CHAPTER 10
Tracking and Motion

The Basics of Tracking

When we are dealing with a video source, as opposed to individual still images, we often
have a particular object or objects that we would like to follow through the visual field.
In the previous chapter, we saw how to isolate a particular shape, such as a person or an
automobile, on a frame-by-frame basis. Now what we’d like to do is understand the mo-
tion of this object, a task that has two main components: identification and modeling.

Identification amounts to finding the object of interest from one frame in a subsequent
frame of the video stream. Techniques such as moments or color histograms from pre-
vious chapters will help us identify the object we seek. Tracking things that we have not
yet identified is a related problem. Tracking unidentified objects is important when we
wish to determine what is interesting based on its motion—or when an object’s mo-
tion is precisely what makes it interesting. Techniques for tracking unidentified objects
typically involve tracking visually significant key points (more soon on what consti-
tutes “significance”), rather than extended objects. OpenCV provides two methods for
achieving this: the Lucas-Kanade* [Lucas81] and Horn-Schunck [Horn81] techniques,
which represent what are often referred to as sparse or dense optical flow respectively.

The second component, modeling, helps us address the fact that these techniques are
really just providing us with noisy measurement of the object’s actual position. Many
powerful mathematical techniques have been developed for estimating the trajectory
of an object measured in such a noisy manner. These methods are applicable to two- or
three-dimensional models of objects and their locations.

Corner Finding

There are many kinds of local features that one can track. It is worth taking a moment to
consider what exactly constitutes such a feature. Obviously, if we pick a point on a large
blank wall then it won’t be easy to find that same point in the next frame of a video.

* Oddly enough, the definitive description of Lucas-Kanade optical flow in a pyramid framework imple-
mented in OpenCV is an unpublished paper by Bouguet [Bouguet04].

316

If all points on the wall are identical or even very similar, then we won’t have much luck
tracking that point in subsequent frames. On the other hand, if we choose a point that
is unique then we have a pretty good chance of finding that point again. In practice, the
point or feature we select should be unique, or nearly unique, and should be param-
eterizable in such a way that it can be compared to other points in another image. See
Figure 10-1.

Figure 10-1. The points in circles are good points to track, whereas those in boxes—even sharply
defined edges—are poor choices

Returning to our intuition from the large blank wall, we might be tempted to look for
points that have some significant change in them—for example, a strong derivative. It
turns out that this is not enough, but it’s a start. A point to which a strong derivative is
associated may be on an edge of some kind, but it could look like all of the other points
along the same edge (see the aperture problem diagrammed in Figure 10-8 and dis-
cussed in the section titled “Lucas-Kanade Technique”).

However, if strong derivatives are observed in two orthogonal directions then we can
hope that this point is more likely to be unique. For this reason, many trackable features
are called corners. Intuitively, corners—not edges—are the points that contain enough
information to be picked out from one frame to the next.

The most commonly used definition of a corner was provided by Harris [Harris88]. This
definition relies on the matrix of the second-order derivatives (9°x, 9’ y, dx dy) of the
image intensities. We can think of the second-order derivatives of images, taken at all
points in the image, as forming new “second-derivative images” or, when combined to-
gether, a new Hessian image. This terminology comes from the Hessian matrix around a
point, which is defined in two dimensions by:

v
x> dx dy

H(p)=
PR 2’1
dy ox 9y’

CornerFinding | 317

For the Harris corner, we consider the autocorrelation matrix of the second derivative
images over a small window around each point. Such a matrix is defined as follows:

z wi’jlj(x+i,y+j) 2 w, I (x+i,y+ I (x+i,y+j)
M(x, y)= —K<i,j<K —K<i,j<K
4 2 w, I (x+i,y+)1 (x+i,y+) 2 wi,jIj(x+i,y+j)
—K<i, j<K —K<i,j<K

(Here w,; is a weighting term that can be uniform but is often used to create a circular
window or Gaussian weighting.) Corners, by Harris’s definition, are places in the image
where the autocorrelation matrix of the second derivatives has two large eigenvalues. In
essence this means that there is texture (or edges) going in at least two separate direc-
tions centered around such a point, just as real corners have at least two edges meeting
in a point. Second derivatives are useful because they do not respond to uniform gradi-
ents.* This definition has the further advantage that, when we consider only the eigen-
values of the autocorrelation matrix, we are considering quantities that are invariant
also to rotation, which is important because objects that we are tracking might rotate as
well as move. Observe also that these two eigenvalues do more than determine if a point
is a good feature to track; they also provide an identifying signature for the point.

Harris’s original definition involved taking the determinant of H(p), subtracting the
trace of H(p) (with some weighting coefficient), and then comparing this difference to
a predetermined threshold. It was later found by Shi and Tomasi [Shi94] that good cor-
ners resulted as long as the smaller of the two eigenvalues was greater than a minimum
threshold. Shi and Tomasi’s method was not only sufficient but in many cases gave more
satisfactory results than Harris’s method.

The cvGoodFeaturesToTrack() routine implements the Shi and Tomasi definition. This
function conveniently computes the second derivatives (using the Sobel operators) that
are needed and from those computes the needed eigenvalues. It then returns a list of the
points that meet our definition of being good for tracking.

void cvGoodFeaturesToTrack(
const CvArr* image,

CvArr* eigImage,

CvArr* tempImage,
CvPoint2D32f* corners,

int* corner count,

double quality level,
double min_distance,

const CvArr* mask = NULL,
int block size =3,
int use_harris =0,
double k = 0.4

)

* A gradient is derived from first derivatives. If first derivatives are uniform (constant), then second deriva-
tives are 0.

318 | Chapter10: Tracking and Motion

In this case, the input image should be an 8-bit or 32-bit (i.e., IPL DEPTH 8U or IPL_
DEPTH_32F) single-channel image. The next two arguments are single-channel 32-bit
images of the same size. Both tempImage and eigImage are used as scratch by the algo-
rithm, but the resulting contents of eigImage are meaningful. In particular, each entry
there contains the minimal eigenvalue for the corresponding point in the input image.
Here corners is an array of 32-bit points (CvPoint2D32f) that contain the result points
after the algorithm has run; you must allocate this array before calling cvGoodFeatures
ToTrack(). Naturally, since you allocated that array, you only allocated a finite amount
of memory. The corner_count indicates the maximum number of points for which there
is space to return. After the routine exits, corner _count is overwritten by the number
of points that were actually found. The parameter quality level indicates the minimal
acceptable lower eigenvalue for a point to be included as a corner. The actual minimal
eigenvalue used for the cutoff is the product of the quality level and the largest lower
eigenvalue observed in the image. Hence, the quality level should not exceed 1 (a typi-
cal value might be 0.10 or 0.01). Once these candidates are selected, a further culling
is applied so that multiple points within a small region need not be included in the
response. In particular, the min distance guarantees that no two returned points are
within the indicated number of pixels.

The optional mask is the usual image, interpreted as Boolean values, indicating which
points should and which points should not be considered as possible corners. If set to NULL,
no mask is used. The block size is the region around a given pixel that is considered when
computing the autocorrelation matrix of derivatives. It turns out that it is better to sum
these derivatives over a small window than to compute their value at only a single point
(i.e., at a block size of 1). If use_harris is nonzero, then the Harris corner definition is
used rather than the Shi-Tomasi definition. If you set use_harris to a nonzero value, then
the value k is the weighting coefficient used to set the relative weight given to the trace of
the autocorrelation matrix Hessian compared to the determinant of the same matrix.

Once you have called cvGoodFeaturesToTrack(), the result is an array of pixel locations
that you hope to find in another similar image. For our current context, we are inter-
ested in looking for these features in subsequent frames of video, but there are many
other applications as well. A similar technique can be used when attempting to relate
multiple images taken from slightly different viewpoints. We will re-encounter this is-
sue when we discuss stereo vision in later chapters.

Subpixel Corners

If you are processing images for the purpose of extracting geometric measurements, as
opposed to extracting features for recognition, then you will normally need more reso-
lution than the simple pixel values supplied by cvGoodFeaturesToTrack(). Another way
of saying this is that such pixels come with integer coordinates whereas we sometimes
require real-valued coordinates—for example, pixel (8.25, 117.16).

One might imagine needing to look for a sharp peak in image values, only to be frus-
trated by the fact that the peak’s location will almost never be in the exact center of a

Subpixel Corners | 319

1N.R AQQ2AAT1 indA 210 m QAENQ A 22220DNA

camera pixel element. To overcome this, you might fit a curve (say, a parabola) to the
image values and then use a little math to find where the peak occurred between the
pixels. Subpixel detection techniques are all about tricks like this (for a review and
newer techniques, see Lucchese [Lucchese02] and Chen [Chen05]). Common uses of
image measurements are tracking for three-dimensional reconstruction, calibrating a
camera, warping partially overlapping views of a scene to stitch them together in the
most natural way, and finding an external signal such as precise location of a building
in a satellite image.

Subpixel corner locations are a common measurement used in camera calibration or
when tracking to reconstruct the camera’s path or the three-dimensional structure of
a tracked object. Now that we know how to find corner locations on the integer grid
of pixels, here’s the trick for refining those locations to subpixel accuracy: We use the
mathematical fact that the dot product between a vector and an orthogonal vector is 0;
this situation occurs at corner locations, as shown in Figure 10-2.

Neighborhood Gradient on edge
P VI() =0 VIQp)
q / q J
p
(a): pin aregion. (b): p on aregion.
In either case the dot product is zero
<VIp),q-p>=0

Figure 10-2. Finding corners to subpixel accuracy: (a) the image area around the point p is uniform
and so its gradient is 0; (b) the gradient at the edge is orthogonal to the vector q-p along the edge; in
either case, the dot product between the gradient at p and the vector q-p is 0 (see text)

In the figure, we assume a starting corner location g that is near the actual subpixel cor-
ner location. We examine vectors starting at point q and ending at p. When p is in a
nearby uniform or “flat” region, the gradient there is 0. On the other hand, if the vector
q-p aligns with an edge then the gradient at p on that edge is orthogonal to the vector g-p.
In either case, the dot product between the gradient at p and the vector g-p is 0. We can
assemble many such pairs of the gradient at a nearby point p and the associated vector
q-p- set their dot product to 0, and solve this assemblage as a system of equations; the so-
lution will yield a more accurate subpixel location for g, the exact location of the corner.

320 | Chapter10: Tracking and Motion

1NR AQQ2A AT indd 22N m QAENQ A 22220DNA

The function that does subpixel corner finding is cvFindCornerSubPix():

void cvFindCornerSubPix(
const CvArr* image,
CvPoint2D32f* corners,

int count,
CvSize win,
CvSize zero_zone,

CvTermCriteria criteria
);
The input image is a single-channel, 8-bit, grayscale image. The corners structure con-
tains integer pixel locations, such as those obtained from routines like cvGoodFeatures
ToTrack(), which are taken as the initial guesses for the corner locations; count holds
how many points there are to compute.

The actual computation of the subpixel location uses a system of dot-product expres-
sions that all equal 0 (see Figure 10-2), where each equation arises from considering
a single pixel in the region around p. The parameter win specifies the size of window
from which these equations will be generated. This window is centered on the original
integer corner location and extends outward in each direction by the number of pixels
specified in win (e.g., if win.width = 4 then the search area is actually 4 + 1 + 4 = 9 pix-
els wide). These equations form a linear system that can be solved by the inversion of a
single autocorrelation matrix (not related to the autocorrelation matrix encountered in
our previous discussion of Harris corners). In practice, this matrix is not always invert-
ible owing to small eigenvalues arising from the pixels very close to p. To protect against
this, it is common to simply reject from consideration those pixels in the immediate
neighborhood of p. The parameter zero zone defines a window (analogously to win, but
always with a smaller extent) that will not be considered in the system of constraining
equations and thus the autocorrelation matrix. If no such zero zone is desired then this
parameter should be set to cvSize(-1,-1).

Once a new location is found for g, the algorithm will iterate using that value as a starting
point and will continue until the user-specified termination criterion is reached. Recall
that this criterion can be of type CV_TERMCRIT ITER or of type CV_TERMCRIT EPS (or both)
and is usually constructed with the cvlermCriteria() function. Using CV TERMCRIT EPS
will effectively indicate the accuracy you require of the subpixel values. Thus, if you
specify 0.10 then you are asking for subpixel accuracy down to one tenth of a pixel.

Invariant Features

Since the time of Harris’s original paper and the subsequent work by Shi and Tomasi,
a great many other types of corners and related local features have been proposed. One
widely used type is the SIFT (“scale-invariant feature transform”) feature [Lowe04]. Such
features are, as their name suggests, scale-invariant. Because SIFT detects the domi-
nant gradient orientation at its location and records its local gradient histogram results
with respect to this orientation, SIFT is also rotationally invariant. As a result, SIFT fea-
tures are relatively well behaved under small affine transformations. Although the SIFT

Invariant Features | 321

1NR AQ2A AT1 indAA 271 m QAENQ A 22220DNA

algorithm is not yet implemented as part of the OpenCV library (but see Chapter 14),
it is possible to create such an implementation using OpenCV primitives. We will not
spend more time on this topic, but it is worth keeping in mind that, given the OpenCV
functions we’ve already discussed, it is possible (albeit less convenient) to create most of
the features reported in the computer vision literature (see Chapter 14 for a feature tool
kit in development).

Optical Flow

As already mentioned, you may often want to assess motion between two frames (or
a sequence of frames) without any other prior knowledge about the content of those
frames. Typically, the motion itself is what indicates that something interesting is going
on. Optical flow is illustrated in Figure 10-3.

Optical Flow

Image sequence Tracked sequence
(single camera)

Figure 10-3. Optical flow: target features (upper left) are tracked over time and their movement is
converted into velocity vectors (upper right); lower panels show a single image of the hallway (left)
and flow vectors (right) as the camera moves down the hall (original images courtesy of Jean-Yves
Bouguet)

We can associate some kind of velocity with each pixel in the frame or, equivalently,
some displacement that represents the distance a pixel has moved between the previous
frame and the current frame. Such a construction is usually referred to as a dense optical
flow, which associates a velocity with every pixel in an image. The Horn-Schunck method
[Horn81] attempts to compute just such a velocity field. One seemingly straightforward
method—simply attempting to match windows around each pixel from one frame to

322 | Chapter10: Trackingand Motion

the next—is also implemented in OpenCV; this is known as block matching. Both of
these routines will be discussed in the “Dense Tracking Techniques” section.

In practice, calculating dense optical flow is not easy. Consider the motion of a white
sheet of paper. Many of the white pixels in the previous frame will simply remain white
in the next. Only the edges may change, and even then only those perpendicular to the
direction of motion. The result is that dense methods must have some method of inter-
polating between points that are more easily tracked so as to solve for those points that
are more ambiguous. These difficulties manifest themselves most clearly in the high
computational costs of dense optical flow.

This leads us to the alternative option, sparse optical flow. Algorithms of this nature rely
on some means of specifying beforehand the subset of points that are to be tracked. If
these points have certain desirable properties, such as the “corners” discussed earlier,
then the tracking will be relatively robust and reliable. We know that OpenCV can help
us by providing routines for identifying the best features to track. For many practical
applications, the computational cost of sparse tracking is so much less than dense track-
ing that the latter is relegated to only academic interest.*

The next few sections present some different methods of tracking. We begin by consid-
ering the most popular sparse tracking technique, Lucas-Kanade (LK) optical flow; this
method also has an implementation that works with image pyramids, allowing us to
track faster motions. We’ll then move on to two dense techniques, the Horn-Schunck
method and the block matching method.

Lucas-Kanade Method

The Lucas-Kanade (LK) algorithm [Lucas81], as originally proposed in 1981, was an at-
tempt to produce dense results. Yet because the method is easily applied to a subset of
the points in the input image, it has become an important sparse technique. The LK
algorithm can be applied in a sparse context because it relies only on local informa-
tion that is derived from some small window surrounding each of the points of interest.
This is in contrast to the intrinsically global nature of the Horn and Schunck algorithm
(more on this shortly). The disadvantage of using small local windows in Lucas-Kanade
is that large motions can move points outside of the local window and thus become im-
possible for the algorithm to find. This problem led to development of the “pyramidal”
LK algorithm, which tracks starting from highest level of an image pyramid (lowest
detail) and working down to lower levels (finer detail). Tracking over image pyramids
allows large motions to be caught by local windows.

Because this is an important and effective technique, we shall go into some mathemati-
cal detail; readers who prefer to forgo such details can skip to the function description
and code. However, it is recommended that you at least scan the intervening text and

* Black and Anadan have created dense optical flow techniques [Black93; Black96] that are often used in
movie production, where, for the sake of visual quality, the movie studio is willing to spend the time
necessary to obtain detailed flow information. These techniques are slated for inclusion in later versions of
OpenCV (see Chapter 14).

Optical Flow | 323

1NOR AQQ2AAT1 indA 2797 m QAENQ A 222°2DNA

figures, which describe the assumptions behind Lucas-Kanade optical flow, so that
you’ll have some intuition about what to do if tracking isn’t working well.

How Lucas-Kanade works

The basic idea of the LK algorithm rests on three assumptions.

1. Brightness constancy. A pixel from the image of an object in the scene does not
change in appearance as it (possibly) moves from frame to frame. For grayscale im-
ages (LK can also be done in color), this means we assume that the brightness of a
pixel does not change as it is tracked from frame to frame.

2. Temporal persistence or “small movements”. The image motion of a surface patch
changes slowly in time. In practice, this means the temporal increments are fast
enough relative to the scale of motion in the image that the object does not move
much from frame to frame.

3. Spatial coherence. Neighboring points in a scene belong to the same surface, have
similar motion, and project to nearby points on the image plane.

We now look at how these assumptions, which are illustrated in Figure 10-4, lead us to
an effective tracking algorithm. The first requirement, brightness constancy, is just the
requirement that pixels in one tracked patch look the same over time:

flx, t)=1(x(t), t)=1(x(t+dt), t+dt)

Assumptions

Brightness Constancy
fo Twry, s

I(x+u,y+v,6+1) = I(x,),2)

Temporal Persistence Spacial Coherence

Image plane

Figure 10-4. Assumptions behind Lucas-Kanade optical flow: for a patch being tracked on an object
in a scene, the patch’s brightness doesn’t change (top); motion is slow relative to the frame rate (lower
left); and neighboring points stay neighbors (lower right) (component images courtesy of Michael
Black [Black82])

324 | Chapter10: Tracking and Motion

That’s simple enough, and it means that our tracked pixel intensity exhibits no change
over time:

of (x) _
ot =0

The second assumption, temporal persistence, essentially means that motions are small
from frame to frame. In other words, we can view this change as approximating a de-
rivative of the intensity with respect to time (i.e., we assert that the change between one
frame and the next in a sequence is differentially small). To understand the implications
of this assumption, first consider the case of a single spatial dimension.

In this case we can start with our brightness consistency equation, substitute the defini-
tion of the brightness f (x, f) while taking into account the implicit dependence of x on ¢,
I (x(#), t), and then apply the chain rule for partial differentiation. This yields:

ol | (ox) ol
— | = |+=| =0
ox| \ ot) ot|

I, v I,

where I, is the spatial derivative across the first image, I, is the derivative between im-
ages over time, and v is the velocity we are looking for. We thus arrive at the simple
equation for optical flow velocity in the simple one-dimensional case:

Let’s now try to develop some intuition for the one-dimensional tracking problem. Con-
sider Figure 10-5, which shows an “edge”—consisting of a high value on the left and
a low value on the right—that is moving to the right along the x-axis. Our goal is to
identify the velocity v at which the edge is moving, as plotted in the upper part of Figure
10-5. In the lower part of the figure we can see that our measurement of this velocity is
just “rise over run,” where the rise is over time and the run is the slope (spatial deriva-
tive). The negative sign corrects for the slope of x.

Figure 10-5 reveals another aspect to our optical flow formulation: our assumptions are
probably not quite true. That is, image brightness is not really stable; and our time steps
(which are set by the camera) are often not as fast relative to the motion as we’d like.
Thus, our solution for the velocity is not exact. However, if we are “close enough” then
we can iterate to a solution. Iteration is shown in Figure 10-6, where we use our first (in-
accurate) estimate of velocity as the starting point for our next iteration and then repeat.
Note that we can keep the same spatial derivative in x as computed on the first frame
because of the brightness constancy assumption—pixels moving in x do not change.
This reuse of the spatial derivative already calculated yields significant computational
savings. The time derivative must still be recomputed each iteration and each frame, but

Optical Flow | 325

Optical Flowin 1D

A

I(x,2) I(x,2+1)

> X
A
1(x,2) I(x,t+1)
Temporal derivative
> X
Assumptions:
I _91 Brightness constancy
¥ ox -Small motion

Figure 10-5. Lucas-Kanade optical flow in one dimension: we can estimate the velocity of the moving
edge (upper panel) by measuring the ratio of the derivative of the intensity over time divided by the
derivative of the intensity over space

Intration helps refining the velocity vector

I(x,0) I(x,2+1)

N

- Temporal derivative at 2nd jteration

N R
< SR > X

I NS .
* * “e—Keep the same estimate

I for spatial derivative
1&=7 t

previous _E Converges in about 5 iterations

Figure 10-6. Iterating to refine the optical flow solution (Newton’s method): using the same two im-
ages and the same spatial derivative (slope) we solve again for the time derivative; convergence to a
stable solution usually occurs within a few iterations

if we are close enough to start with then these iterations will converge to near exactitude
within about five iterations. This is known as Newton’s method. If our first estimate was
not close enough, then Newton’s method will actually diverge.

Now that we've seen the one-dimensional solution, let’s generalize it to images in two
dimensions. At first glance, this seems simple: just add in the y coordinate. Slightly

326 | Chapter10: Tracking and Motion

1N.R AQQ2AAT1 indA 270/ m

QAENQ A 222A DN

changing notation, we’ll call the y component of velocity v and the x component of ve-
locity u; then we have:

Tu+Iv+1 =0
X y t

Unfortunately, for this single equation there are two unknowns for any given pixel.
This means that measurements at the single-pixel level are underconstrained and can-
not be used to obtain a unique solution for the two-dimensional motion at that point.
Instead, we can only solve for the motion component that is perpendicular or “normal”
to the line described by our flow equation. Figure 10-7 presents the mathematical and
geometric details.

From 1D to 2D tracking

Notation But, at a single pixel all we get is a line
Lu+ Lv +1, = 4 Liu + Lv=-1
T ~~
VI u=~1, Igutl yvel (=0
u= { } VI = {] VI |
v L, b\ .
“Normal flow” ~

Figure 10-7. Two-dimensional optical flow at a single pixel: optical flow at one pixel is underdeter-
mined and so can yield at most motion, which is perpendicular (“normal”) to the line described by
the flow equation (figure courtesy of Michael Black)

Normal optical flow results from the aperture problem, which arises when you
have a small aperture or window in which to measure motion. When motion is detected
with a small aperture, you often see only an edge, not a corner. But an edge alone is in-
sufficient to determine exactly how (i.e., in what direction) the entire object is moving;
see Figure 10-8.

So then how do we get around this problem that, at one pixel, we cannot resolve the
full motion? We turn to the last optical flow assumption for help. If a local patch of
pixels moves coherently, then we can easily solve for the motion of the central pixel by
using the surrounding pixels to set up a system of equations. For example, if we use a
5-by-5* window of brightness values (you can simply triple this for color-based optical
flow) around the current pixel to compute its motion, we can then set up 25 equations
as follows.

* Of course, the window could be 3-by-3, 7-by-7, or anything you choose. If the window is too large then you
will end up violating the coherent motion assumption and will not be able to track well. If the window is too
small, you will encounter the aperture problem again.

Optical Flow | 327

1NR AR AT1 indAd 2727 [\ QAENQ A 22 2= DN

[1.(p) I(p) 1(p)
IL(p) 1,(p) H BRACN

' ’ — ’
L(py) L(pe) | LL(Py)
— . \
A b
25%2 2x1

Aperture Problem

=

NN IR |

-

Figure 10-8. Aperture problem: through the aperture window (upper row) we see an edge moving to
the right but cannot detect the downward part of the motion (lower row)

We now have an overconstrained system for which we can solve provided it contains
more than just an edge in that 5-by-5 window. To solve for thizs system, we set up a
least-squares minimization of the equation, whereby min||Ad —b||" is solved in standard
form as:

(A"A)d =A"D
A) =

2X1 2x2

From this relation we obtain our # and v motion components. Writing this out in more
detail yields:

ZIXIX zIny u _ IxIt
i Yiilv] | XL

ATA A'b

The solution to this equation is then:

[”] —(ATA)'ATD
)

328 | Chapter10: Trackingand Motion

When can this be solved?—when (ATA) is invertible. And (ATA) is invertible when it
has full rank (2), which occurs when it has two large eigenvectors. This will happen
in image regions that include texture running in at least two directions. In this case,
(ATA) will have the best properties then when the tracking window is centered over a
corner region in an image. This ties us back to our earlier discussion of the Harris cor-
ner detector. In fact, those corners were “good features to track” (see our previous re-
marks concerning cvGoodFeaturesToTrack()) for precisely the reason that (ATA) had two
large eigenvectors there! We’ll see shortly how all this computation is done for us by the
cvCalcOpticalFlowLK() function.

The reader who understands the implications of our assuming small and coherent mo-
tions will now be bothered by the fact that, for most video cameras running at 30 Hz,
large and noncoherent motions are commonplace. In fact, Lucas-Kanade optical flow by
itself does not work very well for exactly this reason: we want a large window to catch
large motions, but a large window too often breaks the coherent motion assumption!
To circumvent this problem, we can track first over larger spatial scales using an image
pyramid and then refine the initial motion velocity assumptions by working our way
down the levels of the image pyramid until we arrive at the raw image pixels.

Hence, the recommended technique is first to solve for optical flow at the top layer and
then to use the resulting motion estimates as the starting point for the next layer down.
We continue going down the pyramid in this manner until we reach the lowest level.
Thus we minimize the violations of our motion assumptions and so can track faster and
longer motions. This more elaborate function is known as pyramid Lucas-Kanade opti-
cal flow and is illustrated in Figure 10-9. The OpenCV function that implements Pyra-
mid Lucas-Kanade optical flow is cvCalcOpticalFlowPyrLK(), which we examine next.

Lucas-Kanade code

The routine that implements the nonpyramidal Lucas-Kanade dense optical flow algo-
rithm is:
void cvCalcOpticalFlowLK(

const CvArr* imgA,
const CvArr* imgB,

CvSize winSize,
CvArr* velx,
CvArT* vely

);
The result arrays for this OpenCV routine are populated only by those pixels for which it
is able to compute the minimum error. For the pixels for which this error (and thus the
displacement) cannot be reliably computed, the associated velocity will be set to 0. In
most cases, you will not want to use this routine. The following pyramid-based method
is better for most situations most of the time.

Pyramid Lucas-Kanade code

We come now to OpenCV’s algorithm that computes Lucas-Kanade optical flow in a
pyramid, cvCalcOpticalFlowPyrLK(). As we will see, this optical flow function makes use

Optical Flow | 329

1N0.R AQQ2A AT1 indA 2720 [\ QAENQ A 22 2= DN

Coarse-to-fine optical flow estimation

/ :; - run

iterative L-K &

warp and upsample

run iterative L-K &

R —

&—

|

=

image It_l\/

Gaussian pyramid of image I, ;

Gaussian pyramid of image I

Figure 10-9. Pyramid Lucas-Kanade optical flow: running optical flow at the top of the pyramid first
mitigates the problems caused by violating our assumptions of small and coherent motion; the mo-
tion estimate from the preceding level is taken as the starting point for estimating motion at the next

layer down

of “good features to track” and also returns indications of how well the tracking of each

point is proceeding.

void cvCalcOpticalFlowPyrLK(

const CvArr*
const CvArr*
CvArT*

CvArT*
CvPoint2D32f*
CvPoint2D32f*
int

CvSize

int

char*

float*
CvTermCriteria
int

)

imgA,
imgB,
PyTA,

pyrB,
featuresA,

featuresB,
count,
winSize,
level,
status,
track error,
criteria,
flags

This function has a lot of inputs, so let’s take a moment to figure out what they all do.
Once we have a handle on this routine, we can move on to the problem of which points
to track and how to compute them.

The first two arguments of cvCalcOpticalFlowPyrLK() are the initial and final images;
both should be single-channel, 8-bit images. The next two arguments are buffers allo-
cated to store the pyramid images. The size of these buffers should be at least (img.width

330 |

1NR AQQ2AAT1 indd 272N

Chapter 10: Tracking and Motion

QAENQ A 22 26DNA

+ 8)*img.height/3 bytes,* with one such buffer for each of the two input images (pyrA
and pyrB). (If these two pointers are set to NULL then the routine will allocate, use, and
free the appropriate memory when called, but this is not so good for performance.) The
array featuresA contains the points for which the motion is to be found, and featuresB
is a similar array into which the computed new locations of the points from featuresA
are to be placed; count is the number of points in the featuresA list. The window used for
computing the local coherent motion is given by winSize. Because we are constructing
an image pyramid, the argument level is used to set the depth of the stack of images.
If level is set to 0 then the pyramids are not used. The array status is of length count;
on completion of the routine, each entry in status will be either 1 (if the corresponding
point was found in the second image) or 0 (if it was not). The track error parameter is
optional and can be turned off by setting it to NULL. If track error is active then it is an
array of numbers, one for each tracked point, equal to the difference between the patch
around a tracked point in the first image and the patch around the location to which
that point was tracked in the second image. You can use track error to prune away
points whose local appearance patch changes too much as the points move.

The next thing we need is the termination criteria. This is a structure used by many
OpenCV algorithms that iterate to a solution:

cvTermCriteria(
int type, // CV_TERMCRIT ITER, CV TERMCRIT EPS, or both
int max_iter,
double epsilon
);
Typically we use the cvlermCriteria() function to generate the structure we need. The
first argument of this function is either CV TERMCRIT ITER or CV TERMCRIT EPS, which tells
the algorithm that we want to terminate either after some number of iterations or when
the convergence metric reaches some small value (respectively). The next two arguments
set the values at which one, the other, or both of these criteria should terminate the al-
gorithm. The reason we have both options is so we can set the type to CV TERMCRIT ITER |
CV_TERMCRIT EPS and thus stop when either limit is reached (this is what is done in most
real code).

Finally, flags allows for some fine control of the routine’s internal bookkeeping; it may
be set to any or all (using bitwise OR) of the following.

CV_LKFLOW_PYR_A_READY
The image pyramid for the first frame is calculated before the call and stored in
pyrA.

CV_LKFLOW_PYR_B_READY
The image pyramid for the second frame is calculated before the call and stored in
pyrB.

* If you are wondering why the funny size, it’s because these scratch spaces need to accommodate not just the
image itself but the entire pyramid.

Optical Flow | 331

1NR AQ2AAT1 indAA 2271 m QAENQ A 22 26DNA

CV_LKFLOW_INITIAL GUESSES
The array B already contains an initial guess for the feature’s coordinates when the
routine is called.

These flags are particularly useful when handling sequential video. The image pyramids
are somewhat costly to compute, so recomputing them should be avoided whenever
possible. The final frame for the frame pair you just computed will be the initial frame
for the pair that you will compute next. If you allocated those buffers yourself (instead
of asking the routine to do it for you), then the pyramids for each image will be sitting
in those buffers when the routine returns. If you tell the routine that this information is
already computed then it will not be recomputed. Similarly, if you computed the motion
of points from the previous frame then you are in a good position to make good initial
guesses for where they will be in the next frame.

So the basic plan is simple: you supply the images, list the points you want to track in
featuresA, and call the routine. When the routine returns, you check the status array
to see which points were successfully tracked and then check featuresB to find the new
locations of those points.

This leads us back to that issue we put aside earlier: how to decide which features are
good ones to track. Earlier we encountered the OpenCV routine cvGoodFeatures
ToTrack(), which uses the method originally proposed by Shi and Tomasi to solve this
problem in a reliable way. In most cases, good results are obtained by using the com-
bination of cvGoodFeaturesToTrack() and cvCalcOpticalFlowPyrLK(). Of course, you can
also use your own criteria to determine which points to track.

Let’s now look at a simple example (Example 10-1) that uses both cvGoodFeaturesToTrack()
and cvCalcOpticalFlowPyrLK(); see also Figure 10-10.

Example 10-1. Pyramid Lucas-Kanade optical flow code

// Pyramid L-K optical flow example
//

#include <cv.h>

#include <cxcore.h>

#include <highgui.h>

const int MAX CORNERS = 500;
int main(int argc, char** argv) {

// Initialize, load two images from the file system, and

// allocate the images and other structures we will need for
// results.

1/

IplImage* imgA
IplImage* imgB

cvLoadImage(“image0.jpg”,CV_LOAD IMAGE GRAYSCALE);
cvLoadImage(“imagel.jpg”,CV_LOAD IMAGE GRAYSCALE);

CvSize img sz = cvGetSize(imgA);
int win size = 10;

IplImage* imgC = cvLoadImage(

332 | Chapter10: Tracking and Motion

1NO.R AQQ2A AT indA 272 m QAENQ A 22 26DNA

Example 10-1. Pyramid Lucas-Kanade optical flow code (continued)

“../Data/OpticalFlowl.jpg”,
CV_LOAD IMAGE_ UNCHANGED

)

// The first thing we need to do is get the features

// we want to track.

//

IplImage* eig image = cvCreateImage(img sz, IPL DEPTH 32F, 1);
IplImage* tmp_image = cvCreateImage(img sz, IPL DEPTH 32F, 1);

int corner_count = MAX_CORNERS;
CvPoint2D32f* cornersA = new CvPoint2D32f[MAX CORNERS J;

cvGoodFeaturesToTrack(
imgA,
eig image,
tmp_image,
cornersA,
&corner count,
0.01,
5.0,
0,
3,
0,
0.04

);

cvFindCornerSubPix(

imgA,

cornersA,

corner_count,

cvSize(win size,win size),

cvSize(-1,-1),

cvTermCriteria(CV TERMCRIT ITER|CV TERMCRIT EPS,20,0.03)
)

// Call the Lucas Kanade algorithm

//
char features found[MAX CORNERS];
float feature errors[MAX CORNERS];

CvSize pyr sz = cvSize(imgA->width+8, imgB->height/3);

IplImage* pyrA = cvCreateImage(pyr sz, IPL DEPTH 32F, 1);
IplImage* pyrB = cvCreateImage(pyr sz, IPL DEPTH 32F, 1);

CvPoint2D32f* cornersB = new CvPoint2D32f[MAX CORNERS];
cvCalcOpticalFlowPyrLK(

imgA,
imgB,

1NOR AQQ2AAT1 indA 21272 A

Optical Flow

333

QAENQ A 22 26DNA

Example 10-1. Pyramid Lucas-Kanade optical flow code (continued)

PyTA,

pyrB,
cornersA,

cornersB,

corner_count,

cvSize(win size,win size),

5

features found,

feature_errors,

cvlermCriteria(CV_TERMCRIT ITER | CV_TERMCRIT EPS, 20, .3),
0

)

// Now make some image of what we are looking at:

/!
for(int i=0; i<corner count; i++) {
if(features found[i]==0|| feature errors[i]>550) {
printf(“Error is %f/n”,feature errors[i]);
continue;

}

printf(“Got it/n”);

CvPoint po = cvPoint(
cvRound(cornersA[i].x),
cvRound(cornersA[il.y)

);

CvPoint p1 = cvPoint(
cvRound(cornersB[i].x),
cvRound(cornersB[i].y)

);

cvLine(imgC, po, p1, CV RGB(255,0,0),2);

}

cvNamedWindow(“ImageA”,0);
cvNamedWindow(“ImageB”,0);
cvNamedwWindow(“LKpyr OpticalFlow”,0);

cvShowImage(“ImageA”,imgA);
cvShowImage(“ImageB”,imgB);
cvShowImage(“LKpyr OpticalFlow”,imgC);

cviaitKey(0);

return 0;

}

Dense Tracking Techniques

OpenCV contains two other optical flow techniques that are now seldom used. These
routines are typically much slower than Lucas-Kanade; moreover, they (could, but) do
not support matching within an image scale pyramid and so cannot track large mo-
tions. We will discuss them briefly in this section.

334 | Chapter10: Trackingand Motion

1NOR AQQ2A AT indA 274 m QAENQ A 22 26DNA

Tl~ fﬁh I|.I

Flow vectors

Figure 10-10. Sparse optical flow from pyramid Lucas-Kanade: the center image is one video frame
after the left image; the right image illustrates the computed motion of the “good features to track”
(lower right shows flow vectors against a dark background for increased visibility)

Horn-Schunck method

The method of Horn and Schunck was developed in 1981 [Horn81]. This technique was
one of the first to make use of the brightness constancy assumption and to derive the
basic brightness constancy equations. The solution of these equations devised by Horn
and Schunck was by hypothesizing a smoothness constraint on the velocities v, and v,.
This constraint was derived by minimizing the regularized Laplacian of the optical flow
velocity components:

0dv. 1

s I (v +lv +1)=0

ox dx o ALy, oYy 2
dv

i—y—ll (Iv, +1v +1)=0

dydy ol Fro

Here « is a constant weighting coefficient known as the regularization constant. Larger
values of « lead to smoother (i.e., more locally consistent) vectors of motion flow. This
is a relatively simple constraint for enforcing smoothness, and its effect is to penal-
ize regions in which the flow is changing in magnitude. As with Lucas-Kanade, the
Horn-Schunck technique relies on iterations to solve the differential equations. The
function that computes this is:

void cvCalcOpticalFlowHS(

const CvArr* imgA,
const CvArr* imgB,
int usePrevious,
CvArT* velx,

Optical Flow | 335

CvATrTr* vely,
double lambda,
CvTermCriteria criteria

);

Here imgA and imgB must be 8-bit, single-channel images. The x and y velocity results
will be stored in velx and vely, which must be 32-bit, floating-point, single-channel im-
ages. The usePrevious parameter tells the algorithm to use the velx and vely velocities
computed from a previous frame as the initial starting point for computing the new
velocities. The parameter lambda is a weight related to the Lagrange multiplier. You are
probably asking yourself: “What Lagrange multiplier?”* The Lagrange multiplier arises
when we attempt to minimize (simultaneously) both the motion-brightness equation
and the smoothness equations; it represents the relative weight given to the errors in
each as we minimize.

Block matching method

You might be thinking: “What’s the big deal with optical flow? Just match where pixels
in one frame went to in the next frame.” This is exactly what others have done. The term
“block matching” is a catchall for a whole class of similar algorithms in which the im-
age is divided into small regions called blocks [Huang95; Beauchemin95]. Blocks are
typically square and contain some number of pixels. These blocks may overlap and, in
practice, often do. Block-matching algorithms attempt to divide both the previous and
current images into such blocks and then compute the motion of these blocks. Algo-
rithms of this kind play an important role in many video compression algorithms as
well as in optical flow for computer vision.

Because block-matching algorithms operate on aggregates of pixels, not on individual
pixels, the returned “velocity images” are typically of lower resolution than the input
images. This is not always the case; it depends on the severity of the overlap between the
blocks. The size of the result images is given by the following formula:

_ prev - Wblock + ‘/vshiftsize
result
| shiftsize Joor
_ prev - Hblock + Hshiftsize
result
B shiftsize Joor

The implementation in OpenCV uses a spiral search that works out from the location
of the original block (in the previous frame) and compares the candidate new blocks
with the original. This comparison is a sum of absolute differences of the pixels (i.e., an
L1 distance). If a good enough match is found, the search is terminated. Here’s the func-
tion prototype:

* You might even be asking yourself: “What is a Lagrange multiplier?”. In that case, it may be best to ignore
this part of the paragraph and just set lambda equal to 1.

336 | Chapter10: Trackingand Motion

void cvCalcOpticalFlowBM(
const CvArr* prev,
const CvArr* curr,

CvSize block size,
CvSize shift size,
CvSize max_range,
int use_previous,
CvArT* velx,

CvArT* vely

);

The arguments are straightforward. The prev and curr parameters are the previous and
current images; both should be 8-bit, single-channel images. The block size is the size
of the block to be used, and shift size is the step size between blocks (this parameter
controls whether—and, if so, by how much—the blocks will overlap). The max_range pa-
rameter is the size of the region around a given block that will be searched for a cor-
responding block in the subsequent frame. If set, use_previous indicates that the values
in velx and vely should be taken as starting points for the block searches.* Finally, velx
and vely are themselves 32-bit single-channel images that will store the computed mo-
tions of the blocks. As mentioned previously, motion is computed at a block-by-block
level and so the coordinates of the result images are for the blocks (i.e., aggregates of
pixels), not for the individual pixels of the original image.

Mean-Shift and Camshift Tracking

In this section we will look at two techniques, mean-shift and camshift (where “cam-
shift” stands for “continuously adaptive mean-shift”). The former is a general technique
for data analysis (discussed in Chapter 9 in the context of segmentation) in many ap-
plications, of which computer vision is only one. After introducing the general theory
of mean-shift, we’ll describe how OpenCV allows you to apply it to tracking in images.
The latter technique, camshift, builds on mean-shift to allow for the tracking of objects
whose size may change during a video sequence.

Mean-Shift

The mean-shift algorithm® is a robust method of finding local extrema in the density
distribution of a data set. This is an easy process for continuous distributions; in that
context, it is essentially just hill climbing applied to a density histogram of the data.* For
discrete data sets, however, this is a somewhat less trivial problem.

* Ifuse_previous==0, then the search for a block will be conducted over a region of max_range distance
from the location of the original block. If use_previous!=0, then the center of that search is first displaced
by Ax=vel (x,y)and Ay= Vely (x,).

+ Because mean-shift is a fairly deep topic, our discussion here is aimed mainly at developing intuition
for the user. For the original formal derivation, see Fukunaga [Fukunaga90] and Comaniciu and Meer
[Comaniciu99].

1 The word “essentially” is used because there is also a scale-dependent aspect of mean-shift. To be exact:

mean-shift is equivalent in a continuous distribution to first convolving with the mean-shift kernel and
then applying a hill-climbing algorithm.

Mean-Shift and Camshift Tracking | 337

The descriptor “robust” is used here in its formal statistical sense; that is, mean-shift
ignores outliers in the data. This means that it ignores data points that are far away from
peaks in the data. It does so by processing only those points within a local window of
the data and then moving that window.

The mean-shift algorithm runs as follows.

1. Choose a search window:
o its initial location;
o its type (uniform, polynomial, exponential, or Gaussian);
o its shape (symmetric or skewed, possibly rotated, rounded or rectangular);
o its size (extent at which it rolls off or is cut off).

2. Compute the window’s (possibly weighted) center of mass.

3. Center the window at the center of mass.

4. Return to step 2 until the window stops moving (it always will).*

To give a little more formal sense of what the mean-shift algorithm is: it is related to the
discipline of kernel density estimation, where by “kernel” we refer to a function that has
mostly local focus (e.g., a Gaussian distribution). With enough appropriately weighted
and sized kernels located at enough points, one can express a distribution of data en-
tirely in terms of those kernels. Mean-shift diverges from kernel density estimation in
that it seeks only to estimate the gradient (direction of change) of the data distribution.
When this change is 0, we are at a stable (though perhaps local) peak of the distribution.
There might be other peaks nearby or at other scales.

Figure 10-11 shows the equations involved in the mean-shift algorithm. These equations
can be simplified by considering a rectangular kernel,§ which reduces the mean-shift
vector equation to calculating the center of mass of the image pixel distribution:

Here the zeroth moment is calculated as:
Moo = ZZI("’)’)
x oy

and the first moments are:

* Tterations are typically restricted to some maximum number or to some epsilon change in center shift
between iterations; however, they are guaranteed to converge eventually.

t A rectangular kernel is a kernel with no falloff with distance from the center, until a single sharp transi-
tion to zero value. This is in contrast to the exponential falloff of a Gaussian kernel and the falloff with the
square of distance from the center in the commonly used Epanechnikov kernel.

338 | Chapter10: Trackingand Motion

M, =Y xI(x,y) and M, =9 ¥ yl(x,y)

2
X -X;

Start with a kernel K (X - X)) = ck approximation of a probability

distribution P(x) = 1 2 K(x - x;). Focuson the gradient VP (x) = 1 E VK (x - x;).
n i1 n .1

Let:g(x) = —k(x), the derivative of the kernel and we get:

—

c

VP (x) =<3, VK, =

n 1 n

Meanshift
vector

Figure 10-11. Mean-shift equations and their meaning

The mean-shift vector in this case tells us to recenter the mean-shift window over the
calculated center of mass within that window. This movement will, of course, change
what is “under” the window and so we iterate this recentering process. Such recentering
will always converge to a mean-shift vector of 0 (i.e., where no more centering move-
ment is possible). The location of convergence is at a local maximum (peak) of the dis-
tribution under the window. Different window sizes will find different peaks because
“peak” is fundamentally a scale-sensitive construct.

In Figure 10-12 we see an example of a two-dimensional distribution of data and an ini-
tial (in this case, rectangular) window. The arrows indicate the process of convergence
on a local mode (peak) in the distribution. Observe that, as promised, this peak finder is
statistically robust in the sense that points outside the mean-shift window do not affect
convergence—the algorithm is not “distracted” by far-away points.

In 1998, it was realized that this mode-finding algorithm could be used to track moving
objects in video [Bradski98a; Bradskio8b], and the algorithm has since been greatly ex-
tended [Comaniciu03]. The OpenCV function that performs mean-shift is implemented
in the context of image analysis. This means in particular that, rather than taking some

Mean-Shift and Camshift Tracking | 339

+
+ v L
g, o +
LN
: + 2
++ e +
T
+ g ek g -+
+
ot
40 -
T S S ++
o
- + i 4+ + +
+ 2t 4 i ++
+ n T+ +
1 i+ + &4 + +
W Tt +
+ T = 4L+
4ty
* r +ﬂat + +
+ i + o+ g Huk |+ | F
+ + + Tt + + +
+ L4 o k w | T
+-#' ++ + S + + t + +
+ Ty ¥ + il
+ + \ | +
-+ ++ e H T T =
+
PR L e ‘EF,_ | . 1—-1- + s *
+ .
& - * o
’ i T %
+ + i+ o i + %
+ %
+ + + i o+ T S i +
o + 4+ ok + + +
+4 + Ty + +
+ i+ +
* it ¥ i +
+ + +
+ -
+ + +
ot + +

Figure 10-12. Mean-shift algorithm in action: an initial window is placed over a two-dimensional
array of data points and is successively recentered over the mode (or local peak) of its data distribu-
tion until convergence

arbitrary set of data points (possibly in some arbitrary number of dimensions), the
OpenCV implementation of mean-shift expects as input an image representing the den-
sity distribution being analyzed. You could think of this image as a two-dimensional
histogram measuring the density of points in some two-dimensional space. It turns out
that, for vision, this is precisely what you want to do most of the time: it’s how you can
track the motion of a cluster of interesting features.

int cvMeanShift(
const CvArr* prob image,
CvRect window,
CvlermCriteria criteria,
CvConnectedComp* comp

);
In cvMeanShift(), the prob image, which represents the density of probable locations,
may be only one channel but of either type (byte or float). The window is set at the ini-
tial desired location and size of the kernel window. The termination criteria has been
described elsewhere and consists mainly of a maximum limit on number of mean-shift
movement iterations and a minimal movement for which we consider the window

340 | Chapter10: Tracking and Motion

locations to have converged.* The connected component comp contains the converged
search window location in comp->rect, and the sum of all pixels under the window is
kept in the comp->area field.

The function cvMeanShift() is one expression of the mean-shift algorithm for rectangu-
lar windows, but it may also be used for tracking. In this case, you first choose the fea-
ture distribution to represent an object (e.g., color + texture), then start the mean-shift
window over the feature distribution generated by the object, and finally compute the
chosen feature distribution over the next video frame. Starting from the current win-
dow location, the mean-shift algorithm will find the new peak or mode of the feature
distribution, which (presumably) is centered over the object that produced the color and
texture in the first place. In this way, the mean-shift window tracks the movement of the
object frame by frame.

Camshift

A related algorithm is the Camshift tracker. It differs from the meanshift in that
the search window adjusts itself in size. If you have well-segmented distributions (say
face features that stay compact), then this algorithm will automatically adjust itself for
the size of face as the person moves closer to and further from the camera. The form of
the Camshift algorithm is:
int cvCamShift(

const CvArr* prob image,

CvRect window,

CvTermCriteria criteria,

CvConnectedComp* comp,
CvBox2D* box = NULL

);
The first four parameters are the same as for the cvMeanShift() algorithm. The box param-
eter, if present, will contain the newly resized box, which also includes the orientation of
the object as computed via second-order moments. For tracking applications, we would
use the resulting resized box found on the previous frame as the window in the next frame.

Many people think of mean-shift and camshift as tracking using color
features, but this is not entirely correct. Both of these algorithms

i track the distribution of any kind of feature that is expressed in the
 prob_image; hence they make for very lightweight, robust, and efficient
trackers.

Motion Templates

Motion templates were invented in the MIT Media Lab by Bobick and Davis [Bobick96;
Davis97] and were further developed jointly with one of the authors [Davis99; Brad-
ski00]. This more recent work forms the basis for the implementation in OpenCV.

* Again, mean-shift will always converge, but convergence may be very slow near the local peak of a distribu-
tion if that distribution is fairly “flat” there.

Motion Templates | 341

Motion templates are an effective way to track general movement and are especially ap-
plicable to gesture recognition. Using motion templates requires a silhouette (or part of
a silhouette) of an object. Object silhouettes can be obtained in a number of ways.

1.

The simplest method of obtaining object silhouettes is to use a reasonably stationary
camera and then employ frame-to-frame differencing (as discussed in Chapter 9).
This will give you the moving edges of objects, which is enough to make motion
templates work.

You can use chroma keying. For example, if you have a known background color
such as bright green, you can simply take as foreground anything that is not bright
green.

Another way (also discussed in Chapter 9) is to learn a background model from
which you can isolate new foreground objects/people as silhouettes.

You can use active silhouetting techniques—for example, creating a wall of near-
infrared light and having a near-infrared-sensitive camera look at the wall. Any
intervening object will show up as a silhouette.

You can use thermal imagers; then any hot object (such as a face) can be taken as
foreground.

Finally, you can generate silhouettes by using the segmentation techniques (e.g.,
pyramid segmentation or mean-shift segmentation) described in Chapter 9.

For now, assume that we have a good, segmented object silhouette as represented by
the white rectangle of Figure 10-13(A). Here we use white to indicate that all the pixels
are set to the floating-point value of the most recent system time stamp. As the rectangle
moves, new silhouettes are captured and overlaid with the (new) current time stamp;
the new silhouette is the white rectangle of Figure 10-13(B) and Figure 10-13(C). Older
motions are shown in Figure 10-13 as successively darker rectangles. These sequentially
fading silhouettes record the history of previous movement and thus are referred to as
the “motion history image”.

(A) (B) (€)

| 0

Figure 10-13. Motion template diagram: (A) a segmented object at the current time stamp (white);
(B) at the next time step, the object moves and is marked with the (new) current time stamp, leaving
the older segmentation boundary behind; (C) at the next time step, the object moves further, leaving
older segmentations as successively darker rectangles whose sequence of encoded motion yields the
motion history image

342

1NOR AQQ2A AT indA 242

| Chapter10: Tracking and Motion

QAENQ A 22 AN DN

Silhouettes whose time stamp is more than a specified duration older than the current
system time stamp are set to 0, as shown in Figure 10-14. The OpenCV function that ac-
complishes this motion template construction is cvUpdateMotionHistory():

void cvUpdateMotionHistory(
const CvArr* silhouette,

CvArT* mhi,
double timestamp,
double duration

)

£(2€ glee
il fed — = il dfed —_——
c Vo= cv(o=
v3(em v3ilem
so|mS =O(m>S
S=|(a~ S=|=~
on|o vn|o
4 b
Motion Motion

Figure 10-14. Motion template silhouettes for two moving objects (left); silhouettes older than a
specified duration are set to 0 (right)

In cvUpdateMotionHistory(), all image arrays consist of single-channel images. The
silhouette image is a byte image in which nonzero pixels represent the most recent seg-
mentation silhouette of the foreground object. The mhi image is a floating-point image
that represents the motion template (aka motion history image). Here timestamp is the
current system time (typically a millisecond count) and duration, as just described, sets
how long motion history pixels are allowed to remain in the mhi. In other words, any mhi
pixels that are older (less) than timestamp minus duration are set to 0.

Once the motion template has a collection of object silhouettes overlaid in time, we can
derive an indication of overall motion by taking the gradient of the mhi image. When we
take these gradients (e.g., by using the Scharr or Sobel gradient functions discussed in
Chapter 6), some gradients will be large and invalid. Gradients are invalid when older
or inactive parts of the mhi image are set to 0, which produces artificially large gradients
around the outer edges of the silhouettes; see Figure 10-15(A). Because we know the
time-step duration with which we’ve been introducing new silhouettes into the mhi via
cvUpdateMotionHistory(), we know how large our gradients (which are just dx and dy
step derivatives) should be. We can therefore use the gradient magnitude to eliminate
gradients that are too large, as in Figure 10-15(B). Finally, we can collect a measure of
global motion; see Figure 10-15(C). The function that effects parts (A) and (B) of the
figure is cvCalcMotionGradient():

Motion Templates | 343

void cvCalcMotionGradient(
const CvArr* mhi,
CvArr* mask,
CvArr* orientation,
double deltai,
double delta2,
int aperture size=3

)

(B) © - a -
> < ,/ > < >
> < ! > < \
> <) > < \
> < > < 1
rt] i = =P

/
N ’
\5__/

Figure 10-15. Motion gradients of the mhi image: (A) gradient magnitudes and directions; (B) large
gradients are eliminated; (C) overall direction of motion is found

In cvCalcMotionGradient(), all image arrays are single-channel. The function input mhi
is a floating-point motion history image, and the input variables deltal and delta2 are
(respectively) the minimal and maximal gradient magnitudes allowed. Here, the ex-
pected gradient magnitude will be just the average number of time-stamp ticks between
each silhouette in successive calls to cvUpdateMotionHistory(); setting deltal halfway
below and delta2 halfway above this average value should work well. The variable
aperture size sets the size in width and height of the gradient operator. These values
can be set to -1 (the 3-by-3 CV_SCHARR gradient filter), 3 (the default 3-by-3 Sobel filter),
5 (for the 5-by-5 Sobel filter), or 7 (for the 7-by-7 filter). The function outputs are mask, a
single-channel 8-bit image in which nonzero entries indicate where valid gradients were
found, and orientation, a floating-point image that gives the gradient direction’s angle
at each point.

The function cvCalcGlobalOrientation() finds the overall direction of motion as the
vector sum of the valid gradient directions.
double cvCalcGlobalOrientation(
const CvArr* orientation,
const CvArr* mask,
const CvArr* mhi,

double timestamp,
double duration

);
When using cvCalcGlobalOrientation(), we pass in the orientation and mask image
computed in cvCalcMotionGradient() along with the timestamp, duration, and resulting
mhi from cvUpdateMotionHistory(); what’s returned is the vector-sum global orientation,

344 | Chapter10: Tracking and Motion

1NOR AQQ2AAT1 indA 44 m QAENQ A 22 AN DN

as in Figure 10-15(C). The timestamp together with duration tells the routine how much
motion to consider from the mhi and motion orientation images. One could compute
the global motion from the center of mass of each of the mhi silhouettes, but summing
up the precomputed motion vectors is much faster.

We can also isolate regions of the motion template mhi image and determine the local
motion within that region, as shown in Figure 10-16. In the figure, the mhi image is
scanned for current silhouette regions. When a region marked with the most current
time stamp is found, the region’s perimeter is searched for sufficiently recent motion
(recent silhouettes) just outside its perimeter. When such motion is found, a downward-
stepping flood fill is performed to isolate the local region of motion that “spilled oft” the
current location of the object of interest. Once found, we can calculate local motion gra-
dient direction in the spill-off region, then remove that region, and repeat the process
until all regions are found (as diagrammed in Figure 10-16).

......... N R
" 4 7
2153 o ZA
{cv|eca /. i \
2:’ m3 |
52157 | - I
= —
vuwn \\ _>'f"1‘ /
N
(A) (B)
................ o o
29 /= \
S REL
e%,?. | D !
3 oomz
or = \ < /
SR

Figure 10-16. Segmenting local regions of motion in the mhi image: (A) scan the mhi image for cur-
rent silhouettes (a) and, when found, go around the perimeter looking for other recent silhouettes
(b); when a recent silhouette is found, perform downward-stepping flood fills (c) to isolate local mo-
tion; (B) use the gradients found within the isolated local motion region to compute local motion;
(C) remove the previously found region and search for the next current silhouette region (d), scan
along it (e), and perform downward-stepping flood fill on it (f); (D) compute motion within the
newly isolated region and continue the process (A)-(C) until no current silhouette remains

Motion Templates | 345

The function that isolates and computes local motion is cvSegmentMotion():

CvSeq* cvSegmentMotion(
const CvArr* mhi,

CvArr* seg_mask,
CvMemStorage* storage,
double timestamp,
double seg thresh

)

In cvSegmentMotion(), the mhi is the single-channel floating-point input. We also pass in
storage, a CvMemoryStorage structure allocated via cvCreateMemStorage(). Another input
is timestamp, the value of the most current silhouettes in the mhi from which you want
to segment local motions. Finally, you must pass in seg_thresh, which is the maximum
downward step (from current time to previous motion) that you’ll accept as attached
motion. This parameter is provided because there might be overlapping silhouettes from
recent and much older motion that you don’t want to connect together.

It’s generally best to set seg_thresh to something like 1.5 times the average difference in
silhouette time stamps. This function returns a CvSeq of CvConnectedComp structures, one
for each separate motion found, which delineates the local motion regions; it also re-
turns seg_mask, a single-channel, floating-point image in which each region of isolated
motion is marked a distinct nonzero number (a zero pixel in seg_mask indicates no mo-
tion). To compute these local motions one at a time we call cvCalcGlobalOrientation(),
using the appropriate mask region selected from the appropriate CvConnectedComp or
from a particular value in the seg_mask; for example,
cvCmpS(
seg mask,
// [value wanted in _seg mask],
// [your destination mask],
CV_CMP_EQ
)
Given the discussion so far, you should now be able to understand the motempl.c
example that ships with OpenCV in the .../opencv/samples/c/ directory. We will now
extract and explain some key points from the update mhi() function in motempl.c. The
update_mhi() function extracts templates by thresholding frame differences and then
passing the resulting silhouette to cvUpdateMotionHistory():

cvAbsDiff(buf[idx1], buf[idx2], silh);
cvThreshold(silh, silh, diff threshold, 1, CV THRESH BINARY);
cvUpdateMotionHistory(silh, mhi, timestamp, MHI_DURATION);

The gradients of the resulting mhi image are then taken, and a mask of valid gradients is
produced using cvCalcMotionGradient(). Then CvMemStorage is allocated (or, if it already
exists, it is cleared), and the resulting local motions are segmented into CvConnectedComp
structures in the CvSeq containing structure seq:

cvCalcMotionGradient(

346 | Chapter10: Tracking and Motion

1NO.R AQQ2AAT1 indA 4A m QAENQ A 2241 PN

mhi,
mask,
orient,
MAX_TIME DELTA,
MIN TIME DELTA,
3

);

if(Istorage)

storage = cvCreateMemStorage(0);
else

cvClearMemStorage(storage);

seq = cvSegmentMotion(
mhi,
segmask,
storage,
timestamp,
MAX_TIME_DELTA

);
A “for” loop then iterates through the seg->total CvConnectedComp structures extracting
bounding rectangles for each motion. The iteration starts at -1, which has been desig-
nated as a special case for finding the global motion of the whole image. For the local
motion segments, small segmentation areas are first rejected and then the orientation is
calculated using cvCalcGlobalOrientation(). Instead of using exact masks, this routine
restricts motion calculations to regions of interest (ROIs) that bound the local motions;
it then calculates where valid motion within the local ROIs was actually found. Any
such motion area that is too small is rejected. Finally, the routine draws the motion.
Examples of the output for a person flapping their arms is shown in Figure 10-17, where
the output is drawn above the raw image for four sequential frames going across in two
rows. (For the full code, see .../opencv/samples/c/motempl.c.) In the same sequence, “Y”
postures were recognized by the shape descriptors (Hu moments) discussed in Chapter
8, although the shape recognition is not included in the samples code.
for(i = -1; i < seg->total; i++) {
if(i <0) { // case of the whole image
// ...[does the whole image]...
else { // i-th motion component

comp_rect = ((CvConnectedComp*)cvGetSeqElem(seq, i))->rect;
// [reject very small components]...
}
...[set component ROI regions]...
angle = cvCalcGlobalOrientation(orient, mask, mhi,
timestamp, MHI_DURATION);
...[find regions of valid motion]...
...[reset ROI regions]...
...[skip small valid motion regions]...
...[draw the motions]...
}

Motion Templates | 347

1NR AR AT1 indAd 247 m QAENQ A 2241 PN

Figure 10-17. Results of motion template routine: going across and top to bottom, a person moving
and the resulting global motions indicated in large octagons and local motions indicated in small
octagons; also, the “Y” pose can be recognized via shape descriptors (Hu moments)

Estimators

Suppose we are tracking a person who is walking across the view of a video camera.
At each frame we make a determination of the location of this person. This could be
done any number of ways, as we have seen, but in each case we find ourselves with an
estimate of the position of the person at each frame. This estimation is not likely to be

348 | Chapter10: Tracking and Motion

