
C#, WPF and the .NET Framework

Michela Goffredo, Ivan Bernabucci

University Roma TRE

goffredo@uniroma3.it

2

C#, WPF and the .NET Framework

2

C# is a general-purpose, object-oriented programming language.

C# includes encapsulation, inheritance, and polymorphism.

C# has some features in his structure:

 Unified type system: all types derive from a base type

 There are different types: objects, interfaces, structures,

enumerations (like Java) and delegates!

 Function members: methods, events, properties

C#, WPF and the .NET Framework

3

C# derives, like Java, the main features of C++ simplifying several

aspects:

 No pointers required

 Automatic memory management through Garbage Collection

 Use of collections (List, Queue, …)

 Lambda expressions

 dynamic keyword

C#, WPF and the .NET Framework

4

The .NET Framework is a software platform for building systems

and applications.

It consists of the runtime CLR (Common Language Runtime) and

several libraries.

This means that there is a common runtime engine that all the

.NET languages share together, and that is possible to exploits

components of other languages (F#, Visual Basic, Delphi.Net,

IronPython.NET, J#)

C#, WPF and the .NET Framework

5

There is a Base Class Library inside the .NET Framework that

handles low-level operations such as:

 Database access

 File I/O

 Threading

 …

Like the Virtual Machine in Java, the .NET Frameworks compilers

provides an intermediate layer between the programming language

and the assembly code: Intermediate Language (like the bytecode)

which will be then used by the .NET framework in run-time

execution.

This IL is the managed code (it can be .dll or .exe).

C#, WPF and the .NET Framework

6

An example of IL:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 Calc c = new Calc();
 Console.WriteLine("3 + 5 is {0}",c.Add(3,5));
 }
 }

 class Calc
 {
 public int Add(int x, int y)
 {
 return (x + y);
 }
 }
}

C#, WPF and the .NET Framework

7

If we use the ildasm.exe and we open the Add method of the

calculator this is what we see -> non platform-specific instructions

.method public hidebysig instance int32 Add(int32 x,

 int32 y) cil managed

{

 // Code size 9 (0x9)

 .maxstack 2

 .locals init ([0] int32 CS$1$0000)

 IL_0000: nop

 IL_0001: ldarg.1

 IL_0002: ldarg.2

 IL_0003: add

 IL_0004: stloc.0

 IL_0005: br.s IL_0007

 IL_0007: ldloc.0

 IL_0008: ret

} // end of method Calc::Add

C#, WPF and the .NET Framework

8

Build Applications with Visual Studio 20XX

Even if it’s possible to write in Notepad and compile with the

prompt command csc.exe

(ex: csc /target:exe Car.cs)

The IDE Visual Studio offer some advantages:

 Support for visual design

 Intellisense

 Free templates for handling Xbox, WPF, Twitter..

C#, WPF and the .NET Framework

9

Building an application:

Referencing external assemblies (‘..yes, the Internet is full of object

extensively tested which can be included in your project and will

simplify your development..’)

1. Right click in the References Folder of the Solution Explorer on

the right side

2. Select Add Reference

3. Browse for your reference and click Add

Adding a new Class

1. Right click in the Project Icon of the Solution Explorer on the right

side

2. Select Add Class

C#, WPF and the .NET Framework

10

C#, WPF and the .NET Framework

11

C#, WPF and the .NET Framework

12

class Program
 {
 static void Main(string[] args)
 {
 MultiDimensionalArray();
 Console.ReadLine();
 }

 static void MultiDimensionalArray()
 {
 int[,] myMatrix;
 myMatrix = new int[6, 6];

 // Populate Array
 for (int i = 0; i < 6; i++)
 for (int j = 0; j < 6; j++)
 myMatrix[i, j] = i * j;

 // Print the Array
 for (int i = 0; i < 6; i++)
 {
 for (int j = 0; j < 6; j++)
 Console.Write(myMatrix[i, j] + "\t");
 Console.WriteLine();
 }
 }
 }

Multidimensional Arrays

C#, WPF and the .NET Framework

13

static void Main(string[] args)
 {
 Point p;
 p.X = 10;
 p.Y = 20;

 p.Increase();
 p.Display();
 p.Decrease();
 p.Display();

 Console.ReadLine();
 }

public struct Point
 {
 public int X;
 public int Y;

 public void Increase()
 {
 X++; Y++;
 }
 public void Decrease()
 {
 X--; Y--;
 }
 public void Display()
 {
 Console.WriteLine("X = {0}; Y = {1}",X,Y);
 }
 }

Structure…like lightweight classes type!...

They are value type, not reference type

Point p2 = p they are not the same thing!!

C#, WPF and the .NET Framework

14

C# Class:

Formally a class is composed by:

• Field data (the member variables)

• Members that operate on these data (constructor, properties, methods,

events)

class ECG
 {
 // Thes state of the object
 private string patientName;
 private int samplingFrequency;
 private List<double> dataSamples;

 public int MeanValue()
 {
 return (int)(dataSamples.Sum() / dataSamples.Count);
 }
 }

15

class Program
 {
 static void Main(string[] args)
 {
 ECG myECG = new ECG();

 myECG.patientName = "Mario Rossi";
 myECG.samplingFrequency = 1000;
 }
 }
class ECG
 {
 // The state of the object
 public string patientName;
 public int samplingFrequency;
 public List<double> dataSamples;
 // Methos of the object
 public int MeanValue()
 {
 return (int)(dataSamples.Sum() / dataSamples.Count);
 }
 }

C#, WPF and the .NET Framework

16

The Windows Presentation Foundation is a graphical display

system for Windows.

Windows left the GDI/GDI+ (used for more than 10 years) system

to embrace the DirectX libraries (best performance)

 WPF enables automatically video card optimization

 and when the video card is too old,..

 ..it automatically optimizes the software (DirectX functions)

C#, WPF and the .NET Framework

17

C#, WPF and the .NET Framework

18

C#, WPF and the .NET Framework

19

http://archive.msdn.microsoft.com/wpfsamples

WPF allows the design of stylish and high-performant application

(the programmer should work with a real designer!!):

 Web Layout Model (flexibility)

 Rich Drawing Model (transparent, shapes, graphical layers)

 Animation and timeline

 Support for Audio and Video (Windows Media Player)

 Styles and Template

C#, WPF and the .NET Framework

20

WPF is based on XAML (Extensible Application Markup Language -

2009)

Usually XAML is not written by hand but graphically design by

means of special tools (like Expression Blend or Visual Studio

design section)

The idea under the XAML is to separate completely the graphic

part from the coding part

C#, WPF and the .NET Framework

21

C#, WPF and the .NET Framework

22

C#, WPF and the .NET Framework

23

C#, WPF and the .NET Framework

24

The XAML code behind the default form:

<Window x:Class="TestApp.MainWindow“
 xmlns=http://schemas.microsoft.com/winfx/2006/xaml/presenta
tion
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Grid>

 </Grid>
</Window>

 The element in a XAML maps to instance of .NET classes. The name

of the element matches the name of the class (<Grid> is a Grid

Object)

 You can nest elements inside elements (same way an HTML page is

structured)

 Properties are set through attributes

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation

C#, WPF and the .NET Framework

25

Let’s modify:

<Window x:Class="TestApp.MainWindow“
 xmlns=http://schemas.microsoft.com/winfx/2006/xaml/presentation
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="200"></ColumnDefinition>
 <ColumnDefinition Width="*"></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <Grid.Background>
 <LinearGradientBrush>
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0.00" Color="Red" />
 <GradientStop Offset="1.00" Color="Violet" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Grid.Background>

 </Grid>
</Window>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml/presentation

C#, WPF and the .NET Framework

26

C#, WPF and the .NET Framework

27

Let’s modify:

<Window x:Class="TestApp.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">
 ….[]..
 </Grid.Background>
 <Button Grid.Column="0" Content="Button1" Height="23"
HorizontalAlignment="Left" Margin="5,20,0,0" Name="button1" VerticalAlignment="Top"
Width="75" />
 <Button Grid.Column="0" Content="Button2" Height="23"
HorizontalAlignment="Center" Margin="0,60,0,0" Name="button2" VerticalAlignment="Top"
Width="75" />
 <Button Grid.Column="0" Content="Button3" Height="23"
HorizontalAlignment="Right" Margin="0,100,0,0" Name="button3" VerticalAlignment="Top"
Width="75" />
 <Image Grid.Column="1" Height="163" HorizontalAlignment="Left"
Margin="38,31,0,0" Name="image1" Stretch="Fill" VerticalAlignment="Top" Width="308"
/>
 </Grid>
</Window>

C#, WPF and the .NET Framework

28

C#, WPF and the .NET Framework

29

Data binding is a relationship that tells WPF to extract some

information from a source object and use it to set a property in a

target object.

It’s perfect for design decoupled systems. The View and the Logic.

EMGU

30

First we talk about OpenCV!!

What is OpenCV?

OpenCV is an open source computer vision library

(http://SourceForge.net/projects/opencvlibrary). The library is written in C

and C++ and runs under Linux, Windows and Mac OS X. There is active

development on interfaces for Python, Ruby, Matlab, and other languages.

It is highly-optimized for image processing -> Focus on real time

applications

EMGU

31

Open CV contains over 500 functions that span many areas in vision,

including:

• Medical imaging

• Security

• User interface

• Camera calibration

• Stereo vision

• Robotics

A lot of applications have been released:

• Stitching images together in satellite and web maps

• Image scan alignment

• Medical image noise reduction

• Object analysis

• Security and intrusion detection systems

• Military applications

EMGU

32

OpenCV can be used in commercial product without problem and its community

counts more than 20.000 members..!!

Many time in Computer Vision there is the transformation of data from a still or

video camera into either a decision (turning a color image into a grayscale image)

or a new representation (“there are 5 tumor cells”, “the person isn’t part of the

group”)

While the brain has an

internal auto-color setting,

auto focus setting and

pattern recognition system…

..This is what we get form a

camera!!

EMGU

33

OpenCV is aimed at providing the basic tools needed to solve computer vision

problems.

In some cases, high-level functionalities in the library will be sufficient to solve

the more complex problems in computer vision. Even when this is not the case, the

basic components in the library are complete enough to enable creation of a

complete solution of your own to almost any computer vision problem.

EMGU

34

Basic types of OpenCV (they are all simple structures):

• CvPoint

• CvSize

• CvRect

The most important class in openCV is the IplImage!!

It derives from the class CvMatrix (everything in OpenCV is a matrix), and this is

the reason why it’s possible to operate with special matrix functions and operators

directly on these images!!

EMGU

35

EMGU

36

EMGU

37

EMGU

38

That was only a little part for Matrix operations… !!!

There are also special methids that can be apply directly on an image (Smooth

filtering, Canny, Hough transform, etc..)

http://www.seas.upenn.edu/~bensapp/opencvdocs/ref/opencvref_cv.htm

Here comes EMGU…

“Emgu CV is a cross platform .Net wrapper to the Intel OpenCV image

processing library and allows OpenCv functions to be called from .NET compatible

languages such as C#, VB, IronPython,..”

This means that it’s possible to use OpenCV methods and structure in the C#

simple style…

http://www.seas.upenn.edu/~bensapp/opencvdocs/ref/opencvref_cv.htm

39

Example: the IplImage is defined in EMGU as an Image and is

described (and instantiated since it’s a class) by its generic

parameters: color and depth

An image with 3 channels BGR each one defined by 1 byte:

Image<Bgr, byte> image=new Image<Bgr, byte>(new System.Drawing.Size(640, 480));

(The image will be managed by the garbage collector)

The main color types are supported :

Gray

Bgr

Bgra

Hsv (Hue Saturation Value)

Hls (Hue Lightness Saturation)

Lab (CIE L*a*b*)

EMGU

40

One of the most important method in EMGU is the CvInvoke,

which allows to call directly the OpenCv functions (some

OpenCV functions are wrapped in EMGU methods, but not all

of them)…

IntPtr image = CvInvoke.cvCreateImage(new System.Drawing.Size(200, 200),
Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_8U, 1);

CvInvoke.cvDilate(ImageIn, ImageOut, myDilateElem, 1);

BUT…. For a basic list of methods that you can apply directly

on the Image<ColorType, Depht> go:

http://www.emgu.com/wiki/files/2.3.0/document/Index.html

EMGU.CV.NameSpace -> Image (TColor, Tdepht) class -> Methods

http://www.emgu.com/wiki/files/2.3.0/document/Index.html

EMGU

41

EMGU

42

Let’s see an example!!

