CHAPTER9
Image Parts and Segmentation

Parts and Segments

This chapter focuses on how to isolate objects or parts of objects from the rest of the
image. The reasons for doing this should be obvious. In video security, for example, the
camera mostly looks out on the same boring background, which really isn’t of interest.
What is of interest is when people or vehicles enter the scene, or when something is left
in the scene that wasn’t there before. We want to isolate those events and to be able to
ignore the endless hours when nothing is changing.

Beyond separating foreground objects from the rest of the image, there are many situa-
tions where we want to separate out parts of objects, such as isolating just the face or the
hands of a person. We might also want to preprocess an image into meaningful super
pixels, which are segments of an image that contain things like limbs, hair, face, torso,
tree leaves, lake, path, lawn and so on. Using super pixels saves on computation; for
example, when running an object classifier over the image, we only need search a box
around each super pixel. We might only track the motion of these larger patches and not
every point inside.

We saw several image segmentation algorithms when we discussed image processing
in Chapter 5. The routines covered in that chapter included image morphology, flood
fill, threshold, and pyramid segmentation. This chapter examines other algorithms that
deal with finding, filling and isolating objects and object parts in an image. We start
with separating foreground objects from learned background scenes. These background
modeling functions are not built-in OpenCV functions; rather, they are examples of
how we can leverage OpenCV functions to implement more complex algorithms.

Background Subtraction

Because of its simplicity and because camera locations are fixed in many contexts, back-
ground subtraction (aka background differencing) is probably the most fundamental im-
age processing operation for video security applications. Toyama, Krumm, Brumitt, and
Meyers give a good overview and comparison of many techniques [Toyama99]. In order
to perform background subtraction, we first must “learn” a model of the background.

265

Once learned, this background model is compared against the current image and then
the known background parts are subtracted away. The objects left after subtraction are
presumably new foreground objects.

Of course “background” is an ill-defined concept that varies by application. For ex-
ample, if you are watching a highway, perhaps average traffic flow should be consid-
ered background. Normally, background is considered to be any static or periodically
moving parts of a scene that remain static or periodic over the period of interest. The
whole ensemble may have time-varying components, such as trees waving in morning
and evening wind but standing still at noon. Two common but substantially distinct
environment categories that are likely to be encountered are indoor and outdoor scenes.
We are interested in tools that will help us in both of these environments. First we will
discuss the weaknesses of typical background models and then will move on to dis-
cuss higher-level scene models. Next we present a quick method that is mostly good for
indoor static background scenes whose lighting doesn’t change much. We will follow
this by a “codebook” method that is slightly slower but can work in both outdoor and
indoor scenes; it allows for periodic movements (such as trees waving in the wind) and
for lighting to change slowly or periodically. This method is also tolerant to learning
the background even when there are occasional foreground objects moving by. We’ll
top this off by another discussion of connected components (first seen in Chapter 5) in
the context of cleaning up foreground object detection. Finally, we’ll compare the quick
background method against the codebook background method.

Weaknesses of Background Subtraction

Although the background modeling methods mentioned here work fairly well for sim-
ple scenes, they suffer from an assumption that is often violated: that all the pixels are
independent. The methods we describe learn a model for the variations a pixel experi-
ences without considering neighboring pixels. In order to take surrounding pixels into
account, we could learn a multipart model, a simple example of which would be an
extension of our basic independent pixel model to include a rudimentary sense of the
brightness of neighboring pixels. In this case, we use the brightness of neighboring pix-
els to distinguish when neighboring pixel values are relatively bright or dim. We then
learn effectively two models for the individual pixel: one for when the surrounding pix-
els are bright and one for when the surrounding pixels are dim. In this way, we have a
model that takes into account the surrounding context. But this comes at the cost of
twice as much memory use and more computation, since we now need different values
for when the surrounding pixels are bright or dim. We also need twice as much data to
fill out this two-state model. We can generalize the idea of “high” and “low” contexts
to a multidimensional histogram of single and surrounding pixel intensities as well as
make it even more complex by doing all this over a few time steps. Of course, this richer
model over space and time would require still more memory, more collected data sam-
ples, and more computational resources.

Because of these extra costs, the more complex models are usually avoided. We can
often more efficiently invest our resources in cleaning up the false positive pixels that

266 | Chapter9: Image Partsand Segmentation

NOR A22A R 1 indAd 28R m QAENQ A 29EE DM

result when the independent pixel assumption is violated. The cleanup takes the form
of image processing operations (cvErode(), cvDilate(), and cvFloodFill(), mostly) that
eliminate stray patches of pixels. We’ve discussed these routines previously (Chapter 5)
in the context of finding large and compact* connected components within noisy data.
We will employ connected components again in this chapter and so, for now, will re-
strict our discussion to approaches that assume pixels vary independently.

Scene Modeling

How do we define background and foreground? If we’re watching a parking lot and a
car comes in to park, then this car is a new foreground object. But should it stay fore-
ground forever? How about a trash can that was moved? It will show up as foreground
in two places: the place it was moved to and the “hole” it was moved from. How do we
tell the difference? And again, how long should the trash can (and its hole) remain fore-
ground? If we are modeling a dark room and suddenly someone turns on a light, should
the whole room become foreground? To answer these questions, we need a higher-level
“scene” model, in which we define multiple levels between foreground and background
states, and a timing-based method of slowly relegating unmoving foreground patches to
background patches. We will also have to detect and create a new model when there is a
global change in a scene.

In general, a scene model might contain multiple layers, from “new foreground” to older
foreground on down to background. There might also be some motion detection so that,
when an object is moved, we can identify both its “positive” aspect (its new location)
and its “negative” aspect (its old location, the “hole”).

In this way, a new foreground object would be put in the “new foreground” object level
and marked as a positive object or a hole. In areas where there was no foreground ob-
ject, we could continue updating our background model. If a foreground object does not
move for a given time, it is demoted to “older foreground,” where its pixel statistics are
provisionally learned until its learned model joins the learned background model.

For global change detection such as turning on a light in a room, we might use global
frame differencing. For example, if many pixels change at once then we could classify it as
a global rather than local change and then switch to using a model for the new situation.

A Slice of Pixels

Before we go on to modeling pixel changes, let’s get an idea of what pixels in an image
can look like over time. Consider a camera looking out a window to a scene of a tree
blowing in the wind. Figure 9-1 shows what the pixels in a given line segment of the
image look like over 60 frames. We wish to model these kinds of fluctuations. Before do-
ing so, however, we make a small digression to discuss how we sampled this line because
it’s a generally useful trick for creating features and for debugging.

* Here we are using mathematician’s definition of “compact,” which has nothing to do with size.

Background Subtraction | 267

NAaR A2 RC1 indA 287 m QAENQ A 29 EA DM

Figure 9-1. Fluctuations of a line of pixels in a scene of a tree moving in the wind over 60 frames:
some dark areas (upper left) are quite stable, whereas moving branches (upper center) can vary
widely

OpenCV has functions that make it easy to sample an arbitrary line of pixels. The line

sampling functions are cvInitLineIterator() and CV_NEXT LINE POINT(). The function
prototype for cvInitLineIterator() is:

int cvInitlLineIterator(
const CvArr* image,

CvPoint pti1,

CvPoint pt2,
CvLinelterator* line iterator,

int connectivity = 8,
int left to right = 0

)
The input image may be of any type or number of channels. Points pt1 and pt2 are the
ends of the line segment. The iterator line iterator just steps through, pointing to the
pixels along the line between the points. In the case of multichannel images, each call
to CV_NEXT LINE POINT() moves the line iterator to the next pixel. All the channels
are available at once as line iterator.ptr[o0], line iterator.ptr[1], and so forth. The
connectivity can be 4 (the line can step right, left, up, or down) or 8 (the line can ad-
ditionally step along the diagonals). Finally if left to right is set to 0 (false), then line
iterator scans from pt1 to pt2; otherwise, it will go from the leftmost to the rightmost
point* The cvInitLineIterator() function returns the number of points that will be

* The left to right flag was introduced because a discrete line drawn from pt1 to pt2 does not always
match the line from pt2 to pti. Therefore, setting this flag gives the user a consistent rasterization regard-
less of the pt1, pt2 order.

268 | Chapter9: Image Partsand Segmentation

iterated over for that line. A companion macro, CV_NEXT LINE POINT(line iterator), steps
the iterator from one pixel to another.

Let’s take a second to look at how this method can be used to extract some data from
a file (Example 9-1). Then we can re-examine Figure 9-1 in terms of the resulting data
from that movie file.

Example 9-1. Reading out the RGB values of all pixels in one row of a video and accumulating those
values into three separate files

// STORE TO DISK A LINE SEGMENT OF BGR PIXELS FROM pt1 to pt2.

//

CvCapture* capture = cvCreateFileCapture(argv[1]);
int max_buffer;

IplImage* rawImage;

int r[10000],g[10000],b[10000];

CvLinelterator iterator;

FILE *fptrb = fopen(“blines.csv”,“w”); // Store the data here
FILE *fptrg = fopen(“glines.csv”,“w”); // for each color channel
FILE *fptrr

fopen(“rlines.csv”,“w”);

// MAIN PROCESSING LOOP:
//
for(;;){
if(lcvGrabFrame(capture))
break;
rawImage = cvRetrieveFrame(capture);
max_buffer = cvInitLineIterator(rawImage,ptl,pt2,&iterator,8,0);
for(int j=0; j<max_buffer; j++){

fprintf(fptrb,“%d,”, iterator.ptr[o]); //Write blue value
fprintf(fptrg,“%d,”, iterator.ptr[1]); //green
fprintf(fptrr,“%d,”, iterator.ptr[2]); //red

iterator.ptr[2] = 255; //Mark this sample in red

CV_NEXT LINE POINT(iterator); //Step to the next pixel
}
// OUTPUT THE DATA IN ROWS:
//
fprintf(fptrb,“/n”);fprintf(fptrg,“/n”);fprintf(fptrr,“/n”);
}
// CLEAN UP:
/!
fclose(fptrb); fclose(fptrg); fclose(fptrr);
cvReleaseCapture(&capture);

We could have made the line sampling even easier, as follows:

int cvSampleLine(
const CvArr* image,
CvPoint pti1,
CvPoint pt2,

Background Subtraction | 269

NOR A2 RC1 inddAd 2R/Q0 m

QAENQ A 29 EA DM

void* buffer,
int connectivity = 8
);

This function simply wraps the function cvInitLineIterator() together with the macro
CV_NEXT_LINE POINT(line iterator) from before. It samples from pt1 to pt2; then you pass
it a pointer to a buffer of the right type and of length N .., X max(|pt2, - pt2,| + 1,
Ipt2, - pt2,| + 1). Just like the line iterator, cvSampleLine() steps through each channel
of each pixel in a multichannel image before moving to the next pixel. The function re-

turns the number of actual elements it filled in the buffer.

We are now ready to move on to some methods for modeling the kinds of pixel fluctua-
tions seen in Figure 9-1. As we move from simple to increasingly complex models, we
shall restrict our attention to those models that will run in real time and within reason-
able memory constraints.

Frame Differencing

The very simplest background subtraction method is to subtract one frame from another
(possibly several frames later) and then label any difference that is “big enough” the
foreground. This process tends to catch the edges of moving objects. For simplicity, let’s
say we have three single-channel images: frameTime1, frameTime2, and frameForeground.
The image frameTime1 is filled with an older grayscale image, and frameTime2 is filled
with the current grayscale image. We could then use the following code to detect the

magnitude (absolute value) of foreground differences in frameForeground:
cvAbsDiff(
frameTimel,

frameTime2,
frameForeground

);
Because pixel values always exhibit noise and fluctuations, we should ignore (set to 0)
small differences (say, less than 15), and mark the rest as big differences (set to 255):

cvThreshold(
frameForeground,
frameForeground,
15,
255,
CV_THRESH_BINARY

);

The image frameForeground then marks candidate foreground objects as 255 and back-
ground pixels as 0. We need to clean up small noise areas as discussed earlier; we might
do this with cvErode() or by using connected components. For color images, we could use
the same code for each color channel and then combine the channels with cvOr(). This
method is much too simple for most applications other than merely indicating regions of
motion. For a more effective background model we need to keep some statistics about the
means and average differences of pixels in the scene. You can look ahead to the section
entitled “A quick test” to see examples of frame differencing in Figures 9-5 and 9-6.

270 | Chapter9: Image Parts and Segmentation

NOR A2 RC1 inddAd 270 m QAENQ A 29 EA DM

Averaging Background Method

The averaging method basically learns the average and standard deviation (or simi-
larly, but computationally faster, the average difference) of each pixel as its model of the
background.

Consider the pixel line from Figure 9-1. Instead of plotting one sequence of values
for each frame (as we did in that figure), we can represent the variations of each pixel
throughout the video in terms of an average and average differences (Figure 9-2). In the
same video, a foreground object (which is, in fact, a hand) passes in front of the camera.
That foreground object is not nearly as bright as the sky and tree in the background. The
brightness of the hand is also shown in the figure.

Averaging Method with High/Low Thresholds:

Mean + 2*Avg_Diff
/\ N A\

AN / o

_/ B Mean

/\{\Hﬂnghtness > V \\/\ \//‘/\\\/_\/1:[\1[\ [\ /J\
Mean - 2*Avg_Diff

Figure 9-2. Data from Figure 9-1 presented in terms of average differences: an object (a hand) that
passes in front of the camera is somewhat darker, and the brightness of that object is reflected in the

graph

The averaging method makes use of four OpenCV routines: cvAcc(), to accumulate im-
ages over time; cvAbsDiff(), to accumulate frame-to-frame image differences over time;
cvInRange(), to segment the image (once a background model has been learned) into
foreground and background regions; and cv0r(), to compile segmentations from differ-
ent color channels into a single mask image. Because this is a rather long code example,
we will break it into pieces and discuss each piece in turn.

First, we create pointers for the various scratch and statistics-keeping images we will
need along the way. It will prove helpful to sort these pointers according to the type of
images they will later hold.

//Global storage

//
//Float, 3-channel images

/!
IplImage *IavgF,*IdiffF, *IprevF, *IhiF, *IlowF;

Background Subtraction | 271

NOR A2 RC1 indA 271 [\ QAENQ A-29-ET7 DM

IplImage *Iscratch,*Iscratchz;

//Float, 1-channel images

//

IplImage *Igrayl,*Igray2, *Igray3;
IplImage *Ilow1, *Ilow2, *Ilow3;
IplImage *Ihi1, *Ihi2, *Ihi3;

// Byte, 1-channel image
//
IplImage *Imaskt;

//Counts number of images learned for averaging later.

/

float Icount;
Next we create a single call to allocate all the necessary intermediate images. For con-
venience we pass in a single image (from our video) that can be used as a reference for
sizing the intermediate images.

// T is just a sample image for allocation purposes

// (passed in for sizing)

/!
void AllocateImages(IplImage* I){

CvSize sz = cvGetSize(I);

TavgF = cvCreateImage(sz, IPL DEPTH 32F, 3);
IdiffF = cvCreateImage(sz, IPL DEPTH 32F, 3);
IprevF = cvCreateImage(sz, IPL DEPTH 32F, 3);
IhiF = cvCreateImage(sz, IPL DEPTH 32F, 3);
IlowF = cvCreateImage(sz, IPL DEPTH 32F, 3);
Ilow1 = cvCreateImage(sz, IPL DEPTH 32F, 1);
Ilow2 = cvCreateImage(sz, IPL DEPTH 32F, 1);
Ilow3 = cvCreateImage(sz, IPL DEPTH 32F, 1);
Ihi1 = cvCreateImage(sz, IPL DEPTH 32F, 1);
Ihi2 = cvCreateImage(sz, IPL DEPTH 32F, 1);
Ihi3 = cvCreateImage(sz, IPL DEPTH 32F, 1);
cvZero(IavgF);

cvZero(IdiffF);

cvZero(IprevF);

cvZero(IhiF);

cvZero(IlowF);

Icount = 0.00001; //Protect against divide by zero

Iscratch = cvCreateImage(sz, IPL DEPTH 32F, 3);
Iscratch2 = cvCreateImage(sz, IPL DEPTH 32F, 3);

Igray1l = cvCreateImage(sz, IPL DEPTH 32F, 1);
Igray2 = cvCreateImage(sz, IPL DEPTH 32F, 1);
Igray3 = cv(reateImage(sz, IPL DEPTH 32F, 1);
Imaskt = cvCreateImage(sz, IPL DEPTH 8U, 1);

cvZero(Iscratch);
cvZero(Iscratch2);

272 | Chapter9: Image Parts and Segmentation

NOR A2 A RC1 indA 2792 [\ QAENQ A-29-ET7 DM

In the next piece of code, we learn the accumulated background image and the accu-
mulated absolute value of frame-to-frame image differences (a computationally quicker
proxy* for learning the standard deviation of the image pixels). This is typically called
for 30 to 1,000 frames, sometimes taking just a few frames from each second or some-
times taking all available frames. The routine will be called with a three-color channel
image of depth 8 bits.

// Learn the background statistics for one more frame
// 1 is a color sample of the background, 3-channel, 8u

/!
void accumulateBackground(IplImage *I){

static int first = 1; // nb. Not thread safe
cvCvtScale(I, Iscratch, 1, 0); // convert to float
if(Mirst)

cvAcc(Iscratch, IavgF);

cvAbsDiff(Iscratch, IprevF, Iscratch2);

cvAcc(Iscratch2, IdiffF);

Icount += 1.0;

}
first = 0o;
cvCopy(Iscratch, IprevF);

}

We first use cvCvtScale() to turn the raw background 8-bit-per-channel, three-color-
channel image into a floating-point three-channel image. We then accumulate the raw
floating-point images into IavgF. Next, we calculate the frame-to-frame absolute dif-
ference image using cvAbsDiff() and accumulate that into image IdiffF. Each time we
accumulate these images, we increment the image count Icount, a global, to use for av-
eraging later.

Once we have accumulated enough frames, we convert them into a statistical model of
the background. That is, we compute the means and deviation measures (the average
absolute differences) of each pixel:

void createModelsfromStats() {

cvConvertScale(IavgF, TIavgF,(double)(1.0/Icount));
cvConvertScale(IdiffF, IdiffF,(double)(1.0/Icount));

//Make sure diff is always something

//

cvAddS(IdiffF, cvScalar(1.0, 1.0, 1.0), IdiffF);
setHighThreshold(7.0);

setLowThreshold(6.0);

* Notice our use of the word “proxy.” Average difference is not mathematically equivalent to standard
deviation, but in this context it is close enough to yield results of similar quality. The advantage of average
difference is that it is slightly faster to compute than standard deviation. With only a tiny modification of
the code example you can use standard deviations instead and compare the quality of the final results for
yourself; we’ll discuss this more explicitly later in this section.

Background Subtraction | 273

NOR A2 A RC1T1 indAA 272 [\ QAENQ A-29-ET7 DM

In this code, cvConvertScale() calculates the average raw and absolute difference images
by dividing by the number of input images accumulated. As a precaution, we ensure
that the average difference image is at least 1; we’ll need to scale this factor when calcu-
lating a foreground-background threshold and would like to avoid the degenerate case
in which these two thresholds could become equal.

Both setHighThreshold() and setLowThreshold() are utility functions that set a threshold
based on the frame-to-frame average absolute differences. The call setHighThreshold(7.0)
fixes a threshold such that any value that is 7 times the average frame-to-frame abso-
lute difference above the average value for that pixel is considered foreground; likewise,
setLowThreshold(6.0) sets a threshold bound that is 6 times the average frame-to-frame
absolute difference below the average value for that pixel. Within this range around the
pixel’s average value, objects are considered to be background. These threshold func-
tions are:

void setHighThreshold(float scale)
{

cvConvertScale(IdiffF, Iscratch, scale);
cvAdd(Iscratch, IavgF, IhiF);
cvSplit(IhiF, Ihi1, Ihi2, Ihi3, 0);

}

void setlLowThreshold(float scale)
{
cvConvertScale(IdiffF, Iscratch, scale);
cvSub(IavgF, Iscratch, IlowF);
cvSplit(IlowF, Ilowl, Ilow2, Ilow3, 0);
}
Again, in setLowThreshold() and setHighThreshold() we use cvConvertScale() to multi-
ply the values prior to adding or subtracting these ranges relative to IavgF. This action

sets the IhiF and IlowF range for each channel in the image via cvSplit().

Once we have our background model, complete with high and low thresholds, we use
it to segment the image into foreground (things not “explained” by the background im-
age) and the background (anything that fits within the high and low thresholds of our
background model). Segmentation is done by calling:

// Create a binary: 0,255 mask where 255 means foreground pixel

/] 1 Input image, 3-channel, 8u
// Imask Mask image to be created, 1-channel 8u
//

void backgroundDiff(
IplImage *I,
IplImage *Imask

) {
cvCvtScale(I,Iscratch,1,0); // To float;

cvSplit(Iscratch, Igrayi,Igray2,Igray3, O);

//Channel 1

/!
cvInRange(Igray1,Ilow1,Ihi1,Imask);

274 | Chapter9: Image Parts and Segmentation

NOR A2 RC1T inddA 274 [\ QAENQ A-29-ET7 DM

//Channel 2

//
cvInRange(Igray2,Ilow2,Ihi2,Imaskt);
cvOr(Imask,Imaskt,Imask);

//Channel 3

//
cvInRange(Igray3,Ilow3,Ihi3,Imaskt);

cvOr(Imask,Imaskt,Imask)

//Finally, invert the results

//
cvSubRS(Imask, 255, Imask);

}

This function first converts the input image I (the image to be segmented) into a float-
ing-point image by calling cvCvtScale(). We then convert the three-channel image into
separate one-channel image planes using cvSplit(). These color channel planes are then
checked to see if they are within the high and low range of the average background
pixel via the cvInRange() function, which sets the grayscale 8-bit depth image Imaskt to
max (255) when it’s in range and to 0 otherwise. For each color channel we logically OR
the segmentation results into a mask image Imask, since strong differences in any color
channel are considered evidence of a foreground pixel here. Finally, we invert Imask us-
ing cvSubRS(), because foreground should be the values out of range, not in range. The
mask image is the output result.

For completeness, we need to release the image memory once we're finished using the
background model:

void DeallocateImages()

{
cvReleaseImage(&IavgF);
cvReleaseImage(&IdiffF);
cvReleaseImage(&IprevF);
cvReleaseImage(&IhiF);
cvReleaseImage(&IlowF);
cvReleaseImage(&Ilowl);
cvReleaseImage(&Ilow2);
cvReleaseImage(&Ilow3);
cvReleaseImage(&Ihil);
cvReleaseImage(&Ihi2);
cvReleaseImage(&Ihi3);
cvReleaseImage(&Iscratch);
cvReleaseImage(&Iscratch2);
cvReleaseImage(&Igrayl);
cvReleaseImage(&Igray2);
cvReleaseImage(&Igray3);
cvReleaseImage(&Imaskt);

}
We've just seen a simple method of learning background scenes and segmenting fore-
ground objects. It will work well only with scenes that do not contain moving background
components (like a waving curtain or waving trees). It also assumes that the lighting

Background Subtraction | 275

NOR A2 RC1 indA 27K [\ QAENQ A-29-ET7 DM

remains fairly constant (as in indoor static scenes). You can look ahead to Figure 9-5
to check the performance of this averaging method.

Accumulating means, variances, and covariances

The averaging background method just described made use of one accumulation func-
tion, cvAcc(). It is one of a group of helper functions for accumulating sums of images,
squared images, multiplied images, or average images from which we can compute basic
statistics (means, variances, covariances) for all or part of a scene. In this section, we’ll
look at the other functions in this group.

The images in any given function must all have the same width and height. In each
function, the input images named image, imagel, or image2 can be one- or three-
channel byte (8-bit) or floating-point (32F) image arrays. The output accumulation im-
ages named sum, sqsum, or acc can be either single-precision (32F) or double-precision
(64F) arrays. In the accumulation functions, the mask image (if present) restricts pro-
cessing to only those locations where the mask pixels are nonzero.

Finding the mean. To compute a mean value for each pixel across a large set of images, the
easiest method is to add them all up using cvAcc() and then divide by the total number
of images to obtain the mean.

void cvAcc(
const Cvrr* image,
CvArr* sum,
const CvArr* mask = NULL

)
An alternative that is often useful is to use a running average.

void cvRunningAvg(
const CvArr* image,
CvArr* acc,
double alpha,
const CvArr* mask = NULL

)

The running average is given by the following formula:

acc(x,y)=(1—a)-acc(x, y)+o -image(x, y) if mask(x,y)#0

For a constant value of «, running averages are not equivalent to the result of summing
with cvAcc(). To see this, simply consider adding three numbers (2, 3, and 4) with « set
to 0.5. If we were to accumulate them with cvAcc(), then the sum would be 9 and the
average 3. If we were to accumulate them with cvRunningAverage(), the first sum would
give 0.5 X 2 + 0.5 X 3 = 2.5 and then adding the third term would give 0.5 X 2.5 + 0.5 X
4 = 3.25. The reason the second number is larger is that the most recent contributions
are given more weight than those from farther in the past. Such a running average is
thus also called a tracker. The parameter « essentially sets the amount of time necessary
for the influence of a previous frame to fade.

276 | Chapter9: Image Parts and Segmentation

NOR A2 RC1 indAd 274 [\ QAENQ A-29-ET7 DM

Finding the variance. We can also accumulate squared images, which will allow us to com-
pute quickly the variance of individual pixels.

void cvSquareAcc(
const CvArr* image,
CvArTr* sqsum,
const CvArr* mask = NULL

);
You may recall from your last class in statistics that the variance of a finite population is
defined by the formula:

o’ = lNii(x x)’
Ni:() :

where X is the mean of x for all N samples. The problem with this formula is that it
entails making one pass through the images to compute X and then a second pass to
compute . A little algebra should allow you to convince yourself that the following
formula will work just as well:

(e
N i=0 : N i=0 i

Using this form, we can accumulate both the pixel values and their squares in a single
pass. Then, the variance of a single pixel is just the average of the square minus the
square of the average.

Finding the covariance. We can also see how images vary over time by selecting a specific lag
and then multiplying the current image by the image from the past that corresponds to
the given lag. The function cvMultiplyAcc() will perform a pixelwise multiplication of
the two images and then add the result to the “running total” in acc:
void cvMultiplyAcc(
const CvArr* imagei,
const CvArr* image2,

CvArr* acc,
const CvArr* mask = NULL

)
For covariance, there is a formula analogous to the one we just gave for variance. This
formula is also a single-pass formula in that it has been manipulated algebraically from
the standard form so as not to require two trips through the list of images:

Cov(x,y) =(%2(&-)’)]‘(%2%)[%2%]
i=0 i=0 j=0

In our context, x is the image at time ¢ and y is the image at time ¢ - d, where d is
the lag.

Background Subtraction | 277

We can use the accumulation functions described here to create a variety of statistics-
based background models. The literature is full of variations on the basic model used as
our example. You will probably find that, in your own applications, you will tend to extend
this simplest model into slightly more specialized versions. A common enhancement, for
example, is for the thresholds to be adaptive to some observed global state changes.

Advanced Background Method

Many background scenes contain complicated moving objects such as trees waving in the
wind, fans turning, curtains fluttering, et cetera. Often such scenes also contain varying
lighting, such as clouds passing by or doors and windows letting in different light.

A nice method to deal with this would be to fit a time-series model to each pixel or
group of pixels. This kind of model deals with the temporal fluctuations well, but its
disadvantage is the need for a great deal of memory [Toyama99]. If we use 2 seconds
of previous input at 30 Hz, this means we need 60 samples for each pixel. The resulting
model for each pixel would then encode what it had learned in the form of 60 differ-
ent adapted weights. Often we’d need to gather background statistics for much longer
than 2 seconds, which means that such methods are typically impractical on present-
day hardware.

To get fairly close to the performance of adaptive filtering, we take inspiration from
the techniques of video compression and attempt to form a codebook* to represent sig-
nificant states in the background.” The simplest way to do this would be to compare a
new value observed for a pixel with prior observed values. If the value is close to a prior
value, then it is modeled as a perturbation on that color. If it is not close, then it can seed
a new group of colors to be associated with that pixel. The result could be envisioned as
a bunch of blobs floating in RGB space, each blob representing a separate volume con-
sidered likely to be background.

In practice, the choice of RGB is not particularly optimal. It is almost always better to
use a color space whose axis is aligned with brightness, such as the YUV color space.
(YUV is the most common choice, but spaces such as HSV, where V is essentially bright-
ness, would work as well.) The reason for this is that, empirically, most of the variation
in background tends to be along the brightness axis, not the color axis.

The next detail is how to model the “blobs.” We have essentially the same choices as
before with our simpler model. We could, for example, choose to model the blobs as
Gaussian clusters with a mean and a covariance. It turns out that the simplest case, in

* The method OpenCV implements is derived from Kim, Chalidabhongse, Harwood, and Davis [Kim05], but
rather than learning-oriented tubes in RGB space, for speed, the authors use axis-aligned boxes in YUV
space. Fast methods for cleaning up the resulting background image can be found in Martins [Martins99].

+ There is a large literature for background modeling and segmentation. OpenCV’s implementation is
intended to be fast and robust enough that you can use it to collect foreground objects mainly for the pur-
poses of collecting data sets to train classifiers on. Recent work in background subtraction allows arbitrary
camera motion [Farin04; Colombari07] and dynamic background models using the mean-shift algorithm
[Liu07].

278 | Chapter9: Image Parts and Segmentation

NOR A2 RC1T indA 279 m QAENQ A 29EQ DM

which the “blobs” are simply boxes with a learned extent in each of the three axes of our
color space, works out quite well. It is the simplest in terms of memory required and in
terms of the computational cost of determining whether a newly observed pixel is inside
any of the learned boxes.

Let’s explain what a codebook is by using a simple example (Figure 9-3). A codebook
is made up of boxes that grow to cover the common values seen over time. The upper
panel of Figure 9-3 shows a waveform over time. In the lower panel, boxes form to cover
a new value and then slowly grow to cover nearby values. If a value is too far away, then
a new box forms to cover it and likewise grows slowly toward new values.

Waveform:

Values

sl 0000 00nnnnnnl

Values

T 0000000000

Figure 9-3. Codebooks are just “boxes” delimiting intensity values: a box is formed to cover a new
value and slowly grows to cover nearby values; if values are too far away then a new box is formed
(see text)

In the case of our background model, we will learn a codebook of boxes that cover three
dimensions: the three channels that make up our image at each pixel. Figure 9-4 visu-
alizes the (intensity dimension of the) codebooks for six different pixels learned from

Background Subtraction | 279

the data in Figure 9-1.* This codebook method can deal with pixels that change levels
dramatically (e.g., pixels in a windblown tree, which might alternately be one of many
colors of leaves, or the blue sky beyond that tree). With this more precise method of
modeling, we can detect a foreground object that has values between the pixel values.
Compare this with Figure 9-2, where the averaging method cannot distinguish the hand
value (shown as a dotted line) from the pixel fluctuations. Peeking ahead to the next
section, we see the better performance of the codebook method versus the averaging
method shown later in Figure 9-7.

Example Codebooks:

[Learn codebooks:l]] \ W

.|
| (|
|

|
|

Figure 9-4. Intensity portion of learned codebook entries for fluctuations of six chosen pixels (shown
as vertical boxes): codebook boxes accommodate pixels that take on multiple discrete values and so
can better model discontinuous distributions; thus they can detect a foreground hand (value at dot-
ted line) whose average value is between the values that background pixels can assume. In this case
the codebooks are one dimensional and only represent variations in intensity

In the codebook method of learning a background model, each box is defined by two
thresholds (max and min) over each of the three color axes. These box boundary thresh-
olds will expand (max getting larger, min getting smaller) if new background samples fall
within a learning threshold (learnHigh and learnLow) above max or below min, respec-
tively. If new background samples fall outside of the box and its learning thresholds,
then a new box will be started. In the background difference mode there are acceptance
thresholds maxMod and minMod; using these threshold values, we say that if a pixel is “close
enough” to a max or a min box boundary then we count it as if it were inside the box. A
second runtime threshold allows for adjusting the model to specific conditions.

&

A situation we will not cover is a pan-tilt camera surveying a large
scene. When working with a large scene, it is necessary to stitch
%1+ together learned models indexed by the pan and tilt angles.

* In this case we have chosen several pixels at random from the scan line to avoid excessive clutter. Of course,
there is actually a codebook for every pixel.

280 | Chapter9: Image Partsand Segmentation

Structures

It’s time to look at all of this in more detail, so let’s create an implementation of the
codebook algorithm. First, we need our codebook structure, which will simply point to
a bunch of boxes in YUV space:

typedef struct code book {
code_element **cb;
int numEntries;
int t; //count every access
} codeBook;

We track how many codebook entries we have in numtntries. The variable t counts the
number of points we’ve accumulated since the start or the last clear operation. Here’s
how the actual codebook elements are described:

#define CHANNELS 3

typedef struct ce {

uchar learnHigh[CHANNELS]; //High side threshold for learning
uchar learnLow[CHANNELS]; //Low side threshold for learning

uchar max[CHANNELS]; //High side of box boundary

uchar min[CHANNELS]; //Low side of box boundary

int t last update; //Allow us to kill stale entries

int stale; //max negative run (longest period of inactivity)

} code_element;

Each codebook entry consumes four bytes per channel plus two integers, or CHANNELS X
4 + 4 + 4 bytes (20 bytes when we use three channels). We may set CHANNELS to any
positive number equal to or less than the number of color channels in an image, but it
is usually set to either 1 (*Y”, or brightness only) or 3 (YUV, HSV). In this structure,
for each channel, max and min are the boundaries of the codebook box. The parameters
learnHigh[] and learnLow[] are the thresholds that trigger generation of a new code ele-
ment. Specifically, a new code element will be generated if a new pixel is encountered
whose values do not lie between min - learnLow and max + learnHigh in each of the
channels. The time to last update (t_last update) and stale are used to enable the dele-
tion of seldom-used codebook entries created during learning. Now we can proceed to
investigate the functions that use this structure to learn dynamic backgrounds.

Learning the background

We will have one codeBook of code elements for each pixel. We will need an array of
such codebooks that is equal in length to the number of pixels in the images we’ll be
learning. For each pixel, update_codebook() is called for as many images as are sufficient
to capture the relevant changes in the background. Learning may be updated periodi-
cally throughout, and clear stale entries() can be used to learn the background in the
presence of (small numbers of) moving foreground objects. This is possible because the
seldom-used “stale” entries induced by a moving foreground will be deleted. The inter-
face to update_codebook() is as follows.

s

// int update codebook(uchar *p, codeBook 8c, unsigned cbBounds)
// Updates the codebook entry with a new data point

Background Subtraction | 281

NOR A9 RC1 indA 291 m QAENQ A 29-EQ DM

/!
/l'p Pointer to a YUV pixel
/] ¢ Codebook for this pixel

// cbBounds Learning bounds for codebook (Rule of thumb: 10)
// numChannels Number of color channels we’re learning
/
// NOTES:
// cvBounds must be of length equal to numChannels
/
// RETURN
// codebook index
/!
int update codebook(
uchar* P,
codeBook& c,
unsigned* cbBounds,
int numChannels
Al
unsigned int high[3],1low[3];
for(n=0; n<numChannels; n++)
{
high[n] = *(p+n)+*(cbBounds+n);
if(high[n] > 255) high[n] = 255;
low[n] = *(p+n)-*(cbBounds+n);
if(low[n] < 0) low[n] = 0;
}

int matchChannel;

// SEE IF THIS FITS AN EXISTING CODEWORD
/!
for(int i=0; i<c.numEntries; i++){
matchChannel = 0;
for(n=0; n<numChannels; n++){
if((c.cb[i]->learnLow[n] <= *(p+n)) &&
//Found an entry for this channel
(*(p+n) <= c.cb[i]->learnHigh[n]))
{

matchChannel++;
}
}
if(matchChannel == numChannels) //If an entry was found
{

c.cb[i]->t last update = c.t;
//adjust this codeword for the first channel
for(n=0; n<numChannels; n++){
if(c.cb[i]->max[n] < *(p+n))
{

c.cb[i]->max[n] = *(p+n);

}
else if(c.cb[i]->min[n] > *(p+n))
{
c.cb[i]->min[n] = *(p+n);
}
}
break;

282 | Chapter9: Image Partsand Segmentation

NOR A9 RC1 indA 2992 A QAENQ A 29-EQ DM

}
}

. . continued below

This function grows or adds a codebook entry when the pixel p falls outside the existing
codebook boxes. Boxes grow when the pixel is within cbBounds of an existing box. If a
pixel is outside the cbBounds distance from a box, a new codebook box is created. The
routine first sets high and low levels to be used later. It then goes through each codebook
entry to check whether the pixel value *p is inside the learning bounds of the codebook
“box”. If the pixel is within the learning bounds for all channels, then the appropriate
max or min level is adjusted to include this pixel and the time of last update is set to the
current timed count c.t. Next, the update codebook() routine keeps statistics on how
often each codebook entry is hit:

. continued from above

// OVERHEAD TO TRACK POTENTIAL STALE ENTRIES
/!

for(int s=0; s<c.numEntries; s++){

// Track which codebook entries are going stale:

/!
int negRun = c.t - c.cb[s]->t last update;
if(c.cb[s]->stale < negRun) c.cb[s]->stale = negRun;

. . continued below

Here, the variable stale contains the largest negative runtime (i.e., the longest span of
time during which that code was not accessed by the data). Tracking stale entries al-
lows us to delete codebooks that were formed from noise or moving foreground objects
and hence tend to become stale over time. In the next stage of learning the background,
update_codebook() adds a new codebook if needed:

. continued from above

// ENTER A NEW CODEWORD IF NEEDED
//
if(i == c.numkntries) //if no existing codeword found, make one
{
code_element **foo = new code element* [c.numEntries+1];
for(int 1i=0; ii<c.numkntries; ii++) {
foo[ii] = c.cb[ii];

foo[c.numEntries] = new code element;

if(c.numEntries) delete [] c.cb;

c.cb = foo;

for(n=0; n<numChannels; n++) {
c.cb[c.numEntries]->learnHigh[n] = high[n];
c.cb[c.numEntries]->learnLow[n] = low[n];
c.cb[c.numEntries]->max[n] = *(p+n);
c.cb[c.numEntries]->min[n] = *(p+n);

Background Subtraction | 283

NOR A2 RC1 indA 297 m QAENQ A-22:-NN DM

Finally, update codebook() slowly adjusts (by adding 1) the learnHigh and learnLow
learning boundaries if pixels were found outside of the box thresholds but still within

c.cb[c.numEntries]->t last update = c.t;
c.cb[c.numEntries]->stale = 0;
c.numEntries += 1;

}

. continued below

the high and low bounds:

The routine concludes by returning the index of the modified codebook. We've now
seen how codebooks are learned. In order to learn in the presence of moving foreground
objects and to avoid learning codes for spurious noise, we need a way to delete entries

}

. continued from above

// SLOWLY ADJUST LEARNING BOUNDS
/!

for(n=0; n<numChannels; n++)

{
if(c.cb[i]->learnHigh[n] < high[n]) c.cb[i]->learnHigh[n] += 1;
if(c.cb[i]->learnLow[n] > low[n]) c.cb[i]->learnLow[n] -= 1;

}

return(i);

that were accessed only rarely during learning.

Learning with moving foreground objects

The following routine, clear stale entries(), allows us to learn the background even if

there are moving foreground objects.

s

//int clear stale entries(codeBook &c)

// During learning, after you’ve learned for some period of time,
// periodically call this to clear out stale codebook entries

//

// ¢ Codebook to clean up
/

// Return

// number of entries cleared

//

int clear stale entries(codeBook 8&c){

int staleThresh = c.t>1;
int *keep = new int [c.numEntries];
int keepCnt = o;
// SEE WHICH CODEBOOK ENTRIES ARE TOO STALE
//
for(int i=0; i<c.numEntries; i++){
if(c.cb[i]->stale > staleThresh)
keep[i] = 0; //Mark for destruction
else
{
keep[i] = 1; //Mark to keep
keepCnt += 1;

284

NOR A2 RC1 indA 294

Chapter 9: Image Parts and Segmentation

QAENQ A-22:-NN DM

}
}
// KEEP ONLY THE GOOD
//
c.t = 0; //Full reset on stale tracking
code_element **foo = new code element* [keepCnt];
int k=0;
for(int ii=0; ii<c.numEntries; ii++){
if(keep[ii])
{
foo[k] = c.cb[ii];
//We have to refresh these entries for next clearStale
foo[k]->t last update = 0;
k++;
}
}
// CLEAN UP
//

delete [] keep;

delete [] c.cb;

c.cb = foo;

int numCleared = c.numEntries - keepCnt;
c.numkntries = keepCnt;
return(numCleared);

}

The routine begins by defining the parameter staleThresh, which is hardcoded (by a rule
of thumb) to be half the total running time count, c.t. This means that, during back-
ground learning, if codebook entry i is not accessed for a period of time equal to half
the total learning time, then i is marked for deletion (keep[i] = 0). The vector keep[] is
allocated so that we can mark each codebook entry; hence it is c.numEntries long. The
variable keepCnt counts how many entries we will keep. After recording which codebook
entries to keep, we create a new pointer, foo, to a vector of code_element pointers that is
keepCnt long, and then the nonstale entries are copied into it. Finally, we delete the old
pointer to the codebook vector and replace it with the new, nonstale vector.

Background differencing: Finding foreground objects

We’ve seen how to create a background codebook model and how to clear it of seldom-
used entries. Next we turn to background diff(), where we use the learned model to seg-
ment foreground pixels from the previously learned background:

T i

// uchar background diff(uchar *p, codeBook 8c,

// int minMod, int maxMod)

// Given a pixel and a codebook, determine if the pixel is
// covered by the codebook

//

/' p Pixel pointer (YUV interleaved)

/] ¢ Codebook reference

// numChannels Number of channels we are testing

// maxMod Add this (possibly negative) number onto

Background Subtraction | 285

NOR A22A R 1 indA 29K m QAENQ A-22:-NN DM

// max level when determining if new pixel is foreground
// minMod Subract this (possibly negative) number from

// min level when determining if new pixel is foreground
/!

// NOTES:

// minMod and maxMod must have length numChannels,
// e.g. 3 channels => minMod[3], maxMod[3]. There is one min and
// one max threshold per channel.
//
// Return
// 0 = background, 255 => foreground
/!
uchar background diff(
uchar* P,
codeBook& c,

int numChannels,
int* minMod,
int* maxMod

) {

int matchChannel;

// SEE IF THIS FITS AN EXISTING CODEWORD
//
for(int i=0; i<c.numEntries; i++) {
matchChannel = 0;
for(int n=0; n<numChannels; n++) {
if((c.cb[i]->min[n] - minMod[n] <= *(p+n)) &&
(*(p+n) <= c.cb[i]->max[n] + maxMod[n])) {
matchChannel++; //Found an entry for this channel
} else {
break;
}

}
if(matchChannel == numChannels) {

break; //Found an entry that matched all channels

}
}

if(i >= c.numEntries) return(255);
return(0);
}

The background differencing function has an inner loop similar to the learning routine
update_codebook, except here we look within the learned max and min bounds plus an
offset threshold, maxMod and minMod, of each codebook box. If the pixel is within the box
plus maxMod on the high side or minus minMod on the low side for each channel, then the
matchChannel count is incremented. When matchChannel equals the number of channels,
we’ve searched each dimension and know that we have a match. If the pixel is within
a learned box, 255 is returned (a positive detection of foreground); otherwise, 0 is re-
turned (background).

The three functions update codebook(), clear stale entries(), and background diff()
constitute a codebook method of segmenting foreground from learned background.

286 | Chapter9: Image Partsand Segmentation

NOR A2 RC1 indAd 29/ m

QAENQ A-22:-NN DM

Using the codebook background model

To use the codebook background segmentation technique, typically we take the follow-
ing steps.

1. Learn a basic model of the background over a few seconds or minutes using
update codebook().

Clean out stale entries with clear stale entries().
Adjust the thresholds minMod and maxMod to best segment the known foreground.

Maintain a higher-level scene model (as discussed previously).

AR

Use the learned model to segment the foreground from the background via
background diff().

6. Periodically update the learned background pixels.

7. At a much slower frequency, periodically clean out stale codebook entries with
clear stale entries().

A few more thoughts on codebook models

In general, the codebook method works quite well across a wide number of conditions,
and it is relatively quick to train and to run. It doesn’t deal well with varying patterns of
light—such as morning, noon, and evening sunshine—or with someone turning lights
on or off indoors. This type of global variability can be taken into account by using sev-
eral different codebook models, one for each condition, and then allowing the condition
to control which model is active.

Connected Components for Foreground Cleanup

Before comparing the averaging method to the codebook method, we should pause to
discuss ways to clean up the raw segmented image using connected-components analysis.
This form of analysis takes in a noisy input mask image; it then uses the morphologi-
cal operation open to shrink areas of small noise to 0 followed by the morphological
operation close to rebuild the area of surviving components that was lost in opening.
Thereafter, we can find the “large enough” contours of the surviving segments and can
optionally proceed to take statistics of all such segments. We can then retrieve either the
largest contour or all contours of size above some threshold. In the routine that follows,
we implement most of the functions that you could want in connected components:

o Whether to approximate the surviving component contours by polygons or by con-
vex hulls

 Setting how large a component contour must be in order not to be deleted
o Setting the maximum number of component contours to return
« Optionally returning the bounding boxes of the surviving component contours

« Optionally returning the centers of the surviving component contours

Background Subtraction | 287

NAaPR A2 RC1 indA 297 m QAENQ A-22:-NN DM

The connected components header that implements these operations is as follows.

i

// void find connected components(IplImage *mask, int poly1 hullo,

// float perimScale, int *num,

// CvRect *bbs, CvPoint *centers)

// This cleans up the foreground segmentation mask derived from calls
// to backgroundDiff

/

// mask Is a grayscale (8-bit depth) “raw” mask image that
// will be cleaned up

//

// OPTIONAL PARAMETERS:
// polyl hullo If set, approximate connected component by

// (DEFAULT) polygon, or else convex hull (0)

// perimScale Len = image (width+height)/perimScale. If contour
// len < this, delete that contour (DEFAULT: 4)

// num Maximum number of rectangles and/or centers to
// return; on return, will contain number filled
// (DEFAULT: NULL)

// bbs Pointer to bounding box rectangle vector of

// length num. (DEFAULT SETTING: NULL)

// centers Pointer to contour centers vector of length

// num (DEFAULT: NULL)

/!

void find connected components(
IplImage* mask,

int poly1 hullo = 1,
float perimScale = 4,
int* num = NULL,
CvRect* bbs = NULL,
CvPoint* centers = NULL
)s

The function body is listed below. First we declare memory storage for the connected
components contour. We then do morphological opening and closing in order to clear
out small pixel noise, after which we rebuild the eroded areas that survive the erosion
of the opening operation. The routine takes two additional parameters, which here are
hardcoded via #define. The defined values work well, and you are unlikely to want to
change them. These additional parameters control how simple the boundary of a fore-
ground region should be (higher numbers are more simple) and how many iterations
the morphological operators should perform; the higher the number of iterations, the
more erosion takes place in opening before dilation in closing.* More erosion eliminates
larger regions of blotchy noise at the cost of eroding the boundaries of larger regions.
Again, the parameters used in this sample code work well, but there’s no harm in ex-
perimenting with them if you like.

// For connected components:
// Approx.threshold - the bigger it is, the simpler is the boundary

1/

* Observe that the value CVCLOSE_ITR is actually dependent on the resolution. For images of extremely high
resolution, leaving this value set to 1 is not likely to yield satisfactory results.

288 | Chapter9: Image Partsand Segmentation

NOR A2 RC1 indA 299 m QAENQ A-22:-NN DM

#define CVCONTOUR APPROX LEVEL 2

// How many iterations of erosion and/or dilation there should be

/
#define CVCLOSE_ITR 1

We now discuss the connected-component algorithm itself. The first part of the routine
performs the morphological open and closing operations:

void find connected components(
IplImage *mask,
int poly1 hullo,
float perimScale,
int *num,
CvRect *bbs,
CvPoint *centers

) o

static CvMemStorage* mem_storage = NULL;
static CvSeg* contours NULL;

//CLEAN UP RAW MASK

//
cvMorphologyEx(mask, mask, 0, 0, CV_MOP OPEN, CVCLOSE ITR);
cvMorphologyEx(mask, mask, 0, 0, CV_MOP CLOSE, CVCLOSE ITR);

Now that the noise has been removed from the mask, we find all contours:

//FIND CONTOURS AROUND ONLY BIGGER REGIONS
//
if(mem_storage==NULL) {
mem_storage = cvCreateMemStorage(0);
} else {
cvClearMemStorage(mem_storage);

}

CvContourScanner scanner = cvStartFindContours(
mask,
mem_storage,
sizeof(CvContour),
CV_RETR_EXTERNAL,
CV_CHAIN_ APPROX_SIMPLE

)

Next, we toss out contours that are too small and approximate the rest with polygons or
convex hulls (whose complexity has already been set by CVCONTOUR_APPROX LEVEL):

CvSeq* c;
int numCont = 0;
while((c = cvFindNextContour(scanner)) != NULL) {

double len = cvContourPerimeter(c);

// calculate perimeter len threshold:

//

double q = (mask->height + mask->width)/perimScale;

//Get rid of blob if its perimeter is too small:

NOR A2 RC1 indAd 290

Background Subtraction | 289

QAENQ A-22:N1 DM

//
if(len < q) {

cvSubstituteContour(scanner, NULL);
} else {

// Smooth its edges if its large enough
/

CvSeqg* c_new;

if(poly1l hullo) {

// Polygonal approximation

c_new = cvApproxPoly(
)
sizeof(CvContour),
mem_storage,
CV_POLY APPROX_DP,
CVCONTOUR_APPROX LEVEL,

0
);
} else {
// Convex Hull of the segmentation
//
c_new = cvConvexHull2(
C)

mem_storage,
CV_CLOCKWISE,
1
);
}

cvSubstituteContour(scanner, c_new);
numCont++;

}
}

contours = cvEndFindContours(&scanner);

In the preceding code, CV_POLY_APPROX_DP causes the Douglas-Peucker approximation al-
gorithm to be used, and CV_CLOCKWISE is the default direction of the convex hull contour.
All this processing yields a list of contours. Before drawing the contours back into the
mask, we define some simple colors to draw:

// Just some convenience variables

const CvScalar CVX WHITE = CV_RGB(Oxff,0xff,0xff)

const CvScalar CVX BLACK = CV_RGB(0x00,0x00,0X00)
We use these definitions in the following code, where we first zero out the mask and then
draw the clean contours back into the mask. We also check whether the user wanted to
collect statistics on the contours (bounding boxes and centers):

// PAINT THE FOUND REGIONS BACK INTO THE IMAGE
//

cvZero(mask);
IplImage *maskTemp;

290 | Chapter9: Image Partsand Segmentation

NOR A2 RC1 indd 2an m QAENQ A-22:N1 DM

// CALC CENTER OF MASS AND/OR BOUNDING RECTANGLES

/!
if(num != NULL) {

//User wants to collect statistics

//

int N = *num, numFilled = 0, i=0;

CvMoments moments;

double Moo, Mo1, M10;

maskTemp = cvCloneImage(mask);

for(i=0, c=contours; c != NULL; c = c->h next,i++) {

if(i < N) {
// Only process up to *num of them

cvDrawContours(
maskTemp,
G
CVX_WHITE,
CVX_WHITE,
-1,
CV_FILLED,
8

);

// Find the center of each contour

//
if(centers != NULL) {

cvMoments(maskTemp,8moments,1);

Moo = cvGetSpatialMoment(&moments,0,0);
M10 = cvGetSpatialMoment(&moments,1,0);
Mol = cvGetSpatialMoment(&moments,0,1);
centers[i].x = (int)(M10/M00);
centers[i].y = (int)(Mo1/Mo0);

}

//Bounding rectangles around blobs
/!
if(bbs 1= NULL) {
bbs[i] = cvBoundingRect(c);
}
cvZero(maskTemp);
numFilled++;
}
// Draw filled contours into mask
//
cvDrawContours(
mask,
C)
CVX_WHITE,
CVX_WHITE,
_1,
CV_FILLED,

Background Subtraction | 291

NOR A9 RC1 indA 201 A QAENQ A-22:N1 DM

8
);
} //end looping over contours
*num = numFilled;
cvReleaseImage(&maskTemp);

}
If the user doesn’t need the bounding boxes and centers of the resulting regions in the
mask, we just draw back into the mask those cleaned-up contours representing large
enough connected components of the background.

// ELSE JUST DRAW PROCESSED CONTOURS INTO THE MASK

//
else {
// The user doesn’t want statistics, just draw the contours

/!
for(c=contours; c¢ != NULL; ¢ = c->h next) {
cvDrawContours(
mask,
CJ
CVX_WHITE,
CVX_BLACK,
_1’
CV_FILLED,
8

)
}
}
That concludes a useful routine for creating clean masks out of noisy raw masks. Now
let’s look at a short comparison of the background subtraction methods.

A quick test

We start with an example to see how this really works in an actual video. Let’s stick
with our video of the tree outside of the window. Recall (Figure 9-1) that at some point
a hand passes through the scene. One might expect that we could find this hand rela-
tively easily with a technique such as frame differencing (discussed previously in its own
section). The basic idea of frame differencing was to subtract the current frame from a
“lagged” frame and then threshold the difference.

Sequential frames in a video tend to be quite similar. Hence one might expect that, if
we take a simple difference of the original frame and the lagged frame, we’ll not see too
much unless there is some foreground object moving through the scene.* But what does
“not see too much” mean in this context? Really, it means “just noise.” Of course, in
practice the problem is sorting out that noise from the signal when a foreground object
does come along.

* In the context of frame differencing, an object is identified as “foreground” mainly by its velocity. This is
reasonable in scenes that are generally static or in which foreground objects are expected to be much closer
to the camera than background objects (and thus appear to move faster by virtue of the projective geometry
of cameras).

292 | Chapter9: Image Parts and Segmentation

NOR A9 RC1 indA 2092 m QAENQ A-22:N1 DM

To understand this noise a little better, we will first look at a pair of frames from the
video in which there is no foreground object—just the background and the result-
ing noise. Figure 9-5 shows a typical frame from the video (upper left) and the previ-
ous frame (upper right). The figure also shows the results of frame differencing with a
threshold value of 15 (lower left). You can see substantial noise from the moving leaves
of the tree. Nevertheless, the method of connected components is able to clean up this
scattered noise quite well* (lower right). This is not surprising, because there is no rea-
son to expect much spatial correlation in this noise and so its signal is characterized by
a large number of very small regions.

Figure 9-5. Frame differencing: a tree is waving in the background in the current (upper left) and
previous (upper right) frame images; the difference image (lower left) is completely cleaned up (lower
right) by the connected-components method

Now consider the situation in which a foreground object (our ubiquitous hand) passes
through the view of the imager. Figure 9-6 shows two frames that are similar to those
in Figure 9-5 except that now the hand is moving across from left to right. As before,
the current frame (upper left) and the previous frame (upper right) are shown along

* The size threshold for the connected components has been tuned to give zero response in these empty
frames. The real question then is whether or not the foreground object of interest (the hand) survives prun-
ing at this size threshold. We will see (Figure 9-6) that it does so nicely.

Background Subtraction | 293

with the response to frame differencing (lower left) and the fairly good results of the
connected-component cleanup (lower right).

(=%

Figure 9-6. Frame difference method of detecting a hand, which is moving left to right as the fore-
ground object (upper two panels); the difference image (lower left) shows the “hole” (where the hand
used to be) toward the left and its leading edge toward the right, and the connected-component im-
age (lower right) shows the cleaned-up difference

We can also clearly see one of the deficiencies of frame differencing: it cannot distin-
guish between the region from where the object moved (the “hole”) and where the ob-
ject is now. Furthermore, in the overlap region there is often a gap because “flesh minus
flesh” is 0 (or at least below threshold).

Thus we see that using connected components for cleanup is a powerful technique for
rejecting noise in background subtraction. As a bonus, we were also able to glimpse
some of the strengths and weaknesses of frame differencing.

Comparing Background Methods

We have discussed two background modeling techniques in this chapter: the average
distance method and the codebook method. You might be wondering which method is

294 | Chapter9: Image Partsand Segmentation

better, or, at least, when you can get away with using the easy one. In these situations, it’s
always best to just do a straight bake off* between the available methods.

We will continue with the same tree video that we’ve been discussing all chapter. In addi-
tion to the moving tree, this film has a lot of glare coming off a building to the right and
off portions of the inside wall on the left. It is a fairly challenging background to model.

In Figure 9-7 we compare the average difference method at top against the codebook
method at bottom; on the left are the raw foreground images and on the right are the
cleaned-up connected components. You can see that the average difference method
leaves behind a sloppier mask and breaks the hand into two components. This is not so
surprising; in Figure 9-2, we saw that using the average difference from the mean as a
background model often included pixel values associated with the hand value (shown as
a dotted line in that figure). Compare this with Figure 9-4, where codebooks can more
accurately model the fluctuations of the leaves and branches and so more precisely iden-
tify foreground hand pixels (dotted line) from background pixels. Figure 9-7 confirms
not only that the background model yields less noise but also that connected compo-
nents can generate a fairly accurate object outline.

Watershed Algorithm

In many practical contexts, we would like to segment an image but do not have the
benefit of a separate background image. One technique that is often effective in this
context is the watershed algorithm [Meyer92]. This algorithm converts lines in an im-
age into “mountains” and uniform regions into “valleys” that can be used to help seg-
ment objects. The watershed algorithm first takes the gradient of the intensity image;
this has the effect of forming valleys or basins (the low points) where there is no texture
and of forming mountains or ranges (high ridges corresponding to edges) where there
are dominant lines in the image. It then successively floods basins starting from user-
specified (or algorithm-specified) points until these regions meet. Regions that merge
across the marks so generated are segmented as belonging together as the image “fills
up”. In this way, the basins connected to the marker point become “owned” by that
marker. We then segment the image into the corresponding marked regions.

More specifically, the watershed algorithm allows a user (or another algorithm!) to mark
parts of an object or background that are known to be part of the object or background.
The user or algorithm can draw a simple line that effectively tells the watershed algo-
rithm to “group points like these together”. The watershed algorithm then segments the
image by allowing marked regions to “own” the edge-defined valleys in the gradient im-
age that are connected with the segments. Figure 9-8 clarifies this process.

The function specification of the watershed segmentation algorithm is:

void cviatershed(
const CvArr* image,

* For the uninitiated, “bake off” is actually a bona fide term used to describe any challenge or comparison of
multiple algorithms on a predetermined data set.

Watershed Algorithm | 295

NOR A2 RC1 indA 2QFK m QAENQ A-22:N2 DM

= ForegroundAVG EE Fl AVG_ConnectComp E“i_,

-

*

E] ForegroundCodeBook E’\El] CodeBook_ConnectComp BE’

Figure 9-7. With the averaging method (top row), the connected-components cleanup knocks out the
fingers (upper right); the codebook method (bottom row) does much better at segmentation and cre-
ates a clean connected-component mask (lower right)

Figure 9-8. Watershed algorithm: after a user has marked objects that belong together (left panel),
the algorithm then merges the marked area into segments (right panel)

296 | Chapter9: Image Partsand Segmentation

