
Scripting in Second Life

Sariseelia Sore
Acting Principle Lecturer

1. Second Life Overview
2. Creating Objects

3. Linden Scripting Language (LSL)

Scripting in Second Life

1. Second Life Overview
2. Creating Objects

3. Linden Scripting Language (LSL)

A virtual world is an online
environment intended for its

users to interact with others via
avatars

• Virtual shared 3D environment (~3D WWW)

• Origin in game world non-academic
language (rez, prim,…)

• The environment consists of objects
(buildings, plants, etc.)

• Objects are made of primitives
• Primitives may have functionalities (Scripts)
• Browsing with virtual personalities (Avatars)

Source: http://en.wikipedia.org/wiki/
Image:Graph_of_Second_Life_population.png

• Developed by Linden
Research, Inc
(Philip Rosedale)

• Launched in June 2003
• Came to international

attention in late 2006 and
early 2007

• The best known virtual world at the moment

Client-Server Architecture

Dallas
San Francisco

Thousands of Debian Servers

Client

MySQL Servers for
100 terabytes capacity

Internet

Region Simulators (Sims)
Second Life World Map

Each region
(256 m x 256 m)
is simulated by a
single named
server instance

For now, Linden Lab is the only company that runs sims

Avatars
• Resident: people providing content

and contributing to the experience
(user of SL)

• Avatar: The appearance of a resident

Moving Around

You can move by foot
walk, run and jump...

... or teleport anywhere
in SL in an instant!

… ride in vehicles...

… fly...

Communicating
private: Instant Messages (IM)

non-verbally:
poses, animations and gestures

verbally: text and voice

public: local chat
(whisper, talk, shout)
or group IM

Gestures

Linden Dollar (L$)

Economy

Exchange rate quite stable: L$ 255 to 1 US$
(23.3.12: 1 € = 1,3242 US$)

=> 1 € 338 L$ => 100 L$ 30 snt

Financed by residents
Linden Lab: SL “central bank”

https://secondlife.com/my/lindex/market.php

Businesses and
Organizations

1. Solely in-world
businesses

– Selling virtual goods
and services

2. Companies
participating SL

– Assisting and advising
real-life businesses on
presenting themselves
in SL

Scripting in Second Life

1. Second Life Overview
2. Creating Objects

3. Linden Scripting Language (LSL)

SL is maintained by Linden Lab, but
it’s created by it’s residents!

“Your World. Your Imagination.”

“You create it, you own it.”

Creating Second Life

• All the objects in SL
are created with a
build-in 3D modeling
tool

• The behavior is added
with the Linden
Scripting Language
(LSL)

Primitives (Prims)

cube cylinder
prismsphere

tube
torus

prism

The Ivory Tower Library of Primitives (Natoma 210, 164, 27)

Creating Prims
1. Right-click

the ground
2. Choose

Build from
the opened
menu

3. Left-click on
the prim
type you
want to
build

4. Left-click
the ground

Modifying Prims

• Prims can be moved, resized and
rotated using the mouse…

• … or setting the values of x,
y, and z on the Object tab of
Edit window

Y

Z
X

Bath Cut

.000 .125 .250

.375

.500.625.750

.875

Hallow

Texture
• Pretty large collection exists
• Default texture plywood
• Own textures – Resolution power of 2

(32x32, …1024x1024)
– Uploading 10 L$
– .tga, .bmp, .jpg, or .jpeg

Linked Prims - Objects
• Linking

– Select the prims Ctrl+L
(Tools Link)

– Max 256 prims, for physical
objects 31 prims

• Unlinking
– Shift+Ctrl+L (Tools Unlink)

• Root prim
– The last prim selected (glow

yellow)
– Carries the most of the

characteristics of the linked set
(e.g. name, and scripts)

Scripting in Second Life

1. Second Life Overview
2. Creating Objects

3. Linden Scripting Language (LSL)

Behavior of Objects
• Linden Scripting Language (LSL)
• Scripts are attached to primitives
• Build-in editor
• External stand-alone editor (e.g. LSLEditor)

Linden Scripting Language

• Like C or Java
• About 35 ready made event handlers
• Hundreds of built-in functions
• LSL Portal:

http://wiki.secondlife.com/wiki/LSL_Portal

Finite State Machines

• A model of
behavior
composed of a
finite number of
states, transitions
between those
states, and actions

state

transition

S2
blue

A1: set color blue
An: inform about exit

S1
default

A1: set color default
An: inform about exit

entry
action

exit
action

default {
//contents of the default state
//goes here

}

state blue {
//contents of state blue goes here

}

Example: Defining States

States in LSL
• A state is a set of event handlers, which

are running and waiting for events
• All scripts must have a state named

default, the state SL puts the script in
only when it’s
– first compiled and
– whenever it’s reset

• States cannot have user functions or
variables inside their immediate scope,
only event definitions

Several States

• A script may have several states
– The default state must be defined before

all others
– Only one state per script can be active at

any one time
• The states are defined with the word

state (except for the default state)
followed by the name of the state and
the contents is enclosed in curly
brackets

Changing States

• Command state followed by the
name of the target state:
state target_state;

1. Trigger state_exit and clear the event
queue

2. Change state to target state
3. Trigger state_entry in the target state

vector color_default = <1.0, 1.0, 1.0>; // white
vector color_blue = <0.0, 0.0, 1.0>; // blue

default {
state_entry() {

llSetColor(color_default, ALL_SIDES);
}
touch_start(integer total_number) {

state blue; // changes the state to state blue
}
state_exit() {

llOwnerSay("state_exit() for default state");
}

}
state blue {

state_entry(){
llSetColor(color_blue, ALL_SIDES);

}
touch_start(integer total_number){

state default; // changes the state to default state
}
state_exit() {

llOwnerSay("state_exit() for blue state");
}

}

Events Trigger Event Handlers

default
{

state_entry(){
llSay(0, "Hello, Avatar!");

}

touch_start(integer total_number) {
llSay(0, "Please, don’t touch");

}
}

Exercise 1: The First Script

1. Go to a land named IP2012 and set it
to be your home

2. Create a primitive and add your first
script to it:

LSL Portal: http://wiki.secondlife.com/wiki/LSL_Portal
Timer: http://wiki.secondlife.com/wiki/Timer

Make the primitive to respond to a touch so that

1. the first touch will start a timer
(llSetTimerEvent(float sec) and timer()) showing
the avatar every second an increasing number starting
from 1, and

2. the second touch will stop the timer

Data Types

• LSL supports basic data types (integer,
float and string) and the following four:

1. key,
2. list,
3. vector, and
4. rotation

Constants

• Hundreds of predefined
constants: PI, TRUE,
ZERO_VECTOR, NULL_KEY,
DEG_TO_RAD, etc.

• Not possible to define own constants
–Variables can be used as pseudo-

constants

Key

• A unique identifier that all the items
in SL have

• Can be used to reference objects
and agents

//Returns the key of the owner of the object
key owner = llGetOwner();

//Returns the key of the prim the script is attached to
key me = llGetKey();

//Returns the key of the detected avatar or object
//works within Detection events e.g. touch_start() and
//in functions called by Detection events
key touchedBy = llDetectedKey(0);

List
• Ordered set of values of other data types

(two dimensional lists NOT possible)
• Created via comma-separated values

enclosed by square brackets ([])
• The values in a list can’t be changed

list lst = []; //Empty list

lst = ["apple", 7];

lst += [6.9, 11]; //lst is now ["apple", 7, 6.9, 11]

integer length = llGetListLength(lst); //4

string s = llList2String(lst, 0); //s is "apple"

lst = llList2List(lst,1,2); //[7, 6.9]

integer position = llListFindList(lst,[6.9]); //1

Vector
• Single unit of three floats: <x, y, z>
• A vector can represent e.g. position and

color
vector v = ZERO_VECTOR;
//Constant ZERO_VECTOR has the value <0.0, 0.0, 0.0>

v = llGetPos();
//Gets the object's position in the sim

v.x = 45.6;
v.y = v.x + 7.0;
//v is now <45.6, 52.6, 0.0>

vector red = <1.0, 0.0, 0.0>;
//The components represent red, green, and blue (rgb)

Setting a New Position

//Move the object up 1m when someone touches it
//Stay there for 2s and return to the origin

vector startPosition;

default {

touch_start(integer total_number) {

startPosition = llGetPos();

llSetPos(llGetPos() + <0,0,1>);

llSleep(2.0);

llSetPos(startPosition);
}

}

+ 1m

Rotation
• Single unit of four floats: <x, y, z, s>

– Representation of the mathematical
concept quaternion

• Represents the orientation of an object

rotation r = ZERO_ROTATION;
//Constant ZERO_ROTATION: <0.0, 0.0, 0.0, 1.0>

r = llGetRot();
//Gets the object's rotation

r = llEuler2Rot(<0, 45 * DEG_TO_RAD, 0>);
//45 degrees around the y-axis

Rotation of an Object
in Practice

1. Define the angle of rotation in degrees (vector)
2. Change it to radians
3. Convert the vector to rotation
4. Set the new orientation (rotation) value for the

object

vector angleInDegrees = <45,0,0>;
vector angleInRadians = angleInDegrees * DEG_TO_RAD;
rotation rot_x45 = llEuler2Rot(angleInRadians);
llSetRot(llGetRot() * rot_x45);

//////// OR ////////

llSetRot(llGetRot()*llEuler2Rot(DEG_TO_RAD*<45,0,0>));

Example: Rotating an Object
//Rotate the object around z-axis when someone touches it
//Rotate twice 360 degrees in segments of 15 degrees

rotation rot_z15;
default {
state_entry() {
vector angleInDegrees = <0,0,15>;
vector angleInRadians = angleInDegrees * DEG_TO_RAD;
rot_z15 = llEuler2Rot(angleInRadians);

}
touch_start(integer total_number){
integer i;
for(i=1; i<49; i++) {
llSetRot(llGetRot() * rot_z15);

}
llSay(0,"Rotation stopped");

}
} (48 * 15°)

Creating Opening Doors
The prims in SL are rotated
around their center. The
doors should turn around
their side. To achieve the
desired result the door may
be done
• of two linked prims (the

actual door and ”hinges”
on the side, which holds
the rotation script) or

• one can use the path cut
property to cut away half
of the prim.

Exercise 2: Door

Create a wall and a door to it

• The door shall open and close when it’s touched

• Use states for different positions of the door

• If the door’s not closed with the touch event for five
seconds, it shall close automatically
– In this case the door informs the surrounding world

that it’ll be closing

– Use llGetTime() function to get the time since the
script was started or reset

Channel 50

”I like rock’n roll”

”I’m a lonely snowman”

Communicating

Channel 0

”I’m a lonely snowman”

”Hello”

Channel -987 654 321

”Hi”

llListen(50,…)

Talking to Channels

• llWhisper(channel, msg) – 10 meters
• llSay(channel, msg) – 20 meters
• llShout(channel, msg) – 100 meters
• llRegionSay(channel, msg)– current sim

A channel may be any valid integer
from -2,147,483,648 through 2,147,483,647

Listening to Channels

Enable listening
• llListen(channel, name, id, msg)

– integer channel: channel to listen to
– string name: filter for prim/avatar name
– key id: filter for prim/avatar UUID
– string msg: filter for specific chat message

Event handler
• listen(channel, name, id, msg)

Example: Talking Cube

Hello to you,
little cube

Hello Tor Harbour
You said Hello to
you, little cube
Hello to you too

12

Example: Talking Cube

default {

state_entry() {
llListen(0,"","","");

}

listen(integer ch, string name, key id, string msg) {

integer i;

llSay(0, "Hello " + name + " You said " + msg);

i = llSubStringIndex(msg, "Hello");

//returns the index of the first pattern in source
//returns -1, if the pattern is not found

if (i >= 0){

llSay(0, "Hello to you too");
}

}
}

Dialog Box

33

Instead of typing, just
click one option

Owner
Channel 0

Tor Harbour: Hi cube!

Talking Cube:
Great to have friends!

44

Talking Cube:
Tor Harbour said: Hi cube! 22

Channel x

Friend

55
11

Example: Dialog Box…

integer channel;
default {

state_entry() {
//Create random channel within range [500,1000]
channel = 500 + (integer)(llFrand(501.0));
llListen(0,"","","");

}
listen(integer ch, string name, key id, string msg) {

llOwnerSay(name + " said: " + msg);

//says msg to the owner only

list options = ["Enemy", "Friend", "Nobody"];

llDialog(id, "You said " + msg, options, channel);

state dialog;
}

}

…example continues

state dialog {
state_entry() {

llListen(channel,"","","");
}
listen(integer ch, string name, key id, string msg) {
{

if (msg == "Friend")
llSay(0, "Great to have friends!");

state default;
}

}

Using Sensors

• Sensors are used to detect objects or avatars
• The shape of a sensor is a cone
• A script can have only one sensor at a time
• Creating sensors

– For a single scan: function llSensor
– For repetitive scan: function llSensorRepeat

• Needs to be removed with the function llSensorRemove

• Event handlers
– Wanted found: sensor
– Wanted not found: no_sensor

Parameters for a Sensor
• name: Avatar or object name
• id: Avatar or object ID

– NULL_KEY is used for searching any key

• type: What to look for
– AGENT: avatars
– ACTIVE: objects with active script or moving physical objects
– PASSIVE: objects which are not active
– SCRIPTED: objects with active script

• range: Distance how far to sensor (max: 96.0 m)
• arc: The angel (around the x-axis), in radians, to

search (range: 0.0 to PI)
• rate: In seconds, how often to repeat the search

llSensor("Something", NULL_KEY, PASSIVE, 10.0, PI);
//Looking for things named Something that are passive
//and within 10 meters and pi radians

llSensorRepeat("", llGetOwner(), AGENT, 5.0, PI_BY_TWO, 2.0);
//Looking for the owner within 5 meters and pi/2 radians
//every two seconds

Note
The angel is arc radians around the forward vector

x

arc

llDetectedName(0)

llDetectedName(1)

Example: Sensoring Avatars

default {
state_entry() {
llSensorRepeat("", NULL_KEY, AGENT, 3.0, PI, 8.0);
//Range in meters, arc in radians,
//repeat time in seconds

}
sensor(integer num_detected) {
integer i;
for (i = 0; i < num_detected; i++) {
llOwnerSay("Sensed avatar " + llDetectedName(i) +
" at " + (string)llDetectedPos(i));

}
}
no_sensor() {
llOwnerSay("No avatars in range.");

}
}

Moving Avatars
When an avatar sits on a prim, it moves along with
the prim.

Elevator

movingdefault

changed(…)

listen(…)

show
dialog

new target set

timer(…)

target
reached

move
elevator

state
enter

Some Notices
on the Elevator

• When an avatar sits on an object, the
changed(…) event handler is triggered

• To get the key of the avatar sitting on the
object, use the function
llAvatarOnSitTarget(…)

• The sit location for a prim is set with the
function llSitTarget(…)

• The "Sit Here" text in the right-click menu
may be changed with llSetSitText(…)

Thank you for your
attention!

FL: Sariseelia Sore
SL: Sasse Forzane
email: sariseelia.sore@lamk.fi

Exercise 3: Moving Chair
1. Create a chair moving up and down according to

the choice of the avatar sitting on it
2. The chair should have a floating text above it

telling that it’s a moving chair (llSetText())
3. When an avatar comes close enough your chair,

he/she is shown a dialog box asking whether
he/she wants to sit on your moving chair

4. When the avatar is sitting on the chair she/he is
asked if he/she wants to move up

5. When the avatar stands up from the chair the
chair will return back to its original place

6. If the owner comes close to the hot-air balloon,
it’ll tell him/her who’s sitting on it

