
1

11. Artificial Intelligence

Goals:

- Concepts of intelligent systems

- Overview of basic concepts

Contents:

• Intelligent System

• Knowledge Representation

• Problem Solving

Focus: Intelligent artificial systems

Prof. Dr.-Ing. habil. Wolfgang Oertel

2

Intelligent Systems

Environment

(States, Processes,

Regularities)

Universe of discourse
System

Sensors

Effectors

Information System

(Programs + Data,

Interpreter + Knowledge)

Action

Perception

Universe of discourse: Whole area relevant for the system behaviour

Precondition: States and processes exist in space and time according to regularities

Task: Control of actions depending on perceptions

Goal: correct behaviour, multi-dimensional performance criteria, survival

Intelligence levels: - map-controlled (look-up table)

- reflex-controlled (fix program)

- state controlled (environment mappings)

- behaviour-controlled(adaptation by learning)

- knowledge-controlled (explicit regularities)

- goal-controlled (planning)

- use-controlled (optimisation)

3

Knowledge Representation

Knowledge Representation Agent: Agent getting knowledge about the real world that

- consists of the description of possible states, operations and dependencies,

- is used for derivation of state features and operation sequences

- can be changed and learned

Knowledge base: Set of statements as representations of facts of the real world

Inference method: Mechanism to derive new statements from existing statements

Knowledge representation language: Language for the specification of definitions, changes, and

queries on the knowledge base

- Syntax (Set of statements)

- Semantics (Set of facts)

Representation of knowledge about the real world: Example:

Representation:

Real World:

Statement Statement

Fact Fact

Interpretation Interpretation

Conclusion

Derivation y = x + 1 y > x

4 = 3 + 1 4 > 3

5 = 4 + 1 5 > 4

4
Conclusion and derivation

Conclusion: semantic relation between interpretations of statements F and G:

all models of F are models of G: F |= G

Derivation: syntactic relation between statements F and G:

G can be derived from F by application of en inference method: F | G

Inference method: defines elementary rules for derivation and the control of their application:

- correct: if F | G then F |= G

- complete: if F |= G then F | G

- monotone: if F1 |= G then (F1 and F2) |= G

- local: if F |= G, then F is a real part of the knowledgebase

Proof: Recording of the application of derivation rules in en inference process

Logics: formal system that defines syntax and semantics of a language by a calculus (with

axioms and rules) derivations between statements of the language

Theory

Examples: sentence, predicate, temporal, epistemological, fuzzy, ontological modal logics

Interpretation: Mapping from statements to facts

Truth: Each statement gets by interpretation a truth value: true / false (1 / 0)

- general / not to fulfil: statement that is in each interpretation true / false

- to fulfil / to falsify: sentence that is in at least one interpretation true / false

Model: Interpretation in which a statement is true

5

Formula set and derivation operations:

Formula = AtomicFormula | ComplexFormula ;

AtomicFormula = Predicate , '(' , Terms , ')' ;

ComplexFormula = '~' , Formula | Formula, Junctor, Formula | Quantor, Variable, Formula |

'(' , Formula , ')' ;

Terms = Term | Term , ',' , Terms ; Term = Konstant | Variable | Function , '(' , Terms , ')' ;

Junctor = ; Quantor = ;

Separation:

Cut:

All quantor removal:

Exist quantor introduction:

xp | p[x / t]

p , p q | q

p q , ~ q r | p r

'' | '' | '' | '' '' | ''

p| xp[g / x]

Examples:

f,2))Mark(x,f,1)f(Mark(x,x(

)Bird(Eagle

Fly(x)Bird(x)x

Music,3),Mark(Anton

(x)Specialist(n,3))>n)g,gMark(x,~Fly(Eagle) | (Anton)Specialist |

Physics,1),Mark(Anton 2)Chemistry,Mark(Karl,

Music,4)Mark(Karl,

Semantics: - Term: object of a domain

- Constant: directly specified object

- Variable: any unspecified object

- Function: unique mapping between objects

- Predicate: relation between objects

Predicate Logic:

6
Prolog - Clause Logic:

Features: - Program consists of a set of horn clauses of PK1

- Query is a formula conjunctive normal form

- Special not operator considers failing as negation

- Set of built-in Predicates are proven by execution

- Use of a special syntax

- Inference by backward chaining with depth-first search

- Derivation rule is generalised modus ponens inclusive unification

- Search order in clause and clause set sequential from left to right

Examples: member (X , [X | L]) . ?- member (3 , [1 , 2 , 3 , 4]) .

member (X , [Y | L]) :- member (X , L) . ?- member (Z , [1 , 2 , 3 , 4]) .

faculty (0 , 1) :- !. ?- faculty (7 , X) .

faculty (N , Z) :- U is N - 1 , ?- faculty (X , 24) .

faculty (U , V) , Z is V * N .

ancestor (X , Y) :- parents (X , Y). ?- ancestor (martha , X) .

ancestor (X , Y) :- parents (X , Z) , ancestor (Z , Y) . ?- ancestor (X , anton) .

parents (X , Y) :- father (X , Y) . ?- ancestor (X ,Y) .

parents (X , Y) : - mother (X , Y) . ?- father (X ,Y) .

mother (X , Y) :- child (Y , X) .

father (X , Y) :- mother (X , Z), married (Z , Y) .

married (anna , anton).

married (anna , martha).

Systems: IF-PROLOG, QUINTUS-PROLOG

7

Production Rules:

Features: - A fact base contains a set of atomic formulas p1, p2, … without variables.

- A rule base contains a set of implications of the form (p1, p2, ...) (a1, a2, ...)

with conditions on the left side and actions on the right side.

- The conditions are conjunctive and are related to the facts in the fact base.

- The actions are carried out sequentially by adding or deleting of facts in the fact base.

- By matching rules are determined with conditions are fulfilled in the fact base.

- By conflict resolution one rule is selected from a set of rules.

- An execution is carried out by application of the actions of a selected rule.

- Inference means a cycle with the three steps matching, resolution and execution until

either the an end condition is reached or no more rules are applicable.

Example:

{Vehicle(1,Empty), Vehicle(2,Empty), Vehicle(3,Empty), Station(1,Free), Station(2,Free)}

{(Vehicle(x,Empty), Station(y,Free)) (~Station(y,Free), Station(y,Occupied,x)),

(Station(y, Occupied,x)) (~Station(y, Occupied,x), ~ Vehicle(x,Empty),

Vehicle(x,Full), Station(y,Free))}

Systems: PLANNER, OPS5, LOOPS, KEE

Deductive Inference

8

Semantic Network:

Features: - Network with nodes and arcs.

- Nodes represent objects, arcs represent relation between them.

- Nodes and arcs belong to predefined semantic categories.

- The semantics of categories is defined by the inheritance of features

- Typical object categories are classes, instances, sets, actions, actors, times, locations, …

- Typical relation categories are classification, generalisation, aggregation, values, …

- Inference means navigation through the network using arcs and inheritance.

- The network si defined as graph or hypergraph.

Systems: KL-ONE

Examples:

sail magalhaes

portuguese

ship

south

america

1520

suba

temp

obj

pars sub

instr

agt

poss

sub

sub

peter

weight

70kg

sub

val

dattr

station

1988

goethe-str

schiller-pl

between
since

sub
loc

9Frames:

Features: - Scheme describing an entity by a set of attribute-value pairs.

- A scheme is a stereotypic description pattern occurring in several situations

- Schemes are organised in a hierarchy.

- In the hierarchy inheritance rules are defined.

- Attributes are slots that can be filled by fillers (values).

Systems: KRL, FRL, FLAVORS, SMALLTALK

Examples:

[trip unit basic <self>

<agent (a traveller)>

<goalpoint (or (a city) (an recoveryplce))>

<kind (xor flight ship train)>

<begin (a date)> <duration (a timeinterval)>

<costs (a price)> <tripnumber (a string)>]

[person unit basic <self>

<name (a string)> <firstname (a string)>

<age (an integer)> <residence (an city)>]

[traveller unit spec <self (a person)>

<agecategory {(xor child adult)

(using (the age from person thisone)

selectfrom (which < 16) child

otherwise adult)}>

<tripnumber (a string)>

<startpoint {(a trainstation)

(in (the trainstation from city (the residence from person thisone))); default}>]

[g1 unit indiv

<self {(a person with name = ”meyer” age = 40

firstname = ”otto” residence = dresden)

(a traveller with tripnumber = ”r22”

startpoint = leipzig)

(a customer with account = ”12343242”)}>]

[g2 unit indiv

<self (a trip with agent = g1 goalpoint = rostock

kind = train price = 500 euro

begin = (1 8 1988) duration = 14

tripnumber = ”r22”)>]

[berlin unit indiv

<self (a city with trainstation=

(items lichtenberg, ostbahnhof,

schoenefeld))>]

Problem Solving

Problem-solving agent: Agent which determines a sequence of actions in its information

system before carrying them out the real environment

Working step: - Formulation of the problem

- Search of a solution (in the information system)

- Execution of the solution (in the real world)

Reasons: - Action can be carried out easier and faster within the information system.

- False Actions can be cancelled easier within the information system

- This means a simulation of actions before the real execution.

Problem types: States: known, unknown, fixed, infinite, discrete, continuous

Operations: known, unknown, deterministic, stochastic, reversible

Environment: accessible, not accessible

Formal Problem:

Problem:
delivered: - State Z = {z1,z2,...}

- Operations O = {o1,o2,...}, oi: ZZ

- Start state A in Z

- End state E in Z

- Cost function K(P) = K(oi), oi in P

requested: - Solution L = P(A,E)

State space: possible states connected by possible operations

Path: P(z1,zn) direct or indirect connection between two states

by a sequence of operations: (z1, o1, z2, o2, ..., zn)

Form of problem components: - explicit (elements of a sets)

- implicit (functions or predicates)

A

z1

z2

z3

z4 E

z5
o1

o2

o3

o4

o5 o6

o8

o7 K(o1) = 8

K(o2) = 2

K(o3) = 2

K(o4) = 1

else = 1

Examples of problems:
8-Puzzle:

State: Arrangement of 8 numbered parts

in a 3x3 area

Operation: Motion of the empty field

left, right, up, down

8-Queens-Problem:

State: Arrangement of 0 to 8 queens in save positions

on a chess board

Operation: Positioning of one queen

on a free field

Crypto-Arithmetic:

State: Arithmetic task with letters, where same letters

have been replaced by digits

Operation: Replacement o each occurrence o on letter

by one digit

Missionary and Cannibal Problem:

State: Number missionaries, cannibals, and boats

on one side of the river

Operation: 1 or 2 persons change the side of the river

using the boat

Real Problems: Connection, Travelling, Navigation,

Construction, Manufacturing, Proofs

M

M

M

K

K

K

5 4

6 1 8

7 3 2

FORTY

+ TEN

+ TEN

= SIXTY

General Search

Search: Find a path from the start state to the end state

Search tree: Tree structure in the search space with the start state as root and connection to all

following states that can be reached directly by operations

Data structures:

Problem:

(Start node, Operations,

End node, Cost function)

Node:

(State, Path, Depth, Costs)

Search algorithm:

Store start state in node set

Repeat: If node set is empty then stop.

Take one node from node set.

If node is end node; then finish.

Expand nodes with operations.

Add new nodes to node set.

A

z1 z2

z3

z4

Ez5

z3

z5 z1

z3

z5

o1 o2

o3

o7

o3

o7

o5 o4

o6 o8o7

Complexity:

Breadth b: Number of successors of a node

Depth d: Distance between root and leaf

Strategy: Determining in which sequence the nodes are expanded

Evaluation: - Completeness (one or all solutions)

- Time complexity (time for solution)

- Space complexity (memory for solution)

- Optimality (best solution)

Space and time requirements: (Breadth = 10, 1000 Nodes/Second, 100 Byte/Node)

Depth Node number Time Space

0 1 1 Milliseconds 100 Byte

2 111 100 Milliseconds 11 Kilobyte

4 11 Thousand 11 Seconds 1 Megabyte

6 1 Million 18 Minutes 111 Megabyte

8 100 Million 31 Hours 11 Gigabyte

10 10 Billion 128 Days 1 Terabyte

12 1000 Billion 35 Years 111 Terabyte

Direction: - forward - backward - bidirectional

Expansion: - breadth-first - depth-first

- uniform costs - restricted depth - Iterative deepening

Information: - blind / uniform - informed / heuristic

Memory: - tree - graph

Search Strategies

Breadth-First Search:

Expand always the node on the highest level of the tree

A A

z1 z2
o1 o2

A

z1 z2

z4z3z3

o1 o2

o3 o5 o4

A

z1 z2

z4

Ez5

z3

z5 z1

z3

o1 o2

o3

o7

o5 o4

o6 o8o7
Evaluation:

- Completeness: yes

- Time complexity: O(bd)

- Space complexity: O(bd)

- Optimality: yes

Depth-First Search:

Expand always the node on the lowest level of the tree

A

z1 z2

z5

z3z3

o1 o2

o3

o7

o5

A A

z1
o1

A

z1

z3

o1

o3

A

z1

z5

z3

o1

o3

o7

Evaluation:

- Completeness: no

- Time complexity: O(bd)

- Space complexity: O(bd)

- Optimality: no

A

z1 z2

z5

z3

o1 o2

o3

o7

Bidirectional Search:

Simultaneous expand nodes forward from the start and backward from the end

A A

z1 z2
o1 o2

A

z1 z2

z4z3z3

o1 o2

o3 o5 o4

z2

z4

E

o4

o8

E z4

E

o8

Evaluation:

- Completeness: yes

- Time complexity: O(bd/2)

- Space complexity: O(bd/2)

- Optimality: yes

Uniform Cost Search:

Expand the nodes with the minimal costs

(special breadth-first search)

Restricted Depth Search:

Expand the nodes to a restricted depth

(special depth-first search)

Iterative Depth Search:

Depth-first search with stepwise increasing the depth

(special bidirectional search)

Evaluation:

- Completeness: yes

- Time complexity: O(bd)

- Space complexity: O(bd)

- Optimality: yes

Evaluation:

- Completeness: l>d

- Time complexity: O(bl)

- Space complexity: O(bl)

- Optimality: nein

Evaluation:

- Completeness: yes

- Time complexity: O(bd)

- Space complexity: O(bd)

- Optimality: yes

Further Search Strategies:

Heuristic Search

Heuristic Search: Use of knowledge about the domain to influence the search process

(informed search)

 Controlling the selection of the nodes to be expanded

Problem solving costs

Information

Search Heuristics

Optimal Search Strategy:

Problem relaxation: Weakening, Removing of restrictions of a problem

(The costs for the solution of a relaxed problem

are a good heuristic measure for the original problem)

Sum

Features:

- Ordering of the nodes according to the height of the assessed costs

- Evaluation function: delivers costs of a node

- Implementation with in a general search algorithm

Best-First-Search

Minimisation of the expected costs (goal-oriented search):

- Expected costs h to reach the goal E starting from a node n

h(n) 0, h(E) = 0

 Features: not optimal, not complete

O
Z

A

T
L

M

D

S

R

C

P

B

G

U

V

I

N

F

7

7

11

14

15

10

8

11

7

7

14

9

13

10

21

9

8

14

9

8

12

A:36 B:0 C:16 D:24 F:18 G:7 I:22 L:24 M:24

N:23 O:38 P:9 R:19 S:25 T:32 U:8 V:19 Z:37

A.36

S:25 T:32 Z:37

A:36 F:18 O:38 R:19

S:25 B:0

State space: Search tree:

Minimisation of the former and expected costs (A*-Search):

- Former costs g and expected costs h for a node n build the entire costs f

(combination of minimal-costs and goal-directed search)

expected minimal costs: f(n) = g(n) + h(n), f(n) 0, f(E) = g(E)

real minimal costs: f*(n) = g*(n) + h*(n)

h optimistic: h*(n) h(n) 0

f monotone

 Features: optimal, complete, efficient

O
Z

A

T
L

M

D

S

R

C

P

B

G

U

V

I

N

F

7

7

11

14

15

10

8

11

7

7

14

9

13

10

21

9

8

14

9

8

12

A:36 B:0 C:16 D:24 F:18 G:7 I:22 L:24 M:24

N:23 O:38 P:9 R:19 S:25 T:32 U:8 V:19 Z:37

A.36

S:39 T:43 Z:44

A:64 F:42 O:52 R:41

C:50 P:40 S:55

R:59 C:60 B:41

Search space: Search tree:

Iterative Improvement

Precondition: current problem state description

Algorithm: (1) Start with any problem state of a partial solution

(2) stepwise improvement of the solution

Hill climbing: Evaluation of the results of the operation to be carried out

Selection of the operation with the greatest ascent

Advantage: very fast

Disadvantage: only local maxima are found

Simulated annealing: Evaluation of the results of the operation to be carried out

Selection of the operation with the greatest ascent with a certain probability

Advantage: overcome local maxima

Disadvantage: very slow

Evaluation

Problem space

Evaluation function:

Min-Max-Approach

Goal: Determination of the optimal strategy for MAX und so the best first action

Algorithm: (1) Generation of the entire search tree (to a certain depth)

(2) Computation of the gain for the terminal nodes

(3) Determining of the gains of all nodes of the next higher level by

the determining the minima (for MIN) and the maxima (for MAX)

of the subordinated nodes

(4) The gain of the root is the gain of the whole tree

3

Search tree:

2

2 4 6

2

14 5 2

3

3 12 8

12 5 1

MIN:

MAX:

MAX:

Time complexity: O(bd)

MIN:

Example: Chess (Breadth b = 35, 1000 States / s) Depth d = 4

Alpha-Beta-Approach

Goal: Elimination of unimportant branches of the search tree

Algorithm: Depth-first-search with

- Computation of the node gains during the backtracking

- : highest gain with decision of MAX

- : lowest gain with decision of MIN

- Cutting the subtree if:

- at decision of MAX: if the gain is higher than

- at decision of MIN if the gain is lower than

3

Search tree:

2

2

2

14 5 2

3

3 12 8

12

MIN ():

MAX ():

MAX ():

Time complexity: O(bd/2)

MIN ():

Example: Chess (Breadth b= 6, 1000 States / s) Depth d = 8

25

12. Advanced AI Approaches

Goals:

- Overview of additional intelligent concepts

- Concepts combining several technologies

Contents:

• Grammars

• Fuzzy Systems

• Learning Methods

• Case-based Reasoning

• Neural Networks

• Genetic Algorithms

Focus: Advanced Techniques

Prof. Dr.-Ing. habil. Wolfgang Oertel

26

Graphics: G = [{a,b,c}, {s,g,h}, {(s,agh),(s,asgh),(hg,gh),(ag,ab),(bg,bb),(bh,bc),(ch,cc)}, s]

L(G) = {abc, aabbcc, aaabbbccc, ...}

Grammar: Structure G = [T, N, R, s] with following features:

- T: not empty set of Terminal symbols (Alphabet)

- N: not empty set of Nonterminal symbols

- R: finite set of Rules r:

- s: Start symbol

R (T N) (T N) *

s N

G defines a derivation relation on with , if .

The reflexive transitive closure of the relation is called

by G generated formal language: set of all words on T, that can be derived by R from s:

(T N) * xuy xvy (u,v) R

*

L(G) {w|w T* s *w}

Grammars

Natural language: G = [{art,adj,nom,verb,adv}, {s,np,npn,vp}, {(s,np vp), (np,art npn), (np,npn),

(npn,nom), (npn,adj npn), (vp,verb), (vp,verb np), (vp,verb adv)}, s]

L(G) = {(art adj nom verb adv), (The big dog runs quickly)}

Linguistic Inference

27

Fuzzy-System

System for representation of different not exact, not precise, unsafe information and knowledge

Fuzzy Set:

set of ordered pairs of Elements and membership degrees

membership degree also possible by linguistic variable

1)(0,|))(,(xmXxxmxS SS

x

mS

dark

middle

light
Fuzzy Operation:

set-based operations

- Intersection:

- Union:

- Complement:

))(),(min(),(: ymxmyxmBA BABA
))(),(max(),(: ymxmyxmBA BABA

)(1)(: xmxmA AA

Fuzzy Reasoning:

Conclusions with the help of fuzzy rules:

- Fact: x is A

- Condition: if x is A then y is B

- Junctions: and, or, not

- Fuzzycomposition: Min-Max-Rule for building complex sets

- Correlation minimum:

- Correlation product:

- Defuzzification: Problem solving by decomposition of complex sets

))(),(min()(xmymym AiBiBi

)()()(xmymym AiBiBi))((max)(wmwm Bi
i

S

Diagnosis:

Caries:

Pain:

yes:

no:

yes: no:

0.04 0.06

0.01 0.89

Uncertain Inference

28

Problem generator

Learning method

Critic

Output

Inference method

Input

Goal

Task Change

Knowledge

Evaluation

Learning

Architecture:

Example:

Problem

Solution

Hunger Guests Price Rain Type Time Friday Wait

yes many high no chines 30-60 no no

yes many high no chines 10-30 yes yes

no some high no france > 60 yes no

yes many low yes italien 0-10 no yes

no no low yes burger 0-10 yes no

yes many middle yes chines 0-10 no yes

Hunger

yes no
Price no

yes yes Friday

low
middle

high

yes no

yes no

Generalisation of concrete problem solutions for mapping of generic regularities

Inductive Inference

Knowledge base

Classes: supervised / unsupervised

29

Case-Based Reasoning

Cyclic Approach that bases on the storage of former problems and solutions

and their Reuse for the solution of similar current problems

Case base

Architecture:

Represented cases

Problem case

Selected case

Adapted case

Learned case

Revised case

Problem

Solution

Case input

Case retrieval

Case adaptation

Case revision

Case learning

Case output

Analogue Inference

Example:

Problem: (Anamnesis Pain) (Alter 6) (Test ?) (Therapy ?))

Cases: (Anamnesis Pain) (Alter 45) (Test CT) (Therapy Antibiotica))

Solution: (Anamnesis Pain) (Alter 6) (Test MRT) (Therapy Antibiotica))

Experience

30

Dimension: Neurons: ; Synapses per Neuron:

Frequency: Hz; Velocity: m/s

Neural Network

Activation

Input

Weight

Output

Weight Weight

Neuron Threshold
Net

System that consists of many simple units that activate each other by sending of messages via

changeable weighted connections with regard to thresholds

Architecture:

Neural Inference

N8 N9 N10

N5 N6 N7

N1 N2 N3

N11

N4

Working

Learning

Special Networks:
- Feed-forward Net

- Back-propagation Net

- Kohonen Net

- Hopfield Net

1012 103

102 102

31

Genetic Algorithm

Gen: (g1,g2,g3)

Phen: (f1,f2,f3)

System that consists of a population of individuals. Their behaviour is determined

by genetic structures that develop evolutionary by combination, mutation, and selection

Architecture:

Evolutionary Inference

Gen: (g1,g4,g5)

Phen: (f1,f4,f5)

Gen: (g1,g2,g5)

Phen: (f1,f2,f5)

Gen: (g1,g4,g3)

Phen: (f1,f4,f3)

Individuals /

Genetics:

Populations /

Evolution:

Gen: (g1,g6,g5)

Phen: (f1,f6,f5)

Combi-

nation

Muta-

tion

Selection

DevelopmentI1 I2

I3 I4

I1 I5

I3

Natural intelligence: Individual: Gene (* Instances)

Population: Individuals

Species: ; Time: Years; Mutations:

105

109

109
109

1013

10 5

32

13. Programming Language Lisp

Goals:

- Getting to know the basic concepts of an AI programming language

- Simple AI programming

Contents:

• Basics

• Introduction

• Syntax

• Semantics

• Functions

• Lists

Focus: Lisp basics

Prof. Dr.-Ing. habil. Wolfgang Oertel

33

Basics of the Language Lisp

What is Lisp?

LISP = LIStProcessor

- originally: developed by J. McCarthy for symbolic processing

- today: usable as higher universal programming language, especially for AI problems

- functional language: Programs compute functions that map input data to output data

- related languages: Scheme, ML, Miranda, Logo, Smalltalk, Forth

History: - Predecessors 1956 - 1958: IPL, FORTRAN

- Kernel 1959 - 1965: LISP1, LISP1.5, StanfordLISP1.6

- Extensions, Dialects 1966 - 1983: StandardLISP, FranzLISP, ZetaLISP,

InterLISP, MacLISP, muLISP, SCHEME

- Standardisation 1984: CommonLISP, EuLISP, ISO LISP

- Objektorientation 1988: CLOS

Concepts: - Processing of complex dynamic data structures (lists as passive structures)

- Functional programming (functions as active structures)

- Unified handling of data and programs

- interactive, interpretative programming

- integrated programming environment

- language embedding

- compromise between adequate programming and efficient implementation

34

Intuitive Introduction
Numeric:

2 > 2

(+ 2 3) > 5

(+ (* 3 4) 2 0.5) > 14.5

(setf a 2.5) > 2.5

a > 2.5

(- a 3) > -0.5

((lambda (x y) (-(* x x)y))3 a) > 6.5

(defun f1 (x y) (-(* x x)y)) > f1

(f1 3 a) > 6.5

Symbolic:

'(* 3 4) > (* 3 4)

(car '(* 3 4)) > *

(cdr '(* 3 4)) > (3 4)

(cons '/ '(3 4)) > (/ 3 4)

(car (cdr '(* 3 4))) > 3

(setf b '(* 3 4)) > (* 3 4)

b > (* 3 4)

(cons '+ (cons b '(2 0.5))) > (+ (* 3 4) 2 0.5)

((lambda (x y) (cons x (cdr y))) '/ b) > (/ 3 4)

(defun f2 (x y) (cons x (cdr y))) > f2

(f2 '/ b) > (/ 3 4)

35

Evaluation:

(quote a) > a

a > 2.5

(eval a) > 2.5

(quote b) > b

b > (* 3 4)

(eval b) > 12

(quote (f2 '/ b)) > (f2 '/ b)

(f2 '/ b) > (/ 3 4)

(eval (f2 '/ b)) > 0.75

36Syntax (Data structure)

Object: OBJECT (syntactically allowed / representable expression

- ATOM (elementary object): NUMBER, SYMBOL

- CONS (composite object): ordered pair of objects OBJECT

Internal Representation: Network of Cells and Pointers

Example:

1 -4 2.3 -44.55

ax + +-! append

1x nil32+

nillambda

nilyxappend

nilunique

nilyx

37

External Representation: linear, use of names and brackets

- ATOM: Print name (Sequence of characters without space and bracket)

NUMBER: defined syntax SYMBOL: else

- CONS: dotted pair (OBJECT . OBJECT)

Example: (x . 1)

(+ . (2 . (3 . nil)))

(lambda . ((x . (y . nil)) .

((unique . ((append . (x . (y . nil))) . nil)) .

nil)))

Additional rules for 2. Lisp-Object: - NIL: “.” and 2. Object not necessary

- CONS: “.” and brackets of the 2. Object not necessary
Example: (x . 1)

(+ 2 3)

(lambda (x y) (unique(append x y)))

LIST: NIL, CONS

TRUE LIST: each CONS contains as 2. object a list

38

Semantics (Program structure)

Form:

FORM (semantically allowed / evaluable expression)

- NUMBER (self-evaluating): Number value

- T, NIL (self evaluating): T, NIL

- SYMBOL (Variable): Variable value (binding by (setf x y))

- TRUE LIST (Function call): Function value, side effect

Evaluation of a true list (f x1 x2 . . . xn):

1. Sequential evaluation of the arguments x1, x2, ..., xn

2. Application of the function f to the results of the evaluation

3. Providing of the function value

Example: 1 > 1

t > t

a > 2.5

b > (* 3 4)

(+ 1 2) > 3

(+ (* 2 a) -4) > 1.0

(cons 1(car(cdr b))) > (1 . 3)

(setf a 3) > 3

39

Function:

FUNCTION (Object, applicable to objects)

- LAMBDA-EXPRESSION (Function description): (lambda l k)

- Lambda-List l: List of symbols as formal Parameters

- Lambda-Body k: Form in which symbols of l are bounded as local

variables

- SYMBOL (Function name): f (Binding by (defun f l k))

Example: ((lambda (x y) (+ (* x x) y)) 2 3) > 7

(defun f3 (x y) (+ (* x x) y)) > f3

(f3 2 3) > 7

(defun f4 (x) (- (f3 x 4) 3)) > f4

(/ (f3 2 3) (f4 1)) > 3.5

(defun faculty (x)

(if(= x 0) 1 (* x (faculty (- x 1)))))

(faculty 5) > 120

40

Interpreter:
(read) - Object transformation extern > intern Top-Level-Interpreter-Loop:

(print x) - Object transformation intern > extern (loop (print (eval (read))))

(eval x) - Object evaluation (standard)

(quote x) - Object evaluation avoiding (short: ’x)

Predicates:
(atom x) (consp x) (null x) (listp x)

(symbolp x) (numberp x) (eq x y) (equal x y)

Arithmetic:
(+ x1 ... xn) (- x1 ... xn) (* x1 ... xn) (/ x1 ... xn) (= x1 ... xn)

(< x1 ... xn) (> x1 ... xn) (<= x1 ... xn) (>= x1 ... xn) (/= x1 ... xn)

Logic:
(not x) (and x1 ... xn) (or x1 ... xn)

Conditional Forms:
(if x y z) (cond (x1 y11 ... y1m) ... (xn yn1 ... ynm))

Truth Values:
false: NIL

true: T or any other object unequal NIL

Predefined Function Packages

41

Basic Functions:
(car x) - 1. object of a list x (1. object of a cons)

(cdr x) - List x without 1. object (2. object of a cons)

(cons x y) - Adding object x in front of a list y (building a cons of the objects x and y)

(list x1 ... xn) - Building a list of objects x1, ..., xn

(append x1 ... xn) - List of objects from lists x1, ..., xn

(remove x y) - List of objects from list y without object x

Principal: car, cdr deliver pointers to existing objects

cons, ... generate new lists and deliver the pointer on them

No changing of arguments

Destructive Functions:
(setf x y) - Object x of a list is replaced by object y

(nconc x1 ... xn) - Concatenation of the lists x1, ..., xn

(delete x y) - Deletion of object x from list y

Principal: Changing of arguments

Set Functions:
(member x y) - Element

(subsetp x y) - Subset

(union x y) - Union

(intersection x y) - Intersection

(set-difference x y) - Difference

List Processing

42

Examples of Objects and Forms

Forms:

(atom 'lisp) > t

(consp 12.456) > nil

(null 0) > nil

(listp nil) > t

(symbolp '(d r e s d e n)) > nil

(numberp 'zwei) > nil

(eq '(1 2) '(1 2)) > nil

(equal '(1 2) '(1 2)) > t

(+(-(*(/ 12 3 2)5)1 -2)-11) > 0

(* 2.5 3 1) > 7.5

(< 1 2 3.2 7) > t

(= 3 3.0 (/ 6 2)) > t

(not 23.5) > nil

(not nil) > t

(and 1 t(setf a 3)nil(setf b 4)a) > nil

(or nil(setf a nil)1(set b t)) > 1

(if t 1 2) > 1

(if(and(< a 5)(> a 5))3 4) > 4

(cond ((< 3 2) 4 5 6)

((= 3 3)(setf b 5)7)

(t(- 1 2))) > 7

Objects:

5x341

(m(n)((a))(p r))

”1&-/A”

139.2

(nil nil)

10.3E-2

(lambda(x y z)(-x z y))

(setf q 2)

(1 - 2 - 3 - 4)

(- 1 2 3 4)

(1 2 3 4 . 5)

(3.4.5)

2...4

(1 \(\(4)

3\.14

(1(2))(3 4)5)

888(

(1 . 2 3 4 5)

(3 . 4 . 5)

43

Forms:

(setf y (cons 'x 5)) > (x . 5)

(car y) > x

(cdr y) > 5

(setf x '(2 3)) > (2 3)

(setf x (cons 1 x)) > (1 2 3)

(+ (car(cdr(cdr x))) (caddr x)) > 6

(list 1 2 x 3) > (1 2(1 2 3)3)

(list x '(4 5)) > ((1 2 3)(4 5))

(append x '(4 5)) > (1 2 3 4 5)

(remove 2 x) > (1 3)

x > (1 2 3)

(nconc x '(4 5)) > (1 2 3 4 5)

x > (1 2 3 4 5)

(delete 2 x) > (1 3 4 5)

(setf x(cdr x)) > (3 4 5)

(setf(cadr x)6) > 6

(setf(caddr x x) > (3 6(3 6(3 6(...))))

(setf x '(3 6 5)) > (3 6 5)

(setf(cddr x)x) > (3 6 3 6 3 6 ...)

(member 4 '(1(4 5)2 3)) > nil

(member 2 '(1(4 5)2 3)) > (2 3)

(intersection '(1 2 3) '(3 4 5)) > (3)

(union '(1 2 3) '(3 4 5)) > (1 2 3 4 5)

44

Program Example
Union of sets: Sets are represented as lists

Data structure: (1 2) (2 3) (1 2 3 4) (a b(c)(d e)) (h b(d e)(a))

Program structure: (defun my-union (x y) (unique (append x y)))

(defun unique (x)

(cond ((null x) nil)

((member (car x) (cdr x)) (unique (cdr x)))

(t (cons (car x) (unique (cdr x))))))

Trace protocol: > (my-union '(1 2) '(2 3))

> (append '(1 2) '(2 3))

< (1 2 2 3)

> (unique '(1 2 2 3))

> (unique '(2 2 3))

> (unique '(2 3))

> (unique '(3))

> (unique nil)

< nil

< (3)

< (2 3)

< (2 3)

< (1 2 3)

< (1 2 3)

45

14. Common Lisp

Goals:

- Overview of a professional system to implement artificial intelligent system

- Standardised Programming language for AI applications

Contents:

• Language Overview

• Data Structures

• Program Structures

• Environment

Focus: Standard AI language

Prof. Dr.-Ing. habil. Wolfgang Oertel

46

Language Overview
Data Structures: t

common

character package symbol sequence array function structure

string-char hash-table list vector compiled-function

standard-char readtable null cons string bit-vector

stream number

pathname rational float complex

random-state integer ratio

nil

Program Structures: program

form function

self-evaluating list variable named-function lambda-expression

function-call special-form top-level-form macro-call

47

Data Structures
character: Characters with Bits, Font, Code attribute and name, syntax: #font\bits-name

Example: #\A #\Control-B #\Control-Meta-1 #\Excape #3\4

string-char: Characters for Strings; Font- and Bits attribute 0 Example: #\a #\backspace #\tab

standard-char: Standard characters (94 ASCII) Example: #\3 #\Z #\space #\newline

readtable: Determining of the syntax type of a character

hash-table: efficient mapping between two sets, hash function

(make-hash-table test size) (sxhash object)

random-state: Random state generator (make-random-state state) (random number state)

pathname: File description Example: #p"e:\\lisp\\test.lsp"

(make-pathname host device directory name type version) (pathname-device pathname)

stream: Source or sink of data

(open file) (make-string-output-stream) (make-string-input-stream string)

(print object stream) (read stream) (format stream string objects)

(read-byte stream) (read-char stream) (read-line stream)

(write-byte int stream) (write-char char stream) (write-line string stream)

(close stream) Example: (setf file(open"data.lsp"))(print(read file))(close file)

package: Name space for symbols

(make-package name) (use-package packages) (unuse-packages packages)

(intern string) (unintern symbol)

(export symbols package) (import symbols package)

48

number: Number of any length and basis

<, >, =, <=, /=, +, -, *, /, expt, log, sqrt, abs, sin, cos, atanh, round, mod, logand, logor, ...

(coerce object type)
Example: 1234 #xf1b #7r165 888

rational: Rational number Example: 1.2 -99.99

integer: Fixed number (fixnum oder bignum) Example. 33 -44

ratio: Relation of two fixed numers Example: 2/3 -10/7

float: Floating point number with different precisions (E, S, F, D, L) Example: -0.77e10 33.2d-1

complex: Complex number Example: #c(0 1) #c(5/3 7.0f2)

(complex re im) (realpart nu)

array: Multi-dimensional field of objects with integer indexes
Example: #2a((1 2)(2 3)(3 4)) #3a(((NIL NIL)(NIL NIL))((NIL NIL)(NIL NIL)))

(make-array '(dim1 dim2 ...) (aref array idx1 idx2 ...) (setf (aref array idx1 idx2 ...) value)

vector: One-dimensional field Example: #(1 2.3 wo (3(4 5)))

string: Character string Example: "Work" "1 + 2 - 3"

(make-string size) (char string idx) (string= string1 string2)

bit-vector: Sequence of bits Example: #*011001

(bit vector idx) (bit-not vector) (bit-and vector1 vector2) (bit-or vector1 vector2)

structure: Composite data object with a fixed number of named objects
Example: #s(gear performance 1000 rotations 50 components (shaft bearing))

(defstruct name slot1 value1 slot2 value2 ...) (make-name structure) (name-slot structure)

49

symbol: Named object consisting of the components printname, value, function, propertylist,

and package Example: car user::f1 #:a12

Generation: (make-symbol string) x (gensym)

Access: (symbol-name x) (print x)

(symbol-value x) x

(symbol-function x) (x y)

(symbol-plist x) (get x y)

(symbol-package x)

Changing: (setf (symbol-... x) y) (setf(get x y) z)

(setf x y) (makeunbound x) (defun x y z) (fmakunbound x)

Example: (setf x 1) (defun x(a b)(+ a b)) (setf(get 'x 4)2) (setf(get 'x 1)3)

(symbol-name 'x) > "x"

(symbol-value 'x) > 1

(symbol-function 'x) > (lambda(a b) (+ a b)

(symbol-plist 'x) > (1 3 4 2)

(symbol-package 'x) > "user"

(x x (get 'x 4)) > 3

sequence: Ordered sequence of objects Example: (1 2 3) #(1 2 3) "123"

(concatenate type seq1 seq2) (length seq) (sort seq test) (some pred seq) (every pred seq)

cons: Ordered pair of objects

list: List of objects

null: Contains only NIL as objects

nil: Empty data type

t: All data type

common: Data types of the Common Lisp Standard

50

function: Function Example: #'append #'(lambda(x y)(* x y))

Lambda-List: (x1 x2 Position parameter obligatory

&optional x3 (x4 v4) Position parameter optional

&rest x5 Rest parameter

&key x6 (x7 v7) Keyword parameter

&aux x8 (x9 v9) Local variable

(funcall f obj1 obj2 ...) (apply f objlist) (mapc f list1 list2 ...) (mapcar f list1 list2 ...)

(member obj list :test f) (sort seq f)

(values form1 form2 ...) (multiple-value-setq (var1 var2 ...) form)
Example: (

(funcall (caddr '(+ - / *)) 1 2 4) > 0.125

(apply #'+ '(1 2 3 4)) > 10

(mapcar #'numberp '(1 a (2 3))) > (t nil nil)

(mapcar #'+ '(1 2 3) '(2 3 4) '(3 4 5)) > (6 9 12)

(defun f1 (x1 &optional x2 &rest x3) (list x1 x2 x3))

(f1) > break

(f1 1) > (1 nil nil)

(f1 1 2 3 4 5) > (1 2 (3 4 5))

(defun f2 (x1 x2 &key x3 x4 &aux x5 (x6 6)) (list x1 x2 x3 x4 x5 x6))

(f2 1 2 :x4 4) > (1 2 nil 4 nil 6)

compiled-function: Compiled function

(compile function-name lambda-expression) (compile-file file)

Backquote-Macro: Evaluation within a quotation
Example: `(a b ,(+ 3 4) d) > (a b 7 d)

(setf x `(c d))

`(a b ,x (,(cadr x)) (e ,x)) > (a b (c d) (d) (e (c d)))

51

Program Structures

function: Function that can be applied to objects

Binding: - unbound
Example: (funcall #'(lambda (x y) (+ x y)) 1 2)

- special (global, temporally limited, by Heap realised, symbol-function)
Example: (defun f (x y) (+ x y)) (f 1 2) (fmakunbound ’f)

- lexical (local, spatially limited, by Stack realised)
Example: (labels ((f (x y) (+ x y))) (f 2 1))

Search strategy: lexical > special > break

named-function: Named function

lambda-expression: Lambda-expression

form: Form, evaluable obect

self-evaluating: Object with itself as value (number, character, string, bit-vector, t, nil)

variable: Variable, object with bound value

Binding: - unbound Example: 1

- special (symbol-value) Example: (setf x 1) x (makunbound ’x)

- lexical Example: (lambda (x) (- x 1)) (let ((x 1)) x)

Example: (setf x 1) (defun f1 (x y) (+ x y (f2 x y)))

(defun f2 (a b) (- a b x y (funcall #'(lambda (a) (* a b x) 2)))

(f1 3 4) > break

(setf y 5)

(f1 3 4) > -8

Search strategy: lexical > special > break

52list: List, kind of evaluation depends on first element, further elements are forms

(object form1 form2 ...)

function-call: Function call, standard evaluation strategy (application of an object to evaluated forms)

special-form: Special form with separate evaluation strategy

(quote form) (setf symbol value) (if cond form1 form2) (function func)

(labels functionlist form) (progn form1 form2 ...) (let (var1 var2 ...) form1 form2 ...)

(unwind-protect form1 form2) (catch tag form) (throw tag result)

(go tag) (return-from name result)

top-level-form: On top-level (empty lexical environment) evaluable form

considering by compiler

(defun name lambdalist forms) (defvar name value) (defparameter name value)

(defconstant name value) (declare specifications) (defmacro name lambdalist forms)

macro-call: Macro call

Macro = Function for transformation of forms with subsequent evaluation

- Macro expansion (transformation: form form)

- Macro evaluation (evaluation of the expanded form)

Goal: Increased Efficiency, Changed evaluation strategy

Example: (push x y) = (setf y (cons x y))

(pop y) = (prog1 (car y) (setf y (cdr y)))

(defmacro pot (x y) (let (h) (dotimes (i y) (push x h)) (cons '* h))))

(defun kubik (x) (pot x 3))

Expansion: > (* x x x)

Predefined Macros:

(loop forms) (do ((var1 init1 step1) ...) (end) forms) (dotimes (var number) forms)

(dolist (var list) forms) (prog (var1 var2 ...) forms)

53

Practical Systems:

Lisp machines as universal computer: not successful

- MIT, LMI : CADR; Symbolics: 3600; Xerox: Dorado, Dolphin

Common Lisp implementations with programming environments and additional tools

 available on all hardware and software platforms:

- Allegro Common Lisp (Franz)

- LispWorks (Harlequin)

- CLisp (Steingold, Haible)

large number of implementations and applications

Programming Environment:

- Programming paradigms: Functional, imperative, rule-, logic-, object-oriented

- Object orientation: CLOS

- Interpreter / Compiler: Interpretative working, partial compilation, executables

- Editor / Debugger: File-Editor, Structure editor, Trace, Break, Step, Inspect, Documents

- Interface: Programming language C; operating system access;

user interfaces; interface builder

- Database access: Relational systems by ODBC: ORACLE, SYBASE, ACCESS, ...

Object-oriented systems: ITASCA, STATICE, ALLEGRO-STORE

- Networking: Sockets, Internet

Environment

54

Fields: - Prototyping

- AI systems, knowledge-based systems

- Dynamic flexible systems

- Teaching

Applications: - Formula manipulation (REDUCE)

- Knowledge processing (MYCIN)

- Tools (KEE, BABYLON)

- Problem solving (MOLGEN)

- Language processing (VERBMOBIL)

- Programming environment (EMACS)

- Diagnosis (D3)

- Planning (PRODIGY)

- Logic interpreter (KRIS)

- Software technology (COSEM)

- Development environment (FAENSY)

Other basic languages: - Prolog

- Java (Java Rules engines, Drools)

Applications

55

15. AI Programming Examples

Goals:

- Implementation of knowledge bases and respective interpreter

- Solving of concrete knowledge-based application problems

Contents:

• Recursive Programming

• Semantic Network

• Production Rules

• General Problem Solver

• VRML Script Generation

Focus: Intelligent Applications

Prof. Dr.-Ing. habil. Wolfgang Oertel

56

Example: Symbolic Differentiation

Problem:

(setf formula1 '(+ (pot x 3) (* (sin x) 5)))

(diff formula1 'x) > (+ (* 1 (* 3 (pot x 2)))

(+ (* (* 1 (cos x)) 5) (* (sin x) 0)))

(simp (diff formula1 'x)) > (+ (* 3 (pot x 2))

(* (cos x) 5))

xx sin53

xxx sin0cos1531 2

xx cos53 2

57Solution:

(defun diff (x v)

(cond ((eq x v) 1)

((atom x) 0)

((member(car x)'(+ -)) (list(car x)(diff(cadr x)v)(diff(caddr x)v)))

((eq(car x)'*) (list '+(list '*(diff(cadr x)v)(caddr x))

(list '*(cadr x)(diff(caddr x)v))))

((eq(car x)'/) (list '/(list '-(list '*(diff(cadr x)v)(caddr x))

(list '*(cadr x)(diff(caddr x)v)))

(list 'pot(caddr x)2)))

((eq(car x)'sin) (list '*(diff(cadr x)v)(list 'cos(cadr x))))

((eq(car x)'cos) (list '*(diff(cadr x)v)(list '-(list 'sin(cadr x)))))

((and(eq(car x)'pot)(numberp(caddr x)))

(list '* (diff(cadr x)v)

(list '*(caddr x)(list 'pot(cadr x)(-(caddr x)1)))))

. . .

(t (append '(no rule for) (list x)))))

(defun simp (x)

(cond ((atom x) x)

((and(member(car x)'(+ -))(member 0 x)) (simp(car(remove 0(cdr x)))))

((and(member(car x)'(*))(member 1 x)) (simp(car(remove 1(cdr x)))))

((and(member(car x)'(*))(member 0 x)) 0)

((and(numberp(cadr x))(numberp(caddr x))) (eval x))

. . .

(t (cons(car x)(mapcar #'simp(cdr x))))))

58
Example: Semantic Network

Problem:

(defarc 'martha 'mother 'anna)

(defarc 'anna 'married 'fritz)

(defarc 'fritz 'mother 'frieda)

(defarc 'female 'sex 'martha)

(defarc 'female 'sex 'anna)

(defarc 'female 'sex 'frieda)

(defarc 'male 'sex 'fritz)

frieda

female anna fritz male

martha

se

se

se

sema

mo

mo

(mother '(martha)) > (anna)

(father '(martha)) > (fritz)

(parents '(martha)) > (fritz anna)

(grandmother '(martha)) > (frieda)

(child '(anna)) > (martha)

(daughter '(fritz)) > (martha)

(ancestor '(martha)) > (frieda fritz anna)

59

Solution:

(defun defarc (x r y) (setf (get x r) (cons y (get x r))))

(defun delarc (x r y) (setf (get x r) (remove y (get x r))))

(defun getnod (x r) (if x (union (get (car x) r) (getnod (cdr x) r))))

(defun restr (x f) (remove-if #'(lambda (s) (null (funcall f s))) x))

(defun mother (x) (getnod x 'mother))

(defun married (x) (getnod x 'married))

(defun sex (x) (getnod x 'sex))

(defun father (x) (married (mother x)))

(defun parents (x) (union (mother x) (father x)))

(defun grandmother (x) (mother (parents x)))

(defun child (x) (restr (sex '(male female))

#'(lambda(s) (intersection x (parents(list s))))))

(defun daughter (x) (intersection (child x) (sex '(female))))

(defun ancestor (x) (if x (union (parents x) (ancestor (parents x)))))

60

Example: Production Rules

Problem:

(setf rules

'((((it rains)) -> (wet streets))

(((wet streets)) -> (slip danger))

(((bad tires)) -> (slip danger))))

(setf facts '((it rains)))

(pri '((slip danger)) rules facts)

61

Solution:

(defun pri (condi ruleset factset)

(prog (rule rules match matches trace (facts factset))

loop0 (setf rules ruleset)

(if (end-condition condi facts) (return (list 'solution facts)))

loop1 (cond ((setf rule (pop rules))

(setf matches (rule-condition rule facts)))

((multiple-value-setq (rule rules match matches facts)

(apply 'values (pop trace))))

((return (list 'no-solution facts))))

(unless (setf match (pop matches)) (go loop1))

(push (list rule rules match matches facts) trace)

(setf facts (rule-action rule match facts))

(go loop0)))

(defun end-condition (condi facts) (subsetp condi facts :test #'equal))

(defun rule-condition (rule facts)

(and (null (subsetp (cddr rule) facts :test #'equal))

(subsetp (car rule) facts :test #'equal) (car rule)))

(defun rule-action (rule match facts) (cons (caddr rule) facts))

62

Example: General Problem Solver

Specific Problem: Measuring an amount of liquid with two glasses

7 l 5 l

4 l ?

Search tree:
00

70 05

25 00 75 50 00 75

20 05 70 70 05 05 70 00 05 70 70 05 05 70

02 . . .

72 . . .

45 . . .

States:

z = (ContentGlas1 ContentGlas2)

Operations:

f1: Fill Glass1

f2: Fill Glass2

e1: Empty Glass1

e2: Empty Glass2

g1: Give Glass1 in Glass2

g2: Give Glass2 in Glass1

63

(defun e1(state)(list 0(cadr state)))

(defun e2(state)(list(car state)0))

(defun f1(state)(list w1(cadr state)))

(defun f2(state)(list(car state)w2))

(defun g1(state)

(list(-(car state)(min(car state)(- w2(cadr state))))

(+(cadr state)(min(car state)(- w2(cadr state))))))

(defun g2(state)

(list(+(car state)(min(cadr state)(- w1(car state))))

(-(cadr state)(min(cadr state)(- w1(car state))))))

(defun c(operation)1)

(setf w1 7)

(setf w2 5)

(setf problem '((0 0)(e1 e2 f1 f2 g1 g2)(4 0)c))))

(genericsearch problem)

 ((4 0)

(e2(4 5)g1(7 2)f1(0 2)g1(2 0)e2(2 5)g1(7 0)f1(0 0))

7 7)

Problem:

64

(defun initstate (problem) (car problem))

(defun operations (problem) (cadr problem))

(defun goalstate (problem) (caddr problem))

(defun costfunction (problem) (cadddr problem))

(defun state (node) (car node))

(defun path (node) (cadr node))

(defun depth (node) (caddr node))

(defun cost (node) (cadddr node))

(defun genericsearch (problem &aux node newnode nodes states)

(push(list(initstate problem)nil 0 0)nodes)

(loop (unless nodes(return)) (setf node(pop nodes))

(when(equal(state node)(goalstate problem))(return node))

(dolist(operation(operations problem))

(setf newnode(list(funcall operation(state node))

(cons operation(cons(state node)(path node)))

(+(depth node)1)

(+(cost node)(funcall(costfunction problem)

operation))))

(unless(member(state newnode)states :test #'equal)

(push newnode nodes)(push(state newnode)states)))))

Solution:

65

VRML Script Generation

Generation of VRML prototype instances within a Lisp program

(setf vrmlscript01

"#VRML V2.0 utf8

EXTERNPROTO WALL [

exposedField SFColor material

exposedField SFVec3f translate

exposedField SFRotation rotate

exposedField SFVec3f scale

exposedField SFVec3f bbox

field MFString name

field MFString reference

exposedField SFInt32 on

]

[\"Prototypes9a.wrl#WALL\"]

...

DEF Objects Transform {children [

")

(setf vrmlscript03

"

]}

")

Problem

and

Solution:

66

(setf vrmlscript02

"

DEF Wal00 WALL {material 1 1 1 translate 500 180 15 rotate 0 1 0 0

scale 1000 300 30

bbox 1 1 1 name \"Wal00\" reference \"Wal00.wrl\" on 0}

DEF Wal01 WALL {material 1 1 1 translate 15 180 300 rotate 0 1 0 0

scale 30 300 540

bbox 1 1 1 name \"Wal01\" reference \"Wal01.wrl\" on 0}

...

")

(setf vrmlscript03

"

]}

")

(defun writevrml()

(setf file(open "c://Test//vrml15-01.wrl" :direction :output))

(princ vrmlscript01 file)

(princ vrmlscript02 file)

(princ vrmlscript03 file)

(close file))

(writevrml)

67

The End

