double)colP.Y / camDevice.ColorStream.FrameHeight * tgtCanvas.Height -

myObject.RenderSize.Height / 2);

 Canvas.SetLeft(myObject, (double)colP.X / camDevice.ColorStream.FrameWidth * tgtCanvas.Width -

myObject.RenderSize.Width / 2);
}

Plotting UI element on a canvas

and on a position of a joint

First, map the skeleton

point on color image

Second, rescale the

color image point to

the canvas point

Augmented reality AR

This concept means combining additional
images, videos or animations on video image

With WPF –UI technology this can be
implemented sufficiently easily

WPF UI can be constructed from several
layers of images that are loaded on each other

The layout order of the images can be adjusted
and also the opasity property of objects allows
objects being seen through

Adding static image on video image

So far we draw two ellipses on the video frame

In addition to adding shapes, it is possible to

insert images (jpg, gif, png, …) on the UI

To do this, a control of type Image need to be

added on the Canvas – object

The content of the Image object can then be read

from an image file, location and opacity (and

other parameters) can be set either in XAML

code/Properties view or programmatically

Process

1. Create/find the image file

2. Add the image in the resources of the current Visual
Studio WPF project

• Add existing itembrowse for the image file

3. Set the property Source of the Image object pointing
to the wished image file

4. Since Image object is also an object of type
UIElement you can pass it as well to method
plotOnColorImage

Instead of static image, the Source contents can also be a
video file or stream (like the image stream of Kinect
sensor in our sample project)

Disposing the image frames
private void camera_AllFramesReady(object source, AllFramesReadyEventArgs e)
{
 ColorImageFrame colorImageFrame = null;
 DepthImageFrame depthImageFrame = null;
 SkeletonFrame skeletonFrame = null;
 try
 {
 colorImageFrame = e.OpenColorImageFrame();
 //and everything else here ...

 }
 finally
 {
 if (colorImageFrame != null)
 colorImageFrame.Dispose();

 if (depthImageFrame != null)
 depthImageFrame.Dispose();

 if (skeletonFrame != null)
 skeletonFrame.Dispose();
 }
}

This step is important to
clean up and free

resources, makes code
running more smoothly

Let us try it!

Build and Debug

Recording data

With Kinect Studio it is possible record and

play Kinect sensor data streams

Launch Kinect Studio and connect an active
Kinect software to it

After recording it is possible to play back
and run Kinect application without sensor

Render the skeleton

If we make pairs of the joints that are

connected and draw a line between each pair

we can reconstruct a graphical interpretation of

the skeleton

Sample code on following two slides

implements this with two methods: addLine

and drawSkeleton

addLine

private void addLine(Joint j1, Joint j2, Color color, KinectSensor sensor ,Canvas canvas)
{
 Line boneLine = new Line();
 boneLine.Stroke = new SolidColorBrush(color);
 boneLine.StrokeThickness = 5;
 ColorImagePoint j1p = sensor.CoordinateMapper.
 MapSkeletonPointToColorPoint(j1.Position, ColorImageFormat.RgbResolution640x480Fps30);
 //Rescale points to canvas size
 boneLine.X1 = (double)j1p.X/ camDevice.ColorStream.FrameWidth * canvas.Width;
 boneLine.Y1 = (double)j1p.Y / camDevice.ColorStream.FrameHeight * canvas.Height;
 ColorImagePoint j2p = sensor.CoordinateMapper.
 MapSkeletonPointToColorPoint(j2.Position, ColorImageFormat.RgbResolution640x480Fps30);
 boneLine.X2 = (double)j2p.X/ camDevice.ColorStream.FrameWidth * canvas.Width;
 boneLine.Y2 = (double)j2p.Y / camDevice.ColorStream.FrameHeight * canvas.Height;
 canvas.Children.Add(boneLine);
}

drawSkeleton
private void drawSkeleton(Skeleton skeleton, Canvas target, Color color)
{
 //Spine
 addLine(skeleton.Joints[JointType.Head],skeleton.Joints[JointType.ShoulderCenter],color,camDevice, target);
 addLine(skeleton.Joints[JointType.ShoulderCenter], skeleton.Joints[JointType.Spine],
 color, camDevice, target);

 //Left leg
 addLine(skeleton.Joints[JointType.Spine], skeleton.Joints[JointType.HipCenter], color, camDevice, target);
 addLine(skeleton.Joints[JointType.HipCenter], skeleton.Joints[JointType.HipLeft], color, camDevice, target);
 addLine(skeleton.Joints[JointType.HipLeft], skeleton.Joints[JointType.KneeLeft], color, camDevice, target);
 addLine(skeleton.Joints[JointType.KneeLeft], skeleton.Joints[JointType.AnkleLeft], color, camDevice, target);
 addLine(skeleton.Joints[JointType.AnkleLeft], skeleton.Joints[JointType.FootLeft], color, camDevice, target);

 //Same with right leg . . .

 //Left arm
 addLine(skeleton.Joints[JointType.ShoulderCenter], skeleton.Joints[JointType.ShoulderLeft],
 color, camDevice, target);
 addLine(skeleton.Joints[JointType.ShoulderLeft], skeleton.Joints[JointType.ElbowLeft],
 color, camDevice, target);
 addLine(skeleton.Joints[JointType.ElbowLeft], skeleton.Joints[JointType.WristLeft], color, camDevice, target);
 addLine(skeleton.Joints[JointType.WristLeft], skeleton.Joints[JointType.HandLeft], color, camDevice, target);

 //Same with right arm . . .
}

//Sample call from client app
drawSkeleton(sd,canvas,Colors.Green);

Cleaning previous skeletons

If we use the previous sample, each frame will
cause a completely new skeleton being drawn

The old ones are however not taken away
unless exlicitly commanded canvas is soon
painted with skeleton color

Solution 1: clean up the canvas by command

 canvas.Children.Clear();

Solution 2: create skeleton lines on global
level and update their location

Result

CONTROLLING THE MOUSE AND

KEYBOARD WITH KINECT JOINT

POSITIONS

PART III

Contents

Technology
Tools required

Programmatic control of mouse

Programmatic control of keyboard

Programmatic control of active application

Joint position scaling to screen size for mouse control

Gestures
Absolute X – Y positions in gesture control

Relative X – Y positions in gesture control

Relaxation of body

Depth dimension in gesture control

CONTROLLING THE MOUSE AND

KEYBOARD WITH KINECT JOINT

POSITIONS: TECHNOLOGY

PART IIIa

Tools required

Kinect SDK, Visual Studio 2010, Kinect sensor

Input Simulator (http://inputsimulator.codeplex.com/)
for sending keyboard commands to the computer

Windows forms provide also a method SendKeys, but it only
simulates text entry, not actual keystrokes

NativeMethods.cs for commanding the mouse
(https://github.com/jera/lazyconsumer/blob/master/Native
Methods.cs)

Include the namespace in the project

 using NativeMethods;

Some additional references to user32.dll native
methods to get access to System resources

http://inputsimulator.codeplex.com/
https://github.com/jera/lazyconsumer/blob/master/NativeMethods.cs
https://github.com/jera/lazyconsumer/blob/master/NativeMethods.cs

Programmatic control of the mouse

In NativeMethods.cs there is method SendMouseInput
for sending commands to the mouse

Method takes the mouse position (X and Y coordinates),

screen size and mouse button press as parameters

Example: set position at display pixel

 (x,y) = (245,334)

 with no mouse button pressed is implemented as:
NativeMethods.SendMouseInput(245, //x coordinate

 334, //y coordinate

 (int)SystemParameters.PrimaryScreenWidth, // display width

 (int)SystemParameters.PrimaryScreenHeight, //display height
 false); //no mouse button pressed

Programmatic control of keyboard

SendKeys of namespace System.Windows.Forms
Two methods available

Send() , only applicable with Windows messaging

SendWait()

Documentation at: http://msdn.microsoft.com/en-
us/library/system.windows.forms.sendkeys.aspx

InputSimulator tool provided by an open
source project

Several different methods available

Documentation and download at:
http://inputsimulator.codeplex.com/

http://msdn.microsoft.com/en-us/library/system.windows.forms.sendkeys.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.sendkeys.aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.sendkeys.aspx
http://inputsimulator.codeplex.com/

SendKeys

Send()

Sends the key and continues

Application must handle Windows messaging

SendWait()

Sends the key and waits until the message has been

processed

Both send methods take a string or the key(s)

as parameter

SendKeys.SendWait("Kinect");

SendKeys parameters

Send plain string

SendKeys.SendWait(“{ENTER}")

// 10 subsequent Enters:

SendKeys.SendWait("{ENTER 10}");

SendKeys.SendWait("{DOWN}");

Buttons with no symbol
showing on screen, see
documentation for keys

// CTRL + C (copy)

SendKeys.SendWait(“^C")

// CTRL + ALT + delete

SendKeys.SendWait(“^%{DEL}");

// SHIFT + E + C

SendKeys.SendWait(“+EC");

Control (^), Alt (%) and
Shift (+) characters
coupled with one or
more other characters

http://msdn.microsoft.com/en-us/library/system.windows.forms.sendkeys.aspx

InputSimulator

5 different methods for controlling keyboard

SimulateTextEntry for plain text string entry

SimulateKeyPress for pressing single key

SimulateKeyDown for holding single key down

SimulateKeyUp for lifting single key up

SimulateModifiedKeyStroke for special

keys and combined keys

InputSimulator.SimulateTextEntry("Kinect");

InputSimulator method parameters

Send plain string
InputSimulator.SimulateKeyDown(VirtualKeyCode.SHIFT);

InputSimulator.SimulateKeyPress(VirtualKeyCode.VK_K);

InputSimulator.SimulateKeyPress(VirtualKeyCode.VK_I);

InputSimulator.SimulateKeyPress(VirtualKeyCode.VK_N);

InputSimulator.SimulateKeyUp(VirtualKeyCode.SHIFT);

InputSimulator.SimulateKeyPress(VirtualKeyCode.VK_E);

InputSimulator.SimulateKeyPress(VirtualKeyCode.VK_C);

InputSimulator.SimulateKeyPress(VirtualKeyCode.VK_T);

Send single key

presses

Control (^), Alt (%) and
Shift (+) i.e. characters
combined with one or
more other characters

// CTRL + C (copy)
InputSimulator.SimulateModifiedKeyStroke(
 VirtualKeyCode.CONTROL,
 VirtualKeyCode.VK_C);

// CTRL + ALT + C + K
InputSimulator.SimulateModifiedKeyStroke(

 new[] { VirtualKeyCode.CONTROL,
 VirtualKeyCode.ALT },
 new[] { VirtualKeyCode.VK_C,
 VirtualKeyCode.VK_K });

Programmatic control of currently

active application
For safety reasons it is necessary to restrict the
gesture commands to specific applications

Namespace System.Diagnostics provides
method Process.GetProcesses() for
retrieving a list of currently running processes

In user32.dll there exists methods that provide
control over foreground application, for example

GetForegroundWindow()
Get access to foreground window properties

SetForegroundWindow()
Set given application on foreground

[DllImport("user32.dll", CharSet = CharSet.Auto, ExactSpelling = true)]
public static extern IntPtr GetForegroundWindow();

[DllImport("user32.dll")]
static extern int GetWindowText(IntPtr hWnd, StringBuilder text, int count);

public static string GetActiveWindowTitle()
{
 const int nChars = 256;
 IntPtr handle = IntPtr.Zero;
 StringBuilder Buff = new StringBuilder(nChars);
 handle = GetForegroundWindow();
 if (GetWindowText(handle, Buff, nChars) > 0)
 {
 return Buff.ToString();
 }
 return null;
}

[DllImport("user32.dll")]
public static extern bool
SetForegroundWindow(IntPtr hWnd);

Add the following code in your project, for
example in NativeMethods.cs class file

Importing the user32.dll methods

For getting access
to foreground
window properties

For changing the
foreground window

StringBuilder class requires
namespace System.Text

//Retrieve list of running processes
Process[] pList = Process.GetProcesses();
foreach (Process pr in pList)
{
 if (pr.MainWindowTitle.StartsWith("Untitled - Notepad"))
 { //when first Notepad found set it on foreground
 NativeMethods.SetForegroundWindow(pr.MainWindowHandle);
 //and terminate for-each loop
 return;
 }
}

//Make sure that Notepad is active
if (string.Compare(NativeMethods.GetActiveWindowTitle(), "Untitled - Notepad") == 0)
{
 //Write and copy – paste on Notepad
 InputSimulator.SimulateTextEntry("Kinect");
 SendKeys.SendWait("{HOME}");
 SendKeys.SendWait("+{END}");
 SendKeys.SendWait("^C");
 SendKeys.SendWait("{DOWN}");
 SendKeys.SendWait("{ENTER}");
 SendKeys.SendWait("^V");
}
//Return to original (this) application
this.Activate();

Open an empty
Notepad
application, compile
and execute this
application

Select foreground application

window, example for Notepad

Joint colP = myJoint.ScaleTo((int)tgtCanvas.Width,

 (int)tgtCanvas.Height);

Canvas.SetTop(myObject, (double)colP.Position.Y);

Canvas.SetLeft(myObject, (double)colP.Position.X);

The Coding4Fun extension for Kinect SDK offers
also a method ScaleTo for scaling directly from
joint position into a given rectangle size

ScaleTo method

Not directly applicable when plotting on sensor
images while the skeleton position does not quite
match with real image positions – offset remains –
but very useful when we start playing with mouse!!

Joint position scaling to screen for

mouse control

Two overloads: first one takes only screen size

parameters (width and height), second one

takes also scaling factors

Scaling factors define the relative size of the

source image (skeleton image) window

mapped on whole target screen

To cover the whole screen the hand does not

necessarily have to cover the whole image area

ScaleTo: Scaling factors

Area easily

reachable with

the right hand

(ux1,uy1) = (uxmax,uymax)

0

Y

X

+

+ -

-

X

Y

+

+

(kx0,ky0)

(kx0,ky1)
(kx1,ky1)

(kx1,ky0)

(ux0,uy0) = (0,0) (ux1,uy0) = (uxmax,0)

(ux0,uy1) = (0,uymax)

(kx,ky)

(ux,uy)

Skeleton image
Screen

Joint rhSc = RightHand.ScaleTo((int)SystemParameters.PrimaryScreenWidth,
 (int)SystemParameters.PrimaryScreenHeight,
 0.2f, //X – direction scaling factor
 0.2f); //Y – direction scaling factor

Example: mouse control

private void mouse(Joint LeftHand, Joint RightHand)

{

 bool mClick = (LeftHand.Position.Y > 0.30);

 Joint rhSc = RightHand.ScaleTo((int)SystemParameters.PrimaryScreenWidth,

 (int)SystemParameters.PrimaryScreenHeight,

 0.2f,

 0.2f);

 NativeMethods.SendMouseInput((int)rhSc.Position.X,

 (int)rhSc.Position.Y,

 (int)SystemParameters.PrimaryScreenWidth,

 (int)SystemParameters.PrimaryScreenHeight,

 mClick);

}

Left hand 30 cm above X – axis zero equals mouse
click, right hand gives coordinates for mouse cursor

Calling mouse

if (sd.TrackingState == SkeletonTrackingState.Tracked)

{

 Joint LeftHand = sd.Joints[JointType.HandLeft];

 Joint RightHand = sd.Joints[JointType.HandRight];

 //Continue only if both hands are being tracked

 if (RightHand.TrackingState == JointTrackingState.Tracked &&

 LeftHand.TrackingState == JointTrackingState.Tracked)

 {

 mouse(LeftHand, RightHand);

 }

With implementation on the previous page
the mouse can be operated, for example
with each frame as

CONTROLLING THE MOUSE AND

KEYBOARD WITH KINECT JOINT

POSITIONS: GESTURES

PART III/b

Selecting practical set of gestures

Combining Kinect joint static positions to keyboard commands

is possible by setting some active range(s) for one or more

joints for activating the command

Technically this is simple with the tools described in previous

chapters

Difficulty lies in the selection of the set of gestures in case the

number of different commands is higher than just a few

Moreover, at a relaxed position of the body parts, the gesture

control should not send any commands to the system

The user should have possibility to relax at any time without a possible

hazard to the system or applications

Naval semaphores are signals sent by the positions of
two arms emphazised with flags used in communication
between, for example, two distant naval ships

Naval semaphores example

Word ”Kinect” with naval semaphores

Both hands may have 8 different positions
(not all applicable)

Approach 1: absolute position

Naval semaphores is an example of a set of
gestures applicable for computer control

Robust set, while it has been developed such that two
codes are not easily mixed

Requires only detection of the X – Y positions of
the joints of both hands

Definition of a gesture requires, for both hands, a
specification of valid ranges where the key is
activated

min and max values in both X and Y dimension

Example: definition of semaphore ’K’

Right arm up valid
range

Y

X

+

+ -

- Left arm on low left
valid range

Joint RightHand = sd.Joints[JointType.HandRight];
Joint LeftHand = sd.Joints[JointType.HandLeft];

float k_XThresh_Left = -0.3f; //30 cm away from vertical image centerline
float k_YThresh_Left = -0.3f; //30 cm below horizontal image centerline
float k_XThresh_Right_right = 0.1f;
float k_XThresh_Right_left = -0.1f;//20 cm window around image centerline
float k_YThresh_Right = 0.3f;//30cm above horizontal image centerline

bool isK = ((LeftHand.Position.X < k_XThresh_Left)&&
 (LeftHand.Position.Y < k_YThresh_Left)&&
 (RightHand.Position.X > k_XThresh_Right_left)&&
 (RightHand.Position.X < k_XThresh_Right_right)&&
 (RightHand.Position.Y > k_YThresh_Right));

Application of absolute positions is practical
only when the user stands in the middle of the
image or close to it

Problem with absolute position

Y

X

+

+ -

-

Y

X

+

+ -

-

Approach 2: relative position

Relative position of joints means selecting a reference
point from the human body and appying the joint
position relative to the position of the reference point

A valid reference point can be something that statically
lies in the middle of the body

For example shoulder center or head do not deviate much
from their positions

Valid reference point can also be some point in the
body that may change the position significantly

For example second hand: compare the vertical or
horizontal position of both hands

Left hand on right means that arms are crossed

Y

X

+

+ -

-

Example: definition of semaphore ’K’

ShoulderCenter
centered source frame

New reference point at the
center of the body

Joint RightHand = sd.Joints[JointType.HandRight];
Joint LeftHand = sd.Joints[JointType.HandLeft];
Joint Center = sd.Joints[JointType.ShoulderCenter];

float k_XThresh_Left = -0.3f; //30 cm away from vertical body centerline
float k_YThresh_Left = -0.3f; //30 cm below horizontal body centerline
float k_XThresh_Right_right = 0.1f;
float k_XThresh_Right_left = -0.1f;//20 cm window around body centerline
float k_YThresh_Right = 0.3f;//30cm above horizontal body centerline

bool isK = ((LeftHand.Position.X < Center.Position.X + k_XThresh_Left)&&
 (LeftHand.Position.Y < Center.Position.Y + k_YThresh_Left) &&
 (RightHand.Position.X > Center.Position.X + k_XThresh_Right_left) &&
 (RightHand.Position.X < Center.Position.X + k_XThresh_Right_right) &&
 (RightHand.Position.Y > Center.Position.Y + k_YThresh_Right));

ERGONOMY

Part IV

Mouse and keyboard control in real

applications

When mouse is operated with one hand, both hands can not

anymore be applied for keyboard commands as in the previous

semaphore examples

Especially in 3D - games, it may be necessary to control, for

example, arrow buttons in addition to the mouse position and

mouse click - and still be able to operate some extra

commands

Should we need extra hands?

Further, the body should be allowed to get into a relaxed

position where no muscle need to be tensed without risking the

application or system hazard

Relaxation of body parts

If mouse position is read only from the X – Y position
of the hand, there is no place for the hand to be relaxed

Hand hanging relaxed would make the mouse point in right
(or left) lower corner of the screen

One solution would be to activate the mouse only if, for
example, the second hand is being raised up

Lowering both hands will disconnect gesture from mouse
allowing body to rest

But we needed the second hand for other purposes!!!

Z - dimension

Z – dimension of the Joint position provides one solution
for allowing a natural relaxation for mouse hand

For example, activate mouse only if the hand is pushed
forward by, say, 30 cm

Pulling hand towards the body releases mouse

This is easy to implement by applying a body reference
point in Z – dimension

For example ShoulderCenter again

float mouseActiveThreshold = 0.3f; //30 cm
Joint Center = sd.Joints[JointType.ShoulderCenter];

//Mouse activated only if right hand is far enough from the body
bool mouseOn = (RightHand.Position.Z < (Center.Position.Z - mouseActiveThreshold));

Z – dimension coordinate system

Z coordinate (depth)

value of an object is

the distance from the

camera sensor x-y

plane to the object

which is not the same

as distance from

object to sensor

Sensor x-y plane

Sensor location effect on

Z – dimension

If sensor is positioned low and tilted upwards or
positioned high and not tilted, makes some difference
in Z – directional position measure while the measure
is taken from sensor point of view

Sensor point of view, low position

and tilted angle

Distance between camera and legs is different

from distance between camera and head

(z1, y1)

Body midline is at

line

𝑦 = 𝑘𝑧 + 𝑦1 − 𝑘𝑧1

where k =
𝑦2−𝑦1

𝑧2−𝑧1

Threshold line is then

𝑦 = 𝑘(𝑧 + 𝑡) + 𝑦1 − 𝑘𝑧1

(z2, y2)

How big is this effect?

If, for example, [hand.Z < head.Z – 20 cm] is

required, how far the hand must be pushed to

reach this level if sensor is far/close/bottom/up

Assume head and hand are both 1.5 m high

Case 1: sensor at head level

20 cm

Sensor distance does
not have any effect, 20
cm real difference is

also seen by the
sensor

How big is this effect?

If, for example, [hand.Z < head.Z – 20 cm] is

required, how far the hand must be pushed to

reach this level if sensor is far/close/bottom/up

Assume head and hand are both 1.5 m high

Case 2: sensor on floor, 1.5 m away from body

20 cm

At 20 cm real distance the
camera sees only 14 cm

difference

To make the difference up to
20 cm from sensor point of

view, the hand must be pushed
28 cm forward

𝑦 cos 45° 𝑐𝑚 = 20𝑐𝑚 ↔

𝑦 =
20

cos 45°
= 28𝑐𝑚

20 cm

45º

X

X = 20 cos45º

Y

45º

20 cm

How big is this effect?

If, for example, [hand.Z < head.Z – 20 cm] is

required, how far the hand must be pushed to

reach this level if sensor is far/close/bottom/up

Assume head and hand are both 1.5 m high

Case 3: sensor on floor, 3 m away from body

20 cm

At 20 cm real distance the
camera sees now 17.9 cm

difference

To make the difference up to
20 cm from sensor point of

view, the hand must be pushed
22 cm forward 20 cm

26.56º

X

X = 20 cos26.56º=17.9

𝑦 cos 26.56° 𝑐𝑚 = 20𝑐𝑚 ↔

𝑦 =
20

cos 26.56°
= 22.4𝑐𝑚

Control and reference joints at

different heights?

If, for example, [hand.Z < head.Z – 20 cm] is

required, how far the hand must be pushed to

reach this level if sensor is far/close/bottom/up

Assume head 1.5 m high but hand is 30 cm lower

To make the difference up to
20 cm from sensor point of
view, the hand must now be

pushed only 7.4 cm forward !!!

Case 4: sensor 3 m away from body

At 20 cm real distance the
camera sees now 335 – 305 =

30 cm difference

Cancelling the sensor location effect

No effect if control Joint (hand) and reference

Joint (head) are close to each other and sensor

is far or at the same height with them

If sensor location is not known in advance,

prepare for cancelling the effect

Calibration?

Dynamically select the body reference point either

from Head, Shoulder or Hip according to the hand

height

Sensor tilt calibration

While standing straight, record the Z and Y measures for

Head (z1, y1) and some lower Joint in the middle, for example

CenterHip (z2, y2)

Determine linear function Z = f(Y) corresponding the straight

line going through the two points by

This equation determines the position of the body in z – axis,

the equation which describes the location of the threshold line

in y axis is now defined as

𝑧 =
𝑦−𝑏

𝑘
, where k =

𝑦2−𝑦1

𝑧2−𝑧1
 and b = 𝑦1 − 𝑘𝑧1

𝑧 =
𝑦−𝑏

𝑘
− 𝑡, where k =

𝑦2−𝑦1

𝑧2−𝑧1
, b = 𝑦1 − 𝑘𝑧1

and t is the threshold

Calibration example

Sensor positioned low at
about 2m distance from body

HdZ = Head Z - position = 1.90

HdY = Head Y - position = 0.45

HpZ = Hip Z - position = 1.69

HpZ = Hip Y - position = -0.14

𝑧 =
𝑦−(𝑦1−(

𝑦2−𝑦1
𝑧2−𝑧1

)𝑧1)

(
𝑦2−𝑦1
𝑧2−𝑧1

)
=

𝑦−(0.45−2.269×1.90)

2.269
=

𝑦+3.8611

2.269

Application of calibrated Z –

dimensional reference point

As function Z = f(Y) has been defined as

method getZ(), it can be used instead of static

body reference point as in

//function getZ returns the calibrated Z body reference value corresponding to hand joint height
float mouseThres = 0.2f;
float calZ = calibratedZ(Head.Position.Y, Head.Position.Z,
 CenterHip.Position.Y, CenterHip.Position.Z, RightHand.Position.Y);
bool mouseOn = RightHand.Position.Z < calZ - mouseThres;

private float calibratedZ(float ref1_y, float ref1_z, float ref2_y, float ref2_z, float control_y)
{
 float k = (ref2_y - ref1_y) / (ref2_z - ref1_z);
 return (control_y - (ref1_y - (k * ref1_z))) / k;
}

Application

FACE TRACKING

Part IV

Face tracking

Face tracking is a feature available with the Kinect
SDK

Requires extension available with Kinect SDK
Microsoft.Kinect.Toolkit.FaceTracking

Reference

Namespace

Dynamic library FaceTrackLib.dll must be manually copied in the bin
folder of the project

Provides 3D (real space) and 2D (image space)
coordinates of 87 different poits of human face

Also provides several predefined indices corresponding
facial expressions as Animation Unit Coefficients

Global objects

The FaceTracker class provides the face
tracking service

As well it is useful to store the image data
needed by the face tracker to global objects

private FaceTracker faceTracker;
byte[] colorPixelData;
short[] depthPixelData;
private Skeleton trackedSkeleton;

Object initialization

Object initialization is best made in window
initialization method (Window_loaded)

FaceTracker object construction connects the
object to the Kinect sensor object

colorPixelData = new byte[camDevice.ColorStream.FramePixelDataLength];
depthPixelData = new short[camDevice.DepthStream.FramePixelDataLength];
faceTracker = new FaceTracker(camDevice);

Get access to frame data

In event handler of AllFramesReady the face
tracking data is accessed through color image,
depth image and skeleton frame data

private void camera_AllFramesReady(object source, AllFramesReadyEventArgs e)
{
 ColorImageFrame colorImageFrame = null;
 DepthImageFrame depthImageFrame = null;
 SkeletonFrame skeletonFrame = null;
 try
 {
 colorImageFrame = e.OpenColorImageFrame();
 depthImageFrame = e.OpenDepthImageFrame();
 skeletonFrame = e.OpenSkeletonFrame();

 //If we lost the facetracker, try recover even if it takes long time
 if (faceTracker == null)
 faceTracker = new FaceTracker(camDevice);
 if (faceTracker == null || colorImageFrame == null ||
 depthImageFrame == null || skeletonFrame == null)
 return; //Not worth continuing

Frame data for face tracking

Continue by copying the frame image data into
pixel data objects

Make sure there is a skeleton being tracked

//Get pixel and skeleton data from frames
colorImageFrame.CopyPixelDataTo(colorPixelData);
depthImageFrame.CopyPixelDataTo(depthPixelData);
skeletonFrame.CopySkeletonDataTo(allSkeletons);

//And make sure we have one skeleton tracked
if (trackedSkeleton == null) //If not from previous frame, try find one
 trackedSkeleton = allSkeletons.FirstOrDefault(s => s.TrackingState == SkeletonTrackingState.Tracked);

if (trackedSkeleton == null)
 return; //Not worth continuing if no skeletons available

//If we get this far, we might as well output the image
image.Source = colorImageFrame.ToBitmapSource();

FaceTrackFrame object

FaceTrackFrame object is constructed from
colorPixelData, depthPixelData and
trackedSkeleton

This object provides the face tracking data

//If resources are available, first create the FaceTrackFrame object
//with static method Track of the FaceTracker class
FaceTrackFrame faceFrame = faceTracker.Track(camDevice.ColorStream.Format,
 colorPixelData, camDevice.DepthStream.Format,
 depthPixelData, trackedSkeleton);

//And now, if face is succesfully tracked, get the required tracking data...
if (faceFrame.TrackSuccessful)
{
 ...

Face tracking data: AU coefficients

Face tracking data includes 2D, 3D, triangles
and indices corresponding to emotional
expressions as Animation unit coefficients

// Gets the AU coeffs, this is some prederfined facial expressions
EnumIndexableCollection<AnimationUnit, float> AUCoeff =
 faceFrame.GetAnimationUnitCoefficients();

// Gets the AU coeffs, this is some prederfined facial expressions
EnumIndexableCollection<AnimationUnit, float> AUCoeff =
faceFrame.GetAnimationUnitCoefficients();
//brow lowerer = 0: neutral, +1: fully lowered, -1: raised all the way
float browLowererAU = AUCoeff[AnimationUnit.BrowLower];
//jaw lowerer = 0: closed, +1: fully open, -1: closed (as 0)
float jawLowererAU = AUCoeff[AnimationUnit.JawLower];

AU coefficient values

Face tracking data: 2D coordinates

There exists 100 points of face that can be tracked
for location in 2D color image coordinates

This data is accessed from FaceTrackFrame
object by method GetProjected3DShape

EnumIndexableCollection<FeaturePoint, PointF> face2DFrame =
 faceFrame.GetProjected3DShape();

//PointF is a struct of FaceTracking Toolkit, has properties X and Y
PointF leftEye = face2DFrame[FeaturePoint.OuterTopLeftPupil];
PointF rightEye = face2DFrame[FeaturePoint.OuterTopRightPupil];
//Do not try this at home!
bool crossEyed = (leftEye.X > rightEye.X);

 Any of these points can be applied to plot objetcs on image in the same way as

with the skeleton joint data or, for example, to operate mouse cursor

Feature point enumeration

There exists 120 points of face in collection

Face2DFrame

Enum type FeaturePoint lists 71 of them

Head Pose

Head pose can be accessed through the

property Rotation of the object

FaceTrackFrame

_
+

_
+

_

+

txtRoll.Content = "Roll: " + faceFrame.Rotation.Z;
txtPitch.Content = "Pitch: " + faceFrame.Rotation.X;
txtYaw.Content = "Yaw: " + faceFrame.Rotation.Y;

Face tracking data: 3D coordinates

Same 100 points of face that can also be tracked
for location in 3D real space coordinates

This data is accessed from FaceTrackFrame
object by method Get3DShape

EnumIndexableCollection<FeaturePoint, Vector3DF> face3DFrame =
 faceFrame.Get3DShape();

//Vector3DF is struct of FaceTracking Toolkit, properties X and Y
Vector3DF leftEye3D = face3DFrame[FeaturePoint.OuterTopLeftPupil];
Vector3DF rightEye3D = face3DFrame[FeaturePoint.OuterTopRightPupil];
//Do not try this at home!
bool crossEyed = (leftEye3D.X > rightEye3D.X);

These points can be applied to solve location of face points in 3D space

SPEECH RECOGNITION

Part VI

Required SDK libraries

Speech Platform SDK installed (v11)
Should be installed already with Kinect SDK

Language package for wished languages

Reference to Microsoft.Speech

Namespaces
Microsoft.Speech.AudioFormat

For input format only

Microsoft.Speech.Recognition

To produce speech, this SDK is not required,
apply standard library System.Speech for that

http://msdn.microsoft.com/en-us/library/hh362873(v=office.14).aspx
http://msdn.microsoft.com/en-us/library/hh362873(v=office.14).aspx
http://www.microsoft.com/en-us/download/details.aspx?id=34809

Make computer talk

This is very easy

Reference to System.Speech

Create SpeechSynthesizer object

Make it speak

SpeechSynthesizer mySynth = new SpeechSynthesizer();
mySynth.Speak("It is so easy to talk like this");
PromptBuilder myPrompt = new PromptBuilder();
myPrompt.AppendText("We can also build");
myPrompt.AppendText("text from pieces to a Prompt object");
mySynth.Speak(myPrompt);

Unfortunately the pronunciation is by default in English, but it can

be controlled by applying so called set of International Phonetic

Alphabet (IPA) and method AppendTextWithPronunciation

Speech recognition sample

In application, for the speech control, the key

classes are the SpeechRecognitionEngine

and KinectAudioSource

This sample applies a helper class

SpeechRecognizer that you can copy as it

is and modify to your purposes

Actually this sample is also modified from

ShapeGame which comes with the SDK sample

projects

SpeechRecognizer helper class

Creates references to Kinect speech recognition objects
of SpeechRecognitionEngine and
KinectAudioSource and takes care of their
initialisation and disposing

Vocabularies implemented as C# collection type of
Dictionary<,>, where words or phrases are adjoined
with activities

Build of complete grammar of the application from
these vocabularies

Interface SaidSomething to event handlers of speech
commands and raising of these events when sensible
words or sentences were said

Grammar structure

Grammar is a structured property of the
SpeechRecognitionEngine (SRE) object, once
grammar is created, it is uploaded to SRE with method
LoadGrammar
Grammar object constructs from set of allowed words
(Choises) and the rules of how to create legal
sentences (GrammarBuilder) by combination of the
words

This is something you learn more on the second week of
TrabHCI

Event handler SpeechRecognized of the SRE raises
event of type SaidSomething with reasonable sentence

Shortcuts to the code files

