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Abstract

The Bayesian framework for machine learning allows for the incorporation of prior knowledge

in a coherent way, avoids overfitting problems, and provides a principled basis for selecting

between alternative models. Unfortunately the computations required are usually intractable.

This thesis presents a unified variational Bayesian (VB) framework which approximates these

computations in models with latent variables using a lower bound on the marginal likelihood.

Chapter 1 presents background material on Bayesian inference, graphical models, and propaga-

tion algorithms. Chapter 2 forms the theoretical core of the thesis, generalising the expectation-

maximisation (EM) algorithm for learning maximum likelihood parameters to the VB EM al-

gorithm which integrates over model parameters. The algorithm is then specialised to the large

family of conjugate-exponential (CE) graphical models, and several theorems are presented to

pave the road for automated VB derivation procedures in both directed and undirected graphs

(Bayesian and Markov networks, respectively).

Chapters 3-5 derive and apply the VB EM algorithm to three commonly-used and important

models: mixtures of factor analysers, linear dynamical systems, and hidden Markov models.

It is shown how model selection tasks such as determining the dimensionality, cardinality, or

number of variables are possible using VB approximations. Also explored are methods for

combining sampling procedures with variational approximations, to estimate the tightness of

VB bounds and to obtain more effective sampling algorithms. Chapter 6 applies VB learning

to a long-standing problem of scoring discrete-variable directed acyclic graphs, and compares

the performance to annealed importance sampling amongst other methods. Throughout, the

VB approximation is compared to other methods including sampling, Cheeseman-Stutz, and

asymptotic approximations such as BIC. The thesis concludes with a discussion of evolving

directions for model selection including infinite models and alternative approximations to the

marginal likelihood.
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Chapter 1

Introduction

Our everyday experiences can be summarised as a series of decisions to take actions which

manipulate our environment in some way or other. We base our decisions on the results of

predictions or inferences of quantities that have some bearing on our quality of life, and we

come to arrive at these inferences based onmodelsof what we expect to observe. Models are

designed to capture salient trends or regularities in the observed data with a view to predicting

future events. Sometimes the models can be constructed with existing expertise, but for the

majority of real applications the data are far too complex or the underlying processes not nearly

well enough understood for the modeller to design a perfectly accurate model. If this is the case,

we can hope only to design models that are simplifying approximations of the true processes

that generated the data.

For example, the data might be a time series of the price of stock recorded every day for the last

six months, and we would like to know whether to buy or sell stock today. This decision, and

its particulars, depend on what the price of the stock is likely to be a week from now. There

are obviously a very large number of factors that influence the price and these do so to varying

degrees and in convoluted and complex ways. Even in the unlikely scenario that we knew

exactly how all these factors affected the price, we would still have to gather every piece of data

for each one and process it all in a short enough time to decide our course of action. Another

example is trying to predict the best location to drill for oil, knowing the positions of existing

drill sites in the region and their yields. Since we are unable to probe deep beneath the Earth’s

surface, we need to rely on a model of the geological processes that gave rise to the yields in

those sites for which we have data, in order to be able to predict the best location.

Themachine learningapproach to modelling data constructs models by beginning with a flexi-

ble model specified by a set ofparametersand then finds the setting of these model parameters

that explains or fits the data best. The idea is that if we can explain our observations well, then

we should also be confident that we can predict future observations well. We might also hope
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that the particular setting of the best-fit parameters provides us with some understanding of the

underlying processes. The procedure of fitting model parameters to observed data is termed

learninga model.

Since our models are simplifications of reality there will inevitably be aspects of the data which

cannot be modelled exactly, and these are considered noise. Unfortunately it is often difficult

to know which aspects of the data are relevant for our inference or prediction tasks, and which

aspects should be regarded as noise. With a sufficiently complex model, parameters can be

found to fit the observed data exactly, but any predictions using this best-fit model will be sub-

optimal as it has erroneously fitted the noise instead of the trends. Conversely, too simple a

model will fail to capture the underlying regularities in the data and so will also produce sub-

optimal inferences and predictions. This trade-off between the complexity of the model and its

generalisation performance is well studied, and we return to it in section1.2.

The above ideas can be formalised using the concept of probability and the rules of Bayesian

inference. Let us denote the data set byy, which may be made up of several variables indexed

by j: y = {y1, . . . ,yj , . . . ,yJ}. For example,y could be the data from an oil well for which

the variables might be measurements of the type of oil found, the geographical location of the

well, its average monthly yield, its operational age, and a host of other measurable quantities

regarding its local geological characteristics. Generally each variable can be real-valued or

discrete. Machine learning approaches define agenerative modelof the data through a set of

parametersθ = {θ1, . . . , θK} which define a probability distribution over data,p(y |θ). One

approach to learning the model then involves finding the parametersθ∗ such that

θ∗ = arg max
θ

p(y |θ) . (1.1)

This process is often calledmaximum likelihoodlearning as the parametersθ∗ are set to max-

imise the likelihood ofθ, which is probability of the observed data under the model. The

generative model may also includelatentor hiddenvariables, which are unobserved yet inter-

act through the parameters to generate the data. We denote the hidden variables byx, and the

probability of the data can then be written by summing over the possible settings of the hidden

states:

p(y |θ) =
∑
x

p(x |θ)p(y |x,θ) , (1.2)

where the summation is replaced by an integral for those hidden variables that are real-valued.

The quantity (1.2) is often called theincomplete-data likelihood, and the summand in (1.2)

correspondingly called thecomplete-data likelihood. The interpretation is that with hidden vari-

ables in the model, the observed data is an incomplete account of all the players in the model.
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For a particular parameter setting, it is possible to infer the states of the hidden variables of the

model, having observed data, using Bayes’ rule:

p(x |y,θ) =
p(x |θ)p(y |x,θ)

p(y |θ)
. (1.3)

This quantity is known as theposteriordistribution over the hidden variables. In the oil well

example we might have a hidden variable for the amount of oil remaining in the reserve, and this

can be inferred based on observed measurements such as the operational age, monthly yield and

geological characteristics, through the generative model with parametersθ. The termp(x |θ)
is aprior probability of the hidden variables, which could be set by the modeller to reflect the

distribution of amounts of oil in wells that he or she would expect. Note that the probability

of the data in (1.2) appears in the denominator of (1.3). Since the hidden variables are by

definition unknown, findingθ∗ becomes more difficult, and the model is learnt by alternating

between estimating the posterior distribution over hidden variables for a particular setting of the

parameters and then re-estimating the best-fit parameters given that distribution over the hidden

variables. This procedure is the well-known expectation-maximisation (EM) algorithm and is

discussed in more detail in section2.2.

Given that the parameters themselves are unknown quantities we can treat them as random

variables. This is theBayesianapproach to uncertainty, which treats all uncertain quantities

as random variables and uses the laws of probability to manipulate those uncertain quantities.

The proper Bayesian approach attempts to integrate over the possible settings of all uncertain

quantities rather than optimise them as in (1.1). The quantity that results from integrating out

both the hidden variables and the parameters is termed themarginal likelihood:

p(y) =
∫
dθ p(θ)

∑
x

p(x |θ)p(y |x,θ) , (1.4)

wherep(θ) is a prior over the parameters of the model. We will see in section1.2 that the

marginal likelihood is a key quantity used to choose between different models in a Bayesian

model selection task. Model selection is a necessary step in understanding and representing the

data that we observe. The diversity of the data available to machine learners is ever increasing

thanks to the advent of large computational power, networking capabilities and the technolo-

gies available to the scientific research communities. Furthermore, expertise and techniques of

analysis are always improving, giving rise to ever more diverse and complicated models for

representing this data. In order to ‘understand’ the data with a view to making predictions based

on it, we need to whittle down our models to one (or a few) to which we can devote our limited

computational and conceptual resources. We can use the rules of Bayesian probability theory to

entertain several models and choose between them in the light of data. These steps necessarily

involve managing the marginal likelihood.
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Unfortunately the marginal likelihood,p(y), is an intractable quantity to compute for almost all

models of interest (we will discuss why this is so in section1.2.1, and see several examples in the

course of this thesis). Traditionally, the marginal likelihood has been approximated either using

analytical methods, for example the Laplace approximation, or via sampling-based approaches

such as Markov chain Monte Carlo. These methods are reviewed in section1.3. This thesis is

devoted to one particular method of approximation,variational Bayes, sometimes referred to as

ensemble learning. The variational Bayesian method constructs a lower bound on the marginal

likelihood, and attempts to optimise this bound using an iterative scheme that has intriguing

similarities to the standard expectation-maximisation algorithm. There are other variational

methods, for example those based on Bethe and Kikuchi free energies, which for the most part

are approximations rather than bounds; these are briefly discussed in the final chapter.

Throughout this thesis we assume that the reader is familiar with the basic concepts of probabil-

ity and integral and differential calculus. Included in the appendix are reference tables for some

of the more commonly used probability distributions.

The rest of this chapter reviews some key methods relevant to Bayesian model inference and

learning. Section1.1 reviews the use of graphical models as a tool for visualising the prob-

abilistic relationships between the variables in a model and explains how efficient algorithms

for computing the posterior distributions of hidden variables as in (1.3) can be designed which

exploit independence relationships amongst the variables. In section1.2, we address the issue

of model selection in a Bayesian framework, and explain why the marginal likelihood is the

key quantity for this task, and how it is intractable to compute. Since all Bayesian reasoning

needs to begin with some prior beliefs, we examine different schools of thought for expressing

these priors in section1.2.2, includingconjugate, reference, andhierarchicalpriors. In section

1.3 we review several practical methods for approximating the marginal likelihood, which we

shall be comparing to variational Bayes in the following chapters. Finally, section1.4 briefly

summarises the remaining chapters of this thesis.

1.1 Probabilistic inference

Bayesian probability theory provides a language for representing beliefs and a calculus for ma-

nipulating these beliefs in a coherent manner. It is an extension of the formal theory of logic

which is based on axioms that involve propositions that are true or false. The rules of proba-

bility theory involve propositions which haveplausibilitiesof being true or false, and can be

arrived at on the basis of just threedesiderata: (1) degrees of plausibility should be represented

by real numbers; (2) plausibilities should have qualitative correspondence with common sense;

(3) different routes to a conclusion should yield the same result. It is quite astonishing that from

just these desiderata, the product and sum rules of probability can be mathematically derived
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(Cox, 1946). Cox showed that plausibilities can be measured on any scale and it is possible to

transform them onto the canonical scale of probabilities that sum to one. For good introductions

to probability theory the reader is referred toPearl(1988) andJaynes(2003).

Statistical modelling problems often involve large numbers of interacting random variables and

it is often convenient to express the dependencies between these variables graphically. In par-

ticular such graphical models are an intuitive tool for visualisingconditional independencyre-

lationships between variables. A variablea is said to be conditionally independent ofb, givenc

if and only if p(a, b | c) can be writtenp(a | c)p(b | c). By exploiting conditional independence

relationships, graphical models provide a backbone upon which it has been possible to derive

efficient message-propagating algorithms for conditioning and marginalising variables in the

model given observation data (Pearl, 1988; Lauritzen and Spiegelhalter, 1988; Jensen, 1996;

Heckerman, 1996; Cowell et al., 1999; Jordan, 1999). Many standard statistical models, espe-

cially Bayesian models with hierarchical priors (see section1.2.2), can be expressed naturally

using probabilistic graphical models. This representation can be helpful in developing both sam-

pling methods (section1.3.6) and exact inference methods such as the junction tree algorithm

(section1.1.2) for these models. All of the models used in this thesis have very simple graphi-

cal model descriptions, and the theoretical results derived in chapter2 for variational Bayesian

approximate inference are phrased to be readily applicable to general graphical models.

1.1.1 Probabilistic graphical models: directed and undirected networks

A graphical model expresses a family of probability distributions on sets of variables in a model.

Here and for the rest of the thesis we use the variablez to denote all the variables in the model,

be they observed or unobserved (hidden). To differentiate between observed and unobserved

variables we partitionz into z = {x,y} wherex andy are the sets of unobserved and observed

variables, respectively. Alternatively, the variables are indexed by the subscriptj, with j ∈ H
the set of indices for unobserved (hidden) variables andj ∈ V the set of indices for observed

variables. We will later introduce a further subscript,i, which will denote which data point out

of a data set of sizen is being referred to, but for the purposes of the present exposition we

consider just a single data point and omit this further subscript.

Each arc between two nodes in the graphical model represents a probabilistic connection be-

tween two variables. We use the terms ‘node’ and ‘variable’ interchangeably. Depending on the

pattern of arcs in the graph and their type, different independence relations can be represented

between variables. The pattern of arcs is commonly referred to as thestructureof the model.

The arcs between variables can be alldirectedor all undirected. There is a class of graphs in

which some arcs are directed and some are undirected, commonly calledchain graphs, but these

are not reviewed here. Undirected graphical models, also calledMarkov networksor Markov
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random fields, express the probability distribution over variables as a product overclique poten-

tials:

p(z) =
1
Z

J∏
j=1

ψj(Cj(z)) , (1.5)

wherez is the set of variables in the model,{Cj}Jj=1 arecliquesof the graph, and{ψj}Jj=1

are a set of clique potential functions each of which returns a non-negative real value for every

possible configuration of settings of the variables in the clique. Each clique is defined to be a

fully connected subgraph (that is to say each cliqueCj selects a subset of the variables inz), and

is usuallymaximalin the sense that there are no other variables whose inclusion preserves its

fully connected property. The cliques can be overlapping, and between them cover all variables

such that{C1(z) ∪ · · · ∪ CJ(z)} = z. Here we have written a normalisation constant,Z,

into the expression (1.5) to ensure that the total probability of all possible configurations sums

to one. Alternatively, this normalisation can be absorbed into the definition of one or more

of the potential functions. Markov networks can express a very simple form of independence

relationship: two sets of nodesA andB are conditionally independent from each other given a

third set of nodesC, if all paths connecting any node inA to any node inB via a sequence of

arcs are separated by any node (or group of nodes) inC. ThenC is said toseparateA fromB.

TheMarkov blanketfor the node (or set of nodes)A is defined as the smallest set of nodesC,

such thatA is conditionally independent of all other variables not inC, givenC.

Directed graphical models, also calledDirected Acyclic Graphs(DAGs), orBayesian networks,

express the probability distribution overJ variables,z = {zj}Jj=1, as a product of conditional

probability distributions on each variable:

p(z) =
J∏
j=1

p(zj | zpa(j)) , (1.6)

wherezpa(j) is the set of variables that areparentsof the nodej in the graph. A nodea is said

to be a parent of a nodeb if there is a directed arc froma to b, and in which caseb is said to

be achild of a. In necessarily recursive definitions: thedescendentsof a node are defined to

include its children and its childrens’ descendents; and theancestorsof a node are its parents

and those parents’ ancestors. Note that there is no need for a normalisation constant in (1.6)

because by the definition of the conditional probabilities it is equal to one. Adirected path

between two nodesa andb is a sequence of variables such that every node is a parent of the

following node in the sequence. Anundirected pathfrom a to b is any sequence of nodes such

that every node is a parent or child of the following node. Anacyclic graph is a graphical

model in which there exist no directed paths including the same variable more than once. The

semantics of a Bayesian network can be summarised as: each node is conditionally independent

from its non-descendents given its parents.
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More generally, we have the following representation of independence in Bayesian networks:

two sets of nodesA andB are conditionally independent given the set of nodesC if they are

d-separatedbyC (here thed- prefix stands fordirected). The nodesA andB are d-separated by

C if, along every undirected path fromA toB, there exists a noded which satisfieseitherof the

following conditions: either (i)d has converging arrows (i.e.d is the child of the previous node

and the parent of the following node in the path)andneitherd nor its descendents are inC; or

(ii) d does not have converging arrows and is inC. From the above definition of the Markov

blanket, we find that for Bayesian networks the minimal Markov blanket for a node is given by

the union of its parents, its children,and the parents of its children. A more simple rule for

d-separation can be obtained using the idea of the ‘Bayes ball’ (Shachter, 1998). Two sets of

nodesA andB are conditionally dependent givenC if there exists a path by which the Bayes

ball can reach a node inB from a node inA (or vice-versa), where the ball can move according

to the following rules: it can pass through a node in the conditioning setC provided the entry

and exit arcs are a pair of arrows converging on that node; similarly, it can only pass through

every node in the remainder of the graph provided it does so on non-converging arrows. If there

exist no such linking paths, then the sets of nodesA andB are conditionally independent given

C.

Undirected models tend to be used in the physics and vision communities, where the systems

under study can often be simply expressed in terms of many localised potential functions. The

nature of the interactions often lack causal or direct probabilistic interpretations, and instead

express degrees of agreement, compatibility, constraint or frustration between nodes. In the

artificial intelligence and statistics communities directed graphs are more popular as they can

more easily express underlying causal generative processes that give rise to our observations.

For more detailed examinations of directed and undirected graphs seePearl(1988).

1.1.2 Propagation algorithms

The conditional independence relationships discussed in the previous subsection can be ex-

ploited to design efficient message-passing algorithms for obtaining the posterior distributions

over hidden variables given the observations of some other variables, which is called inference.

In this section we briefly present an inference algorithm for Markov networks, called thejunc-

tion treealgorithm. We will explain at the end of this subsection why it suffices to present the

inference algorithm for the undirected network case, since the inference algorithm for a directed

network is just a special case.

For data in which every variable is observed there is no inference problem for hidden variables,

and learning for example the maximum likelihood (ML) parameters for the model using (1.1)

often consists of a straightforward optimisation procedure. However, as we will see in chapter

2, if some of the variables are hidden this complicates finding the ML parameters. The common

19



Introduction 1.1. Probabilistic inference

x1

x4 x5

x3

x2

(a) Original Markov network.
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(b) One possible elimination ordering:(x2, x4, x5, x3)
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(c) Another possible elimination ordering:(x5, x2, x3, x4).

Figure 1.1:(a) The original Markov network;(b) The sequence of intermediate graphs resulting
from eliminating (integrating out) nodes to obtain the marginal onx1 — see equations (1.9–
1.14); (c) Another sequence of graphs resulting from a different elimination ordering, which
results in a suboptimal inference algorithm.

practice in these cases is to utilise expectation-maximisation (EM) algorithms, which in their E

step require the computation of at least certain properties of the posterior distribution over the

hidden variables.

We illustrate the basics of inference using a simple example adapted fromJordan and Weiss

(2002). Figure1.1(a)shows a Markov network for five variablesx = {x1, . . . , x5}, each of

which is discrete and takes onk possible states. Using the Markov network factorisation given

by (1.5), the probability distribution over the variables can be written as a product of potentials

defined over five cliques:

p(x) = p(x1, . . . , x5) =
1
Z
ψ(x1, x2)ψ(x1, x3)ψ(x1, x4)ψ(x2, x5)ψ(x3, x5)ψ(x4, x5) , (1.7)
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where we have included a normalisation constantZ to allow for arbitrary clique potentials.

Note that in this graph1.1(a)the maximal cliques are all pairs of nodes connected by an arc,

and therefore the potential functions are defined over these same pairs of nodes. Suppose we

wanted to obtain the marginal distributionp(x1), given by

p(x1) =
1
Z
∑
x2

∑
x3

∑
x4

∑
x5

ψ(x1, x2)ψ(x1, x3)ψ(x1, x4)ψ(x2, x5)ψ(x3, x5)ψ(x4, x5) .

(1.8)

At first glance this requiresk5 computations, since there arek4 summands to be computed for

each of thek settings of the variablex1. However this complexity can be reduced by exploiting

the conditional independence structure in the graph. For example, we can rewrite (1.8) as

p(x1) =
1
Z
∑
x2

∑
x3

∑
x4

∑
x5

ψ(x1, x3)ψ(x3, x5)ψ(x1, x4)ψ(x4, x5)ψ(x1, x2)ψ(x2, x5) (1.9)

=
1
Z
∑
x3

ψ(x1, x3)
∑
x5

ψ(x3, x5)
∑
x4

ψ(x1, x4)ψ(x4, x5)
∑
x2

ψ(x1, x2)ψ(x2, x5)

(1.10)

=
1
Z
∑
x3

ψ(x1, x3)
∑
x5

ψ(x3, x5)
∑
x4

ψ(x1, x4)ψ(x4, x5)m2(x1, x5) (1.11)

=
1
Z
∑
x3

ψ(x1, x3)
∑
x5

ψ(x3, x5)m4(x1, x5)m2(x1, x5) (1.12)

=
1
Z
∑
x3

ψ(x1, x3)m5(x1, x3) (1.13)

=
1
Z
m1(x1) (1.14)

where each ‘message’mj(x·, . . . ) is a new potential obtained byeliminating the jth vari-

able, and is a function of all the variables linked to that variable. By choosing this ordering

(x2, x4, x5, x3) for summing over the variables, the most number of variables in any summand

is three, meaning that the complexity has been reduced toO(k3) for each possible setting ofx1,

which results in an overall complexity ofO(k4) .

This process can be described by the sequence of graphs resulting from the repeated application

of a triangulationalgorithm (see figure1.1(b)) following these four steps: (i) choose a nodexj
to eliminate; (ii) find all potentialsψ and any messagesm that may reference this node; (iii)

define a new potentialmj that is the sum with respect toxj of the product of these potentials;

(iv) remove the nodexj andreplace it with edgesconnecting each of its neighbours — these

represent the dependencies from the new potentials. This process is repeated until only the

variables of interest remain, as shown in the above example. In this way marginal probabilities

of single variables or joint probabilities over several variables can be obtained. Note that the

second elimination step in figure1.1(b)), that of marginalising outx4, introduces a new message

m4(x1, x5) but since there is already an arc connectingx1 andx5 we need not add a further one.
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Figure 1.2:(a) The triangulated graph corresponding to the elimination ordering in figure1.1(b);
(b) the corresponding junction tree including maximal cliques (ovals), separators (rectangles),
and the messages produced in belief propagation.

The ordering chosen for this example is optimal; different orderings of elimination may result in

suboptimal complexity. For example, figure1.1(c)shows the process of an elimination ordering

(x5, x2, x3, x4) which results in a complexityO(k5). In general though, it is an NP-hard prob-

lem to find the optimal ordering of elimination that minimises the complexity. If all the nodes

have the same cardinality, the optimal elimination ordering is independent of the functional

forms on the nodes and is purely a graph-theoretic property.

We could use the above elimination algorithm repeatedly to find marginal probabilities for each

and every node, but we would find that we had needlessly computed certain messages several

times over. We can use the junction tree algorithm to compute all the messages we might need

just once. Consider the graph shown in figure1.2(a)which results from retaining all edges that

were either initially present or added during the elimination algorithm (using the ordering in our

worked example). Alongside in figure1.2(b)is the junction tree for this graph, formed by linking

the maximal cliques of the graph, of which there are three, labelledA,B andC. In between the

clique nodes areseparatorsfor the junction tree, which contain nodes that are common to both

the cliques attached to the separator, that is to saySAB = CA ∩ CB. Here we use calligraphic

C to distinguish these cliques from the original maximal cliques in the network1.1(a). For a

triangulated graph it is always possible to obtain such a singly-connected graph, or tree (to be

more specific, it is always then possible to obtain a tree that satisfies therunning intersection

property, which states that if a variable appears in two different cliques, then it should also

appear in every clique in the path between the two cliques). The so-called ‘messages’ in the

elimination algorithm can now be considered as messages sent from one clique to another in the

junction tree. For example, the messagem2(x1, x5) produced in equation (1.11) as a result of

summing overx2 can be identified with the messagemAB(x1, x5) that cliqueA sends to clique

B. Similarly, the messagem4(x1, x5) in (1.12) resulting from summing overx4 is identified
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with the messagemCB(x1, x5) that C passes on toB. To complete the marginalisation to

obtainp(x1), the cliqueB absorbsthe incoming messages to obtain a joint distribution over its

variables(x1, x3, x5), and then marginalises outx3 andx5 in either order. Included in figure

1.2(b)are two other messages,mBA(x1, x5) andmBC(x1, x5), which would be needed if we

wanted the marginal overx2 or x4, respectively.

For general junction trees it can be shown that the message that cliquer sends to cliques is a

function of the variables in their separator,Srs(x), and is given by

mrs(Srs(x)) =
∑

Cr(x)\Srs(x)

ψr(Cr(x))
∏

t∈N (r)\s

mtr(Str(x)) , (1.15)

whereN (r) are the set of neighbouring cliques of cliquer. In words, the message fromr to

s is formed by: taking the product of all messagesr has received from elsewhere other thans,

multiplying in the potentialψr, and then summing out all those variables inr which are not in

s.

The joint probability of the variables within cliquer is obtained by combining messages into

cliquer with its potential:

p(Cr(x)) ∝ ψr(Cr(x))
∏

t∈N (r)

mtr(Str(x)) . (1.16)

Note that from definition (1.15) a clique is unable to send a message until it has received mes-

sages from all other cliques except the receiving one. This means that the message-passing

protocol must begin at the leaves of the junction tree and move inwards, and then naturally the

message-passing moves back outwards to the leaves. In our example problem the junction tree

has a very trivial structure and happens to have both separators containing the same variables

(x1, x5).

Here we have explained how inference in a Markov network is possible: (i) through a process of

triangulation the junction tree is formed; (ii) messages (1.15) are then propagated between junc-

tion tree cliques until all cliques have received and sent all their messages; (iii) clique marginals

(1.16) can then be computed; (iv) individual variable marginals can be obtained by summing out

other variables in the clique. The algorithm used for inference in a Bayesian network (which is

directed) depends on whether it is singly- or multiply-connected (a graph is said to be singly-

connected if it includes no pairs of nodes with more than one path between them, and multiply-

connected otherwise). For singly-connected networks, an exactly analogous algorithm can be

used, and is calledbelief propagation. For multiply-connected networks, we first require a pro-

cess to convert the Bayesian network into a Markov network, calledmoralisation. We can then

form the junction tree after a triangulation process and perform the same message-passing al-

gorithm. The process of moralisation involves adding an arc between any variables sharing the

same child (i.e. co-parents), and then dropping the directionality of all arcs.
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Moralisation does not introduce any further conditional independence relationships into the

graph, and in this sense the resulting Markov network is able to represent a superset of the

probability distributions representable by the Bayesian network. Therefore, having derived the

inference procedure for the more general Markov network, we already have the result for the

Bayesian network as a special case.

1.2 Bayesian model selection

In this thesis we are primarily concerned with the task of model selection, or structure discovery.

We use the term ‘model’ and ‘model structure’ to denote a variety of things, some already

mentioned in the previous sections. A few particular examples of model selection tasks are

given below:

Structure learning In probabilistic graphical models, each graph implies a set of conditional

independence statements between the variables in the graph. The model structure learn-

ing problem is inferring the conditional independence relationships that hold given a set

of (complete or incomplete) observations of the variables. Another related problem is

learning the direction of the dependencies, i.e. the causal relationships between variables

(A→ B, orB → A).

Input dependence A special case of this problem is input variable selection in regression. Se-

lecting which input (i.e. explanatory) variables are needed to predict the output (i.e. re-

sponse) variable in the regression can be equivalently cast as deciding whether each input

variable is a parent (or, more accurately, an ancestor) of the output variable in the corre-

sponding directed graph.

Cardinality Many statistical models contain discrete nominal latent variables. A model struc-

ture learning problem of interest is then choosing the cardinality of each discrete latent

variable. Examples of this problem include deciding how many mixture components are

required in a finite mixture model, or how many hidden states are needed in a hidden

Markov model.

Dimensionality Other statistical models contain real-valued vectors of latent variables. The

dimensionality of this latent vector is usually unknown and needs to be inferred. Exam-

ples include choosing the intrinsic dimensionality in a probabilistic principal components

analysis (PCA), or factor analysis (FA) model, or in a linear-Gaussian state-space model.

In the course of this thesis we tackle several of the above model selection problems using

Bayesian learning. The machinery and tools for Bayesian model selection are presented in

the following subsection.
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1.2.1 Marginal likelihood and Occam’s razor

An obvious problem with using maximum likelihood methods (1.1) to learn the parameters of

models such as those described above is that the probability of the data will generally be greater

for more complex model structures, leading to overfitting. Such methods fail to take into account

model complexity. For example, inserting an arc between two variables in a graphical model can

only help the model give higher probability to the data. Common ways for avoiding overfitting

have included early stopping, regularisation, and cross-validation. Whilst it is possible to use

cross-validation for simple searches over model size and structures — for example, if the search

is limited to a single parameter that controls the model complexity — for more general searches

over many parameters cross-validation is computationally prohibitive.

A Bayesian approach to learning starts with some prior knowledge or assumptions about the

model structure — for example the set of arcs in the Bayesian network. This initial knowledge

is represented in the form of a prior probability distribution over model structures. Each model

structure has a set of parameters which have prior probability distributions. In the light of ob-

served data, these are updated to obtain a posterior distribution over models and parameters.

More formally, assuming a prior distribution over models structuresp(m) and a prior distribu-

tion over the parameters for each model structurep(θ |m), observing the data sety induces a

posterior distribution over models given by Bayes’ rule:

p(m |y) =
p(m)p(y |m)

p(y)
. (1.17)

The most probable model or model structure is the one that maximisesp(m |y). For a given

model structure, we can also compute the posterior distribution over the parameters:

p(θ |y,m) =
p(y |θ,m)p(θ |m)

p(y |m)
, (1.18)

which allows us to quantify our uncertainty about parameter values after observing the data.

We can also compute the density at a new data pointy′, obtained by averaging over both the

uncertainty in the model structure and in the parameters,

p(y′ |y) =
∑
m

∫
dθ p(y′ |θ,m,y)p(θ |m,y)p(m |y) , (1.19)

which is known as thepredictive distribution.

The second term in the numerator of (1.17) is called themarginal likelihood, and results from

integrating the likelihood of the data over all possible parameter settings under the prior:

p(y |m) =
∫
dθ p(y |θ,m)p(θ |m) . (1.20)
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In the machine learning community this quantity is sometimes referred to as theevidencefor

modelm, as it constitutes the data-dependent factor in the posterior distribution over models

(1.17). In the absence of an informative priorp(m) over possible model structures, this term

alone will drive our model inference process. Note that this term also appears as the normal-

isation constant in the denominator of (1.18). We can think of the marginal likelihood as the

average probability of the data, where the average is taken with respect to the model parameters

drawn from the priorp(θ).

Integrating out the parameters penalises models with more degrees of freedom since these mod-

els cana priori model a larger range of data sets. This property of Bayesian integration has been

calledOccam’s razor, since it favours simpler explanations (models) for the data over complex

ones (Jefferys and Berger, 1992; MacKay, 1995). Having more parameters may impart an ad-

vantage in terms of the ability to model the data, but this is offset by the cost of having to code

those extra parameters under the prior (Hinton and van Camp, 1993). The overfitting problem is

avoided simply because no parameter in the pure Bayesian approach is actuallyfit to the data. A

caricature of Occam’s razor is given in figure1.3, where the horizontal axis denotes all possible

data sets to be modelled, and the vertical axis is the marginal probabilityp(y |m) under each

of three models of increasing complexity. We can relate the complexity of a model to the range

of data sets it can capture. Thus for a simple model the probability is concentrated over a small

range of data sets, and conversely a complex model has the ability to model a wide range of data

sets.

Since the marginal likelihood as a function of the datay should integrate to one, the simple

model can give a higher marginal likelihood to those data sets it can model, whilst the complex

model gives only small marginal likelihoods to a wide range of data sets. Therefore, given a

data set,y, on the basis of the marginal likelihood it is possible to discard both models that are

too complex and those that are too simple. In these arguments it is tempting, but not correct, to

associate the complexity of a model with the number of parameters it has: it is easy to come up

with a model with many parameters that can model only a limited range of data sets, and also

to design a model capable of capturing a huge range of data sets with just a single parameter

(specified to high precision).

We have seen how the marginal likelihood is an important quantity in Bayesian learning, for

computing quantities such as Bayes factors (the ratio of two marginal likelihoods,Kass and

Raftery, 1995), or the normalising constant of a posterior distribution (known in statistical

physics as the ‘partition function’ and in machine learning as the ‘evidence’). Unfortunately

the marginal likelihood is a very difficult quantity to compute because it involves integrating

over all parameters and latent variables, which is usually such a high dimensional and compli-

cated integral that most simple approximations fail catastrophically. We will see in section1.3

some of the approximations to the marginal likelihood and will investigate variational Bayesian

approximations in the following chapter.
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Figure 1.3: Caricature depicting Occam’s razor (adapted fromMacKay, 1995). The horizon-
tal axis denotes all possible data sets of a particular size and the vertical axis is the marginal
likelihood for three different model structures of differing complexity. Simple model structures
can model certain data sets well but cannot model a wide range of data sets; complex model
structures can model many different data sets but, since the marginal likelihood has to integrate
to one, will necessarily not be able to model all simple data sets as well as the simple model
structure. Given a particular data set (labelled Y), model selection is possible because model
structures that are too simple are unlikely to generate the data set in question, while model
structures that are too complex can generate many possible data sets, but again, are unlikely to
generate that particular data set at random.

It is important to keep in mind that a realistic model of the data might need to be complex.

It is therefore often advisable to use the most ‘complex’ model for which it is possible to do

inference, ideally setting up priors that allow the limit of infinitely many parameters to be taken,

rather than to artificially limit the number of parameters in the model (Neal, 1996; Rasmussen

and Ghahramani, 2001). Although we do not examine any such infinite models in this thesis,

we do return to them in the concluding comments of chapter7.

Bayes’ theorem provides us with the posterior over different models (1.17), and we can com-

bine predictions by weighting them according to the posterior probabilities (1.19). Although

in theory we should average over all possible model structures, in practice computational or

representational constraints may make it necessary to select a single most probable structure

by maximisingp(m |y). In most problems we may also have good reason to believe that the

marginal likelihood is strongly peaked, and so the task of model selection is then justified.

1.2.2 Choice of priors

Bayesian model inference relies on the marginal likelihood, which has at its core a set of prior

distributions over the parameters of each possible structure,p(θ |m). Specification of param-

eter priors is obviously a key element of the Bayesian machinery, and there are several diverse
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schools of thought when it comes to assigning priors; these can be loosely categorised intosub-

jective, objective, andempiricalapproaches. We should point out that all Bayesian approaches

are necessarily subjective in the sense that any Bayesian inference first requires some expression

of prior knowledgep(θ). Here the emphasis is not on whether we use a prior or not, but rather

whatknowledge (if any) is conveyed inp(θ). We expand on these three types of prior design in

the following paragraphs.

Subjective priors

The subjective Bayesian attempts to encapsulate prior knowledge as fully as possible, be it in

the form of previous experimental data or expert knowledge. It is often difficult to articulate

qualitative experience or beliefs in mathematical form, but one very convenient and analytically

favourable class of subjective priors areconjugatepriors in theexponential family. Generally

speaking, a prior is conjugate if the posterior distribution resulting from multiplying the likeli-

hood and prior terms is of the same form as the prior. Expressed mathematically:

f(θ | µ̃) = p(θ |y) ∝ f(θ |µ)p(y |θ) , (1.21)

wheref(θ |µ) is some probability distribution specified by a parameter (or set of parameters)

µ. Conjugate priors have at least three advantages: first, they often lead to analytically tractable

Bayesian integrals; second, if computing the posterior in (1.21) is tractable, then the modeller

can be assured that subsequent inferences, based on using the posterior as prior, will also be

tractable; third, conjugate priors have an intuitive interpretation as expressing the results of pre-

vious (or indeed imaginary) observations under the model. The latter two advantages are some-

what related, and can be understood by observing that the only likelihood functionsp(y |θ) for

which conjugate prior families exist are those belonging to generalexponential familymodels.

The definition of an exponential family model is one that has a likelihood function of the form

p(yi |θ) = g(θ) f(yi) eφ(θ)>u(yi) , (1.22)

whereg(θ) is a normalisation constant:

g(θ)−1 =
∫
dyi f(yi) eφ(θ)>u(yi) , (1.23)

and we have used the subscript notationyi to denote each data point (not each variable!). We as-

sume thatn data points arrive independent and identically distributed (i.i.d.) such that the prob-

ability of the datay = {y1, . . . ,yn} under this model is given byp(y |θ) =
∏n
i=1 p(yi |θ).
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Hereφ(θ) is a vector of so-callednatural parameters, andu(yi) andf(yi) are functions defin-

ing the exponential family. Now consider the conjugate prior:

p(θ | η,ν) = h(η,ν) g(θ)η eφ(θ)>ν , (1.24)

whereη andν are parameters of the prior, andh(η,ν) is an appropriate normalisation constant.

The conjugate prior contains the same functionsg(θ) andφ(θ) as in (1.22), and the result of

using a conjugate prior can then be seen by substituting (1.22) and (1.24) into (1.21), resulting

in:

p(θ |y) ∝ p(θ | η,ν)p(y |θ) ∝ p(θ | η̃, ν̃) , (1.25)

whereη̃ = η+n andν̃ = ν +
∑n

i=1 u(yi) are the new parameters for the posterior distribution

which has thesame functional formas the prior. We have omitted some of the details, as a

more general approach will be described in the following chapter (section2.4). The important

point to note is that the parameters of the prior can be viewed as the number (or amount),η,

and the ‘value’,ν, of imaginary data observed prior to the experiment (by ‘value’ we in fact

refer to the vector of sufficient statistics of the data). This correspondence is often apparent

in the expressions for predictive densities and other quantities which result from integrating

over the posterior distribution, where statistics gathered from the data are simply augmented

with prior quantities. Therefore the knowledge conveyed by the conjugate prior is specific and

clearly interpretable. On a more mathematical note, the attraction of the conjugate exponential

family of models is that they can represent probability densities with a finite number of sufficient

statistics, and are closed under the operation of Bayesian inference. Unfortunately, a conjugate

analysis becomes difficult, and for the majority of interesting problems impossible, for models

containing hidden variablesxi.

Objective priors

The objective Bayesian’s goal is in stark contrast to a subjectivist’s approach. Instead of at-

tempting to encapsulate rich knowledge into the prior, the objective Bayesian tries to impart as

little information as possible in an attempt to allow the data to carry as much weight as possible

in the posterior distribution. This is often called ‘letting the data speak for themselves’ or ‘prior

ignorance’. There are several reasons why a modeller may want to resort to the use of objec-

tive priors (sometimes called non-informative priors): often the modeller has little expertise and

does not want to sway the inference process in any particular direction unknowingly; it may be

difficult or impossible to elicit expert advice or translate expert opinions into a mathematical

form for the prior; also, the modeller may want the inference to be robust to misspecifications of

the prior. It turns out that expressing such vagueness or ignorance is in fact quite difficult, partly

because the very concept of ‘vagueness’ is itself vague. Any prior expressed on the parameters
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has to follow through and be manifest in the posterior distribution in some way or other, so this

quest for uninformativeness needs to be more precisely defined.

One such class of noninformative priors arereference priors. These originate from an infor-

mation theoretic argument which asks the question: “which prior should I use such that I max-

imise the expected amount of information about a parameter that is provided by observing the

data?”. This expected information can be written as a function ofp(θ) (we assumeθ is one-

dimensional):

I(p(θ), n) =
∫
dy(n) p(y(n))

∫
dθ p(θ |y(n)) ln

p(θ |y(n))
p(θ)

, (1.26)

where we usey(n) to make it obvious that the data set is of sizen. This quantity is strictly posi-

tive as it is an expected Kullback-Leibler (KL) divergence between the parameter posterior and

parameter prior, where the expectation is taken with respect to the underlying distribution of the

datay(n). Here we assume, as before, that the data arrive i.i.d. such thaty(n) = {y1, . . . ,yn}
andp(y(n) | θ) =

∏n
i=1 p(yi | θ). Then then-reference prior is defined as the prior that max-

imises this expected information fromn data points:

pn(θ) = arg max
p(θ)

I(p(θ), n) . (1.27)

Equation (1.26) can be rewritten directly as a KL divergence:

I(p(θ),y(n)) =
∫
dθ p(θ) ln

fn(θ)
p(θ)

, (1.28)

where the functionfn(θ) is given by

fn(θ) = exp
[∫

dy(n) p(y(n) | θ) ln p(θ |y(n))
]
, (1.29)

andn is the size of the data sety. A naive solution that maximises (1.28) is

pn(θ) ∝ fn(θ) , (1.30)

but unfortunately this is only an implicit solution for then-reference prior asfn(θ) (1.29) is a

function of the prior through the termp(θ |y(n)). Instead, we make the approximation for large

n that the posterior distributionp(θ |y(n)) ∝ p(θ)
∏n
i=1 p(yi | θ) is given byp∗(θ |y(n)) ∝∏n

i=1 p(yi | θ), and write the reference prior as:

p(θ) ∝ lim
n→∞

f∗n(θ)
f∗n(θ0)

, (1.31)

wheref∗n(θ) is the expression (1.29) using the approximation to the posteriorp∗(θ |y(n)) in

place ofp(θ |y(n)), andθ0 is a fixed parameter (or subset of parameters) used to normalise the
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limiting expression. For discrete parameter spaces, it can be shown that the reference prior is

uniform. More interesting is the case of real-valued parameters that exhibit asymptotic normal-

ity in their posterior (see section1.3.2), where it can be shown that the reference prior coincides

with Jeffreys’ prior (seeJeffreys, 1946),

p(θ) ∝ h(θ)1/2 , (1.32)

whereh(θ) is the Fisher information

h(θ) =
∫
dyi p(yi | θ)

[
− ∂2

∂θ2
ln p(yi | θ)

]
. (1.33)

Jeffreys’ priors are motivated by requiring that the prior is invariant to one-to-one reparameteri-

sations, so this equivalence is intriguing. Unfortunately, the multivariate extensions of reference

and Jeffreys’ priors are fraught with complications. For example, the form of the reference prior

for one parameter can be different depending on the order in which the remaining parameters’

reference priors are calculated. Also multivariate Jeffreys’ priors are not consistent with their

univariate equivalents. As an example, consider the mean and standard deviation parameters of

a Gaussian,(µ, σ). If µ is known, both Jeffreys’ and reference priors are given byp(σ) ∝ σ−1.

If the standard deviation is known, again both Jeffreys’ and reference priors over the mean

are given byp(µ) ∝ 1. However, if neither the mean nor the standard deviation are known,

the Jeffreys’ prior is given byp(µ, σ) ∝ σ−2, which does not agree with the reference prior

p(µ, σ) ∝ σ−1 (here the reference prior happens not to depend on the ordering of the parame-

ters in the derivation). This type of ambiguity is often a problem in defining priors over multiple

parameters, and it is often easier to consider other ways of specifying priors, such as hierarchi-

cally. A more in depth analysis of reference and Jeffreys’ priors can be found inBernardo and

Smith(1994, section 5.4).

Empirical Bayes and hierarchical priors

When there are many common parameters in the vectorθ = (θ1, . . . , θK), it often makes sense

to consider each parameter as being drawn from the same prior distribution. An example of this

would be the prior specification of the means of each of the Gaussian components in a mixture

model — there is generally no a priori reason to expect any particular component to be different

from another. The parameter prior is then formed from integrating with respect to a hyperprior

with hyperparameterγ:

p(θ | γ) =
∫
dγ p(γ)

K∏
k=1

p(θk | γ) . (1.34)

Therefore, each parameter is independentgiven the hyperparameter, although they are depen-

dent marginally. Hierarchical priors are useful even when applied only to a single parameter,
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often offering a more intuitive interpretation for the parameter’s role. For example, the precision

parameterν for a Gaussian variable is often given a (conjugate) gamma prior, which itself has

two hyperparameters(aγ , bγ) corresponding to the shape and scale of the prior. Interpreting the

marginal distribution of the variable in this generative sense is often more intuitively appealing

than simply enforcing a Student-t prior. Hierarchical priors are often designed using conjugate

forms (described above), both for analytical ease and also because previous knowledge can be

readily expressed.

Hierarchical priors can be easily visualised using directed graphical models, and there will be

many examples in the following chapters. The phraseempirical Bayesrefers to the practice of

optimising the hyperparameters (e.g.γ) of the priors, so as to maximise the marginal likelihood

of a data setp(y | γ). In this way Bayesian learning can be seen as maximum marginal likelihood

learning, where there are always distributions over the parameters, but the hyperparameters are

optimised just as in maximum likelihood learning. This practice is somewhat suboptimal as it

ignores the uncertainty in the hyperparameterγ. Alternatively, a more coherent approach is to

define priors over the hyperparameters and priors on the parameters of those priors, etc., to the

point where at the top level the modeller is content to leave those parameters unoptimised. With

sufficiently vague priors at the top level, the posterior distributions over intermediate parameters

should be determined principally by the data. In this fashion, no parameters are actually ever fit

to the data, and all predictions and inferences are based on the posterior distributions over the

parameters.

1.3 Practical Bayesian approaches

Bayes’ rule provides a means of updating the distribution over parameters from the prior to the

posterior distribution in light of observed data. In theory, the posterior distribution captures all

information inferred from the data about the parameters. This posterior is then used to make

optimal decisions or predictions, or to select between models. For almost all interesting appli-

cations these integrals are analytically intractable, and are inaccessible to numerical integration

techniques — not only do the computations involve very high dimensional integrals, but for

models with parameter symmetries (such as mixture models) the integrand can have exponen-

tially many modes.

There are various ways we can tackle this problem. At one extreme we can restrict ourselves

only to models and prior distributions that lead to tractable posterior distributions and inte-

grals for the marginal likelihoods and predictive densities. This is highly undesirable since it

inevitably leads us to lose prior knowledge and modelling power. More realistically, we can

approximate the exact answer.
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1.3.1 Maximum a posteriori (MAP) parameter estimates

The simplest approximation to the posterior distribution is to use a point estimate, such as the

maximum a posteriori (MAP) parameter estimate,

θ̂ = arg max
θ

p(θ)p(y |θ) , (1.35)

which chooses the model with highest posterior probability density (the mode). Whilst this esti-

mate does contain information from the prior, it is by no means completely Bayesian (although

it is often erroneously claimed to be so) since the mode of the posterior may not be represen-

tative of the posterior distribution at all. In particular, we are likely (in typical models) to be

over-confident of predictions made with the MAP model, since by definitionall the posterior

probability mass is contained in models which give poorer likelihood to the data (modulo the

prior influence). In some cases it might be argued that instead of the MAP estimate it is suffi-

cient to specify instead a set ofcredible regionsor rangesin which most of the probability mass

for the parameter lies (connected credible regions are called credible ranges). However, both

point estimates and credible regions (which are simply a collection of point estimates) have the

drawback that they are not unique: it is always possible to find a one-to-one monotonic mapping

of the parameters such that any particular parameter setting is at the mode of the posterior prob-

ability density in that mapped space (provided of course that that value has non-zero probability

density under the prior). This means that two modellers with identical priors and likelihood

functions will in general find different MAP estimates if their parameterisations of the model

differ.

The key ingredient in the Bayesian approach is then not just the use of a prior but the fact that

all variables that are unknown are averaged over, i.e. that uncertainty is handled in a coherent

way. In this way is it not important which parameterisation we adopt because the parameters

are integrated out.

In the rest of this section we review some of the existing methods for approximating marginal

likelihoods. The first three methods are analytical approximations: the Laplace method (Kass

and Raftery, 1995), the Bayesian Information Criterion (BIC;Schwarz, 1978), and the criterion

due toCheeseman and Stutz(1996). All these methods make use of the MAP estimate (1.35),

and in some way or other try to account for the probability mass about the mode of the posterior

density. These methods are attractive because finding the MAP estimate is usually a straight-

forward procedure. To almost complete the toolbox of practical methods for Bayesian learning,

there follows a brief survey of sampling-based approximations, such as importance sampling

and Markov chain Monte Carlo methods. We leave the topic of variational Bayesian learning

until the next chapter, where we will look back to these approximations for comparison.
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1.3.2 Laplace’s method

By Bayes’ rule, the posterior over parametersθ of a modelm is

p(θ |y,m) =
p(θ |m) p(y |θ,m)

p(y |m)
. (1.36)

Defining the logarithm of the numerator as

t(θ) ≡ ln [p(θ |m) p(y |θ,m)] = ln p(θ |m) +
n∑
i=1

ln p(yi |θ,m) , (1.37)

the Laplace approximation(Kass and Raftery, 1995; MacKay, 1995) makes a local Gaussian

approximation around a MAP parameter estimateθ̂ (1.35). The validity of this approximation

is based on the large data limit and some regularity conditions which are discussed below. We

expandt(θ) to second order as a Taylor series about this point:

t(θ) = t(θ̂) + (θ − θ̂)>
∂t(θ)
∂θ

∣∣∣∣
θ=θ̂

+
1
2!

(θ − θ̂)>
∂2t(θ)
∂θ∂θ>

∣∣∣∣
θ=θ̂

(θ − θ̂) + . . . (1.38)

≈ t(θ̂) +
1
2
(θ − θ̂)>H(θ̂)(θ − θ̂) , (1.39)

whereH(θ̂) is the Hessian of the log posterior (matrix of the second derivatives of (1.37)),

evaluated at̂θ,

H(θ̂) =
∂2 ln p(θ |y,m)

∂θ∂θ>

∣∣∣∣
θ=θ̂

=
∂2t(θ)
∂θ∂θ>

∣∣∣∣
θ=θ̂

, (1.40)

and the linear term has vanished as the gradient of the posterior∂t(θ)
∂θ at θ̂ is zero as this is the

MAP setting (or a local maximum). Substituting (1.39) into the log marginal likelihood and

integrating yields

ln p(y |m) = ln
∫
dθ p(θ |m) p(y |θ,m) (1.41)

= ln
∫
dθ exp [t(θ)] , (1.42)

≈ t(θ̂) +
1
2

ln
∣∣2πH−1

∣∣ (1.43)

= ln p(θ̂ |m) + ln p(y | θ̂,m) +
d

2
ln 2π − 1

2
ln |H| , (1.44)

whered is the dimensionality of the parameter space. Equation (1.44) can be written

p(y |m)Laplace= p(θ̂ |m) p(y | θ̂,m)
∣∣2πH−1

∣∣1/2 . (1.45)

Thus the Laplace approximation to the marginal likelihood consists of a term for the data likeli-

hood at the MAP setting, a penalty term from the prior, and a volume term calculated from the

local curvature.
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Approximation (1.45) has several shortcomings. The Gaussian assumption is based on the large

data limit, and will represent the posterior poorly for small data sets for which, in principle, the

advantages of Bayesian integration over ML or MAP are largest. The Gaussian approximation

is also poorly suited to bounded, constrained, or positive parameters, such as mixing proportions

or precisions, since it assigns non-zero probability mass outside of the parameter domain. Of

course, this can often be alleviated by a change of parameter basis (see for example,MacKay,

1998); however there remains the undesirable fact that in the non-asymptotic regime the ap-

proximation is still not invariant to reparameterisation. Moreover, the posterior may not be log

quadratic for likelihoods with hidden variables, due to problems of identifiability discussed in

the next subsection. In these cases the regularity conditions required for convergence do not

hold. Even if the exact posterior is unimodal the resulting approximation may well be a poor

representation of the nearby probabilitymass, as the approximation is made about a locally max-

imum probabilitydensity. The volume term requires the calculation of|H|: this takesO(nd2)
operations to compute the derivatives in the Hessian, and then a furtherO(d3) operations to

calculate the determinant; this becomes burdensome for high dimensions, so approximations

to this calculation usually ignore off-diagonal elements or assume a block-diagonal structure

for the Hessian, which correspond to neglecting dependencies between parameters. Finally, the

second derivatives themselves may be intractable to compute.

1.3.3 Identifiability: aliasing and degeneracy

The convergence to Gaussian of the posterior holds only if the model isidentifiable. Therefore

the Laplace approximation may be inaccurate if this is not the case. A model is not identifiable

if there isaliasingor degeneracyin the parameter posterior.

Aliasing arises in models with symmetries, where the assumption that there exists a single mode

in the posterior becomes incorrect. As an example of symmetry, take the model containing a

discrete hidden variablexi with k possible settings (e.g. the indicator variable in a mixture

model). Since the variable is hidden these settings can be arbitrarily labelledk! ways. If the

likelihood is invariant to these permutations, and if the prior over parameters is also invariant to

these permutations, then the landscape for the posterior parameter distribution will be made up

of k! identical aliases. For example the posterior for HMMs converges to a mixture of Gaussians,

not a single mode, corresponding to the possible permutations of the hidden states. If the aliases

are sufficiently distinct, corresponding to well defined peaks in the posterior as a result of large

amounts of data, the error in the Laplace method can be corrected by multiplying the marginal

likelihood by a factor ofk!. In practice it is difficult to ascertain the degree of separation of

the aliases, and so a simple modification of this sort is not possible. Although corrections

have been devised to account for this problem, for example estimating thepermanentof the

model, they are complicated and computationally burdensome. The interested reader is referred
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to Barvinok (1999) for a description of a polynomial randomised approximation scheme for

estimating permanents, and toJerrum et al.(2001) for a review of permanent calculations.

Parameter degeneracy arises when there is some redundancy in the choice of parameterisation

for the model. For example, consider a model that has two parametersθ = (ν1,ν2), whose

difference specifies the noise precision of an observed Gaussian variableyi with mean0, say,

yi ∼ N(yi |0, ν1−ν2). If the prior over parameters does not disambiguateν1 from ν2, the

posterior overθ will contain an infinity of distinct configurations of(ν1,ν2), all of which give

the same likelihood to the data; this degeneracy causes the volume element∝
∣∣H−1

∣∣ to be

infinite and renders the marginal likelihood estimate (1.45) useless. Parameter degeneracy can

be thought of as a continuous form of aliasing in parameter space, in which there are infinitely

many aliases.

1.3.4 BIC and MDL

The Bayesian Information Criterion (BIC) (Schwarz, 1978) can be obtained from the Laplace

approximation by retaining only those terms that grow withn. From (1.45), we have

ln p(y |m)Laplace= ln p(θ̂ |m)︸ ︷︷ ︸
O(1)

+ ln p(y | θ̂,m)︸ ︷︷ ︸
O(n)

+
d

2
ln 2π︸ ︷︷ ︸
O(1)

− 1
2

ln |H|︸ ︷︷ ︸
O(d lnn)

, (1.46)

where each term’s dependence onn has been annotated. RetainingO(n) andO(lnn) terms

yields

ln p(y |m)Laplace= ln p(y | θ̂,m)− 1
2

ln |H|+O(1) . (1.47)

Using the fact that the entries of the Hessian scale linearly withn (see (1.37) and (1.40)), we

can write

lim
n→∞

1
2

ln |H| = 1
2

ln |nH0| =
d

2
lnn+

1
2

ln |H0|︸ ︷︷ ︸
O(1)

, (1.48)

and then assuming that the prior is non-zero atθ̂, in the limit of largen equation (1.47) becomes

the BIC score:

ln p(y |m)BIC = ln p(y | θ̂,m)− d

2
lnn . (1.49)

The BIC approximation is interesting for two reasons: first, it does not depend on the prior

p(θ |m); second, it does not take into account the local geometry of the parameter space and

hence is invariant to reparameterisations of the model. A Bayesian would obviously baulk at

the first of these features, but the second feature of reparameterisation invariance is appealing

because this should fall out of an exact Bayesian treatment in any case. In practice the dimension

of the modeld that is used is equal to the number ofwell-determinedparameters, or the number

36



Introduction 1.3. Practical Bayesian approaches

of effectiveparameters, after any potential parameter degeneracies have been removed. In the

example mentioned above the reparameterisationν∗ = ν1 − ν2 is sufficient, yieldingd =
|ν|. The BIC is in fact exactly minus the minimum description length (MDL) penalty used

in Rissanen(1987). However, the minimum message length (MML) framework ofWallace

and Freeman(1987) is closer in spirit to Bayesian integration over parameters. We will be

revisiting the BIC in the following chapters as a comparison to our variational Bayesian method

for approximating the marginal likelihood.

1.3.5 Cheeseman & Stutz’s method

If the complete-datamarginal likelihood defined as

p(x,y |m) =
∫
dθ p(θ |m)

n∏
i=1

p(xi,yi |θ,m) (1.50)

can be computed efficiently then the method proposed inCheeseman and Stutz(1996) can be

used to approximate the marginal likelihood of incomplete data. For any completion of the data

x̂, the following identity holds

p(y |m) = p(x̂,y |m)
p(y |m)
p(x̂,y |m)

(1.51)

= p(x̂,y |m)
∫
dθ p(θ |m)p(y |θ,m)∫

dθ′ p(θ′ |m)p(x̂,y |θ′,m)
. (1.52)

If we now apply Laplace approximations (1.45) to both numerator and denominator we obtain

p(y |m) ≈ p(x̂,y |m)
p(θ̂ |m)p(y | θ̂,m)

∣∣2πH−1
∣∣1/2

p(θ̂
′ |m)p(x̂,y | θ̂′,m)

∣∣2πH ′−1
∣∣1/2 . (1.53)

If the approximations are made about the same pointθ̂
′
= θ̂, then the hope is that errors in each

Laplace approximation will tend to cancel one another out. If the completionx̂ is set to be the

expected sufficient statistics calculated from an E step of the EM algorithm (discussed in more

detail in chapter2), then the ML/MAP settinĝθ
′
will be at the same point aŝθ. The final part of

the Cheeseman-Stutz approximation is to form the BIC asymptotic limit of each of the Laplace

approximations (1.49). In the originalAutoclassapplication (Cheeseman and Stutz, 1996) the

dimensionalities of the parameter spaces for the incomplete and complete-data integrals were

assumed equal so the terms scaling aslnn cancel. Sincêθ
′
= θ̂, the terms relating to the prior

probability ofθ̂ andθ̂
′
also cancel (although these areO(1) in any case), and we obtain:

p(y |m)CS = p(x̂,y |m)
p(y | θ̂,m)

p(x̂,y | θ̂,m)
. (1.54)
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whereθ̂ is the MAP estimate. In chapter2 we see how the Cheeseman-Stutz approximation

is related to the variational Bayesian lower bound. In chapter6 we compare its performance

empirically to variational Bayesian methods on a hard problem, and discuss the situation in

which the dimensionalities of the complete and incomplete-data parameters are different.

1.3.6 Monte Carlo methods

Unfortunately the large data limit approximations discussed in the previous section are limited

in their ability to trade-off computation time to improve their accuracy. For example, even if

the Hessian determinant were calculated exactly (costingO(nd2) operations to find the Hessian

and thenO(d3) to find its determinant), the Laplace approximation may still be very inaccurate.

Numerical integration methods hold the answer to more accurate, but computationally intensive

solutions.

The Monte Carlo integration method estimates the expectation of a functionφ(x) under a prob-

ability distributionf(x), by taking samples{x(i)}Ni=1 : x(i) ∼ f(x). An unbiased estimate,̂Φ,

of the expectation ofφ(x) underf(x), usingN samples is given by:

Φ =
∫
dx f(x)φ(x) ' Φ̂ =

1
N

N∑
i=1

φ(x(i)) . (1.55)

Expectations such as the predictive density, the marginal likelihood, posterior distributions over

hidden variables etc. can be obtained using such estimates. Most importantly, the Monte Carlo

method returns more accurate and reliable estimates the more samples are taken, and scales well

with the dimensionality ofx.

In situations wheref(x) is hard to sample from, one can use samples from a different aux-

iliary distribution g(x) and then correct for this by weighting the samples accordingly. This

method is calledimportance samplingand it constructs the following estimator usingN sam-

ples,{x(i)}Ni=1, generated such that eachx(i) ∼ g(x):

Φ =
∫
dx g(x)

f(x)
g(x)

φ(x) ' Φ̂ =
1
N

N∑
i=1

w(i)φ(x(i)) , (1.56)

where w(i) =
f(x(i))
g(x(i))

(1.57)

are known as theimportance weights. Note that the estimator in (1.56) is unbiased just as that

in (1.55). It is also possible to estimateΦ even ifp(x) andg(x) can be computed only up to
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multiplicative constant factors, that is to say:f(x) = f∗(x)/Zf andg(x) = g∗(x)/Zg. In such

cases it is straightforward to show that an estimator forΦ is given by:

Φ =
∫
dx g(x)

f(x)
g(x)

φ(x) ' Φ̂ =
∑N

i=1w
(i)φ(x(i))∑N

i=1w
(i)

, (1.58)

where w(i) =
f∗(x(i))
g∗(x(i))

(1.59)

are a slightly different set of importance weights. Unfortunately this estimate is now biased as

it is really the ratio of two estimates, and the ratio of two unbiased estimates is in general not

an unbiased estimate of the ratio. Although importance sampling is simple,Φ̂ can often have

very high variance. Indeed, even in some simple models it can be shown that the variance of the

weightsw(i), and therefore of̂Φ also, are unbounded. These and related problems are discussed

in section4.7 of chapter4 where importance sampling is used to estimate the exact marginal

likelihood of a mixture of factor analysers model trained with variational Bayesian EM. We use

this analysis to provide an assessment of the tightness of the variational lower bound, which

indicates how much we are conceding when using such an approximation (see section4.7.2).

A method related to importance sampling isrejection sampling. It avoids the use of a set of

weights{w(i)}Ni=1 by stochastically deciding whether or not to include each sample fromg(x).
The procedure requires the existence of a constantc such thatc g(x) > f(x) for all x, that

is to sayc g(x) envelopes the probability densityf(x). Samples are obtained fromf(x) by

drawing samples fromg(x), and then accepting or rejecting each stochastically based on the

ratio of its densities underf(x) andg(x). That is to say, for each sample an auxiliary variable

u(i) ∼ U(0, 1) is drawn, and the sample underg(x) accepted only if

f(x(i)) > u(i)c g(x(i)) . (1.60)

Unfortunately, this becomes impractical in high dimensions and with complex functions since

it is hard to find a simple choice ofg(x) such thatc is small enough to allow the rejection rate

to remain reasonable across the whole space. Even in simple examples the acceptance rate falls

exponentially with the dimensionality ofx.

To overcome the limitations of rejection sampling it is possible to adapt the densityc g(x) so

that it envelopesf(x) more tightly, but only in cases wheref(x) is log-concave. This method

is calledadaptive rejection sampling(Gilks and Wild, 1992): the envelope functionc g(x) is

piecewise exponential and is updated to more tightly fit the densityf(x) after each sample

is drawn. The result is that the probability of rejection monotonically decreases with each

sample evaluation. However it is only designed for log-concavef(x) and relies on gradient

information to construct tangents which upper bound the densityf(x). An interesting extension

(Gilks, 1992) to this constructs alower boundb l(x) as well (whereb is a constant) which is

updated in a similar fashion using chords between evaluations off(x). The advantage of also

39



Introduction 1.3. Practical Bayesian approaches

using a piecewise exponential lower bound is that the method can become very computationally

efficient by not having to evaluate densities underf(x) (which we presume is costly) for some

samples. To see how this is possible, consider drawing a samplex(i) which satisfies

b l(x(i)) > u(i)c g(x(i)) . (1.61)

This sample can be automatically acceptedwithout evaluation off(x(i)), since if inequality

(1.61) is satisfied then automatically inequality (1.60) is also satisfied. If the sample does not

satisfy (1.61), then of coursef(x(i)) needs to be computed, but this can then be used to tighten

the bound further.Gilks and Wild(1992) report that the number of density evaluations required

to sampleN points fromf(x) increases as3
√
N , even for quite non-Gaussian densities. Their

example obtains 100 samples from the standard univariate Gaussian with approximately 15

evaluations, and a further 900 samples with only 15 further evaluations. Moreover, in cases

where the log density is close to but not log concave, the adaptive rejection sampling algorithm

can still be used with Metropolis methods (see below) to correct for this (Gilks et al., 1995).

Markov chain Monte Carlo (MCMC) methods (as reviewed inNeal, 1992) can be used to gen-

erate a chain of samples, starting fromx(1), such that the next sample is a non-deterministic

function of the previous sample:x(i) P← x(i−1), where we defineP(x′,x) as the probabil-

ity of transition fromx′ to x. If P hasf(x) as its stationary (equilibrium) distribution, i.e.

f(x) =
∫
dx′ f(x′)P(x′,x), then the set{x(i)}Ni=1 can be used to obtain an unbiased estimate

of Φ as in (1.55) in the limit of a large number of samples. The set of samples have to drawn

from the equilibrium distribution, so it is advisable to discard all samples visited at the begin-

ning of the chain. In generalP is implemented using a proposal densityx(i) ∼ g(x,x(i−1))
about the previous sample. In order to ensurereversibilityof the Markov chain, the probability

of accepting the proposal needs to take into account the probability of a reverse transition. This

gives rise to the the Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970) acceptance

functiona(·, ·):

a(x(i),x(i−1)) =
f∗(x(i))g(x(i−1),x(i))
f∗(x(i−1))g(x(i),x(i−1))

. (1.62)

If a(x(i),x(i−1)) ≥ 1 the sample is accepted, otherwise it is accepted according to the prob-

ability a(x(i),x(i−1)). Several extensions to the MCMC method have been proposed includ-

ing over-relaxation (Adler, 1981), hybrid MCMC (Neal, 1993), and reversible-jump MCMC

(Green, 1995). These and many others can be found at the MCMC preprint service (Brooks).

Whilst MCMC sampling methods are guaranteed to yield exact estimates in the limit of a large

number of samples, even for well-designed procedures the number of samples required for ac-

curate estimates can be infeasibly large. There is a large amount of active research dedicated to

constructing measures to ascertain whether the Markov chain has reached equilibrium, whether

the samples it generates are independent, and analysing the reliability of the estimates. This
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thesis is concerned with fast, reliable, deterministic alternatives to MCMC. Long MCMC runs

can then be used to check the accuracy of these deterministic methods.

In contrast to MCMC methods, a new class of sampling methods has been recently devised

in which samples from exactly the equilibrium distribution are generated in a finite number of

steps of a Markov chain. These are termedexact samplingmethods, and make use of trajectory

couplingandcoalescencevia pseudorandom transitions, and is sometimes referred to ascou-

pling from the past(Propp and Wilson, 1996). Variations on exact sampling include interruptible

algorithms (Fill , 1998) and continuous state-space versions (Murdoch and Green, 1998). Such

methods have been applied to graphical models for machine learning problems in the contexts of

mixture modelling (Casella et al., 2000), and noisy-or belief networks (Harvey and Neal, 2000).

Finally, one important role of MCMC methods is to compute partition functions. One such pow-

erful method for computing normalisation constants, such asZf used above, is calledannealed

importance sampling(Neal, 2001). It is based on methods such as thermodynamic integration

for estimating the free energy of systems at different temperatures, and work on tempered tran-

sitions (Neal, 1996). It estimates the ratio of two normalisation constantsZt andZ0, which we

can think of for our purposes as the ratio of marginal likelihoods of two models, by collating the

results of a chain of intermediate likelihood ratios of ‘close’ models,

Zt
Z0

=
Z1

Z0
. . .
Zt−2

Zt−3

Zt−1

Zt−2

Zt
Zt−1

. (1.63)

Each of the ratios is estimated using samples from a Markov chain Monte Carlo method. We will

look at this method in much more detail in Chapter6, where it will be used as a gold standard

against which we test the ability of the variational Bayesian EM algorithm to approximate the

marginal likelihoods of a large set of models.

To conclude this section we note that Monte Carlo is a purely frequentist procedure and in

the words ofO’Hagan(1987) is ‘fundamentally unsound’. The objections raised therein can be

summarised as follows. First, the estimateΦ̂ depends on the sampling densityg(x), even though

g(x) itself is ancillary to the estimation. Put another way, the same set of samples{x(i)}ni=1,

conveying exactly the same information aboutp(x), but generated under a differentg(x) would

produce a different estimatêΦ. Of course, the densityg(x) is often tailored to the problem

at hand and so we would expect it to contain some of the essence of the estimate. Second,

the estimate does not depend on the location of thex(i)s, but only on function evaluations at

those points, e.g.f(x(i)). This is surely suboptimal, as the spatial distribution of the function

evaluations provides information on the integrandf(x)φ(x) as a whole. To summarise, clas-

sical Monte Carlo bases its estimate on irrelevant information,g(x), and also discards relevant

information from the location of the samples. Bayesian variants of Monte Carlo integration pro-

cedures have been devised to address these objections using Gaussian process models (O’Hagan,

1991; Rasmussen and Ghahramani, 2003), and there is much future work to do in this direction.
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1.4 Summary of the remaining chapters

Chapter 2 Forms the theoretical core of the thesis, and examines the use of variational meth-

ods for obtaining lower bounds on the likelihood (for point-parameter learning) and the

marginal likelihood (in the case of Bayesian learning). The implications of VB applied

to the large family ofconjugate-exponentialgraphical models are investigated, for both

directed and undirected representations. In particular, a general algorithm for conjugate-

exponential models is derived and it is shown that existing propagation algorithms can be

employed for inference, with approximately the same complexity as for point-parameters.

In addition, the relations of VB to a number of other commonly used approximations are

covered. In particular, it is shown that the Cheeseman-Stutz (CS) score is in fact a looser

lower bound on the marginal likelihood than the VB score.

Chapter 3 Applies the results of chapter2 to hidden Markov models (HMMs). It is shown that

it is possible to recover the number of hidden states required to model a synthetic data

set, and that the variational Bayesian algorithm can outperform maximum likelihood and

maximum a posteriori parameter learning algorithms on real data in terms of generalisa-

tion.

Chapter 4 Applies the variational Bayesian method to a mixtures of factor analysers (MFA)

problem, where it is shown that the procedure can automatically determine the optimal

number of components and the local dimensionality of each component (i.e. the number

of factors in each analyser). Through a stochastic procedure for adding components to

the model, it is possible to perform the variational optimisation incrementally and avoid

local maxima. The algorithm is shown to perform well on a variety of synthetic data sets,

and is compared to a BIC-penalised maximum likelihood algorithm on a real-world data

set of hand-written digits.

This chapter also investigates the generally applicable method of drawing importance

samples from the variational approximation to estimate the marginal likelihood and the

KL divergence between the approximate and exact posterior. Specific results applying

variants of this procedure to the MFA model are analysed.

Chapter 5 Presents an application of the theorems presented in chapter2 to linear dynamical

systems (LDSs). The result is the derivation of a variational Bayesian input-dependent

Rauch-Tung-Striebel smoother, such that it is possible to infer the posterior hidden state

trajectory whilst integrating over all model parameters. Experiments on synthetic data

show that it is possible to infer the dimensionality of the hidden state space and determine

which dimensions of the inputs and the data are relevant. Also presented are prelimi-

nary experiments for elucidating gene-gene interactions in a well-studied human immune

response mechanism.
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Chapter 6 Investigates a novel application of the VB framework to approximating the marginal

likelihood of discrete-variable directed acyclic graphs (DAGs) that contain hidden vari-

ables. The VB lower bound is compared to MAP, BIC, CS, and annealed importance

sampling (AIS), on a simple (yet non-trivial) model selection task of determining which

of all possible structures within a class generated a data set.

The chapter also discusses extensions and improvements to the particular form of AIS

used, and suggests related approximations which may be of interest.

Chapter 7 Concludes the thesis with a discussion on some topics closely related to the ideas

already investigated. These include: Bethe and Kikuchi approximations, infinite models,

inferring causality using the marginal likelihood, and automated algorithm derivation.

The chapter then concludes with a summary of the main contributions of the thesis.
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Chapter 2

Variational Bayesian Theory

2.1 Introduction

This chapter covers the majority of the theory for variational Bayesian learning that will be used

in rest of this thesis. It is intended to give the reader a context for the use of variational methods

as well as a insight into their general applicability and usefulness.

In a model selection task the role of a Bayesian is to calculate the posterior distribution over a

set of models given some a priori knowledge and some new observations (data). The knowledge

is represented in the form of a prior over model structuresp(m), and their parametersp(θ |m)
which define the probabilistic dependencies between the variables in the model. By Bayes’ rule,

the posterior over modelsm having seen datay is given by:

p(m |y) =
p(m)p(y |m)

p(y)
. (2.1)

The second term in the numerator is themarginal likelihoodor evidencefor a modelm, and is

the key quantity for Bayesian model selection:

p(y |m) =
∫
dθ p(θ |m)p(y |θ,m) . (2.2)

For each model structure we can compute the posterior distribution over parameters:

p(θ |y,m) =
p(θ |m)p(y |θ,m)

p(y |m)
. (2.3)
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We might also be interested in calculating other related quantities, such as thepredictive density

of a new datumy′ given a data sety = {y1, . . . ,yn}:

p(y′ |y,m) =
∫
dθ p(θ |y,m) p(y′ |θ,y,m) , (2.4)

which can be simplified into

p(y′ |y,m) =
∫
dθ p(θ |y,m) p(y′ |θ,m) (2.5)

if y′ is conditionally independent ofy given θ. We also may be interested in calculating the

posterior distribution of a hidden variable,x′, associated with the new observationy′

p(x′ |y′,y,m) ∝
∫
dθ p(θ |y,m) p(x′,y′ |θ,m) . (2.6)

The simplest way to approximate the above integrals is to estimate the value of the integrand

at a single point estimate ofθ, such as the maximum likelihood (ML) or the maximum a pos-

teriori (MAP) estimates, which aim to maximise respectively the second and both terms of the

integrand in (2.2),

θML = arg max
θ

p(y |θ,m) (2.7)

θMAP = arg max
θ

p(θ |m)p(y |θ,m) . (2.8)

ML and MAP examine only probabilitydensity, rather thanmass, and so can neglect poten-

tially large contributions to the integral. A more principled approach is to estimate the integral

numerically by evaluating the integrand at many differentθ via Monte Carlo methods. In the

limit of an infinite number of samples ofθ this produces an accurate result, but despite inge-

nious attempts to curb the curse of dimensionality inθ using methods such as Markov chain

Monte Carlo, these methods remain prohibitively computationally intensive in interesting mod-

els. These methods were reviewed in the last chapter, and the bulk of this chapter concentrates

on a third way of approximating the integral, usingvariational methods. The key to the varia-

tional method is to approximate the integral with a simpler form that is tractable, forming a lower

or upperbound. The integration then translates into the implementationally simpler problem of

boundoptimisation: making the bound as tight as possible to the true value.

We begin in section2.2 by describing how variational methods can be used to derive the well-

known expectation-maximisation (EM) algorithm for learning the maximum likelihood (ML)

parameters of a model. In section2.3 we concentrate on the Bayesian methodology, in which

priors are placed on the parameters of the model, and their uncertainty integrated over to give the

marginal likelihood(2.2). We then generalise the variational procedure to yield thevariational

Bayesian EM(VBEM) algorithm, which iteratively optimises a lower bound on this marginal
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likelihood. In analogy to the EM algorithm, the iterations consist of a variational Bayesian E

(VBE) step in which the hidden variables are inferred using anensembleof models according to

their posterior probability, and a variational Bayesian M (VBM) step in which a posteriordistri-

butionover model parameters is inferred. In section2.4 we specialise this algorithm to a large

class of models which we callconjugate-exponential(CE): we present the variational Bayesian

EM algorithm for CE models and discuss the implications for both directed graphs (Bayesian

networks) and undirected graphs (Markov networks) in section2.5. In particular we show that

we can incorporate existing propagation algorithms into the variational Bayesian framework

and that the complexity of inference for the variational Bayesian treatment is approximately the

same as for the ML scenario. In section2.6 we compare VB to the BIC and Cheeseman-Stutz

criteria, and finally summarise in section2.7.

2.2 Variational methods for ML / MAP learning

In this section we review the derivation of the EM algorithm for probabilistic models with hidden

variables. The algorithm is derived using a variational approach, and has exact and approximate

versions. We investigate themes on convexity, computational tractability, and the Kullback-

Leibler divergence to give a deeper understanding of the EM algorithm. The majority of the

section concentrates on maximum likelihood (ML) learning of the parameters; at the end we

present the simple extension to maximum a posteriori (MAP) learning. The hope is that this

section provides a good stepping-stone on to the variational Bayesian EM algorithm that is

presented in the subsequent sections and used throughout the rest of this thesis.

2.2.1 The scenario for parameter learning

Consider a model with hidden variablesx and observed variablesy. The parameters describ-

ing the (potentially) stochastic dependencies between variables are given byθ. In particular

consider the generative model that produces a datasety = {y1, . . . ,yn} consisting ofn in-

dependent and identically distributed (i.i.d.) items, generated using a set of hidden variables

x = {x1, . . . ,xn} such that the likelihood can be written as a function ofθ in the following

way:

p(y |θ) =
n∏
i=1

p(yi |θ) =
n∏
i=1

∫
dxi p(xi,yi |θ) . (2.9)

The integration over hidden variablesxi is required to form the likelihood of the parameters,

as a function of just the observed datayi. We have assumed that the hidden variables are

continuous as opposed to discrete (hence an integral rather than a summation), but we do so

without loss of generality. As a point of nomenclature, note that we usexi andyi to denote

collections of|xi| hidden and|yi| observed variables respectively:xi = {xi1, . . . ,xi|xi|}, and
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yi = {yi1, . . . ,yi|yi|}. We use|·| notation to denote the size of the collection of variables. ML

learning seeks to find the parameter settingθML that maximises this likelihood, or equivalently

the logarithm of this likelihood,

L(θ) ≡ ln p(y |θ) =
n∑
i=1

ln p(yi |θ) =
n∑
i=1

ln
∫
dxi p(xi,yi |θ) (2.10)

so defining

θML ≡ arg max
θ

L(θ) . (2.11)

To keep the derivations clear, we writeL as a function ofθ only; the dependence ony is im-

plicit. In Bayesian networks without hidden variables and with independent parameters, the

log-likelihood decomposes into local terms on eachyij , and so finding the setting of each pa-

rameter of the model that maximises the likelihood is straightforward. Unfortunately, if some

of the variables are hidden this will in general induce dependencies between all the parameters

of the model and so make maximising (2.10) difficult. Moreover, for models with many hidden

variables, the integral (or sum) overx can be intractable.

We simplify the problem of maximisingL(θ) with respect toθ by introducing an auxiliary dis-

tribution over the hidden variables.Anyprobability distributionqx(x) over the hidden variables

gives rise to alower boundonL. In fact, for each data pointyi we use a distinct distribution

qxi(xi) over the hidden variables to obtain the lower bound:

L(θ) =
∑
i

ln
∫
dxi p(xi,yi |θ) (2.12)

=
∑
i

ln
∫
dxi qxi(xi)

p(xi,yi |θ)
qxi(xi)

(2.13)

≥
∑
i

∫
dxi qxi(xi) ln

p(xi,yi |θ)
qxi(xi)

(2.14)

=
∑
i

∫
dxi qxi(xi) ln p(xi,yi |θ)−

∫
dxi qxi(xi) ln qxi(xi) (2.15)

≡ F(qx1(x1), . . . , qxn(xn),θ) (2.16)

where we have made use of Jensen’s inequality (Jensen, 1906) which follows from the fact that

thelog function is concave.F(qx(x),θ) is a lower bound onL(θ) and is a functional of the free

distributionsqxi(xi) and ofθ (the dependence ony is left implicit). Here we useqx(x) to mean

the set{qxi(xi)}ni=1. Defining theenergyof a global configuration(x,y) to be− ln p(x,y |θ),
the lower boundF(qx(x),θ) ≤ L(θ) is the negative of a quantity known in statistical physics as

the free energy: the expected energy underqx(x) minus the entropy ofqx(x) (Feynman, 1972;

Neal and Hinton, 1998).

47



VB Theory 2.2. Variational methods for ML / MAP learning

2.2.2 EM for unconstrained (exact) optimisation

The Expectation-Maximization (EM) algorithm (Baum et al., 1970; Dempster et al., 1977) al-

ternates between an E step, which infers posterior distributions over hidden variables given a

current parameter setting, and an M step, which maximisesL(θ) with respect toθ given the

statistics gathered from the E step. Such a set of updates can be derived using the lower bound:

at each iteration, the E step maximisesF(qx(x),θ) with respect to each of theqxi(xi), and the

M step does so with respect toθ. Mathematically speaking, using a superscript(t) to denote

iteration number, starting from some initial parametersθ(0), the update equations would be:

E step: q
(t+1)
xi ← arg max

qxi

F(qx(x),θ(t)) , ∀ i ∈ {1, . . . , n} , (2.17)

M step: θ(t+1) ← arg max
θ

F(q(t+1)
x (x),θ) . (2.18)

For the E step, it turns out that the maximum overqxi(xi) of the bound (2.14) is obtained by

setting

q
(t+1)
xi (xi) = p(xi |yi,θ(t)) , ∀ i , (2.19)

at which point the bound becomes an equality. This can be proven by direct substitution of

(2.19) into (2.14):

F(q(t+1)
x (x),θ(t)) =

∑
i

∫
dxi q

(t+1)
xi (xi) ln

p(xi,yi |θ(t))

q
(t+1)
xi (xi)

(2.20)

=
∑
i

∫
dxi p(xi |yi,θ(t)) ln

p(xi,yi |θ(t))
p(xi |yi,θ(t))

(2.21)

=
∑
i

∫
dxi p(xi |yi,θ(t)) ln

p(yi |θ(t)) p(xi |yi,θ(t))
p(xi |yi,θ(t))

(2.22)

=
∑
i

∫
dxi p(xi |yi,θ(t)) ln p(yi |θ(t)) (2.23)

=
∑
i

ln p(yi |θ(t)) = L(θ(t)) , (2.24)

where the last line follows asln p(yi |θ) is not a function ofxi. After this E step the bound is

tight. The same result can be obtained by functionally differentiatingF(qx(x),θ) with respect

to qxi(xi), and setting to zero, subject to the normalisation constraints:∫
dxi qxi(xi) = 1 , ∀ i . (2.25)
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The constraints on eachqxi(xi) can be implemented using Lagrange multipliers{λi}ni=1, form-

ing the new functional:

F̃(qx(x),θ) = F(qx(x),θ) +
∑
i

λi

[∫
dxi qxi(xi)− 1

]
. (2.26)

We then take the functional derivative of this expression with respect to eachqxi(xi) and equate

to zero, obtaining the following

∂

∂qxi(xi)
F̃(qx(x),θ(t)) = ln p(xi,yi |θ(t))− ln qxi(xi)− 1 + λi = 0 (2.27)

=⇒ q
(t+1)
xi (xi) = exp (−1 + λi) p(xi,yi |θ(t)) (2.28)

= p(xi |yi,θ(t)) , ∀ i , (2.29)

where eachλi is related to the normalisation constant:

λi = 1− ln
∫
dxi p(xi,yi |θ(t)) , ∀ i . (2.30)

In the remaining derivations in this thesis we always enforce normalisation constraints using

Lagrange multiplier terms, although they may not always be explicitly written.

The M step is achieved by simply setting derivatives of (2.14) with respect toθ to zero, which is

the same as optimising the expected energy term in (2.15) since the entropy of the hidden state

distributionqx(x) is not a function ofθ:

M step: θ(t+1) ← arg max
θ

∑
i

∫
dxi p(xi |yi,θ(t)) ln p(xi,yi |θ) . (2.31)

Note that the optimisation is over the secondθ in the integrand, whilst holdingp(xi |yi,θ(t))
fixed. SinceF(q(t+1)

x (x),θ(t)) = L(θ(t)) at the beginning of each M step, and since the E

step does not change the parameters, the likelihood is guaranteed not to decrease after each

combined EM step. This is the well known lower bound interpretation of EM:F(qx(x),θ) is

an auxiliary function which lower boundsL(θ) for any qx(x), attaining equality after each E

step. These steps are shown schematically in figure2.1. Here we have expressed the E step as

obtaining the full distribution over the hidden variables for each data point. However we note

that, in general, the M step may require only a few statistics of the hidden variables, so only

these need be computed in the E step.

2.2.3 EM with constrained (approximate) optimisation

Unfortunately, in many interesting models the data are explained by multiple interacting hid-

den variables which can result in intractable posterior distributions (Williams and Hinton, 1991;
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Figure 2.1: The variational interpretation of EM for maximum likelihood learning. In the E step
the hidden variable variational posterior is set to the exact posteriorp(x |y,θ(t)), making the

bound tight. In the M step the parameters are set to maximise the lower boundF(q(t+1)
x ,θ)

while holding the distribution over hidden variablesq(t+1)
x (x) fixed.

Neal, 1992; Hinton and Zemel, 1994; Ghahramani and Jordan, 1997; Ghahramani and Hinton,

2000). In the variational approach we can constrain the posterior distributions to be of a partic-

ular tractable form, for example factorised over the variablexi = {xij}|xi|
j=1. Using calculus of

variations we can still optimiseF(qx(x),θ) as a functional of constrained distributionsqxi(xi).
The M step, which optimisesθ, is conceptually identical to that described in the previous sub-

section, except that it is based on sufficient statistics calculated with respect to the constrained

posteriorqxi(xi) instead of the exact posterior.

We can write the lower boundF(qx(x),θ) as

F(qx(x),θ) =
∑
i

∫
dxi qxi(xi) ln

p(xi,yi |θ)
qxi(xi)

(2.32)

=
∑
i

∫
dxi qxi(xi) ln p(yi |θ) +

∑
i

∫
dxi qxi(xi) ln

p(xi |yi,θ)
qxi(xi)

(2.33)

=
∑
i

ln p(yi |θ)−
∑
i

∫
dxi qxi(xi) ln

qxi(xi)
p(xi |yi,θ)

. (2.34)

Thus in the E step, maximisingF(qx(x),θ) with respect toqxi(xi) is equivalent to minimising

the following quantity∫
dxi qxi(xi) ln

qxi(xi)
p(xi |yi,θ)

≡ KL [qxi(xi) ‖ p(xi |yi,θ)] (2.35)

≥ 0 , (2.36)

which is the Kullback-Leibler divergence between the variational distributionqxi(xi) and the

exact hidden variable posteriorp(xi |yi,θ). As is shown in figure2.2, the E step does not
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Figure 2.2: The variational interpretation of constrained EM for maximum likelihood learn-
ing. In the E step the hidden variable variational posterior is set to that which minimises

KL
[
qx(x) ‖ p(x |y,θ(t))

]
, subject toqx(x) lying in the family of constrained distributions.

In the M step the parameters are set to maximise the lower boundF(q(t+1)
x ,θ) given the current

distribution over hidden variables.

generally result in the bound becoming an equality, unless of course the exact posterior lies in

the family of constrained posteriorsqx(x).

The M step looks very similar to (2.31), but is based on the current variational posterior over

hidden variables:

M step: θ(t+1) ← arg max
θ

∑
i

∫
dxi q

(t+1)
xi (xi) ln p(xi,yi |θ) . (2.37)

One can chooseqxi(xi) to be in a particular parameterised family:

qxi(xi) = qxi(xi |λi) (2.38)

whereλi = {λi1, . . . ,λir} arer variational parametersfor each datum. If we constrain each

qxi(xi |λi) to have easily computable moments (e.g. a Gaussian), and especially ifln p(xi |yi,θ)
is polynomial inxi, then we can compute the KL divergence up to a constant and, more impor-

tantly, can take its derivatives with respect to the set of variational parametersλi of eachqxi(xi)
distribution to perform the constrained E step. The E step of thevariational EMalgorithm there-

fore consists of a sub-loop in which each of theqxi(xi |λi) is optimised by taking derivatives

with respect to eachλis, for s = 1, . . . , r.
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The mean field approximation

The mean fieldapproximation is the case in which eachqxi(xi) is fully factorised over the

hidden variables:

qxi(xi) =
|xi|∏
j=1

qxij (xij) . (2.39)

In this case the expression forF(qx(x),θ) given by (2.32) becomes:

F(qx(x),θ) =
∑
i

∫
dxi

 |xi|∏
j=1

qxij (xij) ln p(xi,yi |θ)−
|xi|∏
j=1

qxij (xij) ln
|xi|∏
j=1

qxij (xij)


(2.40)

=
∑
i

∫
dxi

 |xi|∏
j=1

qxij (xij) ln p(xi,yi |θ)−
|xi|∑
j=1

qxij (xij) ln qxij (xij)

 .

(2.41)

Using a Lagrange multiplier to enforce normalisation of the each of the approximate posteriors,

we take the functional derivative of this form with respect to eachqxij (xij) and equate to zero,

obtaining:

qxij (xij) =
1
Zij

exp

∫ dxi/j

|xi|∏
j′/j

qxij′ (xij′) ln p(xi,yi |θ)

 , (2.42)

for each data pointi ∈ {1, . . . , n}, and each variational factorised componentj ∈ {1, . . . , |xi|}.
We use the notationdxi/j to denote the element of integration for all items inxi exceptxij , and

the notation
∏
j′/j to denote a product of all terms excludingj. For theith datum, it is clear that

the update equation (2.42) applied to each hidden variablej in turn represents a set of coupled

equations for the approximate posterior over each hidden variable. These fixed point equations

are calledmean-field equationsby analogy to such methods in statistical physics. Examples of

these variational approximations can be found in the following:Ghahramani(1995); Saul et al.

(1996); Jaakkola(1997); Ghahramani and Jordan(1997).

EM for maximum a posteriori learning

In MAP learning the parameter optimisation includes prior information about the parameters

p(θ), and the M step seeks to find

θMAP ≡ arg max
θ

p(θ)p(y |θ) . (2.43)
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In the case of an exact E step, the M step is simply augmented to:

M step: θ(t+1) ← arg max
θ

[
ln p(θ) +

∑
i

∫
dxi p(xi |yi,θ(t)) ln p(xi,yi |θ)

]
.

(2.44)

In the case of a constrained approximate E step, the M step is given by

M step: θ(t+1) ← arg max
θ

[
ln p(θ) +

∑
i

∫
dxi q

(t+1)
xi (xi) ln p(xi,yi |θ)

]
. (2.45)

However, as mentioned in section1.3.1, we reiterate that an undesirable feature of MAP esti-

mation is that it is inherently basis-dependent: it is always possible to find a basis in which any

particularθ∗ is the MAP solution, providedθ∗ has non-zero prior probability.

2.3 Variational methods for Bayesian learning

In this section we show how to extend the above treatment to use variational methods to ap-

proximate the integrals required for Bayesian learning. By treating the parameters as unknown

quantities as well as the hidden variables, there are now correlations between the parameters

and hidden variables in the posterior. The basic idea in the VB framework is to approximate the

distribution over both hidden variables and parameters with a simpler distribution, usually one

which assumes that the hidden states and parameters are independent given the data.

There are two main goals in Bayesian learning. The first is approximating the marginal likeli-

hoodp(y |m) in order to perform model comparison. The second is approximating the posterior

distribution over the parameters of a modelp(θ |y,m), which can then be used for prediction.

2.3.1 Deriving the learning rules

As before, lety denote the observed variables,x denote the hidden variables, andθ denote the

parameters. We assume a prior distribution over parametersp(θ |m) conditional on the model

m. The marginal likelihood of a model,p(y |m), can be lower bounded by introducing any
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distribution over both latent variables and parameters which has support wherep(x,θ |y,m)
does, by appealing to Jensen’s inequality once more:

ln p(y |m) = ln
∫
dθ dx p(x,y,θ |m) (2.46)

= ln
∫
dθ dx q(x,θ)

p(x,y,θ |m)
q(x,θ)

(2.47)

≥
∫
dθ dx q(x,θ) ln

p(x,y,θ |m)
q(x,θ)

. (2.48)

Maximising this lower bound with respect to the free distributionq(x,θ) results inq(x,θ) =
p(x,θ |y,m) which when substituted above turns the inequality into an equality (in exact

analogy with (2.19)). This does not simplify the problem since evaluating the exact poste-

rior distributionp(x,θ |y,m) requires knowing its normalising constant, the marginal likeli-

hood. Instead we constrain the posterior to be a simpler, factorised (separable) approximation

to q(x,θ) ≈ qx(x)qθ(θ):

ln p(y |m) ≥
∫
dθ dx qx(x)qθ(θ) ln

p(x,y,θ |m)
qx(x)qθ(θ)

(2.49)

=
∫
dθ qθ(θ)

[∫
dx qx(x) ln

p(x,y |θ,m)
qx(x)

+ ln
p(θ |m)
qθ(θ)

]
(2.50)

= Fm(qx(x), qθ(θ)) (2.51)

= Fm(qx1(x1), . . . , qxn(xn), qθ(θ)) , (2.52)

where the last equality is a consequence of the datay arriving i.i.d. (this is shown in theorem

2.1below). The quantityFm is a functional of the free distributions,qx(x) andqθ(θ).

The variational Bayesian algorithm iteratively maximisesFm in (2.51) with respect to the free

distributions,qx(x) andqθ(θ), which is essentially coordinate ascent in the function space of

variational distributions. The following very general theorem provides the update equations for

variational Bayesian learning.

Theorem 2.1: Variational Bayesian EM (VBEM).

Let m be a model with parametersθ giving rise to an i.i.d. data sety = {y1, . . .yn} with

corresponding hidden variablesx = {x1, . . .xn}. A lower bound on the model log marginal

likelihood is

Fm(qx(x), qθ(θ)) =
∫
dθ dx qx(x)qθ(θ) ln

p(x,y,θ |m)
qx(x)qθ(θ)

(2.53)

and this can be iteratively optimised by performing the following updates, using superscript(t)
to denote iteration number:

VBE step: q
(t+1)
xi (xi) =

1
Zxi

exp
[∫

dθ q
(t)
θ (θ) ln p(xi,yi |θ,m)

]
∀ i (2.54)
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where

q
(t+1)
x (x) =

n∏
i=1

q
(t+1)
xi (xi) , (2.55)

and

VBM step: q
(t+1)
θ (θ) =

1
Zθ

p(θ |m) exp
[∫

dx q(t+1)
x (x) ln p(x,y |θ,m)

]
. (2.56)

Moreover, the update rules converge to a local maximum ofFm(qx(x), qθ(θ)) .

Proof of qxi(xi) update: using variational calculus.

Take functional derivatives ofFm(qx(x), qθ(θ)) with respect toqx(x), and equate to zero:

∂

∂qx(x)
Fm(qx(x), qθ(θ)) =

∫
dθ qθ(θ)

[
∂

∂qx(x)

∫
dx qx(x) ln

p(x,y |θ,m)
qx(x)

]
(2.57)

=
∫
dθ qθ(θ) [ln p(x,y |θ,m)− ln qx(x)− 1] (2.58)

= 0 (2.59)

which implies

ln q(t+1)
x (x) =

∫
dθ q

(t)
θ (θ) ln p(x,y |θ,m)− lnZ(t+1)

x , (2.60)

whereZx is a normalisation constant (from a Lagrange multiplier term enforcing normalisation

of qx(x), omitted for brevity). As a consequence of the i.i.d. assumption, this update can be

broken down across then data points

ln q(t+1)
x (x) =

∫
dθ q

(t)
θ (θ)

n∑
i=1

ln p(xi,yi |θ,m)− lnZ(t+1)
x , (2.61)

which implies that the optimalq(t+1)
x (x) is factorised in the formq(t+1)

x (x) =
∏n
i=1 q

(t+1)
xi (xi),

with

ln q(t+1)
xi (xi) =

∫
dθ q

(t)
θ (θ) ln p(xi,yi |θ,m)− lnZ(t+1)

xi ∀ i , (2.62)

with Zx =
n∏
i=1

Zxi . (2.63)

Thus for a givenqθ(θ), there is a unique stationary point for eachqxi(xi).

Proof of qθ(θ) update: using variational calculus.
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Figure 2.3: The variational Bayesian EM (VBEM) algorithm. In the VBE step, the variational
posterior over hidden variablesqx(x) is set according to (2.60). In the VBM step, the variational
posterior over parameters is set according to (2.56). Each step is guaranteed to increase (or
leave unchanged) the lower bound on the marginal likelihood. (Note that the exact log marginal
likelihood is afixedquantity, and does not change with VBE or VBM steps — it is only the
lower bound which increases.)

Proceeding as above, take functional derivatives ofFm(qx(x), qθ(θ)) with respect toqθ(θ) and

equate to zero yielding:

∂

∂qθ(θ)
Fm(qx(x), qθ(θ)) =

∂

∂qθ(θ)

∫
dθ qθ(θ)

[∫
dx qx(x) ln p(x,y |θ,m) (2.64)

+ ln
p(θ |m)
qθ(θ)

]
(2.65)

=
∫
dx qx(x) ln p(x,y |θ) + ln p(θ |m)− ln qθ(θ) + c′ (2.66)

= 0 , (2.67)

which upon rearrangement produces

ln q(t+1)
θ (θ) = ln p(θ |m) +

∫
dx q(t+1)

x (x) ln p(x,y |θ)− lnZ(t+1)
θ , (2.68)

whereZθ is the normalisation constant (related to the Lagrange multiplier which has again been

omitted for succinctness). Thus for a givenqx(x), there is a unique stationary point forqθ(θ).
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At this point it is well worth noting the symmetry between the hidden variables and the param-

eters. The individual VBE steps can be written as one batch VBE step:

q
(t+1)
x (x) =

1
Zx

exp
[∫

dθ q
(t)
θ (θ) ln p(x,y |θ,m)

]
(2.69)

with Zx =
n∏
i=1

Zxi . (2.70)

On the surface, it seems that the variational update rules (2.60) and (2.56) differ only in the

prior termp(θ |m) over the parameters. There actually also exists a prior term over the hidden

variables as part ofp(x,y |θ,m), so this does not resolve the two. The distinguishing feature

between hidden variables and parameters is that the number of hidden variables increases with

data set size, whereas the number of parameters is assumed fixed.

Re-writing (2.53), it is easy to see that maximisingFm(qx(x), qθ(θ) is simply equivalent to

minimising the KL divergence betweenqx(x) qθ(θ) and the joint posterior over hidden states

and parametersp(x,θ |y,m):

ln p(y |m)−Fm(qx(x), qθ(θ)) =
∫
dθ dx qx(x) qθ(θ) ln

qx(x) qθ(θ)
p(x,θ |y,m)

(2.71)

= KL [qx(x) qθ(θ) ‖ p(x,θ |y,m)] (2.72)

≥ 0 . (2.73)

Note the similarity between expressions (2.35) and (2.72): while we minimise the former with

respect to hidden variable distributions and the parameters, the latter we minimise with respect

to the hidden variable distribution and adistributionover parameters.

The variational Bayesian EM algorithm reduces to the ordinary EM algorithm for ML estimation

if we restrict the parameter distribution to a point estimate, i.e. a Dirac delta function,qθ(θ) =
δ(θ − θ∗), in which case the M step simply involves re-estimatingθ∗. Note that the same

cannot be said in the case of MAP estimation, which is inherently basis dependent, unlike both

VB and ML algorithms. By construction, the VBEM algorithm is guaranteed to monotonically

increase an objective functionF , as a function of a distribution over parameters and hidden

variables. Since we integrate over model parameters there is a naturally incorporated model

complexity penalty. It turns out that for a large class of models (see section2.4) the VBE

step has approximately the same computational complexity as the standard E step in the ML

framework, which makes it viable as a Bayesian replacement for the EM algorithm.
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2.3.2 Discussion

The impact of the q(x,θ) ≈ qx(x)qθ(θ) factorisation

Unless we make the assumption that the posterior over parameters and hidden variables fac-

torises, we will not generally obtain the further hidden variable factorisation overn that we

have in equation (2.55). In that case, the distributions ofxi andxj will be coupled for all cases

{i, j} in the data set, greatly increasing the overall computational complexity of inference. This

further factorisation is depicted in figure2.4 for the case ofn = 3, where we see: (a) the origi-

nal directed graphical model, whereθ is the collection of parameters governing prior distribu-

tions over the hidden variablesxi and the conditional probabilityp(yi |xi,θ); (b) the moralised

graph given the data{y1,y2,y3}, which shows that the hidden variables are now dependent

in the posterior through the uncertain parameters; (c) the effective graph after the factorisation

assumption, which not only removes arcs between the parameters and hidden variables, but also

removes the dependencies between the hidden variables. This latter independence falls out from

the optimisation as a result of the i.i.d. nature of the data, and is not a further approximation.

Whilst this factorisation of the posterior distribution over hidden variables and parameters may

seem drastic, one can think of it as replacingstochasticdependencies betweenx andθ with

deterministicdependencies between relevant moments of the two sets of variables. The ad-

vantage of ignoring how fluctuations inx induce fluctuations inθ (and vice-versa) is that we

can obtain analytical approximations to the log marginal likelihood. It is these same ideas that

underlie mean-field approximations from statistical physics, from where these lower-bounding

variational approximations were inspired (Feynman, 1972; Parisi, 1988). In later chapters the

consequences of the factorisation for particular models are studied in some detail; in particular

we will use sampling methods to estimate by how much the variational bound falls short of the

marginal likelihood.

What forms for qx(x) and qθ(θ) ?

One might need to approximate the posterior further than simply the hidden-variable / parameter

factorisation. A common reason for this is that the parameter posterior may still be intractable

despite the hidden-variable / parameter factorisation. The free-form extremisation ofF nor-

mally provides us with a functional form forqθ(θ), but this may be unwieldy; we therefore

need to assume some simpler space of parameter posteriors. The most commonly used distribu-

tions are those with just a few sufficient statistics, such as the Gaussian or Dirichlet distributions.

Taking a Gaussian example,F is then explicitly extremised with respect to a set of variational

parametersζθ = (µθ,νθ) which parameterise the Gaussianqθ(θ | ζθ). We will see examples

of this approach in later chapters. There may also exist intractabilities in the hidden variable
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(a) The generative graphical
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(b) Graph representing the
exact posterior.
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(c) Posterior graph after the
variational approximation.

Figure 2.4: Graphical depiction of the hidden-variable / parameter factorisation.(a) The origi-
nal generative model forn = 3. (b) The exact posterior graph given the data. Note that for all
case pairs{i, j}, xi andxj are not directly coupled, but interact throughθ. That is to say all
the hidden variables are conditionally independent of one another, but only given the parame-
ters.(c) the posterior graph after the variational approximation between parameters and hidden
variables, which removes arcs between parameters and hidden variables. Note that, on assum-
ing this factorisation, as a consequence of the i.i.d. assumption the hidden variables become
independent.
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posterior, for which further approximations need be made (some examples are mentioned be-

low).

There is something of a dark art in discovering a factorisation amongst the hidden variables and

parameters such that the approximation remains faithful at an ‘acceptable’ level. Of course it

does not make sense to use a posterior form which holds fewer conditional independencies than

those implied by themoralgraph (see section1.1). The key to a good variational approximation

is then to remove as few arcs as possible from the moral graph such that inference becomes

tractable. In many cases the goal is to find tractable substructures (structuredapproximations)

such as trees or mixtures of trees, which capture as many of the arcs as possible. Some arcs

may capture crucial dependencies between nodes and so need be kept, whereas other arcs might

induce a weak local correlation at the expense of a long-range correlation which to first order

can be ignored; removing such an arc can have dramatic effects on the tractability.

The advantage of the variational Bayesian procedure is thatany factorisation of the posterior

yields a lower bound on the marginal likelihood. Thus in practice it may pay to approximately

evaluate the computational cost of several candidate factorisations, and implement those which

can return a completed optimisation ofF within a certain amount of computer time. One would

expect the more complex factorisations to take more computer time but also yield progressively

tighter lower bounds on average, the consequence being that the marginal likelihood estimate

improves over time. An interesting avenue of research in this vein would be to use the vari-

ational posterior resulting from a simpler factorisation as the initialisation for a slightly more

complicated factorisation, and move in a chain from simple to complicated factorisations to help

avoid local free energy minima in the optimisation. Having proposed this, it remains to be seen

if it is possible to form a coherent closely-spaced chain of distributions that are of any use, as

compared to starting from the fullest posterior approximation from the start.

Using the lower bound for model selection and averaging

The log ratio of posterior probabilities of two competing modelsm andm′ is given by

ln
p(m |y)
p(m′ |y)

= + ln p(m) + p(y |m)− ln p(m′)− ln p(y |m′) (2.74)

= + ln p(m) + F(qx,θ) + KL [q(x,θ) ‖ p(x,θ |y,m)]

− ln p(m′)−F ′(q′x,θ)−KL
[
q′(x,θ) ‖ p(x,θ |y,m′)

]
(2.75)

where we have used the form in (2.72), which is exact regardless of the quality of the bound used,

or how tightly that bound has been optimised. The lower bounds for the two models,F andF ′,
are calculated from VBEM optimisations, providing us for each model with an approximation

to the posterior over the hidden variables and parameters of that model,qx,θ andq′x,θ; these may

in general be functionally very different (we leave aside for the moment local maxima problems
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in the optimisation process which can be overcome to an extent by using several differently

initialised optimisations or in some models by employing heuristics tailored to exploit the model

structure). When we perform model selection by comparing the lower bounds,F andF ′, we

are assuming that the KL divergences in the two approximations are the same, so that we can

use just these lower bounds as guide. Unfortunately it is non-trivial to predict how tight in

theory any particular bound can be — if this were possible we could more accurately estimate

the marginal likelihood from the start.

Taking an example, we would like to know whether the bound for a model withS mixture

components is similar to that forS + 1 components, and if not then how badly this inconsis-

tency affects the posterior over this set of models. Roughly speaking, let us assume that every

component in our model contributes a (constant) KL divergence penalty ofKLs. For clarity

we use the notationL(S) andF(S) to denote the exact log marginal likelihood and lower

bounds, respectively, for a model withS components. The difference in log marginal likeli-

hoods,L(S + 1) − L(S), is the quantity we wish to estimate, but if we base this on the lower

bounds the difference becomes

L(S + 1)− L(S) = [F(S + 1) + (S + 1) KLs]− [F(S) + S KLs] (2.76)

= F(S + 1)−F(S) + KLs (2.77)

6= F(S + 1)−F(S) , (2.78)

where the last line is the result we would have basing the difference on lower bounds. Therefore

there exists a systematic error when comparing models if each component contributes indepen-

dently to the KL divergence term. Since the KL divergence is strictly positive, and we are basing

our model selection on (2.78) rather than (2.77), this analysis suggests that there is a systematic

bias towards simpler models. We will in fact see this in chapter4, where we find an importance

sampling estimate of the KL divergence showing this behaviour.

Optimising the prior distributions

Usually the parameter priors are functions of hyperparameters,a, so we can writep(θ |a,m).
In the variational Bayesian framework the lower bound can be made higher by maximisingFm
with respect to these hyperparameters:

a(t+1) = arg max
a

Fm(qx(x), qθ(θ),y,a) . (2.79)

A simple depiction of this optimisation is given in figure2.5. Unlike earlier in section2.3.1,

the marginal likelihood of modelm can now be increased with hyperparameter optimisation.

As we will see in later chapters, there are examples where these hyperparameters themselves

have governing hyperpriors, such that they can be integrated over as well. The result being that
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Figure 2.5: The variational Bayesian EM algorithm with hyperparameter optimisation. The
VBEM step consists of VBE and VBM steps, as shown in figure2.3. The hyperparameter
optimisation increases the lower bound and also improves the marginal likelihood.

we can infer distributions over these as well, just as for parameters. The reason for abstracting

from the parameters this far is that we would like to integrate out all variables whose cardinality

increases with model complexity; this standpoint will be made clearer in the following chapters.

Previous work, and general applicability of VBEM

The variational approach for lower bounding the marginal likelihood (and similar quantities)

has been explored by several researchers in the past decade, and has received a lot of attention

recently in the machine learning community. It was first proposed for one-hidden layer neural

networks (which have no hidden variables) byHinton and van Camp(1993) whereqθ(θ) was

restricted to be Gaussian with diagonal covariance. This work was later extended to show that

tractable approximations were also possible with a full covariance Gaussian (Barber and Bishop,

1998) (which in general will have the mode of the posterior at a different location than in the

diagonal case).Neal and Hinton(1998) presented a generalisation of EM which made use

of Jensen’s inequality to allow partial E-steps; in this paper the termensemble learningwas

used to describe the method since it fits an ensemble of models, each with its own parameters.

Jaakkola(1997) andJordan et al.(1999) review variational methods in a general context (i.e.

non-Bayesian). Variational Bayesian methods have been applied to various models with hidden

variables and no restrictions onqθ(θ) andqxi(xi) other than the assumption that they factorise in

some way (Waterhouse et al., 1996; Bishop, 1999; Ghahramani and Beal, 2000; Attias, 2000).

Of particular note is the variational Bayesian HMM ofMacKay (1997), in which free-form

optimisations are explicitly undertaken (see chapter3); this work was the inspiration for the

examination of Conjugate-Exponential (CE) models, discussed in the next section. An example
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of a constrained optimisation for a logistic regression model can be found inJaakkola and Jordan

(2000).

Several researchers have investigated using mixture distributions for the approximate posterior,

which allows for more flexibility whilst maintaining a degree of tractability (Lawrence et al.,

1998; Bishop et al., 1998; Lawrence and Azzouzi, 1999). The lower bound in these models

is a sum of a two terms: a first term which is a convex combination of bounds from each

mixture component, and a second term which is the mutual information between the mixture

labels and the hidden variables of the model. The first term offers no improvement over a naive

combination of bounds, but the second (which is non-negative) has to improve on the simple

bounds. Unfortunately this term contains an expectation over all configurations of the hidden

states and so has to be itself bounded with a further use of Jensen’s inequality in the form of

a convex bound on the log function (ln(x) ≤ λx − ln(λ) − 1) (Jaakkola and Jordan, 1998).

Despite this approximation drawback, empirical results in a handful of models have shown that

the approximation does improve the simple mean field bound and improves monotonically with

the number of mixture components.

A related method for approximating the integrand for Bayesian learning is based on an idea

known asassumed density filtering(ADF) (Bernardo and Giron, 1988; Stephens, 1997; Boyen

and Koller, 1998; Barber and Sollich, 2000; Frey et al., 2001), and is called the Expectation

Propagation (EP) algorithm (Minka, 2001a). This algorithm approximates the integrand of

interest with a set ofterms, and through a process of repeated deletion-inclusion of term ex-

pressions, the integrand is iteratively refined to resemble the true integrand as closely as pos-

sible. Therefore the key to the method is to use terms which can be tractably integrated. This

has the same flavour as the variational Bayesian method described here, where we iteratively

update the approximate posterior over a hidden stateqxi(xi) or over the parametersqθ(θ).
The key difference between EP and VB is that in the update process (i.e. deletion-inclusion)

EP seeks to minimise the KL divergence which averages according to the true distribution,

KL [p(x,θ |y) ‖ q(x,θ)] (which is simply a moment-matching operation for exponential fam-

ily models), whereas VB seeks to minimise the KL divergence according to the approximate

distribution,KL [q(x,θ) ‖ p(x,θ |y)]. Therefore, EP is at least attempting to average according

to the correct distribution, whereas VB has the wrong cost function at heart. However, in gen-

eral the KL divergence in EP can only be minimised separately one term at a time, while the KL

divergence in VB is minimised globally over all terms in the approximation. The result is that

EP may still not result in representative posterior distributions (for example, seeMinka, 2001a,

figure 3.6, p. 6). Having said that, it may be that more generalised deletion-inclusion steps can

be derived for EP, for example removing two or more terms at a time from the integrand, and

this may alleviate some of the ‘local’ restrictions of the EP algorithm. As in VB, EP is con-

strained to use particular parametric families with a small number of moments for tractability.

An example of EP used with an assumed Dirichlet density for the term expressions can be found

in Minka and Lafferty(2002).
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In the next section we take a closer look at the variational Bayesian EM equations, (2.54) and

(2.56), and ask the following questions:

- To which models can we apply VBEM? i.e. which forms of data distributionsp(y,x |θ)
and priorsp(θ |m) result in tractable VBEM updates?

- How does this relate formally to conventional EM?

- When can we utilise existing belief propagation algorithms in the VB framework?

2.4 Conjugate-Exponential models

2.4.1 Definition

We consider a particular class of graphical models with latent variables, which we callconjugate-

exponential(CE) models. In this section we explicitly apply the variational Bayesian method to

these parametric families, deriving a simple general form of VBEM for the class.

Conjugate-exponential models satisfy two conditions:

Condition (1). The complete-data likelihood is in the exponential family:

p(xi,yi |θ) = g(θ) f(xi,yi) eφ(θ)>u(xi,yi) , (2.80)

whereφ(θ) is the vector of natural parameters,u andf are the functions that define the expo-

nential family, andg is a normalisation constant:

g(θ)−1 =
∫
dxi dyi f(xi,yi) eφ(θ)>u(xi,yi) . (2.81)

The natural parameters for an exponential family modelφ are those that interact linearly with

the sufficient statistics of the datau. For example, for a univariate Gaussian inx with meanµ

and standard deviationσ, the necessary quantities are obtained from:

p(x |µ, σ) = exp
{
− x2

2σ2
+
xµ

σ2
− µ2

2σ2
− 1

2
ln(2πσ2)

}
(2.82)

θ =
(
σ2, µ

)
(2.83)
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and are:

φ(θ) =
(

1
σ2
,
µ

σ2

)
(2.84)

u(x) =
(
−x

2

2
, x

)
(2.85)

f(x) = 1 (2.86)

g(θ) = exp
{
− µ2

2σ2
− 1

2
ln(2πσ2)

}
. (2.87)

Note that whilst the parameterisation forθ is arbitrary, e.g. we could have letθ = (σ, µ), the

natural parametersφ are unique up to a multiplicative constant.

Condition (2). The parameter prior is conjugate to the complete-data likelihood:

p(θ | η,ν) = h(η,ν) g(θ)η eφ(θ)>ν , (2.88)

whereη andν are hyperparameters of the prior, andh is a normalisation constant:

h(η,ν)−1 =
∫
dθ g(θ)η eφ(θ)>ν . (2.89)

Condition 1 (2.80) in fact usually implies the existence of a conjugate prior which satisfies

condition 2 (2.88). The priorp(θ | η,ν) is said to be conjugate to the likelihoodp(xi,yi |θ) if

and only if the posterior

p(θ | η′,ν ′) ∝ p(θ | η,ν)p(x,y |θ) (2.90)

is of the same parametric form as the prior. In general the exponential families are the only

classes of distributions that have natural conjugate prior distributions because they are the only

distributions with a fixed number of sufficient statistics apart from some irregular cases (see

Gelman et al., 1995, p. 38). From the definition of conjugacy, we see that the hyperparameters

of a conjugate prior can be interpreted as the number (η) and values (ν) of pseudo-observations

under the corresponding likelihood.

We call models that satisfy conditions 1 (2.80) and 2 (2.88) conjugate-exponential.

The list of latent-variable models of practical interest with complete-data likelihoods in the ex-

ponential family is very long, for example: Gaussian mixtures, factor analysis, principal compo-

nents analysis, hidden Markov models and extensions, switching state-space models, discrete-

variable belief networks. Of course there are also many as yet undreamt-of models combining

Gaussian, gamma, Poisson, Dirichlet, Wishart, multinomial, and other distributions in the expo-

nential family.
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However there are some notable outcasts which do not satisfy the conditions for membership

of the CE family, namely: Boltzmann machines (Ackley et al., 1985), logistic regression and

sigmoid belief networks (Bishop, 1995), and independent components analysis (ICA) (as pre-

sented inComon, 1994; Bell and Sejnowski, 1995), all of which are widely used in the machine

learning community. As an example let us see why logistic regression is not in the conjugate-

exponential family: foryi ∈ {−1, 1}, the likelihood under a logistic regression model is

p(yi |xi,θ) =
eyiθ

>xi

eθ
>xi + e−θ>xi

, (2.91)

wherexi is the regressor for data pointi andθ is a vector of weights, potentially including a

bias. This can be rewritten as

p(yi |xi,θ) = eyiθ
>xi−f(θ,xi) , (2.92)

wheref(θ,xi) is a normalisation constant. To belong in the exponential family the normalising

constant must split into functions of onlyθ and only(xi,yi). Expandingf(θ,xi) yields a series

of powers ofθ>xi, which could be assimilated into theφ(θ)>u(xi,yi) term by augmenting

the natural parameter and sufficient statistics vectors, if it were not for the fact that the series is

infinite meaning that there would need to be an infinity of natural parameters. This means we

cannot represent the likelihood with a finite number of sufficient statistics.

Models whose complete-data likelihood is not in the exponential family can often be approxi-

mated by models which are in the exponential family and have been given additional hidden

variables. A very good example is the Independent Factor Analysis (IFA) model ofAttias

(1999a). In conventional ICA, one can think of the model as using non-Gaussian sources, or

using Gaussian sources passed through a non-linearity to make them non-Gaussian. For most

non-linearities commonly used (such as the logistic), the complete-data likelihood becomes

non-CE. Attias recasts the model as a mixture of Gaussian sources being fed into a linear mix-

ing matrix. This model is in the CE family and so can be tackled with the VB treatment. It is

an open area of research to investigate how best to bring models into the CE family, such that

inferences in the modified model resemble the original as closely as possible.

2.4.2 Variational Bayesian EM for CE models

In Bayesian inference we want to determine the posterior over parameters and hidden variables

p(x,θ |y, η,ν). In general this posterior isneitherconjugate nor in the exponential family. In

this subsection we see how the properties of the CE family make it especially amenable to the

VB approximation, and derive the VBEM algorithm for CE models.
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Theorem 2.2: Variational Bayesian EM for Conjugate-Exponential Models.

Given an i.i.d. data sety = {y1, . . .yn}, if the model satisfies conditions (1) and (2), then the

following (a), (b) and (c) hold:

(a) the VBE step yields:

qx(x) =
n∏
i=1

qxi(xi) , (2.93)

andqxi(xi) is in the exponential family:

qxi(xi) ∝ f(xi,yi) eφ
>
u(xi,yi) = p(xi |yi,φ) , (2.94)

with a natural parameter vector

φ =
∫
dθ qθ(θ)φ(θ) ≡ 〈φ(θ)〉qθ(θ) (2.95)

obtained by taking the expectation ofφ(θ) underqθ(θ) (denoted using angle-brackets

〈·〉). For invertibleφ, definingθ̃ such thatφ(θ̃) = φ, we can rewrite the approximate

posterior as

qxi(xi) = p(xi |yi, θ̃) . (2.96)

(b) the VBM step yields thatqθ(θ) is conjugate and of the form:

qθ(θ) = h(η̃, ν̃) g(θ)η̃ eφ(θ)>ν̃ , (2.97)

where

η̃ = η + n , (2.98)

ν̃ = ν +
n∑
i=1

u(yi) , (2.99)

and

u(yi) = 〈u(xi,yi)〉qxi (xi)
(2.100)

is the expectation of the sufficient statisticu. We have used〈·〉qxi (xi)
to denote expectation

under the variational posterior over the latent variable(s) associated with theith datum.

(c) parts (a) and (b) hold for every iteration of variational Bayesian EM.

Proof of (a): by direct substitution.
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Starting from the variational extrema solution (2.60) for the VBE step:

qx(x) =
1
Zx

e
〈ln p(x,y |θ,m)〉qθ(θ) , (2.101)

substitute the parametric form forp(xi,yi |θ,m) in condition 1 (2.80), which yields (omitting

iteration superscripts):

qx(x) =
1
Zx

e
Pn

i=1〈ln g(θ)+ln f(xi,yi)+φ(θ)>u(xi,yi)〉qθ(θ) (2.102)

=
1
Zx

[
n∏
i=1

f(xi,yi)

]
e

Pn
i=1 φ

>
u(xi,yi) , (2.103)

whereZx has absorbed constants independent ofx, and we have defined without loss of gener-

ality:

φ = 〈φ(θ)〉qθ(θ) . (2.104)

If φ is invertible, then there exists ãθ such thatφ = φ(θ̃), and we can rewrite (2.103) as:

qx(x) =
1
Zx

[
n∏
i=1

f(xi,yi)eφ(θ̃)>u(xi,yi)

]
(2.105)

∝
n∏
i=1

p(xi,yi | θ̃,m) (2.106)

=
n∏
i=1

qxi(xi) (2.107)

= p(x,y | θ̃,m) . (2.108)

Thus the result of the approximate VBE step, which averages over the ensemble of models

qθ(θ), is exactly the same as an exact E step, calculated at thevariational Bayes pointestimate

θ̃.

Proof of (b): by direct substitution.

Starting from the variational extrema solution (2.56) for the VBM step:

qθ(θ) =
1
Zθ

p(θ |m) e〈ln p(x,y |θ,m)〉qx(x) , (2.109)
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substitute the parametric forms forp(θ |m) and p(xi,yi |θ,m) as specified in conditions 2

(2.88) and 1 (2.80) respectively, which yields (omitting iteration superscripts):

qθ(θ) =
1
Zθ

h(η,ν)g(θ)ηeφ(θ)>ν e
〈Pn

i=1 ln g(θ)+ln f(xi,yi)+φ(θ)>u(xi,yi)〉qx(x) (2.110)

=
1
Zθ

h(η,ν)g(θ)η+neφ(θ)>[ν+
Pn

i=1 u(yi)] e
Pn

i=1〈ln f(xi,yi)〉qx(x)︸ ︷︷ ︸
has noθ dependence

(2.111)

= h(η̃, ν̃)g(θ)η̃eφ(θ)>ν̃ , (2.112)

where

h(η̃, ν̃) =
1
Zθ

e
Pn

i=1〈ln f(xi,yi)〉qx(x) . (2.113)

Therefore the variational posteriorqθ(θ) in (2.112) is of conjugate form, according to condition

2 (2.88).

Proof of (c): by induction.

Assume conditions 1 (2.80) and 2 (2.88) are met (i.e. the model is in the CE family). From part

(a), the VBE step produces a posterior distributionqx(x) in the exponential family, preserving

condition 1 (2.80); the parameter distributionqθ(θ) remains unaltered, preserving condition 2

(2.88). From part (b), the VBM step produces a parameter posteriorqθ(θ) that is of conjugate

form, preserving condition 2 (2.88); qx(x) remains unaltered from the VBE step, preserving

condition 1 (2.80). Thus under both the VBE and VBM steps, conjugate-exponentiality is pre-

served, which makes the theorem applicable at every iteration of VBEM.

As before, sinceqθ(θ) andqxi(xi) are coupled, (2.97) and (2.94) do not provide an analytic

solution to the minimisation problem, so the optimisation problem is solved numerically by

iterating between the fixed point equations given by these equations. To summarise briefly:

VBE Step: Compute the expected sufficient statistics{u(yi)}ni=1 under the hidden vari-

able distributionsqxi(xi), for all i.

VBM Step: Compute the expected natural parametersφ = 〈φ(θ)〉 under the parameter

distribution given bỹη andν̃.

2.4.3 Implications

In order to really understand what the conjugate-exponential formalism buys us, let us reiterate

the main points of theorem2.2 above. The first result is that in the VBM step the analytical

form of the variational posteriorqθ(θ) does not change during iterations of VBEM — e.g.

if the posterior is Gaussian at iterationt = 1, then only a Gaussian need be represented at

future iterations. If it were able to change, which is the case in general (theorem2.1), the
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EM for MAP estimation Variational Bayesian EM

Goal: maximisep(θ |y,m) w.r.t. θ Goal: lower boundp(y |m)

E Step: compute VBE Step: compute

q
(t+1)
x (x) = p(x |y,θ(t)) q

(t+1)
x (x) = p(x |y,φ(t)

)

M Step: VBM Step:
θ(t+1) = arg maxθ

∫
dx q(t+1)

x (x) ln p(x,y,θ) q
(t+1)
θ (θ) ∝ exp

∫
dx q(t+1)

x (x) ln p(x,y,θ)

Table 2.1: Comparison of EM for ML/MAP estimation against variational Bayesian EM for CE
models.

posterior could quickly become unmanageable, and (further) approximations would be required

to prevent the algorithm becoming too complicated. The second result is that the posterior over

hidden variables calculated in the VBE step is exactly the posterior that would be calculated had

we been performing an ML/MAP E step. That is, the inferences using an ensemble of models

qθ(θ) can be represented by the effect of a point parameter,θ̃. The task of performing many

inferences, each of which corresponds to a different parameter setting, can be replaced with a

single inference step — it is possible to infer the hidden states in a conjugate exponential model

tractably while integrating over an ensemble of model parameters.

Comparison to EM for ML/MAP parameter estimation

We can draw a tight parallel between the EM algorithm for ML/MAP estimation, and our VBEM

algorithm applied specifically to conjugate-exponential models. These are summarised in table

2.1. This general result of VBEM for CE models was reported inGhahramani and Beal(2001),

and generalises the well known EM algorithm for ML estimation (Dempster et al., 1977). It

is a special case of the variational Bayesian algorithm (theorem2.1) used inGhahramani and

Beal (2000) and inAttias (2000), yet encompasses many of the models that have been so far

subjected to the variational treatment. Its particular usefulness is as a guide for the design of

models, to make them amenable to efficient approximate Bayesian inference.

The VBE step has about the same time complexity as the E step, and is in all ways identical

except that it is re-written in terms of the expected natural parameters. In particular, we can

make use of all relevant propagation algorithms such as junction tree, Kalman smoothing, or

belief propagation. The VBM step computes adistribution over parameters (in the conjugate

family) rather than a point estimate. Both ML/MAP EM and VBEM algorithms monotonically

increase an objective function, but the latter also incorporates a model complexity penalty by
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integrating over parameters so embodying an Occam’s razor effect. Several examples will be

presented in the following chapters of this thesis.

Natural parameter inversions

Unfortunately, even though the algorithmic complexity is the same, the implementations may

be hampered since the propagation algorithms need to be re-derived in terms of the natural

parameters (this is essentially the difference between the forms in (2.94) and (2.96)). For some

models, such as HMMs (see chapter3, andMacKay, 1997), this is very straightforward, whereas

the LDS model (see chapter5) quickly becomes quite involved. Automated algorithm derivation

programs are currently being written to alleviate this complication, specifically for the case

of variational Bayesian EM operations (Bishop et al., 2003), and also for generic algorithm

derivation (Buntine, 2002; Gray et al., 2003); both these projects build on results inGhahramani

and Beal(2001).

The difficulty is quite subtle and lies in the natural parameter inversion problem, which we now

briefly explain. In theorem2.2weconjecturedthe existence of ãθ such thatφ = 〈φ(θ)〉qθ(θ)
?=

φ(θ̃), which was a point of convenience. But, the operationφ−1
[
〈φ〉qθ(θ)

]
may not be well

defined if the dimensionality ofφ is greater than that ofθ. Whilst not undermining the theorem’s

result, this does mean that representationally speaking the resulting algorithm may look different

having had to be cast in terms of the natural parameters.

Online and continuous variants

The VBEM algorithm for CE models very readily lends itself to online learning scenarios in

which data arrives incrementally. I briefly present here an online version of the VBEM algorithm

above (but see alsoGhahramani and Attias, 2000; Sato, 2001). In the standard VBM step (2.97)

the variational posterior hyperparameterη̃ is updated according to the size of the datasetn

(2.98), andν̃ is updated with a simple sum of contributions from each datumu(yi), (2.99).

For the online scenario, we can take the posterior over parameters described byη̃ andν̃ to be

theprior for subsequent inferences. Let the data be split in to batches indexed byk, each of size

n(k), which are presented one by one to the model. Thus if thekth batch of data consists of the
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n(k) i.i.d. points{yi}j
(k)+n(k)−1

i=j(k) , then the online VBM step replaces equations (2.98) and (2.99)

with

η̃ = η(k−1) + n(k) , (2.114)

ν̃ = ν(k−1) +
j(k)+n(k)−1∑

i=j(k)

u(yi) . (2.115)

In the online VBE step only the hidden variables{xi}j
(k)+n(k)−1

i=j(k) need be inferred to calculate

the requiredu statistics. The online VBM and VBE steps are then iterated until convergence,

which may be fast if the size of the batchn(k) is small compared to the amount of data previously

seen
∑k−1

k′=1 n
(k′). After convergence, the prior for the next batch is set to the current posterior,

according to

η(k) ← η̃ , (2.116)

ν(k) ← ν̃ . (2.117)

The online VBEM algorithm has several benefits. First and foremost, the update equations give

us a very transparent picture of how the algorithm incorporates evidence from a new batch of

data (or single data point). The way in which it does this makes it possible to discard data from

earlier batches: the hyperparametersη̃ and ν̃ representall information gathered from previ-

ous batches, and the process of incorporating new information is not a function of the previous

batches’ statistics{u(yi)}j
(k−1)+n(k−1)−1

i=j(1)
, nor previous hyperparameter settings{η(l),ν(l)}k−2

l=1 ,

nor the previous batch sizes{n(l)}k−1
l=1 , nor the previous data{yi}j

(k−1)+n(k−1)−1

i=j(1)
. Implemen-

tationally this offers a large memory saving. Since we hold a distribution over the parameters

of the model, which is updated in a consistent way using Bayesian inference, we should hope

that the online model makes a flexible and measured response to data as it arrives. However it

has been observed (personal communication, Z. Ghahramani) that serious underfitting occurs in

this type of online algorithm; this is due to excessive self-pruning of the parameters by the VB

algorithm.

From the VBM step (2.97) we can straightforwardly propose an annealing variant of the VBEM

algorithm. This would make use of an inverse temperature parameterβ ∈ [0, 1] and adopt the

following updates for the VBM step:

η̃ = η + βn , (2.118)

ν̃ = ν + β
n∑
i=1

u(yi) , (2.119)

which is similar to the online algorithm but “introduces” the data continuously with a schedule

of β from 0 → 1. Whilst this is a tempting avenue for research, it is not clear that in this
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setting we should expect any better results than if we were to present the algorithm with all

the data (i.e.β = 1) from the start — after all, the procedure of Bayesian inference should

produce the same inferences whether presented with the data incrementally, continuously or all

at once. The advantage of an annealed model, however, is that we are giving the algorithm a

better chance of escaping the local minima in the free energy that plague EM-type algorithms,

so that the Bayesian inference procedure can be given a better chance of reaching the proper

conclusions, whilst at every iteration receiving information (albeitβ-muted) about all the data

at every iteration.

2.5 Directed and undirected graphs

In this section we present several important results which build on theorems2.1 and 2.2 by

specifying theform of the joint densityp(x,y,θ). A convenient way to do this is to use the

formalism and expressive power of graphical models. We derive variational Bayesian learn-

ing algorithms for two important classes of these models: directed graphs (Bayesian networks)

and undirected graphs (Markov networks), and also give results pertaining to CE families for

these classes. The corollaries refer to propagation algorithms material which is covered in

section1.1.2; for a tutorial on belief networks and Markov networks the reader is referred to

Pearl(1988). In the theorems and corollaries, VBEM and CE are abbreviations forvariational

Bayesian Expectation-Maximisationandconjugate-exponential.

2.5.1 Implications for directed networks

Corollary 2.1: (theorem 2.1) VBEM for Directed Graphs (Bayesian Networks).

Letm be a model with parametersθ and hidden and visible variablesz = {zi}ni=1 = {xi,yi}ni=1

that satisfy a belief network factorisation. That is, each variablezij has parentszipa(j) such

that the complete-data joint density can be written as a product of conditional distributions,

p(z |θ) =
∏
i

∏
j

p(zij | zipa(j),θ) . (2.120)

Then the approximating joint distribution form satisfies the same belief network factorisation:

qz(z) =
∏
i

qzi(zi) , qzi(zi) =
∏
j

qj(zij | zipa(j)) , (2.121)

where

qj(zij | zipa(j)) =
1
Zqj

e
〈ln p(zij | zipa(j),θ)〉

qθ(θ) ∀ {i, j} (2.122)
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are new conditional distributionsobtained by averaging overqθ(θ), andZqj
are normalising

constants.

This corollary is interesting in that it states that a Bayesian network’s posterior distribution

can be factored into the same terms as the original belief network factorisation (2.120). This

means that the inference for a particular variable depends only on those other variables in its

Markov blanket; this result is trivial for the point parameter case, but definitely non-trivial in the

Bayesian framework in which all the parameters and hidden variables are potentially coupled.

Corollary 2.2: (theorem 2.2) VBEM for CE Directed Graphs (CE Bayesian Networks).

Furthermore, ifm is a conjugate-exponential model, then the conditional distributions of the

approximate posterior joint have exactly the same form as those in the complete-data likelihood

in the original model:

qj(zij | zipa(j)) = p(zij | zipa(j), θ̃) , (2.123)

but with natural parametersφ(θ̃) = φ. Moreover, with the modified parametersθ̃, the ex-

pectations under the approximating posteriorqx(x) ∝ qz(z) required for the VBE step can be

obtained by applying the belief propagation algorithm if the network is singly connected and

the junction tree algorithm if the network is multiply-connected.

This result generalises the derivation of variational learning for HMMs (MacKay, 1997), which

uses the forward-backward algorithm as a subroutine. We investigate the variational Bayesian

HMM in more detail in chapter3. Another example isdynamic trees(Williams and Adams,

1999; Storkey, 2000; Adams et al., 2000) in which belief propagation is executed on a single

tree which represents an ensemble of singly-connected structures. Again there exists the natural

parameter inversion issue, but this is merely an implementational inconvenience.

2.5.2 Implications for undirected networks

Corollary 2.3: (theorem 2.1) VBEM for Undirected Graphs (Markov Networks).

Letm be a model with hidden and visible variablesz = {zi}ni=1 = {xi,yi}ni=1 that satisfy a

Markov network factorisation. That is, the joint density can be written as a product of clique-

potentials{ψj}Jj=1,

p(z |θ) =
1
Z
∏
i

∏
j

ψj(Cj(zi),θ) , (2.124)

where each cliqueCj is a (fixed) subset of the variables inzi, such that{C1(zi)∪· · ·∪CJ(zi)} =
zi. Then the approximating joint distribution form satisfies the same Markov network factori-

sation:

qz(z) =
∏
i

qzi(zi) , qzi(zi) =
1
Zq

∏
j

ψj(Cj(zi)) , (2.125)
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where

ψj(Cj(zi)) = e
〈lnψj(Cj(zi),θ)〉qθ(θ) ∀ {i, j} (2.126)

are new clique potentialsobtained by averaging overqθ(θ), andZq is a normalisation constant.

Corollary 2.4: (theorem 2.2) VBEM for CE Undirected Graphs (CE Markov Networks).

Furthermore, ifm is a conjugate-exponential model, then the approximating clique potentials

have exactly the same form as those in the original model:

ψj(Cj(zi)) ∝ ψj(Cj(zi), θ̃) , (2.127)

but with natural parametersφ(θ̃) = φ. Moreover, the expectations under the approximating

posteriorqx(x) ∝ qz(z) required for the VBE Step can be obtained by applying the junction

tree algorithm.

For conjugate-exponential models in which belief propagation and the junction tree algorithm

over hidden variables are intractable, further applications of Jensen’s inequality can yield tractable

factorisations (Jaakkola, 1997; Jordan et al., 1999).

2.6 Comparisons of VB to other criteria

2.6.1 BIC is recovered from VB in the limit of large data

We show here informally how the Bayesian Information Criterion (BIC, see section1.3.4) is

recovered in the large data limit of the variational Bayesian lower bound (Attias, 1999b). F can

be written as a sum of two terms:

Fm(qx(x), qθ(θ)) = −KL [qθ(θ) ‖ p(θ |m)]︸ ︷︷ ︸
Fm,pen

+
〈

ln
p(x,y |θ,m)

qx(x)

〉
qx(x) qθ(θ)︸ ︷︷ ︸

Dm

. (2.128)

Let us consider separately the limiting forms of these two terms, constraining ourselves to the

cases in which the modelm is in the CE family. In such cases, theorem2.2states thatqθ(θ) is

of conjugate form (2.97) with parameters given by (2.98) and (2.99). It can be shown that under

mild conditions exponential family distributions of this form exhibit asymptotic normality (see,

for example, the proof given inBernardo and Smith, 1994, pp. 293–4). Therefore, the entropy
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of qθ(θ) appearing inFm,pen can be calculated assuming a Gaussian form (see appendixA),

and the limit becomes

lim
n→∞

Fm,pen = lim
n→∞

[
〈ln p(θ |m)〉qθ(θ) +

d

2
ln 2π − 1

2
ln |H|

]
(2.129)

= −d
2

lnn+O(1) , (2.130)

whereH is the Hessian (matrix of second derivatives of the parameter posterior evaluated at

the mode), and we have used similar arguments to those taken in the derivation of BIC (section

1.3.4). The second term,Dm, can be analysed by appealing to the fact that the term inside the

expectation is equal toln p(y |θ,m) if and only if qx(x) = p(x |y,θ,m). Theorem2.1states

that the form of the variational posterior over hidden statesqx(x) is given by

ln qx(x) =
∫
dθ qθ(θ) ln p(x,y |θ,m)− lnZx (2.131)

(which does not depend on CE family membership conditions). Therefore asqθ(θ) becomes

concentrated aboutθMAP, this results inqx(x) = p(x |y,θMAP,m). ThenDm asymptotically

becomesln p(y |θMAP,m). Combining this with the limiting form forFm,pen given by (2.130)

results in:

lim
n→∞

Fm(qx(x), qθ(θ)) = −d
2

lnn+ ln p(y |θMAP,m) +O(1) , (2.132)

which is the BIC approximation given by (1.49). For the case of a non-CE model, we would

have to prove asymptotic normality forqθ(θ) outside of the exponential family, which may

become complicated or indeed impossible. We note that this derivation of the limiting form of

VB is heuristic in the sense that we have neglected concerns on precise regularity conditions

and identifiability.

2.6.2 Comparison to Cheeseman-Stutz (CS) approximation

In this section we present results regarding the approximation ofCheeseman and Stutz(1996),

covered in section1.3.5. We briefly review the CS criterion, as used to approximate the marginal

likelihood of finite mixture models, and then show that it is in fact a strict lower bound on the

marginal likelihood. We conclude the section by presenting a construction that proves that VB

can be used to obtain a bound that isalwaystighter than CS.

Let m be a directed acyclic graph with parametersθ giving rise to an i.i.d. data set denoted

by y = {y1, . . . ,yn} with corresponding discrete hidden variabless = {s1, . . . , sn} each of

cardinalityk. Let θ̂ be a result of an EM algorithm which has converged to a local maximum

in the likelihoodp(y |θ), and let̂s = {ŝi}ni=1 be a completion of the hidden variables, chosen
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according to the posterior distribution over hidden variables given the data andθ̂, such that

ŝij = p(sij = j |y, θ̂) ∀ i = 1, . . . , n.

Since we are completing the hidden variables with real, as opposed to discrete values, this

complete data set does not in general correspond to a realisable data set under the generative

model. This point raises the question of how its marginal probabilityp(ŝ,y |m) is defined. We

will see in the following theorem and proof (theorem2.3) that both the completion required of

the hidden variables and the completed data marginal probability are well-defined, and follow

from equations2.141and2.142below.

The CS approximation is given by

p(y |m) ≈ p(y |m)CS = p(ŝ,y |m)
p(y | θ̂)

p(ŝ,y | θ̂)
. (2.133)

The CS approximation exploits the fact that, for many models of interest, the first term on the

right-hand side, the complete-data marginal likelihood, is tractable to compute (this is the case

for discrete-variable directed acyclic graphs with Dirichlet priors, see chapter6 for details).

The term in the numerator of the second term on the right-hand side is simply the likelihood

of the data, which is an output of the EM algorithm (as is the parameter estimateθ̂), and the

denominator is a straightforward calculation that involves no summations over hidden variables

or integrations over parameters.

Theorem 2.3: Cheeseman-Stutz approximation is a lower bound on the marginal likeli-

hood.

Let θ̂ be the result of the M step of EM, and let{p(si |yi, θ̂)}ni=1 be the set of posterior distribu-

tions over the hidden variables obtained in the next E step of EM. Furthermore, letŝ = {ŝi}ni=1

be a completion of the hidden variables, such thatŝij = p(sij = j |y, θ̂) ∀ i = 1, . . . , n. Then

the CS approximation is a lower bound on the marginal likelihood:

p(y |m)CS = p(ŝ,y |m)
p(y | θ̂)

p(ŝ,y | θ̂)
≤ p(y |m) . (2.134)

This observation should be attributed toMinka (2001b), where it was noted that (in the context

of mixture models with unknown mixing proportions and component parameters) whilst the CS

approximation has been reported to obtain good performance in the literature (Cheeseman and

Stutz, 1996; Chickering and Heckerman, 1997), it was not known to be a bound on the marginal

likelihood. Here we provide a proof of this statement that is generally applicable to any model.
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Proof of theorem2.3: via marginal likelihood bounds using approximations over the posterior

distribution of only the hidden variables. The marginal likelihood can be lower bounded by

introducing a distribution over the settings of each data point’s hidden variablesqsi(si):

p(y |m) =
∫
dθ p(θ)

n∏
i=1

p(yi |θ) (2.135)

≥
∫
dθ p(θ)

n∏
i=1

exp

{∑
si

qsi(si) ln
p(si,yi |θ)
qsi(si)

}
. (2.136)

We return to this quantity shortly, but presently place a similar lower bound over the likelihood

of the data:

p(y | θ̂) =
n∏
i=1

p(yi | θ̂) ≥
n∏
i=1

exp

{∑
si

qsi(si) ln
p(si,yi | θ̂)
qsi(si)

}
(2.137)

which can be made an equality if, for each data point,q(si) is set to the exact posterior distri-

bution given the parameter settingθ (for example see equation (2.19) and the proof following

it),

p(y | θ̂) =
n∏
i=1

p(yi | θ̂) =
n∏
i=1

exp

{∑
si

q̂si(si) ln
p(si,yi | θ̂)
q̂si(si)

}
, (2.138)

where

q̂si(si) ≡ p(si |y, θ̂) , (2.139)

which is the result obtained from an exact E step with the parameters set toθ̂. Now rewrite the

marginal likelihood bound (2.136), using this same choice of̂qsi(si), separate those terms that

depend onθ from those that do not, and substitute in the form from equation (2.138) to obtain:

p(y |m) ≥
n∏
i=1

exp

{∑
si

q̂si(si) ln
1

q̂si(si)

}
·
∫
dθ p(θ)

n∏
i=1

exp

{∑
si

q̂si(si) ln p(si,yi |θ)

}
(2.140)

=
p(y | θ̂)∏n

i=1 exp
{∑

si
q̂si(si) ln p(si,yi | θ̂)

} ∫ dθ p(θ)
n∏
i=1

exp

{∑
si

q̂si(si) ln p(si,yi |θ)

}
(2.141)

=
p(y | θ̂)∏n

i=1 p(ŝi,yi | θ̂)

∫
dθ p(θ)

n∏
i=1

p(ŝi,yi |θ) , (2.142)
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whereŝi are defined such that they satisfy:

ŝi defined such that: ln p(ŝi,y | θ̂) =
∑
si

q̂si(si) ln p(si,yi |θ) (2.143)

=
∑
si

p(si |y, θ̂) ln p(si,yi |θ) (2.144)

where the second line comes from the requirement of bound equality in (2.139). The existence

of such a completion follows from the fact that, in discrete-variable directed acyclic graphs

of the sort considered inChickering and Heckerman(1997), the hidden variables appear only

linearly in logarithm of the joint probabilityp(s,y |θ). Equation (2.142) is the Cheeseman-

Stutz criterion, and is also a lower bound on the marginal likelihood.

It is possible to derive CS-like approximations for types of graphical model other than discrete-

variables DAGs. In the above proof no constraints were placed on the forms of the joint distribu-

tions over hidden and observed variables, other than in the simplifying step in equation (2.142).

So, similar results to corollaries2.2and2.4can be derived straightforwardly to extend theorem

2.3to incorporate CE models.

The following corollary shows that variational Bayes can always obtain a tighter bound than the

Cheeseman-Stutz approximation.

Corollary 2.5: (theorem 2.3) VB is at least as tight as CS.

That is to say, it is always possible to find distributionsqs(s) andqθ(θ) such that

ln p(y |m)CS≤ Fm(qs(s), qθ(θ)) ≤ ln p(y |m) . (2.145)

Proof of corollary2.5. Consider the following forms forqs(s) andqθ(θ):

qs(s) =
n∏
i=1

qsi(si) , with qsi(si) = p(si |yi, θ̂) , (2.146)

qθ(θ) ∝ 〈ln p(θ)p(s,y |θ)〉qs(s) . (2.147)

We write the form forqθ(θ) explicitly:

qθ(θ) =
p(θ)

∏n
i=1 exp

{∑
si
qsi(si) ln p(si,yi |θ)

}∫
dθ′ p(θ′)

∏n
i=1 exp

{∑
si
qsi(si) ln p(si,yi |θ′)

} , (2.148)
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and note that this is exactly the result of a VBM step. We substitute this and the form forqs(s)
directly into the VB lower bound stated in equation (2.53) of theorem2.1, obtaining:

F(qs(s), qθ(θ)) =
∫
dθ qθ(θ)

n∑
i=1

∑
si

qsi(si) ln
p(si,yi |θ)
qsi(si)

+
∫
dθ qθ(θ) ln

p(θ)
qθ(θ)

(2.149)

=
∫
dθ qθ(θ)

n∑
i=1

∑
si

qsi(si) ln
1

qsi(si)

+
∫
dθ qθ(θ) ln

∫
dθ′ p(θ′)

n∏
i=1

exp

{∑
si

qsi(si) ln p(si,yi |θ′)

}
(2.150)

=
n∑
i=1

∑
si

qsi(si) ln
1

qsi(si)
+ ln

∫
dθ p(θ)

n∏
i=1

exp

{∑
si

qsi(si) ln p(si,yi |θ)

}
,

(2.151)

which is exactly the logarithm of equation (2.140). And so with this choice ofqθ(θ) andqs(s)
we achieve equalitybetween the CS and VB approximations in (2.145).

We complete the proof of corollary2.5by noting that any further VB optimisation is guaranteed

to increase or leave unchanged the lower bound, and hence surpass the CS lower bound. We

would expect the VB lower bound starting from the CS solution to improve upon the CS lower

bound inall cases, except in the very special case when the MAP parameterθ̂ is exactly the

variational Bayes point, defined asθBP ≡ φ−1(〈φ(θ)〉qθ(θ)) (see proof of theorem2.2(a)).

Therefore, since VB is a lower bound on the marginal likelihood, the entire statement of (2.145)

is proven.

2.7 Summary

In this chapter we have shown how a variational bound can be used to derive the EM algorithm

for ML/MAP parameter estimation, for both unconstrained and constrained representations of

the hidden variable posterior. We then moved to the Bayesian framework, and presented the

variational Bayesian EMalgorithm which iteratively optimises a lower bound on the marginal

likelihood of the model. The marginal likelihood, which integrates over model parameters, is

the key component to Bayesian model selection. The VBE and VBM steps are obtained by

taking functional derivatives with respect to variational distributions over hidden variables and

parameters respectively.

We gained a deeper understanding of the VBEM algorithm by examining the specific case of

conjugate-exponentialmodels and showed that, for this large class of models, the posterior dis-

tributionsqx(x) andqθ(θ) have intuitive and analytically stable forms. We have also presented
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VB learning algorithms for both directed and undirected graphs (Bayesian networks and Markov

networks).

We have explored the Cheeseman-Stutz model selection criterion as a lower bound of the

marginal likelihood of the data, and have explained how it is a very specific case of varia-

tional Bayes. Moreover, using this intuition, we have shown that any CS approximation can be

improved upon by building a VB approximation over it. It is tempting to derive conjugate-

exponential versions of the CS criterion, but in my opinion this is not necessary since any

implementations based on these results can be made only more accurate by using conjugate-

exponential VB instead, which is at least as general in every case. In chapter6 we present a

comprehensive comparison of VB to a variety of approximation methods, including CS, for a

model selection task involving discrete-variable DAGs.

The rest of this thesis applies the VB lower bound to several commonly used statistical models,

with a view to performing model selection, learning from both real and synthetic data sets.

Throughout we compare the variational Bayesian framework to competitor approximations,

such as those reviewed in section1.3, and also critically analyse the quality of the lower bound

using advanced sampling methods.
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Chapter 3

Variational Bayesian Hidden Markov

Models

3.1 Introduction

Hidden Markov models (HMMs) are widely used in a variety of fields for modelling time se-

ries data, with applications including speech recognition, natural language processing, protein

sequence modelling and genetic alignment, general data compression, information retrieval,

motion video analysis and object/people tracking, and financial time series prediction. The core

theory of HMMs was developed principally by Baum and colleagues (Baum and Petrie, 1966;

Baum et al., 1970), with initial applications to elementary speech processing, integrating with

linguistic models, and making use of insertion and deletion states for variable length sequences

(Bahl and Jelinek, 1975). The popularity of HMMs soared the following decade, giving rise to

a variety of elaborations, reviewed inJuang and Rabiner(1991). More recently, the realisation

that HMMs can be expressed as Bayesian networks (Smyth et al., 1997) has given rise to more

complex and interesting models, for example, factorial HMMs (Ghahramani and Jordan, 1997),

tree-structured HMMs (Jordan et al., 1997), and switching state-space models (Ghahramani and

Hinton, 2000). An introduction to HMM modelling in terms of graphical models can be found

in Ghahramani(2001).

This chapter is arranged as follows. In section3.2 we briefly review the learning and infer-

ence algorithms for the standard HMM, including ML and MAP estimation. In section3.3 we

show how an exact Bayesian treatment of HMMs is intractable, and then in section3.4 follow

MacKay(1997) and derive an approximation to a Bayesian implementation using a variational

lower bound on the marginal likelihood of the observations. In section3.5we present the results

of synthetic experiments in which VB is shown to avoid overfitting unlike ML. We also com-

pare ML, MAP and VB algorithms’ ability to learn HMMs on a simple benchmark problem of
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VB Hidden Markov Models 3.2. Inference and learning for maximum likelihood HMMs

s1

y1 y2 y3 yT

s2 sTs3 ...A

C

Figure 3.1: Graphical model representation of a hidden Markov model. The hidden variablesst
transition with probabilities specified in the rows ofA, and at each time step emit an observation
symbolyt according to the probabilities in the rows ofC.

discriminating between forwards and backwards English sentences. We present conclusions in

section3.6.

Whilst this chapter is not intended to be a novel contribution in terms of the variational Bayesian

HMM, which was originally derived in the unpublished technical report ofMacKay(1997), it

has nevertheless been included for completeness to provide an immediate and straightforward

example of the theory presented in chapter2. Moreover, the wide applicability of HMMs makes

the derivations and experiments in this chapter of potential general interest.

3.2 Inference and learning for maximum likelihood HMMs

We briefly review the learning and inference procedures for hidden Markov models (HMMs),

adopting a similar notation toRabiner and Juang(1986). An HMM models a sequence ofp-

valued discrete observations (symbols)y1:T = {y1, . . . , yT } by assuming that the observation

at time t, yt, was produced by ak-valued discrete hidden statest, and that the sequence of

hidden statess1:T = {s1, . . . , sT } was generated by a first-order Markov process. That is to say

the complete-data likelihood of a sequence of lengthT is given by:

p(s1:T ,y1:T ) = p(s1)p(y1 | s1)
T∏
t=2

p(st | st−1)p(yt | st) . (3.1)

wherep(s1) is the prior probability of the first hidden state,p(st | st−1) denotes the probability

of transitioningfrom statest−1 to statest (out of a possiblek states), andp(yt | st) are theemis-

sionprobabilities for each ofp symbols at each state. In this simple HMM, all the parameters

are assumed stationary, and we assume a fixed finite number of hidden states and number of

observation symbols. The joint probability (3.1) is depicted as a graphical model in figure3.1.

For simplicity we first examine just a single sequence of observations, and derive learning and

inference procedures for this case; it is straightforward to extend the results to multiple i.i.d.

sequences.
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The probability of the observationsy1:T results from summing over all possible hidden state

sequences,

p(y1:T ) =
∑
s1:T

p(s1:T ,y1:T ) . (3.2)

The set of parameters for the initial state prior, transition, and emission probabilities are repre-

sented by the parameterθ:

θ = (A,C,π) (3.3)

A = {ajj′} : ajj′ = p(st = j′ | st−1 = j) state transition matrix(k × k) (3.4)

C = {cjm} : cjm = p(yt = m | st = j) symbol emission matrix(k × p) (3.5)

π = {πj} : πj = p(s1 = j) initial hidden state prior(k × 1) (3.6)

obeying the normalisation constraints:

A = {ajj′} :
k∑

j′=1

ajj′ = 1 ∀j (3.7)

C = {cjm} :
p∑

m=1

cjm = 1 ∀j (3.8)

π = {πj} :
k∑
j=1

πj = 1 . (3.9)

For mathematical convenience we represent the state of the hidden variables usingk-dimensional

binary column vectors. For example, ifst is in statej, thenst is a vector of zeros with ‘1’ in the

jth entry. We use a similar notation for the observationsyt. The Kronecker-δ function is used

to query the state, such thatst,j = δ(st, j) returns 1 ifst is in statej, and zero otherwise.

Using the vectorial form of the hidden and observed variables, the initial hidden state, transition,

and emission probabilities can be written as

p(s1 |π) =
k∏
j=1

π
s1,j

j (3.10)

p(st | st−1, A) =
k∏
j=1

k∏
j′=1

a
st,j′st−1,j

jj′ (3.11)

p(yt | st, C) =
k∏
j=1

p∏
m=1

c
st,jyt,m

jm (3.12)
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and the log complete-data likelihood from (3.1) becomes:

ln p(s1:T ,y1:T |θ) =
k∑
j=1

s1,j lnπj +
T∑
t=2

k∑
j=1

k∑
j′=1

st−1,j ln ajj′st,j′

+
T∑
t=1

k∑
j=1

p∑
m=1

st,j ln cjmyt,m (3.13)

= s>1 lnπ +
T∑
t=2

s>t−1 lnA st +
T∑
t=1

s>t lnC yt , (3.14)

where the logarithms of the vectorπ and matricesA andC are taken element-wise. We are now

in a position to derive the EM algorithm for ML parameter estimation for HMMs.

M step

Learning the maximum likelihood parameters of the model entails finding those settings ofA,

C andπ which maximise the probability of the observed data (3.2). In chapter2 we showed

that the M step, as given by equation (2.31), is

M step: θ(t+1) ← arg max
θ

∑
s1:T

p(s1:T |y1:T ,θ
(t)) ln p(s1:T ,y1:T |θ) , (3.15)

where the superscript notation(t) denotes iteration number. Note in particular that the log likeli-

hood in equation (3.14) is a sum of separate contributions involvingπ, A andC, and summing

over the hidden state sequences does not couple the parameters. Therefore we can individually

optimise each parameter of the HMM:

π : πj ← 〈s1,j〉 (3.16)

A : ajj′ ←
∑T

t=2〈st−1,jst,j′〉∑T
t=2〈st−1,j〉

(3.17)

C : cjm ←
∑T

t=1〈st,jyt,m〉∑T
t=1〈st,j〉

(3.18)

where the angled brackets〈·〉 denote expectation with respect to the posterior distribution over

the hidden state sequence,p(s1:T |y1:T ,θ
(t)), as calculated from the E step.

E step: forward-backward algorithm

The E step is carried out using a dynamic programming trick which utilises the conditional

independence of future hidden states from past hidden states given the setting of the current
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hidden state. We defineαt(st) to be the posterior over the hidden statest given the observed

sequence up to and including timet:

αt(st) ≡ p(st |y1:t) , (3.19)

and form the forward recursion fromt = 1, . . . , T :

αt(st) =
1

p(yt |y1:t−1)

∑
st−1

p(st−1 |y1:t−1)p(st | st−1)p(yt | st) (3.20)

=
1

ζt(yt)

∑
st−1

αt−1(st−1)p(st | st−1)

 p(yt | st) , (3.21)

where in the first time stepp(st | st−1) is replaced with the priorp(s1 |π), and fort = 1 we

require the conventionα0(s0) = 1. Here,ζt(yt) is a normalisation constant, a function ofyt,

given by

ζt(yt) ≡ p(yt |y1:t−1) . (3.22)

Note that as a by-product of computing these normalisation constants we can compute the prob-

ability of the sequence:

p(y1:T ) = p(y1)p(y2 | y1) . . . p(yT | y1:T−1) =
T∏
t=1

p(yt | y1:t−1) =
T∏
t=1

ζt(yt) = Z(y1:T ) .

(3.23)

Obtaining these normalisation constants using a forward pass is simply equivalent to integrating

out the hidden states one after the other in the forward ordering, as can be seen by writing the

incomplete-data likelihood in the following way:

p(y1:T ) =
∑
s1:T

p(s1:T ,y1:T ) (3.24)

=
∑
s1

· · ·
∑
sT

p(s1)p(y1 | s1)
T∏
t=2

p(st | st−1)p(yt | st) (3.25)

=
∑
s1

p(s1)p(y1 | s1) · · ·
∑
sT

p(sT | sT−1)p(yT | sT ) . (3.26)

Similarly to the forward recursion, the backward recursion is carried out fromt = T, . . . , 1:

βt(st) ≡ p(y(t+1):T | st) (3.27)

=
∑
st+1

p(yt+2:T | st+1)p(st+1 | st)p(yt+1 | st+1) (3.28)

=
∑
st+1

βt+1(st+1)p(st+1 | st)p(yt+1 | st+1) , (3.29)

with the end conditionβT (sT ) = 1, as there is no future observed data beyondt = T .
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The forward and backward recursions can be executed in parallel as neither depends on the

results of the other. The quantities{αt}Tt=1 and{βt}Tt=1 are now combined to obtain the single

and pairwise state marginals:

p(st |y1:T ) ∝ p(st |y1:t)p(yt+1:T | st) (3.30)

= αt(st)βt(st) , t = 1, . . . , T (3.31)

and

p(st−1, st |y1:T ) ∝ p(st−1 |y1:t−1)p(st | st−1)p(yt | st)p(yt+1:T | st) (3.32)

= αt−1(st−1)p(st | st−1)p(yt | st)βt(st) , t = 2, . . . , T (3.33)

which give the expectations required for the M steps (3.16-3.18),

〈st,j〉 =
αt,jβt,j∑k

j′=1 αt,j′βt,j′
(3.34)

〈st−1,jst,j′〉 =
αt−1,jajj′p(yt | st,j′)βt,j′∑k

j=1

∑k
j′=1 αt−1,jajj′p(yt | st,j′)βt,j′

. (3.35)

The E and M steps described above form the iterations for the celebrated Baum-Welch algorithm

(Baum et al., 1970). From the analysis in chapter2, we can prove that each iteration of EM is

guaranteed to increase, or leave unchanged, the log likelihood of the parameters, and converge

to a local maximum.

When learning an HMM from multiple i.i.d. sequences{yi,1:Ti}ni=1 which are not necessarily

constrained to have the same lengths{Ti}ni=1, the E and M steps remain largely the same.

The E step is performed for each sequence separately using the forward-backward algorithm,

and the M step then uses statistics pooled from all the sequences to estimate the mostly likely

parameters.

HMMs as described above can be generalised in many ways. Often observed data are recorded

as real-valued sequences and can be modelled by replacing the emission processp(yt | st) with a

Gaussian or mixture of Gaussians distribution: each sequence of the HMM can now be thought

of as defining a sequence of data drawn from a mixture model whose hidden state labels for the

mixture components are no longer i.i.d., but evolve with Markov dynamics. Note that inference

in such models remains possible using the forward and backward recursions, with only a change

to the emission probabilitiesp(yt | st); furthermore, the M steps for learning the parametersπ

andA for the hidden state transitions remain identical.

Exactly analogous inference algorithms exist for the Linear Dynamical Systems (LDS) model,

except that both the hidden state transition and emission processes are continuous (referred to
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as dynamics and output processes, respectively). In the rest of this chapter we will see how a

variational Bayesian treatment of HMMs results in a straightforwardly modified Baum-Welch

algorithm, and as such it is a useful pedagogical example of the VB theorems given in chapter

2. On the other hand, for the LDS models the modified VB algorithms become substantially

harder to derive and implement — these are the subject of chapter5.

3.3 Bayesian HMMs

As has already been discussed in chapters1 and2, the maximum likelihood approach to learning

models from data does not take into account model complexity, and so is susceptible to over-

fitting the data. More complex models can usually give ever-increasing likelihoods to the data.

For a hidden Markov model, the complexity is related to several aspects: the number of hidden

statesk in the model, the degree of connectivity in the hidden state transition matrixA, and the

distribution of probabilities to the symbols by each hidden state, as specified in the emission

matrix,C. More generally the complexity is related to the richness of possible data sets that the

model can produce. There arek(k − 1) parameters in the transition matrix, andk(p− 1) in the

emission matrix, and so if there are many different observed symbols or if we expect to require

more than a few hidden states then, aside from inference becoming very costly, the number of

parameters to be fit may begin to overwhelm the amount of data available. Traditionally, in

order to avoid overfitting, researchers have limited the complexity of their models in line with

the amount of data they have available, and have also used sophisticated modifications to the

basic HMM to reduce the number of free parameters. Such modifications include: parameter-

tying, enforcing sparsity constraints (for example limiting the number of candidates a state can

transition to or symbols it can emit), or constraining the form of the hidden state transitions (for

example employing a strict left-to-right ordering of the hidden states).

A common technique for removing excessive parameters from a model is to regularise them

using a prior, and then to maximise the a posteriori probability of the parameters (MAP). We will

see below that it is possible to apply this type of regularisation to the multinomial parameters of

the transition and emission probabilities using certain Dirichlet priors. However we would still

expect the results of MAP optimisation to be susceptible to overfitting given that it searches for

the maximum of the posterior density as opposed to integrating over the posterior distribution.

Cross-validation is another method often employed to minimise the amount of overfitting, by

repeatedly training subsets of the available data and evaluating the error on the remaining data.

Whilst cross-validation is quite successful in practice, it has the drawback that it requires many

sessions of training and so is computationally expensive, and often needs large amounts of data

to obtain low-variance estimates of the expected test errors. Moreover, it is cumbersome to

cross-validate over the many different ways in which model complexity could vary.

88



VB Hidden Markov Models 3.3. Bayesian HMMs

The Bayesian approach to learning treats the model parameters as unknown quantities and,

prior to observing the data, assigns a set of beliefs over these quantities in the form of prior

distributions. In the light of data, Bayes’ rule can be used to infer the posterior distribution over

the parameters. In this way the parameters of the model are treated as hidden variables and are

integrated out to form the marginal likelihood:

p(y1:T ) =
∫
dθ p(θ)p(y1:T |θ) whereθ = (π, A, C) . (3.36)

This Bayesian integration embodies the principle of Occam’s razor since it automatically pe-

nalises those models with more parameters (see section1.2.1; also seeMacKay, 1992). A

natural choice for parameter priors overπ, the rows ofA, and the rows ofC are Dirichlet dis-

tributions. Whilst there are many possible choices, Dirichlet distributions have the advantage

that they are conjugate to the complete-data likelihood terms given in equations (3.1) (and with

foresight we know that these forms will yield tractable variational Bayesian algorithms):

p(θ) = p(π)p(A)p(C) (3.37)

p(π) = Dir({π1, . . . , πk} |u(π))) (3.38)

p(A) =
k∏
j=1

Dir({aj1, . . . , ajk} |u(A)) (3.39)

p(C) =
k∏
j=1

Dir({cj1, . . . , cjp} |u(C)) . (3.40)

Here, for each matrix the same single hyperparameter vector is used for every row. This hyper-

parameter sharing can be motivated because the hidden states are identical a priori. The form of

the Dirichlet prior, usingp(π) as an example, is

p(π) =
Γ(u(π)

0 )∏k
j=1 Γ(u(π)

j )

k∏
j=1

π
u
(π)
j −1

j , u
(π)
j > 0, ∀ j , (3.41)

whereu(π)
0 =

∑k
j=1 u

(π)
j is thestrengthof the prior, and the positivity constraint on the hyperpa-

rameters is required for the prior to be proper. Conjugate priors have the intuitive interpretation

of providing hypothetical observations to augment those provided by the data (see section1.2.2).

If these priors are used in amaximum a posteriori(MAP) estimation algorithm for HMMs, the

priors add imaginary counts to the M steps. Taking the update forA as an example, equation

(3.17) is modified to

A : ajj′ ←
(u(A)
j′ − 1) +

∑T
t=2〈st−1,jst,j′〉∑k

j′=1(u
(A)
j′ − 1) +

∑T
t=2〈st−1,j〉

. (3.42)

Researchers tend to limit themselves to hyperparametersuj ≥ 1 such that this MAP estimate is

guaranteed to yield positive probabilities. However there are compelling reasons for having hy-
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perparametersuj ≤ 1 (as discussed inMacKay and Peto, 1995; MacKay, 1998), and these arise

naturally as described below. It should be emphasised that the MAP solution is not invariant to

reparameterisations, and so (3.42) is just one possible result. For example, reparameterisation

into the softmax basis yields a MAP estimate without the ‘-1’ terms, which also coincides with

the predictive distribution obtained from integrating over the posterior. The experiments carried

out in this chapter for MAP learning do so in this basis.

We choose to use symmetric Dirichlet priors, with a fixed strengthf , i.e.

u(A) =

[
f (A)

k
, . . . ,

f (A)

k

]>
, s.t.

k∑
j=1

u
(A)
j = f (A) , (3.43)

and similarly so foru(C) andu(π). A fixed strength is chosen because we do not want the

amount of imaginary data to increase with the complexity of the model. This relates to a key is-

sue in Bayesian prior specification regarding thescalingof model priors. Imagine an un-scaled

prior over each row ofA with hyperparameter
[
f (A), . . . , f (A)

]>
, where the division byk has

been omitted. With a fixed strength prior, the contribution to the posterior distributions over the

parameters from the prior diminishes with increasing data, whereas with the un-scaled prior the

contribution increases linearly with the number of hidden states and can become greater than

the amount of observed data for sufficiently largek. This means that for sufficiently complex

models the modification terms in (3.42) would obfuscate the data entirely. This is clearly unde-

sirable, and so the1k scaling of the hyperparameter entries is used. Note that this scaling will

result in hyperparameters≤ 1 for sufficiently largek.

The marginal probability of a sequence of observations is given by

p(y1:T ) =
∫
dπ p(π)

∫
dA p(A)

∫
dC p(C)

∑
s1:T

p(s1:T ,y1:T |π, A, C) , (3.44)

where the dependence on the hyperparameters is implicitly assumed as they are fixed before-

hand. Unfortunately, we can no longer use the dynamic programming trick of the forward-

backward algorithm, as the hidden states are now coupled by the integration over the parameters.

Intuitively this means that, because the parameters of the model have become uncertain quan-

tities, the future hidden statess(t+1):T are no longer independent of past hidden statess1:(t−1)

given the current statest. The summation and integration operations in (3.44) can be inter-

changed, but there are still an intractable number of possible sequences to sum over, a number

exponential in the length of the sequence. This intractability becomes even worse with multiple

sequences, as hidden states of different sequences also become dependent in the posterior.

It is true that for anygiven setting of the parameters, the likelihood calculation is possible,

as is finding the distribution over possible hidden state sequences using the forward-backward

algorithm; but since the parameters are continuous this insight is not useful for calculating
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(3.44). It is also true that for anygiventrajectory representing a single hidden state sequence,

we can treat the hidden variables as observed and analytically integrate out the parameters to

obtain the marginal likelihood; but since the number of such trajectories is exponential in the

sequence length (kT ), this approach is also ruled out.

These considerations form the basis of a very simple and elegant algorithm due toStolcke and

Omohundro(1993) for estimating the marginal likelihood of an HMM. In that work, the pos-

terior distribution over hidden state trajectories is approximated with the most likely sequence,

obtained using a Viterbi algorithm for discrete HMMs (Viterbi, 1967). This single sequence (let

us assume it is unique) is then treated as observed data, which causes the parameter posteriors

to be Dirichlet, which are then easily integrated over to form an estimate of the marginal likeli-

hood. The MAP parameter setting (the mode of the Dirichlet posterior) is then used to infer the

most probable hidden state trajectory to iterate the process. Whilst the reported results are im-

pressive, substituting MAP estimates for both parameters and hidden states seems safe only if:

there is plenty of data to determine the parameters (i.e. many long sequences); and the individual

sequences are long enough to reduce any ambiguity amongst the hidden state trajectories.

Markov chain Monte Carlo (MCMC) methods can be used to approximate the posterior distri-

bution over parameters (Robert et al., 1993), but in general it is hard to assess the convergence

and reliability of the estimates required for learning. An analytically-based approach is to ap-

proximate the posterior distribution over the parameters with a Gaussian, which usually allows

the integral to become tractable. Unfortunately the Laplace approximation is not well-suited to

bounded or constrained parameters (e.g. sum-to-one constraints), and computation of the likeli-

hood Hessian can be computationally expensive. InMacKay(1998) an argument for transform-

ing the Dirichlet prior into the softmax basis is presented, although to the best of our knowledge

this approach is not widely used for HMMs.

3.4 Variational Bayesian formulation

In this section we derive the variational Bayesian implementation of HMMs, first presented in

MacKay(1997). We show that by making only the approximation that the posterior over hid-

den variables and parameters factorises, an approximate posterior distribution over hidden state

trajectories can be inferred under anensembleof model parameters, and how an approximate

posterior distribution over parameters can be analytically obtained from the sufficient statistics

of the hidden state.
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3.4.1 Derivation of the VBEM optimisation procedure

Our choice of priorsp(θ) and the complete-data likelihoodp(s1:T ,y1:T |θ) for HMMs satisfy

conditions (2.80) and (2.88) respectively, for membership of the conjugate-exponential (CE)

family. Therefore it is possible to apply the results of theorem2.2 directly to obtain the VBM

and VBE steps. The derivation is given here step by step, and the ideas of chapter2 brought in

gradually. We begin with the log marginal likelihood for an HMM (3.36), and lower bound it

by introducing any distribution over the parameters and hidden variablesq(π, A, C, s1:T ):

ln p(y1:T ) = ln
∫
dπ

∫
dA

∫
dC
∑
s1:T

p(π, A, C)p(y1:T , s1:T |π, A, C) (3.45)

≥
∫
dπ

∫
dA

∫
dC
∑
s1:T

q(π, A, C, s1:T ) ln
p(π, A, C)p(y1:T , s1:T |π, A, C)

q(π, A, C, s1:T )
.

(3.46)

This inequality is tight whenq(π, A, C, s1:T ) is set to the exact posterior over hidden variables

and parametersp(π, A, C, s1:T |y1:T ), but it is intractable to compute this distribution. We

make progress by assuming that the posterior is factorised:

p(π, A, C, s1:T |y1:T ) ≈ q(π, A, C)q(s1:T ) (3.47)

which gives a lower bound of the form

ln p(y1:T ) ≥
∫
dπ

∫
dA

∫
dC
∑
s1:T

q(π, A, C, s1:T ) ln
p(π, A, C)p(y1:T , s1:T |π, A, C)

q(π, A, C, s1:T )

(3.48)

=
∫
dπ

∫
dA

∫
dC q(π, A, C)

[
ln
p(π, A, C)
q(π, A, C)

+
∑
s1:T

q(s1:T ) ln
p(y1:T , s1:T |π, A, C)

q(s1:T )

]
(3.49)

= F(q(π, A, C), q(s1:T )) , (3.50)

where the dependence ony1:T is taken to be implicit. On taking functional derivatives ofF
with respect toq(π, A, C) we obtain

ln q(π, A, C) = ln p(π, A, C)〈ln p(y1:T , s1:T |π, A, C)〉q(s1:T ) + c (3.51)

= ln p(π) + ln p(A) + ln p(C)

+ 〈ln p(s1 |π)〉q(s1) + 〈ln p(s2:T | s1, A)〉q(s1:T )

+ 〈ln p(y1:T | s1:T , C)〉q(s1:T ) + c , (3.52)
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wherec is a normalisation constant. Given that the prior over the parameters (3.37) factorises,

and the log complete-data likelihood (3.14) is a sum of terms involving each ofπ,A, andC, the

variational posterior over the parameters can be factorisedwithout further approximationinto:

q(π, A, C) = q(π)q(A)q(C) . (3.53)

Note that sometimes this independence is assumed beforehand and believed to concede accu-

racy, whereas we have seen that it falls out from a free-form extremisation of the posterior with

respect to the entire variational posterior over the parametersq(π, A, C), and is therefore exact

once the assumption of factorisation between hidden variables and parameters has been made.

The VBM step

The VBM step is obtained by taking functional derivatives ofF with respect to each of these

distributions and equating them to zero, to yield Dirichlet distributions:

q(π) = Dir({π1, . . . , πk} | {w
(π)
1 , . . . , w

(π)
k }) (3.54)

with w
(π)
j = u

(π)
j + 〈δ(s1, j)〉q(s1:T ) (3.55)

q(A) =
k∏
j=1

Dir({aj1, . . . , ajk} | {w
(A)
j1 , . . . , w

(A)
jk }) (3.56)

with w
(A)
jj′ = u

(A)
j′ +

T∑
t=2

〈δ(st−1, j)δ(st, j′)〉q(s1:T ) (3.57)

q(C) =
k∏
j=1

Dir({cj1, . . . , cjp} | {w(C)
j1 , . . . , w

(C)
jp }) (3.58)

with w
(C)
jq = u(A)

q +
T∑
t=1

〈δ(st, j)δ(yt, q)〉q(s1:T ) . (3.59)

These are straightforward applications of the result in theorem2.2(b), which states that the

variational posterior distributions have the same form as the priors with their hyperparameters

augmented by sufficient statistics of the hidden state and observations.

The VBE step

Taking derivatives ofF (3.49) with respect to the variational posterior over the hidden state

q(s1:T ) yields:

ln q(s1:T ) = 〈ln p(s1:T ,y1:T |π, A, C)〉q(π)q(A)q(C) − ln Z̃(y1:T ) , (3.60)
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whereZ̃(y1:T ) is an important normalisation constant that we will return to shortly. Substituting

in the complete-data likelihood from (3.14) yields

ln q(s1:T ) =
〈
s>1 lnπ +

T∑
t=2

s>t−1 lnA st +
T∑
t=1

s>t lnC yt
〉
q(π)q(A)q(C)

− ln Z̃(y1:T ) (3.61)

= s>1 〈lnπ〉q(π) +
T∑
t=2

s>t−1〈lnA〉q(A) st +
T∑
t=1

s>t 〈lnC〉q(C) yt − ln Z̃(y1:T ) .

(3.62)

Note that (3.62) appears identical to the complete-data likelihood of (3.14) except that expecta-

tions are now taken of the logarithm of the parameters. Relating this to the result in corollary

2.2, the natural parameter vectorφ(θ) is given by

θ = (π , A , C) (3.63)

φ(θ) = (lnπ , lnA , lnC) , (3.64)

and the expected natural parameter vectorφ is given by

φ ≡ 〈φ(θ)〉q(θ) = (〈lnπ〉q(π), 〈lnA〉q(A), 〈lnC〉q(C)) . (3.65)

Corollary 2.2 suggests that we can use a modified parameter,θ̃, in the same inference algo-

rithm (forward-backward) in the VBE step. The modified parameterθ̃ satisfiesφ = φ(θ̃) =
〈φ(θ)〉q(θ), and is obtained simply by using the inverse of theφ operator:

θ̃ = φ−1(〈φ(θ)〉q(θ)) = (exp〈lnπ〉q(π) , exp〈lnA〉q(A) , exp〈lnC〉q(C)) (3.66)

= (π̃ , Ã , C̃) . (3.67)

Note that the natural parameter mappingφ operates separately on each of the parameters in the

vectorθ, which makes the inversion of the mappingφ−1 straightforward. This is a consequence

of these parameters being uncoupled in the complete-data likelihood. For other CE models,

the inversion of the natural parameter mapping may not be as simple, since having uncoupled

parameters is not necessarily a condition for CE family membership. In fact, in chapter5 we

encounter such a scenario for Linear Dynamical Systems.

It remains for us to calculate the expectations of the logarithm of the parameters under the

Dirichlet distributions. We use the result that∫
dπ Dir(π |u) lnπj = ψ(uj)− ψ(

k∑
j=1

uj) , (3.68)

94



VB Hidden Markov Models 3.4. Variational Bayesian formulation

whereψ is thedigammafunction (see appendicesA andC.1for details). This yields

π̃ = {π̃j} = exp

ψ(w(π)
j )− ψ(

k∑
j=1

w
(π)
j )

 :
k∑
j=1

π̃j ≤ 1 (3.69)

Ã = {ãjj′} = exp

ψ(w(A)
jj′ )− ψ(

k∑
j′=1

w
(A)
jj′ )

 :
k∑

j′=1

ãjj′ ≤ 1 ∀j (3.70)

C̃ = {c̃jm} = exp

[
ψ(w(C)

jm )− ψ(
p∑

m=1

w
(C)
jm )

]
:

p∑
m=1

c̃jm ≤ 1 ∀j . (3.71)

Note that taking geometric averages has resulted in sub-normalised probabilities. We may still

use the forward-backward algorithm with these sub-normalised parameters, but should bear in

mind that the normalisation constants (scaling factors) change. The forward pass (3.21) becomes

αt(st) =
1

ζ̃t(yt)

∑
st−1

αt−1(st−1)p̃(st | st−1)

 p̃(yt | st) , (3.72)

wherep̃(st | st−1) and p̃(yt | st) are new subnormalised probability distributions according to

the parameters̃A, C̃, respectively. Sinceαt(st) is the posterior probability ofst given datay1:t,

it must sum to one. This implies that, for anyparticular time step, the normalisatioñζt(yt) must

be smaller than if we had used normalised parameters. Similarly the backward pass becomes

βt(st) =
∑
st+1

βt+1(st+1)p̃(st+1 | st)p̃(yt+1 | st+1) . (3.73)

Computation of the lower boundF

Recall from (3.22) that the product of the normalisation constants corresponds to the probability

of the sequence. Here the product of normalisation constants corresponds to a different quantity:

T∏
t=1

ζ̃t(yt) = Z̃(y1:T ) (3.74)

which is the normalisation constant given in (3.60). Thus the modified forward-backward algo-

rithm recursively computes the normalisation constant by integrating out eachst in q(s1:T ), as

opposed top(s1:T |y1:T ). We now show howZ̃(y1:T ) is useful for computing the lower bound,

just asZ(y1:T ) was useful for computing the likelihood in the ML system.
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Using (3.49) the lower bound can be written as

F(q(π, A, C), q(s1:T )) =
∫
dπ q(π) ln

p(π)
q(π)

+
∫
dA q(A) ln

p(A)
q(A)

+
∫
dC q(C) ln

p(C)
q(C)

+H(q(s1:T ))

+ 〈ln p(s1:T ,y1:T |π, A, C)〉q(π)q(A)q(C)q(s1:T ) , (3.75)

whereH(q(s1:T )) is the entropy of the variational posterior distribution over hidden state se-

quences. Straight after a VBE step, the form of the hidden state posteriorq(s1:T ) is given by

(3.60), and the entropy can be written:

H(q(s1:T )) = −
∑
s1:T

q(s1:T ) ln q(s1:T ) (3.76)

= −
∑
s1:T

q(s1:T )
[
〈ln p(s1:T ,y1:T |π, A, C)〉q(π)q(A)q(C) − ln Z̃(y1:T )

]
(3.77)

= −
∑
s1:T

q(s1:T )〈ln p(s1:T ,y1:T |π, A, C)〉q(π)q(A)q(C) + ln Z̃(y1:T ) . (3.78)

Substituting this into (3.75) cancels the expected log complete-data likelihood terms, giving

F(q(π, A, C), q(s1:T )) =
∫
dπ q(π) ln

p(π)
q(π)

+
∫
dA q(A) ln

p(A)
q(A)

+
∫
dC q(C) ln

p(C)
q(C)

+ ln Z̃(y1:T ) (3.79)

Therefore computingF for variational Bayesian HMMs consists of evaluating KL divergences

between variational posterior and prior Dirichlet distributions for each row ofπ, A, C (see

appendixA), and collecting the modified normalisation constants{ζ̃t(yt)}Tt=1. In essence we

have by-passed the difficulty of trying to compute the entropy of the hidden state by recursively

computing it with the VBE step’s forward pass. Note that this calculation is then only valid

straight after the VBE step.

VB learning with multiple i.i.d. sequences is conceptually straightforward and very similar to

that described above for ML learning. For the sake of brevity the reader is referred to the chapter

on Linear Dynamical Systems, specifically section5.3.8and equation (5.152), from which the

implementational details for variational Bayesian HMMs can readily be inferred.

Optimising the hyperparameters of the model is straightforward. Since the hyperparameters

appear inF only in the KL divergence terms, maximising the marginal likelihood amounts to

minimising the KL divergence between each parameter’s variational posterior distribution and

its prior distribution. We did not optimise the hyperparameters in the experiments, but instead

examined several different settings.
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3.4.2 Predictive probability of the VB model

In the Bayesian scheme, the predictive probability of a test sequencey′ = y′1:T ′ , given a set

of training cases denoted byy = {yi,1:Ti}ni=1, is obtained by averaging the predictions of the

HMM with respect to the posterior distributions over its parametersθ = {π, A, C}:

p(y′ |y) =
∫
dθ p(θ |y)p(y′ |θ) . (3.80)

Unfortunately, for the very same reasons that the marginal likelihood of equation (3.44) is in-

tractable, so is the predictive probability. There are several possible methods for approximating

the predictive probability. One such method is to sample parameters from the posterior distri-

bution and construct a Monte Carlo estimate. Should it not be possible to sample directly from

the posterior, then importance sampling or its variants can be used. This process can be made

more efficient by employing Markov chain Monte Carlo and related methods. Alternatively, the

posterior distribution can be approximated with some form which when combined with the like-

lihood term becomes amenable to integration analytically; it is unclear which analytical forms

might yield good approximations.

An alternative is to approximate the posterior distribution with the variational posterior distri-

bution resulting from the VB optimisation:

p(y′ |y) ≈
∫
dθ q(θ)p(y′ |θ) . (3.81)

The variational posterior is a product of Dirichlet distributions, which is in the same form as

the prior, and so we have not gained a great deal because we know this integral is intractable.

However we can perform two lower bounds on this quantity to obtain:

p(y′ |y) ≈
∫
dθ q(θ)p(y′ |θ) (3.82)

≥ exp
∫
dθ q(θ) ln

∑
s′
1:T ′

p(s′1:T ,y
′
1:T |θ) (3.83)

≥ exp
∫
dθ q(θ)

∑
s′
1:T ′

q(s′1:T ′) ln
p(s′1:T ,y

′
1:T |θ)

q(s′1:T ′)
. (3.84)

Equation3.84is just the last term in the expression for the lower bound of the marginal likeli-

hood of a training sequence given by (3.49), but with the test sequence in place of the training

sequence. This insight provides us with the following method to evaluate the approximation.

One simply carries out a VBE step on the test sequence, starting from the result of the last VBM

step on the training set, and gathers the normalisation constants{Z̃ ′t}
T ′i
t=1 and takes the product

of these. Whilst this is a very straightforward method, it should be remembered that it is only a

bound on an approximation.
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A different way to obtain the predictive probability is to assume that the model at the mean (or

mode) of the variational posterior, with parameterθMVB , is representative of the distribution as

a whole. The likelihood of the test sequence is then computed under the single model with those

parameters, which is tractable:

p(y′ |y)MVB =
∑
s′1:T

p(s′1:T ,y
′
1:T |θMVB ) . (3.85)

This approach is suggested as further work inMacKay(1997), and is discussed in the experi-

ments described below.

3.5 Experiments

In this section we perform two experiments, the first on synthetic data to demonstrate the ability

of the variational Bayesian algorithm to avoid overfitting, and the second on a toy data set to

compare ML, MAP and VB algorithm performance at discriminating between forwards and

backwards English character sequences.

3.5.1 Synthetic: discovering model structure

For this experiment we trained ML and VB hidden Markov models on examples of three types

of sequences with a three-symbol alphabet{a, b, c}. Using standard regular expression notation,

the first type of sequence was a substring of the regular grammar(abc)∗, the second a substring

of (acb)∗, and the third from(a∗b∗)∗ wherea andb symbols are emitted stochastically with

probability 1
2 each. For example, the training sequences included the following:

y1,1:T1 = (abcabcabcabcabcabcabcabcabcabcabcabc)

y2,1:T2 = (bcabcabcabcabcabcabcabcabcabcabcabc)
...

y12,1:T12 = (acbacbacbacbacbacbacbacb)

y13,1:T13 = (acbacbacbacbacbacbacbacbacbacbacbacbac)
...

yn−1,1:Tn−1 = (baabaabbabaaaabbabaaabbaabbbaa)

yn,1:Tn = (abaaabbababaababbbbbaaabaaabba) .

In all, the training data consisted of 21 sequences of maximum length 39 symbols. Looking at

these sequences, we would expect an HMM to require 3 hidden states to model(abc)∗, a dif-
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ferent 3 hidden states to model(acb)∗, and a single self-transitioning hidden state stochastically

emitting a andb symbols to model(a∗b∗)∗. This gives a total of 7 hidden states required to

model the data perfectly. With this foresight we therefore chose HMMs withk = 12 hidden

states to allow for some redundancy and room for overfitting.

The parameters were initialised by drawing the components of the probability vectors from a

uniform distribution and normalising. First the ML algorithm was run to convergence, and

then the VB algorithm runfrom that pointin parameter space to convergence. This was made

possible by initialising each parameter’s variational posterior distribution to be Dirichlet with

the ML parameter as mean and a strength arbitrarily set to 10. For the MAP and VB algorithms,

the prior over each parameter was a symmetric Dirichlet distribution of strength 4.

Figure3.2shows the profile of the likelihood of the data under the ML algorithm and the subse-

quent profile of the lower bound on the marginal likelihood under the VB algorithm. Note that

it takes ML about 200 iterations to converge to a local optimum, and from this point it takes

only roughly 25 iterations for the VB optimisation to converge — we might expect this as VB

is initialised with the ML parameters, and so has less work to do.

Figure3.3 shows the recovered ML parameters and VB distributions over parameters for this

problem. As explained above, we require 7 hidden states to model the data perfectly. It is

clear from figure3.3(a)that the ML model has used more hidden states than needed, that is

to say it has overfit the structure of the model. Figures3.3(b) and 3.3(c) show that the VB

optimisation has removed excess transition and emission processes and, on close inspection, has

recovered exactly the model that was postulated above. For example: state (4) self-transitions,

and emits the symbolsa andb in approximately equal proportions to generate the sequences

(a∗b∗)∗; states (9,10,8) form a strong repeating path in the hidden state space which (almost)

deterministically produce the sequences(acb)∗; and lastly the states (3,12,2) similarly interact

to produce the sequences(abc)∗. A consequence of the Bayesian scheme is thatall the entries

of the transition and emission matrices are necessarily non-zero, and those states (1,5,6,7,11)

that are not involved in the dynamics have uniform probability of transitioning to all others, and

indeed of generating any symbol, in agreement with the symmetric prior. However these states

have small probability of being used at all, as both the distributionq(π) over the initial state

parameterπ is strongly peaked around high probabilities for the remaining states, and they have

very low probability of being transitioned into by the active states.

3.5.2 Forwards-backwards English discrimination

In this experiment, models learnt by ML, MAP and VB are compared on their ability to dis-

criminate between forwards and backwards English text (this toy experiment is suggested in

MacKay, 1997). A sentence is classified according to the predictive log probability under each
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(a) ML: plot of the log likelihood of the data,
p(y1:T |θ).
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(b) VB: plot of the lower bound
F(q(s1:T ), q(θ)).
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(c) ML: plot of the derivative of the log likeli-
hood in (a).
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(d) VB: plot of the derivative of the lower
bound in (b).

Figure 3.2: Training ML and VB hidden Markov models on synthetic sequences drawn from
(abc)∗, (acb)∗ and(a∗b∗)∗ grammars (see text). Subplots(a) & (c) show the evolution of the
likelihood of the data in the maximum likelihood EM learning algorithm for the HMM with
k = 12 hidden states. As can be seen in subplot (c) the algorithm converges to a local maximum
after by about 296 iterations of EM. Subplots(b) & (d) plot the marginal likelihood lower bound
F(q(s1:T ), q(θ)) and its derivative, as acontinuationof learning from the point in parameter
space where ML converged (see text) using the variational Bayes algorithm. The VB algorithm
converges after about 29 iterations of VBEM.
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(a) ML state priorπ, tran-
sition A and emissionC
probabilities.

(b) VB variational posterior
parameters forq(π), q(A)
andq(C).

(c) Variational posterior
mean probabilities:〈q(π)〉,
〈q(A)〉 and〈q(C)〉.

Figure 3.3:(a) Hinton diagrams showing the probabilities learnt by the ML model, for the initial
state priorπ, transition matrixA, and emission matrixC. (b) Hinton diagrams for the analo-
gous quantitiesu(π), u(A) andu(C), which are the variational parameters (counts) describing
the posterior distributions over the parametersq(π), q(A), andq(C) respectively.(c) Hinton
diagrams showing the mean/modal probabilities of the posteriors represented in (b), which are
simply row-normalised versions ofu(π), u(A) andu(C).

of the learnt models of forwards and backwards character sequences. As discussed above in

section3.4.2, computing the predictive probability for VB is intractable, and so we approxi-

mate the VB solution with the model at the mean of the variational posterior given by equations

(3.54–3.59).

We used sentences taken from Lewis Carroll’sAlice’s Adventures in Wonderland. All punctu-

ation was removed to leave 26 letters and the blank space (that is to sayp = 27). The training

data consisted of a maximum of 32 sentences (of length between 10 and 100 characters), and

the test data a fixed set of 200 sentences of unconstrained length. As an example, the first 10

training sequences are given below:
(1) ‘i shall be late ’

(2) ‘thought alice to herself after such a fall as this i shall think nothing of tumbling down stairs ’

(3) ‘how brave theyll all think me at home ’

(4) ‘why i wouldnt say anything about it even if i fell off the top of the house ’

(5) ‘which was very likely true ’

(6) ‘down down down ’

(7) ‘would the fall never come to an end ’

(8) ‘i wonder how many miles ive fallen by this time ’

(9) ‘she said aloud ’

(10) ‘i must be getting somewhere near the centre of the earth ’
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ML, MAP and VB hidden Markov models were trained on varying numbers of sentences (se-

quences),n, varying numbers of hidden states,k, and for MAP and VB, varying prior strengths,

u0, common to all the hyperparameters{u(π),u(A),u(C)}. The choices were:

n ∈ {1, 2, 3, 4, 5, 6, 8, 16, 32}, k ∈ {1, 2, 4, 10, 20, 40, 60}, u0 ∈ {1, 2, 4, 8} . (3.86)

The MAP and VB algorithms were initialised at the ML estimates (as per the previous experi-

ment), both for convenience and fairness. The experiments were repeated a total of 10 times to

explore potential multiple maxima in the optimisation.

In each scenario two models were learnt, one based on forwards sentences and the other on

backwards sentences, and the discrimination performance was measured by the average fraction

of times the forwards and backwards models correctly classified forwards and backwards test

sentences. This classification was based on the log probability of the test sequence under the

forwards and backwards models learnt by each method.

Figure3.4presents some of the results from these experiments. Each subplot is an examination

of the effect of one of the following: the size of the training setn, the number of hidden statesk,

or the hyperparameter settingu0, whilst holding the other two quantities fixed. For the purposes

of demonstrating the main trends, the results have been chosen around the canonical values of

n = 2, k = 40, andu0 = 2.

Subplots(a,c,e)of figure 3.4 show the average test log probabilityper symbolin the test se-

quence, for MAP and VB algorithms, as reported on 10 runs of each algorithm. Note that for

VB the log probability is measured under the model at the mode of the VB posterior. The plotted

curve is the median of these 10 runs. The test log probability for the ML method is omitted from

these plots as it is well below the MAP and VB likelihoods (qualitatively speaking, it increases

with n in (a), it decreases withk in (c), and is constant withu0 in (e) as the ML algorithm

ignores the prior over parameters). Most importantly, in(a) we see that VB outperforms MAP

when the model is trained on only a few sentences, which suggests that entertaining a distribu-

tion over parameters is indeed improving performance. These log likelihoods are those of the

forward sequences evaluated under the forward models; we expect these trends to be repeated

for reverse sentences as well.

Subplots(b,d,f) of figure3.4 show the fraction of correct classifications of forwards sentences

as forwards, and backwards sentences as backwards, as a function ofn, k andu0, respectively.

We see that for the most part VB gives higher likelihood to the test sequences than MAP, and

also outperforms MAP and ML in terms of discrimination. For large amounts of training datan,

VB and MAP converge to approximately the same performance in terms of test likelihood and

discrimination. As the number of hidden statesk increases, VB outperforms MAP considerably,

although we should note that the performance of VB also seems to degrade slightly fork >
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(a) Test log probability per sequence symbol:
dependence onn. With k = 40, u0 = 2.
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(b) Test discrimination rate dependence onn.
With k = 40, u0 = 2.
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(c) Test log probability per sequence symbol:
dependence onk. With n = 2, u0 = 2.
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(d) Test discrimination rate dependence onk.
With n = 2, u0 = 2.
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(e) Test log probability per sequence symbol:
dependence onu0. With n = 2, k = 40.
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(f) Test discrimination rate dependence onu0.
With n = 2, k = 40.

Figure 3.4: Variations in performance in terms of test data log predictive probability and dis-
crimination rates of ML, MAP, and VB algorithms for training hidden Markov models. Note
that the reported predictive probabilities are per test sequence symbol. Refer to text for details.
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20. This decrease in performance with highk corresponds to a solution with the transition

matrix containing approximately equal probabilities in all entries, which shows that MAP is

over-regularising the parameters, and that VB does so also but not so severely. As the strength

of the hyperparameteru0 increases, we see that both the MAP and VB test log likelihoods

decrease, suggesting thatu0 ≤ 2 is suitable. Indeed atu0 = 2, the MAP algorithm suffers

considerably in terms of discrimination performance, despite the VB algorithm maintaining

high success rates.

There were some other general trends which were not reported in these plots. For example, in

(b) the onset of the rise in discrimination performance of MAP away from.5 occurs further to

the right as the strengthu0 is increased. That is to say the over-regularising problem is worse

with a stronger prior, which makes sense. Similarly, on increasingu0, the point at which MAP

begins to decrease in(c,d) moves to the left. We should note also that on increasingu0, the test

log probability for VB(c) begins to decrease earlier in terms ofk.

The test sentences on which the algorithms tend to make mistakes are the shorter, and more

reversible sentences, as to be expected. Some examples are: ‘alas ’, ‘pat ’, ‘oh ’, and ‘oh dear ’.

3.6 Discussion

In this chapter we have presented the ML, MAP and VB methods for learning HMMs from

data. The ML method suffers because it does not take into account model complexity and so

can overfit the data. The MAP method performs poorly both from over-regularisation and also

because it entertains a single point-parameter model instead of integrating over an ensemble. We

have seen that the VB algorithm outperforms both ML and MAP with respect to the likelihood

of test sequences and in discrimination tasks between forwards and reverse English sentences.

Note however, that a fairer comparison of MAP with VB would include allowing each method

to use cross-validation to find the best setting of their hyperparameters. This is fairer because

the effective value ofu0 used in the MAP algorithm changes depending on the basis used for

the optimisation.

In the experiments the automatic pruning of hidden states by the VB method has been welcomed

as a means of inferring useful structure in the data. However, in an ideal Bayesian application

one would prefer all states of the model to be active, but with potentially larger uncertainties in

the posterior distributions of their transition and emission parameters; in this way all parameters

of the model are used for predictions. This point is raised inMacKay(2001) where it is shown

that the VB method can inappropriately overprune degrees of freedom in a mixture of Gaussians.

Unless we really believe that our data was generated from an HMM with a finite number of

states, then there are powerful arguments for the Bayesian modeller to employ as complex a
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model as is computationally feasible, even for small data sets (Neal, 1996, p. 9). In fact,

for Dirichlet-distributed parameters, it is possible to mathematically represent the limit of an

infinite number of parameter dimensions, with finite resources. This result has been exploited for

mixture models (Neal, 1998b), Gaussian mixture models (Rasmussen, 2000), and more recently

has been applied to HMMs (Beal et al., 2002). In all these models, sampling is used for inferring

distributions over the parameters of a countably infinite number of mixture components (or

hidden states). An area of future work is to compare VB HMMs to these infinite HMMs.
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Chapter 4

Variational Bayesian Mixtures of

Factor Analysers

4.1 Introduction

This chapter is concerned with learning good representations of high dimensional data, with

the goal being to perform well in density estimation and pattern classification tasks. The work

described here builds on work inGhahramani and Beal(2000), which first introduced the vari-

ational method for Bayesian learning of a mixtures of factor analysers model, resulting in a

tractable means of integrating over all the parameters in order to avoid overfitting.

In the following subsections we introduce factor analysis (FA), and the mixtures of factor anal-

ysers (MFA) model which can be thought of as a mixture of reduced-parameter Gaussians. In

section4.2 we explain why an exact Bayesian treatment of MFAs is intractable, and present a

variational Bayesian algorithm for learning. We show how to learn distributions over the pa-

rameters of the MFA model, how to optimise its hyperparameters, and how to automatically

determine the dimensionality of each analyser using automatic relevance determination (ARD)

methods. In section4.3 we propose heuristics for efficiently exploring the (one-dimensional)

space of the number of components in the mixture, and in section4.5we present synthetic exper-

iments showing that the model can simultaneously learn the number of analysers and their intrin-

sic dimensionalities. In section4.6 we apply the VBMFA to the real-world task of classifying

digits, and show improved performance over a BIC-penalised maximum likelihood approach.

In section4.7we examine the tightness of the VB lower bound using importance sampling es-

timates of the exact marginal likelihood, using as importance distributions the posteriors from

the VB optimisation. We also investigate the effectiveness of using heavy-tailed and mixture

distributions in this procedure. We then conclude in section4.8 with a brief outlook on recent

research progress in this area.
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4.1.1 Dimensionality reduction using factor analysis

Factor analysis is a method for modelling correlations in multidimensional data, by expressing

the correlations in a lower-dimensional, oriented subspace. Let the data set bey = {y1, . . . ,yn}.
The model assumes that eachp-dimensional data vectoryi was generated by first linearly trans-

forming ak < p dimensional vector of unobserved independent zero-mean unit-variance Gaus-

sian sources (factors),xi = [xi1, . . . ,xik], translating by a fixed amountµ in the data space,

followed by addingp-dimensional zero-mean Gaussian noise,ni, with diagonal covariance ma-

trix Ψ (whose entries are sometimes referred to as theuniquenesses). Expressed mathematically,

we have

yi = Λxi + µ + ni (4.1)

xi ∼ N(0, I), ni ∼ N(0,Ψ) , (4.2)

whereΛ (p × k) is the linear transformation known as thefactor loadingmatrix, andµ is the

mean of the analyser. Integrating outxi andni, it is simple to show that the marginal density of

yi is Gaussian about the displacementµ,

p(yi |Λ,µ,Ψ) =
∫
dxi p(xi)p(yi |xi,Λ,µ,Ψ) = N(yi |µ,ΛΛ> + Ψ) , (4.3)

and the probability of an i.i.d. data sety = {yi}ni=1 is given by

p(y |Λ,µ,Ψ) =
n∏
i=1

p(yi |Λ,µ,Ψ) . (4.4)

Given a data sety having covariance matrixΣ∗ and meanµ∗, factor analysis finds theΛ, µ and

Ψ that optimally fitΣ∗ in the maximum likelihood sense. Sincek < p, a factor analyser can

be seen as a reduced parameterisation of a full-covariance Gaussian. The (diagonal) entries of

theΨ matrix concentrate on fitting the axis-aligned (sensor) noise in the data, leaving the factor

loadings inΛ to model the remaining (assumed-interesting) covariance structure.

The effect of the mean termµ can be assimilated into the factor loading matrix by augmenting

the vector of factors with a constant bias dimension of1, and adding a corresponding columnµ

to the matrixΛ. With these modifications, learning theΛ matrix incorporates learning the mean;

in the equations of this chapter we keep the parameters separate, although the implementations

consider the combined quantity.
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Dimensionality of the latent space,k

A central problem in factor analysis is deciding on the dimensionality of the latent space. If too

low a value ofk is chosen, then the model has to discard some of the covariance in the data as

noise, and ifk is given too high a value this causes the model to fit spurious correlations in the

data. Later we describe a Bayesian technique to determine this value automatically, but here

we first give an understanding for an upper bound on the required value fork, by comparing

the number of degrees of freedom in the covariance specification of the data set and the degrees

of freedom that the FA parameterisation has in its parameters. We need to distinguish between

the number of parameters and the degrees of freedom, which is really a measure of how many

independent directions in parameter space there are that affect the generative probability of the

data. The number of degrees of freedom in a factor analyser with latent space dimensionalityk

cannot exceed the number of degrees of freedom of a full covariance matrix,1
2p(p+ 1), nor can

it exceed the degrees of freedom offered by the parameterisation of the analyser, which is given

by d(k),

d(k) = kp+ p− 1
2
k(k − 1) . (4.5)

The first two terms on the right hand side are the degrees of freedom in theΛ andΨ matrices

respectively, and the last term is the degrees of freedom in a(k × k) orthonormal matrix. This

last term needs to be subtracted because it represents a redundancy in the factor analysis param-

eterisation, namely that an arbitrary rotation or reflection of the latent vector space leaves the

covariance model of the data unchanged:

underΛ→ ΛU, ΛΛ> + Ψ→ ΛU(ΛU)> + Ψ (4.6)

= ΛUU>Λ> + Ψ (4.7)

= ΛΛ> + Ψ . (4.8)

That is to say we must subtract the degrees of freedom from degeneracies inΛ associated with

arbitrary arrangements of the (a priori identical) hidden factors{xij}kj=1. Since ap-dimensional

covariance matrix containsp(p + 1)/2 pieces of information, in order to be able to perfectly

capture the covariance structure of the data the number of degrees of freedom in the analyser

(4.5) would have to exceed this. This inequality is a simple quadratic problem, fork ≤ p

kp+ p− 1
2
k(k − 1) ≥ 1

2
p(p+ 1) (4.9)

whose solution is given by

kmax =
⌈
p+

1
2

[
1−

√
1 + 8p

]⌉
. (4.10)

We might be tempted to conclude that we only needkmax factors to model an arbitrary covariance

in p dimensions. However this neglects the constraint that all the diagonal elements ofΨ have
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to be positive. We conjecture that because of this constraint the number of factors needed to

model a full covariance matrix isp− 1. This implies that for high dimensional data, if we want

to be able to model a full covariance structure, we cannot expect to be able to reduce the number

of parameters by that much at all using factor analysis. Fortunately, for many real data sets we

have good reason to believe that, at least locally, the data lies on a low dimensional manifold

which we can capture with only a few factors. The fact that this is a good approximation only

locally, when the manifold may be globally non-linear, is the motivation for mixture models,

discussed next.

4.1.2 Mixture models for manifold learning

It is often the case that apparently high dimensional data in fact lies, to a good approximation,

on a low dimensional manifold. For example, consider the data set consisting of many different

images of the same digit, given in terms of the pixel intensities. This data has as many dimen-

sions as there are pixels in each image. To explain this data we could first specify a mean digit

image, which is a point in this high dimensional space representing a set of pixel intensities, and

then specify a small number of transformations away from that digit that would cover small vari-

ations in style or perhaps intensity. In factor analysis, each factor dictates the amount of each

linear transformation on the pixel intensities. However, with factor analysis we are restricted

to linear transformations, and so any one analyser can only explain well a small region of the

manifold in which it is locally linear, even though the manifold is globally non-linear.

One way to overcome this is to use mixture models to tile the data manifold. A mixture of

factor analysers models the density for a data pointyi as a weighted average of factor analyser

densities

p(yi |π,Λ,µ,Ψ) =
S∑

si=1

p(si |π)p(yi | si,Λ,µ,Ψ) . (4.11)

Here,S is the number of mixture components in the model,π is the vector of mixing propor-

tions,si is a discrete indicator variable for the mixture component chosen to model data point

i, Λ = {Λs}Ss=1 is a set of factor loadings withΛs being the factor loading matrix for analyser

s, andµ = {µs}Ss=1 is the set of analyser means. The last term in the above probability is just

the single analyser density, given in equation (4.3). The directed acyclic graph for this model is

depicted in figure4.1, which uses theplatenotation to denote repetitions over a data set of size

n. Note that there are different indicator variablessi and latent space variablesxi for each plate.

By exploiting the factor analysis parameterisation of covariance matrices, a mixture of factor

analysers can be used to fit a mixture of Gaussians to correlated high dimensional data without

requiringO(p2) parameters, or undesirable compromises such as axis-aligned covariance ma-

trices. In an MFA each Gaussian cluster has intrinsic dimensionalityk, or ks if the dimensions

are allowed to vary across mixture components. Consequently, the mixture of factor analysers
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Λ1,µ1

Ψ

Λ2,µ2


ΛS,µS...

yi

xi

si π

i=1...n

Figure 4.1: Generative model for Maximum Likelihood MFA. Circles denote random variables,
solid rectangles parameters, and the dashed rectangle the plate (repetitions) over the data.

simultaneously addresses the problems of clustering and local dimensionality reduction. When

Ψ is a multiple of the identity the model becomes a mixture of probabilistic PCAs (pPCA).

Tractable maximum likelihood (ML) procedures for fitting MFA and pPCA models can be de-

rived from the Expectation Maximisation algorithm, see for exampleGhahramani and Hinton

(1996b); Tipping and Bishop(1999). Factor analysis and its relationship to PCA and mixture

models is reviewed inRoweis and Ghahramani(1999).

4.2 Bayesian Mixture of Factor Analysers

The maximum likelihood approach to fitting an MFA has several drawbacks. The EM algorithm

can easily get caught in local maxima, and often many restarts are required before a good max-

imum is reached. Technically speaking the log likelihoods in equations (4.3) and (4.11) are not

bounded from above, unless constraints are placed on the variances of the components of the

mixture. In practice this means that the covariance matrixΛsΛs> + Ψ can become singular if

a particular factor analyser models fewer points than the degrees of freedom in its covariance

matrix. Most importantly, the maximum likelihood approach for fitting MFA models has the

severe drawback that it fails to take into account model complexity. For example the likelihood

can be increased by adding more analyser components to the mixture, up to the extreme where

each component models a single data point, and it can be further increased by supplying more

factors in each of the analysers.
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A Bayesian approach overcomes these problems by treating the parameters of the model as

unknown quantities and averaging over the ensemble of models they produce. Definingθ =
(Λ,µ,π,Ψ), we write the probability of the data averaged over a prior for parameters:

p(y) =
∫
dθ p(θ)p(y |θ) (4.12)

=
∫
dθ p(θ)

n∏
i=1

p(yi |θ) (4.13)

=
∫
dπ p(π)

∫
dΛ p(Λ)

∫
dµ p(µ)·

n∏
i=1

[
S∑

si=1

p(si |π)
∫
dxi p(xi)p(yi | si,xi,Λ,µ,Ψ)

]
. (4.14)

Equation (4.14) is the marginal likelihood of a dataset (called the marginal probability of the

data set by some researchers to avoid confusion with the likelihood of theparameters). By in-

tegrating out all those parameters whose number increase as the model complexity grows, we

effectively penalise models with more degrees of freedom, since they can a priori model a larger

range of data sets. By model complexity, we mean the number of components and the dimen-

sionality of each component. Integrating out the parameters naturally embodies the principle of

Occam’s razor (MacKay, 1992; Jefferys and Berger, 1992). As a result no parameters are ever

fit to the data, but rather their posteriordistributionsare inferred and used to make predictions

about new data. For this chapter, we have chosen not to integrate overΨ, although this could

also be done (see, for example, chapter5). Since the number of degrees of freedom inΨ does

not grow with the number of analysers or their dimensions, we treat it as a hyperparameter and

optimise it, even though this might result in some small degree of overfitting.

4.2.1 Parameter priors for MFA

While arbitrary choices can be made for the priors in (4.14), choosing priors that are conjugate

to the likelihood terms greatly simplifies inference and interpretability. Therefore we choose a

symmetric Dirichlet prior for the mixing proportionπ, with strengthα∗,

p(π |α∗m∗) = Dir(π |α∗m∗) , such that m∗ =
[

1
S
, . . . ,

1
S

]
. (4.15)

In this way the prior has a single hyperparameter, its strengthα∗, regardless of the dimensional-

ity of π. This hyperparameter is a measure of how we expect the mixing proportions to deviate

from being equal. One could imagine schemes in which we have non-symmetric prior mixing

proportion; an example could be making the hyperparameter in the Dirichlet prior an exponen-

tially decaying vector with a single decay rate hyperparameter, which induces a natural ordering

in the mixture components and so removes some identifiability problems. Nevertheless for our
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purposes a symmetric prior suffices, and expresses the notion that each component has equal a

priori chance of being used to generate each data point.

For the entries of the factor loading matrices,{Λs}Ss=1, we choose a hierarchical prior in order to

perform automatic relevance determination (ARD). Each column of each factor loading matrix

has a Gaussian prior with mean zero and a different precision parameter (drawn from a gamma

distribution with fixed hyperparameters, see equation (4.18) below):

p(Λ |ν) =
S∏
s=1

p(Λs |νs) =
S∏
s=1

ks∏
j=1

p(Λs·j | νsj ) =
S∏
s=1

ks∏
j=1

N(Λs·j |0, I/νsj ) , (4.16)

whereΛs·j denotes the vector of entries in thejth column of thesth analyser in the mixture,

andνsj is the same scalar precision for each entry in the corresponding column. The role of

these precision hyperparameters is explained in section4.2.2. Note that because the spherical

Gaussian prior is separable into each of itsp dimensions, the prior can equivalently be thought

of as a Gaussian with axis-aligned elliptical covariance on each row of each analyser:

p(Λ |ν) =
S∏
s=1

p∏
q=1

p(Λsq· |νs) =
S∏
s=1

p∏
q=1

N(Λsq· |0,diag (νs)−1) , (4.17)

where hereΛsq· is used to denote theqth row of thesth analyser. It will turn out to be simpler

to have the prior in this form conceptually for learning, since the likelihood terms forΛ factor

across its rows.

Since the number of hyperparameters inν = {{νsj }
ks
j=1}Ss=1 increases with the number of anal-

ysers and also with the dimensionality of each analyser, we place a hyperprior on every element

of eachνs precision vector, as follows:

p(ν | a∗, b∗) =
S∏
s=1

p(νs | a∗, b∗) =
S∏
s=1

ks∏
j=1

p(νsj | a∗, b∗) =
S∏
s=1

ks∏
j=1

Ga(νsj | a∗, b∗) , (4.18)

wherea∗ andb∗ are shape and inverse-scale hyperhyperparameters for a gamma distribution

(see appendixA for a definition and properties of the gamma distribution). Note that the same

hyperprior is used for every element inν. As a point of interest, combining the priors forΛ and

ν, and integrating outν, we find that the marginal prior over eachΛs is Student-t distributed.

We will not need to make use of this result right here, but will return to it in section4.7.1.

Lastly, the means of each analyser in the mixture need to be integrated out. A Gaussian prior

with meanµ∗ and axis-aligned precisiondiag (ν∗) is placed on each meanµs. Note that these
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hyperparameters hold2p degrees of freedom, which is not a function of the size of the model.

The prior is the same for every analyser:

p(µ |µ∗,ν∗) =
S∏
s=1

p(µs |µ∗,ν∗) =
S∏
s=1

N(µs |µ∗,diag (ν∗)−1) (4.19)

Note that this prior has a different precision for each dimension of the output, whereas the prior

over the entries in the factor loading matrix uses the same precision on each row, and is different

only for each column of each analyser.

If we are to use the implementational convenience of augmenting the latent space with a constant

bias dimension, and adding a further column to each factor loading matrix to represent its mean,

then the prior over all the entries in the augmented factor loading matrix no longer factorises

over rows (4.17) or columns (4.18), but has to be expressed as a product of terms over every

entry of the matrix. This point will be made clearer when we derive the posterior distribution

over the augmented factor loading matrix.

We useΘ to denote the set of hyperparameters of the model:

Θ = (α∗m∗, a∗, b∗,µ∗,ν∗,Ψ) . (4.20)

The directed acyclic graph for the generative model for this Bayesian MFA is shown graph-

ically in figure 4.2. Contrasting with the ML graphical model in figure4.1, we can see that

all the model parameters (with the exception of the sensor noiseΨ) have been replaced with

uncertain variables, denoted with circles, and now have hyperparameters governing their prior

distributions. The generative model for the data remains the same, with the plate over the data

denoting i.i.d. instances of the hidden factorsxi, each of which gives rise to an outputyi. We

keep the graphical model concise by also using a plate over theS analysers, which clearly shows

the role of the hyperpriors.

As an aside, we do not place a prior on the number of components,S. We instead place a sym-

metric Dirichlet prior over the mixing proportions. Technically, we should include a (square

boxed) nodeS, as the parent of both the plate over analysers and the hyperparameterαm. We

have also not placed priors over the number of factors of each analyser,{ks}Ss=1; this is inten-

tional as there exists an explicit penalty for using more dimensions — the extra entries in factor

loading matrixΛs need to be explained under a hyperprior distribution (4.16) which is gov-

erned by a new hyperparameterνs, which itself has to be explained under the hyperhyperprior

p(νs | a, b) of equation (4.18).
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Figure 4.2: A Bayesian formulation for MFA. Here the plate notation is used to denote repeti-
tions over datan and over theS analysers in the generative model. Note that all the parameters
in the ML formulation, exceptΨ, have now become uncertain random variables in the Bayesian
model (circled nodes in the graph), and are governed by hyperparameters (square boxes). The
number of hyperparameters in the model is constant and is not a function of the number of
analysers or their dimensionalities.

4.2.2 Inferring dimensionality using ARD

Each factor analysers in the MFA models its local data as a linear projection ofks-dimensional

spherical Gaussian noise into thep-dimensional space. If a maximum dimensionalitykmax is

set, then there existkmax× · · · × kmax = (kmax)S possible subspace configurations amongst

theS analysers. Thus determining the optimal configuration is exponentially intractable if a

discrete search is employed over analyser dimensionalities. Automatic relevance determination

(ARD) solves this discrete search problem with the use of continuous variables that allow asoft

blendof dimensionalities. Each factor analyser’s dimensionality is set tokmax and we use priors

that discourage large factor loadings. The width of each prior is controlled by a hyperparameter

(explained below), and the result of learning with this method is that only those hidden factor

dimensions that are required remain active after learning — the remaining dimensions are effec-

tively ‘switched off’. This general method was proposed by MacKay and Neal (seeMacKay,

1996, for example), and was used inBishop(1999) for Bayesian PCA, and is closely related to

the method given inNeal(1998a) for determining the relevance of inputs to a neural network.

Considering for the moment a single factor analyser. The ARD scheme uses a Gaussian prior

with a zero mean for the entries of the factor loading matrix, as shown in (4.16), given again

here:

p(Λs |νs) =
kmax∏
j=1

p(Λs·j | νsj ) =
kmax∏
j=1

N(Λs·j |0, I/νsj ) , (4.21)

whereνs = {νs1, . . . , νskmax
} are the precisions on the columns ofΛs, which themselves are de-

noted by{Λ·1, . . . ,Λ·kmax}. This zero-mean prior couples within-column entries inΛs, favour-

ing lower magnitude values.
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If we apply this prior to each analyser in the mixture, each column of each factor loading matrix

is then governed by a separateνsl parameter. If one of these precisionsνsl → ∞ then the

outgoing weights (columnl entries inΛs) for the lth factor in thesth analyser will have to be

very close to zero in order to maintain a high likelihood under this prior, and this in turn leads the

analyser to ignore this factor, and thus allows the model to reduce the intrinsic dimensionality of

x in the locale of that analyserif the data does not warrant this added dimension. We have not

yet explained how some of these precisions come to tend to infinity; this will be made clearer in

the derivations of the learning rules in section4.2.5.

The fully Bayesian application requires that we integrate out all parameters that scale with the

number of analyser components and their dimensions; for this reason we use the conjugate prior

for a precision variable, a gamma distribution with shapea∗ and inverse scaleb∗, to integrate

over the ARD hyperparameters. Since we are integrating over the hyperparameters, it now

makes sense to consider removing a redundant factor loading when theposterior distribution

over the hyperparameterνsl has most of its mass near infinity. In practice we take the mean

of this posterior to be indicative of its position, and perform removal when it becomes very

large. This reduces the coding cost of the parameters, and as a redundant factor is not used

to model the data, this must increase the marginal likelihoodp(y). We can be harsher still,

and prematurely remove those factors which haveνsl escaping to infinity, provided the resulting

marginal likelihood is better (we do not implement this scheme in our experiments).

4.2.3 Variational Bayesian derivation

Now that we have priors over the parameters of our model, we can set about computing the

marginal likelihood of data. But unfortunately, computing the marginal likelihood in equation

(4.14) is intractable because integrating over the parameters of the model induces correlations

in the posterior distributions between the hidden variables in all then plates. As mentioned in

section1.3, there are several methods that are used to approximate such integrals, for example

MCMC sampling techniques, the Laplace approximation, and the asymptotic BIC criterion.

For MFA and similar models, MCMC methods for Bayesian approaches have only recently

been applied byFokoúe and Titterington(2003), with searches over model complexity in terms

of both the number of components and their dimensionalities carried out by reversible jump

techniques (Green, 1995). In related models, Laplace and asymptotic approximations have been

used to approximate Bayesian integration in mixtures of Gaussians (Roberts et al., 1998). Here

our focus is on analytically tractable approximations based on lower bounding the marginal

likelihood.

We begin with the log marginal likelihood of the data and first construct a lower bound using

a variational distribution over the parameters{π,ν,Λ,µ}, and then perform a similar lower
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bounding using a variational distribution for the hidden variables{si,xi}ni=1. As a point of

nomenclature, just as we have been using the same notationp(·) for every prior distribution,

even though they may be Gaussian, gamma, Dirichlet etc., in what follows we also use the same

q(·) to denote different variational distributions for different parameters. The form ofq(·) will

be clear from its arguments.

Combining (4.14) with the priors discussed above including the hierarchical prior onΛ, we

obtain the log marginal likelihood of the data, denotedL,

L ≡ ln p(y) = ln

(∫
dπ p(π |α∗m∗)

∫
dν p(ν | a∗, b∗)

∫
dΛ p(Λ |ν)

∫
dµ p(µ |µ∗,ν∗)·

n∏
i=1

[
S∑

si=1

p(si |π)
∫
dxi p(xi)p(yi | si,xi,Λ,µ,Ψ)

])
. (4.22)

The marginal likelihoodL is in fact a function of the hyperparameters(α∗m∗, a∗, b∗,µ∗,ν∗),
and the sensor noiseΨ; this dependence is left implicit in this derivation. We introduce an arbi-

trary distributionq(π,ν,Λ,µ) to lower bound (4.22), followed by a second set of distributions

{q(si,xi)}ni=1 to further lower bound the bound,

L ≥
∫
dπ dν dΛ dµ q(π,ν,Λ,µ)

(
ln
p(π |α∗m∗)p(ν | a∗, b∗)p(Λ |ν)p(µ |µ∗,ν∗)

q(π,ν,Λ,µ)

+
n∑
i=1

ln

[
S∑

si=1

p(si |π)
∫
dxi p(xi)p(yi | si,xi,Λ,µ,Ψ)

])
(4.23)

≥
∫
dπ dν dΛ dµ q(π,ν,Λ,µ)

(
ln
p(π |α∗m∗)p(ν | a∗, b∗)p(Λ |ν)p(µ |µ∗,ν∗)

q(π,ν,Λ,µ)

+
n∑
i=1

[
S∑

si=1

∫
dxi q(si,xi)

(
ln
p(si |π)p(xi)
q(si,xi)

+ ln p(yi | si,xi,Λ,µ,Ψ)
)])

.

(4.24)

In the first inequality, the term on the second line is simply the log likelihood ofyi for a fixed

setting of parameters, which is then further lower bounded in the second inequality using a set

of distributions over the hidden variables{q(si,xi)}ni=1. These distributions areindependentof

the settings of the parametersπ,ν,Λ, andµ, and they correspond to the standard variational

approximation of the factorisation between the parameters and the hidden variables:

p(π,ν,Λ,µ, {si,xi}ni=1 |y) ≈ q(π,ν,Λ,µ)
n∏
i=1

q(si,xi) . (4.25)

The distribution of hidden variables factorises across the plates because both the generative

model is i.i.d.and we have made the approximation that the parameters and hidden variables

are independent (see proof of theorem2.1in section2.3.1). Here we use a further variational ap-
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proximation amongst the parameters, which can be explained by equating the functional deriva-

tives of equation (4.24) with respect toq(π,ν,Λ,µ) to zero. One finds that

q(π,ν,Λ,µ) ∝ p(π |α∗m∗)p(ν | a∗, b∗)p(Λ |ν)p(µ |µ∗,ν∗) ·

exp

[
n∑
i=1

S∑
si=1

〈ln p(si |π)p(yi | si,xi,Λ,µ,Ψ)〉q(si,xi)

]
(4.26)

= q(π)q(ν,Λ,µ) (4.27)

≈ q(π)q(ν)q(Λ,µ) . (4.28)

In the second line, the approximate posterior factorises exactly into a contribution from the mix-

ing proportions and the remaining parameters. Unfortunately it is not easy to take expectations

with respect to the joint distribution overΛ and its parent parameterν, and therefore we make

the second variational approximation in the last line, equation (4.28). The very last termq(Λ,µ)
turns out to be jointly Gaussian, and so is of tractable form.

We should note that except for the initial factorisation between the hidden variables and the

parameters, the factorisationq(ν,Λ,µ) ≈ q(ν)q(Λ,µ) is the only other approximating factori-

sation we make; all other factorisations fall out naturally from the conditional independencies in

the model. Note that the complete-data likelihood for mixtures of factor analysers is in the expo-

nential family, even after the inclusion of the precision parametersν. We could therefore apply

the results of section2.4, but this would entail finding expectations over gamma-Gaussian distri-

butions jointly overν andΛ. Although it is possible to take these expectations, for convenience

we choose a separable variational posterior onν andΛ.

From this point on we assimilate each analyser’s mean positionµs into its factor loading matrix,

in order to keep the presentation concise. The derivations useΛ̃ to denote the concatenated result

[Λ µ]. Therefore the prior over the entire factor loadingsΛ̃ is now a function of the precision

parameters{νs}Ss=1 (which themselves have hyperparametersa, b) and the hyperparameters

µ∗,ν∗. Also, the variational posteriorq(Λ,µ) becomesq(Λ̃).

117



VB Mixtures of Factor Analysers 4.2. Bayesian Mixture of Factor Analysers

Substituting the factorised approximations (4.25) and (4.28) into the lower bound (4.24) results

in the following lower bound for the marginal likelihood,

L ≥
∫
dπ q(π) ln

p(π |α∗,m∗)
q(π)

+
S∑
s=1

∫
dνs q(νs)

[
ln
p(νs | a∗, b∗)

q(νs)
+
∫
dΛ̃s q(Λ̃s) ln

p(Λ̃s |νs,µ∗,ν∗)
q(Λ̃s)

]

+
n∑
i=1

S∑
si=1

q(si)
[∫

dπ q(π) ln
p(si |π)
q(si)

+
∫
dxi q(xi | si) ln

p(xi)
q(xi | si)

+
∫
dΛ̃ q(Λ̃)

∫
dxi q(xi | si) ln p(yi | si,xi, Λ̃,Ψ)

]
(4.29)

≡ F(q(π), {q(νs), q(Λ̃s), {q(si), q(xi | si)}ni=1}Ss=1, α
∗m∗, a∗, b∗,µ∗,ν∗,Ψ,y) (4.30)

= F(q(θ), q(s,x),Θ) . (4.31)

Thus the lower bound is a functional of the variational posterior distributions over the param-

eters, collectively denotedq(θ), a functional of the variational posterior distribution over the

hidden variables of every data point, collectively denotedq(s,x), and also a function of the set

of hyperparameters in the modelΘ, as given in (4.20). In the last line above, we have dropped

y as an argument for the lower bound since it is fixed. The full variational posterior is

p(π,ν,Λ,µ, s,x |y) ≈ q(π)
S∏
s=1

q(νs)q(Λ̃s) ·
n∏
i=1

S∏
si=1

q(si)q(xi | si) . (4.32)

Note that if we had not made the factorisationq(ν,Λ,µ) ≈ q(ν)q(Λ,µ), then the last term

in F would have required averages not overq(Λ̃), but also over the combinedq(ν, Λ̃), which

would have become fairly cumbersome, although not intractable.

Decomposition ofF

The goal of learning is then to maximiseF , thus increasing the lower bound onL, the exact

marginal likelihood. Note that there is an interesting trade-off at play here. The last term in

equation (4.29) is the log likelihood of the data set averaged over the uncertainty we have in the

hidden variables and parameters. We can increase this term by alteringΨ and the variational

posterior distributionsq(θ) andq(s,x) so as to maximise this contribution. However the first

three lines of (4.29) contain terms that are negative Kullback-Leibler (KL) divergences between

the approximate posteriors over the parameters and the priors we hold on them. So to increase

the lower bound on the marginal likelihood (which does not necessarily imply that the marginal

likelihood itself increases, since the bound is not tight), we should also consider moving our

approximate posteriors towards the priors, thus decreasing the respective KL divergences. In

this mannerF elegantly incorporates the trade-off between modelling the data and remaining
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consistent with our prior beliefs. Indeed if there were no contributions from the data (i.e. the

last term in equation (4.29) were zero) then the optimal approximate posteriors would default to

the prior distributions.

At this stage it is worth noting that, with the exception of the first term in equation (4.29),F can

be broken down into contributions from each component of the mixture (indexed bys). This

fact that will be useful later when we wish to compare how well each component of the mixture

is modelling its respective data.

4.2.4 Optimising the lower bound

To optimise the lower bound we simply take functional derivatives with respect to each of the

q(·) distributions and equate these to zero to find the distributions that extremiseF (see chapter

2). Synchronous updating of the variational posteriors is not guaranteed to increaseF but

consecutive updating of dependent distributions is. The result is that each update is guaranteed

to monotonically and maximally increaseF .

The update for the variational posterior over mixing proportionsπ:

∂F
∂q(π)

= ln p(π |α∗m∗) +
n∑
i=1

S∑
si=1

q(si) ln p(si |π)− ln q(π) + c (4.33)

= ln

[
S∏
s=1

πα
∗m∗

s−1
s ·

n∏
i=1

S∏
si=1

πq(si)
si

]
− ln q(π) + c (4.34)

= ln

[
S∏
s=1

π
α∗m∗

s+
Pn

i=1 q(si)−1
s

]
− ln q(π) + c (4.35)

=⇒ q(π) = Dir(π |αm) , (4.36)

where each element of the variational parameterαm is given by:

αms = α∗m∗
s +

n∑
i=1

q(si) , (4.37)

which givesα = α∗+n. Thus the strength of our posterior belief in the meanm increases with

the amount of data in a very simple fashion. For this update we have takenm∗
s = 1/S from

(4.15), and used
∑S

s=1ms = 1.
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The variational posterior in the precision parameter for thelth column of thesth factor loading

matrixΛs,

∂F
∂q(νsl )

= ln p(νsl | a∗, b∗) +
∫
dΛs q(Λs) ln p(Λsl | νsl )− ln q(νsl ) + c (4.38)

= (a∗ − 1) ln νsl − b∗νsl +
1
2

p∑
q=1

[
ln νsl − νsl

〈
Λsql

2
〉
q(Λs)

]
− ln q(νsl ) + c , (4.39)

which implies that the precision is Gamma distributed:

q(νsl ) = Ga(νsl | a∗ +
p

2
, b∗ +

1
2

p∑
q=1

〈
Λsql

2
〉
q(Λs)

) = Ga(νsl | a, bsl ) , (4.40)

Note that these updates constitute the key steps for the ARD mechanisms in place over the

columns of the factor loading matrices.

The variational posterior over the centres and factor loadings of each analyser is obtained by

taking functional derivatives with respect toq(Λ̃):

∂F
∂q(Λ̃s)

=
∫
dνs q(νs) ln p(Λ̃s |νs,µ∗,ν∗)

+
n∑
i=1

q(si)
∫
dxi q(xi | si) ln p(yi | si,xi, Λ̃si ,Ψ)− ln q(Λ̃s) + c (4.41)

=
1
2

∫
dνs q(νs)

p∑
q=1

k∑
l=1

[
ln νsl − νsl Λsql

2
]

+
1
2

p∑
q=1

[
ln ν∗q − ν∗q

(
µsq − µ∗q

)2] − ln q(Λs,µs) + c

− 1
2

n∑
i=1

q(si)tr

Ψ−1

〈(
yi −

[
Λs µs

] [xi
1

])(
yi −

[
Λs µs

] [xi
1

])>〉
q(xi | si)


(4.42)

where were have moved from thẽΛ notation to using bothΛ andµ separately to express the

different prior form separately. In (4.42), there are two summations over the rows of the factor

loading matrix, and a trace term, which can also be written as a sum over rows. Therefore the

posterior factorises over the rows ofΛ̃s,

q(Λ̃s) =
p∏
q=1

q(Λ̃sq·) =
p∏
q=1

N(Λ̃sq· | Λ̃
s

q·, Γ̃
s
q) , (4.43)
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whereΛ̃sq· denotes the column vector corresponding to theqth row of Λ̃s, which hasks + 1

dimensions. To clarify the notation, this vector then has meanΛ̃
s

q·, and covariance matrix̃Γsq.
These variational posterior parameters are given by:

Γ̃sq =

[
Σq,s

ΛΛ
−1 Σq,s

Λµ
−1

Σq,s
µΛ

−1 Σq,s
µµ

−1

]−1

of size(ks + 1)× (ks + 1) (4.44)

Λ̃
s

q· =

[
Λsq·
µsq

]
of size(ks + 1)× 1 (4.45)

with

Σq,s
ΛΛ

−1 = diag 〈νs〉q(νs) + Ψ−1
qq

n∑
i=1

q(si)
〈
xixi>

〉
q(xi | si)

(4.46)

Σq,s
µµ

−1 = ν∗q + Ψ−1
qq

n∑
i=1

q(si) (4.47)

Σq,s
Λµ

−1 = Ψ−1
qq

n∑
i=1

q(si) 〈xi〉q(xi | si)
= Σq,s

µΛ
−1> (4.48)

Λsq· =
[
Γ̃sq
]
ΛΛ

(
Ψ−1
qq

n∑
i=1

q(si)yi,q 〈xi〉q(xi | si)

)
(4.49)

µsq =
[
Γ̃sq
]
µµ

(
Ψ−1
qq

n∑
i=1

q(si)yi,q + ν∗qµ
∗
q

)
. (4.50)

This somewhat complicated posterior is the result of maintaining a tractable joint over the cen-

tres and factor loadings of each analyser. Note that the optimal distribution for eachΛ̃s matrix

as a whole now has block diagonal covariance structure: even though eachΛ̃s is a(p× (ks+1))
matrix, its covariance only hasO(p(ks + 1)2) parameters — a direct consequence of the likeli-

hood factorising over the output dimensions.

The variational posterior for the hidden factorsxi, conditioned on the indicator variablesi, is

given by taking functional derivatives with respect toq(xi | si):

∂F
∂q(xi | si)

= q(si) ln p(xi) +
∫
dΛ̃si q(Λ̃si)q(si) ln p(yi | si,xi, Λ̃si ,Ψ)

− q(si) ln q(xi | si) + c (4.51)

= q(si)

−1
2
xi> I xi −

1
2
tr

Ψ−1

〈(
yi − Λ̃si

[
xi
1

])(
yi − Λ̃si

[
xi
1

])>〉
q(Λsi )


− ln q(xi | si)

]
+ c (4.52)
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which, regardless of the value ofq(si), produces the Gaussian posterior inxi for each setting of

si:

q(xi | s) = N(xi |xsi ,Σs) (4.53)

with [Σs]−1 = I +
〈
Λs>Ψ−1Λs

〉
q(Λ̃s)

(4.54)

xsi = Σs
〈
Λs>Ψ−1(yi − µs)

〉
q(Λ̃s)

(4.55)

Note that the covarianceΣs of the hidden state is the same for every data point, and is not a

function of the posterior responsibilityq(si), as in ordinary factor analysis — only themeanof

the posterior overxi is a function of the datayi. Note also that thexsi depend indirectly on the

q(si) through (4.49), which is the update for the factor loadings and centre position of analyser

s.

The variational posterior for the set of indicator variabless = {si}ni=1 is given by

∂F
∂q(si)

=
∫
dπ q(π) ln p(si |π)−

∫
dxi q(xi | si) ln q(xi | si)

+
∫
dΛ̃si q(Λ̃si)

∫
dxi q(xi | si) ln p(yi | si,xi, Λ̃si ,Ψ)− ln q(si) + c (4.56)

which, utilising a result of Dirichlet distributions given in appendixA, yields

q(si) =
1
Zi

exp

[
ψ(αmsi)− ψ(α) +

1
2

ln |Σsi |

− 1
2
tr

Ψ−1

〈(
yi − Λ̃si

[
xi
1

])(
yi − Λ̃si

[
xi
1

])>〉
q(Λ̃si )q(xi | si)

  ,

(4.57)

whereZi is a normalisation constant for each data point, such that
∑S

si=1 q(si) = 1, andψ(·)
is the digamma function.

By examining the dependencies of each variational posterior’s update rules on the other distribu-

tions, it becomes clear that certain update orderings are more efficient than others in increasing

F . For example, theq(xi | si), q(Λ̃) andq(si) distributions are highly coupled and it therefore

might make sense to perform these updates several times before updatingq(π) or q(ν).

4.2.5 Optimising the hyperparameters

The hyperparameters for a Bayesian MFA areΘ = (α∗m∗, a∗, b∗,µ∗,ν∗,Ψ).
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Beginning withΨ, we simply take derivatives ofF with respect toΨ−1, leading to:

∂F
∂Ψ−1

= −1
2

n∑
i=1

S∑
si=1

q(si)
∫
dΛ̃si q(Λ̃si)

∫
dxi q(xi | si)·

∂

∂Ψ−1

(yi − Λ̃si

[
xi
1

])>
Ψ−1

(
yi − Λ̃si

[
xi
1

])
+ ln |Ψ|

 (4.58)

=⇒ Ψ−1 = diag

 1
N

n∑
i=1

〈(
yi − Λ̃s

[
xi
1

])(
yi − Λ̃s

[
xi
1

])>〉
q(Λ̃s)q(si)q(xi | si)


(4.59)

where here we usediag as the operator which sets off-diagonal terms to zero.

By writing F as a function ofa∗ andb∗ only, we can differentiate with respect to these hyper-

parameters to yield the fixed point equations:

F(a∗, b∗) =
S∑
s=1

∫
dνs q(νs) ln p(νs | a∗, b∗) + c (4.60)

=
S∑
s=1

k∑
l=1

∫
dνsl q(ν

s
l ) [a∗ ln b∗ − ln Γ(a∗) + (a∗ − 1) ln νsl − b∗νsl ] + c , (4.61)

∂F
∂a∗

= 0 =⇒ ψ(a∗) = ln(b∗) +
1
Sk

S∑
s=1

k∑
l=1

〈ln νsl 〉q(νs
l ) (4.62)

∂F
∂b∗

= 0 =⇒ b∗−1 =
1

a∗Sk

S∑
s=1

k∑
l=1

〈νsl 〉q(νs
l ) . (4.63)

Solving for the fixed point amounts to setting the prior distribution’s first moment and first log-

arithmic moment to the respective averages of those quantities over the factor loading matrices.

The expectations for the gamma random variables are given in appendixA.

Similarly, by writingF as a function ofα∗ andm∗ only, we obtain

F(α∗,m∗) =
∫
dπ q(π) ln p(π |α∗m∗) (4.64)

=
∫
dπ q(π)

[
ln Γ(α∗)−

S∑
s=1

[ln Γ(α∗m∗
s)− (α∗m∗

s − 1) lnπs]

]
. (4.65)
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Bearing in mind thatq(π) is Dirichlet with parameterαm, and that we have a scaled prior

m∗
s = 1/S as given in (4.15), we can express the lower bound as a function ofα∗ only:

F(α∗) = lnΓ(α∗)− S ln Γ
(
α∗

S

)
+
(
α∗

S
− 1
) S∑
s=1

[ψ(αms)− ψ(α)] (4.66)

Taking derivatives of this quantity with respect toα∗ and setting to zero, we obtain:

ψ(α∗)− ψ(
α∗

S
) =

1
S

S∑
s=1

[ψ(α)− ψ(αms)] . (4.67)

The second derivative with respect toα∗ of (4.66) is negative forα∗ > 0, which implies the

solution of (4.67) is a maximum. This maximum can be found using gradient following tech-

niques such as Newton-Raphson. The update form∗ is not required, since we assume that the

prior over the mixing proportions is symmetric.

The update for the prior over the centres{µs}SS=1 of each of the factor analysers is given by

considering terms inF that are functions ofµ∗ andν∗:

F(µ∗,ν∗) =
∫
dµ q(µ) ln p(µ |µ∗,ν∗) (4.68)

=
1
2

S∑
s=1

∫
dµs q(µs)

[
ln |diag (ν∗)| − (µs − µ∗)>diag (ν∗) (µs − µ∗)

]
.

(4.69)

Taking derivatives with respect toµ∗ first, and thenν∗, equating each to zero yields the updates

µ∗ =
1
S

S∑
s=1

〈µs〉q(µs) (4.70)

ν∗ = [ν∗1 , . . . , ν
∗
p ], with ν∗q =

1
S

S∑
s=1

〈
(µsq − µ∗q)(µsq − µ∗q)

〉
q(µs)

, (4.71)

where the update forν∗ uses the already updatedµ∗.

4.3 Model exploration: birth and death

We already have an ARD mechanism in place to discover the local dimensionality for each

analyser in the mixture, as part of the inference procedure over the precisionsν. However we

have not yet addressed the problem of inferring the number of analysers.

The advantage of the Bayesian framework is that different model structures can be compared

without having to rely on heuristic penalty or cost functions to compare their complexities;
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ideally different model structuresm andm′ should be compared using the difference of log

marginal likelihoodsL(m) andL(m′). In this work we useF(m) andF(m′) as guides to the

intractable log marginal likelihoods.

This has advantages over unpenalised maximum likelihood methods where, for example, in the

split and merge algorithm described inUeda et al.(2000) changes to model complexity are

limited to simultaneous split and merge operations such that the number of components in the

mixture remain the same. Whilst this approach is unable to explore differing sizes of models,

it is successful in avoiding some local maxima in the optimisation process. For example, a

Gaussian component straddled between two distinct clusters of data is an ideal candidate for

a split operation — unfortunately their method requires that this split be accompanied with a

merging of two other components elsewhere to keep the number of components fixed.

In our Bayesian model, though, we are allowed to propose any changes to the number of com-

ponents in the mixture. We look at the simple cases of incremental and decremental changes to

the total number,S, since we do not expect wild changes to the model structure to be an effi-

cient method for exploring the space. This is achieved throughbirth anddeath‘moves’, where

a component is removed from or introduced into the mixture model. This modified model is

then trained further as described in section4.2.4until a measure of convergence is reached (see

below), at which point the proposal is accepted or rejected based on the change inF . Another

proposal is then made and the procedure repeated, up to a point when no further proposals are

accepted. In this model (although not in a general application) component death occurs natu-

rally as a by-product of the optimisation; the following sections explain the death mechanism,

and address some interesting aspects of the birth process, which we have more control over.

Our method is similar to that of Reversible Jump Markov chain Monte Carlo (RJMCMC)

(Green, 1995) applied to mixture models, where birth and death moves can also be used to

navigate amongst different sized models (Richardson and Green, 1997). By sampling in the full

space of model parameters for all structures, RJMCMC methods converge to the exact poste-

rior distribution over structures. However, in order to ensure reversibility of the Markov chain,

complicated Metropolis-Hastings acceptance functions need to be derived and evaluated for

each proposal from one parameter subspace to another. Moreover, the method suffers from the

usual problems of MCMC methods, namely difficulty in assessing convergence and long simu-

lation run time. The variational Bayesian method attempts to estimate the posterior distribution

directly, not by obtaining samples of parameters and structures, but by attempting to directly

integrate over the parameters using a lower bound arrived at deterministically. Moreover, we

can obtain a surrogate for the posterior distribution over model structures,p(m |y), which is

not represented as some large set of samples, but is obtained using a quantity proportional to

p(m) exp{F(m)}, whereF(m) is the optimal (highest) lower bound achieved for a modelm

of particular structure.
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4.3.1 Heuristics for component death

There are two routes for a component death occurring in this model, the first is by natural causes

and the second through intervention. Each is explained in turn below.

When optimisingF , occasionally one finds that for some mixture components′:
∑n

i=1 q(s
′
i) =

0 (to machine precision), even though the component still has non-zero prior probability of

being used in the mixture,p(s′i) =
∫
dπp(π)p(s′i |π). This is equivalent to saying that it has

no responsibility for any of the data, and as a result its parameter posterior distributions have

defaulted exactly to the priors. For example, the mean location of the centre of the analyser

component is at the centre of the prior distribution (this can be deduced from examining (4.50)

for the case ofq(s′i) = 0 ∀ i), and the factor loadings have mean zero and high precisions

νs
′
, referring to (4.40). If the mean of the prior over analyser centres is not located near data

(see next removal method below), then this component is effectively redundant (it cannot even

model data with the uniquenesses matrixΨ, say), and can be removed from the model. How

does the removal of this component affect the lower bound on the marginal likelihood,F? Since

the posterior responsibility of the component is zero it does not contribute to the last term of

(4.29), which sums over the data,n. Also, since its variational posteriors over the parameters

are all in accord with the priors, then the KL divergence terms in (4.29) are all zero,exceptfor

the very first term which is the negative KL divergence between the variational posterior and

prior distribution over the mixing proportionsπ. Whilst the removal of the component leaves

all other terms inF unchanged, not having this ‘barren’ dimensions′ to integrate over should

increase this term.

It seems counter-intuitive that the mean of the prior over factor analyser centres might be far

from data, as suggested in the previous paragraph, given that the hyperparameters of the prior

are updated to reflect the position of the analysers. However, there are cases in which the dis-

tribution of data is ‘hollow’ (see, for example, the spiral data set of section4.5.3), and in this

case redundant components are very easily identified with zero responsibilities, and removed.

If the redundant components default to a position which is close to data, their posterior respon-

sibilities may not fall to exactly zero, being able to still use the covariance given inΨ to model

the data. In this case a more aggressive pruning procedure is required, where we examine the

change inF that occurs after removing a component we suspect is becoming, or has become,

redundant. We gain by not having to code its parameters, but we may lose if the data in its locale

are being uniquely modelled by it, in which caseF may drop. IfF should drop, there is the

option of continuing the optimisation to see ifF eventually improves (see next section on birth

processes), and rejecting the removal operation if it does not. We do not implement this ‘testing’

method in our experiments, and rely solely on the first method and remove components once

their total posterior responsibilities fall below a reasonable level (in practice less than one data

point’s worth).
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This mechanism for (automatic) removal of components is useful as it allows the data to dictate

how many mixture components are required. However we should note that if the data is not

distributed as a mixture of Gaussian components, the size of the data set will affect the returned

number of components. Thus the number of components should not be taken to mean the

number of ‘clusters’.

4.3.2 Heuristics for component birth

Component birth does not happen spontaneously during learning, so we have to introduce a

heuristic. Even though changes in model structure may be proposed at any point during learning,

it makes sense only to do so when learning has plateaued, so as to exploit (in terms ofF) the

current structure to the full. We define anepochas that period of learning beginning with a

proposal of a model alteration, up to the point of convergence of the variational learning rules.

One possible heuristic for deciding at which point to end an epoch can be constructed by looking

at the rate of change of the lower bound with iterations of variational EM. If∆F = F (t)−F (t−1)

falls below a critical value then we can assume that we have plateaued. However it is not easy to

define such simple thresholds in a manner that scales appropriately with both model complexity

and amount of data. An alternative (implemented in the experiments) is to examine the rate of

change of the posterior class-conditional responsibilities, as given in theq(si) matrix (n × S).
A suitable function of this sort can be such that it does not depend directly on the data size,

dimensionality, or current model complexity. In this work we consider the end of an epoch to be

when therate of change of responsibilityfor each analyser, averaged over all data, falls below a

tolerance — this has the intuitive interpretation that the components are no longer ‘in flux’ and

are modelling their data as best they can in that configuration. We shall call this quantity the

agitation:

agitation(s)(t) ≡
∑n

i=1

q(si)(t) − q(si)(t−1)
∑n

i=1 q(si)(t)
, (4.72)

where(t) denotes the iteration number of VBEM. We can see that the agitation of each analyser

does not directly scale with number of analysers, data points, or dimensionality of the data. Thus

a fixed tolerance for this quantity can be chosen that is applicable throughout the optimisation

process. We should note that this measure is one of many possible, such as using squared norms

etc.

A sensible way to introduce a component into the model is to create that component in the

image of an existing component, which we shall call theparent. Simply reproducing the exact

parameters of the parent does not suffice as the symmetry of the resulting pair needs to be broken

for them to model the data differently.
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One possible approach would be to remove the parent component,s′, andreplaceit with two

components, the ‘children’, with their means displaced symmetrically about the parent’s mean,

by a vector sampled from the parent’s distribution, its covariance ellipsoid given byΛs
′
Λs

′>
+Ψ.

We call this aspatialsplit. This appeals to the notion that one might expect areas of data that

are currently being modelled by one elongated Gaussian to be modelled better by two, displaced

most probably along the major axis of variance of that data. However this approach is hard to

fine tune so that it scales well with the data dimensionality,p. For example, if the displacement

is slightly too large then it becomes very likely in high dimensions that both children model the

data poorly and die naturally as a result. If it is too small then the components will diverge very

slowly.

Again appealing to the class-conditional responsibilities for the data, we can define a procedure

for splitting components that is not directly a function of the dimensionality, or any length scale

of the local data. The approach taken in this work uses a partition of the parent’s posterior

responsibilities for each of the data,q(si = s′), along a directionds
′
sampled from the parent’s

covariance ellipsoid. Those data having a positive dot product with the sampled direction donate

their responsibilities to one childsa, and vice-versa for the other childsb. Mathematically, we

sample a directiond and define an allocation indicator variable for each data point,

d ∼ N(d | 〈µs′〉q(µs′ ), 〈Λ
s′Λs

′>〉q(Λs′ ) + Ψ) (4.73)

ri =

1 if (yi − µs
′
)>d ≥ 0

0 if (yi − µs
′
)>d < 0

for i = 1, . . . , n . (4.74)

We then set the posterior probabilities inq(si) to reflect these assignments, introducing ahard-

nessparameterαh, ranging from.5 to 1:

q(sai ) = q(s′i) [αhri + (1− αh)(1− ri)] (4.75)

q(sbi) = q(s′i) [(1− αh)ri + αh(1− ri)] (4.76)

Whenαh = 1, all the responsibility is transferred to the assigned child, and whenαh = .5 the

responsibility is shared equally. In the experiments in this chapter we useαh = 1.

The advantage of this approach is that the birth is made inresponsibilityspace rather than

data-space, and is therefore dimension-insensitive. The optimisation then continues, with thes′

analyser removed and thesa andsb analysers in its place. The first variational updates should

be for q(Λs
a
) andq(Λs

b
) since these immediately reflect the change (note that the update for

q(xi) is not a function of the responsibilities — see equation (4.53)).

The mechanism that chooses which component is to be the parent of a pair-birth operation must

allow the space of models to be explored fully. A simple method would be to pick the component

at random amongst those present. This has an advantage over a deterministic method, in that
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the latter could preclude some components from ever being considered. Interestingly though,

there is information inF that can be used to guide the choice of component to split: with

the exception of the first term in equation (4.29), the remaining terms can be decomposed into

component-specific contributions,Fs. An ordering for parent choice can be defined usingFs,
with the result that is it possible to concentrate attempted births on those components that are

not currently modelling their data well. This mirrors the approach taken inUeda et al.(2000),

where the criterion was the (KL) discrepancy between each analyser’s local density model and

the empirical density of the data.

If, at the end of an epoch, we reject the proposed birth so returning to the original configuration,

we may either attempt to split the same component again, but with a new randomly sampled di-

rection, or move on to the next ‘best’ component in the ordering. We use the following function

to defineFs, from which the ordering is recalculated after every successful epoch:

Fs = F({Q}, α∗m∗, a∗, b∗,µ∗,ν∗,Ψ |Y )

=
∫
dνs q(νs)

[
ln
p(νs | a∗, b∗)

q(νs)
+
∫
dΛ̃s q(Λ̃s)

p(Λ̃s |νs,µ∗,ν∗)
q(Λ̃s)

]

+
1∑n

i=1 q(si)

n∑
i=1

q(si)
[∫

dπ q(π) ln
p(si |π)
q(si)

+
∫
dxi q(xi | si) ln

p(xi)
q(xi | si)

+
∫
dΛ̃s q(Λ̃s)

∫
dxi q(xi | si) ln p(yi | si,xi, Λ̃s,Ψ)

]
(4.77)

This has the intuitive interpretation as being the likelihood of the data (weighted by its data

responsibilities) under analysers, normalised by its overall responsibility, with the relevant

(KL) penalty terms as inF . Those components with lowerFs are preferentially split. The

optimisation completes when all existing mixture components have been considered as parents,

with no accepted epochs.

Toward the end of an optimisation, the remaining required changes to model structure are mainly

local in nature and it becomes computationally wasteful to update the parameters of all the com-

ponents of the mixture model at each iteration of the variational optimisation. For this reason

only those components whose responsibilities are in flux (to some threshold) are updated. This

partial optimisation approach still guarantees an increase inF , as we simply perform updates

that guarantee to increase parts of theF term in4.29.

It should be noted that no matter which heuristics are used for birth and death, ultimately the

results are always compared in terms ofF , the lower bound on the log marginal likelihood

L. Therefore different choices of heuristic can only affect theefficiencyof the search over

model structures and not the theoretical validity of the variational approximation. For example,

although it is perfectly possible to start the model with many components and let them die, it
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is computationally more efficient and equally valid to start with one component and allow it to

spawn more when necessary.

4.3.3 Heuristics for the optimisation endgame

In the previous subsection we proposed a heuristic for terminating the optimisation, namely

that every component should be unsuccessfully split a number of times. However, working in

the space of components seems very inefficient. Moreover, there are several pathological birth-

death scenarios which raise problems when counting the number of times each component has

been split; for example, the identities of nearby components can be switched during an epoch

(parent splits into two children, first child usurps an existing other component and models its

data, whilst that component switches to model the old parent’s data, and the second child dies).

One possible solution (personal communication, Y. Teh) is based on a responsibility accumula-

tion method. Whenever a components is chosen for a split, we store its responsibility vector

(of lengthn) for all the data pointsq(s) = [q(s1) q(s2) . . . q(sn)], and proceed with the op-

timisation involving its two children. At the end of the epoch, if we have not increasedF ,

we addq(s) to a running total of ‘split data’ responsibilities,t = (t1, t2, . . . , tn). That is

∀i : ti ← min(ti + q(si), tmax), wheretmax is some saturation point. If by the end of the epoch

we have managed to increaseF , then the accumulatort is reset to zero for every data point.

From this construction we can derive a stochastic procedure for choosing which component to

split, using the softmax of the quantityc(s) = β
∑n

i=1(tmax− ti)q(si). If c(s) is large for some

components, then the data it is responsible for has not ‘experienced’ many birth attempts, and

so it should be a strong candidate for a split. Hereβ ≥ 0 is a temperature parameter to be set

as we wish. Asβ tends to infinity the choice of component to split becomes deterministic, and

is based on which has least responsibility overlap with already-split data. Ifβ is very small

(but non-zero) the splits become more random. Whatever setting ofβ, attempted splits will

be automatically focused on those components with more data and unexplored regions of data

space. Furthermore, a termination criterion is automatic: continue splitting components until

every entry of thet vector has reached saturation — this corresponds to splitting everydata

point a certain number of times (in terms of its responsibility under the split parent), before we

terminate the entire optimisation. This idea was conceived of only after the experiments were

completed, and so has not been thoroughly investigated.

4.4 Handling the predictive density

In this section we set about trying to get a handle on the predictive density of VBMFA models

using bounds on approximations (in section4.7.1 we will show how to estimate the density
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using sampling methods). In order to perform density estimation or classification of a new test

example, we need to have access to the predictive density

p(y′ |y) =
p(y′,y)
p(y)

=
∫
dθ p(θ |y)p(y′ |θ) (4.78)

wherey′ is a set of test examplesy′ = {y′1, . . . ,y′n′}, andy is the training data. This quantity

is simply the probability of observing the test examples for a particular setting of the model

parameters, averaged over the posterior distribution of the parameters given a training set. Un-

fortunately, the very intractability of the marginal likelihood in equation (4.14) means that the

predictive density is also intractable to compute exactly.

A poor man’s approximation uses the variational posterior distribution in place of the posterior

distribution:

p(y′ |y) ≈
∫
dθ q(θ)p(y′ |θ) . (4.79)

However we might expect this to overestimate the density ofy′ in typical regions of space (in

terms of where the training data lie), as the variational posterior tends to over-neglect areas of

low posterior probability in parameter space. This is a result of the asymmetric KL divergence

measure penalty in the optimisation process.

Substituting the form for MFAs given in (4.14) into (4.79)

p(y′ |y) ≈
∫
dπ

∫
dΛ̃ q(π, Λ̃)

[
n′∏
i=1

S∑
si=1

p(si |π)p(y′i | si, Λ̃,Ψ)

]
, (4.80)
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which is still intractable for the same reason that the marginal likelihoods of training set were

so. We can lower bound the log of the predictive density using variational distributions over the

hidden variables corresponding to each test case:

ln p(y′ |y) ≈ ln
∫
dπ

∫
dΛ̃ q(π, Λ̃)

[
n′∏
i=1

S∑
si=1

p(si |π)p(y′i | si, Λ̃,Ψ)

]
(4.81)

≥
n′∑
i=1

∫
dπ

∫
dΛ̃ q(π, Λ̃)

[
ln

S∑
si=1

p(si |π)p(y′i | si, Λ̃,Ψ)

]
(4.82)

=
n′∑
i=1

∫
dπ q(π)

∫
dΛ̃ q(Λ̃)

[
ln

S∑
si=1

q(si)
p(si |π)p(y′i | si, Λ̃,Ψ)

q(si)

]
(4.83)

≥
n′∑
i=1

∫
dπ q(π)

∫
dΛ̃ q(Λ̃)

S∑
si=1

q(si) ln
p(si |π)p(y′i | si, Λ̃,Ψ)

q(si)
(4.84)

≥
n′∑
i=1

S∑
si=1

q(si)
[∫

dπ q(π) ln
p(si |π)
q(si)

+
∫
dxi q(xi | si) ln

p(xi)
q(xi | si)

+
∫
dΛ̃si q(Λ̃si)

∫
dxi q(xi | si) ln p(y′i | si,xi, Λ̃si ,Ψ)

]
. (4.85)

The first inequality is a simple Jensen bound, the second is another which introduces a set

of variational distributionsq(si), and the third a further set of distributions over the hidden

variablesq(xi | si). Note that these distributions correspond to thetestdata, indexed fromi =
1, . . . , n′. This estimate of the predictive density is then very similar to the lower bound of

the marginal likelihood of the training data (4.29), except that the training datayi has been

replaced with the test datay′i, and the KL penalty terms on the parameters have been removed.

This carries the interpretation that the distribution over parameters of the model is decided upon

and fixed (i.e. the variational posterior), and we simply need to explain the test data under this

ensemble of models.

This lower bound on the approximation to the predictive density can be optimised in justtwo

updatesfor each test point. First, infer the distributionq(xi | si) for each test data point, using

the analogous form of update (4.53). Then update the distributionq(si) based on the resulting

distributions overq(xi | si) using the analogous form of update (4.57). Since theq(xi | si) up-

date was not a function ofq(si), we do not need to iterate the optimisation further to improve

the bound.

4.5 Synthetic experiments

In this section we present three toy experiments on synthetic data which demonstrate certain

features of a Bayesian mixture of factor analysers. The first experiment shows the ability of the
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algorithm’s birth and death processes to find the number of clusters in a dataset. The second

experiment shows more ambitiously how we can simultaneously recover the number of clusters

and their dimensionalities, and how the complexity of the model depends on the amount of data

support. The last synthetic experiment shows the ability of the model to fit a low dimensional

manifold embedded in three-dimensional space.

4.5.1 Determining the number of components

In this toy example we tested the model on synthetic data generated from a mixture of 18 Gaus-

sians with 50 points per cluster, as shown in figure4.3(a). The algorithm was initialised with a

single analyser component positioned at the mean of the data. Birth proposals were made using

spatial splits (as described above). Also shown is the progress of the algorithm after 7, 14, 16

and 22 accepted epochs (figures4.3(b)-4.3(e)). The variational algorithm has little difficulty

finding the correct number of components and the birth heuristics are successful at avoiding

local maxima.

After finding the 18 Gaussians repeated splits are attempted and mostly rejected. Those epochs

that are accepted always involve the birth of a component followed at some point by the death

of another component, such that the number of components remain 18; the increase inF over

these epochs is extremely small, usually due to the refinement of other components.

4.5.2 Embedded Gaussian clusters

In this experiment we examine the ability of the Bayesian mixture of factor analysers to auto-

matically determine the local dimensionality of high dimensional data. We generated a synthetic

data set consisting of 300 data points drawn from each of 6 Gaussian clusters with intrinsic di-

mensionalities (7 4 3 2 2 1), embedded at random orientations in a 10-dimensional space. The

means of the Gaussians were drawn uniformly under[0, 3] in each of the data dimensions, all

Gaussian variances set to 1, and sensor noise of covariance.01 added in each dimension.

A Bayesian MFA was initialised with one mixture component centred about the data mean, and

trained for a total of 200 iterations of variational EM with spatial split heuristics for the birth

proposals. All the analysers were created with a maximum dimensionality of 7. The variational

Bayesian approach correctly inferred both the number of Gaussians and their intrinsic dimen-

sionalities, as shown in figure4.4. The dimensionalities were determined by examining the

posterior distributions over the precisions of each factor analyser’s columns, and thresholding

on the mean of each distribution.

We then varied the number of data points in each cluster and trained models on successively

smaller data sets. Table4.1 shows how the Bayesian MFA partitioned the data set. With large
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(a) The data, consisting of 18 Gaussian clus-
ters.

(b) After 7 accepted epochs. (c) After 14 accepted epochs.

(d) After 16 accepted epochs. (e) After 22 accepted epochs.

Figure 4.3: The original data, and the configuration of the mixture model at points during the
optimisation process. Plotted are the 2 s.d. covariance ellipsoids for each analyser in the mix-
ture. To be more precise, the centre of the ellipsoid is positioned at the mean of the variational
posterior over the analyser’s centre, and each covariance ellipsoid is the expected covariance
under the variational posterior.
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Figure 4.4: Learning the local intrinsic dimensionality. The maximum dimensionality of each
analyser was set to 7. Shown are Hinton diagrams for the means of the factor loading matrices
{Λs}Ss=1 for each of the 6 components, after training on the data set with 300 data points per
cluster. Note that empty columns correspond to unused factors where the mass ofq(νsl ) is at
very high values, so the learnt dimensionalities are (7,2,2,4,3,1).

number of points 
  per cluster		 1	 7	 4	 3	 2	 2

	   8		  	       2			       1
	   8		      1			      2
	  16		 1		       4			 2
	  32		 1	 6	 3	 3	 2	 2
	  64		 1	 7	 4	 3	 2	 2
	 128		 1	 7	 4	 3	 2	 2

intrinsic dimensionalities

Table 4.1: The recovered number of analysers and their intrinsic dimensionalities. The numbers
in the table are the dimensionalities of the analysers and the boxes represent analysers modelling
data from more than one cluster. For a large number of data points per cluster (≥ 64), the
Bayesian MFA recovers the generative model. As we decrease the amount of data, the model
reduces the dimensionality of the analysers and begins to model data from different clusters
with the same analyser. The two entries for 8 data points are two observed configurations that
the model converged on.

amounts of data the model agrees with the true model, both in the number of analysers and their

dimensionalities. As the number of points per cluster is reduced there is insufficient evidence to

support the full intrinsic dimensionality, and with even less data the number of analysers drop

and they begin to model data from more than one cluster.

4.5.3 Spiral dataset

Here we present a simple synthetic example of how Bayesian MFA can learn locally linear

models to tile a manifold for globally non-linear data. We used the dataset of 800 data points

from a noisy shrinking spiral, as used inUeda et al.(2000), given by

yi = [(13− 0.5ti) cos ti, −(13− 0.5ti) sin ti, ti)] + wi (4.86)

where ti ∈ [0, 4π] , wi ∼ N(0,diag ([.5 .5 .5])) (4.87)
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(a) An elevated view of the spiral data set (see
text for reference).

(b) The same data set viewed perpendicular to
the third axis.

Figure 4.5: The spiral data set as used inUeda et al.(2000). Note that the data lie on a 1-
dimensional manifold embedded non-linearly in the 3-dimensional data space.

where the parametert determines the point along the spiral in one dimension. The spiral is

shown in figure4.5, viewed from two angles. Note the spiral data set is really a 1-dimensional

manifold embedded non-linearly in the 3-dimensional data space and corrupted by noise.

As before we initialised a variational Bayesian MFA model with a single analyser at the mean

of the data, and imposed a maximum dimensionality ofk = 2 for each analyser. For this exper-

iment, as for the previous synthetic experiments, the spatial splitting heuristic was used. Again

local maxima did not pose a problem and the algorithm always found between 12-14 Gaussians.

This result was repeatable even when the algorithm was initialised with 200 randomly posi-

tioned analysers. The run starting from a single analyser took about 3-4 minutes on a 500MHz

Alpha EV6 processor. Figure4.6shows the state of the algorithm after 6, 9, 12 and 17 accepted

epochs.

Figure4.7shows the evolution of the lower bound used to approximate the marginal likelihood

of the data. Thick and thin lines in the plot correspond to accepted and rejected epochs, respec-

tively. There are several interesting aspects one should note. First, at the beginning of most of

the epochs there is a drop inF corresponding to a component birth. This is because the model

now has to code the parameters of the new analyser component, and initially the model is not

fit well to the data. Second, most of the compute time is spent on accepted epochs, suggesting

that our heuristics for choosing which components to split, and how to split them, are good.

Referring back to figure4.6, it turns out that it is often components that are straddling arms of

the spiral that have lowFs, as given by (4.77), and these are being correctly chosen for splitting

ahead of other components modelling their local data better (for example, those aligned on the

spiral). Third, after about 1300 iterations, most of the proposed changes to model structure are

rejected, and those that are accepted give only a small increase inF .
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(a) After 6 accepted epochs. (b) After 9 accepted epochs.

(c) After 12 accepted epochs. (d) After 17 accepted epochs.

Figure 4.6: The evolution of the variational Bayesian MFA algorithm over several epochs.
Shown are the 1 s.d. covariance ellipses for each analyser: these are theexpectedcovariances,
since the analysers have distributions over their factor loadings. After 17 accepted epochs the
algorithm has converged to a solution with 14 components in the mixture. Local optima, where
components are straddled across two arms of the spiral (see(b) for example), are successfully
avoided by the algorithm.
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Figure 4.7: Evolution of the lower boundF , as a function of iterations of variational Bayesian
EM, for the spiral problem on a typical run. Drops inF constitute component births. The thick
and thin lines represent whole epochs in which a change to model structure was proposed and
then eventually accepted or rejected, respectively.
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Figure 4.8: Some examples of the digits 0-9 in the training and test data sets. Each digit is8× 8
pixels with gray scale 0 to 255. This data set was normalised before passing to VBMFA for
training.

4.6 Digit experiments

In this section we present results of using variational Bayesian MFA to learn both supervised

and unsupervised models of images of8 × 8 digits taken from the CEDAR database (Hull,

1994). This data set was collected from hand-written digits from postal codes, and are labelled

with the classes 0 through to 9. Examples of these digits are given in figure4.8. The entire data

set was normalised before being passed to the VBMFA algorithm, by first subtracting the mean

image from every example, and then rescaling each individual pixel to have variance 1 across

all the examples. The data set was then partitioned into 700 training and 200 test examples for

each digit. Based on density models learnt from the digits, we can build classifiers for a test

data set. Histograms of the pixel intensities after this normalisation are quite non-Gaussian, and

so factor analysis is perhaps not a good model for this data. Before normalising, we could have

considered taking the logarithm or some other non-linear transformation of the intensities to

improve the non-Gaussianity, but this was not done.

4.6.1 Fully-unsupervised learning

A singleVBMFA model was trained on 700 examples of every digit 0-9, using birth proposals

and death processes as explained in section4.3. The maximum dimensionality for each analyser

kmax was set to 6, and the number of components initialised to be 1. Responsibility-based splits

were used for the birth proposals (section4.3.2) as we would expect these to perform better than

spatial-splits given the high dimensionality of the data (using the fraction of accepted splits as

a criterion, this was indeed confirmed in preliminary experiments with high dimensional data

sets). The choice of when to finish an epoch of learning was based on the rate of change of the
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Figure 4.9: A typical model learnt by fully-unsupervised VBMFA using the birth and death
processes. Each digit shown represents an analyser in the mixture, and the pixel intensities
are the means of the posterior distribution over the centre of the analyser,〈µs〉q(µs). These
means can be thought of astemplates. These intensities have been inversely-processed to show
pixel intensities with the same scalings as the training data. The number to the right of each
image is that analyser’s dimensionality. In this experiment the maximum dimensionality of the
latent space was set tokmax = 6. As can be seen from these numbers, the highest required
dimensionality was 5. The within-row ordering indicates the creation order of the analysers
during learning, and we have arranged the templates across different rows according to the 10
different digits in4.8. This was done by performing a sort of higher-level clustering which
the unsupervised algorithm cannot in fact do. Even though the algorithm itself was not given
the labels of the data, we as experimenters can examine the posterior responsibilities of each
analyser for every item in the training set (whose labels we have access to), and find the majority
class for that analyser, and then assign that analyser to the row corresponding to the class label.
This is purely a visual aid — in practice if the data is not labelled we have no choice but to call
each mixture component in the model a separate class, and have the mean of each analyser as
the class template.

component posterior responsibilities (section4.3.2). The optimisation was terminated when no

further changes to model structure managed to increaseF (based on three unsuccessful splits

for every component in the model).

Figure4.9 shows the final model returned from the optimisation. In this figure, each row cor-

responds to a different digit, and each digit image in the row corresponds to the mean of the

posterior over the centre position of each factor analyser component of the mixture. We refer to

these as ‘templates’ because they represent the mean of clusters of similar examples of the same

digit. The number to the right of each template is the dimensionality of the analyser, determined

from examining the posterior over the precisions governing that factor loading matrix’s columns

q(νs) = [q(νs1), . . . , q(ν
s
kmax

)].

For some digits the VBMFA needs to use more templates than others. These templates represent

distinctively different styles for the same digit. For example, some 1’s are written slanting to the

left and others to the right, or the digit 2 may or may not contain a loop. These different styles

are in very different areas of the high dimensional data space; so each template explains all the
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Classified Classified

Figure 4.10: Confusion tables for digit classification on the training (700) and test (200) sets.
The mixture of factor analysers with 92 components obtains 8.8% and 7.9% training and test
classification errors respectively.

examples of that style that can be modelled with a linear transformation of the pixel intensities.

The number of dimensions of each analyser component for each digit template corresponds very

roughly to the number of degrees of freedom there are for that template, and the degree with

which each template’s factor analyser’s linear transformation can extrapolate to the data between

the different templates. By using a few linear operations on the pixel intensities of the template

image, the analyser can mimic small amounts of shear, rotation, scaling, and translation, and so

can capture the main trends in its local data.

When presented with a test example digit from 0-9, we can classify it by asking the model which

analyser has the highest posterior responsibility for the test example (i.e. a hard assignment), and

then finding which digit class that analyser is clustered into (see discussion above). The result

of classifying the training and test data sets are shown in figure4.10, in confusion matrix form.

Each row corresponds to the true class labelling of the digit, and each column corresponds to the

digit cluster that the example was assigned to, via the most-responsible analyser in the trained

VBMFA model. We see that, for example, about1/7 of the training data 8’s are misclassified as

a variety of classes, and about1/7 of the training data 7’s are misclassified as 9’s (although the

converse result is not as poor). These trends are also seen in the classifications of the test data.

The overall classification performance of the model was 91.2% and 92.1% for the training and

test sets respectively. This can be compared to simpleK-means (using an isotropic distance

measure on the identically pre-processed data), with the number of clusters set to the same as

inferred in the VBMFA optimisation. The result is thatK-means achieves only 87.8% and

86.7% accuracy respectively, despite being initialised with part of the VB solution.
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Computation time

The full optimisation for the VBMFA model trained on all 7000 64-dimensional digit examples

took approximately 4 CPU days on a Pentium III 500 MHz laptop computer. We would expect

the optimisation to take considerably less time if any of the following heuristics were employed.

First, one could use partial VBEM updates forF to update the parameter distributions of only

those components that are currently in flux; this corresponds to assuming that changing the

modelling configuration of a few analysers in one part of the data space often does not affect the

parameter distributions of the overwhelming majority of remaining analysers. In fact, partial

updates can be derived that are guaranteed to increaseF , simply by placing constraints on the

posterior responsibilities of the fixed analysers. Second, the time for each iteration of VBEM can

be reduced significantly by removing factors that have been made extinct by the ARD priors; this

can even be done prematurely if it increasesF . In the implementation used for these experiments

all analysers always held factor loading matrix sizes of(p × kmax), despite many of them having

far fewer active factors.

4.6.2 Classification performance of BIC and VB models

In these experiments VBMFA was compared to a BIC-penalised maximum likelihood MFA

model, in a digit classification task. Each algorithm learnt separate models for each of the

digits 0-9, and attempted to classify a data set of test examples based on the predictive densities

under each of the learnt digit models. For the VB model, computing the predictive density is

intractable (see section4.4) and so an approximation is required. The experiment was carried

out for 7 different training data set sizes ranging from(100, 200, . . . 700), and repeated 10 times

with different parameter initialisations and random subsets of the full 700 images for each digit.

The maximum dimensionality of any analyser component for BIC or VB was set tokmax = 5.

This corresponds to the maximum dimensionality required by the fully-unsupervised VB model

in the previous section’s experiments. For the BIC MFA implementation there is no mechanism

to prune the factors from the analysers, so all 5 dimensions in each BIC analyser are used all the

time.

The same heuristics were used for model search in both types of model, as described in section

4.3. In order to compute a component split ordering, the ML method used the empirical KL

divergence to measure the quality of each analyser’s fit to its local data (seeUeda et al., 2000,

for details). The criterion for ending any particular epoch was again based on the rate of change

of component posterior responsibilities. The termination criterion for both algorithms was, as

before, three unsuccessful splits of every mixture component in a row. For the ML model,

a constraint had to be placed on theΨ matrix, allowing a minimum variance of10−5 in any

direction in the normalised space in which the data has identity covariance. This constraint was
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% correct test classifications
n BIC MLMFA VBMFA

100 88.8± .3 89.3± .5
200 90.6± .4 91.9± .3
300 91.1± .3 92.7± .2
400 91.6± .3 92.8± .2
500 92.2± .3 92.9± .2
600 93.0± .2 93.3± .1
700 93.2± .2 93.4± .2

Table 4.2: Test classification performance of BIC ML and VB mixture models with increasing
data. The standard errors are derived from 10 repetitions of learning with randomly selected
training subsets.

introduced to prevent the data likelihood from diverging as a result of the covariance collapsing

to zero about any data points.

For the BIC-penalised likelihood, the approximation to the marginal likelihood is given by

ln p(y) ≈ ln p(y |θML )− D

2
lnn (4.88)

wheren is the number of training data (which varied from 100 to 700), andD is the number of

degrees of freedom in an MFA model withS analysers with dimensionalities{ks}Ss=1 (seed(k)
of equation (4.5)), which we approximate by

D = S − 1 + p+
S∑
s=1

[
p+ pks −

1
2
ks(ks − 1)

]
. (4.89)

This quantity is derived from:S − 1 degrees of freedom in the prior mixture proportionsπ,

the number of parameters in the output noise covariance (constrained to be diagonal),p, and the

degrees of freedom in the mean and factor loadings of each analyser component. Note thatD is

only an approximation to the number of degrees of freedom, as discussed in section4.1.1.

The results of classification experiments for BIC ML and VB are given in table4.2. VB consis-

tently and significantly outperforms BIC, and in fact surpasses the 92.1% test error performance

of the fully-unsupervised VB model on 700 training points. The latter comment is not surpris-

ing given that this algorithm receives labelled data. We should note that neither method comes

close to state-of-the-art discriminative methods such as support vector machines and convolu-

tional networks, for exampleLeNet(LeCun and Bengio, 1995). This may indicate limitations

of the mixture of factor analysers as a generative model for digits.

Figure 4.11 displays the constituents of the mixture models for both BIC and VB for train-

ing set sizes{100,200,. . . ,700}. On average, BIC ML tends to use models with slightly more

components than does VB, which does not coincide with the common observation that the BIC
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Figure 4.11: The average number of components used for each digit class by the(a) BIC and(b)
VB models, as the size of the training set increases from 100 to 700 examples. As a visual aid,
alternate digits are shaded black and white. The white bottom-most block in each column corre-
sponds to the ‘0’ digit and the black top-most block to the ‘9’ digit. Note that BIC consistently
returns a greater total number of components than VB (see text).

penalty over-penalises model complexity. Moreover, BIC produces models with a dispropor-

tionate number of components for the ‘1’ digit. VB also does this, but not nearly to the same

extent. There may be several reasons for these results, listed briefly below.

First, it may be that the criterion used for terminating the epoch is not operating in the same

manner in the VB optimisation as in the ML case — if the ML criterion is ending epochs too

early this could easily result in the ML model carrying over some of that epoch’s un-plateaued

optimisation into the next epoch, to artificially improve the penalised likelihood of the next

more complicated model. An extreme case of this problem is the epoch-ending criterion that

says “end this epoch just as soon as the penalised likelihood reaches what it was before we

added the last component”. In this case we are performing a purely exploratory search, as

opposed to an exploitative search which plateaus before moving on. Second, the ML model

may be concentrating analysers on single data points, despite our precision limit on the noise

model. Third, there is no mechanism for component death in the ML MFA model, since in these

experiments we did not intervene at any stage to test whether the removal of low responsibility

components improved the penalised likelihood (see section4.3.1). It would be interesting to

include such tests, for both ML MFA and VB methods.
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4.7 Combining VB approximations with Monte Carlo

In this and other chapters, we have assumed that the variational lower bound is a reliable guide to

the log marginal likelihood, using it to infer hidden states, to learn distributions over parameters

and especially in this chapter to guide a search amongst models of differing complexity. We

have not yet addressed the question of how reliable the bounds are. For example, in section

2.3.2we mentioned that by usingF for model selection we are implicitly assuming that the

KL divergences between the variational and exact posterior distributions over parameters and

hidden variables are constant between models. It turns out that we can use the technique of

importance sampling to obtain consistent estimators of several interesting quantities, including

this KL divergence. In this technique the variational posterior can be used as an importance

distribution from which to sample points, as it has been optimised to be representative of the

exact posterior distribution.

This section builds on basic claims first presented inGhahramani and Beal(2000). There it

was noted that importance sampling can easily fail for poor choices of importance distributions

(personal communication with D. MacKay, see alsoMiskin, 2000, chapter 4). We also present

some extensions to simple importance sampling, including using mixture distributions from

several runs of VBEM, and also using heavy-tailed distributions derived from the variational

posteriors.

4.7.1 Importance sampling with the variational approximation

Section4.4 furnishes us with an estimate of the predictive density. Unfortunately this does not

even constitute a bound on the predictive density, but a bound on anapproximationto it. How-

ever it is possible to approximate the integrals for such quantities bysampling. In this subsection

we show how by importance sampling from the variational approximation we can obtain estima-

tors of three important quantities: the exact predictive density, the exact log marginal likelihood

L, and the KL divergence between the variational posterior and the exact posterior.

The expectationε of a functionf(θ) under the posterior distributionp(θ |y) can be written as

ε =
∫
dθ p(θ |y) f(θ) . (4.90)

Given that such integrals are usually analytically intractable, they can be approximated by the

Monte Carlo average:

ε̂(M) ' 1
M

M∑
m=1

f(θ(m)) , θ(m) ∼ p(θ |y) . (4.91)
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whereθ(m) are random draws from the posteriorp(θ |y). In the limit of large number of

samplesM , ε̂ converges toε:

lim
M→∞

ε̂(M) = ε . (4.92)

In many models it is not possible to sample directly from the posterior, and so a Markov Chain

Monte Carlo approach is usually taken to help explore regions of high posterior probability.

In most applications this involves designing tailored Metropolis-Hastings acceptance rules for

moving about in the space whilst still maintaining detailed balance.

An alternative to finding samples using MCMC methods is to useimportance sampling. In this

method we express the integral as an expectation over animportance distributiong(θ):

ε =
∫
dθ p(θ |y) f(θ) (4.93)

=
∫
dθ g(θ)

p(θ |y)
g(θ)

f(θ) (4.94)

ε̂(M) ' 1
M

M∑
m=1

p(θ(m) |y)
g(θ(m))

f(θ(m)) , θ(m) ∼ g(θ) , (4.95)

so that now the Monte Carlo estimate (4.95) is taken using samples drawn fromg(θ). Weighting

factors are required to account for each sample fromg(θ) over- or under-representing the actual

density we wish to take the expectation under. These are called theimportance weights

ω(m) =
1
M

p(θ |y)
g(θ)

. (4.96)

This discretisation of the integral then defines a weighted sum of densities:

ε̂(M) =
M∑
m=1

ω(m)f(θ(m)) . (4.97)

Again, if g(θ) is non-zero whereverp(θ |y) is non-zero, it can be shown thatε̂ converges toε

in the limit of largeM .

Having used the VBEM algorithm to find a lower bound on the marginal likelihood, we have at

our disposal the resulting variational approximate posterior distributionq(θ). Whilst this distri-

bution is not equal to the posterior, it should be a good candidate for an importance distribution

because it contains valuable information about the shape and location of the exact posterior, as

it was chosen to minimise the KL divergence between it and the exact posterior (setting aside

local optima concerns). In addition it usually has a very simple form and so can be sampled

from easily. We now describe several quantities that can be estimated with importance sampling

using the variational posterior.
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Exact predictive density

An asymptotically exact predictive distributionp(y′ |y) is that given by a weighted average of

the likelihood under a set of parameters drawn from the variational posteriorq(θ),

p(y′ |y) =
∫
dθ p(θ |y) p(y′ |θ) (4.98)

=
∫
dθ q(θ)

p(θ |y)
q(θ)

p(y′ |θ)
/ ∫

dθ q(θ)
p(θ |y)
q(θ)

(4.99)

' 1
M

M∑
m=1

p(θ(m) |y)
q(θ(m))

p(y′ |θ(m))
/ 1

M

M∑
o=1

p(θ(o) |y)
q(θ(o))

(4.100)

=
M∑
m=1

ω(m) p(y′ |θ(m)) , (4.101)

whereθ(m) ∼ q(θ) are samples from the variational posterior, and theωm are given by

ω(m) =
p(θ(m) |y)
q(θ(m))

/ M∑
o=1

p(θ(o) |y)
q(θ(o))

(4.102)

=
p(θ(m),y)
q(θ(m))

/ M∑
o=1

p(θ(o),y)
q(θ(o))

(4.103)

=
1
Zω

p(θ(m),y)
q(θ(m))

, (4.104)

andZω is defined as

Zω =
M∑
m=1

p(θ(m),y)
q(θ(m))

. (4.105)

In the case of MFAs, each such sampleθ(m) is an instance of a mixture of factor analysers with

predictive densityp(y′ |θ(m)) as given by (4.11). Since theω(m) are normalised to sum to 1, the

predictive density for MFAs given in (4.101) represents amixtureof mixture of factor analysers.

Note that the step from (4.102) to (4.103) is important because we cannot evaluate the exact pos-

terior densityp(θ(m) |y), but we can evaluate thejoint densityp(θ(m),y) = p(θ(m))p(y |θ(m)).
Furthermore, note thatZω is a function of the weights, and so the estimator in equation (4.101)

is really aratio of Monte Carlo estimates. This means that the estimate forp(y′ |y) is no longer

guaranteed to be unbiased. It is however aconsistentestimator (provided the variances of the

numerator and denominator are converging) meaning that as the number of samples tends to

infinity its expectation will tend to the exact predictive density.
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Exact marginal likelihood

The exact marginal likelihood can be written as

ln p(y) = ln
(∫

dθ q(θ)
p(θ,y)
q(θ)

)
(4.106)

= ln〈ω〉q(θ) + lnZω (4.107)

where〈·〉 denotes averaging with respect to the distributionq(θ). This gives us an unbiased

estimate of the marginal likelihood, but a biased estimate of the log marginal likelihood. Both

estimators are consistent however.

KL divergence

This measure of the quality of the variational approximation can be derived by writingF in the

two ways

F =
∫
dθ q(θ) ln

p(θ,y)
q(θ)

(4.108)

= 〈lnω〉q(θ) + lnZω, or (4.109)

F =
∫
dθ q(θ) ln

p(θ |y)
q(θ)

+ ln p(y) (4.110)

= −KL(q(θ)‖p(θ |y)) + ln〈ω〉q(θ) + lnZω. (4.111)

By equating these two expressions we obtain a measure of the divergence between the approxi-

mating and exact parameter posteriors,

KL(q(θ)‖p(θ |y)) = ln〈ω〉q(θ) − 〈lnω〉q(θ) (4.112)

Note that this quantity is not a function ofZω, since it was absorbed into the difference of two

logarithms. This means that we need not use normalised weights for this measure, and base the

importance weights onp(θ,y) rather thanp(θ |y), and the estimator is unbiased.

Three significant observations should be noted. First, the same importance weights can be used

to estimate all three quantities. Second, while importance sampling can work very poorly in

high dimensions forad hocproposal distributions, here the variational optimisation is used in

a principled manner to provide aq(θ) that is a good approximation top(θ |y), and therefore

hopefully a good proposal distribution. Third, this procedure can be applied to any variational

approximation.
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4.7.2 Example: Tightness of the lower bound for MFAs

In this subsection we use importance sampling to estimate the tightness of the lower bound in

a digits learning problem. In the context of a mixture of factor analysers,θ = (π,Λ,µ) =
{πs, Λ̃s}Ss=1, and we sampleθ(m) ∼ q(θ) = q(π)q(Λ̃). Each such sample is an instance of

a mixture of factor analysers with predictive density given by equation (4.11). Note thatΨ is

treated as a hyperparameter so need not be sampled (although we could envisage doing so if

we were integrating overΨ). We weight these predictive densities by the importance weights

w(m) = p(θ(m),y)/q(θ(m)), which are easy to evaluate. When sampling the parametersθ,

one needs only to sampleπ vectors and̃Λ matrices, as these are the only parameters that are

required to replicate the generative model of mixture of factor analysers (in addition to the hy-

perparameterΨ which has no distribution in our model). Thus the numerator in the importance

weights are obtained by calculating

p(θ,y) = p(π, Λ̃)p(y |π, Λ̃) (4.113)

= p(π |α∗,m∗)
∫
dν p(Λ̃ |ν,µ∗,ν∗)p(ν | a∗, b∗)

n∏
i=1

p(yi |π, Λ̃) (4.114)

= p(π |α∗,m∗)p(Λ̃ | a∗, b∗,µ∗,ν∗)
n∏
i=1

p(yi |π, Λ̃) . (4.115)

On the second line we express the prior over the factor loading matrices as a hierarchical prior

involving the precisions{νs}Ss=1. It is not difficult to show that marginalising out the precision

for a Gaussian variable yields a multivariate Student-t prior distribution for each row of each

Λ̃s, from which we can sample directly. Substituting in the density for an MFA given in (4.11)

results in:

p(θ,y) = p(π |α∗,m∗)p(Λ̃ | a∗, b∗,µ∗,ν∗)
n∏
i=1

[
S∑

si=1

p(si |π)p(yi | si, Λ̃,Ψ)

]
. (4.116)

The importance weights are then obtained after evaluating the density under the variational dis-

tributionq(π)q(Λ̃), which is simple to calculate. Even though we require all the training data to

generate the importance weights, once these are made, the importance weights{ω(m)}Mm=1 and

their locations{π(m), Λ̃(m)}Mm=1 then capture all the information about the posterior distribution

that we will need to make predictions, and so we can discard the training data.

A training data set consisting of 700 examples of each of the digits 0, 1, and 2 was used to train

a VBMFA model in a fully-unsupervised fashion. After every successful epoch, the variational

posterior distributions over the parametersΛ̃ andπ were recorded. These were then used off-line

to produceM = 100 importance samples from which a set of importance weights{ω(m)}Mm=1

were calculated. Using results of the previous section, these weights were used to estimate the

following quantities: the log marginal likelihood, the KL divergence between the variational
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posteriorq(π)q(Λ̃) and the exact posteriorp(π, Λ̃ |y), and the KL divergence between the full

variational posterior over all hidden variables and parameters and the exact full posterior. The

latter quantity is simply the difference between the estimate of the log marginal likelihood and

the lower boundF used in the optimisation (see equation (4.29)).

Figure4.12(a)shows these results plotted alongside the training and test classification errors.

We can see that for the most part the lower bound, calculated during the optimisation and de-

notedF(π,ν, Λ̃,x, s) to indicate that it is computed from variational distributions over param-

eters and hidden variables, is close to the estimate of the log marginal likelihoodln p(y), and

more importantly remains roughly in tandem with it throughout the optimisation. The training

and test errors are roughly equal and move together, suggesting that the variational Bayesian

model is not overfitting the data. Furthermore, upward changes to the log marginal likelihood

are for the most part accompanied by downward changes to the test error rate, suggesting that the

marginal likelihood is a good measure for classification performance in this scenario. Lastly, the

estimate of the lower boundF(π, Λ̃), which is computed by inserting the importance weights

into (4.109), is very close to the estimate of the log marginal likelihood (the difference is made

more clear in the accompanying figure4.12(b)). This means that the KL divergence between the

variational and exact posteriors over(π, Λ̃) is fairly small, suggesting that the majority of the

gap betweenln p(y) andF(π,ν, Λ̃,x, s) is due to the KL divergence between the variational

posterior and exact posteriors over the hidden variables(ν,x, s).

Aside: efficiency of the structure search

During the optimisation, there were 52 accepted epochs, and a total of 692 proposed component

splits (an acceptance rate of only about 7%), resulting in 36 components. However it is clear

from the graph (see also figure4.13(c)) that the model structure does not change appreciably af-

ter about 5000 iterations, at which point 41 epochs have been accepted from 286 proposals. This

corresponds to an acceptance rate of 14% which suggests that our heuristics for choosing which

component to split and how to split it are performing well, given the number of components to

chose from and the dimensionality of the data space.

Analysis of the lower bound gap

Given that 100 samples may be too few to obtain reliable estimates, the experiment was repeated

with 6 runs of importance sampling, each with 100 samples as before. Figures4.13(a)and

4.13(b)show the KL divergence measuring the distance between the log marginal likelihood

estimate and the lower boundsF(π,ν, Λ̃,x, s) andF(π, Λ̃), respectively, as the optimisation

proceeds. Figure4.13(c)plots the number of components,S, in the mixture with iterations of

EM, and it is quite clear that the KL divergences in the previous two graphs correlate closely
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Figure 4.12:(a) Log marginal likelihood estimates from importance sampling with iterations
of VBEM. Each point corresponds to the model at the end of a successful epoch of learning.
The fraction of training and test classification errors are shown on the right vertical axis, and the
lower boundF(π,ν, Λ̃,x, s) that guides the optimisation on the left vertical axis. Also plotted
is F(π, Λ̃), but this is indistinguishable from the other lower bound. The second plot(b) is
exactly the same as(a) except the log marginal likelihood axis has been rescaled to make clear
the difference between the log marginal likelihood and the boundF(π, Λ̃).
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with the number of components. This observation is borne out explicitly in figures4.13(d)and

4.13(d)where it is clear that the KL divergence between the lower boundF(π,ν, Λ̃,x, s) and

the marginal likelihood is roughly proportional to the number of components in the mixture.

This is true to an extent also for the lower bound estimateF(π, Λ̃) although this quantity is

more noisy. These two observations are unlikely to be artifacts of the sampling process, as the

variances are much smaller than the trend. In section2.3.2we noted that if the KL discrepancy

increases withS then the model exploration may be biased to simpler models. Here we have

found some evidence of this, which suggests that variational Bayesian methods may suffer from

a tendency to underfit the model structure.

4.7.3 Extending simple importance sampling

Why importance sampling is dangerous

Unfortunately, the importance sampling procedure that we have used is notoriously bad in high

dimensions. Moreover, it is easy to show that importance sampling can fail even for just one

dimension: consider computing expectations under a one dimensional Gaussianp(θ) with pre-

cisionνp using an importance distributionq(θ) which is also a Gaussian with precisionνq and

the same mean. Although importance sampling can give us unbiased estimates, it is simple to

show that ifνq > 2νp then the variance of the importance weights will be infinite! We briefly

derive this result here. The importance weight for the sample drawn fromq(θ) is given by

ω(θ) =
p(θ)
q(θ)

, (4.117)

and the variance of the importance weights can be written

var(ω) = 〈ω2〉q(θ) − 〈ω〉2q(θ) (4.118)

=
∫
dθ q(θ)

(
p(θ)
q(θ)

)2

−
(∫

dθ q(θ)
p(θ)
q(θ)

)2

(4.119)

=
νp

ν
1/2
q

∫
dθ exp

[
−
(
νp −

1
2
νq

)
θ2 + kθ + k′

]
− 1 , (4.120)

=

νpν
−1/2
q (2νp − νq)−1/2 − 1 for 2νp > νq

∞ for 2νp ≤ νq
. (4.121)

wherek andk′ are constants independent ofx. For2νp ≤ νq, the integral diverges and the vari-

ance of the weights is infinite. Indeed this problem is exacerbated in higher dimensions, where if

this condition is not met in any dimension of parameter space, then the importance weights will

have infinite variance. The intuition behind this is that we need the tails of the sampling distribu-

tion q(θ) to fall off slower than the true distributionp(θ), otherwise there exists some probability
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Figure 4.13: At the end of every accepted epoch 6 estimates of the log marginal likelihood were
calculated (see text).(a) Differences between the log marginal likelihood estimate and the lower
boundF(π,ν, Λ̃,x, s), as a function of iterations of VBEM.(b) Differences between the log
marginal likelihood estimate and the lower boundF(π, Λ̃). (c) Number of componentsS in the
mixture model with iterations of VBEM.(d) The same data as in (a), plotted against the number
of componentsS, as given in (c).(e)As for (d) but using the data from (b) instead of (a).
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that we obtain a very high importance weight. This result is clearly a setback for importance

sampling using the variational posterior distribution, since the variational posterior tends to be

tighter than the exact posterior, having neglected correlations between some parameters in or-

der to make inference tractable. To complete the argument, we should mention that importance

sampling becomes very difficult in high dimensions even if this condition is met, since: firstly,

samples from the typical set of theq(θ) are unlikely to have high probability underp(θ), un-

less the distributions are very similar; secondly, even if the distributions are well matched, the

weights have a wide range that scales orderexp(r1/2), wherer is the dimensionality (MacKay,

1999).

The above result (4.121) is extended inMiskin (2000, chapter 4), where the finite variance con-

dition is derived for generalp(θ) andq(θ) in the exponential family. Also in that work, a bound

is derived for the variance of the importance weights when using a finite mixture distribution as

the importance distribution (equation 4.31 of that manuscript). This mixture is made from the

variational posterior distribution mixed with a set of broader distributions from thesameexpo-

nential family. The rationale for this approach is precisely to create heavier-tailed importance

distributions. Unfortunately the bound is not very tight, and the simulations therein report no

increase in convergence to the correct expectation.

In addition to these problems, the exact posterior over the parameters can be very multi-modal.

The most benign form of such multi-modality is due to aliases arising from having likelihood

functions which are invariant to exchanges of labelling of hidden variables, for example indica-

tor variables for components in a mixture. In such cases the variational posterior tends to lock

on to one mode and so, when used in an importance sampler, the estimate represents only a

fraction of the marginal likelihood. If the modes are well-separated then simple degeneracies of

this sort can be accounted for by multiplying the result by the number of aliases. If the modes

are overlapping, then a correction should not be needed as we expect the importance distribu-

tion to be broad enough. However if the modes are only partially separated then the correction

factor is difficult to compute. In general, these corrections cannot be made precise and should

be avoided.

Using heavy-tailed and mixture distributions

Here we investigate the effect of two modifications to the naive use of the variational posterior as

importance distribution. The first modification considers replacing the variational posterior en-

tirely by a related heavy-tailed Student-t distribution. The second modification uses a stochastic

mixturedistribution for the importance distribution, with each component being the variational

posterior obtained from a different VBEM optimisation.
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The Student-t can be derived by considering the marginal probability of Gaussian distributed

variables under a conjugate gamma distribution for the precision,γ, which is for the univariate

case:

qSt(θ) =
∫
dγ p(γ | a, b)p(θ |µ, γ−1) (4.122)

=
∫
dγ Ga(γ | a, b)N(θ |µ, γ−1) (4.123)

=
ba

Γ(a)
√

2π

∫
dγ e−(b+(θ−µ)2/2)γγa−1/2 (4.124)

=
1

ZSt(a, b)

(
1 +

(θ − µ)2

2b

)−(a+1/2)

(4.125)

wherea andb are the shape and inverse-scale respectively of the precision distribution, andZSt

is given by

ZSt(a, b) =
Γ(a+ 1

2)

Γ(a)
√

2πb
, for a > 0, b > 0 . (4.126)

It is straightforward to show that the variance ofθ is given byb/(a − 1) and the kurtosis by

3(a− 1)/(a− 2) (see appendixA). The degrees of freedomν and dispersion parameterσ2 can

be arrived at with the following equivalence:

ν = 2a , σ2 =
b

a
. (4.127)

The attraction of using this distribution for sampling is that it has heavier tails, with a polynomial

rather than exponential decay. In the limit ofν → ∞ the Student-t is a Gaussian distribution,

while for ν = 1 it is a Cauchy distribution.

Three 2-dimensional data sets were generated by drawing 150 samples from 4 Gaussian clus-

ters, with varying separations of their centres, as shown in figure4.14. For each data set, 10

randomly initialised VBEM algorithms were run to learn a model of the data. If any of the

learnt models contained fewer or more than 4 components, that optimisation was discarded and

replaced with another. We would expect that for the well-separated data set the exact posterior

distribution over the parameters would consist of tight, well-separated modes. Conversely, for

the overlapping data set we would expect the posterior to be very broad consisting of several

weakly-defined peaks. In the intermediately-spaced data set we would expect the posterior to

be mostly separated modes with some overlap.

The following importance samplers were constructed, separately for each data set, and are sum-

marised in table4.3: (1) a single model out of the 10 that were trained was randomly chosen

(once) and its variational posteriorq(π)q(Λ̃) used as the importance distribution; (2) the covari-

ance parameters of the variational posteriorq(Λ̃) of that same model were used as the covariance

parameters in t-distributions with 3 degrees of freedom to formq(3)(Λ̃), and this used in con-

junction with the sameq(π) to form the importance distributionq(π)q(3)(Λ̃); (3) the same as
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sampler type of each component’s
key importance dist. form dof relative variance kurtosis
1 single 1 Gaussian ∞ 1 3
2 single 1 Student-t 3 3 3.75
3 single 1 Student-t 2 ∞ 4.5
4 mixture of 10 Gaussian ∞
5 mixture of 10 Student-t 3 ditto ditto
6 mixture of 10 Student-t 2

Table 4.3: The specifications of six importance sampling distributions.

(2) but using 2 degrees of freedom; samplers (4,5,6) are the same as (1,2,3) except the opera-

tions are carried out on every one of the 10 models returned, to generate a mixture model with

10 equally weighted mixture components.

Recall that the covariance matrix for the entries of theΛ̃s matrix for each analyser is of block

diagonal form, and so each row can be sampled from independently to produce the importance

samples. Furthermore, generating the multivariate Student-t samples from these covariances is

a straightforward procedure using standard methods.

Figure 4.14 shows the results of attempting to estimate the marginal likelihood of the three

different data sets, using the 6 differently constructed importance samplers given in table4.3,

which are denoted by the labels 1–6. The axis marksF andF ′ correspond to lower bounds on

the log marginal likelihood:F is the lower bound reported by the single model used for the sin-

gle set of importance samplers (i.e. 1,2,3); andF ′ is the highest reported lower bound of all 10

of the models trained on that data set. The error bars correspond to the unbiased estimate of the

standard deviation in the estimates from five separate runs of importance sampling. We can see

several interesting features. First, all the estimates (1-6) using different importance distributions

yield estimates greater than the highest lower bound (F’). Second, the use of heavier-tailed and

broader Student-t distributions for the most part increases the estimate, whether based on single

or mixture importance distributions. Also, the move from 3 to 2 degrees of freedom (i.e. (2) to

(3), or (5) to (6) in the plot) for the most part increases the estimate further. These observations

suggest that there exists mass outside of the variational posterior that is neglected with the Gaus-

sian implementations (1,4). Third, using mixture distributions increases the estimates. However,

this increase from (1,2,3) to (4,5,6) is roughly the same as the increase in lower bounds fromF

toF ′. This implies that the single estimates are affected if using a sub-optimal solution, whereas

the mixture distribution can perform approximately as well as its best constituent solution. It

should be noted that only the highest lower bound,F ′, was plotted for each data set, as plotting

the remaining 9 lower bounds would have extended the graphs’ y-axes too much to be able to

visually resolve the differences in the methods (in all three data sets there were at least two poor

optimisations).
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Figure 4.14: (right) Importance sampling estimates of the marginal likelihoods of VBMFA
models trained on(left) three data sets of differently spaced Gaussian clusters. In the plots in the
right column, the vertical axis is the log of the marginal likelihood estimate, and the horizontal
axis denotes which importance sampling method is used for the estimate, as given in table4.3.
The estimates are taken from five separate runs of importance sampling, with each run consisting
of 4000 samples; the error bars are the standard errors in the estimate, assuming the logarithm
of the estimates from the five runs are Gaussian distributed. The axis markF corresponds to the
lower bound from the model used for the single samplers (1,2,3), and the markF ′ corresponds
to the highest lower bound from the 10 models used in the mixture samplers (4,5,6).
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4.8 Summary

In this chapter we have shown that how the marginal likelihood of a mixture of factor analysers is

intractable, and derived a tractable deterministic variational lower bound which can be optimised

using a variational EM algorithm. We can use the lower bound to guide a search among model

structures using birth and death moves. We can also use the lower bound to obtain a distribution

over structures if desired:p(m |y) ∝ p(m)p(y |m) ≈ p(m)·eFopt(m), with the caveat that there

is no guarantee that the best achieved lower bound,Fopt(m), is similarly tight across different

modelsm. Indeed we have found that the KL divergence between the variational and exact

posterior over parameters increases approximately linearly with the number of components in

the mixture, which suggests a systematic tendency to underfit (refer to page60).

We have derived a generally applicable importance sampler based on the variational solution,

which gives us consistent estimates of the exact marginal likelihood, the exact predictive den-

sity, and the KL divergence between the variational posterior and the exact posterior. We have

also investigated the use of heavy-tailed and mixture distributions for improving the importance

sampler estimates, but there are theoretical reasons for why methods more sophisticated than

importance sampling are required for reliable estimates.

It is also possible to integrate the variational optimisation into the proposal distribution for an

MCMC sampling method (NIPS workshop:Advanced Mean Field Methods, Denver CO, De-

cember 1999; personal communication with N. de Freitas, July 2000). The combined procedures

combine the relative advantages of the two methods, namely the asymptotic correctness of sam-

pling, and the rapid and deterministic convergence of variational methods. Since the variational

optimisation can quickly provide us with an approximation to the shape of the local posterior

landscape, the MCMC transition kernel can be adapted to utilise this information to more ac-

curately explore and update that approximation. One would hope that this refined knowledge

could then be used to update the variational posterior, and the process iterated. Unfortunately,

in its simplest form, this MCMCadaptioncan not be done infinitely often, as it disrupts the sta-

tionary distribution of the chain (although seeGilks et al., 1998, for a regenerationtechnique).

In de Freitas et al.(2001), a variational MCMC method that includes mixture transition kernels

is described and applied to the task of finding the moments of posterior distributions in a sig-

moid belief network. There remain plenty of directions of research for such combinations of

variational and MCMC methods.

The VB mixtures formalism has been applied to more complicated variants of MFA models re-

cently, with a view to determining the number of components and the local manifold dimension-

alities. For example, mixtures of independent components analysers (Choudrey and Roberts,

2002), and mixtures of independent components analysers with non-symmetric sources (Chan

et al., 2002).
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There have been other Bayesian approaches to modelling densities using mixture distributions.

One notable example is the infinite Gaussian mixture model ofRasmussen(2000), which uses

sampling to entertain a countably infinite number of mixture components, rather than any par-

ticular finite number. In that work, when training on the Spiral data set (examined in section

4.5.3of this thesis), it was found that on average about 18–20 of the infinitely many Gaussian

components had data associated with them. Our VB method usually found between 12–14 anal-

yser components. Examining the differences between the models returned, and perhaps more

importantly the predictions made, by these two algorithms is an interesting direction of research.

Search over model structures for MFAs is computationally intractable if each factor analyser

is allowed to have different intrinsic dimensionalities. In this chapter we have shown how the

variational Bayesian approach can be used to efficiently infer the structure of the model whilst

avoiding overfitting and other deficiencies of ML approaches. We have also shown how we can

simultaneously infer both the number of analysers and their dimensionalities using birth-death

steps and ARD methods, all based on a variational lower bound on the marginal likelihood.
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Chapter 5

Variational Bayesian Linear

Dynamical Systems

5.1 Introduction

This chapter is concerned with the variational Bayesian treatment of Linear Dynamical Systems

(LDSs), also known as linear-Gaussian state-space models (SSMs). These models are widely

used in the fields of signal filtering, prediction and control, because: (1) many systems of inter-

est can be approximated using linear systems, (2) linear systems are much easier to analyse than

nonlinear systems, and (3) linear systems can be estimated from data efficiently. State-space

models assume that the observed time series data was generated from an underlying sequence

of unobserved (hidden) variables that evolve with Markovian dynamics across successive time

steps. The filtering task attempts to infer the likely values of the hidden variables that generated

the current observation, given a sequence of observations up to and including the current obser-

vation; the prediction task tries to simulate the unobserved dynamics one or many steps into the

future to predict a future observation.

The task of deciding upon a suitable dimension for the hidden state space remains a difficult

problem. Traditional methods, such as early stopping, attempt to reduce generalisation error

by terminating the learning algorithm when the error as measured on a hold-out set begins to

increase. However the hold-out set error is a noisy quantity and for a reliable measure a large

set of data is needed. We would prefer to learn from all the available data, in order to make

predictions. We also want to be able to obtain posterior distributions over all the parameters in

the model in order to quantify our uncertainty.

We have already shown in chapter4 that we can infer the dimensionality of the hidden variable

space (i.e. the number of factors) in a mixture of factor analysers model, by placing priors on
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the factor loadings which then implement automatic relevance determination. Linear-Gaussian

state-space models can be thought of as factor analysis through time with the hidden factors

evolving with noisy linear dynamics. A variational Bayesian treatment of these models provides

a novel way to learn their structure, i.e. to identify the optimal dimensionality of their state

space.

With suitable priors the LDS model is in the conjugate-exponential family. This chapter presents

an example of variational Bayes applied to a conjugate-exponential model, which therefore re-

sults in a VBEM algorithm which has an approximate inference procedure with the same com-

plexity as the MAP/ML counterpart, as explained in chapter2. Unfortunately, the implemen-

tation is not as straightforward as in other models, for example the Hidden Markov Model of

chapter3, as some subparts of the parameter-to-natural parameter mapping are non-invertible.

The rest of this chapter is written as follows. In section5.2we review the LDS model for both

the standard and input-dependent cases, and specify conjugate priors over all the parameters.

In 5.3 we use the VB lower bounding procedure to approximate the Bayesian integral for the

marginal likelihood of a sequence of data under a particular model, and derive the VBEM al-

gorithm. The VBM step is straightforward, but the VBE step is much more interesting and

we fully derive the forward and backward passes analogous to the Kalman filter and Rauch-

Tung-Striebel smoothing algorithms, which we call thevariational Kalman filterandsmoother

respectively. In this section we also discuss hyperparameter learning (including optimisation of

automatic relevance determination hyperparameters), and also show how the VB lower bound

can be computed. In section5.4 we demonstrate the model’s ability to discover meaningful

structure from synthetically generated data sets (in terms of the dimension of the hidden state

space etc.). In section5.5 we present a very preliminary application of the VB LDS model

to real DNA microarray data, and attempt to discover underlying mechanisms in the immune

response of human T-lymphocytes, starting from T-cell receptor activation through to gene tran-

scription events in the nucleus. In section5.6we suggest extensions to the model and possible

future work, and in section5.7we provide some conclusions.

5.2 The Linear Dynamical System model

5.2.1 Variables and topology

In state-space models (SSMs), a sequence(y1, . . . ,yT ) of p-dimensional real-valued observa-

tion vectors, denotedy1:T , is modelled by assuming that at each time stept, yt was generated

from ak-dimensional real-valued hidden state variablext, and that the sequence ofx’s follow
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x1

y1 y2 y3 yT

x2 xTx3 ...A

C

Figure 5.1: Graphical model representation of a state-space model. The hidden variablesxt
evolve with Markov dynamics according to parameters inA, and at each time step generate an
observationyt according to parameters inC.

a first-order Markov process. The joint probability of a sequence of states and observations is

therefore given by:

p(x1:T ,y1:T ) = p(x1)p(y1 |x1)
T∏
t=2

p(xt |xt−1)p(yt |xt) . (5.1)

This factorisation of the joint probability can be represented by the graphical model shown in

figure5.1. For the moment we consider just a single sequence, not a batch of i.i.d. sequences.

For ML and MAP learning there is a straightforward extension for learning multiple sequences;

for VB learning the extensions are outlined in section5.3.8.

The form of the distributionp(x1) over the first hidden state is Gaussian, and is described

and explained in more detail in section5.2.2. We focus on models where both the dynamics,

p(xt |xt−1), and output functions,p(yt |xt), are linear and time-invariant and the distributions

of the state evolution and observation noise variables are Gaussian, i.e. linear-Gaussian state-

space models:

xt = Axt−1 + wt , wt ∼ N(0, Q) (5.2)

yt = Cxt + vt , vt ∼ N(0, R) (5.3)

whereA (k×k) is the state dynamics matrix,C (p×k) is the observation matrix, andQ (k×k)
andR (p × p) are the covariance matrices for the state and output noise variableswt andvt.

The parametersA andC are analogous to the transition and emission matrices respectively in

a Hidden Markov Model (see chapter3). Linear-Gaussian state-space models can be thought

of as factor analysis where the low-dimensional (latent) factor vector at one time step diffuses

linearly with Gaussian noise to the next time step.

We will use the terms ‘linear dynamical system’ (LDS) and ‘state-space model’ (SSM) inter-

changeably throughout this chapter, although they emphasise different properties of the model.

LDS emphasises that the dynamics are linear – such models can be represented either in state-

space form or in input-output form. SSM emphasises that the model is represented as a latent-

variable model (i.e. the observables are generated via some hidden states). SSMs can be non-
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Figure 5.2: The graphical model for linear dynamical systems with inputs.

linear in general; here it should be assumed that we refer to linear models with Gaussian noise

except if stated otherwise.

A straightforward extension to this model is to allow both the dynamics and observation model

to include a dependence on a series ofd-dimensional driving inputsu1:T :

xt = Axt−1 +But + wt (5.4)

yt = Cxt +Dut + vt . (5.5)

HereB (k × d) andD (p × d) are the input-to-state and input-to-observation matrices respec-

tively. If we now augment the driving inputs with a constant bias, then this input driven model is

able to incorporate an arbitrary origin displacement for the hidden state dynamics, and also can

induce a displacement in the observation space. These displacements can be learnt as parameters

of the input-to-state and input-to-observation matrices.

Figure5.2shows the graphical model for an input-dependent linear dynamical system. An input-

dependent model can be used to model control systems. Another possible way in which the

inputs can be utilised is to feedback the outputs (data) from previous time steps in the sequence

into the inputs for the current time step. This means that the hidden state can concentrate on

modelling hidden factors, whilst the Markovian dependencies between successiveoutputsare

modelled using the output-input feedback construction. We will see a good example of this

type of application in section5.5, where we use it to model gene expression data in a DNA

microarray experiment.

On a point of notational convenience, the probability statements in the later derivations leave im-

plicit the dependence of the dynamics and output processes on the driving inputs, since for each

sequence they are fixed and merely modulate the processes at each time step. Their omission

keeps the equations from becoming unnecessarily complicated.

Without loss of generality we can set the hidden state evolution noise covariance,Q, to the iden-

tity matrix. This is possible since an arbitrary noise covariance can be incorporated into the state

dynamics matrixA, and the hidden state rescaled and rotated to be made commensurate with
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this change (seeRoweis and Ghahramani, 1999, page 2 footnote); these changes are possible

since the hidden state is unobserved, by definition. This is the case in the maximum likelihood

scenario, but in the MAP or Bayesian scenarios this degeneracy is lost since various scalings in

the parameters will be differently penalised under the parameter priors (see section5.2.2below).

The remaining parameter of a linear-Gaussian state-space model is the covariance matrix,R, of

the Gaussian output noise,vt. In analogy with factor analysis we assume this to be diagonal.

Unlike the hidden state noise,Q, there is no degeneracy inR since the data is observed, and

therefore its scaling is fixed and needs to be learnt.

For notational convenience we collect the above parameters into a single parameter vector for

the model:θ = (A,B,C,D,R).

We now turn to considering the LDS model for a Bayesian analysis. From (5.1), the complete-

data likelihood for linear-Gaussian state-space models is Gaussian, which is in the class of ex-

ponential family distributions, thus satisfying condition 1 (2.80). In order to derive a variational

Bayesian algorithm by applying the results in chapter2 we now build on the model by defining

conjugate priors over the parameters according to condition 2 (2.88).

5.2.2 Specification of parameter and hidden state priors

The description of the priors in this section may be made more clear by referring to figure

5.3. The forms of the following prior distributions are motivated by conjugacy (condition 2,

(2.88)). By writing every term in the complete-data likelihood (5.1) explicitly, we notice that

the likelihood for state-space models factors into a product of terms for everyrow of each of the

dynamics-related and output-related matrices, and the priors can therefore be factorised over the

hidden variable and observed data dimensions.

The prior over the output noise covariance matrixR, which is assumed diagonal, is defined

through the precision vectorρ such thatR−1 = diag (ρ). For conjugacy, each dimension ofρ

is assumed to be gamma distributed with hyperparametersa andb:

p(ρ | a, b) =
p∏
s=1

ba

Γ(a)
ρa−1
s exp{−bρs}. (5.6)

More generally, we could letR be a full covariance matrix and still be conjugate: its inverse

V = R−1 would be given a Wishart distribution with parameterS and degrees of freedomν:

p(V | ν, S) ∝ |V |(ν−p−1)/2 exp
[
−1

2
tr V S−1

]
, (5.7)
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xt-1

ut

yt

xt

A

B

C

D

R

α

β

γ

δ

a, b

Σ0, µ0

i=1... n

t=1... T(i)

Figure 5.3: Graphical model representation of a Bayesian state-space model. Each sequence
{y1, . . . ,yTi} is now represented succinctly as the (inner) plate overTi pairs of hidden variables,
each presenting the cross-time dynamics and output process. The second (outer) plate is over
the data set of sizen sequences. For the most part of the derivations in this chapter we restrict
ourselves ton = 1, andTn = T . Note that the plate notation used here is non-standard since
bothxt−1 andxt have to be included in the plate to denote the dynamics.

where tr is the matrix trace operator. This more general form is not adopted in this chapter as

we wish to maintain a parallel between the output model for state-space models and the factor

analysis model (as described in chapter4).

Priors on A,B, C andD

The row vectora>(j) is used to denote thejth row of the dynamics matrix,A, and is given a

zero mean Gaussian prior with precision equal todiag (α), which corresponds to axis-aligned

covariance and can possibly be non-spherical. Each row ofC, denotedc>(s), is given a zero-mean

Gaussian prior with precision matrix equal todiag (ρsγ). The dependence of the precision of

c(s) on the noise output precisionρs is motivated by conjugacy (as can be seen from the explicit

complete-data likelihood), and intuitively this prior links the scale of the signal to the noise. We

place similar priors on the rows of the input-related matricesB andD, introducing two more

hyperparameter vectorsβ andδ. A useful notation to summarise these forms is

p(a(j) |α) = N(a(j) |0,diag (α)−1) (5.8)

p(b(j) |β) = N(b(j) |0,diag (β)−1) for j = 1, . . . , k (5.9)

p(c(s) | ρs,γ) = N(c(s) |0, ρ−1
s diag (γ)−1) (5.10)

p(d(s) | ρs, δ) = N(d(s) |0, ρ−1
s diag (δ)−1) (5.11)

p(ρs | a, b) = Ga(ρs | a, b) for s = 1, . . . , p (5.12)

such thata(j) etc. are column vectors.
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The Gaussian priors on the transition (A) and output (C) matrices can be used to perform ‘au-

tomatic relevance determination’ (ARD) on the hidden dimensions. As an example consider

the matrixC which contains the linear embedding factor loadings for each factor in each of its

columns: these factor loadings induce a high dimensional oriented covariance structure in the

data (CC>), based on an embedding of low-dimensional axis-aligned (unit) covariance. Let us

first fix the hyperparametersγ = {γ1, . . . , γk}. As the parameters of theC matrix are learnt, the

prior will favour entries close to zero since its mean is zero, and the degree with which the prior

enforces this zero-preference varies across the columns depending on the size of the precisions

in γ. As learning continues, the burden of modelling the covariance in thep output dimensions

will be gradually shifted onto those hidden dimensions for which the entries inγ are smallest,

thus resulting in the least penalty under the prior for non-zero factor loadings. When the hy-

perparameters are updated to reflect this change, the unequal sharing of the output covariance

is further exacerbated. The limiting effect as learning progresses is that some columns ofC

become zero, coinciding with the respective hyperparameters tending to infinity. This implies

that those hidden state dimensions do not contribute to the covariance structure of data, and so

can be removed entirely from the output process.

Analogous ARD processes can be carried out for the dynamics matrixA. In this case, if thejth

column ofA should become zero, this implies that thejth hidden dimension at timet− 1 is not

involved in generating the hidden state at timet (the rank of the transformationA is reduced

by 1). However thejth hidden dimension may still be of use in producing covariance structure

in the data via the modulatory input at each time step, and should not necessarily be removed

unless the entries of theC matrix also suggest this.

For the input-related parameters inB andD, the ARD processes correspond to selecting those

particular inputs that are relevant to driving the dynamics of the hidden state (throughβ), and

selecting those inputs that are needed to directly modulate the observed data (throughδ). For

example the (constant) input bias that we use here to model an offset in the data mean will

almost certainly always remain non-zero, with a correspondingly small value inδ, unless the

mean of the data is insignificantly far from zero.

Traditionally, the prior over the hidden state sequence is expressed as a Gaussian distribution

directly over the first hidden statex1 (see, for exampleGhahramani and Hinton, 1996a, equation

(6)). For reasons that will become clear when later analysing the equations for learning the

parameters of the model, we choose here to express the prior over the first hidden state indirectly

through a prior over an auxiliary hidden state at timet = 0, denotedx0, which is Gaussian

distributed with meanµ0 and covarianceΣ0:

p(x0 |µ0,Σ0) = N(x0 |µ0,Σ0) . (5.13)
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This induces a prior overx1 via the the state dynamics process:

p(x1 |µ0,Σ0,θ) =
∫
dx0 p(x0 |µ0,Σ0)p(x1 |x0,θ) (5.14)

= N(x1 |Aµ0 +Bu1, A
>Σ0A+Q) . (5.15)

Although not constrained to be so, in this chapter we work with a prior covarianceΣ0 that is a

multiple of the identity.

The marginal likelihood can then be written

p(y1:T ) =
∫
dAdB dC dD dρ dx0:T p(A,B,C,D,ρ,x0:T ,y1:T ) . (5.16)

All hyperparameters can be optimised during learning (see section5.3.6). In section5.4 we

present results of some experiments in which we show the variational Bayesian approach suc-

cessfully determines the structure of state-space models learnt from synthetic data, and in section

5.5we present some very preliminary experiments in which we attempt to use hyperparameter

optimisation mechanisms to elucidate underlying interactions amongst genes in DNA microar-

ray time-series data.

A fully hierarchical Bayesian structure

Depending on the task at hand we should consider how full a Bayesian analysis we require. As

the model specification stands, there is the problem that the number of free parameters to be ‘fit’

increases with the complexity of the model. For example, if the number of hidden dimensions

were increased then, even though the parameters of the dynamics (A), output (C), input-to-state

(B), and input-to-observation (D) matrices are integrated out, the size of theα, γ, β andδ

hyperparameters have increased, providing more parameters to fit. Clearly, the more parameters

that are fit the more one departs from the Bayesian inference framework and the more one risks

overfitting. But, as pointed out inMacKay (1995), these extra hyperparameters themselves

cannot overfit the noise in the data, since it is only the parameters that can do so.

If the task at hand is structure discovery, then the presence of extra hyperparameters should not

affect the returned structure. However if the task is model comparison, that is comparing the

marginal likelihoods for models with different numbers of hidden state dimensions for example,

or comparing differently structured Bayesian models, then optimising over more hyperparame-

ters will introduce a bias favouring more complex models, unless they themselves are integrated

out.

The proper marginal likelihood to use in this latter case is that which further integrates over the

hyperparameters with respect to some hyperprior which expresses our subjective beliefs over
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the distribution of these hyperparameters. This is necessary for the ARD hyperparameters, and

also for the hyperparameters governing the prior over the hidden state sequence,µ0 andΣ0,

whose number of free parameters are functions of the dimensionality of the hidden state,k.

For example, the ARD hyperparameter for each matrixA,B,C,D would be given a separate

spherical gamma hyperprior, which is conjugate:

α ∼
k∏
j=1

Ga(αj | aα, bα) (5.17)

β ∼
d∏
c=1

Ga(βc | aβ , bβ) (5.18)

γ ∼
k∏
j=1

Ga(γj | aγ , bγ) (5.19)

δ ∼
d∏
c=1

Ga(δc | aδ, bδ) . (5.20)

The hidden state hyperparameters would be given spherical Gaussian and spherical inverse-

gamma hyperpriors:

µ0 ∼ N(µ0 |0, bµ0
I) (5.21)

Σ0 ∼
k∏
j=1

Ga(Σ0
−1
jj | aΣ0 , bΣ0) . (5.22)

Inverse-Wishart hyperpriors forΣ0 are also possible. For the most part of this chapter we omit

this fuller hierarchy to keep the exposition clearer, and only perform experiments aimed at struc-

ture discovery using ARD as opposed to model comparison between this and other Bayesian

models. Towards the end of the chapter there is a brief note on how the fuller Bayesian hierar-

chy affects the algorithms for learning.

Origin of the intractability with Bayesian learning

SinceA, B, C, D, ρ andx0:T are all unknown, given a sequence of observationsy1:T , an

exact Bayesian treatment of SSMs would require computing marginals of the posterior over pa-

rameters and hidden variables,p(A,B,C,D,ρ,x0:T |y1:T ). This posterior contains interaction

terms up tofifth order; we can see this by considering the terms in (5.1) for the case of LDS

models which, for example, contain terms in the exponent of the form−1
2x

>
t C

>diag (ρ)Cxt.

Integrating over these coupled hidden variables and parameters is not analytically possible.

However, since the model is conjugate-exponential we can apply theorem2.2 to derive a vari-
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ational Bayesian EM algorithm for state-space models analogous to the maximum-likelihood

EM algorithm ofShumway and Stoffer(1982).

5.3 The variational treatment

This section covers the derivation of the results for the variational Bayesian treatment of linear-

Gaussian state-space models. We first derive the lower bound on the marginal likelihood, using

only the usual approximation of the factorisation of the hidden state sequence from the param-

eters. Due to some resulting conditional independencies between the parameters of the model,

we see how the approximate posterior over parameters can be separated into posteriors for the

dynamics and output processes. In section5.3.1the VBM step is derived, yielding approximate

distributions over all the parameters of the model, each of which is analytically manageable and

can be used in the VBE step.

In section5.3.2we justify the use of existing propagation algorithms for the VBE step, and

the following subsections derive in some detail the forward and backward recursions for the

variational Bayesian linear dynamical system. This section is concluded with results for hyper-

parameter optimisation and a note on the tractability of the calculation of the lower bound for

this model.

The variational approximation and lower bound

The full joint probability for parameters, hidden variables and observed data, given the inputs is

p(A,B,C,D,ρ,x0:T ,y1:T |u1:T ) , (5.23)

which written fully is

p(A |α)p(B |β)p(ρ | a, b)p(C |ρ,γ)p(D |ρ, δ)·

p(x0 |µ0,Σ0)
T∏
t=1

p(xt |xt−1, A,B,ut)p(yt |xt, C,D,ρ,ut) . (5.24)
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From this point on we drop the dependence on the input sequenceu1:T , and leave it implicit.

By applying Jensen’s inequality we introduce any distributionq(θ,x) over the parameters and

hidden variables, and lower bound the log marginal likelihood

ln p(y1:T ) = ln
∫
dAdB dC dD dρ dx0:T p(A,B,C,D,ρ,x0:T ,y1:T ) (5.25)

≥
∫
dAdB dC dD dρ dx0:T ·

q(A,B,C,D,ρ,x0:T ) ln
p(A,B,C,D,ρ,x0:T ,y1:T )
q(A,B,C,D,ρ,x0:T )

(5.26)

= F .

The next step in the variational approximation is to assume some approximate form for the

distributionq(·) which leads to a tractable bound. First, we factorise the parameters from the

hidden variables givingq(A,B,C,D, ρ,x0:T ) = qθ(A,B,C,D, ρ)qx(x0:T ). Writing out the

expression for the exact log posteriorln p(A,B,C,D,ρ,x1:T ,y0:T ), one sees that it contains

interaction terms betweenρ, C andD but none between{A,B} and any of{ρ, C,D}. This

observation implies a further factorisation of the posterior parameter distributions,

q(A,B,C,D,ρ,x0:T ) = qAB(A,B)qCDρ(C,D,ρ)qx(x0:T ) . (5.27)

It is important to stress that this latter factorisation amongst the parameters falls out of the

initial factorisation of hidden variables from parameters, and from theresulting conditional

independencies given the hidden variables. Therefore the variational approximation does not

concede any accuracy by the latter factorisation, since it is exact given the first factorisation of

the parameters from hidden variables.

We choose to write the factors involved in this joint parameter distribution as

qAB(A,B) = qB(B) qA(A |B) (5.28)

qCDρ(C,D,ρ) = qρ(ρ) qD(D |ρ) qC(C |D,ρ) . (5.29)
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Now the form forq(·) in (5.27) causes the integral (5.26) to separate into the following sum of

terms:

F =
∫
dB qB(B) ln

p(B |β)
qB(B)

+
∫
dB qB(B)

∫
dA qA(A |B) ln

p(A |α)
qA(A |B)

+
∫
dρ qρ(ρ) ln

p(ρ | a, b)
qρ(ρ)

+
∫
dρ qρ(ρ)

∫
dD qD(D |ρ) ln

p(D |ρ, δ)
qD(D |ρ)

+
∫
dρ qρ(ρ)

∫
dD qD(D |ρ)

∫
dC qC(C |ρ, D) ln

p(C |ρ,γ)
qC(C |ρ, D)

−
∫
dx0:T qx(x0:T ) ln qx(x0:T )

+
∫
dB qB(B)

∫
dA qA(A |B)

∫
dρ qρ(ρ)

∫
dD qD(D |ρ)

∫
dC qC(C |ρ, D) ·∫

dx0:T qx(x0:T ) ln p(x0:T ,y1:T |A,B,C,D,ρ) (5.30)

= F(qx(x0:T ), qB(B), qA(A |B), qρ(ρ), qD(D |ρ), qC(C |ρ, D)) . (5.31)

Here we have left implicit the dependence ofF on the hyperparameters. For variational Bayesian

learning,F is the key quantity that we work with. Learning proceeds with iterative updates of

the variational posterior distributionsq·(·), each locally maximisingF .

The optimum forms of these approximate posteriors can be found by taking functional deriva-

tives of F (5.30) with respect to each distribution over parameters and hidden variable se-

quences. In the following subsections we describe the straightforward VBM step, and the

somewhat more complicated VBE step. We do not need to be able to computeF to produce

the learning rules, only calculate its derivatives. Nevertheless its calculation at each iteration

can be helpful to ensure that we are monotonically increasing a lower bound on the marginal

likelihood. We finish this section on the topic of how to calculateF which is hard to compute

because it contains the a term which is the entropy of the posterior distribution over hidden state

sequences,

H(qx(x0:T )) = −
∫
dx0:T qx(x0:T ) ln qx(x0:T ) . (5.32)

5.3.1 VBM step: Parameter distributions

Starting from some arbitrary distribution over the hidden variables, the VBM step obtained by

applying theorem2.2finds the variational posterior distributions over the parameters, and from

these computes the expected natural parameter vector,φ = 〈φ(θ)〉, where the expectation is

taken under the distributionqθ(θ), whereθ = (A,B,C,D,ρ).

We omit the details of the derivations, and present just the forms of the distributions that ex-

tremiseF . As was mentioned in section5.2.2, given the approximating factorisation of the
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posterior distribution over hidden variables and parameters, the approximate posterior over the

parameters can be factorised without further assumption or approximation into

qθ(A,B,C,D,ρ) =
k∏
j=1

q(b(j))q(a(j) |b(j))
p∏
s=1

q(ρs)q(d(s) | ρs)q(c(s) | ρs,d(s)) (5.33)

where, for example, the row vectorb>(j) is used to denote thejth row of the matrixB (similarly

so for the other parameter matrices).

We begin by defining some statistics of the input and observation data:

Ü ≡
T∑
t=1

utu>t , UY ≡
T∑
t=1

uty>t , Ÿ ≡
T∑
t=1

yty>t . (5.34)

In the forms of the variational posteriors given below, the matrix quantitiesWA, GA, M̃ , SA,

andWC , GC , SC are exactly the expected complete data sufficient statistics, obtained in the

VBE step — their forms are given in equations (5.126-5.132).

The natural factorisation of the variational posterior over parameters yields these forms forA

andB:

qB(B) =
k∏
j=1

N
(
b(j) |ΣBb(j), ΣB

)
(5.35)

qA(A |B) =
k∏
j=1

N
(
a(j) |ΣA

[
sA,(j) −GAb(j)

]
, ΣA

)
(5.36)

with

ΣA
−1 = diag (α) +WA (5.37)

ΣB
−1 = diag (β) + Ü −G>

AΣAGA (5.38)

B = M̃> − S>AΣAGA , (5.39)

and whereb
>
(j) andsA,(j) are vectors used to denote thejth row ofB and thejth column ofSA

respectively. It is straightforward to show that the marginal forA is given by:

qA(A) =
k∏
j=1

N
(
a(j) |ΣA

[
sA,(j) −GAΣBb(j)

]
, Σ̂A

)
, (5.40)

where Σ̂A = ΣA + ΣAGAΣBG
>
AΣA . (5.41)
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In the case of either theA andB matrices, for both the marginal and conditional distributions,

each row has the same covariance.

The variational posterior overρ, C andD is given by:

qρ(ρ) =
p∏
s=1

Ga
(
ρs | a+

T

2
, b+

1
2
Gss

)
(5.42)

qD(D |ρ) =
p∏
s=1

N
(
d(s) |ΣDd(s), ρ

−1
s ΣD

)
(5.43)

qC(C |D,ρ) =
p∏
s=1

N
(
c(s) |ΣC

[
sC,(s) −GCd(s)

]
, ρ−1

s ΣC

)
(5.44)

with

ΣC
−1 = diag (γ) +WC (5.45)

ΣD
−1 = diag (δ) + Ü −G>

CΣCGC (5.46)

G = Ÿ − S>CΣCSC −DΣDD
>

(5.47)

D = U>
Y − S>CΣCGC , (5.48)

and whered
>
(s) andsC,(s) are vectors corresponding to thesth row ofD and thesth column of

SC respectively. Unlike the case of theA andB matrices, the covariances for each row of the

C andD matrices can be very different due to the appearance of theρs term, as so they should

be. Again it is straightforward to show that the marginal forC givenρ, is given by:

qC(C |ρ) =
p∏
s=1

N
(
c(s) |ΣC

[
sC,(s) −GCΣDd(s)

]
, ρ−1

s Σ̂C

)
, (5.49)

where Σ̂C = ΣC + ΣCGCΣDG
>
CΣC . (5.50)

Lastly, the full marginals forC andD after integrating out the precisionρ are Student-t distri-

butions.

In the VBM step we need to calculate the expected natural parameters,φ, as mentioned in

theorem2.2. These will then be used in the VBE step which infers the distributionqx(x0:T ) over

hidden states in the system. The relevant natural parameterisation is given by the following:

φ(θ) = φ(A,B,C,D,R) =
[
A, A>A, B, A>B, C>R−1C, R−1C, C>R−1D

B>B, R−1, ln
∣∣R−1

∣∣ , D>R−1D, R−1D
]
. (5.51)
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The terms in the expected natural parameter vectorφ = 〈φ(θ)〉qθ(θ), where〈·〉qθ(θ) denotes

expectation with respect to the variational posterior, are then given by:

〈A〉 =
[
SA −GAΣBB

>
]>

ΣA (5.52)

〈A>A〉 = 〈A〉>〈A〉+ k
[
ΣA + ΣAGAΣBG

>
AΣA

]
(5.53)

〈B〉 = BΣB (5.54)

〈A>B〉 = ΣA

[
SA〈B〉 −GA

{
〈B〉>〈B〉+ kΣB

}]
(5.55)

〈B>B〉 = 〈B〉>〈B〉+ kΣB , (5.56)

and

〈ρs〉 = ρs =
aρ + T/2
bρ +Gss/2

(5.57)

〈ln ρs〉 = ln ρs = ψ(aρ + T/2)− ln(bρ +Gss/2) (5.58)

〈R−1〉 = diag (ρ) , (5.59)

(5.60)

and

〈C〉 =
[
SC −GCΣDD

>
]>

ΣC (5.61)

〈D〉 = DΣD (5.62)

〈C>R−1C〉 = 〈C〉>diag (ρ) 〈C〉+ p
[
ΣC + ΣCGCΣDG

>
CΣC

]
(5.63)

〈R−1C〉 = diag (ρ) 〈C〉 (5.64)

〈C>R−1D〉 = ΣC

[
SCdiag (ρ) 〈D〉 −GC〈D〉>diag (ρ) 〈D〉 − pGCΣD

]
(5.65)

〈R−1D〉 = diag (ρ) 〈D〉 (5.66)

〈D>R−1D〉 = 〈D〉>diag (ρ) 〈D〉+ pΣD . (5.67)

Also included in this list are several expectations which are not part of the mean natural param-

eter vector, but are given here because having them at hand during and after an optimisation is

useful.

5.3.2 VBE step: The Variational Kalman Smoother

We now turn to the VBE step: computingqx(x0:T ). Since SSMs are singly connected belief

networks corollary2.2 tells us that we can make use of belief propagation, which in the case of

SSMs is known as the Rauch-Tung-Striebel smoother (Rauch et al., 1963). Unfortunately the
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implementations of the filter and smoother are not as straightforward as one might expect, as is

explained in the following subsections.

In the standard point-parameter linear-Gaussian dynamical system, given the settings of the

parameters, the hidden state posterior is jointly Gaussian over the time steps. Reassuringly,

when we differentiateF with respect toqx(x0:T ), the variational posterior forx0:T is also

Gaussian:

ln qx(x0:T ) = − lnZ + 〈ln p(A,B,C,D,ρ,x0:T ,y1:T )〉 (5.68)

= − lnZ ′ + 〈ln p(x0:T ,y1:T |A,B,C,D,ρ)〉 , (5.69)

where

Z ′ =
∫
dx0:T exp〈ln p(x0:T ,y1:T |A,B,C,D,ρ)〉 , (5.70)

and where〈·〉 denotes expectation with respect to the variational posterior distribution over pa-

rameters,qθ(A,B,C,D,ρ). In this expression the expectations with respect to the approximate

parameter posteriors are performed on the logarithm of the complete-data likelihood and, even

though this leaves the coefficients on thext terms in a somewhat unorthodox state, the new log

posterior still only contains up to quadratic terms in eachxt and thereforeqx(x0:T ) must be

Gaussian, as in the point-parameter case. We should therefore still be able to use an algorithm

very similar to the Kalman filter and smoother for inference of the hidden state sequence’s suf-

ficient statistics (the E-like step). However we can no longer plug in parameters to the filter and

smoother, but have to work with the natural parameters throughout the implementation.

The following paragraphs take us through the required derivations for the forward and backward

recursions. For the sake of clarity of exposition, we do not at this point derive the algorithms for

the input-driven system (though we do present the full input-driven algorithms as pseudocode

in algorithms5.1, 5.2 and5.3). At each stage, we first we concentrate on the point-parameter

propagation algorithms and then formulate the Bayesian analogues.

5.3.3 Filter (forward recursion)

In this subsection, we first derive the well-known forward filtering recursion steps for the case

in which the parameters are fixed point-estimates. The variational Bayesian analogue of the

forward pass is then presented. The dependence of the filter equations on the inputsu1:T has

been omitted in the derivations, but is included in the summarising algorithms.
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Point-parameter derivation

We defineαt(xt) to be the posterior over the hidden state at timet given observed data up to

and including timet:

αt(xt) ≡ p(xt |y1:t) . (5.71)

Note that this is slightly different to the traditional form for HMMs which isαt(xt) ≡ p(xt,y1:t).
We then form the recursion withαt−1(xt−1) as follows:

αt(xt) =
∫
dxt−1 p(xt−1 |y1:t−1) p(xt |xt−1) p(yt |xt) / p(yt |y1:t−1) (5.72)

=
1

ζt(yt)

∫
dxt−1 αt−1(xt−1) p(xt |xt−1) p(yt |xt) (5.73)

=
1

ζt(yt)

∫
dxt−1 N(xt−1 |µt−1,Σt−1) N(xt | Axt−1, I) N(yt | Cxt, R) (5.74)

= N(xt | µt,Σt) (5.75)

where

ζt(yt) ≡ p(yt |y1:t−1) (5.76)

is the filtered output probability; this will be useful for computing the likelihood. Within the

above integrand the quadratic terms inxt−1 form the GaussianN(xt−1 |x∗t−1,Σ
∗
t−1) with

Σ∗
t−1 =

(
Σ−1
t−1 +A>A

)−1
(5.77)

x∗t−1 = Σ∗
t−1

[
Σ−1
t−1µt−1 +A>xt

]
. (5.78)

Marginalising outxt−1 gives the filtered estimates of the mean and covariance of the hidden

state as

αt(xt) = N(xt |µt,Σt) (5.79)

with

Σt =
[
I + C>R−1C −AΣ∗

t−1A
>
]−1

(5.80)

µt = Σt

[
C>R−1yt +AΣ∗

t−1Σ
−1
t−1µt−1

]
. (5.81)

At each step the normalising constantζt, obtained as the denominator in (5.72), contributes to

the calculation of the probability of the data

p(y1:T ) = p(y1)p(y2 |y1) . . . p(yt |y1:t−1) . . . p(yT |y1:T−1) (5.82)

= p(y1)
T∏
t=2

p(yt |y1:t−1) =
T∏
t=1

ζt(yt) . (5.83)
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It is not difficult to show that each of the above terms are Gaussian distributed,

ζt(yt) = N(yt |$t, ςt) (5.84)

with

ςt =
(
R−1 −R−1CΣtC

>R−1
)−1

(5.85)

$t = ςtR
−1CΣtAΣ∗

t−1Σ
−1
t−1µt−1 . (5.86)

With these distributions at hand we can compute the probability of each observationyt given

the previous observations in the sequence, and assign a predictive mean and variance to the data

at each time step as it arrives. However, this predictive distribution will change once the hidden

state sequence has been smoothed on the backward pass.

Certain expressions such as equations (5.80), (5.81), and (5.85) could be simplified using the

matrix inversion lemma (see appendixB.2), but here we refrain from doing so because a similar

operation is not possible in the variational Bayesian derivation (see comment at end of section

5.3.3).

Variational derivation

It is quite straightforward to repeat the above derivation for variational Bayesian learning, by

replacing parameters (and combinations of parameters) with their expectations under the varia-

tional posterior distributions which were calculated in the VBM step (section5.3.1). Equation

(5.74) becomes rewritten as

αt(xt) =
1

ζ ′t(yt)

∫
dxt−1 N(xt−1 | µt−1,Σt−1) ·

exp−1
2

〈
(xt −Axt−1)>I(xt −Axt−1) + (yt − Cxt)>R−1(yt − Cxt)

+ k ln |2π|+ ln |2πR|
〉

(5.87)

=
1

ζ ′t(yt)

∫
dxt−1 N(xt−1 | µt−1,Σt−1) ·

exp−1
2

[
x>t−1〈A>A〉xt−1 − 2x>t−1〈A〉>xt

+ x>t (I + 〈C>R−1C〉)xt − 2x>t 〈C>R−1〉yt + . . .
]

(5.88)

where the angled brackets〈·〉 denote expectation under the variational posterior distribution over

parameters,qθ(A,B,C,D,ρ).
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After the parameter averaging, the integrand is still log-quadratic in bothxt−1 andxt, and so

the derivation continues as before but with parameter expectations taking place of the point

estimates. Equations (5.77) and (5.78) now become

Σ∗
t−1 =

(
Σ−1
t−1 + 〈A>A〉

)−1
(5.89)

x∗t−1 = Σ∗
t−1

[
Σ−1
t−1µt−1 + 〈A〉>xt

]
, (5.90)

and marginalising outxt−1 yields a Gaussian distribution overxt,

αt(xt) = N(xt | µt,Σt) (5.91)

with mean and covariance given by

Σt =
[
I + 〈C>R−1C〉 − 〈A〉Σ∗

t−1〈A〉>
]−1

(5.92)

µt = Σt

[
〈C>R−1〉yt + 〈A〉Σ∗

t−1Σ
−1
t−1µt−1

]
. (5.93)

This variationalα-message evidently resembles the point-parameter result in (5.80) and (5.81).

Algorithm 5.1 shows the full implementation for the variational Bayesian forward recursion,

including extra terms from the inputs and input-related parametersB andD which were not

derived here to keep the presentation concise. In addition it gives the variational Bayesian

analogues of equations (5.85) and (5.86).

We now see why, for example, equation (5.85) was not simplified using the matrix inversion

lemma — this operation would necessarily split theR−1 andC matrices, yet its variational

Bayesian counterpart requires that expectations be taken over the combined productR−1C.

These expectations cannot be passed through the inversion lemma. Included in appendixB.2

is a proof of the matrix inversion lemma which shows clearly how such expectations would

become disjoined.

5.3.4 Backward recursion: sequential and parallel

In the backward pass information about future observations is incorporated to update the pos-

terior distribution on the current time step. This recursion begins at the last time stept = T

(which has no future observations to take into account) and recurses to the beginning of the

sequence to timet = 0.

There are two different forms for the backward pass. Thesequentialform makes use of the

α-messages from the forward pass and does not need to access information about the current

observation in order to calculate the posterior over the hidden state given all the data. The

parallel form is so-called because it executes all its recursions independently of the forward
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Algorithm 5.1: Forward recursion for variational Bayesian state-space models with inputsu1:T

(variational Kalman filter).

1. Initialise hyperparametersµ0 andΣ0 as the mean and covariance of the auxiliary hidden
statex0

2. For t = 1 to T

(a) Computeαt(xt) = N(xt |µt,Σt)

Σ∗
t−1 =

(
Σ−1
t−1 + 〈A>A〉

)−1

Σt =
(
I + 〈C>R−1C〉 − 〈A〉Σ∗

t−1〈A〉>
)−1

µt = Σt

[
〈C>R−1〉yt + 〈A〉Σ∗

t−1Σ
−1
t−1µt−1

+
(
〈B〉 − 〈A〉Σ∗

t−1〈A>B〉 − 〈C>R−1D〉
)
ut
]

(b) Compute predictive distribution ofyt

ςt =
(
〈R−1〉 − 〈R−1C〉Σt〈R−1C〉>

)−1

$t = ςt
[
〈R−1C〉Σt〈A〉Σ∗

t−1Σ
−1
t−1µt−1

+
(
〈R−1D〉+ 〈R−1C〉Σt

{
〈B〉 − 〈C>R−1D〉 − 〈A〉Σ∗

t−1〈A>B〉
})

ut
]

(c) Computeζ ′t(yt) (see (5.87) and also section5.3.7for details)

ln ζ ′t(yt) = −1
2

[
〈ln |2πR|〉 − ln

∣∣Σ−1
t−1Σ

∗
t−1Σt

∣∣+ µ>
t−1Σ

−1
t−1µt−1 − µ>

t Σ−1
t µt

+ y>t 〈R−1〉yt − 2y>t 〈R−1D〉ut + u>t 〈D>R−1D〉ut

− (Σ−1
t−1µt−1 − 〈A>B〉ut)>Σ∗

t−1(Σ
−1
t−1µt−1 − 〈A>B〉ut)

]
End For

3. Output all computed quantities, including

lnZ ′ =
∑T

t=1 ln ζ ′t(yt)
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pass, and then later combines its messages with those from the forward pass to compute the

hidden state posterior for each time step.

Sequential implementation: point-parameters

In the sequential implementation we define a set ofγ-messages to be the posterior over the

hidden state given all the data. In the case of point-parameters, the recursion is then

γt(xt) ≡ p(xt |y1:T ) (5.94)

=
∫
dxt+1 p(xt,xt+1 |y1:T ) (5.95)

=
∫
dxt+1 p(xt |xt+1,y1:T )p(xt+1 |y1:T ) (5.96)

=
∫
dxt+1 p(xt |xt+1,y1:t) p(xt+1 |y1:T ) (5.97)

=
∫
dxt+1

[
p(xt |y1:t)p(xt+1 |xt)∫
dx′t p(x′t |y1:t)p(xt+1 |x′t)

]
p(xt+1 |y1:T ) (5.98)

=
∫
dxt+1

[
αt(xt)p(xt+1 |xt)∫
dx′t αt(x′t)p(xt+1 |x′t)

]
γt+1(xt+1) . (5.99)

Here the use of Bayes’ rule in (5.98) has had the effect of replacing the explicit data dependence

with functions of theα-messages computed in the forward pass. Integrating outxt+1 yields

Gaussian distributions for the smoothed estimates of the hidden state at each time step:

γt(xt) = N(xt |ωt,Υtt) (5.100)

whereΣ∗
t is as defined in the forward pass according to (5.77) and

Kt =
(
Υ−1
t+1,t+1 +AΣ∗

tA
>
)−1

(5.101)

Υtt =
[
Σ∗
t
−1 −A>KtA

]−1
(5.102)

ωt = Υtt

[
Σ−1
t µt +A>Kt

(
Υ−1
t+1,t+1ωt+1 −AΣ∗

tΣ
−1
t µt

)]
. (5.103)

Note thatKt given in (5.101) is a different matrix to the Kalman gain matrix as found in the

Kalman filtering and smoothing literature, and should not be confused with it.

The sequential version has an advantage in online scenarios: once the data at timet, yt, has been

filtered it can be discarded and is replaced with its message,αt(xt) (see, for example,Rauch,

1963). In this way potentially high dimensional observations can be stored simply as beliefs in

the low dimensional state space.
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Sequential implementation: variational analysis

Unfortunately the step using Bayes’ rule in (5.98) cannot be transferred over to a variational

treatment, and this can be demonstrated by seeing how the termp(xt |xt+1,y1:t) in (5.97) is

altered by the lower bound operation. Up to a normalisation factor,

p(xt |xt+1,y1:t)
VB→ exp

〈
ln p(xt |xt+1,y1:t)

〉
(5.104)

= exp
〈
ln p(xt+1 |xt) + lnαt(xt)− ln

∫
dx′t αt(x

′
t)p(xt+1 |x′t)

〉
(5.105)

The last term in the above equation results in a precision term in the exponent of the form:

ln
∫
dx′t αt(x

′
t)p(xt+1 |x′t) = −1

2

[
I−A

[
Σ−1
t +A>A

]−1
A>
]

+ c. Even though this term is

easy to express for a knownA matrix, its expectation underqA(A) is difficult to compute. Even

with the use of the matrix inversion lemma (see appendixB.2), which yields
(
I +AΣtA

>)−1
,

the expression is still not amenable to expectation.

Parallel implementation: point-parameters

Some of the above problems are ameliorated using the parallel implementation, which we first

derive using point-parameters. The parallel recursion producesβ-messages, defined as

βt(xt) ≡ p(yt+1:T |xt) . (5.106)

These are obtained through a recursion analogous to the forward pass (5.72)

βt−1(xt−1) =
∫
dxt p(xt |xt−1)p(yt |xt)p(yt+1:T |xt) (5.107)

=
∫
dxt p(xt |xt−1)p(yt |xt)βt(xt) (5.108)

∝ N(xt−1 |ηt−1,Ψt−1) (5.109)

with the end condition thatβT (xT ) = 1. Omitting the details, the terms for the backward

messages are given by:

Ψ∗
t =

(
I + C>R−1C + Ψ−1

t

)−1
(5.110)

Ψt−1 =
[
A>A−A>Ψ∗

tA
]−1

(5.111)

ηt−1 = Ψt−1A
>Ψ∗

t

[
C>R−1yt + Ψ−1

t ηt

]
(5.112)
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wheret = {T, . . . , 1}, andΨ−1
T set to0 to satisfy the end condition (regardless ofηT ). The

last step in this recursion therefore finds the probability of all the data given the setting of the

auxiliaryx0 variable.

Parallel implementation: variational analysis

It is straightforward to produce the variational counterpart of the backward parallel pass just

described. Omitting the derivation, the results are presented in algorithm5.2which also includes

the influence of inputs on the recursions.

Algorithm 5.2: Backward parallel recursion for variational Bayesian state-space models with
inputsu1:T .

1. InitialiseΨ−1
T = 0 to satisfy end conditionβT (xT ) = 1

2. For t = T to 1

Ψ∗
t =

(
I + 〈C>R−1C〉+ Ψ−1

t

)−1

Ψt−1 =
(
〈A>A〉 − 〈A〉>Ψ∗

t 〈A〉
)−1

ηt−1 = Ψt−1

[
−〈A>B〉ut

+ 〈A〉>Ψ∗
t

(
〈B〉ut + 〈C>R−1〉yt − 〈C>R−1D〉ut + Ψ−1

t ηt

)]
End For

3. Output{ηt,Ψt}Tt=0

5.3.5 Computing the single and joint marginals

The culmination of the VBE step is to compute the sufficient statistics of the hidden state, which

are the marginals at each time step and the pairwise marginals across adjacent time steps.

In the point-parameter case, one can use the sequential backward pass, and then the single state

marginals are given exactly by theγ-messages, and it only remains to calculate the pairwise

marginals. It is not difficult to show that the terms involvingxt andxt+1 are best represented

with the quadratic term

ln p(xt,xt+1 |y1:T ) = −1
2

(
x>t x>t+1

)( Σ∗
t
−1 −A>

−A K−1
t

)(
xt

xt+1

)
+ const., (5.113)
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whereΣ∗
t is computed in the forward pass (5.77) andKt is computed in the backward sequential

pass (5.101).

We defineΥt,t+1 to be the cross-covariance between the hidden states at timest andt+1, given

all the observationsy1:T :

Υt,t+1 ≡
〈
(xt − 〈xt〉) (xt+1 − 〈xt+1〉)>

〉
, (5.114)

where〈·〉 denotes expectation with respect to the posterior distribution over the hidden state

sequence given all the data. We now make use of the Schur complements (see appendixB.1) of

the precision matrix given in (5.113) to obtain

Υt,t+1 = Σ∗
tA

>Υt+1,t+1 . (5.115)

The variational Bayesian implementation

In the variational Bayesian scenario the marginals cannot be obtained easily with a backward

sequential pass, and they are instead computed by combining theα- andβ-messages as follows:

p(xt |y1:T ) ∝ p(xt |y1:t)p(yt+1:T |xt) (5.116)

= αt(xt)βt(xt) (5.117)

= N(xt |ωt,Υtt) (5.118)

with

Υt,t =
[
Σ−1
t + Ψ−1

t

]−1
(5.119)

ωt = Υt,t

[
Σ−1
t µt + Ψ−1

t ηt
]
. (5.120)

This is computed fort = {0, . . . , T − 1}. At t = 0, α0(x0) is exactly the prior (5.13) over the

auxiliary hidden state; att = T , there is no need for a calculation sincep(xT |y1:T ) ≡ αT (xT ).

Similarly the pairwise marginals are given by

p(xt,xt+1 |y1:T ) ∝ p(xt |y1:t)p(xt+1 |xt)p(yt+1 |xt+1)p(yt+2:T |xt+1) (5.121)

= αt(xt)p(xt+1 |xt)p(yt+1 |xt+1)βt+1(xt+1) , (5.122)
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which under the variational transform becomes

VB→ αt(xt) exp
〈
ln p(xt+1 |xt) + ln p(yt+1 |xt+1)

〉
βt+1(xt+1) (5.123)

= N

([
xt

xt+1

]
|

[
ωt

ωt+1

]
,

[
Υt,t Υt,t+1

Υ>
t,t+1 Υt+1,t+1

])
. (5.124)

With the use of Schur complements again, it is not difficult to show thatΥt,t+1 is given by

Υt,t+1 = Σ∗
t 〈A〉>

(
I + 〈C>R−1C〉+ Ψ−1

t+1 − 〈A〉Σ
∗
t 〈A〉>

)−1
. (5.125)

This cross-covariance is then computed for all time stepst = {0, . . . , T − 1}, which includes

the cross-covariance between the zeroth and first hidden states.

In summary, the entire VBE step consists of a forward pass followed by a backward pass, during

which the marginals can be computed as well straight after eachβ-message.

The required sufficient statistics of the hidden state

In the VBE step we need to calculate the expected sufficient statistics of the hidden state, as

mentioned in theorem2.2. These will then be used in the VBM step which infers the distribution

qθ(θ) over parameters of the system (section5.3.1). The relevant expectations are:

WA =
T∑
t=1

〈xt−1x>t−1〉 =
T∑
t=1

Υt−1,t−1 + ωt−1ω
>
t−1 (5.126)

GA =
T∑
t=1

〈xt−1〉u>t =
T∑
t=1

ωt−1u>t (5.127)

M̃ =
T∑
t=1

ut〈xt〉> =
T∑
t=1

utω>
t (5.128)

SA =
T∑
t=1

〈xt−1x>t 〉 =
T∑
t=1

Υt−1,t + ωt−1ω
>
t (5.129)

WC =
T∑
t=1

〈xtx>t 〉=
T∑
t=1

Υt,t + ωtω
>
t (5.130)

GC =
T∑
t=1

〈xt〉u>t =
T∑
t=1

ωtu>t (5.131)

SC =
T∑
t=1

〈xt〉y>t =
T∑
t=1

ωty>t . (5.132)
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Note thatM andGC are transposes of one another. Also note that all the summations contain

T terms (instead of those for the dynamics model containingT − 1). This is a consequence of

our adoption of a slightly unorthodox model specification of linear dynamical systems which

includes a fictitious auxiliary hidden variablex0.

5.3.6 Hyperparameter learning

The hyperparametersα, β, γ, δ, a andb, and the prior parametersΣ0 andµ0, can be updated

so as to maximise the lower bound on the marginal likelihood (5.30). By taking derivatives of

F with respect to the hyperparameters, the following updates can be derived, applicable after a

VBM step:

α−1
j ←

1
k

[
kΣA + ΣA

[
SAS

>
A − 2GA〈B〉>S>A +GA{kΣB + 〈B〉>〈B〉}G>

A

]
ΣA

]
jj

(5.133)

β−1
j ←

1
k

[
kΣB + 〈B〉>〈B〉

]
jj

(5.134)

γ−1
j ←

1
p

[
pΣC + ΣC

[
SCdiag (ρ)S>C − 2SCdiag (ρ) 〈D〉G>

C

+ pGCΣDG
′
C +GC〈D〉>diag (ρ) 〈D〉G>

C

]
ΣC

]
jj

(5.135)

δ−1
j ←

1
p

[
pΣD + 〈D〉>diag (ρ) 〈D〉

]
jj

(5.136)

where[·]jj denotes its(j, j)th element.

Similarly, in order to maximise the probability of the hidden state sequence under the prior, the

hyperparameters of the prior over the auxiliary hidden state are set according to the distribution

of the smoothed estimate ofx0:

Σ0 ← Υ0,0 , µ0 ← ω0 . (5.137)

Last of all, the hyperparametersa andb governing the prior distribution over the output noise,

R = diag (ρ), are set to the fixed point of the equations

ψ(a) = ln b+
1
p

p∑
s=1

ln ρs ,
1
b

=
1
pa

p∑
s=1

ρs (5.138)

whereψ(x) ≡ ∂/∂x ln Γ(x) is the digammafunction (refer to equations (5.57) and (5.58)

for required expectations). These fixed point equations can be solved straightforwardly using

gradient following techniques (such as Newton’s method) in just a few iterations, bearing in

mind the positivity constraints ona andb (see appendixC.2for more details).
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5.3.7 Calculation ofF

Before we see whyF is hard to compute in this model, we should rewrite the lower bound more

succinctly using the following definitions, in the case of a pair of variablesJ andK:

KL(J) ≡
∫
dJ q(J) ln

q(J)
p(J)

(KL divergence) (5.139)

KL(J |K) ≡
∫
dJ q(J |K) ln

q(J |K)
p(J |K)

(conditional KL) (5.140)

〈KL(J |K)〉q(K) ≡
∫
dK q(K)KL(J |K) (expected conditional KL). (5.141)

Note that in (5.140) the prior overJ may need to be a function ofK for conjugacy reasons (this

is the case for state-space models for the output parametersC andD, and the noiseR). The

notationKL(J |K) is not to be confused withKL(J ||K) which is the KL divergence between

distributionsq(J) and q(K) (which are marginals). The lower boundF (5.26) can now be

written as

F = −KL(B)− 〈KL(A |B)〉q(B)

−KL(ρ)− 〈KL(D |ρ)〉q(ρ) − 〈KL(C |ρ, D)〉q(ρ,D)

+ H(qx(x0:T ))

+ 〈ln p(x1:T ,y1:T |A,B,C,D,ρ)〉q(A,B,C,D,ρ)q(x1:T ) (5.142)

whereH(qx(x0:T )) is the entropy of the variational posterior over the hidden state sequence,

H(qx(x0:T )) ≡ −
∫
dx0:T qx(x0:T ) ln qx(x0:T ) . (5.143)

The reason whyF can not be computed directly is precisely due to both this entropy term

and the last term which takes expectations over all possible hidden state sequences under the

variational posteriorqx(x0:T ). Fortunately, straight after the VBE step, we know the form of

qx(x0:T ) from (5.69), and on substituting this intoH(qx(x0:T )) we obtain

H(qx(x0:T )) ≡ −
∫
dx0:T qx(x0:T ) ln qx(x0:T ) (5.144)

= −
∫
dx0:T qx(x0:T )

[
− lnZ ′

+ 〈ln p(x0:T ,y1:T |A,B,C,D,ρ,µ0,Σ0)〉qθ(A,B,C,D,ρ)

]
(5.145)

= lnZ ′ − 〈ln p(x0:T ,y1:T |A,B,C,D,ρ,µ0,Σ0)〉qθ(A,B,C,D,ρ)qx(x0:T )

(5.146)
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where the last line follows sincelnZ ′ is not a function of the state sequencex0:T . Substituting

this form (5.146) into the above form forF (5.142) cancels the expected complete-data term in

both equations and yields a simple expression for the lower bound

F = −KL(B)− 〈KL(A |B)〉q(B)

−KL(ρ)− 〈KL(D |ρ)〉q(ρ) − 〈KL(C |ρ, D)〉q(ρ,D)

+ lnZ ′ . (5.147)

Note that this simpler expression is only valid straight after the VBE step. The various KL

divergence terms are straightforward, yet laborious, to compute (see sectionC.3for details).

We still have to evaluate the log partition function,lnZ ′. It is not as complicated as the in-

tegral in equation (5.70) suggests — at least in the point-parameter scenario we showed that

lnZ ′ =
∑T

t=1 ln ζt(yt), as given in (5.83). With some care we can derive the equivalent terms

{ζ ′t(yt)}Tt=1 for the variational Bayesian treatment, and these are given in part (c) of algorithm

5.1. Note that certain terms cancel across time steps and so the overall computation can be made

more efficient if need be.

Alternatively we can calculatelnZ ′ from direct integration of the joint (5.70) with respect to

each hidden variable one by one. In principal the hidden variables can be integrated out in any

order, but at the expense of having to store statistics for many intermediate distributions.

The complete learning algorithm for state-space models is presented in algorithm5.3. It consists

of repeated iterations of the VBM step, VBE step, calculation ofF , and hyperparameter updates.

In practice one does not need to computeF at all for learning. It may also be inefficient to

update the hyperparameters after every iteration of VBEM, and for some applications in which

the user is certain of their prior specifications, then a hyperparameter learning scheme may not

be required at all.

5.3.8 Modifications when learning from multiple sequences

So far in this chapter the variational Bayesian algorithm has concentrated on just a data set

consisting of a single sequence. For a data set consisting ofn i.i.d. sequences with lengths

{T1, . . . , Tn}, denotedy = {y1,1:T1 , . . . ,yn,1:Tn}, it is straightforward to show that the VB

algorithm need only be slightly modified to take into account the following changes.
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Algorithm 5.3: Pseudocode for variational Bayesian state-space models.

1. Initialisation

Θ ≡ {α,β,γ, δ} ← initialise precision hyperparameters

µ0,Σ0 ← initialise hidden state priors

hss← initialise hidden state sufficient statistics

2. Variational M step (VBM)

Infer parameter posteriorsqθ(θ) using{hss,y1:T ,u1:T ,Θ}

q(B), q(A |B), q(ρ), q(D |ρ), andq(C |ρ, D)

φ← calculate expected natural parameters using equations (5.52-5.67)

3. Variational E step (VBE)

Infer distribution over hidden stateqx(x0:T ) using{φ,y1:T ,u1:T }

computeαt(xt) ≡ p(xt |y1:t) t ∈ {1, . . . , T} (forward pass, algorithm5.1),

computeβt(xt) ≡ p(yt+1:T |xt) t ∈ {0, . . . , T −1} (backward pass, algorithm5.2),

computeωt,Υt,t t ∈ {0, . . . , T} (marginals), and

computeΥt,t+1 t ∈ {0, . . . , T − 1} (cross-covariance).

hss← calculate hidden state sufficient statistics using equations (5.126-5.132)

4. ComputeF

Compute various parameter KL divergences (appendixC.3)

Compute log partition function,lnZ ′ (equation (5.70), algorithm5.1)

F = −KL(B)− 〈KL(A |B)〉 −KL(ρ)− 〈KL(D |ρ)〉 − 〈KL(C |ρ, D)〉+ lnZ ′

5. Update hyperparameters

Θ← update precision hyperparameters using equations (5.133-5.136)

{µ0,Σ0} ← update auxiliary hidden statex0 prior hyperparameters using (5.137)

{a, b} ← update noise hyperparameters using (5.138)

6. WhileF is increasing, go to step2
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In the VBE step, the forward and backward passes of algorithms5.1and5.2are carried out on

each sequence, resulting in a set of sufficient statistics for each of then hidden state sequences.

These are then pooled to form a combined statistic. For example, equation (5.126) becomes

W
(i)
A =

Ti∑
t=1

〈xi,t−1x>i,t−1〉 =
Ti∑
t=1

Υi,t−1,t−1 + ωi,t−1ω
>
i,t−1 , (5.148)

and then WA =
n∑
i=1

W
(i)
A , (5.149)

whereΥi,t,t andωi,t are the results of the VBE step on theith sequence. Each of the required

sufficient statistics in equations (5.126-5.132) are obtained in a similar fashion. In addition, the

number of time stepsT is replaced with the total over all sequencesT =
∑n

i=1 Ti.

Algorithmically, the VBM step remains unchanged, as do the updates for the hyperparameters

{α,β,γ, δ, a, b}. The updates for the hyperparametersµ0 andΣ0, which govern the mean and

covariance of the auxiliary hidden state at timet = 0 for every sequence, have to be modified

slightly and become

µ0 ←
1
n

n∑
i=1

ωi,0 , (5.150)

Σ0 ←
1
n

n∑
i=1

[
Υi,0,0 + (µ0 − ωi,0)(µ0 − ωi,0)>

]
, (5.151)

where theµ0 appearing in the update forΣ0 is the updated hyperparameter. In the case of

n = 1, equations (5.150) and (5.151) resemble their originals forms given in section5.3.6.

Note that these batch updates trivially extend the analogous result for ML parameter estimation

of linear dynamical systems presented by Ghahramani and Hinton (Ghahramani and Hinton,

1996a, equation (25)), since here we do not assume that the sequences are equal in length (it is

clear from the forward and backward algorithms in both the ML and VB implementations that

the posterior variance of the auxiliary stateΥi,0,0 will only be constant if all the sequences have

the same length).

Finally the computation of the lower boundF is unchanged except that it now involves a con-

tribution from each sequence

F = −KL(B)− 〈KL(A |B)〉q(B)

−KL(ρ)− 〈KL(D |ρ)〉q(ρ) − 〈KL(C |ρ, D)〉q(ρ,D) +
n∑
i=1

lnZ ′(i) ,

wherelnZ ′(i) is computed in the VBE step in algorithm5.1for each sequence individually.
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5.3.9 Modifications for a fully hierarchical model

As mentioned towards the end of section5.2.2, the hierarchy of hyperparameters for priors over

the parameters is not complete for this model as it stands. There remains the undesirable feature

that the parametersΣ0 andµ0 contain more free parameters as the dimensionality of the hidden

state increases. There is a similar problem for the precision hyperparameters. We refer the

reader to chapter4 in which a similar structure was used for the hyperparameters of the factor

loading matrices.

With such variational distributions in place for VB LDS, the propagation algorithms would

change, replacing, for example,α, with its expectation over its variational posterior,〈α〉q(α),

and the hyperhyperparametersaα, bα of equation (5.17) would be updated to best fit the vari-

ational posterior forα, in the same fashion that the hyperparametersa, b are updated to reflect

the variational posterior onρ (section5.3.6). In addition a similar KL penalty term would arise.

For the parametersΣ0 andµ0, again KL terms would crop up in the lower bound, and where

these quantities appeared in the propagation algorithms they would have to be replaced with

their expectations under their variational posterior distributions.

These modifications were considered too time-consuming to implement for the experiments

carried out in the following section, and so we should of course be mindful of their exclusion.

5.4 Synthetic Experiments

In this section we give two examples of how the VB algorithm for linear dynamical systems

can discover meaningful structure from the data. The first example is carried out on a data set

generated from a simple LDS with no inputs and a small number of hidden states. The second

example is more challenging and attempts to learn the number of hidden states and their dynam-

ics in the presence of noisy inputs. We find in both experiments that the ARD mechanism which

optimises the precision hyperparameters can be used successfully to determine the structure of

the true generating model.

5.4.1 Hidden state space dimensionality determination (no inputs)

An LDS with hidden state dimensionality ofk = 6 and an output dimensionality ofp = 10 was

set up with parameters randomly initialised according to the following procedure.

The dynamics matrixA (k × k) was fixed to have eigenvalues of(.65, .7, .75, .8, .85, .9), con-

structed from a randomly rotated diagonal matrix; choosing fairly high eigenvalues ensures that
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10 20 30 50 100 150 200 250 300

A
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Figure 5.4: Hinton diagrams of the dynamics (A) and output (C) matrices after 500 iterations
of VBEM. From left to right, the length of the observed sequencey1:T increases fromT =
10 to 300. This true data was generated from a linear dynamical system withk = 6 hidden
state dimensions, all of which participated in the dynamics (see text for a description of the
parameters used). As a visual aid, the entries ofA matrix and the columns of theC matrix have
been permuted in the order of the size of the hyperparameters inγ.

every dimension participates in the hidden state dynamics. The output matrixC (p×k) had each

entry sampled from a bimodal distribution made from a mixture of two Gaussians with means

at (2,-2) and common standard deviations of 1; this was done in an attempt to keep the matrix

entries away from zero, such that every hidden dimension contributes to the output covariance

structure. Both the state noise covarianceQ and output noise covarianceR were set to be the

identity matrix. The hidden state at timet = 1 was sampled from a Gaussian with mean zero

and unit covariance.

From this LDS model several training sequences of increasing length were generated, ranging

fromT = 10, . . . , 300 (the data sets are incremental). A VBLDS model with hidden state space

dimensionalityk = 10 was then trained on each single sequence, for a total of 500 iterations

of VBEM. The resultingA andC matrices are shown in figure5.4. We can see that for short

sequences the model chooses a simple representation of the dynamics and output processes,

and for longer sequences the recovered model is the same as the underlying LDS model which

generated the sequences. Note that the model learns a predominantly diagonal dynamics matrix,

or a self-reinforcing dynamics (this is made obvious by the permutation of the states in the

figure (see caption), but is not a contrived observation). The likely reason for this is the prior’s

preference for theA matrix to have small sum-of-square entries for each column; since the

dynamics matrix has to capture a certain amount of power in the hidden dynamics, the least

expensive way to do this is to place most of the power on the diagonal entries.

Plotted in figure5.5are the trajectories of the hyperparametersα andγ, during the VB optimi-

sation for the sequence of lengthT = 300. For each hidden dimensionj the output hyperparam-

eterγj (vertical) is plotted against the dynamics hyperparameterαj . It is in fact the logarithm

of thereciprocalof the hyperparameter that is plotted on each axis. Thus if a hidden dimension

becomes extinct, the reciprocal of its hyperparameter tends to zero (bottom left of plots). Each

component of each hyperparameter is initialised to 1 (see annotation for iteration 0, at top right

of plot 5.5(a)), and during the optimisation some dimensions become extinct. In this example,

four hidden state dimensions become extinct, both in their ability to participate in the dynamics
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(a) Hidden state inverse-hyperparameter tra-
jectories (logarithmic axes).
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Figure 5.5: Trajectories of the hyperparameters for the casen = 300, plotted asln 1
α (horizon-

tal axis) againstln 1
γ (vertical axis). Each trace corresponds to one ofk hidden state dimen-

sions, with points plotted after each iteration of VBEM. Note the initialisation of(1, 1) for all
(αj , γj), j = 1, . . . , k (labelled iteration 0). The direction of each trajectory can be determined
by noting the spread of positions at successive iterations, which are resolvable at the begin-
ning of the optimisation, but not so towards the end (see annotated close-up). Note especially
that four hyperparameters are flung to locations corresponding to very small variances of the
prior for both theA andC matrix columns (i.e. this has effectively removed those hidden state
dimensions), and six remain in the top right with finite variances. Furthermore, the L-shaped
trajectories of the eventually extinct hidden dimensions imply that in this example the dimen-
sions are removed first from the model’s dynamics, and then from the output process (see figure
5.8(a,c) also).

and their contribution to the covariance of the output data. Six hyperparameters remain useful,

corresponding tok = 6 in the true model. The trajectories of these are seen more clearly in

figure5.5(b).

5.4.2 Hidden state space dimensionality determination (input-driven)

This experiment demonstrates the capacity of the input-driven model to use (or not to use) an

input-sequence to model the observed data. We obtained a sequencey1:T of lengthT = 100 by

running the linear dynamical system as given in equations (5.4,5.5), with a hidden state space

dimensionality ofk = 2, generating an observed sequence of dimensionalityp = 4. The input

sequence,u1:T , consisted of three signals: the first two wereπ
2 phase-lagged sinusoids of period

50, and the third dimension was uniform noise∼ U(0, 1).

The parametersA,C, andRwere created as described above (section5.4.1). The eigenvalues of

the dynamics matrix were set to(.65, .7), and the covariance of the hidden state noise set to the

identity. The parameterB (k×u) was set to the all zeros matrix, so the inputs did not modulate
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the hidden state dynamics. The first two columns of theD (p × u) matrix were sampled from

the uniformU(−10, 10), so as to induce a random (but fixed) displacement of the observation

sequence. The third column of theD matrix was set to zeros, so as to ignore the third input

dimension (noise). Therefore the only noise in the training data was that from the state and

output noise mechanisms (Q andR).

Figure5.6shows the input sequence used, the generated hidden state sequence, and the result-

ing observed data, overT = 100 time steps. We would like the variational Bayesian linear

dynamical system to be able to identify the number of hidden dimensions required to model

the observed data, taking into account the modulatory effect of the input sequence. As in the

previous experiment, in this example we attempt to learn an over-specified model, and make use

of the ARD mechanisms in place to recover the structure of the underlying model that generated

the data.

In full, we would like the model to learn that there arek = 2 hidden states, that the third

input dimension is irrelevant to predicting the observed data, that all the input dimensions are

irrelevant for the hidden state dynamics, and that it is only the two dynamical hidden variables

that are being embedded in the data space.

The variational Bayesian linear dynamical system was run withk = 4 hidden dimensions, for

a total of 800 iterations of VBE and VBM steps (see algorithm5.3 and its sub-algorithms).

Hyperparameter optimisations after each VBM step were introduced on a staggered basis to

ease interpretability of the results. The dynamics-related hyperparameter optimisations (i.e.α

andβ) were begun after the first 10 iterations, the output-related optimisations (i.e.γ andδ)

after 20 iterations, and the remaining hyperparameters (i.e.a, b, Σ0 andµ0) optimised after 30

iterations. After each VBE step,F was computed and the current state of the hyperparameters

recorded.

Figure5.7 shows the evolution of the lower bound on the marginal likelihood during learning,

displayed as both the value ofF computed after each VBE step (figure5.7(a)), and thechange

in F between successive iterations of VBEM (figure5.7(b)). The logarithmic plot shows the

onset of each group of hyperparameter optimisations (see caption), and also clearly shows three

regions where parameters are being pruned from the model.

As before we can analyse the change in the hyperparameters during the optimisation process. In

particular we can examine the ARD hyperparameter vectorsα,β,γ, δ, which contain the prior

precisions for the entries of each column of each of the matricesA,B,C andD respectively.

Since the hyperparameters are updated to reflect the variational posterior distribution over the

parameters, a large value suggest that the relevant column contains entries are close to zero, and

therefore can be considered excluded from the state-space model equations (5.4) and (5.5).

192



VB Linear Dynamical Systems 5.4. Synthetic Experiments

0 20 40 60 80 100
−1

0

1

(a) 3 dimensional input sequence.
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(b) 2 dimensional hidden state sequence.
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(c) 4 dimensional observed data.

Figure 5.6: Data for the input-driven example in section5.4.2. (a): The 3 dimensional input
data consists of two phase-lagged sinusoids of period 50, and a third dimension consisting of
noise uniformly distributed on[0, 1]. BothB andD contain zeros in their third columns, so the
noise dimension is not used when generating the synthetic data.(b): The hidden state sequence
generated from the dynamics matrix,A, which in this example evolves independently of the
inputs. (c): The observed data, generated by combining the embedded hidden state sequence
(via the output matrixC) and the input sequence (via the input-output matrixD), and then
adding noise with covarianceR. Note that the observed data is now a sinusoidally modulated
simple linear dynamical system.
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(a) Evolution ofF during iterations of VBEM.
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(b) Change inF between successive iterations.

Figure 5.7: Evolution of the lower boundF during learning of the input-dependent model of
section5.4.2. (a): The lower boundF increases monotonically with iterations of VBEM.(b):
Interesting features of the optimisation can be better seen in a logarithmic plot of the change of
F between successive iterations of VBEM. For example, it is quite clear there is a sharp increase
in F at 10 iterations (dynamics-related hyperparameter optimisation activated), at 20 iterations
(output-related hyperparameter optimisation activated), and at 30 iterations (the remaining hy-
perparameter optimisations are activated). The salient peaks around 80, 110, and 400 iterations
each correspond to the gradual automatic removal of one or more parameters from the model by
hyperparameter optimisation. For example, it is quite probable that the peak at around iteration
400 is due to the recovery of the first hidden state modelling the dynamics (see figure5.8).
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Figure5.8 displays the components of each of the four hyperparameter vectors throughout the

optimisation. The reciprocal of the hyperparameter is plotted since it is more visually intuitive

to consider the variance of the parameters falling to zero as corresponding to extinction, instead

of the precision growing without bound. We can see that, by 500 iterations, the algorithm has

(correctly) discovered that there are only two hidden variables participating in the dynamics

(from α), these same two variables are used as factors embedded in the output (fromγ), that

none of the input dimensions is used to modulate the hidden dynamics (fromβ), and that just

two dimensions of the input are required to displace the data (fromδ). The remaining third

dimension of the input is in fact disregarded completely by the model, which is exactly according

to the recipe used for generating this synthetic data.

Of course, with a smaller data set, the model may begin to remove some parameters corre-

sponding to arcs of influence between variables across time steps, or between the inputs and

the dynamics or outputs. This and the previous experiment suggest that with enough data, the

algorithm will generally discover a good model for the data, and indeed recover the true (or

equivalent) model if the data was in fact generated from a model within the class of models

accessible by the specified input-dependent linear dynamical system.

Although not observed in the experiment presented here, some caution needs to be taken with

much larger sequences to avoid local minima in the optimisation. In the larger data sets the

problems of local maxima or very long plateau regions in the optimisation become more fre-

quent, with certain dimensions of the latent space modelling either the dynamics or the output

processes, but not both (or neither). This problem is due to the presence of a dynamics model

coupling the data across each time step. Recall that in the factor analysis model (chapter4),

because of the spherical factor noise model, ARD can rotate the factors into a basis where the

outgoing weights for some factors can be set to zero (by taking their precisions to infinity). Un-

fortunately this degeneracy is not present for the hidden state variables of the LDS model, and

so concerted efforts are required to rotate the hidden state along the entire sequence.

5.5 Elucidating gene expression mechanisms

Description of the process and data

The data consists ofn = 34 time series of the expressions of genes involved in a transcriptional

process in the nuclei of human T lymphocytes. Each sequence consists ofT = 10 measurements

of the expressions ofp = 88 genes, at time points(0, 2, 4, 6, 8, 18, 24, 32, 48, 72) hours after a

treatment to initiate the transcriptional process (seeRangel et al., 2001, section 2.1). For each

sequence, the expression levels of each gene were normalised to have mean 1, by dividing by

the mean gene expression over the 10 time steps. This normalisation reflects our interest in
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Figure 5.8: Evolution of the hyperparameters with iterations of variational Bayesian EM, for
the input-driven model trained on the data shown in figure5.6 (see section5.4.2). Each plot
shows the reciprocal of the components of a hyperparameter vector, corresponding to the prior
variance of the entries of each column of the relevant matrix. The hyperparameter optimisation
is activated after 10 iterations of VBEM for the dynamics-related hyperparametersα andβ,
after 20 iterations for the output-related hyperparametersγ andδ, and after 30 for the remaining
hyperparmeters.(a): After 150 iterations of VBEM, 1

α3
→ 0 and 1

α4
→ 0, which corresponds

to the entries in the 3rd and 4th columns ofA tending to zero. Thus only the remaining two
hidden dimensions (1,2) are being used for the dynamics process.(b): All hyperparameters in
the β vector grow large, corresponding to each of the column entries inB being distributed
about zero with high precision; thus none of the dimensions of the input vector is being used
to modulate the hidden state.(c): Similar to theA matrix, two hyperparameters in the vector
γ remain small, and the remaining two increase without bound,1

γ3
→ 0 and 1

γ4
→ 0. This

corresponds to just two hidden dimensions (factors) causing the observed data through theC
embedding. These are thesamedimensions as used for the dynamics process, agreeing with
the mechanism that generated the data.(d): Just one hyperparameter,1

δ3
→ 0, corresponding

to the model ignoring the third dimension of the input, which is a confusing input unused in
the true generation process (as can be seen from figure5.6(a)). Thus the model learns that this
dimension is irrelevant to modelling the data.
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Figure 5.9: The gene expression data ofRangel et al.(2001). Each of the 88 plots corresponds
to a particular gene on the array, and contains all of the recorded 34 sequences each of length
10.

the profiles of the genes rather than the absolute expression levels. Figure5.9shows the entire

collection of normalised expression levels for each gene.

A previous approach to modelling gene expression levels which used graphical models to model

the causal relationships between genes is presented inFriedman et al.(2000). However, this ap-

proach ignored the temporal dependence of the gene intensities during trials and went only as

far as to infer the causal relationships between the genes within one time step. Their method dis-

cretised expression levels and made use of efficient candidate proposals and greedy methods for

searching the space of model structures. This approach also assumed that all the possibly inter-

acting variables are observed on the microarray. This precludes the existence of hidden causes

or unmeasured genes whose involvement might dramatically simplify the network structure and

therefore ease interpretability of the mechanisms in the underlying biological process.

Linear dynamical systems and other kinds of possibly nonlinear state-space models are a good

class of model to begin modelling this gene expression data. The gene expression measurements

are the noisy 88-dimensional outputs of the linear dynamical system, and the hidden states of

the model correspond to unobserved factors in the gene transcriptional process which are not

recorded in the DNA microarray — they might correspond simply to unmeasured genes, or

they could model more abstractly the effect of players other than genes, for example regulatory

proteins and background processes such as mRNA degradation.
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Some aspects of using the LDS model for this data are not ideal. For example, we make the

assumptions that the dynamics and output processes are time invariant, which is unlikely in a

real biological system. Furthermore the times at which the data are taken are not linearly-spaced

(see above), which might imply that there is some (possibly well-studied) non-linearity in the

rate of the transcriptional process; worse still, there may be whole missing time slices which, if

they had been included, would have made the dynamics process closer to stationary. There is

also the usual limitation that the noise in the dynamics and output processes is almost certainly

not Gaussian.

Experiment results

In this experiment we use the input-dependent LDS model, andfeed backthe gene expressions

from the previous time step into the input for the current time step; in doing so we attempt

to discover gene-gene interactions across time steps (in a causal sense), with the hidden state

in this model now really representing unobserved variables. An advantage of this architecture

is that we can now use the ARD mechanisms to determine which genes are influential across

adjacent time slices, just as before (in section5.4.2) we determined which inputs were relevant

to predicting the data.

A graphical model for this setup is given in figure5.10. When the input is replaced with the

previous time step’s observed data, the equations for the state-space model can be rewritten from

equations (5.4) and (5.5) into the form:

xt = Axt−1 +Byt−1 + wt (5.152)

yt = Cxt +Dyt−1 + vt . (5.153)

As a function only of the data at the previous time step,yt−1, the data at timet can be written

yt = (CB +D)yt−1 + rt , (5.154)

wherert = vt + Cwt + CAxt−1 includes all contributions from noise and previous states.

Thus to first order the interaction between gened and genea can be characterised by the element

[CB +D]ad of the matrix. Indeed this matrix need not be symmetric and the element represents

activation or inhibition from gened to genea at the next time step, depending on its sign. We

will return to this quantity shortly.

5.5.1 Generalisation errors

For this experiment we trained both variational Bayesian and MAP LDS models on the first

30 of the 34 gene sequences, with the dimension of the hidden state ranging fromk = 1 to
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Figure 5.10: The feedback graphical model with outputs feeding into inputs.

20. The remaining 4 sequences were set aside as a test set. Since we required an input at time

t = 1, u1, the observed sequences that were learnt began from time stept = 2. The MAP

LDS model was implemented using the VB LDS with the following two modifications: first,

the hyperparametersα,β,γ, δ anda, b were not optimised (however, the auxiliary state prior

meanµ0 and covarianceΣ0 were learnt); second, the sufficient statistics for the parameters were

artificially boosted by a large factor to simulate delta functions for the posterior — i.e. in the

limit of largen the VBM step recovers the MAP M step estimate of the parameters.

Both algorithms were run for 300 EM iterations, with no restarts. The one-step-ahead mean

total square reconstruction error was then calculated for both the training sequences and the test

sequences using the learnt models; the reconstruction of thetth observation for theith sequence,

yi,t, was made like so:

ŷMAP
i,t = CMAP〈xi,t〉qx +DMAPyi,t−1 (5.155)

ŷVB
i,t = 〈C〉qC 〈xi,t〉qx + 〈D〉qDyi,t−1 . (5.156)

To clarify the procedure: to reconstruct the observations for theith sequence, we use the entire

observation sequenceyi,1:T to first infer the distribution over the hidden state sequencexi,1:T ,

and then we attempt to reconstruct eachyi,t using just the hidden statexi,t andyi,t−1. The form

given for the VB reconstruction in (5.156) is valid since, subject to the approximate posterior:

all of the variational posterior distributions over the parameters and hidden states are Gaussian,

C andxt are independent, and the noise is Student-t distributed with mean zero.

Thus for each value ofk, and for each of the MAP and VB learnt models, the total squared error

per sequence is calculated according to:

Etrain =
1

ntrain

∑
i∈train

Ti∑
t=2

(ŷi,t − yi,t)
2 (5.157)

Etest =
1
ntest

∑
i∈test

Ti∑
t=2

(ŷi,t − yi,t)
2 . (5.158)
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Figure 5.11: The per sequence squared reconstruction error for one-step-ahead prediction (see
text), as a function of the dimension of the hidden state, ranging fromk = 1 to 64, on(a) the 30
training sequences, and(b) the 4 test sequences.

Figure5.11shows the squared reconstruction error for one-step-ahead prediction, as a function

of the dimension of the hidden state for both the training and test sequences. We see that the

MAP LDS model achieves a decreasing reconstruction error on the training set as the dimen-

sionality of the hidden state is increased, whereas VB produces an approximately constant error,

albeit higher. On prediction for the test set, MAP LDS performs very badly and increasingly

worse for more complex learnt models, as we would expect; however, the VB performance is

roughly constant with increasingk, suggesting that VB is using the ARD mechanism success-

fully to discard surplus modelling power. The test squared prediction error is slightly more than

that on the training set, suggesting that VB is overfitting slightly.

5.5.2 Recovering gene-gene interactions

We now return to the interactions between genesd anda – more specifically the influence of

gened on genea – in the matrix[CB +D]. Those entries in the matrix which are significantly

different from zero can be considered as candidates for ‘interactions’. Here we consider an

entry to be significant if the zero point is more than 3 standard deviations from the posterior

mean for that entry (based on the variational posterior distribution for the entry). Calculating

the significance for the combinedCB+D matrix is laborious, and so here we provide results for

only theD matrix. Since there is a degeneracy in the feedback model, we chose to effectively

remove the first term,CB, by constraining all (but one) of the hyperparameters inβ to very high

values. The spared hyperparameter inβ is used to still model an offset in the hidden dynamics

using the bias input. This process essentially enforces[CB]ad = 0 for all gene-gene pairs, and

so simplifies the interpretation of the learnt model.
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Figure5.12shows the interaction matrix learnt by the MAP and VB models (with the column

corresponding the bias removed), for the case ofk = 2 hidden state dimensions. For the MAP

result we simply showD + CB. We see that the MAP and VB matrices share some aspects in

terms of the signs and size of some of the interactions, but under the variational posterior only

a few of the interactions are significantly non-zero, leading to a very sparse interaction matrix

(see figure5.13). Unfortunately, due to proprietary restrictions on the expression data the iden-

tities of the genes cannot be published here, so it is hard to give a biological interpretation to the

network in figure5.13. The hope is that these graphs suggest interactions which agree qualita-

tively with the transcriptional mechanisms already established in the research community. The

ultimate result would be to be able to confidently predict the existence of as-yet-undocumented

mechanisms to stimulate and guide future biological experiments. The VB LDS algorithm may

provide a useful starting point for this research programme.

5.6 Possible extensions and future research

The work in this chapter can be easily extended to linear-Gaussian state-space models on trees,

rather than chains, which could be used to model a variety of data. Moreover, for multiply-

connected graphs, the VB propagation subroutine can still be used within a structured VB ap-

proximation.

Another interesting application of this body of theory could be to a Bayesian version of what

we call aswitching state-space model(SwSSM), which has the following dynamics:

a switch variablest with dynamics p(st = i | st−1 = j) = Tij , (5.159)

hidden state dynamicsp(xt | st−1,xt−1) = N(xt |Ast−1xt−1, Qst−1) , (5.160)

and output function p(yt | st,xt) = N(yt | Cstxt, Rst) . (5.161)

That is to say we have a non-stationary switching linear dynamical system whose parameters are

drawn from a finite set according to a discrete variable with its own dynamics. The appealing

aspect of this model is that it contains many models as special cases, including: mixtures of

factor analysers, mixtures of linear dynamical systems, Gaussian-output hidden Markov models,

and mixtures of Gaussians. With appropriate optimisation of the lower bound on the marginal

likelihood, one would hope that the data would provide evidence that one or other, or indeed

hybrids, of the above special cases was the underlying generating model, or best approximates

the true generating process in some sense. We have seen an example of variational Bayesian

learning for hidden Markov models in chapter3.

We have not commented on how reliably we expect the variational Bayesian method to approx-

imate the marginal likelihood. Indeed a full analysis of the tightness of the variational bound
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(a) The MAP EM solution[D + CB]ad. (b) Means〈Dad〉 after VBEM.

(c) Variances〈D2
ad〉 − 〈Dad〉2 after VBEM. (d) Significant entries ofD underqD(D).

Figure 5.12: The gene-gene interaction matrix learnt from the(a) MAP and (b) VB models
(with the column corresponding to the bias input removed). Note that some of the entries are
similar in each of the two matrices. Also shown is(c) the covariance of the posterior distribution
of each element, which is a separable product of functions of each of the two genes’ identities.
Show in(d) are the entries of〈Dad〉 which are significantly far from zero, that is the value of
zero is more than 3 standard deviations from the mean of the posterior.
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Figure 5.13: An example representation of the recovered interactions in theD matrix, as shown
in figure5.12(d). Each arc between two genes represents a significant entry inD. Red (dotted)
and green (solid) denote inhibitory and excitatory influences, respectively. The direction of the
influence is from the the thick end of the arc to the thin end. Ellipses denote self-connections.
To generate this plot the genes were placed randomly and then manipulated slightly to reduce
arc-crossing.
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would require sampling for this model (as carried out inFrüwirth-Schnatter, 1995, for exam-

ple). This is left for further work, but the reader is referred to chapter4 of this thesis and also

to Miskin (2000), where sampling estimates of the marginal likelihood are directly compared to

the VB lower bound and found to be comparable for practical problems.

We can also model higher than first order Markov processes using this model, by extending the

feedback mechanism used in section5.5. This could be achieved by feeding back concatenated

observed datayt−d:t−1 into the current input vectorut, whered is related to the maximum order

present in the data. This procedure is common practice to model higher order data, but in our

Bayesian scheme we can also learn posterior uncertainties for the parameters of the feedback,

and can entirely remove some of the inputs via the hyperparameter optimisation.

This chapter has dealt solely with the case of linear dynamics and linear output processes with

Gaussian noise. Whilst this is a good first approximation, there are many scenarios in which

a non-linear model is more appropriate, for one or both of the processes. For example,Särel̈a

et al. (2001) present a model with factor analysis as the output process and a two layer MLP

network to model a non-linear dynamics process from one time step to the next, andValpola

and Karhunen(2002) extend this to include a non-linear output process as well. In both, the

posterior is assumed to be of (constrained) Gaussian form and a variational optimisation is

performed to learn the parameters and infer the hidden factor sequences. However, their model

does not exploit the full forward-backward propagation and instead updates the hidden state one

step forward and backward in time at each iteration.

5.7 Summary

In this chapter we have shown how to approximate the marginal likelihood of a Bayesian linear

dynamical system using variational methods. Since the complete-data likelihood for the LDS

model is in the conjugate-exponential family it is possible to write down a VBEM algorithm

for inferring the hidden state sequences whilst simultaneously maintaining uncertainty over the

parameters of the model, subject to the approximation that the hidden variables and parameters

are independent given the data.

Here we have had to rederive the forward and backward passes in the VBE step in order for them

to take as input the natural parameter expectations from the VBM step. It is an open problem

to prove that for LDS models the natural parameter mappingφ(θ) is not invertible; that is

to say there exists nõθ in general that satisfiesφ(θ̃) = φ = 〈φ(θ)〉qθ(θ). We have therefore

derived here the variational Bayesian counterparts of the Kalman filter and Rauch-Tung-Striebel

smoother, which can in fact be supplied withanydistribution over the parameters. As with other

conjugate-exponential VB treatments, the propagation algorithms have the same complexity as

the MAP point-parameter versions.
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We have shown how the algorithm can use the ARD procedure of optimising precision hyperpa-

rameters to discover the structure of models of synthetic data, in terms of the number of required

hidden dimensions. By feeding back previous data into the inputs of the model we have shown

how it is possible to elucidate interactions between genes in a transcription mechanism from

DNA microarray data. Collaboration is currently underway to interpret these results (personal

communication with D. Wild and C. Rangel).
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Chapter 6

Learning the structure of

discrete-variable graphical models

with hidden variables

6.1 Introduction

One of the key problems in machine learning and statistics is how to learn the structure of graph-

ical models from data. This entails determining the dependency relations amongst the model

variables that are supported by the data. Models of differing complexities can be rated accord-

ing to their posterior probabilities, which by Bayes’ rule are related to the marginal likelihood

under each candidate model.

In the case of fully observed discrete-variable directed acyclic graphs with Dirichlet priors on

the parameters it is tractable to compute the marginal likelihood of a candidate structure and

therefore obtain its posterior probability (or a quantity proportional to this). Unfortunately,

in graphical models containing hidden variables the calculation of the marginal likelihood is

generally intractable for even moderately sized data sets, and its estimation presents a difficult

challenge for approximate methods such as asymptotic-data criteria and sampling techniques.

In this chapter we investigate a novel application of the VB framework to approximating the

marginal likelihood of discrete-variable directed acyclic graph (DAG) structures that contain

hidden variables. We call approximations to a model’s marginal likelihoodscores. We first

derive the VB score, which is simply the result of a VBEM algorithm applied to DAGs, and

then assess its performance on a model selection task: finding the particular structure (out of a

small class of structures) that gave rise to the observed data. We also derive and evaluate the

BIC and Cheeseman-Stutz (CS) scores and compare these to VB for this problem.
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We also compare the BIC, CS, and VB scoring techniques to annealed importance sampling

(AIS) estimates of the marginal likelihood. We consider AIS to be a “gold standard”, the best

method for obtaining reliable estimates of the marginal likelihoods of models explored in this

chapter (personal communication with C. Rasmussen, Z. Ghahramani, and R. Neal). We have

used AIS in this chapter to perform the first serious case study of the tightness of variational

bounds. An analysis of the limitations of AIS is also provided. The aim of the comparison is

to convince us of the reliability of VB as an estimate of the marginal likelihood in the general

incomplete-data setting, so that it can be used in larger problems, for example embedded in a

(greedy) structure search amongst a much larger class of models.

In section6.2we begin by examining the model selection question for discrete directed acyclic

graphs, and show how exact marginal likelihood calculation rapidly becomes computationally

intractable when the graph contains hidden variables. In section6.3 we briefly cover the EM

algorithm for ML and MAP parameter estimation in DAGs with hidden variables, and discuss

the BIC, Laplace and Cheeseman-Stutz asymptotic approximations. We then present the VBEM

algorithm for variational Bayesian lower bound optimisation, which in the case of discrete DAGs

is a straightforward generalisation of the MAP EM algorithm. In section6.3.5we describe in

detail an annealed importance sampling method for estimating marginal likelihoods of discrete

DAGs. In section6.4 we evaluate the performance of these different scoring methods on the

simple (yet non-trivial) model selection task of determining which of all possible structures

within a class generated a data set. Section6.5 discusses some related topics which expand

on the methods used in this chapter: first, we give an analysis of the limitations of the AIS

implementation and suggest possible extensions for it; second, we more thoroughly consider

the parameter-counting arguments used in the BIC and CS scoring methods, and reformulate

a more successful score. Finally we conclude in section6.6 and suggest directions for future

research.

6.2 Calculating marginal likelihoods of DAGs

Consider a data set of sizen, y = {y1, . . . ,yn}, modelled by the discrete directed acyclic

graph consisting of hidden and observed variablesz = {z1, . . . , zn} = {s1,y1, . . . , sn,yn}.
The variables in each platei = 1, . . . , n are indexed byj = 1, . . . , |zi|, of which somej ∈ H
are hidden andj ∈ V are observed variables, i.e.si = {zij}j∈H andyi = {zij}j∈V .

On a point of nomenclature, note thatzi = {si,yi} contains both hidden and observed variables,

and we interchange freely between these two forms where convenient. Moreover, the numbers

of hidden and observed variables,|si| and|yi|, are allowed to vary with the data point indexi.

An example of such a case could be a data set of sequences of varying length, to be modelled

by an HMM. Note also that the meaning of|·| varies depending on the type of its argument, for
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example:|z| is the number of data points,n; |si| is the number of hidden variables (for theith

data point);|sij | is the cardinality (number of settings) of thejth hidden variable (for theith

data point).

In a DAG the complete-data likelihood factorises into a product of local probabilities on each

variable

p(z |θ) =
n∏
i=1

|zi|∏
j=1

p(zij | zipa(j),θ) , (6.1)

wherepa(j) denotes the vector of indices of the parents of thejth variable. Each variable in

the model is multinomial, and the parameters of the model are different vectors of probabilities

on each variable for each configuration of its parents. For example, the parameter for a binary

variable which has two ternary parents is a32 × 2 matrix with each row summing to one.

Should there be a variablej without any parents (pa(j) = ∅), then the parameter associated with

variablej is simply a vector of its prior probabilities. If we useθjlk to denote the probability that

variablej takes on valuek when its parents are in configurationl, then the complete likelihood

can be written out as a product of terms of the form

p(zij | zipa(j),θ) =
|zipa(j)|∏
l=1

|zij |∏
k=1

θ
δ(zij ,k)δ(zipa(j),l)

jlk (6.2)

with
∑
k

θjlk = 1 ∀ {j, l} . (6.3)

Here we use
∣∣zipa(j)

∣∣ to denote the number of joint settings of the parents of variablej. That is to

say the probability is a product over both all the
∣∣zipa(j)

∣∣ possible settings of the parents and the

|zij | settings of the variable itself. Here we use Kronecker-δ notation which is 1 if its arguments

are identical and zero otherwise. The parameters of the model are given independent Dirichlet

priors, which are conjugate to the complete-data likelihood above (see equation (2.80), which

is Condition 1 for conjugate-exponential models). By independent we mean factorised over

variables and parent configurations; these choices then satisfy theglobalandlocal independence

assumptions ofHeckerman et al.(1995). For each parameterθjl = {θjl1, . . . , θjl|zij |}, the

Dirichlet prior is

p(θjl |λjl,m) =
Γ(λ0

jl)∏
k Γ(λjlk)

∏
k

θ
λjlk−1
jlk , (6.4)

whereλ are hyperparameters:

λjl = {λjl1, . . . , λjl|zij |} (6.5)

and

λjlk > 0 ∀ k , λ0
jl =

∑
k

λjlk . (6.6)
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This form of prior is assumed throughout the chapter. Since the focus of this chapter is not on

optimising these hyperparameters, we use the shorthandp(θ |m) to denote the prior from here

on. In the discrete-variable case we are considering, the complete-data marginal likelihood is

tractable to compute:

p(z |m) =
∫
dθ p(θ |m)p(z |θ) (6.7)

=
∫
dθ p(θ |m)

n∏
i=1

|zi|∏
j=1

p(zij | zipa(j),θ) (6.8)

=
|zi|∏
j=1

|zipa(j)|∏
l=1

Γ(λ0
jl)

Γ(λ0
jl +Njl)

|zij |∏
k=1

Γ(λjlk +Njlk)
Γ(λjlk)

(6.9)

whereNjlk is defined as the count in the data for the number of instances of variablej being in

configurationk with parental configurationl:

Njlk =
n∑
i=1

δ(zij , k)δ(zipa(j), l), and Njl =
|zij |∑
k=1

Njlk . (6.10)

The incomplete-data likelihood, however, is not as tractable. It results from summing over all

settings of the hidden variables and taking the product over i.i.d. presentations of the data:

p(y |θ) =
n∏
i=1

p(yi |θ) =
n∏
i=1

∑
{zij}j∈H

|zi|∏
j=1

p(zij | zipa(j),θ) . (6.11)

This quantity can be evaluated as the product ofn quantities, each of which is a summation

over all possible joint configurations of the hidden variables; in the worst case this computation

requiresO(n
∏
j∈H |zij |) operations (although this can usually be made more efficient with the

use of propagation algorithms that exploit the topology of the model). The incomplete-data

marginal likelihood forn cases follows from marginalising out the parameters of the model:

p(y |m) =
∫
dθ p(θ |m)

n∏
i=1

∑
{zij}j∈H

|zi|∏
j=1

p(zij | zipa(j),θ) . (6.12)

This expression is computationally intractable due to the expectation over the real-valued con-

ditional probabilitiesθ, which couples the hidden variables across i.i.d. data. In the worst case

it can be evaluated as the sum of
(∏

j∈H |zij |
)n

Dirichlet integrals. For example, a model with

just |si| = 2 hidden variables and100 data points requires the evaluation of2100 Dirichlet inte-

grals. This means that a linear increase in the amount of observed data results in an exponential

increase in the cost of inference.
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We focus on the task of learning the conditional independence structure of the model, that is,

which variables are parents of each variable. We compare structures based on their posterior

probabilities. In this chapter we assume that the prior,p(m), is uninformative, and so all our

information comes from the intractable marginal likelihood,p(y |m).

In the rest of this chapter we examine several methods to approximate this Bayesian integration

(6.12), in order to make learning and inference tractable. For the moment we assume that the

cardinalities of the variables, in particular the hidden variables, are fixed beforehand. The related

problem of determining the cardinality of the variables from data can be addressed in the same

framework, as we have already seen for HMMs in chapter3.

6.3 Estimating the marginal likelihood

In this section we look at some approximations to the marginal likelihood, which we refer to

henceforth asscores. We first review ML and MAP parameter learning and briefly present the

EM algorithm for a general discrete-variable directed graphical model with hidden variables.

From the result of the EM optimisation, we can construct various asymptotic approximations

to the marginal likelihood, deriving the BIC and Cheeseman-Stutz scores. We then apply the

variational Bayesian framework, which in the case of conjugate-exponential discrete directed

acyclic graphs produces a very simple VBEM algorithm, which is a direct extension of the EM

algorithm for MAP parameter learning. Finally, we derive anannealed importance sampling

method (AIS) for this class of graphical model, which is considered to be the current state-of-

the-art technique for estimating the marginal likelihood of these models using sampling — we

then compare the different scoring methods to it. We finish this section with a brief note on

some trivial and non-trivial upper bounds to the marginal likelihood.

6.3.1 ML and MAP parameter estimation

The EM algorithm for ML/MAP estimation can be derived using the lower bound interpretation

as was described in section2.2. We begin with the incomplete-data log likelihood, and lower

bound it by a functionalF(qs(s),θ) as follows

ln p(y |θ) = ln
n∏
i=1

∑
{zij}j∈H

|zi|∏
j=1

p(zij | zipa(j),θ) (6.13)

≥
n∑
i=1

∑
si

qsi(si) ln

∏|zi|
j=1 p(zij | zipa(j),θ)

qsi(si)
(6.14)

= F({qsi(si)}ni=1,θ) , (6.15)
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where we have introduced a distributionqsi(si) over the hidden variablessi for each data point

yi. We remind the reader that we have usedsi = {zij}j∈H in going from (6.13) to (6.14).

On taking derivatives ofF({qsi(si)}ni=1,θ) with respect toqsi(si), the optimal setting of the

variational posterior is given exactly by the posterior

qsi(si) = p(si |yi,θ) ∀ i . (6.16)

This is the E step of the EM algorithm; at this setting of the distributionqsi(si) it can be easily

shown that the bound (6.14) is tight (see section2.2.2).

The M step of the algorithm is derived by taking derivatives of the bound with respect to the

parametersθ. Eachθjl is constrained to sum to one, and so we enforce this with Lagrange

multiplierscjl,

∂

∂θjlk
F(qs(s),θ) =

n∑
i=1

∑
si

qsi(si)
∂

∂θjlk
ln p(zij |xipa(j),θj) + cjl (6.17)

=
n∑
i=1

∑
si

qsi(si)δ(zij , k)δ(zipa(j), l)
∂

∂θjlk
ln θjlk + cjl (6.18)

= 0 , (6.19)

which upon rearrangement gives

θjlk ∝
n∑
i=1

∑
si

qsi(si)δ(zij , k)δ(zipa(j), l) . (6.20)

Due to the normalisation constraint onθjl the M step can be written

M step (ML): θjlk =
Njlk∑|zij |

k′=1Njlk′

, (6.21)

where theNjlk are defined as

Njlk =
n∑
i=1

〈
δ(zij , k)δ(zipa(j), l)

〉
qsi (si)

(6.22)

where angled-brackets〈·〉qsi (si)
are used to denote expectation with respect to the hidden vari-

able posteriorqsi(si). TheNjlk are interpreted as the expected number of counts for observing

simultaneous settings of children and parent configurations over observed and hidden variables.

In the cases where bothj andpa(j) are observed variables,Njlk reduces to the simple empirical

count as in (6.10). Otherwise ifj or its parents are hidden then expectations need be taken over

the posteriorqsi(si) obtained in the E step.
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If we require the MAP EM algorithm, we instead lower boundln p(θ)p(y |θ). The E step

remains the same, but the M step uses augmented counts from the prior of the form in (6.4) to

give the following update:

M step (MAP): θjlk =
λjlk − 1 +Njlk∑|zij |

k′=1 λjlk′ − 1 +Njlk′

. (6.23)

Repeated applications of the E step (6.16) and the M step (6.21, 6.23) are guaranteed to in-

crease the log likelihood (with equation (6.21)) or the log posterior (with equation (6.23)) of the

parameters at every iteration, and converge to a local maximum.

As mentioned in section1.3.1, we note that MAP estimation is basis-dependent. For any par-

ticular θ∗, which has non-zero prior probability, it is possible to find a (one-to-one) reparam-

eterisationφ(θ) such that the MAP estimate forφ is atφ(θ∗). This is an obvious drawback

of MAP parameter estimation. Moreover, the use of (6.23) can produce erroneous results in

the case ofλjlk < 1, in the form of negative probabilities. Conventionally, researchers have

limited themselves to Dirichlet priors in which everyλjlk ≥ 1, although inMacKay(1998) it is

shown how a reparameterisation ofθ into the softmax basis results in MAP updates which do

not suffer from this problem (which look identical to (6.23), but without the−1 in numerator

and denominator).

6.3.2 BIC

The Bayesian Information Criterion approximation, described in section1.3.4, is the asymp-

totic limit to large data sets of the Laplace approximation. It is interesting because it does not

depend on the prior over parameters, and attractive because it does not involve the burdensome

computation of the Hessian of the log likelihood and its determinant. For the size of struc-

tures considered in this chapter, the Laplace approximation would be viable to compute, subject

perhaps to a transformation of parameters (see for exampleMacKay, 1995). However in larger

models the approximation may become unwieldy and further approximations would be required

(see section1.3.2).

For BIC, we require the number of free parameters in each structure. In the experiments in this

chapter we use a simple counting argument; in section6.5.2we discuss a more rigorous method

for estimating the dimensionality of the parameter space of a model. We apply the following

counting scheme. If a variablej has no parents in the DAG, then it contributes(|zij | − 1)
free parameters, corresponding to the degrees of freedom in its vector of prior probabilities

(constrained to lie on the simplex
∑

k pk = 1). Each variable that has parents contributes

212



VB Learning for DAG Structures 6.3. Estimating the marginal likelihood

(|zij | − 1) parameters for each configuration of its parents. Thus in modelm the total number

of parametersd(m) is given by

d(m) =
|zi|∑
j=1

(|zij | − 1)
|zipa(j)|∏
l=1

∣∣zipa(j)l

∣∣ , (6.24)

where
∣∣zipa(j)l

∣∣ denotes the cardinality (number of settings) of thelth parent of thejth variable.

We have used the convention that the product over zero factors has a value of one to account for

the case in which thejth variable has no parents, i.e.:

|zipa(j)|∏
l=1

∣∣zipa(j)l

∣∣ = 1 , if
∣∣zipa(j)l

∣∣ = 0 . (6.25)

The BIC approximation needs to take into account aliasing in the parameter posterior (as de-

scribed in section1.3.3). In discrete-variable DAGs, parameter aliasing occurs from two sym-

metries: first, a priori identical hidden variables can be permuted; and second, the labellings of

the states of each hidden variable can be permuted. As an example, let us imagine the parents of

a single observed variable are 3 hidden variables having cardinalities(3, 3, 4). In this case the

number of aliases is 1728 (= 2! × 3! × 3! × 4!). If we assume that the aliases of the posterior

distribution are well separated then the score is given by

ln p(y |m)BIC = ln p(y | θ̂)− d(m)
2

lnn+ lnS (6.26)

whereS is the number of aliases, andθ̂ is the MAP estimate as described in the previous section.

This correction is accurate only if the modes of the posterior distribution are well separated,

which should be the case in the large data set size limit for which BIC is useful. However, since

BIC is correct only up to an indeterminant missing factor, we might think that this correction is

not necessary. In the experiments we examine the BIC score with and without this correction,

and also with and without the prior term included.

6.3.3 Cheeseman-Stutz

The Cheeseman-Stutz approximation uses the following identity for the incomplete-data marginal

likelihood:

p(y |m) = p(z |m)
p(y |m)
p(z |m)

= p(z |m)
∫
dθ p(θ |m)p(y |θ,m)∫
dθ p(θ′ |m)p(z |θ′,m)

(6.27)

which is true for any completionz = {ŝ,y} of the data. This form is useful because the

complete-data marginal likelihood,p(z |m), is tractable to compute for discrete DAGs with
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independent Dirichlet priors: it is just a product of Dirichlet integrals (see equation (6.9)). Using

the results of section1.3.2, in particular equation (1.45), we can apply Laplace approximations

to both the numerator and denominator of the above fraction to give

p(y |m) ≈ p(ŝ,y |m)
p(θ̂ |m)p(y | θ̂) |2πA|−1

p(θ̂
′ |m)p(ŝ,y | θ̂′) |2πA′|−1

. (6.28)

We assume thatp(y | θ̂) is computable exactly. If the errors in each of the Laplace approxi-

mations are similar, then they should roughly cancel each other out; this will be the case if the

shape of the posterior distributions aboutθ̂ andθ̂
′

are similar. We can ensure thatθ̂
′
= θ̂ by

completing the hidden data{si}ni=1 with their expectations under their posterior distributions

p(si |y, θ̂). That is to say the hidden states are completed as follows:

ŝijk = 〈δ(sij , k)〉qsi (si)
, (6.29)

which will generally result in non-integer countsNjlk on application of (6.22). Having com-

puted these counts and re-estimatedθ̂
′

using equation (6.23), we note that̂θ
′

= θ̂. The

Cheeseman-Stutz approximation then results from taking the BIC-type asymptotic limit of both

Laplace approximations in (6.28),

ln p(y |m)CS = ln p(ŝ,y |m) + ln p(θ̂ |m) + ln p(y | θ̂)− d

2
lnn

− ln p(θ̂
′ |m)− ln p(ŝ,y | θ̂) +

d′

2
lnn (6.30)

= ln p(ŝ,y |m) + ln p(y | θ̂)− ln p(ŝ,y | θ̂) , (6.31)

where the last line follows from the modes of the Gaussian approximations being at the same

point,θ̂
′
= θ̂, and also the assumption that the number of parameters in the models for complete

and incomplete data are the same, i.e.d = d′ (Cheeseman and Stutz, 1996, but also see section

6.5.2). Each term of (6.31) can be evaluated individually:

from (6.9) p(ŝ,y |m) =
|zi|∏
j=1

|zipa(j)|∏
l=1

Γ(λ0
jl)

Γ(λjl + N̂jl)

|zij |∏
k=1

Γ(λjlk + N̂jlk)
Γ(λjlk)

(6.32)

from (6.11) p(y | θ̂) =
n∏
i=1

∑
{zij}j∈H

|zi|∏
j=1

|zipa(j)|∏
l=1

|zij |∏
k=1

θ̂
δ(zij ,k)δ(zipa(j),l)

jlk (6.33)

from (6.1) p(ŝ,y | θ̂) =
|zi|∏
j=1

|zipa(j)|∏
l=1

|zij |∏
k=1

θ̂
N̂jlk

jlk (6.34)

where theN̂jlk are identical to theNjlk of equation (6.22) if the completion of the data witĥs is

done with the posterior found in the M step of the MAP EM algorithm used to findθ̂. Equation
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(6.33) is simply the output of the EM algorithm, equation (6.32) is a function of the counts

obtained in the EM algorithm, and equation (6.34) is a simple computation again.

As with BIC, the Cheeseman-Stutz score also needs to be corrected for aliases in the parameter

posterior, as described above, and is subject to the same caveat that these corrections are only

accurate if the aliases in the posterior are well-separated.

We note that CS is a lower bound on the marginal likelihood, as shown in section2.6.2of this

thesis. We will return to this point in the discussion of the experimental results.

6.3.4 The VB lower bound

The incomplete-data log marginal likelihood can be written as

ln p(y |m) = ln
∫
dθ p(θ |m)

n∏
i=1

∑
{zij}j∈H

|zi|∏
j=1

p(zij | zipa(j),θ) . (6.35)

We can form the lower bound in the usual fashion usingqθ(θ) and{qsi(si)}ni=1 to yield (see

section2.3.1):

ln p(y |m) ≥
∫
dθ qθ(θ) ln

p(θ |m)
qθ(θ)

+
n∑
i=1

∫
dθqθ(θ)

∑
si

qsi(si) ln
p(zi |θ,m)
qsi(si)

(6.36)

= Fm(qθ(θ), q(s)) . (6.37)

We now take functional derivatives to write down the variational Bayesian EM algorithm (theo-

rem2.1, page54). The VBM step is straightforward:

ln qθ(θ) = ln p(θ |m) +
n∑
i=1

∑
si

qsi(si) ln p(zi |θ,m) + c , (6.38)

with c a constant. Given that the prior over parameters factorises over variables as in (6.4), and

the complete-data likelihood factorises over the variables in a DAG as in (6.1), equation (6.38)

can be broken down into individual derivatives:

ln qθjl
(θjl) = ln p(θjl |λjl,m) +

n∑
i=1

∑
si

qsi(si) ln p(zij | zipa(j),θ,m) + cjl , (6.39)
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wherezij may be either a hidden or observed variable, and eachcjl is a Lagrange multiplier

from which a normalisation constant is obtained. Equation (6.39) has the form of the Dirichlet

distribution. We define the expected counts under the posterior hidden variable distribution

Njlk =
n∑
i=1

〈
δ(zij , k)δ(zipa(j), l)

〉
qsi (si)

. (6.40)

ThereforeNjlk is the expected total number of times thejth variable (hidden or observed) is

in statek when its parents (hidden or observed) are in statel, where the expectation is taken

with respect to the posterior distribution over the hidden variables for each datum. Then the

variational posterior for the parameters is given simply by (see theorem2.2)

qθjl
(θjl) = Dir (λjlk +Njlk : k = 1, . . . , |zij |) . (6.41)

For the VBE step, taking derivatives of (6.37) with respect to eachqsi(si) yields

ln qsi(si) =
∫
dθ qθ(θ) ln p(zi |θ,m) + c′i =

∫
dθ qθ(θ) ln p(si,yi |θ,m) + c′i , (6.42)

where eachc′i is a Lagrange multiplier for normalisation of the posterior. Since the complete-

data likelihoodp(zi |θ,m) is in the exponential family and we have placed conjugate Dirichlet

priors on the parameters, we can immediately utilise the results of corollary2.2(page74) which

gives simple forms for the VBE step:

qsi(si) ∝ qzi(zi) =
|zi|∏
j=1

p(zij | zipa(j), θ̃) . (6.43)

Thus the approximate posterior over the hidden variablessi resulting from a variational Bayesian

approximation is identical to that resulting from exact inference in a model with known point

parameters̃θ. Corollary2.2 also tells us that̃θ should be chosen to satisfyφ(θ̃) = φ. The

natural parameters for this model are the log probabilities{lnθjlk}, wherej specifies which

variable,l indexes the possible configurations of its parents, andk the possible settings of the

variable. Thus

ln θ̃jlk = φ(θ̃jlk) = φjlk =
∫
dθjl qθjl

(θjl) ln θjlk . (6.44)

Under a Dirichlet distribution, the expectations are given by differences of digamma functions

ln θ̃jlk = ψ(λjlk +Njlk)− ψ(
|zij |∑
k=1

λjlk +Njlk) ∀ {j, l, k} . (6.45)
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where theNjlk are defined in (6.40), and theψ(·) are digamma functions (see appendixC.1).

Since this expectation operation takes the geometric mean of the probabilities, the propagation

algorithm in the VBE step is now passed sub-normalised probabilities as parameters

|zij |∑
k=1

θ̃jlk ≤ 1 ∀ {j, l} . (6.46)

This use of sub-normalised probabilities also occurred in Chapter3, which is unsurprising given

that both models consist of local multinomial conditional probabilities. In that model, the in-

ference algorithm was the forward-backward algorithm (or its VB analogue), and was restricted

to the particular topology of a Hidden Markov Model. Our derivation uses belief propagation

(section1.1.2) for any singly-connected discrete DAG.

The expected natural parameters become normalised only if the distribution over parameters is

a delta function, in which case this reduces to the MAP inference scenario of section6.3.1. In

fact, if we look at the limit of the digamma function for large arguments (see appendixC.1), we

find

lim
x→∞

ψ(x) = lnx , (6.47)

and equation (6.45) becomes

lim
n→∞

ln θ̃jlk = ln(λjlk +Njlk)− ln(
|zij |∑
k=1

λjlk +Njlk) (6.48)

which has recovered the MAP estimator forθ (6.23), up to the−1 entries in numerator and

denominator which become vanishingly small for large data, and vanish completely if MAP is

performed in the softmax basis. Thus in the limit of large data VB recovers the MAP parameter

estimate.

To summarise, the VBEM implementation for discrete DAGs consists of iterating between the

VBE step (6.43) which infers distributions over the hidden variables given a distribution over

the parameters, and a VBM step (6.41) which finds a variational posterior distribution over

parameters based on the hidden variables’ sufficient statistics from the VBE step. Each step

monotonically increases a lower bound on the marginal likelihood of the data, and the algorithm

is guaranteed to converge to a local maximum of the lower bound.

The VBEM algorithm uses as a subroutine the algorithm used in the E step of the corresponding

EM algorithm for MAP estimation, and so the VBE step’s computational complexity is the same

— there is some overhead in calculating differences of digamma functions instead of ratios of

expected counts, but this is presumed to be minimal and fixed.

As with BIC and Cheeseman-Stutz, the lower bound does not take into account aliasing in the

parameter posterior, and needs to be corrected as described in section6.3.2.
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6.3.5 Annealed Importance Sampling (AIS)

AIS (Neal, 2001) is a state-of-the-art technique for estimating marginal likelihoods, which

breaks a difficult integral into a series of easier ones. It combines techniques from importance

sampling, Markov chain Monte Carlo, and simulated annealing (Kirkpatrick et al., 1983). It

builds on work in the Physics community for estimating the free energy of systems at differ-

ent temperatures, for example: thermodynamic integration (Neal, 1993), tempered transitions

(Neal, 1996), and the similarly inspiredumbrella sampling(Torrie and Valleau, 1977). Most of

these, as well as other related methods, are reviewed inGelman and Meng(1998).

Obtaining samples from the posterior distribution over parameters, with a view to forming a

Monte Carlo estimate of the marginal likelihood of the model, is usually a very challenging

problem. This is because, even with small data sets and models with just a few parameters, the

distribution is likely to be very peaky and have its mass concentrated in tiny volumes of space.

This makes simple approaches such as sampling parameters directly from the prior or using

simple importance sampling infeasible. The basic idea behind annealed importance sampling

is to move in achain from an easy-to-sample-from distribution, via a series of intermediate

distributions, through to the complicated posterior distribution. By annealing the distributions in

this way the parameter samples should hopefully come from representative areas of probability

mass in the posterior. The key to the annealed importance sampling procedure is to make use

of the importance weights gathered at all the distributions up to and including the final posterior

distribution, in such a way that the final estimate of the marginal likelihood is unbiased. A brief

description of the AIS procedure follows:

We define a series of inverse-temperatures{τ(k)}Kk=0 satisfying

0 = τ(0) < τ(1) < · · · < τ(K − 1) < τ(K) = 1 . (6.49)

We refer to temperatures and inverse-temperatures interchangeably throughout this section. We

define the function:

fk(θ) ≡ p(θ |m)p(y |θ,m)τ(k) , k ∈ {0, . . . ,K} . (6.50)

Thus the set of functions{fk(θ)}Kk=0 form a series of unnormalised distributions whichinter-

polatebetween the prior and posterior, parameterised byτ . We also define the normalisation

constants

Zk ≡
∫
dθ fk(θ) =

∫
dθ p(θ |m)p(y |θ,m)τ(k) , k ∈ {0, . . . ,K} . (6.51)
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We note the following:

Z0 =
∫
dθ p(θ |m) = 1 (6.52)

from normalisation of the prior, and

ZK =
∫
dθ p(θ |m)p(y |θ,m) = p(y |m) , (6.53)

which is exactly the marginal likelihood that we wish to estimate. We can estimateZK , or

equivalentlyZK
Z0

, using the identity

p(y |m) =
ZK
Z0
≡ Z1

Z0

Z2

Z1
. . .

ZK
ZK−1

=
K∏
k=1

Rk , (6.54)

Each of theK ratios in this expression can be individually estimated using importance sampling

(see section1.3.6). Thekth ratio, denotedRk, can be estimated from a set of (not necessarily

independent) samples of parameters{θ(k,c)}c∈Ck
which are drawn from the higher temperature

τ(k − 1) distribution (the importance distribution), i.e. eachθ(k,c) ∼ fk−1(θ), and the impor-

tance weights are computed at the lower temperatureτ(k). These samples are used to construct

the Monte Carlo estimate forRk:

Rk ≡
Zk
Zk−1

=
∫
dθ

fk(θ)
fk−1(θ)

fk−1(θ)
Zk−1

(6.55)

≈ 1
Ck

∑
c∈Ck

fk(θ(k,c))
fk−1(θ(k,c))

, with θ(k,c) ∼ fk−1(θ) (6.56)

=
1
Ck

∑
c∈Ck

p(y |θ(k,c),m)τ(k)−τ(k−1) . (6.57)

Here, the importance weights are the summands in (6.56). The accuracy of eachRk depends

on the constituent distributions{fk(θ), fk−1(θ)} being sufficiently close so as to produce low-

variance weights. The estimate ofZK in (6.54) is unbiased if the samples used to compute each

ratioRk are drawn from the equilibrium distribution at each temperatureτ(k). In general we

expect it to be difficult to sample directly from the formsfk(θ) in (6.50), and so Metropolis-

Hastings (Metropolis et al., 1953; Hastings, 1970) steps are used at each temperature to generate

the set ofCk samples required for each importance calculation in (6.57).

Metropolis-Hastings for discrete-variable models

In the discrete-variable graphical models covered in this chapter, the parameters are multino-

mial probabilities, hence the support of the Metropolis proposal distributions is restricted to the
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simplex of probabilities summing to 1. At first thought one might suggest using a Gaussian

proposal distribution in the softmax basis of the current parametersθ:

θi ≡
ebi∑|θ|
j ebj

. (6.58)

Unfortunately an invariance exists: withβ a scalar, the transformationb′i ← bi+β ∀i leaves the

parameterθ unchanged. Therefore the determinant of the Jacobian of the transformation (6.58)

from the vectorb to the vectorθ is zero, and it is hard to construct a reversible Markov chain.

A different and intuitively appealing idea is to use a Dirichlet distribution as the proposal distri-

bution, with its mean positioned at the current parameter. The precision of the Dirichlet proposal

distribution at inverse-temperatureτ(k) is governed by itsstrength, α(k), which is a free vari-

able to be set as we wish, provided it is not in any way a function of the sampled parameters.

A Metropolis-Hastings acceptance function is required to maintain detailed balance: ifθ′ is the

sample under the proposal distribution centered around the current parameterθ(k,c), then the

acceptance function is:

a(θ′,θ(k,c)) = min

(
fk(θ′)

fk(θ(k,c))
Dir(θ(k,c) |θ′, α(k))
Dir(θ′ |θ(k,c), α(k))

, 1

)
, (6.59)

whereDir(θ |θ, α) is the probability density of a Dirichlet distribution with meanθ and strength

α, evaluated atθ. The next sample is instantiated as follows:

θ(k,c+1) =

θ′ if w < a(θ′,θ(k,c)) (accept)

θ(k,c) otherwise (reject),
(6.60)

wherew ∼ U(0, 1) is a random variable sampled from a uniform distribution on[0, 1]. By

repeating this procedure of accepting or rejectingC ′
k ≥ Ck times at the temperatureτ(k),

the MCMC sampler generates a set of (dependent) samples{θ(k,c)}C
′
k

c=1. A subset of these

{θ(k,c)}c∈Ck
, with |Ck| = Ck ≤ C ′

k, is then used as the importance samples in the computation

above (6.57). This subset will generally not include the first few samples, as these samples are

likely not yet samples from the equilibrium distribution at that temperature.

An algorithm to compute all ratios

The entire algorithm for computing allK marginal likelihood ratios is given in algorithm

6.1. It has several parameters, in particular: the number of annealing steps,K; their inverse-

temperatures (the annealing schedule),{τ(k)}Kk=1; the parameters of the MCMC importance

sampler at each temperature{C ′
k, Ck, α(k)}Kk=1, which are the number of proposed samples,
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Algorithm 6.1:AIS. To compute all ratios{Rk}Kk=1 for the marginal likelihood estimate.

1. Initialiseθini ∼ f0(θ) i.e. from the priorp(θ |m)

2. Fork = 1 toK annealing steps

(a) Run MCMC at temperatureτ(k − 1) as follows:

i. Initialiseθ(k,0) ← θini from previous temp.

ii. Generate the set{θ(k,c)}C
′
k

c=1 ∼ fk−1(θ) as follows:

A. For c = 1 toC ′
k

Proposeθ′ ∼ Dir(θ′ |θ(k,c−1), α(k))
Acceptθ(k,c) ← θ′ according to (6.59) and (6.60)

End For

B. Storeθini ← θ(k,C′k)

iii. Store a subset of these{θ(k,c)}c∈Ck
with |Ck| = Ck ≤ C ′

k

(b) CalculateRk ≡ Zk
Zk−1

u 1
Ck

∑Ck
c=1

fk(θ(k,c))

fk−1(θ(k,c))

End For

3. Output{lnRk}Kk=1 andln ẐK =
∑K

k=1 lnRk as the approximation tolnZK

the number used for the importance estimate, and the precision of the proposal distribution,

respectively.

Nota bene: In the presentation of AIS thus far, we have shown how to compute estimates of

Rk using a set,Ck, of importance samples (see equation (6.56)), chosen from the larger set,C′k,
drawn using a Metropolis-Hastings sampling scheme. In the original paper byNeal(2001), the

size of the setCk is exactly one, and it is only for this case that the validity of AIS as an unbiased

estimate has been proved. Because the experiments carried out in this chapter do in fact only

useCk = |Ck| = 1 (as described in section6.4.1), we stay in the realm of the proven result. It

is open research question to show that algorithm6.1 is unbiased forCk = |Ck| > 1 (personal

communication with R. Neal).

Algorithm 6.1produces only a single estimate of the marginal likelihood; the variance of this es-

timate can be obtained from the results of several annealed importance samplers run in parallel.

Indeed a particular attraction of AIS is that one can take averages of the marginal likelihood es-

timates from a set ofG annealed importance sampling runs to form a better (unbiased) estimate:

[
ZK
Z0

](G)

=
1
G

G∑
g=1

K(g)∏
k=1

R(g)
k . (6.61)
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However this computational resource might be better spent simulating a single chain with a

more finely-grained annealing schedule, since for eachk we require each pair of distributions

{fk(θ), fk−1(θ)} to be sufficiently close that the importance weights have low variance. Or

perhaps the computation is better invested by having a coarser annealing schedule and taking

more samples at each temperature to ensure the Metropolis-Hastings sampler has reached equi-

librium. In Neal (2001) an in-depth analysis is presented for these and other similar concerns

for estimating the marginal likelihoods in some very simple models, using functions of the vari-

ance of the importance weights (i.e. the summands in (6.56)) as guides to the reliability of the

estimates.

In section6.5.1we discuss the performance of AIS for estimating the marginal likelihood of

the graphical models used in this chapter, addressing the specific choices of proposal widths,

number of samples, and annealing schedules used in the experiments.

6.3.6 Upper bounds on the marginal likelihood

This section is included to justify comparing the marginal likelihood to scores such as MAP and

ML. The following estimates based on the ML parameters and the posterior distribution over

parameters represent strict bounds on the true marginal likelihood of a model,p(y),

p(y) =
∫
dθ p(θ)p(y |θ) . (6.62)

(where we have omitted the dependence onm for clarity).

We begin with the ML estimate:

p(y)ML =
∫
dθ δ(θ − θML )p(y |θ) (6.63)

which is the expectation of the data likelihood under a delta function about the ML parameter

setting. This is a strict upper bound only ifθML has found the global maximum of the likelihood.

This may not happen due to local maxima in the optimisation process, for example if the model

contains hidden variables and an EM-type optimisation is being employed.

The second estimate is that arising from the MAP estimate,

p(y)MAP =
∫
dθ δ(θ − θMAP)p(y |θ) (6.64)

which is the expectation of the data likelihood under a delta function about the MAP parameter

setting. However is not a strict upper or lower bound on the marginal likelihood, since this

depends on how the prior term acts to position the MAP estimate.
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The last estimate, based on the posterior distribution over parameters, is for academic interest

only, since we would expect its calculation to be intractable:

p(y)post. =
∫
dθ p(θ |y)p(y |θ) . (6.65)

This is the expected likelihood under the posterior distribution over parameters. To prove that

(6.65) is an upper bound on the marginal likelihood, we use a simple convexity bound as follows:

p(y)post. =
∫
dθ p(θ |y)p(y |θ) (6.66)

=
∫
dθ

p(θ)p(y |θ)
p(y)

p(y |θ) by Bayes’ rule (6.67)

=
1

p(y)

∫
dθ p(θ) [p(y |θ)]2 (6.68)

≥ 1
p(y)

[∫
dθ p(θ)p(y |θ)

]2

by convexity ofx2 (6.69)

=
1

p(y)
[p(y)]2 = p(y) . (6.70)

As we would expect the integral (6.65) to be intractable, we could instead estimate it by taking

samples from the posterior distribution over parameters and forming the Monte Carlo estimate:

p(y) ≤ p(y)post. =
∫
dθ p(θ |y)p(y |θ) (6.71)

≈ 1
C

C∑
c=1

p(y |θ(c)) (6.72)

whereθ(c) ∼ p(θ |y), the exact posterior. Had we taken samples from the priorp(θ), this

would have yielded the true marginal likelihood, so it makes sense that by concentrating samples

in areas which give rise to high likelihoods we are over-estimating the marginal likelihood;

for this reason we would only expect this upper bound to be close for small amounts of data.

An interesting direction of thought would be to investigate the mathematical implications of

drawing samples from an approximate posterior instead of the exact posterior, such as that

obtained in a variational optimisation, which itself is arrived at from a lower bound on the

marginal likelihood; this could well give an even higher upper bound since the approximate

variational posterior is likely to neglect regions of low posterior density.

6.4 Experiments

In this section we experimentally examine the performance of the variational Bayesian proce-

dure in approximating the marginal likelihood for all the models in a particular class. We first

describe the class defining our space of hypothesised structures, then chose a particular mem-
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ber of the class as the “true” structure, generate a set of parameters for that structure, and then

generate varying-sized data sets from that structure with those parameters. The task is then to

estimate the marginal likelihood of every data set under each member of the class, including

the true structure, using each of the scores described in the previous section. The hope is that

the VB lower bound will be able to find the true model, based on its scoring, as reliably as the

gold standard AIS does. We would ideally like the VB method to perform well even with little

available data.

Later experiments take the true structure and analyse the performance of the scoring methods

under many different settings of the parameters drawn from the parameter prior for the true

structure. Unfortunately this analysis does not include AIS, as sampling runs for each and every

combination of the structures, data sets, and parameter settings would take a prohibitively large

amount of compute time.

A specific class of graphical model. We look at the specific class of discrete directedbipartite

graphical models, i.e. those graphs in which only hidden variables can be parents of observed

variables, and the hidden variables themselves have no parents. We further restrict ourselves

to those graphs which have justk = |H| = 2 hidden variables, andp = |V| = 4 observed

variables; both hidden variables are binary i.e.|sij | = 2 for j ∈ H, and each observed variable

has cardinality|yij | = 5 for j ∈ V.

The number of distinct graphs. In the class of bipartite graphs described above, withk dis-

tinct hidden variables andp observed variables, there are2kp possible structures, corresponding

to the presence or absence of a directed link between each hidden and each conditionally inde-

pendent observed variable. If the hidden variables are unidentifiable, which is the case in our

example model where they have the same cardinality, then the number of possible graphs is

reduced. It is straightforward to show in this example that the number of graphs is reduced from

22×4 = 256 down to136.

The specific model and generating data. We chose the particular structure shown in figure

6.1, which we call the “true” structure. We chose this structure because it contains enough links

to induce non-trivial correlations amongst the observed variables, whilst the class as a whole

has few enough nodes to allow us to examine exhaustively every possible structure of the class.

There are only three other structures in the class which have more parameters than our chosen

structure; these are: two structures in which either the left- or right-most visible node has both

hidden variables as parents instead of just one, and one structure which is fully connected. As a

caveat, one should note that our chosen true structure is at the higher end of complexity in this

class, and so we might find that scoring methods that do not penalise complexity do seemingly

better than naively expected.
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yi1

si1 si2

yi2 yi3 yi4

i=1...n

Figure 6.1: The true structure that was used to generate all the data sets used in the experi-
ments. The hidden variables (top) are each binary, and the observed variables (bottom) are each
five-valued. This structure has 50 parameters, and is two links away from the fully-connected
structure. In total there are 136 possible distinct structures with two (identical) hidden variables
and four observed variables.

Evaluation of the marginal likelihood of all possible alternative structures in the class is done

for academic interest only; in practice one would embed different structure scoring methods in

a greedy model search outer loop (Friedman, 1998) to find probable structures. Here, we are not

so much concerned with structuresearchper se, since a prerequisite for a good structure search

algorithm is an efficient and accurate method for evaluating any particular structure. Our aim in

these experiments is to establish the reliability of the variational bound as a score, compared to

annealed importance sampling, and the currently employed asymptotic scores such as BIC and

Cheeseman-Stutz.

The parameters of the true model

Conjugate uniform symmetric Dirichlet priors were placed over all the parameters of the model,

that is to say in equation (6.4), λjlk = 1 ∀{jlk}. This particular prior was arbitrarily chosen for

the purposes of the experiments, and we do not expect it to influence our conclusions much. For

the network shown in figure6.1parameters were sampled from the prior, once and for all, to in-

stantiate a true underlying model, from which data was then generated. The sampled parameters

are shown below (their sizes are functions of each node’s and its parents’ cardinalities):

θ1 =
[
.12 .88

]
θ3 =

[
.03 .03. .64 .02 .27
.18 .15 .22 .19 .27

]
θ6 =

[
.10 .08 .43 .03 .36
.30 .14 .07 .04 .45

]

θ2 =
[
.08 .92

]
θ4 =


.10 .54 .07 .14 .15
.04 .15 .59 .05 .16
.20 .08 .36 .17 .18
.19 .45 .10 .09 .17

 θ5 =


.11 .47 .12 .30 .01
.27 .07 .16 .25 .25
.52 .14 .15 .02 .17
.04 .00 .37 .33 .25


where{θj}2j=1 are the parameters for the hidden variables, and{θj}6j=3 are the parameters

for the remaining four observed variables. Recall that each row of each matrix denotes the
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probability of each multinomial setting for a particular configuration of the parents. Each row

of each matrix sums to one (up to rounding error). Note that there are only two rows forθ3 and

θ6 as both these observed variables have just a single binary parent. For variables 4 and 5, the

four rows correspond to the parent configurations (in order):{[1 1], [1 2], [2 1], [2 2]}.

Also note that for this particular instantiation of the parameters, both the hidden variable priors

are close to deterministic, causing approximately 80% of the data to originate from the[2 2]
setting of the hidden variables. This means that we may need many data points before the

evidence for two hidden variables outweighs that for one.

Incrementally larger and larger data sets were generated with these parameter settings, with

n ∈ {10,20, 40, 80, 110, 160, 230, 320, 400, 430,

480, 560, 640, 800, 960, 1120, 1280, 2560, 5120, 10240} .

The items in then = 10 data set are a subset of then = 20 and subsequent data sets, etc.

The particular values ofn were chosen from an initially exponentially increasing data set size,

followed by inclusion of some intermediate data sizes to concentrate on interesting regions of

behaviour.

6.4.1 Comparison of scores to AIS

All 136 possible distinct structures were scored for each of the 20 data set sizes given above,

using MAP, BIC, CS, VB and AIS scores. Strictly speaking, MAP is not an approximation

to the marginal likelihood, but it is an upper bound (see section6.3.6) and so is nevertheless

interesting for comparison.

We ran EM on each structure to compute the MAP estimate of the parameters, and from it com-

puted the BIC score as described in section6.3.2. We also computed the BIC score including

the parameter prior, denoted BICp, which was obtained by including a termln p(θ̂ |m) in equa-

tion (6.26). From the same EM optimisation we computed the CS score according to section

6.3.3. We then ran the variational Bayesian EM algorithm with the same initial conditions to

give a lower bound on the marginal likelihood. For both these optimisations, random parameter

initialisations were used in an attempt to avoid local maxima — the highest score over three

random initialisations was taken for each algorithm; empirically this heuristic appeared to avoid

local maxima problems. The EM and VBEM algorithms were terminated after either 1000 it-

erations had been reached, or the change in log likelihood (or lower bound on the log marginal

likelihood, in the case of VBEM) became less than10−6 per datum.

For comparison, the AIS sampler was used to estimate the marginal likelihood (see section

6.3.5), annealing from the prior to the posterior inK = 16384 steps. A nonlinear anneal-
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ing schedule was employed, tuned to reduce the variance in the estimate, and the Metropolis

proposal width was tuned to give reasonable acceptance rates. We chose to have just a single

sampling step at each temperature (i.e.C ′
k = Ck = 1), for which AIS has been proven to give

unbiased estimates, and initialised the sampler at each temperature with the parameter sample

from the previous temperature. These particular choices are explained and discussed in detail in

section6.5.1. Initial marginal likelihood estimates from single runs of AIS were quite variable,

and for this reason several more batches of AIS runs were undertaken, each using a different

random initialisation (and random numbers thereafter); the total ofG batches of scores were

averaged according to the procedure given in section6.3.5, equation (6.61), to give the AIS(G)

score. In total,G = 5 batches of AIS runs were carried out.

Scoring all possible structures

Figure6.2shows the MAP, BIC, BICp, CS, VB and AIS(5) scores obtained for each of the 136

possible structures against the number of parameters in the structure. Score is measured on the

vertical axis, with each scoring method (columns) sharing the same vertical axis range for a

particular data set size (rows).

The horizontal axis of each plot corresponds to the number of parameters in the structure (as de-

scribed in section6.3.2). For example, at the extremes there is one structure with 66 parameters

which is the fully connected structure, and one structure with 18 parameters which is the fully

unconnected structure. The structure that generated the data has exactly 50 parameters. In each

plot we can see that several structures can occupy the same column, having the same number of

parameters. This means that, at least visually, it is not always possible to unambiguously assign

each point in the column to a particular structure.

The scores shown here are those corrected for aliases — the difference between the uncorrected

and corrected versions is only just perceptible as a slight downward movement of the low pa-

rameter structures (those with just one or zero hidden variables), as these have a smaller number

of aliasesS (see equation (6.26)).

In each plot, the true structure is highlighted by a ‘◦’ symbol, and the structure currently ranked

highest by that scoring method is marked with a ‘×’. We can see the general upward trend

for the MAP score which prefers more complicated structures, and the pronounced downward

trend for the BIC and BICp scores which (over-)penalise structure complexity. In addition one

can see that neither upward or downward trends are apparent for VB or AIS scores. Moreover,

the CS score does tend to show a downward trend similar to BIC and BICp, and while this

trend weakens with increasing data, it is still present atn = 10240 (bottom row). Although

not verifiable from these plots, we should note that for the vast majority of the scored structures

227



VB Learning for DAG Structures 6.4. Experiments

MAP BIC BICp CS VB AIS(5)

10

160

640

1280

2560

5120

10240

Figure 6.2: Scores for all 136 of the structures in the model class, by each of six scoring methods.
Each plot has the score (approximation to the log marginal likelihood) on the vertical axis,
with tick marks every 40 nats, and the number of parameters on the horizontal axis (ranging
from 18 to 66). The middle four scores have been corrected for aliases (see section6.3.2).
Each row corresponds to a data set of a different size,n: from top to bottom we haven =
10, 160, 640, 1280, 2560, 5120, 10240. The true structure is denoted with a ‘◦’ symbol, and the
highest scoring structure in each plot marked by the ‘×’ symbol. Every plot in the same row
has the same scaling for the vertical score axis, set to encapsulate every structure for all scores.
For a description of how these scores were obtained see section6.4.1.
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and data set sizes, the AIS(5) score is higher than the VB lower bound, as we would expect (see

section6.5.1for exceptions to this observation).

The horizontal bands observed in the plots is an interesting artifact of the particular model used

to generate the data. For example, we find on closer inspection some strictly followed trends:

all those model structures residing in the upper band have the first three observable variables

(j = 3, 4, 5) governed by at least one of the hidden variables; and all those structures in the

middle band have the third observable (j = 4) connected to at least one hidden variable.

In this particular example, AIS finds the correct structure atn = 960 data points, but unfor-

tunately does not retain this result reliably untiln = 2560. At n = 10240 data points, BICp,

CS, VB and AIS all report the true structure as being the one with the highest score amongst

the other contending structures. Interestingly, BIC still does not select the correct structure, and

MAP has given a structure with sub-maximal parameters the highest score. The latter observa-

tion may well be due to local maxima in the EM optimisation, since for previous slightly smaller

data sets MAP chooses the fully-connected structure as expected. Note that as we did not have

intermediate data sets it may well be that, for example, AIS reliably found the structure after

1281 data points, but we cannot know this without performing more experiments.

Ranking of the true structure

A somewhat more telling comparison of the scoring methods is given by how they rank the true

structure amongst the alternative structures. Thus a ranking of 1 means that the scoring method

has given the highest marginal likelihood to the true structure.

Note that a performance measure based on ranking makes several assumptions about our choice

of loss function. This performance measure disregards information in the posterior about the

structures with lower scores, reports only the number of structures that have higher scores, and

not the amount by which the true structure is beaten. Ideally, we would compare a quantity that

measured the divergence of all structures’ posterior probabilities from the true posterior.

Moreover, we should keep in mind that at least for small data set sizes, there is no reason to

assume that the actual posterior over structures has the true structure at its mode. Therefore it is

slightly misleading to ask for high rankings at small data set sizes.

Table6.1 shows the ranking of the true structure, as it sits amongst all the possible structures,

as measured by each of the scoring methods MAP, BIC, BICp, CS, VB and AIS(5); this is also

plotted in figure6.3where the MAP ranking is not included for clarity. Higher positions in the

plot correspond to better rankings.
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n MAP BIC* BICp* CS* VB* BIC BICp CS VB AIS(5)

10 21 127 55 129 122 127 50 129 115 59
20 12 118 64 111 124 118 64 111 124 135
40 28 127 124 107 113 127 124 107 113 15
80 8 114 99 78 116 114 99 78 116 44
110 8 109 103 98 114 109 103 98 113 2
160 13 119 111 114 83 119 111 114 81 6
230 8 105 93 88 54 105 93 88 54 54
320 8 111 101 90 44 111 101 90 33 78
400 6 101 72 77 15 101 72 77 15 8
430 7 104 78 68 15 104 78 68 14 18
480 7 102 92 80 55 102 92 80 44 2
560 9 108 98 96 34 108 98 96 31 11
640 7 104 97 105 19 104 97 105 17 7
800 9 107 102 108 35 107 102 108 26 23
960 13 112 107 76 16 112 107 76 13 1
1120 8 105 96 103 12 105 96 103 12 4
1280 7 90 59 8 3 90 59 6 3 5
2560 6 25 17 11 11 25 15 11 11 1
5120 5 6 5 1 1 6 5 1 1 1
10240 3 2 1 1 1 2 1 1 1 1

Table 6.1: Ranking of the true structure by each of the scoring methods, as the size of the data
set is increased. Asterisks (*) denote scores uncorrected for parameter aliasing in the posterior.
Strictly speaking, the MAP score is not an estimate of the marginal likelihood. Note that these
results are from data generated from only one instance of parameters under the true structure’s
prior over parameters.
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Figure 6.3: Ranking given to the true structure by each scoring method for varying data set sizes
(higher in plot is better), by BIC, BICp, CS, VB and AIS(5) methods.
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For smalln, the AIS score produces a better ranking for the true structure than any of the other

scoring methods, which suggests that the AIS sampler is managing to perform the Bayesian

parameter averaging process more accurately than other approximations. For almost alln, VB

outperforms BIC, BICp and CS, consistently giving a higher ranking to the true structure. Of

particular note is the stability of the VB score ranking with respect to increasing amounts of

data as compared to AIS (and to some extent CS).

Columns in table6.1 with asterisks (*) correspond to scores that are not corrected for aliases,

and are omitted from the figure. These corrections assume that the posterior aliases are well sep-

arated, and are valid only for large amounts of data and/or strongly-determined parameters. In

this experiment, structures with two hidden states acting as parents are given a greater correction

than those structures with only a single hidden variable, which in turn receive corrections greater

than the one structure having no hidden variables. Of interest is that the correction nowhere de-

grades the rankings of any score, and in fact improves them very slightly for CS, and especially

so for the VB score.

Score discrepancies between the true and top-ranked structures

Figure6.4plots the differences in score between the true structure and the score of the structure

ranked top by BIC, BICp, CS, VB and AIS methods. The convention used means that all the

differences are exactly zero or negative, measured from the score of the top-ranked structure

— if the true structure is ranked top then the difference is zero, otherwise the true structure’s

score must be less than the top-ranked one. The true structure has a score that is close to the

top-ranked structure in the AIS method; the VB method produces approximately similar-sized

differences, and these are much less on the average than the CS, BICp, and BIC scores. For a

better comparison of the non-sampling-based scores, see section6.4.2, and figure6.6.

Computation Time

Scoring all 136 structures at 480 data points on a 1GHz Pentium III processor took: 200 seconds

for the MAP EM algorithms required for BIC/BICp/CS, 575 seconds for the VBEM algorithm

required for VB, and 55000 seconds (15 hours) for a single run of the AIS algorithm (using

16384 samples as in the main experiments). All implementations were in MATLAB . Given the

massive computational burden of the sampling method (approx 75 hours), which still produces

fairly variable scores when averaging over five runs, it does seem as though CS and VB are

proving very useful indeed. Can we justify the mild overall computational increase for VB? This

increase results from both computing differences between digamma functions as opposed to

ratios, and also from an empirically-observed slower convergence rate of the VBEM algorithm

as compared to the EM algorithm.
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Figure 6.4: Differences in log marginal likelihood estimates (scores) between the top-ranked
structure and the true structure, as reported by BIC, BICp, CS, VB and AIS(5) methods. All
differences are exactly zero or negative: if the true structure is ranked top then the difference is
zero, otherwise the score of the true structure must be less than the top-ranked structure. Note
that these score differences are not per-datum scores, and therefore are not normalised for the
datan.

6.4.2 Performance averaged over the parameter prior

The experiments in the previous section used a single instance of sampled parameters for the

true structure, and generated data from this particular model. The reason for this was that, even

for a single experiment, computing an exhaustive set of AIS scores covering all data set sizes

and possible model structures takes in excess of 15 CPU days.

In this section we compare the performance of the scores over many different sampled param-

eters of the true structure (shown in figure6.1). 106 parameters were sampled from the prior

(as done once for the single model in the previous section), and incremental data sets generated

for each of these instances as the true model. MAP EM and VBEM algorithms were employed

to calculate the scores as described in section6.4.1. For each instance of the true model, calcu-

lating scores for all data set sizes used and all possible structures, using three random restarts,

for BIC/BICp/CS and VB took approximately2.4 and4.2 hours respectively on an Athlon 1800

Processor machine, which corresponds to about1.1 and1.9 seconds for each individual score.

The results are plotted in figure6.5, which shows the median ranking given to the true structure

by each scoring method, computed over 106 randomly sampled parameter settings. This plot

corresponds to a smoothed version of figure6.3, but unfortunately cannot contain AIS averages
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Figure 6.5: Median ranking of the true structure as reported by BIC, BICp, CS and VB methods,
against the size of the data setn, taken over 106 instances of the true structure.

% times that\ than BIC* BICp* CS* CS*† BIC BICp CS CS†
VB ranks worse 16.9 30.2 31.8 32.8 15.1 29.6 30.9 31.9

same 11.1 15.0 20.2 22.1 11.7 15.5 20.9 22.2
better 72.0 54.8 48.0 45.1 73.2 55.0 48.2 45.9

Table 6.2: Comparison of the VB score to its competitors, using the ranking of the true structure
as a measure of performance. The table gives the percentage fraction of times that the true
structure was ranked lower, the same, and higher by VB than by the other methods (rounded to
nearest .1%). The ranks were collected from all 106 generated parameters and all 20 data set
sizes. Note that VB outperforms all competing scores, whether we base our comparison on the
alias-corrected or uncorrected (*) versions of the scores. The CS score annotated with† is an
improvement on the original CS score, and is explained in section6.5.2.

for the computational reasons mentioned above. The results clearly show that for the most part

VB outperforms all other scores on this task by this measure although there is a region in which

VB seems to underperform CS, as measured by the median score.

Table 6.2 shows in more detail the performance of VB and its alias-uncorrected counterpart

VB* in terms of the number of times the score correctly selects the true model (i.e. ranks it

top). The data was collated from all 106 sampled true model structures, and all 20 data set sizes,

giving a total of 288320 structures that needed to be scored by each approximate method. We

see that VB outperforms the other scores convincingly, whether we compare the uncorrected

(left hand side of table) or corrected (right hand side) scores. The results are more persuasive

for the alias-corrected scores, suggesting that VB is benefitting more from this modification —

it is not obvious why this should be so.
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Figure 6.6: Median difference in score between the true and top-ranked structures, under BIC,
BICp, CS and VB scoring methods, against the size of the data setn, taken over 106 instances
of the true structure. Also plotted are the 40-60% intervals about the medians.

These percentages are likely to be an underestimate of the success of VB, since on close ex-

amination of the individual EM and VBEM optimisations, it was revealed that for several cases

the VBEM optimisation reached the maximum number of allowed iterations before it had con-

verged, whereas EM always converged. Generally speaking the VBEM algorithm was found to

require more iterations to reach convergence than EM, which would be considered a disadvan-

tage if it were not for the considerable performance improvement of VB over BIC, BICp and

CS.

We can also plot the smoothed version of figure6.4 over instances of parameters of the true

structure drawn from the prior; this is plotted in figure6.6, which shows the median difference

between the score of the true structure and the structure scoring highest under BIC, BICp, CS

and VB. Also plotted is the 40-60% interval around the median. Again, the AIS experiments

would have taken an unfeasibly large amount of computation time, and were not carried out.

We can see quite clearly here that the VB score of the true structure is generally much closer to

that of the top-ranked structure than is the case for any of the other scores. This observation in

itself is not particularly satisfying, since we are comparing scores to scores rather than scores to

exact marginal likelihoods; nevertheless it can at least be said that the dynamic range between

true and top-ranked structure scores by the VB method is much smaller than the range for the

other methods. This observation is also apparent (qualitatively) across structures in the various

plots in figure6.2. We should be wary about the conclusions drawn from this graph comparing

VB to the other methods: a completely ignorant algorithm which gives the same score to all
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Figure 6.7: The highest ranking given to the true structure under BIC, BICp, CS and VB meth-
ods, against the size of the data setn, taken over 106 instances of the true structure. These
two traces can be considered as the results of themin operation on the rankings of all the 106
instances for eachn in figure6.5.

possible structures would look impressive on this plot, giving a score difference of zero for all

data set sizes.

Figures6.7 and6.8 show the best performance of the BIC, BICp, CS and VB methods over

the 106 parameter instances, in terms of the rankings and score differences. These plots can be

considered as the extrema of the median ranking and median score difference plots, and reflect

the bias in the score.

Figure6.7shows the best ranking given to the true structure by all the scoring methods, and it is

clear that for small data set sizes the VB and CS scores can perform quite well indeed, whereas

the BIC scores do not manage a ranking even close to these. This result is echoed in figure6.8

for the score differences, although we should bear in mind the caveat mentioned above (that the

completely ignorant algorithm can do well by this measure).

We can analyse the expected performance of a naive algorithm which simply picks any structure

at random as the guess for the true structure: the best ranking given to the true model in a set

of 106 trials where a structure is chosen at random from the 136 structures is, on the average,

roughly 1.8. We can see in figure6.7 that CS and VB surpass this forn > 30 andn > 40 data

points respectively, but that BICp and BIC do so only after 300 and 400 data points. However

we should remember that, for small data set sizes, the true posterior over structures may well

not have the true model at its mode.
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Figure 6.8: The smallest difference in score between the true and top-ranked structures, under
BIC, BICp, CS and VB methods, against the size of the data setn, taken over 106 instances of
the true structure. These two traces can be considered as the results of themax operation on the
all the 106 differences for eachn in figure6.6.

Lastly, we can examine the success rate of each score at picking the correct structure. Figure6.9

shows the fraction of times that the true structure is ranked top by the different scoring methods.

This plot echoes those results in table6.2.

6.5 Open questions and directions

This section is split into two parts which discuss some related issues arising from the work in

this chapter. In section6.5.1we discuss some of the problems experienced when using the AIS

approach, and suggest possible ways to improve the methods used in our experiments. In section

6.5.2we more thoroughly revise the parameter-counting arguments used for the BIC and CS

scores, and provide a method for estimating the complete and incomplete-data dimensionalities

in arbitrary models, and as a result form a modified score CS†.

6.5.1 AIS analysis, limitations, and extensions

The technique of annealed importance sampling is currently regarded as a state-of-the-art method

for estimating the marginal likelihood in discrete-variable directed acyclic graphical models

(personal communication with R. Neal, Z. Ghahramani and C. Rasmussen). In this section the
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Figure 6.9: The success rate of the scoring methods BIC, BICp, CS and VB, as measured by the
fraction of 106 trials in which the true structure was given ranking 1 amongst the 136 candidate
structures, plotted as a function of the data set size. See also table6.2 which presents softer
performance rates (measured in terms of relative rankings) pooled from all the data set sizes and
106 parameter samples.

AIS method is critically examined as a reliable tool to judge the performance of the BIC, CS

and VB scores.

The implementation of AIS has considerable flexibility; for example the user is left to specify the

length, granularity and shape of the annealing schedules, the form of the Metropolis-Hastings

sampling procedure, the number of samples taken at each temperature, etc. These and other

parameters were described in section6.3.5; here we clarify our choices of settings and discuss

some further ways in which the sampler could be improved. Throughout this subsection we use

AIS to refer to the algorithm which provides a single estimate of the marginal likelihood, i.e.

AIS(1).

First off, how can we be sure that the AIS sampler is reporting the correct answer for the

marginal likelihood of each structure? To be sure of a correct answer one should use as long

and gradual an annealing schedule as possible, containing as many samples at each temperature

as is computationally viable (or compare to a very long simple importance sampler). In the AIS

experiments in this chapter we always opted for a single sample at each step of the annealing

schedule, initialising the parameter at the next temperature at the last accepted sample, and en-

sured that the schedule itself was as finely grained as we could afford. This reduces the variables

at our disposal to a single parameter, namely the total number of samples taken in each run of

AIS, which is then directly related to the schedule granularity. Without yet discussing the shape
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Figure 6.10: Logarithm of AIS estimates (vertical) of the marginal likelihood for different initial
conditions of the sampler (different traces) and different duration of annealing schedules (hori-
zontal), for the true structure withn = 480 data points. The top-most trace is that corresponding
to setting the initial parameters to the true values that generated the data. Shown are also the
BIC score (dashed) and the VB lower bound (solid).

of the annealing schedule, we can already examine the performance of the AIS sampler as a

function of the number of samples.

Figure 6.10 shows several AIS estimates of the marginal likelihood for the data set of size

n = 480 under the model having the true structure. Each trace is a result of initialising the AIS

sampler at a different position in parameter space sampled from the prior (6.4), except for the

top-most trace which is the result of initialising the AIS algorithm at the exact parameters that

were used to generate the data (which as the experimenter we have access to). It is important

to understand the abscissa of the plot: it is the number of samples in the AIS run and, given the

above comments, relates to the granularity of the schedule; thus the points on a particular trace

do not correspond to progress through the annealing schedule, but in fact constitute the results

of runs that are completely different other than in their common parameter initialisation.

Also plotted for reference are the VB and BIC estimates of the log marginal likelihood for this

data set under the true structure, which are not functions of the annealing duration. We know

that the VB score is a strict lower bound on the log marginal likelihood, and so those estimates

from AIS that consistently fall below this score must be indicative of an inadequate annealing

schedule shape or duration.
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For short annealing schedules, which are necessarily coarse to satisfy the boundary require-

ments onτ (see equation (6.49)), it is clear that the AIS sampling is badly under-estimating

the log marginal likelihood. This can be explained simply because the rapid annealing sched-

ule does not give the sampler time to locate and exploit regions of high posterior probability,

forcing it to neglect representative volumes of the posterior mass; this conclusion is further sub-

stantiated since the AIS run started from the true parameters (which if the data is representative

of the model should lie in a region of high posterior probability) over-estimates the marginal

likelihood, because it is prevented from exploring regions of low probability. Thus for coarse

schedules of less than aboutK = 1000 samples, the AIS estimate of the log marginal likeli-

hood seems biased and has very high variance. Note that the construction of the AIS algorithm

guarantees that the estimates of the marginal likelihood are unbiased, but not necessarily the log

marginal likelihood.

We see that all runs converge for sufficiently long annealing schedules, with AIS passing the

BIC score at about 1000 samples, and the VB lower bound at about 5000 samples. Thus,

loosely speaking, where the AIS and VB scores intersect we can consider their estimates to

be roughly equally reliable. We can then compare their computational burdens and make some

statement about the advantage of one over the other in terms of compute time. Atn = 480
the VB scoring method requires about1.5s to score the structure, whereas AIS atn = 480 and

K = 213 requires about100s; thus for this scenario VB is 70 times more efficient at scoring the

structures (at its own reliability).

In this chapter’s main experiments a value ofK = 214 = 16384 steps was used, and it is clear

from figure6.10that we can be fairly sure of the AIS method reporting a reasonably accurate

result at this value ofK, at least forn = 480. However, how would we expect these plots to

look for larger data sets in which the posterior over parameters is more peaky and potentially

more difficult to navigate during the annealing?

A good indicator of the mobility of the Metropolis-Hastings sampler is the acceptance rate of

proposed samples, from which the representative set of importance weights are computed (see

(6.60)). Figure6.11shows the fraction of accepted proposals during the annealing run, averaged

over AIS scoring of all 136 possible structures, plotted against the size of the data set,n; the

error bars are the standard errors of the mean acceptance rate across scoring all structures. We

can see that atn = 480 the acceptance rate is rarely below 60%, and so one would indeed expect

to see the sort of convergence shown in figure6.10. However for the larger data sets the accep-

tance rate drops to 20%, implying that the sampler is having considerable difficulty obtaining

representative samples from the posterior distributions in the annealing schedule. Fortunately

this drop is only linear in the logarithm of the data size. For the moment, we defer discussing

the temperature dependence of the acceptance rate, and first consider combining AIS sampling

runs to reduce the variance of the estimates.
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Figure 6.11: Acceptance rates of the Metropolis-Hastings proposals along the entire annealing
schedule, for one batch of AIS scoring of all structures, against the size of the data set,n. The
dotted lines are the sample standard deviations across all structures for eachn.

One way of reducing the variance in our estimate of the marginal likelihood is to pool the results

of several AIS samplers run in parallel according to the averaging in equation (6.61). Returning

to the specific experiments reported in section6.4, table6.3 shows the results of running five

AIS samplers in parallel with different random seeds on the entire class of structures and data

set sizes, and then using the resulting averaged AIS estimate, AIS(5), as a score for ranking the

structures. In the experiments it is the performance of these averaged scores that are compared

to the other scoring methods: BIC, CS and VB. To perform five runs took at least 40 CPU days

on an Athlon 1800 Processor machine.

By examining the reported AIS scores, both for single and pooled runs, over the 136 structures

and 20 data set sizes, and comparing them to the VB lower bound, we can see how often AIS

violates the lower bound. Table6.4shows the number of times the reported AIS score is below

the VB lower bound, along with the rejection rates of the Metropolis-Hastings sampler that was

used in the experiments (which are also plotted in figure6.11). From the table we see that

for small data sets the AIS method reports “valid” results and the Metropolis-Hastings sampler

is accepting a reasonable proportion of proposed parameter samples. However at and beyond

n = 560 the AIS sampler degrades to the point where it reports “invalid” results for more than

half the 136 structures it scores. However, since the AIS estimate is noisy and we know that

the tightness of the VB lower bound increases withn, this criticism could be considered too

harsh — indeed if the bound were tight, we would expect the AIS score to violate the bound

on roughly 50% of the runs anyway. The lower half of the table shows that, by combining AIS

estimates from separate runs, we obtain an estimate that violates the VB lower bound far less
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n
AIS(1)

#1
AIS(1)

#2
AIS(1)

#3
AIS(1)

#4
AIS(1)

#5
AIS(5)

10 27 38 26 89 129 59
20 100 113 88 79 123 135
40 45 88 77 5 11 15
80 10 47 110 41 95 44
110 1 50 8 2 62 2
160 33 2 119 31 94 6
230 103 25 23 119 32 54
320 22 65 51 44 42 78
400 89 21 1 67 10 8
430 29 94 21 97 9 18
480 2 42 14 126 18 2
560 47 41 7 59 7 11
640 12 10 23 2 23 7
800 7 3 126 101 22 23
960 1 4 1 128 8 1
1120 3 53 3 37 133 4
1280 76 2 50 7 12 5
2560 1 1 4 1 1 1
5120 12 1 24 2 16 1
10240 1 1 2 12 1 1

Table 6.3: Rankings resulting from averaging batches of AIS scores. Each one of the five
columns correspond to a different initialisation of the sampler, and gives the rankings resulting
from a single run of AIS for each of the 136 structures and 20 data set size combinations.
The last column is the ranking of the true structure based on the mean of the AIS marginal
likelihood estimates from all five runs of AIS of each structure and data set size (see section
6.3.5for averaging details).

n 10 . . . 560 640 800 960 1120 1280 2560 5120 10240
single

#AIS(1)<VB* ≤5.7 12.3 8.5 12.3 10.4 17.0 25.5 53.8 71.7
#AIS(1)<VB ≤7.5 15.1 9.4 14.2 12.3 20.8 31.1 59.4 74.5
% M-H rej. <40.3 41.5 43.7 45.9 47.7 49.6 59.2 69.7 79.2
averaged

#AIS(5)<VB* 0 0.0 0.0 0.0 0.0 0.7 3.7 13.2 50.0
#AIS(5)<VB ≤1.9 0.0 0.0 0.0 1.5 2.2 5.1 19.9 52.9

Table 6.4: AIS violations: for each size data set,n, we show the percentage of times, over the
136 structures, that a particularsingleAIS run reports marginal likelihoods below the VB lower
bound. These are given for the VB scores that are uncorrected (*) and corrected for aliases.
Also shown are the average percentage rejection rates of the Metropolis-Hastings sampler used
to gather samples for the AIS estimates. The bottom half of the table shows the similar violations
by the AIS score that are made from averaging the estimates of marginal likelihoods from five
separate runs of AIS (see section6.3.5). Note that the Metropolis-Hastings rejection rates are
still just as high for each of the individual runs (not given here).
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Figure 6.12: Acceptance rates of the Metropolis-Hastings proposals for each of four quarters of
the annealing schedule, for one batch of AIS scoring of all structures, against the size of the data
set,n. Standard errors of the means are omitted for clarity.

often, and as expected we see the 50% violation rate for large amounts of data. This is a very

useful result, and obviates to some extent the Metropolis-Hastings sampler’s deficiency in all

five runs.

However, considering for the moment a single AIS run, for large data set sizes the VB bound

is still violated an unacceptable number of times, suggesting that the Metropolis-Hastings pro-

posals are simply not adequate for these posterior landscapes. This suggests a modification to

the proposal mechanism, outlined below. Diagnostically speaking, this hopefully has served as

a good example of the use of readily-computable VB lower bounds for evaluating the reliability

of the AIS methodpost hoc.

Let us return to examining why the sampler is troubled for large data set sizes. Figure6.12

shows the fraction of accepted Metropolis-Hastings proposals during each of four quarters of

the annealing schedule used in the experiments. The rejection rate tends to increase moving from

the beginning of the schedule (the prior) to the end (the posterior), the degradation becoming

more pronounced for large data sets. This is most probably due to the proposal width remaining

unchanged throughout all the AIS implementations: ideally one would use a predetermined

sequence of proposal widths which would be a function of the amount of data,n, and the

position along the schedule. This would hopefully eliminate or at least alleviate the pronounced

decrease in acceptance rate across the four quarters, but would also cause each individual trace

to not drop so severely withn.
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We can use a heuristic argument to roughly predict the optimal proposal width to use for the AIS

method. From mathematical arguments outlined in sections1.3.2and1.3.4, the precision of the

posterior distribution over parameters is approximately proportional to the size of the data setn.

Furthermore, the distribution being sampled from at stepk of the AIS schedule is effectively that

resulting from a fractionτ(k) of the data. Therefore these two factors imply that the width of

the Metropolis-Hastings proposal distribution should be inversely proportional to
√
nτ(k). In

the case of multinomial variables, since the variance of a Dirichlet distribution is approximately

inversely proportional to the strength,α, (see appendixA), then the optimal strength of the

proposal distribution should beαopt ∝ nτ(k) if its precision is to match the posterior precision.

Note that we are at liberty to set these proposal precisions arbitrarily beforehand without causing

the sampler to become biased.

We have not yet discussed the shape of the annealing schedule: should the inverse-temperatures

{τ(k)}Kk=1 change linearly from 0 to 1, or follow some other function? The particular annealing

schedule in these experiments was chosen to be nonlinear, lingering at higher temperatures for

longer than at lower temperatures, following the relationship

τ(k) =
eτk/K

1− k/K + eτ
k ∈ {0, . . . ,K} , (6.73)

with eτ set to0.2 . For any setting ofeτ > 0, the series of temperatures is monotonic and the

initial and final temperatures satisfy (6.49):

τ(0) = 0 , and τ(K) = 1 . (6.74)

For largeeτ , the schedule becomes linear. This is plotted for different values ofeτ in figure

6.13. The particular value ofeτ was chosen to reduce the degree of hysteresis in the annealing

ratios, as discussed below.

Hysteresis in the annealing ratios

As presented in section6.3.5and algorithm6.1, the algorithm for computing each and every

marginal likelihood ratio in (6.54) did so in a forward manner, carrying over the parameter

settingθini from the calculation of the previous ratio to initialise the sampling procedure for

calculating the next ratio. However, whilst it makes sense to move from higher to lower tem-

peratures to avoid local maxima in the posterior in theory, the final estimate of the marginal

likelihood is unbiased regardless of the order in which the ratios are tackled. In particular, we

can run the AIS algorithm in thereversedirection, starting from the posterior and warming

the system to the prior, calculating each ratio exactly as before but using the last sample from

the lower temperature as an initialisation for the sampling at the next higher temperature in the

schedule (note that by doing this we arenot inverting the fractions appearing in equation (6.54)).
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Figure 6.13: Non-linear AIS annealing schedules, plotted for six different values ofeτ . In the
experiments performed in this chapter,eτ = 0.2.

What can this reverse procedure do for us? If we look at figure6.10again, we can see that for

any random parameter initialisation the reported marginal likelihood is much more often than

not an underestimate of the true value. This is because for coarse annealing schedules we are

unlikely to locate regions of high posterior probability by the time the system is quenched. If we

were then to run the AIS algorithm in a reverse direction, starting from where we had finished

the forward pass, we would expect on average to report a higher marginal likelihood than that

just reported by the forward pass, simply because the sampler has had longer to explore the high

probability regions.

A logical conclusion is that if the forward and reverse passes yield very different values for

the marginal likelihood, then we have most likely used too short an annealing schedule. And

furthermore, since the marginal likelihood estimates are constructed from the product of many

ratios of marginal likelihoods, we can use the discrepancies between the ratios calculated on the

forward and reverse passes to choose temperature regions where more sampling is required, and

dilate the annealing schedules in these regions accordingly. Of course we should remember that

these discrepancies are stochastic quantities, and so we should modify the schedule based on

averaged discrepancies over several runs.

This heuristic analysis was used when designing the shape and granularity of the annealing

schedule, and we found that more time was required at higher and intermediate temperatures

at the expense of lower temperatures. An area of future research is to formalise and more

fully investigate this and related arguments. For example, it would be useful to characterise the

dependence of the degree of hysteresis along the schedule for different settings ofeτ .
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6.5.2 Estimating dimensionalities of the incomplete and complete-data models

The BICp, BIC and CS approximations take the limit of the Laplace approximation as the

amount of data tends to infinity, and result in scores that depend on the dimensionalities of

the incomplete and complete models,d andd′ respectively. In the experiments in this chap-

ter, for BICd was calculated using a simple counting argument (see equation (6.24) in section

6.3.2), and for CSd andd′ were assumed to be equal, which is the assumption made in the

original implementation ofCheeseman and Stutz(1996).

In models that have no hidden variables, the value ofd required for the BIC approximation can

usually be arrived at by adding together the degrees of freedom in each parameter, taking care

to take into consideration any parameter degeneracies. However, in models that do have hidden

variables the number of free parameters in the incomplete model is much less than that in the

complete model. This is because the full effect of each hidden variable cannot always be fully

manifest in the functions produced on the observed variables. This situation can be seen in the

following discrete example: imagine the model consisting of a singlek-valued hidden variable

which is the (only) parent of ap-valued observed variable. The naive counting argument would

return the complete dimensionality asd′ = (k − 1) + (p − 1) × k. However, the incomplete

dimensionality can be no more thand = (p− 1), as a model with this many degrees of freedom

can exactly model any observed set of counts of the observed variable.

In a general setting, deducing the complete and incomplete model dimensionalities can be com-

plicated (see, for example,Settimi and Smith, 1998; Kočka and Zhang, 2002), since it involves

computing the rank of the Jacobian of the transformation for parameters from incomplete to

complete models.Geiger et al.(1996) describe a method by whichd can be computed in dis-

crete DAGs, by diagonalising the Jacobian symbolically; they also present a theorem that guar-

antees that a randomised version of the symbolic operation is viable as well. Unfortunately their

approach seems difficult to implement efficiently on an arbitrary topology discrete DAG, since

both symbolic and randomised versions require diagonalisation. Furthermore it is not clear how,

if at all, it can be transferred to DAGs containing continuous variables with arbitrary mappings

between the complete and incomplete data models.

For the purposes of this chapter, we have used a simple method to estimate the dimensional-

ities of each model in our class. It is based on analysing the effect of random perturbations

to the model’s parameters on the complete and incomplete-data likelihoods. The procedure is

presented in algorithm6.2, and estimates the number of effective dimensions,d andd′, by com-

puting the rank of a perturbation matrix. Since the rank operation attempts to find the number

of linearly independent rows of the matricesC andC ′, the randomε-perturbations must be

small enough such that the change in the log likelihoods are linear withε. Also, the number of

samplesn should be chosen to be at least as large as the total number of parameters possible in
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Algorithm 6.2: d(m), d′(m): To estimate incomplete and complete model parameter dimen-
sionalities.

1. For each structurem

(b) ObtainθMAP using the MAP EM algorithm (section6.3.1).

(a) Obtain a representative set of all possible observed data{yi}ni=1.

(d) Randomly (spherically)ε-perturbθ̂MAP R times, to form{θ̂1, . . . , θ̂R}.
(e) Compute the matrixC(n×R) : Cir = ln p(yi | θ̂r) for all (i, r).

Estimated(m) = rank(C)− 1.

(f) Compute the matrixC ′(n×R) : C ′
ir = ln p(si,yi | θ̂r) for all (i, r),

wheresi is a randomly instantiated hidden state.

Estimated′(m) = rank(C ′)− 1.

End For

the model (as the rank of a matrix can be no more than the smaller of the number of rows or

columns), and preferably several times this for reliable estimates.

This procedure was found to give reasonable results when carried out on all the model structures

used in this chapter, with a randomly generated data set of sizen = 1000 andR = 100. Without

listing all the results, it suffices to say that: for all structuresd ≤ d′ ≤ d+2, and for the majority

of structuresd′ = d+|H|— that is to say a further degree of freedom is provided for each binary

hidden variable (of which there are at most 2) on top of the incomplete dimensionality. There

are some structures for which the discrepancyd′−d is smaller than 2, which is not as we would

expect.

There may be several reasons for this discrepancy. First the random perturbations may not have

explored certain directions from the MAP estimate, and thus the algorithm could have reported

a lower dimensionality than true (unlikely). Second, the datay only represented a subset of all

possible configurations (almost certainly since there are54 possible realisations and 1000 data

points are generated randomly), and therefore the effective dimensionality drops.

These results support the use of a more accurate CS† score — see equation (6.30), which mod-

ifies the score by adding a term(d′ − d)/2 · lnn. The effect of this is to raise the scores for

models with 2 hidden variables bylnn, raise those with just 1 hidden variable by1/2 · lnn, and

leave unchanged the single model with no hidden states.

Table 6.5 shows the improvement (in terms of ranking) of the more accurate CS† over the

original CS approximation, bringing it closer to the performance of the VB score. The table

shows the number of times in the 106 samples (see experiments in section6.4 above) that the
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n BIC BICp CS CS† VB
10 0 0 0 0 0
20 0 0 0 0 0
40 0 0 0 0 0
80 0 0 0 1 1
110 0 0 0 0 1
160 0 0 1 2 3
230 0 1 3 5 6
320 0 2 8 10 12
400 1 5 8 9 11
430 1 6 10 10 11
480 3 7 12 12 15
560 3 8 14 16 18
640 5 11 14 17 23
800 7 15 22 23 29
960 9 18 28 33 36
1120 11 19 32 33 40
1280 15 24 38 41 48
2560 35 41 59 62 66
5120 56 63 76 76 80
10240 73 79 82 83 84

Table 6.5: Number of times (out of 106) that each score selects the true structure. Shown are
the performance of the original BIC, BICp, CS and VB scores, all corrected for aliasing, and
also shown is the CS† score, resulting from (further) correcting CS for the difference between
complete and incomplete data model dimensionalities.

score successfully selected the true model structure. Is it clear that CS† is an improvement

over CS, suggesting that the assumption made above is true. However, we should interpret this

experiment with some care, because our original choice of the true model having two hidden

variables may be masking a bias in the altered score; it would make sense to perform similar

experiments choosing a much simpler model to generate the data.

The improvement in performance of the CS† score, averaged over all data set sizes and all 106

generated parameter sets can be see in table6.2(page233), where it is compared alongside BIC,

CS and VB. It can be seen that VB still performs better. Further verification of this result will

be left to future work.

6.6 Summary

In this chapter we have presented various scoring methods for approximating the marginal likeli-

hood of discrete directed graphical models with hidden variables. We presented EM algorithms

for ML and MAP parameter estimation, showed how to calculate the asymptotic criteria of BIC

and Cheeseman-Stutz, derived the VBEM algorithm for approximate Bayesian learning which
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maintains distributions over the parameters of the model and has the same complexity as the EM

algorithm, and presented a (somewhat impoverished) AIS method designed for discrete-variable

DAGs.

We have shown that VB consistently outperforms BIC and CS, and that VB performs respec-

tively as well as and more reliably than AIS for intermediate and large sizes of data. The AIS

method has very many parameters to tune and requires extensive knowledge of the model do-

main to design efficient and reliable sampling schemes and annealing schedules. VB on the

other hand has not a single parameter to set or tune, and can be applied without any expert

knowledge, at least in the class of singly-connected discrete-variable DAGs with Dirichlet pri-

ors which we have considered in this chapter. Section6.5.1discussed several ways in which

the AIS method could be improved, for example by better matching the Metropolis-Hastings

proposal distributions to the annealed posterior; in fact a method based on slice sampling should

be able to adapt better to the annealing posterior with little or no expert knowledge of the shape

of the annealed posterior (Neal, 2003).

It may be that there exists a better AIS scheme than sampling in parameter space. To be more

specific, for any completion of the data the parameters of the model can be integrated out

tractably (at least for the class of models examined in this chapter); thus an AIS scheme which

anneals in the space of completions of the data may be more efficient than the current scheme

which anneals in the space of parameters (personal communication with R. Neal). However,

this latter scheme may only be efficient for models with little data compared to the number of

parameters, as the sampling space of all completions increases linearly with the amount of data.

This avenue of research is left to further work.

This chapter has presented a novel application of variational Bayesian methods to discrete

DAGs. In the literature there have been other attempts to solve this long-standing model se-

lection problem. For example thestructural EMalgorithm ofFriedman(1998) uses a structure

search algorithm which uses a scoring algorithm very similar to the VBEM algorithm presented

here, except that for tractability the distribution overθ is replaced by the MAP estimate,θMAP.

We have shown here how the VB framework enables us to use the entire distribution overθ for

inference of the hidden variables.

In chapter2 we proved that the Cheeseman-Stutz score is in fact a lower bound on the marginal

likelihood and, more importantly, we proved that there exists a construction which is guaranteed

to produce a variational Bayesian lower bound that isat least as tightas the Cheeseman-Stutz

score (corollary2.5 to theorem2.3, page79). This construction builds a variational Bayesian

approximation using the same MAP parameter estimate used to obtain the CS score. However,

we did not use this construction in our experiments, and ran both the MAP EM and VB opti-

misations independently of each other. As a result we cannot guarantee that the VB bound is

in all runs tighter than the CS bound, as the dynamics of the optimisations for MAP learning
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and VB learning may in general lead even identically initialised algorithms to different optima

in parameter space (or parameter distribution space). Nevertheless we have still seen improve-

ment in terms of ranking of the true structure by VB as compared to CS. A tighter bound on

the marginal likelihood does not necessarily directly imply that we should have better structure

determination, although it certainly suggests this and is supported by the experimental results.

Empirically, the reader may be interested to know that the VB lower bound was observed to be

lower than the CS score in only 173 of the 288320 total scores calculated (about 0.06%). If the

construction derived in corollary2.5 had been used then this number of times would of course

be exactly zero.
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Chapter 7

Conclusion

7.1 Discussion

In this thesis we have shown how intractable Bayesian learning, inference, and model selection

problems can be tackled using variational approximations. We have described a general frame-

work for variational Bayesian learning and shown how it can be applied to several models of

interest. We have demonstrated that it is an efficient and trustworthy approximation as compared

to other more traditional approaches. Before summarising the contributions of this thesis, we

spend the next few paragraphs discussing some of the evolving directions for model selection

and variational Bayes, including the use of infinite models, inferring causal relationships using

the marginal likelihood, other candidates for approximating the marginal likelihood, and lastly

automated algorithm derivation procedures. These areas are expected to be active and fruitful

future research directions. We conclude in section7.2with a summary of the main contributions

of the thesis.

Infinite models

In this thesis we have focused on Bayesian learning in models that can be specified using a

finite number of parameters. However, there are powerful arguments for entertaining models

with infinitely many parameters, or at least as complex models as can be handled computation-

ally. The process of Bayesian inference yields a unique answer. That is to say, given our prior

beliefs, on observing some data all inference is automatic and there is one and only one answer

to any prediction of the model. The problems of under- or overfitting by using too simple or

too complex a model are simply not a concern if we integrate over all uncertain variables in

the model, since applying Bayes’ rule correctly at every step is guaranteed to result in coherent

and optimal inferences given the prior beliefs. In this way the problem of model selection is
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no longer an issue, because the infinite model can entertain a continuum of models and average

with respect to all of these simultaneously. This approach to modelling is discussed inNeal

(1996) where, for example, neural networks with an infinite number of hidden units are shown

(theoretically and empirically) to produce sensible predictions, and on some data sets state-of-

the-art performance. In general it is difficult and sometimes impossible to entertain the limit of

an infinite model, except where the mathematics lends itself to analytically tractable solutions

— this is often the case for mixture models. Examples of Bayesian learning with infinite mod-

els include: the neural networks mentioned above, infinite mixtures of Gaussians (Rasmussen,

2000), infinite hidden Markov models (Beal et al., 2002), and infinite mixtures of Gaussian pro-

cess experts (Rasmussen and Ghahramani, 2002). The basic idea of examining the infinite limit

of finite models can be applied to a host of other as yet unexplored models and applications.

Unfortunately, a major drawback for these infinite models is that inference is generally in-

tractable, and one has to resort to Monte Carlo sampling methods which can be computationally

costly. Also, representing an infinite number of components in a mixture model, for example,

can quickly become cumbersome; even elaborate Markov chain Monte Carlo approaches be-

come very inefficient in models with many parameters. One further disadvantage of employing

infinite models is that it is often difficult to find ways of encapsulating prior expert knowledge

into the model. Methods such as examining the properties of data drawn from specific prior

settings are illuminating but not always entirely satisfactory for designing the prior to articulate

one’s beliefs.

An alternative to grappling with the conceptual and implementational problems of infinite mod-

els is then to restrict ourselves to performing model inference, or selection amongst a finite set

of finite-size models. Each individual model is then manageable and often simpler to inter-

pret in terms of its structure. On the basis of the marginal likelihood we can obtain posterior

distributions over the different candidate models. The problems discussed in this thesis have

emphasised these model selection and structure learning tasks, as well as attempting to obtain

full posterior distributions over model structures. We have examined a selection of statistical

models, all of which contained hidden variables which cause the marginal likelihood computa-

tion to be intractable, and tackled this intractability using variational methods.

Bethe, Kikuchi, and cluster-variation methods

Variational Bayes, as described in this thesis, is just one type of variational approach that could

be used to approximate Bayesian inference. It assumes simple forms for the posterior distribu-

tions over hidden variables and parameters, and then uses these forms to construct lower bounds

on the marginal likelihood that are tractable. Algorithms for inference and learning are then de-

rived as a result of optimising this lower bound by iteratively updating the parameters of these

simplified distributions. Most of this thesis has concentrated on the ease with which the model
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parameters can be included in the set of uncertain variables to infer and integrate over, at least

for the sub-class of conjugate-exponential models.

A promising alternative direction is to explore the Bethe and Kikuchi family of variational meth-

ods (Yedidia et al., 2001), sometimes called cluster-variational methods, which may be more

accurate but do not provide the assurance of being bounds. These re-express the negative log

marginal likelihood as a “free energy” from statistical physics, and then approximate the (in-

tractable) entropy of the posterior distribution over latent variables by neglecting high order

terms. In the Bethe approximation, the entropy is approximated with an expression which de-

pends only on functions of single variables and pairs of variables. There are several procedures

for minimising the Bethe free energy as a functional of the approximate posterior distributions

to obtain estimates of the marginal likelihood. It turns out that for singly-connected graphs the

fixed point equations that result from iterative minimisation of this free energy with respect to

the single and pairwise functions correspond exactly to the messages that are passed in the junc-

tion tree and sum-product algorithms. Thus the Bethe free energy is exact for singly-connected

graphs (trees). Interestingly, it has recently been shown that the belief propagation algorithm,

even when run on multiply-connected graphs (i.e. ‘loopy’ graphs), has stable fixed points at the

minima of the Bethe free energy (Heskes, 2003). While belief propagation on loopy graphs is

not guaranteed to converge, it often works well in practice, and has become the standard ap-

proach to decoding state-of-the-art error-correcting codes. Furthermore, convergent algorithms

for minimising the Bethe free energy have recently been derived (Yuille, 2001; Welling and Teh,

2001). There are other related methods, such as expectation propagation (EP,Minka, 2001a),

approximations which observe higher order correlations in the variables (Leisink and Kappen,

2001), and other more elaborate variational schemes for upper bounds on partition functions

(Wainwright et al., 2002).

The question remains open as to whether these methods can be readily applied to Bayesian

learning problems. One can view Bayesian learning as simply treating the parameters as hidden

variables, and so every method that has been shown to be successful for inference over hidden

variables should also do well for integrating over parameters. However, there have been few

satisfactory examples of Bayesian learning using any of the other methods described above, and

this is an important direction for future research.

Inferring causal relationships

Most research in statistics has focused on inferring probabilistic dependencies between model

variables, but more recently people have begun to investigate the more challenging and contro-

versial problem of inferringcausality. Causality can be understood statistically as a relationship

s → t which is stable regardless of whethers was set through intervention / experimental ma-

nipulation or it occurred randomly. An example of this is smoking (s) causing yellowing of
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the teeth (t). Painting the teeth yellow does not change the probability of smoking, but forc-

ing someone to smoke does change the probability of the teeth becoming yellow. Note that

both the modelss → t ands ← t have the same conditional independence structure, yet they

have very different causal interpretations. Unfortunately this has lead many researchers to be-

lieve that such causal relationships cannot be inferred from observational data alone, since these

models arelikelihood equivalent(Heckerman et al., 1995). Likelihood equivalent models are

those for which an arc reversal can be accompanied by a change in parameters to yield the same

likelihood. As a result these researchers then propose that causation can only be obtained by as-

sessing the impact of active manipulation of one variable on another. However, this neglects the

fact that theprior over parameters may cause the marginal likelihoods to be different even for

likelihood equivalent models (D. MacKay, personal communication). In this context, it would

be very interesting to explore the reliability with which variational Bayesian methods can be

used to infer such causal relationships in general graphical models. In chapter6 we showed

that variational Bayes could determine the presence or absence of arcs from hidden variables to

observed variables in a simple graphical model class. Envisaged then is a similar investigation

for examining the directionality of arcs in a perhaps more expressive structure class.

Automated algorithm derivation

One of the problems with the variational Bayesian framework is that, despite the relative sim-

plicity of the theory, the effort required to derive the update rules for the VBE and VBM steps is

usually considerable and a hindrance to any implementation. Both the derivation and implemen-

tation have to be repeated for each new model, and both steps are prone to error. The variational

linear dynamical system discussed in chapter5 is a good example of a simple model for which

the implementation is nevertheless cumbersome.

Our contribution of generalising the procedure for conjugate-exponential (CE) family models

(section2.4) is a step in the right direction for automated algorithm derivation. For CE models,

we now know that the complexity of inference for variational Bayesian inference is the same as

for point-parameter inference, and that for simple models such as HMMs existing propagation

algorithms can be used unaltered withvariational Bayes pointparameters (see theorem2.2).

There are a number of software implementations available or in development for inference and

general automated algorithm derivation. The BUGS software package (Thomas et al., 1992)

for automated Bayesian inference using Gibbs sampling is the most widely used at present; the

graphical model and functional forms of the conditional probabilities involving both discrete and

continuous variables can be specified by hand and then the sampling is left to obtain posterior

distributions and marginal probabilities. For more generic algorithm derivation, theAutoBayes

project (Gray et al., 2003) uses symbolic techniques to automatically derive the equations re-
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quired for learning and inference in the model and explicitly produces the software to perform

the task.

A similar piece of software is being developed in theVIBESproject (Bishop et al., 2003). This

package explicitly uses precisely the CE variational Bayesian results presented in chapter2 of

this thesis to automate the variational inference and learning processes, for (almost) arbitrary

models expressed in graphical form. To be fully useful, this package should be able to cope

with user-specified further approximation to the posterior, on top of just the parameter / hidden

variable factorisation. Furthermore it should be relatively straightforward to allow the user to

specify models which have non-CE components, such as logistic sigmoid functions. This would

allow for discrete children of continuous parents, and could be made possible by including

quadratic lower bounds on the sigmoid function (due toJaakkola, 1997) to ensure that there is

still a valid overall lower bound on the marginal likelihood. Looking further in to the future,

these software applications may even be able to suggest ‘good’ factorisations, or work with a

variety of these approximations together or even hierarchically. Also an alternative for coping

with non-CE components of the model might be to employ sampling-based inferences in small

regions of the graph that are affected.

Combining the variational Bayesian theory with a user-friendly interface in the form of VIBES

or similar software could lead to the mass use of variational Bayesian methods in a wide variety

of application fields. This would allow the ready comparison of a host of different models, and

greatly improve the efficiency of current research on variational Bayes. However there is the

caveat, which perhaps has not been emphasised enough in this thesis, that blind applications

of variational Bayes may lead to the wrong conclusions, and that any inferences should be

considered in the context of the approximations that have been made. This reasoning may not

come easily to an automated piece of software, and the only sure answer to the query of whether

the variational lower bound is reliable is to compare it to the exact marginal likelihood. It should

not be difficult to overlay onto VIBES or similar software a set of sampling components to do

exactly this task of estimating the marginal likelihood very accurately for diagnostic purposes;

one such candidate for this task could be annealed importance sampling.

7.2 Summary of contributions

The aim of this thesis has been to investigate the variational Bayesian method for approximating

Bayesian inference and learning in a variety of statistical models used in machine learning ap-

plications. Chapter1 reviewed some of the basics of probabilistic inference in graphical models,

such as the junction tree and belief propagation algorithms for exact inference in both undirected

and directed graphs. These algorithms are used for inferring the distribution over hidden vari-

ables given observed data, for aparticular settingof the model parameters. We showed that in
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situations where the parameters of the model are unknown the correct Bayesian procedure is to

integrate over this uncertainty to form the marginal likelihood of the model. We explained how

the marginal likelihood is the key quantity for choosing between models in a model selection

task, but also explained that it is intractable to compute for almost all interesting models.

We reviewed a number of current methods for approximating the marginal likelihood, such as

Laplace’s method, the Bayesian information criterion (BIC), and the Cheeseman-Stutz crite-

rion (CS). We discussed how each of these have significant drawbacks in their approximations.

Perhaps the most salient deficiency is that they are based on maximum a posteriori parameter

(MAP) estimates of the model parameters, which are arrived at by maximising the posterior

density of the parameters, and so the MAP estimate may not be representative of the posterior

mass at all. In addition we noted that the MAP optimisation is basis dependent, which means

that two different experimenters with the same model and priors, but with different parameter-

isations, do not produce the same predictions using their MAP estimates. We also discussed a

variety of sampling methods, and noted that these are guaranteed to give an exact answer for the

marginal likelihood only in the limit of an infinite number of samples, and one often requires

infeasibly long sampling runs to obtain accurate and reliable estimates.

In chapter2we presented the variational Bayesian method for approximating the marginal likeli-

hood. We first showed how the standard expectation-maximisation (EM) algorithm for learning

ML and MAP parameters can be interpreted as a variational optimisation of a lower bound on

the likelihood of the data. In this optimisation, the E step can either be exact, in which case

the lower bound is tight after each E step, or it can be restricted to a particular family of distri-

butions in which case the bound is loose. The amount by which the bound is loose is exactly

the Kullback-Leibler divergence between the variational hidden variable posterior and the ex-

act posterior. We then generalised this methodology to the variational Bayesian EM algorithm

which integrates over the parameters. The algorithm alternates between a VBE step which ob-

tains a variational posterior distribution over the hidden variables given a distribution over the

parameters, and a VBM step which infers the variational distribution over the parameters given

the result of the VBE step. The lower bound gap is then given by the KL divergence between

the variational joint posterior over hidden variables and parameters, and the corresponding exact

posterior.

Significant progress in understanding the VB EM optimisation was made by considering the

form of the update equations in the case of conjugate-exponential (CE) models. We showed

that if the complete-data likelihood for the model is in the exponential family and the prior

over parameters is conjugate to this likelihood, then the VB update equations take on analyt-

ically tractable forms and have attractive intuitive interpretations. We showed that, in theory,

it is possible to use existing propagation algorithms for performing the VBE step, even though

we have at all times a distribution over the parameters. This is made possible by passing the

propagation algorithm thevariational Bayes pointparameter,θBP ≡ φ−1(〈φ(θ)〉qθ(θ)), which
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is the result of inverting the exponential family’s natural parameter mapping after averaging the

natural parameters under the variational posterior. This is a very powerful result as it means

that variational Bayesian inference (the VBE step) is possible in the same time complexity as

the standard E step for the point-parameter case (with the only overhead being that of inverting

the mapping). We also presented corollaries of this result applied to directed (Bayesian) and

undirected (Markov) networks — see corollaries2.2and2.4.

In chapter3 we presented a straightforward example of this important result applied to Bayesian

learning in a hidden Markov model. Here the variational Bayes point parameters are sub-

normalised transition and emission probabilities for the HMM, and the well-known forward-

backward algorithm can be used unchanged with these modified parameters. We carried out

experiments (some of which are suggested inMacKay, 1997) which showed that the VB algo-

rithm was capable of determining the number of hidden states used to generate a synthetic data

set, and outperforms ML and MAP learning on a task of discriminating between forwards and

backwards English sentences. This shows that integrating over the uncertainty in parameters is

important, especially for small data set sizes. The linear dynamical system of chapter5 has the

same structure as the HMM, so we might expect it to be equally suitable for the propagation

corollary. However for this model it was not found to be possible to invert the natural parameter

mapping, but nevertheless a variational Bayesian inference algorithm was derived with the same

time complexity as the well-known Rauch-Tung-Striebel smoother. It was then shown that the

VB LDS system could use automatic relevance determination methods to successfully deter-

mine the dimensionality of the hidden state space in a variety of synthetic data sets, and that

the model was able to discard irrelevant driving inputs to the hidden state dynamics and output

processes. Some preliminary results on elucidating gene-expression mechanisms were reported,

and we expect this to be an active area of future research.

Chapter4 focused on a difficult model selection problem, that of determining the numbers

of mixture components in a mixture of factor analysers model. Search over model structures

for MFAs is computationally intractable if each analyser is allowed to have different intrinsic

dimensionalities. We derived and implemented the variational Bayesian EM algorithm for this

MFA model, and showed that by wrapping the VB EM optimisation within a birth and death

process we were able to navigate through the space of number of components using the lower

bound as a surrogate for the marginal likelihood. Since all the parameters are integrated out in

a Bayesian implementation, we are at liberty to begin the search either from the simplest model

or from a model with very many components. Including an automatic relevance determination

prior on the entries of each of the factor loading matrices’ columns allowed the optimisation

to simultaneously find the number of components and their dimensionalities. We demonstrated

this on several synthetic data sets, and showed improved performance on a digit classification

task as compared to a BIC-penalised ML MFA model. We noted that for this mixture model the

death process was an automatic procedure, and also suggested several ways in which the birth

processes could be implemented to increase the efficiency of the structure search.
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Also in this chapter we presented a generally applicable importance sampling procedure for ob-

taining estimates of the marginal likelihood, predictive density, and the KL divergence between

the variational and exact posterior distributions. In the sampler, the variational posteriors are

used as proposal distributions for drawing importance samples. We found that although the

lower bound tends to correlate well with the importance sampling estimate of the marginal like-

lihood, the KL divergence (the bound gap) increases approximately linearly with the number of

components in the MFA model, which would suggest that the VB approximation has an inherent

bias towards simpler models. We note also that importance sampling can fail for poor choices

of proposal distribution and is not ideal for high dimensional parameter spaces. We attempted

to improve the estimates by using heavier tailed and mixture distributions derived from the vari-

ational posteriors, but any improvements are not very conclusive. The problems with simple

importance sampling have motivated attempts at combining variational methods with more so-

phisticated MCMC methods, but to date there have been few successful implementations, and

this is an area of future work.

We showed in chapter2 that the variational Bayesian EM algorithm is a generalisation of the EM

algorithm for ML/MAP optimisation — the standard EM algorithm is recovered by restricting

the form of the variational posterior distribution over parameters to a delta function, or a point-

estimate. There is also the interesting observation that the VB approximation reduces to the BIC

approximation in the limit of an infinitely large data set, for which we provided a brief proof in

the case of CE models. However, we have also found intriguing connections between the VB

lower bound and Cheeseman-Stutz approximations to the marginal likelihood. In particular we

proved with theorem2.3that the CS criterion is a strict lower bound on the marginal likelihood

for arbitrary models (not just those in the CE family), which was a previously unrecognised

fact (althoughMinka (2001b) makes this observation in a mixture modelling context). We then

built on this theorem to show with corollary2.5 that there is a construction for obtaining a VB

approximation whichalwaysresults inat least as tight a boundas the CS criterion. This is a

very interesting and useful result because it means that all existing implementations using CS

approximations can now be made more faithful to the exact marginal likelihood by overlaying a

variational Bayesian approximation. This is only a very recent discovery, and as a result has not

yet been exploited to the full.

We saw superior performance of the variational Bayesian lower bound over the Cheeseman-

Stutz and BIC criteria in chapter6, where the task was finding the particular structure (out of a

small class of structures) that gave rise to an observed data set, via the marginal likelihood. This

was despite not making use of the aforementioned construction derived in corollary2.5 (which

we were not aware of when carrying out the chapter’s experiments). In these experiments we

found that VB outperformed both BIC and CS approximations, and also tended to provide more

reliable results than the sampling gold standard, annealed importance sampling. Not only does

the VB approximation provide a bound on the marginal likelihood (which in the experiments

often showed AIS estimates to be ‘invalid’), but it also arrives at this bound in a fraction (about
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1%) of the time of the sampling approach. Moreover the VB approximation does not require the

tuning of proposal distributions, annealing schedules, nor does it require extensive knowledge of

the model domain to produce a reliable algorithm. We presented a number of extensions to the

AIS algorithm, including a more general algorithm for computing marginal likelihoods which

uses estimates based on more than one sample at each temperature (see algorithm6.1). In the

near future we hope to prove whether estimates using this algorithm are biased or not (personal

communication with R. Neal).

To conclude, I hope that this thesis has provided an accessible and coherent account of the

widely applicable variational Bayesian approximation. We have derived variational Bayesian

algorithms for a variety of statistical models and provided the tools with which new models

can be tackled, especially with a view to building software for automated algorithm derivation.

This should throw open the doors to Bayesian learning in a host of models other than those

investigated here. There are many directions for this research to be taken in and much work

left to be done. The hope is that the experimental findings and insights documented in these

chapters will stimulate and guide future research on variational Bayes.
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Appendix A

Conjugate Exponential family

examples

The following two tables present information for a variety of exponential family distributions,

and include entropies, KL divergences, and commonly required moments. Where used, tilde

symbols (e.g.̃θ), denote the parameters of a different distribution of the same form. Therefore

KL(θ̃||θ) is shorthand for the KL divergence between the distribution with parameterθ̃ and the

distribution with parameterθ (averaging with respect to the first distribution that is specified).

The remainder of the notation should be self-explanatory.
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Appendix B

Useful results from matrix theory

B.1 Schur complements and inverting partitioned matrices

In chapter5 on Linear Dynamical Systems, we needed to obtain the cross-covariance of states

across two time steps from the precision matrix, calculated from combining the forward and

backward passes over the sequences. This precision is based on the joint distribution of the

states, yet we are interested only in the cross-covariance between states. IfA is of 2× 2 block

form, we can use Schur complements to obtain the following results for the partitioned inverse

of A, and its determinant in terms of its blocks’ constituents.

The partitioned inverse is given by(
A11 A12

A21 A22

)−1

=

(
F−1

11 −A−1
11 A12F

−1
22

−F−1
22 A21A

−1
11 F−1

22

)
(B.1)

=

(
A−1

11 +A−1
11 A12F

−1
22 A21A

−1
11 −F−1

11 A12A
−1
22

−A−1
22 A21F

−1
11 A−1

22 +A−1
22 A21F

−1
11 A12A

−1
22

)
(B.2)

and the determinant by∣∣∣∣∣ A11 A12

A21 A22

∣∣∣∣∣ = |A22| · |F11| = |A11| · |F22| , (B.3)

where

F11 = A11 −A12A
−1
22 A21 (B.4)

F22 = A22 −A21A
−1
11 A12 . (B.5)
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Useful results from matrix theory B.2. The matrix inversion lemma

Notice that inverses ofA12 or A21 do not appear in these results. There are other Schur com-

plements that are defined in terms of the inverses of these ‘off-diagonal’ terms, but they are not

needed for our purposes, and indeed if the states involved have different dimensionalities or are

independent, then these off-diagonal quantities are not invertible.

B.2 The matrix inversion lemma

Here we present a sketch proof of the matrix inversion lemma, included for reference only. In the

derivation that follows, it becomes quite clear that there is no obvious way of carrying the sort

of expectations encountered in chapter5 through the matrix inversion process (see comments

following equation (5.105)).

The matrix inversion result is most useful whenA is a large diagonal matrix andB has few

columns (equivalentlyD has few rows).

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1 . (B.6)

To derive this lemma we use the Taylor series expansion of the matrix inverse

(A+M)−1 = A−1(I +MA−1)−1 = A−1
∞∑
i=0

(−1)i(MA−1)i , (B.7)

where the series is only well-defined when the spectral radius ofMA−1 is less than unity. We

can easily check that this series is indeed the inverse by directly multiplying by(A + M),
yielding the identity,

(A+M)A−1
∞∑
i=0

(−1)i(MA−1)i = AA−1
[
I −MA−1 + (MA−1)2 − (MA−1)3 + . . .

]
+MA−1

[
I − MA−1 + (MA−1)2 − . . .

]
(B.8)

= I . (B.9)
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Useful results from matrix theory B.2. The matrix inversion lemma

In the series expansion we find an embedded expansion, which forms the inverse matrix term

on the right hand side, as follows

(A+BCD)−1 = A−1(I +BCDA−1)−1 (B.10)

= A−1
∞∑
i=0

(−1)i(BCDA−1)i (B.11)

= A−1

(
I +

∞∑
i=1

(−1)i(BCDA−1)i
)

(B.12)

= A−1

(
I −BC

[ ∞∑
i=0

(−1)i(DA−1BC)i
]
DA−1

)
(B.13)

= A−1
(
I −BC(I +DA−1BC)−1DA−1

)
(B.14)

= A−1 −A−1B(C−1 +DA−1B)−1DA−1 . (B.15)

In the above equations, we assume that the spectral radii ofBCDA−1 (B.11) andDA−1BC

(B.13) are less than one for the Taylor series to be convergent. Aside from these constraints,

we can post-hoc check the result simply by showing that multiplication of the expression by its

proposed inverse does in fact yield the identity.
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Appendix C

Miscellaneous results

C.1 Computing the digamma function

The digamma function is defined as

ψ(x) =
d

dx
ln Γ(x) , (C.1)

whereΓ(x) is the Gamma function given by

Γ(x) =
∫ ∞

0
dτ τx−1e−τ . (C.2)

In the implementations of the models discussed in this thesis, the following expansion is used

to compute theψ(x) for large positive arguments

ψ(x) ' lnx− 1
2x
− 1

12x2
+

1
120x4

− 1
252x6

+
1

240x8
+ . . . . (C.3)

If we have small arguments, then we would expect this expansion to be inaccurate if we only

used a finite number of terms. However, we can make use of a recursion of the digamma function

to ensure that we always pass this expansion large arguments. The Gamma function has the well

known recursion:

x! = Γ(x+ 1) = xΓ(x) = x(x− 1)! , (C.4)

from which the recursion for the digamma function readily follows:

ψ(x+ 1) =
1
x

+ ψ(x) . (C.5)
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Miscellaneous results C.2. Multivariate gamma hyperparameter optimisation

In our experiments we used an expansion (C.3) containing terms as far asO(1/x14), and used

the recursion to evaluate this only for arguments ofψ(x) greater than6. This is more than

enough precision.

C.2 Multivariate gamma hyperparameter optimisation

In hierarchical models such as the VB LDS model of chapter5, there is often a gamma hyper-

prior over the noise precisions on each dimension of the data. On taking derivatives of the lower

bound with respect to the shapea and inverse scaleb of this hyperprior distribution, we obtain

fixed point equations of this form:

ψ(a) = ln b+
1
p

p∑
s=1

ln ρs ,
1
b

=
1
pa

p∑
s=1

ρs (C.6)

where the notationln ρs andρs is used to denote the expectations of quantities under the varia-

tional posterior distribution (see section5.3.6for details). We can rewrite this as:

ψ(a) = ln b+ c ,
1
b

=
d

a
, (C.7)

where

c =
1
p

p∑
s=1

ln ρs , and d =
1
p

p∑
s=1

ρs . (C.8)

Equation (C.7) is the generic fixed point equation commonly arrived at when finding the varia-

tional parametersa andb which minimise the KL divergence on a gamma distribution.

The fixed point fora is found at the solution of

ψ(a) = ln a− ln d+ c , (C.9)

which can be arrived at using the Newton-Raphson iterations:

anew ← a

[
1− ψ(a)− ln a+ ln d− c

aψ′(a)− 1

]
, (C.10)

whereψ′(x) is the first derivative of the digamma function. Unfortunately, this update cannot

ensure thata remains positive for the next iteration (the gamma distribution is only defined for

a > 0) because the gradient information is taken locally.

There are two immediate ways to solve this. First ifa should become negative during the

Newton-Raphson iterations, reset it to a minimum value. This is a fairly crude solution. Alter-
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Miscellaneous results C.3. Marginal KL divergence of gamma-Gaussian variables

natively, we can solve a different fixed point equation fora′ wherea = exp(a′), resulting in the

multiplicative updates:

anew ← a exp
[
−ψ(a)− ln a+ ln d− c

aψ′(a)− 1

]
. (C.11)

This update has the same fixed point but exhibits different (well-behaved) dynamics to reach

it. Note that equationC.10is simply the first two terms in the Taylor series of the exponential

function in the above equation.

Once the fixed pointa∗ is reached, the correspondingb∗ is found simply from

b∗ =
a∗

d
. (C.12)

C.3 Marginal KL divergence of gamma-Gaussian variables

This note is intended to aid the reader in computing the lower bound appearing in equation

(5.147) for variational Bayesian state-space models. Terms such as the KL divergence between

two Gaussian or two gamma distributions are straightforward to compute and are given in ap-

pendixA. However there are more complicated terms involving expectations of KL divergences

for joint Gaussian and gamma variables, for which we give results here.

Suppose we have two variables of interest,a andb, that are jointly Gaussian distributed. To be

more precise let the two variables be linearly dependent on each other in this sense:

q(a,b) = q(b)q(a |b) = N(b |µb,Σb) ·N(a |µa,Σa) (C.13)

where µa = y −Gb . (C.14)

Let us also introduce a prior distributionp(a |b) in this way:

p(a |b) = N(a | µ̃a, Σ̃a) (C.15)

where neither parameter̃µa nor Σ̃a are functions ofb.

The first result is the KL divergence between two Gaussian distributions (given in appendixA)

KL [q(a |b) ‖ p(a |b)] =
∫
da q(a |b) ln

q(a |b)
p(a |b)

(C.16)

= −1
2

ln
∣∣∣Σ̃−1

a Σa

∣∣∣+ 1
2
tr Σ̃−1

a

[
Σa − Σ̃a + (µa − µ̃a) (µa − µ̃a)

>
]
.

(C.17)
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Miscellaneous results C.3. Marginal KL divergence of gamma-Gaussian variables

Note that this divergence is written w.r.t. theq(a |b) distribution. The dependence onb is not

important here, but will be required later. The important part to note is that it obviously depends

on each Gaussian’s covariance, but also on the Mahalanobis distance between the means as

measured w.r.t. the non-averaging distribution.

Consider now the KL divergence between the full joint posterior and full joint prior:

KL [q(a,b) ‖ p(a,b)] =
∫
da db q(a,b) ln

q(a,b)
p(a,b)

(C.18)

=
∫
db q(b)

∫
da q(a |b) ln

q(a |b)
p(a |b)

+
∫
db q(b) ln

q(b)
p(b)

. (C.19)

The last term in this is equation is simply the KL divergence between two Gaussians, which

is straightforward, but the first term is theexpectedKL divergence between the conditional

distributions, where the expectation is taken w.r.t. the marginal distributionq(b). After some

simple manipulation, this first term is given by

〈KL [q(a |b) ‖ p(a |b)]〉q(b) =
∫
db q(b)

∫
da q(a |b) ln

q(a |b)
p(a |b)

(C.20)

= −1
2

ln
∣∣∣Σ̃−1

a Σa

∣∣∣+ 1
2
tr Σ̃−1

a

[
Σa − Σ̃a +GΣbG

>

+(y −Gµb − µ̃a) (y −Gµb − µ̃a)
>
]
. (C.21)

Let us now suppose that the covariance terms for the priorΣ̃ and posteriorΣa have the same

multiplicative dependence on another variableρ−1. This is the case in the variational state-

space model of chapter5 where, for example, the uncertainty in the entries for the output matrix

C should be related to the setting of the output noiseρ (see equation (5.44) for example). In

equation (C.17) it is clear that if both covariances are dependent on the sameρ−1, then the KL

divergence will not be a function ofρ−1 providedthat the means of both distributions are the

same. If they are different however, then there is a residual dependence onρ−1 due to theΣ̃−1
a

term from the non-averaging distributionp(a |b). This is important as there will usually be

distributions over thisρ variable of the form

q(ρ) = Ga(ρ | eρ, fρ) (C.22)

with e andf shape and precision parameters of a gamma distribution. The most complicated

term to compute is the penultimate term in (5.147), which is〈
〈KL [q(a |b, ρ) ‖ p(a |b, ρ)]〉q(b)

〉
q(ρ)

=∫
dρ q(ρ)

∫
db q(b | ρ)

∫
da q(a |b, ρ) ln

q(a |b, ρ)
p(a |b, ρ)

. (C.23)

In the variational Bayesian state-space model, the prior and posterior for the parameters of the

output matrixC (andD for that matter) are defined in terms of the same noise precision variable
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Miscellaneous results C.3. Marginal KL divergence of gamma-Gaussian variables

ρ. This means that all terms but the last one in equation (C.21) are not functions ofρ and pass

through the expectation in (C.23) untouched. The final term has a dependence onρ, but on taking

expectations w.r.t.q(ρ) this simply yields a multiplicative factor of〈ρ〉q(ρ). It is straightforward

to extend this to the case of data with several dimensions, in which case the lower bound is a

sum over allp dimensions of similar quantities.
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