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CHAPTER 9

Image Parts and Segmentation

Parts and Segments
� is chapter focuses on how to isolate objects or parts of objects from the rest of the 
image. � e reasons for doing this should be obvious. In video security, for example, the 
camera mostly looks out on the same boring background, which really isn’t of interest. 
What is of interest is when people or vehicles enter the scene, or when something is le�  
in the scene that wasn’t there before. We want to isolate those events and to be able to 
ignore the endless hours when nothing is changing.

Beyond separating foreground objects from the rest of the image, there are many situa-
tions where we want to separate out parts of objects, such as isolating just the face or the 
hands of a person. We might also want to preprocess an image into meaningful super 

pixels, which are segments of an image that contain things like limbs, hair, face, torso, 
tree leaves, lake, path, lawn and so on. Using super pixels saves on computation; for 
example, when running an object classi! er over the image, we only need search a box 
around each super pixel. We might only track the motion of these larger patches and not 
every point inside.

We saw several image segmentation algorithms when we discussed image processing 
in Chapter 5. � e routines covered in that chapter included image morphology, " ood 
! ll, threshold, and pyramid segmentation. � is chapter examines other algorithms that 
deal with ! nding, ! lling and isolating objects and object parts in an image. We start 
with separating foreground objects from learned background scenes. � ese background 
modeling functions are not built-in OpenCV functions; rather, they are examples of 
how we can leverage OpenCV functions to implement more complex algorithms.

Background Subtraction
Because of its simplicity and because camera locations are ! xed in many contexts, back-

ground subtraction (aka background di! erencing) is probably the most fundamental im-
age processing operation for video security applications. Toyama, Krumm, Brumitt, and 
Meyers give a good overview and comparison of many techniques [Toyama99]. In order 
to perform background subtraction, we ! rst must “learn” a model of the background. 
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Once learned, this background model is compared against the current image and then 
the known background parts are subtracted away. � e objects le�  a� er subtraction are 
presumably new foreground objects.

Of course “background” is an ill-de! ned concept that varies by application. For ex-
ample, if you are watching a highway, perhaps average tra#  c " ow should be consid-
ered background. Normally, background is considered to be any static or periodically 
moving parts of a scene that remain static or periodic over the period of interest. � e 
whole ensemble may have time-varying components, such as trees waving in morning 
and evening wind but standing still at noon. Two common but substantially distinct 
environment categories that are likely to be encountered are indoor and outdoor scenes. 
We are interested in tools that will help us in both of these environments. First we will 
discuss the weaknesses of typical background models and then will move on to dis-
cuss higher-level scene models. Next we present a quick method that is mostly good for 
indoor static background scenes whose lighting doesn’t change much. We will follow 
this by a “codebook” method that is slightly slower but can work in both outdoor and 
indoor scenes; it allows for periodic movements (such as trees waving in the wind) and 
for lighting to change slowly or periodically. � is method is also tolerant to learning 
the background even when there are occasional foreground objects moving by. We’ll 
top this o$  by another discussion of connected components (! rst seen in Chapter 5) in 
the context of cleaning up foreground object detection. Finally, we’ll compare the quick 
background method against the codebook background method.

Weaknesses of Background Subtraction
Although the background modeling methods mentioned here work fairly well for sim-
ple scenes, they su$ er from an assumption that is o� en violated: that all the pixels are 
independent. � e methods we describe learn a model for the variations a pixel experi-
ences without considering neighboring pixels. In order to take surrounding pixels into 
account, we could learn a multipart model, a simple example of which would be an 
extension of our basic independent pixel model to include a rudimentary sense of the 
brightness of neighboring pixels. In this case, we use the brightness of neighboring pix-
els to distinguish when neighboring pixel values are relatively bright or dim. We then 
learn e$ ectively two models for the individual pixel: one for when the surrounding pix-
els are bright and one for when the surrounding pixels are dim. In this way, we have a 
model that takes into account the surrounding context. But this comes at the cost of 
twice as much memory use and more computation, since we now need di$ erent values 
for when the surrounding pixels are bright or dim. We also need twice as much data to 
! ll out this two-state model. We can generalize the idea of “high” and “low” contexts 
to a multidimensional histogram of single and surrounding pixel intensities as well as 
make it even more complex by doing all this over a few time steps. Of course, this richer 
model over space and time would require still more memory, more collected data sam-
ples, and more computational resources.

Because of these extra costs, the more complex models are usually avoided. We can 
o� en more e#  ciently invest our resources in cleaning up the false positive pixels that 
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result when the independent pixel assumption is violated. � e cleanup takes the form 
of image processing operations (cvErode(), cvDilate(), and cvFloodFill(), mostly) that 
eliminate stray patches of pixels. We’ve discussed these routines previously (Chapter 5) 
in the context of ! nding large and compact* connected components within noisy data. 
We will employ connected components again in this chapter and so, for now, will re-
strict our discussion to approaches that assume pixels vary independently.

Scene Modeling
How do we de! ne background and foreground? If we’re watching a parking lot and a 
car comes in to park, then this car is a new foreground object. But should it stay fore-
ground forever? How about a trash can that was moved? It will show up as foreground 
in two places: the place it was moved to and the “hole” it was moved from. How do we 
tell the di$ erence? And again, how long should the trash can (and its hole) remain fore-
ground? If we are modeling a dark room and suddenly someone turns on a light, should 
the whole room become foreground? To answer these questions, we need a higher-level 
“scene” model, in which we de! ne multiple levels between foreground and background 
states, and a timing-based method of slowly relegating unmoving foreground patches to 
background patches. We will also have to detect and create a new model when there is a 
global change in a scene.

In general, a scene model might contain multiple layers, from “new foreground” to older 
foreground on down to background. � ere might also be some motion detection so that, 
when an object is moved, we can identify both its “positive” aspect (its new location) 
and its “negative” aspect (its old location, the “hole”).

In this way, a new foreground object would be put in the “new foreground” object level 
and marked as a positive object or a hole. In areas where there was no foreground ob-
ject, we could continue updating our background model. If a foreground object does not 
move for a given time, it is demoted to “older foreground,” where its pixel statistics are 
provisionally learned until its learned model joins the learned background model.

For global change detection such as turning on a light in a room, we might use global 
frame di$ erencing. For example, if many pixels change at once then we could classify it as 
a global rather than local change and then switch to using a model for the new situation.

A Slice of Pixels
Before we go on to modeling pixel changes, let’s get an idea of what pixels in an image 
can look like over time. Consider a camera looking out a window to a scene of a tree 
blowing in the wind. Figure 9-1 shows what the pixels in a given line segment of the 
image look like over 60 frames. We wish to model these kinds of " uctuations. Before do-
ing so, however, we make a small digression to discuss how we sampled this line because 
it’s a generally useful trick for creating features and for debugging.

* Here we are using mathematician’s de! nition of “compact,” which has nothing to do with size.
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OpenCV has functions that make it easy to sample an arbitrary line of pixels. � e line 
sampling functions are cvInitLineIterator() and CV_NEXT_LINE_POINT(). � e function 
prototype for cvInitLineIterator() is:

int cvInitLineIterator(
    const CvArr*    image,
    CvPoint         pt1,
    CvPoint         pt2,
    CvLineIterator* line_iterator,
    int             connectivity  = 8,
    int             left_to_right = 0
);

� e input image may be of any type or number of channels. Points pt1 and pt2 are the 
ends of the line segment. � e iterator line_iterator just steps through, pointing to the 
pixels along the line between the points. In the case of multichannel images, each call 
to CV_NEXT_LINE_POINT() moves the line_iterator to the next pixel. All the channels 
are available at once as line_iterator.ptr[0], line_iterator.ptr[1], and so forth. � e 
connectivity can be 4 (the line can step right, le� , up, or down) or 8 (the line can ad-
ditionally step along the diagonals). Finally if left_to_right is set to 0 (false), then line_
iterator scans from pt1 to pt2; otherwise, it will go from the le� most to the rightmost 
point.* � e cvInitLineIterator() function returns the number of points that will be 

* � e left_to_right " ag was introduced because a discrete line drawn from pt1 to pt2 does not always 
match the line from pt2 to pt1. � erefore, setting this " ag gives the user a consistent rasterization regard-
less of the pt1, pt2 order.

Figure 9-1. Fluctuations of a line of pixels in a scene of a tree moving in the wind over 60 frames: 
some dark areas (upper le" ) are quite stable, whereas moving branches (upper center) can vary 
widely
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iterated over for that line. A companion macro, CV_NEXT_LINE_POINT(line_iterator), steps 
the iterator from one pixel to another.

Let’s take a second to look at how this method can be used to extract some data from 
a ! le (Example 9-1). � en we can re-examine Figure 9-1 in terms of the resulting data 
from that movie ! le.

Example 9-1. Reading out the RGB values of all pixels in one row of a video and accumulating those 
values into three separate # les

// STORE TO DISK A LINE SEGMENT OF BGR PIXELS FROM pt1 to pt2.
//
CvCapture*     capture = cvCreateFileCapture( argv[1] );
int            max_buffer;
IplImage*      rawImage;
int            r[10000],g[10000],b[10000];
CvLineIterator iterator;

FILE *fptrb = fopen(“blines.csv”,“w”); // Store the data here
FILE *fptrg = fopen(“glines.csv”,“w”); // for each color channel
FILE *fptrr = fopen(“rlines.csv”,“w”);

// MAIN PROCESSING LOOP:
//
for(;;){
    if( !cvGrabFrame( capture ))
          break;
    rawImage = cvRetrieveFrame( capture );
    max_buffer = cvInitLineIterator(rawImage,pt1,pt2,&iterator,8,0);
    for(int j=0; j<max_buffer; j++){

        fprintf(fptrb,“%d,”, iterator.ptr[0]); //Write blue value
        fprintf(fptrg,“%d,”, iterator.ptr[1]); //green
        fprintf(fptrr,“%d,”, iterator.ptr[2]); //red

        iterator.ptr[2] = 255;  //Mark this sample in red

        CV_NEXT_LINE_POINT(iterator); //Step to the next pixel
    }
    // OUTPUT THE DATA IN ROWS:
    //
    fprintf(fptrb,“/n”);fprintf(fptrg,“/n”);fprintf(fptrr,“/n”);
}
// CLEAN UP:
//
fclose(fptrb); fclose(fptrg); fclose(fptrr);
cvReleaseCapture( &capture );

We could have made the line sampling even easier, as follows:

int cvSampleLine(
    const CvArr* image,
    CvPoint      pt1,
    CvPoint      pt2,
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    void*        buffer,
    int          connectivity = 8
);

� is function simply wraps the function cvInitLineIterator() together with the macro 
CV_NEXT_LINE_POINT(line_iterator) from before. It samples from pt1 to pt2; then you pass 
it a pointer to a buffer of the right type and of length Nchannels × max(|pt2x – pt2x| + 1, 
|pt2y – pt2y| + 1). Just like the line iterator, cvSampleLine() steps through each channel 
of each pixel in a multichannel image before moving to the next pixel. � e function re-
turns the number of actual elements it ! lled in the buffer.

We are now ready to move on to some methods for modeling the kinds of pixel " uctua-
tions seen in Figure 9-1. As we move from simple to increasingly complex models, we 
shall restrict our attention to those models that will run in real time and within reason-
able memory constraints.

Frame Differencing
� e very simplest background subtraction method is to subtract one frame from another 
(possibly several frames later) and then label any di$ erence that is “big enough” the 
foreground. � is process tends to catch the edges of moving objects. For simplicity, let’s 
say we have three single-channel images: frameTime1, frameTime2, and frame Foreground. 
� e image frameTime1 is ! lled with an older grayscale image, and frameTime2 is ! lled 
with the current grayscale image. We could then use the following code to detect the 
magnitude (absolute value) of foreground di$ erences in frameForeground:

cvAbsDiff(
    frameTime1,
    frameTime2,
    frameForeground
);

Because pixel values always exhibit noise and " uctuations, we should ignore (set to 0) 
small di$ erences (say, less than 15), and mark the rest as big di$ erences (set to 255):

cvThreshold(
    frameForeground,
    frameForeground,
    15,
    255,
    CV_THRESH_BINARY
);

� e image frameForeground then marks candidate foreground objects as 255 and back-
ground pixels as 0. We need to clean up small noise areas as discussed earlier; we might 
do this with cvErode() or by using connected components. For color images, we could use 
the same code for each color channel and then combine the channels with cvOr(). � is 
method is much too simple for most applications other than merely indicating regions of 
motion. For a more e$ ective background model we need to keep some statistics about the 
means and average di$ erences of pixels in the scene. You can look ahead to the section 
entitled “A quick test” to see examples of frame di$ erencing in Figures 9-5 and 9-6.
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Averaging Background Method
� e averaging method basically learns the average and standard deviation (or simi-
larly, but computationally faster, the average di$ erence) of each pixel as its model of the 
background.

Consider the pixel line from Figure 9-1. Instead of plotting one sequence of values 
for each frame (as we did in that ! gure), we can represent the variations of each pixel 
throughout the video in terms of an average and average di$ erences (Figure 9-2). In the 
same video, a foreground object (which is, in fact, a hand) passes in front of the camera. 
� at foreground object is not nearly as bright as the sky and tree in the background. � e 
brightness of the hand is also shown in the ! gure.

� e averaging method makes use of four OpenCV routines: cvAcc(), to accumulate im-
ages over time; cvAbsDiff(), to accumulate frame-to-frame image di$ erences over time; 
cvInRange(), to segment the image (once a background model has been learned) into 
foreground and background regions; and cvOr(), to compile segmentations from di$ er-
ent color channels into a single mask image. Because this is a rather long code example, 
we will break it into pieces and discuss each piece in turn.

First, we create pointers for the various scratch and statistics-keeping images we will 
need along the way. It will prove helpful to sort these pointers according to the type of 
images they will later hold.

//Global storage
//
//Float, 3-channel images
//
IplImage *IavgF,*IdiffF, *IprevF, *IhiF, *IlowF;

Figure 9-2. Data from Figure 9-1 presented in terms of average di! erences: an object (a hand) that 
passes in front of the camera is somewhat darker, and the brightness of that object is re$ ected in the 
graph
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IplImage *Iscratch,*Iscratch2;

//Float, 1-channel images
//
IplImage *Igray1,*Igray2, *Igray3;
IplImage *Ilow1,  *Ilow2, *Ilow3;
IplImage *Ihi1,   *Ihi2,  *Ihi3;

// Byte, 1-channel image
//
IplImage *Imaskt;

//Counts number of images learned for averaging later.
//
float Icount;

Next we create a single call to allocate all the necessary intermediate images. For con-
venience we pass in a single image (from our video) that can be used as a reference for 
sizing the intermediate images.

// I is just a sample image for allocation purposes
// (passed in for sizing)
//
void AllocateImages( IplImage* I ){

  CvSize sz = cvGetSize( I );

  IavgF     = cvCreateImage( sz, IPL_DEPTH_32F, 3 );
  IdiffF    = cvCreateImage( sz, IPL_DEPTH_32F, 3 );
  IprevF    = cvCreateImage( sz, IPL_DEPTH_32F, 3 );
  IhiF      = cvCreateImage( sz, IPL_DEPTH_32F, 3 );
  IlowF     = cvCreateImage( sz, IPL_DEPTH_32F, 3 );
  Ilow1     = cvCreateImage( sz, IPL_DEPTH_32F, 1 );
  Ilow2     = cvCreateImage( sz, IPL_DEPTH_32F, 1 );
  Ilow3     = cvCreateImage( sz, IPL_DEPTH_32F, 1 );
  Ihi1      = cvCreateImage( sz, IPL_DEPTH_32F, 1 );
  Ihi2      = cvCreateImage( sz, IPL_DEPTH_32F, 1 );
  Ihi3      = cvCreateImage( sz, IPL_DEPTH_32F, 1 );
  cvZero( IavgF );
  cvZero( IdiffF );
  cvZero( IprevF );
  cvZero( IhiF );
  cvZero( IlowF );
  Icount    = 0.00001; //Protect against divide by zero

  Iscratch  = cvCreateImage( sz, IPL_DEPTH_32F, 3 );
  Iscratch2 = cvCreateImage( sz, IPL_DEPTH_32F, 3 );
  Igray1    = cvCreateImage( sz, IPL_DEPTH_32F, 1 );
  Igray2    = cvCreateImage( sz, IPL_DEPTH_32F, 1 );
  Igray3    = cvCreateImage( sz, IPL_DEPTH_32F, 1 );
  Imaskt    = cvCreateImage( sz, IPL_DEPTH_8U,  1 );
  cvZero( Iscratch );
  cvZero( Iscratch2 );
}
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In the next piece of code, we learn the accumulated background image and the accu-
mulated absolute value of frame-to-frame image di$ erences (a computationally quicker 
proxy* for learning the standard deviation of the image pixels). � is is typically called 
for 30 to 1,000 frames, sometimes taking just a few frames from each second or some-
times taking all available frames. � e routine will be called with a three-color channel 
image of depth 8 bits.

// Learn the background statistics for one more frame
// I is a color sample of the background, 3-channel, 8u
//
void accumulateBackground( IplImage *I ){

   static int first = 1;                  // nb. Not thread safe
   cvCvtScale(  I, Iscratch, 1, 0 );     // convert to float
   if( !first ){
      cvAcc( Iscratch, IavgF );
      cvAbsDiff( Iscratch, IprevF, Iscratch2 );
      cvAcc( Iscratch2, IdiffF );
      Icount += 1.0;
   }
   first = 0;
   cvCopy( Iscratch, IprevF );

}

We ! rst use cvCvtScale() to turn the raw background 8-bit-per-channel, three-color-
channel image into a " oating-point three-channel image. We then accumulate the raw 
" oating-point images into IavgF. Next, we calculate the frame-to-frame absolute dif-
ference image using cvAbsDiff() and accumulate that into image IdiffF. Each time we 
accumulate these images, we increment the image count Icount, a global, to use for av-
eraging later.

Once we have accumulated enough frames, we convert them into a statistical model of 
the background. � at is, we compute the means and deviation measures (the average 
absolute di$ erences) of each pixel:

void createModelsfromStats() {

    cvConvertScale( IavgF,  IavgF,( double)(1.0/Icount) );
    cvConvertScale( IdiffF, IdiffF,(double)(1.0/Icount) );

    //Make sure diff is always something
    //
    cvAddS( IdiffF, cvScalar( 1.0, 1.0, 1.0), IdiffF );
    setHighThreshold( 7.0 );
    setLowThreshold( 6.0 );
}

* Notice our use of the word “proxy.” Average di$ erence is not mathematically equivalent to standard 
deviation, but in this context it is close enough to yield results of similar quality. � e advantage of average 
di$ erence is that it is slightly faster to compute than standard deviation. With only a tiny modi! cation of 
the code example you can use standard deviations instead and compare the quality of the ! nal results for 
yourself; we’ll discuss this more explicitly later in this section.
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In this code, cvConvertScale() calculates the average raw and absolute di$ erence images 
by dividing by the number of input images accumulated. As a precaution, we ensure 
that the average di$ erence image is at least 1; we’ll need to scale this factor when calcu-
lating a foreground-background threshold and would like to avoid the degenerate case 
in which these two thresholds could become equal.

Both setHighThreshold() and setLowThreshold() are utility functions that set a threshold 
based on the frame-to-frame average absolute di$ erences. � e call setHighThreshold(7.0) 
! xes a threshold such that any value that is 7 times the average frame-to-frame abso-
lute di$ erence above the average value for that pixel is considered foreground; likewise, 
setLowThreshold(6.0) sets a threshold bound that is 6 times the average frame-to-frame 
absolute di$ erence below the average value for that pixel. Within this range around the 
pixel’s average value, objects are considered to be background. � ese threshold func-
tions are:

void setHighThreshold( float scale )
{
   cvConvertScale( IdiffF, Iscratch, scale );
   cvAdd( Iscratch, IavgF, IhiF );
   cvSplit( IhiF, Ihi1, Ihi2, Ihi3, 0 );
}

void setLowThreshold( float scale )
{
   cvConvertScale( IdiffF, Iscratch, scale );
   cvSub( IavgF, Iscratch, IlowF );
   cvSplit( IlowF, Ilow1, Ilow2, Ilow3, 0 );
}

Again, in setLowThreshold() and setHighThreshold() we use cvConvertScale() to multi-
ply the values prior to adding or subtracting these ranges relative to IavgF. � is action 
sets the IhiF and IlowF range for each channel in the image via cvSplit().

Once we have our background model, complete with high and low thresholds, we use 
it to segment the image into foreground (things not “explained” by the background im-
age) and the background (anything that ! ts within the high and low thresholds of our 
background model). Segmentation is done by calling:

// Create a binary: 0,255 mask where 255 means foreground pixel
// I      Input image, 3-channel, 8u
// Imask  Mask image to be created, 1-channel 8u
//
void backgroundDiff(
  IplImage *I,
  IplImage *Imask
) {
  cvCvtScale(I,Iscratch,1,0); // To float;
  cvSplit( Iscratch, Igray1,Igray2,Igray3, 0 );

  //Channel 1
  //
  cvInRange(Igray1,Ilow1,Ihi1,Imask);
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  //Channel 2
  //
  cvInRange(Igray2,Ilow2,Ihi2,Imaskt);
  cvOr(Imask,Imaskt,Imask);

  //Channel 3
  //
  cvInRange(Igray3,Ilow3,Ihi3,Imaskt);
  cvOr(Imask,Imaskt,Imask)

  //Finally, invert the results
  //
  cvSubRS( Imask, 255, Imask);
}

� is function ! rst converts the input image I (the image to be segmented) into a " oat-
ing-point image by calling cvCvtScale(). We then convert the three-channel image into 
separate one-channel image planes using cvSplit(). � ese color channel planes are then 
checked to see if they are within the high and low range of the average background 
pixel via the cvInRange() function, which sets the grayscale 8-bit depth image Imaskt to 
max (255) when it’s in range and to 0 otherwise. For each color channel we logically OR 
the segmentation results into a mask image Imask, since strong di$ erences in any color 
channel are considered evidence of a foreground pixel here. Finally, we invert Imask us-
ing cvSubRS(), because foreground should be the values out of range, not in range. � e 
mask image is the output result.

For completeness, we need to release the image memory once we’re ! nished using the 
background model:

void DeallocateImages()
{
   cvReleaseImage( &IavgF);
   cvReleaseImage( &IdiffF );
   cvReleaseImage( &IprevF );
   cvReleaseImage( &IhiF );
   cvReleaseImage( &IlowF );
   cvReleaseImage( &Ilow1 );
   cvReleaseImage( &Ilow2 );
   cvReleaseImage( &Ilow3 );
   cvReleaseImage( &Ihi1 );
   cvReleaseImage( &Ihi2 );
   cvReleaseImage( &Ihi3 );
   cvReleaseImage( &Iscratch );
   cvReleaseImage( &Iscratch2 );
   cvReleaseImage( &Igray1 );
   cvReleaseImage( &Igray2 );
   cvReleaseImage( &Igray3 );
   cvReleaseImage( &Imaskt);
}

We’ve just seen a simple method of learning background scenes and segmenting fore-
ground objects. It will work well only with scenes that do not contain moving background 
components (like a waving curtain or waving trees). It also assumes that the lighting 
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remains fairly constant (as in indoor static scenes). You can look ahead to Figure 9-5 
to check the performance of this averaging method.

Accumulating means, variances, and covariances

� e averaging background method just described made use of one accumulation func-
tion, cvAcc(). It is one of a group of helper functions for accumulating sums of images, 
squared images, multiplied images, or average images from which we can compute basic 
statistics (means, variances, covariances) for all or part of a scene. In this section, we’ll 
look at the other functions in this group.

� e images in any given function must all have the same width and height. In each 
function, the input images named image, image1, or image2 can be one- or three-
channel byte (8-bit) or " oating-point (32F) image arrays. � e output accumulation im-
ages named sum, sqsum, or acc can be either single-precision (32F) or double-precision 
(64F) arrays. In the accumulation functions, the mask image (if present) restricts pro-
cessing to only those locations where the mask pixels are nonzero.

Finding the mean. To compute a mean value for each pixel across a large set of images, the 
easiest method is to add them all up using cvAcc() and then divide by the total number 
of images to obtain the mean.

void cvAcc(
  const Cvrr*  image,
  CvArr*       sum,
  const CvArr* mask = NULL
);

An alternative that is o� en useful is to use a running average.

void cvRunningAvg(
  const CvArr* image,
  CvArr*       acc,
  double       alpha,
  const CvArr* mask = NULL
);

� e running average is given by the following formula:

α αacc acc image if mask( , ) ( ) ( , ) ( , ) (x y x y x y= − ⋅ + ⋅1 xx y, )≠ 0

For a constant value of α, running averages are not equivalent to the result of summing 
with cvAcc(). To see this, simply consider adding three numbers (2, 3, and 4) with α set 
to 0.5. If we were to accumulate them with cvAcc(), then the sum would be 9 and the 
average 3. If we were to accumulate them with cvRunningAverage(), the ! rst sum would 
give 0.5 × 2 + 0.5 × 3 = 2.5 and then adding the third term would give 0.5 × 2.5 + 0.5 × 
4 = 3.25. � e reason the second number is larger is that the most recent contributions 
are given more weight than those from farther in the past. Such a running average is 
thus also called a tracker. � e parameter α essentially sets the amount of time necessary 
for the in" uence of a previous frame to fade.
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Finding the variance. We can also accumulate squared images, which will allow us to com-
pute quickly the variance of individual pixels.

void cvSquareAcc(
  const CvArr* image,
  CvArr*       sqsum,
  const CvArr* mask = NULL
);

You may recall from your last class in statistics that the variance of a ! nite population is 
de! ned by the formula:
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where x– is the mean of x for all N samples. � e problem with this formula is that it 
entails making one pass through the images to compute x– and then a second pass to 
compute σ 2. A little algebra should allow you to convince yourself that the following 
formula will work just as well:
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Using this form, we can accumulate both the pixel values and their squares in a single 
pass. � en, the variance of a single pixel is just the average of the square minus the 
square of the average.

Finding the covariance. We can also see how images vary over time by selecting a speci! c lag 

and then multiplying the current image by the image from the past that corresponds to 
the given lag. � e function cvMultiplyAcc() will perform a pixelwise multiplication of 
the two images and then add the result to the “running total” in acc:

void cvMultiplyAcc(
  const CvArr* image1,
  const CvArr* image2,
  CvArr*       acc,
  const CvArr* mask = NULL
);

For covariance, there is a formula analogous to the one we just gave for variance. � is 
formula is also a single-pass formula in that it has been manipulated algebraically from 
the standard form so as not to require two trips through the list of images:
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In our context, x is the image at time t and y is the image at time t – d, where d is 
the lag.
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We can use the accumulation functions described here to create a variety of statistics-
based background models. � e literature is full of variations on the basic model used as 
our example. You will probably ! nd that, in your own applications, you will tend to extend 
this simplest model into slightly more specialized versions. A common enhancement, for 
example, is for the thresholds to be adaptive to some observed global state changes.

Advanced Background Method
Many background scenes contain complicated moving objects such as trees waving in the 
wind, fans turning, curtains " uttering, et cetera. O� en such scenes also contain varying 
lighting, such as clouds passing by or doors and windows letting in di$ erent light.

A nice method to deal with this would be to ! t a time-series model to each pixel or 
group of pixels. � is kind of model deals with the temporal " uctuations well, but its 
disadvantage is the need for a great deal of memory [Toyama99]. If we use 2 seconds 
of previous input at 30 Hz, this means we need 60 samples for each pixel. � e resulting 
model for each pixel would then encode what it had learned in the form of 60 di$ er-
ent adapted weights. O� en we’d need to gather background statistics for much longer 
than 2 seconds, which means that such methods are typically impractical on present-
day hardware.

To get fairly close to the performance of adaptive ! ltering, we take inspiration from 
the techniques of video compression and attempt to form a codebook* to represent sig-
ni! cant states in the background.† � e simplest way to do this would be to compare a 
new value observed for a pixel with prior observed values. If the value is close to a prior 
value, then it is modeled as a perturbation on that color. If it is not close, then it can seed 
a new group of colors to be associated with that pixel. � e result could be envisioned as 
a bunch of blobs " oating in RGB space, each blob representing a separate volume con-
sidered likely to be background.

In practice, the choice of RGB is not particularly optimal. It is almost always better to 
use a color space whose axis is aligned with brightness, such as the YUV color space. 
(YUV is the most common choice, but spaces such as HSV, where V is essentially bright-
ness, would work as well.) � e reason for this is that, empirically, most of the variation 
in background tends to be along the brightness axis, not the color axis.

� e next detail is how to model the “blobs.” We have essentially the same choices as 
before with our simpler model. We could, for example, choose to model the blobs as 
Gaussian clusters with a mean and a covariance. It turns out that the simplest case, in 

* � e method OpenCV implements is derived from Kim, Chalidabhongse, Harwood, and Davis [Kim05], but 
rather than learning-oriented tubes in RGB space, for speed, the authors use axis-aligned boxes in YUV 
space. Fast methods for cleaning up the resulting background image can be found in Martins [Martins99].

† � ere is a large literature for background modeling and segmentation. OpenCV’s implementation is 
intended to be fast and robust enough that you can use it to collect foreground objects mainly for the pur-
poses of collecting data sets to train classi! ers on. Recent work in background subtraction allows arbitrary 
camera motion [Farin04; Colombari07] and dynamic background models using the mean-shi�  algorithm 
[Liu07].
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In the case of our background model, we will learn a codebook of boxes that cover three 
dimensions: the three channels that make up our image at each pixel. Figure 9-4 visu-
alizes the (intensity dimension of the) codebooks for six di$ erent pixels learned from 

which the “blobs” are simply boxes with a learned extent in each of the three axes of our 
color space, works out quite well. It is the simplest in terms of memory required and in 
terms of the computational cost of determining whether a newly observed pixel is inside 
any of the learned boxes.

Let’s explain what a codebook is by using a simple example (Figure 9-3). A codebook 
is made up of boxes that grow to cover the common values seen over time. � e upper 
panel of Figure 9-3 shows a waveform over time. In the lower panel, boxes form to cover 
a new value and then slowly grow to cover nearby values. If a value is too far away, then 
a new box forms to cover it and likewise grows slowly toward new values.

Figure 9-3. Codebooks are just “boxes” delimiting intensity values: a box is formed to cover a new 
value and slowly grows to cover nearby values; if values are too far away then a new box is formed 
(see text)
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the data in Figure 9-1.* � is codebook method can deal with pixels that change levels 
dramatically (e.g., pixels in a windblown tree, which might alternately be one of many 
colors of leaves, or the blue sky beyond that tree). With this more precise method of 
modeling, we can detect a foreground object that has values between the pixel values. 
Compare this with Figure 9-2, where the averaging method cannot distinguish the hand 
value (shown as a dotted line) from the pixel " uctuations. Peeking ahead to the next 
section, we see the better performance of the codebook method versus the averaging 
method shown later in Figure 9-7.

In the codebook method of learning a background model, each box is de! ned by two 
thresholds (max and min) over each of the three color axes. � ese box boundary thresh-
olds will expand (max getting larger, min getting smaller) if new background samples fall 
within a learning threshold (learnHigh and learnLow) above max or below min, respec-
tively. If new background samples fall outside of the box and its learning thresholds, 
then a new box will be started. In the background di! erence mode there are acceptance 
thresholds maxMod and minMod; using these threshold values, we say that if a pixel is “close 
enough” to a max or a min box boundary then we count it as if it were inside the box. A 
second runtime threshold allows for adjusting the model to speci! c conditions.

A situation we will not cover is a pan-tilt camera surveying a large 
scene. When working with a large scene, it is necessary to stitch 
together learned models indexed by the pan and tilt angles.

* In this case we have chosen several pixels at random from the scan line to avoid excessive clutter. Of course, 
there is actually a codebook for every pixel.

Figure 9-4. Intensity portion of learned codebook entries for $ uctuations of six chosen pixels (shown 
as vertical boxes): codebook boxes accommodate pixels that take on multiple discrete values and so 
can better model discontinuous distributions; thus they can detect a foreground hand (value at dot-
ted line) whose average value is between the values that background pixels can assume. In this case 
the codebooks are one dimensional and only represent variations in intensity
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Structures

It’s time to look at all of this in more detail, so let’s create an implementation of the 
codebook algorithm. First, we need our codebook structure, which will simply point to 
a bunch of boxes in YUV space:

typedef struct code_book {
   code_element **cb;
   int numEntries;
   int t;         //count every access
} codeBook;

We track how many codebook entries we have in numEntries. � e variable t counts the 
number of points we’ve accumulated since the start or the last clear operation. Here’s 
how the actual codebook elements are described:

#define CHANNELS 3
typedef struct ce {
   uchar learnHigh[CHANNELS]; //High side threshold for learning
   uchar learnLow[CHANNELS];  //Low side threshold for learning
   uchar max[CHANNELS];       //High side of box boundary
   uchar min[CHANNELS];       //Low side of box boundary
   int t_last_update;          //Allow us to kill stale entries
   int stale;                  //max negative run (longest period of inactivity)
} code_element;

Each codebook entry consumes four bytes per channel plus two integers, or CHANNELS 3 
4 + 4 + 4 bytes (20 bytes when we use three channels). We may set CHANNELS to any 
positive number equal to or less than the number of color channels in an image, but it 
is usually set to either 1 (“Y”, or brightness only) or 3 (YUV, HSV). In this structure, 
for each channel, max and min are the boundaries of the codebook box. � e parameters 
learnHigh[] and learnLow[] are the thresholds that trigger generation of a new code ele-
ment. Speci! cally, a new code element will be generated if a new pixel is encountered 
whose values do not lie between min – learnLow and max + learnHigh in each of the 
channels. � e time to last update (t_last_update) and stale are used to enable the dele-
tion of seldom-used codebook entries created during learning. Now we can proceed to 
investigate the functions that use this structure to learn dynamic backgrounds.

Learning the background

We will have one codeBook of code_elements for each pixel. We will need an array of 
such codebooks that is equal in length to the number of pixels in the images we’ll be 
learning. For each pixel, update_codebook() is called for as many images as are su#  cient 
to capture the relevant changes in the background. Learning may be updated periodi-
cally throughout, and clear_stale_entries() can be used to learn the background in the 
presence of (small numbers of) moving foreground objects. � is is possible because the 
seldom-used “stale” entries induced by a moving foreground will be deleted. � e inter-
face to update_codebook() is as follows.

//////////////////////////////////////////////////////////////
// int update_codebook(uchar *p, codeBook &c, unsigned cbBounds)
// Updates the codebook entry with a new data point
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//
// p            Pointer to a YUV pixel
// c            Codebook for this pixel
// cbBounds     Learning bounds for codebook (Rule of thumb: 10)
// numChannels  Number of color channels we’re learning
//
// NOTES:
//      cvBounds must be of length equal to numChannels
//
// RETURN
//   codebook index
//
int update_codebook(
  uchar*    p,
  codeBook& c,
  unsigned* cbBounds,
  int       numChannels
){
   unsigned int high[3],low[3];
   for(n=0; n<numChannels; n++)
   {
      high[n] = *(p+n)+*(cbBounds+n);
      if(high[n] > 255) high[n] = 255;
      low[n] = *(p+n)-*(cbBounds+n);
      if(low[n] < 0) low[n] = 0;
   }
   int matchChannel;

   // SEE IF THIS FITS AN EXISTING CODEWORD
   //
   for(int i=0; i<c.numEntries; i++){
      matchChannel = 0;
      for(n=0; n<numChannels; n++){
         if((c.cb[i]->learnLow[n] <= *(p+n)) &&
         //Found an entry for this channel
         (*(p+n) <= c.cb[i]->learnHigh[n]))
            {
               matchChannel++;
            }
      }
      if(matchChannel == numChannels) //If an entry was found
      {
         c.cb[i]->t_last_update = c.t;
         //adjust this codeword for the first channel
         for(n=0; n<numChannels; n++){
            if(c.cb[i]->max[n] < *(p+n))
            {
               c.cb[i]->max[n] = *(p+n);
            }
            else if(c.cb[i]->min[n] > *(p+n))
            {
               c.cb[i]->min[n] = *(p+n);
            }
         }
         break;
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      }
   }
. . . continued below

� is function grows or adds a codebook entry when the pixel p falls outside the existing 
codebook boxes. Boxes grow when the pixel is within cbBounds of an existing box. If a 
pixel is outside the cbBounds distance from a box, a new codebook box is created. � e 
routine ! rst sets high and low levels to be used later. It then goes through each codebook 
entry to check whether the pixel value *p is inside the learning bounds of the codebook 
“box”. If the pixel is within the learning bounds for all channels, then the appropriate 
max or min level is adjusted to include this pixel and the time of last update is set to the 
current timed count c.t. Next, the update_codebook() routine keeps statistics on how 
o� en each codebook entry is hit:

. . . continued from above

   // OVERHEAD TO TRACK POTENTIAL STALE ENTRIES
   //
   for(int s=0; s<c.numEntries; s++){

      // Track which codebook entries are going stale:
      //
      int negRun = c.t - c.cb[s]->t_last_update;
      if(c.cb[s]->stale < negRun) c.cb[s]->stale = negRun;

   }

. . . continued below

Here, the variable stale contains the largest negative runtime (i.e., the longest span of 
time during which that code was not accessed by the data). Tracking stale entries al-
lows us to delete codebooks that were formed from noise or moving foreground objects 
and hence tend to become stale over time. In the next stage of learning the background, 
update_codebook() adds a new codebook if needed:

. . . continued from above

   // ENTER A NEW CODEWORD IF NEEDED
   //
   if(i == c.numEntries) //if no existing codeword found, make one
   {
      code_element **foo = new code_element* [c.numEntries+1];
      for(int ii=0; ii<c.numEntries; ii++) {
        foo[ii] = c.cb[ii];
      }
      foo[c.numEntries] = new code_element;
      if(c.numEntries) delete [] c.cb;
      c.cb = foo;
      for(n=0; n<numChannels; n++) {
         c.cb[c.numEntries]->learnHigh[n] = high[n];
         c.cb[c.numEntries]->learnLow[n] = low[n];
         c.cb[c.numEntries]->max[n] = *(p+n);
         c.cb[c.numEntries]->min[n] = *(p+n);
      }
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      c.cb[c.numEntries]->t_last_update = c.t;
      c.cb[c.numEntries]->stale = 0;
      c.numEntries += 1;
   }

. . . continued below

Finally, update_codebook() slowly adjusts (by adding 1) the learnHigh and learnLow 
learning boundaries if pixels were found outside of the box thresholds but still within 
the high and low bounds:

. . . continued from above

   // SLOWLY ADJUST LEARNING BOUNDS
   //
   for(n=0; n<numChannels; n++)
   {
      if(c.cb[i]->learnHigh[n] < high[n]) c.cb[i]->learnHigh[n] += 1;
      if(c.cb[i]->learnLow[n] > low[n]) c.cb[i]->learnLow[n] -= 1;
   }
   return(i);
}

� e routine concludes by returning the index of the modi! ed codebook. We’ve now 
seen how codebooks are learned. In order to learn in the presence of moving foreground 
objects and to avoid learning codes for spurious noise, we need a way to delete entries 
that were accessed only rarely during learning.

Learning with moving foreground objects

� e following routine, clear_stale_entries(), allows us to learn the background even if 
there are moving foreground objects.

///////////////////////////////////////////////////////////////////
//int clear_stale_entries(codeBook &c)
// During learning, after you’ve learned for some period of time,
// periodically call this to clear out stale codebook entries
//
// c   Codebook to clean up
//
// Return
// number of entries cleared
//
int clear_stale_entries(codeBook &c){
  int staleThresh = c.t>>1;
  int *keep = new int [c.numEntries];
  int keepCnt = 0;
  // SEE WHICH CODEBOOK ENTRIES ARE TOO STALE
  //
  for(int i=0; i<c.numEntries; i++){
     if(c.cb[i]->stale > staleThresh)
        keep[i] = 0; //Mark for destruction
     else
     {
        keep[i] = 1; //Mark to keep
        keepCnt += 1;
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     }
  }
  // KEEP ONLY THE GOOD
  //
  c.t = 0;         //Full reset on stale tracking
  code_element **foo = new code_element* [keepCnt];
  int k=0;
  for(int ii=0; ii<c.numEntries; ii++){
     if(keep[ii])
     {
        foo[k] = c.cb[ii];
        //We have to refresh these entries for next clearStale
        foo[k]->t_last_update = 0;
        k++;
     }
  }
  // CLEAN UP
  //
  delete [] keep;
  delete [] c.cb;
  c.cb = foo;
  int numCleared = c.numEntries - keepCnt;
  c.numEntries = keepCnt;
  return(numCleared);
}

� e routine begins by de! ning the parameter staleThresh, which is hardcoded (by a rule 
of thumb) to be half the total running time count, c.t. � is means that, during back-
ground learning, if codebook entry i is not accessed for a period of time equal to half 
the total learning time, then i is marked for deletion (keep[i] = 0). � e vector keep[] is 
allocated so that we can mark each codebook entry; hence it is c.numEntries long. � e 
variable keepCnt counts how many entries we will keep. A� er recording which codebook 
entries to keep, we create a new pointer, foo, to a vector of code_element pointers that is 
keepCnt long, and then the nonstale entries are copied into it. Finally, we delete the old 
pointer to the codebook vector and replace it with the new, nonstale vector.

Background differencing: Finding foreground objects

We’ve seen how to create a background codebook model and how to clear it of seldom-
used entries. Next we turn to background_diff(), where we use the learned model to seg-
ment foreground pixels from the previously learned background:

////////////////////////////////////////////////////////////
// uchar background_diff( uchar *p, codeBook &c,
//                         int minMod, int maxMod)
// Given a pixel and a codebook, determine if the pixel is
// covered by the codebook
//
// p            Pixel pointer (YUV interleaved)
// c            Codebook reference
// numChannels  Number of channels we are testing
// maxMod       Add this (possibly negative) number onto
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//              max level when determining if new pixel is foreground
// minMod       Subract this (possibly negative) number from
//              min level when determining if new pixel is foreground
//
// NOTES:
// minMod and maxMod must have length numChannels,
// e.g. 3 channels => minMod[3], maxMod[3]. There is one min and
//      one max threshold per channel.
//
// Return
// 0 => background, 255 => foreground
//
uchar background_diff(
  uchar*    p,
  codeBook& c,
  int       numChannels,
  int*      minMod,
  int*      maxMod
) {
  int matchChannel;

  // SEE IF THIS FITS AN EXISTING CODEWORD
  //
  for(int i=0; i<c.numEntries; i++) {
     matchChannel = 0;
     for(int n=0; n<numChannels; n++) {
        if((c.cb[i]->min[n] - minMod[n] <= *(p+n)) &&
           (*(p+n) <= c.cb[i]->max[n] + maxMod[n])) {
           matchChannel++; //Found an entry for this channel
        } else {
           break;
        }
     }
     if(matchChannel == numChannels) {
        break; //Found an entry that matched all channels
     }
  }
  if(i >= c.numEntries) return(255);
  return(0);
}

� e background di$ erencing function has an inner loop similar to the learning routine 
update_codebook, except here we look within the learned max and min bounds plus an 
o$ set threshold, maxMod and minMod, of each codebook box. If the pixel is within the box 
plus maxMod on the high side or minus minMod on the low side for each channel, then the 
matchChannel count is incremented. When matchChannel equals the number of channels, 
we’ve searched each dimension and know that we have a match. If the pixel is within 
a learned box, 255 is returned (a positive detection of foreground); otherwise, 0 is re-
turned (background).

� e three functions update_codebook(), clear_stale_entries(), and background_diff() 
constitute a codebook method of segmenting foreground from learned background.
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Using the codebook background model

To use the codebook background segmentation technique, typically we take the follow-
ing steps.

Learn a basic model of the background over a few seconds or minutes using 1. 
update_codebook().

Clean out stale entries with 2. clear_stale_entries().

Adjust the thresholds 3. minMod and maxMod to best segment the known foreground.

Maintain a higher-level scene model (as discussed previously).4. 

Use the learned model to segment the foreground from the background via 5. 
background_diff().

Periodically update the learned background pixels.6. 

At a much slower frequency, periodically clean out stale codebook entries with 7. 
clear_stale_entries().

A few more thoughts on codebook models

In general, the codebook method works quite well across a wide number of conditions, 
and it is relatively quick to train and to run. It doesn’t deal well with varying patterns of 
light—such as morning, noon, and evening sunshine—or with someone turning lights 
on or o$  indoors. � is type of global variability can be taken into account by using sev-
eral di$ erent codebook models, one for each condition, and then allowing the condition 
to control which model is active.

Connected Components for Foreground Cleanup
Before comparing the averaging method to the codebook method, we should pause to 
discuss ways to clean up the raw segmented image using connected-components analysis. 
� is form of analysis takes in a noisy input mask image; it then uses the morphologi-
cal operation open to shrink areas of small noise to 0 followed by the morphological 
operation close to rebuild the area of surviving components that was lost in opening. 
� erea� er, we can ! nd the “large enough” contours of the surviving segments and can 
optionally proceed to take statistics of all such segments. We can then retrieve either the 
largest contour or all contours of size above some threshold. In the routine that follows, 
we implement most of the functions that you could want in connected components:

Whether to approximate the surviving component contours by polygons or by con-• 
vex hulls

Setting how large a component contour must be in order not to be deleted• 

Setting the maximum number of component contours to return• 

Optionally returning the bounding boxes of the surviving component contours• 

Optionally returning the centers of the surviving component contours• 
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� e connected components header that implements these operations is as follows.

///////////////////////////////////////////////////////////////////
// void find_connected_components(IplImage *mask, int poly1_hull0,
//                            float perimScale, int *num,
//                            CvRect *bbs, CvPoint *centers)
// This cleans up the foreground segmentation mask derived from calls
// to backgroundDiff
//
// mask          Is a grayscale (8-bit depth) “raw” mask image that
//               will be cleaned up
//
// OPTIONAL PARAMETERS:
// poly1_hull0   If set, approximate connected component by
//                 (DEFAULT) polygon, or else convex hull (0)
// perimScale    Len = image (width+height)/perimScale. If contour
//                 len < this, delete that contour (DEFAULT: 4)
// num           Maximum number of rectangles and/or centers to
//                 return; on return, will contain number filled
//                 (DEFAULT: NULL)
// bbs           Pointer to bounding box rectangle vector of
//                 length num. (DEFAULT SETTING: NULL)
// centers      Pointer to contour centers vector of length
//                 num (DEFAULT: NULL)
//
void find_connected_components(
  IplImage* mask,
  int       poly1_hull0 = 1,
  float     perimScale  = 4,
  int*      num         = NULL,
  CvRect*   bbs         = NULL,
  CvPoint*  centers     = NULL
 );

� e function body is listed below. First we declare memory storage for the connected 
components contour. We then do morphological opening and closing in order to clear 
out small pixel noise, a� er which we rebuild the eroded areas that survive the erosion 
of the opening operation. � e routine takes two additional parameters, which here are 
hardcoded via #define. � e de! ned values work well, and you are unlikely to want to 
change them. � ese additional parameters control how simple the boundary of a fore-
ground region should be (higher numbers are more simple) and how many iterations 
the morphological operators should perform; the higher the number of iterations, the 
more erosion takes place in opening before dilation in closing.* More erosion eliminates 
larger regions of blotchy noise at the cost of eroding the boundaries of larger regions. 
Again, the parameters used in this sample code work well, but there’s no harm in ex-
perimenting with them if you like.

// For connected components:
// Approx.threshold - the bigger it is, the simpler is the boundary
//

* Observe that the value CVCLOSE_ITR is actually dependent on the resolution. For images of extremely high 
resolution, leaving this value set to 1 is not likely to yield satisfactory results.
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#define CVCONTOUR_APPROX_LEVEL  2

// How many iterations of erosion and/or dilation there should be
//
#define CVCLOSE_ITR  1

We now discuss the connected-component algorithm itself. � e ! rst part of the routine 
performs the morphological open and closing operations:

void find_connected_components(
  IplImage *mask,
  int poly1_hull0,
  float perimScale,
  int *num,
  CvRect *bbs,
  CvPoint *centers
) {

  static CvMemStorage*   mem_storage = NULL;
  static CvSeq*          contours    = NULL;

  //CLEAN UP RAW MASK
  //
  cvMorphologyEx( mask, mask, 0, 0, CV_MOP_OPEN,  CVCLOSE_ITR );
  cvMorphologyEx( mask, mask, 0, 0, CV_MOP_CLOSE, CVCLOSE_ITR );

Now that the noise has been removed from the mask, we ! nd all contours:

  //FIND CONTOURS AROUND ONLY BIGGER REGIONS
  //
  if( mem_storage==NULL ) {
    mem_storage = cvCreateMemStorage(0);
  } else {
    cvClearMemStorage(mem_storage);
  }

  CvContourScanner scanner = cvStartFindContours(
    mask,
    mem_storage,
    sizeof(CvContour),
    CV_RETR_EXTERNAL,
    CV_CHAIN_APPROX_SIMPLE
  );

Next, we toss out contours that are too small and approximate the rest with polygons or 
convex hulls (whose complexity has already been set by CVCONTOUR_APPROX_LEVEL):

  CvSeq* c;
  int numCont = 0;
  while( (c = cvFindNextContour( scanner )) != NULL ) {

    double len = cvContourPerimeter( c );

    // calculate perimeter len threshold:
    //
    double q = (mask->height + mask->width)/perimScale;

    //Get rid of blob if its perimeter is too small:
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    //
    if( len < q ) {
       cvSubstituteContour( scanner, NULL );
    } else {

      // Smooth its edges if its large enough
      //
      CvSeq* c_new;
      if( poly1_hull0 ) {

        // Polygonal approximation
        //
        c_new = cvApproxPoly(
          c,
          sizeof(CvContour),
          mem_storage,
          CV_POLY_APPROX_DP,
          CVCONTOUR_APPROX_LEVEL,
          0
        );

      } else {

         // Convex Hull of the segmentation
         //
         c_new = cvConvexHull2(
           c,
           mem_storage,
           CV_CLOCKWISE,
           1
         );
      }
      cvSubstituteContour( scanner, c_new );
      numCont++;
    }
  }
  contours = cvEndFindContours( &scanner );

In the preceding code, CV_POLY_APPROX_DP causes the Douglas-Peucker approximation al-
gorithm to be used, and CV_CLOCKWISE is the default direction of the convex hull contour. 
All this processing yields a list of contours. Before drawing the contours back into the 
mask, we de! ne some simple colors to draw:

  // Just some convenience variables
  const CvScalar CVX_WHITE = CV_RGB(0xff,0xff,0xff)
  const CvScalar CVX_BLACK = CV_RGB(0x00,0x00,0x00)

We use these de! nitions in the following code, where we ! rst zero out the mask and then 
draw the clean contours back into the mask. We also check whether the user wanted to 
collect statistics on the contours (bounding boxes and centers):

  // PAINT THE FOUND REGIONS BACK INTO THE IMAGE
  //
  cvZero( mask );
  IplImage *maskTemp;
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  // CALC CENTER OF MASS AND/OR BOUNDING RECTANGLES
  //
  if(num != NULL) {

    //User wants to collect statistics
    //
    int N = *num, numFilled = 0, i=0;
    CvMoments moments;
    double M00, M01, M10;
    maskTemp = cvCloneImage(mask);
    for(i=0, c=contours; c != NULL; c = c->h_next,i++ ) {

       if(i < N) {
         // Only process up to *num of them
         //
         cvDrawContours(
           maskTemp,
           c,
           CVX_WHITE,
           CVX_WHITE,
           -1,
           CV_FILLED,
           8
         );

         // Find the center of each contour
         //
         if(centers != NULL) {

             cvMoments(maskTemp,&moments,1);
             M00 = cvGetSpatialMoment(&moments,0,0);
             M10 = cvGetSpatialMoment(&moments,1,0);
             M01 = cvGetSpatialMoment(&moments,0,1);
             centers[i].x = (int)(M10/M00);
             centers[i].y = (int)(M01/M00);
         }

         //Bounding rectangles around blobs
         //
         if(bbs != NULL) {
            bbs[i] = cvBoundingRect(c);
         }
         cvZero(maskTemp);
         numFilled++;
       }
       // Draw filled contours into mask
       //
       cvDrawContours(
         mask,
         c,
         CVX_WHITE,
         CVX_WHITE,
         -1,
         CV_FILLED,
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         8
       );
    }                               //end looping over contours
    *num = numFilled;
    cvReleaseImage( &maskTemp);
  }

If the user doesn’t need the bounding boxes and centers of the resulting regions in the 
mask, we just draw back into the mask those cleaned-up contours representing large 
enough connected components of the background.

  // ELSE JUST DRAW PROCESSED CONTOURS INTO THE MASK
  //
  else {
    // The user doesn’t want statistics, just draw the contours
    //
    for( c=contours; c != NULL; c = c->h_next ) {
      cvDrawContours(
      mask,
      c,
      CVX_WHITE,
      CVX_BLACK,
      -1,
      CV_FILLED,
      8
    );
  }
}

� at concludes a useful routine for creating clean masks out of noisy raw masks. Now 
let’s look at a short comparison of the background subtraction methods.

A quick test

We start with an example to see how this really works in an actual video. Let’s stick 
with our video of the tree outside of the window. Recall (Figure 9-1) that at some point 
a hand passes through the scene. One might expect that we could ! nd this hand rela-
tively easily with a technique such as frame di$ erencing (discussed previously in its own 
section). � e basic idea of frame di$ erencing was to subtract the current frame from a 
“lagged” frame and then threshold the di$ erence.

Sequential frames in a video tend to be quite similar. Hence one might expect that, if 
we take a simple di$ erence of the original frame and the lagged frame, we’ll not see too 
much unless there is some foreground object moving through the scene.* But what does 
“not see too much” mean in this context? Really, it means “just noise.” Of course, in 
practice the problem is sorting out that noise from the signal when a foreground object 
does come along.

* In the context of frame di$ erencing, an object is identi! ed as “foreground” mainly by its velocity. � is is 
reasonable in scenes that are generally static or in which foreground objects are expected to be much closer 
to the camera than background objects (and thus appear to move faster by virtue of the projective geometry 
of cameras).
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To understand this noise a little better, we will ! rst look at a pair of frames from the 
video in which there is no foreground object—just the background and the result-
ing noise. Figure 9-5 shows a typical frame from the video (upper le� ) and the previ-
ous frame (upper right). � e ! gure also shows the results of frame di$ erencing with a 
threshold value of 15 (lower le� ). You can see substantial noise from the moving leaves 
of the tree. Nevertheless, the method of connected components is able to clean up this 
scattered noise quite well* (lower right). � is is not surprising, because there is no rea-
son to expect much spatial correlation in this noise and so its signal is characterized by 
a large number of very small regions.

Now consider the situation in which a foreground object (our ubiquitous hand) passes 
through the view of the imager. Figure 9-6 shows two frames that are similar to those 
in Figure 9-5 except that now the hand is moving across from le�  to right. As before, 
the current frame (upper le� ) and the previous frame (upper right) are shown along 

* � e size threshold for the connected components has been tuned to give zero response in these empty 
frames. � e real question then is whether or not the foreground object of interest (the hand) survives prun-
ing at this size threshold. We will see (Figure 9-6) that it does so nicely.

Figure 9-5. Frame di! erencing: a tree is waving in the background in the current (upper le" ) and 
previous (upper right) frame images; the di! erence image (lower le" ) is completely cleaned up (lower 
right) by the connected-components method
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with the response to frame di$ erencing (lower le� ) and the fairly good results of the 
connected-component cleanup (lower right).

We can also clearly see one of the de! ciencies of frame di$ erencing: it cannot distin-
guish between the region from where the object moved (the “hole”) and where the ob-
ject is now. Furthermore, in the overlap region there is o� en a gap because “" esh minus 
" esh” is 0 (or at least below threshold).

� us we see that using connected components for cleanup is a powerful technique for 
rejecting noise in background subtraction. As a bonus, we were also able to glimpse 
some of the strengths and weaknesses of frame di$ erencing.

Comparing Background Methods
We have discussed two background modeling techniques in this chapter: the average 
distance method and the codebook method. You might be wondering which method is 

Figure 9-6. Frame di! erence method of detecting a hand, which is moving le"  to right as the fore-
ground object (upper two panels); the di! erence image (lower le" ) shows the “hole” (where the hand 
used to be) toward the le"  and its leading edge toward the right, and the connected-component im-
age (lower right) shows the cleaned-up di! erence
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better, or, at least, when you can get away with using the easy one. In these situations, it’s 
always best to just do a straight bake o$ * between the available methods.

We will continue with the same tree video that we’ve been discussing all chapter. In addi-
tion to the moving tree, this ! lm has a lot of glare coming o$  a building to the right and 
o$  portions of the inside wall on the le� . It is a fairly challenging background to model.

In Figure 9-7 we compare the average di$ erence method at top against the codebook 
method at bottom; on the le�  are the raw foreground images and on the right are the 
cleaned-up connected components. You can see that the average di$ erence method 
leaves behind a sloppier mask and breaks the hand into two components. � is is not so 
surprising; in Figure 9-2, we saw that using the average di$ erence from the mean as a 
background model o� en included pixel values associated with the hand value (shown as 
a dotted line in that ! gure). Compare this with Figure 9-4, where codebooks can more 
accurately model the " uctuations of the leaves and branches and so more precisely iden-
tify foreground hand pixels (dotted line) from background pixels. Figure 9-7 con! rms 
not only that the background model yields less noise but also that connected compo-
nents can generate a fairly accurate object outline.

Watershed Algorithm
In many practical contexts, we would like to segment an image but do not have the 
bene! t of a separate background image. One technique that is o� en e$ ective in this 
context is the watershed algorithm [Meyer92]. � is algorithm converts lines in an im-
age into “mountains” and uniform regions into “valleys” that can be used to help seg-
ment objects. � e watershed algorithm ! rst takes the gradient of the intensity image; 
this has the e$ ect of forming valleys or basins (the low points) where there is no texture 
and of forming mountains or ranges (high ridges corresponding to edges) where there 
are dominant lines in the image. It then successively " oods basins starting from user-
speci! ed (or algorithm-speci! ed) points until these regions meet. Regions that merge 
across the marks so generated are segmented as belonging together as the image “! lls 
up”. In this way, the basins connected to the marker point become “owned” by that 
marker. We then segment the image into the corresponding marked regions.

More speci! cally, the watershed algorithm allows a user (or another algorithm!) to mark 
parts of an object or background that are known to be part of the object or background. 
� e user or algorithm can draw a simple line that e$ ectively tells the watershed algo-
rithm to “group points like these together”. � e watershed algorithm then segments the 
image by allowing marked regions to “own” the edge-de! ned valleys in the gradient im-
age that are connected with the segments. Figure 9-8 clari! es this process.

� e function speci! cation of the watershed segmentation algorithm is:

void cvWatershed(
  const CvArr* image,

* For the uninitiated, “bake o$ ” is actually a bona ! de term used to describe any challenge or comparison of 
multiple algorithms on a predetermined data set.
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Figure 9-8. Watershed algorithm: a" er a user has marked objects that belong together (le"  panel), 
the algorithm then merges the marked area into segments (right panel)

Figure 9-7. With the averaging method (top row), the connected-components cleanup knocks out the 
# ngers (upper right); the codebook method (bottom row) does much better at segmentation and cre-
ates a clean connected-component mask (lower right)
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