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CHAPTER 10

Tracking and Motion

The Basics of Tracking
When we are dealing with a video source, as opposed to individual still images, we o� en 

have a particular object or objects that we would like to follow through the visual � eld. 

In the previous chapter, we saw how to isolate a particular shape, such as a person or an 

automobile, on a frame-by-frame basis. Now what we’d like to do is understand the mo-

tion of this object, a task that has two main components: identi� cation and modeling.

Identi� cation amounts to � nding the object of interest from one frame in a subsequent 

frame of the video stream. Techniques such as moments or color histograms from pre-

vious chapters will help us identify the object we seek. Tracking things that we have not 

yet identi� ed is a related problem. Tracking unidenti� ed objects is important when we 

wish to determine what is interesting based on its motion—or when an object’s mo-

tion is precisely what makes it interesting. Techniques for tracking unidenti� ed objects 

typically involve tracking visually signi� cant key points (more soon on what consti-

tutes “signi� cance”), rather than extended objects. OpenCV provides two methods for 

achieving this: the Lucas-Kanade* [Lucas81] and Horn-Schunck [Horn81] techniques, 

which represent what are o� en referred to as sparse or dense optical ! ow respectively.

" e second component, modeling, helps us address the fact that these techniques are 

really just providing us with noisy measurement of the object’s actual position. Many 

powerful mathematical techniques have been developed for estimating the trajectory 

of an object measured in such a noisy manner. " ese methods are applicable to two- or 

three-dimensional models of objects and their locations.

Corner Finding
" ere are many kinds of local features that one can track. It is worth taking a moment to 

consider what exactly constitutes such a feature. Obviously, if we pick a point on a large 

blank wall then it won’t be easy to � nd that same point in the next frame of a video. 

* Oddly enough, the de� nitive description of Lucas-Kanade optical ! ow in a pyramid framework imple-
mented in OpenCV is an unpublished paper by Bouguet [Bouguet04].
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If all points on the wall are identical or even very similar, then we won’t have much luck 

tracking that point in subsequent frames. On the other hand, if we choose a point that 

is unique then we have a pretty good chance of � nding that point again. In practice, the 

point or feature we select should be unique, or nearly unique, and should be param-

eterizable in such a way that it can be compared to other points in another image. See 

Figure 10-1.

Returning to our intuition from the large blank wall, we might be tempted to look for 

points that have some signi� cant change in them—for example, a strong derivative. It 

turns out that this is not enough, but it’s a start. A point to which a strong derivative is 

associated may be on an edge of some kind, but it could look like all of the other points 

along the same edge (see the aperture problem diagrammed in Figure 10-8 and dis-

cussed in the section titled “Lucas-Kanade Technique”).

However, if strong derivatives are observed in two orthogonal directions then we can 

hope that this point is more likely to be unique. For this reason, many trackable features 

are called corners. Intuitively, corners—not edges—are the points that contain enough 

information to be picked out from one frame to the next.

" e most commonly used de� nition of a corner was provided by Harris [Harris88]. " is 

de� nition relies on the matrix of the second-order derivatives ( , , )∂ ∂ ∂ ∂2 2x y x y  of the 

image intensities. We can think of the second-order derivatives of images, taken at all 

points in the image, as forming new “second-derivative images” or, when combined to-

gether, a new Hessian image. " is terminology comes from the Hessian matrix around a 

point, which is de� ned in two dimensions by:
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Figure 10-1. ! e points in circles are good points to track, whereas those in boxes—even sharply 
de" ned edges—are poor choices
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For the Harris corner, we consider the autocorrelation matrix of the second derivative 

images over a small window around each point. Such a matrix is de� ned as follows:

M x y

w I x i y j w I x i
i j x

K i j K

i j x

( , )

( , ) ( ,
,

,

,

=

+ + +
− ≤ ≤

∑ 2 yy j I x i y j

w I x i y j I

y

K i j K

i j x y

+ + +

+ +
− ≤ ≤

∑ ) ( , )

( , ) (

,

,
xx i y j w I x i y j

K i j K

i j y

K i j K

+ + + +
− ≤ ≤ − ≤ ≤

∑ ∑, ) ( , )
,

,

,

2

















(Here wi,j is a weighting term that can be uniform but is o� en used to create a circular 

window or Gaussian weighting.) Corners, by Harris’s de� nition, are places in the image 

where the autocorrelation matrix of the second derivatives has two large eigenvalues. In 

essence this means that there is texture (or edges) going in at least two separate direc-

tions centered around such a point, just as real corners have at least two edges meeting 

in a point. Second derivatives are useful because they do not respond to uniform gradi-

ents.* " is de� nition has the further advantage that, when we consider only the eigen-

values of the autocorrelation matrix, we are considering quantities that are invariant 

also to rotation, which is important because objects that we are tracking might rotate as 

well as move. Observe also that these two eigenvalues do more than determine if a point 

is a good feature to track; they also provide an identifying signature for the point.

Harris’s original de� nition involved taking the determinant of H(p), subtracting the 

trace of H(p) (with some weighting coe#  cient), and then comparing this di$ erence to 

a predetermined threshold. It was later found by Shi and Tomasi [Shi94] that good cor-

ners resulted as long as the smaller of the two eigenvalues was greater than a minimum 

threshold. Shi and Tomasi’s method was not only su#  cient but in many cases gave more 

satisfactory results than Harris’s method.

" e cvGoodFeaturesToTrack() routine implements the Shi and Tomasi de� nition. " is 

function conveniently computes the second derivatives (using the Sobel operators) that 

are needed and from those computes the needed eigenvalues. It then returns a list of the 

points that meet our de� nition of being good for tracking.

void  cvGoodFeaturesToTrack(
    const CvArr*    image,
    CvArr*          eigImage,
    CvArr*          tempImage,
    CvPoint2D32f*   corners,
    int*            corner_count,
    double          quality_level,
    double          min_distance,
    const CvArr*    mask          = NULL,
    int             block_size    = 3,
    int             use_harris    = 0,
    double          k             = 0.4
);

* A gradient is derived from � rst derivatives. If � rst derivatives are uniform (constant), then second deriva-
tives are 0.

10-R4886-AT1.indd   318 9/15/08   4:23:32 PM



Subpixel Corners | 319

In this case, the input image should be an 8-bit or 32-bit (i.e., IPL_DEPTH_8U or IPL_

DEPTH_32F) single-channel image. " e next two arguments are single-channel 32-bit 

images of the same size. Both tempImage and eigImage are used as scratch by the algo-

rithm, but the resulting contents of eigImage are meaningful. In particular, each entry 

there contains the minimal eigenvalue for the corresponding point in the input image. 

Here corners is an array of 32-bit points (CvPoint2D32f) that contain the result points 

a� er the algorithm has run; you must allocate this array before calling cvGoodFeatures

ToTrack(). Naturally, since you allocated that array, you only allocated a � nite amount 

of memory. " e corner_count indicates the maximum number of points for which there 

is space to return. A� er the routine exits, corner_count is overwritten by the number 

of points that were actually found. " e parameter quality_level indicates the minimal 

acceptable lower eigenvalue for a point to be included as a corner. " e actual minimal 

eigenvalue used for the cuto$  is the product of the quality_level and the largest lower 

eigenvalue observed in the image. Hence, the quality_level should not exceed 1 (a typi-

cal value might be 0.10 or 0.01). Once these candidates are selected, a further culling 

is applied so that multiple points within a small region need not be included in the 

response. In particular, the min_distance guarantees that no two returned points are 

within the indicated number of pixels.

" e optional mask is the usual image, interpreted as Boolean values, indicating which 

points should and which points should not be considered as possible corners. If set to NULL, 

no mask is used. " e block_size is the region around a given pixel that is considered when 

computing the autocorrelation matrix of derivatives. It turns out that it is better to sum 

these derivatives over a small window than to compute their value at only a single point 

(i.e., at a block_size of 1). If use_harris is nonzero, then the Harris corner de� nition is 

used rather than the Shi-Tomasi de� nition. If you set use_harris to a nonzero value, then 

the value k is the weighting coe#  cient used to set the relative weight given to the trace of 

the autocorrelation matrix Hessian compared to the determinant of the same matrix.

Once you have called cvGoodFeaturesToTrack(), the result is an array of pixel locations 

that you hope to � nd in another similar image. For our current context, we are inter-

ested in looking for these features in subsequent frames of video, but there are many 

other applications as well. A similar technique can be used when attempting to relate 

multiple images taken from slightly di$ erent viewpoints. We will re-encounter this is-

sue when we discuss stereo vision in later chapters.

Subpixel Corners
If you are processing images for the purpose of extracting geometric measurements, as 

opposed to extracting features for recognition, then you will normally need more reso-

lution than the simple pixel values supplied by cvGoodFeaturesToTrack(). Another way 

of saying this is that such pixels come with integer coordinates whereas we sometimes 

require real-valued coordinates—for example, pixel (8.25, 117.16).

One might imagine needing to look for a sharp peak in image values, only to be frus-

trated by the fact that the peak’s location will almost never be in the exact center of a 
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camera pixel element. To overcome this, you might � t a curve (say, a parabola) to the 

image values and then use a little math to � nd where the peak occurred between the 

pixels. Subpixel detection techniques are all about tricks like this (for a review and 

newer techniques, see Lucchese [Lucchese02] and Chen [Chen05]). Common uses of 

image measurements are tracking for three-dimensional reconstruction, calibrating a 

camera, warping partially overlapping views of a scene to stitch them together in the 

most natural way, and � nding an external signal such as precise location of a building 

in a satellite image.

Subpixel corner locations are a common measurement used in camera calibration or 

when tracking to reconstruct the camera’s path or the three-dimensional structure of 

a tracked object. Now that we know how to � nd corner locations on the integer grid 

of pixels, here’s the trick for re� ning those locations to subpixel accuracy: We use the 

mathematical fact that the dot product between a vector and an orthogonal vector is 0; 

this situation occurs at corner locations, as shown in Figure 10-2.

In the � gure, we assume a starting corner location q that is near the actual subpixel cor-

ner location. We examine vectors starting at point q and ending at p. When p is in a 

nearby uniform or “! at” region, the gradient there is 0. On the other hand, if the vector 

q-p aligns with an edge then the gradient at p on that edge is orthogonal to the vector q-p. 

In either case, the dot product between the gradient at p and the vector q-p is 0. We can 

assemble many such pairs of the gradient at a nearby point p and the associated vector 

q-p, set their dot product to 0, and solve this assemblage as a system of equations; the so-

lution will yield a more accurate subpixel location for q, the exact location of the corner.

Figure 10-2. Finding corners to subpixel accuracy: (a) the image area around the point p is uniform 
and so its gradient is 0; (b) the gradient at the edge is orthogonal to the vector q-p along the edge; in 
either case, the dot product between the gradient at p and the vector q-p is 0 (see text)
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" e function that does subpixel corner � nding is cvFindCornerSubPix():

void cvFindCornerSubPix(
    const CvArr*    image,
    CvPoint2D32f*   corners,
    int             count,
    CvSize          win,
    CvSize          zero_zone,
    CvTermCriteria  criteria
);

" e input image is a single-channel, 8-bit, grayscale image. " e corners structure con-

tains integer pixel locations, such as those obtained from routines like cvGoodFeatures

ToTrack(), which are taken as the initial guesses for the corner locations; count holds 

how many points there are to compute.

" e actual computation of the subpixel location uses a system of dot-product expres-

sions that all equal 0 (see Figure 10-2), where each equation arises from considering 

a single pixel in the region around p. " e parameter win speci� es the size of window 

from which these equations will be generated. " is window is centered on the original 

integer corner location and extends outward in each direction by the number of pixels 

speci� ed in win (e.g., if win.width = 4 then the search area is actually 4 + 1 + 4 = 9 pix-

els wide). " ese equations form a linear system that can be solved by the inversion of a 

single autocorrelation matrix (not related to the autocorrelation matrix encountered in 

our previous discussion of Harris corners). In practice, this matrix is not always invert-

ible owing to small eigenvalues arising from the pixels very close to p. To protect against 

this, it is common to simply reject from consideration those pixels in the immediate 

neighborhood of p. " e parameter zero_zone de� nes a window (analogously to win, but 

always with a smaller extent) that will not be considered in the system of constraining 

equations and thus the autocorrelation matrix. If no such zero zone is desired then this 

parameter should be set to cvSize(-1,-1).

Once a new location is found for q, the algorithm will iterate using that value as a starting 

point and will continue until the user-speci� ed termination criterion is reached. Recall 

that this criterion can be of type CV_TERMCRIT_ITER or of type CV_TERMCRIT_EPS (or both) 

and is usually constructed with the cvTermCriteria() function. Using CV_TERMCRIT_EPS 

will e$ ectively indicate the accuracy you require of the subpixel values. " us, if you 

specify 0.10 then you are asking for subpixel accuracy down to one tenth of a pixel.

Invariant Features
Since the time of Harris’s original paper and the subsequent work by Shi and Tomasi, 

a great many other types of corners and related local features have been proposed. One 

widely used type is the SIFT (“scale-invariant feature transform”) feature [Lowe04]. Such 

features are, as their name suggests, scale-invariant. Because SIFT detects the domi-

nant gradient orientation at its location and records its local gradient histogram results 

with respect to this orientation, SIFT is also rotationally invariant. As a result, SIFT fea-

tures are relatively well behaved under small a#  ne transformations. Although the SIFT 
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algorithm is not yet implemented as part of the OpenCV library (but see Chapter 14), 

it is possible to create such an implementation using OpenCV primitives. We will not 

spend more time on this topic, but it is worth keeping in mind that, given the OpenCV 

functions we’ve already discussed, it is possible (albeit less convenient) to create most of 

the features reported in the computer vision literature (see Chapter 14 for a feature tool 

kit in development).

Optical Flow
As already mentioned, you may o� en want to assess motion between two frames (or 

a sequence of frames) without any other prior knowledge about the content of those 

frames. Typically, the motion itself is what indicates that something interesting is going 

on. Optical ! ow is illustrated in Figure 10-3.

We can associate some kind of velocity with each pixel in the frame or, equivalently, 

some displacement that represents the distance a pixel has moved between the previous 

frame and the current frame. Such a construction is usually referred to as a dense optical 

# ow, which associates a velocity with every pixel in an image. " e Horn-Schunck method 

[Horn81] attempts to compute just such a velocity � eld. One seemingly straightforward 

method—simply attempting to match windows around each pixel from one frame to 

Figure 10-3. Optical # ow: target features (upper le$ ) are tracked over time and their movement is 
converted into velocity vectors (upper right); lower panels show a single image of the hallway (le$ ) 
and # ow vectors (right) as the camera moves down the hall (original images courtesy of Jean-Yves 
Bouguet)
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the next—is also implemented in OpenCV; this is known as block matching. Both of 

these routines will be discussed in the “Dense Tracking Techniques” section.

In practice, calculating dense optical ! ow is not easy. Consider the motion of a white 

sheet of paper. Many of the white pixels in the previous frame will simply remain white 

in the next. Only the edges may change, and even then only those perpendicular to the 

direction of motion. " e result is that dense methods must have some method of inter-

polating between points that are more easily tracked so as to solve for those points that 

are more ambiguous. " ese di#  culties manifest themselves most clearly in the high 

computational costs of dense optical ! ow.

" is leads us to the alternative option, sparse optical # ow. Algorithms of this nature rely 

on some means of specifying beforehand the subset of points that are to be tracked. If 

these points have certain desirable properties, such as the “corners” discussed earlier, 

then the tracking will be relatively robust and reliable. We know that OpenCV can help 

us by providing routines for identifying the best features to track. For many practical 

applications, the computational cost of sparse tracking is so much less than dense track-

ing that the latter is relegated to only academic interest.*

" e next few sections present some di$ erent methods of tracking. We begin by consid-

ering the most popular sparse tracking technique, Lucas-Kanade (LK) optical ! ow; this 

method also has an implementation that works with image pyramids, allowing us to 

track faster motions. We’ll then move on to two dense techniques, the Horn-Schunck 

method and the block matching method.

Lucas-Kanade Method
" e Lucas-Kanade (LK) algorithm [Lucas81], as originally proposed in 1981, was an at-

tempt to produce dense results. Yet because the method is easily applied to a subset of 

the points in the input image, it has become an important sparse technique. " e LK 

algorithm can be applied in a sparse context because it relies only on local informa-

tion that is derived from some small window surrounding each of the points of interest. 

" is is in contrast to the intrinsically global nature of the Horn and Schunck algorithm 

(more on this shortly). " e disadvantage of using small local windows in Lucas-Kanade 

is that large motions can move points outside of the local window and thus become im-

possible for the algorithm to � nd. " is problem led to development of the “pyramidal” 

LK algorithm, which tracks starting from highest level of an image pyramid (lowest 

detail) and working down to lower levels (� ner detail). Tracking over image pyramids 

allows large motions to be caught by local windows.

Because this is an important and e$ ective technique, we shall go into some mathemati-

cal detail; readers who prefer to forgo such details can skip to the function description 

and code. However, it is recommended that you at least scan the intervening text and 

* Black and Anadan have created dense optical ! ow techniques [Black93; Black96] that are o� en used in 
movie production, where, for the sake of visual quality, the movie studio is willing to spend the time 
necessary to obtain detailed ! ow information. " ese techniques are slated for inclusion in later versions of 
OpenCV (see Chapter 14).
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� gures, which describe the assumptions behind Lucas-Kanade optical ! ow, so that 

you’ll have some intuition about what to do if tracking isn’t working well.

How Lucas-Kanade works

" e basic idea of the LK algorithm rests on three assumptions.

Brightness constancy1. . A pixel from the image of an object in the scene does not 

change in appearance as it (possibly) moves from frame to frame. For grayscale im-

ages (LK can also be done in color), this means we assume that the brightness of a 

pixel does not change as it is tracked from frame to frame.

Temporal persistence or “small movements”2. . " e image motion of a surface patch 

changes slowly in time. In practice, this means the temporal increments are fast 

enough relative to the scale of motion in the image that the object does not move 

much from frame to frame.

Spatial coherence3. . Neighboring points in a scene belong to the same surface, have 

similar motion, and project to nearby points on the image plane.

We now look at how these assumptions, which are illustrated in Figure 10-4, lead us to 

an e$ ective tracking algorithm. " e � rst requirement, brightness constancy, is just the 

requirement that pixels in one tracked patch look the same over time:

f x t I x t t I x t dt t dt( , ) ( ( ), ) ( ( ), )≡ = + +

Figure 10-4. Assumptions behind Lucas-Kanade optical # ow: for a patch being tracked on an object 
in a scene, the patch’s brightness doesn’t change (top); motion is slow relative to the frame rate (lower 
le$ ); and neighboring points stay neighbors (lower right) (component images courtesy of Michael 
Black [Black82])
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" at’s simple enough, and it means that our tracked pixel intensity exhibits no change 

over time:

∂
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" e second assumption, temporal persistence, essentially means that motions are small 

from frame to frame. In other words, we can view this change as approximating a de-

rivative of the intensity with respect to time (i.e., we assert that the change between one 

frame and the next in a sequence is di% erentially small). To understand the implications 

of this assumption, � rst consider the case of a single spatial dimension.

In this case we can start with our brightness consistency equation, substitute the de� ni-

tion of the brightness f (x, t) while taking into account the implicit dependence of x on t, 

I (x(t), t), and then apply the chain rule for partial di$ erentiation. " is yields:
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where Ix is the spatial derivative across the � rst image, It is the derivative between im-

ages over time, and v is the velocity we are looking for. We thus arrive at the simple 

equation for optical ! ow velocity in the simple one-dimensional case:

v = −
I

I
t

x

Let’s now try to develop some intuition for the one-dimensional tracking problem. Con-

sider Figure 10-5, which shows an “edge”—consisting of a high value on the le�  and 

a low value on the right—that is moving to the right along the x-axis. Our goal is to 

identify the velocity v at which the edge is moving, as plotted in the upper part of Figure 

10-5. In the lower part of the � gure we can see that our measurement of this velocity is 

just “rise over run,” where the rise is over time and the run is the slope (spatial deriva-

tive). " e negative sign corrects for the slope of x.

Figure 10-5 reveals another aspect to our optical ! ow formulation: our assumptions are 

probably not quite true. " at is, image brightness is not really stable; and our time steps 

(which are set by the camera) are o� en not as fast relative to the motion as we’d like. 

" us, our solution for the velocity is not exact. However, if we are “close enough” then 

we can iterate to a solution. Iteration is shown in Figure 10-6, where we use our � rst (in-

accurate) estimate of velocity as the starting point for our next iteration and then repeat. 

Note that we can keep the same spatial derivative in x as computed on the � rst frame 

because of the brightness constancy assumption—pixels moving in x do not change. 

" is reuse of the spatial derivative already calculated yields signi� cant computational 

savings. " e time derivative must still be recomputed each iteration and each frame, but 
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if we are close enough to start with then these iterations will converge to near exactitude 

within about � ve iterations. " is is known as Newton’s method. If our � rst estimate was 

not close enough, then Newton’s method will actually diverge.

Now that we’ve seen the one-dimensional solution, let’s generalize it to images in two 

dimensions. At � rst glance, this seems simple: just add in the y coordinate. Slightly 

Figure 10-5. Lucas-Kanade optical # ow in one dimension: we can estimate the velocity of the moving 
edge (upper panel) by measuring the ratio of the derivative of the intensity over time divided by the 
derivative of the intensity over space

Figure 10-6. Iterating to re" ne the optical # ow solution (Newton’s method): using the same two im-
ages and the same spatial derivative (slope) we solve again for the time derivative; convergence to a 
stable solution usually occurs within a few iterations
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changing notation, we’ll call the y component of velocity v and the x component of ve-

locity u; then we have:

I u I
x t

+ + =
y
v I 0

Unfortunately, for this single equation there are two unknowns for any given pixel. 

" is means that measurements at the single-pixel level are underconstrained and can-

not be used to obtain a unique solution for the two-dimensional motion at that point. 

Instead, we can only solve for the motion component that is perpendicular or “normal” 

to the line described by our ! ow equation. Figure 10-7 presents the mathematical and 

geometric details.

Normal optical ! ow results from the aperture problem, which arises when you 

have a small aperture or window in which to measure motion. When motion is detected 

with a small aperture, you o� en see only an edge, not a corner. But an edge alone is in-

su#  cient to determine exactly how (i.e., in what direction) the entire object is moving; 

see Figure 10-8.

So then how do we get around this problem that, at one pixel, we cannot resolve the 

full motion? We turn to the last optical ! ow assumption for help. If a local patch of 

pixels moves coherently, then we can easily solve for the motion of the central pixel by 

using the surrounding pixels to set up a system of equations. For example, if we use a 

5-by-5* window of brightness values (you can simply triple this for color-based optical 

! ow) around the current pixel to compute its motion, we can then set up 25 equations 

as follows.

* Of course, the window could be 3-by-3, 7-by-7, or anything you choose. If the window is too large then you 
will end up violating the coherent motion assumption and will not be able to track well. If the window is too 
small, you will encounter the aperture problem again.

Figure 10-7. Two-dimensional optical # ow at a single pixel: optical # ow at one pixel is underdeter-
mined and so can yield at most motion, which is perpendicular (“normal”) to the line described by 
the # ow equation (" gure courtesy of Michael Black)
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We now have an overconstrained system for which we can solve provided it contains 

more than just an edge in that 5-by-5 window. To solve for this system, we set up a 

least-squares minimization of the equation, whereby min Ad b−
2
 is solved in standard 

form as:

( )A A d A bT T

2 2 2 1 2 2× × ×

= !" { {

From this relation we obtain our u and v motion components. Writing this out in more 

detail yields:
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" e solution to this equation is then:

u

v
A A A b








 =

−( )T T1

Figure 10-8. Aperture problem: through the aperture window (upper row) we see an edge moving to 
the right but cannot detect the downward part of the motion (lower row)
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When can this be solved?—when (ATA) is invertible. And (ATA) is invertible when it 

has full rank (2), which occurs when it has two large eigenvectors. " is will happen 

in image regions that include texture running in at least two directions. In this case, 

(ATA) will have the best properties then when the tracking window is centered over a 

corner region in an image. " is ties us back to our earlier discussion of the Harris cor-

ner detector. In fact, those corners were “good features to track” (see our previous re-

marks concerning cvGoodFeaturesToTrack()) for precisely the reason that (ATA) had two 

large eigenvectors there! We’ll see shortly how all this computation is done for us by the 

cvCalcOpticalFlowLK() function.

" e reader who understands the implications of our assuming small and coherent mo-

tions will now be bothered by the fact that, for most video cameras running at 30 Hz, 

large and noncoherent motions are commonplace. In fact, Lucas-Kanade optical ! ow by 

itself does not work very well for exactly this reason: we want a large window to catch 

large motions, but a large window too o� en breaks the coherent motion assumption! 

To circumvent this problem, we can track � rst over larger spatial scales using an image 

pyramid and then re� ne the initial motion velocity assumptions by working our way 

down the levels of the image pyramid until we arrive at the raw image pixels.

Hence, the recommended technique is � rst to solve for optical ! ow at the top layer and 

then to use the resulting motion estimates as the starting point for the next layer down. 

We continue going down the pyramid in this manner until we reach the lowest level. 

" us we minimize the violations of our motion assumptions and so can track faster and 

longer motions. " is more elaborate function is known as pyramid Lucas-Kanade opti-

cal # ow and is illustrated in Figure 10-9. " e OpenCV function that implements Pyra-

mid Lucas-Kanade optical ! ow is cvCalcOpticalFlowPyrLK(), which we examine next.

Lucas-Kanade code

" e routine that implements the nonpyramidal Lucas-Kanade dense optical ! ow algo-

rithm is:

void cvCalcOpticalFlowLK(
  const CvArr* imgA,
  const CvArr* imgB,
  CvSize       winSize,
  CvArr*       velx,
  CvArr*       vely
);

" e result arrays for this OpenCV routine are populated only by those pixels for which it 

is able to compute the minimum error. For the pixels for which this error (and thus the 

displacement) cannot be reliably computed, the associated velocity will be set to 0. In 

most cases, you will not want to use this routine. " e following pyramid-based method 

is better for most situations most of the time.

Pyramid Lucas-Kanade code

We come now to OpenCV’s algorithm that computes Lucas-Kanade optical ! ow in a 

pyramid, cvCalcOpticalFlowPyrLK(). As we will see, this optical ! ow function makes use 
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of “good features to track” and also returns indications of how well the tracking of each 

point is proceeding.

void cvCalcOpticalFlowPyrLK(
  const CvArr*    imgA,
  const CvArr*    imgB,
  CvArr*          pyrA,
  CvArr*          pyrB,
  CvPoint2D32f*   featuresA,
  CvPoint2D32f*   featuresB,
  int             count,
  CvSize          winSize,
  int             level,
  char*           status,
  float*          track_error,
  CvTermCriteria  criteria,
  int             flags
);

" is function has a lot of inputs, so let’s take a moment to � gure out what they all do. 

Once we have a handle on this routine, we can move on to the problem of which points 

to track and how to compute them.

" e � rst two arguments of cvCalcOpticalFlowPyrLK() are the initial and � nal images; 

both should be single-channel, 8-bit images. " e next two arguments are bu$ ers allo-

cated to store the pyramid images. " e size of these bu$ ers should be at least (img.width 

Figure 10-9. Pyramid Lucas-Kanade optical # ow: running optical # ow at the top of the pyramid " rst 
mitigates the problems caused by violating our assumptions of small and coherent motion; the mo-
tion estimate from the preceding level is taken as the starting point for estimating motion at the next 
layer down
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+ 8)*img.height/3 bytes,* with one such bu$ er for each of the two input images (pyrA 

and pyrB). (If these two pointers are set to NULL then the routine will allocate, use, and 

free the appropriate memory when called, but this is not so good for performance.) " e 

array featuresA contains the points for which the motion is to be found, and featuresB 

is a similar array into which the computed new locations of the points from featuresA 

are to be placed; count is the number of points in the featuresA list. " e window used for 

computing the local coherent motion is given by winSize. Because we are constructing 

an image pyramid, the argument level is used to set the depth of the stack of images. 

If level is set to 0 then the pyramids are not used. " e array status is of length count; 

on completion of the routine, each entry in status will be either 1 (if the corresponding 

point was found in the second image) or 0 (if it was not). " e track_error parameter is 

optional and can be turned o$  by setting it to NULL. If track_error is active then it is an 

array of numbers, one for each tracked point, equal to the di$ erence between the patch 

around a tracked point in the � rst image and the patch around the location to which 

that point was tracked in the second image. You can use track_error to prune away 

points whose local appearance patch changes too much as the points move.

" e next thing we need is the termination criteria. " is is a structure used by many 

OpenCV algorithms that iterate to a solution:

cvTermCriteria(
    int    type,     // CV_TERMCRIT_ITER, CV_TERMCRIT_EPS, or both
    int    max_iter,
    double epsilon
);

Typically we use the cvTermCriteria() function to generate the structure we need. " e 

� rst argument of this function is either CV_TERMCRIT_ITER or CV_TERMCRIT_EPS, which tells 

the algorithm that we want to terminate either a� er some number of iterations or when 

the convergence metric reaches some small value (respectively). " e next two arguments 

set the values at which one, the other, or both of these criteria should terminate the al-

gorithm. " e reason we have both options is so we can set the type to CV_TERMCRIT_ITER | 

CV_TERMCRIT_EPS and thus stop when either limit is reached (this is what is done in most 

real code).

Finally, flags allows for some � ne control of the routine’s internal bookkeeping; it may 

be set to any or all (using bitwise OR) of the following.

CV_LKFLOW_PYR_A_READY

" e image pyramid for the � rst frame is calculated before the call and stored in 

pyrA.

CV_LKFLOW_PYR_B_READY

" e image pyramid for the second frame is calculated before the call and stored in 

pyrB.

* If you are wondering why the funny size, it’s because these scratch spaces need to accommodate not just the 
image itself but the entire pyramid.

10-R4886-AT1.indd   331 9/15/08   4:23:36 PM



332 | Chapter 10: Tracking and Motion

CV_LKFLOW_INITIAL_GUESSES

" e array B already contains an initial guess for the feature’s coordinates when the 

routine is called.

" ese ! ags are particularly useful when handling sequential video. " e image pyramids 

are somewhat costly to compute, so recomputing them should be avoided whenever 

possible. " e � nal frame for the frame pair you just computed will be the initial frame 

for the pair that you will compute next. If you allocated those bu$ ers yourself (instead 

of asking the routine to do it for you), then the pyramids for each image will be sitting 

in those bu$ ers when the routine returns. If you tell the routine that this information is 

already computed then it will not be recomputed. Similarly, if you computed the motion 

of points from the previous frame then you are in a good position to make good initial 

guesses for where they will be in the next frame.

So the basic plan is simple: you supply the images, list the points you want to track in 

featuresA, and call the routine. When the routine returns, you check the status array 

to see which points were successfully tracked and then check featuresB to � nd the new 

locations of those points.

" is leads us back to that issue we put aside earlier: how to decide which features are 

good ones to track. Earlier we encountered the OpenCV routine cvGoodFeatures

ToTrack(), which uses the method originally proposed by Shi and Tomasi to solve this 

problem in a reliable way. In most cases, good results are obtained by using the com-

bination of cvGoodFeaturesToTrack() and cvCalcOpticalFlowPyrLK(). Of course, you can 

also use your own criteria to determine which points to track.

Let’s now look at a simple example (Example 10-1) that uses both cvGoodFeaturesToTrack() 

and cvCalcOpticalFlowPyrLK(); see also Figure 10-10.

Example 10-1. Pyramid Lucas-Kanade optical # ow code

// Pyramid L-K optical flow example
//
#include <cv.h>
#include <cxcore.h>
#include <highgui.h>

const int MAX_CORNERS = 500;

int main(int argc, char** argv) {

  // Initialize, load two images from the file system, and
  // allocate the images and other structures we will need for
  // results.
  //
  IplImage* imgA = cvLoadImage(“image0.jpg”,CV_LOAD_IMAGE_GRAYSCALE);
  IplImage* imgB = cvLoadImage(“image1.jpg”,CV_LOAD_IMAGE_GRAYSCALE);

  CvSize    img_sz   = cvGetSize( imgA );
  int       win_size = 10;

  IplImage* imgC = cvLoadImage(
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Example 10-1. Pyramid Lucas-Kanade optical # ow code (continued)

    “../Data/OpticalFlow1.jpg”,
    CV_LOAD_IMAGE_UNCHANGED
  );

  // The first thing we need to do is get the features
  // we want to track.
  //
  IplImage* eig_image = cvCreateImage( img_sz, IPL_DEPTH_32F, 1 );
  IplImage* tmp_image = cvCreateImage( img_sz, IPL_DEPTH_32F, 1 );

  int           corner_count = MAX_CORNERS;
  CvPoint2D32f* cornersA     = new CvPoint2D32f[ MAX_CORNERS ];

  cvGoodFeaturesToTrack(
    imgA,
    eig_image,
    tmp_image,
    cornersA,
    &corner_count,
    0.01,
    5.0,
    0,
    3,
    0,
    0.04
  );

  cvFindCornerSubPix(
    imgA,
    cornersA,
    corner_count,
    cvSize(win_size,win_size),
    cvSize(-1,-1),
    cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03)
  );

  // Call the Lucas Kanade algorithm
  //
  char  features_found[ MAX_CORNERS ];
  float feature_errors[ MAX_CORNERS ];

  CvSize pyr_sz = cvSize( imgA->width+8, imgB->height/3 );

  IplImage* pyrA = cvCreateImage( pyr_sz, IPL_DEPTH_32F, 1 );
  IplImage* pyrB = cvCreateImage( pyr_sz, IPL_DEPTH_32F, 1 );

  CvPoint2D32f* cornersB     = new CvPoint2D32f[ MAX_CORNERS ];

  cvCalcOpticalFlowPyrLK(
    imgA,
    imgB,
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Example 10-1. Pyramid Lucas-Kanade optical # ow code (continued)

    pyrA,
    pyrB,
    cornersA,
    cornersB,
    corner_count,
    cvSize( win_size,win_size ),
    5,
    features_found,
    feature_errors,
    cvTermCriteria( CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, .3 ),
    0
  );

  // Now make some image of what we are looking at:
  //
  for( int i=0; i<corner_count; i++ ) {
    if( features_found[i]==0|| feature_errors[i]>550 ) {
      printf(“Error is %f/n”,feature_errors[i]);
      continue;
    }
    printf(“Got it/n”);
    CvPoint p0 = cvPoint(
      cvRound( cornersA[i].x ),
      cvRound( cornersA[i].y )
    );
    CvPoint p1 = cvPoint(
      cvRound( cornersB[i].x ),
      cvRound( cornersB[i].y )
    );
    cvLine( imgC, p0, p1, CV_RGB(255,0,0),2 );
  }

  cvNamedWindow(“ImageA”,0);
  cvNamedWindow(“ImageB”,0);
  cvNamedWindow(“LKpyr_OpticalFlow”,0);

  cvShowImage(“ImageA”,imgA);
  cvShowImage(“ImageB”,imgB);
  cvShowImage(“LKpyr_OpticalFlow”,imgC);

  cvWaitKey(0);

  return 0;
}

Dense Tracking Techniques
OpenCV contains two other optical ! ow techniques that are now seldom used. " ese 

routines are typically much slower than Lucas-Kanade; moreover, they (could, but) do 

not support matching within an image scale pyramid and so cannot track large mo-

tions. We will discuss them brie! y in this section.
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Horn-Schunck method

" e method of Horn and Schunck was developed in 1981 [Horn81]. " is technique was 

one of the � rst to make use of the brightness constancy assumption and to derive the 

basic brightness constancy equations. " e solution of these equations devised by Horn 

and Schunck was by hypothesizing a smoothness constraint on the velocities vx and vy. 

" is constraint was derived by minimizing the regularized Laplacian of the optical ! ow 

velocity components:
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Here α is a constant weighting coe#  cient known as the regularization constant. Larger 

values of α lead to smoother (i.e., more locally consistent) vectors of motion ! ow. " is 

is a relatively simple constraint for enforcing smoothness, and its e$ ect is to penal-

ize regions in which the ! ow is changing in magnitude. As with Lucas-Kanade, the 

Horn-Schunck technique relies on iterations to solve the di$ erential equations. " e 

function that computes this is:

void cvCalcOpticalFlowHS(
    const CvArr*      imgA,
    const CvArr*      imgB,
    int               usePrevious,
    CvArr*            velx,

Figure 10-10. Sparse optical # ow from pyramid Lucas-Kanade: the center image is one video frame 
a$ er the le$  image; the right image illustrates the computed motion of the “good features to track” 
(lower right shows # ow vectors against a dark background for increased visibility)

10-R4886-AT1.indd   335 9/15/08   4:23:37 PM



336 | Chapter 10: Tracking and Motion

    CvArr*            vely,
    double            lambda,
    CvTermCriteria    criteria
);

Here imgA and imgB must be 8-bit, single-channel images. " e x and y velocity results 

will be stored in velx and vely, which must be 32-bit, ! oating-point, single-channel im-

ages. " e usePrevious parameter tells the algorithm to use the velx and vely velocities 

computed from a previous frame as the initial starting point for computing the new 

velocities. " e parameter lambda is a weight related to the Lagrange multiplier. You are 

probably asking yourself: “What Lagrange multiplier?”* " e Lagrange multiplier arises 

when we attempt to minimize (simultaneously) both the motion-brightness equation 

and the smoothness equations; it represents the relative weight given to the errors in 

each as we minimize.

Block matching method

You might be thinking: “What’s the big deal with optical ! ow? Just match where pixels 

in one frame went to in the next frame.” " is is exactly what others have done. " e term 

“block matching” is a catchall for a whole class of similar algorithms in which the im-

age is divided into small regions called blocks [Huang95; Beauchemin95]. Blocks are 

typically square and contain some number of pixels. " ese blocks may overlap and, in 

practice, o� en do. Block-matching algorithms attempt to divide both the previous and 

current images into such blocks and then compute the motion of these blocks. Algo-

rithms of this kind play an important role in many video compression algorithms as 

well as in optical ! ow for computer vision.

Because block-matching algorithms operate on aggregates of pixels, not on individual 

pixels, the returned “velocity images” are typically of lower resolution than the input 

images. " is is not always the case; it depends on the severity of the overlap between the 

blocks. " e size of the result images is given by the following formula:
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" e implementation in OpenCV uses a spiral search that works out from the location 

of the original block (in the previous frame) and compares the candidate new blocks 

with the original. " is comparison is a sum of absolute di$ erences of the pixels (i.e., an 

L1 distance). If a good enough match is found, the search is terminated. Here’s the func-

tion prototype:

* You might even be asking yourself: “What is a Lagrange multiplier?”. In that case, it may be best to ignore 
this part of the paragraph and just set lambda equal to 1.
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void cvCalcOpticalFlowBM(
    const CvArr* prev,
    const CvArr* curr,
    CvSize       block_size,
    CvSize       shift_size,
    CvSize       max_range,
    int          use_previous,
    CvArr*       velx,
    CvArr*       vely
);

" e arguments are straightforward. " e prev and curr parameters are the previous and 

current images; both should be 8-bit, single-channel images. " e block_size is the size 

of the block to be used, and shift_size is the step size between blocks (this parameter 

controls whether—and, if so, by how much—the blocks will overlap). " e max_range pa-

rameter is the size of the region around a given block that will be searched for a cor-

responding block in the subsequent frame. If set, use_previous indicates that the values 

in velx and vely should be taken as starting points for the block searches.* Finally, velx 

and vely are themselves 32-bit single-channel images that will store the computed mo-

tions of the blocks. As mentioned previously, motion is computed at a block-by-block 

level and so the coordinates of the result images are for the blocks (i.e., aggregates of 

pixels), not for the individual pixels of the original image.

Mean-Shift and Camshift Tracking
In this section we will look at two techniques, mean-shi$  and camshi$  (where “cam-

shi� ” stands for “continuously adaptive mean-shi� ”). " e former is a general technique 

for data analysis (discussed in Chapter 9 in the context of segmentation) in many ap-

plications, of which computer vision is only one. A� er introducing the general theory 

of mean-shi� , we’ll describe how OpenCV allows you to apply it to tracking in images. 

" e latter technique, camshi� , builds on mean-shi�  to allow for the tracking of objects 

whose size may change during a video sequence.

Mean-Shift

" e mean-shi�  algorithm† is a robust method of � nding local extrema in the density 

distribution of a data set. " is is an easy process for continuous distributions; in that 

context, it is essentially just hill climbing applied to a density histogram of the data.‡ For 

discrete data sets, however, this is a somewhat less trivial problem.

* If use_previous==0, then the search for a block will be conducted over a region of max_range distance 
from the location of the original block. If use_previous!=0, then the center of that search is � rst displaced 
by ∆x x y

x
= vel ( , ) and ∆y x y

y
= vel ( , ).

† Because mean-shi�  is a fairly deep topic, our discussion here is aimed mainly at developing intuition 
for the user. For the original formal derivation, see Fukunaga [Fukunaga90] and Comaniciu and Meer 
[Comaniciu99].

‡ " e word “essentially” is used because there is also a scale-dependent aspect of mean-shi� . To be exact: 
mean-shi�  is equivalent in a continuous distribution to � rst convolving with the mean-shi�  kernel and 
then applying a hill-climbing algorithm.
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" e descriptor “robust” is used here in its formal statistical sense; that is, mean-shi�  

ignores outliers in the data. " is means that it ignores data points that are far away from 

peaks in the data. It does so by processing only those points within a local window of 

the data and then moving that window.

" e mean-shi�  algorithm runs as follows.

Choose a search window:1. 

its initial location;• 

its type (uniform, polynomial, exponential, or Gaussian);• 

its shape (symmetric or skewed, possibly rotated, rounded or rectangular);• 

its size (extent at which it rolls o$  or is cut o$ ).• 

Compute the window’s (possibly weighted) center of mass.2. 

Center the window at the center of mass.3. 

Return to step 2 until the window stops moving (it always will).*4. 

To give a little more formal sense of what the mean-shi�  algorithm is: it is related to the 

discipline of kernel density estimation, where by “kernel” we refer to a function that has 

mostly local focus (e.g., a Gaussian distribution). With enough appropriately weighted 

and sized kernels located at enough points, one can express a distribution of data en-

tirely in terms of those kernels. Mean-shi�  diverges from kernel density estimation in 

that it seeks only to estimate the gradient (direction of change) of the data distribution. 

When this change is 0, we are at a stable (though perhaps local) peak of the distribution. 

" ere might be other peaks nearby or at other scales.

Figure 10-11 shows the equations involved in the mean-shi�  algorithm. " ese equations 

can be simpli� ed by considering a rectangular kernel,† which reduces the mean-shi�  

vector equation to calculating the center of mass of the image pixel distribution:

x
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y

M

Mc c
= =10

00

01

00

,

Here the zeroth moment is calculated as:

M I x y
yx

00
= ∑∑ ( , )

and the � rst moments are:

* Iterations are typically restricted to some maximum number or to some epsilon change in center shi�  
between iterations; however, they are guaranteed to converge eventually.

† A rectangular kernel is a kernel with no fallo$  with distance from the center, until a single sharp transi-
tion to zero value. " is is in contrast to the exponential fallo$  of a Gaussian kernel and the fallo$  with the 
square of distance from the center in the commonly used Epanechnikov kernel.
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" e mean-shi�  vector in this case tells us to recenter the mean-shi�  window over the 

calculated center of mass within that window. " is movement will, of course, change 

what is “under” the window and so we iterate this recentering process. Such recentering 

will always converge to a mean-shi�  vector of 0 (i.e., where no more centering move-

ment is possible). " e location of convergence is at a local maximum (peak) of the dis-

tribution under the window. Di$ erent window sizes will � nd di$ erent peaks because 

“peak” is fundamentally a scale-sensitive construct.

In Figure 10-12 we see an example of a two-dimensional distribution of data and an ini-

tial (in this case, rectangular) window. " e arrows indicate the process of convergence 

on a local mode (peak) in the distribution. Observe that, as promised, this peak � nder is 

statistically robust in the sense that points outside the mean-shi�  window do not a$ ect 

convergence—the algorithm is not “distracted” by far-away points.

In 1998, it was realized that this mode-� nding algorithm could be used to track moving 

objects in video [Bradski98a; Bradski98b], and the algorithm has since been greatly ex-

tended [Comaniciu03]. " e OpenCV function that performs mean-shi�  is implemented 

in the context of image analysis. " is means in particular that, rather than taking some 

Figure 10-11. Mean-shi$  equations and their meaning

M xI x y M yI x y
yx yx

10 01
= =∑∑ ∑∑( , ) ( , )and
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arbitrary set of data points (possibly in some arbitrary number of dimensions), the 

OpenCV implementation of mean-shi�  expects as input an image representing the den-

sity distribution being analyzed. You could think of this image as a two-dimensional 

histogram measuring the density of points in some two-dimensional space. It turns out 

that, for vision, this is precisely what you want to do most of the time: it’s how you can 

track the motion of a cluster of interesting features.

int cvMeanShift(
    const CvArr*     prob_image,
    CvRect           window,
    CvTermCriteria   criteria,
    CvConnectedComp* comp
);

In cvMeanShift(), the prob_image, which represents the density of probable locations, 

may be only one channel but of either type (byte or ! oat). " e window is set at the ini-

tial desired location and size of the kernel window. " e termination criteria has been 

described elsewhere and consists mainly of a maximum limit on number of mean-shi�  

movement iterations and a minimal movement for which we consider the window 

Figure 10-12. Mean-shi$  algorithm in action: an initial window is placed over a two-dimensional 
array of data points and is successively recentered over the mode (or local peak) of its data distribu-
tion until convergence
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locations to have converged.* " e connected component comp contains the converged 

search window location in comp->rect, and the sum of all pixels under the window is 

kept in the comp->area � eld.

" e function cvMeanShift() is one expression of the mean-shi�  algorithm for rectangu-

lar windows, but it may also be used for tracking. In this case, you � rst choose the fea-

ture distribution to represent an object (e.g., color + texture), then start the mean-shi�  

window over the feature distribution generated by the object, and � nally compute the 

chosen feature distribution over the next video frame. Starting from the current win-

dow location, the mean-shi�  algorithm will � nd the new peak or mode of the feature 

distribution, which (presumably) is centered over the object that produced the color and 

texture in the � rst place. In this way, the mean-shi�  window tracks the movement of the 

object frame by frame.

Camshift
A related algorithm is the Camshi�  tracker. It di$ ers from the meanshi�  in that 

the search window adjusts itself in size. If you have well-segmented distributions (say 

face features that stay compact), then this algorithm will automatically adjust itself for 

the size of face as the person moves closer to and further from the camera. " e form of 

the Camshi�  algorithm is:

int cvCamShift(
    const CvArr*     prob_image,
    CvRect           window,
    CvTermCriteria   criteria,
    CvConnectedComp* comp,
    CvBox2D*         box        = NULL
);

" e � rst four parameters are the same as for the cvMeanShift() algorithm. " e box param-

eter, if present, will contain the newly resized box, which also includes the orientation of 

the object as computed via second-order moments. For tracking applications, we would 

use the resulting resized box found on the previous frame as the window in the next frame.

Many people think of mean-shi�  and camshi�  as tracking using color 
features, but this is not entirely correct. Both of these algorithms 
track the distribution of any kind of feature that is expressed in the 
prob_image; hence they make for very lightweight, robust, and e#  cient 
trackers.

Motion Templates
Motion templates were invented in the MIT Media Lab by Bobick and Davis [Bobick96; 

Davis97] and were further developed jointly with one of the authors [Davis99; Brad-

ski00]. " is more recent work forms the basis for the implementation in OpenCV. 

* Again, mean-shi�  will always converge, but convergence may be very slow near the local peak of a distribu-
tion if that distribution is fairly “! at” there.
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Motion templates are an e$ ective way to track general movement and are especially ap-

plicable to gesture recognition. Using motion templates requires a silhouette (or part of 

a silhouette) of an object. Object silhouettes can be obtained in a number of ways.

" e simplest method of obtaining object silhouettes is to use a reasonably stationary 1. 

camera and then employ frame-to-frame di$ erencing (as discussed in Chapter 9). 

" is will give you the moving edges of objects, which is enough to make motion 

templates work.

You can use chroma keying. For example, if you have a known background color 2. 

such as bright green, you can simply take as foreground anything that is not bright 

green.

Another way (also discussed in Chapter 9) is to learn a background model from 3. 

which you can isolate new foreground objects/people as silhouettes.

You can use active silhouetting techniques—for example, creating a wall of near-4. 

infrared light and having a near-infrared-sensitive camera look at the wall. Any 

intervening object will show up as a silhouette.

You can use thermal imagers; then any hot object (such as a face) can be taken as 5. 

foreground.

Finally, you can generate silhouettes by using the segmentation techniques (e.g., 6. 

pyramid segmentation or mean-shi�  segmentation) described in Chapter 9.

For now, assume that we have a good, segmented object silhouette as represented by 

the white rectangle of Figure 10-13(A). Here we use white to indicate that all the pixels 

are set to the ! oating-point value of the most recent system time stamp. As the rectangle 

moves, new silhouettes are captured and overlaid with the (new) current time stamp; 

the new silhouette is the white rectangle of Figure 10-13(B) and Figure 10-13(C). Older 

motions are shown in Figure 10-13 as successively darker rectangles. " ese sequentially 

fading silhouettes record the history of previous movement and thus are referred to as 

the “motion history image”.

Figure 10-13. Motion template diagram: (A) a segmented object at the current time stamp (white); 
(B) at the next time step, the object moves and is marked with the (new) current time stamp, leaving 
the older segmentation boundary behind; (C) at the next time step, the object moves further, leaving 
older segmentations as successively darker rectangles whose sequence of encoded motion yields the 
motion history image
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In cvUpdateMotionHistory(), all image arrays consist of single-channel images. " e 

silhouette image is a byte image in which nonzero pixels represent the most recent seg-

mentation silhouette of the foreground object. " e mhi image is a ! oating-point image 

that represents the motion template (aka motion history image). Here timestamp is the 

current system time (typically a millisecond count) and duration, as just described, sets 

how long motion history pixels are allowed to remain in the mhi. In other words, any mhi 

pixels that are older (less) than timestamp minus duration are set to 0.

Once the motion template has a collection of object silhouettes overlaid in time, we can 

derive an indication of overall motion by taking the gradient of the mhi image. When we 

take these gradients (e.g., by using the Scharr or Sobel gradient functions discussed in 

Chapter 6), some gradients will be large and invalid. Gradients are invalid when older 

or inactive parts of the mhi image are set to 0, which produces arti� cially large gradients 

around the outer edges of the silhouettes; see Figure 10-15(A). Because we know the 

time-step duration with which we’ve been introducing new silhouettes into the mhi via 

cvUpdateMotionHistory(), we know how large our gradients (which are just dx and dy 

step derivatives) should be. We can therefore use the gradient magnitude to eliminate 

gradients that are too large, as in Figure 10-15(B). Finally, we can collect a measure of 

global motion; see Figure 10-15(C). " e function that e$ ects parts (A) and (B) of the 

� gure is cvCalcMotionGradient():

Silhouettes whose time stamp is more than a speci� ed duration older than the current 

system time stamp are set to 0, as shown in Figure 10-14. " e OpenCV function that ac-

complishes this motion template construction is cvUpdateMotionHistory():

void cvUpdateMotionHistory(
   const CvArr* silhouette,
   CvArr*       mhi,
   double       timestamp,
   double       duration
);

Figure 10-14. Motion template silhouettes for two moving objects (le$ ); silhouettes older than a 
speci" ed duration are set to 0 (right)
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In cvCalcMotionGradient(), all image arrays are single-channel. " e function input mhi 

is a ! oating-point motion history image, and the input variables delta1 and delta2 are 

(respectively) the minimal and maximal gradient magnitudes allowed. Here, the ex-

pected gradient magnitude will be just the average number of time-stamp ticks between 

each silhouette in successive calls to cvUpdateMotionHistory(); setting delta1 halfway 

below and delta2 halfway above this average value should work well. " e variable 

aperture_size sets the size in width and height of the gradient operator. " ese values 

can be set to -1 (the 3-by-3 CV_SCHARR gradient � lter), 3 (the default 3-by-3 Sobel � lter), 

5 (for the 5-by-5 Sobel � lter), or 7 (for the 7-by-7 � lter). " e function outputs are mask, a 

single-channel 8-bit image in which nonzero entries indicate where valid gradients were 

found, and orientation, a ! oating-point image that gives the gradient direction’s angle 

at each point.

" e function cvCalcGlobalOrientation() � nds the overall direction of motion as the 

vector sum of the valid gradient directions.

double cvCalcGlobalOrientation(
   const CvArr* orientation,
   const CvArr* mask,
   const CvArr* mhi,
   double       timestamp,
   double       duration
);

When using cvCalcGlobalOrientation(), we pass in the orientation and mask image 

computed in cvCalcMotionGradient() along with the timestamp, duration, and resulting 

mhi from cvUpdateMotionHistory(); what’s returned is the vector-sum global orientation, 

void cvCalcMotionGradient(
   const CvArr* mhi,
   CvArr* mask,
   CvArr* orientation,
   double delta1,
   double delta2,
   int aperture_size=3
);

Figure 10-15. Motion gradients of the mhi image: (A) gradient magnitudes and directions; (B) large 
gradients are eliminated; (C) overall direction of motion is found
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as in Figure 10-15(C). " e timestamp together with duration tells the routine how much 

motion to consider from the mhi and motion orientation images. One could compute 

the global motion from the center of mass of each of the mhi silhouettes, but summing 

up the precomputed motion vectors is much faster.

We can also isolate regions of the motion template mhi image and determine the local 

motion within that region, as shown in Figure 10-16. In the � gure, the mhi image is 

scanned for current silhouette regions. When a region marked with the most current 

time stamp is found, the region’s perimeter is searched for su#  ciently recent motion 

(recent silhouettes) just outside its perimeter. When such motion is found, a downward-

stepping ! ood � ll is performed to isolate the local region of motion that “spilled o$ ” the 

current location of the object of interest. Once found, we can calculate local motion gra-

dient direction in the spill-o$  region, then remove that region, and repeat the process 

until all regions are found (as diagrammed in Figure 10-16).

Figure 10-16. Segmenting local regions of motion in the mhi image: (A) scan the mhi image for cur-
rent silhouettes (a) and, when found, go around the perimeter looking for other recent silhouettes 
(b); when a recent silhouette is found, perform downward-stepping # ood " lls (c) to isolate local mo-
tion; (B) use the gradients found within the isolated local motion region to compute local motion; 
(C) remove the previously found region and search for the next current silhouette region (d), scan 
along it (e), and perform downward-stepping # ood " ll on it (f); (D) compute motion within the 
newly isolated region and continue the process (A)-(C) until no current silhouette remains
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" e function that isolates and computes local motion is cvSegmentMotion():

CvSeq* cvSegmentMotion(
   const CvArr*  mhi,
   CvArr*        seg_mask,
   CvMemStorage* storage,
   double        timestamp,
   double        seg_thresh
);

In cvSegmentMotion(), the mhi is the single-channel ! oating-point input. We also pass in 

storage, a CvMemoryStorage structure allocated via cvCreateMemStorage(). Another input 

is timestamp, the value of the most current silhouettes in the mhi from which you want 

to segment local motions. Finally, you must pass in seg_thresh, which is the maximum 

downward step (from current time to previous motion) that you’ll accept as attached 

motion. " is parameter is provided because there might be overlapping silhouettes from 

recent and much older motion that you don’t want to connect together.

It’s generally best to set seg_thresh to something like 1.5 times the average di$ erence in 

silhouette time stamps. " is function returns a CvSeq of CvConnectedComp structures, one 

for each separate motion found, which delineates the local motion regions; it also re-

turns seg_mask, a single-channel, ! oating-point image in which each region of isolated 

motion is marked a distinct nonzero number (a zero pixel in seg_mask indicates no mo-

tion). To compute these local motions one at a time we call cvCalcGlobalOrientation(), 

using the appropriate mask region selected from the appropriate CvConnectedComp or 

from a particular value in the seg_mask; for example,

cvCmpS(
  seg_mask,
//  [value_wanted_in_seg_mask],
//  [your_destination_mask],
  CV_CMP_EQ
)

Given the discussion so far, you should now be able to understand the motempl.c 

example that ships with OpenCV in the …/opencv/samples/c/ directory. We will now 

extract and explain some key points from the update_mhi() function in motempl.c. " e 

update_mhi() function extracts templates by thresholding frame di$ erences and then 

passing the resulting silhouette to cvUpdateMotionHistory():

...
cvAbsDiff( buf[idx1], buf[idx2], silh );
cvThreshold( silh, silh, diff_threshold, 1, CV_THRESH_BINARY );
cvUpdateMotionHistory( silh, mhi, timestamp, MHI_DURATION );
...

" e gradients of the resulting mhi image are then taken, and a mask of valid gradients is 

produced using cvCalcMotionGradient(). " en CvMemStorage is allocated (or, if it already 

exists, it is cleared), and the resulting local motions are segmented into CvConnectedComp 

structures in the CvSeq containing structure seq:

...
cvCalcMotionGradient(
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  mhi,
  mask,
  orient,
  MAX_TIME_DELTA,
  MIN_TIME_DELTA,
  3
);

if( !storage )
  storage = cvCreateMemStorage(0);
else
  cvClearMemStorage(storage);

seq = cvSegmentMotion(
  mhi,
  segmask,
  storage,
  timestamp,
  MAX_TIME_DELTA
);

A “for” loop then iterates through the seq->total CvConnectedComp structures extracting 

bounding rectangles for each motion. " e iteration starts at -1, which has been desig-

nated as a special case for � nding the global motion of the whole image. For the local 

motion segments, small segmentation areas are � rst rejected and then the orientation is 

calculated using cvCalcGlobalOrientation(). Instead of using exact masks, this routine 

restricts motion calculations to regions of interest (ROIs) that bound the local motions; 

it then calculates where valid motion within the local ROIs was actually found. Any 

such motion area that is too small is rejected. Finally, the routine draws the motion. 

Examples of the output for a person ! apping their arms is shown in Figure 10-17, where 

the output is drawn above the raw image for four sequential frames going across in two 

rows. (For the full code, see …/opencv/samples/c/motempl.c.) In the same sequence, “Y” 

postures were recognized by the shape descriptors (Hu moments) discussed in Chapter 

8, although the shape recognition is not included in the samples code.

for( i = -1; i < seq->total; i++ ) {
    if( i < 0 ) { // case of the whole image
//       ...[does the whole image]...
    else { // i-th motion component
        comp_rect = ((CvConnectedComp*)cvGetSeqElem( seq, i ))->rect;
//           [reject very small components]...
    }
    ...[set component ROI regions]...
    angle = cvCalcGlobalOrientation( orient, mask, mhi,
                                     timestamp, MHI_DURATION);
    ...[find regions of valid motion]...
    ...[reset ROI regions]...
    ...[skip small valid motion regions]...
    ...[draw the motions]...
    }
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Estimators
Suppose we are tracking a person who is walking across the view of a video camera. 

At each frame we make a determination of the location of this person. " is could be 

done any number of ways, as we have seen, but in each case we � nd ourselves with an 

estimate of the position of the person at each frame. " is estimation is not likely to be 

Figure 10-17. Results of motion template routine: going across and top to bottom, a person moving 
and the resulting global motions indicated in large octagons and local motions indicated in small 
octagons; also, the “Y” pose can be recognized via shape descriptors (Hu moments)
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