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Foreword

As the authors of Distant Speech Recognition note, automatic speech recognition is the
key enabling technology that will permit natural interaction between humans and intelli-
gent machines. Core speech recognition technology has developed over the past decade
in domains such as office dictation and interactive voice response systems to the point
that it is now commonplace for customers to encounter automated speech-based intelligent
agents that handle at least the initial part of a user query for airline flight information, tech-
nical support, ticketing services, etc. While these limited-domain applications have been
reasonably successful in reducing the costs associated with handling telephone inquiries,
their fragility with respect to acoustical variability is illustrated by the difficulties that
are experienced when users interact with the systems using speakerphone input. As time
goes by, we will come to expect the range of natural human-machine dialog to grow to
include seamless and productive interactions in contexts such as humanoid robotic butlers
in our living rooms, information kiosks in large and reverberant public spaces, as well
as intelligent agents in automobiles while traveling at highway speeds in the presence of
multiple sources of noise. Nevertheless, this vision cannot be fulfilled until we are able
to overcome the shortcomings of present speech recognition technology that are observed
when speech is recorded at a distance from the speaker.

While we have made great progress over the past two decades in core speech recognition
technologies, the failure to develop techniques that overcome the effects of acoustical
variability in homes, classrooms, and public spaces is the major reason why automated
speech technologies are not generally available for use in these venues. Consequently,
much of the current research in speech processing is directed toward improving robustness
to acoustical variability of all types. Two of the major forms of environmental degradation
are produced by additive noise of various forms and the effects of linear convolution.
Research directed toward compensating for these problems has been in progress for more
than three decades, beginning with the pioneering work in the late 1970s of Steven Boll
in noise cancellation and Thomas Stockham in homomorphic deconvolution.

Additive noise arises naturally from sound sources that are present in the environment
in addition to the desired speech source. As the speech-to-noise ratio (SNR) decreases, it is
to be expected that speech recognition will become more difficult. In addition, the impact
of noise on speech recognition accuracy depends as much on the type of noise source as on
the SNR. While a number of statistical techniques are known to be reasonably effective in
dealing with the effects of quasi-stationary broadband additive noise of arbitrary spectral
coloration, compensation becomes much more difficult when the noise is highly transient
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in nature, as is the case with many types of impulsive machine noise on factory floors and
gunshots in military environments. Interference by sources such as background music or
background speech is especially difficult to handle, as it is both highly transient in nature
and easily confused with the desired speech signal.

Reverberation is also a natural part of virtually all acoustical environments indoors, and
it is a factor in many outdoor settings with reflective surfaces as well. The presence of
even a relatively small amount of reverberation destroys the temporal structure of speech
waveforms. This has a very adverse impact on the recognition accuracy that is obtained
from speech systems that are deployed in public spaces, homes, and offices for virtually
any application in which the user does not use a head-mounted microphone. It is presently
more difficult to ameliorate the effects of common room reverberation than it has been
to render speech systems robust to the effects of additive noise, even at fairly low SNRs.
Researchers have begun to make progress on this problem only recently, and the results
of work from groups around the world have not yet congealed into a clear picture of how
to cope with the problem of reverberation effectively and efficiently.

Distant Speech Recognition by Matthias Wölfel and John McDonough provides an
extraordinarily comprehensive exposition of the most up-to-date techniques that enable
robust distant speech recognition, along with very useful and detailed explanations of
the underlying science and technology upon which these techniques are based. The
book includes substantial discussions of the major sources of difficulties along with
approaches that are taken toward their resolution, summarizing scholarly work and prac-
tical experience around the world that has accumulated over decades. Considering both
single-microphone and multiple-microphone techniques, the authors address a broad array
of approaches at all levels of the system, including methods that enhance the waveforms
that are input to the system, methods that increase the effectiveness of features that are
input to speech recognition systems, as well as methods that render the internal models
that are used to characterize speech sounds more robust to environmental variability.

This book will be of great interest to several types of readers. First (and most obvi-
ously), readers who are unfamiliar with the field of distant speech recognition can learn in
this volume all of the technical background needed to construct and integrate a complete
distant speech recognition system. In addition, the discussions in this volume are presented
in self-contained chapters that enable technically literate readers in all fields to acquire a
deep level of knowledge about relevant disciplines that are complementary to their own
primary fields of expertise. Computer scientists can profit from the discussions on signal
processing that begin with elementary signal representation and transformation and lead
to advanced topics such as optimal Bayesian filtering, multirate digital signal processing,
blind source separation, and speaker tracking. Classically-trained engineers will benefit
from the detailed discussion of the theory and implementation of computer speech recog-
nition systems including the extraction and enhancement of features representing speech
sounds, statistical modeling of speech and language, along with the optimal search for the
best available match between the incoming utterance and the internally-stored statistical
representations of speech. Both of these groups will benefit from the treatments of phys-
ical acoustics, speech production, and auditory perception that are too frequently omitted
from books of this type. Finally, the detailed contemporary exposition will serve to bring
experienced practitioners who have been in the field for some time up to date on the most
current approaches to robust recognition for language spoken from a distance.
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Doctors Wölfel and McDonough have provided a resource to scientists and engineers
that will serve as a valuable tutorial exposition and practical reference for all aspects
associated with robust speech recognition in practical environments as well as for speech
recognition in general. I am very pleased that this information is now available so easily
and conveniently in one location. I fully expect that the publication of Distant Speech
Recognition will serve as a significant accelerant to future work in the field, bringing
us closer to the day in which transparent speech-based human-machine interfaces will
become a practical reality in our daily lives everywhere.

Richard M. Stern
Pittsburgh, PA, USA



Preface

Our primary purpose in writing this book has been to cover a broad body of techniques
and diverse disciplines required to enable reliable and natural verbal interaction between
humans and computers. In the early nineties, many claimed that automatic speech recogni-
tion (ASR) was a “solved problem” as the word error rate (WER) had dropped below the
5% level for professionally trained speakers such as in the Wall Street Journal (WSJ) cor-
pus. This perception changed, however, when the Switchboard Corpus, the first corpus of
spontaneous speech recorded over a telephone channel, became available. In 1993, the first
reported error rates on Switchboard, obtained largely with ASR systems trained on WSJ
data, were over 60%, which represented a twelve-fold degradation in accuracy. Today the
ASR field stands at the threshold of another radical change. WERs on telephony speech
corpora such as the Switchboard Corpus have dropped below 10%, prompting many to
once more claim that ASR is a solved problem. But such a claim is credible only if one
ignores the fact that such WERs are obtained with close-talking microphones , such as
those in telephones, and when only a single person is speaking. One of the primary hin-
drances to the widespread acceptance of ASR as the man-machine interface of first choice
is the necessity of wearing a head-mounted microphone. This necessity is dictated by the
fact that, under the current state of the art, WERs with microphones located a meter or
more away from the speaker’s mouth can catastrophically increase, making most appli-
cations impractical. The interest in developing techniques for overcoming such practical
limitations is growing rapidly within the research community. This change, like so many
others in the past, is being driven by the availability of new corpora, namely, speech
corpora recorded with far-field sensors. Examples of such include the meeting corpora
which have been recorded at various sites including the International Computer Science
Institute in Berkeley, California, Carnegie Mellon University in Pittsburgh, Pennsylvania
and the National Institute of Standards and Technologies (NIST) near Washington, D.C.,
USA. In 2005, conversational speech corpora that had been collected with microphone
arrays became available for the first time, after being released by the European Union
projects Computers in the Human Interaction Loop (CHIL) and Augmented Multiparty
Interaction (AMI). Data collected by both projects was subsequently shared with NIST
for use in the semi-annual Rich Transcription evaluations it sponsors. In 2006 Mike Lin-
coln at Edinburgh University in Scotland collected the first corpus of overlapping speech
captured with microphone arrays. This data collection effort involved real speakers who
read sentences from the 5,000 word WSJ task.
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In the view of the current authors, ground breaking progress in the field of distant speech
recognition can only be achieved if the mainstream ASR community adopts methodolo-
gies and techniques that have heretofore been confined to the fringes. Such technologies
include speaker tracking for determining a speaker’s position in a room, beamforming for
combining the signals from an array of microphones so as to concentrate on a desired
speaker’s speech and suppress noise and reverberation, and source separation for effective
recognition of overlapping speech. Terms like filter bank, generalized sidelobe canceller,
and diffuse noise field must become household words within the ASR community. At
the same time researchers in the fields of acoustic array processing and source separation
must become more knowledgeable about the current state of the art in the ASR field.
This community must learn to speak the language of word lattices, semi-tied covariance
matrices, and weighted finite-state transducers. For too long, the two research communi-
ties have been content to effectively ignore one another. With a few noteable exceptions,
the ASR community has behaved as if a speech signal does not exist before it has been
converted to cepstral coefficients. The array processing community, on the other hand,
continues to publish experimental results obtained on artificial data, with ASR systems
that are nowhere near the state of the art, and on tasks that have long since ceased to
be of any research interest in the mainstream ASR world. It is only if each community
adopts the best practices of the other that they can together meet the challenge posed by
distant speech recognition. We hope with our book to make a step in this direction.
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1
Introduction

For humans, speech is the quickest and most natural form of communication. Beginning
in the late 19th century, verbal communication has been systematically extended through
technologies such as radio broadcast, telephony, TV, CD and MP3 players, mobile phones
and the Internet by voice over IP. In addition to these examples of one and two way verbal
human–human interaction, in the last decades, a great deal of research has been devoted to
extending our capacity of verbal communication with computers through automatic speech
recognition (ASR) and speech synthesis. The goal of this research effort has been and
remains to enable simple and natural human–computer interaction (HCI). Achieving this
goal is of paramount importance, as verbal communication is not only fast and convenient,
but also the only feasible means of HCI in a broad variety of circumstances. For example,
while driving, it is much safer to simply ask a car navigation system for directions, and
to receive them verbally, than to use a keyboard for tactile input and a screen for visual
feedback. Moreover, hands-free computing is also accessible for disabled users.

1.1 Research and Applications in Academia and Industry

Hands-free computing, much like hands-free speech processing, refers to computer inter-
face configurations which allow an interaction between the human user and computer
without the use of the hands. Specifically, this implies that no close-talking microphone
is required. Hands-free computing is important because it is useful in a broad variety
of applications where the use of other common interface devices, such as a mouse or
keyboard, are impractical or impossible. Examples of some currently available hands-free
computing devices are camera-based head location and orientation-tracking systems, as
well as gesture-tracking systems. Of the various hands-free input modalities, however,
distant speech recognition (DSR) systems provide by far the most flexibility. When used
in combination with other hands-free modalities, they provide for a broad variety of HCI
possibilities. For example, in combination with a pointing gesture system it would become
possible to turn on a particular light in the room by pointing at it while saying, “Turn on
this light.”

The remainder of this section describes a variety of applications where speech recog-
nition technology is currently under development or already available commercially. The
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application areas include intelligent home and office environments, humanoid robots,
automobiles, and speech-to-speech translation.

1.1.1 Intelligent Home and Office Environments

A great deal of research effort is directed towards equipping household and office
devices – such as appliances, entertainment centers, personal digital assistants and
computers, phones or lights – with more user friendly interfaces. These devices should
be unobtrusive and should not require any special attention from the user. Ideally such
devices should know the mental state of the user and act accordingly, gradually relieving
household inhabitants and office workers from the chore of manual control of the
environment. This is possible only through the application of sophisticated algorithms
such as speech and speaker recognition applied to data captured with far-field sensors.

In addition to applications centered on HCI, computers are gradually gaining the capac-
ity of acting as mediators for human–human interaction. The goal of the research in this
area is to build a computer that will serve human users in their interactions with other
human users; instead of requiring that users concentrate on their interactions with the
machine itself, the machine will provide ancillary services enabling users to attend exclu-
sively to their interactions with other people. Based on a detailed understanding of human
perceptual context, intelligent rooms will be able to provide active assistance without any
explicit request from the users, thereby requiring a minimum of attention from and creat-
ing no interruptions for their human users. In addition to speech recognition, such services
need qualitative human analysis and human factors, natural scene analysis, multimodal
structure and content analysis, and HCI. All of these capabilities must also be integrated
into a single system.

Such interaction scenarios have been addressed by the recent projects Computers in
the Human Interaction Loop (CHIL), Augmented Multi-party Interaction (AMI), as well
as the successor of the latter Augmented Multi-party Interaction with Distance Access
(AMIDA), all of which were sponsored by the European Union. To provide such services
requires technology that models human users, their activities, and intentions. Automati-
cally recognizing and understanding human speech plays a fundamental role in developing
such technology. Therefore, all of the projects mentioned above have sought to develop
technology for automatic transcription using speech data captured with distant micro-
phones, determining who spoke when and where, and providing other useful services
such as the summarizations of verbal dialogues. Similarly, the Cognitive Assistant that
Learns and Organizes (CALO) project sponsored by the US Defense Advanced Research
Project Agency (DARPA), takes as its goal the extraction of information from audio data
captured during group interactions.

A typical meeting scenario as addressed by the AMIDA project is shown in Figure 1.1.
Note the three microphone arrays placed at various locations on the table, which are
intended to capture far-field speech for speaker tracking, beamforming, and DSR exper-
iments. Although not shown in the photograph, the meeting participants typically also
wear close-talking microphones to provide the best possible sound capture as a reference
against which to judge the performance of the DSR system.
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Figure 1.1 A typical AMIDA interaction. (© Photo reproduced by permission of the University
of Edinburgh)

1.1.2 Humanoid Robots

If humanoid robots are ever to be accepted as full ‘partners’ by their human users, they
must eventually develop perceptual capabilities similar to those possessed by humans, as
well as the capacity of performing a diverse collection of tasks, including learning, reason-
ing, communicating and forming goals through interaction with both users and instructors.
To provide for such capabilities, ASR is essential, because, as mentioned previously, spo-
ken communication is the most common and flexible form of communication between
people. To provide a natural interaction between a human and a humanoid robot requires
not only the development of speech recognition systems capable of functioning reliably
on data captured with far-field sensors, but also natural language capabilities including a
sense of social interrelations and hierarchies.

In recent years, humanoid robots, albeit with very limited capabilities, have become
commonplace. They are, for example, deployed as entertainment or information systems.
Figure 1.2 shows an example of such a robot, namely, the humanoid tour guide robot
TPR-Robina1 developed by Toyota. The robot is able to escort visitors around the Toy-
ota Kaikan Exhibition Hall and to interact with them through a combination of verbal
communication and gestures.

While humanoid robots programmed for a limited range of tasks are already in
widespread use, such systems lack the capability of learning and adapting to new
environments. The development of such a capacity is essential for humanoid robots to
become helpful in everyday life. The Cognitive Systems for Cognitive Assistants (COSY)
project, financed by the European Union, has the objective to develops two kind of
robots providing such advanced capabilities. The first robot will find its way around a

1 ROBINA stands for ROBot as INtelligent Assistant.
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Figure 1.2 Humanoid tour guide robot TPR-Robina by Toyota which escort visitors around Toyota
Kaikan Exhibition Hall in Toyota City, Aichi Prefecture, Japan. (© Photo reproduced by permission
of Toyota Motor Corporation)

complex building, showing others where to go and answering questions about routes
and locations. The second will be able to manipulate structured objects on a table top.
A photograph of the second COSY robot during an interaction session is shown in
Figure 1.3.

1.1.3 Automobiles

There is a growing trend in the automotive industry towards increasing both the number
and the complexity of the features available in high end models. Such features include
entertainment, navigation, and telematics systems, all of which compete for the driver’s
visual and auditory attention, and can increase his cognitive load. ASR in such automobile
environments would promote the “Eyes on the road, hands on the wheel” philosophy. This
would not only provide more convenience for the driver, but would in addition actually
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Figure 1.3 Humanoid robot under development for the COSY project. (© Photo reproduced by
permission of DFKI GmbH)

enhance automotive safety. The enhanced safety is provided by hands-free operation of
everything but the car itself and thus would leave the driver free to concentrate on the
road and the traffic. Most luxury cars already have some sort of voice-control system
which are, for example, able to provide

• voice-activated, hands-free calling
Allows anyone in the contact list of the driver’s mobile phone to be called by voice
command.

• voice-activated music
Enables browsing through music using voice commands.

• audible information and text messages
Makes it possible to synthesize information and text messages, and have them read out
loud through speech synthesis.

This and other voice-controlled functionality will become available in the mass market
in the near future. An example of a voice-controlled car navigation system is shown in
Figure 1.4.

While high-end consumer automobiles have ever more features available, all of which
represent potential distractions from the task of driving the car, a police automobile has far
more devices that place demands on the driver’s attention. The goal of Project54 is to mea-
sure the cognitive load of New Hampshire state policeman – who are using speech-based
interfaces in their cars – during the course of their duties. Shown in Figure 1.5 is the
car simulator used by Project54 to measure the response times of police officers when
confronted with the task of driving a police cruiser as well as manipulating the several
devices contained therein through a speech interface.
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Figure 1.4 Voice-controlled car navigation system by Becker. (© Photo reproduced by permission
of Herman/Becker Automotive Systems GmbH)

Figure 1.5 Automobile simulator at the University of New Hampshire. (© Photo reproduced by
permission of University of New Hampshire)

1.1.4 Speech-to-Speech Translation

Speech-to-speech translation systems provide a platform enabling communication with
others without the requirement of speaking or understanding a common language. Given
the nearly 6,000 different languages presently spoken somewhere on the Earth, and the
ever-increasing rate of globalization and frequency of travel, this is a capacity that will
in future be ever more in demand.

Even though speech-to-speech translation remains a very challenging task, commercial
products are already available that enable meaningful interactions in several scenarios. One
such system from National Telephone and Telegraph (NTT) DoCoMo of Japan works on a
common cell phone, as shown in Figure 1.6, providing voice-activated Japanese–English
and Japanese–Chinese translation. In a typical interaction, the user speaks short Japanese
phrases or sentences into the mobile phone. As the mobile phone does not provide
enough computational power for complete speech-to-text translation, the speech signal
is transformed into enhanced speech features which are transmitted to a server. The
server, operated by ATR-Trek, recognizes the speech and provides statistical translations,
which are then displayed on the screen of the cell-phone. The current system works
for both Japanese–English and Japanese–Chinese language pairs, offering translation in
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Between Japanese and English

Between Japanese and Chinese

Figure 1.6 Cell phone, 905i Series by NTT DoCoMo, providing speech translation between
English and Japanese, and Chinese and Japanese developed by ATR and ATR-Trek. This service is
commercially available from NTT DoCoMo. (© Photos reproduced by permission of ATR-Trek)

both directions. For the future, however, preparation is underway to include support for
additional languages.

As the translations appear on the screen of the cell phone in the DoCoMo system, there
is a natural desire by users to hold the phone so that the screen is visible instead of next
to the ear. This would imply that the microphone is no longer only a few centimeters
from the mouth; i.e., we would have once more a distant speech recognition scenario.
Indeed, there is a similar trend in all hand-held devices supporting speech input.

Accurate translation of unrestricted speech is well beyond the capability of today’s
state-of-the-art research systems. Therefore, advances are needed to improve the
technologies for both speech recognition and speech translation. The development of
such technologies are the goals of the Technology and Corpora for Speech-to-Speech
Translation (TC-Star) project, financially supported by European Union, as well as the
Global Autonomous Language Exploitation (GALE) project sponsored by the DARPA.
These projects respectively aim to develop the capability for unconstrained conversational
speech-to-speech translation of English speeches given in the European Parliament, and
of broadcast news in Chinese or Arabic.

1.2 Challenges in Distant Speech Recognition

To guarantee high-quality sound capture, the microphones used in an ASR system should
be located at a fixed position, very close to the sound source, namely, the mouth of
the speaker. Thus body mounted microphones, such as head-sets or lapel microphones,
provide the highest sound quality. Such microphones are not practical in a broad variety
of situations, however, as they must be connected by a wire or radio link to a computer
and attached to the speaker’s body before the HCI can begin. As mentioned previously,
this makes HCI impractical in many situations where it would be most helpful; e.g., when
communicating with humanoid robots, or in intelligent room environments.

Although ASR is already used in several commercially available products, there are still
obstacles to be overcome in making DSR commercially viable. The two major sources
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of degradation in DSR are distortions, such as additive noise and reverberation, and a
mismatch between training and test data , such as those introduced by speaking style
or accent. In DSR scenarios, the quality of the speech provided to the recognizer has a
decisive impact on system performance. This implies that speech enhancement techniques
are typically required to achieve the best possible signal quality.

In the last decades, many methods have been proposed to enable ASR systems to
compensate or adapt to mismatch due to interspeaker differences, articulation effects and
microphone characteristics. Today, those systems work well for different users on a broad
variety of applications, but only as long as the speech captured by the microphones is
free of other distortions. This explains the severe performance degradation encountered
in current ASR systems as soon as the microphone is moved away from the speaker’s
mouth. Such situations are known as distant , far-field or hands-free2 speech recognition.
This dramatic drop in performance occurs mainly due to three different types of distortion:

• The first is noise, also known as background noise,3 which is any sound other than the
desired speech, such as that from air conditioners, printers, machines in a factory, or
speech from other speakers.

• The second distortion is echo and reverberation , which are reflections of the sound
source arriving some time after the signal on the direct path.

• Other types of distortions are introduced by environmental factors such as room modes ,
the orientation of the speaker’s head , or the Lombard effect .

To limit the degradation in system performance introduced by these distortions, a great
deal of current research is devoted to exploiting several aspects of speech captured with
far-field sensors. In DSR applications, procedures already known from conventional ASR
can be adopted. For instance, confusion network combination is typically used with data
captured with a close-talking microphone to fuse word hypotheses obtained by using
various speech feature extraction schemes or even completely different ASR systems.
For DSR with multiple microphone conditions, confusion network combination can be
used to fuse word hypotheses from different microphones. Speech recognition with distant
sensors also introduces the possibility, however, of making use of techniques that were
either developed in other areas of signal processing, or that are entirely novel. It has
become common in the recent past, for example, to place a microphone array in the
speaker’s vicinity, enabling the speaker’s position to be determined and tracked with
time. Through beamforming techniques, a microphone array can also act as a spatial
filter to emphasize the speech of the desired speaker while suppressing ambient noise
or simultaneous speech from other speakers. Moreover, human speech has temporal,
spectral, and statistical characteristics that are very different from those possessed by
other signals for which conventional beamforming techniques have been used in the past.
Recent research has revealed that these characteristics can be exploited to perform more
effective beamforming for speech enhancement and recognition.

2 The latter term is misleading, inasmuch close-talking microphones are usually not held in the hand, but are
mounted to the head or body of the speaker.
3 This term is also misleading, in that the “background” could well be closer to the microphone than the “fore-
ground” signal of interest.
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1.3 System Evaluation

Quantitative measures of the quality or performance of a system are essential for making
fundamental advances in the state-of-the-art. This fact is embodied in the often repeated
statement, “You improve what you measure.” In order to asses system performance, it is
essential to have error metrics or objective functions at hand which are well-suited to the
problem under investigation. Unfortunately, good objective functions do not exist for a
broad variety of problems, on the one hand, or else cannot be directly or automatically
evaluated, on the other.

Since the early 1980s, word error rate (WER) has emerged as the measure of first choice
for determining the quality of automatically-derived speech transcriptions. As typically
defined, an error in a speech transcription is of one of three types, all of which we will
now describe. A deletion occurs when the recognizer fails to hypothesize a word that
was spoken. An insertion occurs when the recognizer hypothesizes a word that was not
spoken. A substitution occurs when the recognizer misrecognizes a word. These three
errors are illustrated in the following partial hypothesis, where they are labeled with D,
I, and S, respectively:

Hyp: BUT ... WILL SELL THE CHAIN ... FOR EACH STORE SEPARATELY
Utt: ... IT WILL SELL THE CHAIN ... OR EACH STORE SEPARATELY

I D S

A more thorough discussion of word error rate is given in Section 14.1.
Even though widely accepted and used, word error rate is not without flaws. It has

been argued that the equal weighting of words should be replaced by a context sensitive
weighting, whereby, for example, information-bearing keywords should be assigned a
higher weight than functional words or articles. Additionally, it has been asserted that word
similarities should be considered. Such approaches, however, have never been widely
adopted as they are more difficult to evaluate and involve subjective judgment. Moreover,
these measures would raise new questions, such as how to measure the distance between
words or which words are important.

Naively it could be assumed that WER would be sufficient in ASR as an objective
measure. While this may be true for the user of an ASR system, it does not hold for the
engineer. In fact a broad variety of additional objective or cost functions are required.
These include:

• The Mahalanobis distance, which is used to evaluate the acoustic model.
• Perplexity , which is used to evaluate the language model as described in Section 7.3.1.
• Class separability , which is used to evaluate the feature extraction component or

front-end.
• Maximum mutual information or minimum phone error , which are used during discrim-

inate estimation of the parameters in a hidden Markov model.
• Maximum likelihood , which is the metric of first choice for the estimation of all system

parameters.

A DSR system requires additional objective functions to cope with problems not encoun-
tered in data captured with close-talking microphones. Among these are:
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• Cross-correlation, which is used to estimate time delays of arrival between microphone
pairs as described in Section 10.1.

• Signal-to-noise ratio, which can be used for channel selection in a multiple-microphone
data capture scenario.

• Negentropy , which can be used for combining the signals captured by all sensors of a
microphone array.

Most of the objective functions mentioned above are useful because they show a signif-
icant correlation with WER. The performance of a system is optimized by minimizing or
maximizing a suitable objective function. The way in which this optimization is conducted
depends both on the objective function and the nature of the underlying model. In the best
case, a closed-form solution is available, such as in the optimization of the beamforming
weights as discussed in Section 13.3. In other cases, an iterative solution can be adopted,
such as when optimizing the parameters of a hidden Markov model (HMM) as discussed
in Chapter 8. In still other cases, numerical optimization algorithms must be used such
as when optimization the parameters of an all-pass transform for speaker adaptation as
discussed in Section 9.2.2.

To chose the appropriate objective function a number of decisions must be made
(Hänsler and Schmidt 2004, sect. 4):

• What kind of information is available?
• How should the available information be used?
• How should the error be weighted by the objective function?
• Should the objective function be deterministic or stochastic?

Throughout the balance of this text, we will strive to answer these questions whenever
introducing an objective function for a particular application or in a particular context.
When a given objective function is better suited than another for a particular purpose, we
will indicate why. As mentioned above, the reasoning typically centers around the fact
that the better suited objective function is more closely correlated with word error rate.

1.4 Fields of Speech Recognition

Figure 1.7 presents several subtopics of speech recognition in general which can be
associated with three different fields: automatic, robust and distant speech recognition.
While some topics such as multilingual speech recognition and language modeling can
be clearly assigned to one group (i.e., automatic) other topics such as feature extraction
or adaptation cannot be uniquely assigned to a single group. A second classification of
topics shown in Figure 1.7 depends on the number and type of sensors. Whereas one
microphone is traditionally used for recognition, in distant recognition the traditional
sensor configuration can be augmented by an entire array of microphones with known or
unknown geometry. For specific tasks such as lipreading or speaker localization, additional
sensor types such as video cameras can be used.

Undoubtedly, the construction of optimal DSR systems must draw on concepts from
several fields, including acoustics, signal processing, pattern recognition, speaker tracking
and beamforming. As has been shown in the past, all components can be optimized
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Figure 1.7 Illustration of the different fields of speech recognition: automatic, robust and distant

separately to construct a DSR system. Such an independent treatment, however, does
not allow for optimal performance. Moreover, new techniques have recently emerged
exploiting the complementary effects of the several components of a DSR system. These
include:

• More closely coupling the feature extraction and acoustic models; e.g., by propagating
the uncertainty of the feature extraction into the HMM.

• Feeding the word hypotheses produced by the DSR back to the component located
earlier in the processing chain; e.g. by feature enhancement with particle filters with
models for different phoneme classes.
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• Replacing traditional objective functions such as signal-to-noise ratio by objective
functions taking into account the acoustic model of the speech recognition system,
as in maximum likelihood beamforming, or considering the particular characteristics of
human speech, as in maximum negentropy beamforming.

1.5 Robust Perception

In contrast to automatic pattern recognition, human perception is very robust in the
presence of distortions such as noise and reverberation. Therefore, knowledge of the
mechanisms of human perception, in particular with regard to robustness, may also be
useful in the development of automatic systems that must operate in difficult acoustic
environments. It is interesting to note that the cognitive load for humans increases while
listening in noisy environments, even when the speech remains intelligible (Kjellberg
et al. 2007). This section presents some illustrative examples of human perceptual
phenomena and robustness. We also present several technical solutions based on these
phenomena which are known to improve robustness in automatic recognition.

1.5.1 A Priori Knowledge

When confronted with an ambiguous stimulus requiring a single interpretation, the human
brain must rely on a priori knowledge and expectations. What is likely to be one of the
most amazing findings about the robustness and flexibility of human perception and the
use of a priori information is illustrated by the following sentence, which was circulated
in the Internet in September 2003:

Aoccdrnig to rscheearch at Cmabrigde uinervtisy, it deosn’t mttaer waht oredr the
ltteers in a wrod are, the olny ipromoetnt tihng is taht the frist and lsat ltteres are
at the rghit pclae. The rset can be a tatol mses and you can sitll raed it wouthit a
porbelm. Tihs is bcuseae we do not raed ervey lteter by itslef but the wrod as a
wlohe.

The text is easy to read for a human inasmuch as, through reordering, the brain maps
the erroneously presented characters into correct English words.

A priori knowledge is also widely used in automatic speech processing. Obvious
examples are

• the statistics of speech,
• the limited number of possible phoneme combinations constrained by known words

which might be further constrained by the domain,
• the word sequences follow a particular structure which can be represented as a context

free grammar or the knowledge of successive words, represented as an N-gram .

1.5.2 Phonemic Restoration and Reliability

Most signals of interest, including human speech, are highly redundant. This redundancy
provides for correct recognition or classification even in the event that the signal is partially
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Figure 1.8 Adding a mask to the occluded portions of the top image renders the word legible, as
is evident in the lower image

occluded or otherwise distorted, which implies that a significant amount of information is
missing. The sophisticated capabilities of the human brain underlying robust perception
were demonstrated by Fletcher (1953), who found that verbal communication between
humans is possible if either the frequencies below or above 1800 Hz are filtered out.
An illusory phenomenon, which clearly illustrates the robustness of the human auditory
system, is known as the phonemic restoration effect, whereby phonetic information that
is actually missing in a speech signal can be synthesized by the brain and clearly heard
(Miller and Licklider 1950; Warren 1970). Furthermore, the knowledge of which informa-
tion is distorted or missing can significantly improve perception. For example, knowledge
about the occluded portion of an image can render a word readable, as is apparent upon
considering Figure 1.8. Similarly, the comprehensibility of speech can be improved by
adding noise (Warren et al. 1997).

Several problems in automatic data processing – such as occlusion – which were first
investigated in the context of visual pattern recognition, are now current research topics
in robust speech recognition. One can distinguish between two related approaches for
coping with this problem:

• missing feature theory
In missing feature theory, unreliable information is either ignored, set to some fixed
nominal value, such as the global mean, or interpolated from nearby reliable infor-
mation. In many cases, however, the restoration of missing features by spectral and/or
temporal interpolation is less effective than simply ignoring them. The reason for this is
that no processing can re-create information that has been lost as long as no additional
information, such as an estimate of the noise or its propagation, is available.

• uncertainty processing
In uncertainty processing, unreliable information is assumed to be unaltered, but the
unreliable portion of the data is assigned less weight than the reliable portion.



14 Distant Speech Recognition

1.5.3 Binaural Masking Level Difference

Even though the most obvious benefit from binaural hearing lies in source localization,
other interesting effects exist: If the same signal and noise is presented to both ears with
a noise level so high as to mask the signal, the signal is inaudible. Paradoxically, if either
of the two ears is unable to hear the signal, it becomes once more audible. This effect is
known as the binaural masking level difference. The binaural improvements in observing
a signal in noise can be up to 20 dB (Durlach 1972). As discussed in Section 6.9.1, the
binaural masking level difference can be related to spectral subtraction, wherein two input
signals, one containing both the desired signal along with noise, and the second containing
only the noise, are present. A closely related effect is the so-called cocktail party effect
(Handel 1989), which describes the capacity of humans to suppress undesired sounds,
such as the babble during a cocktail party, and concentrate on the desired signal, such as
the voice of a conversation partner.

1.5.4 Multi-Microphone Processing

The use of multiple microphones is motivated by nature, in which two ears have been
shown to enhance speech understanding as well as acoustic source localization. This effect
is even further extended for a group of people, where one person could not understand
some words, a person next to the first might have and together they are able to understand
more than independent of each other.

Similarly, different tiers in a speech recognition system, which are derived either from
different channels (e.g., microphones at different locations or visual observations) or
from the variance in the recognition system itself, produce different recognition results.
An appropriate combination of the different tiers can improve recognition performance.
The degree of success depends on

• the variance of the information provided by the different tiers,
• the quality and reliability of the different tiers and
• the method used to combine the different tiers.

In automatic speech recognition, the different tiers can be combined at various stages of
the recognition system providing different advantages and disadvantages:

• signal combination
Signal-based algorithms, such as beamforming , exploit the spatial diversity resulting
from the fact that the desired and interfering signal sources are in practice located at
different points in space. These approaches assume that the time delays of the signals
between different microphone pairs are known or can be reliably estimated. The spatial
diversity can then be exploited by suppressing signals coming from directions other
than that of the desired source.

• feature combination
These algorithms concatenate features derived by different feature extraction methods
to form a new feature vector. In such an approach, it is a common practice to reduce
the number of features by principal component analysis or linear discriminant analysis.
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While such algorithms are simple to implement, they suffer in performance if the
different streams are not perfectly synchronized.

• word and lattice combination
Those algorithms, such as recognizer output voting error reduction (ROVER) and con-
fusion network combination, combine the information of the recognition output which
can be represented as a first best, N-best or lattice word sequence and might be aug-
mented with a confidence score for each word.

In the following we present some examples where different tiers have been success-
fully combined: Stolcke et al. (2005) used two different front-ends, mel-frequency cepstral
coefficients and features derived from perceptual linear prediction, for cross-adaptation
and system combination via confusion networks. Both of these features are described in
Chapter 5. Yu et al. (2004) demonstrated, on a Chinese ASR system, that two different
kinds of models, one on phonemes, the other on semi-syllables, can be combined to good
effect. Lamel and Gauvain (2005) combined systems trained with different phoneme sets
using ROVER. Siohan et al. (2005) combined randomized decision trees. Stüker et al.
(2006) showed that a combination of four systems – two different phoneme sets with two
feature extraction strategies – leads to additional improvements over the combination of
two different phoneme sets or two front-ends. Stüker et al. also found that combining
two systems, where both the phoneme set and front-ends are altered, leads to improved
recognition accuracy compared to changing only the phoneme set or only the front-end.
This fact follows from the increased variance between the two different channels to be
combined. The previous systems have combined different tiers using only a single chan-
nel combination technique. Wölfel et al. (2006) demonstrated that a hybrid approach
combining the different tiers, derived from different microphones, at different stages in a
distant speech recognition system leads to additional improvements over a single combi-
nation approach. In particular Wölfel et al. achieved fewer recognition errors by using a
combination of beamforming and confusion network.

1.5.5 Multiple Sources by Different Modalities

Given that it often happens that no single modality is powerful enough to provide correct
classification, one of the key issues in robust human perception is the efficient merging
of different input modalities, such as audio and vision, to render a stimulus intelligible
(Ernst and Bülthoff 2004; Jacobs 2002). An illustrative example demonstrating the mul-
timodality of speech perception is the McGurk effect4 (McGurk and MacDonald 1976),
which is experienced when contrary audiovisual information is presented to human sub-
jects. To wit, a video presenting a visual /ga/ combined with an audio /ba/ will be
perceived by 98% of adults as the syllable /da/. This effect exists not only for single
syllables, but can alter the perception of entire spoken utterances, as was confirmed by
a study about witness testimony (Wright and Wareham 2005). It is interesting to note
that awareness of the effect does not change the perception. This stands in stark contrast
to certain optical illusions, which are destroyed as soon as the subject is aware of the
deception.

4 This is often referred to as the McGurk–MacDonald effect.
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Humans follow two different strategies to combine information:

• maximizing information (sensor combination)
If the different modalities are complementary, the various pieces of information about
an object are combined to maximize the knowledge about the particular observation.

For example, consider a three-dimensional object, the correct recognition of which
is dependent upon the orientation of the object to the observer. Without rotating the
object, vision provides only two-dimensional information about the object, while the
haptic5 input provides the missing three-dimensional information (Newell 2001).

• reducing variance (sensor integration)
If different modalities overlap, the variance of the information is reduced. Under the
independence and Gaussian assumption of the noise, the estimate with the lowest vari-
ance is identical to the maximum likelihood estimate.

One example of the integration of audio and video information for localization sup-
porting the reduction in variance theory is given by Alais and Burr (2004).

Two prominent technical implementations of sensor fusion are audio-visual speaker
tracking, which will be presented in Section 10.4, and audio-visual speech recognition. A
good overview paper of the latter is by Potamianos et al. (2004).

1.6 Organizations, Conferences and Journals

Like all other well-established scientific disciplines, the fields of speech processing and
recognition have founded and fostered an elaborate network of conferences and publica-
tions. Such networks are critical for promoting and disseminating scientific progress in
the field. The most important organizations that plan and hold such conferences on speech
processing and publish scholarly journals are listed in Table 1.1.

At conferences and in their associated proceedings the most recent advances in the
state-of-the-art are reported, discussed, and frequently lead to further advances. Several
major conferences take place every year or every other year. These conferences are listed
in Table 1.2. The principal advantage of conferences is that they provide a venue for

Table 1.1 Organizations promoting research in speech processing and recognition

Abbreviation Full Name

IEEE Institute of Electrical and Electronics Engineers
ISCA International Speech Communication Association former

European Speech Communication Association (ESCA)
EURASIP European Association for Signal Processing
ASA Acoustical Society of America
ASJ Acoustical Society of Japan
EAA European Acoustics Association

5 Haptic phenomena pertain to the sense of touch.
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Table 1.2 Speech processing and recognition conferences

Abbreviation Full Name

ICASSP International Conference on Acoustics, Speech, and Signal Processing by IEEE
Interspeech ISCA conference; previous Eurospeech and International Conference on

Spoken Language Processing (ICSLP)
ASRU Automatic Speech Recognition and Understanding by IEEE
EUSIPCO European Signal Processing Conference by EURASIP
HSCMA Hands-free Speech Communication and Microphone Arrays
WASPAA Workshop on Applications of Signal Processing to Audio and Acoustics
IWAENC International Workshop on Acoustic Echo and Noise Control
ISCSLP International Symposium on Chinese Spoken Language Processing
ICMI International Conference on Multimodal Interfaces
MLMI Machine Learning for Multimodal Interaction
HLT Human Language Technology

the most recent advances to be reported. The disadvantage of conferences is that the
process of peer review by which the papers to be presented and published are chosen
is on an extremely tight time schedule. Each submission is either accepted or rejected,
with no time allowed for discussion with or clarification from the authors. In addition
to the scientific papers themselves, conferences offer a venue for presentations, expert
panel discussions, keynote speeches and exhibits, all of which foster further scientific
progress in speech processing and recognition. Information about individual conferences
is typically disseminated in the Internet. For example, to learn about the Workshop on
Applications of Signal Processing to Audio and Acoustics , which is to be held in 2009, it
is only necessary to type waspaa 2009 into an Internet search window.

Journals differ from conferences in two ways. Firstly, a journal offers no chance for
the scientific community to gather regularly at a specific place and time to present and
discuss recent research. Secondly and more importantly, the process of peer review for
an article submitted for publication in a journal is far more stringent than that for any
conference. Because there is no fixed time schedule for publication, the reviewers for
a journal can place far more demands on authors prior to publication. They can, for
example, request more graphs or figures, more experiments, further citations to other
scientific work, not to mention improvements in English usage and overall quality of
presentation. While all of this means that greater time and effort must be devoted to
the preparation and revision of a journal publication, it is also the primary advantage of
journals with respect to conferences. The dialogue that ensues between the authors and
reviewers of a journal publication is the very core of the scientific process. Through the
succession of assertion, rebuttal, and counter assertion, non-novel claims are identified
and withdrawn, unjustifiable claims are either eliminated or modified, while the argu-
ments for justifiable claims are strengthened and clarified. Moreover, through the act of
publishing a journal article and the associated dialogue, both authors and reviewers typ-
ically learn much they had not previously known. Table 1.3 lists several journals which
cover topics presented in this book and which are recognized by academia and industry
alike.
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Table 1.3 Speech processing and recognition journals

Abbreviation Full name

SP IEEE Transactions on Signal Processing
ASLP IEEE Transactions on Audio, Speech and Language Processing former IEEE

Transactions on Speech and Audio Processing (SAP)
ASSP IEEE Transactions on Acoustics, Speech and Signal Processing
SPL IEEE Signal Processing Letters
SPM IEEE Signal Processing Magazine
CSL Computer Speech and Language by Elsevier
ASA Journal of the Acoustic Society of America
SP EURASIP Journal on Signal Processing
AdvSP EURASIP Journal on Advances in Signal Processing
SC EURASIP and ISCA Journal on Speech Communication published by Elsevier
AppSP EURASIP Journal on Applied Signal Processing
ASMP EURASIP Journal on Audio, Speech and Music Processing

An updated list of conferences, including a calendar of upcoming events, and journals
can be found on the companion website of this book at

http://www.distant-speech-recognition.org

1.7 Useful Tools, Data Resources and Evaluation Campaigns

A broad number of commercial and non-commercial tools are available for the processing,
analysis and recognition of speech. An extensive and updated list of such tools can be
found on the companion website of this book.

The right data or corpora is essential for training and testing various speech processing,
enhancement and recognition algorithms. This follows from the fact that the quality of
the acoustic and language models are determined in large part by the amount of available
training data, and the similarity between the data used for training and testing. As collect-
ing and transcribing appropriate data is time-consuming and expensive, and as reporting
WER reductions on “private” data makes the direct comparison of techniques and systems
difficult or impossible, it is highly worth-while to report experimental results on publicly
available speech corpora whenever possible. The goal of evaluation campaigns, such as
the Rich Transcription (RT) evaluation staged periodically by the US National Institute
of Standards and Technologies (NIST), is to evaluate and to compare different speech
recognition systems and the techniques on which they are based. Such evaluations are
essential in order to assess not only the progress of individual systems, but also that of
the field as a whole. Possible data sources and evaluation campaigns are listed on the
website mentioned previously.

1.8 Organization of this Book

Our aim in writing this book was to provide in a single volume an exposition of the theory
behind each component of a complete DSR system. We now summarize the remaining
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Figure 1.9 Architecture of a distant speech recognition system. The gray numbers indicate the
corresponding chapter of this book

contents of this volume in order to briefly illustrate both the narrative thread that underlies
this work, as well as the interrelations among the several chapters. In particular, we will
emphasize how the development of each chapter is prefigured by and builds upon that
of the preceding chapters. Figure 1.9 provides a high-level overview of a DSR system
following the signal flow through the several components. The gray number on each
individual component indicates the corresponding chapter in this book. The chapters not
shown in the figure, in particular Chapters 2, 3, 4, 8 and 11, present material necessary
to support the development in the other chapters: The fundamentals of sound propagation
and acoustics are presented in Chapter 2, as are the basics of speech production. Chapter 3
presents linear filtering techniques that are used throughout the text. Chapter 4 presents the
theory of Bayesian filters, which will later be applied both for speech feature enhancement
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in Chapter 6 and speaker tracking in Chapter 10. Chapter 8 discusses how the parameters
of a HMM can be reliably estimated based on the use of transcribed acoustic data. Such
a HMM is an essential component of most current DSR systems, in that it extracts word
hypotheses from the final waveform produced by the other components of the system.
Chapter 11 provides a discussion of digital filter banks, which, as discussed in Chapter 13,
are an important component of a beamformer. Finally, Chapter 14 reports experimental
results indicating the effectiveness of the algorithms described throughout this volume.

Speech, like any sound, is the propagation of pressure waves through air or any other
liquid. A DSR system extracts from such pressure waves hypotheses of the phonetic units
and words uttered by a speaker. Hence, it is worth-while to understand the physics of sound
propagation, as well as how the spectral and temporal characteristics of speech are altered
when it is captured by far-field sensors in realistic acoustic environments. These topics
are considered in Chapter 2. This chapter also presents the characteristics and properties
of the human auditory system. Knowledge of the latter is useful, inasmuch as experience
has shown that many insights gained from studying the human auditory system have been
successfully applied to improve the performance of automatic speech recognition systems.

In signal processing, the term filter refers to an algorithm which extracts a desired sig-
nal from an input signal corrupted by noise or other distortions. A filter can also be used
to modify the spectral or temporal characteristics of a signal in some advantageous way.
Therefore, filtering techniques are powerful tools for speech signal processing and distant
recognition. Chapter 3 provides a review of the basics of digital signal processing, includ-
ing a short introduction to linear time-invariant systems, the Fourier and z-transforms, as
well as the effects of sampling and reconstruction. Next there is a presentation of the
discrete Fourier transform and its use for the implementation of linear time-invariant sys-
tems, which is followed by a description of the short-time Fourier transform. The contents
of this chapter will be referred to extensively in Chapter 5 on speech feature extraction,
as well as in Chapter 11 on digital filter banks.

Many problems in science and engineering can be formulated as the estimation of some
state, which cannot be observed directly, based on a series of features or observations,
which can be directly observed. The observations are often corrupted by distortions such
as noise or reverberation. Such problems can be solved with one of a number of Bayesian
filters, all of which estimate an unobservable state given a series of observations. Chapter 4
first formulates the general problem to be solved by a Bayesian filter, namely, tracking the
likelihood of the state as it evolves in time as conditioned on a sequence of observations.
Thereafter, it presents several different solutions to this general problem, including the
classic Kalman filter and its variants, as well as the class of particle filters, which have
much more recently appeared in the literature. The theory of Bayesian filters will be
applied in Chapter 6 to the task of enhancing speech features that have been corrupted by
noise, reverberation or both. A second application, that of tracking the physical position
of a speaker based on the signals captured with the elements of a microphone array, will
be discussed in Chapter 10.

Automatic recognition requires that the speech waveform is processed so as to pro-
duce feature vectors of a relatively small dimension. This reduction in dimensionality
is necessary in order to avoid wasting parameters modeling characteristics of the signal
which are irrelevant for classification. The transformation of the input data into a set
of dimension-reduced features is called speech feature extraction, acoustic preprocessing
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or front-end processing. As explained in Chapter 5, feature extraction in the context of
DSR systems aims to preserve the information needed to distinguish between phonetic
classes, while being invariant to other factors. The latter include speaker differences,
such as accent, emotion or speaking rate, as well as environmental distortions such as
background noise, channel differences, or reverberation.

The principle underlying speech feature enhancement, the topic of Chapter 6, is the
estimation of the original features of the clean speech from a corrupted signal. Usually
the enhancement takes place either in the power, logarithmic spectral or cepstral domain.
The prerequisite for such techniques is that the noise or the impulse response is known or
can be reliably estimated in the cases of noise or channel distortion, respectively. In many
applications only a single channel is available and therefore the noise estimate must be
inferred directly from the noise-corrupted signal. A simple method for accomplishing this
separates the signal into speech and non-speech regions, so that the noise spectrum can be
estimated from those regions containing no speech. Such simple techniques, however, are
not able to cope well with non-stationary distortions. Hence, more advanced algorithms
capable of actively tracking changes in the noise and channel distortions are the main
focus of Chapter 6.

As discussed in Chapter 7, search is the process by which a statistical ASR system finds
the most likely word sequence conditioned on a sequence of acoustic observations. The
search process can be posed as that of finding the shortest path through a search graph.
The construction of such a search graph requires several knowledge sources, namely, a
language model, a word lexicon, and a HMM, as well as an acoustic model to evaluate the
likelihoods of the acoustic features extracted from the speech to be recognized. Moreover,
inasmuch as all human speech is affected by coarticulation, a decision tree for represent-
ing context dependency is required in order to achieve state-of-the-art performance. The
representation of these knowledge sources as weighted finite-state transducers is also pre-
sented in Chapter 7, as are weighted composition and a set of equivalence transformations,
including determinization, minimization, and epsilon removal. These algorithms enable
the knowledge sources to be combined into a single search graph, which can then be
optimized to provide maximal search efficiency.

All ASR systems based on the HMM contain an enormous number of free parameters.
In order to train these free parameters, dozens if not hundreds or even thousands of hours
of transcribed acoustic data are required. Parameter estimation can then be performed
according to either a maximum likelihood criterion or one of several discriminative criteria
such as maximum mutual information or minimum phone error. Algorithms for efficiently
estimating the parameters of a HMM are the subjects of Chapter 8. Included among
these are a discussion of the well-known expectation-maximization algorithm, with which
maximum likelihood estimation of HMM parameters is almost invariably performed.
Several discriminative optimization criteria, namely, maximum mutual information, and
minimum word and phone error are also described.

The unique characteristics of the voice of a particular speaker are what allow a person
calling on the telephone to be identified as soon as a few syllables have been spoken.
These characteristics include fundamental frequency, speaking rate, and accent, among
others. While lending each voice its own individuality and charm, such characteristics are
a hindrance to automatic recognition, inasmuch as they introduce variability in the speech
that is of no use in distinguishing between different words. To enhance the performance
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of an ASR system that must function well for any speaker as well as different acoustic
environments, various transformations are typically applied either to the features, the
means and covariances of the acoustic model, or to both. The body of techniques used to
estimate and apply such transformations fall under the rubrik feature and model adaptation
and comprise the subject matter of Chapter 9.

While a recognition engine is needed to convert waveforms into word hypotheses, the
speech recognizer by itself is not the only component of a distant recognition system.
In Chapter 10, we introduce an important supporting technology required for a complete
DSR system, namely, algorithms for determining the physical positions of one or more
speakers in a room, and tracking changes in these positions with time. Speaker localization
and tracking – whether based on acoustic features, video features, or both – are important
technologies, because the beamforming algorithms discussed in Chapter 13 all assume that
the position of the desired speaker is known . Moreover, the accuracy of a speaker tracking
system has a very significant influence on the recognition accuracy of the entire system.

Chapter 11 discusses digital filter banks, which are arrays of bandpass filters that sepa-
rate an input signal into many narrowband components. As mentioned previously, frequent
reference will be made to such filter banks in Chapter 13 during the discussion of beam-
forming. The optimal design of such filter banks has a critical effect on the final system
accuracy.

Blind source separation (BSS) and independent component analysis (ICA) are terms
used to describe classes of techniques by which signals from multiple sensors may be com-
bined into one signal. As presented in Chapter 12, this class of methods is known as blind
because neither the relative positions of the sensors, nor the position of the sources are
assumed to be known. Rather, BSS algorithms attempt to separate different sources based
only on their temporal, spectral, or statistical characteristics. Most information-bearing sig-
nals are non-Gaussian, and this fact is extremely useful in separating signals based only
on their statistical characteristics. Hence, the primary assumption of ICA is that interesting
signals are not Gaussian signals. Several optimization criteria that are typically applied in
the ICA field include kurtosis, negentropy, and mutual information. While mutual infor-
mation can be calculated for both Gaussian and non-Gaussian random variables alike,
kurtosis and negentropy are only meaningful for non-Gaussian signals. Many algorithms
for blind source separation, dispense with the assumption of non-Gaussianity and instead
attempt to separate signals on the basis of their non-stationarity or non-whiteness. Insights
from the fields of BSS and ICA will also be applied to good effect in Chapter 13 for
developing novel beamforming algorithms.

Chapter 13 presents a class of techniques, known collectively as beamforming, by
which signals from several sensors can be combined to emphasize a desired source and to
suppress all other noise and interference. Beamforming begins with the assumption that
the positions of all sensors are known, and that the positions of the desired sources are
known or can be estimated. The simplest of beamforming algorithms, the delay-and-sum
beamformer, uses only this geometrical knowledge to combine the signals from several
sensors. More sophisticated adaptive beamformers attempt to minimize the total output
power of an array of sensors under a constraint that the desired source must be unatten-
uated. Recent research has revealed that such optimization criteria used in conventional
array processing are not optimal for acoustic beamforming applications. Hence, Chapter
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13 also presents several nonconventional beamforming algorithms based on optimization
criteria – such as mutual information, kurtosis, and negentropy – that are typically used
in the fields of BSS or ICA.

In the final chapter of this volume we present the results of performance evaluations of
the algorithms described here on several DSR tasks. These include an evaluation of the
speaker tracking component in isolation from the rest of the DSR system. In Chapter 14,
we present results illustrating the effectiveness of single-channel speech feature enhance-
ment based on particle filters. Also included are experimental results for systems based
on beamforming for both single distant speakers, as well as two simultaneously active
speakers. In addition, we present results illustrating the importance of selecting a filter
bank suitable for adaptive filtering and beamforming when designing a complete DSR
system.

A note about the brevity of the chapters mentioned above is perhaps now in order. To
wit, each of these chapters might easily be expanded into a book much larger than the
present volume. Indeed, such books are readily available on sound propagation, digital
signal processing, Bayesian filtering, speech feature extraction, HMM parameter estima-
tion, finite-state automata, blind source separation, and beamforming using conventional
criteria. Our goal in writing this work, however, was to create an accessible description
of all the components of a DSR system required to transform sound waves into word
hypotheses, including metrics for gauging the efficacy of such a system. Hence, judi-
cious selection of the topics covered along with concise presentation were the criteria that
guided the choice of every word written here. We have, however, been at pains to provide
references to lengthier specialized works where applicable – as well as references to the
most relevant contributions in the literature – for those desiring a deeper knowledge of
the field. Indeed, this volume is intended as a starting point for such wider exploration.

1.9 Principal Symbols used Throughout the Book

This section defines principal symbols which are used throughout the book. Due to the
numerous variables each chapter presents an individual list of principal symbols which is
specific for the particular chapter.

Symbol Description

a, b, c, . . . variables
A,B, C, . . . constants
a, b, c, A, B, C, . . . units
a, b, c, . . . vectors
A, B, C, . . . matrices
I unity matrix
j imaginary number,

√−1
·∗ complex conjungate
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Symbol Description

·T transpose operator
·H Hermetian operator
·1:K sequence from 1 to K

∇2 Laplace operator
· average
·̃ warped frequency
·̂ estimate
% modulo
λ Lagrange multiplier
(·)+ pseudoinverse of (·)
E {·} expectation value
/ · / denote a phoneme
[·] denote a phone
| · | absolute (scalar) or determinant (matrix)
μ mean
� covariance matrix
N (x;μ,�) Gaussian distribution with mean vector μ and covariance

matrix �

∀ for all
∗ convolution
δ Dirac impulse
O big O notation also called Landau notation
C complex number
N set of natural numbers
N0 set of non-negative natural numbers including zero
R real number
R

+ non-negative real number
Z integer number
Z

+ non-negative integer number

sinc(z) �
{

1, for z = 0,

sin(z)/z, otherwise
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1.10 Units used Throughout the Book

This section defines units that are consistently defined throughout the book.

Units Description

Hz Herz
J Joule
K Kelvin
Pa Pascal
SPL sound pressure level
Vs/m2 Tesla
W Watt
◦C degree Celsius
dB decibel
kg kilogram
m meter
m2 square meter
m3 cubic meter
m/s velocity
s second



2
Acoustics

The acoustical environment and the recording sensor configuration define the characteris-
tics of distant speech recordings and thus the usability of the data for certain applications,
techniques or investigations. The scope of this chapter is to describe the physical aspect
of sound and the characteristics of speech signals. In addition, we will discuss the human
perception of sound, as well as the acoustic environment typically encountered in distant
speech recognition scenarios. Moreover, there will be a presentation of recording tech-
niques and possible sensor configurations for use in the capture of sound for subsequent
distant speech recognition experiments.

The balance of this chapter is organized as follows. In Section 2.1, the physics of
sound production are presented. This includes a discussion of the reduction in sound
intensity that increases with the distance from the source, as well as the reflections
that occur at surfaces. The characteristics of human speech and its production are
described in Section 2.2. The subword units or phonemes of which human languages
are composed are also presented in Section 2.2. The human perception of sound, along
with the frequency-dependent sensitivity of the human auditory system, is described in
Section 2.3. The characteristics of sound propagation in realistic acoustic environments
is described in Section 2.4. Especially important in this section is the description of
the spectral and temporal changes that speech and other sounds undergo when they
propagate through enclosed spaces. Techniques and best practices for sound capture and
recording are presented in Section 2.5. The final section summarizes the contents of this
chapter and presents suggestions for further reading.

2.1 Physical Aspect of Sound

The physical – as opposed to perceptual – properties of sound can be characterized as the
superposition of waves of different pressure levels which propagate through compressible
media such as air. Consider, for example, one molecule of air which is accelerated and
displaced from its original position. As it is surrounded by other molecules, it bounces into
those adjacent, imposing a force in the opposite direction which causes the molecule to
recoil and to return to its original position. The transmitted force accelerates and displaces
the adjacent molecules from their original position which once more causes the molecules

Distant Speech Recognition Matthias Wölfel and John McDonough
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to bounce into other adjacent molecules. Therefore, the molecules undergo movements
around their mean positions in the direction of propagation of the sound wave. Such
behavior is known as a longitudinal wave. The propagation of the sound wave cause the
molecules which are half a wavelength apart from each other to vibrate with opposite
phase and thus produce alternate regions of compression and rarefaction. It follows that
the sound pressure, defined as the difference between the instantaneous pressure and the
static pressure, is a function of position and time.

Our concern here is exclusively with the propagation of sound in air and we assume
the media of propagation to be homogeneous , which implies it has a uniform structure,
isotropic, which implies its properties are the same in all directions, and stationary , which
implies these properties do not change with time. These assumptions are not entirely
justified, but the effects due to inhomogeneous and non-stationary media are negligible
in comparison with those to be discussed; hence, so they can be effectively ignored.

2.1.1 Propagation of Sound in Air

Media capable of sound transfer have two properties, namely, mass and elasticity. The
elasticity of an ideal gas is defined by its volume dilatation and volume compression.
The governing relation of an ideal gas , given a specific gas constant R, is defined by the
state equation

p
V

M
= R�, (2.1)

where p denotes the pressure, commonly measured in Pascal (Pa), V the volume com-
monly measured in cubic meters (m3), M the mass , commonly measured in kilograms
(kg), and � the temperature commonly measured in degrees Kelvin (K).1 For dry air the
specific gas constant is Rdryair = 287.05 J/(kg · K) where J represents Joule. Air at sea
level and room temperature is well-modeled by the state equation (2.1). Thus, we will
treat air as an ideal gas for the balance of this book.

The volume compression , or negative dilatation , of an ideal gas is defined as

−� � −δV

V
,

where V represents the volume at the initial state and δV represents the volume variation.
The elasticity of an ideal gas is determined by the bulk modulus

κ � δp

−�
,

which is defined as the ratio between the pressure variation δp and the volume compres-
sion. An adiabatic process is a thermodynamic process in which no heat is transferred to
or from the medium. Sound propagation is adiabatic because the expansions and contrac-
tions of a longitudinal wave occur very rapidly with respect to any heat transfer. Let Cp

1 Absolute zero is 0 K ≈ −273.15 ◦ C. No substance can be colder than this.
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and Cv denote the specific heat capacities under constant pressure and constant volume,
respectively. Given the adiabatic nature of sound propagation, the bulk modulus can be
approximated as

κ ≈ γp,

where γ is by definition the adiabatic exponent

γ � Cp

Cv
.

The adiabatic exponent for air is γ ≈ 1.4.

2.1.2 The Speed of Sound

The wave propagation speed, in the direction away from the source, was determined in
1812 by Laplace under the assumption of an adiabatic process as

c =
√

κ

ρ
=

√
κ

R�

p
,

where the volume density ρ = M/V is defined by the ratio of mass to volume. The
wave propagation speed in air cair depends mainly on atmospheric conditions, in partic-
ular the temperature, while the humidity has some negligible effect. Under the ideal gas
approximation, air pressure has no effect because pressure and density contribute to the
propagation speed of sound waves equally, and the two effects cancel each other out. As
a result, the wave propagation speed is independent of height.

In dry air the wave propagation speed can be approximated by

cair = 331.5 ·
√

1 + ϑ

273.15
,

where ϑ is the temperature in degrees Celsius. At room temperature, which is commonly
assumed to be 20 ◦C, the speed of sound is approximately 344 m/s.

2.1.3 Wave Equation and Velocity Potential

We begin our discussion of the theory of sound by imposing a small disturbance p on a
uniform, stationary, acoustic medium with pressure p0 and express the total pressure as

ptotal = p0 + p, |p| � p0.

This small disturbance, which by definition is the difference between the instantaneous
and atmospheric pressure, is referred to as the sound pressure. Similarly, the total density
ρ includes both constant ρ0 and time-varying ρ components, such that,

ρtotal = ρ0 + ρ, |ρ| � ρ0.
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Let u denote the fluid velocity, q the volume velocity, and f the body force. In a
stationary medium of uniform mean pressure p0 and mean density ρ0, we can relate
various acoustic quantities by two basic laws:

• The law of conservation of mass implies,

1

c2

∂p

∂t
+ ρ0∇u = ρ0 q.

• The law of conservation of momentum stipulates,

ρ0
∂u
∂t

= −∇ + f.

To eliminate the velocity, we can write

1

c2

∂p

∂t2
= ∂

∂t
(ρ0q − ρ0∇u) = ρ0

∂q

∂t
+ ∇2p − ∇f. (2.2)

Outside the source region where q = 0 and in the absence of body force, (2.2) simplifies to

1

c2

∂2p

∂t2
= ∇2p

which is the general wave equation.
The three-dimensional wave equation in rectangular coordinates , where lx, ly, lz define

the coordinate axis, can now be expressed as

∂2p

∂2t2
= c2∇2p = c2

(
∂2p

∂l2
x

+ ∂2p

∂l2
y

+ ∂2p

∂l2
z

)
.

A simple or point source radiates a spherical wave. In this case, the wave equation is best
represented in spherical coordinates as

∂2p

∂2t2
= c2∇2p = c2 1

r2

∂

∂r

(
r2 ∂p

∂r

)
, (2.3)

where r denotes the distance from the source. Assuming the sound pressure oscillates as
ejωt with angular frequency ω, we can write

c2 1

r2

∂

∂r

(
r2 ∂p

∂r

)
= −ω2

c2
p = −c2k2p,

which can be simplified to

∂2rp

∂2r2
+ k2p = 0. (2.4)
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Here the constant k is known as the wavenumber ,2 or stiffness , which is related to the
wavelength by

λ = 2π

k
. (2.5)

A solution to (2.4) for the sound pressure can be expressed as the superposition of
outgoing and incoming spherical waves, according to

p = A

r
ejωt−jkr

︸ ︷︷ ︸
outgoing

+ B

r
ejωt+jkr

︸ ︷︷ ︸
incoming

, (2.6)

where A and B denote the strengths of the sources. Thus, the sound pressure depends
only on the strength of the source, the distance to the source, and the time of observation.
In the free field , there is no reflection and thus no incoming wave, which implies B = 0.

2.1.4 Sound Intensity and Acoustic Power

The sound intensity or acoustic intensity

Isound � p φ,

is defined as the product of sound pressure p and velocity potential φ. Given the relation
between the velocity potential and sound pressure,

p = ρ0
∂φ

∂t
,

the sound intensity can be expressed as

Isound = p2

c ρ0
. (2.7)

Substituting the spherical wave solution (2.6) into (2.7), we arrive at the inverse square
law of sound intensity,

Isound ∼ 1

r2
, (2.8)

which can be given a straightforward interpretation. The acoustic power flow of a sound
wave

P �
∫

IsounddS = constant

2 As the wavenumber is used here to indicate only the relation between frequency and wavelength when sound
propagates through a given medium, it is define as a scalar. In Chapter 13 it will be redefined as a vector to include
the direction of wave propagation.
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is determined by the surface S and remains constant. When the intensity Isound is measured
at a distance r , this power is distributed over a sphere with area 4πr2, which obviously
increases as r2. Hence, the inverse square law states that the sound intensity is inversely
proportional to the square of the distance.

To consider non-uniform sound radiation, it is necessary to define the directivity factor
Q as

Q � Iθ (r)

Iall(r)
,

where Iall is the average sound intensity over a spherical surface at the distance r and Iθ is
the sound intensity at angle θ at the same distance r . A spherical source has a directivity
factor of 1. A source close to a single wall would have a hemispherical radiation and thus
Q becomes 2. In a corner of two walls Q is 4, while in a corner of three walls it is 8.
The sound intensity (2.8) must thus be rewritten as

Isound ∼ Q

r2
.

As the distance from the point source grows larger, the radius of curvature of the wave
front increases to the point where the wave front resembles an infinite plane normal to
the direction of propagation. This is the so-called plane wave.

2.1.5 Reflections of Plane Waves

The propagation of a plane wave can be described by a three-dimensional vector. For
simplicity, we illustrate this propagation in two dimensions here, corresponding to the left
image in Figure 2.1. For homogeneous media, all dimensions can be treated independently.
But at the surface of two media of different densities, the components do interact. A
portion of the incident wave is reflected, while the other portion is transmitted. The
excess pressure p can be expressed at any point in the medium as a function of the
coordinates and the distance of the sound wave path ξ as

• for the incident wave: pi = A1e
j (ωt+k1ξi); ξi = −x cos θi − y sin θi,

• for the reflected wave: pr = B1e
j (ωt−k1ξr); ξr = x cos θr − y sin θr, and

• for the transmitted wave: pt = A2e
j (ωt−k2ξt); ξt = −x cos θt − y sin θt.

Enforcing the condition of constant pressure at the boundary x = 0 between the two media
k1 and k2 for all y, we obtain the y-component of the

• pressure of the incident wave pi,y = A1e
j (ωt−k1y sin θi),

• pressure of the reflected wave pr,y = B1e
j (ωt−yk1 sin θr), and

• pressure of the transmitted wave pt,y = A2e
j (ωt−yk2 sin θt).

These pressures must be such that

pi,y = pr,y + pt,y .

Similarly, the
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• incident sound velocity vi,y = vi cos θi,
• reflected sound velocity vr,y = −vr cos(180◦ − θr), and
• transmitted sound velocity vt,y = vt cos θt.

These sound velocities must be such that

vi,y = vr,y + vt,y .

The well-known law of reflection and refraction of plane waves states that the angle
θi of incidence is equal to the angle θr of reflection. Applying this law, imposing the
boundary conditions , and eliminating common terms results in

k1 sin θi = k1 sin θr = k2 sin θt. (2.9)

From (2.9), it is apparent that the angle of the transmitted wave depends on the angle of
the incident wave and the stiffnesses k1 and k2 of the two materials.

In the absence of absorption, the incident sound energy must be equal to the sum of
the reflected and transmitted sound energy, such that

A1 = B1 + A2. (2.10)

Replacing the sound velocities at the boundary with the appropriate value of p/ρ0k we
can write the condition

A1

ρ1k1
cos θi − B1

ρ1k1
cos θr = A2

ρ2k2
cos θt,

which, to eliminate A2 can be combined with (2.10) to give the strength of the reflected
source

B1 = A1
ρ2k2 cos θi − ρ1k1 cos θt

ρ2k2 cos θi + ρ1k1 cos θt
.

2.1.6 Reflections of Spherical Waves

Assuming there is radiation from a point source of angular frequency ω located near a
boundary, the reflections of the spherical waves can be analyzed by image theory . If the
point source, however, is far away from the boundary, the spherical wave behaves more
like a plane wave, and thus plane wave theory is more appropriate.

The reflected wave can be expressed by a virtual source with spherical wave radiation,
as in the right portion of Figure 2.1. The virtual source is also referred to as the image
source. At a particular observation point, we can express the excess pressure as

p = A

l1
ej (ωt−kl1)

︸ ︷︷ ︸
directwave

+ B

l2 + l3
ej (ωt−k(l2+l3))

︸ ︷︷ ︸
reflectedwave

where l1 denotes the distance between the point source and the observation position, l2
the distance between the point source and the reflection, and l3 the distance from the
reflection to the observation position.
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Figure 2.1 Reflection of plane and spherical waves at the boundary of two media

2.2 Speech Signals

In this section, we consider the characteristics of human speech. We first review the pro-
cess of speech production. Thereafter, we categorize human speech into several phonetic
units which will be described and classified. The processing of speech, such as transmis-
sion or enhancement, requires knowledge of the statistical properties of speech. Hence,
we will discuss these properties as well.

2.2.1 Production of Speech Signals

Knowledge of the vocal system and the properties of the speech waveform it produces
is essential for designing a suitable model of speech production. Due to the physiol-
ogy of the human vocal tract, human speech is highly redundant and possesses several
speaker-dependent parameters, including pitch, speaking rate, and accent. The shape and
size of the individual vocal tract also effects the locations and prominence of the spectral
peaks or formants during the utterance of vowels. The formants, which are caused by
resonances of the vocal tract, are known as such because they ‘form’ or shape the spec-
trum. For the purpose of automatic speech recognition (ASR), the locations of the first
two formants are sufficient to distinguish between vowels (Matsumura et al. 2007). The
fine structure of the spectrum, including the overtones that are present during segments of
voiced speech, actually provide no information that is relevant for classification. Hence,
this fine structure is typically removed during ASR feature extraction. By ignoring this
irrelevant information, a simple model of human speech production can be formulated.

The human speech production process reveals that the generation of each phoneme, the
basic linguistic unit, is characterized by two basic factors:

• the random noise or impulse train excitation, and
• the vocal tract shape.
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In order to model speech production, we must model these two factors. To understand
the source characteristics, it is assumed that the source and the vocal tract model are
independent (Deller Jr et al. 1993).

Speech consists of pressure waves created by the airflow through the vocal tract. These
pressure waves originate in the lungs as the speaker exhales. The vocal folds in the
larynx can open and close quasi-periodically to interrupt this airflow. The result is voiced
speech , which is characterized by its periodicity. Vowels are the most prominent examples
of voiced speech. In addition to periodicity, vowels also exhibit relatively high energy in
comparison with all other phoneme classes. This is due to the open configuration of the
vocal tract during the utterance of a vowel, which enables air to pass without restriction.
Some consonants, for example the “b” sound in “bad” and the “d” sound in “dad”, are also
voiced. The voiced consonants have less energy, however, in comparison with the vowels,
as the free flow of air through the vocal tract is blocked at some point by the articulators.

Several consonants, for example the “p” sound in “pie” and the “t” sound in “tie”, are
unvoiced . For such phonemes the vocal cords do not vibrate. Rather, the excitation is
provided by turbulent airflow through a constriction in the vocal tract, imparting to the
phonemes falling into this class a noisy characteristic. The positions of the other articu-
lators in the vocal tract serve to filter the noisy excitation, amplifying certain frequencies
while attenuating others. A time domain segment of unvoiced and voiced speech is shown
in Figure 2.2.

A general linear discrete-time system for modeling the speech production process is
shown in Figure 2.3. In this system, a vocal tract filter V (z) and a lip radiation filter
R(z) are excited either by a train of impulses or by a noisy signal that is spectrally flat.
The local resonances and anti-resonances are present in the vocal tract filter V (z), which
overall has a flat spectral trend. The lips behave as a first order high-pass filter R(z),
providing a frequency-dependent gain that increases by 6 dB/octave.

To model the excitation signal for unvoiced speech, a random noise generator with a
flat spectrum is typically used. In the case of voiced speech, the spectrum is generated by
an impulse train with pitch period p and an additional glottal filter G(z). The glottal filter
is usually represented by a second order low-pass filter, the frequency-dependent gain of
which decreases at 12 dB/octave.

The frequency of the excitation provided by the vocal cords during voiced speech is
known as the fundamental frequency and is denoted as f0. The periodicity of voiced
speech gives rise to a spectrum containing harmonics nf0 of the fundamental frequency
for integer n ≥ 1. These harmonics are known as partials . A truly periodic sequence,

Unvoiced Voiced

Figure 2.2 A speech segment (time domain) of unvoiced and voiced speech
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Figure 2.3 Block diagram of the simplified source filter model of speech production

observed over an infinite interval, will have a discrete-line spectrum, but voiced sounds
are only locally quasi-periodic. The spectra for unvoiced speech range from a flat shape
to spectral patterns lacking low-frequency components. The variability is due to place of
constriction in the vocal tract for various unvoiced sounds, which causes the excitation
energy to be concentrated in different spectral regions. Due to the continuous evolution of
the shape of the vocal tract, speech signals are non-stationary. The gradual movement of
the vocal tract articulators, however, results in speech that is quasi-stationary over short
segments of 5–25 ms. This enables speech to be segmented into short frames of 16–25 ms
for the purpose of performing frequency analysis, as described in Section 5.1.

The classification of speech into voiced and unvoiced segments is in many ways more
important than other classifications. The reason for this is that voiced and unvoiced classes
have very different characteristics in both the time and frequency domains, which may
warrant processing them differently. As will be described in the next section, speech
recognition requires classifying the phonemes with a still finer resolution.

2.2.2 Units of Speech Signals

Any human language is composed of elementary linguistic units of speech that determine
meaning. Such a unit is known as a phoneme, which is by definition the smallest linguistic
unit that is sufficient to distinguish between two words. We will use the notation /·/ to
denote a phoneme. For example, the phonemes /c/ and /m/ serve to distinguish the word
“cat” from the word “mat”. The phonemes are in fact not the physical segments them-
selves, but abstractions of them. Most languages consist of between 40 and 50 phonemes.
The acoustic realization of a phoneme is called a phone, which will be denoted as [·].
A phoneme can include different but similar phones, which are known as allophones . A
morpheme, on the other hand, is the smallest linguistic unit that has semantic meaning.
In spoken language, morphemes are composed of phonemes while in written language
morphemes are composed of graphemes. Graphemes are the smallest units of written
language and might include, depending on the language, alphabetic letters, pictograms,
numerals, and punctuation marks.
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The phonemes can be classified by their individual and common characteristics with
respect to, for example, the place of articulation in the mouth region or the manner
of articulation. The International Phonetic Alphabet (IPA 1999) is a standardized
and widely-accepted representation and classification of the phonemes of all human
languages. This system identifies two main classes: vowels and consonants, both of
which are further divided into subclasses. A detailed discussion about different phoneme
classes and their properties for the English language can be found in Olive (1993). A
brief description follows.

Vowels

As mentioned previously, a vowel is produced by the vibration of the vocal cords and
is characterized by the relatively free passage of air through the larynx and oral cavity.
For example English and Japanese have five vowels, A, E, I, O and U. Some languages
such as German have additional vowels represented by the umlauts Ä, Ö and Ü. As the
vocal tract is not constricted during their utterance, vowels have the highest energy of any
phoneme class. They are always voiced and usually form the central sound of a syllable,
which is by definition a sequence of phonemes and a peak in speech energy.

Consonants

A consonant is characterized by a constriction or closure at one or more points along the
vocal tract. The excitation for a consonant is provided either by the vibration of the vocal
cords, as with vowels, or by turbulent airflow through a constriction in the vocal tract.
Some consonant pairs share the same articulator configuration, but differ only in that one
of the pair is voiced and the other is unvoiced. Common examples are the pairs [b] and
[p], as well as [d] and [t], of which the first member of each pair is voiced and the second
is unvoiced.

The consonants can be further split into pulmonic and non-pulmonic. Pulmonic conso-
nants are generated by constricting an outward airflow emanating from the lungs along
the glottis or in the oral cavity. Non-pulmonic consonants are sounds which are produced
without the lungs using either velaric airflow for phonemes such as clicks, or glottalic
airflow for phonemes such as implosives and ejectives. The pulmonic consonants make
up the majority of consonants in human languages. Indeed, western languages have only
pulmonic consonants.

The consonants are classified by the International Phonetic Alphabet (IPA) according
to the manner of articulation. The IPA defines the consonant classes: nasals, plosives,
fricatives, approximants, trills, taps or flaps, lateral fricatives, lateral approximants and
lateral flaps. Of these, only the first three classes, which we will now briefly describe,
occur frequently in most languages.

Nasals are produced by glottal excitation through the nose where the oral tract is totally
constricted at some point; e.g., by a closed mouth. Examples of nasals are /m/ and /n/
such as in “mouth” and “nose”.

Plosives , also known as stop consonants, are phonemes produced by stopping the
airflow in the vocal tract to build up pressure, then suddenly releasing this pressure to
create a brief turbulent sound. Examples of unvoiced plosives are /k/, /p/ and /t/ such as
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in “coal”, “bet” or “tie”, which correspond to voiced plosives /g/, /b/ and /d/ such as in
“goal”, “pet” or “die”, respectively.

Fricatives are consonants produced by forcing the air through a narrow constriction
in the vocal tract. The constriction is due to the close proximity of two articulators. A
particular subset of fricatives are the sibilants , which are characterized by a hissing sound
produced by forcing air over the sharp edges of the teeth. Sibilants have most of their
acoustic energy at higher frequencies. An example of a voiced sibilant is /z/ such as in
“zeal”, an unvoiced sibilant is /s/ such as in “seal”. Nonsibilant fricatives are, for example,
/v/ such as in “vat”, which is voiced and /f/ such as in “fat”, which is unvoiced.

Approximants and Semivowels

Approximants are voiced phonemes which can be regarded as lying between vowels
and consonants, e.g., [j] as in “yes” [jes] and [î] as in Japanese “watashi” [îataCi],
pronounced with lip compression. The approximants which resemble vowels are termed
semivowels .

Diphthongs

Diphthongs are a combination of some vowels and a gliding transition from one vowel to
another one, e.g., /aı/ as in “night” [naıt], /aU/ as in “now” [naU]. The difference between
two vowels, which are two syllables, and a diphthong, which is one syllable, is that the
energy dips between two vowels while the energy of a diphthong stays constant.

Coarticulation

The production of a single word, consisting of one or more phonemes, or word sequence
involves the simultaneous motion of several articulators. During the utterance of a given
phone, the articulators may or may not reach their target positions depending on the
rate of speech, as well as the phones uttered before and after the given phone. This
assimilation of the articulation of one phone to the adjacent phones is called coarticu-
lation . For example, an unvoiced phone may be realized as voiced if it must be uttered
between two voiced phones. Due to coarticulation, the assumption that a word can be
represented as a single sequence of phonetic states is not fully justified. In continuous
speech, coarticulation effects are always present and thus speech cannot really be sepa-
rated into single phonemes. Coarticulation is one of the important and difficult problems
in speech recognition. Because of coarticulation, state-of-the-art ASR systems invariably
use context-dependent subword units as explained in Section 7.3.4.

The direction of coarticulation can be forward- or backward-oriented (Deng et al.
2004b). If the influence of the following vowel is greater than the preceding one, the
direction of influence is called forward or anticipatory coarticulation. Comparing the
fricative /S/ followed by /i/, as in the word “she” with /S/ followed by /u/ as in the
word “shoe” the effect of anticipatory coarticulation becomes evident. The same phoneme
/S/ will typically have more energy in higher frequencies in “she” than in “shoe”. If a
subsequently-occurring phone is modified due to the production of an earlier phone, the
coarticulation is referred to as backward or perseverative. Comparing the vowel /æ/ as
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in “map”, preceded by a nasal plosive /m/, with /æ/ preceded by a voiceless stop, such
as /k/ in “cap”, reveals perseverative coarticulation. Nasalization is evident when a nasal
plosive is followed by /æ/, however, if a voiceless stop is followed by /æ/ nasalization is
not present.

2.2.3 Categories of Speech Signals

Variability in speaking style is a commonplace phenomenon, and is often associated with
the speaker’s mental state. There is no obvious set of styles into which human speech
can be classified; thus, various categories have been proposed in the literature (Eskénazi
1993; Llisterri 1992). A possible classification with examples is given in Table 2.1.

The impact of many different speaking styles on ASR accuracy was studied by
Rajasekaran and Doddington (1986) and Paul et al. (1986). Their investigations showed
that the style of speech has a significant influence on recognition performance. Weintraub
et al. (1996) investigated how spontaneous speech differs from read speech. Their
experiments showed that – in the absence of noise or other distortions – speaking style
is a dominant factor in determining the performance of large-vocabulary conversational
speech recognition systems. They found, for example, that the word error rate (WER)
nearly doubled when speech was uttered spontaneously instead of being read.

2.2.4 Statistics of Speech Signals

The statistical properties of speech signals in various domains are of specific interest in
speech feature enhancement, source separation, beamforming, and recognition. Although
speech is a non-stationary stochastic process, it is sufficient for most applications to esti-
mate the statistical properties on short, quasi-stationary segments. In the present context,
quasi-stationary implies that the statistical properties are more or less constant over an
analysis window.

Long-term histograms of speech in the time and frequency domains are shown in
Figure 2.4. For the frequency domain plot, the uniform DFT filter bank which will sub-
sequently be described in Chapter 11 was used for subband analysis. The plots suggest
that super-Gaussian distributions (Brehm and Stammler 1987a), such as the Laplace, K0

or Gamma density, lead to better approximations of the true probability density func-
tion (pdf) of speech signals than a Gaussian distribution. This is true for the time as
well as the frequency domain. It is interesting to note that the pdf shape is dependent
on the length of the time window used to extract the short-time spectrum: The smaller

Table 2.1 Classification of speech signals

Class Examples

speaking style read, spontaneous, dictated, hyper articulated
voice quality breathy, whispery, lax
speaking rate slow, normal, fast
context conversational, public, man-machine dialogue
stress emotion, vocal effort, cognitive load
cultural variation native, dialect, non-native, American vs. British English
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the observation time, the more non-Gaussian is the distribution of the amplitude of the
Fourier coefficients (Lotter and Vary 2005). In the spectral magnitude domain, adjacent
non-overlapping frames tend to be correlated; the correlation increases for overlapping
frames. The correlation is in general larger for lower frequencies. A detailed discussion
of the statistics of speech and different noise types in office and car environments can be
found in Hänsler and Schmidt (2004, Section 3).

Higher Order Statistics

Most techniques used in speech processing are based on second-order properties of speech
signals, such as the power spectrum in the frequency domain, or the autocorrelation
sequence in the time domain, both of which are related to the variance of the signal.
While second-order statistics are undoubtedly useful, we will learn in Chapters 12 and
13 that higher-order statistics can provide a better and more precise characterization of
the statistical properties of human speech. The third-order statistics can give information
about the skewness of the pdf

S =
1
N

∑N
n=1(xn − μx)

3(
1
N

∑N
n=1(xn − μx)2

)3/2
,

which measures its deviation from symmetry. The fourth-order is related to the signal
kurtosis , introduced in Section 12.2.3, which describes whether the pdf is peaked or
flat relative to a normal distribution around its mean value. Distributions with positive
kurtosis have a distinct peak around the mean, while distributions with negative kurtosis
have flat tops around their mean values. As we will learn in Chapter 12, subband samples
of speech have high kurtosis, which is evident from the histograms in Figure 2.4. The
kurtosis of each of the non-Gaussian pdfs shown in Figure 2.4 is given in Table 2.2, which
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Figure 2.4 Long-term histogram of speech in time and frequency domain and different probability
density function approximations. The frequency shown is 1.6 kHz
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Table 2.2 Kurtosis values for several common
non-Gaussian pdfs

pdf equation Kurtosis

Laplace 1√
2
e−√

2|x| 3

K0
1
π
K0(|x|) 6

�
√

3
4
√

π

(√
3|x|
2

)−1/2
e−√

3|x|/2 26/3

demonstrates that as the kurtosis of a pdf increases, it comes to have more probability
mass concentrated around the mean and in the tail far away from the mean. The use of
higher order statistics for independent component analysis is discussed in Section 12.2,
and for beamforming in Sections 13.5.2 and 13.5.4.

Higher order statistics are, for example, used in Nemer et al. (2002) or Salavedra et al.
(1994) to enhance speech. Furthermore, it is reported in the literature that mel frequency
cepstral coefficients (MFCC)s when combined with acoustic features based on higher
order statistics of speech signals can produce higher recognition accuracies in some noise
conditions than MFCCs alone (Indrebo et al. 2005).

In the time domain, the second order is the autocorrelation function

φ[m] =
N−m∑
n=0

x[n]x[n + m],

while the third-order moment is

M[m1,m2] =
N−max{m1,m2}∑

n=0

x[n]x[n + m1]x[n + m2].

Higher order moments of order M can be formed by adding additional lag terms

M[m1, m2, . . . , mM ] =
N−max{m1,m2,...,mM }∑

n=0

M∏
k

x[n − mk].

As mentioned previously, in the frequency domain the second-order moment is the power
spectrum, which can be calculated by taking the Fourier transformation of φ[m]. The
third-order is referred to as the bispectrum , which can be calculated by taking the Fourier
transformation of M[m1,m2] over both m1 and m2.

2.3 Human Perception of Sound

The human perception of speech and music is, of course, a commonplace experience.
While listening to speech or music, however, we are very likely unaware of our subjective
sensation and the physical reality. Table 2.3 gives a simplified overview between human
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Table 2.3 Relation between human perception and
physical representation

Human perception Physical representation

pitch fundamental frequency
loudness [sone] sound pressure level (intensity) [dB]
location phase difference
timbre spectral shape

perception and physical representation. The true relationship is more complex as the
different physical properties might affect a single property in human perception. These
relations are described in more detail in this section.

2.3.1 Phase Insensitivity

Under only very weak constraints on the degree and type of allowable phase variations
(Deller Jr et al. 2000), the phase of a speech signal plays a negligible role in speech
perception. The human ear is for the most part insensitive to phase and perceives speech
primarily on the basis of the magnitude spectrum.

2.3.2 Frequency Range and Spectral Resolution

The sensitivity of the human ear ranges from 20 Hz up to 20 kHz for young people. For
older people, however, it is somewhat lower and ranges up to a maximum of 18 kHz.
Through psychoacoustic experiments, it has been determined that the complex mechanism
of the inner ear and auditory nerve performs some processing on the signal. Thus, the
subjective human perception of pitch cannot be represented by a linear relationship. The
difference in pitch of two pairs of pure tones (fa1, fa2) and (fb1, fb2) are perceived to
be equivalent if the ratio of two frequency pairs is equal, such that,

fa1

fa2
= fb1

fb2
.

The difference in pitch is not perceived to be equivalent if the difference between fre-
quency pairs are equal. For example, the transition from 100 Hz to 125 Hz is perceived
as a much larger change in pitch than the transition from 1000 Hz to 1025 Hz. This is
also evident from the fact that it is easy to tell the difference between 100 Hz and 125 Hz,
while a difference between 1000 Hz and 1025 Hz is barely perceptible. This relative tonal
perception is reflected by the definition of the octave, which represents a doubling of the
fundamental frequency.

2.3.3 Hearing Level and Speech Intensity

Sound pressure level (SPL) is defined as

Lp � 20 log

(
p

pr

)
[dB SPL] (2.11)



Acoustics 43

Table 2.4 Sound pressure level with examples and subjective assessment

SPL [dB] Examples Subjective assessment

140 artillery threshold of pain, hearing loss
120 jet takeoff (60 m), rock concert intolerable
100 siren, pneumatic hammer very noisy
80 shouts, busy road noisy
60 conversation (1 m), office moderate
50 computer (busy)
40 library, quiet residential quiet
35 computer (not busy)
20 forest, recording studio very quiet
0 threshold of hearing

SPL = sound pressure level

where the reference sound pressure pr � 20 μPa is defined as the threshold of hear-
ing at 1 kHz. Some time after the introduction of this definition, it was discovered
that the threshold is in fact somewhat lower. The definition of the threshold pr which
was set for 1 kHz was retained, however, as it matches nearly perfectly for 2 kHz.
Table 2.4 lists a range of SPLs in common situations along with their corresponding
subjective assessments, which range from the threshold of hearing to that of hearing
loss.

Even though we would expect that a sound with higher intensity to be perceived as
louder, this is true only for comparisons at the same frequency. In fact, the percep-
tion of loudness of a pure tone depends not only on the sound intensity but also on its
frequency. The perception of equivalent loudness for different frequencies (tonal pitch)
and different discrete sound pressure levels defined at 1 kHz are represented by equal
loudness contours in Figure 2.5. The perceived loudness for pure tones in contrast to
the physical measure of SPL is specified by the unit phon . By definition one phon is
equal to 1 dB SPL at a frequency of 1 kHz. The equal loudness contours were deter-
mined through audiometric measurements whereby a 1 kHz tone of a given SPL was
compared to a second tone. The volume of the second tone was then adjusted so as
to be perceived as equally loud as the first tone. Considering the equal loudness plots
in Figure 2.5, we observe that the ear is more sensitive to frequencies between 1 and
5 kHz, than below 1 kHz and above 5 kHz. A SPL change of 6 dB is barely perceptible,
while it becomes clearly perceptible if the change is more than 10 dB. The perceived
volume of sound is half or twice as loud, respectively, for a decrease or increase of
20 dB.

The average power of speech is only 10 microwatts, with peaks of up to 1 milliwatt.
The range of speech spectral content and its approximate level is shown by the dark
shape in Figure 2.5. Very little speech power is at frequencies below 100 Hz, while
around 80% of the power is in the frequency range between 100 and 1000 Hz. The small
remaining power at frequencies above 1000 Hz determines the intelligibility of speech.
This is because several consonants are distinguished primarily by spectral differences in
the higher frequencies.
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Figure 2.5 Perception of loudness expressed by equal loudness contours according to ISO
226:2003 and the inverse outline of the A-weighting filter

2.3.4 Masking

The term masking refers to the fact that the presence of a sound can render another sound
inaudible. Masking is used, for example, in MP3 to reduce the size of audio files by
retaining only the parts of the signals which are not masked and therefore perceived by
the listener (Sellars 2000).

In the case where the masker is present at the same time as the signal it is called
simultaneous masking . In simultaneous masking one sound cannot be perceived due
to the presence of a louder sound nearby in frequency, and thus is also known as
frequency masking . It is closely related to the movements of the Basilar membrane in
the inner ear.

It has been shown that a sound can also mask a weaker sound which is presented
before or after the stronger signal. This phenomenon is known as temporal masking . If
a sound is obscured immediately preceding the masker, and thus masking goes back in
time, it is called backward masking or pre-masking . This effect is restricted to a masker
which appears approximately between 10 and 20 ms after the masked sound. If a sound is
obscured immediately following the masker it is called forwards masking or post-masking
with an attenuation lasting approximately between 50 and 300 ms.

An extensive investigation into masking effects can be found in Zwicker and Fastl
(1999). Brungart (2001) investigated masking effects in the perception of two simultaneous
talkers, and concluded that the information context, in particular the similarity of a target
and a masking sentence, influences the recognition performance. This effect is known as
informational masking .
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2.3.5 Binaural Hearing

The term binaural hearing refers to the auditory process which evaluates the differences
of sounds received by the two ears, which vary in time and amplitude according due to
the location of the source of the sound (Blauert 1997; Gilkey and Anderson 1997; Yost
and Gourevitch 1987).

The difference in the time of arrival at the two ears is referred to as interaural time
difference and is due to the different distances the sound must propagate before it arrives
at each ear. Under optimal conditions, listeners can detect interaural time differences as
small as 10 μs. The differences in the amplitude level is called interaural level difference
or interaural intensitive difference and is due to the attenuation produced by the head,
which is referred to as the head shadow . As mentioned previously, the smallest difference
in intensity that can be reliably detected is about 1 dB. Both the interaural time as well
as the level differences provide information about the source location (Middlebrooks and
Green 1991) and contribute to the intelligibility of speech in distorted environments. This
is often referred to as spatial release of masking . The gain in speech intelligibility depends
on the spatial distribution of the different sources. The largest improvement, which can
be as much as 12 dB, is obtained when the interfering source is displaced by 120◦ on the
horizontal plain from the source of interest (Hawley et al. 2004).

The two cues of binaural hearing, however, cannot determine the distance of the listener
from a source of sound. Thus, other cues must be used to determine this distance, such as
the overall level of a sound, the amount of reverberation in a room relative to the original
sound, and the timbre of the sound.

2.3.6 Weighting Curves

As we have seen in the previous section, the relation between the physical SPL and the
subjective perception is quite complicated and cannot be expressed by a simple equation.
For example, the subjective perception of loudness is not only dependent on the frequency
but also on the bandwidth of the incident sound. To account for the human ear’s sensitiv-
ity, frequency-weighted SPLs have been introduced. The so-called A-weighting , originally
intended only for the measurement of low-level sounds of approximately 40 phon, is now
standardized in ANSI S1.42-2001 and widely used for the measurement of environmental
and industrial noise. The characteristic of the A-weighting filter is inversely propor-
tional to the hearing level curve corresponding to 40 dB at 1 kHz as originally defined
by Fletcher and Munson (1933). For certain noises, such as those made by vehicles or
aircraft, alternative functions such as B-, C- and D3-weighting may be more suitable. The
B-weighting filter is roughly inversely proportional to the 70 dB at 1 kHz hearing level
curve. In this work A-, B-, and C-weighted decibels are abbreviated as dBA, dBB , and
dBC , respectively. The gain curves depicted in Figure 2.6 are defined by the s-domain
transfer functions:

3 This filter was developed particularly for loud aircraft noise and specified as IEC 537. It has been withdrawn,
however.
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Figure 2.6 Weighting curves for ITU-R 486, A- and C-weighting

• A-weighting

HA(s) = 4π2122002s4

(s + 2π20.6)2(s + 2π12200)2(s + 2π107.7)(s + 2π738)

• B-weighting

HB(s) = 4π2122002s3

(s + 2π20.6)2(s + 2π12200)2(s + 2π158.5)

• C-weighting

HC(s) = 4π2122002s2

(s + 2π20.6)2(s + 2π12200)2

As an alternative to A-weighting, which has been defined for pure tones, the ITU-R 486
noise weighting has been developed to more accurately reflect the subjective impression
of loudness of all noise types. ITU-R 486 is widely used in Europe, Australia and South
Africa while A-weighting is common in the United States.

2.3.7 Virtual Pitch

The residue, a term coined by Schouten (1940), describes a harmonically complex tone
that includes higher harmonics, but lacks the fundamental frequency and possibly several
other lower harmonics. Figure 2.7, for example, depicts a residue with only the 4th, 5th
and 6th harmonics of 167 Hz. The concept of virtual pitch (Terhardt 1972, 1974) describes
how a residue is perceived by the human auditory system. The pitch that the brain assigns
to the residue is not dependent on the audible frequencies, but on a range of frequencies
that extend above the fundamental. In the previous example, the virtual pitch perceived
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Figure 2.7 Spectrum that produces a virtual pitch at 167 Hz. Partials appear at the 4th, 5th and
6th harmonics of 167 Hz, which correspond to frequencies of 667, 833 and 1000 Hz

would be 167 Hz. This effect ensures that the perceived pitch of speech transmitted over
a telephone channel is correct, despite the fact that no spectral information below 300 Hz
is transmitted over this channel.

2.4 The Acoustic Environment

For the purposes of DSR, the acoustic environment is a set of unwanted transformations
that affects the speech signal from the time it leaves the speaker’s mouth until it reaches
the microphone. The well-known and often-mentioned distortions are ambient noise, echo
and reverberation . Two other distortions have a particular influence on distant speech
recordings: The first is coloration , which refers to the capacity of enclosed spaces to
support standing waves at certain frequencies, thereby causing these frequencies to be
amplified. The second is head orientation and radiation, which changes the pressure level
and determines if a direct wavefront or only indirect wavefronts reach the microphone.
Moreover, in contrast to the free field, sound propagating in an enclosed space undergoes
absorption and reflection by various objects. Yet another significant source of degradation
that must be accounted for when ASR is conducted without a close-talking microphone
in a real acoustic environment is speech from other speakers.

2.4.1 Ambient Noise

Ambient noise, also referred to as background noise,4 is any additive sound other than
that of interest. A broad variety of ambient noises exist, which can be classified as either:

• stationary
Stationary noises have statistics that do not change over long time spans. Some examples
are computer fans, power transformers, and air conditioning.

• non-stationary
Non-stationary noises have statistics that change significantly over relatively short peri-
ods. Some examples are interfering speakers, printers, hard drives, door slams, and
music.

4 We find the term background noise misleading as the “background” noise might be closer to the microphone as
the “foreground” signal.
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Figure 2.8 Simplified plot of relative sound pressure vs time for an utterance of the word “cat”
in additive noise

Most noises are not entirely stationary, nor entirely non-stationary in that they can be
treated as having constant statistical characteristics for the duration of the analysis window
typically used for ASR.

Influence of Ambient Noise on Speech

Let us consider a simple example illustrating the effect of ambient noise on speech.
Figure 2.8 depicts the utterance of the word “cat” with an ambient noise level 10 dB
below the highest peak in SPL of the spoken word. Clearly the consonant /t/ is covered
by the noise floor and therefore the uttered word is indistinguishable from words such as
“cad”, “cap”, or “cab”. The effect of additive noise is to “fill in” regions with low speech
energy in the time-frequency plane.

2.4.2 Echo and Reverberation

An echo is a single reflection of a sound source, arriving some time after the direct sound.
It can be described as a wave that has been reflected by a discontinuity in the propagation
medium, and returns with sufficient magnitude and delay to be perceived as distinct from
the sound arriving on the direct path. The human ear cannot distinguish an echo from
the original sound if the delay is less than 0.1 of a second. This implies that a sound
source must be more than 16.2 meters away from a reflecting wall in order for a human
to perceive an audible echo. Reverberation occurs when, due to numerous reflections, a
great many echoes arrive nearly simultaneously so that they are indistinguishable from
one another. Large chambers – such as cathedrals, gymnasiums, indoor swimming pools,
and large caves – are good examples of spaces having reverberation times of a second or
more and wherein the reverberation is clearly audible. The sound waves reaching the ear
or microphone by various paths can be separated into three categories:

• direct wave
The direct wave is the wave that reaches the microphone on a direct path. The time delay
between the source and its arrival on the direct path can be calculated from the sound
velocity c and the distance r from source to microphone. The frequency-dependent
attenuation of the direct signal is negligible (Bass et al. 1972).
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• early reflections
Early reflections arrive at the microphone on an indirect path within approximately 50
to 100 ms after the direct wave and are relatively sparse. There are frequency-dependent
attenuations of these signals due to different reflections from surfaces.

• late reflections
Late reflections are so numerous and follow one another so closely that they become
indistinguishable from each other and result in a diffuse noise field. The degradation
introduced by late reflections is frequency-dependent due to the frequency-dependent
variations introduced by surface reflections and air attenuation (Bass et al. 1972). The
latter becomes more significant due to the greater propagation distances.

A detailed pattern of the different reflections is presented in Figure 2.9. Note that this
pattern changes drastically if either the source or the microphone moves, or the room
impulse changes when, for example, a door or window is opened.

In contrast to additive noise, the distortions introduced by echo or reverberation are
correlated with the desired signal by the impulse response h of the surroundings through
the convolution (discussed in Section 3.1)

y[k] = h[k] ∗ x[k] =
M∑

m=0

h[k]x[k − m].

In an enclosed space, the number N of reflections can be approximated (Möser 2004)
by the ratio of the sphere volume Vsphere with radius r = ct , the distance from the source,
and the room volume Vroom by

N ≈ Vsphere

Vroom
= 4π

3

r3

V
. (2.12)

In a room with a volume of 250 m3, approximately 85 000 reflections appear within the
first half second. The density of the incident impulses can be derived from (2.12) as

dN

dt
≈ 4πc

r2

V
.

Time [s]

early reflections

late reflections

direct wave

reverberant field

Sound Intensity [dB]

Figure 2.9 Direct wave and its early and late reflections
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Thus, the number of reflections grows quadratically with time, while the energy of the
reflections is inversely proportional to t2, due to the greater distance of propagation.

The critical distance Dc is defined as the distance where the intensity of the direct sound
is identical to the reverberant field. Close to the source, the direct sound predominates.
Only at distances larger than the critical distance does the reverberation predominate.
The critical distance in comparison to the overall, direct, and reverberant sound fields is
depicted in Figure 2.10.

The critical distance depends on a variety of parameters such as the geometry and
absorption of the space as well as the dimensions and shape of the sound source. The
critical distance can, however, be approximately determined from the reverberation time
T60, which is defined as the time a signal needs to decay to 60 dB below its highest SPL,
as well as the volume of the room. The relation between reverberation time, room volume
and critical distance is plotted in Figure 2.11.
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Figure 2.10 Approximation of the overall sound field in a reverberant environment as a function
of the distance from the source
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Figure 2.11 Critical distance as a function of reverberation time and volume of a specific room,
after Hugonnet and Walder (1998)
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Figure 2.12 Simplified plot of relative sound pressure vs time for an utterance of the word “cat”
in a reverberant environment

While T60 is a good indicator of how reverberant a room is, it is not the sole determinant
of how much reverberation is present in a captured signal. The latter is also a function
of the positions of both speaker and microphone, as well as the actual distance between
them. Hence, all of these factors affect the quality of sound capture as well as DSR
performance (Nishiura et al. 2007).

Influence of Reverberation on Speech

Now we consider the same simple example as before, but introduce reverberation with
T60 = 1.5 s instead of ambient noise. In this case, the effect is quite different as can be
observed by comparing Figure 2.8 with Figure 2.12. While it is clear that the consonant
/t/ is once more occluded, the masking effect is this time due to the reverberation from the
vowel /a/. Once more the word “cat” becomes indistinguishable from the words “cad”,
“cap”, or “cab”.

2.4.3 Signal-to-Noise and Signal-to-Reverberation Ratio

In order to measure the different distortion energies, namely additive and reverberant
distortions, two measures are frequently used:

• signal-to-noise ratio (SNR)
SNR is by definition the ratio of the power of the desired signal to that of noise in
a distorted signal. As many signals have a wide dynamic range, the SNR is typically
defined on logarithmic decibel scale as

SNR � 10 log10
Psignal

Pnoise
,

where P is the average power measured over the system bandwidth. To account for the
non-linear sensitivity of the ear, A-weighting, as described in Section 2.3.3, is often
applied to the SNR measure.

While SNR is a useful measure for assessing the level of additive noise in a signal
as well as reductions thereof, it fails to provide any information of reverberation levels.
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SNR is also widely used to measure channel quality. As it takes no account of the
type, frequency distribution, or non-stationarity of the noise, however, SNR is poorly
correlated with WER.

• signal-to-reverberation ratio (SRR)
Similar to SNR the SRR is defined as the ratio of a signal power to the reverberation
power contained in a signal as

SRR � 10 log10
Psignal

Preverberation
= E

{
10 log10

s2

(s ∗ hr)2

}

where s is the clean signal and hr the impulse response of the reverberation.

2.4.4 An Illustrative Comparison between Close and Distant Recordings

To demonstrate the strength of the distortions introduced by moving the microphone
away from the speaker’s mouth, we consider another example. This time we assume
there are two sound sources, the speaker, and one noise source with a SPL 5 dB below
the SPL of the speaker. Let us further assume that there are two microphones, one near
and one distant from the speaker’s mouth. The direct and reflected signals take differ-
ent paths from the sources to the microphones, as illustrated in Figure 2.13. The direct
path (solid line) of the desired sound source follows a straight line starting at the mouth
of the speaker. The ambient noise paths (dotted lines) follow a straight line starting at
the noise source, while the reverberation paths (dashed lines) start at the desired sound
source or at the noise source being reflected once before they reach the microphone.
Note that in a realistic scenario reflections will occur from all walls, ceiling, floor and
other hard objects. For simplicity, only those reflections from a single wall are con-
sidered in our examples. Here we assume a sound absorption of 5 dB at the reflecting
wall.

Distant RecordingClose Recording

Figure 2.13 Illustration of the paths taken by the direct and reflected signals to the microphones
in near- and far-field data capture
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Figure 2.14 Relative sound pressure of close and distant recording of the same sources

If the SPL L1 at a particular distance l1 from a point source is known, we can use
(2.11) to calculate the SPL L2 at another distance l2, in the free-field, by

L2 = L1 − 20 log
l2

l1
[dB]. (2.13)

With the interpretation of (2.13), namely, each doubling of the distance reduces the
sound pressure level by 6 dB , we can plot the different SPLs following the four paths
of Figure 2.13. The paths start at the different distances from the sound sources and
relative SPL. In addition, at the point of the reflection, it is necessary to subtract 5 dB
due to absorption. On the right side of the two images in Figure 2.14, we can read the
differences of the direct speech signal to the distortion. From the two images it is obvious
that the speech is heavily distorted on the distant microphone (2, 10 and 15 dB) while on
the close microphone the distortion due to noise and reverberation is quite limited (21,
29 and 37 dB).

2.4.5 The Influence of the Acoustic Environment on Speech Production

The acoustic environment has a non-trivial influence on the production of speech. People
tend to raise their voices if the noise level is between 45 and 70 db SPL (Pearsons et
al. 1977). The speech level increases by about 0.5 dB SPL for every increase of 1 db
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SPL in the noise. This phenomenon is known as the Lombard effect (Lombard 1911).
In very noisy environments people start shouting which entails not only a higher ampli-
tude, but in addition a higher pitch, a shift in formant positions to higher frequencies,
in particular the first formant, and a different coloring of the spectrum (Junqua 1993).
Experiments have shown that ASR is somewhat sensitive to the Lombard effect. Some
ways of dealing with the variability of speech introduced by the Lombard effect in ASR
are discussed by Junqua (1993). It is difficult, however, to characterize such alterations
analytically.

2.4.6 Coloration

Any closed space will resonate at those frequencies where the excited waves are in phase
with the reflected waves, building up a standing wave. The waves are in phase if the
frequency of excitation between two parallel, reflective walls is such that the distance l

corresponds to any integer multiple of half a wavelength. Those frequencies at or near
a resonance are amplified and are called modal frequencies or room modes . Therefore,
the spacing of the modal frequencies results in reinforcement and cancellation of acous-
tic energy, which determines the amount and characteristics of coloration . Coloration is
strongest for small rooms at low frequencies between 20 and 200 Hz. At higher frequen-
cies the room still has an influence, but the resonances are not as strong due to higher
attenuation through absorption. The sharpness and height of the resonant peaks depend
not only on the geometry of the room, but also on its sound-absorbing properties. A
room filled with, for example, furniture, carpets, and people will have high absorption
and might have peaks and valleys that vary between 5 and 10 dB. A room with bare
walls and floor, on the other hand, will have peaks and valleys that vary between 10
and 20 dB, sometimes even more. This effect is demonstrated in Figure 2.15. On the
left of the figure, the modes are closely-grouped due to the resonances of a symmetri-
cal room. On the right of the figure, the modes are evenly-spaced due to an irregular
room shape. Note that additional coloration is introduced by the microphone transfer
function.

Given a rectangular room with dimensions (Dx,Dy, Dz) and perfectly reflecting walls,
some basic conclusions can be drawn from wave theory. The boundary conditions require
pressure maxima at all boundary surfaces, therefore we can express the sound pressure p
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Figure 2.15 Illustration of the effect of geometry on the modes of a room. The modes at different
frequencies are indicated by tick marks
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as a function of position (lx, ly, lz) according to

p(lx, ly, lz) =
∞∑

ix=0

∞∑
iy=0

∞∑
iz=0

A cos

(
πixlx

Dx

)
cos

(
πiyly

Dy

)
cos

(
πizlz

Dz

)
, ix, iy, iz ∈ N0.

As stated by Rayleigh in 1869, solving the wave equation with the resonant frequency
� = 2πi for i ∈ N0, the room modes are found to be

fmode(Dx,Dy, Dz) = c

2
·
√

�2
x

D2
x

+ �2
y

D2
y

+ �2
z

D2
z

.

Room modes with value 1 are called first mode, with values 2 are called second mode
and so forth. Those modes with two zeros are known as axial modes , and have pressure
variation along a single axis. Modes with one zero are known as tangential modes , and
have pressure variation along two axes. Modes without zero values are known as oblique
modes , and have pressure variations along all three axes.

The number of resonant frequencies forming in a rectangular room up to a given
frequency f can be approximated as (Kuttruff 1997)

m ≈ 4π

3

(
f

c

)3

V + π

4

(
f

c

)2

S +
(

f

c

)
L

8
, (2.14)

where V denotes the volume of the room, S = 2(LxLy + LxLz + LyLz) denotes the
combined area of all walls, and L = 4(Lx + Ly + Lz) denotes the sum of the lengths
of all walls. Taking, for example, a room with a volume of 250 m3, and neglecting
those terms involving S and L, there would be more than 720 resonances below 300 Hz.
The large number of reflections demonstrates very well that only statistics can give a
manageable overview of the sound field in an enclosed space. The situation becomes
even more complicated if we consider rooms with walls at odd angles or curved walls
which cannot be handled by simple calculations. One way to derive room modes in those
cases is through simulations based on finite elements (Fish and Belytschko 2007).

Figure 2.16 shows plots of the mode patterns for both a rectangular and an irregular
room shape. The rectangular room has a very regular mode pattern while the irregular
room has a complex mode pattern.

The knowledge of room modes alone does not provide a great deal of information about
the actual sound response, as it is additionally necessary to know the phase of each mode.

2.4.7 Head Orientation and Sound Radiation

Common sense indicates that people communicate more easily when facing each other.
The reason for this is that any sound source has propagation directivity characteristics
which lead to a non-spherical radiation, mainly determined by the size and the shape of
the source and the frequency being analyzed. If, however, the size of the object radiating
the sound is small compared to the wavelength, the directivity pattern will be nearly
spherical.
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Figure 2.16 Mode patterns of a rectangular and an irregular room shape. The bold lines indicate
the knot of the modes, the thin lines positive amplitudes while the dashed lines indicate negative
amplitudes

Low Frequency High Frequency

Figure 2.17 Influence of low and high frequencies on sound radiation

Approximating the head as an oval object with a diameter slightly less than 20 cm
and a single sound source (the mouth), we can expect a more directional radiation for
frequencies above 500 Hz, as depicted in Figure 2.17. Moreover, it can be derived from
theory that different pressure patterns should be observed in the horizontal plane than
in the vertical plane (Kuttruff 2000). This is confirmed by measurements by Chu and
Warnock (2002a) of the sound field at 1 meter distance around the head of an active
speaker in an anechoic chamber, as shown in Figure 2.18. Comparing their laboratory
measurements with field measurements (Chu and Warnock 2002b) it was determined that
the measurements were in good agreement for spectra of male voices. They observed,
however, some differences for female voiced spectra. There are no significant differences
in the directivity patterns for male and female speakers, although there are different
spectral patterns. Similar directivity patterns were observed for loud and normal voice
levels, although the directivity pattern of quiet voices displayed significant differences in
radiation behind the head.

As shown by the measurements made by Chu and Warnock as well as measurements
by Moreno and Pfretzschner (1978), the head influences the timbre of human speech.
Additionally, radiation behind the head is between 5 and 15 dB lower than that measured
in front of the head at the same distance to the sound source. Moreover, it has been
observed that the direct wavefront propagates only in the frontal hemisphere, and in a
way that also depends on the vertical orientation of the head.
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Figure 2.18 Relative sound pressure (A-weighted) around the head of an average human talker
for three different voice levels. The graphics represent measurements by Chu and Warnock (2002a)

2.4.8 Expected Distances between the Speaker and the Microphone

Some applications such as beamforming, which will be presented in Chapter 13, require
knowledge of the distance between the speaker and each microphone in an array. The
microphones should be positioned such that they receive the direct path signal from the
speaker’s mouth. They also should be located as close as possible to the speaker, so
that, as explained in Section 2.4.2, the direct path signal dominates the reverberant field.
Considering these constraints gives a good estimate about the possible working distance
between the speaker and the microphone. In a meeting scenario one or more microphones
might be placed on the table and thus a distance between 1 and 2 meters can be expected.
A single wall-mounted microphone can be expected to have an average distance of half of
the maximum of the length and the width of the room. If all walls in a room are equipped
with at least one microphone, the expected distance can be reduced below the minima
of the length and the width of the room. The expected distance between a person and a
humanoid robot can be approximated by the social interpersonal distance between two
people. The theory of proxemics by Hall (1963) suggests that the social distance between
people is related to the physical interpersonal distance, as depicted in Figure 2.19. Such
“social relations” may also play a role in man–machine interactions. From the figure,
it can be concluded that a robot acting as a museum guide would maintain an average
distance of at least 2 meters from visitors. A robot intended as a child’s toy, on the other
hand, may have an average distance from its user of less than 1 meter. Hand-held devices
are typically used by a single user or two users standing close together. The device
is held so that it faces the user with its display approximately 50 cm away from the
user’s mouth.
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Figure 2.19 Hall’s classification of the social interpersonal distance in relation to physical inter-
personal distance

2.5 Recording Techniques and Sensor Configuration

A microphone is the first component in any speech-recording system. The invention and
development of the microphone is due to a number of individuals some of whom remain
obscure. One of the oldest documented inventions of a microphone dating back to the
year 1860 is by Antonio Meucci, who is now also officially recognized as the inventor
of the telephone5 besides Johann Philipp Reis (first public viewing in October 1886 in
Frankfurt, Germany), Alexander Graham Bell, and Elisha Gray. Many early developments
in microphone design, such as the carbon microphone by Emil Berliner in 1877, took place
at Bell Laboratories.

Technically speaking the microphone is a transducer which converts acoustic sound
waves in the form of pressure variation into an equivalent electrical signal in the form
of voltage variation. This transformation consists of two steps: The variation in sound
pressure set the microphone diaphragm into vibration, so that the acoustical energy is
converted to mechanical, which later can be transferred into alternating voltage, so that the
mechanical energy can be converted to electrical energy. Therefore, any given microphone
can be classified along two dimensions: its mechanical characteristics and its electrical
characteristics.

2.5.1 Mechanical Classification of Microphones

The pressure variation can be converted into vibration of the diaphragm in various ways:

• Pressure-operated microphones (pressure transducer) are excited by the sound wave
only on one side of the diaphragm, which is fixed inside a totally enclosed casing. In
theory those types of microphones are omnidirectional as the sound pressure has no
favored direction.

The force exerted on the diaphragm can be calculated by

F =
∫

S

p dS[N ],

where p is the sound pressure measured in Pascal (Pa) and S the surface area measured
in square meters (m2). For low frequencies, where the membrane cross-section is small

5 Resolved, that it is the sense of the House of Representatives that the life and achievements of Antonio Meucci
should be recognized, and his work in the invention of the telephone should be acknowledged . – United States
House of Representatives, June 11, 2002
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compared to the wavelength, the force on the membrane follows approximately the
linear relationship F ≈ pS. For a small wavelength, however, sound pressure with
opposite phase might occur and in this case F �= pS.

• Velocity operated microphones (pressure gradient transducer) are excited by the sound
wave on both sides of the diaphragm, which is fixed to a support open at both sides.
The resultant force varies as a function of the angle of incidence of the sound source
resulting in a bidirectional directivity pattern.

The force exerted on the diaphragm is

F ≈ (pfront − pback) S [N ]

where pfront − pback is the pressure difference between the front and the back of the
diaphragm.

• Combined microphones are a combination of the aforemention microphone types, result-
ing in a microphone with a unidirectional directivity pattern.

2.5.2 Electrical Classification of Microphones

The vibration of the diaphragm can be transferred into voltage by two widely used tech-
niques:

• Electromagnetic and electrodynamic – Moving Coil or Ribbon Microphones have a coil
or strip of aluminum, a ribbon, attached to the diaphragm which produces a varying
current by its movement within a static electromagnetic field. The displacement velocity
v (m/s) is converted into voltage by

U = Blv

where B denotes the electric field measured in Tesla (Vs/m2) and l denotes the length
of the coil wire or ribbon. The coil microphone has a relative low sensitivity but
shows great mechanical robustness. On the other hand, the ribbon microphone has high
sensitivity but is not robust.

• Electrostatic – Electret, Capacitor or Condenser Microphones form a capacitor by a
metallic diaphragm fixed to a piece of perforated metal. The alternating movement of
the diaphragm leads to a variation in the distance d of the two electrodes changing the
capacity as

C = ε
S

d

where S is the surface of the metallic diaphragm and ε is a constant. This microphone
type requires an additional power supply as the capacitor must be polarized with a
voltage Vcc and acquires a charge

Q = CVcc.

Moreover, there are additional ways to transfer the vibration of the diaphragm into
voltage:
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• Contract resistance – Carbon Microphones have been formally used in telephone hand-
sets.

• Crystal or ceramic – Piezo Microphones use the tendency of some materials to produce
voltage when subjected to pressure. They can be used in unusual environments such as
underwater.

• Thermal and ionic effects.

2.5.3 Characteristics of Microphones

To judge the quality of a microphone and to pick the right microphone for recording, it
is necessary to be familiar with the following characteristics:

• Sensitivity is the ratio between the electrical output level from a microphone and the
incident SPL.

• Inherent (or self) noise is due to the electronic noise of the preamplifier as well as
either the resistance of the coil or ribbon, or the thermal noise of the resistor.

• Signal to noise ratio is the ratio between the useful signal and the inherent noise of the
microphone.

• Dynamic range is the difference in the level of the maximum sound pressure and
inherent noise.

• Frequency response chart gives the transfer function of the microphone. The ideal
curve would be a horizontal line in the frequency range of interest.

• Microphone directivity . Microphones always have a non-uniform (non-omnidirectional)
response-sensitivity patterns where the directivity is determined by the characteristics
of the microphone and specified by the producer. The directivity is determined by two
principal effects:

— the geometrical shape of the microphone.
— the space dependency of the sound pressure.

Usually the characteristics vary for different frequencies and therefore the sensitivity is
measured for various frequencies. The results are often combined in a single diagram,
since in many cases a uniform response over a large frequency range is desirable. Some
typical patterns and their corresponding names are shown in Figure 2.20.

2.5.4 Microphone Placement

Selecting the right microphones and placing them optimally both have significant influ-
ences on the quality of the recording. Thus, before starting a recording, what kind of data
is to be recorded: clean, noisy, reverberant or overlapping speech, just to name a few?
From our own experience, we recommend the use of as many sensors as possible, even
though at the time of the recording it is not clear for what investigations particular sensors
will be needed, as data and in particular hand-labeled data is expensive to produce. It
is also very important to use a close-talking microphones for each individual speaker in
your sensor configuration to have a reference signal by which the difficulty of the ASR
task can be judged.
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Omnidirectional Unidirectional Semicardioid

Cardioid Hypercardioid SupercardioidShotgun

Bidirectional

Figure 2.20 Microphone directivity patterns (horizontal plane) including names

Note that the microphone-to-source distance affects not only the amount of noise and
reverberation, but also the timbre of the voice. This effect is more pronounced if the
microphone has a cardioid pickup instead of an omnidirectional pickup. With increased
distance the low frequencies are emphasized more. For clean speech recordings, it is
recommended that the microphones should be placed as close as convenient or feasible
to the speaker’s mouth, which in general is not more than a couple of millimeters. If,
however, the microphone is placed very close to the speaker’s mouth, the microphone
picks up more breath noises and pop noises from plosive consonants, or might rub on the
skin of the speaker. In general it is recommended to place the microphone in the direct
field. If a microphone is placed farther away from a talker more reflected speech overlaps
and blurs the direct speech. At the critical distance Dc or farther, words will become hard
to understand and very difficult to be correctly classified. For reasonable speech audio
quality, an omnidirectional microphone should be placed no farther from the talker than
30% of Dc while cardioid, supercardioid, or shotgun microphones should be positioned
no farther than 50% of Dc. Also be sure to devise a consistent naming convention for
all audio channels before beginning your first recording. The sound pressure is always
maximized on reflective surfaces and hence a gain of up to 6 dB can be achieved by placing
a microphone on a hard surface. However, a microphone placed close to a reflective
surface, on the other hand, might cancel out certain frequencies due to the interference
between the direct and reflected sound wave and therefore should be avoided.

As discussed in Chapter 13, particular care must be taken for microphone array record-
ings as arrays allow spatial selectivity, reinforcing the so-called look direction , while
attenuating sources propagating from other directions. The spatial selectivity depends on
the frequency: for a linear array at low frequency the pattern has a wide beamwidth which
narrows for higher frequencies. The microphone array samples the sound field at different
points in space and therefore array processing is subject to spatial aliasing . At those
regions where spatial aliasing occurs the array is unable to distinguish between multiple
arrival angles, and large sidelobes might appear. To prevent aliasing for linear arrays, the
spatial sampling theorem or half wavelength rule must be fulfilled:

l < λmin/2.
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As discussed in Chapter 13, the half wavelength rule states that the minimum wave-
length of interest λmin must be at least twice the length of the spacing l between the
microphones (Johnson and Dudgeon 1993). For randomly distributed arrays the spatial
sampling theorem is somewhat less stringent. But, in designing an array, one should
always be aware about possible spatial aliasing. Alvarado (1990) has investigated optimal
spacing for linear microphone arrays. Rabinkin et al. (1996) has demonstrated that the
performance of microphone array systems is affected by the microphone placement. In
Rabinkin et al. (1997) a method to evaluate the microphone array configuration has been
derived and an outline for optimum microphone placement under practical considerations
is characterized.

A source is considered to be in the near-field for a microphone array of total length
l, if

d <
2l2

λ
,

where d is the distance between the microphone array and the source, and λ is the
wavelength. An alternative presentation defining the near-field and far-field region for
linear arrays considering the angle of incidence is presented in Ryan (1998).

2.5.5 Microphone Amplification

If the amplification of a recording is set incorrectly, unwanted distortions might be intro-
duced. If the level is too high, clipping or overflow occurs. If the signal is too low, too
much quantization and microphone noise may be introduced into the captured speech.
Quantization noise is introduced by the rounding error between the analogue, continuous
signal and the digitized, discrete signal. Microphone noise is the noise introduced by the
microphone itself.

Clipping is a waveform distortion that may occur in the analog or digital processing
components of a microphone. Analog clipping happens when the voltage or current exceed
their thresholds. Digital clipping happens when the signal is restricted by the range of
a chosen representation. For example, using a 16-bit signed integer representation, no
number larger than 32767 can be represented. Sample values above 32767 are truncated
to the maximum, 32767. As clipping introduces additional distortions into the recorded
signal, it is to be avoided at all costs. To avoid clipping, the overall level of a signal can
be lowered, or a limiter can be used to dynamically reduce the levels of loud portions of
the signal. In general it can be said that it is better to have a quiet recording, which suffers
from some quantization noise, than an over-driven recording suffering from clipping. In
the case of a digital overflow , where the most significant bits of the magnitude, and
sometimes even the sign of the sample value are lost, severe signal distortion is to be
expected. In this case it is preferable to clip the signal as a clipped signal typically is less
distorted than a signal wherein overflows have occurred.

2.6 Summary and Further Reading

This chapter has presented a brief overview of the sound field: the fundamental of sound,
the human perception of sound, details about the acoustic environment, statistics of speech
signals, speech production, speech units and production of speech signal. A well-written
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book about sound in enclosures has been published by Kuttruff (2000). Another interesting
source is given by Saito and Nakata (1985). Further research into acoustic, speech and
noise, psychology and physiology of hearing as well as sound propagation, transducers and
measurements are subjects of acoustic societies around the world: the acoustical society
of America who publish a monthly journal (JASA), the acoustical society of Japan (ASJ),
who also publish in English, and the European acoustics association (EAA).

2.7 Principal Symbols

Symbol Description

� volume compression, negative dilatation
γ adiabatic exponent
κ bulk modulus
λ wavelength
φ velocity potential
ρ volume density
� resonant frequency
� temperature in Kelvin
ϑ temperature in Celsius
ω angular frequency, ω = 2πf

ξ distance of the sound wave path
A,B sound energy
c speed
C specific heats capacities
Dc critical distance
E energy
f frequency of body force
f0 fundamental frequency
F force
G(z) glottal filter
h impulse response
l length, distance, dimensions of a coordinate system
H transfer function
I sound intensity
L sound pressure level
k wave number, stiffness
m number of resonant frequencies
M mass
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Symbol Description

N number of reflections
p pressure, pitch period
P power
q volume velocity
Q directivity factor
r radius
R specific gas constant
R(z) lip radiation filter
S surface
T60 reverberation time
t continuous time
u fluid velocity
v velocity
V voltage or volume
Vs specific volume
V (z) vocal tract filter



3
Signal Processing and Filtering
Techniques

In signal processing the term filter is commonly used to refer to an algorithm which
extracts a desired signal from an input signal corrupted with noise or other distortions.
A filter can also be used to modify the spectral or temporal characteristics of a signal
in some advantageous way. Therefore, filtering techniques are powerful tools for speech
signal processing and distant speech recognition.

This chapter reviews the basics of digital signal processing (DSP). This will include
a short introduction of linear time-invariant systems, the Fourier transform, and the
z-transform. Next there is a brief discussion of how filters can be designed through
pole-zero placement in the complex z-plane in order to provide some desired frequency
response. We then discuss the effects of sampling a continuous time signal to obtain a
digital representation in Section 3.1.4, as well as the efficient implementation of linear
time invariant systems with the discrete Fourier transform in Section 3.2. Next comes
a brief presentation of the short-time Fourier transform in Section 3.3, which will have
consequences for the subsequent development. The coverage of this material is very brief,
in that entire books – and books much larger than the volume now beneath the reader’s
eyes – have been written about exactly this subject matter.

Anyone with a background in DSP can simply skip this chapter, inasmuch as the infor-
mation contained herein is all standard. As this book is intended for a diverse audience,
however, this chapter is included in order to make the balance of the book comprehen-
sible to those readers who have never seen, for example, the z-transform. In particular,
a thorough comprehension of the material in this chapter is necessary to understand the
presentation of digital filter banks in Chapter 11, but it will also prove useful elsewhere.

3.1 Linear Time-Invariant Systems

This section presents a very important class of systems for all areas of signal processing,
namely, linear time-invariant systems (LTI). Such systems may not fall into the most
general class of systems, but are, nonetheless, important inasmuch as their simplicity

Distant Speech Recognition Matthias Wölfel and John McDonough
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conduces to their tractability for analysis, and hence enables the development of a detailed
theory governing their operation and design. We consider the class of discrete-time or
digital linear time-invariant systems, as digital filters offer much greater flexibility along
with many possibilities and advantages over their analog counterparts. We also briefly
consider, however, the class of continuous-time systems, as this development will be
required for our initial analysis of array processing algorithms in Chapter 13. We will
initially present the properties of such systems in the time domain, then move to the
frequency and z-transform domains, which will prove in many cases to be more useful
for analysis.

3.1.1 Time Domain Analysis

A discrete-time system (DTS) is defined as a transform operator T that maps an input
sequence x[n] onto an output sequence y[n] with the sample index n, such that

y[n] = T {x[n]}. (3.1)

The class of systems that can be represented through an operation such as (3.1) is very
broad. Two simple examples are:

• time delay ,

y[n] = x[n − nd] (3.2)

where nd is an integer delay factor; and
• moving average,

y[n] = 1

M2 − M1 + 1

M2∑
m=M1

x[n − m]

where M1 and M2 determine the average position and length.

While (3.1) characterizes the most general class of discrete-time systems, the analysis
of such systems would be difficult or impossible without some further restrictions. We
now introduce two assumptions that will result in a much more tractable class of systems.

A DTS is said to be linear if

T {x1[n] + x2[n]} = T {x1[n]} + T {x2[n]} = y1[n] + y2[n], (3.3)

and

T {ax1[n]} = aT {x1[n]} = a y1[n]. (3.4)

Equation (3.3) implies that transforming the sum of the two input sequences x1[n] and
x2[n] produces the same output as would be obtained by summing the two individual
outputs y1[n] and y2[n], while (3.4) implies that transforming a scaled input sequence



Signal Processing and Filtering Techniques 67

a x1[n] produces the same sequence as scaling the original output y1[n] by the same scalar
factor a. Both of these properties can be combined into the principle of superposition:

T {ax1[n] + bx2[n]} = aT {x1[n]} + bT {x2[n]} = a y1[n] + b y2[n],

which is understood to hold true for all a and b, and all x1[n] and x2[n]. Linearity will
prove to be a property of paramount importance when analyzing discrete-time systems.

We now consider a second important property. Let

yd [n] = T {x[n − nd]},
where nd is an integer delay factor. A system is time-invariant if

yd [n] = y[n − nd],

which implies that transforming a delayed version x[n − nd] of the input produces the
same sequence as delaying the output of the original sequence to obtain y[n − nd]. As
we now show, LTI systems are very tractable for analysis. Moreover, they have a wide
range of applications.

The unit impulse sequence δ[n] is defined as

δ[n] �
{

1, n = 0,

0, otherwise.

The shifting property of the unit impulse allows any sequence x[n] to be expressed as

x[n] =
∞∑

m=−∞
x[m] δ[n − m],

which follows directly from the fact that δ[n − m] is nonzero only for n = m. This
property is useful in characterizing the response of a LTI system to arbitrary inputs, as
we now discuss.

Let us define the impulse response hm[n] of a general system T as

hm[n] � T {δ[n − m]}. (3.5)

If y[n] = T {x[n]}, then we can use the shifting property to write

y[n] = T
{ ∞∑

m=−∞
x[m] δ[n − m]

}
.

If T is linear, then the operator T {} works exclusively on the time index n, which implies
that the coefficients x[m] are effectively constants and are not modified by the system.
Hence, we can write

y[n] =
∞∑

m=−∞
x[m]T {δ[n − m]} =

∞∑
m=−∞

x[m] hm[n], (3.6)
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where the final equality follows from (3.5). If T is also time-invariant, then

hm[n] � h[n − m], (3.7)

and substituting (3.7) into (3.6) yields

y[n] =
∞∑

m=−∞
x[m] h[n − m] =

∞∑
m=−∞

h[m] x[n − m]. (3.8)

Equation (3.8) is known as the convolution sum , which is such a useful and frequently
occurring operation that it is denoted with the symbol ∗ and typically express (3.8) with
the shorthand notation,

y[n] = x[n] ∗ h[n]. (3.9)

From (3.8) or (3.9) it follows that the response of a LTI system T to any input x[n] is
completely determined by its impulse response h[n].

In addition to linearity and time-invariance, the most desirable feature a system may
possess is that of stability . A system is said to be bounded input–bounded output (BIBO)
stable, if every bounded input sequence x[n] produces a bounded output sequence y[n].
For LTI systems, BIBO stability requires that h[n] is absolutely summable, such that,

S =
∞∑

m=−∞
|h[m]| < ∞,

which we now prove. Consider that

|y[n]| =
∣∣∣∣∣

∞∑
m=−∞

h[m] x[n − m]

∣∣∣∣∣ ≤
∞∑

m=−∞
|h[m]| |x[n − m]|, (3.10)

where the final inequality in (3.10) follows from the triangle inequality (Churchill and
Brown 1990, sect. 4). If x[n] is bounded, then for some Bx > 0,

|x[n]| ≤ Bx ∀ − ∞ < n < ∞. (3.11)

Substituting (3.11) into (3.10), we find

|y[n]| ≤ Bx

∞∑
m=−∞

|h[m]| = Bx S < ∞,

from which the claim follows.
The complex exponential sequence ejωn ∀ − ∞ < n < ∞ is an eigenfunction of any

LTI system. This implies that if ejωn is taken as an input to a LTI system, the output is
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a scaled version of ejωn, as we now demonstrate. Define x[n] = ejωn and substitute this
input into (3.8) to obtain

y[n] =
∞∑

m=−∞
h[m] ejω(n−m) = ejωn

∞∑
m=−∞

h[m] e−jωm. (3.12)

Defining the frequency response of a LTI system as

H(ejω) �
∞∑

m=−∞
h[m] e−jωm, (3.13)

enables (3.12) to be rewritten as

y[n] = H(ejω) ejωn,

whereupon it is apparent that the output of the LTI system differs from its input only
through the complex scale factor H(ejω). As a complex scale factor can introduce both
a magnitude scaling and a phase shift, but nothing more, we immediately realize that
these operations are the only possible modifications that a LTI system can perform on
a complex exponential signal. Moreover, as all signals can be represented as a sum of
complex exponential sequences, it becomes apparent that a LTI system can only apply a
magnitude scaling and a phase shift to any signal, although both terms may be frequency
dependent.

3.1.2 Frequency Domain Analysis

The LTI eigenfunction ejωn forms the link between the time and frequency domain anal-
ysis of LTI systems, inasmuch as this sequence is equivalent to the Fourier kernel . For
any sequence x[n], the discrete-time Fourier transform is defined as

X(ejω) �
∞∑

n=−∞
x[n] e−jωn. (3.14)

In light of (3.13) and (3.14), it is apparent that the frequency response of a LTI system
is nothing more than the Fourier transform of its impulse response. The samples of the
original sequence can be recovered from the inverse Fourier transform ,

x[n] � 1

2π

∫ π

−π

X(ejω) ejωn dω. (3.15)

In order to demonstrate the validity of (3.15), we need only consider that

1

2π

∫ π

−π

ejω(n−m) dω =
{

1, for n = m,

0, otherwise,
(3.16)
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a relationship which is easily proven. When x[n] and X(ejω) satisfy (3.14–3.15), we will
say they form a transform pair , which we denote as

x[n] ↔ X(ejω).

We will adopt the same notation for other transform pairs, but not specifically indicate
this in the text for the sake of brevity.

To see the effect of time delay in the frequency domain, let us express the Fourier
transform of a time delay (3.2) as

Y (ejω) =
∞∑

n=−∞
y[n] e−jωn =

∞∑
n=−∞

x[n − nd] e−jωn. (3.17)

Introducing the change of variables n′ = n − nd in (3.17) provides

Y (ejω) =
∞∑

n′=−∞
x[n′] e−jω(n′+nd) = e−jω nd

∞∑
n′=−∞

x[n′] e−jω n′
,

which is equivalent to the transform pair

x[n − nd] ↔ e−jωndX(ejω). (3.18)

As indicated by (3.18), the effect of a time delay in the frequency domain is to induce
a linear phase shift in the Fourier transform of the original signal. In Chapter 13, we
will use this property to perform beamforming in the subband domain by combining the
subband samples from each sensor in an array using a phase shift that compensates for
the propagation delay between a desired source and a given sensor.

To analyze the effect of the convolution (3.8) in the frequency domain, we can take
the Fourier transform of y[n] and write

Y (ejω) =
∞∑

n=−∞
y[n] e−jωn =

∞∑
n=−∞

{ ∞∑
m=−∞

x[m] h[n − m]

}
e−jωn.

Changing the order of summation and re-indexing with n′ = n − m provides

Y (ejω) =
∞∑

m=−∞
x[m]

∞∑
n=−∞

h[n − m] e−jωn =
∞∑

m=−∞
x[m]

∞∑
n′=−∞

h[n′] e−jω(n′+m)

=
∞∑

m=−∞
x[m] e−jωm

∞∑
n′=−∞

h[n′] e−jωn′
. (3.19)

Equation (3.19) is then clearly equivalent to

Y (ejω) = X(ejω) H(ejω). (3.20)
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This simple but important result indicates that time domain convolution is equivalent
to frequency domain multiplication , which is one of the primary reasons that frequency
domain operations are to be preferred over their time domain counterparts. In addition to
its inherent simplicity, we will learn in Section 3.2 that frequency domain implementations
of LTI systems are often more efficient than time domain implementations.

The most general LTI system can be specified with a linear constant coefficient differ-
ence equation of the form

y[n] = −
L∑

l=1

aly[n − l] +
M∑

m=0

bmx[n − m]. (3.21)

Equation (3.21) specifies the relation between the output signal y[n] and the input signal
x[n] in the time domain. Transforming (3.21) into the frequency domain and making use
of the linearity of the Fourier transform along with the time delay property (3.18) provides
the input–output relation

Y (ejω) = −
L∑

l=1

al e
−jωl Y (ejω) +

M∑
m=0

bm e−jωm X(ejω). (3.22)

Based on (3.20), we can then express the frequency response of such a LTI system as

H(ejω) = Y (ejω)

X(ejω)
=

L∑
l=0

bl e
−jωl

1 +
M∑

m=1

am e−jωm

. (3.23)

Windowing and Modulation

If we multiply the signal x with a windowing function w in the time domain we can write

y[n] = x[n] w[n], (3.24)

which is equivalent to

Y (ejω) = 1

2π

∫ π

−π

X(ejθ ) W(ej (ω−θ)) dθ (3.25)

in the frequency domain. Equation (3.25) represents a periodic convolution of X(ejω) and
W(ejω). This implies that X(ejω) and W(ejω) are convolved, but as both are periodic
functions of ω, the convolution extends only over a single period. The operation defined
by (3.24) is known as windowing when w[n] has a generally lowpass frequency response,
such as those windows discussed in Section 5.1. In the case of windowing, (3.25) implies
that the spectrum X(ejω) will be smeared through convolution with W(ejω). This effect
will become important in Section 3.3 during the presentation of the short-time Fourier
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transform. If W(ejω) has large sidelobes, it implies that some of the frequency resolution
of X(ejω) will be lost.

On the other hand, the operation (3.24) is known as modulation when w[n] = ejωc n

for some angular frequency 0 < ωc ≤ π . In this case, (3.25) implies that the spectrum
will be shifted to the right by ωc, such that

Y (ejω) = X
(
ej (ω−ωc)

)
. (3.26)

Equation (3.26) follows from

Hc(e
jω) =

∞∑
n=−∞

hc[n] e−jωn =
∞∑

n=−∞
ejωcn h[n] e−jωn

=
∞∑

n=−∞
h[n] e−j (ω−ωc)n = H

(
ej (ω−ωc)

)
.

In Chapter 11 we will use (3.26) to design a set of filters or a digital filter bank from a
single lowpass prototype filter.

Cross-correlation

There is one more property of the Fourier transform, which we derive here, that will prove
useful in Chapter 10. Let us define the cross-correlation x12 of two sequences x1[n] and
x2[n] as

x12[n] �
∞∑

m=−∞
x1[m] x2[n + m]. (3.27)

Then through manipulations analogous to those leading to (3.20), it is straightforward to
demonstrate that

X12(e
jω) = X∗

1(e
jω)X2(e

jω), (3.28)

where x12[n] ↔ X12(e
jω).

The definition of the inverse Fourier transform (3.15) together with (3.28) imply that

x12[n] = 1

2π

∫ π

−π

X∗
1(e

jω) X2(e
jω) ejωn dω. (3.29)

3.1.3 z-Transform Analysis

The z-transform can be viewed as an analytic continuation (Churchill and Brown 1990,
sect. 102) of the Fourier transform into the complex or z-plane. It is readily obtained by
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replacing ejω in (3.14) with the complex variable z, such that

X(z) �
∞∑

n=−∞
x[n] z−n. (3.30)

When (3.30) holds, we will say, just as in the case of the Fourier transform, that x[n] and
X(z) constitute a transform pair, which is denoted as x[n] ↔ X(z). It is readily verified
that the convolution theorem also holds in the z-transform domain, such that when the
output y[n] of a system with input x[n] and impulse response h[n] is given by (3.8), then

Y (z) = X(z) H(z). (3.31)

The term H(z) in (3.31) is known as the system or transfer function , and is analogous
to the frequency response in that it specifies the relation between input and output in the
z-transform domain. Similarly, a time delay has a simple manifestation in the z-transform
domain, inasmuch as it follows that

x[n − nd] ↔ z−nd X(z).

Finally, the equivalent of (3.26) in the z-transform domain is

ejωcn h[n] ↔ H(z e−jωc ). (3.32)

The inverse z-transform is formally specified through the contour integral (Churchill
and Brown 1990, sect. 32),

x[n] � 1

2πj

∮
C

X(z) zn−1 dz, (3.33)

where C is the contour of integration . Parameterizing the unit circle as the contour of
integration in (3.33) through the substitution z = ejω ∀ − π ≤ ω ≤ π leads immediately
to the inverse Fourier transform (3.15).

While the impulse response of a LTI system uniquely specifies the z-transform of such a
system, the converse is not true. This follows from the fact that (3.30) represents a Laurent
series expansion (Churchill and Brown 1990, sect. 47) of a function X(z) that is analytic
in some annular region, which implies it possesses continuous derivatives of all orders.
The bounds of this annular region, which is known as the region of convergence (ROC),
will be determined by the locations of the poles of X(z). Moreover, the coefficients in
the series expansion of X(z), which is to say the sample values in the impulse response
x[n], will be different for different annular ROCs. Hence, in order to uniquely specify
the impulse response x[n] corresponding to a given X(z), we must also specify the ROC
of X(z). For reasons which will shortly become apparent, we will uniformly assume that
the ROC includes the unit circle as well as all points exterior to the unit circle.
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For systems specified through linear constant coefficient difference equations such as
(3.21), it holds that

H(z) = Y (z)

X(z)
=

L∑
l=0

blz
−l

1 +
M∑

m=1

amz−m

. (3.34)

This equation is the z-transform equivalent of (3.23).
While (3.33) is correct, the contour integral can be difficult to calculate directly. Hence,

the inverse z-transform is typically evaluated with less formal methods, which we now
illustrate with several examples.

Example 3.1 Consider the geometric sequence

x[n] = an u[n], (3.35)

for some |a| < 1, where u[n] is the unit step function ,

u[n] �
{

1, for n ≥ 0,

0, otherwise.

Substituting (3.35) into (3.30) and making use of the identity

∞∑
n=0

βn = 1

1 − β
∀ |β| < 1,

where β = a z−1, yields

an u[n] ↔ 1

1 − a z−1
. (3.36)

The requirement |β| = |a z−1| < 1 implies the ROC for (3.35) is specified by |z| > |a|.
Note that (3.36) is also valid for complex a. �

Example 3.2 Consider now the decaying sinusoid ,

x[n] = u[n] ρn cos ωcn, (3.37)

for some real 0 < ρ < 1 and 0 ≤ ωc ≤ π . Using Euler’s formula, ejθ = cos θ + j sin θ ,
to rewrite (3.37) provides

x[n] = u[n]
ρn

2

(
ejωcn + e−jωcn

)
. (3.38)
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Applying (3.36) to (3.38) with a = ρe±jω then yields

u[n] an cos ωcn ↔1

2

(
1

1 − ρ z−1 ejωc
+ 1

1 − ρ z−1 e−jωc

)

= 1 − ρ z−1 cos ωc

1 − 2ρ z−1 cos ωc + ρ2 z−2
.

Moreover, the requirement |β| = |ρz−1ejωc | < 1 implies that the ROC of (3.37) is
|z| > ρ. �

Examples 3.1 and 3.2 treated the calculation of the z-transform from the specification of
a time series. It is often more useful, however, to perform calculations or filter design in
the z-transform domain, then to transform the resulting system output or transfer function
back into the time domain, as is done in the next example. Before considering this
example, however, we need two definitions (Churchill and Brown 1990, sect. 56 and
sect. 57) from the theory of complex analysis.

Definition 3.1.1 (simple zero) A function H(z) is said to have a simple zero at z = z0 if
H(z0) = 0 but

d H(z)

d z

∣∣∣∣
z=z0

	= 0.

Before stating the next definition, we recall that a function H(z) is said to be analytic at
a point z = z0 if it possesses continuous derivatives of all orders there.

Definition 3.1.2 (simple pole) A function H(z) is said to have a simple pole at z0 if it
can be expressed in the form

H(z) = φ(z)

z − z0
,

where φ(z) is analytic at z = z0 and φ(z0) 	= 0.

Example 3.3 Consider the rational system function as defined in (3.34) which, in order
to find the impulse response h[n] that pairs with H(z), has to be expressed in factored
form as

H(z) = K

∏L
l=1(1 − cl z

−1)∏M
m=1(1 − dm z−1)

, (3.39)

where {cl} and {dm} are respectively, the sets of zeros and poles of H(z), and K is a
real constant. The representation (3.39) is always possible, inasmuch as the fundamental
theorem of algebra (Churchill and Brown 1990, sect. 43) states that any polynomial of
order P can be factored into P zeros, provided that all zeros are simple. It follows that
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(3.39) can be represented with the partial fraction expansion ,

H(z) =
M∑

m=1

Am

1 − dm z−1
, (3.40)

where the constants Am can be determined from

Am = (1 − dm z−1) H(z)
∣∣
z=dm

. (3.41)

Equation (3.41) can be readily verified by combining the individual terms of (3.40) over a
common denominator. Upon comparing (3.36) and (3.40) and making use of the linearity
of the z-transform, we realize that

h[n] = u[n]
M∑

m=1

Am dn
m. (3.42)

With arguments analogous to those used in the last two examples, the ROC for (3.42) is
readily found to be

|z| > max
m

|dm|.

Clearly for real h[n] any complex poles dm must occur in complex conjugate pairs, which
is also true for complex zeros cm. �

By definition, a minimum phase system has all of its zeros and poles within the unit circle.
Hence, assuming that |cl| < 1 ∀ l = 1, . . . , L and |dm| < 1 ∀ m = 1, . . . ,M is tantamount
to assuming that H(z) as given in (3.39) is a minimum phase system. Minimum phase
systems are in many cases tractable because they have stable inverse systems . The inverse
system of H(z) is by definition that system H−1(z) achieving (Oppenheim and Schafer
1989, sect. 5.2.2)

H−1(z) H(z) = z−D,

for some integer D ≥ 0. Hence, the inverse of (3.39) can be expressed as

H−1(z) = 1

H(z)
= K−1

∏M
m=1(1 − dm z−m)∏L

l=1(1 − cl z−l )
.

Clearly, H−1(z) is minimum phase, just as H(z), which in turn implies that both are stable.
We will investigate a further implication of the minimum phase property in Section 5.4
when discussing cepstral coefficients.

Equations (3.23) and (3.34) represent a so-called auto-regressive, moving average
(ARMA) model. From the last example it is clear that the z-transform of such a model
contains both pole and zero locations. We will also see that its impulse response is, in
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general, infinite in duration, which is why such systems are known as infinite impulse
response (IIR) systems. Two simplifications of the general ARMA model are possible,
both of which are frequently used in signal processing and adaptive filtering, wherein the
parameters of a LTI system are iteratively updated to optimize some criterion (Haykin
2002). The first such simplification is the moving average model

y[n] =
M∑

m=0

bmx[n − m]. (3.43)

Systems described by (3.43) have impulse responses with finite duration, and hence are
known as finite impulse response (FIR) systems. The z-transforms of such systems contain
only zero locations, and hence they are also known as all-zero filters. As FIR systems with
bounded coefficients are always stable, they are often used in adaptive filtering algorithms.
We will use such FIR systems for the beamforming applications discussed in Chapter 13.

The second simplification of (3.21) is the auto-regressive (AR) model, which is char-
acterized by the difference equation

y[n] = −
M∑

m=1

am y[n − m] + x[n]. (3.44)

Based on Example 3.3, it is clear that such AR systems are IIR just as ARMA systems,
but their z-transforms contain only poles, and hence are also known as all-pole filters.
AR systems find frequent application in speech processing, and are particularly useful for
spectral estimation based on linear prediction, as described in Section 5.3.3, as well as
the minimum variance distortionless response, as described in Section 5.3.4.

From (3.42), it is clear that all poles {dk} must lie within the unit circle if the sys-
tem is to be BIBO stable. This holds because poles within the unit circle correspond to
exponentially decaying terms in (3.42), while poles outside the unit circle would corre-
spond to exponentially growing terms. The same is true of both AR and ARMA models.
Stability, on the other hand, is not problematic for FIR systems, which is why they are
more often used in adaptive filtering applications. It is, however, possible to build such
adaptive filters using an IIR system (Haykin 2002, sect. 15).

Once the system function has been expressed in factored form as in (3.39), it can be
represented graphically as the pole-zero plot (Oppenheim and Schafer 1989, sect. 4.1)
shown on the left side of Figure 3.1, wherein the pole and zero locations in the complex
plane are marked with × and ◦ respectively. To see the relation between the pole-zero
plot and the Fourier transform shown on the right side of Figure 3.1, it is necessary to
associate the unit circle in the z-plane with the frequency axis of the Fourier transform
through the parameterization z = ejω for −π ≤ ω ≤ π . For a simple example in which
there is a simple pole at d1 = 0.8 and a simple zero at c1 = −0.6, the magnitude of the
frequency response can be expressed as

H(ejω) =
∣∣∣∣ z − c1

z − d1

∣∣∣∣
z=ejω

=
∣∣∣∣ejω + 0.6

ejω − 0.8

∣∣∣∣ . (3.45)
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Figure 3.1 Simple example of the pole-zero plot in the complex z-plane and the corresponding
frequency domain representation

The quantities |ejω + 0.6| and |ejω − 0.8| appearing on the right-hand side of (3.45)
are depicted with dotted lines on the left side of Figure 3.1. Clearly, the point z = 1
corresponds to ω = 0, which is much closer to the pole z = 0.8 than to the zero z = −0.6.
Hence, the magnitude |H(ejω)| of the frequency response is a maximum at ω = 0. As
ω increases from 0 to π , the test point z = ejω sweeps along the upper half of the unit
circle, and the distance |ejω − 0.8| becomes ever larger, while the distance |ejω + 0.6|
becomes ever smaller. Hence, |H(ejω)| decreases with increasing ω, as is apparent from
the right side of Figure 3.1. A filter with such a frequency response is known as a lowpass
filter , because low-frequency components are passed (nearly) without attenuation, while
high-frequency components are suppressed.

While the simple filter discussed above is undoubtedly lowpass, it would be poorly
suited for most applications requiring a lowpass filter. This lack of suitability stems
from the fact that the transition from the passband , wherein all frequency components
are passed without attenuation, to the stopband , wherein all frequency components are
suppressed, is very gradual rather than sharp; i.e., the transition band from passband to
stopband is very wide. Moreover, depending on the application, the stopband suppression
provided by such a filter may be inadequate. The science of digital filter design through
pole-zero placement in the z-plane is, however, very advanced at this point. A great
many possible designs have been proposed in the literature that are distinguished from
one another by, for example, their stopband suppression, passband ripple, phase linearity,
width of the transition band, etc. Figure 3.2 shows the pole-zero locations and magnitude
response of a lowpass filter based on a tenth-order Chebychev Type II design. As compared
with the simple design depicted in Figure 3.1, the Chebychev Type II design provides
a much sharper transition from passband to stopband, as well as much higher stopband
suppression. Oppenheim and Schafer (1989, sect. 7) describe several other well-known
digital filter designs. In Chapter 11, we will consider the design of a filter that serves as
a prototype for all filters in a digital filter bank. In such a design, considerations such
as stopband suppression, phase linearity, and total response error will play a decisive
role.
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Figure 3.2 Pole-zero plot in the z-plane of a tenth-order Chebychev Type II filter and the corre-
sponding frequency response magnitude

Parseval’s Theorem

Parseval’s theorem concerns the equivalence of calculating the energy of a signal in the
time or transform domain. In the z-transform domain, Parseval’s theorem can be expressed
as

∞∑
n=−∞

x2[n] = 1

2πj

∮
C

X(v) X(v−1) v−1 dv, (3.46)

where the contour of integration is most often taken as the unit circle. In the Fourier
transform domain, this becomes

∞∑
n=−∞

x2[n] = 1

2π

∮ π

−π

∣∣X (
ejω

)∣∣2
dω. (3.47)

3.1.4 Sampling Continuous-Time Signals

While discrete-time signals are a useful abstraction inasmuch as they can be readily
calculated and manipulated with digital computers, it must be borne in mind that such
signals do not occur in nature. Hence, we consider here how a real continuous-time
signal may be converted to the digital domain or sampled , then converted back to the
continuous-time domain or reconstructed after some digital processing. In particular, we
will discuss the well-known Nyquist–Shannon sampling theorem.

The continuous-time Fourier transform is defined as

X(ω) �
∫ ∞

−∞
x(t) e−ωt dt, (3.48)

for real −∞ < ω < ∞. This transform is defined over the entire real line. Unlike its
discrete-time counterpart, however, the continuous-time Fourier transform is not periodic.
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We adopt the notation X(ω) with the intention of emphasizing this lack of periodicity. The
continuous-time Fourier transform possesses the same useful properties as its discrete-time
counterpart (3.14). In particular, it has the inverse transform,

x(t) � 1

2π

∫ ∞

−∞
X(ω)eωt dω ∀ − ∞ < t < ∞. (3.49)

It also satisfies the convolution theorem,

y(t) =
∫ ∞

−∞
h(τ) x(t − τ) dτ ↔ Y (ω) = H(ω) X(ω).

The continuous-time Fourier transform also possesses the time delay property,

x(t − td) ↔ e−jωtd X(ω), (3.50)

where td is a real-valued time delay.
We will now use (3.48–3.49) to analyze the effects of sampling as well as determine

which conditions are necessary to perfectly reconstruct the original continuous-time signal.
Let us define a continuous-time impulse train as

s(t) =
∞∑

n=−∞
δ(t − nT ),

where T is the sampling interval . The continuous-time Fourier transform of s(t) can be
shown to be

S(ω) = 2π

T

∞∑
m=−∞

δ(ω − mωs),

where ωs = 2π/T is the sampling frequency or rate in radians/second.
Consider the continuous-time signal xc(t) which is to be sampled through multiplication

with the impulse train according to

xs(t) = xc(t) s(t) = xc(t)

∞∑
n=−∞

δ(t − nT ) =
∞∑

n=−∞
xc(nT ) δ(t − nT ).

Then the spectrum Xs(ω) of the sampled signal xs consists of a series of scaled and
shifted replicas of the original continuous-time Fourier transform Xc(ω), such that,

Xs(ω) = 1

2π
Xc(ω) ∗ S(ω) = 1

T

∞∑
m=−∞

Xc(ω − mωs).

The last equation is proven rigorously in Section B.13. Figure 3.3 (Original Signal) shows
the original spectrum Xc(ω), which is assumed to be bandlimited such that

Xc(ω) = 0 ∀ |ω| > ωN,
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Figure 3.3 Effect of sampling and reconstruction in the frequency domain. Perfect reconstruction
requires that ωN < ωc < ωs − ωN

for some real ωN > 0. Figure 3.3 (Sampling) shows the trains S(ω) of frequency-domain
impulses resulting from the sampling operation for two cases: The Nyquist sampling cri-
terion is not satisfied (left) and it is satisfied (right). Shown in Figure 3.3 (Discrete Signal)
are the spectra Xs(ω) for the undesirable and desirable cases, whereby the continuous-time
signal xc(t) was sampled insufficiently and sufficiently often to enable recovery of the
original spectrum with a lowpass filter. In the first case the original spectrum overlaps with
its replicas. In the second case – where the Nyquist sampling theorem is satisfied – the
original spectrum and its images do not overlap, and xc(t) can be uniquely determined
from its samples

xs[n] = xs(nT ) ∀ n = 0, ±1,±2, . . . . (3.51)

Reconstructing xc(t) from its samples requires that the sampling rate satisfy the Nyquist
criterion , which can be expressed as

ωs = 2π

T
> 2 ωN. (3.52)

This inequality is a statement of the famous Nyquist sampling theorem. The bandwidth ωN

of the continuous-time signal xc(t) is known as the Nyquist frequency , and 2ωN, the lower
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bound on the allowable sampling rate, is known as the Nyquist rate. The reconstructed
spectrum Xr(ω) is obtained by filtering according to

Xr(ω) = HLP(ω) Xs(ω),

where HLP(ω) is the frequency response of the lowpass filter.
Figure 3.3 (Reconstructed Signal, left side) shows the spectral overlap that results in

Xr(ω) when the Nyquist criterion is not satisfied. In this case, high-frequency components
are mapped into low-frequency regions, a phenomenon known as aliasing , and it is no
longer possible to isolate the original spectrum from its images with HLP(ω). Hence,
it is no longer possible to perfectly reconstruct xc(t) from its samples in (3.51). On
the right side of Figure 3.3 (Reconstructed Signal) is shown the perfectly reconstructed
spectrum Xr(ω) obtained when the Nyquist criterion is satisfied. In this case, the original
spectrum Xc can be isolated from its images with the lowpass filter HLP(ω), and perfect
reconstruction is possible based on the samples (3.51) of the original signal xc(t).

The first component of a complete digital filtering system is invariably an analog
anti-aliasing filter, which serves to bandlimit the input signal (Oppenheim and Schafer
1989, sect. 3.7.1). As implied from the foregoing discussion, such bandlimiting is nec-
essary to prevent aliasing. The bandlimiting block is then followed by a sampler, then
by the digital filter itself, and finally a digital-to-analog conversion block. Ideally the last
of these is a lowpass filter HLP(ω), as described above. Quite often, however, HLP(ω) is
replaced by a simpler zero-order hold (Oppenheim and Schafer 1989, sect. 3.7.4.).

While filters can be implemented in the continuous-time or analog domain, working
in the digital domain has numerous advantages in terms of flexibility and adaptability.
In particular, a digital filter can easily be adapted to changing acoustic environments.
Moreover, digital filters can be implemented in software, and hence offer far greater
flexibility in terms of changing the behavior of the filter during its operation. In Chapter
13, we will consider the implementation of several adaptive beamformers in the digital
domain, but will begin the analysis of the spatial filtering effects of a microphone array
in the continuous-time domain, based on relations (3.48) through (3.50).

3.2 The Discrete Fourier Transform

While the Fourier and z-transforms are very useful conceptual devices and possess several
interesting properties, their utility for implementing real LTI systems is limited at best.
This follows from the fact that both are defined for continuous-valued variables. In prac-
tice, real signal processing algorithms are typically based either on difference equations in
the case of IIR systems, or the discrete Fourier transform (DFT) and its efficient imple-
mentation through the fast Fourier transform (FFT) in the case of FIR systems. The FFT
was originally discovered by Carl Friedrich Gauss around 1805. Its widespread popularity,
however, is due to the publication of Cooley and Tukey (1965), who are credited with
having independently re-invented the algorithm. It can be calculated with any of a number
of efficient algorithms (Oppenheim and Schafer 1989, sect. 9), implementations of which
are commonly available. The presentation of such algorithms, however, lies outside of
our present scope. Here we consider instead the properties of the DFT, and, in particular,
how the DFT may be used to implement LTI systems.
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Let us begin by defining

• the analysis equation ,

X̃[m] �
N−1∑
n=0

x̃[n] Wmn
N (3.53)

• and the synthesis equation ,

x̃[n] � 1

N

N−1∑
m=0

X̃[m] W−mn
N , (3.54)

of the discrete Fourier series (DFS), where WN = e−j (2π/N) is the N th root of unity. As
is clear from (3.53–3.54), both X̃[m] and x̃[n] are periodic sequences with a period of N ,
which is the reason behind their designation as discrete Fourier series. In this section, we
first show that X̃[m] represents a sampled version of the discrete-time Fourier transform
X(ejω) of some sequence x[n], as introduced in Section 3.1.2. We will then demonstrate
that x̃[n] as given by (3.54) is equivalent to a time-aliased version of x[n]. Consider then
the finite length sequence x[n] that is equivalent to the periodic sequence x̃[n] over one
period of N samples, such that

x[n] �
{

x̃[n], ∀ 0 ≤ n ≤ N − 1,

0, otherwise.
(3.55)

The Fourier transform of x[n] can then be expressed as

X(ejω) =
∞∑

−∞
x[n] e−jωn =

N−1∑
n=0

x̃[n] e−jωn. (3.56)

Upon comparing (3.53) and (3.56), it is clear that

X̃[m] = X(ejω)
∣∣
ω=2πm/N

∀ m ∈ N. (3.57)

Equation (3.57) indicates that X̃[m] represents the periodic sequence obtained by sampling
X(ejω) at N equally spaced frequencies over the range 0 ≤ ω < 2π . The following simple
example illustrates how a periodic sequence may be represented in terms of its DFS
coefficients X̃[m] according to (3.54).

Example 3.4 Consider the impulse train with period N defined by

x̃[n] =
∞∑

l=−∞
δ[n + lN ].
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Given that x̃[n] = δ[n] ∀ 0 ≤ n ≤ N − 1, we can calculate the DFS coefficients according
to (3.53) to obtain

X̃[m] =
N−1∑
n=0

δ[n] Wmn
N = 1 ∀ m = 0, . . . , N − 1. (3.58)

Substituting (3.58) into (3.54) provides the representation

x̃[n] =
∞∑

l=−∞
δ[n + lN ] = 1

N

N−1∑
m=0

W−mn
N = 1

N

N−1∑
m=0

ej (2π/N)mn, (3.59)

which is the desired result. �

We next investigate what effect the sampling of X(ejω) mentioned above has on the
sequence returned by (3.54). To begin, we substitute the definition (3.14) of X(ejω) into
(3.57), then the resulting sequence X̃[m] into the DFS synthesis equation (3.54), to obtain

x̃[n] = 1

N

N−1∑
l=0

[ ∞∑
m=−∞

x[m] Wlm
N

]
W−ln

N .

Upon changing the order of summation, the last equation becomes

x̃[n] =
∞∑

m=−∞
x[m]

[
1

N

N−1∑
l=0

W
−l(n−m)
N

]
,

which, in light of (3.59), can be rewritten as

x̃[n] =
∞∑

m=−∞
x[m]

∞∑
r=−∞

δ[n − m + rN ] = x[n] ∗
∞∑

r=−∞
δ[n + rN ].

Equivalently,

x̃[n] =
∞∑

r=−∞
x[n + rN ]. (3.60)

From (3.60) it is clear that x̃[n] is the periodic sequence that results when x[n] is repeated
every N samples, and the repetitions are summed together. If x[n] is of length N or less,
then a single period of x̃[n] will be equivalent to the original sequence x[n] ∀ 0 ≤ n ≤ N −
1. Otherwise, x̃[n] will be a time-aliased version of x[n]. This fact gives some indication
of the duality that exists between the time and transform domains for discrete Fourier
series; i.e., sampling in one domain introduces a periodicity in the other (Oppenheim and
Schafer 1989, sect. 8.2.3). Barring some limitation on the extent of either x[n] or X(ejω),
this periodicity can lead to aliasing, which precludes the possibility of recovering the
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original signal perfectly. These considerations lead us to introduce the discrete Fourier
transform and the inverse discrete Fourier transform , which are respectively defined as

X[m] �
N−1∑
n=0

x[n] Wmn
N , (3.61)

x[n] � 1

N

N−1∑
m=0

X[m] W−mn
N . (3.62)

3.2.1 Realizing LTI Systems with the DFT

In prior sections, we established that time domain convolution is equivalent to frequency
or transform domain multiplication. This fact, when combined with the computational
efficiency afforded by a fast implementation of the DFT, provides for the efficient real-
ization of LTI systems with FIR. Such implementations entail the use of the FFT to
transform input sequences as well as the impulse response of a LTI system into the fre-
quency domain, where they are multiplied. The output of the system is then reconstructed
through the inverse FFT. Two problems may arise with this approach, however:

• The first problem is due to the time domain aliasing induced by the frequency domain
sampling inherent in the DFT; i.e., unless the final system output is limited in length,
it will be time-aliased by the DFT.

• The second problem is that if the input sequence is arbitrarily long, it becomes increas-
ingly inefficient to apply longer and longer DFTs to calculate the system output.

Both of these problems can be solved by applying either the overlap-add or overlap-save
methods. To develop these methods, first consider that the convolution of a sequence
x1[n] of length L with another sequence x2[n] of length P produces a sequence x3[n] of
length L + P − 1. This is apparent from the specialization of the convolution sum,

x3[n] =
∞∑

m=−∞
x1[m] x2[n − m]

or in the Fourier domain

X3(e
jω) = X1(e

jω) X2(e
jω). (3.63)

Moreover, based on the exposition of the DFT above, we can readily obtain a sampled
version of X3(e

jω) according to

X̃3[m] = X̃1[m] X̃2[m], (3.64)

where

X̃i[m] = Xi(e
jω)

∣∣
ω=2πm/N

∀ m = 0, . . . , N − 1, i = 1, 2, 3.
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The final sequence x3[n] corresponding to the convolution of x1[n] and x2[n] can be
obtained by applying the DFT synthesis equation (3.54) to X̃3[m], in order to obtain the
periodic sequence x̃3[n], and then setting all but the first period to zero. The problem,
however, is one of determining the number of points N at which X3(e

jω) must be sampled
in order to ensure that the first period of x̃3[n] is a faithful representation of x3[n]. Based
on the realization that the non-zero length of x3[n] will be L + P − 1, clearly we must
require

N ≥ L + P − 1. (3.65)

This relation can always be satisfied for FIR systems. If the DFT is to be used to realize
a LTI system, however, the input sequence is for all intents and purposes infinitely long.
Hence, it must be segmented prior to processing to avoid an arbitrarily long processing
delay and unacceptable computational expense. For these reasons, we consider here the
overlap-add and overlap-save methods.

3.2.2 Overlap-Add Method

Initially, let us assume we wish to efficiently implement a LTI system with impulse
response h[n] of length P . The input sequence x[n] of the system has a length, in general,
much greater than P . We begin by partitioning x[n] into frame segments k of length L

according to

x[n] =
∞∑

k=0

xk[n − kL], (3.66)

where each xk[n] is specified by

xk[n] =
{

x[n + kL], ∀ 0 ≤ n ≤ L − 1,

0, otherwise.
(3.67)

Note that (3.66–3.67) imply that the zeroth sample of xk[n] is in fact the kLth sample
of x[n]. As convolution is a linear, time-invariant operation, the output of the system can
be patched together according to

y[n] = x[n] ∗ h[n] =
∞∑

k=0

yk[n − kL], (3.68)

where each segment yk[n] is obtained from

yk[n] = xk[n] ∗ h[n]. (3.69)

While the time domain convolution in (3.69) is conceptually correct, we will in fact
calculate each segment yk[n] by applying the synthesis equation (3.54) to the sampled
spectrum

X̃k[m] = Ỹk[m] H̃ [m], (3.70)
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then isolating the first period of the resulting sequence x̃k[n], which will be equivalent to
xk[n] provided (3.65) is satisfied. This provides computational efficiency. It is accompa-
nied, however, by two drawbacks: Firstly, as we will learn in Section 11.1, the rectangular
window implicit in (3.67) has poor stopband characteristics, which, as implied by the dis-
cussion in Section 3.1.2, will cause a smearing in the frequency domain. Secondly, it is
computationally awkward, in that, when applied to subband domain adaptive filtering as
discussed in Chapter 13, the estimated impulse response must be time limited to one-half
the length of the DFT. This implies that the frequency samples of the impulse must
be inverse transformed to the time domain, then time windowed to limit their duration,
then transformed again into the frequency domain to be multiplied with the DFT of the
input sequence. These considerations are behind our presentation of digital filter banks in
Chapter 11, which do not suffer from the aforementioned shortcomings.

3.2.3 Overlap-Save Method

An alternative method for implementing LTI systems is the overlap-save method, whereby
the L-point circular convolution of a P -point impulse response h[n] and a L-point segment
xk[n] is implemented. Thereafter, that portion of the output segment ỹk[n] corresponding
to the linearly convolved segment yk[n] is identified, and these segments are patched
together to form the final output:

y[n] =
∞∑

r=0

yk[n − r(L − P + 1) + P − 1], (3.71)

where

yk[n] =
{

ỹk[n], ∀ P − 1 ≤ n ≤ L − 1,

0, otherwise.
(3.72)

The computational efficiency of both the overlap-add and overlap-save methods is a
direct result of that of the FFT; that is, with the aid of the FFT, the N -point convolutions
required by both methods can be performed in O(N log N) time. Were these operations
implemented naively in the time domain, the computational expense would be O(N2);
see Oppenheim and Schafer (1989 sect. 9).

3.3 Short-Time Fourier Transform

It is often the case that the characteristics of the signal x[n], which is to be spectrally
analyzed or digitally processed, change with time. In such cases, it is useful to isolate a
portion of the entire sequence, and perform spectral analysis only on this portion. The
time-dependent Fourier transform is defined as

X[n, ejλ) �
∞∑

m=−∞
x[n + m] w[m] e−jλm, (3.73)
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x[n]

L

Sliding Window

Figure 3.4 Application of the window sequence w[n] to isolate a segment of x[n] for spectral
analysis

where w[n] is a window sequence. Following Oppenheim and Schafer (1989 sect. 11.3),
we use the mixed notation X[n, ejλ) to indicate that functional dependence on both the
discrete variable n and the continuous variable λ. As defined in (3.73), the time-dependent
Fourier transform is obtained by using the window w[n] to isolate a segment of the
sequence x[n], then taking the discrete-time Fourier transform of this windowed segment.
Note that in the definition (3.73), the window is held stationary and the x[n] is shifted
n samples to the left. This process is depicted in Figure 3.4, wherein w[n] has non-zero
support of length L. Inasmuch as X[n, ejλ) is the discrete-time Fourier transform of x[n +
m] w[m], the time-dependent Fourier transform is invertible if w[0] 	= 0. In particular,
based on the inverse Fourier transform (3.15), we can write,

x[n + m] w[m] = 1

2π

∫ 2π

0
X[n, ejλ) ejλm dλ ∀ − ∞ < m < ∞,

which implies,

x[n] = 1

2π w[0]

∫ 2π

0
X[n, ejλ) ejλm dλ.

Rearranging the sum (3.73) provides another useful interpretation of the time-dependent
Fourier transform. In particular, substituting m′ = n + m in (3.73) enables X[n, ejλ) to
be rewritten as

X[n, ejλ) =
∞∑

m′=−∞
x[m′] w[−(n − m′)] ejλ(n−m′). (3.74)

Equation (3.74) can be interpreted as the convolution

X[n, ejλ) = x[n] ∗ hλ[n], (3.75)

where

hλ = w[−n] ejλn. (3.76)

This leads to the representation

Hλ(e
jω) = W

(
ej (λ−ω)

)
. (3.77)



Signal Processing and Filtering Techniques 89

A slightly different interpretation of the time-dependent Fourier transform can be
defined as

X̂[n, ejλ) �
∞∑

m=−∞
x[m] w[m − n] e−jλm. (3.78)

Referring to the windowed time sequence depicted in Figure 3.4, we can interpret the
difference between (3.73) and (3.78) as follows. Whereas in (3.73) it is the sequence x[m]
that is shifted to the left by n samples past a stationary window w[m], in (3.78), the time
sequence x[m] remains stationary while the window is shifted to the right by n samples.
The exact relationship between (3.73) and (3.78) is readily found to be

X̂[n, ejλ) = e−jλnX[n, ejλ). (3.79)

Representing the time-dependent Fourier transform in terms of the continuous frequency
variable λ is useful conceptually, but not conducive to efficient implementation. The latter
requires computations based on discrete values. Hence, as in the case of the DFT, let us
sample λ in (3.73) at M equally spaced frequencies λm = 2πm/M for some M ≥ L. This
leads to the short-time Fourier transform ,

Xm[n] � X[n, ej2πm/M) =
L−1∑
l=0

x[n + l] w[l] e−j (2π/M)ml ∀ 0 ≤ m ≤ M − 1 (3.80)

where m denotes the subband index. Upon comparing (3.53) and (3.80) it is evident that
Xm[n] is the DFT of the windowed sequence x[n + l] w[l]. From the inverse DFT (3.54),
it then follows that

x[n + l] w[l] = 1

M

M−1∑
m=0

Xm[n] ej (2π/M)lm ∀ 0 ≤ l ≤ L − 1. (3.81)

Assuming that the window w[l] 	= 0 ∀ 0 ≤ l ≤ L − 1, it is possible to recover
x[n], . . . , x[n + L − 1] from

x[n + l] = 1

M w[l]

M−1∑
m=0

Xm[n] ej (2π/M)lm ∀ 0 ≤ l ≤ L − 1. (3.82)

Equation (3.82) implies that perfect recovery of x[n] is possible provided at least as many
samples of λ are taken as there are nonzero samples in the window; i.e., such that M ≥ L.

Inasmuch as (3.80) implies a sampling of X[n, λ) in λ, it also implies a sampling of
(3.74–3.76) in λ. In particular, we can rewrite (3.75) and (3.76) as

Xm[n] = x[n] ∗ hm[n] ∀ 0 ≤ m ≤ M − 1, (3.83)

where

hm[n] = w[−n] ej (2π/M)mn. (3.84)



90 Distant Speech Recognition
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x[n]

Analysis Filter Bank

Figure 3.5 Analysis filter banks with individual filter functions {Hm(z)}

Equations (3.83–3.84) can be viewed as the bank of M filters depicted in Figure 3.5,
where the mth filter has frequency response

Hm(ejω) = W
(
ej (2πm/M−ω)

)
. (3.85)

This interpretation of the short-time Fourier transform indicates its utility for short-time
spectral analysis, which will prove useful in Section 5.1, where we will discuss the
segmentation and analysis of speech for the purpose of extracting acoustic features for
automatic recognition. For the purpose of automatic speech recognition, the analysis win-
dow is fairly short, typically between 16 and 32 ms, because it is only over such relatively
small time durations that speech is stationary. Moreover, the requirements for speech
recognition in regard to frequency resolution are modest. More problematic is the appli-
cation of such a short analysis window for beamforming. This follows from the fact that
a short window w[n] implies the introduction of large sidelobes in the frequency domain,
and thereby a loss of frequency resolution, as implied by (3.25).

As we will learn in Chapter 11, provided that the window sequence w[n] is carefully
designed, the m filters in the filter bank shown in Figure 3.5 divide the entire frequency
range into M largely nonoverlapping subbands . The outputs of the M subband filters,
which we refer to as subband samples , can be appropriately filtered and combined in
order to resynthesize the original signal to machine precision. To obtain nonoverlapping
subbands requires high-frequency resolution. Achieving high resolution in the frequency
domain requires using a longer analysis window, and thus sacrificing some time resolution.
This illustrates a general rule: Frequency resolution can, in general, only be obtained at
the cost of time resolution, and vice versa. Adaptive filtering and beamforming, unlike
speech recognition, typically require high-frequency resolution for optimal performance.

We will refer to any operations whereby the subband samples are modified prior to
resynthesis as being conducted in the subband domain . As is well known (Haykin 2002,
sect. 7), frequency or subband domain implementations of adaptive filters can be far more
computationally efficient than their time domain counterparts. The subband domain also
offers other advantages with respect to frequency domain discussed in Section 3.2.1.

3.4 Summary and Further Reading

We began this chapter with a review of the basics of DSP, including a short introduction
of LTI systems, the Fourier transform, and the z -transform. Next there was a brief discus-
sion of how filters can be designed through pole-zero placement in the complex z-plane
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in order to provide some desired frequency response. We then discussed the effects of
sampling a continuous time signal to obtain a digital representation, as well as the efficient
implementation of LTI systems with the discrete Fourier transform. Next we provided a
brief presentation of the short-time Fourier transform, which will prove useful for the
development in subsequent chapters.

The rapid development of the theory of DSP in the 1960s, like so many other develop-
ments in science and engineering, was made possible because the prerequisite mathemat-
ical theory was already in place. In this case, the necessary theory was that of complex
analysis due largely to Cauchy and his contemporaries in the 1700s. Those readers inter-
ested in this crown jewel of mathematics are referred to any of a number of excellent
texts, including Churchill and Brown (1990) and Greene and Krantz (1997). A review of
these texts will provide a deeper understanding of such concepts as analyticity, poles and
zeros, and the Cauchy integral theorem, among others.

A classic work on the basics of DSP, FFT algorithms and filter design techniques is
Oppenheim and Schafer (1989). Those readers with little background who are seeking
very gentle introductions to the concepts of DSP are advised to consult Rosen and How-
ell (1990) and Lyons (2004). The former work is almost completely nonmathematical.
The latter goes more into the mathematical details, but makes use of more images and
supporting material than the standard DSP textbooks. Other useful references for begin-
ners are Broesch (1997) and Stein (2000). Proakis and Manolakis (2007) is a very good
and up-to-date reference on all current techniques. Haykin (2002) is a very illuminating,
well-written guide on all issues pertaining to adaptive filtering.

3.5 Principal Symbols

Symbol Description

ω angle frequency
�p passband
D decimation factor
Gm(ejω) frequency response of mth synthesis filter
h[n] impulse response
Hd(e

jω) desired passband frequency response
Hm(ejω) frequency response of mth analysis filter
h uniform DFT filter bank analysis prototype
k frame index
m subband index
md processing delay
M number of subbands
n sample index
T sampling interval
T {·} transformation operator
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Symbol Description

u[n] step sequence
w[n] window function
x, x[n] input signal, input sequence
y, y[n] output signal, output sequence
WN = e−j2π/N N th root of unity



4
Bayesian Filters

Many problems in science and engineering can be formulated as the estimation of the state
of a physical system based on some evidence or observations. Quite often, the state itself
is not directly observable, but a mathematical model of the system is available indicating
how the internal state of the system interacts with the external world in order to produce
observations. In such cases, the problem can be posed as that of forming a probabilistic
estimate of the internal state of the system conditioned on the available sequence of
observations, which are typically corrupted by noise or other distortions. Forming such
an estimate is the function of any one of the several variants of Bayesian filters . In the
context of distant speech recognition, Bayesian filters have two primary applications:

• tracking nonstationary distortions in order to estimate the original speech from the
mouth of a speaker;

• tracking the physical position of one or more active speakers to facilitate beamforming.

Choosing a particular state-space determines which aspects of the physical system are
modeled. For example, to track a person in a room it may be sufficient to consider the
position only. For a more sophisticated model, the speaker’s velocity and acceleration
might also be included. Typically, not all aspects of a physical system can be modeled.
To account for the unmodeled portions of a system, a Bayesian filter includes random or
stochastic components, which allow the unknown elements to be modeled statistically.
This implies, however, that the state itself can only be determined statistically. The sta-
tistical characterization of the state returned by a Bayesian filter is the so-called filtering
density.

The best known Bayesian filter is undoubtedly the Kalman filter (Kalman 1960),
which – under the twin assumptions of Gaussianity and linearity – is the optimal mini-
mum mean square error estimator for the hidden state of a system. As we will discuss
in the present chapter, when a system is nonlinear or non-Gaussian, as is very often the
case, a variety of other Bayesian filters can be used instead of the Kalman filter, but the
optimality of the estimate is no longer guaranteed. The performance of the estimator must
then be determined through simulations.

Distant Speech Recognition Matthias Wölfel and John McDonough
©    2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-51704-8
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Local filters overcome the linearity assumption by linearizing the nonlinearities in the
system through a local first-order Taylor series approximation or Stirling’s polynomial
interpolation. Thus local filters are valid only within a small neighborhood or working
region of the state space. Well-known Bayesian filters based on the Taylor series are the
extended Kalman filter and the iterated extended filter (Jazwinski 1970). The unscented
Kalman filter (Julier and Uhlmann 2004), on the other hand, does not rely on a lineariza-
tion, but instead propagates a set of test points through the system in order to determine
how the several mean vectors and covariance matrices required for updating the state
estimate are transformed by the system and observation nonlinearities.

Global filters provide an estimate which is valid in nearly the entire state space by
solving for nonlinear or non-Gaussian system components through analytical or numerical
methods. The analytical approaches could be based on approximating the filtering density
with, for example, a mixture of Gaussian distributions (Sorenson and Alspach 1971) or
by a spline function (de Figueiredo and Jan 1971). Numerical approaches evaluate the
conditional pdf only at isolated grid points, which is known as the point-mass method
(Bucy 1969). Alternatively, the filtering density can be approximated by a set of weighted
samples in the state space as with the particle filter (Doucet 1998; Gordon et al. 1993),
which is based on the concept of a sequential Monte Carlo estimation . A summary of
the Kalman filter along with two popular nonlinear filters – namely, the extended Kalman
filter and the particle filter – is presented in Table 4.1.

The balance of this chapter is organized as follows. We begin by presenting the basic
concepts of sequential Bayesian estimation in Section 4.1, where we show that the filter-
ing density can be updated through two operations, namely, prediction and correction .
Estimation of the filtering density is of paramount importance inasmuch as all other
estimates – such as the minimum mean square error estimate – can be readily calculated
from the filtering density. In Section 4.2 we have a brief presentation of the Wiener
filter. Section 4.3 begins with a discussion of the conventional Kalman filter, then consid-
ers several variations. As mentioned previously, the extended Kalman filter and iterated
extended Kalman filter are both based on linearizing the nonlinear elements of a system
and observation functional about the current state estimate. The difference between the
two stems from the fact that the iterated extended Kalman filter will potentially refine the
current state estimate by linearizing the nonlinear elements several times at each time step.
Section 4.3.4 discusses the numerical stability of the conventional Kalman filter and how
it can be improved through the update formulae based on the Cholesky decomposition.
As discussed in Section 4.3.5, the probabilistic data association filter is a variation of the
Kalman filter that first estimates which of several observations is likely to be associated

Table 4.1 Comparison between the Kalman, the extended Kalman and particle filter

Item Kalman filter Extended Kalman filter Particle filter

Conditional density Gaussian Gaussian Non-Gaussian
Dynamical model Linear Nonlinear Nonlinear
Measurement model Linear Nonlinear Nonlinear
Measurement noise Gaussian Gaussian Non-Gaussian
Propagation of stat. Mean & covar. Mean & covar. Probability density
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with the state or track, as opposed to noise or other spurious acoustic events. The joint
probabilistic data association filter , as discussed in Section 4.3.6, in addition to being able
to use multiple observations can also maintain state vectors for several tracks simultane-
ously. Finally, in Section 4.4 we present the particle filter, which is based on a completely
different set of assumptions than the Kalman filter and its variants. Namely, the particle
filter approximates the filtering density with a set of discrete points or particles and their
corresponding weights.

While this chapter is intended to present elements of the theory of Bayesian estimation,
subsequent chapters will discuss practical applications. Whereas in Chapter 6, we will
discuss how the methods presented here can be used to enhance speech which has been
corrupted by noise or reverberation, in Chapter 10, we will see how such filters can be
used to track a moving speaker.

4.1 Sequential Bayesian Estimation

Here we will present the fundamental concepts of Bayesian filtering. A schematic illus-
trating the operation of a Bayesian filter is shown in Figure 4.1, in which xk denotes an
unobservable state at time k, and yk denotes an observation. As mentioned at the outset,
the function of a Bayesian filter is to provide a statistical model of xk conditioned on the
sequence of observations y1:k . To provide such a statistical characterization, a Bayesian fil-
ter posits a state-space model, which is doubly stochastic in that its operation is governed
by two equations, both of which include stochastic components. For the discrete-time
case, these are

• the state equation or system model

xk = fk(xk−1, uk−1) (4.1)

• and the observation equation or measurement model

yk = hk(xk, vk) (4.2)

where fk and hk represent time-varying, nonlinear transition and observation functions,
and uk and vk denote the process and observation noise, respectively.

hkxk

xk-1

xk-2

xk+1

xk+2

yk−1

yk−2

yk

yk+1

yk+2

Hidden
Process

Observation 
Process

fk-1

fk-2

fk+2

fk+1

Figure 4.1 State-space model
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In the most general formulation, the objective of the state estimation problem is to track
the time evolution of the filtering density p(xk|y1:m). Depending on which observations
y1:m are used as evidence to determine p(xk|y1:m), state estimation falls into one of three
categories:

• smoothing , whereby k < m;
• filtering , whereby k = m;
• prediction , whereby k > m.

Here we will be concerned exclusively with the filtering problem.
The system model (4.1) represents a first-order Markov process , which implies that the

current state of the system depends solely on the state immediately prior, such that

p(xk|x0:k−1) = p(xk|xk−1) ∀ k ∈ N. (4.3)

The observation model (4.2) implies that the observations are dependent only on the
current system state and are independent of both prior observations and prior states once
the current state has been specified, such that,

p(yk|x0:k, y1:k−1) = p(yk|xk) ∀ k ∈ N. (4.4)

In Chapter 7, we will refer to the latter property as conditional independence. As
previously mentioned, our intention is to investigate methods for tracking the filtering
density p(xk|y1:k) as it evolves in discrete time k. A general solution can be obtained by
applying Bayes’ rule, which can be expressed as,

p(xk|y1:k) = p(y1:k|xk) p(xk)

p(y1:k)
. (4.5)

This filtering density can be tracked throughout time by sequentially performing two
operations:

• Prediction
The prior pdf of the state at time k can be obtained from the Chapman–Kolmogorov
equation (Papoulis 1984),

p(xk|y1:k−1) =
∫

p(xk|xk−1) p(xk−1|y1:k−1) dxk−1, (4.6)

where the evolution of the state p(xk|xk−1) is defined by the state equation (4.1).
• Correction or update

The current observation is “folded” into the estimate of the filtering density through an
invocation of Bayes’ rule:

p(xk|y1:k) = p(yk|xk) p(xk|y1:k−1)

p(yk|y1:k−1)
= p(xk, yk|y1:k−1)

p(yk|y1:k−1)
, (4.7)
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where the normalization constant in the denominator of (4.7) is given by

p(yk|y1:k−1) =
∫

p(yk|xk) p(xk|y1:k−1) dxk.

That (4.7) is correct can be seen through the following chain of equalities:

p(xk|y1:k) = p(y1:k|xk)p(xk)

p(y1:k)

= p(yk, y1:k−1|xk)p(xk)

p(yk, y1:k−1)

= p(yk|y1:k−1, xk)p(y1:k−1|xk)p(xk)

p(yk|y1:k−1)p(y1:k−1)

= p(yk|y1:k−1, xk) p(y1:k−1, xk) p(xk)

p(yk|y1:k−1) p(y1:k−1) p(xk)

= p(yk|xk)p(xk |y1:k−1)

p(yk|y1:k−1)

= p(xk, yk|y1:k−1)

p(yk|y1:k−1)
.

The decisive elements in (4.7) are p(xk|y1:k−1), which is determined by the system model
(4.1) together with (4.6), and p(yk|xk), which is determined by the observation model
(4.2).

The formulation of the tracking problem as one of density estimation is actually very
powerful inasmuch as it subsumes many other well-known forms of parameter estimation.
All point estimates of xk , such as maximum likelihood, the median, or the conditional
mean, can be obtained as soon as p(xk|y1:k) is known. Consider the minimum mean square
error (MMSE) estimate of xk , which can be formulated as follows. First we define the
mean square error as

ξ(x̂k) = Ep(xk |y1:k)

{|x̂k − xk|2 | y1:k
} =

∫
|x̂k − xk|2 p(xk |y1:k) dxk

= |x̂k|2
∫

p(xk|y1:k) dxk︸ ︷︷ ︸
x̂2
k

+
∫

|xk|2 p(xk|y1:k) dxk︸ ︷︷ ︸
Ep(xk |y1:k )

{
x2
k |y1:k

}
− 2x̂T

k

∫
xk p(xk|y1:k) dxk︸ ︷︷ ︸

2x̂kEp(xk |y1:k){xk |y1:k}

where | · | denotes the Euclidean norm. To calculate the optimal estimate, it is necessary
to take the partial derivative of ξ(x̂k) with respect to x̂k on both sides of the prior equation
and equate it to zero, whereby we find

∂ξ(xk)

∂ x̂ k

= 2x̂k − 2Ep(xk |y1:k) {xk|y1:k} = 0.
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Hence, it is apparent that the optimal MMSE estimator is equivalent to the conditional
mean ,

Ep(xk |y1:k) {xk|y1:k} =
∫

xk p(xk|y1:k) dxk. (4.8)

Similarly, it follows that knowledge of the filtering density p(xk|y1:k−1) enables all other
less general estimates of xk to be readily calculated.

4.2 Wiener Filter

Stochastic filter theory was established by the pioneering work of Norbert Wiener (1949),
Wiener and Hopf (1931), and Andrey Kolmogorov (1941a, b). A Wiener filter provides
the optimal static, linear, MMSE solution, where the mean square error is calculated
between the output of the filter and some desired signal. We discuss the Wiener filter in
this section, because such a filter is equivalent to the Kalman filter described in Section 4.3
without any process noise. Hence, the Wiener filter is in fact a Bayesian estimator (Simon
2006, sect. 8.5.2). We will derive both the time and frequency domain solutions for the
finite impulse response (FIR) filter.

4.2.1 Time Domain Solution

Let x[n] denote the desired signal and let d[n] represent some additive distortion. The
primary assumptions inherent in the Wiener filter are that the second-order statistics of
both x[n] and d[n] are stationary. The corrupted signal is then defined as

y[n] � x[n] + d[n].

The time domain output of the FIR Wiener filter, which is the estimate x̂[n] of the desired
signal x[n], is by definition obtained from the convolution

x̂[n] �
L−1∑
l=0

h[l] y[n − l], (4.9)

where h[n] is the filter impulse response of length L. Upon defining

h �
[
h[0] h[1] · · · h[L − 1]

]T
,

y[n] �
[
y[n] y[n − 1] · · · y[n − L + 1]

]T
,

the output of the filter can be expressed as

x̂ [n] = hT y[n].

The estimation error is ε[n] � x[n] − x̂[n], and the squared-estimation error is given by

ζ � E{εT [n] ε[n]} = E{(x[n] − hT y[n])T (x[n] − hT y[n])}. (4.10)
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which must be minimized. Equation (4.10) can be rewritten as

ζ = E{xT [n] x[n]} − 2 hT rxy + hT Ry h,

where

Ry � E{y[n] yT [n]},
rxy � E{y[n] x[n]}.

The Wiener filter is based on the assumption that the components Ry and rxy are stationary.
In order to solve for the optimal filter coefficients, we set

∂ζ

∂h
= −2 rxy + 2 hT Ry = 0, (4.11)

which leads immediately to the famous Wiener–Hopf equation

Ry h = rxy. (4.12)

The solution for the optimal coefficients is then

ho = R−1
y rxy.

Note that the optimal solution can also be found through the well-known orthogonality
principle (Stark and Woods 1994), which can be stated as

E{y[n − i] ε[n]} = 0 ∀ i = 0, . . . , L − 1. (4.13)

In other words, the orthogonality principle requires that the estimation error ε[n] is
orthogonal to all of the inputs y[n − i] for i = 0, . . . , L − 1 used to form the estimate
x̂[n].

4.2.2 Frequency Domain Solution

In order to derive the Wiener filter in the frequency domain, let us express (4.13) as

E
{

y[n − i]

[
x[n] −

L−1∑
l=0

hopt[l] y[n − l]

]}
= 0 ∀ i = 0, . . . , L − 1.

Equivalently, we can write

rxy[n] − hopt[n] ∗ ry[n] = 0, (4.14)
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where the cross-correlation sequence of x[n] and y[n] as well as the autocorrelation
sequence of y[n] are, respectively,

rxy[l] �
{
E{y[n − l] x[n]}, ∀ l = 0, . . . , L − 1,

0, otherwise,

ry[l] �
{
E{y[n − l] y[n]}, ∀ l = −L + 1, . . . , L − 1,

0, otherwise.

Taking the Fourier transform of (4.14) provides

�XY (ω) − Hopt(ω) �Y (ω) = 0,

where1 rxy[n] ↔ �XY (ω), h[n] ↔ Hopt(ω), and ry[n] ↔ �Y (ω). This leads immediately
to the solution

Hopt(ω) = �XY (ω)

�Y (ω)
. (4.15)

Given that X(ω) and D(ω) are statistically independent by assumption, it follows that

�Y (ω) = �X(ω) + �D(ω),

�XY (ω) = �X(ω).

Hence, we can rewrite (4.15) as

Hopt(ω) = �X(ω)

�X(ω) + �D(ω)
, (4.16)

the form in which the Wiener filter is most often seen. Alternatively, the frequency
response of the filter can be expressed as

Hopt(ω) = 1

1 + �D(ω)

�X(ω)

,

from which it is apparent that when the spectral power of the disturbance comes to
dominate that of the signal, the gain of the filter is reduced. When the signal dominates
the disturbance, on the other hand, the gain increases. In all cases it holds that

0 ≤ |Hopt(ω)| ≤ 1.

As presented here, the classical Wiener filter presents something of a paradox in that
it requires that the desired signal x[n] or its power spectrum �X(ω) is known before the

1 The notation ry[n] ↔ �Y (ω) indicates that ry [n] and �Y (ω) comprise a Fourier transform pair; see Section 3.1.2
for details.
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filter coefficients can be designed. Were this information available, there would be no
need of a Wiener filter. The art of practical Wiener filter design consists of nothing more
than the robust estimation of the desired signal �X(ω) and noise �D(ω) components
appearing in (4.15). References indicating how this can be achieved are presented at the
ends of Sections 6.3.1 and 13.3.5.

4.3 Kalman Filter and Variations

In this section, we present the best known set of solutions for estimating the filtering
density, namely the Kalman filter (KF) (Kalman 1960) and its several variations.

4.3.1 Kalman Filter

The Kalman filter provides a closed form means of sequentially updating p(xk|y1:k) under
two critical assumptions:

• The transition and observation models fk and hk are linear.
• The process and observation noises uk and vk are Gaussian.

As the linear combination of Gaussian r.v.s is also Gaussian, these assumptions taken
together imply that both xk and yk will remain Gaussian for all time k. Note that the
combination of Gaussians in the nonlinear domain, such as the logarithmic domain, results
in a non-Gaussian distribution, as described in Section 9.3.1. As mentioned previously,
under these conditions, the KF is the optimal MMSE estimator.

In keeping with the aforementioned linearity assumption, the state model (4.1–4.2) can
be expressed as

xk = Fk|k−1 xk−1 + uk−1, (4.17)

yk = Hkxk + vk, (4.18)

where Fk|k−1 and Hk are the known transition and observation matrices. The noise terms
uk and vk in (4.17–4.18) are by assumption zero mean, white Gaussian random vector
processes with covariance matrices

Uk = E{ukuT
k }, Vk = E{vkvT

k },

respectively. Moreover, by assumption uk and vk are statistically independent.
By definition, the transition matrix Fk|k−1 has two important properties:

• product rule

Fk|m Fm|n = Fk|n, (4.19)
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• inverse rule

Fk|k−1Fk−1|k = Fk−1|kFk|k−1 = I, (4.20)

which implies that F−1
k|k−1 = Fk−1|k .

Once more let y1:k−1 denote all past observations up to time k − 1, and let ŷk|k−1 denote
the MMSE estimate of the next observation yk given all prior observations, such that,

ŷk|k−1 = E{yk|y1:k−1}.

By definition, the innovation is the difference

sk � yk − ŷk|k−1 (4.21)

between the actual and the predicted observations. This quantity is given the name inno-
vation, because it contains all the “new information” required for sequentially updating
the filtering density p(xk|y1:k); i.e., the innovation contains that information about the
time evolution of the system that cannot be predicted from the state-space model.

The innovations process has three important properties:

• Orthogonality
The innovation process sK at time K is orthogonal to all past observations y1, . . . , yk−1,
such that

E{sKyT
k } = 0 ∀ 1 ≤ k ≤ K − 1.

• Whiteness
The innovations are orthogonal to each other, such that

E{sKsT
k } = 0 ∀ 1 ≤ k ≤ K − 1.

• Reversibility
There is a one-to-one correspondence between the observed data y1:k = {y1, . . . , yk} and
the sequence of innovations s1:k = {s1, . . . , sk}, such that one can always be uniquely
recover from the other (Haykin 2002, sect. 10).

We will now present the principal quantities and relations in the operation of the KF.
Our presentation is intended to convey intuition rather than provide a rigorous derivation.
Those seeking the latter are referred to any one of a number of excellent texts, such as
Haykin (2002, sect. 10), Grewal and Andrews (1993), or Simon (2006, sect. 5.1). Our
presentation of the KF has, roughly speaking, four phases:

1. Provide an expression for calculating the correlation matrix of the innovations process.
2. Obtain an expression for the sequential update of the MMSE state estimate.
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3. Define the Kalman gain, which plays the pivotal role in the sequential state update
considered in phase two.

4. State the Riccati equation, which provides the means to update the state estimation
error covariance matrices required to calculate the Kalman gain.

We begin by stating how the predicted observation may be calculated based on the
current state estimate, according to,

ŷk|k−1 = Hk x̂k|k−1. (4.22)

In light of (4.21) and (4.22), we may write

sk = yk − Hk x̂k|k−1. (4.23)

Substituting (4.18) into (4.23), we find

sk = Hkεk|k−1 + vk, (4.24)

where

εk|k−1 � xk − x̂k|k−1 (4.25)

is the predicted state estimation error at time k, using all data up to time k − 1. It can
be readily shown that εk|k−1 is orthogonal to uk and vk (Haykin 2002, sect. 10.1). Using
(4.24) and exploiting the statistical independence of uk and vk , the correlation matrix of
the innovations sequence can be expressed as

Sk � E
{
sksT

k

} = HkKk|k−1HT
k + Vk, (4.26)

where the predicted state estimation error covariance matrix is defined as

Kk|k−1 � E
{
εk|k−1ε

T
k|k−1

}
. (4.27)

As described previously, the sequential update of the filtering density can be partitioned
into two steps:

• First, there is a prediction , which can be expressed as

x̂k|k−1 = Fk|k−1x̂k−1|k−1, (4.28)

a direct specialization of the Chapman–Kolmogorov equation (4.6). Clearly the predic-
tion is so-called because it is made without the advantage of any information derived
from the current observation yk .
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• The latter information is instead folded into the current estimate through the update or
correction , according to

x̂k|k = x̂k|k−1 + Gksk, (4.29)

where the Kalman gain is defined as

Gk � E{xksT
k }S−1

k , (4.30)

for xk , sk , and Sk given by (4.17), (4.23), and (4.26), respectively. Note that (4.29) is
of paramount importance, as it shows how the MMSE or Bayesian state estimate can be
recursively updated – that is, it is only necessary to premultiply the prior estimate x̂k|k−1
by the transition matrix Fk|k−1, then to add a correction factor consisting of the Kalman
gain Gk multiplied by the innovation sk . Hence, the entire problem of recursive MMSE
estimation under the assumptions of linearity and Gaussianity reduces to the calculation of
the Kalman gain (4.30), whereupon the state estimate can be updated according to (4.29).
From (4.28) and (4.29), we deduce that the KF has the predictor–corrector structure
shown in Figure 4.2.

The Kalman gain (4.30) can be efficiently calculated according to

Gk = Kk|k−1HT
k S−1

k , (4.31)

where the correlation matrix Sk of the innovations sequence is defined in (4.26). The
Riccati equation then specifies how Kk|k−1 can be sequentially updated, namely as,

Kk|k−1 = Fk|k−1 Kk−1 FT
k|k−1 + Uk−1. (4.32)

The matrix Kk in (4.32) is, in turn, obtained through the recursion,

Kk = Kk|k−1 − GkHkKk|k−1 = (I − GkHk)Kk|k−1. (4.33)

This matrix Kk can be interpreted as the covariance matrix of the filtered state estimation
error (Haykin 2002, sect. 10), such that,

Kk �
{
εkε

T
k

}
,

where
εk � xk − x̂k|k.

Note the critical difference between εk|k−1 and εk, namely, εk|k−1 is the error in the state
estimate made without knowledge of the current observation yk, while εk is the error in
the state estimate made with knowledge of yk.

+
+

−
yk +Gk

Fk|k-1 z-1I

sk xk|k 

Hk

ˆ

yk|k-1ˆ

xk|k-1ˆ

xk-1|k-1ˆ

Figure 4.2 Predictor–corrector structure of the Kalman filter
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Algorithm 4.1 Calculations for Kalman filter based on the Riccati equation

Input vector process: y1, y2, . . . , yk

Known parameters:

• state transition matrix: Fk|k−1

• observation matrix: Hk

• covariance matrix of process noise: Uk

• covariance matrix of measurement noise: Vk

• initial diagonal loading: σ 2
D

Initial conditions:

x̂1|0 = x0; K1|0 = 1

σ 2
D

I

Computation: k = 1, 2, 3, . . .

x̂k|k−1 = Fk|k−1 x̂k−1|k−1 (prediction) (4.34)

Kk|k−1 = Fk|k−1 Kk−1 FT
k|k−1 + Uk−1 (4.35)

Sk = Hk Kk|k−1 HT
k + Vk (4.36)

Gk = Kk|k−1 HT
k S−1

k (4.37)

sk = yk − Hk x̂k|k−1 (4.38)

x̂k|k = x̂k|k−1 + Gk sk (correction) (4.39)

Kk = (I − Gk Hk) Kk|k−1 (4.40)

The calculation of the KF based on the Riccati equation is summarized in Algorithm
4.1. A schematic of the KF is shown in Figure 4.3. The predicted state estimate x̂k|k−1

is projected into the observation space as in (4.22) to obtain the predicted observation
ŷk|k−1 and the innovation sk as in (4.23). The predicted state-error covariance matrix
Kk|k−1 is obtained from Kk−1 according to (4.32). As Kk|k−1 includes the contribution
of the positive-definite2 covariance matrix Uk of the process noise, it will typically be
larger than Kk−1. The covariance matrix Kk|k−1 is also projected into the observation
space according to (4.26) to obtain the covariance matrix Sk of the innovation sk. Both
Kk|k−1 and Sk are then used to calculate the Kalman gain Gk as in (4.31), whereupon the
state estimate update proceeds according to (4.29).

Having defined all necessary quantities, the connection between the KF and the sequen-
tial Bayesian filtering algorithm (4.6–4.7) can now be made explicit by writing

2 A real symmetric matrix M is positive definite if zT Mz > 0 ∀ nonzero vectors z.
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yk

Sk

Kk

Kk|k-1

Hkxk|k-1

xk|k-1ˆ

ˆ

ŷk|k-1

State Space

Observation 
Space

Figure 4.3 Schematic illustrating the operation of the Kalman filter

• the prediction as

p(xk|y1:k−1) = N (xk; x̂k|k−1, Kk|k−1), (4.41)

• and the correction as

p(xk|y1:k) = N (xk; x̂k|k, Kk), (4.42)

where N (x; μ, �) is the multidimensional Gaussian pdf with mean vector μ and covari-
ance matrix �. In particular, it is now obvious that (4.41–4.42) are specializations of
(4.6–4.7), respectively, for the case wherein all pdfs are Gaussian and transition and
observation functions are linear in xk .

4.3.2 Extended Kalman Filter

While the KF is optimal under the conditions discussed at the beginning of Section 4.3.1,
these conditions seldom hold in most practical applications. In particular, it often happens
that the state and observation equations (4.1–4.2) are not linear. One of the first attempts
to generalize the KF to handle such nonlinearities was the extended Kalman filter (EKF).
To formulate the EKF, we first posit a less restrictive state-space model, namely,

xk = Fk|k−1xk−1 + uk−1, (4.43)

yk = Hk(xk) + vk, (4.44)

where the observation functional3 Hk(xk) is in general nonlinear and time-varying. The
main idea behind the EKF is then to linearize this functional about the most recent state

3 Most authors formulate the extended KF with a nonlinear process functional Fk|k−1(xk) in addition to the observa-
tion functional Hk(xk); see, for example, Haykin (2002, sect. 10.10). This more general formulation is not required
for the description of the speaker tracking system in Section 10.2.
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estimate x̂k|k−1. The corresponding linearization can be written as

Hk(x̂k|k−1) � ∂Hk(x)

∂x

∣∣∣∣
x = x̂k|k−1

, (4.45)

where entry 4 (i, j) of Hk(x) is the partial derivative of the ith component of Hk(x) with
respect to the j th component of x.

Based on (4.45), we can express the first-order Taylor series of Hk(xk) as

Hk(xk) ≈ Hk(x̂k|k−1) + Hk(x̂k|k−1)
(
xk − x̂k|k−1

)
. (4.46)

Using this linearization, the nonlinear state-space equations (4.43–4.44) can be written
as

xk = Fk|k−1xk−1 + uk−1, (4.47)

yk ≈ Hk(x̂k|k−1) xk + vk, (4.48)

where we have defined

yk � yk − [
Hk(x̂k|k−1) − Hk(x̂k|k−1) x̂k|k−1

]
. (4.49)

As everything on the right-hand side of (4.49) is known at time k, the term yk can be
regarded as an observation.

The EKF is obtained by applying the computations in (4.34–4.40) to the linearized
model in (4.47–4.49), whereupon we find

x̂k|k−1 = Fk|k−1x̂k−1|k−1 (4.50)

x̂k|k = x̂k|k−1 + Gk sk (4.51)

sk = yk − Hk(x̂k|k−1)x̂k|k−1 = yk − Hk(x̂k|k−1). (4.52)

The use of such a linearized model can be equated with the Gauss–Newton method ,
wherein higher order terms in the series expansion (4.46) are neglected. The connection
between the KF and the Gauss–Newton method is well known, as is the fact that the
convergence rate of the latter is superlinear if the error y − Hk(x) is small near the optimal
solution. Further details are given by Bertsekas (1995, sect. 1.5).

A linear approximation such as that used in the EKF can produce large approximation
errors for severely nonlinear functions. Such considerations led to the development of a
further refinement of the KF, which we consider next.

4.3.3 Iterated Extended Kalman Filter

As the EKF uses a first-order Taylor series expansion (4.46), its performance can be poor
if the current state estimate x̂k|k−1 is far from the true state x. A further refinement of the

4 It should always be borne in mind that Hk(x) is a matrix .
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EKF, dubbed the iterated extended Kalman filter (IEKF), uses several local iterations at
each time step k to move the state estimate closer to the true state.

In order to develop the IEKF, we note that the update in the EKF can be expressed
as,

Sk(x̂k|k−1) = Hk(x̂k|k−1)Kk|k−1H
T

k (x̂k|k−1) + Vk, (4.53)

Gk(x̂k|k−1) = Kk|k−1H
T

k (x̂k|k−1)S
−1
k (x̂k|k−1), (4.54)

sk(x̂k|k−1) = yk − Hk(x̂k|k−1), (4.55)

x̂k|k = x̂k|k−1 + Gk(x̂k|k−1) sk(x̂k|k−1), (4.56)

where we have explicitly indicated the dependence of the relevant quantities on x̂k|k−1.
As described by Jazwinski (1970, sect. 8.3), in the IEKF, (4.53–4.56) are replaced with
the local iteration,

Sk(ηi ) = Hk(ηi) Kk|k−1H
T
(ηi ) + Vk, (4.57)

Gk(ηi ) = Kk|k−1 H
T

k (ηi )S
−1
k (ηi ), (4.58)

sk(ηi ) = yk − Hk(ηi), (4.59)

ζ k(ηi ) � sk(ηi) − Hk(ηi )
(
x̂k|k−1 − ηi

)
, (4.60)

ηi+1 � x̂k|k−1 + Gk(ηi )ζ k(ηi ), (4.61)

where Hk(ηi ) is the linearization of Hk(ηi ) about ηi . The local iteration is initialized at
i = 1 by setting

η1 = x̂k|k−1.

Note that η2 = x̂k|k as defined in (4.56). Hence, if the local iteration is run only once,
the IEKF reduces to the EKF. Normally (4.57–4.61) are repeated, however, until there
are no substantial changes between ηi and ηi+1. Both Gk(ηi) and Hk(ηi) are updated for
each local iteration. After the last iteration I , we set

x̂k|k = ηI

and this value is used to update Kk and Kk+1|k . Jazwinski (1970, sect. 8.3) reports that
the IEKF provides faster convergence in the presence of significant nonlinearities in the
observation equation, especially when the initial state estimate η1 = x̂k|k−1 is far from the
optimal value.

4.3.4 Numerical Stability

All variants of the KF discussed in Sections 4.3.1 through 4.3.3 are based on the Ric-
cati equation (4.32–4.33). Unfortunately, the Riccati equation possesses poor numerical
stability properties (Haykin 2002, sect. 11) as can be seen from the following: Moving
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(4.32) one step forward in time, we have

Kk+1|k = Fk+1|k Kk FT
k+1|k + Uk. (4.62)

Substituting (4.33) into (4.62) provides

Kk+1|k = Fk+1|k Kk|k−1 FT
k+1|k − Fk+1|k Gk Hk Kk|k−1 FT

k+1|k + Uk. (4.63)

Manipulating (4.31), we can write

Sk GT
k = Hk Kk|k−1. (4.64)

Then upon substituting (4.64) for the matrix product HkKk|k−1 appearing in (4.63), we
find

Kk+1|k = Fk+1|k Kk|k−1 FT
k+1|k − Fk+1|k Gk Sk GT

k FT
k+1|k + Uk (4.65)

which illustrates the problem inherent in the Riccati equation: As Kk+1|k is the covariance
matrix of the predicted state error εk+1|k , it must be positive definite. Similarly, Sk is the
covariance matrix of the innovation sk and must also be positive definite. Moreover, if
Fk+1|k and Gk are full rank, then the terms Fk+1|kKk|k−1FT

k+1|k and Fk+1|kGkSkGT
k FT

k+1|k
are also positive definite. Therefore, (4.65) implies that a positive-definite matrix Kk+1|k
must be calculated as the difference of the positive-definite matrix Fk+1|kKk|k−1FT

k+1|k +
Uk and positive-definite matrix Fk+1|kGkSkGT

k FT
k+1|k . Due to finite precision errors, the

resulting matrix Kk+1|k can become indefinite after a sufficient number of iterations, at
which point the KF exhibits a behavior known as explosive divergence (Haykin 2002,
sect. 11).

As discussed in Section 10.2.1, a more stable implementation of the KF can be devel-
oped based on the Cholesky decomposition (see Section B.3) or square-root of Kk+1|k ,
which is by definition that unique lower triangular matrix K1/2

k+1|k achieving

Kk+1|k � K1/2
k+1|k KT /2

k+1|k.

The Cholesky decomposition of a matrix exists if and only if that matrix is symmetric
and positive definite (Golub and Van Loan 1996a, sect. 4.2.3). The basic idea behind the
square-root implementation of the KF is to update K1/2

k+1|k instead of Kk+1|k directly. By

updating or propagating K1/2
k+1|k forward in time, it can be assured that Kk+1|k remains

positive definite. Thereby, a numerically stable algorithm is obtained regardless of the
precision of the machine on which it runs. Moreover, a square-root implementation effec-
tively doubles the numerical precision of the direction form implementation (Simon 2006,
sect. 6.3–6.4). This added precision comes at the price, however, of somewhat more com-
putation. Section 10.2.1 presents a procedure whereby K1/2

k+1|k can be efficiently propagated
in time using a series of Givens rotations; the latter are described in Section B.15.
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4.3.5 Probabilistic Data Association Filter

The probabilistic data association filter (PDAF) is a generalization of the KF wherein
the Gaussian pdf associated with the location of a speaker or a track is supplemented
with a pdf for spurious observations or clutter (Bar-Shalom and Fortmann 1988, sect.
6.4). Through the inclusion of the clutter model, the PDAF is able to make use of seve-
ral observations Yk = {y(i)

k }mk

i=1 for each time instant, where mk is the total number of
validated observations for time k; the process of validation will be described shortly. The
basic assumption inherent in the PDAF is that the current state is normally distributed
with mean x̂k|k−1 and covariance matrix Kk|k−1, such that

p(xk|Y1:k−1) = N (xk; x̂k|k−1, Kk|k−1),

where x̂k|k−1 and Kk|k−1 are the predicted state estimate and state estimation error covari-
ance matrix given by (4.28) and (4.32), respectively.

The first step in the update is the validation of observations, which occurs as follows.
We assume that the true observation yk at time k conditioned on all prior observations
Yk is normally distributed according to

p(yk|Yk) = N (yk; ŷk|k−1, Sk)

where ŷk|k−1 is the predicted observation (4.22), and Sk is the correlation matrix (4.26)
of the innovations sequence sk . Now define the volume of the validation region Vk(γ ) as
that region of the observation space where the true observation will be found with high
probability:

Vk(γ ) � {y : (y − Hk x̂k|k−1)
T S−1

k (y − Hk x̂k|k−1) ≤ γ }
= {y : sT

k S−1
k sk ≤ γ }, (4.66)

where sk is the innovation defined in (4.21) and γ is a gating parameter whose function is
explained next. The validation region is an ellipsoid in the observation space that contains
a given amount of probability mass within the smallest possible volume. Observations
falling within this validation region are treated as valid, those falling outside it are ignored.
The process of validation is depicted graphically in Figure 4.4. The basic problem solved

ŷk|k-1
(1)

yk
(1) 

yk
(3)

yk
(4)

yk
(2)

yk
(5)

Figure 4.4 Validation of observations. Observations y(1)
k and y(4)

k are ignored as they fall outside
the validation region
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by a data association filter is firstly either to associate a validated observation with a track,
or to discard it as arising from the clutter.

The gate probability is defined as the probability that the correct observation falls
within the gate,

PG � P {yk ∈ Vk(γ )}. (4.67)

At most one observation can be attributed to the track itself. The remaining observations
are associated with a background or clutter model , which implies they will be ignored
for the purpose of updating the individual state estimates. In order to determine which
observations are attributed to actual tracks and which to the clutter model, let us begin
by defining the association events

θ
(i)
k � {y (i)

k is the correct observation for track i at time k}, (4.68)

θ
(0)
k � {all observations are clutter at time k}. (4.69)

The posterior probability of each association event can be expressed as

β
(i)
k = P(θ

(i)
k |Y1:k)∀ i = 0, . . . ,mk.

As the events {θ(i)
k }mk

i=0 are exhaustive and mutually exclusive, we have

mk∑
i=0

β
(i)
k = 1. (4.70)

Conditioned on each association event θ
(i)
k , let us define the state estimate

x̂(i)
k|k � E{xk|θ(i)

k , Y1:k} = x̂k|k−1 + Gks(i)
k , (4.71)

where

x̂k|k−1 = Fk|k−1 x̂k−1|k−1,

and

s(i)
k = y(i)

k − Hk x̂k|k−1 (4.72)

is the innovation for observation y(i)
k . Under the null association event θ

(0)
k , no observation

is associated with the track, and the state update reduces to

x̂(0)
k|k = x̂k|k−1. (4.73)
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Moreover, invoking the total probability theorem, the filtered state estimate can be
expressed as

x̂k|k =
mk∑
i=0

x̂(i)
k|kβ

(i)
k . (4.74)

Substituting (4.72) and (4.73) into (4.74), we find that the combined update can be
expressed as

x̂k|k = x̂k|k−1 + Gk sk, (4.75)

where the combined innovation is

sk =
mk∑
i=1

s(i)
k β

(i)
k . (4.76)

While it may appear otherwise, (4.75) is actually highly nonlinear due to the dependence
of the association events {θ(i)

k } on the innovations.
The Riccati equation must be suitably modified to account for the additional uncertainty

associated with the multiple innovations {s(i)
k }, as well as the possibility of the null event

θ
(0)
k . In particular, it is necessary to replace (4.33) with,

Kk = β
(0)
k Kk|k−1 + (1 − β

(0)
k ) Kc

k + K̃k, (4.77)

where

Kc
k � (I − GkHk)Kk|k−1 (4.78)

is the covariance of the state in the absence of uncertainty as to the correct observation,
and

K̃k � Gk

[(
mk∑
i=1

β
(i)
k s(i)

k s(i)T
k

)
− sksT

k

]
GT

k . (4.79)

Comparing (4.33) and (4.78), it is clear that Kc
k is equivalent to the filtered state

estimation-error correlation matrix from the conventional KF. A proof of (4.77–4.79) can
be found in Bar-Shalom and Fortmann (1988, Appendix D.3). As it is not known which
of the mk validated measurements is correct, the term K̃k in (4.77), which is positive
semidefinite, increases the covariance of the updated state to reflect the uncertainty of
the origin of each observation.

We next consider how the association posterior probabilities β
(i)
k required in (4.74) can

be evaluated. First, we express the probabilities explicitly as

β
(i)
k � P(θ

(i)
k |Y1:k) = P(θ

(i)
k |Yk,mk, Y1:k−1) ∀ i = 1, . . . , mk. (4.80)
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The additional conditioning on mk in (4.80) affects nothing, as this information is already
contained in Yk. Applying Bayes’ rule enables (4.80) to be rewritten as

β
(i)
k = p(Yk|θ(i)

k , mk, Y1:k−1) P (θ
(i)
k |mk, Y1:k−1)

p(Yk|mk, Y1:k−1)
∀ i = 0, . . . , mk, (4.81)

where

p(Yk|mk, Y1:k−1) =
mk∑
j=0

p(Yk|θ(j)

k , mk, Y1:k−1) P (θ
(j)

k |mk, Y1:k−1).

The pdf of the correct observation y(i)
k is

p(y(i)
k |θ(i)

k , mk, Y1:k−1) = P −1
G N (y(i)

k ; ŷk|k−1, Sk) = P −1
G N (s(i)

k ; 0, Sk)

= P −1
G |2πSk|1/2 exp

[
−1

2
s(i)T
k S−1

k s(i)
k

]
, (4.82)

where PG is the gate probability (4.67); i.e., the probability that the correct observation
falls within the validation gate. The term P −1

G appears in (4.82) to correct for having
restricted the normal density to the validation gate. The pdf in (4.81) can thus be rewritten
as

p(Yk|θ(i)
k , mk, Y1:k−1) =

{
V

−mk+1
k P −1

G N (s(i)
k ; 0, Sk), ∀ i = 1, . . . , mk,

V
−mk

k , for i = 0,
(4.83)

where Vk is the volume of the validation region, which we will shortly define. Let
PF (mk) denote the probability mass function (PMF) of the number of false measure-
ments, and let PD denote the track detection probability; i.e., the probability that the
correct observation is detected at all. Bar-Shalom and Fortmann (1988, Appendix D.4)
prove that the a priori probability of β

(i)
k given only the number of validated observations

is P(β
(i)
k |mk, Y1:k−1) = P(β

(i)
k |mk) which can be calculated as

P(β
(i)
k |mk) =

⎧⎪⎨
⎪⎩

1
mk

PDG

[
PDG + (1 − PDG)

PF (mk)

PF (mk−1)

]−1
, ∀ i = 1, . . . ,mk

(1 − PDG)
PF (mk)

PF (mk−1)

[
PDG + (1 − PDG)

PF (mk)

PF (mk−1)

]−1
, for i = 0,

(4.84)

where PDG = PDPG. There are two possible models for the PMF:

1. Parametric model
The parametric model is a Poisson density with parameter λVk ,

PF (mk) = e−λVk
(λVk)

mk

mk!
∀ mk = 0, 1, 2, . . . , (4.85)
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where λ is the average number of false observations per unit volume. As Vk is the
volume of the validation region, λVk is the number of false observations expected to
be observed within the track gate.

2. Nonparametric model
The nonparametric model is a “diffuse” prior,

PF (mk) = 1

N
∀ mk = 0, 1 . . . , N − 1, (4.86)

where N may be as large as is necessary, inasmuch as this factor will cancel out of
(4.84).

Substituting the parametric model (4.85) in (4.84), we find the Poisson model

P(β
(i)
k |mk) =

⎧⎪⎪⎨
⎪⎪⎩

PDG

PDG mk + (1 − PDG) λVk

, ∀ i = 1, . . . , mk,

(1 − PDG) λ Vk

PDG mk + (1 − PDG) λVk

, for i = 0.

(4.87)

Substituting the nonparametric or “diffuse” prior (4.86) in (4.84), on the other hand,
provides

P(β
(i)
k |mk) =

{
PDG/mk, ∀ i = 1, . . . , mk,

1 − PDG, for i = 0.
(4.88)

Note that the nonparametric model (4.88) can be obtained from the Poisson model (4.87)
by simply substituting λ = mk/Vk, which is equivalent to replacing the Poisson parameter
with the spatial density of validated observations.

The volume of the elliptical validation region (4.66) is

Vk = cny |γ Sk|1/2 = cny γ
ny/2|Sk|1/2, (4.89)

where γ is the gate parameter in (4.66), ny is the dimension of the observation y, and
cny is the volume of the ny-dimensional unit hypersphere.

Substituting (4.83) and (4.89) into (4.81) and manipulating provides

β
(i)
k = e(i)

b +∑mk

j=1 e(j)
∀ i = 1, . . . , mk, (4.90)

β
(0)
k = b

b +∑mk

j=1 e(j)
, (4.91)

where

e(i) � exp

(
−1

2
s(i)T
k S−1

k s(i)
k

)
,



Bayesian Filters 115

State Space

Observation 
Space

yk

Sk

Kk

Kk|k-1

xk|k-1ˆ

Hkxk|k-1ˆ
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Figure 4.5 Schematic illustrating the operation of the probabilistic data association filter

and

b � λ|2πSk|1/2 (1 − PDG)/PD

= (2π/γ )ny/2λ Vk cny (1 − PDG)/PD. (4.92)

The nonparametric model is the same as the above except that λVk must be replaced with
mk in (4.92).

Figure 4.5 illustrates schematically the operation of the PDAF. Comparing Figure 4.3
with Figure 4.5, it is clear that the state estimation error covariance matrix Kk|k−1 is
projected onto the observation space to obtain the innovations covariance matrix Sk. Once
ŷk|k−1 and Sk are known, the multiple observations can be probabilistically associated with
either the actual track or the clutter model, as in (4.81).

4.3.6 Joint Probabilistic Data Association Filter

The joint probabilistic data association filter (JPDAF) extends the PDAF in order to
handle the case of multiple active tracks (Bar-Shalom and Fortmann 1988, sect. 9.3), in
addition to multiple observations for each time instant. This capacity will prove useful
for the development in Section 10.3, where the acoustic tracking of multiple simultaneous
speakers is considered.

Consider the set Yk = {y(j)

k }mk

j=1 of all observations occuring at time instant k and let

Y1:K−1 = {Yk}K−1
k=1 denote the set of all past observations. The first step in the JPDAF

algorithm is the evaluation of the conditional probabilities of the joint association events

θ =
mk⋂
i=1

θ(j,tj ),
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where the atomic events are defined as

θ(j,t) � {observation j originated from track t } ∀ j = 1, . . . , mk and t = 0, 1, . . . , T .

Here, tj denotes the index of the track with which the j th observation is associated in the
current joint association event. As before, t = 0 denotes the clutter model which generates
only spurious observations.

Shortly we must derive the posterior probabilities of the joint association events. For
this purpose, validation gates on the individual tracks will not be used. Rather, it will
be assumed that each observation lies within the validation region of each track, which
implies that PG = 1.

To avoid undue computational burden, validation gates will be used for the selection of
feasible joint events . Through the mechanism we now present, we will avoid considering
those joint events with negligible probabilities. Let us define the validation matrix as

� � [ω(j,t)] ∀ j = 1, . . . , mk, t = 0, 1, . . . , T ,

with binary elements ω(j,t) indicating whether measurement j lies in the validation gate
of track t . Inasmuch as the track t = 0 corresponds to the clutter model, from which all
observations might have originated, the corresponding column in � contains only 1’s.
Consider the scenario with three tracks and five observations depicted in Figure 4.6. The
corresponding validation matrix is

� =

⎡
⎢⎢⎢⎣

1 0 1 0
1 1 0 0
1 1 1 1
1 0 1 1
1 1 0 1

⎤
⎥⎥⎥⎦ .

Considering the validation matrix, the first observation may, as stated previously, have
come from the clutter model; hence ω(1,0) = 1. Examining Figure 4.6, it is clear that y(1)

k

ŷk|k-1
(2)

ŷk|k-1
(3)

ŷk|k-1
(1)

yk
(1)

yk
(4)

yk
(5)

yk
(2)

yk
(3)

Figure 4.6 Distribution of five observations {y(j)

k }j with respect to the validation regions for three

tracks centered about the predicted observations {ŷ(t)
k|k−1}t .
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is well outside the validation region for Track 1, which is centered around ŷ(1)
k|k−1; hence,

ω(1,1) = 0. We observe, however, that y(1)
k falls within the validation region of Track 2,

centered at ŷ(2)
k|k−1, but outside the validation region of Track 3, centered at ŷ(3)

k|k−1; hence,
ω(1,2) = 1 and ω(1,3) = 0. The validation of the other elements in � proceeds similarly.

The joint association event θ can be expressed as the matrix

�̂(θ) = [ω̂(j,t)(θ)]

which comprises the components in � corresponding to the associations in θ , such that

ω̂(j,t)(θ) �
{

1, if θ(j ,t) ⊂ θ ,

0, otherwise.
(4.93)

A feasible event is defined as an event wherein:

• an observation has exactly one source, which may be the clutter model, such that

T∑
t=0

ω̂(j,t)(θ) = 1 ∀ j = 1, 2, . . . , mk;

• no more than one observation can originate from any track, such that the track detection
indicator ,

δ(t)(θ) �
mk∑
j=1

ω̂(j,t)(θ), (4.94)

satisfies

δ(t)(θ) ≤ 1 ∀ t = 1, 2, . . . , T .

Given this definition, the matrices �̂ can be constructed by scanning � and picking one
nonzero element for each row and one nonzero element for each column, except for
column t = 0, which corresponds to a false alarm and thus may have an unrestricted
number of nonzero elements.

The track detection indicator (4.94) specifies whether track t has been detected in θ ,
which implies that an observation has been associated with it. Let us also define an
observation association indicator as

τ (j)(θ) �
T∑

t=1

ω̂(j,t)(θ) ∀ j = 1, 2, . . . , mk (4.95)
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to indicate whether an observation j has been associated with an actual track in θ . Then
the number of unassociated or false observations in θ is

φ(θ) �
mk∑
j=1

[
1 − τ (j)(θ)

]
. (4.96)

We are now ready to derive the conditional probability of an association event θk at
time k. We begin by applying Bayes’ rule as

P(θ |Y1:k) = P(θk|Yk, Y1:k−1) = 1

c
p(Yk|θk, Y1:k−1) P (θ k|Y1:k−1)

= 1

c
p(Yk|θk, Y1:k−1) P (θk), (4.97)

where c is the normalization constant required to ensure that P(θ |Y1:k) is a valid dis-
crete probability distribution. Note that the unneeded conditioning on Y1:k−1 in the term
P(θk|Y1:k−1) has been eliminated in the last line of (4.97). The pdf on the right-hand
side of (4.97) can be expressed as

p (Yk|θk, Y1:k−1) =
mk∏
j=1

p
(

y(j)

k |θ(j,tj )

k , Y1:k−1

)
. (4.98)

The conditional pdf of a single observation conditioned on its track of origin is then
assumed to be

p
(

y(j)

k |θ(j,tj )

k , Y1:k−1

)
=
{
N (tj )

(
y(j)

k

)
, if τ (j )(θ k ) = 1,

V −1, if τ (j )(θ k ) = 0,
(4.99)

where V is the volume of the observation space. The observation associated with track
tj has the pdf

N (tj )
(

y(j)

k

)
= N

(
y(j)

k ; ŷ
(tj )

k , S
(tj )

k

)
, (4.100)

where ŷ
(tj )

k and S
(tj )

k denote, respectively, the predicted observation and innovation covari-
ance matrix associated with track tj . As implied by the second condition in (4.99),
observations unassociated with any track are assumed to be uniformly distributed in the
entire volume V of the observation space.

Using (4.99), the pdf (4.98) can be written as

p(Yk|θk, Y1:k−1) = V −φ(θk)

mk∏
j=1

[
N (tj )

(
y(j)

k

)]τ (j)(θk)

. (4.101)
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In (4.101), V −1 is raised to the power φ(θ), the total number of false observations in event
θk , and the observation association indicator τ (j)(θk) selects the pdfs of the observations
associated with actual tracks in θk .

Next, it is necessary to calculate the prior probability P(θk) of the association event
θk , which is the last factor in (4.97). Let δ(θ k) denote the vector of track detection
indicators (4.94) corresponding to θk, and let φ(θ k) denote the total number (4.96) of
false observations. Note that both δ(θk) and φ(θ k) are completely determined given θk.
Hence, we can write

P(θk) = P(θk, δ(θk), φ(θ k)). (4.102)

This joint probability can be rewritten as

P(θ k) = P(θk|δ(θk), φ(θ k)) P (δ(θk), φ(θ k)). (4.103)

The first term in (4.103) can be calculated beginning with the assumption that in
association event θk, the set of tracks that are detected is equivalent to mk − φ(θk),
the number of observations actually associated. The number of measurement-to-track
assignment events θk in which the same set of tracks is detected, is given by the number
of permutations of the mk measurements taken mk − φ(θ k) at a time, where mk − φ(θ k)

is the number of tracks to which a measurement may be assigned under the same detection
event. Therefore, assuming that each such event is equally likely a priori , we find

P(θ k|δ(θ k), φ(θk)) =
(

mk

mk − φ(θ k)

)−1

= φ(θ k)! (mk − φ(θ k))!

mk!
. (4.104)

The last factor in (4.103) can be expressed as

P(δ(θk), φ(θ k)) =
T∏

t=1

(
P

(t)
D

)δ(t)(θk) (
1 − P

(t)
D

)1−δ(t)(θk)

PF (φ(θ k)), (4.105)

where P
(t)
D is the detection probability of track t , and PF (φ(θ k)) is the prior PMF of the

number of false observations. The indicators δ(t)(θk) have been used in (4.105) to select
probabilities of detection and non-detection events according to the association event θk

under consideration.
Substituting (4.104) and (4.105) into (4.103) enables the prior probability of θk to be

expressed as

P(θk) = φ(θ k)!

mk!
PF (φ(θ k))

T∏
t=1

(
P

(t)
D

)δ(t)(θk) (
1 − P

(t)
D

)1−δ(t)(θk)

. (4.106)
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Then, substituting (4.101) and (4.106) into (4.97), we obtain the a posteriori probability
of θk as

P(θ k|Y1:k) = 1

c

φ!

mk!
PF (φ)V −φ

mk∏
j=1

[
N (tj )(y(j)

k )
]τ (j) T∏

t=1

(
P

(t)
D

)δ(t) (
1 − P

(t)
D

)1−δ(t)

,

(4.107)
where the dependence of φ, δ(t) and τ (j) on the association event θk has been suppressed
out of notational convenience.

Similar to the PDAF, the JPDAF has two versions which are distinguished by the
definition of the PMF PF (φ) over the number of false observations. The parametric
JPDAF uses the Poisson PMF (4.85) in (4.107), which leads immediately to the cancel-
lation of the terms φ! and V φ . Moreover, the terms e−λV and mk! also cancel, as they
appear in all numerator terms as well as the denominator c of (4.107). Hence, under the
Poisson prior, the joint association posterior probabilities can be expressed as

P(θk|Y1:k) = λφ

c′

mk∏
j=1

[
N (tj )(y(j)

k )
]τ (j) T∏

t=1

(
P

(t)
D

)δ(t) (
1 − P

(t)
D

)1−δ(t)

, (4.108)

where c′ is the new normalization constant. The nonparametric JPDAF uses the diffuse
prior (4.86), which we repeat as

PF (φ) = ε ∀ φ. (4.109)

Substituting (4.109) into (4.107) and canceling the constants ε and mk! yields

P(θk|Y1:k) = 1

c

φ!

V φ

mk∏
j=1

[
N (tj )

(
y(j)

k

)]τj
T∏

t=1

(
P

(t)
D

)δ(t) (
1 − P

(t)
D

)1−δ(t)

.

The marginal association probabilities corresponding to (4.90–4.91) are obtained from
the joint probabilities by summing over all joint events in which the marginal event of
interest occurs. Using the definition (4.93), this summation can be written as

β(j,t) � P(θ(j,t)|Y1:k) =
∑

θ

P(θ |Y1:k) ω̂(j,t)(θ) ∀ j = 1, . . . , mk and t = 0, 1, . . . , T .

(4.110)
For any given track, it is only necessary to marginalize out the effect of all other tracks
to obtain the required a posteriori probabilities. Thereafter, the state update for each
track can be made separately according to (4.72–4.76). We will, however, omit these
straightforward details.

Figure 4.7 illustrates schematically the operation of the JPDAF. Comparing Figure 4.5
with Figure 4.7, it is clear that the principal extension of the JPDAF with respect to the
PDAF is the inclusion of the capacity to handle multiple tracks in addition to multiple
observations. Observe that the JPDAF maintains separate state spaces for each track, but
there is a single observation space for all tracks. Once, the probabilistic data association
has been performed at each time step, the state estimates are then updated indepen-
dently.
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Figure 4.7 Schematic illustrating the operation of the joint probabilistic data association filter

4.4 Particle Filters

We now begin our exposition of the second class of filters following from the Bayesian
formulation (4.6–4.7). Substantial development of numerical approaches based on sequen-
tial Monte Carlo methods within nonlinear state-space estimation began in the nineties
even though first applications had been presented 20 years before (Handshin and Mayne
1969). The elegance of these methods lies in the combination of the powerful Monte
Carlo sampling technique – which will be discussed in Section 4.4.1 – with Bayesian
inference, which forms the basis of all methods discussed in this chapter. Such methods,
have, in particular, been used for parameter and state estimation. For the latter it is com-
monly referred to as particle filtering . We will postpone discussing the reason behind the
designation “particle” until the principal characteristics of the filter have been presented.

In Section 4.3, we were able to develop an algorithm for sequentially updating the
filtering density p(xk|y1:k) by assuming all relevant pdfs appearing in (4.6–4.7) to be
Gaussian, which is a very tractable, if limited, assumption. The particle filter (PF) is
founded on a different set of methods enabling p(xk|y1:k) to be sequentially updated
when the Gaussian assumption is relaxed.

4.4.1 Approximation of Probabilistic Expectations

In this section we will consider different ways to approximate pdfs p(x) which will be
used to evaluate expectations of the form

Ep(x){f(x)} =
∫

f(x) p(x) dx, (4.111)
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GridGaussian MixtureSingle Gaussian Monte Carlo

Approximation Non-Gaussian Distribution

Figure 4.8 Different approximations of a non-Gaussian distribution

where f(x) is some arbitrary vector-valued function. This capacity is useful in that forming
the MMSE state estimate as in (4.8) requires evaluating an integral of the form (4.111).
The vector function f(x) can, however, have other forms such as that required to estimate
higher order moments of x. Eventually, we will replace p(x) in (4.111) with the filtering
density p(xk|y1:k), which is potentially highly non-Gaussian. Several different approxi-
mations of non-Gaussian pdfs are shown in Figure 4.8. We will discuss the merits and
drawbacks of each.

Single Gaussian

Due to its analytic tractability, the simplest method for approximating the filtering density
is with a single Gaussian pdf. The KF described in Section 4.3.1 assumes that the filtering
density p(xk|y1:k) is represented by a single Gaussian pdf as in (4.42). The expectation
(4.111) can then be approximated as

∫
x

f(x) p(x) dx ≈
∫

x
f(x)N (x;μ,�) dx, (4.112)

where μ and � are, respectively, the mean vector and covariance matrix of the approxi-
mate pdf. From Figure 4.8 it is apparent, however, that a single Gaussian cannot provide
a good approximation of general non-Gaussian pdfs.

Gaussian Mixture Model

A mixture model uses a weighted combination of pdfs of a particular form to model an
arbitrary pdf. The Gaussian mixture model (GMM) is defined as the weighted sum of M

Gaussian pdfs according to

p(x) �
M∑

m=1

wmN (x;μm, �m), (4.113)
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where the weights satisfy 0 ≤ wm ≤ 1 ∀ m = 1, . . . ,M and
∑M

m=1 wm = 1. Through the
use of a sufficient number of Gaussian components, any pdf can be approximated to
arbitrary accuracy.

Substituting (4.113) into (4.111), we find

∫
x

f(x) p(x) dx ≈
M∑

m=1

wm

∫
x

f(x)N (x;μm, �m) dx. (4.114)

As will be discussed in Chapter 8, the parameters of the pdfs for both single and multidi-
mensional Gaussians as well as the GMM in (4.113) can be readily estimated. Moreover,
solving for the conditional mean in (4.8) using either (4.112) or (4.113) is straightforward.
This does not imply, however, that (4.112) and (4.114) will admit closed-form solutions for
any conceivable f(x). Moreover, their solution by numerical means may well prove cum-
bersome or intractable depending on the form of f(x), especially given that the numerical
optimization may need to be conducted recursively in a high-dimensional space.

Grid-Based Approximation

Let G = {x(m),m = 1, . . . ,M} denote a set of support points which are aligned to form
an equidistant grid, and let V denote the volume spanned by G. Then Ep(x){f(x)} can be
approximated as

∫
f(x) p(x) dx ≈ V

M

M∑
m=1

f(x(m)) p(x(m)). (4.115)

The number of support points where f(x) p(x) must be evaluated grows exponentially
with the dimensionality of the state space. What makes grid-based methods particularly
ineffective for problems of high dimension is that they must maintain many points in
regions of the state space that are relatively unimportant; i.e., many points

{
x(m)

}
must

be maintained where f(x(m))p(x(m)) is effectively zero.

Monte Carlo Integration

Monte Carlo5 integration or sampling is a stochastic numerical integration method that
uses a number of randomly chosen samples to approximate an integral. A sequence
{x(1), x(2), . . . , x(M)} of i.i.d. random samples or support points are drawn from the pdf
p(x) in order to ensure that the samples are located primarily in regions with high prob-
ability mass. Thereafter p(x) is approximated by the empirical density function

p̂(x) � 1

M

M∑
m=1

δ(x − x(m)). (4.116)

5 Monte Carlo estimation was named after the principality of Monaco which is famous for gambling. The name
was suggested by Stanislaw Ulam.
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Arbitrary expectations of the form Ep(x){f(x)} can then be approximated by replacing the
continuous pdf p(x) with the empirical density p̂(x), such that

Ep(x){f(x)} ≈
∫

f(x) p̂(x) dx

=
∫

f(x) · 1

M

M∑
m=1

δ(x − x(m)) · dx

= 1

M

M∑
m=1

f(x(m)) = f̂M. (4.117)

It may not seem obvious that this is a reasonable approximation. Kolmogorov’s strong
law of large numbers , however, states that f̂M converges almost surely to Ep(x){f(x)} as
M → ∞ (Robert and Casella 2004). The convergence rate is determined by the central
limit theorem , which for scalar f̂M states

√
M
(
f̂M − Ep(x){f (x)}) ∼ N (0, σ 2),

where σ 2 denotes the variance of f̂M .
One crucial advantage of Monte Carlo sampling over nearly all deterministic numerical

methods is that its estimation accuracy is nearly independent of the dimensionality of the
state space. Hence, for high-dimensional spaces it is often the algorithm of first choice. In
low-dimensional spaces other methods, such as grid-based integration, may outperform
Monte Carlo sampling.

Before Monte Carlo sampling can be applied to a given problem, two fundamental
questions must be answered:

• How can we draw random samples x(m) from the probability distribution p(x)?
• How can we estimate the expectation Ep(x){f(x)} of a function f(x) with respect to the

pdf p(x)?

These questions will be addressed in the coming sections during our brief introduction
to Monte Carlo methods, and these methods will be applied to the task of speech feature
enhancement and speaker tracking in Chapters 5 and 10, respectively. For a more detailed
discussion of Monte Carlo methods the reader should consult Robert and Casella (2004).

Importance Sampling

The idea of importance sampling is to draw samples from a proposal or importance pdf
q(x) instead of the true distribution p(x), as in practice it is often hard to obtain samples
from p(x) directly. The choice of the proposal pdf is a critical aspect in importance
sampling. The name importance sampling stems from the view that the samples are drawn
from regions of importance. Rewriting the integral (4.111) that is required to evaluate
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Ep(x)f(x), we obtain the importance sampling fundamental identity (Robert and Casella
2004), which can be expressed as,

Ep(x){f(x)} =
∫

f(x) p(x) dx =
∫

f(x) w(x) q(x) dx = Eq(x){f(x)w(x)}, (4.118)

where

w(x) � p(x)

q(x)
(4.119)

denotes the importance weight or importance ratio. In order that the weights can be
calculated as in (4.119), it is necessary that q(x) �= 0 ∀ x, where p(x) �= 0, and that the
ratio p(x)/q(x) is otherwise well defined.

By drawing samples from q(x) we obtain the empirical density q̂(x) and hence can
approximate Eq(x){f(x)w(x)} by Monte Carlo integration. Thus, Ep(x){f(x)} can be approx-
imated as the weighted summation

Ep(x){f(x)} ≈ 1

M

M∑
m=1

w
(
x(m)

)
f
(
x(m)

)
, (4.120)

where the samples
{
x(m)

}
are drawn from q(x). If the normalization factor of p(x) is

unknown, the importance weights can only be evaluated up to a normalization constant. To
ensure that

∑M
m=1 w

(
x(m)

) ≡ 1, it is then necessary to calculate the normalized importance
weights ,

w̃
(
x(m)

) = w
(
x(m)

)
∑M

n=1 w
(
x(n)

) ∀ m = 1, . . . ,M. (4.121)

This normalization will be more rigorously justified in Section 4.4.2. Note that importance
sampling as given in (4.120) is biased but consistent, where the latter implies that the
bias vanishes as M → ∞. The approximation in (4.120) is equivalent to replacing p(x)

with the weighted empirical density

p̂(x) �
M∑

m=1

w̃
(
x(m)

)
δ
(
x − x(m)

)
, (4.122)

where the normalized weights w̃
(
x(m)

)
are given by (4.121).

4.4.2 Sequential Monte Carlo Methods

Evaluating (4.111) using either a single Gaussian pdf or GMM to approximate p(x)

represents a potentially intractable integration. As mentioned above, the basic idea of
Monte Carlo estimation is to avoid such an intractable operation replacing p(x) with a
discrete approximation p̂(x) as in (4.116).
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A particle is the name given to a sample point of a pdf and its associated weight.
The more likely is a given region of the state space, the higher the density of particles
or the higher their individual weights, or both, as indicated in Figure 4.8 (Monte Carlo).
The pdf can then be approximated through such a distribution of sample points and
their associated weights. In sequential Monte Carlo methods, the distribution of particles
evolves over time as the a posteriori probabilities are updated by new observations, the
weights are recalculated, and the particles recursively propagated according to Bayes’
rule.

To apply Monte Carlo integration and importance sampling to the problem of sequen-
tially estimating the filtering density discussed in Section 4.1, it is necessary to replace the
current estimate p(xk−1|y1:k−1) with its empirical counterpart. This is achieved by drawing
samples from p(xk|y1:k−1), which then allow p(xk, yk|y1:k−1) and thereafter p(yk|y1:k−1)

and p(xk|y1:k) in (4.7) to be sequentially updated with Monte Carlo integration. Hence,
a possibly difficult or intractable numerical integration will be replaced with a relatively
straightforward Monte Carlo integration.

Sequential Importance Sampling

In this section, we develop the means to sequentially update the filtering density p(xk|y1:k).
In order to obtain an algorithm with tractable complexity, we will adopt an approach
based on the importance sampling described in Section 4.4.1. To begin, let us assume that
we have a weighted empirical density p̂(xk−1|y1:k−1) of the form (4.116). Then we can
estimate p(xk, yk|y1:k−1) through Monte Carlo integration according to

p(xk, yk|y1:k−1) = p(yk|xk)

∫
p(xk|xk−1) · p̂(xk−1|y1:k−1) dxk−1

= p(yk|xk)

∫
p(xk|xk−1) · 1

M

M∑
m=1

δ
(

xk−1 − x(m)
k−1

)
· dxk−1

= 1

M

M∑
m=1

p(yk|xk)

∫
p(xk|xk−1) · δ

(
xk−1 − x(m)

k−1

)
· dxk−1

= 1

M

M∑
m=1

p(yk|xk) · p
(

xk|x(m)
k−1

)
. (4.123)

Clearly (4.123) would be equivalent to the prediction step (4.6) if yk were marginalized
out of the likelihood.

We will, however, proceed somewhat differently here. That is, let us replace the pre-
diction and correction steps in the “standard” formulation of the Bayesian filter in (4.6)
and (4.7) by firstly approximating p(xk, yk|y1:k−1) with the weighted empirical density

p̂(xk, yk|y1:k−1) = 1

M

M∑
m=1

p
(

yk|x(m)
k

)
δ
(

xk − x(m)
k

)
, (4.124)
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where the sample points x(m)
k ∀ m are obtained by drawing samples from the importance

density q(xk|x(m)
k−1, yk). As the optimal importance density

qopt(xk|x(m)
k−1, yk) = p(xk|x(m)

k−1, yk) = p(yk|xk, x(m)
k−1)p(xk |x(m)

k−1)

p(yk|x(m)
k−1)

is often difficult to obtain, a suboptimal choice of the importance density is frequently
used. The most popular suboptimal choice is the transitional prior

qsub(xk|x(m)
k−1, yk) = p(xk|x(m)

k−1).

Secondly, we must calculate the normalization constant p(yk|y1:k−1) required to form the
new state estimate according to

p(xk|y1:k) = p(xk, yk|y1:k−1)

p(yk|y1:k−1)
. (4.125)

This is readily achieved by replacing the marginalization

p(yk|y1:k−1) =
∫

p(xk, yk|y1:k−1) dxk

with a Monte Carlo integration of the form

p (yk|y1:k−1) ≈
∫

p̂ (xk, yk|y1:k−1) dxk

=
∫

1

M

M∑
m=1

p
(

yk|x(m)
k

)
δ
(

xk − x(m)
k

)
dxk

= 1

M

M∑
m=1

p
(

yk|x(m)
k

)
. (4.126)

Substituting (4.124) and (4.126) into (4.125) and setting

w
(m)
k � w(x(m)

k ) = p
(

yk|x(m)
k

)

then provides the discrete density

p̂ (xk|y1:k) = 1

M

M∑
m=1

w̃
(m)
k δ

(
xk − x(m)

k

)
, (4.127)
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where the normalized weights are given by

w̃
(m)
k = w

(m)
k∑M

n=1 w
(n)
k

. (4.128)

Hence, applying the normalization constant p(yk|y1:k−1) in (4.125) is equivalent to nor-
malizing the weights of the new weight empirical density as in (4.128).

Once p̂(xk|y1:k) has been evaluated, the MMSE estimate which, as mentioned in
Section 4.1, is equivalent to the conditional mean, can be readily determined from

x̂k =
∫

xk p̂(xk|y1:k) dxk =
M∑

m=1

w̃
(m)
k x(m)

k . (4.129)

With this formulation, the PF fits exactly into the prediction–correction form for Bayesian
filters in (4.41) and (4.42). The prediction step (4.41) corresponds to drawing new samples

from p
(

xk|x(m)
k−1

)
, and the correction step corresponds to calculating p(xk|yk) according

to (4.127) and (4.128). There remain, however, several other issues that must be resolved
in order for the PF to function effectively.

Degeneracy and Effective Sample Size

Degeneracy , a well-known problem in sequential Monte Carlo methods, implies that the
vast majority of the probability mass is concentrated on one or, at most, a few particles.
Indeed, it can be shown theoretically that the variance of the particle weights can only
increase with time; hence, degeneracy is unavoidable (Doucet et al. 2000). The detrimental
effect of degeneracy is that a great deal of computation is expended updating particles
whose contribution to the approximation of the filtering density p(xk|y1:k) is effectively
zero. A suitable measure of degeneracy is the effective sample size (Kong et al. 1994),
defined as,

Meff � 1∑M
m=1

(
w̃

(m)
k

)2
,

where {w̃(m)
k } are the normalized weights given by (4.121). The effective sample size must

lie between 1 and M , inclusive. The limiting cases are:

• If only a single sample has nonzero weight, such that w̃
(m)
k = 1 for some m and w̃

(n)
k =

0 ∀ n �= m, then Meff = 1.
• If all samples are equally weighted such that w̃

(m)
k = 1/M ∀ m = 1, 2, . . . ,M , then

Meff = 1

M · ( 1
M

)2
= M.

Hence, Meff is an effective indicator for determining whether or not the probability mass
has “collapsed” into a few particles. Whenever Meff falls below a predefined threshold, a
resampling operation should be performed, as we now describe.
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Sequential Importance Resampling

The basic idea of importance resampling is to maintain as many particles as possible
in regions with high probability. This is accomplished by the replication or selection of
samples with high importance weights and the elimination of samples with low importance
weights. Resampling is usually applied between two importance sampling steps, either at
every step or only if found to be necessary based on the calculation of Meff.

Resampling is, by definition, a mapping of the random measure {x(m)
k , w

(m)
k } into the

random measure {x̃(m)
k , 1/M}; i.e., the initial set of weighted particles is replaced with a

new subset of the initial particles, all of which have the same weight. This is achieved
by sampling with replacement from the approximate discrete representation of p(xk|y1:k)

given by

p(xk|y1:k) ≈
M∑

m=1

w
(m)
k δ

(
xk − x(m)

k

)
.

The process of resampling can be divided into two stages, where, for convenience, we
assume that the weights have already been normalized:

1. Replication factor calculation
The number N

(m)
k of children or replication factor is determined for each particle.

2. Resampling

The particles are split, based on the replication factors
{
N

(m)
k

}
calculated in the prior

step.

Finding the replication factors is conceptually simple: Firstly, the cumulative sum of
weights is calculated according to

W
(m)
k =

m−1∑
n=1

w
(n)
k , (4.130)

where, by assumption, W
(M)
k = 1. Secondly, M random samples un ∈ [0, 1] ∀ n =

1, . . . , M are generated, and for each un that particle x(n)∗
k = x(m)

k is chosen such that

un ∈
[
W

(m)
k ,W

(m+1)
k

]
. This results in a new set of particles in which some particles

may appear multiple times, but all particles have uniform weight. A particle filter with
resampling is summarized in Algorithm 4.2. This algorithm is known as multinomial
resampling , because the replication factor N

(m)
k for each particle is effectively drawn

from a multinomial distribution with probabilities {w(m)
k } (Douc and Cappe 2005).

Note that resampling should be performed only after updating the filtering density, as
resampling induces some additional random variation in the current particle set.

As the particles with high weights are chosen many times in the basic multinomial
resampling algorithm, a loss in diversity among the particles can occur. Moreover, in
the case of small processing noise, all particles can easily collapse to a single point. To
restore the diversity of the samples after resampling, Berzuini and Gilks (2001) proposed
the resample-move algorithm.
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Algorithm 4.2 Particle filter with resampling

1. Draw the samples x(m)
k ∝ p

(
xk|x(m)

k−1

)
∀ m.

2. Calculate the importance weights w
(m)
k ∝ p

(
yk|x(m)

k

)
∀ m.

3. Normalize the importance weights

w̃
(m)
k = w

(m)
k /

N∑
n=1

w
(n)
k ∀ m = 1, . . . , M.

4. Calculate the new filtering density p(xk|y1:k) ≈ ∑M
m=1 w̃

(m)
k δ

(
xk − x(m)

k

)
5. Perform resampling by sampling x(m)

k from p(xk|y1:k) ∀ m to obtain a new set of
particles

{
x̃(m)

}
with uniform weights.

Semi-deterministic Resampling

Unfortunately, real random resampling, as described in the previous section, has a high
variability. Therefore, a large number of samples are required in order to obtain a reliable
approximation of the filtering density. Naive algorithms for resampling have a complexity
of O(M2). This complexity can be reduced to O(M log M), however, by applying a binary

search to the cumulative density
{
W

(m)
k

}
in (4.130) to find the particle x(n)∗

k = x(m)
k such

that un ∈
[
W

(m)
k ,W

(m+1)
k

]
. But even with this reduction in computation, the resampling

algorithm is still relatively inefficient.
Kitagawa (1996) argued that it is unnecessary to perform random resampling, as the pur-

pose of resampling is solely to obtain a uniformly-weighted empirical density that mimics
the filtering pdf. Based on this argument, Kitagawa proposed two novel semi-deterministic
resampling algorithms, which later become known as systematic resampling (SR) and
stratified resampling . The steps in the systematic resampling algorithm are illustrated
in Listing 4.1. As is clear from the pseudocode, the drawing of M random variables
{un} from un ∈ [0, 1], which was performed in the multinomial resampling algorithm, is
replaced by the drawing of a single u ∈ [0, 1/M] in Line 02, where M is the total num-
ber of particles. Thereafter, the replication factor N

(m)
k of every particle is determined

by the while loop in Lines 07 through 09. Incrementing u in Line 09 has the effect of
replacing the selection of un ∈ [0, 1] in the multinomial resampling algorithm with the
choice

un ←
{

u, for n = 1,

u + (n − 1)S, otherwise,

where the step size S = 1/M is set in Line 01. Hence, only a single random variable need

be drawn in order to determine the replication factors
{
N

(m)
k

}
for all particles

{
x(m)

k

}
.
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Listing 4.1 Systematic resampling algorithm for calculating the replication factor
N

(m)
k for each particle x(m)

k

00 def systematicResample():
01 S ← 1/M

02 draw u ∈ U [0, S]
03 W ← 0
04 for m = 1, . . . , M:
05 W ← W + w

(m)
k

06 N
(m)
k ← 0

07 while u ≤ W:
08 N

(m)
k ← N

(m)
k + 1

09 u ← u + S

Listing 4.2 Residual systematic resampling algorithm for calculating the replication
factor N

(m)
k for each particle x(m)

k

00 def residualSystematicResample():
01 S ← 1/M

02 draw u ∈ U [0, S]
03 for m = 1, . . . , M:
04 N

(m)
k ← �(w(m)

k − u)M� + 1

05 u ← u + N
(m)
k S − w

(m)
k

As shown in Listing 4.2, a more efficient implementation of systematic resampling,
which is known as residual systematic resampling (RSR), was proposed by Bolic et al.
(2003). In the listing, the notation �•� indicates the largest integer less than the argument.
As is apparent upon comparing Listings 4.1 and 4.2, the difference between the SR and
RSR algorithms lies in the fact that u is calculated with respect to the origin of the
cumulative sum of weights in SR. In RSR, on the other hand, u is updated with respect to
the origin of the weight currently under consideration. Hence, it is necessary to subtract
the weight w

(m)
k when updating u in Line 06.

As noted by Bolic et al., the RSR algorithm provides the following advantages with
respect to the SR procedure:

1. The RSR algorithm contains only a single loop.
2. The complexity of the RSR algorithm is O(M).
3. The RSR algorithm is suitable for pipeline implementations, as it contains no condi-

tional branches.

For these reasons the RSR algorithm is a popular choice for the practical implementation
of particle filters.

Schematics of the Particle Filter

A schematic of the operation of the particle filter is shown in Figure 4.9. The operation of
the particle filter can be summarized as follows: At the top of the figure, we begin with a
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p(xk|xk-1)

wk
(m)=p(yk|xk)

p(xk|yk)

p(xk+1|xk)

p (xk|yk)

prediction

resampling

evaluation

ˆ

xk
(m)

xk+1
(m)

Figure 4.9 Illustration of a particle filter with importance sampling and resampling. The size of
the circles represent the weights of the samples

uniformly weighted set of particles {w(m)
k , 1/M}. The particle locations are then combined

with the new observation yk to give each particle its correct weight, resulting in a random
measure {x(m)

k , w
(m)
k } approximating p(xk|y1:k). Then resampling as described above is

conducted resulting in a uniformly weighted measure {x̃(m)
k , 1/M} that still approximates

p(xk|y1:k). Finally, new particles {x(m)
k+1, 1/M} are generated for the next step.

4.5 Summary and Further Reading

In this chapter we have described general techniques for Bayesian parameter estimation,
which is a very flexible approach to estimating the state of a system, which is not directly
observable, based on a sequence of observations. After formulating the general problem,
we considered three classes of specific filters: the Wiener filter, then the KF and its
variants, and finally the class of particle filters that have only recently appeared in the
literature. As we will learn in subsequent chapters, all three classes of filters are very
useful for accomplishing several tasks related to distant speech recognition.

We have presented a brief summary about Bayesian filters. More extensive treatments
can be found in the literature, a few of which we summarize here. Good introductions to
the properties and characteristics of Wiener filters are available in Hänsler and Schmidt
(2004, sect. 5) and Haykin (2002, sect. 2). An extremely accessible presentation of the
basic properties of the KF as well as a discussion of robust implementations of square-root
adaptive filters can be found in Haykin (2002, sect. 10). Further details about KFs along
with an extensive set of exercises and computer simulations can be found in Grewal and
Andrews (1993). Simon (2006) provides an extensive treatment of the Kalman filter and
many variations, as well as an extensive bibliography. That work also presents many of
the historically significant milestones in the development of Kalman filter. Bar-Shalom
and Fortmann (1988) describes all relevant details of the PDAF and JPDAF, including
their use for target tracking applications.

A very interesting and readable presentation of the Bayesian tracking framework, as
well as a tutorial on particle filters, is given by Ristic et al. (2004). Robert and Casella
(2004) presents the theoretical underpinnings of particle filters.
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Simon (2006 sect. 11–12) presents the theory of the H∞ filter, which is more robust than
the conventional KF when the characteristics of the physical plant are not precisely known
or modeled. Simon (2006, sect. 14) also discusses another relatively new formulation of
the Bayesian filter, namely the unscented KF . The latter uses a series of test points to
deduce the characteristics of the system nonlinearity, and can provide better convergence
in the presence of extreme nonlinearities in the system model. Another alternative to
the conventional particle filter based on Fourier densities has been proposed in Brunn
et al. (2006a, 2006b). Similary, an approach based on Dirac densities was proposed by
Schrempf et al. (2006).

4.6 Principal Symbols

Symbol Description

εk filter state estimation error at time k

εk|k−1 predicted state estimation error at time k

γ gating parameter
fk transition function at time k

Fk|k−1 transition matrix from time k − 1 to k

G set of support points
Gk Kalman gain at time k

hk observation function at time k

Hk observation matrix
Hk(x) nonlinear observation functional
Hk(xk|k−1) linearized observation functional
i iteration index
m samples
M number of samples
p(x) prior distribution (a priori knowledge before the observation)
p(xk|y1:k) filtering density
p(xk+1|xk) (state) transition probability, evolution
p(yk|xk) output probability, likelihood function
q(x) proposal (or importance) distribution
S step width
sk innovation at time k

Sk innovation covariance matrix at time k

t track index
T number of tracks
Uk transition noise covariance matrix at time k

V volume
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Symbol Description

Vk observation noise covariance matrix at time k

uk process noise at time k

vk observation noise at time k

w weight
w̃ normalized weight
W cumulative weight
xk state at time k

x0:k state sequence from time 0 to k

yk observation at time k

y1:k−1 observation sequence from time 1 to k − 1



5
Speech Feature Extraction

Acoustic modeling requires that the speech waveform s(t) is processed in such a way that
it produces a sequence of feature vectors of a relative small number of dimensions. This
reduction is necessary to not waste resources of a model to represent irrelevant portions of
the space. The transformation of the input data into a set of dimension-reduced features is
called speech feature extraction, acoustic preprocessing or front-end processing . The set
of transforms must be carefully chosen such that the resulting features will contain only
relevant information to perform the desired task. Feature extraction as applied in automatic
speech recognition (ASR) systems aims to preserve the information needed to determine
the phonetic class while being invariant to other factors including speaker differences
such as accent, emotions or speaking rate or other distortion such as background noise,
channel distortion or reverberation. This step is critical, because if useful information is
lost in the feature extraction step it cannot be recovered in later processing.

Over the years many different speech feature extraction methods have been proposed.
The variety of methods are distinguished by the extent to which they incorporate infor-
mation about the human auditory processing and perception, robustness to distortions and
length of the observation window.

Since the 1940s short-time frequency analysis (Koenig et al. 1946) has been used to
carry out speech analysis and became the fundamental approach underlying any speech
processing front-end. The nonlinear frequency resolution of the ear is implemented into
the front-end by a nonlinear scaling prior to spectral analysis, by the bilinear transform,
or, possibly, by nonlinear scaled filter banks. The application of the cepstrum marks a
milestone in speech feature extraction. Already introduced to speech processing by Noll
(1964), it took more than a decade to become widely accepted in speech recognition and
adopted by the two most widely used front-ends, namely, mel frequency cepstral coef-
ficients (MFCC) (Davis and Mermelstein 1980), and perceptual linear prediction (PLP)
(Hermansky 1990). After the cepstral transform both front-ends are traditionally aug-
mented by either dynamic features , which were introduced into speech feature extraction
by Furui (1986), or a stacking of neighboring frames. The dimension of the augmented
features might be reduced by linear discriminant analysis (Häb-Umbach and Ney 1992)
or neural networks.

Distant Speech Recognition Matthias Wölfel and John McDonough
©    2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-51704-8
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5.1 Short-Time Spectral Analysis

Speech is a quasi-stationary signal, which implies that the vocal tract shape, and thus
its transfer function, remain nearly unchanged over time intervals of 5 to 25 ms duration.
ASR systems, and especially the front-ends of such systems, typically assume that a signal
is stationary for the duration of an analysis window. Hence, it is necessary to split an
utterance that is to be recognized into short segments. Section 5.1.1 discusses methods
used to accomplish this. Section 5.1.2 introduces the spectrogram, which is a means of
displaying the spectral content of speech in the time–frequency axis.

5.1.1 Speech Windowing and Segmentation

Selecting the length of an analysis segment for ASR involves tradeoff between conflicting
requirements. On the one hand, the segment must be short enough to provide the required
time resolution. On the other, it must be long enough to ensure adequate frequency resolu-
tion in the power spectrum, which describes a signal’s power as a function of frequency.
In addition, during voiced speech the segment must be long enough to be insensitive to its
exact position relative to the glottal cycle. The advantage of a long observation segment is
that it smooths out some of the temporal variations of unvoiced speech. The disadvantage
is that it blurs rapid events, such as the release of stop consonants.

The choice of frame shift and size is dependent on the velocity of the articulators,
which determines how quickly the vocal tract changes shape. Some speech sounds, such
as stop consonants or diphthongs, have sharp spectral transitions with a spectral peak shift
of up to 80 Hz/ms (Markel and Gray 1980). It is common to adjust the frame shift and
analysis window size together; as a shorter frame shift can track more rapid variations of
the shape of the vocal tract, the analysis window size should also be shortened to achieve
better localization in time of short-lived movements of the articulators.

To apply the segmentation, the entire speech signal must be windowed. This implies it is
multiplied componentwise with an analysis window of a duration of between 16 to 32 ms,
which is known as the frame size. For every new frame, the window is shifted 5 to 15 ms,
which is known as the frame shift . Choosing the right window shape is very important, as
this shape determines the properties – in particular, frequency resolution – of the speech
segment in the frequency domain. This is clear from (3.24–3.25) and the related discus-
sion; i.e., the windowing theorem states that the Fourier transform of the time window is
convolved with the short-term spectrum of the actual signal. This means that true spectral
characteristics of the signal will be “smeared” with the Fourier transform of the window.

The simplest analysis window of length Nw + 1 is the rectangular window , shown in
Figure 5.1, which can be expressed as

w[n] =
{

1, ∀ 0 ≤ n ≤ Nw,

0, otherwise.
(5.1)

Because of the abrupt discontinuities at its edges, the rectangular window introduces large
sidelobes in the frequency domain, as shown in Figure 5.2. As mentioned above, these
large sidelobes lead to a smearing of spectral energy. Through this smearing, energy at
a given frequency appears to leak into adjacent frequency regions. Hence, this effect is
also known as spectral leakage. The amount of spectral leakage is directly related to the
size of the sidelobes in the frequency domain.
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Figure 5.2 Fourier transforms of the rectangular and Hamming window sequences

To reduce the smearing effect, the height and width of the sidelobes of the window-
ing function in the frequency domain must be as small as possible. Windowing functions
without abrupt discontinuities at their edges in the time domain are known to have
smaller sidelobes. Many types of windowing functions of this kind have been proposed
in the literature, including the Hann, Blackman, Kaiser, and Bartlett windows. A detailed
description of the different windowing functions can be found, for example, in Oppenheim
and Schafer (1989, sect. 7.4.1). In speech recognition, the Hamming window ,

w[n] =
{

0.54 − 0.46 cos
(

2πn
Nw

)
, ∀ 0 ≤ n ≤ Nw,

0, otherwise,
(5.2)

is used almost exclusively. The Hamming window is illustrated on the right side of
Figure 5.1. From frequency responses of the rectangular and Hamming windows shown
in Figure 5.2, it is clear that although the rectangular window has a narrower main lobe, its
sidelobes are much higher than those of the Hamming window. In fact, the first sidelobe
of the rectangular window is only 13 dB below the main lobe. Hence, significant spectral
leakage is to be expected when the rectangular window is used.

5.1.2 The Spectrogram

The spectrogram is a graphical representation of the energy density as a function of
angular frequency ω and discrete time frame k,

spectrogramk(e
jω) �

∣∣X[k, ejω)
∣∣2
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where X[k, ejω) is the time-dependent Fourier transform defined in (3.73). A spectrogram
is typically displayed in gray scale, such that the higher the energy at a specific frequency
and a given time, the darker this region appears in the time–frequency plane. Hence,
spectral peaks are shown in black, while spectral valleys are shown in white. Values in
between have a gray shade. Due to the large dynamic range of human speech, spectrograms
are alternatively displayed in a logarithmic scale

logarithmic spectrogramk(e
jω) = 20 log10

∣∣X[k, ejω)
∣∣ .

Depending on the window size used, we differentiate between:

• The wide-band spectrogram – In this case a short duration window of less than
a pitch period, typically 10 ms, is used. This provides good time resolution, but
smears the harmonic structure, thereby yielding spectra similar to those of spectral
envelopes.

• The narrow-band spectrogram – In this case a long duration window of at least the
length of two pitch periods is used. The narrow-band spectrogram provides good fre-
quency resolution but poor time resolution. Due to the increased frequency resolution,
the harmonics of f0 can be observed as horizontal striations during segments of voiced
speech.

Figure 5.3 shows plots of wide-band and narrow-band spectrograms. It also presents
spectrograms with additive and reverberant distortions. While the additive noise fills up
the regions of the time–frequency plane with low speech energy, reverberation smears
the spectral energy along the time axis.

A spectrogram is sometimes also referred to as a sonogram or voiceprint . Spectrograms
of speech signals are often used to analyze phonemes and their transitions. As mentioned
above, spectrograms are based on the time-dependent or short-time Fourier transform,
which serves as an intermediate step in nearly all current speech feature extraction tech-
niques. Note that any of the spectral analysis techniques presented in Section 5.3 can be
used to calculate the spectrogram.

5.2 Perceptually Motivated Representation

Experience has proven that feature extraction techniques based on characteristics of the
human auditory system are likely to provide ASR performance that is superior to naive
or ad hoc techniques. This stems from the fact that the human auditory system evolved
concurrently over millions of years with the human speech production apparatus, and
hence is highly “tuned” to the perception and recognition of human speech. This section
describes front-end implementations motivated by one or more aspects of the human
auditory system.

5.2.1 Spectral Shaping

To model the sensitivity of the human ear, some feature extraction schemes apply a finite
impulse response filter with a single coefficient. This is known as a pre-emphasis filter ,
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Figure 5.3 Narrow-band, mel-scaled, logarithmic spectrogram of clean speech and wide-band,
mel-scaled, logarithmic spectrograms of clean speech, noisy speech and reverberant speech. All
spectrograms were produced from the phrase “distant speech recognition” spoken by a male speaker

whose transfer function can be expressed as

Hpre−emphasis(z) = 1 + αpre−emphasisz
−1,

where αpre−emphasis typically assumes values in the range −1.0 ≤ αpre−emphasis ≤ −0.95.
The pre-emphasis filter, however, also emphasizes frequencies above 5 kHz, where the
human auditory system becomes less sensitive. To overcome this limitation, more sophis-
ticated pre-emphasis filters have been proposed in the literature (Markel and Gray 1980).
Many current speech recognition systems, however, do not apply a pre-emphasis stage
and let the acoustic model compensate for the shape of the spectral slope.

5.2.2 Bark and Mel Filter Banks

The use of filter banks in the front-end of an ASR system is intended to model the
operation of the cochlea in the inner ear, which behaves as if it were composed of
overlapping bandpass filters. The passband of each filter is known as a critical band
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Table 5.1 Critical bands which define the frequency bandwidth in which the ear integrates the
excitation

fBark fc �f fBark fc �f fBark fc �f

0.5 50 100 8.5 1000 160 16.5 3400 550
1.5 150 100 9.5 1170 190 17.5 4000 700
2.5 250 100 10.5 1370 210 18.5 4800 900
3.5 350 100 11.5 1600 240 19.5 5800 1100
4.5 450 110 12.5 1850 280 20.5 7000 1300
5.5 570 120 13.5 2150 320 21.5 8500 1800
6.5 700 140 14.5 2500 380 22.5 10500 2500
7.5 840 150 15.5 2900 450 23.5 13500 3500

fBark critical band rate; fc center frequency; �f bandwidth

(Fletcher 1940). Two pure tones are said to lie in the same critical band if their frequencies
are so close together that there is a considerable overlap in their amplitude envelopes in
the basilar membrane. The Bark scale, named after Heinrich Barkhausen, who proposed
the first subjective measurements of loudness, was among the first attempts to describe
the effect of these critical bands. The center frequencies and bandwidths of the Bark scale
are given in Table 5.1. The spacing of the critical bands is nonlinear, but corresponds to
a psychoacoustic scale proposed by Zwicker (1961),

fBark(f ) = 13 arctan (0.00076f ) + 3.5 arctan

((
f

7500

)2
)

where the frequency f is in Hertz. The bandwidth of the critical bands can be approxi-
mated as

�f = 25 + 75
(
1 + 1.4f 2)0.69

.

An alternative expression of the Bark scale, due to Schroeder (Hermansky 1990), is
given by

fBark(f ) = 6 log

⎛
⎝ f

600
+
√(

f

600

)2

+ 1

⎞
⎠ . (5.3)

The mel scale proposed by Stevens et al. (1937) is an alternative nonlinear scaling
of the frequency axis which models the nonlinear pitch perception characteristics of the
human ear. The mel scale is based on experiments wherein human subjects were asked
to divide given frequency ranges into four perceptually equal intervals. Alternatively, the
subjects were asked to adjust a frequency to be perceptually equivalent to one half of a
given frequency. Its name has been abbreviated from the word melody to indicate that
the scale is based on pitch comparisons. The mel frequency can be approximated by

fmel(f ) = 1127.01048 log

(
1 + f

700

)
. (5.4)
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The use of nonlinear scales, such as the Bark or mel scale, is very popular in automatic
speaker and speech recognition. These scales can be applied either by a nonlinear filter
bank as discussed next for the mel scale, or approximated by a bilinear transform as
described in Section 5.2.3.

The mel filter bank is defined by M triangular filters (m = 1, 2, . . . ,M) averaging the
spectral energy around each center frequency

Hm[k] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, k < f [m − 1],

2(k−f [m−1])
(f [m+1]−f [m−1])(f [m]−f [m−1]) , f [m − 1] ≤ k ≤ f [m],

2(f [m+1]−k)

(f [m+1]−f [m−1])(f [m+]−f [m]) , f [m] ≤ k ≤ f [m + 1],

0, k > f [m + 1]

(5.5)

where f [·] is a function of the lowest flowest and highest fhighest frequencies of the filter
bank, as well as the sampling frequency fsampling and the number of bins in the linear
frequency domain N according to

f [m] = N

fsampling
f −1

mel

(
flowest + m

flowest − fhighest

M + 1

)
. (5.6)

The inverse of the mel frequency can be calculated from (5.4) as

f −1
mel(f ) = 700

(
exp

f

1127.01048
− 1

)
. (5.7)

The bandwidths of the triangular filters are assigned such that the three dB points (i.e.,
where the spectral power falls to one-half its maximum) are exactly half way between the
center frequencies of the filters. The triangular filters generally increase in spacing and
decrease in height for higher frequencies, although some implementations use an equal
height. Such a mel filter bank is depicted in Figure 5.4.

Filter #

301 10 20... ... ...

H
ei

gh
t

Figure 5.4 Mel filter bank
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5.2.3 Warping by Bilinear Transform – Time vs Frequency Domain

Instead of approximating the mel or Bark scale through critical band filtering of the power
spectrum using a nonlinearly scaled filter bank, it is possible to directly map the linear
frequency axis ω to a nonlinear frequency axis ω̃. This mapping process is called frequency
warping . A convenient way to implement frequency warping is through a conformal map,
such as a first-order all-pass filter (Oppenheim and Schafer 1989, sect. 5.5), which is also
known as the bilinear transform (BLT) (Braccini and Oppenheim 1974; Oppenheim et al.
February 1971), or a Blaschke factor (Greene and Krantz 1997, sect. 9.1). It is defined in
the z-domain as

z̃−1 = Q(z) = z−1 − α

1 − α · z−1
∀ − 1 < α < +1, (5.8)

where α is the warp factor . A particular characteristic of the BLT is that it preserves the
unit circle, such that ∣∣Q (ejω

)∣∣ = 1 ∀ − π < ω ≤ π.

Indeed, this latter property is the reason behind the designation all-pass . In Section 9.2.2,
we will consider how such an all-pass transform can be used to formulate an effective
means of adapting the cepstral means of a hidden Markov model to the characteristics of
a particular speaker. Here we will be exclusively concerned with the time and frequency
domain. The relationship between ω̃ and ω is nonlinear as indicated by the phase function
of the all-pass filter (Matsumoto and Moroto 2001)

ω̃ = arg
(
e−jω
) = ω + 2 arctan

(
α sin ω

1 − α cos ω

)
. (5.9)

A good approximation of the mel and Bark scale by the BLT is possible if the warp
factor is set accordingly. The optimal warp factor depends on the sampling frequency
and can be found by different optimization methods (Smith and Abel 1999). Figure 5.5
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Figure 5.5 Mel frequency (scale shown along left edge of left image) and Bark frequency (scale
shown along left edge of right image) can be approximated by a BLT (scale shown along right
edges) for a sampling rate of 16 kHz, αmel = 0.4595, αBark = 0.6254
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compares the mel scale and the Bark scale with their approximations by the BLT for a
sampling frequency of 16 kHz.

Frequency warping through BLTs can be applied in the time domain , the frequency
domain or in the cepstral domain , which is discussed in Section 5.4. In all cases, the
frequency axis is nonlinearly scaled. The effect on the spectral resolution, however, varies
for the three different domains. This effect can be explained as follows:

• Warping in the time domain modifies the values in the autocorrelation matrix. Hence,
in the case of autoregressive models (3.44), more coefficients are used to model lower
frequencies and fewer coefficients to model higher frequencies. This effect is described
for spectral envelope estimation in Sections 5.3.3 and 5.3.6.

• Warping in the frequency or cepstral domain does not change the spectral resolution as
the transform is applied after spectral analysis.
As indicated by Nocerino et al. (1985), a general warping transform in the same domain,
such as the BLT, is equivalent to a matrix multiplication

fwarp = L(α) f,

where α denotes the warp factor as before, and L(α) the transform matrix. It follows that
the values fwarp on the warped scale are a linear interpolation of the values f on the linear
scale. When spectral estimation is based on linear prediction or the minimum variance
distortionless response, which are discussed in Sections 5.3.3 and 5.3.4, respectively,
the prediction coefficients are not altered as they are calculated before the BLT is
applied.

Figure 5.6 demonstrates the effect of warping applied either in the time or in the frequency
domain on the spectral envelope and compares the warped spectral envelopes with the
unwarped spectral envelope.

As an example, we will briefly investigate the change of spectral resolution for the
most interesting case, where the BLT is applied in the time domain with a warp factor

No WarpingTime Domain Warping Frequency Domain Warping

Changed Resolution Same Resolution

0 842 6
Frequency (kHz)

751 3 0 842 6
Frequency (kHz)

751 3 0 842 6
Frequency (kHz)

751 3

Figure 5.6 Spectral envelopes without warping and warping applied in the time or frequency
domain. While warping in the time domain changes the spectral resolution and frequency axis,
warping in frequency domain does not alter the spectral resolution but still changes the frequency
axis
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α > 0. In this case, we observe that spectral resolution decreases as frequency increases.
In comparison to the resolution provided by the linear frequency scale, corresponding to
α = 0, the warped frequency resolution increases for low frequencies up to the turning
point (TP) frequency (Härmä and Laine 2001)

ftp(α) = ± fs

2π
arccos(α), (5.10)

where fs represents the sampling frequency. At the TP frequency, the spectral resolution
is not affected. Above the TP frequency, the frequency resolution decreases in comparison
to the resolution provided by the linear frequency scale. For α < 0, spectral resolution
increases as frequency increases.

As observed by Strube (1980), prediction error minimization of the predictors ãm in
the warped domain is equivalent to the minimization of the output power of the warped
inverse filter,

Ã(z) = 1 +
M∑

m=1

ãmz̃−m(z), (5.11)

in the linear domain, where each unit delay element z−1 is replaced by a BLT z̃−1. The
prediction error is therefore given by

E
(
ejω
) =
∣∣∣Ã (ejω

)∣∣∣2 P
(
ejω
)
, (5.12)

where P
(
ejω
)

is the power spectrum of the signal. From Parseval’s theorem as dis-
cussed in Section 3.1.3, it then follows that the total squared prediction error can be
expressed as

σ 2 =
∫ π

−π

E
(
ejω̃
)

dω̃ =
∫ π

−π

E
(
ejω
)

W 2 (ejω
)

dω, (5.13)

where W(z) denotes the weighting filter

W(z) �
√

1 − α2

1 − αz−1
. (5.14)

The minimization of the squared prediction error σ 2, however, does not lead to minimiza-
tion of the power, but the power of the error signal filtered by the weighting filter W(z),
which is apparent from the presence of this factor in (5.13). Thus, the BLT introduces
an unwanted spectral tilt. To compensate for this negative effect, the inverse weighting
function

∣∣∣W̃(z̃) · W̃ (z̃−1)

∣∣∣−1 =
∣∣1 + α · z̃−1

∣∣2
1 − α2

(5.15)

can be applied. The effect of the spectral tilt introduced by the BLT and its correction
(5.15) are depicted in Figure 5.7.
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Figure 5.7 The plot of two warped spectral envelopes α = αmel demonstrates the effect of spectral
tilt. While the spectral tilt is not compensated for the dashed line, it is compensated for the solid
line. It is clear to see that high frequencies are emphasized for α > 0 if no compensation is applied

5.3 Spectral Estimation and Analysis

Spectral estimation and analysis are fundamental components of speech feature extraction
for automatic recognition and many other speech-processing algorithms, including com-
pression, coding, and voice conversion. These applications impose a variety of require-
ments on the spectral estimate, including

• spectral resolution,
• nonlinear modeling of the frequency axis,
• variance of the estimated spectra, and
• capacity to model the frequency response function of the vocal tract during voiced

speech.

To satisfy these requirements, a broad variety of solutions have been proposed in the
literature, all of which can be classified into either

• nonparametric methods based on periodograms (e.g., the power spectrum) or
• parametric methods , using a small number of parameters estimated from the data (e.g.,

linear prediction).

In this section, we will concentrate on spectral estimation techniques which are useful
in extracting the features to be used by an ASR system. An overview of the different
approaches is given in Table 5.2. Moreover, an introduction to spectral analysis, covering
many alternative methods not treated here, can be found in Stoica and Moses (2005).

5.3.1 Power Spectrum

A very simple approach to the spectral analysis of a signal x[n] for n = 0, . . . , M is to
calculate its power spectrum. The power spectrum can be obtained through the calculation
of the discrete circular autocorrelation

φ[l] =
M−1−l∑

n=0

x[n]x[(n + l)%M]. (5.16)



146 Distant Speech Recognition

Table 5.2 Overview of spectral estimation methods

Spectrum Properties

Detail Resolution Sensitive to pitch

Fourier exact linear, static very high
mel filter bank smooth nonlinear, static high
LP approx. linear, static medium
perceptual LP approx. nonlinear, static medium
warped LP approx. nonlinear, static medium
warped-twice LP approx. nonlinear, adaptive medium
MVDR approx. linear, static low
warped MVDR approx. nonlinear, static low
warped-twice MVDR approx. nonlinear, adaptive low

LP = linear prediction; MVDR = minimum variance distortionless response

Thereafter, the discrete Fourier transform of the autocorrelation coefficients is calculated,
resulting in the discrete power spectrum

S[m] =
M−1∑
l=0

φ[l]e−j2πlm/M∀m = 0, 1, . . . , M − 1

where m is the discrete angle frequency.
The power spectrum is widely used in speech processing because it can be quickly

calculated via the fast Fourier transform (FFT). Nonetheless, it is poorly suited to the
estimation of speech spectra intended for automatic recognition, because it models spectral
peaks and valleys equally well. This characteristic is bad for two reasons:

• The effect of the fundamental frequency – The power spectrum cannot suppress the
effect of the fundamental frequency and its harmonics in voiced speech, and therefore
provides a poor estimate of the response function of the vocal tract. In all Western lan-
guages, it is only the response of the vocal tract that serves to distinguish between words.

• The effect of ambient noise – Noise in the logarithmic power domain is most evident
in spectral valleys; hence, an exact representation of these regions is less useful than
an approximation of the spectral power. The spectral peaks, on the other hand, should
be faithfully represented as they contain the most relevant information and, as we will
see later, are less distorted by additive distortions.

5.3.2 Spectral Envelopes

The spectral envelope is a plot of power vs frequency representing the resonances of
the vocal tract. The spectral envelope is typically subject to certain smoothness criteria,
such that the spectral effects of the periodic or noisy excitations, which are provided by
the vocal cords or by the turbulent flow of air through a constriction of the vocal tract,
respectively, are excluded. The spectral envelope faithfully represents the spectral peaks
of the power spectra but may devote less precision to modeling the spectral valleys. Such
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Figure 5.8 The spectral envelope and original Fourier spectrum

a spectral envelope is shown in Figure 5.8. It may impossible or undesirable to model
every individual peak; e.g., if a group of peaks is close together. In such cases, the spectral
envelope should provide a reasonable approximation. In addition, the method used for
estimating the spectral envelope should be stable and applicable to a wide range of signals
with very different characteristics. To provide robustness in the presence of distortion, it
is desirable that a local change in signal frequency does not affect the intensity of the
spectral estimate at frequencies well-apart from this point. Moreover, spectral envelope
representation should be resilient to distortions in the data.

We begin our discussion of the spectral envelope estimation with the most popular
method, namely, linear prediction. In the next section we describe more advanced methods
that overcome the limitations of linear prediction.

5.3.3 LP Envelope

The estimation of an all-pole model (discussed briefly in Section 3.1.3) via linear pre-
diction (LP) is a well-known technique. As with the FFT, LP was invented by Carl
Friedrich Gauss as a means to predict the reappearance of the asteroid Ceres after it had
been lost in the glare of the sun. Atal and Schroeder (1967) developed an entire family
of predictors for speech coding. Probably the best-known speech coder is code-excited
LP (Atal and Schroeder 1984). Nowadays, LP is a widely-used method in various speech
applications such as speech modeling, coding, synthesis, and extraction of speech features
for automatic recognition.

The idea behind LP is to predict the signal x[n] at time n by a weighted linear com-
bination of M immediately preceding samples and some input u[n], such that,

x̂M [n] = −
M∑

m=1

am x[n − m] + G · u[n],

where M is known as the model order and G as the gain . Hence, it is necessary to
determine the values of the LP coefficients {am}Mm=1. Assuming that u[n] is unknown and
thus that x[n] must be predicted solely from a weighted combination of prior samples,
the error between x[n] and the prediction x̂M [n] is given by the error term

eM [n] = x[n] +
M∑

m=1

am x[n − m].
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The higher eM [n], the worse the quality of the model defined by the linear prediction
coefficients

a = [a1 a2 · · · am

]T
.

The vector of prediction coefficients a, can be estimated by minimizing the total power
of the prediction error:

â = argmin
a=[a1,a2,···,aM ]

∞∑
n=−∞

(
x[n] +

M∑
m=1

am x[n − m]

)2

. (5.17)

The prediction coefficients can be obtained by solving the matrix equation

a = �−1φ, (5.18)

where

� =

⎡
⎢⎢⎢⎢⎣

�[1, 1] �[1, 2] · · · �[1,M]

�[2, 1] �[2, 2] · · · �[2,M]
...

...
. . .

...

�[M, 1] �[M, 2] · · · �[M,M]

⎤
⎥⎥⎥⎥⎦

and
φ = [�[1, 0], �[2, 0], . . . ,�[M, 0]

]
.

The autocorrelation coefficients can be calculated by

�[m,n] = E{x[m] x[n]}.

Three principal methods exist for minimizing (5.18):

• the autocorrelation method ,
• the covariance method which is based on the covariance matrix, and
• the lattice method ,

All methods yield slightly different LP coefficients (Makhoul 1975). A detailed introduc-
tion to LP can be found in Strobach (1990). Due to space limitations, here we will discuss
only the autocorrelation method which is used almost exclusively in speech recognition.
This is, firstly, due to the stability of the estimate, which stems from the fact that the
predictor filter of the autocorrelation method has zeros only inside the unit circle in the
z-plane. Secondly, there exists an efficient algorithm for the calculation of the predic-
tion coefficients known as the Levinson–Durbin recursion (Makhoul 1975). The latter is
summarized in Algorithm 5.1.

The autocorrelation method constrains the evaluation integral to the range from 0 to
M − 1 and assumes that all values outside this integral to be zero. Under the previous
constraints, the autocorrelation matrix can be simplified to

�[m, n] = �[0, |m − n|].
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Algorithm 5.1 The Levinson–Durbin recursion

1. Initialize with a0,0 = 1 and e0 = φ[0]
2. For m = 1, 2, · · · , M

km = −1

εm−1

m−1∑
i=0

φ[i − m] ai,m−1

with

ai,m =
⎧⎨
⎩

1, i = 0,

ai,m−1 + km a∗
m−i,m−1, i = 1, 2, · · · ,m − 1,

km, i = m

and
em = em−1(1 − |km|2)

3. The final set of linear prediction coefficients are given by {ai = ai,M}i .

Frequency Domain Formulation

So far we have introduced the basic concept of LP from a time domain formulation. By
applying the z-transform to (5.17), we obtain the formulation in the transform domain:

â = argmin
a=[a1,a2,···,aM ]

∞∑
n=−∞

((
zn +

M∑
m=1

am zn−m
)
X(z)

)2

.

Assuming that x[k] is deterministic, we can set z = ejω and apply Parseval’s theorem
(3.47) to replace the infinite summation by a finite integral, as

â = argmin
a=[a1,a2,···,aM ]

1

2π

∫ π

−π

∣∣A (ejω
) · X (ejω

)∣∣2 dω, (5.19)

where

A
(
ejω
) = 1 +

M∑
m=1

am e−jmω. (5.20)

Once the LP coefficients a and the squared prediction error eM = G2 have been obtained
from the Levinson–Durbin recursion, the transfer function of the discrete all-pole model
can be expressed as

H(z) = G

A(z)
= G

1 +∑M
m=1 am z−m

, (5.21)

where the gain G matches the scale of the LP model to the spectrum of the original
signal. The all-pole spectral estimate Ŝ

(
ejω
)
, henceforth known as the LP envelope, is



150 Distant Speech Recognition

then given by

Ŝ
(
ejω
) = ∣∣H (ejω

)∣∣2 = eM∣∣∣1 +∑M
m=1 am e−jmω

∣∣∣2 . (5.22)

Limitation of LP Envelopes

To understand the limitation of LP envelopes for modeling voiced speech, we need only
follow Murthi and Rao (2000) and represent the short-time spectrum of a segment of
voiced speech as an overtone series. Let ω0 = 2πf0 where f0 denotes the fundamental
frequency, and let L = fs/2f0 denote the number of harmonics, where fs is the sampling
frequency. Then the model for the short-term spectrum can be expressed as

Sharmonic
(
ejω
) =

L∑
l=1

2π
|bl |2

4

[
δ(ω + ω0l) + δ(ω − ω0l)

]
, (5.23)

where bl is the amplitude of the lth harmonic. We can now set
∣∣X (ejω

)∣∣2 = Sharmonic
(
ejω
)

and substitute (5.23) into (5.19) to obtain

â = argmin
a=[a1,a2,···,aM ]

1

2π

∫ ω

−ω

∣∣∣A (ejω
) ∣∣∣2 · Sharmonic

(
ejω
)

dω,

or, equivalently,

argmin
a=[a1,a2,···,aM ]

L∑
l=1

|bl |2
2

∣∣∣A(ejlω0)

∣∣∣2.
To achieve the desired minimization of the prediction error, the LP filter (5.20) attempts
to null out the harmonics kω0 present in the original spectrum. With increasing model
order M , the ability of the LP filter to null out these harmonics increases. But in the
process, the zeros of the LP filter move ever closer to the unit circle, thereby causing
sharper contours in the spectral envelope (5.22) and an overestimation of the spectral
power at the harmonics (Murthi and Rao 2000). Such effects are particularly problematic
for medium- and high-pitched voices. As such, the LP method does not provide spectral
envelopes which reliably estimate the power at the harmonic frequencies in voiced speech.

5.3.4 MVDR Envelope

Here we briefly review the minimum variance distortionless response (MVDR)1 as origi-
nally introduced by Capon (1969). It has been adopted by Lacoss (1971) who demonstrated
that this method provides an unbiased minimum variance estimate of the spectral compo-
nents. He has also shown that the MVDR spectral estimate yields spectral peaks which
are proportional to the power at that frequency. This is in contrast to the LP spectral

1 Also known as Capon’s method or the maximum-likelihood method (Musicus 1985).
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estimate which yields spectral peaks which are proportional to the square of the power at
that frequency. In order to overcome the problems associated with LP, Murthi and Rao
(1997) proposed the use of the MVDR for all-pole modeling of speech signals. A detailed
discussion of speech spectral estimation using the MVDR can be found in Murthi and
Rao (2000).

MVDR spectral estimation can be posed as a problem in filter bank design, wherein
the final filter bank is subject to the distortionless constraint (Haykin 2002, sect. 2.8):

The signal at the frequency of interest (FOI) ωfoi must pass undistorted with unity
gain.

This condition can be expressed as

H
(
ejωfoi

) =
M∑

m=0

h[m] e−jmωfoi = 1.

This constraint can be rewritten in vector form as

vH
(
ejωfoi

)
h = 1,

where v
(
ejωfoi

)
is the fixed frequency vector ,

v
(
ejω
)

�
[
1 e−jω e−j2ω · · · e−jMω

]T
,

and h is the stacked impulse response,

h �
[
h[0] h[1] · · · h[M]

]T
.

The distortionless filter h can now be obtained by solving for the constrained mini-
mization problem:

min
h

hH�h subject to vH
(
ejωfoi

)
h = 1 (5.24)

where � is the (M + 1) × (M + 1) Toeplitz autocorrelation matrix with (m, n)th element
�[m, n] = φ[m − n] of the input signal

φ[n] =
M∑

m=0

x[m] x[m − n].

The solution of the constrained minimization problem can be expressed as (Haykin 2002,
sect. 2.8)

h = �−1 v(ejωfoi)

vH (ejωfoi) �−1 v(ejωfoi)
.
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This implies that h is the impulse response of the distortionless filter for the frequency
ωfoi. The MVDR envelope of the spectrum S(e−jω) at frequency ωfoi is then obtained as
the output of the optimized constrained filter

SMVDR(ejωfoi) = 1

2π

∫ π

−π

∣∣H(ejωfoi)
∣∣2 S(e−jω) dω. (5.25)

Although MVDR spectral estimation was posed as a problem of designing a distor-
tionless filter for a given frequency ωfoi, this was only a conceptual device. The MVDR
spectral envelope can in fact be represented in parametric form for all frequencies and
computed as

SMVDR(ejω) = 1

vH (ejω) �−1v(ejω)
.

Under the assumption that the (M + 1) × (M + 1) Hermitian Toeplitz correlation matrix
� is positive definite and thus invertible, Musicus (1985) derived a fast algorithm to
calculate the MVDR spectral envelope from a set of linear prediction coefficients (LPCs),
as given in Algorithm 5.2.

The MVDR envelope copes well with the problem of overestimation of the spectral
power at the harmonics of voiced speech. To show this, we once more model voiced
speech as the sum of harmonics (5.23). Using the frequency form of the MVDR envelope
given by (5.25), the spectral estimate at ωl = ω0l ∀ l = 1, 2, . . . is given by

SMVDR(ejω0l ) =
L∑

l=1

|bl |2
4

{|H(ejωl )|2 + |H(e−jωl )|2} ,
where bl is the amplitude of the lth harmonic. Thus the MVDR distortionless filter h
faithfully preserves the input power at ω0l while treating the other (2L − 1) exponentials
as interference and attempting to minimize their influence on the output of the filter.
Hence, the MVDR envelope models the perceptually important speech harmonics very
well. Unlike warped envelopes, however, it does not mimic the human auditory system
and does not model the different frequency bands with varying accuracy.

Spectral Relationship between LP and MVDR Spectral Envelopes

Burg (1972) showed that the MVDR spectral envelope of model order M can also be
expressed as the harmonic mean of the LP spectra S

(M)
LP (ejω) of orders 0 through M:

S
(M)
MVDR(ejω) =

[
M∑

m=0

1

S
(m)
LP (ejω)

]−1

.

This relationship also holds for warped LP and warped MVDR spectral envelopes as
discussed in the following sections. The given relation explains why the (warped) MVDR
spectral envelope exhibits a smoother frequency response with decreased variance than
the corresponding (warped) LP spectrum (Murthi and Rao 2000) if compared for the same
model order.
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Algorithm 5.2 Fast MVDR spectral envelope calculation

1. Compute the LPCs a
(M)
0···M of order M and the prediction error eM

2. Correlate the LPCs, as

μm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

eM

M−m∑
i=0

(M + 1 − m − 2i) a
(M)
i a

∗(M)
i+m , m = 0, 1, 2, · · · , M,

μ∗−m, m = −M, · · · , −1

3. Compute the MVDR envelope

SMVDR(ejω) = 1∑M

m=−M
μme−jωm

5.3.5 Perceptual LP Envelope

The LP and MVDR all-pole models approximate speech spectra equally well at all fre-
quency bands. To eliminate this inconsistency between LP- or MVDR-based spectral
estimation and the human auditory analysis, two widely used modifications exist, both of
which will be described in this and the following section.

The perceptual linear prediction (PLP) method, as proposed by Hermansky (1990), is
outlined in Algorithm 5.3. It modifies LP spectral analysis through the introduction of the
Bark scale (5.3) and logarithmic amplitude compression prior to the Levinson–Durbin
recursion which is described in Algorithm 5.1. The logarithmic amplitude is implemented
by raising the magnitude of the spectral components to a power of 0.33 in order to
simulate the power law of human hearing. Due to the previously mentioned modifications,
which are performed in the frequency domain, the autocorrelation coefficients cannot be
computed directly. Hence, additional Fourier transforms are required.

5.3.6 Warped LP Envelope

An alternative to PLP, for which there is no need to convert between time and frequency
domains, is to perform LP analysis on a warped frequency axis. This is accomplished by
replacing the unit delay element e−jkω with a cascade of first-order all-pass filters, such
as were presented in Section 5.2.3. The application of the BLT prior to LP analysis was
proposed by Strube (1980).

The inverse filter on the warped frequency axis,

Ã(ejω̃) = 1 +
M∑

m=1

ãm

e−jmω − α

1 − α · e−jmω
,

can then be estimated with the Levinson–Durbin recursion, Algorithm 5.1, using the
warped autocorrelation coefficients. Note that applying the BLT to the spectrum of a
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Algorithm 5.3 Perceptual linear prediction

1. Calculation of the windowed power spectrum
2. Critical band integration (5.3) realized by a filter-bank defined as

Ck(ω) =

⎧⎪⎨
⎪⎩

10fBark−f
(k)
Bark , fBark ≤ f

(k)
Bark − 0.5,

1, f
(k)
Bark − 0.5 < fBark < f

(k)
Bark + 0.5,

10−2.5(fBark−f
(k)
Bark+0.5), fBark ≥ f

(k)
Bark − 0.5

where the center frequency f
(k)
Bark of filter k is given by f

(k)
Bark = 0.994k.

3. Equally loudness pre-emphasis

E(ω) = 1.151

√ (
ω2 + 1.44 · 106

)
ω2(

ω2 + 1.6 · 105
) (

ω2 + 9.61 · 106
)

4. Intensity to loudness compensation

Q(ω) = F 1/3(ω) =
(

E(ω)

∫ π

0
Ck(ω)S(ω)dω

)1/3

5. Inverse Fourier transform
6. Calculation of the PLP coefficients by the Levinson–Durbin recursion as outlined in

Algorithm 5.1.

finite sequence produces a spectrum corresponding to an infinite sequence,

X̃(z̃) =
∞∑

n=0

x̃[n] z̃−n = X(z) =
N−1∑
n=0

x[n] z−n.

Thus the direct calculation of the warped autocorrelation coefficients,

φ̃[m] =
∞∑

n=0

x̃[n] x̃[n − m], (5.26)

is not feasible. To overcome this problem, a variety of solutions have been proposed
(Edler and Schuller 2000; Strube 1980; Tokuda et al. 1995). Here we give the algorithm
proposed by Matsumoto et al. (1998). To obtain the warped predictors, we must solve the
normal equations

p∑
y=1

�̃[m,n] ãm,n = −�̃[m, 0], ∀ m = 1, 2, · · · , p, (5.27)
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where

�̃[m, n] �
∞∑
l=0

ym[l] yn[l],

and ym[n] is the output of the mth-order all-pass filter excited by y0[n] = x[n]. The last
equation implies that �̃[m,n] is a component of the warped autocorrelation function

�̃[m, n] = φ̃[|m − n|]. (5.28)

Thus, (5.27) is revealed to be an autocorrelation function, exactly like the autocorrelation
equation found in standard LP analysis. Furthermore, as �̃[m, n] depends only on the
difference |m − n|, we can replace (5.26) by

φ̃[|m − n|] =
N−1−|m−n|∑

l=0

x[l] y|m−n|[l], (5.29)

where yi[n] is the output sequence given by

yi[n] = α · (yi[n − 1] − yi−1[n]) − yi−1[n − 1].

Hence, the warped autocorrelation coefficients �̃[m,n] can be calculated with a finite sum.
Given the warped LP coefficients, we can now obtain the transfer function Hwarped LP(z).

Thereby, we derive an all-pole spectral estimate in the warped frequency domain, hence-
forth referred to as the warped LP envelope:

Swarped LP(e
jω) = ∣∣Hwarped LP

(
ejω
)∣∣2 = ẽM∣∣∣1 +∑M

m=1 ãme−jmω

∣∣∣2 . (5.30)

Note that if α is set appropriately, the spectrum (5.30) is already in the mel warped
frequency domain and therefore it is necessary to either

• eliminate the mel spaced triangular filter bank traditionally used in the extraction of
mel frequency cepstral coefficients, or

• replace it by a filter bank of uniform half-overlapping triangular filters to provide feature
reduction or additional spectral smoothing.

If we are interested in an envelope which is in the linear frequency domain, we can
calculate the spectral estimate as

S̃(ejω) = ẽM∣∣∣∣1 +
M∑

k=1
ãk

e−jkω−α

1−α·e−jkω

∣∣∣∣
2 ,

which, in comparison with the conventional LP envelope, uses more parameters to describe
the lower frequencies and fewer parameters to describe the higher frequencies.
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The warping of the LP envelope addresses the inconsistency between LP spectral esti-
mation and that performed by the human auditory system. Unfortunately, for high-pitched
voiced speech the lower harmonics become so sparse that single harmonics appear as spec-
tral poles, which is highly undesirable in all-pole modeling. One proposed approach to
overcome this drawback is to weight the warped autocorrelation coefficient φ̃[m] with a
lag window (Matsumoto and Moroto 2001). An alternative is to use the warped MVDR
envelope as described in the next section.

5.3.7 Warped MVDR Envelope

To overcome the problems inherent in LP while emphasizing the perceptually relevant
portions of the spectrum, the BLT must be applied prior to MVDR spectral envelope
estimation (Wölfel and McDonough 2005). The derivation of the so-called warped MVDR
will be presented in this section. Let us define the warped frequency vector ṽ as

ṽ(ejω) �
[
1 e−jω−α

1−α·e−jω
e−j2ω−α

1−α·e−j2ω · · · e−jMω−α

1−α·e−jMω

]T
.

In order to calculate the distortionless filter h̃ in the warped domain, we must once more
solve the constrained minimization problem

min
h̃

h̃H �̃h̃ subject to ṽH (ejωfoi)h̃ = 1, (5.31)

where �̃ is the Toeplitz autocorrelation matrix as defined by (5.28). Clearly, this solution
is different from MVDR on the linear frequency scale. The way to solve for the warped
constrained minimization problem, however, is very similar to its unwarped counterpart.
The warped MVDR envelope of the spectrum S(e−jω) at frequency ωfoi can be obtained
as the output of the optimal filter,

SwarpedMVDR(ejωfoi) = 1

2π

∫ π

−π

∣∣∣H̃ (ejωfoi)

∣∣∣2 S(e−jω)dω, (5.32)

under the constraint

H̃ (ejωfoi) =
M∑

m=0

h̃(m)
e−jmωfoi − α

1 − α · e−jmωfoi
= 1.

Assuming that the Hermitian Toeplitz correlation matrix �̃ is positive definite and thus
invertible, Musicus’ (1985) algorithm, as given in Algorithm 5.2, can be readily applied to
compute the warped MVDR spectral envelope. The LPCs and the error term in Step 1 of
Algorithm 5.2, however, must be replaced by their warped counterparts from Section 5.3.6.
Note that the spectrum (5.32) derived by the modified, fast algorithm has a warped
frequency axis and should be handled as suggested in Section 5.3.6.
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If we are interested in a warped envelope estimate on the linear frequency axis, we can
replace Step 3 of Algorithm 5.2 by

S̃MVDR(ejω) = 1∑M
m=−M μ̃m

e−jmω−α

1−α·e−jmω

.

5.3.8 Warped-Twice MVDR Envelope

From Section 5.2.3, we know that the BLT, when applied in the time domain prior to
spectral analysis, enables the frequency axis to be warped while simultaneously altering
the spectral resolution. Alternatively, the spectral resolution is unaltered if the BLT is
applied in the frequency domain. Moreover, it is possible to compensate for the warping
of the frequency axis due to the BLT in the time domain through a second BLT in the
frequency domain. Thus it is possible to move spectral resolution to higher or lower
frequencies while keeping the frequency axis fixed (Nakatoh et al. 2004; Wölfel 2006).
Due to the application of two warping stages in MVDR spectral estimation, this approach
is dubbed warped-twice MVDR.

Compensation

The warped-twice MVDR envelope must be applied with special care to compensate for
unwanted distortions. To fit the final frequency axis to a particular, but fixed, frequency
axis (e.g., the mel-scale αmel) the compensation warp factor must be calculated as

β = α − αmel

1 − α · αmel
.

The spectral tilt introduced from both BLTs with warp factors α and β can be expressed
with a single warp factor as

χ = α + β

1 + α · β
. (5.33)

A derivation of (5.33) is provided in Section B.9. A compensation of the spectral tilt is
now possible by applying the inverted weighting function

∣∣∣W̃ (z̃) · W̃(z̃−1)

∣∣∣−1
(5.34)

to the warped autocorrelation coefficients. This weighting function can easily be realized
as a second-order finite impulse response filter

φ̂[m] = 1 + χ2 + χ · φ̃[m − 1] + χ · φ̃[m + 1]

1 − χ2
. (5.35)
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Algorithm 5.4 Warped-twice MVDR spectral envelope calculation

1. Compute the warped autocorrelation coefficients φ̃[0], · · · , φ̃[M + 1] as given in (5.29)
2. Calculate the compensation warp factor

β = α − αmel

1 − α · αmel

3. Compensate spectral tilt on warped autocorrelation coefficients

φ̂[m] = 1 + χ2 + χ · φ̃[m − 1] + χ · φ̃[m + 1]

1 − χ2

with the warp factor

χ = α + β

1 + α · β

4. Compute the warped LPCs ã
(M)
0···M of order M and the prediction error power ẽM

5. Correlate the warped LPCs, as

μ̂k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

ẽM

M−k∑
m=0

(M + 1 − k − 2m) â(M)
m â

∗(M)
m+k , k = 0, 1, · · · ,M,

μ̂∗
−k, k = −M, · · · , −1

6. Compute the warped-twice MVDR envelope

SW2MVDR(ejω) = 1
M∑

m=−M

μ̂m

ejω − β

1 − β · ejω

Note that (5.35) requires the calculation of M + 1 autocorrelation coefficients φ̃[m] as
defined in (5.29).

A fast computation of the warped-twice MVDR envelope of model order M is possible
by extending Musicus’ algorithm as outlined in Algorithm 5.4. The required compensation
steps are described in more detail in the next section. A flowchart of the individual
processing steps, including a steering function as defined in the next section, is given in
Figure 5.9.

Steering Function

In order to achieve the best ASR performance, the free parameters of the warped-twice
MVDR envelope must be adapted in such a way that characteristics relevant for classifi-
cation are emphasized while less relevant information is suppressed. A function providing
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Figure 5.9 Overview of warped-twice minimum variance distortionless response. Symbols are
defined as in the text

this property is called a steering function . Nakatoh et al. (2004) proposed a method for
steering the spectral resolution to lower or higher frequencies whereby, for every frame
k, the ratio of the first two autocorrelation coefficients were used as a steering function

ϕk � φk[1]

φk[0]
. (5.36)

The factor γ is introduced in order to adjust the sensitivity of the steering function.
Moreover, the bias ϕ, which is obtained by averaging over all values in the training set,
keeps the average of α close to αmel. This leads to

αk = γ · (ϕk − ϕ) + αmel. (5.37)

Figure 5.10 gives the different values of the normalized first autocorrelation coefficient ϕ

averaged over all samples for each individual phoneme. A clear separation between the
fricatives, in particular the sibilants, and nonfricatives can be observed.

5.3.9 Comparison of Spectral Estimates

Figure 5.11 displays plots of the spectral envelopes derived from the power spectrum as
well as the LP and MVDR models on both a linear and nonlinear frequency scale. The
warp factor for the warped LP and warped MVDR was set to 0.4595 so as to simulate the
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Figure 5.10 Values of the normalized first autocorrelation coefficient for different phonemes.
Different phone classes are distinguished by different ranges of values: The sibilants have in general
small values, the unvoiced phones fall in the middle of the range, and the nasals have the highest
values

mel frequency for a signal sampled at 16 kHz. Due to its stronger smoothing properties,
the model order of the MVDR-envelope was set to 30, while that of the LP envelope was
set to 15.

The spectral estimates on the nonlinear frequency scale differ from those in the linear
frequency scale inasmuch as more parameters are apportioned to describe the lower as
compared to the higher frequency regions. Thus the warped estimates provide a higher
spectral resolution in low frequencies and lower spectral resolution in higher frequency
regions. Therefore, warping prior to spectral analysis provides properties which cannot
be achieved when the spectral analysis is followed by frequency warping.

The warp factors, applied in the time or frequency domain, warp the frequency axis.
The effect can be used to apply the mel scale or, when done on a speaker-dependent
basis, to implement vocal tract length normalization. Better results with piecewise linear
warping as described in Section 9.1.1 may be achieved (Wölfel 2003), although this effect
is strongly dependent on the sampling rate.

The MVDR envelope prevents the unwanted overestimation of the harmonic peaks in
medium- and high-pitched voiced speech that is seen in the LP envelope. As is apparent
from Figure 5.11, the LP envelope overestimates the spectral peak at 4 kHz, which is
apparent upon comparing the LP envelope with the Fourier spectrum. Unlike the LP
spectral envelope, the MVDR envelope provides a broad peak which matches the true
spectrum better.

Figure 5.12 compares the influence of the model order and the warp factor on the
warped-twice MVDR spectral envelope estimate. While the model order varies the overall
spectral resolution of the estimate, the warp factor moves spectral resolution to higher or
lower frequencies.

5.3.10 Scaling of Envelopes

In this section, we investigate the influence of additive noise on the spectral peaks of the
power spectrum and those of spectral envelopes. The peaks in the logarithmic domain are
known to be particularly robust to additive noise, as log(a + b) ≈ log(max{a, b}) (Barker
and Cooke 1997). This fact is best illustrated by plotting energies in the logarithmic power
frequency domain before and after additive distortion on the x- and y-axis, respectively.
The gray line in Figure 5.13, shows the ideal case of a noise free speech signal; here all
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Warped Frequency

Frequency [kHz]

0 842 61 3 5 7

Figure 5.11 Different spectral estimations of voiced speech. From top to bottom: minimum vari-
ance distortionless response envelope with model order 30, linear prediction envelope with model
order 15 and Fourier spectrum, and their mel warped, α = 0.4595, counterparts with same model
order

points fall on the line x = y. In the case of additive noise, the lower values of the power
spectrum are lifted to higher energies; i.e., the low-energy components are masked by noise
and their information is missing . This effect is more apparent on the power spectrum.
The MVDR envelope, however, shows a broad band instead of a narrow ribbon even in
the high-energy regions which is due to the high variance of the maximum amplitude in
spectral envelope estimation techniques. The spectral peaks of the envelope are not as
robust to additive noise as the spectral peaks of the logarithmic power spectrum. Scaling
the spectral envelope to the highest peak of the Fourier spectrum provides more robust
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Figure 5.12 The solid lines show warped-twice MVDR spectral envelopes with model order 60,
α = αmel = 0.4595. Its counterparts with lower and higher model order and warp factor α are
given by dashed lines. The arrows point in the direction of higher resolution. While the model
order changes the overall spectral resolution at all frequencies, the warp factor moves spectral
resolution to lower or higher frequencies. At the turning point frequency (ftp,α=0.3 = 3.23kHz,
ftp,α=mel = 2.78 kHz, ftp,α=0.6 = 2.38 kHz), the resolution is not affected and the direction of the
arrows changes
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Figure 5.13 Influence of noise on captured speech in the logarithmic power domain. The average
signal-to-noise ratio is 8 dB

features than both the conventional envelope, as is clear upon comparing the features of
the envelope with those of the scaled envelope in Figure 5.13, and the power spectrum,
as can be seen by comparing the features of the power spectrum with those of the scaled
envelope.
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5.4 Cepstral Processing

Cepstral features were originally invented by Bogert et al. (1963) to distinguish between
earthquakes and underground nuclear explosions. Noll (1964) introduced them into speech
processing for vocal pitch detection. The name cepstrum , which stems from the reversal
of the first four letters of spectrum , was adopted because its inventors realized they were
performing operations in a transform domain that were more often performed in the
time domain. The cepstrum was introduced to ASR by Davis and Mermelstein (1980).
One year later its successful use for the purpose of speaker verification was reported
by Furui (1981). Nowadays, the cepstral features are widely used in a broad variety of
speech applications. Our interest in cepstral features here stems from their overwhelming
prevalence as the feature of first choice for ASR.

5.4.1 Definition and Characteristics of Cepstral Sequences

Consider a stable sequence x[n] with z-transform X(z). By definition the complex cep-
strum is that stable sequence x̂[n] whose z-transform is

X̂(z) � log X(z),

where log(·) in this case is the complex-valued logarithm (Churchill and Brown 1990,
sect. 26). It is the use of the complex-valued logarithm in its definition that gives the
complex cepstrum its name, for, as we will shortly see, x̂[n] is real-valued for all real
x[n]. Based on the definition (3.33) of the inverse z-transform, we can write

x̂[n] � 1

2πj

∮
C

X̂(z) zn−1dz = 1

2πj

∮
C

log X(z) zn−1dz,

where the contour of integration C must lie in the region of convergence of X̂(z) =
log X(z). As we require x̂[n] to be stable, this region of convergence must contain the
unit circle. Hence, the contour C can be parameterized as C = {z = ejω ∀ ω ∈ (−π, π]},
whereupon we find

x̂[n] = 1

2π

∫ π

−π

log X
(
ejω
)

ejωndω, (5.38)

which is equivalent to the inverse Fourier transform of log X
(
ejω
)
.

The real cepstrum , the computation of which is illustrated in Figure 5.14, is that
sequence cx[n] defined as

cx[n] � 1

2π

∫ π

−π

log
∣∣X (ejω

)∣∣ ejωndω. (5.39)

Note that it is common to first apply a set of mel filters, as described in Section 5.2.2, to
the output of the block log | · | in the figure before applying the inverse discrete Fourier
transform (DFT). Expressing X(ejω) in polar coordinates as

X
(
ejω
) = ∣∣X (ejω

)∣∣ exp
(
j arg X

(
ejω
))

,
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w[m-n]

DFT log|•| IDFT cx[n,m]x[n]

Figure 5.14 Computation of the short-time, real cepstrum

it follows that

X̂
(
ejω
) = log X

(
ejω
) = log

∣∣X (ejω
)∣∣+ j arg X

(
ejω
)
.

Hence, it is clear upon comparing (5.38) and (5.39) that cx[n] is the inverse transform of
the real part of log X

(
ejω
)
. Hence, cx[n] must be equivalent to the conjugate-symmetric

portion of x̂[n], such that

cx[n] = x̂[n] + x̂∗[−n]

2
. (5.40)

In order to further investigate the characteristics of cepstral sequences, we must redefine
the system transfer function (3.39) as

H(z) � K

∏Mo
m=1(1 − am z)

∏Mi
m=1(1 − cm z−1)∏No

m=1(1 − bm z)
∏Ni

m=1(1 − dm z−1)
, (5.41)

where we will uniformly assume |am|, |bm|, |cm|, |dm| < 1. In (5.41) Mi and Ni are, respec-
tively, the numbers of zeros and poles inside the unit circle, while Mo and No are the
numbers of zeros and poles outside the unit circle. This transfer function describes a
mixed phased system in that it has zeros and poles both inside and outside the unit circle,
the latter being {ak} and {bk}, respectively.

In order to determine the time-series representations of that ĥ[n] whose transform pair
is Ĥ (z), we can make use of the series expansions

log
(
1 − α z−1) = −∑∞

n=1
αn

n
z−n ∀ |z| > |α|, (5.42)

log (1 − β z) = −∑∞
n=1

βn

n
zn ∀ |z| < |β|−1. (5.43)

Hence, we can express ĥ[n] as

ĥ[n] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log |K|, n = 0,

−
Mi∑

m=1

cn
m

n
+

Ni∑
m=1

dn
m

n
, ∀ n > 0,

Mo∑
m=1

a−n
m

n
−

No∑
m=1

b−n
m

n
, ∀ n < 0.

(5.44)
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Several characteristics of cepstral sequences emerge from (5.44). Firstly, it is clear that
a minimum phase system will have a causal sequence of cepstral coefficients, which
implies ĥ[n] = 0∀n < 0. Secondly, for real h[n], which implies that the complex poles
and zeros of H(z) occur in complex-conjugate pairs, ĥ[n] will also be real as stated at
the outset. A third implication of (5.44) is that the cepstral coefficients ĥ[n] decay at least
as fast as 1/n. Hence, the lower order coefficients will contain most of the information
about the overall spectral shape of H

(
ejω
)
.

Another consequence of (5.40) and (5.44) is that for any transform pair x[n] ↔ X
(
ejω
)

with complex cepstrum x̂[n], it is possible to define a second cepstral sequence x̂min[n]
that corresponds to the minimum phase transform pair xmin[n] ↔ Xmin

(
ejω
)

whereby∣∣X (ejω
)∣∣ = ∣∣Xmin

(
ejω
)∣∣ .

In other words, on the unit circle the spectra corresponding to x̂[n] and x̂min[n] have the
same magnitude and differ only in phase.

In order to derive an expression for x̂min[n] in terms of x̂[n], we first assume x̂min[n] = 0
∀ n < 0 in (5.40), and write

x̂min[n] =

⎧⎪⎨
⎪⎩

0, ∀ n < 0,

cx[0] n = 0,

2cx[n] ∀ n > 0.

(5.45)

Then upon substituting (5.40) into (5.45) for the general x̂[n], we obtain

x̂min[n] =

⎧⎪⎨
⎪⎩

0, ∀ n < 0,

x̂[0], n = 0,

2x̂[n], ∀ n > 0,

(5.46)

where, in writing the equality for the case n > 0, we have made use of the fact that x̂[n]
is real-valued.

The low-order cepstral coefficients, especially x̂min[0] and x̂min[1], can be given a
particular intuitive meaning. The initial value x̂min[0] represents the average power of
the input signal, although it is often replaced by more robust measurements of signal
power for purposes of ASR. The next value x̂min[1] indicates the distribution of spectral
energy between low and high frequencies. A positive value indicates a sonorant sound,
as the preponderance of the spectral energy will be concentrated in the low-frequency
regions. A negative value, on the other hand, indicates a fricative, inasmuch as most of
the spectral energy will be concentrated at high frequencies (Deng and O’Shaughnessy
2003). Higher order cepstral coefficients represent ever increasing levels of spectral detail.
Note that a finite input sequence results in an infinite number of cepstral coefficients. It
is a well-established fact, however, that a finite number of coefficients, typically ranging
between 12 and 20 depending on the sampling rate, is sufficient for accurate ASR (Huang
2001). This is confirmed in Section 5.7.2, which discusses the fact that cepstral coefficients
with low order contribute more to the class separability than the cepstral coefficients with
higher order. The ideal number of cepstral coefficients also depends on the smoothness
of the spectral estimate which is determined by whether or not a filter bank is used and
the type and model order of the spectral envelope used.
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5.4.2 Homomorphic Deconvolution

We now develop another characteristic of cepstral sequences, which will prove very useful
for ASR. The utility of this characteristic stems from the fact that it is possible to remove
the effect of the periodic excitation produced by the vocal cords from a sequence of
cepstral coefficients by simply discarding the higher order coefficients. In order to model
the periodic excitation in the source-filter model of speech production discussed in Section
2.2.1 let us define the transform pairs,

x[n] ↔ X
(
ejω
)
, h[n] ↔ H

(
ejω
)
, p[n] ↔ P

(
ejω
)
.

and assume that the sequence x[n] is given by the convolution,

x[n] = h[n] ∗ p[n],

where h[n] is the impulse response of a linear time-invariant (LTI) system and p[n]
is a periodic excitation of that system with period T0. From (3.20) and the preceding
discussion, it then follows that

log X
(
ejω
) = log H

(
ejω
)+ log P

(
ejω
)
.

Upon taking the inverse Fourier transform of the last equation, we arrive at

x̂[n] = ĥ[n] + p̂[n], (5.47)

which implies that if two sequences are convolved in the time domain, their corresponding
complex cepstra are added . Moreover, in light of (5.46), we can rewrite (5.47) as

x̂min[n] = ĥmin[n] + p̂min[n]. (5.48)

That h[n] is the impulse response of a LTI system implies that ĥ[n] will have the form
(5.44). Moreover, it is evident that ĥmin[n] corresponds to a system function as in (5.41),
where all terms (1 − am z) and (1 − bm z) contributing zeros and poles outside the unit
circle have been replaced by the terms (1 − am z−1) and (1 − bm z−1), respectively; i.e.,
the zeros and poles outside of the unit circle have been replaced by their (conjugate)
reciprocals, which fall inside the unit circle.

Oppenheim and Schafer (1989, sect. 12.8.2) have shown when p[n] is a periodic exci-
tation with period T0, it follows that p̂[0] = 0 and that p̂[n] will also be periodic with
a period of N0 = T0/Ts samples, where Ts is the sampling interval discussed in Section
3.1.4. This implies that p̂[n] is nonzero only at p̂[kN0]. In consequence of these facts it is
clear that ĥmin[n] can be recovered nearly perfectly from the so-called liftering operation

ĥmin[n] ≈ x̂min[n] w[n], (5.49)

where

w[n] =
{

1, ∀ 0 ≤ n < N0,

0, otherwise.
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The significance of the liftering operation for purposes of ASR can be immediately
seen by assuming that h[n] is the impulse response of a speaker’s vocal tract, and p[n]
is the periodic excitation provided by the vocal cords during segments of voiced speech.
Then (5.49) implies that, in the cepstral domain, the spectral envelope determined by the
shape of the vocal tract can be separated from the periodic excitation of the vocal cords
by discarding all but the lowest order cepstral coefficients.

5.4.3 Calculating Cepstral Coefficients

For the purposes of ASR, the minimum phase equivalent x̂min[n] of the cepstral sequence
x̂[n] is almost invariably used to generate acoustic features. Such features can be calculated
by using the inverse DFT to calculate cx[n] as in (5.39), then using this intermediate result
to calculate x̂min[n] as in (5.45).

Another common alternative to the use of the inverse DFT is to apply the Type 2
discrete cosine transform (DCT) directly to the log-power spectral density log

∣∣X (ejω
)∣∣,

such that

x̂min[n] =
M−1∑
m=0

log
∣∣X (ejωm

)∣∣ T (2)
n,m, (5.50)

where T
(2)
n,m are the components of the Type 2 DCT given in equation (B.1).

Yet another alternative is to calculate the cepstral coefficients x̂min[n] from a set of
linear prediction coefficients {an}, as described in Sections 5.3.3, 5.3.5, and 5.3.6. All
of these models result in an all-pole estimate of the spectral envelope of the form given
in (5.21) and (5.22). Once the LPCs {an} have been calculated, it is straightforward to
extract the corresponding cepstral coefficients through the recursion,

x̂n = −an − 1

n

n−1∑
m=1

m an−m x̂m ∀ n = 1, . . . , N. (5.51)

To demonstrate (5.51), we begin by writing

X̂(z) = − log A(z),

where
A(z) = 1 +

∑
n=1

an z−1.

As the all-pole model (5.20) is minimum phase, the Laurent series expansion of X̂(z)

will involve only negative powers of z. Upon replacing z by z−1 in both A(z) and X̂(z),
it then follows that

X̂(z−1) =
∞∑

m=1

x̂m zm = − log
M∑

k=0

ak zk = − log A(z−1), (5.52)
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where M is the order of the LP model. Differentiating both sides of (5.52) by z provides

∞∑
m=1

m x̂m zm−1 = −

M∑
n=1

n an zn−1

M∑
k=0

ak zk

.

Rewriting the last equation, we arrive at

−
∞∑

m=1

M∑
k=0

mak x̂m zk+m−1 =
M∑

n=1

n an zn−1. (5.53)

It is now possible to equate the coefficients of equivalent powers of z by requiring
n = k + m, from which it follows

n an = −
n∑

m=1

m an−m x̂m = −n x̂n −
n−1∑
m=1

man−m x̂m, (5.54)

where the final equality follows from a0 = 1. A minor rearrangement of (5.54) is then
sufficient to demonstrate (5.51).

It is also possible to obtain a nonrecursive relation which allows linear prediction
coefficients to be calculated from cepstral coefficients. A more detailed discussion
together with the relevant derivation can be found in Schroeder (1981, Appendix B.1).

5.5 Comparison between Mel Frequency, Perceptual LP and
warped MVDR Cepstral Coefficient Front-Ends

In the previous sections different components in the feature extraction process have been
introduced. In this section we will assemble the different components into three different
front-ends and discuss their advantages and disadvantages. Undoubtedly the most popular
features extraction methods used in ASR are MFCCs by Davis and Mermelstein (1980)
and PLP cepstral coefficients by Hermansky (1990). It depends on the task which of
the two methods leads to better recognition accuracy. It is reported in the literature that
MFCCs give better results under clean conditions without significant mismatch between
the training data. PLP cepstral coefficients, on the other hand, provide better results in
noisy or mismatched conditions. This is probably due to the unequal modeling of spectral
energy by the spectral envelopes as discussed in a previous section.

More recently, novel feature extraction schemes based on the minimum variance dis-
tortionless response providing reliable and robust estimates of the spectral envelopes have
been proposed; see, Wölfel and McDonough (2005); Wölfel et al. (2003) and Dharanipra-
gada et al. (2007). The warped or perceptual MVDR spectral envelope front-ends have
demonstrated consistent improvements over the two widely used methods for noise free
as well as noisy recordings.
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Figure 5.15 Three front-ends are compared, namely perceptual linear prediction, mel frequency
and warped or warped-twice MVDR cepstral coefficients. The components in gray color are com-
pulsive and might not be used

Figure 5.15 shows flowcharts of the components of the two traditional ASR front-ends,
as well as the MVDR front-end, which was more recently proposed in the literature. The
cepstral features extracted by any of the front-ends shown are typically processed with
mean and variance normalization as described in Section 6.9.2. Thereafter, the normalized
features are further augmented through the calculation of delta and delta–delta coefficients
or frame stacking followed by discriminant analysis, as discussed in the next section.

5.6 Feature Augmentation

For time segments of 100 ms or less, human phonetic categorization and discrimination
is poor. As used in ASR, a typical analysis window has a length of no more than 32 ms.
This suggests that the observation context of the input feature vector as provided by a
single window of short-time spectral analysis should be extended. Indeed, analysis of
longer time spans seems to be essential to speech feature extraction (Yang et al. 2000).

5.6.1 Static and Dynamic Parameter Augmentation

It has proven useful to augment the current speech frame either by static or by dynamic
features. Extended static features are easily obtained by concatenating to the current frame
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as many as seven consecutive frames to the left and right. Furui (1986) described how
dynamic information could be helpful for ASR. To obtain dynamic information the dif-
ference between consecutive frames might be taken. For a more reliable estimate, to
minimize the harmful effects of random interframe variations, dynamic information is
commonly estimated over five or seven frames. In addition one can also include accel-
eration, however, for a reliable estimate of those second-order dynamics an even longer
timespan is required. Yang et al. (2005) have investigated the effect of static and dynamic
features. They found that dynamic features are more resilient to additive noise than their
static counterparts. Also note that dynamic features are immune to short-time convolu-
tional distortion which is associated with a constant offset in the logarithmic spectrum or
cepstrum domain.

The absolute measure can be thought of a zeroth-order derivation. A first-order deriva-
tion can be approximated by the linear phase filter

ṡ[k] ≈
+M∑

m=−M

ms[k + m]. (5.55)

Higher orders can be derived by consecutively reapplying (5.55) to the output of the
previous order. The signal output of the first-order derivation is referred to as delta
coefficients and the second-order delta–delta coefficients respectively. As differentiation
filters tend to amplify noise in the measurement it is suggested to compensate for this
negative effect by, e.g., spline interpolation or band-limited differentiation.

An alternative is a simple stacking or concatenation of neighboring frames

cstacked[k] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ck−M

. . . . .

...

. . . . .

ck

. . . . .

...

. . . . .

ck+M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

With the introduction of the weighting matrix W we can write

cfinal � Wcstacked[k], (5.56)

which represents a single parameter vector that contains all desired information about
the signal for each frame. Note that (5.56), if the values of W are set accordingly,
allows all kind of linear filter operation such as differentiation, averaging, and weighting.
Stacking static or dynamic features increase the dimensionality of the speech feature
vector. In Section 5.7 we discuss data-driven methods to determine the values of W and
the reduction of the dimension of the augmented speech feature vector.
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5.6.2 Feature Augmentation by Temporal Patterns

Hermansky and Sharma (1998) introduced a method which learns temporal patterns
based on between 50 and 100 consecutive frames of speech features, which amounts to
between 0.5 and 1 second. The features are derived from logarithmic critical band energies
(LCBEs) covering at least two syllables. The raw representation of such features can be
transformed into posterior probabilities of phonetic classes (Morgan and Bourlard 1995).

Hermansky and Sharma used a two-staged multi-layer perception architecture, dubbed
TRAPS, which stands for temporal patterns . The first stage learns critical band phone
probabilities conditioned on the input features. The second stage merges the output of
each of the individual outputs of the first stage. This way of learning temporal infor-
mation from the time–frequency plane is constrained to emphasize temporal trajectories
of narrowband components by modeling correlation among long-term LCBE trajectories
from different frequency bands. TRAPS features perform about as well as conventional
short-term features. They significantly reduce word error rates (WERs), however, when
used in combination with the conventional features, as they provide different information
which can be combined to good effect.

A successor of TRAPS is dubbed hidden activation TRAPS (HATS) and differs
inasmuch as it uses the hidden activations of the critical bands instead of their outputs
as inputs to the second stage (Chen et al. 2003a). In Chen et al. (2004a) several
different approaches to using long-term temporal information are compared. In that
study, it was confirmed that the constraint on learning from the time–frequency plane is
important.

5.7 Feature Reduction

Feature reduction is commonly applied as a preprocessing step to overcome the curse
of dimensionality through a reduction in the dimensionality of the feature space. The
term coined by Richard Bellman (1961) describes the problem whereby volume increases
exponentially as additional dimensions are added to a space. For example, consider a
subcube embedded within a cube in an arbitrarily high-dimensional space. In order
to capture 10% of the volume in three dimensions, the subcube would need to be
46.42% as large on a side as the cube, while in 10 dimensions the subcube would
need to be 79.43% as large. This effect is demonstrated for different dimensions in
Figure 5.16.

The implication of the curse of dimensionality for feature extraction is that dimen-
sionality reduction is typically required in order to perform robust parameter estimation
with a limited amount of training data. An exact relationship between the number of
parameters in the feature space and the expected error, the number of available training
samples or imposed constrains cannot be established. A rule of thumb, however, has been
suggested to prevent overfitting , whereby estimation errors are introduced by choosing a
high-dimensional observation space when only a limited number of training samples are
available. The rule of thumb suggests using at least 10 times as many training samples
per class as the number of features. This ratio, however, should be increased for complex
classifiers as used in ASR.

Different objective functions and procedures for feature transform and reduction exist
to satisfy for different requirements:
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Figure 5.16 Illustration of the curse of dimensionality for different feature dimensions as indicated
by the number next to each curve

• minimizing reconstruction error, e.g., principal component analysis (Dunteman 1989),
• retaining interesting directions, e.g., projection pursuit (Friedman and Tukey 1974),
• making features as independent as possible, e.g., independent component analysis

(Section 12.2),
• maximizing class separability, e.g., linear discriminant analysis (Section 5.7.2),
• minimizing classification error, e.g., discriminative parameter estimation (Section 8.2).

For feature reduction focusing on speech recognition, however, only the latter two are of
interest.

5.7.1 Class Separability Measures

In this and the coming sections we consider the problem of estimating a projection matrix
W that provides maximal separability between classes in the projected feature space. For
each of M classes, let us assume that there exists a set {ym,k} of labeled training samples.
Let the number of samples in the mth class be denoted by Km, the mean of all samples
in the mth class as μm, and let the mean of all samples regardless of class be denoted by
μ. Class separability is a classical concept in pattern recognition, and can be expressed
as a function of two out of three scatter matrices, which are defined as

• the within-class scatter matrix

Sw = 1

K

M∑
m=1

[
Km∑
k=1

(ym,k − μm)(ym,k − μm)T

]
, (5.57)

• the between-class scatter matrix

Sb = 1

K

M∑
m=1

Km(μm − μ)(μm − μ)T , (5.58)
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• the total scatter matrix

St = Sw + Sb = 1

K

M∑
m=1

[
Km∑
k=1

(ym,k − μ)(ym,k − μ)T

]
,

where Km is the number of samples in the mth class, and K is the total number of
samples. It is interesting to note that the given matrices are invariant under a coordinate
shift (Fukunaga 1990). Moreover, from the above relations, it is clear that any of the
scatter matrices can always be derived from the other two.

For a high-class separability all vectors belonging to the same class must be close
together and well separated from the feature vectors of other classes. This implies that
the final transformed feature will have a relatively small within-class and a relatively large
between-class scatter matrix. The most widely used class separability measure is likely
to be

d = trace
(
S−1

w Sb
)
. (5.59)

If Sw in nonsingular, the class separability can be approximated by

d = trace (Sb) /trace (Sw) . (5.60)

An alternative representation of class separability replaces the trace by the determinant

d = det
(
S−1

w Sb
)
. (5.61)

Class separability is well correlated with WER and thus can serve as an analysis tool to
compare different feature extraction or enhancement algorithms, or to compare the quality
of individual channels as described in Section 12.1. In the next section, we will use class
separability as an objective function in order to rank and select dimensions for feature
transformation.

5.7.2 Linear Discriminant Analysis

The basic idea of discriminant analysis is to find a mapping function represented by a
transform W such that the class separability as defined in Section 5.7.1 is maximized.
Linear discriminant analysis (LDA) assumes that all classes have a common covari-
ance matrix �m = � ∀ m. Linear combinations are particularly attractive because of their
computational simplicity.

LDA can be used as a restricted Gaussian classifier (Hastie et al. 2001). The popu-
larity of LDA for ASR, however, stems from its capacity to project feature vectors into
a space of lower dimensionality while retaining all or nearly all information relevant
for classification (Häb-Umbach and Ney 1992). This is possible inasmuch as the cen-
troids of M classes can be represented in an affine subspace of dimension ≤ M − 1, and
because, under a transform obtained through LDA, the dimensions are ordered according
to their relevance for classification. The latter point is evident from Figure 5.17. The
195-dimensional feature vector was obtained by concatenating 15 consecutive frames of
cepstral coefficients each comprising 13 normalized coefficients. From the figure, it is clear
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Figure 5.17 Class separation, after (5.59), for each of the 195 individual feature bins before (solid
line) and after linear discriminant analysis (dashed line) processing. The initial 195 features are a
concatenation of 15 frames each containing 13 cepstral coefficients

that the lower order cepstral coefficients contribute more to the class separability than the
higher order coefficients. Moreover, it is apparent that the center frames contribute more
to the class separability than the neighboring frames on the left and right. The dashed line
in Figure 5.17 indicates the class separability after LDA, which decreases monotonically
with increasing dimension. We will shortly describe how such a set of projections can be
determined based on the scatter matrices defined in the last section, and how each such
projection can be ranked in terms of class separability. After such a ranking has been
made, only the most important projections need be retained. The elimination of detail that
is superfluous for the purpose of classification through linear discriminant analysis has
been shown to improve ASR performance.

The LDA problem, as originally formulated by Fisher (1936), is to find a linear
projection W such that the between-class variance of the projected features, which are
defined as,

Z � WT X,

is maximized relative to the within-class variance. From Figure 5.18 it is obvious why
this criterion makes sense. Although the projection along axis A achieves maximal
separation between the means of the two classes, there is still considerable overlap
between the classes in the projected space. The projection along axis B, on the other
hand, produces less separation between the projected means, but greater separability
overall. Hence, it is necessary to consider the structure of the class covariance matrices
in determining the optimal projection.

In order to determine the optimal linear project, let us begin by determining the best
single linear projection w. This can be achieved by maximizing the Rayleigh quotient ,

Q(Sb, Sw) � max
w

wT Sbw
wT Sww

, (5.62)
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A

B

Figure 5.18 The discriminant direction without considering the variance (A) and the discriminant
direction as derived by linear discriminant analysis (B). The crosses represent the class centroides
and the oval are the contours of the covariance.

where Sw and Sb are defined in (5.57) and (5.58), respectively. Alternatively, the problem
can be formulated as the constrained minimization problem

min
w

−1

2
wT Sbw subject to wT Sww = 1. (5.63)

This constrained optimization problem is readily solved with the method of Lagrange
multipliers. We need only formulate the objective function

L(w) = −1

2
wT Sbw + 1

2
λ(wT Sww − 1). (5.64)

Taking the partial derivative with respect to w on both sides of (5.64) and equating to
zero then yields

Sbw = λSww,

or, as Sw is positive definite and hence invertible,

S−1
w Sbw = λw. (5.65)

Equation (5.65) is known as a a generalized eigenvalue problem (Crawford 1976). It
differs from the standard eigenvalue problem in that S−1

w Sb will not, in general, be sym-
metric. It is possible, however, to convert (5.65) to a standard eigenvalue problem by first
performing an eigenvalue decomposition on Sb such that

Sb = U�UT , (5.66)

which implies that the square root2 of Sb can be defined as

S1/2
b � U�1/2UT . (5.67)

2 Note that this is not the same square root as that based on the Cholesky decomposition, as described in Sections
10.2.1 and 13.4.4.
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Thereupon, we can define

v � S1/2
b w. (5.68)

Substituting (5.68) into (5.65) then provides,

S1/2
b Sw S1/2

b v = λv,

which is a standard eigenvalue problem for the symmetric positive-definite matrix
S1/2

b Sw S1/2
b . It is then readily verified that the eigenvector vmax sought is that corres-

ponding to the maximum eigenvalue λmax of S1/2
b Sw S1/2

b . The corresponding projection
wmax is then given by

wmax = S−1/2
b vmax.

Assume now that a projection of total length M is sought, and let wm denote the
mth column of W. To obain the entire linear projection matrix W, the eigenvectors
{vm} corresponding to the M highest eigenvalues are retained and used to calculate the
projections {wm} from

wm = S−1/2
b vm ∀ m = 1, . . . , M.

The projection vectors {wm} then comprise the columns of W. It is also possible to solve
for the optimal LDA projection matrix through simultaneous diagonalization (Fukunaga
1990, sect. 10.2).

LDA is a simple and powerful technique that is able to compute time derivatives
implicitly (Eisele et al. 1996), often with better effect than explicit calculation. The disad-
vantage of the LDA is that it is data dependent, and thus suffers performance degradations
whenever there is a mismatch between training and test data.

5.7.3 Heteroscedastic Linear Discriminant Analysis

In the Bayes’ sense, LDA is the optimum solution for normal distributions with a com-
mon covariance matrix �m = � ∀ m. This assumption, however, does not hold for the
classification of speech signals and the optimal solution is somewhat more difficult to
achieve.

Let us define the mean vector μm of the mth class as

μm � 1

Nm

Nm∑
k=1

ym,k,

where Nm is the number of features assigned to the mth class, and ym,k is the kth feature
assigned to class m. Similarly, let the scatter matrix for the mth class be defined as

Sm � 1

Nm

Nm∑
k=1

(
xm,k − μm

) (
xm,k − μm

)T
.
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The objective function used in heteroscedastic linear discriminant analysis can then be
defined as

Q(Sb, {Sm}) � max
W

M∏
m=1

( ∣∣WT SbW
∣∣∣∣WT SmW
∣∣
)Nm

or, upon taking the logarithm,

log Q(Sb, {Sm}) = argmax
W

N log
∣∣WT SbW

∣∣− M∑
m=1

Nm log
∣∣WT SmW

∣∣ , (5.69)

where the total number of features in the training set is given by

N =
∑
m

Nm.

Unfortunately, (5.69) has no analytic solution, which implies that a numerical optimization
routine, such as the method of conjugate gradients (Bertsekas 1995, sect. 1.6), must be
used to find the optimal transformation matrix W. Like LDA, heteroscedastic LDA is
invariant to linear transformations of the data in the original feature space. Figure 5.19
illustrates an example where the conventional and heteroscedastic LDA solutions for the
optimal transformation matrix differ. While the solution of the heteroscedastic LDA is able
to handle different covariance matrices, the LDA optimizes for a global covariance matrix
(not shown in the image). A detailed introduction to heteroscedastic LDA is provided in
Hastie et al. (2001) and with regard to speech recognition in Kumar and Andreou (1998).

Further extensions to LDA are maximum likelihood-based heteroscedastic LDA (Kumar
and Andreou 1996) which puts the optimization function inside the ML estimation frame-
work. This approach can be readily extended to adopt the minimum phone error frame-
work, dubbed MPE-LDA (Zhang and Matsoukas 2005), to incorporate a priori knowledge
of confusable hypotheses. An alternative approach using the same optimization criteria
as MPE-LDA is presented next.

A

B

Figure 5.19 The discriminant direction as derived by conventional (B) and heteroscedastic linear
discriminant analysis (A), respectively
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5.8 Feature-Space Minimum Phone Error

The main idea of feature-space minimum phone error (fMPE) (Povey et al. 2004) is
to adjust a feature vector that improves the minimum phone error objective function as
defined in Section 8.2.3. To allow for a modification of the feature vector xk at time k a
linear transform matrix M is applied to a high-dimensional conditioning feature vector gk:

yk = xk + Mgk,

where g is an intermediate high-dimensional feature vector

gk = (p(1|xk), p(2|xk), . . . , p(q|xk))
T

composed of the posterior probabilities p(l|xk) which have to be evaluated on each
frame. As there are approximately 100 000 Gaussians, Povey proposed to cluster them
and evaluate only the most likely cluster centers. M represents a transform matrix that
project gk into the dimension of the feature xk. The posterior tells which of the Gaussians
is close to the current frame and thus fMPE can be viewed as a region dependent feature
correction function.

With the optimization of the transform matrix M by gradient descent the model para-
meters λ are also updated by iterating between updating the fMPE features and a retraining
of the hidden Markov model parameters by maximum likelihood. Therefore the fMPE
estimation procedure is to find a transform that maximizes the minimum phone error
objective function

M̂ = argmax
M

FMPE(y, λ).

5.9 Summary and Further Reading

This chapter has covered fundamentals of acoustic feature extraction. We have learned that
efficient feature extraction techniques are based on characteristics of the human auditory
system. A major contribution in acoustic feature extraction is the estimation of the spectral
representation. Our focus on spectral estimation has been limited to the estimation of
the Fourier transform and various spectral envelope techniques. A general introduction to
spectral analysis can be found in Stoica and Moses (2005). The bilinear transform has been
introduced as an alternative to nonlinearly scaled filter banks to represent the nonlinear
resolution of the human ear. The cepstral representation is another important technique
which can be found in nearly every acoustic front-end. We have briefly introduced the
cepstrum. The interested reader who is seeking for a more rigorous treatment should
refer to Oppenheim and Schafer (1989) where an entire chapter is devoted to cepstrum
processing. Human, as well as automatic, phonetic categorization and discrimination is
poor for short observation windows, which suggests extending the observation context.
Feature reduction is another important step in obtaining robust features for ASR. We have
introduced LDA and heteroscedastic LDA which is frequently used in acoustic front-ends.
Hastie et al. (2001) give a detailed introduction to discriminant analysis and present both
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linear and quadratic discriminant analyses, as well as a compromise between those two
dubbed regularized discriminant analyses.

A good, however dated, overview of feature extraction is given in the paper by Picone
(1993). Two landmark books which are even older than the mentioned overview, but well
written – covering the mathematical theory as well as applications of digital speech signal
processing – are Rabiner and Schafer (1978) and the reissue of Deller et al. (1999). A
more recent source is the chapter on speech signal representation by Huang et al. (2001,
sect. 6) which covers some aspects that are relevant for speech feature extraction.

5.10 Principal Symbols

Symbol Description

ε excitation signal
φ autocorrelation vector
� autocorrelation matrix
ω angular frequency, ω = 2πf

a linear prediction coefficient
b amplitude
c cepstral coefficient
e error term
f frequency
h impulse response
H transfer function
k frame index
L number of harmonics
m discrete angle frequency
n discrete-time index
s fixed frequency vector
s speech signal
S spectrum
S scatter matrix
t continuous time
W projection matrix
W(z) weighting filter
x clean signal
y noisy signal



6
Speech Feature Enhancement

In automatic speech recognition (ASR) the distortion of the acoustic features can be com-
pensated for either in the model domain or in the feature domain. The former techniques
adapt the model on the distorted test data in such a way as if the model were trained on
distorted data. Feature domain techniques, on the other hand, attempt to remove or sup-
press the distortion itself. It has been shown in various publications, such as Deng et al.
(2000); Sehr and Kellermann (2007), that feature domain techniques provide better sys-
tem performance than simply matching the training and testing conditions. The problem is
especially severe for speech corrupted with reverberation. In particular, for reverberation
times above 500 ms, ASR performance with respect to a model trained on clean speech
does not improve significantly even when the acoustic model of the recognizer has been
trained on data from the same acoustic environment (Baba et al. 2002).

The term enhancement indicates an improvement in speech quality. For speech observa-
tions, enhancement can be expressed either in terms of intelligibility , which is an indicator
of how well the speech can be understood by a human, or signal quality , which is an indi-
cator of how badly the speech is corrupted, or it can include both of these measures. For
the purpose of automatic classification, features must be manipulated to provide a higher
class separability. It is possible to perform speech feature enhancement in an independent
preprocessing step, or within the front-end of the ASR system during feature extraction.
In both cases it is not necessary to modify the decoding stage and it might not require
any changes to the acoustic models of the ASR system, except for methods that change
the means or variances of the features, such as cepstral mean and variance normalization.
If the training data, however, is distorted itself, it might be helpful to enhance the training
features as well.

In general the speech enhancement problem can be formulated as the estimation of
cleaned speech coefficients by maximizing or minimizing certain objective criteria using
additional knowledge, which could represent prior knowledge about the characteristics of
the desired speech signal or unwanted distortion, for example. A common and widely
accepted distortion measure was introduced in Chapter 4, namely, the squared error dis-
tortion,

d(x̂, x) = |f (x̂) − f (x)|2

Distant Speech Recognition Matthias Wölfel and John McDonough
©    2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-51704-8
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where the function f (x) – which could be anyone of x, |x|, x2, or log x – determines the
fidelity criterion of the estimator.

As the term speech enhancement is very broad and can potentially cover a wide variety
of techniques, including:

• additive noise reduction,
• dereverberation,
• blind source separation,
• beamforming,
• reconstruction of lost speech packets in digital networks, or
• bandwidth extension of narrowband speech,

it is useful to provide some more specificity. An obvious classification criteria is provided
by the number and type of sensors used. Single-channel methods , as described in this
section, obtain the input from just a single microphone while multi-channel methods rely
on observations from an array of sensors. These methods can be further categorized by the
type of sensors. An example of the fusion of audio and visual features in order to improve
recognition performance is given by Almajai et al. (2007). As discussed in Chapters 12
and 13, respectively, blind source separation and beamforming combine acoustic sig-
nals captured only with microphones. These techniques differ inasmuch beamforming
assumes more prior information – namely, the geometry of the sensor array and position
of the speaker – is available. Single and multi-channel approaches can be combined to
further improve the signal or feature in terms of the objective function used, such as
signal-to-noise ratio (SNR), class separability, or word error rate.

In this book we want to use the term speech feature enhancement exclusively to describe
algorithms or devices whose purpose is to improve the speech features, where a single cor-
rupted waveform or single corrupted feature stream is available. The goal is an improved
classification accuracy which may not necessarily result in an improved or pleasing sound
quality if reconstruction is at all possible. As seen in previous sections, additive noise and
reverberation are the most frequently encountered problems in distant speech recognition
(DSR) and our investigations are limited to methods of removing the effects of these
distortions.

Work on speech enhancement addressing noise reduction has been a research topic
since the early 1960s when Manfred Schröder at Bell Labs began working in the field.
Schröder’s analog implementation of spectral subtraction , however, is not well known
inasmuch as it was only published in patents (Schröder 1965, 1968). In 1974 Weiss
et al. (1974) proposed an algorithm in the autocorrelation domain. Five years later Boll
(1979) proposed a similar algorithm which, however, worked in the spectra domain. Boll’s
algorithm became one of the earliest and most popular approaches to speech enhancement.
A broad variety of variations to Boll’s basic spectral subtraction approach followed.

Cepstral mean normalization (CMN), another popular approach, which in contrast to the
aforementioned methods is designed to compensate for channel distortion, was proposed
by Atal (1974) already in 1974. CMN came into wide use, however, only in the early
1990s. The effects of additive noise on cepstral coefficients as well as various remedies
were investigated in the PhD dissertations by Acero (1990a), Gales (1995), and Moreno
(1996).
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Considering speech feature enhancement as a Bayesian filtering problem leads to the
application of a series of statistical algorithms intended to estimate the state of a dynamical
system. Such Bayesian filters are described in Chapter 4. Pioneering work in that direction
was presented by Lim and Oppenheim (1978) where an autoregressive model was used for
a speech signal distorted by additive white Gaussian noise. Lim’s algorithm estimates the
autoregressive parameters by solving the Yule–Walker equation with the current estimate
of the speech signal and obtains an improved speech signal by applying a Wiener filter
to the observed signal. Paliwal and Basu (1987) extended this idea by replacing the
Wiener filter with a Kalman filter (KF). That work was likely the first application of
the KF to speech feature enhancement. In the years following different sequential speech
enhancement methods were proposed and the single Gaussian model was replaced by a
Gaussian mixture (Lee et al. 1997). Several extensions intended to overcome the strict
assumptions of the KF have appeared in the literature. The interacting multiple model ,
wherein several KFs in different stages interact with each other, was proposed by Kim
(1998). Just recently very powerful methods based on partice filters have been proposed
to enhance the speech features in the logarithmic spectral domain (Singh and Raj 2003;
Yao and Nakamura 2002). This idea has been adopted and augmented by Wölfel (2008a)
to jointly track, estimate and compensate for additive and reverberant distortions.

6.1 Noise and Reverberation in Various Domains

We begin our exposition by defining a signal model. Let x = [x1, x2, · · · , xM ] denote the
original speech sequence, let h = [h1, h2, · · · , hM ] denote convolutional distortions such
as the room impulse response, and let n = [n1, n2, · · · , nM ] denote the additive noise
sequence. The signal model can then be expressed as

y(t) = h(t) ∗ x(t) + n(t), (6.1)

in the discrete-time domain , which we indicate with the superscript (t). Next we develop
equivalent representations of the signal model in alternative domains, which will be
indicated with suitable superscripts. The relationship, however, between additive and
convolution distortion as well as the clean signal might become nontrivial after the trans-
formation into different domains. In particular, ignoring the phase will lead to approximate
solutions, which are frequently used due to their relative simplicity. An overview of the
relationship between the original and clean signal is presented in Table 6.1.

The advantage of time domain techniques is that they can be applied on a
sample-by-sample basis, while all alternative domains presented here require windowing
the signals and processing an entire block of data at once.

6.1.1 Frequency Domain

Representing the waveform as a sum of sinusoids by the application of the Fourier trans-
form leads to the spectral domain representation,

y(f ) = h(f )x(f ) + n(f ), (6.2)
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Table 6.1 Relation and approximation between the clean signal distorted
by additive and convolutional distortions in different domains

Domain Relationship and approximation

time y(t) = h(t) ∗ x(t) + n(t)

spectra y(f ) = h(f )x(f ) + n(f )

power spectra
y(p) = ∣∣h(f )x(f ) + n(f )

∣∣2
≈ ∣∣h(f )x(f )

∣∣2 + ∣∣n(f )
∣∣2

logarithmic spectra
y(l) = log

{∣∣h(f )x(f ) + n(f )
∣∣2}

≈ h(l) + x(l) + log
{

1 + en(l)−h(l)−x(l)
}

cepstra
y(c) = T log

{∣∣h(f )x(f ) + n(f )
∣∣2}

≈ h(c) + x(c) + T log
(

1 + eT−1(n(c)−h(c)−x(c))
)

where, in this chapter, we will adopt the convention that the vector–vector product
h(f )x(f ) is calculated component-by-component. Two obvious advantages of the spec-
tral domain over the time domain are that the convolutional term is now represented by
a multiplication and that the several frequency components can now be treated indepen-
dently. This relationship holds also for all other spectral domain representations. Another
advantage is the easier integration of nonlinearities derived from psychoacoustic models
into the signal model.

Block Convolution

Common speech feature extraction front-ends, as described in Chapter 5, introduce a
segmentation of the observation sequence and thus (6.2) no longer correctly describes
the convolution term. This disparity becomes more severe if the convolution sequence
is longer than the length of the segmentation window. This is commonly encountered
in DSR where room impulse responses are much longer than the 10 to 32 ms of the
segmentation window.

In order to implement linear convolution in the spectra domain, either the overlap-add or
overlap-save method, both of which are described in Sections 3.2.2 and 3.2.3, respectively,
can be used (Stockham 1966). Otherwise a digital filter bank, such as described in Chapter
11, can be used to implement this task. The latter solution has the advantage in that the
subbands are more sharply separated due to the better transition from pass- to stopband
and the superior stopband suppression. The short-time spectra domain speech signal can
be expressed with definition (3.73) as

Xk[m] = X[kF + n, ej2πm/M)

where k represents the frame, M the window length and F the frame shift. Similarly, the
short-time spectral domain representation of the impulse response can be written as

Hk[m] = H [kF + n, ej2πm/M).
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For the sake of simplicity, the windowing of the convolved sequence is neglected in
the following development. We should always bear the above in mind, however, and if
applied extend the given equations appropriately.

6.1.2 Power Spectral Domain

The power carried by the wave per frequency is calculated by squaring the frequency
domain components. This squaring operation leads to the power spectral domain repre-
sentation,

y(p) = ∣∣y(f )
∣∣2 = ∣∣h(f )x(f ) + n(f )

∣∣2 = ∣∣h(f )x(f )
∣∣2 + ∣∣n(f )

∣∣2 + e(p), (6.3)

where

e(p) = (h(f )x∗(f ))n(f ) + h(f )x(f )n∗(f ) = 2
∣∣h(f )x(f )

∣∣ ∣∣n(f )
∣∣ cos θ , (6.4)

and θ denotes the frequency-dependent phase difference between the clean speech and
noise signal. Under the assumption that the speech and noise signal are uncorrelated
stationary random processes (6.3) can be approximated as

y(p) ≈ ∣∣h(f )x(f )
∣∣2 + ∣∣n(f )

∣∣2 . (6.5)

Upon comparing (6.3) and (6.5), it becomes clear that (6.4) represents the error between
the exact and approximate representation.

If the clean speech signal and the additive noise term are considered to be uncorrelated,
θ is uncorrelated and has a uniform distribution between −π and +π . As explained
subsequently in Section 12.2.2, the central limit theorem states, however, that the sum of
i.i.d. r.v.s will be Gaussian distributed as the number of such r.v.s approaches infinity.
This fact prompted Deng et al. (2004a) to assume Gaussian distributions to model the
phase after the application of the mel filterbank, as it contains contributions of many
frequency components. The output of the low-frequency filters, however, are obtained
from the combination of very few or even a single spectral bin. Hence, we would not
reasonably expect these outputs to be Gaussian. The distributions of the phase error in
the power spectral domain for different mel-frequency bins are shown in Figure 6.1. The
figure, in fact, confirms our expectation that the Gaussian approximation is poor for the
lowest spectral bins. In particular, low frequencies are nearly uniformly distributed, while
higher frequencies are indeed well approximated by a Gaussian distribution. The phase
is mostly uncorrelated between the different mel power spectral bins.

Filter Banks

If not already implemented with the bilinear transform in the time domain, the nonlinear
scaling of the frequency axis can now be applied by a transfer matrix W to produce a
reduced number of nonlinear scaled energy bins

Wy(p) = W
∣∣h(f )x(f )

∣∣2 + W
∣∣n(f )

∣∣2 + 2W
∣∣h(f )x(f )

∣∣ ∣∣n(f )
∣∣ cos θ .
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0 +p+1/2p

mid frequency bin

high frequency bin

low frequency bin

Figure 6.1 Distribution of the phase error in the power spectral domain for different mel-scaled
frequency bins

As this step does not alter our principal assumptions, it will be neglected during fur-
ther analysis. It should be, however, kept in mind that some simplifications cannot be
performed due to the application of W.

6.1.3 Logarithmic Spectral Domain

To obtain a more meaningful representation of the speech signal, as discussed in Section
2.3.3 or by Acero (1990a), the use of the logarithmic spectral domain

y(l) = log
{∣∣h(f )x(f ) + n(f )

∣∣2} , (6.6)

has been proposed. To develop the relationship between y, h, x and n in the logarithmic
spectral domain, we define

n(l) = log
∣∣n(f )

∣∣2 , h(l) = log
∣∣h(f )

∣∣2 , x(l) = log
∣∣x(f )

∣∣2 .

By rewriting (6.3) as

ey(l) = eh(l)

ex(l) + en(l) + e(p)∣∣h(f )
∣∣ ∣∣x(f )

∣∣ ∣∣n(f )
∣∣e(h(l)+x(l)+n(l))/2,

and by applying the chain of transformations, we obtain

y(l) = log

(
eh(l)+x(l) + en(l) + e(p)∣∣h(f )

∣∣ ∣∣x(f )
∣∣ ∣∣n(f )

∣∣e(h(l)+x(l)+n(l))/2

)

= log

(
eh(l)+x(l)

(
1 + en(l)−h(l)−x(l) + e(p)∣∣h(f )

∣∣ ∣∣x(f )
∣∣ ∣∣n(f )

∣∣e(n(l)−h(l)−x(l))/2

))

= h(l) + x(l) + log

(
1 + en(l)−h(l)−x(l) + e(p)∣∣h(f )

∣∣ ∣∣x(f )
∣∣ ∣∣n(f )

∣∣e(n(l)−h(l)−x(l))/2

)
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= h(l) + x(l) + log
(

1 + en(l)−h(l)−x(l)
)

+ log

(
1 + e(p)e(n(l)−h(l)−x(l))/2∣∣h(f )

∣∣ ∣∣x(f )
∣∣ ∣∣n(f )

∣∣ (1 + en(l)−h(l)−x(l)
)
)

= h(l) + x(l) + log
(

1 + en(l)−h(l)−x(l)
)

+ log

(
1 + e(p)∣∣h(f )

∣∣ ∣∣x(f )
∣∣ ∣∣n(f )

∣∣ cosh[(n(l) − h(l) − x(l))/2]

)

= h(l) + x(l) + log
(

1 + en(l)−h(l)−x(l)
)

+ e(l)

where 1 = [1, 1, · · · , 1]T . The final equation can be approximated as

y(l) ≈ h(l) + x(l) + log
(

1 + en(l)−h(l)−x(l)
)

, (6.7)

which is, in fact, exact if the speech and noise signal are uncorrelated stationary random
processes. The error term

e(l) = log

(
1 + h(f )x(f )n(f ) cos θ∣∣h(f )

∣∣ ∣∣x(f )
∣∣ ∣∣n(f )

∣∣ cosh
{
log
∣∣n(f )

∣∣− log
∣∣h(f )

∣∣− log
∣∣x(f )

∣∣}
)

is difficult to evaluate, but Deng et al. (2002) have empirically verified that the average
value of e(l) is close to zero and that θ is approximately Gaussian distributed.

One advantage of working in the logarithmic spectral domain is that convolution
becomes an additive term known as spectral tilt . Furthermore, it has been shown that
the application of feature enhancement techniques (Ephraim, Y. and Malah, D. 1984; Hu
and Loizou 2007) in the logarithmic spectral domain provides better distortion attenuation
than their application in the power spectral domain. In contrast to the power spectral
domain, the logarithmic spectral domain has a linear relationship to the cepstral domain.
This implies that all operations are performed on the (very nearly) final features of the
recognition system, which is a distinct advantage.

6.1.4 Cepstral Domain

The features of most ASR systems are represented in the cepstral domain , in which the
signal model can be expressed as

y(c) = T log y(p) = T log
{∣∣h(f )x(f ) + n(f )

∣∣2} , (6.8)

where T denotes the Type 2 cosine transform matrix as defined in Section B.1. Because the
cepstral domain can be expressed by a simple matrix multiplication with the logarithmic
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spectral domain, it can be approximated by

y(c) ≈ Th(l) + Tx(l) + T log
(

1 + en(l)−h(l)−x(l)
)

= h(c) + x(c) + T log
(

1 + eT−1(n(c)−h(c)−x(c))
)

. (6.9)

The evaluation of the error term

e(c) = T e(l),

is further complicated in the cepstral domain through the required matrix multiplication
with T.

The advantage of the cepstral coefficients is a decorrelation of the bins. This, however,
comes at the cost that the corruption is not independent across the feature dimensions as
in the spectral domain. Thus, some processing steps, such as model combination, require
the inverse transformation into the logarithmic spectral domain prior to their application.

6.2 Two Principal Approaches

Various approaches to single channel speech feature enhancement have been proposed in
the literature. A broad variety of techniques segment the time signal prior to processing.
We will focus exclusively on such techniques in this chapter, as the ASR system requires
the segmentation of speech in any event. Other algorithms, such as subspace approaches
(Ephraim and Van Trees 1995; Hermus et al. 2007), are covered in various publications.
A good overview is presented in Loizou (2007).

Two principal classes of methods for speech feature enhancement exist. In the first
class, the enhanced features are estimated directly . In the second class of methods, the
distortions induced in the signal are initially estimated for subsequent removal; hence,
such techniques are dubbed indirect , inasmuch as most approaches belonging to this
class compensate for the distortion in either the power spectral, logarithmic spectral or
cepstral domain.

These two approaches can, for example, be expressed in the minimum mean squared
error (MMSE) Bayesian filter framework,1 as discussed in Chapter 4 and will be inves-
tigated in the following. Other estimators, such as maximum likelihood,2 differ primarily
in the operating assumptions made and optimization criteria used. The solution for the
direct MMSE Bayesian estimate is given by the conditional mean (4.8) and repeated here
for convenience

E {xk|y1:k} =
∫

xkp(xk|y1:k) dxk.

1 The Wiener filter is optimal in the MMSE sense for complex spectrum estimation as it assumes a linear relationship
between the observed data and the estimator. This is not the case, however, in the magnitude spectrum, logarithmic
magnitude spectrum or cepstral domains all of which are considered here.
2 As the maximum likelihood approach does not provide enough attenuation it is typically not used by itself, but
in conjunction with other techniques.
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The solution of the indirect MMSE Bayesian estimate, however, is obtained by first esti-
mating the additive nk and convolutional hk distortions, respectively,

p(xk|y1:k) =
∫ ∫

p(xk, nk, hk|y1:k) dnk dhk.

Thereafter the calculation of the conditional mean (4.8) can be expressed as

E {xk|y1:k} =
∫

xk

∫ ∫
p(xk, nk, hk|y1:k) dnk dhk dxk.

Using the relation p(xk, nk, hk|y1:k) = p(xk|y1:k, nk, hk) p(nk, hk|y1:k) and interchanging
the order of integration, we obtain

E {xk|y1:k} =
∫ ∫

fk(y1:k, nk, hk) p(nk, hk|y1:k) dnk dhk, (6.10)

where

fk(y1:k, nk, hk) =
∫

xk p(xk|y1:k, nk, hk) dxk (6.11)

is a linear or nonlinear function mapping the sequence of observations y1:k and distortions
nk, hk to the clean speech xk. In the indirect approach, the distortions nk and hk are treated
as the state in the Bayesian framework. Hence, it is assumed that neither nk nor hk can be
observed directly. Rather, they can only be inferred, and once inferred their effects can be
removed to obtain an estimate of clean speech xk . Note that both approaches, the direct
and the indirect, can account for speech and non-speech regions, or even for different
phoneme classes, through, for example, soft-decision gain modifications (McAulay and
Malpass 1980).

6.3 Direct Speech Feature Enhancement

This section describes four popular direct approaches which estimate the features of
clean speech from the distorted observation. While the approach presented first is widely
used for speech enhancement in general, the last three approaches have been developed
particularly for ASR. The second and third are applied in the logarithmic spectral domain
while the fourth works directly in the cepstral domain.

6.3.1 Wiener Filter

The direct estimate of the original speech signal can be obtained through the application
of the Wiener filter described in Section 4.2, as

X̂(ω) = Ĝ(ω)Y (ω).
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Under the assumptions that the signal and noise are orthogonal and that the noisy obser-
vation, clean speech and noise, are related by

|Yk(ω)|2 ≈ |Xk(ω)|2 + |Nk(ω)|2,

we can express the solution for the Wiener filter transfer function Ĝ(ω) according to
equation (4.16). The transfer function, which is also known as the gain function because
it indicates the amount of suppression, can then be written as

Ĝ(ω) = �X(ω)

�X(ω) + �N(ω)
. (6.12)

Simple substitutions let us alternatively express the gain function as a function of the a
priori SNR value η according to

Ĝ(ω) = η(ω)

η(ω) + 1
. (6.13)

Note that Ĝ(ω) must lie in the range 0 ≤ Ĝ(ω) ≤ 1. Inaccurate estimates of the noise,
however, can cause |N̂(ω)| to exceed |Y (ω)|, thereby resulting in negative and complex
values of Ĝ(ω), which must be compensated for.

Parametric Wiener Filters

The parametric Wiener filter (Lim and Oppenheim 1979) is a generalization of (6.12) by
the introduction of two additional variables a, b and the overestimation factor α similar
to spectral subtraction

Ĝ(ω) =
(

Xa(ω)

Xa(ω) + αNa(ω)

)b

. (6.14)

As in (6.13), we can write the transfer function of the Wiener filter as a function of a
priori SNR such that

Ĝ(ω) =
(

ηa(ω)

ηa(ω) + α

)b

.

The conventional Wiener filter follows by setting a = b = α = 1, and the square-root
Wiener filter by setting a = α = 1 and b = 1/2. The free parameters change the
attenuation of the signal according to the a priori SNR value and may yield improved
performance with respect to the conventional Wiener filter.

A detailed discussion about the free parameters can be found in Loizou (2007). There,
other extensions such as constrained or codebook-driven Wiener filtering are also pre-
sented.
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6.3.2 Gaussian and Super-Gaussian MMSE Estimation

In this section, we briefly present direct estimators which are optimal with respect to the
MMSE criterion in the logarithmic spectral domain, assuming that the pdf of speech is
Gaussian. The logarithmic spectral domain is not only subjectively more meaningful than
the spectral magnitude domain, but direct estimation performed in this domain has also
been proven to yield higher noise attenuation, about 3 dB, in contrast to the linear MMSE
estimator. Because of space limitations we present only the direct logarithmic MMSE
estimation technique (Ephraim and Malah 1985) without derivations. The linear MMSE
estimation as well as the logarithmic MMSE estimators, including their derivations, are
widely covered in the literature; see Loizou (2007) for example.

The direct logarithmic MMSE estimator calculates the conditional mean

x̂k = eE{log xk |yk}.

The solution for the conditional mean, however, is not straightforward and additional
constraints must be imposed. As discussed in Section 6.5.4, let η and γ denote the a
priori and a posteriori SNR respectively. Assuming a Gaussian distribution for the spectral
representation of the speech signal, the solution is given by

x̂k = ηk

ηk + 1
+ exp

{
1

2

∫ ∞

vk

e−t

t
dt

}
yk ≈ ηk

ηk + 1
+ exp

{
1

2

evk

vk

∑
l

l!

vl
k

}
yk,

where

vk = ηk

ηk + 1
γ.

From Section 2.2.4 and Figure 2.4 it is clear that the Gaussian assumption does not hold.
Thus it has been proposed to use super-Gaussian distributions, such as the Laplacian or
Gamma distribution, in the MMSE estimation framework (Lotter and Vary 2005; Martin
2005). Only small improvements have been obtained, however, through the introduction
of the non-Gaussian assumption.

6.3.3 RASTA Processing

To increase the independence from constant and slowly varying channel characteristic,
relative spectrum processing (RASTA) was proposed by Hermansky and Morgan (1994).
RASTA applies an infinite impulse response bandpass filter in the logarithmic power
domain, whose transfer function is given by

H(z) = 0.1z4 2 + z−1 − z−3 − 2z−4

1 − 0.98z−1
,

to the speech features. This lowpass filter smooths fast frame-to-frame changes, while
the highpass filter is intended to remove convolutional noise similar to CMN; see
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Section 6.9.2. In fact, it has been shown empirically that RASTA processing provides an
effect similar to real-time CMN. Note that these methods are not totally unproblematic
in that not only artifacts, but also slowly varying classification-relevant features, may be
suppressed.

6.3.4 Stereo-Based Piecewise Linear Compensation for Environments

Stereo-based piecewise linear compensation for environments (SPLICE) is a nonpara-
metric approach , which assumes that the distortion environment is known. It makes no
assumptions about the distortion, however, but rather learns the mapping of one or more
classes of distortions a priori . The main idea of SPLICE is to apply a transformation
based on a probabilistic model of distortion from clean speech into noisy speech. The
latter is learned from a set of stereo training data. SPLICE was first applied in cep-
stral space, but may also be applied in alternative domains. SPLICE is an extension to the
fixed codeword-dependent cepstral normalization algorithm (Acero and Stern 1991) which
itself is a successor of codeword-dependent cepstral normalization (CDCN) (Acero and
Stern 1990). The original version of SPLICE as proposed by Deng et al. (2000) assumes
that the noisy speech vector yk lies in one of several partitions of the acoustic space.
These partitions are determined from a mixture of M Gaussians. The mean and variances
of the correction r are trained by vectors which have been classified into corresponding
codewords. Furthermore, the SPLICE algorithm assumes that the relation between xk and
yk is piecewise linear, according to

xk = yk + r (yk) ≈ yk + rm(yk),

where m(yk) determines which part of the local linear approximation is used. Under
these assumptions, the enhanced feature can be calculated under the MMSE criterion as
follows:

x̂k =
∫

xk

xk p(xk|yk) dxk ≈
∫

xk

(
yk + rm(yk)

)
p(xk|yk) dxk

= yk +
∫

xk

rm(yk) p(xk|yk) dxk = yk +
∫

xk

M∑
m=1

rm p(xk, m|yk) dxk

= yk +
M∑

m=1

p(m|yk) rm

The posterior probabilities p(m|yk) are computed by Bayes’ rule using the clustered
parameters in the Gaussian mixture model (GMM) approximation of p(y).

As mentioned earlier, the major drawback of the earliest versions of SPLICE was
their dependence on stereo data3 in order to calculate the maximum likelihood (ML)
estimate of clean speech features. Two extensions to the original approach have been

3 We refer to stereo data as two time-aligned channels, one providing the original observations, the other containing
distorted observations of exactly the same source.
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proposed to overcome those limitations, one using a ML criterion (Wu 2004) and one
using discriminative training by minimum classification error (Wu and Huo 2002). Deng
et al. (2005) reports that the latter method is very similar to the fMPE algorithm of Povey
et al. (2005), which is described in Section 5.8.

6.4 Schematics of Indirect Speech Feature Enhancement

As depicted in Figure 6.2, frame-based indirect feature enhancement methods can be
decomposed into four separate processing components. Below we provide a brief descrip-
tion of each component. More detailed descriptions follow in the coming sections.

• Distortion estimation – All feature enhancement techniques require an estimate of the
distortion which is either represented as a point estimate or as a density. Apart from
those techniques based on training with stereo data such as SPLICE, the distortion is in
general not known a priori and thus must be estimated from the distorted observation.

• Distortion evolution – If the distortion is assumed to be nonstationary it is not sufficient
to have a fixed distortion estimate over all frames, rather the distortion must be tracked
and the estimate constantly updated. Tracking the distortion requires the prediction
p(dk|dk−1) of the estimate at time k given the previous distortion estimates d0:k−1.

• Distortion evaluation – The second step necessary in tracking is to update the prior,
which entails the evaluation of the likelihood p(yk|dk) for each distortion hypothesis
based on a model of clean speech.

• Distortion compensation – To finally derive a point estimate of clean speech features
involves the compensation of the distortion by subtraction or inverse filtering. The
original feature estimate can be augmented by the uncertainty of the enhancement
process and propagated into the acoustic model of the recognition engine, as explained
in Section 6.11.

Some of the components either rely on a priori knowledge or estimates derived from
the current observation. In the case of stationary distortion or if the distortion estimate
is constantly updated, such as with the use of minimum statistics or multi-step linear
prediction, the two components distortion evolution and distortion evaluation can be

Distortion
Compensation

Distortion
Estimation Distortion

Evolution
Distortion
Evaluation

a priori knowledge of distortion a priori knowledge of clean speech

a priori knowledge of
distortion evolution

y x

distorted speech signal

clean speech signal estimate

Figure 6.2 Schematics of frame-based speech feature enhancement techniques
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eliminated. It is possible that the removal of these components, however, will lead to
degradations in system performance.

Note that frame-based speech feature enhancement might be applied in multiple steps
in different working domains. A speech recognition front-end with enhancement could,
for example, first use multi-step linear prediction to reduce the effect of reverberation in
the power spectral domain, then apply a particle filter (PF) to track and subtract additive
noise in the logarithmic spectral domain. Subsequently, channel effects could be removed
through mean and variance normalization of the features in the cepstral domain.

6.5 Estimating Additive Distortion

Neglecting the convolution term in (6.1), the relationship between the input sequence x
and the output sequence y can be expressed as

y[n] = x[n] + n[n].

In this case, the only distortion is additive noise which, in general, is assumed to be
uncorrelated with the speech signal and unknown.

Feature enhancement techniques require knowledge about the distortion. In the case
of additive noise, such knowledge can be represented in the different spectral domains
as the noise floor . The estimate of the noise floor has a great influence on the overall
quality of the enhanced speech signal and thus is the most important component in any
additive noise speech enhancement technique. A broad variety of techniques have been
proposed for estimating the noise floor, all of which rely on one or more of the following
assumptions:

• speech and noise signals are statistically independent;
• the observed noisy speech signals contain regions where the speech is not present;
• the noise signal is more stationary than the speech signal;
• noise statistics are stationary within the analysis window used for the short-time Fourier

transform.

In the following sections we describe several popular methods for estimating additive
distortions.

6.5.1 Voice Activity Detection-Based Noise Estimation

Under the assumptions that the noise is stationary and that the speech can be reliably
separated into regions of speech and non-speech through voice activity detection (VAD),
a simple and very effective way to obtain a static noise estimate |N̂(ω)| is based on the
average of the power spectrum over K frames,

|N̂(ω)|2 = 1

K

K−1∑
k=0

|Yk(ω)|2. (6.15)
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In this technique, the frames used in the noise estimate are assumed to contain only noise.
The noise estimate can also be updated sequentially by single-pole recursive averaging,
according to

N̂k(ω) =
{

αaN̂k−1(ω) + (1 − αa) Xk(ω), Xk(ω) ≥ N̂k−1(ω)

αdN̂k−1(ω) + (1 − αd) Xk(ω), Xk(ω) < N̂k−1(ω)

where αa and αd are the attack and decay constants which must be tuned on training
data, respectively.

The distinction between speech and noise becomes difficult for low SNR values and thus
noise estimation methods based on VAD work well only for medium and high SNRs. A
broad variety of VAD methods have been proposed in the literature. Beritelli et al. (2001)
present and compare different standard VAD algorithms. One class of VAD exploits the
bimodal structure of speech pdfs. Whereas the mode with higher energy represents the
speech signal, the mode with lower energy reflects the noise signal. Comparing the energy
of a given frame with a threshold lying between the two modes is sufficient to determine
if speech is present or not.

6.5.2 Minimum Statistics Noise Estimation

Tracking nonstationary noise requires the update of the noise estimate in both the pre-
sence and absence of speech. In such cases, it is better not to rely on an explicit threshold
between speech activity and speech pauses. One popular method that uses no explicit
threshold is known as minimum statistics , and was proposed by Martin (1994) and modi-
fied by Doblinger (1995). Like other soft-decision methods, it can update the estimated
noise distribution during speech activity. Thus the minimum statistics algorithm performs
well in nonstationary noise, as demonstrated by Meyer et al. (1997), among others.

The minimum statistics method rests on three assumptions, namely that

• the speech and the noise signals are statistically independent,
• the power of a noisy speech signal frequently decays to levels which are representative

of the noise power level, and
• the noise is stationary within the sliding window.

It is therefore possible to obtain an estimate of the noise floor by tracking the minima
of a smoothed version of the spectrum. Since the minimum is smaller than the average
value, the minimum tracking method requires a bias compensation.

Recursive estimation of the power spectrum with a time- and frequency-dependent
smoothing parameter βk(ω) leads to

Sk(ω) = βk(ω)Sk−1(ω) + (1 − βk(ω))|Yk(ω)|2. (6.16)

Note that realizing the full potential of minimum statistics requires the application of a
time- and frequency-dependent smoothing parameter, which was not applied in the earliest
versions of the algorithm (Martin 2005). A coarse estimate of the noise floor can then be



196 Distant Speech Recognition

Algorithm 6.1 Outline of the minimum statistics algorithm

1. Compute short-term power spectrum |Yk(ω)|2
2. Compute time- and frequency-dependent smoothing parameter βk(ω)

3. Compute the magnitude squared spectrum (6.16)
4. Search for the minimum value over M frames (6.17)
5. Compute and compensate for the bias (6.18)

Steps 1 through 5 are repeated with k �→ (k + 1) until all frames are processed.

derived for each frame by the minimum of the smoothed power spectral estimate over a
sliding window of length M:

|N̂k(ω)|2 = min(Sk−M/2(ω), · · · , Sk−1(ω), Sk(ω), Sk+1(ω), · · · , Sk+M/2(ω)). (6.17)

As mentioned before, the noise floor estimated by tracking the smoothed spectral minima
is biased toward higher values. This bias can be determined and can be shown to be
dependent on Y k(ω). Compensation for the bias is thus possible by multiplying with the
factor

Q = 2
E
{|Nk(ω)|2}

variance
{|N̂k(ω)|2} . (6.18)

A summary of minimum statistics noise estimation can be found in Algorithm 6.1.

6.5.3 Histogram- and Quantile-Based Methods

Some of the variations on the previously described minimum statistics approach are the
histogram-based methods. These accomplish noise estimation through the analysis of sub-
band histograms (Hirsch and Ehrlicher 1995), where it is assumed that the most frequently
observed spectral energies in individual frequency bands correspond to noise. In some
cases, the histogram can be separated into two modes where the low-energy region repre-
sents the energy observed in regions without speech, while the high-energy regions repre-
sent the energy observed if speech is present. Alternatively, instead of relying on the
maximum, a centroid clustering algorithm, such as K-means, can be used to detect noise,
the lower centroid value, and speech regions in the histogram. This algorithm, however,
yields larger noise estimation errors (Hirsch and Ehrlicher 1995). Note that the observed
histogram patterns are not consistent and typically depend on the type and level of the
noise.

For each frame and frequency bin, a histogram of the power spectrum is constructed
over a region of several hundred milliseconds. The choice of the observation length
involves the well-known tradeoff between a reliable noise estimate and tracking capability.
For long observation times, the noise estimates obtained with minimum statistics-based
tracking and the histogram-based algorithms become very similar.

To prevent noise overestimation, which is more prominent in low-frequency regions
and in particular occurs for short observation windows, it was proposed to exclude frames
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Algorithm 6.2 Outline of the histogram-based method

1. Compute short-term power spectrum |Yk(ω)|2
2. Smooth the short-term power spectrum by first-order recursion

Sk(ω) = αSk−1(ω) + (1 − α) |Yk(ω)|2

with the smoothing constant α, e.g., 0.8
3. Compute the histogram for each frequency band of S(ω) over the last observations

k, k − 1, . . . , k − m, e.g., several hundred ms
4. Take for each frequency bin the spectral power with the highest number of appearance

as noise estimate N̂k(ω)

5. Smooth the noise estimate by first-order recursion

Nk(ω) = βNk−1(ω) + (1 − β)N̂k(ω)

with the smoothing constant β, e.g., 0.9.

Steps 1 through 5 are repeated with k �→ (k + 1) until all frames are processed.

Algorithm 6.3 Outlined of the quantile-based method

1. Sort for each frequency band of Y (ω) the short-term power spectra over the last
observations k, k − 1, . . . , k − m

2. Take for each frequency bin the median spectral power as the noise estimate N̂k(ω)

Steps 1 and 2 are repeated with k �→ (k + 1) until all frames are processed.

with large power – as they very likely contain speech activity – and perform an update
for noise-only frames (Ahmed and Holmes 2004).

A summarization of the histogram-based method can be found in Algorithm 6.2. Note
that in the original work by Hirsch and Ehrlicher (1995) Step 2 was not performed, which
alters the noise estimate of the histogram-based method.

The histogram-based approach has been extended by Stahl et al. (2000) to a
quantile-based approach which assumes that even during active speech regions there
are frequency bands not occupied by speech. These unoccupied bands represent the
energy level of the noise. Note that the observation windows influence the noise estimate
similarly to the influence of the noise estimate in the histogram-based method. A
summary of the quantile-based method can be found in Algorithm 6.3.

6.5.4 Estimation of the a Posteriori and a Priori Signal-to-Noise Ratio

The SNR estimate is closely related to the estimate of noise inasmuch as it requires the
estimate of noise energy. The estimate of the a posteriori SNR, at frame k, is defined as
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the ratio between the noisy signal power and the noise power

γk(ω) = |Yk(ω)|2
E
{|Nk(ω)|2} .

The a priori SNR is defined as the ratio between the original signal power and the noise
power,

ηk(ω) = E
{|Xk(ω)|2}

E
{|Nk(ω)|2} .

It has been observed that SNR-based feature enhancement techniques exhibit fewer
musical tones, as described in Section 6.9.1, if the SNR estimate has a low variance. The
high fluctuation of the SNR estimate is due to the high variance of the spectral estimate
of the noise (Vaseghi 2000). To reduce the fluctuations, and thereby the musical tones,
a SNR value may be estimated by a weighted combination of the past and present SNR
estimates (Ephraim, Y. and Malah, D. 1984):

ηk(ω) = α(ω) ηk−1(ω) + (1 − α(ω)) max (γk(ω), 0)

where α(ω) is in the range of 0.9 up to 0.99. To further reduce the variance of the noise
estimate, an average over neighboring frequencies may also be useful.

6.6 Estimating Convolutional Distortion

As explained in Section 3.1, the transfer function of a room at a particular position
and point in time is completely described by its impulse response h[n] or the Fourier
transform thereof, the so-called frequency response or transfer function h(f ). Thus
the reverberant speech sequence y[n] is the convolution of h[n] with the clean input
sequence x[n], such that,

y[n] =
∑

l

h[l] x[n − l]. (6.19)

The level of difficulty of estimating and removing channel distortions depends on the
length and the rate of change of the impulse response. While the deconvolution of slowly
varying short-time channel distortions is relatively simple, the deconvolution of rapidly
changing long-time channel distortions is one of the fundamental, largely unsolved,
problems in DSR. Deconvolution requires finding the inverse filter hinv which would
enable the estimation of x given y. An ideal inverse filter would have the following form
which can be expressed either in the time domain∑

l

hinv[l] h[n − l] = δ[n − D]

or in the z-domain
H(z) Hinv(z) = z−D

with some delay D.
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In a noise-free environment, perfect restoration would be possible if the impulse
response were known and its inverse existed. Unfortunately, the inverse filter cannot
always be simply realized as H(z)inv = H(z)−1z−D because some channels are not inver-
tible. This happens if (Neely and Allen 1979)

• the transfer function is non-minimum phase, which implies that some zeros are outside
the unit circle, and thus would result in an unstable inverse filter as described in Section
3.1.3;

• many inputs are mapped to the same output and therefore a closed-form solution does
not exist.

Even if the channel is invertible further problems might arise in frequency regions with
very high amplification which is, in particular, apparent for low SNR values.

From the discussion in Section 6.1 it follows that deconvolution can, in principal, be
achieved, either by inverse filtering in the time domain, a multiplication in the frequency
domain or an addition in the logarithmic spectral or cepstral domain with the appropri-
ate inverse filter . The success of inverse filtering depends on the length of the analysis
window, on the available knowledge sources and assumptions made about the speech sig-
nal and the channel. Unfortunately, the favorable circumstances that would make inverse
filtering possible typically cannot be realized in realistic acoustic environments.

Regrettably, little work has been published about dereverberation techniques for large
vocabulary speech recognition systems. An exception is the overview paper by Eneman
et al. (2003) which evaluates and compares different techniques.

6.6.1 Estimating Channel Effects

Assuming that the impulse response does not change during the observation window, the
short-time convolution of the signal can be estimated by the cepstral mean vector

ĥ(c) ≈ μ(c) = 1

K

K−1∑
k=0

y(c)
k ,

where only the frames in which the speaker is active are summed. This is because con-
volution can only be estimated in the presence of speech, which is in contrast to VAD for
noise estimation, where the noise must be estimated in the absence of speech. The length
of the observation window chosen to calculate the average must be several seconds long
to capture sufficient phonetic variability in the observation, but short enough to cope well
with the nonstationary effects of the channel impulse response.

Cepstral normalization, as presented in Section 6.9.2, requires an utterance or a whole
recording of one speaker to compute the cepstral mean and variance. In a real-time system,
those parameters must be estimated on the fly. One convenient way to achieve this is to
update the current cepstral mean estimate μ

(c)
k by a new observation according to

μ
(c)
k = αy(c)

k + (1 − α) μ
(c)
k−1.

The free parameter α is set to cover several seconds of speech.
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Note that, as already mentioned in Section 6.1, the convolution modeled by ĥ(c) cannot
be longer than the observation window. Thus ĥ(c) is not sufficient for dereverbera-
tion as only convolutional terms no longer than a range between 10 and 32 ms can
be covered. Nevertheless, compensating for these short-time distortions with CMN, as
described in Section 6.9.2, has proven useful in close and distant ASR systems, as chan-
nel effects – such as those introduced by microphone characteristics – can be effectively
removed.

6.6.2 Measuring the Impulse Response

The impulse response of a system is defined as the signal observed at the system output
after its excitation by a Dirac impulse. In a realistic system, however, the Dirac impulse δ

undergoes a series of transformations which are not only due to the impulse response of
the room hroom, but also due to the sensor configuration used for data capture, namely the
loudspeaker, the microphone and even the cables and plugs. Thus, the measurement of the
impulse response requires high-quality components providing a flat frequency response
and introducing only a linear phase shift. Expressing all distortions from the recording
equipment used for data capture in hrecord we can write

h(t) =
∫ ∞

−∞

∫ ∞

−∞
hroom(τ2) hrecord(τ1 − τ2) δ(t − τ1) dτ1dτ2.

To eliminate the effect of background noise, the excitation signal should have as much
power as possible. But trying to produce and record a true Dirac impulse is impossible,
in that any realizable data capture equipment would be overdriven by a signal of such
high power, resulting in clipping. It is, however, possible to spread the energy over time
by an arbitrary signal s(t) covering the entire frequency range, such that,

ŝ(t) =
∫ ∞

−∞

∫ ∞

−∞
hroom(τ2) hrecord(τ1 − τ2) s(t − τ1) dτ1dτ2.

If the transfer function of the recording equipment Hrecord(ω) is known, it can easily be
removed to obtain the true estimate of the impulse response. Therefore, we can write the
transfer function as

Hroom(ω) = Ŝ(ω)

Hrecord(ω) S(ω)
,

where the magnitude of the signal S(ω) should be nonzero for the frequencies under
investigation. Well-suited signals for s are broadband excitation signals with flat power
spectra such as white noise or chirp signals; i.e., a sine wave whose frequency increases
linearly with time. A discussion about suitable signals for s can be found in Griesinger
(1996).

Some properties of a transfer function can be found by inspecting the graphical repre-
sentation of the impulse response, the so-called reflectogram (Kuttruff 2000). For example,
echoes manifest themselves as large, isolated peaks. In a reflectogram, the influence of
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reverberation also becomes apparent. Removing insignificant details, as can be accom-
plished through smoothing techniques or the Hilbert transform (Bracewell 1999), can
improve the appearance of the reflectogram, and render it easier to analyze.

6.6.3 Harmful Effects of Room Acoustics

It is useful to gain an insight into the harmful effects of reverberation, in order to develop
strategies for successfully combating them. Unfortunately, relatively little work has been
published in this area focusing on automatic recognition. Pan and Waibel (2000) have
investigated the influence of room acoustics by comparing stereo data of close and
distant recordings in the mel-scale logarithmic spectral domain derived from truncated
mel-frequency cepstral coefficient coefficients. While noise affects mainly the spectral
valleys, reverberation may also cause distortions at spectral peaks, i.e., at the fundamental
frequency and its harmonics in voiced speech.

Although the definition varies from author to author, we will consider early reflections
to occur between the arrival of the direct signal and 100 ms thereafter. Similary, we will
take late reflections as any reflections or reverberations occurring after 100 ms. Tashev
and Allred (2005) found that reverberation between 50 ms after the arrival of the direct
signal and the time when the sound pressure has dropped 40 dB below its highest level,
has the most damaging effect on the word accuracy of a DSR system. Petrick et al.
(2007) have separately investigated early reflections, late reflections and reflections that
are only present in low-or high-frequency regions in the context of ASR. They obtained
slightly different results and concluded that late reflections which appear between 100 and
300 ms after the direct signal have the most damaging effect on the classification accuracy.
Furthermore, they found that reverberation in the frequencies between 250 Hz and 2.5 kHz
leads to poor ASR accuracy, while reverberation frequency components outside that range
do not have a significant impact on recognition accuracy.

In our own experiments we found that dereverberation algorithms which begin to esti-
mate the level of the reverberant energy around 60 ms after the direct signal provide the
best recognition performance and that the adjustment of this parameter has a slight effect
on the enhancement and thus recognition accuracy. The end time of the reverberation esti-
mate should be sufficiently long to contain enough reverberation energy. This parameter,
however, has only a limited effect on recognition accuracy and thus is not critical.

Moreover, early reverberation in higher frequencies was found to improve automatic
recognition performance. Similar results where found by Nishiura et al. (2007), who
reported that early reflections within approximately 12.5 ms of the direct signal actually
improve recognition accuracy. This is significantly shorter than the 50 ms time frame
wherein early reflections were found to improve human recognition accuracy (Kuttruff
2000).

6.6.4 Problem in Speech Dereverberation

As an alternative to addressing the problems inherent with the inversion of an estimated
room transfer function, Kinoshita et al. (2005) proposed to suppress the influence of
reverberation in the power or logarithmic spectral domain. As mentioned in Section 6.6,
they proposed to suppress reverberation in a fashion similar to that in which additive
noise is typically suppressed. Their approach is only valid under the assumption that the
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direct signal and reflections are statistically independent, which of course does not hold
in general. That is, speech signals are not composed of an i.i.d. sequence as they have
inherent features such as periodicity as well as a particular formant structure. Furthermore,
the speech production model described in Section 2.2.1 consists of an excitation source
u which is convolved with the glottal, vocal tract, and the lip radiation filters. The joint
effect of these can be summarized in the speech production filter hspeech. Thus the desired
speech sequence is already a convolved sequence, which can be expressed as

x[n] =
L∑

l=0

hspeech[l] u[n − l].

Therefore, the observed signal can be described as

y[n] =
M∑

m=0

hroom[m] x[n − m] =
M∑

m=0

L∑
l=0

hroom[m − l] hspeech[l]

︸ ︷︷ ︸
h[m]

u[n − m], (6.20)

where the impulse response h is the convolution of the room impulse response hroom

and the speech production filter hspeech. The construction of an inverse filter hinv that
converts a convolved sequence into a sequence where each component is independent
would not only filter out the impulse response of the channel hroom but also the impulse
response of the speech production filter hspeech, and thus would suppress features relevant
for classification.

Separating the room impulse response into early and late reflections and assuming that
the impulse response of the speech production filter is sufficiently short in comparison to
the start time of the late reflection Mearly + 1, allows (6.20) to be expressed as

y[n] ≈
Mearly∑
m=0

L∑
l=0

hearly[m − l] hspeech[l] u[n − m] +
∞∑

m=Mearly+1

hlate[m] u[n − m].

With the aid of this equation, it may be possible to develop algorithms intended solely
for removing late reflections, which might be sufficient for speech feature enhancement.
Gillespie and Atlas (2003) proposed a technique dubbed correlation shaping in which
it is assumed that the linear prediction (LP) residue is only correlated within a short
duration due to the speech signal and that the correlation over a long duration is caused
by reverberation. Similar assumptions are made for the approach proposed by Kinoshita
et al. (2006) which will be described in Section 6.6.5.

6.6.5 Estimating Late Reflections

Several algorithms have been proposed to estimate and compensate for harmful late reflec-
tions. Probably one of the most promising family of methods assumes that the reverberant
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power spectrum rk is a scaled or weighted summation over previous frames, according
to

x(reverberant)
k = xk + rk = xk +

M∑
m=1

sm xk−m (6.21)

where k denotes the frame index, the signal is denoted by xk = x(p)

k , the reverberation is
denoted as rk = r(p)

k , and the scale terms sm are dependent on the frequency. The scale
terms can be determined, for example, by the Rayleigh distribution (Wu and Wang 2006)
and adjusted by an estimate of the reverberation time or by more complex methods, such as
that proposed by Sehr and Kellermann (2008). In contrast to classical spectral subtraction
methods which estimate and subtract additive distortions in the power spectral domain,
spectral dereverberation methods estimate and subtract spectral energy caused by rever-
beration. The advantage of treating the reverberation as additive in the power spectral
domain is that the distortions can be easily removed, without the need to estimate and to
invert the room impulse response, by simple subtraction. In addition, it has been shown
by Lebart et al. (2001) that such methods are not sensitive to fluctuations in the impulse
response.

Instead of estimating the reverberant power spectrum rk by scaled versions of previous
frames, as in (6.21), Kinoshita et al. (2006) proposed to determine the reflection sequence
in the time domain by multi-step linear prediction (MSLP) (Gespert and Duhamel 1997)
and thereafter convert it into a reverberation estimate rk by short-time spectral analysis.
In contrast to LP, MSLP aims to predict a signal after a given delay D, the step-size.
With the prediction error e[n] we can formulate MSLP as

y[n] =
M∑

m=1

am y[n − m − D] + e[n], (6.22)

where {am} denote the LP coefficients, y[n] the observed signal and M the model order.
For D = 0 MSLP reduces to LP. The required LP coefficients can be found by minimizing
the mean squared error in (6.22). The solution can be expressed in matrix notation as

E
{
y[n − D] y[n − D]T

}
a = E

{
y[n − D] y[n]T

}
with a = [a1, a2, · · · , aM ]T . Thus, we obtain the MSLP coefficients by

a = (
E
{
y[n − D] y[n − D]T

})−1 E
{
y[n − D] y[n]T

}
which can be solved efficiently by the Levinson–Durbin recursion given in Algorithm
5.1.

The reflection sequence r[n] can then be obtained by filtering the observation sequence
x[n] with the prediction filter using the MSLP coefficients as

r = x ∗ a.
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The resulting reflection sequence r[n] can now be treated like additive noise. Thus,
after being converted into the power spectral domain, it gives a noise floor estimate r̂(p)

k

which changes for each frame k. The noise estimate can then be compensated for by
various methods, as will be described in Section 6.9.

As stated in Section 6.6.4 the complete impulse response consists of two parts, the room
impulse and the vocal tract filter. Thus, the reflection sequence r[n] might not only contain
the unwanted distortions due to the impulse response of the room, but also a bias due to the
vocal tract. In order to reduce the bias, Kinoshita et al. (2006) suggested a pre-whitening
step to remove the short-term correlation due to hspeech prior to the estimation of the
MSLP coefficients. The pre-whitening filter can be implemented by a simple LP with a
small order covering a time span of 2 ms; e.g., 32 taps for 16 kHz signals.

6.7 Distortion Evolution

If the distortion is non-stationary , it is not sufficient to have a fixed estimate which
is unchanging over time. Rather, the estimate must be constantly updated to track the
time evolution of the distortion. In the following, only the evolution of additive noise is
presented. The relations developed here, however, hold also for convolutional distortions
h. Given the trajectory of the noise n0:k−1 up to time k, the noise transition probability
p(nk|n0:k−1) can be modeled by a dynamic system model . Note that the evolution might be
estimated for a number of samples; e.g., using particle filters. For simplicity of notation,
however, the sample index will be suppressed, wherever obvious, for the remainder of
this section. Table 6.2 summarizes the different dynamic system models which will be
presented in the following sections.

6.7.1 Random Walk

The simplest solution for predicting the next state is known as random walk . It simply
takes the previous state as the estimate of the current state and adds a random variable
εk, which is considered to be i.i.d. zero mean Gaussian, such that

nk = nk−1 + εk.

Table 6.2 Summary of the different approaches to model the evolution of the distortion

Noise evolution Model

Random nk−1 + εk

Polyak averaging and feedback (1 − α) nk−1 + αμnk−1
+ β

(
naverage

k−1 − nk−1
)+ εk

Static autoregressive matrix
∑M

m=1 Amnk−m + εk

Dynamic autoregressive matrix Aknk−1 + εk

Extended Kalman filter nk−1 + Gk−1

{
yk − f

(
x(m)

k , nk−1

)}
+ εk
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Whenever possible, additional knowledge should be considered to obtain a better pre-
diction. Some approaches, which have been demonstrated to be successful in the prediction
of speech or noise spectra, are described in the following sections.

6.7.2 Semi-random Walk by Polyak Averaging and Feedback

To improve over the random walk of the state space model, Polyak averaging and feedback
have been proposed by Fujimoto and Nakamura (2005a). The basic idea is to limit the
range of the predicted noise hypothesis to within a fixed interval of the preceding frames.
The Polyak average is calculated over the preceding K frames according to

naverage
k = 1

K

k∑
l=k−K+1

nl .

Given two real parameters α and β, we can express the state transition equation as

nk = (1 − α) nk−1 + αμnk−1
+ β

(
naverage

k−1 − nk−1
)+ εk, (6.23)

where

μnk
=

M∑
m=1

w
(m)
k n(m)

k

is the weighted average of noise samples, and wk denotes the normalized weights. In
(6.23), the parameter α determines how much the noise samples are moved to the noise
sample average, while β represents the scaling factor of the feedback.

When the noise is varying slowly, the difference between the Polyak average and noise
has a small value and thus the parameter range becomes small. For rapidly varying noise,
on the other hand, the difference between the Polyak average and noise has a large value
and thus the parameter range becomes large. The two different cases are depicted in
Figure 6.3.

Slowly Varying Noise

nk−4

nk−3

nk−2

nk−1

nk+1

nk

nk
average−nk

Rapidly Varying Noise

nk+1

nk−4

nk−3

nk−2

nk−1

nk

nk
average−nk

Figure 6.3 Polyak averaging and feedback for slowly and rapidly varying noise. Note that the
indices of the particles have been dropped and thus the sequence nk−4:n+1 represents the evolution
of a single noise estimate
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To better account for the time variation of the noise, which may well change
frame-by-frame, it has also been suggested to vary the parameters of the Polyak
averaging on a frame-by-frame basis. This method is known as the switching dynamic
system model (Fujimoto and Nakamura 2006).

6.7.3 Predicted Walk by Static Autoregressive Processes

Singh and Raj (2003) proposed to model the evolution of noise spectra in the logarithmic
spectral domain as an autoregressive process

nk =
[
A(1)

...A(2)
... · · · ...A(L)

]
︸ ︷︷ ︸

=A(1:L)

·

⎡
⎢⎢⎢⎣

nk−1
. . . .
nk−2
. . . .

...
. . . .
nk−L

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=Nk−1:k−L

+εk =
L∑

l=1

A(l)nk−l + εk. (6.24)

where A(1:L) = {Ak} represents a set of regression matrices and L is the model order.
Letting B denote the number of spectral bins, the overall size of the prediction matrix
A(1:L) is given by LB × B. Using a model order L larger than 1 circumvents the restrictive
assumption of the noise being a Markov chain, which is tantamount to the assumption
that the current noise spectrum depends only on the last noise spectrum. This method of
merging states to overcome the limitations of the Markov assumption is well known in
the statistical literature and, for example, is proposed in Meyn and Tweedie (1993).

Learning the Autoregressive Noise Model

The autoregressive model consists of two components that must be learned:

• The linear prediction (LP) matrix A(1:L) which can be calculated by the minimization
of the prediction error norm

A(1:L) = E{nk NT
k−1:k−L} E{Nk−1:k−L NT

k−1:k−L}−1. (6.25)

Given the noise data n1, . . . , nK , these matrices can be learned according to

E{nk NT
k−1:k−L} = 1

K

K∑
k=l

nk NT
k−1:k−L

and

E{Nk−1:k−L NT
k−1:k−L} = 1

K

K∑
k=l

Nk−1:k−L NT
k−1:k−L.

Note that the parameters in the matrices can be learned reliably only if the noise data
consists of pieces containing sufficient history, which is to say, the number of frames
used to form the estimate exceeds the model order L.
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Figure 6.4 Mean squared prediction error for different noise types (destroyer solid line, driving
car (Volvo) dashed line and machine gun dotted line – taken from the NOISEX database) with a
frame shift of 10 ms vs the model order of the autoregressive process

• The covariance matrix can be calculated by

��n = E{(nk − (A(1:L) Nk−1:k−L))(nk − (A(1:L) Nk−1:k−L))T }.

In the case of particle filtering, however, better results might be obtained by manually
increasing the search space by raising the variance.

Learning a LP matrix of order L requires the reliable estimation of B2 L parameters.
This is only possible if a huge amount of training data is available. Figure 6.4 presents
the squared prediction error averaged over all frequency bins for static, semi-static and
dynamic noise vs different model orders. As is apparent from the figure, an increase in
model order results in only a marginal reduction in mean square error. Furthermore, it
can happen that errors introduced by the noisy hypotheses could be emphasized, and
hence actually degrade the prediction. Therefore, a model order of 1 is typically used in
practice, as the LP matrix for L = 1 can be robustly estimated with a reasonable amount
of training data.

6.7.4 Predicted Walk by Dynamic Autoregressive Processes

In the previous section, we applied a LP matrix estimated prior to its application. This
approach has two obvious drawbacks:

• the noise must be known a priori , or voice activity detection is required;
• the prediction matrix cannot adjust to different types of distortion in those regions

where speech is present.

To overcome the drawbacks apparent in static autoregressive processes, a dynamic and
thus instantaneous and integrated estimate of the linear prediction matrix

Ak = A(1)
k = E{nk nT

k−1} E{nk−1 nT
k−1}−1 (6.26)

is required for each individual frame k.
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In a framework where the likelihood of the noise can be evaluated and where a number
of samples can be drawn – such as in the application of PFs – it becomes possible to esti-
mate the two matrices nknT

k−1 and nk−1nT
k−1 on the current n(m)

k and previous n(m)
k−1 noise

estimates for all samples m = 1, 2, . . ., M (Wölfel 2008a). To ensure that the prediction
estimates leading to good noise estimates are emphasized and those predictions leading
to poor estimates are suppressed, it is necessary to weight the contribution to the matrices
of each noise estimate by their likelihood p(yk|n(m)

k ), as described in Section 6.8. Thus,
the matrices can be evaluated for each frame k by using

E{nknT
k−1} = 1

M

M∑
m=1

w
(m)
k n(m)

k n(m)
k−1

T

and

E{nk−1nT
k−1} = 1

M

M∑
m=1

w(m)n(m)
k−1 n(m)

k−1

T

to solve for (6.26). The weight of the different samples can be determined, for example,
by

• the likelihood of the current observation

w
(m)
k = p(yk|n(m)

k ),

• or the likelihood of the previous and current observations

w
(m)
k = p(yk−1|n(m)

k−1)p(yk|n(m)
k ),

or

w
(m)
k =

√
p(yk−1|n(m)

k−1) p(yk|n(m)
k ).

Smoothing over previous frames may help to improve the reliability of the estimate.
With the introduction of the forgetting factor α we can write the smoothed matrix Ak as

E
{
nk nT

k−1

} = α E{nk nT
k−1} + (1 − α) E

{
nk−1 nT

k−2

}
and

E
{
nk−1 nT

k−1

} = αE
{
nk−1 nT

k−1

}+ (1 − α) E
{
nk−2 nT

k−2

}
.

The sample variance can now be calculated according to the normalized weight w
(m)
k ,

the likelihood of the mth particle divided by the summation over all likelihoods, as

��n =
M∑

m=1

w
(m)
k

(
n(m)

k − Ak n(m)
k−1

) (
n(m)

k − Ak n(m)
k−1

)T

(6.27)
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or with Ak respectively. Note that the subscript d representing each vector component of
the noise nk at frame k has been suppressed to improve readability. The noise can now
be predicted by

nk = Ak nk−1 + εk.

6.7.5 Predicted Walk by Extended Kalman Filters

As an alternative to the prior approach, the evolution of noise spectra can be modeled by
an array of extended KFs (Fujimoto and Nakamura 2005a). In this section, we develop
this technique in the log-spectral domain. In keeping with the usage in the rest of the
chapter, the state of the extended Kalman filter will correspond to the estimate nk of
the additive noise at time k, the original clean speech will be denoted by xk, and the
noise-corrupted speech by yk . The enhancement technique proposed by Fujimoto and
Nakamura differs from a normal particle filter in that an extended Kalman filter is used to

propagate the particles
{

n(m)
k−1

}
forward in time to obtain the original samples

{
n(m)

k|k−1

}
.

In order to describe this technique, we must specialize the presentation of the Kalman
filter in Section 4.3. Let us begin by rewriting the Riccati equation (4.32) for the case
Fk|k−1 = I in order to calculate the predicted state estimation error covariance matrix as

Kk|k−1 = Kk−1 + Uk−1,

where Uk−1 is the covariance matrix of the process noise εk . As indicated by (4.33), the
filtered state estimation error covariance matrix Kk−1 is obtained from the recursion

K(m)
k =

[
I − G(m)

k Hk

(
n(m)

k|k−1

)]
K(m)

k|k−1. (6.28)

Let xk denote a speech sample drawn from a hidden Markov model (HMM) in state m,
which had previously been trained on clean speech. The linearized observation functional
in (6.28) is given by

Hk

(
nk|k−1

) = ∂f (xk, n)

∂n

∣∣∣∣
n=nk|k−1

,

which is a direct specialization of (4.45). The calculation of the Kalman gain Gk required
for the recursion (6.28) is described below. The observation equation can be specialized
as

yk = x(m)
k + f

(
x(m)

k , n(m)
k|k−1

)
+ vk, (6.29)

where

f(x(m)
k , n(m)

k|k−1) = x(m)
k + log

[
I + exp

(
n(m)

k − x(m)
k

)]
.
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As before, all operations on vectors are performed component-by-component. Based on
(6.29), the innovation (4.23) can be specialized as

s(m)
k =

{
yk − f

(
x(m)

k , n(m)
k|k−1

)}
.

The covariance matrix of sk is then given by

Sk = Hk

(
n(m)

k|k−1

)
Kk|k−1HT

k

(
n(m)

k|k−1

)
+ Vk.

As indicated by (4.30), the Kalman gain is given by

G(m)
k = K(m)

k|k−1 H
T

k

(
n(m)

k|k−1

) (
S(m)

k

)−1
,

The update formula for the extended KF can, as in (4.28) and (4.29), be expressed as

n(m)
k = n(m)

k|k−1 + G(m)
k s(m)

k .

6.7.6 Correlated Prediction Error Covariance Matrix

In the previous sections, the different dimensions have been assumed to be i.i.d., which
contradicts the observation that neighboring spectral bins are correlated. The correlation
in the random process, however, can be easily integrated (Wölfel 2008c). As the random
process represents only the difference between the true noise and predicted noise n̂k we
start by writing

�n = nk − n̂k.

The covariance matrix of the random process is then

��n = (�n − μ�n) (�n − μ�n)
T ,

where the mean values are given by

μ�n = 1

M

M∑
m=1

�n(m).

The correlation matrix can now be calculated by normalizing the single bins at position
(j, i) of ��n by the square root of their variances, σ�n[j ] σ�n[i], such that,

R�n[j, i] = ��n[j, i]

σ�n[j ] σ�n[i]
∀ j, i.

We can now calculate the Cholesky decomposition R�n by solving for

UT
�nU�n = R�n.

where U�n is upper triangular.
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Figure 6.5 Correlation matrices for additive dynamic noise and reverberation. The additive noise
shows high correlation over a large number of bins while reverberation is less correlated and mostly
limited to neighboring bins

Given the Cholesky decomposition matrix we can draw correlated noise samples from
the uncorrelated noise samples, where εk are identical to the ones used in the uncorrelated
case by

εcorr
k = U�nεk.

Note that εcorr
k can be obtained from εk by performing backward substitution on the upper

triangular Cholesky factor U�n, as described in Section B.15.
Figure 6.5 shows two correlation matrices. The first matrix is calculated on dynamic

noise while the second matrix is calculated on reverberant data. For the case of dynamic
noise, the correlation extends over a large number of bins, while for reverberation the
correlation is mainly limited to neighboring regions.

6.8 Distortion Evaluation

Some approaches to speech feature enhancement, such as the KF or the PF, require a
quality assessment of the enhanced signal on a frame-by-frame basis. A widely used
criterion to judge the enhanced signal is the likelihood p(yk|nk) which, for example,
in the PF framework compares each distortion hypothesis against a prior clean speech
model px(·). To capture the dynamics in the speech signal the prior speech model can be
extended by either

• a switching model which can change, freely or based on constraints, between different
states representing, for example, different phone hypotheses, or

• a delta feature model which models the local time difference of static features.

Some combination of the above is also possible.
To evaluate the likelihood, it is common practice to neglect the phase and thus to use

the approximate relation between the distortions and clean signal as given in Table 6.1.
The phase difference can be introduced as a hidden variable into the ML evaluation,
which will be presented in Section 6.8.3.
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6.8.1 Likelihood Evaluation

The evaluation of the likelihood of a noisy speech observation y is a fundamental com-
ponent in any MMSE estimator. This likelihood can be evaluated with a GMM trained
on clean speech according to

p(y|x, n, h) =
M∑

m=1

wm

∣∣∣∣∂f(x, n, h)

∂x

∣∣∣∣N (y = f (x, n, h);μm, �m), (6.30)

where f (x, n, h) represents a linear or nonlinear functional. With the fundamental trans-
formation law of probabilities (see Section B.8) we are able to solve for the likelihood
function in different domains. A summary of the likelihood function for additive noise in
different domains is given in Table 6.3.

Substantial overestimates of the actual noise lead to severe problems with likelihood
computations in the frequency, power spectral, logarithmic spectral, as well as in the
cepstral domain. That is, the likelihood function cannot be evaluated if the noise nm

exceeds the observation ym in just a single bin b. This is an artifact of treating speech
and noise as strictly additive. For those cases wherein the likelihood cannot be evaluated,
it must be set to zero,

p(y|n) = 0 if nm > ym for at least one bin b.

Häb-Umbach and Schmalenströer (2005) reported that noise overestimation can lead to a
severe decimation of the particle population, or even to its complete annihilation.

Figure 6.6 presents the likelihood p(y|n) for one logarithmic spectral bin. The noise
distribution is represented by a single Gaussian with a mean of 40 and a variance of 10.
The observation of the corrupted speech spectrum is 50. At the point where the noise
hypothesis n exceeds the observation y the approximation between x and n drives the
likelihood to zero, whereas some nonzero probability mass is maintained with the exact
representation (Faubel 2006). Moreover, we observe in Figure 6.6 that the likelihood
function is a peaked distribution. This may cause a Bayesian filter to function poorly, or,

Table 6.3 Likelihood function in different domains for additive noise

Domain Likelihood

time p(t)(y|n(j)) = px

(
y(t) − n(t)

)
spectra p(f )(y|n) = px

(
y(f ) − n(f )

)
power spectral p(p)(y|n) = 2

(
y(p) + n(p)

)
px

((
y(p) − n(p)

)2)

logarithmic spectral p(l)(y|n) = px

(
y+log

(
1−en(l)−y(l)

))
∏B

b=1 1−e
n
(l)
b

−y
(l)
b

cepstra p(c)(y|n) =
px

(
y+T log

(
1−e

T−1
(

n(c)−y(c)
)))

∏B
b=1 1−e

n
(c)
b

−y
(c)
b
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Figure 6.6 Likelihood functions in the logarithmic spectral domain representing the approxima-
tion and exact representation

in the case of PFs, that more particles are required (Pitt and Shephard 1999). To cope with
peaked likelihood functions, it has been suggested that the likelihood function should be
factorized into a number of broader distributions (Maccormick and Blake 2000).

6.8.2 Likelihood Evaluation by a Switching Model

So far a stationary speech model has been used to evaluate the likelihood. This static
model, however, systematically ignores the dynamic properties of speech. To account for
the dynamics in speech the general model of speech should be replaced by a statistical state
sequence, a switching model , with phoneme or sub-phoneme classes such as the HMM.
This approach has been applied to speech enhancement since the 1980s (Ephraim et al.
1989). In contrast to its use in speech recognition, the objective of applying the HMM
for speech enhancement is to model the general characteristics of speech independent of
the phoneme sequence, to distinguish between speech and noise, and not, between the
individual speech units.

As the state sequence is not known a priori , it must be estimated and aligned. Note
that this step is very critical for the performance of the applied filter. This is because
the distorted speech observation is transformed toward the estimated and thus possibly
incorrect state sequence which consistently results in an incorrect estimate of the word
sequence in the recognition pass.

Various approaches to estimating the state sequence for feature enhancement have been
proposed and used either as a switching model in the filter framework directly or to
evaluate for the likelihood of the noise estimate. Such approaches include:

• HMMs (Ephraim et al. 1989);
• feedback of a previous recognition pass, using the first best hypothesis (Faubel and

Wölfel 2006) or the word graph (Yan et al. 2007), the advantage over the HMM is the
incorporation of additional knowledge sources such as the language model;

• a different modality such as a video stream (Almajai et al. 2007).

Switching between different states may cause a sudden change in the state estimate
and thereby destabilize the filter. One way to prevent this and to weaken the influence of
a wrong phone hypothesis is to interpolate between a specific state, such as a phoneme,
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and a general state, such as a general speech model, to form a mixed state (Faubel and
Wölfel 2006)

p̂mixed(t)(x) = α · p̂phone(t)(x) + (1 − α) · p(x)

where α denotes the mixture weight or to calculate a mixed state according to the posterior
probabilities.

6.8.3 Incorporating the Phase

It is common practice to consider the relative phase between the speech and noise to
be zero, which significantly simplifies the relation between speech, noise and corrupted
speech. This simplification, however, may introduce new problems. For example, in the
event that the noise hypothesis exceeds the observation, the likelihood cannot be evaluated,
as mentioned in Section 6.8.1. In the case of PFs, it can cause severe sample attrition
and has been identified by Häb-Umbach and Schmalenströer (2005) as the main problem
preventing PFs from functioning effectively.

Assuming that the relative phase θ is independent of x and n, such that p(θ |x, n) =
p(θ), we can account for the relative phase by its introduction as a hidden variable,
according to

p(y|x, n) =
∫ +π

−π

p(y|x, n, θ) p(θ) dθ .

Instead of marginalizing over the relative phase, Droppo et al. (2002) marginalized over
α ≈ cos θ , according to

p(y|x, n) =
∫ +∞

−∞
p(y|x, n,α) pα(α) dα.

With the conditional probability distribution for logarithmic spectral energies

p(y|x, n,α) = δ
(
y − log

(
ex + ex + 2αe0.5(x+n)

))
,

and the identity

∫ +∞

−∞
δ (f (α)) pα(α)dα =

∑
α:f (α)=0

pα(α)∣∣ d
dα

f (α)
∣∣ ,

it becomes possible to evaluate the likelihood as

p(y|x, n) = 1

2
ey−0.5(x+n) + pα

(
ey − ex − en

2e0.5(x+n)

)
.
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Under the Gaussian approximation for pα(α) = N (α; 0, �α), the likelihood can be cal-
culated as

p(y|x, n) = exp

{
y − x + n

2
− 1

2
log 8π�α − (ey − ex − en)2

8π�αex+n

}
.

6.9 Distortion Compensation

The goal of distortion compensation is to derive either a point estimate of a clean speech
feature, or a pdf of the original speech including information about the uncertainty of the
enhancement process. The point estimate of the feature, and potentially the uncertainty
thereof, is then propagated and evaluated in the acoustic model of the ASR system.

6.9.1 Spectral Subtraction

Boll (1979) proposed spectral subtraction , which was one of the earliest and became
one of the most widely used approaches to noise suppression and speech enhancement.
Subsequently, many enhancement techniques that are variations of spectral subtraction
appeared in the literature. For consistency, we describe the conventional implementa-
tion as originally proposed by Boll. Assuming that the clean speech signal x is distorted
by uncorrelated additive noise n, the distorted power spectral density y can be approxi-
mated by

|Yk(ω)|2 ≈ |Xk(ω)|2 + |Nk(ω)|2. (6.31)

Given an estimate of the noise power |N̂(ω)|2, it is possible to derive a clean spectral
estimate by simply removing the additive distortion term through subtraction in the power
spectral domain

|X̂k(ω)|2 = |Yk(ω)|2 − |N̂k(ω)|2. (6.32)

The noise estimate |N̂(ω)|2 was discussed in Section 6.5 for additive distortions, and
in Section 6.6 for estimates of convolutional distortions, which are treated as additive
distortions by modeling them as a diffuse noise field using MSLP. A similar approach to
spectral subtraction, but yet on the autocorrelation sequences has been proposed by Weiss
et al. (1974),

rx̂x̂ = ryy − rn̂n̂,

where rx̂x̂ , ryy and rn̂n̂ represent the autocorrelation sequences of the estimated clean
speech signal, the distorted speech signal and the estimated noise signal respectively.
This technique is referred to as the INTEL technique.

Limitations of Spectral Subtraction

Despite its simplicity and effectiveness, spectral subtraction is not without limitations, the
most egregious of which is that improvements in ASR performance tend to diminish for
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SNR values below zero. Comparing the exact representation of the clean speech

X(ω) =
√

Y (ω)Y (ω)∗ − N(ω)N(ω)∗ejϑ(ω)

=
√

|Y (ω)|2 − |N(ω)|2 − X(ω)N∗(ω) − X∗(ω)N(ω)ejϑ(ω)

=
√

|Y (ω)|2 − |N(ω)|2 − 2 |X(ω)| |N(ω)| cos θ(ω)ejϑ(ω)

where ϑ(ω) represents the phase error and θ(ω) represents the phase difference between
X(ω) and N(ω), let us analytically discuss possible errors. Three sources of error become
evident:

• Phase error – The phase error is related to the difference between the true and the
distorted phase. It has no effect on speech recognition as the phase is neglected in the
front-end process.

• Cross-term error – The cross-term errors are related to phase difference between clean
speech and noise which affect the magnitude of the estimate of clean speech.

• Magnitude error – The magnitude error is reflected by the difference between the true
noise N(ω) and noise estimate N̂(ω).

Evans et al. (2006) confirmed that the magnitude error is the greatest source of degra-
dation in ASR performance. For SNRs below 0 dB, however, cross-term errors cause
degradation in ASR performance, which are not negligible.

The use of noise subtraction for speech feature enhancement in ASR has proven more
successful than it has for speech enhancement (Morii 1988). This is because ASR is
most often based on features – i.e., cepstra – for which phase is unimportant. Speech
enhancement, on the other hand, requires the resynthesis of the speech signal. The latter
can only be accomplished with approximate phase information taken from the distorted
signal.

Musical tones

The main drawback of spectral subtraction techniques is that the noise remaining after
the processing has a very unnatural quality (Boll 1979; Cappé, O. 1994). This can be
explained by the fact that the magnitude of the short-time power spectrum exhibits strong
fluctuations in distorted areas. After the spectral attenuation, the frequency bands that
originally contained the noise consist of randomly spaced spectral peaks corresponding to
the maxima of the short-time power spectrum. Between these peaks, the short-time power
spectrum values are close to or below the estimated averaged noise spectrum, which
results in strong attenuations. As a result, the residual noise is composed of sinusoidal
components with random frequencies that come and go in each short-time frame (Boll
1979). These artifacts are known as musical4 tones phenomenon.

4 This term is a reference to the presence of pure tones in the residual noise.
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Nonlinear Spectral Subtraction

In order to overcome spectral distortions such as musical tones, caused by simple spec-
tral subtraction, many variants of spectral subtraction have been proposed (Boll 1979;
Vaseghi, S. and Frayling–Cork, R. 1992). They mainly differ in averaging the noise or
in post-processing. None has succeeded, however, in completely eliminating the distor-
tions introduced by the subtraction. A prominent family of approaches applies heuristic
methods to solve this problem, and is known as nonlinear spectral subtraction.

Three extensions have proven useful in suppressing negative power estimates and in
improving the quality of spectral subtraction:

• Spectral flooring – To prevent negative signal energy a spectral floor β is introduced
which applies a lower bound to the enhanced spectral energy. It has been shown that a
value slightly above zero leads to better recognition results, as in clean speech material
there is still some noise energy in every frequency band.

• Noise overestimation – It might be helpful to adjust the scale of the estimated noise
energy. It has been reported in the literature that the overestimation of the noise by a
factor α with values between 1 and 2 lead to the best recognition accuracy.

It has been claimed that overestimation of the noise seems to be particularly helpful
for low SNRs. Therefore, to achieve good performance in different environments it has
been proposed that the overestimation factor α should depend on the estimated SNR.
A SNR-dependent overestimation factor could be (Vaseghi 2000)

α(SNR(ω)) = 1 +
√
E
{|N̂(ω)|2}
|N̂(ω)| .

• Nonlinear noise estimate – The estimate of the noise itself has a nonlinear relationship.
Lockwood and Boudy (1992) suggested an estimate for the nonlinear noise power as

|N̂(ω)|2NL =
max

overMframes
|N̂(ω)|2

1 + γ SNR(ω)

with γ as a design parameter.

With the previous extensions, we can express nonlinear spectral subtraction as

|X̂(ω)|2 = max
{|Y (ω)|2 − α|N̂(ω)|2NL, β ≥ 0

}
. (6.33)

6.9.2 Compensating for Channel Effects

In contrast to reverberation, channel effects can be compensated for by some variant
of cepstral mean normalization (Atal 1974). Hence, they are much easier to suppress
than true reverberation because they occur over a much smaller time window. Similar to
spectral subtraction, which subtracts the estimate of the noise n in the spectra domain,
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CMN subtracts the estimate of the impulse response h, as in Section 6.6.1, in the cepstral
domain for each frame k, according to

x̂(c)
k = y(c)

k − h(c)
k .

CMN is a simple but powerful method for suppressing short-time convolutional distortion.
This is apparent upon observing that the sample mean vector μ

(c)
y can be expressed as

μ(c)
y = 1

K

K−1∑
k=0

y(c)
k = 1

K

K−1∑
k=0

x(c)
k + h(c) = μ(c)

x + h(c).

Thus the normalized cepstrum subtracts the convolutional channel distortion h from the
signal

ŷ(c)
k = y(c)

k − μ(c)
y ≈ x(c)

k .

In addition to the normalization of the mean, it is also common practice to normalize

the variance of the cepstrum by dividing through the variance
(
σ

(c)
y

)2
for each cepstral

bin b as

x̂norm
k [b] = y

(c)
k [b] − μ

(c)
y [b](

σ
(c)
y [b]

)2 ∀ b.

In ASR, training material is typically assumed to be undistorted. Hence, speech feature
enhancement techniques which try to map the noisy observation to clean speech are
typically not applied to the training speech. Cepstral normalization, on the other hand,
must always be applied during both training and recognition as the mean and variance
values of the features are different from those before processing.

6.9.3 Distortion Compensation for Distributions

In contrast to the prior sections, which have described various compensation methods
for point estimates, this section introduces compensation methods where the distortion is
represented as a pdf; e.g., in the PF or parallel model combination framework.

Vector Taylor Series

The use of the vector Taylor series (VTS) was proposed by Moreno et al. (1996) to
approximate the nonlinearity between the vectors x, n and y either in the logarithmic
spectral or cepstral domain:

y = x + h + f (n − x − h). (6.34)
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The nonlinear function f (z) is given in the logarithmic spectral domain as

f(z) = log
(
1 + ez) ,

while in the cepstral domain it is given by

f(z) = T log
(
1 + T−1ez) .

Under the assumption that x, n and h are Gaussian distributed with the vector means
μx ,μn an μh and covariance matrices �x ,�n and �h, respectively, the Jacobians of (6.34)
can be evaluated at μ = μn − μx − μh as

∂y
∂x

∣∣∣∣
(μx ,μn,μh)

= ∂y
∂h

∣∣∣∣
(μx ,μn,μh)

= A; ∂y
∂n

∣∣∣∣
(μx ,μn,μh)

= I − A

where I is the unity matrix and A is given for the logarithmic spectral domain as

A = F; where F is a diagonal matrix following
1

1 + eμ

or for the cepstral domain as

A = TFT−1; where F is a diagonal matrix following
1

1 + expT−1μ
.

The first-order VTS expansion around (μx,μn, μh) becomes

y ≈ μx + μh + f (μn − μx − μh) + A(x − μx) + A(h − μh) + (I − A)(n − μn)

(6.35)

With (6.35), the mean μy and the variance �y can be approximated as

μy ≈ μx + μh + f (μn − μx − μh)

and

�y ≈ A�xAT + A�hAT + (I − A)�n(I − A)T

respectively. Note that even though �x , �n and �h might be diagonal, �y is no longer
a diagonal matrix.

To compute the delta and delta–delta parameters, the derivatives of the approximation
must be taken

∂y
∂t

≈ A.
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Under the assumption that h is constant, the delta mean and delta–delta mean are given
by

μ�y ≈ μ�x,

and

μ��y ≈ μ��x.

Under the same assumption the delta variance and delta–delta variance can be calculated
as

��y ≈ A��xAT + (I − A)��n(I − A)T ,

and

���y ≈ A���xAT + (I − A)���n(I − A)T .

The VTS can readily be applied to solve for (6.10) by expanding around each Gaus-
sian mean μm of a GMM (Singh and Raj 2003). This holds because the index m of
a specific Gaussian in the mixture p(xk) can be introduced as a hidden variable m, as
p(xk|y1:k, nk, hk) can be represented as the marginal density

p(xk|y1:k, nk, hk) =
M∑

m=1

p(xk, m|y1:k, nk, hk).

With the equality

p(xk, m|y1:k, nk, hk) = p(m|y1:k, nk, hk)p(xk|m, y1:k, nk, hk)

it is possible to rewrite (6.11) as

fk(y1:k, nk, hk) =
M∑

m=1

p(m|y1:k, nk)

∫
xkp(xk|m, y1:k, nk)dxk, (6.36)

where the sum over m has been pulled out of the integral. Now, the noise can be considered
to shift the means of the clean speech distribution in the spectral domain.

Considering only the additive noise term, we can write the effect of nk on the mth
Gaussian, for example, in the logarithmic spectral domain as

eμ′
m = eμm + enk .

Solving for μ′
m yields

μ′
m = μm + log(1 + enk−μm)︸ ︷︷ ︸

=�μm,nk

. (6.37)
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Instead of shifting the mean, we can conversely shift the distorted spectrum yk in the
opposite direction to obtain the clean speech spectrum

xk = yk − �μk,nk
. (6.38)

This yields

p(xk|m, y1:k, nk) = δ(xk − (yk − �μm,nk
))

and hence

f vts
k (nk) =

M∑
m=1

p(m|y1:k, nk)

∫
xk δ(xk − (yk − �μm,nk

))) dxk

=
M∑

m=1

p(m|y1:k, nk)
(
yk − �μm,nk

)

= yk −
M∑

m=1

p(m|y1:k, nk)�μm,nk
. (6.39)

Comparing (6.39) with equation 19 in Raj et al. (2004) shows that the VTS approach
approximates p(m|y1:k, nk) by p(m|yk, nk). This is equivalent to the assumption that
m is independent of the preceding distorted speech spectra, if yk and nk are known.
Another assumption implicitly made by Raj et al. is that m is independent of the current
noise spectrum, i.e., p(m|nk) = p(m) = cm, which holds for additive noise, not how-
ever for convolutional distortions such as reverberation. Under the previous assumptions,
p(m|y1:k, nk) can be calculated as

p(m|yk, nk) = p(yk|nk,m)p(m|nk)

p(yk|nk)
= cmp(yk|nk, m)∑M

m=1 cmp(yk|nk, m)
.

Statistical Inference

Using Monte Carlo estimation to approximate the integral in (6.10), it becomes possible
to directly use the linear or nonlinear relation given in Table 6.1, as the density is reduced
to a finite number of point estimates. Considering once more the previous example, and
assuming only additive distortions in the logarithmic spectral domain, we obtain the
relation

p(xk|y1:k, nk) = δ
{
xk − [

yk + log(1 − enk−yk )
]}

.

Substituting the last equation into (6.11), gives the solution of the statistical inference
approach (SIA) in the logarithmic spectral domain as

f sia
k (nk) =

∫
xk · δ {xk − [

yk + log
(
1 − enk−yk

)]}
dxk = yk + log(1 − enk−yk ).
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When applied within the particle filter framework, the SIA was found to yield better
speech recognition performance as compared to the VTS (Faubel and Wölfel 2007).

6.10 Joint Estimation of Additive and Convolutional Distortions

The potential to cope with difficult nonlinear and non-Gaussian problems makes the PF,
in contrast to the KF, particularly useful for tracking nonstationary noise signals in the
logarithmic or cepstral feature domains. A variety of different PF variants have been
proposed and evaluated for the enhancement of speech features: auxiliary and likelihood
PFs (Häb-Umbach and Schmalenströer 2005) as well as PFs with an extended KF proposal
density (Fujimoto and Nakamura 2005b), or the use of static (Singh and Raj 2003) or
dynamic (Wölfel 2008a) autoregressive matrices. All approaches, however, are similar in
structure.

This section presents an implementation of a PF that jointly estimates and removes non-
stationary noise and reverberation in the logarithmic spectral domain on a frame-by-frame
basis (Wölfel 2008b). This, in contrast to the previously mentioned approaches, integrates
an additive reverberation estimate derived by MSLP into the PF framework and thus is
capable of coping not only with nonstationary noise but also with reverberation. An out-
line is presented in Algorithm 6.4 and a corresponding sketch is given in Figure 6.7. The
proposed approach is evaluated and discussed, as an example system, in Section 14.4.

In the following only the details that have not been presented in other sections are
presented. Those are the initialization of the particles, the evolution of particles and
distortion estimate, combination and compensation as well as the working domain.

Scaling the Reverberation Estimates

In order to compensate for estimation errors in the estimated reflection energy rk which
might be due to

• approximation of the reflection energy,
• additive noise in the estimate, as well as
• stationary assumption of the impulse response,

a scaling term is introduced as

r(PF)
k = log(sk)rk. (6.40)

Note that the scaling term sk is different from (6.21), inasmuch as it changes for each
frame k while the scale terms in (6.21) are usually constant over long observation windows
such as an utterance. Thus sk is able to adjust for changes in the room impulse response
without updating the parameters of the reverberation models (6.21) or (6.22) which can
only be estimated over a much longer time interval as they contain many more free
variables; e.g., to cover a reverberation of 200 ms we need to estimate either 129 spectral
bins multiplied by 20 frames = 2580 for model (6.21) or 3200 LP coefficients for model
(6.22).
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Figure 6.7 Schematics of joint particle filter estimation of additive and reverberant distortions
for one frame without initialization. Solid arrows represent the flow of the signal. Dotted arrows
represent the flow of particle information such as the particle weight and the particle values which
represent estimates for additive distortions for each frequency bin and a scaling factor for the
convolutional distortion. Variables are defined as in the text. The individual steps are described in
Algorithm 6.4

The reverberation energy estimate in (6.40) can either

• be scaled by a single factor s[1]

r[b](s)k = log
(
s[1](s)k

)
r[b]k (6.41)

adding one dimension to the PF, or
• be scaled by a single factor s[1] and be tilted by s[2] to scale lower and higher

frequencies differently

r
(s)
k [b] = log

(
s
(s)
k [1] + s

(s)
k [2](b − b)

)
rk[b] (6.42)

where b = (B + 1)/2, adding two dimensions to the PF, or
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Algorithm 6.4 Outline of the particle filter for speech feature enhancement to jointly
estimate additive distortions and reverberation

1. Reverberation Estimation – The reverberation sequence is calculated by MSLP accor-
ding to (6.22).

2. Spectra Estimation – The reverberant and distorted short-time power spectra are esti-
mated for all frames.

3. Distortion Estimation and Particles Initialization – The prior additive distortion den-
sity p(a0) and prior scale density p(s0) are set accordingly. Samples d(s)

0 , s =
0, . . . , S − 1, are drawn from the prior distortion density p(d0) as defined in (6.44).

4. Particle Evolution – All particles d(s)
k , s = 0, . . . , S − 1, are propagated by the particle

transition probability p(dk|d0:k−1).
5. Distortion Combination – The expected distortion n = u(a, s) is calculated as

n
(s)
k [b] = log

(
ea

(s)
k [b] + er

(s)
k [b]

)
∀ b ∈ B

where a
(s)
k [b] represents additive distortions and r

(s)
k [b] represents the scaled spectral

distortion due to reverberation as determined by either (6.41) or (6.42).
6. Distortion Evaluation – The distortion samples n are evaluated and normalized.
7. Distortion Compensation – The estimated original feature is calculated according to

either (6.39) or (6.40).
8. Importance Resampling – The normalized weights are used to resample among the

noise particles d(s)
k , s = 1, . . . , S to prevent the degeneracy problem.

9. Prediction Model Estimation – The dynamic transition probability model matrix Dk

must be updated according to (6.26).

Steps 4 through 9 are repeated with k �→ (k + 1) until either all frames are processed or
the track is lost and must be reinitialized with step 3.

• be scaled for each frequency bin individually s[b]

r
(s)
k [b] = log

(
s
(s)
k [b]

)
rk[b] (6.43)

doubling the dimension of the PF.

Scaling each bin individually significantly increases the search space and thus the
execution time. Moreover, it did not provide performance superior to that achieved with
alternative approaches with lower dimensionality. This technique has been presented here,
however, for the sake of completeness.
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Particle Initialization

The first step in any PF framework is the initialization of the particles by drawing samples
from the prior distortion density d0. In our framework the prior distortion density

p(p0) =
[
p(a0)
. . . . .
p(s0)

]
(6.44)

is a concatenation of the prior additive distortion density p(a0) and the prior scale density
p(s0) of the estimated late reflection energies. In those cases where the silence region
is still dominated by the reverberation, the prior additive distortion density p(a0) cannot
be estimated directly. It can, however, be decomposed into two densities which can be
estimated:

• The prior overall distortion density p(n0) = N (μn, �n) derived on silence regions of
the input signal which contains additive and convolutional distortions and

• the prior reverberation density p(r0) = N (μr ,�r ) which is estimated over all frames
derived on the late reflection energy sequence r0:K estimated by MSLP as described in
Section 6.6.5.

With the prior overall distortion density and the prior reverberation density, it is now
possible to derive the prior additive distortion density as

p(a0) = N (μa,�n)

by subtracting the mean value of the reverberation energy from the mean value of the
noise energy

μa = log
(
eμn − eμr

)
.

For simplicity, the variance term �a has been set to the variance term of the noise term
�n resulting in an overestimate of the variance. This, however, is not critical here.

The prior scale density p(s0) is assumed to be Gaussian N (μs , �s) with μs,1 = 1.0
and μs,2 = 0.0 for the actual scale and tilt terms, respectively, as we assume a correct
estimate of the spectral energies which are due to reverberation. The variance term �s is
set to a small variable or can be learned from the data. In contrast to the correct mean
values, however, this is not a critical value.

Particle Evolution

The evolution for each particle p(s)
k , s = 0, . . . , S − 1, is estimated by an autoregressive

process

p(s)
k = Pk−1p(s)

k−1 + ε
(s)
k ; ε

(s)
k ∼ N (0, σε).
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The estimate of the autoregressive matrix Pk−1 can be represented by a joint matrix.
Better results may be obtained by considering the additive distortion and the scale terms
as independent components, such that,

Pk =

⎡
⎢⎣Ak

... 0
. . . . .

0
...Sk

⎤
⎥⎦ ,

where the additive distortion matrix Ak is recalculated for each frame k by the dynamic
autoregressive process and the scale matrix Sk is modeled by a random walk S = Sk =
diag(1).

Distortion Estimation and Combination

In order to allow for a joint evaluation of additive noise and reverberation, the two
distortions must be combined into a single distortion estimate. For each particle p(s)

k , s =
0, . . . , S − 1 a corresponding distortion sample n

(s)
k [b] must be calculated according to

n
(s)
k [b] = log

{
ea

(s)
k

[b] + s
(s)
k [b] erk [b]

}
,

for every frequency bin b = 0, . . . , B − 1. Here a[b] represents additive distortions, s[b]
represents the scale terms and r[b] represents the spectral distortion due to reverberation.
The resulting distortion estimate can now be treated just like the noise estimate common
to all feature enhancement PF approaches.

Working Domain

PFs for speech feature enhancements have to be applied in a dimension-reduced logarith-
mic spectral domain. This can be implemented either by a filter bank or by a truncated
cepstral sequence. In the reference implementation discussed in Section 14.4, a spectral
estimate based on the warped minimum variance distortionless response was used. As the
operation of a PF in a space with high-dimensionality such as 129, which was used for
spectral estimation, would be infeasible or very slow, the example implementation works
in a dimension reduced logarithmic spectral domain. The features in the reduced space
are obtained by applying an inverse discrete cosine transform, implemented as a simple
20 × 20 matrix multiplication, to go back to the cepstral domain then truncating a final
length of 20. In the truncated logarithmic spectral domain the relation between the noisy
observation y, the original feature x, and noise n can be approximated as

x = y + log(1 − en−y) + eθ + eenvelope ≈ log(ey − en). (6.45)

The first error term eθ has been presented in Section 6.1.3. The second error term
eenvelope is due to spectral or cepstral envelope techniques and is assumed to have a
negligible effect. Thus the approximation in (6.45) is sufficient.

In order to avoid any performance degradation stemming from feature manipulation
and the lower dimensionality of the PF working domain with respect to the reverberation
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Distorted Signal (time domain)
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Figure 6.8 Diagram of the reverberation estimate in the logarithmic spectral domain. STSE stands
for short-time spectral analysis, DCT and IDCT for discrete cosine transform and its inverse,
respectively, and MSLP for multi-step linear prediction. The small number gives the dimension of
the feature stream

estimate, it is important not to simply process the reverberation estimate like the distorted
observation. A good approximation in the reduced working domain of the PF is obtained
by the process shown in Figure 6.8.

6.11 Observation Uncertainty

To account for uncertainty in the acoustic observation sequence x or enhancement process,
the decoding likelihood must be integrated over all possible values of x. Let p(x|y)

represent the distribution of the uncertain acoustic observation sequence and X all possible
values of the acoustic observation. With the assumption that the uncertainty in the acoustic
observation is due to additive noise – in particular its estimate – and therefore independent
of the word identities W and the model parameters �, we can extend the fundamental
equation of speech recognition (7.3) to account for the observation uncertainty with the
noise observation y as

W ∗ = argmax
W∈W

(∫
x∈X

p(x|y)p(x|�, W)dx
)

P(W). (6.46)

Considering a GMM with Gaussians as the output distribution

p(x|�) =
∑
m

wmp(x|�m) =
∑
m

wmN (x; μm, �m)

and denoting the estimated noise mean and estimation error, modeled as a single Gaussian
distribution where the variance parameter is assumed to provide a complete characteriza-
tion of the uncertainty, as

p(x|y) = N (x; x̂ = y − μn,�n)

we can solve, under the linear assumption – compare Section 9.3.1 – the integral in (6.46)
by the well-known equality∫

N (x; μ1,�1) · N (x; μ2, �2)dx = N (μ1;μ2, �1 + �2)
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as

∫
x∈X

p(x|y)p(x|�)dx =
∑
m

wm

∫
x
p(x|y)p(x|�m)dx

=
∑
m

wm

∫
x
N (x; x̂ = y − μn,�n)N (x;μm,�m)dx

=
∑
m

wmN (x̂ = y − μn;μm, �m + �n). (6.47)

From (6.47) it follows that the noisy feature y is enhanced by subtracting the mean noise
estimate μn. Furthermore, the Gaussian variance in the HMM process is dynamically
adjusted by enlarging the acoustic model variance �m associated with the original speech
by the variance �n associated with the uncertainty of the noise estimate.

6.12 Summary and Further Reading

Speech feature enhancement represents a very broad array of techniques, all of which
aim at restoring the characteristics of the original speech that has been corrupted by
noise or reverberation in one of several domains. A full treatment of these techniques
would require an entire book by itself. Thus, due to space constraints we have limited
the algorithms presented here to those that work in the feature domain. Furthermore, we
have restricted our presentation to those techniques that compensate for distortions that
cannot be otherwise compensated for in an ASR system, namely nonstationary additive
distortions and reverberation. For example, other distortions are stationary noise which
can be compensated for in a state-of-the-art ASR system by various feature or acoustic
model adaptation techniques, such as those presented in Chapter 9.

An overview paper which compares several speech feature enhancement techniques for
ASR on artificially reverberated and re-recorded speech data in a room is by Eneman et
al. (2003). An extensive study into additive noise removal is presented in the book by
Loizou (2007). Another interesting source for further study about speech enhancement
is Benesty et al. (2005). Besides a more general treatment of audio signals Hänsler and
Schmidt (2008) contains solutions for specific applications including the enhancement of
audio signals in automobiles and the automatic evaluation of hands-free systems.

The signal subspace technique to speech enhancement (Ephraim and Van Trees 1995) is
a quite novel approach which has, so far, not drawn much attention. This is probably due
to the high computational load and the operation in a less intuitive domain as compared
to the spectral domain. However, promising results on speech recognition tasks were
reported by Huang and Zhao (2000). The reader interested in comparing the performance
of KFs and PFs for speech feature enhancement might consider the interacting multiple
model as proposed by Kim (1998) wherein KFs in different stages interact with each
other. Among others, the Speech Technology Group at Microsoft and the Robust Speech
Recognition Group at CMU are good sources to catch on the latest developments.
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6.13 Principal Symbols

Symbol Description

γ a posteriori signal to noise ratio
ε random variation
η a priori signal to noise ratio
μ mean vector
� model parameter
� discrete angle frequency
� covariance matrix
ω angle frequency; short for ejω

A linear prediction matrix
b bin
d dimension
d(·, ·) distortion measure
d distortion
D delay
e error term
h impulse response
H transfer function
k frame index
n discrete-time index
n noise signal
p(x) prior distribution of speech
p(xk|y1:k) filtering density
p(xk+1|xk) (state) transition probability, evolution
p(y) prior distribution of speech
p(yk|xk) output probability, likelihood function
r reflection sequence
R correlation matrix
s signal
T discrete cosine transform matrix
U Cholesky decomposition matrix
w weight
W word
x clean signal, input signal
x0:k clean signal sequence
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Symbol Description

y noisy signal, output signal
y1:k noisy signal sequence
·(c) cepstral domain
·(f ) spectral domain
·(l) logarithmic spectral domain
·(p) power spectral domain
·(t) time domain



7
Search: Finding the Best Word
Hypothesis

Search is the process by which an automatic speech recognition (ASR) system finds
the best sequence of words conditioned on a sequence of acoustic observations. In a
distant speech recognition (DSR) scenario this sequence of acoustic observations would
be obtained using the feature extraction and enhancement techniques discussed in Chapters
5 and 6, respectively, perhaps after array processing the output of several microphones as
discussed in Chapter 13. For any given sequence y1:K of acoustic observations of length
K , an ASR system should hypothesize that word sequence w∗

1:Kw
which achieves

w∗
1:Kw

= argmax
w1:Kw

P(w1:Kw |y1:K), (7.1)

where Kw is the length of word sequence, which is unknown by assumption. Bayes’ rule
states

P(w1:Kw |y1:K) = p(w1:Kw , y1:K)

p(y1:K)
= p(y1:K |w1:Kw) P (w1:Kw)

p(y1:K)
, (7.2)

where the latter equality follows from the definition of conditional probability. Substituting
(7.2) into (7.1) and ignoring the term p(y1:K), which does not depend on the word
sequence w1:Kw, we arrive at the fundamental formula of statistical speech recognition
(Jelinek 1998, sect. 1.2),

w∗
1:Kw

= argmax
w1:Kw ∈W

p(y1:K |w1:Kw) P (w1:Kw), (7.3)

where W is the ensemble of all possible word sequences. Typically, the term
p(y1:K |w1:Kw) in (7.3) is said to be determined by the acoustic model (AM) and
P(w1:Kw) is determined by the language model (LM). As explained in Section 7.1.2, the
search for that word sequence maximizing (7.3) is usually achieved by some variant of

Distant Speech Recognition Matthias Wölfel and John McDonough
©    2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-51704-8



232 Distant Speech Recognition

the Viterbi algorithm , which has the advantage of simplicity, but the drawback of only
returning the single best hypothesis.

If it is desired to retain not only the single best hypothesis, but also several other
hypotheses that were relatively likely, it is necessary to modify the basic Viterbi algorithm.
The essential idea is to store not only the single best hypotheses that has reached a given
state by a given time, but also multiple other hypotheses that scored well in comparison
with the best hypothesis. These methods are discussed in Section 7.1.3. Moreover, it
is often undesirable to store the complete state alignment generated during a Viterbi
search due to the exorbitant requirements for random access memory (RAM). A memory
efficient method for retaining only the word hypotheses, without the full state alignment,
is discussed in Section 7.1.4. In Section 7.5, techniques are presented for combining word
lattices from different systems that have proven effective at reducing the final word error
rate.

In Section 7.2, we begin our discussion of weighted finite-state transducers (WFSTs).
After some initial definitions, we present the all-important operations of weighted com-
position, weighted determinization, weight pushing, weighted minimization and epsilon
removal. These algorithms will prove crucial in building a highly optimized, maximally
efficient search engine.

Regardless of the implementation of the Viterbi algorithm, we assume that recognition
is based on a search graph. Speech recognition can then be posed as the search for the
shortest path through this graph. A search graph is constructed from several knowledge
sources, including a grammar or statistical LM, a pronunciation lexicon, and a hidden
Markov model, which may include context-dependency information. As described in
Section 7.3, all of these knowledge sources can be represented as WFSTs, then combined
and optimized with the WFST operations discussed in Section 7.2.

While WFST algorithms minimize execution time, in the most general case, they pro-
duce a static search graph that requires a great deal of RAM to store during decoding.
Moreover, the WFST algorithms used to construct the search graph require a great deal
of memory during their execution. In Section 7.3.6, we discuss how the size of the final
search graph can be reduced by eliminating certain indeterminacies that arise due to
the modeling of back-off transitions in the LM. Then in Section 7.4 we describe how the
necessity of statically expanding the entire search graph can be eliminated – and the RAM
required for recognition thereby greatly reduced – by expanding the graph dynamically
or on-the-fly during recognition. In Section 7.5, we describe how the hypotheses or word
lattices produced by several recognition systems can be combined to reduce the final
word error rate.

Anyone with experience in ASR will certainly be familiar with the Viterbi algorithm
and, very likely, with several other search techniques. Sections 7.3.6 and 7.4 may still
be of interest, however, in that they present research results that have only appeared
in the last few years. The use of WFSTs for ASR has become the fashion in recent
years; hence, the well-versed reader has a good chance of having had some exposure to
that body of work. Nonetheless, the review of WFSTs in Section 7.2 through 7.3.6 will
certainly be of use to most all newcomers to ASR, and quite likely even some veterans.
Finally, the techniques for word lattice combination presented in Section 7.5, will be
familiar to everyone with practical experience in ASR, but may be new to those with less
experience.
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7.1 Fundamentals of Search

In this section, we discuss the fundamentals of search in ASR, including the Viterbi
algorithm, lattice generation, as well as memory efficient word trace decoding. Before
proceeding to a discussion of these topics, we must introduce the hidden Markov model.

7.1.1 Hidden Markov Model: Definition

Here we define the model most often used in modern ASR systems, namely, the hid-
den Markov model (HMM). To begin, let us somewhat informally define a finite-state
automaton (FSA) as consisting of a set of states and a set of allowable transitions or
arcs between these states. Each state has an associated adjacency list of transitions indi-
cating which other states can be reached from the given state. In turn, each arc has an
associated transition probability indicating how likely it is that the given transition will
be taken. It often happens that the adjacency list of a given state will contain a so-called
self-loop, which is a transition back to the same state. To complete this definition, we
must designate a single initial state, as well as one or more final states . Defined as such,
the FSA represents a Markov chain capable of generating random sequences of states of
variable length. The first state in any sequence generated by the Markov chain must be
the initial state, and the last state in any such sequence must belong to the set of final
states. At each time step, a transition is taken from the current state to one of the states
appearing on the current state’s adjacency list. The transition taken is chosen randomly
according to the probabilities associated with each arc on the adjacency list. The end
of the sequence is determined when, after some number of transitions, a final state is
reached.

As defined above, a Markov chain is a random or stochastic process in that the sequence
of states is randomly chosen according to a given set of transition probabilities. Nonethe-
less, the sequence of states, which will denote as

x0:K �
[
x0 x1 · · · xK

]T
,

is directly observable. The probability of a given state sequence is determined through
the Markov assumption, which can be explicitly stated as

p(x0:K) =
K−1∏
k=0

p(xk+1|xk).

In order to extend the Markov chain into a HMM, we must introduce a second stochastic
process on top of the Markov chain. Conditioned on the sequence x0:K of states, this
second stochastic process generates a sequence of observations

y1:K �
[
y1 y2 · · · yK

]T
.

The individual observations yk may be drawn from a discrete set, or they may be
continuous-valued, but for the purposes of this chapter and the next, we will univer-
sally assume the latter. The hidden Markov model is referred to as such because the state
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sequence x0:K can no longer be observed directly, rather it must be inferred, based on
the sequence y1:K of observations, which can be directly observed. Hence, a HMM is a
doubly stochastic process, whereby the first process determines the state sequence x0:K

according to a discrete probability distribution p(x0:K), and the second process determines
the observation sequence y1:K according to a continuous, conditional pdf p(y1:K |x0:K).
The reader will note that, so-defined, the HMM already begins to display its suitability
for calculating the component probabilities appearing in (7.3).

There are two standard formulations of the HMM, which are distinguished from one
another by the way in which p(y1:K |x0:K) is defined. In the Moore machine, shown in
Figure 7.1, the observation pdfs are associated with the states (Hopcroft and Ullman 1979,
sect. 2.7); hence, an observation is generated upon transitioning into a new state. For the
Moore form of the HMM, the conditional independence assumption can be expressed as

p(y1:K |x0:K) =
K−1∏
k=0

p(yk+1|xk+1). (7.4)

As we will learn in the next chapter, the pdf p(yk+1|xk+1) will typically be defined
through a Gaussian mixture model (GMM). In the Mealy machine, on the other hand, the
observation pdfs are associated with the transitions themselves, as shown in Figure 7.2;
hence, an observation is generated when a given transition is taken. The conditional
independence assumption for the Mealy form of the HMM can be written as

p(y1:K |x0:K) =
K−1∏
k=0

p(yk+1|xk+1, xk). (7.5)

xk−1 xk xk+1

yk−1 yk yk+1

Figure 7.1 Moore formulation of the hidden Markov model whereby observation probabilities
are associated with states

xk−1 xk xk+1

yk yk+1yk−1 yk+2

Figure 7.2 Mealy formulation of the hidden Markov model whereby observation probabilities are
associated with transitions between states
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The two forms of the HMM are equivalent (Hopcroft and Ullman 1979, Thms 2.6–2.7),
so which one is chosen is a matter of convenience. As we will discuss in Section 7.2,
the traditional finite-state automata theory is formulated in terms of input and output
symbols that appear on the arcs of an automaton. Hence, in this chapter, we will make
exclusive use of the Mealy formulation. In Chapter 8, we will consider the problem of
training the parameters of a HMM, whereby we will find it more convenient to associate
the observation pdfs with states, as this will enable us to specify an observation pdf with
a one-state index instead of two. Hence, in Chapter 8 we will make use of the Moore
formulation.

Depending on the author, there are either two or three problems to be solved in applying
HMMs to speech recognition; see (Deller Jr et al. 1993, sect. 12) and (Rabiner 1989). We
have chosen the two-problem formulation:

1. Given a sequence y1:K of acoustic observations, how can the state sequence

x∗
0:K = argmax

x0:K

p(y1:K |x0:K) P (x0:K)

be determined that was most likely to have generated y1:K? We will refer to this as
the HMM recognition problem.

2. Given a sequence w1:Kw of words and a sequence y1:K of acoustic observations, how
can the parameters of a HMM be chosen so as to optimally represent P(w0:Kw) and
p(y1:K |x0:K)? We will refer to this as the HMM training problem.

So-formulated, the first problem, which comprises the subject of the current chapter,
differs from that considered in Chapter 4 only inasmuch as x0:K must be drawn from
a finite set instead of an infinite continuum of possibilities. The second problem will
comprise the exclusive topic of Chapter 8.

7.1.2 Viterbi Algorithm

As explained in subsequent sections, a search graph maps a sequence of names or indices
of GMMs to a sequence of words along with a weight corresponding to the negative
log-probability of the word sequence. Ideally, we seek that word sequence which maxi-
mizes the criterion (7.1). As multiple paths through the search graph and multiple time
alignments could in fact correspond to the same word sequence, finding the optimal word
sequence according to (7.1) would entail summing over all paths and all time alignments
corresponding to the same word sequence. A more tractable approach is to find the optimal
alignment of features to HMM states by applying the Viterbi algorithm . Thereafter, the
word string associated with this alignment of states to observations would be considered
as optimal. Such an optimal alignment or Viterbi path is illustrated in Figure 7.3. Hence,
the search problem, in some sense, reduces to one of efficiently implementing the Viterbi
algorithm.

The Viterbi algorithm is an instance of dynamic programming specialized for the HMM.
The Viterbi algorithm and its variants will comprise our principal tools for solving the
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Figure 7.3 Paths investigated during a Viterbi search. The single best path is indicated by the
thick line

HMM recognition problem. The maximization inherent in the Viterbi algorithm begins
by initializing the forward probability α(y0, i) = 0, where i is the single initial state of
the HMM. Thereafter, it proceeds by iterating according to

α(y1:k+1, n) = min
q

[
α(y1:k, q) − log Pn|q − log p(yk+1;�n|q)

]
, (7.6)

where n is the next state to be reached in the search, �n|q are the parameters of the GMM
associated with a transition from q to n, and Pn|q is the transition probability from q to n.
In (7.6), yk+1 is the next acoustic feature, and y1:k denotes all acoustic features observed
up to time k, as mentioned previously.

In this section, we introduce the basic concepts and notation of finding the shortest
path through a search graph with the Viterbi algorithm. The simplified presentation of
the search graph used here will be made more rigorous in Section 7.2. Let E and Q,
respectively, denote the set of edges and states in a search graph. Similarly, let i denote
the single valid initial state, and let F denote the set of valid end states.

The Viterbi algorithm is perhaps most often implemented as a token-passing decoder
(Young et al. 1989). Each token vk active at a particular time instant k is a data structure
consisting of the following members:

• an accumulated AM score νAM;
• an accumulated LM score νLM;
• a back pointer to the prior token b;
• a pointer to the edge e in the search graph over which the current state was reached.

Each token is associated with a single state in the search graph. In order to advance the
search to the next time step, a copy of a token vk is passed from its associated state p,
to all states that can be reached through transitions of the form

e = (p[e], li[e], lo[e], w[e], n[e]) ∈ E
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where

• p[e] is the previous state in the decoding graph;
• li[e] is the input symbol , in this case, the GMM index;
• lo[e] is the ouptut symbol , in this case, either the null symbol, denoted as ε, or a word

index;
• w[e] is the weight on the edge e;
• n[e] is the next state in the decoding graph.

Propagating a token vk forward in time implies iterating over the adjacency list of the
associated state p in the search graph. For each edge e = (p, li, lo, w, n) in the adjacency
list of p, the input symbol is read, and, provided the input symbol is not ε, the acoustic
likelihood is evaluated with the corresponding GMM. Then a new token vk+1 is created.
The AM score νAM(vk+1) of the new token is given by the AM score of the current token
plus the new acoustic likelihood. The LM score νLM(vk+1) of the new token is given by
the LM score of the current token plus the weight w[e] on the edge e scaled by a LM
weight. The new token also contains a back pointer b(vk+1) to the current token as well
as a pointer e(vk+1) to the current edge. This is to say,

νAM(vk+1) = νAM(vk) − log p(yk+1;�li), (7.7)

νLM(vk+1) = νLM(vk) + β · w[e], (7.8)

b(vk+1) = vk, (7.9)

e(vk+1) = e, (7.10)

where β > 1 is the LM weight . The latter is applied to make the LM play a stronger role
in the search. The combined score ν(vk+1) = νAM(vk+1) + νLM(vk+1) of the new token
is compared to that of the best-scoring token to have reached the new state n so far, and
if ν(vk+1) is lower , then vk+1 is retained, otherwise it is discarded.

Note that it is often beneficial to allow ε-symbols on the input side of the edges in
a search graph. This is in part due to the introduction of auxiliary symbols during the
construction of the search graph, as discussed in Section 7.3.2, which must subsequently
be replaced with ε. In those cases wherein an edge e = (p, ε, lo, w, n) is encountered, no
acoustic likelihood is evaluated, rather the acoustic score from the prior token is retained
such that, ν(vk+1) = ν(vk), and the LM weight is updated according to (7.8). As the
ε-transition consumes no input, the adjacency list of n is immediately expanded. This
process continues recursively until a non-ε-transition is taken.

The iteration described above is repeated until all frames of speech have been processed.
When the end of the speech is reached, the token with the lowest score is chosen among
all tokens that have reached valid end states in the search graph. Then a trace back is
performed beginning from the back pointer of this single best token, following the edges
through the search graph back to the initial state. The output symbols on these edges are
read, and every time a symbol other than ε is encountered on the output side of an edge,
the corresponding word is added to the best hypothesis.

At each time step k, the token v∗
k with the current best combined AM and LM score

ν(v∗
k ) is determined, and thereafter all tokens with a combined score within a predefined
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beam of the best score are propagated forward in time. Clearly, setting a smaller beam
reduces the number of tokens propagated forward at any given time step, and thereby
reduces the computational expense of the search. Hence, the search runs faster. But it
also increases the chance of commiting a search error , whereby a hypothesis with fewer
word errors that would have eventually proven to have a lower score than the hypothesis
chosen as the best is discarded because it fell outside the beam at some time step.

7.1.3 Word Lattice Generation

A word lattice is a memory efficient way of representing multiple word hypotheses, which
may have many lengthy substrings in common. Formally, a lattice is a directed acyclic
graph (Cormen et al. 2001, sect. 22.4), wherein each node is associated with a time instant
and a node in the original search graph, and each edge is associated with an input and an
output label in the original search graph. Depending on the application, the lattice may
contain all information necessary to recreate the state alignment of the Viterbi search,
or it may contain only the word identities. Such lattices are useful for lattice rescoring .
Because a lattice represents a greatly constrained search space, knowledge sources, such
as large LMs and long-span AMs, that are intractable to apply during an initial recognition
pass, can be used during lattice rescoring to enhance the accuracy of a recognition engine.
As discussed in Section 8.2, such lattices are also ideally suited for efficiently representing
a set of competing hypotheses for discriminative training , each of which might plausibly
be mistaken for the correct hypothesis during decoding. Finally, lattices are useful for
accumulating the statistics required for unsupervised speaker adaptation, as described in
Chapter 9, especially when the initial word error rate (WER) is very high, implying that
the single best hypothesis contains many errors.

A lattice can be generated as follows. During the forward Viterbi search, the tokens
reaching each state that have a worse total score than the best token are not discarded.
Rather, they are stored in a linked list on the best token. At the end of the utterance
a trace back is conducted not only for the single best path, but also for every path
represented by a token in the linked list on the best token. As mentioned previously,
a node in the lattice is uniquely defined by a pair consisting of a time instant and
a node in the original search graph. As the search graph contains many self loops, it
often happens that observations from several successive time instants are associated with
the same state in the search graph. It is not necessary to form lattice nodes for all time
instants associated with the same node in the search graph. Rather, unique lattice nodes
are created only when the trace back encounters a change of states in the original search
graph. Each edge in the lattice then contains the following information:

• The starting time
• The ending time
• The AM score
• The LM score
• The GMM index
• The word index.

In the vast majority of cases, the word index will be that corresponding to the ε-symbol.
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As mentioned previously, it is often the case that all of the information contained
in the complete lattice is not needed. For example, in many instances only the word
identities are required. In such cases, a simpler lattice representation can be obtained
through a procedure proposed by Ljolje et al. (1999). Firstly, the lattice is projected onto
the output side by discarding all information save for the word identities. Secondly, as
most of the edges in the projected lattice are labeled with ε, the epsilon removal algorithm
described in Section 7.2.6 is performed to reduce the size of the lattice. An example of
a word lattice after the epsilon removal operation is shown in Figure 7.4. Finally, the
size of the lattice can be further reduced through determinization then minimization,
which, as discussed in Section 7.2, are both WFST equivalence transformations. The final
lattice after determinization and minimization is illustrated in Figure 7.5. The lattices in
Figures 7.4 and 7.5 are equivalent inasmuch as they encode or accept exactly the same
set of word hypotheses. The second lattice, however, clearly has significantly fewer nodes
and edges.
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Figure 7.4 Initial word lattice after epsilon removal. The correct transcription of the utterance
corresponds to the path shown in bold
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Figure 7.5 Final word lattice after weighted determinization and minimization. The correct tran-
scription of the utterance corresponds to the path shown in bold



240 Distant Speech Recognition

7.1.4 Word Trace Decoding

While maintaining the complete alignment of time frames to states is useful for HMM
training, it can become prohibitive in terms of the RAM required to store all the tokens
during decoding. An alternative approach was proposed by Saon et al. (2005), wherein
backpointers for all active states are not stored. Rather, the backpointers to every preceding
state are replaced with word trace structures, which store the end time of the current word
along with a backpointer to the previous word represented by its own word trace structure.
Each token in the search then contains only a pointer to the corresponding word trace
structure, and a new word trace structure is created only when the search encounters a
non-ε-symbol on the output side of the search graph.

To generate lattices with such a word trace structure, not only the single best token is
stored at each state, but the N -best tokens. Typically N can be set to a relatively small
value such as 5 or 10. As the recognition graph can have merges in the middle of words
due to the minimization procedure described in Section 7.2.5, it is necessary to perform a
mergesort-unique operation at states where several tokens meet in order to go from 2N

potential tokens back to N . During this operation, two sorted lists of tokens are merged
into a single sorted list of unique tokens. Thereafter, only tokens associated with the top
N word sequences are retained. Unique word sequences are retained by performing a
hashing operation on each new word index. A word sequence is then represented by its
hash value, which is stored in the word trace structure. As mentioned, a new word trace
structure is created every time a word label is encountered on the output side, and only
the top-scoring token is propagated beyond the word boundary.

The lattice generation procedure described above is depicted in Figure 7.6 for the
case of N = 2. At time k − 1, the top 2N best hypotheses together with their scores
are (‘A HORSE’, score = 3) and (“A MOUSE”, score = 5) on one N -best list, and
(“THE HORSE”, score = 1) and (“ONE HORSE”, score = 4) on the other N -best list.
When the two N -best lists are merged at time k with the mergesort-unique operation,
only the top-N entries from both lists are retained, and the remaining entries are (“THE
HORSE”, score = 3) and (“A HORSE”, score = 4). At time k + 1, a boundary for the
word “ATE” is encountered, a new word trace structure is created, and only the best
hypothesis is propagated forward, resulting in the hypothesis/score pair (“THE HORSE
ATE”, score = 6). The search then continues in this fashion with the receipt of each new
frame of speech.

= Token

= Word Trace
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6ATE
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time k−1 k k+1 k+2
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Figure 7.6 Word lattice generation with the word trace decoder for N = 2, after Saon et al. (2005)
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7.2 Weighted Finite-State Transducers

In Section 7.3 we will discuss the knowledge sources necessary to construct a complete
ASR system. In this section, on the other hand, we will discuss how each of these knowl-
edge sources can be conveniently represented as a WFST; i.e., a directed graph with
an input symbol, an output symbol and a weight associated with each edge. We will
see that two or more WFSTs can be combined with the weighted composition algorithm
presented in Section 7.2.2, then optimized through a set of equivalence transformations
presented in Sections 7.2.3–7.2.6. As described in Section 7.1.2, the shortest path through
the resulting WFST conditioned on a sequence of acoustic observations can be found
with the Viterbi search. Once the shortest path has been found, the most likely word
sequence can be determined by simply tracing back from the final state to the initial
state and reading off the output symbols on the arcs along the way. We begin by intro-
ducing the basic notation and definitions of FSA. Thereafter we present the algorithms
themselves.

This section can be read at several different levels. The first and simplest is that
of “speaking the language” of WFSTs, and having an intuitive feel for what each of
the basic algorithms does. To cater to this level of understanding, we have provided
simple examples1 illustrating the application of each of the algorithms presented here
on small transducers. Such examples should make clear the effect that a given algorithm
produces. The second level of understanding is that of knowing how each algorithm
is implemented. Readers desiring this information will find pseudocode for most of the
algorithms along with a discussion thereof. The third level of understanding is that of
being able to prove that each of the algorithms is correct . Those desiring such deep
understanding will, unfortunately, find at most sketches of the required correctness
proofs. We have, however, been at pains to provide references to the original work in
order to lay the basis for further reading.

7.2.1 Definitions

As we treat weighted finite-state automata in this section, a formalism for combining and
manipulating weights will be necessary. Thus we begin with a definition.

Definition 7.2.1 (semiring) A semiring K = (K, ⊕,⊗, 0, 1) consists of a set K, an asso-
ciative and commutative operation ⊕, an associative operation ⊗, the identity 0 under ⊕,
and the identity 1 under ⊗. By definition, ⊗ distributes over ⊕ and

0 ⊗ a = a ⊗ 0 = 0.

A semiring is a ring that may lack negation. While this definition may seem excessively
formal, it will prove useful in that operations on FSAs can be defined in terms of the
operations on an abstract semiring. Thereafter, the definitions of the several algorithms
need not be modified when the semiring is changed.

1 Most of the examples of transducer operations found in this section are based on those in the excellent tutorial
on WFSTs presented by Mehryar Mohri and Michael Riley at Interspeech in Aalborg, Denmark in 2002.
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A simple example is the semiring of natural numbers (N , +, ·, 0, 1). In ASR we
typically use one of two semirings, depending on the operation. The tropical semiring
(R+, min,+, 0, 1), where R+ denotes the set of non-negative real numbers, is useful in
finding the shortest path through a search graph based on the Viterbi algorithm presented
in Section 7.1.2. The set R

+ is used in the tropical semiring because the hypothesis
scores represent negative log-likelihoods. The two operations on weights correspond to
the multiplication of two probabilities, which is equivalent to addition in the negative
log-likelihood domain, and discarding all but the lowest weight, such as is done by the
Viterbi algorithm. The log-probability semiring (R+, ⊕log, +, 0, 1) differs from the tro-
pical semiring only inasmuch as the min operation has been replaced with the log-add
operation ⊕log, which is defined as

a ⊕log b � − log(e−a + e−b).

The log-probability semiring is typically used for the weight pushing equivalence transfor-
mation discussed in Section 7.2.4. In addition to the tropical and log-probability semiring
which clearly operate on real numbers, it is also possible to define the string semiring
wherein the weights are in fact strings (Mohri 1997), and the operation ⊕ = ∧ corresponds
to taking the longest common substring, while � = · corresponds to concatenation of two
strings. Hence, the string semiring can be expressed as Kstring = (�∗ ∪ ∞, ∧, ·, ∞, ε).
This semiring will prove useful in Section 7.2.3 during our discussion of weighted deter-
minization.

We now define our first automaton.

Definition 7.2.2 (weighted finite-state acceptor) A weighted finite-state acceptor
(WFSA) A = (�, Q, E, i, F, λ, ρ) on the semiring K = (K, ⊕, ⊗, 0, 1) consists of

• an alphabet �,
• a finite set of states Q,
• a finite set of transitions E ⊆ Q × (� ∪ {ε}) × K × Q,
• a initial state i ∈ Q with weight λ,
• a set of end states F ⊆ Q,
• and a function ρ mapping from F to R

+.

A transition or edge e = (p[e], l[e], w[e], n[e]) ∈ E consists of

• a previous state p[e],
• a next state n[e],
• a label l[e] ∈ �, and
• a weight w[e] ∈ K.

A final state n ∈ F may have an associated weight ρ(n).

A simple WFSA is shown in Figure 7.7. This acceptor would assign the input string
“red white blue” a weight of 0.5 + 0.3 + 0.2 + 0.8 = 1.8.
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red/0.5

white/0.3 blue/0.2
2/0.8

yellow/0.6
0 1

Figure 7.7 A simple weighted finite-state acceptor

As already explained, speech recognition will be posed as the problem of finding the
shortest path through a WFSA, where the length of a path will be determined by a
combined AM and LM score. Hence, we will require a formal definition of a path.

Definition 7.2.3 (successful path) A path π through an acceptor A is a sequence of
transitions e1 · · · eK , such that

n[ek] = p[ek+1] ∀ k = 1, . . . ,K − 1.

A successful path π = e1 · · · eK is a path from the initial state i to an end state f ∈ F .

A weighted finite-state acceptor is so-named because it accepts strings from �∗, the
Kleene closure (Aho et al. 1974) of the alphabet �, and assigns a weight to each accepted
string. A string s is accepted by A iff there is a successful path π labeled with s through A.
The label l[π] for an entire path π = e1 · · · eK can be formed through the concatenation
of all labels on the individual transitions:

l[π] � l[e1] · · · l[eK ].

The weight w[π] of a path π can be represented as

w[π] � λ ⊗ w[e1] ⊗ · · · ⊗ w[eK ] ⊗ ρ(n[eK ]),

where ρ(n[eK ]) is the final weight. Typically, � contains ε, which, as stated before,
denotes the null symbol. Any transition in A with the label ε consumes no symbol from
s when taken.

We now generalize our notion of a WFSA in order to consider machines that translate
one string of symbols into a second string of symbols from a different alphabet along
with a weight.

Definition 7.2.4 (weighted finite-state transducer) A WFST T = (�,�, Q, E, i, F,

λ, ρ) on the semiring K consists of

• an input alphabet �,
• an output alphabet �,
• a set of states Q,
• a set of transitions E ⊆ Q × (� ∪ {ε}) × (� ∪ {ε}) × K × Q

• an initial state i ∈ Q with weight λ,
• a set of final states F ⊆ Q,
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red:yellow/0.5

white:blue/0.3 blue:red/0.2
2/0.8

yellow:white/0.6
0 1

Figure 7.8 A simple weighted finite-state transducer

• and a function ρ mapping from F to R
+.

A transition e = (p[e], li[e], lo[e], w[e], n[e]) ∈ E consists of

• a previous state p[e],
• a next state n[e],
• an input symbol li[e],
• an output symbol lo[e], and
• a weight w[e].

A WFST, such as that shown in Figure 7.8 maps an input string to an output string and
a weight. For example, such a transducer would map the input string “red white blue”
to the output string “yellow blue red” with a weight of 0.5 + 0.3 + 0.2 + 0.8 = 1.8. It
differs from the WFSA only in that the edges of the WFST have two labels, an input and
an output, rather than one. As with the WFSA, a string s is accepted by a WFST T iff
there is a successful path π labeled with li[π] = s. The weight of this path is w[π], and
its output string is

lo[π] � lo[e1] · · · lo[eK ].

Any ε-symbols appearing in lo[π] can be ignored. Note that we will define other refine-
ments of the general WFST in subsequent sections. Each redefinition of the most general
WFST will be intended to illustrate the function of a particular equivalence transformation.

7.2.2 Weighted Composition

We now define the most fundamental operation on WFSTs.

Definition 7.2.5 (weighted composition) Consider a transducer S which maps an input
string u to an output string v with a weight of w1. Consider also a transducer T which
maps input string v to output string y with weight w2. The composition

R = S ◦ T

of S and T maps string u directly to y with weight

w = w1 ⊗ w2.

In what follows, we will adopt the convention that the components of particular transducer
are denoted by subscripts; e.g., QR denotes the set of states of the transducer R. In the
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Figure 7.9 Weighted composition of two simple transducers

absence of ε-transitions, the construction of such a transducer R is straightforward. It
entails simply pairing the output symbols on the transitions of a node nS ∈ QS with the
input symbols on the transitions of a node nT ∈ QT , beginning with the initial nodes iS
and iT . Each nR ∈ QR is uniquely determined by the pair (nS, nT ). The composition of
two simple transducers is shown in Figure 7.9; for simplicity, all examples shown in this
chapter are based on the tropical semiring. From the figure, it is clear that the transition
from State 0 labeled with a:b/0.5 in S has been paired with the transition from State
0 labeled with b:c/0.2 in T , resulting in the transition labeled a:c/0.7 in R. After each
successful pairing, the new node nR = (nS, nT ) is placed on a queue to eventually have
its adjacency list expanded.

The pairing of the transitions of nS with those of nT is local , inasmuch as it only
entails the consideration of the adjacency lists of two nodes at a time. This fact provides
for the so-called lazy implementation of weighted composition (Mohri et al. 2002). As
R is constructed it can so happen that nodes are created that do not lie on a successful
path; i.e., from such a node, there is no path to an end state. Such nodes are typically
removed or purged from the graph as a final step. It is worth noting, however, that this
purge step is not a local operation as it is necessary to consider the entire transducer R

in order to determine if any given node is on a successful path. We will return to this
point in Section 7.4.

When ε-symbols are introduced, composition becomes more complicated, as it is neces-
sary to specify when an ε-symbol on the output of a transition in nS can be combined
with an ε-symbol on the input of nT . As observed by Pereira and Riley (1997), in order to
avoid the creation of redundant paths through R, it is necessary to replace the composition
S ◦ T with S ◦ V ◦ T , where V is a filter. One possibility for V is shown in Figure 7.10.
Practical implementations of the general weighted composition algorithm do not actually
use such a filter, but instead simply keep track of the filter’s state. Hence, a node nR ∈ QR

is specified by a triple (nS, nT , f ), where f ∈ {0, 1, 2} is an index indicating the state of
V . In effect, the filter specifies that after a lone ε-transition on either the input or output
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Figure 7.10 Filter used during composition with ε-symbols, after Pereira and Riley (1997)

side is taken, placing the filter in State 1 or State 2 respectively, an ε-transition on the
other side may not be taken until a non-ε match between input and output occurs, thereby
returning the filter to State 0 over one of the edges labeled with x:x.

7.2.3 Weighted Determinization

Having presented weighted composition, by which two transducers can be combined, we
now present the first of a series of equivalence transformations. We begin with a pair of
definitions.

Definition 7.2.6 (equivalent) Two WFSAs are equivalent if for any accepted input
sequence, they produce the same weight. Two WFSTs are equivalent if for any accepted
input sequence they produce the same output sequence and the same weight.

Definition 7.2.7 (deterministic) A WFST is deterministic2 if at most one transition from
any node is labeled with any given input symbol.

As we will see when discussing the construction of a recognition graph, it is typically
advantageous to work with deterministic WFSTs, because there is at most one path
through the transducer labeled with a given input string. This implies that, in general,
the effort required to learn if a given string is accepted by a transducer, and to calculate
the associated weight and output string, is linear with the length of the string, and
does not depend on the size of the transducer. More to the point, it implies that the
acoustic likelihood that must be calculated when taking a transition during decoding
need only be calculated once. This has a decisive impact on the efficiency of the search
process inherent in ASR. Thus we are led to consider our first equivalence operation,
determinization , which produces a deterministic transducer τ2 that is equivalent to some
given transducer τ1. The following discussion of the determinization algorithm is based
on Mohri (1997). We begin with a definition.

2 Strictly speaking, deterministic and sequential as given in Definition 7.3.1, are equivalent. The distinction between
them was effectively introduced by Mohri and Riley et al. in writing the enormously popular AT&T finite-state
machine (FSM) library, inasmuch as fsmdeterminize treats the 0-index, which is reserved for ε, the same as
any other input index.
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Definition 7.2.8 (string-to-weight subsequential transducer) A string-to-weight sub-
sequential transducer on the semiring K is an 8–tuple τ = (�,Q, i, F, δ, σ, λ, ρ)

consisting of

• an input alphabet �,
• a set of states Q,
• an initial state i ∈ Q with weight λ ∈ R∗,
• a set of final states F ⊆ Q,
• a transition function δ mapping Q × � to Q,
• a output function σ mapping Q × � to R+,
• and a final weight function ρ mapping from F to R+.

The determinization algorithm for weighted automata proposed by Mohri (1997) is similar
to the classical powerset construction for the determinization of conventional automata
(Hopcroft and Ullman 1979, sect. 2). The states in the determinized transducer correspond
to subsets of states in the original transducer, together with a residual weight. The initial
state i2 in τ2 corresponds only to the initial state i1 of τ1. The subset of states together
with their residual weights that can be reached from i1 through a transition with the input
label a then form a state in τ2. As there may be several transitions with input label a

having different weights, the output of the transition from i2 labeled with a can only have
the minimum weight of all transitions from i1 labeled with a. The residual weight above
this minimum must then be carried along in the definition of the subset to be applied later.
Each time a new state in τ2, consisting of a subset of the states of τ1 together with their
residual weights, is defined, it is added to a queue Q, so that it will eventually have its
adjacency list expanded. When the adjacency lists of all states in τ2 have been expanded
and Q has been depleted, the algorithm terminates.

In order to clearly describe such an algorithm, let us define the following sets:

• �(q2, a) = {(q, x) ∈ q2 : ∃e = (q, a, σ [e], n1[e]) ∈ E1} denotes the set of pairs (q, x)

which are elements of q2 where q has at least one edge labeled with a;
• γ (q2, a) = {(q, x, e) ∈ q2 × E1 : e = (q, a, σ1[e], n1[e]) ∈ E1} denotes the set of

triples (q, x, e) where (q, x) is a pair in q2 such that q admits a transition with input
label a;

• ν(q2, a) = {q ′ ∈ Q1 : ∃(q, x) ∈ q2, ∃e = (q, a, σ1[e], q ′) ∈ E1} is the set of states q ′ in
Q1 that can be reached by transitions labeled with a from the states of subset q2.

Pseudocode for the complete algorithm is provided in Listing 7.1.
The weighted determinization algorithm is perhaps most easily understood by speciali-

zing all operations for the tropical semiring. This implies ⊕ is replaced by min and �
is replaced by +. The algorithm begins by initializing the set F2 of final states of τ2 to
∅ in Line 01, and equating the initial state and weight i2 and λ2 respectively to their
counterparts in τ1 in Lines 02–03. The initial state i2 is then pushed onto the queue Q in
Line 04. In Line 05, the next subset q2 to have its adjacency list expanded is popped from
Q. If q2 contains one or more pairs (q, x) comprising a state q ∈ Q1 and residual weight
x whereby q ∈ F1, then q2 is added to the set of final states F2 in Line 08 and assigned
a final weight ρ2(q2) equivalent to the minimum of all x � ρ1(q), where (q, x) ∈ q2 and
q ∈ F1 in Line 09.
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Listing 7.1 Pseudocode for weighted determinization

00 def determinize (τ1, τ2):
01 F2 ← ∅
02 i2 ← i1
03 λ2 ← λ1

04 Q ← { i2 }
05 while |Q| > 0:
06 pop q2 from Q
07 if ∃ (q, x) ∈ q2 such that q ∈ F1 :
08 F2 ← F2

⋃ {q2}
09 ρ2(q2) ← ⊕

q∈F1,(q,x)∈ q2

x � ρ1(q)

10 for a such that �(q2, a) �= ∅:
11 σ2(q2, a) ← ⊕

(q,x)∈�(q2,a) [ x � ⊕
e=(q,a,σ1[e],n1[e])∈ E1

σ1[e]]

12 δ2(q2, a) ← ⋃
q̂∈ ν(q2,a)

{ ( q̂,
⊕

[σ2(q2, a)]−1 � x
(q,x,t) ∈ γ (q2,a),n1[e]=q̂

� σ1[e] ) }
13 if δ2(q2, a) /∈ Q2:
14 Q2 ← Q2

⋃ { δ2(q2, a) }
15 push δ2(q2, a) on Q

The next step is to begin expanding the adjacency list of q2 in Line 10, which specifies
that the input symbols on the edges of the adjacency list of q2 are obtained from the union
of the input symbols on the adjacency lists of all q such that there exists (q, x) ∈ q2. In
Line 11, the weight assigned the edge labeled with a on the adjacency list of q2 is obtained
by considering each (q, x) ∈ �(q2, a) and finding the edge with the minimum weight on
the adjacency list of q that is labeled with a and multiplying this minimum weight with
the residual weight x. Thereafter, the minimum of all the weights x is taken for all pairs
(q, x) in �(q2, a). In Line 12, the identity of the new subset of (q, x) ∈ Q2 is determined
and assigned to δ2(q2, a). If this new subset is previously unseen, it is added to the set Q2

of states of τ2 in Line 14 and pushed onto the queue Q in Line 15 to have its adjacency
list expanded in due course. Mohri (1997) proved the following theorem.

Theorem 7.2.9 (weighted determinization) If the weighted determinization algorithm
terminates, then the resulting transducer τ2 is deterministic and equivalent to the original
transducer τ1.

Not all transducers can be determinized. For instance, transducers admitting more than
one successful path labeled with the same input sequence but producing different output
sequences cannot be determinized. We will discuss a simple remedy for this problem,
which arises when representing a pronunciation lexicon as a WFST, in Section 7.3.2.

As mentioned in Section 7.2.1, the weights in a semiring may also be strings. Hence, the
algorithm described in Listing 7.1 is also valid for string to string transducers. Moreover,
the algorithm is also valid when the semiring is the cross product of the string (�∗ ∪
∞, ∧, ·, ∞, ε) and tropical (R+ ∪ {∞}, min, +, ∞, 0) semirings. Hence, it is possible to
determinize the WFSTs defined in Section 7.2.

A simple example of weighted determinization is shown in Figure 7.11. The two WFSTs
in the figure are equivalent over the tropical semiring in that they both accept the same
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Figure 7.11 Weighted determinization of a simple transducer

input strings, and for any given input string, produce the same output string and the
same weight. For example, the original transducer will accept the input string aba along
either of two successful paths, namely, using the state sequence 0 → 1 → 3 → 3 or the
state sequence 0 → 1 → 4 → 3. Both sequences produce the string ab as output, but
the former yields a weight of 0.1 + 0.4 + 0.6 = 1.1, while the latter assigns a weight
of 0.1 + 0.3 + 0.5 = 0.9. Hence, given that these WFSTs are defined over the tropical
semiring, the final weight assigned to the input aba is 0.9, the minimum of the weights
along the two successful paths. The second transducer also accepts the input string aba.
There is, however, a single sequence labeled with this input, namely, that with the state
sequence 0 → 1 → 4 → 5, which produces a weight of 0.1 + 0.3 + 0.5 = 0.9. Hence,
for the input string aba, both transducers produce the same output string ab and weight
0.9. For such small transducers, it is not difficult to verify that the same output and same
weights are produced for all other accepted strings as well.

Provided that every node in the initial transducer τ1 is on a successful path, every
node on the determinized transducer τ2 will likewise lie on a successful path. This
implies that the weighted determinization algorithm described above is completely local .
This point will have important implications in Section 7.3.4, where we consider the
construction and immediate determinization of a transducer HC mapping directly from
GMM to phone indices.

7.2.4 Weight Pushing

For any given transducer, there are many equivalent transducers that differ only in the
distribution of weights along their edges. As discussed in Sections 7.1.2 through 7.1.4,
an ASR system typically uses a beam search to find the most likely word sequence. The
efficiency of the beam search depends very strongly on eliminating unlikely hypotheses
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as early as possible from the beam. This implies that the weights should be pushed as far
toward the initial node as possible to achieve the most efficient search. In this section,
we discuss an algorithm proposed by Mohri and Riley (2001) for achieving this optimal
distribution of weights. An example of weight pushing over the tropical semiring for a
simple transducer is provided in Figure 7.12.

The weight pushing algorithm proposed by Mohri and Riley (2001) begins with the
definition of a potential function V : Q → K − {0}. The weights of the transducer are
then reassigned according to

λ ← λ ⊗ V (i),

∀ e ∈ E,w[e] ← [V (p[e])]−1 ⊗ (w[e] ⊗ V (n[e])),

∀ f ∈ F, ρ(f ) ← [V (f )]−1 ⊗ ρ[f ].

A moment’s thought will reveal that this reassignment has no effect on the weight assigned
to any accepted string, as each weight from V is added and subtracted once. For optimal
weight pushing, we assign a potential to a state q to be equal to the weight of the shortest
path from q to the set of final states F , such that

V (q) =
⊕

π∈P (q)

w[π],

where P(q) denotes the set of all paths from q to F . Mohri and Riley (2001) noted that the
general all pairs shortest path algorithm (Cormen et al. 2001, sect. 26.2) is too inefficient
to enable weight pushing on very large transducers, but proposed instead the approximate
shortest path algorithm in Listing 7.2. The algorithm functions by first assigning all states
q a potential of 0 in Lines 01–02, and placing the initial state i on a queue S of states that
are to be relaxed in Line 03. For each node q, the current potential d[q] as well as the
amount of weight r[q] that has been added since the last relaxation step are maintained.
When q is popped from S, all nodes n[e] that can be reached from the adjacency list E[q]
are tested in Line 09 to determine whether they should be relaxed. The relaxation itself
occurs in Lines 10 and 11. Thereafter the relaxed node n[e] is placed on S if not already
there in Lines 12 and 13. The algorithm terminates when S is depleted. The approximation
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Listing 7.2 Approximate shortest path algorithm

00 def shortestDistance():
01 for j in 1 to |Q|:
02 d[j ] ← r[j ] ← 0
03 S ← { i }
04 while |S| > 0:
05 pop q from S
06 R ← r[q]
07 r[q] ← 0
08 for e ∈ E[q]:
09 if d[n[e]] �= d[n[e]] ⊕ (R ⊗ w[e]):
10 d[n[e]] ← d[n[e]] ⊕ (R ⊗ w[e])
11 r[n[e]] ← r[n[e]] ⊕ (R ⊗ w[e])
12 if n[e] /∈ S:
13 push n[e] on S
14 d[i] ← 1

in this algorithm involves the test in Line 09, which, strictly speaking, must always be true
implying, that the algorithm will never terminate. In practice, however, a small threshold
on the deviation from equality can be set so that the algorithm terminates after a finite
number of relaxations.

In the experience of the present authors, it is necessary to first reverse the graph
before calculating the potential of each node, which implies that for every edge e =
(p, li, lo, w, n) in the original graph R there will be an edge ereverse = (n, li, lo, w, p) in
Rreverse. This point is not mentioned by Mohri and Riley (2001). They, however, report the
importance of pushing weights over the log-probability semiring. Moreover, they provide
empirical results indicating that pushing weights over the tropical semiring can actually
lead to reduced search efficiency.

7.2.5 Weighted Minimization

Minimization entails constructing the transducer equivalent to a given transducer with the
minimal number of arcs and states. The importance of minimization is two-fold. Firstly,
minimal transducers require less RAM to store and manipulate, in some cases, an order of
magnitude less RAM. Secondly, using a minimal search graph during recognition can sub-
stantially reduce run-time, because fewer hypotheses must be maintained and propagated
at each time step. Minimization is readily accomplished through a straightforward modifi-
cation of the classical set partitioning algorithm (Aho et al. 1974, sect. 4.13). Before
describing this algorithm, we must define a conventional automaton without weights.

Definition 7.2.10 (finite-state machine) A FSM is a 5-tuple A = (�,Q, E, i, F ) consist-
ing of

• an alphabet �,
• a finite set of states Q,
• a finite set of transitions E ⊆ Q × (� ∪ {ε}) × Q,
• a initial state i ∈ Q,
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• and a set of end states F ⊆ Q.

A transition e = (p[e], l[e], n[e]) ∈ E consists of

• a previous state p[e] ∈ Q,
• a next state n[e] ∈ Q,
• a label l[e] ∈ �,

A final state q ∈ F may have an associated label a ∈ �.

We now pose the problem as follows. Consider a FSM with the set of states Q. We wish to
partition Q into subsets M = {Qi} such that ∀ a : ∃e1 = (p1, a, n1), e2 = (p2, a, n2) ∈ E,
it holds that

p1, p2 ∈ Qj ⇒ n1, n2 ∈ Qi (7.11)

for some i. We seek the coarsest partition {Qi} of Q, which is by definition the partion
with fewest elements, that satisfies (7.11). Let ν be a partition of Q and let f be a function
mapping Q × � to Q. In the present case, f is defined implicitly through the transitions
E ⊆ Q × (� ∪ {ε}) × Q. For each Qi ∈ ν define the sets

symbol(Qi) = {a ∈ � : ∃e = (p, a, n) ∈ E,n ∈ Qi, p ∈ Q}, (7.12)

f −1(Qi, a) = {p ∈ Q : ∃e = (p, a, n) ∈ E, n ∈ Qi}. (7.13)

So defined symbol(Qi) is subset of symbols used as input labels on at least one edge
into a node in Qi . Similarly, f −1(Qi, a) is the set of nodes having at least one transition
labeled with a into a node in Qi .

Pseudocode for the partitioning algorithm is given in Listing 7.3. To apply the partition
algorithm to WFSTs, it is first necessary to encode both input and output symbols, along
with the weight on each edge, as a single symbol . It is a subset of these encoded symbols
that is returned by symbol(Qi). After the partition algorithm has completed, the composite
symbols are decoded to obtain the final WFST.

We will say the set T ⊆ Q is safe for ν if for every B ∈ ν, either B ⊆ f −1(T , a)

or B ∩ f −1(T , a) = ∅ ∀ a ∈ �. The key of the algorithm is the partitioning of Qj in
Lines 12–13, which ensures that there are no transitions of the form e1 = (p1, a, n1)

and e2 = (p2, a, n2), where either p1, p2 ∈ Qj or p1, p2 ∈ Qn, for which (7.11) does not
hold. Hence, Lines 12–13 ensure that P is safe for the resulting partition, inasmuch as if
Qj ∩ f −1(P, a) �= ∅ for some Qj , then either Qj ⊆ f −1(P, a), or else Qj is split into
two blocks in Lines 12–13, the first of which is a subset of f −1(P, a), and the second of
which is disjoint from that subset. For reasons of efficiency, the smaller of Qj and Qn is
placed on S in Lines 17–20, unless Qj is already on S, in which case Qn is placed on
S in Lines 14–15 regardless of whether or not |Qn| < |Qj |. Aho et al. (1974, sect. 4.13)
proved the following lemma.

Lemma 7.2.11 (set partitioning) After the algorithm in Listing 7.3 terminates, every
block Qi in the resulting partition ν′ is safe for the partition ν′.
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Listing 7.3 Partition algorithm

00 def partition():
01 Q0 ← Q − F

02 Q1 ← F

03 push Q0 on S
04 push Q1 on S
05 n ← 1
06 while |S| > 0:
07 pop P from S
08 for a in symbol (P):
09 for Qj such that Qj ∩ f −1(P, a) �= ∅
10 and Qj �⊆ f −1(P, a):
11 n + = 1
12 Qn ← Qj ∩ f −1(P, a)

13 Qj ← Qj − Qn

14 if Qj ∈ S:
15 push Qn on S
16 else:
17 if |Qn| < |Qj |:
18 push Qn on S
19 else:
20 push Qj on S

Mohri (1997) proved that weighted minimization can be accomplished through a sequence
of three steps, namely,

• weighted determinization,
• weight pushing,
• classical minimization as described above.

As mentioned previously, the graph must be first encoded, then minimized, and finally
decoded. The effects of this procedure on a simple transducer are illustrated in Figure 7.13.
As the initial transducer in the figure is deterministic, it is not necessary to perform the
first step. Hence, only the results of weight pushing and minimization are shown in the
second and third transducers, respectively.

It is worth noting that applying the classical minimization procedure to the original
transducer without first pushing the weights yields a transducer that is identical to the
original unpushed version. Pushing weights prior to classical minimization, however,
yields an equivalent transducer with significantly fewer nodes and edges.

7.2.6 Epsilon Removal

Epsilon removal is by definition the construction of a transducer τ2 that is equivalent to
τ1, but which contains no ε-symbols as inputs. As discussed in Section 7.1.3, it is often
useful to perform such an operation on word lattices. We will encounter another use of
epsilon removal in Sections 7.3.6 and 7.4 when discussing the construction of compact
transducers, especially for fast on-the-fly composition. This procedure is demonstrated on
a simple transducer in Figure 7.14. In this section, we discuss an algorithm for epsilon
removal proposed by Mohri (2002).



254 Distant Speech Recognition

Original

After Pushing

After Minimizing

2

3

6

4

b/1

d/0 d/3

c/3c/3

a/2

d/4

c/2

e/2

c/1

e/1
e/3

a/0
0 1

b/1
5

7/0

3

3

5

6

4

4

7/6

5/6

d/0

d/0

b/1

b/1

b/0

b/0

c/1

c/1

a/3

a/3

c/4

c/4

d/6

d/6

d/6

e/0

e/0 e/0

c/0

c/0

c/0

e/0
e/0

a/0

a/0

0

0

1

1

2

2

Figure 7.13 Weighted minimization of a simple transducer

Let us begin by defining the ε-distance from state p to state q in τ1 as

d[p, q] �
⊕

π∈P (p,q),i[π]=ε

w[π],

where P(p, q) is the set of all paths from p to q and i[π] = ε indicates that the path π

is labeled solely with ε. The algorithm then works in two steps:

1. The ε–closure of a state p is discovered, which by definition is

C[p] � {(q, w) : q ∈ ε[p], d[p, q] = w ∈ K − {0}},

where ε[p] denotes the set of states reachable from p by paths labeled solely with
ε. The ε-closure of p is the set of states q that can be reached from p entirely over
transitions labeled with ε-symbols, together with the combined weight d[p, q].
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Listing 7.4 Epsilon removal algorithm

00 def epsilonRemoval(τ):
01 for p ∈ Q:
02 E[p] ← { e ∈ E[p] : i[e] �= ε }
03 for (q,w) ∈ C[p]:
04 E[p] ← E[p] ∪ {(p, a,w ⊗ w1, r) : (q, a,w1, r) ∈ E[q], a �= ε}
05 if q ∈ F and p /∈ F:
06 F ← F ∪ { p }
07 ρ[p] ← ρ[p] ⊕ (w ⊗ ρ[q])

2. The transitions from p labeled with ε-symbols are replaced by non-ε-symbols with
their weights ⊗-multiplied by d[p, q]. State p then becomes a final state if some state
q ∈ ε[p] is final and its final weight is

ρ[p] �
⊕

q∈ε[p]∩F

d[p, q] ⊗ ρ[q].

Mohri (2002) demonstrates that this algorithm produces an automaton that is equivalent
to the original τ . The required distances d[p, q] can be found with the same approximate
shortest path algorithm given in Listing 7.2. The pseudocode of the algorithm is given in
Listing 7.4.

7.3 Knowledge Sources

At this point, we have posed the speech recognition problem as that of finding the shortest
path through a search graph based on the likelihoods of the acoustic features of an
utterance together with the score returned by a LM for a given word sequence. The
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acoustic likelihoods are calculated with the GMMs whose names appear as input labels
on the edges of the search graph, as indicated by (7.7). The LM scores appear as weights
on these same edges. We have also introduced the theory of WFSTs and the related
equivalence transformations that are useful for constructing and optimizing the search
graph for maximum efficiency during decoding. What is still necessary to complete this
exposition is to describe the knowledge sources that are needed to create the search graph.
Briefly stated, the required knowledge sources include:

1. The grammar G, which accepts sequences of words in a language;
2. The pronunciation lexicon L, which specifies how sequences of words are expanded

into sequences of phonemes;
3. The hidden Markov model H , which determines how the phonemes are expanded into

state sequences;
4. The context-dependency transducer HC, which specifies how sequences of phones are

expanded into sequences of context-dependent GMMs;
5. The acoustic model , which assigns a likelihood to sequences of acoustic observations

conditioned on sequences of HMM states.

The training of the AM is the subject of Chapter 8. The other knowledge sources along
with their representations as WFSTs are described in Sections 7.3.1 through 7.3.4. Their
static combination is then described in Section 7.3.5, along with techniques for limiting
the size of the final search graph in Section 7.3.6. In Section 7.4, we will describe how
the single large search graph can be factored into two much smaller graphs that are
then composed on-the-fly during decoding. Depending on the dimensions of the AM
and LM, this dynamic expansion algorithm can be more efficient in terms of both RAM
requirements and execution speed than its static expansion counterpart.

7.3.1 Grammar

The first knowledge source is the grammar , of which there are two primary sorts. A
finite-state grammar (FSG) is crafted from rules or other expert knowledge, and typi-
cally only accepts a very restricted set of word sequences. Such a grammar is illustrated
in Figure 7.15 for a hypothetical travel assistance application. The FSG in the figure
accepts strings such as “SHOW ME THE QUICKEST WAY FROM ALEWIFE TO
BOSTON.” FSGs are useful in that their constrained languages help to prevent recog-
nition errors. Unfortunately, these constrained languages also cause all formulations of
queries, responses, or other verbal interactions falling outside of the language accepted
by the grammar to be rejected or misrecognized.

The second type of grammar is a statistical language model or N-gram , which assigns
negative log-probabilities to sequences of words. The primary difference between the
FSG and the N -gram is that the N -gram typically includes a backoff node, which
enables it to accept any sequence of words. The structure of the simplest N -gram,
namely the bigram , in which the probability of the current word wk is conditioned
solely on the prior word wk−1, is shown in Figure 7.16. From the figure, it is clear that
the bigram contains two kinds of nodes. The first type is the actual bigram node, for
which all incoming transitions must be labeled with the same prior word wk−1 in order
to uniquely specify the context. In a real bigram, the transitions leaving the bigram
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nodes would, in the simplest case, carry a weight determined from the bigram frequency
statistics of a large training corpus of the form,

P(wi |wj) ≈ Ni|j
Nj

,

where Ni|j is the number of times wi was observed to follow wj , and Nj is the total
number of times wj was observed in the context of any following word.

As mentioned previously, the backoff node allows transitions labeled with any word in
the vocabulary. In a bigram, the weights on the transition from the backoff node labeled
with word wi are estimated from unigram word frequency counts of the form,

P(wi) ≈ Ni

N
,
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where Ni is the number of times wi was observed in a training text in any context, and
N is the total number of tokens in the training text. Transitions from bigram nodes to the
backoff node are typically labeled with the null symbol ε, so that they can be taken without
consuming any input. In practice, the transitions labeled with ε-symbols also carry weights
determined by one of a number of backoff schemes. We will subsequently consider two
such schemes for estimating backoff weights, namely, the methods of Good–Turing and
Kneser–Ney.

As both FSGs and statistical N -grams can be represented as WFSAs, hybrid structures
with the features of both can also be constructed. In this way, it is possible to combine a
well-structured task grammar with a statistical LM to provide flexibility when users stray
outside the task grammar.

We will now consider more closely how the weights in a statistical LM can be robustly
estimated. In general, the probability of a word wi is conditioned on a history , which we
denote as h(w1, . . . , wK−1), where w1, . . . , wK−1 are the preceding words (Jelinek 1998,
sect. 4.2). The probability of the word sequence w1:K can be represented as

P(w1:K) =
K∏

k=1

P(wk|h(w1, . . . , wk−1)). (7.14)

If the grammar is in state hk−1 at time k − 1, then the next word wk causes a change to
state hk, such that (7.14) can be expressed as

P(w1:K) =
K∏

k=1

P(wk|hk−1).

The simplest method of estimating the probabilities P(wk|hk−1) is then to count the
number of times N(w, h) that word w followed history h, as well as the total number of
times

N(h) �
∑
w

N(w, h)

that h occurred with any following word, and define the relative frequency estimate

f (wk|hk−1) � N(w, hk−1)

N(hk−1)
. (7.15)

Typically, the context hk−1 of a word wk is chosen to be the two or three preceding
words, such that hk−1 = (wk−1, wk−2) or hk−1 = (wk−1, wk−2), wk−3), thereby yielding a
trigram or fourgram , although in theory any number of preceding words might be used.
The simple relative frequency estimate (7.15) is, however, usually insufficient, inasmuch
as many trigrams or fourgrams that occur in the test set will never be observed in the
training text regardless of the size of the corpus or corpora used for training. Jelinek
(1998, sect. 4.3) reports the results of an experiment conducted at IBM in the 1970s,
whereby researchers divided a text corpus of patent descriptions based on a 1000-word
vocabulary into 300,000-word and 1,500,000-word test and training sets, respectively.
They found that 23% of the trigrams that occurred in the test set never appeared in the
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training set, and this is for a vocabulary of extremely modest size. In other words, the
problem of building a LM reduces to one of solving the data sparsity problem, whereby
nonzero probabilities must be assigned to events that have been observed few times or
not at all. As mentioned previously, a very common solution to the data sparsity problem
is to define the backoff probability , as

P̂ (wk|wk−1, wk−2) �
{

α(wk|wk−1, wk−2), if N (wk , wk−1, wk−2) > M ,

γ (wk−1, wk−2) P̂ (wk|wk−1), otherwise,

(7.16)

where α and γ are chosen such that P̂ (wk|wk−1, wk−2) is properly normalized, as we
will shortly discuss. The probability P̂ (wk|wk−1) in (7.16) has the same structure as
P̂ (wk|wk−1, wk−2), namely,

P̂ (wk|wk−1) �
{

α(wk|wk−1), ∀ N(wk−1, wk−2) > L,

γ (wk−1) P̂ (wk), otherwise,
(7.17)

where M and L are, respectively, the thresholds for “frequently-seen” events on the tri-
gram and bigram probabilities. Backoff schemes differ in how they assign the terms α and
γ in (7.16) and (7.17). What all such schemes have in common, however, is that they draw
probability away from frequently seen events and reassign it to seldom or unseen events.

Good–Turing Estimation

We now describe the Good–Turing estimation , which is a common technique for dealing
with the data sparsity problem. Let D denote a set of development data of size ND = |D|,
and let H denote a set of held-out data. Let us denote as xi = (wk, wk−1, wk−2) each
trigram in the respective data sets. Moreover, let ND(xi) denote the number of times x

occurs in D. Given the threshold M > 0, the probability estimates will have the form

P̂ (xi) =
{

αfD(xi), ∀ {x|ND(xi) > M},
qj , for ND(xi ) = j ,

(7.18)

where we have defined the relative frequency estimate,

fD(xi) � ND(xi)

ND
.

These relative frequency estimates will be determined on the basis of the word counts in
D, while the additional parameters {qj } and α will be estimated from the statistics in H.

Let us define the Kronecker delta function

δ(a, b) =
{

1, if a = b,

0, otherwise.
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Moreover, let NH(xi) denote the number of times xi has occurred in H, and let rj denote
the number of times a sequence of symbols xi has occurred in H, such that ND(xi) = j ;
i.e., such that

rj =
∑
xi∈H

NH(xi) δ(ND(xi), j).

Let r∗ denote the number of instances xi such that ND(xi) > M ,

r∗ �
∑
j>M

rj .

The total size |H| of the held-out data set is then

|H| =
M∑

j=0

rj + r∗.

Finally, let us define

PM �
∑

xi :ND(xi )>M

fD(xi) = 1

ND

∑
j>M

j nj ,

and require that

M∑
j=1

nj qj + α PM = 1, (7.19)

where nj denotes the number of unique elements x such that N(x) = j . We require that
the condition (7.20) is satisfied in order to ensure that P̂ (xi) in (7.19) is a valid probability
distribution. With the foregoing definitions, it is straightforward to demonstrate (Jelinek
1998, sect. 15.2) that the maximum likelihood estimates of {qj } and α, respectively, are
given by

qj = 1

nj

rj

|H| ∀ j = 0, . . . ,M, (7.20)

α = 1

PM

r∗

|H| . (7.21)

Let us now define a training set denoted as T . The Good–Turing estimate is obtained
by first forming N = |T | distinct held-out sets by simply omitting one element xi ∈ T ,
such that the ith development and held-out sets are, respectively,

Di � T − xi, Hi � {xi} ∀ i = 1, . . . , N. (7.22)

Let N(x) denote the number of instances of the sequence x in T , and, as mentioned pre-
viously, let nj denote the number of unique elements x such that N(x) = j . Let us denote
with Nj(x) the number of times x occurs in Dj , and let rm denote the number of instances
in the held-out sets Hj ∀ j = 1, 2, . . . , N that sequences of symbols x have occurred
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such that Nj(x) = m. Indeed, if Dj = {x}, then Nj(x) = N(x) − 1, and if Nj(x) =
m, then N(x) = m + 1. Moreover, there are nm+1 such elements x in T , and hence
(m + 1) nm+1 values of j ∈ {1, . . . , N} for which Hj = {x} such that Nj(x) = m. It then
follows that

rm = (m + 1) nm+1. (7.23)

Substituting (7.24) into (7.21) provides

qj = nj+1

nj

j + 1

N
∀ j = 0, 1, . . . , M.

The value of the normalization constant α is obtained by setting

M∑
j=0

qj nj + α
∑
j>M

j

N
nj = 1.

The optimal value is then given by

α =
∑

j>M+1 j nj∑
j>M j nj

.

Kneser–Ney Backoff

In the Kneser and Ney (1995) marginal constraint backoff procedure the threshold in
(7.16) is set to M = 0, and absolute discounting (Ney et al. 1994) is used to determine
the probability of the frequently seen events, according to

α(w|h) = N(h, w) − d

N(h)
,

where 0 < d < 1. Under the Kneser–Ney scheme, the backoff probability can be
expressed as

P̂ (w|h) �
{

α(wk|h), if N (w , h) > M ,

γ (h) β(w|ĥ), otherwise,
(7.24)

where ĥ is the less detailed equivalence corresponding to the specific class h. Under
a trigram model, for example, h = (wk, wk−1, wk−2) would imply that ĥ = (wk,wk−1).
Moreover, the term γ (wk−1, wk−2) in (7.25) is uniquely determined from

γ (h) = 1 − ∑
w:N(w,h) > 0 α(w|h)∑

w:N(w,h)=0 β(w|ĥ)
.

The Kneser–Ney scheme differs from other backoff schemes in that the parameters of
the β distribution are not fixed, but instead are optimized along with the other parameters.
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This optimization is performed by determining that β(w|ĥ) achieves

p(w|ĥ) =
∑

g

p(g, w|ĥ). (7.25)

The marginal constraint (7.26) is shown to result in the solution (Kneser and Ney 1995)

β(w|ĥ) = N+(·, ĥ, w)

N+(·, ĥ, ·) , (7.26)

where

N+(·, ĥ, w) �
∑

g:ĝ=ĥ,N(g,w)>0

1,

N+(·, ĥ, ·) �
∑
w

N+(·, ĥ, w).

Hence, the probability distribution β(w|ĥ) is significantly different from p(w|ĥ). That is,
in (7.27) only the fact that a word w has been observed in some coarse context ĥ is taken
into account. The frequency of such an event is entirely ignored.

Language Model Perplexity and Out of Vocabulary Rate

For present purposes, we are interested exclusively in the end-to-end performance of a
complete DSR system, and hence will uniformly hold that LM to be the best which
provides the best end-to-end performance. As mentioned earlier, the latter will typically
be measured in terms of WER. Nonetheless, it is useful to have other, simpler metrics
for judging the quality of a LM that can be calculated without running the entire system.

Consider that the log-probability of a set W of test text, as determined by the LM of
a DSR system, can be expressed as

L(W; �) � − 1

KW

K∑
k=1

log P(wk|wk−1, . . . , w1),

where KW is the total number of tokens in the test text. The most frequently-quoted
metric for the quality of a LM is known as perplexity (Jelinek 1998, sect. 8.3), which is
defined as

P(W; �) � expL(W; �). (7.27)

Perplexity can be equated to the average length of an imaginary list of equally-probable
words from which the recognizer must choose the next word of the best hypothesis.
Hence, a higher perplexity is indicative of either a worse LM, or a more difficult word
prediction task.
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The out of vocabulary (OOV) rate defines the number of words which are not present
in the dictionary, but appear in the test word sequence. Usually an OOV word causes
more than one error in the word sequence of the recognition output due to the correlation
of the current word to the following words by the LM.

7.3.2 Pronunciation Lexicon

As described in Section 2.2.2, the words of natural languages are composed of subword
units in a particular sequence. In modern ASR systems, each word is typically represented
as a concatenation of subword units based on its phonetic transcription. For example, the
word “man” would be phonetically transcribed as “M AE N”, which is the representation
in the recognition dictionary instead of the IPA symbols. The words of nearly any language
can be covered by approximately 40 to 45 distinct phones. For example, the well–known
Carnegie Mellon University dictionary of American English, which has been a standard
since the early 1990s, contains over 100,000 words and their phonetic transcriptions
specified in terms of 39 phones. The British English Example Pronunciation Dictionary
was developed to support large vocabulary speech recognition on the WSJCAM0 set.
The latter data set was collected from British English speakers, who read sentences from
the standard Wall Street Journal (WSJ) data base. In order to accommodate the British
English pronunciations, the standard Carnegie Mellon University (CMU) phone set was
supplemented with four additional phones: “OH” for the vowel in “pot”, and “IA”, “EA”,
and “ua” for the diphthongs in “peer”, “pair” and “poor” respectively.

As shown in Figure 7.17 a pronunciation lexicon can be readily represented as a
finite-state transducer L, wherein each word is encoded along a different branch. In order
to allow for word sequences instead of only individual words, the ε-transitions from the
last state of each word transcription back to the initial node are included. Typically L is
not determinized, as this would delay the pairing of word symbols when L and G are
composed as described in Section 7.3.5.

One more aspect of constructing a pronunciation lexicon is noteworthy. It stems from
the fact that languages such as English contain many homonyms , like “read” and “red”.
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Figure 7.17 A pronunciation lexicon represented as a finite-state transducer
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Figure 7.18 A pronunciation transducer with the auxiliary symbols #1 and #2

Such words have the same phonetic transcription, namely “R EH D”, but different
spellings. Were the same phonetic transcription for both words simply added to a pronunci-
ation transducer, and composed with a grammar G, the result would not be determinizable,
for the reason explained in Section 7.2.3. As a simple remedy, auxiliary symbols such as #1
and #2 are typically introduced into the pronunciation transducer in order to disambiguate
the two phonetic transcriptions (Mohri et al. 2002), as shown in Figure 7.18.

7.3.3 Hidden Markov Model

As explained in the last section, the acoustic representation of a word is constructed
from a set of subword units known as phones. Each phone in turn is represented as a
HMM, most often consisting of three states. The transducer H that expands each context
independent phoneme into a three-state HMM is shown in Figure 7.19. In the figure, the
input symbols such as “AH-b”, “AH-m”, and “AH-e” are the names of GMMs. It is these
GMMs that are used to evaluate the likelihoods of the acoustic features during the search
process. The acoustic likelihoods are then combined with the LM weights appearing on
the edges of the search graph in order to determine the shortest successful path through
the graph for a given utterance, and therewith the most likely word sequence.

7.3.4 Context Dependency Decision Tree

As coarticulation effects are prevalent in all human speech, a phone must be modeled in
its left and right context to achieve optimal recognition performance. A triphone model
uses one phone to the left and one to the right as the context of a given phone. Similarly,
a pentaphone model considers two phones to the left and two to the right; a septaphone
model considers three phones to the left and three to the right. Using even a triphone
model, however, requires the contexts to be clustered. This follows from the fact that if 45
phones are needed to phonetically transcribe all the words of a language, and if the HMM
representing each context has three states, then there will be a total of 3 · 453 =273,375
GMMs in the complete AM, all of which need to be trained. Such training could not be
robustly accomplished with any reasonable amount of training data. Moreover, many of
these contexts will never occur in any given training set for two reasons:

1. It is common to use different pronunciation lexicons during training and test, pri-
marily because the vocabularies required to cover the training and test sets are often
different.
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Figure 7.19 Transducer H specifying the hidden Markov model topology

2. State-of-the-art ASR systems typically use crossword contexts to model coarticulation
effects between words.

From the latter point it is clear that even if the training and test vocabularies are exactly
the same, new contexts can be introduced during the test if the same words appear in a
different order .

A popular solution to these problems is to use triphone, pentaphone, or even septaphone
contexts, but to use such context together with context or state clustering . With this
technique, sets of contexts are grouped or clustered together, and all contexts in a given
cluster share the same GMM parameters. The relevant context clusters are most often
chosen with a decision tree (Young et al. 1994) such as that depicted in Figure 7.20. As
shown in the figure, each node in the decision tree is associated with a question about the
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Figure 7.20 A decision tree for modeling context dependency

phonetic context. The question “Left-Nasal” at the root node of the tree is to be interpreted
as, “Is the left phone a nasal?” Those phonetic contexts for which this is true are sent
to the left, and those for which it is false to the right. This process of posing questions
and partitioning contexts based on the answer continues until a leaf node is reached,
whereupon all contexts clustered to a given leaf are assigned the same set of GMM
parameters. Usually the clusters are estimated with the same training set as that used for
HMM parameters. In addition to ensuring that each state cluster has sufficient training
data for reliable parameter estimation, this decision-tree technique provides a convenient
way of assigning contexts not seen in the training data to an appropriate cluster. In order
to model coarticulation effects during training and test, the context-independent transducer
H depicted in Figure 7.19 is replaced with the context-dependent transducer HC shown
in Figure 7.21. The edges of HC are labeled on the input side with the GMM names (e.g.,
“AH-b(82)”, “AH-m(32)”, and “AH-e(43)”) associated with the leaf nodes of a decision
tree, such as that depicted in Figure 7.20.

Typically, one decision tree is estimated for each context-independent state; e.g., there
would be one tree for “AH-b”, one for “AH-m”, and another for “AH-e”. As mentioned
previously, these trees are estimated on the same training set used for HMM parameter
estimation based on a likelihood measure (Young et al. 1994). Let C denote the set of
all contexts seen in the training set for a given context-independent state, and let L(C)

denote the likelihood of all acoustic features assigned to the contexts in C based on a
Viterbi alignment of the training set Y = {y1, y2, . . . , yK}. Similarly, let μ(C) and �(C)

respectively denote the pooled mean and variance of these acoustic features. Then L(C)

can be expressed as

L(C) = −1

2

{
log[(2π)n |�(C)| + n]

}∑
c∈C

∑
y∈Y

γc(y),

where | · | denotes the determinant operation, γc(y) is the posterior probability that feature
y was assigned to cluster c, and n is length of y. For a given question q, the improvement
in the training set likelihood can be expressed as

�Lq = L(Cy) + L(Cn) − L(C),

where Cy and Cn, respectively, denote the contexts seen for the YES and NO clauses
of q. Beginning from the root node, wherein all contexts corresponding to a given
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Figure 7.21 Context-dependent transducer HC specifying the hidden Markov model topology

context-independent state are clustered together, the complete decision tree is grown by
successively posing all questions at each node and choosing the question that achieves

q∗ = argmax
q

�Lq,

where the maximum is taken over the entire decision tree. That node with the highest
likelihood of improvement is then split according to its best question. If the feature
occupancy count for a given node falls below some predefined threshold, it is no longer
considered for splitting. Similarly, when the best likelihood improvement over all nodes
falls below a threshold, no more splitting is performed, and the existing leaf nodes are
used to define the final state clusters.
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In the balance of this section, we develop an algorithm for constructing the transducer
HC that maps directly from sequences of GMMs to phone sequences based on the decision
tree described above. This algorithm, which was proposed by Stoimenov and McDonough
(2006), was a modification of a prior algorithm proposed by Schuster and Hori (2005). As
HC is the most difficult of the knowledge sources considered here to construct, first-time
readers are perhaps best advised to skip directly to Section 7.3.5 at this point, and return
to these details after having gained an understanding of how a search graph in its entirety
is constructed.

It is of historical interest that C and H were at one time constructed separately, where C

mapped from polyphones to phones, and H mapped from (names of) GMMs to polyphones
(Mohri and Riley 1998). Such a construction is limited, however, in that it is only practical
for triphones; using a larger phonetic context such as pentaphones or septaphones results
in a C transducer that is intractably large. Hence, we present here the more modern
construction technique whereby HC is constructed jointly. This resulting transducer HC

remains of manageable size regardless of the length of the phonetic context due to the
fact that many polyphones will cluster to the same sequence of GMMs.

The algorithm begins by calculating a bit matrix B for each leaf node in a decision tree
that specifies which phones are allowed in which positions. Each row of B corresponds to
a phone and each column corresponds to a position in the polyphone context. As shown
in Table 7.1, position (m, n) of B is 1 iff the mth phone is allowed in the nth position.
The bit matrices are easily calculated by walking down the decision tree(s) from the root
node to the leaves, and unsetting the bits corresponding to disallowed phones at each
juncture.

Let A and B represent two possible questions in a decision tree, and consider a node
in a decision tree in which the compound question A AND B is posed. Interpreting the
YES clause in the tree is straightforward; it is only necessary to reset all bits for which
either A or B is false. The NO clause for this question, on the other hand, is not so
straightforward, as !(A and B) =!A or !B. This implies that for the NO clause we must
reset the bits where either A or B is true, which means that separate bit matrices must be
retained to represent the cases !A and !B. Hence, to handle decision trees with compound
contexts, it is necessary to extend the notion of a bit matrix to include a list L of bit
matrices.

We say two bit matrices Bi and Bj are equivalent if all bits in all locations have equal
values, which we denote as Bi == Bj . We say B is valid if at least one bit is set in each

Table 7.1 Typical bit matrix
corresponding to center phone “AH”

Phone Polyphone position

0 1 2 3 4

AH 0 0 1 1 0
B 0 0 0 1 0
...

...

Z 1 0 0 1 0
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column. Let Ln = {Bi} be a bit matrix list . We say two bit matrix lists Ln and Lm are
equivalent if |Ln| = |Lm| and each Bi ∈ Ln is equivalent to exactly one Bj ∈ Lm. We can
assume without loss of generality that Bi �= Bj for any Bi , Bj ∈ Lm, where i �= j .

Metastate Enumeration

Let p denote the center phone for any given polyphone context. Let si denote the leaf node
in a decision tree associated with the ith state in a HMM. Assuming for simplicity that all
HMMs have three states, define a metastate s as a quintuple s = (p, s1, s2, s3, L) where L
is the list of valid bit matrices corresponding to the state sequence s1, s2, s3. Let L′ = L �
be the list of bit matrices obtained by right shifting each B ∈ L and let L′′ = Ln & Lm

denote the list of valid bit matrices obtained by performing the bitwise operation on each
Bi ∈ Ln with every Bj ∈ Lm. We can enumerate a set S of valid metastates as follows.
Begin with a bit matrix list Ls1 corresponding to the leaf node associated with the first
state of a three-state sequence for a polyphone with center phone p. Similarly, let Ls2 and
Ls3 be the bit matrix lists for the second and third states for such a three-state sequence
for a polyphone with center phone p. If

L = Ls1 & Ls2 & Ls3

is nonempty, then s1, s2, s3 is a valid three-state sequence and the metastate
(p, s1, s2, s3, L) can be added to S. As discussed in Schuster and Hori (2005), all such
valid metastates can be enumerated by first enumerating the valid two-state sequences,
then building three-state sequences. We say that two metastates are equivalent if they
have the same phone p, the same three-state sequence s1, s2, s3 and equivalent bit matrix
lists L.

Metastate Connection

Let S = {si} denote the set of valid metastates obtained from the metastate enumeration
algorithm described above, and let T be a second, initially empty, set of metastates. Let Q
be a queue using any discipline and let SIL denote the initial silence metastate. The initial
and end nodes of HC are denoted as INITIAL and FINAL respectively. Additionally, let
E denote the set of edges in HC. Denoting an input dictionary of names of GMMs and
an output dictionary of phones as D and P, respectively, we can express each edge e ∈ E
as a four-tuple,

e = (sfrom, sto, d, p)

where sfrom is the previous state, sto is the following state, d ∈ D is the input symbol and
p ∈ P is either an output symbol or ε.

Consider now the algorithm for metastate connection in Listing 7.5. In this listing, Q is
a queue of metastates whose connections to other metastates have yet to be determined.
The algorithm begins by initializing the final set E of edges to ∅ and the set of metastates
T to SIL in Lines 02 and 03. In Line 06, the next metastate q is popped from Q and
connected in Lines 07–08 to FINAL if q corresponds to SIL. In the loop that begins at
Line 09, each s ∈ S is tested to find if a new metastate t can be derived from s, as in Line
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Listing 7.5 Metastate connection

00 def connectMetastates(SIL, S):
01 push SIL on Q
02 E ← ∅
03 T ← {SIL}
04 connect INITIAL to SIL
05 while |Q| > 0:
06 pop q from Q
07 if q.p == SIL:
08 connect q to FINAL
09 for s ∈ S:
10 L ← (q.L �) & s.L
11 if |L| > 0:
12 t ← (s.p, s.s1, s.s2, s.s3, L)

13 if t /∈ T:
14 T ← T ∪ { t }
15 push t on Q
16 e ← (q.s3, t.s1, t.s1.g, t.p)

17 E ← E ∪ { e }
18 return (E, T)

12, to which q should be connected. This test consists of forming the new list L of valid
bit matrices in Line 10, and checking if L is nonempty in Line 11. Note that the right
shift � in Line 10 is to be understood as shifting in a column of ones . If |L| > 0, then
the name of the new metastate t is formed in Line 12, and T is searched to determine if
this t already exists. If t does not exist, then it is added to T and placed on the queue Q
in Lines 13–15 in order to eventually have its adjacency list expanded. This ensures that
the connections for each t ∈ T are created exactly once. The new edge e from the last
state of q to the first state of t is created in Lines 16–17, where t.s1.g is the name of the
GMM associated with the latter.

When a metastate t is defined as in Line 12 of Listing 7.5, we will say that t is derived
from s, and will denote this relation with the functional notation s ← from(t, S)

Bit Masks

The algorithm for metastate connection described above is correct but impractical, inas-
much as for any reasonably sized decision tree, the number of metastates will quickly
become intractably large and deplete all available memory; the algorithm does not finish.
Here we consider two modifications to the algorithm: the first is a pure speedup, the
second limits the inordinate growth of the number of metastates.

Consider a metastate s ∈ S where S is once more the set of metastates obtained from
the metastate enumeration algorithm. The set

N(s, S) = {n ∈ S : |(s.L �) & n.L| > 0}

is readily seen to be the list of possible following metastates for any t ∈ T derived from
sF ← from(t, S). Hence, searching only over N(sF , S) in Line 09 of Listing 7.5 instead
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Listing 7.6 Bit mask function

00 def bitMask(s, S):
01 set all bits in M to zero
02 for n in N(s, S):
03 for M1 in n.L:
04 M ← (M | M1)

05 return (M �)

Listing 7.7 Efficient metastate connection

00 def connectMetastates(SIL, S):
01 push SIL on Q
02 E ← ∅
03 T ← {SIL}
04 connect INITIAL to SIL
05 while |Q| > 0:
06 pop q from Q
07 if q.p == SIL:
08 connect q to FINAL
09 sF ← from(q, S)
10 for s ∈ N(sF , S):
11 M ← bitMask (s, S)
12 L ← (q.L �) & s.L & M
13 if |L| > 0 :
14 t ← (s.p, s.s1, s.s2, s.s3, L)

15 if t �∈ T:
16 T ← T ∪ { t }
17 push t on Q
18 e ← (q.s3, t.s1, t.s1.g, t.p)

19 E ← E ∪ { e }
20 return (T, E)

of over all S results in a significant speedup. Moreover, in so doing, we run no risk of
omitting any possible connections from t: If t is derived from s as in Line 12 of Listing
7.5, then the bit matrices appearing in t.L can only have 1’s in a subset of the positions
where s.L has 1’s. This implies that t will connect only to a subset of those metastates
derived from the elements of N(s, S).

Consider the definition of the function bitMask in Listing 7.6. The left shift operation
in Line 05 of this listing is to be understood as shifting in a column of zeros . It is not
difficult to see that Line 10 of Listing 7.5 can be replaced with

L ← (q.L �) & s.L & M,

where M ← bitMask(s, S): Applying M to the prior definition of L unsets those bits
that will be unset in any event as soon as L is right shifted and multiplied with any
n ∈ N(s, S). Leaving these bits set only causes an unneeded increase in |T|, inasmuch
as metastates in T which are essentially equivalent will be treated as different; these
metastates will be combined in any event when HC is determinized and minimized.
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Table 7.2 Sizes of HC for a
pentaphone context dependency tree

Graph States Arcs

HC 975,838 63,178,405
det(HC) 406,173 8,199,840
min(det(HC)) 81,499 968,078

With the two changes described here, the metastate connection algorithm can now be
reformulated as in Listing 7.7. The most important differences between Listings 7.5 and
7.7 lie in the loop over N(sF , S) in Lines 09–10 of the latter, which provides a speedup,
and the application of the bit mask in Lines 11–12, which inhibits the growth of |T|. For
efficiency, N(s, S) and bitMask(s, S) are precalculated for all s ∈ S and stored, so that
Lines 10 and 11 only involve table lookups.

Table 7.2 shows the sizes of HC for a pentaphone context dependency tree containing
3500 leaves after each stage in its construction. In this case, the HC transducer was
compiled statically from a pentaphone distribution tree.

Dynamic Expansion of HC

It is clear from the sizes tabulated in Table 7.2 that the combined transducer HC is much
smaller after determinization than when it is initially expanded, and smaller still after
minimization. As explained in Section 7.2.3, weighted determinization can be performed
incrementally inasmuch as it is not necessary to see the entire graph in order to determine
the adjacency list for a given node in the determinized graph. Rather, only the nodes in
the original graph comprising the subset corresponding to a node in the determinized
graph and their adjacency lists are required.

The capability of performing incremental determinization prompted Stoimenov and
McDonough (2007) to consider the possibility of incrementally expanding HC and simul-
taneously incrementally determinizing it. Such an incremental expansion of HC can be
achieved by expanding the set S in the constructor of HC. The queue Q in Listing 7.7
would become unnecessary, as the adjacency lists of the nodes in HC would be expanded
in the order required by the incremental determinization. To expand the adjacency list in
the original HC, the steps in Lines 07-19 in Listing 7.7 would be executed. A caching
scheme can then be implemented whereby the connections between metastates in T that
have not been accessed recently are periodically deleted and their memory recovered.
Should the connections be needed in future, they can always be regenerated from the
corresponding bit matrix list.

Consider the algorithm for expanding the adjacency list of a node in Listing 7.8. Lines
01-02 test if the adjacency list of q has already been expanded, and returns q.E in the
event that it has. Lines 03-14 are equivalent to Lines 06-16 of Listing 7.7, with the
exception of Line 17 in Listing 7.7, which is no longer needed.

As an initial test of the incremental construction algorithm, Stoimenov and McDonough
(2007) expanded HC for the same pentaphone decision tree used to generate the statistics
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Listing 7.8 Efficient adjacency list expansion

00 def edges(q):
01 if q.E �= ∅:
02 return q.E
03 if q.p == SIL:
04 connect q to FINAL
05 sF ← from(q, S)
06 for s ∈ N(sF , S):
07 M ← bitMask(s, S)
08 L ← (q.L �) & s.L & M
09 if |L| > 0:
10 t ← (s.p, s.s1, s.s2, s.s3, L)

11 if t /∈ T:
12 T ← T ∪ { t }
13 e ← (q.s3, t.s1, t.s1.g, t.p)

14 q.E ← q.E ∪ { e }
15 return q.E

Table 7.3 Memory usage and run-time requirements for static and
dynamic construction of det(HC)

Algorithm Memory usage (Gb) Run time (minutes)

Static expansion 7.70 50
Dynamic expansion 1.42 56

in Table 7.2. The run-time and memory usage statistics for the various build scenarios
are given in Table 7.3.

As is clear from the results in Table 7.3, the dynamic expansion of the graph reduces
memory usage from 7.70 to 1.42 Gb, which represents a factor of 5.42 reduction. This
large decline in the size of the task image is accompanied by a modest increase in run
time from 50 to 56 minutes. Hence, dynamic expansion of HC is very worth while.

7.3.5 Combination of Knowledge Sources

In order to construct the final search graph, the knowledge sources described above must
be combined as follows. The grammar G and pronunciation lexicon L are first composed
and determinized to form det(L ◦ G). After HC has been constructed as described in
Section 7.3.4, it must be determinized and minimized to form min(det(HC)). As explained
previously, the former can be done incrementally during the construction of HC in order to
reduce the memory footprint. In the final sequence of steps min(det(HC)) and det(L ◦ G)

are composed, determinized, pushed and minimized. The complete construction sequence
is then

R = min push det(min(det(HC)) ◦ det(L ◦ G)). (7.28)
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The final operation is to replace the word boundary symbols #1, #2, etc., with ε-symbols.
As desired, the final search graph maps directly from names of GMMs to words, which is
exactly what is required for the search process. The GMM names enable the evaluation of
the likelihood of acoustic features. These likelihoods are combined with the LM weights
stored on the edges of the search graph, such that the shortest path through the search
can be found, and thereby the most likely word sequence.

Note that if the search graph is intended for recognition with the fast on-the-fly composi-
tion algorithm described in Section 7.4, the most efficient search is obtained if det(L ◦ G)

is minimized to form B = min push det(L ◦ G). If the search graph is only intended for
static recognition, it is sufficient to push and minimize only at the end of the complete con-
struction sequence. Performing these operations on the intermediate product det(L ◦ G)

and then again after the final determinization and minimization will result in exactly the
same graph as if they are only performed as final operations.

7.3.6 Reducing Search Graph Size

In Section 7.2.3, we defined a deterministic WFST as having at most one edge with a
given input symbol, including the ε-symbol, in the adjacency list of any node. Consider
now the following definition and related theorem.

Definition 7.3.1 (sequential transducer) A sequential transducer is deterministic and
has no edges with ε as input symbol.

Theorem 7.3.2 (Mohri) The composition of two sequential transducers is sequential.

While seemingly simple, Mohri’s theorem (Mohri 1997) has deep practical implications.
First of all, consider the graph construction sequence specified in (7.28). By far, the most
resource intensive operation in terms of both computation and main memory is the deter-
minization after the composition of min(det(HC)) and det(L ◦ G). According to Mohri’s
theorem, if both min(det(HC)) and det(L ◦ G) were sequential, this determinization could
be eliminated entirely. This poses no problem for the context dependency transducer
min(det(HC)), as its construction ensures that it is sequential. More problematic is L ◦ G

because, as explained in Section 7.3.1, ε-transitions in G are typically used to enable
transitions to the backoff node. While the ε-transitions can be removed with the epsilon
removal algorithm, this causes a massive increase in the number of edges in the graph.

The foregoing considerations led McDonough and Stoimenov (2007) to consider the
following modifications to the search graph construction procedure. Firstly, the ε-symbols
in G shown in Figure 7.16 were replaced with a backoff symbol %. Then, at the end of
each word sequence in L shown in Figure 7.18, a self-loop with % as input and output
was added. With these modifications, the L ◦ G component was constructed according to

B = det(ε- removal(L ◦ G)). (7.29)

As the ε-transitions were replaced with explicit back symbols in G, the epsilon removal
operation did not cause a massive increase in the number of transitions in the model.
Rather, the only remaining ε-transitions were those stemming from the ε-symbols on the
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transitions back to the branch node in L. As before, the HC component was constructed
according to

A = min(det(HC)). (7.30)

Now, however, to the end of each three-state sequence in HC described in Section 7.3.4,
a self-loop with % as input and output was added. Then the complete search graph was
constructed according to

R = min(push(A ◦ B)). (7.31)

As a final operation, the backoff % and word boundary, #1, #2, . . ., symbols are removed
from R prior to its use in recognition.

Dimensions of the search graphs constructed as described in this chapter beginning
from bigram or trigram LMs of various sizes are given in Table 7.4 for a Wall Street
Journal ASR system with a 5000 word vocabulary. The tabulated dimensions indicate
that the size of the initial LM has a large impact on the size of the final search graph.
The search graph for the shrunken bigram, which was constructed without the devices for
size reduction described in this section, was actually larger than that for the full bigram,
which was constructed using these size reduction techniques. The results of a series of
DSR experiments on data from the Speech Separation Challenge, Part II using these LMs
are presented in Section 14.9. Those results indicate that the quality of the LM has a
significant impact on final system performance.

While the algorithm described above is undoubtedly beneficial in terms of reducing the
size of the final search graph, the graph obtained using the full WSJ LM still had nearly
50 million states and over 100 million edges. Moreover, this enormous graph was for an
ASR system with a very modest vocabulary. Recognition with this graph could only be
performed on a 64-bit workstation, and the size of the graph in RAM was nearly 7 Gb,
which can be prohibitive even for research purposes, and impossible on platforms having
only more modest memory. Hence, in the next section, we will consider how the static
expansion of such an enormous graph can be avoided entirely through fast on-the-fly
composition.

7.4 Fast On-the-Fly Composition

Consider once more the composition of A and B as defined in (7.31). As B has no
ε-symbols on the input side, each node nR ∈ QA◦B is uniquely defined by the pair

Table 7.4 Sizes of shrunken and full trigram language models and search graphs. After
McDonough and Stoimenov (2007)

G HC ◦ L ◦ G

Language model Bigrams Trigrams Nodes Arcs

Shrunken bigram 323,703 0 4,974,987 16,672,798
Full bigram 835,688 0 4,366,485 10,639,728
Shrunken trigram 431,131 435,420 14,187,005 32,533,593
Full trigram 1,639,687 2,684,151 49,082,515 114,304,406
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(nA, nB), where nA ∈ QA and nB ∈ QB . This implies that the complexity of the gene-
ral composition algorithm introduced by the ε-symbols has been eliminated; B has no
ε-symbols on the input side, and an ε-symbol on the output side of A can always be
taken. As R is typically many times larger than A and B prior to their composition, and
remains so even after determinization, pushing, and minimization, several authors, inclu-
ding Dolfing and Hetherington (2001), Willett and Katagiri (2002), Hori and Nakamura
(2005), Caseiro and Trancoso (2006), and Cheng et al. (2007), have proposed algorithms
for fast on-the-fly composition . The common element among these algorithms is that the
single enormous search graph is never statically expanded. Rather a search is conducted
simultaneously through two or more smaller search graphs. In this section, we consider a
method proposed by McDonough and Stoimenov (2007) for performing such on-the-fly
expansion.

First of all, let us redefine B in (7.29) as

B = min push det(ε- removal(L ◦ G)).

Now, instead of statically composing A and B, we perform recognition with the
on-the-fly-composition. For the sequential A and B transducers considered here, the latter
is a straightforward modification of the token-passing algorithm. The composition R is
not actually constructed, rather each token simply maintains a pointer to an edge in both
EA and EB , and each active hypothesis is associated with a state nR = (nA, nB) ∈ QR

where nA ∈ QA and nB ∈ QB . As the ε-transitions from the input side of B have been
removed, the filter shown in Figure 7.10 is not required; an ε-transition on the output of
A can always be taken. Moreover, as the filter state is no longer needed, nR is uniquely
specified by the pair (nA, nB). As the search progresses, every time a non-ε phone
symbol is encountered on the output side of A, the adjacency list of the corresponding
node of B must be searched for a matching symbol. If a match is found, a new token
with a pointer to the edge in B with the matching symbol is created.

Such dynamic composition has the potential to be still faster than static expansion of
the entire search graph, inasmuch as it enables the application of the full N -gram LM
during the initial recognition passes. Use of the full LM greatly improves the efficiency
of the beam search during recognition, because it allows for the identification of unlikely
search hypotheses, which can then be pruned away at an early stage. There remains one
further problem to be solved, however, in order to efficiently implement such an on-the-fly
algorithm. As mentioned in Section 7.2.2, nodes can be formed during the composition
of A and B that do not lie on a successful path. After static composition, such nodes are
typically purged. Expanding the set of active hypotheses across transitions from nodes
that are not on successful paths during on-the-fly composition would clearly result in
wasted computation and hence prove detrimental to the efficiency of the search. Hence,
this is to be avoided at all costs.

A naive solution to this problem would be to simply enumerate the set of nodes that
are not on successful paths, and to search no further when such a node is reached. A
more memory efficient solution was proposed by McDonough and Stoimenov (2007). In
order to present this solution, we begin with a set of definitions.

Definition 7.4.1 (white, gray, black nodes) A node is white iff all edges on its adjacency
list are on successful paths. A node is black iff none of the edges on its adjacency list
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is on a successful path. A node is gray iff at least one edge on its adjacency list is on a
successful path, and at least one edge on its adjacency list is not on a successful path.

We now state a simple theorem with interesting implications.

Theorem 7.4.2 All paths from the initial node i ∈ R to a black node must go through a
gray node.

Proof: Without loss of generality, the initial node can be assumed to be white. Assuming
that a path from the initial node to a black node would never cross a gray node leads
immediately to a contradiction with the definition of a white node. �

Now we state a definition and another theorem.

Definition 7.4.3 (fence) The fence F is that subset of black nodes that can be reached by
a single transition from a gray node.

Theorem 7.4.4 All paths from i to a black node must cross a node nF ∈ F .

Proof: Follows as a corollary of Theorem 7.4.2. �

Theorem 7.4.4 clearly implies that in order to avoid expanding any black node during
on-the-fly composition, we need not store the indices of all black nodes, but rather only
the indices of the fence nodes, which can be found quite simply. Starting from the initial
node iR = (iA, iB), perform a breadth-first search (Cormen et al. 2001, sect. 22.2) to
discover all nodes in the set A ⊂ QR that are accessible from iR as well as the end
nodes FR ⊂ A. Now reverse both A and B and searching backwards from each nF ∈ FR,
discover all nodes in the set C that are both accessible from iR and coaccessible from
FR. Clearly the set of black nodes is then B = A − C. Now a third breadth-first search
can be conducted to discover the gray nodes, and therewith the fence F .

Shown in Table 7.5 are the task image sizes for the static and dynamic decoders reported
by McDonough and Stoimenov (2007) on a 5K vocabulary task.

Table 7.5 Task image sizes in Mb for the static and on-the-fly
recognition engines at various beam settings. After McDonough
and Stoimenov (2007)

Static Dynamic

Beam Small trigram Small trigram Full trigram

120.0 1380 179 470
130.0 1381 182 473
140.0 1384 187 476
155.0 1389 200 485



278 Distant Speech Recognition

As is clear from the tabulated sizes, when the same small trigram is used for both the static
and on-the-fly recognizers, the on-the-fly recognizer requires a factor of approximately
seven less RAM.

7.5 Word and Lattice Combination

In this section we describe two widely used methods to combine the hypotheses – on a
word level – of different recognition systems. These methods have proven to be useful
for combining systems varying to different degrees; e.g., acoustic channel, front-end,
randomized decision trees or hypothesis from independent systems.

ROVER

Probably the most widely-used word hypothesis combination method, due to its simplicity,
is ROVER (Fiscus 1997) the recognizer output voting error reduction method. To form
a word transition network the single word sequences from different recognition outputs
must be aligned in basic units dubbed correspondence sets . Each correspondence set for
each individual feature stream can either represent a word or a silence region, but “filler”
phones such as breath or mumble can also be represented. In each correspondence set the
word or silence region is picked providing the highest score

score[W, i] = αM[W, i] + (1 − α)C[W, i],

where M[W, i] and C[W, i] represent the occurrence of appearance and the confidence
score of word W in correspondence set i. The weight parameter α must be determined a
priori on development data.

ROVER is the method of choice when a large number of word hypotheses or lattices
coming from very different system structures must be combined. As it utilizes information
on the word identities at the time of combination, however, other relevant information
might potentially be discarded and the benefit of this lattice combination technique may
fail to reduce the word error rate.

Confusion Network Combination

Confusion networks reduce the complexity of lattice representations, which are orders of
magnitude higher than a N -best list, to a simpler form that maintains all possible paths
in the lattice. In so doing, the search space is transformed into a series of slots, where
each slot consists of word hypotheses – and possibly null arcs – and associated posterior
probabilities. Therefore, by combining the hypotheses or lattices of the same time segment
from different tiers into a single word confusion network, the networks can be used to
optimize the WER by selecting the word with the highest posterior probability in each
particular slot. This hypothesis has been dubbed by Mangu et al. (2000) the consensus
hypothesis .

A brief description of the confusion network combination algorithm is given in Algo-
rithm 7.1. A detailed description can be found in the original work by Mangu et al. (2000).
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Algorithm 7.1 Confusion network combination

1. Lattice alignment – The alignment consists of an equivalence relation over the word
hypotheses together with an ordering of equivalence classes which must be consistent
with the order of the original lattice.

2. Intra-word clustering – This step groups all the links corresponding to the same word
instance. The similarity measure between two sets of links is given by

SIM(E1, E2) = max
e1∈E1,e2∈E2

overlap(e1, e2)p(e1)p(e2),

where the normalized overlap, overlap(e1, e2), between the two links is weighted by the
link posteriors p(e1) and p(e2) to be less sensitive to unlikely word hypotheses. The
overlap, overlap(e1, e2), is normalized by the sum of the lengths of the two hypotheses.

3. Inter-word clustering – This step clusters equivalence classes corresponding to similar
words based on phonetic similarity which can be defined with pF (W) = p(e ∈ F :
words(e) = W) as

SIM(F1, F2) = avg
w1∈Words(F1),W2∈Words(F2)

sim(W1, W2)pF1(W1)pF1(W2).

4. Pruning – Word lattices might contain links with very low posterior probabilities
which are negligible for the total posterior probabilities. For the correct alignment,
however, they can have a detrimental effect as it conserves consistency with the lattice
order independent of the probabilities. It has been experimentally demonstrated that
pruning prior to the class initialization and merging reduces the word error rate.

5. The consensus hypothesis – The best word hypothesis is read from the path through
the confusion graph with the highest combined link weights.

7.6 Summary and Further Reading

In this chapter, we have learned that search is the process by which an ASR system finds
the best sequence of words conditioned on a sequence of acoustic observations. For any
given sequence y1:K of acoustic observations, an ASR system should hypothesize that
word sequence w∗

1:Kw
which achieves w∗

1:Kw
= argmaxw1:Kw

P(w1:Kw |y1:K), where W is
the ensemble of all possible word sequences. Typically, the term p(by1:K |w∗

1:Kw
) is said

to be determined by the acoustic model and P(w1:Kw) is determined by the language
model.

One of the earliest publications addressing the sparse data problem in language mode-
ling was by Katz (1987). Another important work on the use of N -grams for statistical
language modeling was by Brown et al. (1992). Good surveys of smoothing techniques
and the language modeling field in general are provided by Chen and Goodman (1999)
and Rosenfeld (2000), respectively. Another good survey of the field is given by Goodman
(2001). The use of context-free grammars for language modeling is described in Charniak
(2001).
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Much of the problem of language modeling lies in finding suitable training text. With
the advent of powerful and publicly available engines for searching the Internet, it has
become very popular to use such searches to amass text for LM training. Representative
work in this area was proposed by Bulyko et al. (2003, 2007). In cases where insufficient
LM training text is available for a given domain, it is common to adapt LM trained on
a much larger corpus of general text. Such adaptation techniques are described in Wang
and Stolcke (2007).

Several authors have investigated the application of neural networks to the language
modeling problem. Good descriptions of these techniques are given by Bengio et al.
(2003) and Schwenk and Gauvain (2004).

While the techniques for estimating LM probabilities described in Section 7.3.1 were
based on a maximum likelihood criterion, it is also possible to use other criteria for
estimating such weights. In particular, Jelinek (1998, sect. 13) describes a technique
for estimating probabilities of a LM whereby the marginal probabilities are constrained
to match relative frequency estimates from a set of training text, and subject to these
constraints the probability distribution of the LM must diverge minimally from a known
distribution. Jelinek (1998, sect. 13) also explains that under the assumption of a uniform
prior probability distribution, minimizing the divergence is equivalent to maximizing the
entropy of the resulting LM.

Comprehensive overviews of the language modeling field, as well as the use of statistical
methods for information retrieval, are provided by Manning and Schütze (1999) and
Manning et al. (2008).

When a static search graph is constructed using the knowledge sources and techniques
described in Section 7.3, it is often necessary to reduce the size of the N -gram LM
in order to obtain a final graph of tractable size. While this has become less of an
issue for the large workstations typically found in research labs, it remains a problem
for reduced footprint devices such as PDAs and cell phones. Seymore and Rosenfeld
(1996) investigated the effect on recognition performance of shrinking a statistical N -gram
through various methods.

The application of the theory of WFSTs to ASR was largely due to the seminal contri-
butions of several very talented computer scientists at the AT&T Bell Labs. Early work
on weighted composition, as described in Section 7.2.2, was published by Pereira and
Riley (1997), which was followed shortly thereafter by Mohri (1997), who proposed
the weighted determinization algorithm described in Section 7.2.3. The latter work also
demonstrated that weighted minimization could be performed as a sequence of three steps,
as discussed in Section 7.2.5. It was not until the appearance of Mohri and Riley (2001),
however, that an efficient algorithm for the all-important weight-pushing step appeared.
Other classic works describing the details of building search graphs are Mohri and Riley
(1998) and Mohri et al. (2002). The design of the well-known AT&T finite-state machine
library is described in Mohri et al. (1998, 2000).

Like a word lattice, a N -best list is a way of representing multiple alternative word
hypothesis. Unlike a word lattice, the common substrings are not shared between
hypotheses. Rather, each unique hypothesis is written out separately in its entirety. Mohri
and Riley (2002) describe a way to efficiently generate such N -best lists using WFST
techniques.
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The search algorithms described in this chapter all assume that the underlying LM can
be represented as a weighted finite-state acceptor, which is certainly not the most general
representation of a natural language. As described in Pereira and Wright (1991), however,
it is possible to approximate more general context-free grammars as FSAs.

Early work on the compilation of context dependency decision trees into WFSTs, as
described in Section 7.3.4, was presented by Sproat and Riley (1996), and later followed
up by Chen (2003). A simpler technique based on bit masks was proposed by Schuster
and Hori (2005), and later corrected by Stoimenov and McDonough (2006, 2007).

Prior to the turn of the century, most ASR research sites used dynamic decoders that
were based on fairly ad hoc techniques for expanding the search space. A summary of
such techniques is given in Aubert (2000). The use of WFST technology for ASR was
confined largely to the group at AT&T who had originally developed such techniques.
That began to change with the appearance of Kanthak et al. (2002), which was the first
systematic attempt to compare the efficiency of conventional search algorithms based
on dynamic expansion with those based on WFSTs. What made the results reported
in Kanthak et al. (2002) so compelling was that they were obtained with the active
cooperation of leading proponents of both technologies. After the appearance of this
work, several large ASR research sites began to jump on the WFST band wagon,
including IBM; see Saon et al. (2005).

Since the turn of the century, several authors have addressed the problem of using
WFSTs to perform on-the-fly-composition in an attempt to retain the efficiency of this
approach while reducing the great amount of RAM required to fully expand the search
graph. Contributors to the state-of-the-art in this field include Dolfing and Hetherington
(2001), Willett and Katagiri (2002), Hori and Nakamura (2005), Caseiro and Trancoso
(2006), and Cheng et al. (2007). The on-the-fly composition technique presented in
Section 7.4 is due to McDonough and Stoimenov (2007).

As formulated in this chapter, WFST and search algorithms operate on graphs. Hence,
it is worth-while for those readers interested in these topics to have a general reference
on graph algorithms such as Cormen et al. (2001, Part VI).

7.7 Principal Symbols

Symbol Description

ρ final weight function in finite-state transducer (acceptor)
β language model weight
ε null symbol
� output alphabet in finite-state transducer
� (input) alphabet in finite-state transducer (acceptor)
A, B factored search graphs
b(vk+1) backpointer for token vk+1

e edge in a search graph
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Symbol Description

e(vk+1) edge pointer for token vk+1

E set of transitions in finite-state transducer
F set of final states finite-state transducer (acceptor)
i initial state in finite-state transducer (acceptor)
k time index
K set in definition of semiring
li[e] input symbol of e

lo[e] output symbol of e

n node in a search graph
n[e] next state of e

p[e] previous state of e

Q set of states in finite-state transducer
R complete search graph
vk token at time k

νAM(vk) acoustic model score for token vk

νLM(vk) language model score for token vk

w[e] weight of e

0 identity under ⊕ in semiring
1 identity under ⊗ in semiring
⊕ an associative and commutative operation in semiring
⊗ an associative operation in semiring



8
Hidden Markov Model Parameter
Estimation

As discussed in the last chapter, after all speaker tracking, beamforming, speech enhance-
ment, and cepstral feature extraction has taken place, an automatic speech recognition
(ASR) engine is needed to transform the final sequence of acoustic features associated
with each utterance into a word hypothesis or a word lattice. Most modern recognition
engines are based on the hidden Markov model (HMM), which can contain millions of
free parameters that must be estimated from dozens or hundreds of hours of training data.
How this parameter estimation may be efficiently performed is the subject of this chapter.
We consider two primary parameter estimation criteria: maximum likelihood (ML) estima-
tion, and discriminative estimation. The latter includes techniques based on such criteria
as maximum mutual information, as well as minimum word and minimum phone error.

In ML parameter estimation, only the correct transcription of each training utterance is
considered. As we will learn in this chapter, ML estimation attempts to associate as much
probability mass with this correct transcription as possible. In contrast to ML estimation,
discriminative estimation considers not only the correct transcription of each utterance,
but also incorrect hypotheses that could be mistaken for the correct one. A set of likely
but incorrect hypotheses is typically determined by running the recognition engine on all
training utterances, then generating word lattices as described in Section 7.1.3. The HMM
acoustic model (AM) can then be discriminately trained to assign a higher likelihood to
the correct transcription than to any of its incorrect competitors. Discriminative training
typically produces an AM that makes significantly fewer recognition errors than its ML
counterpart. This performance improvement, however, comes at the price of a more com-
putationally expensive parameter estimation procedure, primarily due to the necessity of
running the recognizer over the entire training set. But with availability of ever more and
ever cheaper computational power, this additional computation is no longer considered
prohibitive.

We now summarize the balance of this chapter. In Section 8.1, we provide a dis-
cussion of ML parameter estimation methods. This begins with a proof of convergence
of the expectation maximization (EM) algorithm. Due to its simplicity, the EM algo-
rithm is almost invariably used for ML parameter estimation in the ASR field. We then
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demonstrate how the EM algorithm can be applied to estimate the parameters of a Gaus-
sian mixture model in Section 8.1.1. Forward–backward estimation, which is the primary
technique required to extend the EM algorithm to the HMM, is described in Section 8.1.2.
Section 8.1.3 presents a discussion of speaker-adapted training (SAT), which enables the
incorporation of speaker adaptation parameters into HMM training. This has proven to
provide lower word error rates than when speaker adaptation is conducted only during
testing. The extension of SAT to include the optimal assignment of regression classes is
discussed in Section 8.1.4. The last section on ML parameter estimation, Section 8.1.5,
discusses how the computational expense of large-scale training can be reduced through
Viterbi and label training.

Section 8.2 presents techniques for discriminative training. In Section 8.2.1, the con-
ventional maximum mutual information re-estimation formulae, as first proposed by
Normandin (1991), are presented. Discriminative training on word lattices, as originally
proposed by Valtchev et al. (1997), is described in Section 8.2.2. The use of word lattices
significantly reduces the computational expense of discriminative training as the training
set need only be decoded once with the recognizer. Minimum word and phone error
training are presented in Section 8.2.3. The combination of maximum mutual information
training with SAT is then presented in Section 8.2.4.

The final section of this chapter summarizes the presentation here and provides sug-
gestions for further reading.

8.1 Maximum Likelihood Parameter Estimation

As implied by its name, ML parameter estimation attempts to adjust the parameters of a
parametric probability model so as to maximize the likelihood of a set of training data. To
begin our discussion of this technique, let us consider a simple example of ML parameter
estimation. Assume we have a multidimensional Gaussian pdf of the form

N (y;μ,�) � 1√|2π�|exp

[
−1

2
(y − μ)T �−1(y − μ)

]
, (8.1)

where μ and � are the mean vector and covariance matrix, respectively, and y is an
acoustic observation.

For some training set Y = {yk}K−1
k=0 of i.i.d. observations, we wish to chose μ and �

so as to maximize the log-likelihood

log p(Y;μ, �) =
K−1∑
k=0

log p(yk; μ, �),

where p(yk;μ, �) is the Gaussian pdf (8.1). As shown in Anderson (1984, sect. 3.2), the
ML parameter estimates are given by the sample mean and sample covariance matrix

μ̂ = 1

K

K−1∑
k=0

yk, (8.2)
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�̂ = 1

K

K−1∑
k=0

(yk − μ̂) (yk − μ̂)T , (8.3)

respectively. Hence, if there is only a single Gaussian, the ML estimates for the mean
vector and covariance matrix can be written in closed form.

As we will see in the sequel, ML estimation in the ASR field is almost invariably
accomplished with the EM algorithm. In this chapter, we will use the EM algorithm to
estimate the parameters of a HMM. In Chapter 9, the EM algorithm will be applied to the
estimation of speaker-dependent adaptation parameters. Hence, let us begin by proving
that the EM algorithm produces ML parameter estimates. We begin our exposition with
the following important result.

Lemma 8.1.1 (Jensen’s Inequality) Let X be a discrete-valued random variable with
probability distribution P(x), and let F(x) be any other discrete probability distribution.
Then

∑
x

P (x) log P(x) ≥
∑

x

P (x) log F(x),

with equality iff P(x) = F(x) ∀ x.

Let �0 denote the current set of parameter values, and consider a continuous r.v. Y and
let X denote a discrete-valued r.v. of so-called hidden variables . Moreover, assume that
there is a training set containing many realizations of Y . Our objective is to chose the
parameters � of a pdf so as to maximize the average log-likelihood log p(y; �) over the
entire training set. In the sequel, we will refer to Y as the incomplete observation , and
the pair Z = (Y, X) as the complete observation . Moreover, let Y = {yk} and X = {xk}
denote the incomplete and hidden training sets . As we will soon see, ML parameter
estimation is most conveniently accomplished with the EM algorithm through a suitable
choice of hidden variables X to complement the incomplete observation Y .

The proof that the EM algorithm converges to a set of ML parameter estimates begins
then with a consideration of the following chain of equalities:

log p(y;�) − log p(y; �0)

=
∑

x

P (x|y; �0) log p(y; �)
p(x, y;�)

p(x, y;�)
−
∑

x

P (x|y; �0) log p(y; �0)
p(x, y; �0)

p(x, y; �0)

=
∑

x

P (x|y; �0) log
p(x, y; �)

P (x|y;�)
−
∑

x

P (x|y; �0) log
p(x, y; �0)

P (x|y;�0)

=
∑

x

P (x|y; �0) log p(x, y; �) −
∑

x

P (x|y; �0) log p(x, y;�0)

+
∑

x

P (x|y; �0) log P(x|y; �0) −
∑

x

P (x|y; �0) log P(x|y; �). (8.4)
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Associating P(x) with P(x|y; �0) and F(x) with P(x|y;�), it follows from Jensen’s
inequality that∑

x

P (x|y; �0) log P(x|y; �0) −
∑

x

P (x|y; �0) log P(x|y; �) ≥ 0.

Hence, based on the final equality in (8.4), we can write

logp(y; �) − log p(y; �0)

≥
∑

x

P (x|y; �0) log p(x, y;�) −
∑

x

P (x|y;�0) log p(x, y;�0). (8.5)

Now let us define the auxiliary function (Dempster et al. 1977)

Q(�|�0) � E{log p({Y,X };�)|Y; �0} =
∑

x

P (x|y; �0) log p(x, y; �). (8.6)

We have then proven the following theorem, which forms the basis for all ML estimation
techniques to be discussed subsequently.

Theorem 8.1.2 (convergence of the EM algorithm) For Q(�|�0) defined as in (8.6),

Q(�|�0) > Q(�0|�0) ⇒ log p(y; �)> log p(y; �0).

The utility of the EM lies in the fact that it is often much easier to maximize Q(�|�0)

with respect to � than it is to maximize log p(y; �) directly. As is clear from (8.6), the
auxiliary function is equivalent to the expected value of the log-likelihood of the complete
training set Z = (Y,X ) conditioned on the incomplete observation y given the current
estimate �0 of the model’s parameters. The importance of the auxiliary function stems
from the fact that through successive iterations involving its calculation, the E-step, and
subsequent maximization, the M-step, with respect to the set � of model parameters, the
EM algorithm achieves the desired (local) maximum of the training set likelihood. The
generality of the EM algorithm was first discussed by Dempster et al. (1977).

In the following sections, we will see how a suitable auxiliary function can be used
to perform ML parameter estimation on HMMs. We will begin, however, with a simpler
case, namely, the Gaussian mixture model.

8.1.1 Gaussian Mixture Model Parameter Estimation

In the Moore formulation of the HMM, there is an observation pdf associated with each
state. We will uniformly assume that the observation pdf can be represented as a Gaus-
sian mixture model (GMM), which we will now define. Let {wm}, μm, and �m, denote
respectively the a priori probability, mean vector, and covariance matrix of the mth com-
ponent of the GMM, and let L denote the length of the observation vector y. The a priori
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probability wm is also known as the mixture weight . In the ASR field, �m is most often
assumed to be diagonal such that

�m = diag
{
σ 2

m,0 σ 2
m,1 · · · σ 2

m,L−1

}
. (8.7)

The total likelihood returned by the GMM for observation y can then be expressed as

p(y;�) =
M∑

m=1

wm N (y;�m), (8.8)

where M is the total number of mixture components and �m = (μm, �m).
Equation (8.8) can be interpreted as follows: Based on the set of a priori probabilities

{wm}, choose a mixture component. Based on the chosen component, generate a normally
distributed observation yk with mean μm and covariance �m. That is, choose y according
to the normal distribution N (y;μm, �m). The following development will address the task
of obtaining ML estimates of the speaker-independent parameters � = {(wm, μm, �m)}.

Let us define as before a set Y = {yk} of training data and observe that the log-likelihood
of Y under the pdf (8.8) is

log p(Y;�) =
∑

k

log p(yk;�) =
∑

k

log

[∑
m

wm p(yk;�m)

]
, (8.9)

where p(yk;�m) is defined in (8.1). This task of estimating � would be greatly simplified
if we were so fortunate as to know which Gaussian component gm had generated a given
observation yk . In this case, ML parameter estimation could be performed by simply
applying (8.2–8.3) separately to the parameters �m of each Gaussian component. As we
do not possess this knowledge, let us postulate a set X = {xm,k} of hidden variables which
contain this missing information. We will define these hidden variables as

xm,k �
{

1, for gk = gm ,

0, otherwise,

where k is an index over acoustic observations and m is an index over Gaussian com-
ponents. The notation gk = gm indicates that yk was drawn from the mth Gaussian
component. With this definition, the joint log-likelihood of the complete training set
{Y,X } is given by

log p({Y,X }; �) =
∑

k

log

[∑
m

xm,k wm p(yk;�m)

]
(8.10)

=
∑
m,k

xm,k

[
log wk + log p(yk;�m)

]
, (8.11)
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where, in writing (8.11) we have exploited the fact that exactly one of the terms in the
bracketed summation in (8.10) is nonzero. Let us then define the expectation

cm,k = E{xm,k|yk;�0}

as the a posteriori probability that yk was drawn from the mth Gaussian component,
which is given by

cm,k � p(gk = gm|yk;�0) = wmp(yk; �0
m)∑

m′ wm′ p(yk;�0
m′)

.

Similarly, let us now define the occupancy counts as the sum of the a posteriori proba-
bilities:

cm �
∑

k

cm,k.

As indicated by (8.6), the desired auxiliary function is obtained by taking the conditional
expectation of the complete log-likelihood according to

Q(�|�0) � E{log p({Y,X }; �)|Y;�0} = K1(Y; �, �0) + K2(Y;�, �0), (8.12)

where

K1(Y;�, �0) �
∑
m,k

cm,k log wm =
∑
m

cm log wm, (8.13)

K2(Y;�, �0) �
∑
m,k

cm,k log p(yk;�m). (8.14)

Use of EM algorithm in GMM parameter estimation entails the calculation of the auxi-
liary function (8.12) and its subsequent maximization with respect to the parameters
� = {(wm, �m)}. Observe that the terms K1(Y;�, �0) and K2(Y;�, �0) can be maxi-
mized independently to obtain the updated parameters {wm} and {�m}. Maximization of
K1(Y;�, �0) under the constraint ∑

m

wm = 1 (8.15)

is readily accomplished via the method of undetermined Lagrangian multipliers (Amazigo
and Rubenfeld 1980, sect. 4.3). To do so, we form the modified objective function

K ′
1(Y;�, �0, λ) =

∑
m

cm log wm + λ

(
1 −

∑
m

wm

)
,
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where λ is the Lagrangian multiplier . Maximizing K ′
1 can be achieved by calculating the

partial derivative ∂K ′
1/∂wm and equating it to zero, such that,

∂K ′
1(Y;�, �0, λ)

∂wm

= cm

wm

− λ = 0,

which implies
ŵm = cm

λ
. (8.16)

To solve for λ, we substitute (8.16) into the constraint (8.15) to obtain

∑
m

ŵm = 1

λ

∑
m

cm = 1,

or, equivalently,

λ =
∑
m

cm.

Substituting for λ in (8.16) provides the parameter estimate

ŵm = cm

c
, (8.17)

where

c =
∑
m

cm. (8.18)

From (8.19), it is apparent that

log p(y;�m) = −1

2

[
log |2π�m| + (y − μm)T �−1

m (y − μm)
]
. (8.19)

To solve for the optimal mean and covariance matrix, we substitute (8.19) into (8.14) to
obtain

K2 = −1

2

∑
m,k

cm,k

[
log |2π�m| + (yk − μm)T �−1

m (yk − μm)
]
. (8.20)

From (8.20), it is straightforward to demonstrate that the optimal means can be calculated
as

μ̂m = 1

cm

∑
k

cm,k yk (8.21)
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Representing �̂m as in (8.7), it follows

σ̂ 2
m,n = 1

cm

∑
k

cm,k (yk,n − μ̂m,n)
2

=
(

1

cm

∑
k

cm,k y2
k,n

)
− μ̂2

m,n ∀ n = 0, . . . , L − 1, (8.22)

where yk,n and μ̂m,n are the nth components of yk and μ̂m, respectively. Equations
(8.21)–(8.22) are the desired parameter estimates, which illustrate the advantage inherent
in using the EM algorithm for ML parameter estimation. That is, the joint optimization
of all parameters in the GMM has been decoupled into the separate optimization of the
parameters of each Gaussian component. Only the mixture weights must still be estimated
jointly, which is readily accomplished.

8.1.2 Forward–Backward Estimation

As mentioned in Section 7.1.1, we will here adopt the Moore form of the HMM, which
consists of a Markov chain whereby a GMM is associated with each state. For the purpose
of ML parameter estimation, the HMM is structured so that only the sequence of GMMs
associated with the correct word sequence for a give training utterance are admitted.
Constructing such a HMM requires that the grammar G described in Section 7.3.1 be
replaced with a simpler transducer consisting merely of transitions labeled with the correct
words strung together between an initial and final node; one such transducer is created for
each unique training utterance. Discriminative parameter estimation, which we will discuss
in Section 8.2, is more akin to actual recognition in that the recognizer must be run over
all training utterances to generate word lattices. Given that the word lattices contain many
hypotheses that are likely to be mistaken by the recognizer for the correct hypothesis,
they are useful for estimating the parameters of the AM such that the recognizer is steered
away from the false but likely candidates, and toward the true hypothesis.

In this section, we derive the relations necessary to form ML estimates of the parameters
of a HMM using the EM algorithm. We begin by introducing some notation. Consider
a directed graph representing a HMM comprising a set {ni} of nodes and a set {ej |i} of
edges , where ni is the ith node and ej |i is the directed edge from ni to nj . Let us define
the transition probability

pj |i = p(nj |ni) = p(ej |i |ni). (8.23)

In other words, pj |i is the probability of going from state ni to state nj , which is inde-
pendent of the frame index k by assumption. The final equality in (8.23) follows upon
assuming that at most one edge joins any two nodes. Let gi,m denote the mth Gaus-
sian component associated with node ni and – as in the last section – define the mixture
weight

wm|i = p(gi,m|ni).
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In keeping with (8.8), we will express the likelihood assigned an observation y by the
GMM associated with node ni as

p(y; �i) =
∑
m

wm|i p(y;�i,m),

where �i = {(wm|i , �i,m)} are the corresponding GMM parameters. Defining the mean
vector μi,m and covariance matrix �i,m, such that �i,m = (μi,m,�i,m), the acoustic like-
lihood of a single Gaussian component can be expressed much as in the case of the
simple GMM. Moreover, let y1:K denote the entire sequence of observations for a given
utterance, and let yk1:k2 denote an observation subsequence from time k1 to time k2.

Let us define the forward probability α(y1:k, i) as the joint likelihood of generating the
observation subsequence y1:k and arriving at state ni at time k given the current model
parameters �:

α(y1:k, i) � p(nk = ni, y1:k;�), (8.24)

where – in a slight abuse of notation – we have used nk to denote the HMM state asso-
ciated with observation yk , and ni to denote the i th state in the HMM. Similarly, the
backward probability is the likelihood of generating the observation subsequence yk+1:K

conditioned on beginning from state nj at time k:

β(yk+1:K |j) � p(yk+1:K |nk = nj ; �) (8.25)

These probabilities can be calculated via the well-known forward and backward recursions
(Baum et al. 1970),

α(y1:k, i) =
∑

j

α(y1:k−1, j) p(nk = ni |nk−1 = nj ) p(yk|nk = ni)

= p(yk;�i)
∑

j

α(y1:k−1, j) pi|j , (8.26)

β(yk+1:K |i), =
∑

j

β(yT
k+2|j) p(nk+1 = nj |nk = ni) p(yk+1|nk = nj )

=
∑

j

β(yk+2:K |j) pj |i p(yk+1;�j). (8.27)

The forward and backward probabilities are initialized according to

α(y0, i) =
{

1, for ni the valid initial state,

0, otherwise.
(8.28)

β(yK+1|j) =
{

1, for nj a valid end state,

0, otherwise.
(8.29)
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Observation yk−1 yk yk+1

α(y1:k,i)

α(y1:k+1,j)

n1

n2

n3

ni

n1

n2

n3

nj

ni ni

n1

Figure 8.1 Trellis calculation of forward probabilities

We will assume as in Chapter 7 that there is only a single valid initial state but there
are several valid end states. This “trellis” calculation is illustrated in Figure 8.1 for
α(y1:k+1, j). The calculation for β(yk+1:K |j) proceeds similarly.

In their direct form (8.26–8.27), the forward–backward probabilities are prone to
numerical underflow, in that they require the multiplication of many small probabili-
ties. For this reason, the negative logarithms of such quantities are typically manipulated
during parameter estimation. Clearly, in the log domain, multiplication is replaced by
addition. Addition, on the other hand, is replaced by the so-called log-add function . Let
pA and pB denote two nonzero probabilities, and set

mA = log pA,

mB = log pB,

where, by assumption, pA > pB . Then it is readily verified that for pC = pA + pB ,

mC = log pC = mA + log(1 + e(mB−mA)).

For reasons that will soon become apparent, we are interested in calculating the
probability

p(nk = ni, y1:k;�) = α(y1:k, i) β(yk+1:K |i). (8.30)

Toward this end, consider that the likelihood of the entire utterance y1:K is given by

p(y1:K; �) =
∑

i

α(y1:k, i) β(yk+1:K |i)

for any time k. In particular, if k = K the previous equation reduces to

p(y1:K;�) =
∑

i

α(y1:K, i).
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Let gk denote the Gaussian component associated with observation yk . The joint like-
lihood of a complete observation sequence {y1:K, g1:K} is then given by

log p(y1:K;�) =
K∑

k=1

{log p(gk|nk) + log p(yk|gk) + log p(nk|nk−1)} .

As in our treatment of parameter estimation for the simple GMM, we will define a set
X of hidden variables for each utterance. In this case, however, the hidden variables will
specify both the state and the Gaussian mixture component associated with each feature
in y1:K :

xjm,k �
{

1, for gk = gjm ,

0, otherwise,
,

xj |i,k �
{

1, for ek = ej |i ,
0, otherwise.

.

The hidden variable xjm,k specifies the Gaussian component, just as in the case of the
simple GMM. Note that specifying the component gjm also uniquely specifies the state nj .
The new hidden variable xj |i,k is required to indicate which sequence of transitions through
the Markov chain were taken. With these definitions, the likelihood of the sequence of
complete observations is

log p({X ,Y};�) =
∑

k

⎧⎨
⎩
∑
j,m

xjm,k

[
log p(gk = gjm|nk = nj ) + log p(yk|gk = gjm)

]

+
∑
i,j

xj |i,k log p(nk = nj |nk−1 = ni)

⎫⎬
⎭

=
∑

k

⎧⎨
⎩
∑
j,m

xjm,k

[
log wm|j + log p(yk;�jm)

] +
∑
i,j

xj |i,k log pj |i

⎫⎬
⎭ .

Taking the expectation of the last expression provides

E{log p({Y,X };�)|Y; �0} =
∑

k

⎧⎨
⎩
∑
j,m

cjm,k

[
log wm|j + log p(yk;�jm)

] +
∑
i,j

cj |i,k log pj |i

⎫⎬
⎭ (8.31)

where
cjm,k = E{xjm,k|Y;�0},

and
cj |i,k = E{xj |i,k|Y;�0}
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are the relevant a posteriori probabilities. The first of these a posteriori probabilities can
be calculated according to

cjm,k = p(gk = gjm|y1:K;�)

= p(nk = nj , gk = gjm|y1:K;�)

= p(nk = nj |y1:K;�) p(gk = gjm|nk = nj , y1:K; �)

= p(nk = nj , y1:K;�)

p(y1:K;�)

p(gk = gjm, yk|nk = nj ;�j)

p(yk|nk = nj ;�j)
.

In light of (8.30), the last line reduces to

cjm,k = α(y1:k, i) β(yk+1:K |i)
p(y1:K ;�)

wm|j p(yk;�jm)∑
m′ wm′|j p(yk;�jm′)

. (8.32)

Similarly,

cj |i,k = p(nk = ni, nk+1 = nj |y1:K;�)

= p(nk = ni, nk+1 = nj , y1:K;�)

p(y1:K ;�)

= p(nk = ni, y1:k) p(nk+1 = nj , yk+1|nk = ni) p(yk+2:K |nk+1 = nj )

p(y1:K ;�)
, (8.33)

where the dependence on � in the last equation has been suppressed for convenience.
Note, however, that

p(nk+1 = nj , yk+1|nk = ni) = p(nk+1 = nj |nk = ni) p(yk+1|nk+1 = nj )

= pj |i p(yk+1;�j).

Substituting this expression and (8.24–8.25) into (8.33) we find

cj |i,k = α(y1:k, i) pj |i p(yk+1;�j) β(yk+2:K |j)

p(y1:K;�)
. (8.34)

Hence, once more define the occupancy counts

cjm �
∑

k

cjm,k, (8.35)

cj |i �
∑

k

cj |i,k. (8.36)

It is then possible to rewrite (8.31) as

E{log p({X ,Z};�)|Y, �0} = K1(Y;�, �0) + K2(Y; �, �0) + K3(Y;�, �0),
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where

K1(Y) =
∑
j,m

cjm log wm|j , (8.37)

K2(Y) =
∑
j,m,k

cjm,k log p(yk;�jm)

= −1

2

∑
j,m,k

cjm,k

[
log |2π�jm| + (yk − μjm)T �−1

jm(yk − μjm)
]
, (8.38)

K3(Y) =
∑
i,j

cj |i log pj |i . (8.39)

The dependence on � and �0 in (8.37–8.39) has been suppressed out of convenience.
Optimizing K1 with respect to {wm|i} as in (8.17–8.18) provides

ŵm|i = cim

ci

, (8.40)

where

ci =
∑
m

cim. (8.41)

The similarity of (8.40–8.41) to (8.17–8.18) is unmistakable. Solving K2 for the optimal
Gaussian parameters yields

μ̂jm = 1

cjm

∑
k

cjm,k yk, (8.42)

σ̂ 2
jm,n = 1

cjm

∑
k

cjm,k (ykn − μ̂jm,n)
2

=
(

1

cjm

∑
k

cjm,k y2
kn

)
− μ̂2

jm,n. (8.43)

These formulae are nearly identical with the GMM update equations (8.21)–(8.22). The
only new term is K3(Y;�, �0), which can readily be optimized with respect to the
transition probabilities {pj |i} such that

pj |i = cj |i
c.|i

, (8.44)

where

c.|i =
∑

j

cj |i . (8.45)
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Note that the sums in (8.35–8.36) and (8.42–8.43) can be calculated by partitioning the
training utterances into subsets, accumulating partial sums for each on different processors,
then combining these statistics during the maximization step. This is the basis of so-called
parallel training .

8.1.3 Speaker-Adapted Training

As we will learn in Chapter 9, model-based speaker adaptation is a technique for adapting
the parameters of a HMM to better match the characteristics of a particular speaker’s
voice. Both maximum likelihood linear regression (MLLR) and all-pass transform (APT)
adaptation, as described in Sections 9.2.1 and 9.2.2, respectively, are based on a linear
transformation of the speaker-independent means according to

μ̂(s)
m � A(s)μ(s)

m + b(s), (8.46)

where the transformation matrix and linear shift A(s) and b(s), respectively, are estimated
according to a ML criterion. Often, MLLR is performed on the speaker-independent
model trained with the conventional forward–backward algorithm presented in the last
section. In this case, however, the conditions for training differ from those for test
inasmuch as speaker adaptation is used only in the latter. Better results are obtained
when conditions for both training and test are matched. Speaker-adapted training (SAT)
(Anastasakos et al. 1996) is a method for the ML estimation of the parameters of a
HMM that achieves the desired match. As shown in Figure 8.2, SAT, which is also
based on the EM algorithm, proceeds along much the same lines as conventional
HMM training, with a forward–backward step followed by a parameter update designed
to maximize an appropriate auxiliary function. Before training, all utterances in the
training set are partitioned by speaker, and before the forward–backward pass over each
such partition the adaptation parameters for the given speaker are used to transform
the means of the speaker-independent (SI) model as in (8.46). With the completion of
the forward–backward step, the speaker-dependent transformation parameters for the
relevant speaker are re-estimated, just as in normal speaker adaptation. The maximization
step in SAT is an iterative parameter update wherein the SI means and variances are each
updated in turn while holding all other HMM parameters fixed at their current values.
The advantage of the iterative approach lies in the fact that a closed-form solution exists
for the optimal values for each set of parameters when the other sets are held constant.

To derive the mean update formulae for SAT, let us define a set Y = {Y (s)} of training
data contributed by several speakers, where Y (s) = {y(s)

k } are the observations from speaker
s. Consider the auxiliary function (8.38). Suppressing the index over states, replacing the
speaker-independent mean μjm with the adapted mean μ̂(s)

m from (8.46) and summing
over all speakers, we obtain,

G(Y; {(A(s), b(s))}, �) =
∑
m,k,s

c
(s)
m,k(y

(s)
k − A(s)μm − b(s))T �−1

m (y(s)
k − A(s)μm − b(s)),

where we have suppressed the Gaussian normalization constants and the negative sign, as
they do not affect the optimization of the mean vectors. Through straightforward algebraic
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Figure 8.2 Schematic of speaker-adapted training (SAT)

manipulations, the last equation can be rewritten as

G(Y; {(A(s), b(s))}, �) =
∑
s,m

c(s)
m [(μ̃(s)

m − A(s)μm − b(s))T �−1
m (μ̃(s)

m − A(s)μm − b(s))],

(8.47)
where

μ̃(s)
m = 1

c
(s)
m

∑
k

c
(s)
m,ky(s)

k ,

and
c(s)
m =

∑
k

c
(s)
m,k.

Equation (8.47) can be further manipulated to yield

G(Y; {(A(s), b(s))}, �) =
∑
m

Gm(Y; {(A(s), b(s))}, �m),
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where

Gm(Y; {(A(s), b(s))}, �m)

=
∑

s

c(s)
m [(μ̃(s)

m − A(s)μm − b(s))T �−1
m (μ̃(s)

m − A(s)μm − b(s))]. (8.48)

From (8.48) it is clear that the parameters �m = (μm,�m) of each Gaussian compo-
nent can be optimized independently. Differentiating both sides of this equation with
respect to components of the SI means and setting the result to zero, we obtain the mean
re-estimation formula

μm = (
AT �m A

)−1
[
AT �m (μ̃

m
− b)

]
, (8.49)

where

A =

⎡
⎢⎢⎢⎣

A(1)

A(2)

...

A(S)

⎤
⎥⎥⎥⎦ , �m =

⎡
⎢⎢⎢⎣

c
(1)
m �−1

m 0 · · · 0
0 c

(2)
m �−1

m · · · 0
...

...
. . .

...

0 0 · · · c
(S)
m �−1

m

⎤
⎥⎥⎥⎦ , μ̃

m
=

⎡
⎢⎢⎢⎣

μ̃(1)
m

μ̃(2)
m
...

μ̃(S)
m

⎤
⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎣

b(1)

b(2)

...

b(S)

⎤
⎥⎥⎥⎦ .

(8.50)

The solution for μm is written in this form to emphasize its equivalence to the weighted
least squares solution of an overdetermined system of linear equations. This equivalence
comes as little surprise if we reason as follows: As is apparent from prior definitions,
both μ̃

m
and the matrix-vector product Aμm + b are elements of R

(L×S), where L is the
dimensionality of the feature vector and S the total number of speakers. The SI mean μm,
however, is an element of R

L. Hence, it comes to light that we seek that μm that achieves
a minimum of the weighted Euclidean norm |(μ̃

m
− b) − Aμm| where the weighting is

determined by the “concatenated” covariance matrix �m. The optimal solution for μm

is given by the perpendicular projection of μ̃
m

− b onto the subspace spanned by the
columns of A (see Strang 1980, sect. 3.4). In the statistics literature, (8.49–8.50) would
be interpreted as a specialization of the Gauss–Markov theorem (Stark and Woods 1994,
sect. 6.6).

Casting aside all pedagogic considerations, it is possible to express the intermediate
sums appearing in (8.49) more simply as

Mm � AT �m A =
∑

s

c(s)
m A(s)T �mA(s), (8.51)

vm � AT �m (μ̃
m

− b) =
∑

s

c(s)
m A(s)T �m

(
μ̃(s)

m − b(s)
)

, (8.52)

whereupon the SI mean estimate can be expressed as

μm = M−1
m vm. (8.53)
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Equations (8.51–8.53) provide a solution for the optimal SI mean. A similarly straightfor-
ward expression can be obtained for the SI variances (McDonough 1998b). The variance
σ̃

(s)2
mn of the observations from speaker s is given by

σ̃ (s)2
mn = 1

c
(s)
m

∑
k

c
(s)
m,k

(
y

(s)
kn − μ̃(s)

mn

)2
, (8.54)

where y
(s)
kn and μ̃

(s)
mn are the nth components of yk and μ̃m, respectively. The SI variances

are then available from

σ 2
mn = 1

cm

∑
s

c(s)
m

[
σ̃ (s)2

mn + (
μ̃(s)

mn − μ̂(s)
mn

)2
]
, (8.55)

where

cm =
∑

s

c(s)
m ,

and μ̂
(s)
mn is the nth component of μ̂(s). Implicit in (8.55) is that the transformed mean

μ̂(s)
m = A(s)μm + b(s) is calculated from the optimal speaker-independent mean μm given

by (8.53).
From the foregoing, it is clear that SAT requires accumulating the statistics

c(s)
m =

∑
k

c
(s)
m,k, (8.56)

o(s)
m =

∑
k

c
(s)
m,k y(s)

k , (8.57)

s(s)
m =

∑
k

c
(s)
m,k y(s)2

k , (8.58)

where y(s)2
k denotes the vector obtained by squaring y(s)

k component-wise. A typical imple-
mentation of SAT requires writing out the quantities c

(s)
m , o(s)

m , and s(s)
m , in addition to

(A(s), b(s)), for every speaker in the training set. A moment’s thought will reveal, how-
ever, that Mm can be accumulated from only {(A(s), b(s))} and {c(s)

m }. Moreover, the sum
vm in (8.52) can be accumulated for all speakers and written to disk just once per training
iteration, or once per iteration for each processor used in parallel forward–backward
training, after which these partial sums can be added together. For a training corpus with
several thousand speakers such as Broadcast News , this results in a tremendous savings
in the disk space required for SAT, as first noted by McDonough and Waibel (2004).
Although the sum in (8.55) requires that the newly-updated mean μm be used in calcu-
lating μ̂

(s)
mn, experience has proven that the re-estimation works just as well if the prior

value of μm is used instead, in which case the partial sums in (8.55) can also be written
out just once for each parallel processor. This novel and useful approximation has been
dubbed fast SAT (McDonough et al. 2007).
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As discussed in Section 9.2.2, the APT can be used to formulate a very effective
means of speaker adaptation based on very few free parameters as compared to the more
conventional MLLR. Its specification through very few free parameters implies that the
APT is highly constrained. This in turn implies that if the APT is to be applied during
test, HMM training must be conducted with SAT, as the transformations will otherwise be
effective identity, and no improvement in speech recognition performance will be realized
through the application of the transform (McDonough 2000).

8.1.4 Optimal Regression Class Estimation

In the foregoing development, we have assumed that a single, global transformation matrix
A(s) is estimated for each speaker s. This assumption, however, can be relaxed as follows:
Partition the Gaussian components of the HMM into R mutually-exclusive subsets or
regression classes , and for each subset estimate a unique transformation matrix A(s)

r .
Once an initial assignment of Gaussian components to regression classes has been made,

it is possible to update these assignments using a ML criterion (McDonough 1998a). The
optimal regression class (ORC) estimation procedure described in McDonough (1998a)
and summarized here is a slight departure from that presented in Gales (1996) inasmuch as
the mean and class assignment of a Gaussian are updated jointly rather than sequentially.
Let ρ(m) be a function returning the index of the regression class to which the mth
Gaussian component is assigned, and let {A(s)

t } denote the set of transformations available
for speaker s. Let us then condition the auxiliary function (8.48) on the assignment ρ(m)

of the regression class, such that

Gm(Y; {A(s)
t }, �m, r = ρ(m)) = Gm(Y; {A(s)

t }, (μm, �m), r), (8.59)

where

Gm(Y; {A(s)
t }, (μm,�m), r)

=
∑

s

c(s)
m [(μ̃(s)

m − A(s)
r μm − b(s)

r )T �−1
m (μ̃(s)

m − A(s)
r μm − b(s)

r )]. (8.60)

In order to determine the optimal mean μ∗
m;r conditioned on the assignment of the mth

Gaussian component to the rth regression class, we differentiate both sides of (8.60) with
respect to μm and equate to zero, which provides

μ∗
m;r = (

AT
r �m Ar

)−1
AT

r �m

(
μ̃m − b(s)

r

)
,

where

AT
r �m Ar =

∑
s

c(s)
m A(s) T

r �mA(s)
r ,

AT
r �m

(
μ̃m − b(s)

r

) =
∑

s

c(s)
m A(s) T

r �m

(
μ̃(s)

m − b(s)
r

)
.
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Substituting μ∗
m;r back into (8.59–8.60) provides

Gm(Y; {A(s)
r }, (μ∗

m;r ,�m), r)

= 1

2

∑
s

c(s)
m [(μ̃(s)

m − A(s)
r μ∗

m;r − b(s)
r )T �−1

m (μ̃(s)
m − A(s)

r μ∗
m;r − b(s)

r )].

Finally, define the optimal regression class r∗ as that achieving

r∗(m) = argmin
r

Gm(Y; {A(s)
t }, (μ∗

m;r , �m), r). (8.61)

This definition corresponds to the joint optimization of the mean and regression class
assignment while holding the covariance fixed. Subsequently the covariances can be
assigned in accordance with (8.55–8.54). It is worth noting that ORC estimation can
be easily incorporated into the SAT paradigm discussed in Secton 8.1.3.

That the procedure given above provides the ML assignment of Gaussian components to
regression classes is clear from the following. Suppose several iterations of SAT have been
used to train an adapted HMM with fixed regression classes, so that the parameters of the
model have converged to their optimal values. If another pass of SAT is conducted wherein
the regression class assignments are re-estimated using the procedure above, the likelihood
of the training set must either increase or remain the same, as guaranteed by Theorem
8.1.2. This will also hold true for subsequent SAT iterations using the ORC procedure.
Moreover, if the training set likelihood does not increase, then a (local) maximum has
been reached. Hence, the ORC procedure is guaranteed to find a local maximum of the
training set likelihood.

8.1.5 Viterbi and Label Training

While forward–backward training is optimal, it is also computationally expensive. Two
common simplifications are possible, namely, Viterbi and label training . As discussed in
Section 7.1.2, the Viterbi algorithm is the application of dynamic programming to find
the most likely state sequence through a HMM. It can be simply formulated as follows.
Consider once more the forward probability α(y1:k, i) defined in (8.26). Instead of actually
summing the probabilities of all transitions reaching a given state, we can approximate
the sum with the largest probability, such that

α(y1:k, i) ≈ p(yk;�i) max
j

α(y1:k−1, j) pi|j .

As these approximate forward probabilities are calculated for each time instant k and
each state ni , a back pointer is maintained to that predecessor state that had the highest
probability. When the final frame has been processed, the probability

p(y1:K ;�) ≈ max
i

α(y1:K, i)

is evaluated for all valid final states, and a trace back is performed to find the ML state
sequence. Thereafter, the estimates (8.40–8.45) can be performed under the assumption
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that the posterior probabilities in (8.32) of the states on the Viterbi path are identically
equal to 1, and the posterior probabilities of all other states are identically equal to 0. While
this is clearly a simplification, experience has shown that it works well in practice, and
provides performance nearly identical to the full forward–backward algorithm. Moreover,
it uses significantly less computation than full forward–backward training.

Label training differs from Viterbi training in that the Viterbi path is calculated just once
for each utterance, and this state sequence is fixed for all iterations of HMM parameter
estimation. As such, it is even less costly in terms of computation than Viterbi training.
Nonetheless, it provides a very reasonable performance.

8.2 Discriminative Parameter Estimation

As shown in the prior development, ML estimation considers only the correct transcription
during training. It can be shown that ML estimation is in fact optimal, provided two
conditions hold (Gopalakrishnan et al. 1991):

1. The statistical model is correct ;
2. Unlimited training material is available.

Unfortunately, for ASR based on the HMM, neither of these conditions holds. Firstly,
the HMM is clearly not the correct model of human speech production. Secondly, the
data available for HMM training is almost invariably woefully limited.

In discriminative parameter estimation, not only is the correct transcription considered,
but also those hypotheses that might be confused by the recognizer with the correct tran-
scription. This is known to provide superior generalization and recognition performance
when the conditions mentioned above are not fulfilled. In order to efficiently encode those
hypotheses which may be mistaken for the correct transcription, word lattices, as described
in Section 7.1.3, are typically used. One of the earliest optimization criterion used for such
discriminative parameter estimation was maximum mutual information (MaxMI). More
recently other criteria have been investigated by several researchers, including minimum
word error (MWE) and minimum phone error (MPE).

The balance of this portion of the chapter is organized as follows. In Section 8.2.1, we
review the conventional MaxMI re-estimation formulae. How the statistics for MaxMI
training are accumulated using word lattices is the topic of Section 8.2.2. In Section 8.2.3
we will consider the recently proposed minimum word and phone error optimization
criteria. Finally, the combination of MaxMI parameter estimation with SAT is described
in Section 8.2.4. This combination of two training techniques has been shown to be more
effective than either technique individually.

8.2.1 Conventional Maximum Mutual Information Estimation Formulae

Mutual information (MI) is a well-known statistic from information theory (Gallager
1968). Roughly speaking, it indicates how much two random variables have “in common”,
or how much knowledge one random variable conveys about another. In Section 13.5.4,
we will seek to minimize the MI between the outputs of two beamformers as a means of
separating the voices of different speakers. Here we seek to maximize the MI between a
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sequence of words and a sequence of acoustic features in order to improve the accuracy
of an ASR system.

To begin our development, let y(s)
1:K, g

(s)
1:K , and w

(s)
1:Kw

respectively denote observation,
Gaussian component, and word sequences associated with an utterance of speaker s,
where K denotes the length of y(s)

1:K and g
(s)
1:K , and Kw denotes the length of w

(s)
1:Kw

. Let
us define the empirical mutual information between the ensemble of words W and that
of observations Y as

I (W, Y ;�) �
∑

s

log
p(w

(s)
1:Kw

, y(s)
1:K;�)

p(w
(s)
1:Kw

) p(y(s)
1:K;�)

, (8.62)

where � is the set of HMM parameters as before. Let �0 denote the current set of
parameter values, and define the difference in posterior probabilities of g

(s)
1:K that comes

from knowledge of the correct word transcription as

c
(s)
1:K � p(g

(s)
1:K |w(s)

1:Kw
, y(s)

1:K;�0) − p(g
(s)
1:K |y(s)

1:K; �0). (8.63)

As with ML parameter estimation, we also define an auxiliary function , which in this
case can be expressed as

Q(�|�0) � S(1)(�|�0) + S(2)(�|�0), (8.64)

where,

S(1)(�|�0) �
∑

s,g
(s)
1:K

c
(s)
1:K log p(y(s)

1:K |g(s)
1:K;�),

S(2)(�|�0) �
∑

s,g
(s)
1:K

d ′(g(s)
1:K)

∫
y(s)

1:K

p(y(s)
1:K |g(s)

1:K;�0) log p(y(s)
1:K |g(s)

1:K;�) dy(s)
1:K,

and d ′(g(s)
1:K) is a normalization constant that is typically chosen heuristically to achieve

a balance between speed of convergence and robustness. Gunawardana (2001) sought to
demonstrate that

Q(�|�0) > Q(�0|�0) ⇒ I (W, Y ;�) > I (W, Y ;�0). (8.65)

While a fallacy in Gunawardana’s proof was revealed, Axelrod et al. (2007) have devised
a correct proof of (8.65) that is valid for a very general class of AMs.

Once more it is necessary to collect the statistics (8.56–8.58), but now c
(s)
m,k must in

each case be redefined as

c
(s)
m,k = p(g

(s)
k = gm|w(s)

1:Kw
, y(s)

1:K;�0) − p(g
(s)
k = gm|y(s)

1:K;�0). (8.66)
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Let us additionally define cm, om, and sm, which are obtained by summing the relevant
quantities in (8.56–8.58) over all speakers in the training set, according to

cm �
∑

s

c(s)
m , om �

∑
s

o(s)
m and sm �

∑
s

s(s)
m . (8.67)

As shown in the seminal work of Gopalakrishnan et al. (1991), the re-estimation for-
mulae for the Gaussian mixture weights is given by

wm = w0
m {fm + C}∑

m′ w0
m′ {fm′ + C} , (8.68)

where w0
m is the current value of the mixture weight, and

fm = cm

w0
m

. (8.69)

The constant C must be chosen to ensure that all mixture weights are positive.
We will now rigorously derive the MaxMI re-estimation formulae for the Gaussian

mean μm. To simplify what follows, let us decompose (8.64) as a sum over individual
Gaussian components. From the conditional independence assumption (7.4) inherent in
the HMM, we know that

log p(y(s)
1:K |g(s)

1:K;�) =
K∑

k=1

log p(y(s)
k |g(s)

k ;�) =
K∑

k=1

log p(y(s)
k ;�m)

∣∣∣
gm=g

(s)
k

,

where �m once more denotes the parameters of the mth Gaussian component. Hence,

S(1)(�|�0) =
∑

k,s,g(s)
1:K

c
(s)
1:K log p(y(s)

k ;�m)

∣∣∣
gm=g

(s)
k

=
∑
m

∑
k,s,g(s)

1:K :g(s)
k

=gm

c
(s)
1:K log p(y(s)

k ;�m)

=
∑
m

∑
k,s

c
(s)
m,k log p(y(s)

k ;�m). (8.70)

Also invoking conditional independence, we have

p(y(s)
1:K |g(s)

1:K;�0) log p(y(s)
1:K |g(s)

1:K;�)

=
∏
k

p(y(s)
k |g(s)

k ;�0
m)

∣∣∣
gm=g

(s)
k

×
∑

k

log p(y(s)
k |g(s)

k ;�m)

∣∣∣
gm=g

(s)
k

, (8.71)
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which implies

S(2)(�|�0) =
∑
m

∑
k,s,g(s)

1:K :g(s)
k

=gm

d ′(g(s)
1:K)

∫
y
p(y;�0

m) log p(y; �m)dy

=
∑
m

∑
s

d(s)
m

∫
y
p(y; �0

m) log p(y; �m) dy, (8.72)

where

d(s)
m =

∑
k,g(s)

1:K :g(s)
k =gm

d ′(g(s)
1:K). (8.73)

Finally, we have shown,

Q(�|�0) =
∑
m

Qm(�m|�0
m) =

∑
m

[
S(1)

m (�|�0) + S(2)
m (�|�0)

]
, (8.74)

where

S(1)
m (�|�0) =

∑
k,s

c
(s)
m,k log p(y(s)

k ;�m), (8.75)

S(2)
m (�|�0) =

∑
s

d(s)
m

∫
y
p(y; �0

m) log p(y; �m) dy. (8.76)

Next let us set �m = (μm,�m) as before and observe that the acoustic log-likelihood for
the mth Gaussian can be expressed as in (8.19), from which it follows that

∇μm
log p(y;�m) = �−1

m (y − μm), (8.77)

∇σ 2
m,n

log p(y; �m), = 1

2

[(
yn − μm,n

)2

(σ 2
m,n)

2
− 1

σ 2
m,n

]
, (8.78)

where yn and μm,n are the nth components of y and μm, respectively. From (8.74–8.76),
it follows that

∇μm
Qm(�m|�0

m) =
∑
k,s

c
(s)
m,k ∇μm

log p(y(s)
k ;�m)

+
∑

s

d(s)
m

∫
y
p(y;�0

m)∇μm
log p(y; �m)dy.

Substituting (8.77) into the last equation gives

∇μm
Qm(�m|�0

m) =
∑
k,s

c
(s)
m,k �−1

m (y(s)
m − μm) +

∑
s

d(s)
m �−1

m

[∫
y
p(y;�0

m)y dy − μm

]

=�−1
m

[
om + dmμ0

m − (cm + dm)μm

]
,
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where

dm =
∑

s

d(s)
m ,

and μ0
m is the current value of the mth mean. Upon equating the right-hand side of the

last equation to zero, it becomes clear that the conventional re-estimation formulae for
the mean μm under the MaxMI criterion can be expressed as

μm = om + dmμ0
m

cm + dm

. (8.79)

It remains only to choose a value for d
(s)
m . Woodland and Povey (2000) recommended

setting d
(s)
m as a multiple of the occupancy count of the denominator lattice, according to

d(s)
m = E

∑
k

p(g
(s)
k = gm|y(s)

k ;�0),

for E = 1.0 or 2.0. Typically the factor E is increased for each iteration of MaxMI
training. Manipulations similar to those above readily yield the re-estimation formula for
the diagonal covariance components as

σ 2
m,n = sm,n + dm

(
σ 02

m,n + μ2
m,n

)
cm + dm

− μ02
m,n (8.80)

where σ 02
m,n is the diagonal covariance component from the prior iteration, and sm,n and

μ2
m,n and the nth components of sm and μm, respectively.
It is interesting to note that the original derivation of (8.79) and (8.80) in Normandin

(1991) was based on an approximation, but a simpler and more satisfying derivation
is provided by Axelrod et al. (2007). While (8.79–8.80) were originally derived for
estimating the parameters of an unadapted HMM, these updated formulae also lend them-
selves to use with constrained maximum likelihood linear regression, as described in
Section 9.1.2, during training.

Woodland and Povey (2000) also noted that discriminative parameter estimation is more
effective if the acoustic log-likelihoods (8.19) are scaled by some factor κ ≈ 0.1 during
training. This simple heuristic prevents overtraining to a large extent and helps to increase
generalization.

8.2.2 Maximum Mutual Information Training on Word Lattices

We will now describe how the statistics defined in (8.67) can be accumulated using
word lattices, which were discussed in Section 7.1.3. In general, the accumulation of
the relevant statistics on any single utterance requires two lattices, hereafter referred to
as the numerator and denominator lattices , which are respectively associated with the
numerator and denominator of (8.62). Alternatively, the respective lattices are associated
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with the two terms in (8.63). The numerator lattice is obtained solely from the correct
transcription and hence is trivial to generate. The denominator lattice, on the other hand,
must efficiently encode all alternative hypotheses that have a non-negligible chance of
being mistaken for the correct hypothesis. Hence, these denominator lattices must be
obtained by actually decoding the training data.

In writing and manipulating word lattices, it is beneficial to apply the weighted
finite-state transducer (WFST) techniques discussed in Section 7.2 in order to maximize
computational efficiency. Our description of the steps necessary for MaxMI training
based on word lattices follows roughly that given in Valtchev et al. (1997). We indicate,
however, where the WFST algorithms described can be applied to obtain more efficient
training procedures. Although currently widespread, the use of WFSTs in ASR was still
in its infancy when Valtchev et al. (1997) appeared. Hence, that earlier work was based
on ad hoc techniques for manipulating word lattices.

1. For each utterance in the training set, generate a pair of numerator and denominator
word lattices. As mentioned previously, the numerator word lattice is constructed solely
from the correct transcription. The denominator lattice is obtained by performing an
unconstrained decoding on the utterance with some initial AM. In order to obtain the
maximum possible acoustic diversity, the unconstrained decoding is often performed
with a bigram or even unigram language model (LM). To generate the initial reduced
word lattice, the AM and LM scores are discarded, as is all information pertaining to
the actual state sequence. Only the word identities themselves are retained. Thereafter,
unneeded lattice edges are deleted through the epsilon removal procedure described in
Section 7.2.6.

2. If the correct transcription is not found in one of the initial reduced denominator lat-
tices, it must be added. All of these denominator lattices are then compacted through
the determinization and minimization algorithms described in Sections 7.2.3 and 7.2.5
respectively. Thereafter, both the numerator and denominator lattices are used to con-
struct constrained search graphs as described in Section 7.3. For the numerator, the
word lattice directly replaces the grammar G. For the denominator, the word lattice
must be composed with G, before constructing the constrained search graph.

3. The constrained search graph for each utterance is used to generate a new lattice with
detailed timing information, as well as the full AM and LM scores. This ensues by
conducting a full Viterbi search over the constrained search graph with the acous-
tic model from the prior iteration. Subsequently, the lattice forward and backward
probabilities, denoted respectively as α and β, can be computed. The forward proba-
bility is calculated recursively beginning from the starting node according to

αi =
∑

j

αj νAM(ei|j ) νLM(ei|j ),

where νAM(ei|j ) and νLM(ei|j ), respectively, are the AM and LM scores associated
with the edge from the j th to the ith node in the lattice. The backward probabilities
βj can be recursively calculated in similar fashion beginning at the end of the lattice.
The forward and backward probabilities are initialized as indicated in (8.28–8.29).
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4. The a posteriori probability for each edge ei|j in the lattice is given by

ci|j = αjνAM(ei|j ) νLM(ei|j ) βi

L (8.81)

where L is the total lattice likelihood computed by summing the forward probabilities
over all hypothesized end words. Such an a posteriori probability must be calcu-
lated separately for the numerator and denominator lattices, and the statistics must be
accumulated for each as indicated in (8.56–8.58).

5. The Gaussian component occupancy statistics (8.63) are then accumulated based on
the posterior probabilities ci|j calculated for both numerator and denominator lattices
from the prior step.

6. After all training utterances have been processed, a parameter update occurs based on
(8.68–8.69) and (8.79–8.80). Thereafter, the next iteration begins from Step 3 above.

By composing the word lattice with G as described in Step 2, a LM is obtained with the
same weights as G, but that only accepts the set of word sequences contained in the orginal
word lattice. In order to increase the acoustic diversity during discriminative training, it
is common to use a unigram for G. Note that new lattices and constrained search graphs
are typically not generated between iterations. This greatly reduces the computational
expense of MaxMI training. It is, however, possible to conduct a full Viterbi search over
the constrained search graphs in Step 3, inasmuch as this operation is very efficient once
the search graphs have been optimized with WFST operations.

8.2.3 Minimum Word and Phone Error Training

Povey and Woodland (2002) proposed two discriminative optimization criteria, namely,
minimum word error (MWE) and minimum phone error (MPE), and observed that these
criteria provide an acoustic model that achieves recognition performance superior to that
obtained with the MaxMI criterion. In this section, we will describe the MPW and MPE
criteria, both of which are frequently augmented with a technique known as I-smoothing
in order to improve the robustness of the final acoustic model.

To begin our exposition, let us express the MWE optimization criterion as

FMWE(Y;�) =
∑

w1:Kw
pκ(y1:K |w1:Kw)P (w1:Kw)RawAccuracy(w1:Kw)∑

w1:Kw
pκ(y1:K |w1:Kw)P (w1:Kw)

(8.82)

where κ is the acoustic likelihood scale factor that is typically used to prevent overtraining,
and RawAccuracy(w1:Kw) is a measure of the number of words accurately transcribed in
hypothesis w1:Kw . From (8.82) it is clear that the MWE criterion amounts to a weighted
average over all possible hypotheses w1:Kw of RawAccuracy(w1:Kw). For κ → ∞, maxi-
mizing (8.82) is equivalent to minimizing the word error rate.

Having defined MWE, it is straightforward to extend this definition to that of MPE.
That is, MPE is identical to MWE, but the errors are calculated at the phone level
instead of word level. Povey and Woodland investigated both context-independent and
context-dependent definitions of MPE.
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Let q denote a phone arc corresponding to a word wk . In order to optimize the MWE
objective function it is necessary to calculate

cMWE
q = 1

κ

∂FMWE(Y;�)

∂ log(q)
, (8.83)

which is known as the MWE arc occupancy . Once the arc occupancy, whether positive or
negative, has been calculated, it is used to accumulate the relevant statistics in (8.56–8.58)
and (8.67). Moreover, if cMWE

q < 0, the denominator statistic dq is updated according to
dq ← dq − cMWE

q . When all training utterances have been processed, these statistics are
then used in the parameter update equations (8.79)–(8.80).

MWE arc occupancies can be easily computed if the RawAccuracy(s) can be expressed
as a sum of terms, each of which corresponds to a word w regardless of the context.
Ideally, this would imply

RawAccuracy(s) =
∑
w∈s

WordAccuracy(s),

where

WordAccuracy(s) =

⎧⎪⎨
⎪⎩

1, if correct word,

0, if substitution,

−1, if insertion.

(8.84)

The correct calculation of (8.84), however, actually requires dynamic programming, which
would be computationally prohibitive. In order to avoid this computational expense, Povey
and Woodland proposed an approximation, namely a word z is found in the reference
transcript which overlaps in time with hypothesis word w, then letting e denote the
proportion of the length of z which overlaps with w, the word accuracy is approximated
as

WordAccuracy(s) =
{

−1 + 2e, if same word,

−1 + e, if different word.
(8.85)

The word z is then chosen to make the approximation (8.85) for the word accuracy as large
as possible. Equation (8.85) represents a tradeoff between an insertion and a correct word
or substitution, respectively. This tradeoff is necessary in that a single reference word
may be used more than by a hypothesis sentence. As originally proposed, the reference
word z was chosen from a lattice encoding alternate alignments of the correct sentence.

Let cq denote the arc occupancy derived from a forward–backward pass on the lattice as
in (8.81), let c(q) denote the average value of RawAccuracy(w1:Kw) for sentences w1:Kw

containing arc q weighted by log-likelihood scaled by κ of those sentences, and let cavg
denote the weighted average RawAccuracy(w1:Kw) for all hypotheses in the lattice, which
is equivalent to the MWE criterion for the utterance w1:Kw . It follows that FMWE(Y;�)

can then be calculated from

FMWE(Y;�) = cq(c(q) − cavg).
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The value of c(w) can be efficiently calculated with another lattice forward–backward
pass. As (8.85) is defined for words and the forward–backward algorithm functions at the
phone level, PhoneAccuracy(q) is defined to be WordAccuracy(q) if q is the first phone
of w and zero otherwise. In the case of MPE, on the other hand, PhoneAccuracy(q) can
be calculated directly from (8.85). That is, if αq and βq are the forward and backward
likelihoods used to calculate normal arc posterior probabilities, let

α′
q =

∑
r preceding q α′

rαr t
κ
q|r∑

r preceding q αr t
κ
q|r

+ PhoneAccuracy(q), (8.86)

β ′
q =

∑
r following q tκq|rp

κ(r)βr(β
′
r + PhoneAccuracy(q))∑

r following q tκq|rpκ(r)βr

, (8.87)

c(q) = α′
q + β ′

q, (8.88)

where tr|q are lattice transition probabilities derived from the LM.
While discriminative training techniques have proven effective at reducing the word

error rate of large vocabulary continuous speech recognition systems, they are also noto-
riously prone to overtraining , whereby performance improvements on the training set do
not generalize to unseen data. To counteract this effect, it is common to use a mixed
optimization criterion consisting of both ML and MaxMI components. I-smoothing is
one technique for implementing such a mixed criterion. In the context of MWE and MPE
training, I-smoothing is equivalent to increasing the mass of the statistics (8.56–8.58) with
some number of expected counts τ based on the alignment of the correct transcription;
see Povey and Woodland (2002) and Woodland and Povey (2002).

8.2.4 Maximum Mutual Information Speaker-Adapted Training

The re-estimation formulae for maximum mutual information speaker-adapted training
(MaxMI-SAT) are quite similar to their maximum likelihood counterparts. In this section,
we provide the full derivation for re-estimating the HMM mean components under an
MaxMI criterion. The formulae for re-estimation of the diagonal covariances, regression
classes and semi-tied covariance transformation matrices can be obtained through similar
development. To avoid obscuring our main arguments under a mass of detail, we only
quote the re-estimation formulae for these latter components here; a full derivation is
provided in McDonough et al. (2007).

To derive the re-estimation formulae under MaxMI-SAT, we must begin by adding the
conditioning on the speaker adaptation parameters in (8.46) to (8.66) and (8.75–8.76),
such that,

c
(s)
m,k = p(g

(s)
k = gm|w(s)

1:Kw
, y(s)

1:K; (A(s), b(s)), �0) − p(g
(s)
k = gm|y(s)

1:K; (A(s), b(s)), �0).

(8.89)

and

S(1)
m (�|�0) =

∑
k,s

c
(s)
m,k log p(y(s)

k ; (A(s), b(s)), �m), (8.90)
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S(2)
m (�|�0) =

∑
s

d(s)
m

∫
y
p(y; (A(s), b(s)), �0

m) log p(y; (A(s), b(s)), �m) dy. (8.91)

The acoustic log-likelihood for the mth Gaussian can be expressed as

log p(y; (A(s), b(s)), �m)

= −1

2

[
log |2π�m| + (y − A(s)μm − b(s))T �−1

m (y − A(s)μm − b(s))
]
,

from which it follows that

∇μm
log p(y; (A(s), b(s)), �m) = A(s) T �−1

m y − A(s) T �−1
m (A(s)μm + b(s)), (8.92)

∇σ 2
m,n

log p(y; (A(s), b(s)), �m), = 1

2

⎡
⎢⎣
(
yn − μ̂

(s)
mn

)2

(σ 2
m,n)

2
− 1

σ 2
m,n

⎤
⎥⎦ , (8.93)

where μ̂
(s)
mn is the nth component of the adapted mean μ̂m defined in (8.46).

Mean Estimation

From (8.74–8.91) it follows that

∇μm
Qm(�m|�0

m) =
∑
k,s

c
(s)
m,k ∇μm

log p(y(s)
k ; (A(s), b(s)), �m)

+
∑

s

d(s)
m

∫
y
p(y; (A(s), b(s)), �0

m)∇μm
log p(y; (A(s), b(s)), �m)dy.

Substituting (8.92) into the last equation gives

∇μm
Qm(�m|�0

m) =
∑
k,s

c
(s)
m,k

[
A(s) T �−1

m y(s)
k − A(s) T �−1

m (A(s)μm + b(s))
]

+
∑

s

d(s)
m

[
A(s) T �−1

m

∫
y
p(y; (A(s), b(s)), �0

m) y dy

−A(s) T �−1
m (A(s)μm + b(s))

]
=
∑

s

[
A(s) T �−1

m o(s)
m − c(s)

m A(s) T �−1
m (A(s)μm + b(s))

]

+
∑

s

d(s)
m

[
A(s) T �−1

m (A(s)μ0
m + b(s)) − A(s) T �−1

m (A(s)μm + b(s))
]
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where μ0
m is the current value of the mth mean. Grouping terms and equating the result

to zero, we find that the new value of μm can be calculated as in (8.53), provided that
we define

Mm �
∑

s

(
c(s)
m + d(s)

m

)
A(s) T �−1

m A(s), (8.94)

vm �
∑

s

A(s) T �−1
m

[(
o(s)

m − c(s)
m b(s)

) + d(s)
m A(s)μ0

m

]
. (8.95)

It remains only to choose a value for d
(s)
m . Good results have been obtained by once more

setting d
(s)
m as a multiple of the occupancy count of the denominator lattice, according to

d(s)
m = E

∑
k

p(g
(s)
k = gm|y(s)

k ; (A(s), b(s)), �0),

for E = 1.0 or 2.0 as recommended in Woodland and Povey (2000). Setting E ≥ 1.0
also ensures that Mm is positive definite, which is necessary if μm = M−1

m vm is to be an
optimal solution.

Diagonal Covariance Estimation

Using development similar to that in the prior section, it can be shown that the diagonal
covariance matrices can be estimated under an MaxMI criterion according to the formula:

σ 2
mn =

∑
s

{(
s(s)
mn − 2 o(s)

mnμ̂
(s)
mn + c(s)

m μ̂(s)2
mn

) + d(s)
m

[
σ 0 2

kn + (
μ̂0(s)

mn − μ̂(s)
mn

)2
]}

∑
s

(c(s)
m + d(s)

m )
, (8.96)

where μ̂
0(s)
mn is the nth component of μ̂0

m = A(s)μ0
m + b(s) and σ 0 2

mn is the current value of
the variance. As before, s(s)

m is defined with c
(s)
m,k as given in (8.89). In accumulating the

term ∑
s

(
s(s)
m − 2 o(s)

m μ̂(s)
mn + c(s)

m μ̂(s)2
mn

)

the same SAT approximation can be made as before in order to economize on disk space;
that is, μ̂(s)

m can be calculated with μ0
m instead of μm.

Semi-Tied Covariance Estimation

Gales (1999) defines a semi-tied covariance matrix as

�m = P �mPT
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where �m is, as before, the diagonal covariance matrix for the mth Gaussian component,
and P is a transformation matrix shared by many Gaussian components. Both �m and P
can be updated using a ML criterion. Assuming P is nonsingular, however, it is possible
to define

M = P−1

The transformation M can then be applied to each feature yk , which is more computa-
tionally efficient than transforming the covariances. Let mT

i denote the ith row of M, and
let fTi denote the ith row in the cofactor matrix of M. Moreover, define

Wj =
∑
m

1

σ 2
m,j

⎡
⎣∑

k,s

c
(s)
m,k o(s)

m,ko(s)T
m,k + dm

∑
i

σ 0 2
m,i p0

i p0 T
i

⎤
⎦ (8.97)

where p0
i is the ith column of P,

c =
∑
m

cm, and d =
∑
m

dm.

A procedure for estimating an optimal transformation M can be developed directly along
the lines proposed by Gales (1999). As shown in McDonough et al. (2007), such a
procedure proceeds by iteratively updating each row mT

j according to

mT
j = fTj W−1

j

√
c + d

fTj W−1
j fj

.

As explained in McDonough et al. (2007), in order to assure convergence, dm in (8.97)
must be chosen to ensure that Wj is positive definite.

8.3 Summary and Further Reading

In the previous chapter, we learned that most modern speech recognition engines are
based on the HMM, which can contain millions of free parameters that must be estimated
from tens or hundreds of hours of training data. How this parameter estimation may
be efficiently performed was the subject of this chapter. We considered two primary
parameter estimation criteria: ML estimation, and MaxMI estimation.

In ML parameter estimation, only the correct transcription of each training utterance
is considered. As described in this chapter, ML estimation attempts to associate as much
probability mass with this correct transcription as possible. We also discussed how HMM
parameter estimation based on the ML criterion can be supplemented with speaker adap-
tation parameters, the estimation of which will be described in Chapter 9.

In contrast to ML estimation, MaxMI estimation considers not only the correct tran-
scription of each utterance, but also incorrect hypotheses that could be mistaken for the
correct one. As we have discussed, a set of possible incorrect hypotheses is typically
determined by running the recognition engine on all training utterances, then generating
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word lattices as described in Section 7.1.3. The HMM AM can then be discriminatively
trained to assign a higher likelihood to the correct transcription than to any of its incorrect
competitors. MaxMI training, which can also be supplemented with speaker adaptation
parameters, typically produces an AM that makes significantly fewer recognition errors
than its ML counterpart. This performance improvement, however, comes at the price
of a more computationally expensive parameter estimation procedure, primarily due to
the necessity of running the recognizer over the entire training set. But with availability
of ever more and ever cheaper computational power, this additional computation is no
longer considered prohibitive.

The use of speaker adaptation during discriminative training has a large effect on
final system performance, as shown in McDonough et al. (2007). In this chapter, we have
provided a full exposition of the steps necessary to perform speaker-adapted training under
a MaxMI criterion. As has been shown, this can be achieved by performing unsupervised
parameter estimation on the test data, a distinct advantage for many recognition tasks
involving conversational speech. We have also derived re-estimation formulae for the
SI means and variances of a continuous density HMM when SAT is conducted on the
latter under an MaxMI criterion. We also described an approximation to the basic SAT
re-estimation formulae that greatly reduces the amount of disk space required to conduct
training. We also presented re-estimation formulae for STC transformation matrices based
on an MaxMI criterion. Moreover, we presented a positive definiteness criterion, with
which the regularization constant present in all MaxMI re-estimation formulae can be
reliably set to provide both consistent improvements in the total MI of the training set, as
well as fast convergence. We also combined the STC re-estimation formulae with their like
for the SI means and variances, and update all parameters during MaxMI speaker-adapted
training.

In the recent past, a great deal of research effort has been devoted to the development
of optimization criteria and paradigms for the discriminative training of HMMs. While
many of the optimization criteria and training algorithms have proven better than the
MaxMI criterion investigated by Normandin (1991), most authors have ignored speaker
adaptation during discriminative HMM training.

Gopalakrishnan et al. (1991) first proposed a practical technique for performing MaxMI
training of HMMs, and commented on the fact that MaxMI is superior to ML-based
parameter estimation given that the amount of available training data is always lim-
ited, and that the HMM is not the actual model of speech production. Gopalakrishnan’s
development was subsequently extended by Normandin (1991) to the case of continuous
density HMMs. While these initial works were of theoretical interest, for several years it
was believed that the marginal performance gains that could be obtained with MaxMI did
not justify the increase in computational effort it entailed with respect to ML training. This
changed when Woodland and Povey (2000) discovered that these gains could be greatly
increased by scaling all acoustic log-likelihoods during training. Since the publication of
Woodland and Povey (2000), MaxMI training has enjoyed a spate of renewed interest
and a concomitant flurry of publications, including Uebel and Woodland (2001) in which
an MaxMI criterion is used for estimating linear regression parameters, and Zheng et al.
(2001) in which different update formulae are proposed for the standard MaxMI-based
mean and covariance re-estimation. Schlüter (2000) expounds a unifying framework for
a variety of popular discriminative training techniques. Gunawardana (2001) sets forth a
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much simplified derivation of Normandin’s original continuous density re-estimation for-
mulae which does not require the discrete density approximations Normandin used. While
Gunawardana’s original proof contained a fallacy, a correct proof of Gunawardana’s main
result was provided by Axelrod et al. (2007).

Other works that have appeared in the recent past include Povey and Woodland (2002),
who explored the notion of using minimum word or phone error as an optimization cri-
terion during parameter estimation, and found that this provided a significant reduction
in word error rate with respect to MaxMI training. Povey et al. (2005) then extended
this notion to the estimation of feature transformations. More recently, several authors
have applied the concept of large margin estimation , on which the field of support vec-
tor machines is based, to discriminative training of HMMs. Representative works in this
direction are those of Liu et al. (2005) and Sha and Saul (2006). Another approach to dis-
criminative training is based on the concept of conditional random fields , which produce
the conditional probability of an entire state sequence given a sequence of observations,
has been explored by Gunawardana et al. (2005) and Mahajan et al. (2006). A recent
survey of work on discriminative HMM training was provided by He et al. (2008).

8.4 Principal Symbols

Symbol Description

� updated HMM parameter set
�0 initial HMM parameter set
A(s) transformation matrix for speaker s

b(s) additive bias for speaker s

gk Gaussian component chosen for k th observation
gm mth Gaussian component
i, j indices over HMM states
I (W, Y ;�) mutual information between W and Y with HMM parameters �

k time index
m index over Gaussian components

n(s)
1:K state sequence for speaker s

Q(�|�0) auxiliary function
yk k th observation
y1:K sequence of observations from 1 to K

s index over speakers
W ensemble of words

w(s)
1:Kw

word sequence for speaker s

Y ensemble of observations



9
Feature and Model Transformation

The unique characteristics of the voice of a particular speaker are what allow us humans
to identify the voice of a person, for example calling on a telephone, as soon as a few
syllables have been spoken. These characteristics include fundamental frequency, rate
of speaking, accent, and word usage, among others. While lending each voice its own
individuality and charm, such characteristics are a hindrance to automatic recognition,
inasmuch as they introduce variability in the speech that is of no use in distinguishing
between different phonemes and words. To enhance the performance of an automatic
recognition system that must function well for many speakers, various transformations are
typically applied either to the features used for recognition, the means and covariances
of the hidden Markov model (HMM) used to evaluate the conditional likelihood of a
sequence of features, or to both. The body of techniques used to estimate and apply such
transformations to compensate for speaker dependent characteristics fall under the rubrik
speaker adaptation . In addition, some of the feature and model adaptation techniques are
not only capable of compensating for a mismatch in speaker characteristics, but also for
a stationary or slowly evolving mismatch in the acoustic environment.

In Section 9.1, we begin our discussion of feature transformation techniques.
Section 9.1.1 describes the simplest form of feature adaptation, namely, vocal tract
length normalization , which compensates for the lengths of the vocal tracts of different
speakers by applying a linear warping of the frequency axis prior to the extraction of
cepstral features. A more powerful, but complementary, feature space transformation,
constrained maximum likelihood linear regression is discussed in Section 9.1.2, whereby
a linear transformation is applied to a sequence of features to maximize their likelihood
with respect to the HMM used for recognition. Section 9.2 takes up the discussion of
model transformation techniques. Supervised enrollment data implies that the correct
transcription of the enrollment utterances is available. As explained in Section 9.2.1,
maximum likelihood linear regression (MLLR) applies a linear transformation to the
means of an HMM to maximize a maximum likelihood (ML) criterion with respect to
some unsupervised enrollment data, whereby the errorful transcript or word lattice from
a prior recognition pass must be used to collect adaptation statistics. Speaker adaptation
based on the all-pass transform (APT) is described in Section 9.2.2. Such adaptation
can be viewed as a constrained form of MLLR, where the full linear transformation
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applied to the HMM means is determined by only a handful of free parameters. It is
interesting to note that APT adaptation has proven to be just as powerful and more robust
than MLLR in many cases of interest. In contrast to model transformation techniques
Section 9.3 introduces a technique which separately models speech and noise.

9.1 Feature Transformation Techniques

This section discusses the most common feature space adaptation techniques, whereby
a transformation is applied to intermediate or the final features used for recognition.
Speaker and/or environment-dependent transformations with several different forms have
been proposed in the literature. For example the simplest speaker-dependent transforma-
tion involves a simple shift or interpolation of the frequency components in the power
spectrum, and is known as vocal tract length normalization. Another complementary
transformation involves applying a linear scaling to the features in the cepstral domain
and is known as constrained maximum likelihood linear regression . In addition alternative
transformations, which will not be discussed here, have been proposed in the literature to
compensate, for example, for the variance in fundamental frequency (Wölfel 2004).

9.1.1 Vocal Tract Length Normalization

Perhaps the simplest and most widely used form of compensation for the characteristics
of an individual speaker is vocal tract length normalization (VTLN) (Andreou et al. 1994;
Lee and Rose 1996). As its name implies, VTLN is based on the observation that there
are wide variations in the heights of different speakers, and such height differences are
also reflected in the length of the speakers’ vocal tract. Much like a longer pipe in an
organ produces a lower tone than a short pipe, the resonances or formants produced by
the vocal tract of a taller speaker will generally be lower than those of a shorter speaker,
simply because the former will, on average, have a longer vocal tract.

Interspeaker differences are irrelevant for recognition either human or automatic, and
tend to degrade the performance of automatic speech recognition systems. VTLN attempts
to compensate for such differences by remapping the spectral energy to produce features
that appear to have been generated by some “average speaker”. As described by Pye and
Woodland (1997), this is most often accomplished by adjusting the center frequencies of
the mel filter banks discussed in Section 5.2.2. Usually, this entails generating cepstral
features with several different warping parameters , which control whether the formants
are mapped up or down and how much, then choosing that speaker-dependent parameter
maximizing the likelihood of the resulting features with respect to a Gaussian mixture
model (GMM) or HMM. Acero (1990a) and McDonough et al. (1998) have also proposed
applying the bilinear transform (BLT) (5.2.3) as a means of achieving a frequency warping
effect. Figure 9.1 compares a linear mapping with a nonlinear mapping provided by the
BLT. The BLT has the useful property that such warping can be achieved through a linear
transformation of the cepstral coefficients. Depending on the bandwidth of the sampled
speech, this may or may not be as effective as applying the frequency warping directly
to the power spectrum. Figure 9.1 displays the effect of warping on the frequency under
a linear transformation on the left side and under the BLT on the right.
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Figure 9.1 Mapping of the vocal tract length with a linear and a bilinear transform

Most investigators have reported that the reductions in word error rate achieved with
VTLN are additive with those obtained using the other forms of normalization and speaker
adaptation discussed in the balance of this chapter.

9.1.2 Constrained Maximum Likelihood Linear Regression

In this section, we consider another feature transformation based on a simple matrix mul-
tiplication. This technique, known as constrained maximum likelihood linear regression
(CMLLR) was proposed by Gales (1998), whose article actually appeared after the initial
work on maximum likelihood linear regression by Leggetter and Woodland (1995a). We
discuss the latter technique in Section 9.2.1.

Let us begin by postulating a linear transformation A and additive bias b that must
operate simultaneously on both the mean vector and covariance matrices of an HMM.
The transformed mean vector and covariance matrix will then be given by

μ̂m = A μm − b, (9.1)

�̂m = A �m A
T
, (9.2)

respectively, where μm and �m are the speaker-independent mean vector and covariance
matrix. Upon substituting (9.1–9.2) into (8.38) and suppressing the state index j , we
obtain

K2(Y; �) = −1

2

∑
m,k

cm,k

[
log |2π�m| − log |A|2 + (ŷk − μm)T �−1

m (ŷk − μm)
]
, (9.3)

where
ŷk = A

−1
(yk + b).

Let us define A � A
−1

and b � A
−1

b and rewrite the last equation as

ŷk = Ayk + b = Wψk, (9.4)
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where we have additionally defined the extended transformation matrix and extended
feature vector as

W �
[
bT AT

]T
, (9.5)

ψk �
[
1 yk

]T
. (9.6)

Gales (1998) demonstrated that the components of A can be found in an iterative manner,
which can be described as follows. Let us define the vector

p(i) �
[
0 fi1 fi2 · · · fin

]
for the cofactors fij = cof(Aij ). Then the ith row of W is given by

w(i) = (
αp(i) + k(i)

)
G(i)−1, (9.7)

where

G(i) =
∑

k

1

σ 2
k

∑
k

ck,tψ tψ
T
k (9.8)

and

k(i) =
∑

k

1

σ 2
k

μk

∑
k

ck,tψ
T
k . (9.9)

Equation (9.3) illustrates one possible advantage of using a constrained model space
adaptation, inasmuch as the transformation can actually be implemented as a feature space
transformation, which has the potential to greatly reduce computation. During recognition,
the log-likelihoods can be evaluated according to

log p(yk;μ, �, A, b) = logN (Ayk + b;μ, �) + log |A|.

Moreover, it is not necessary to adapt the model parameters, which could potentially be
computationally expensive.

9.2 Model Transformation Techniques

A second class of transformations are applied directly to the final features, e.g., cepstral
means and covariances of the HMM used for speech recognition. We will refer to this
class of techniques as model transformation techniques . We will present two such tech-
niques here, both based on a linear transformation of the cepstral means. The first is the
well-known maximum likelihood linear regression . The second is based on the all-pass
transform .
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9.2.1 Maximum Likelihood Linear Regression

Now assume the Gaussian means are to be adapted for a particular speaker, denoted by
the index s, prior to speech recognition. The adaptation of a single mean is achieved by
forming the product μ̂m = Aμm for some speaker-dependent transformation matrix A.
Very often the transformation is assumed to include an additive shift b such that

μ̂m = Aμm + b. (9.10)

We shall account for this case, however, by assuming the shift is represented by the
last column of A, and by appending a final component of unity to μk . The technique of
estimating the components of A and b directly based on a ML criterion was originally
proposed by Leggetter and Woodland (1995a), who called this technique maximum like-
lihood linear regression. Representing the additive bias by the final component of μk and
suppressing the summation over s enables (8.47) to be rewritten as

G(Y; {(A(s), b(s))}, �) = 1

2

∑
s,m

cm[(μ̃(s)
m − A(s)μm)T �−1

m (μ̃(s)
m − A(s)μm)], (9.11)

where

μ̃m = 1

cm

∑
k

cm,k yk, (9.12)

and

cm =
∑
m,k

cm,k, (9.13)

as before. If the covariance matrix �m is again assumed to be diagonal, then (9.11) can
once more be decomposed row by row, and each row can be optimized independently.
Let aT

n denote the nth row of A, such that

A =

⎡
⎢⎢⎢⎢⎣

aT
0

aT
1

...

aT
L−1

⎤
⎥⎥⎥⎥⎦ ,

where L is the length of the acoustic feature. Then (9.11) can be rewritten as

G(Y; {(A(s), b(s))}, �) =
L−1∑
n=0

Gn(Y; an, �),

where

Gn(Y; an, �) = 1

2

∑
m

ĉm

σ 2
m,n

(μ̃m − aT
n μm). (9.14)



322 Distant Speech Recognition

Taking the derivative of (9.14) with respect to aT
n yields

∂Gn(Y; an, �)

∂an

= 1

2

∑
m

ĉm

σ 2
m,n

[−μ̃m,n μm + (
μmμT

m

)
aT

n

]
. (9.15)

Upon equating the right hand side of (9.15) to zero and solving, we find

an = H̃−1
n ṽn,

where

H̃−1
n =

∑
m

ĉm

σ 2
m,n

μmμT
m,

ṽn =
∑
m

ĉm

σ 2
m,n

μ̃m,n μm,

where μ̃m,n is the nth component of μ̃m.

9.2.2 All-Pass Transform Adaptation

Here we set forth the characteristics of a class of mappings which are designated all-pass
transforms for reasons which will emerge presently. We also describe how these mappings
can be used in transforming cepstral sequences, and in adapting the means of a HMM.
This approach was originally proposed by McDonough (2000). As we will learn, the
resulting transformation is linear as in the case of MLLR. The transformation matrix
specified by the all-pass transform, however, is specified by far fewer parameters than
that of MLLR. This sparsity leads to more robust adaptation and, in many cases, better
recognition performance.

Sequence Transformation

Consider an arbitrary double-sided, real-valued time sequence c[n] and its z-transform
C (z ), which are related by the equations

C(z) �
∞∑

n=−∞
c[n] zn, (9.16)

c[n] � 1

2πj

∮
C(z) z−(n+1)dz, (9.17)

where the contour of integration in (9.17) is assumed to be the unit circle. Note that the
definition of the z–transform and its inverse given in (9.16–9.17) differ from the standard
definitions presented in Section 3.1.3. The reasons for introducing these non-standard
definitions originally arose from the necessity of making certain arguments from the
field of complex analysis required to establish several desirable properties of the all-pass
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transform. As space does not permit us to delve into such mathematical intricacies here,
the interested reader is referred to McDonough (2000). Suffice it to say that electrical
engineers are accustomed to formulating transform functions that are analytic on the
exterior of a circle. Mathematicians, on the other hand, would rather manipulate functions
of a complex argument that are analytic on the interior of a circle. These contradictory
tendencies give rise to the nonstandard definitions in (9.16) and (9.17).

For some mapping function Q, assume we wish to form the composition Ĉ(z) =
C(Q(z)), which we will also denote as Ĉ = C ◦ Q. If Q satisfies suitable analyticity
conditions, then Ĉ = C ◦ Q also admits a Laurent series representation,

Ĉ(z) =
∞∑

n=−∞
ĉ[n] zn.

McDonough (2000), showed that the series coefficients ĉ[n] appearing above can be
calculated from

ĉ[n] =
∞∑

m=−∞
c[m] q(m)[n], (9.18)

where the intermediate sequences {q(m)[n]} are specified by

q(m)[n] � 1

2πj

∮
Qm(z) z−(n+1) dz. (9.19)

Furthermore, the several sequences {q(m)[n]} satisfy

q(m)[n] =
∞∑

k=−∞
q(m−1)[n] q(1)[n − k], (9.20)

and q(0)[n] is equivalent to the unit sample sequence

q(0)[n] �
{

1, for n = 0,

0, otherwise.
(9.21)

From (9.20) and (9.21) it is clear that the sequences {q(m)[n]} ∀ m = 2, 3, . . . can be recur-
sively calculated once q(1)[n] = q[n] is known. Moreover, as (9.20) is clearly equivalent
to the convolution (3.8), which we will denote with the shorthand notation

q(m) = q(m−1) ∗ q. (9.22)

In the complex analysis literature (9.22) is known as a Cauchy product .
In the following sections, we show how q[n] can be obtained for both rational and

sine-log all-pass transforms.
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Figure 9.2 Warping of the frequency axis under the bilinear transform

Rational All-Pass Transforms

From Section 5.2.3 it is already known that the bilinear transform applies a nonlinear
frequency mapping as plotted for different values of α in Figure 9.2. From the figure it is
apparent that the frequency axis can be warped up or down through suitable settings of
α, much as in traditional VTLN described in Section 9.1.1. From preceding development,
it is clear that ĉ[n] can be readily calculated as soon as the coefficients q in the series
expansion of Q are known. Let us rewrite (5.8) as

Q(z) = z − α

1 − αz
. (9.23)

In order to calculate q, we begin with the well-known geometric series ,

1

1 − z
=

∞∑
n=0

zn ∀ |z| < 1.

Using this series, it is possible to rewrite Q(z ) in (9.23) as

Q(z) = (z − α)

∞∑
n=0

αnzn ∀ |z| < α−1.

From this equation, the individual coefficients of the series expansion of Q can be deter-
mined by inspection as

q[n] =
{

−α, for n = 0,

αn−1(1 − α2), ∀ n > 0.
(9.24)

It is possible to formulate a more general class of mappings that share many of the
desirable characteristics of the bilinear transform. The mappings are dubbed rational



Feature and Model Transformation 325

all-pass transforms (RAPT)s, and have the functional form

Q(z) = z − α

1 − αz︸ ︷︷ ︸ × z − β

1 − β∗z
z − β∗

1 − βz︸ ︷︷ ︸ × 1 − γ ∗z
z − γ

1 − γ z

z − γ ∗ ,︸ ︷︷ ︸
= A(z; α) × B(z; β) × G(z; γ )

(9.25)

where α, β, γ ∈ C satisfy |α|, |β|, |γ | < 1. From (9.23) and (9.25) it is apparent that
the latter mapping subsumes the former, and the two are equivalent whenever β = γ .
In the sequel, the dependence of A(z; α), B(z; β), and G(z; γ ) on α, β, and γ shall be
suppressed whenever it is possible to do so without ambiguity.

The general RAPT in (9.25) has two important characteristics:

1. Q is an all-pass function such that∣∣Q(ejω)
∣∣ = 1 ∀ ω ∈ R. (9.26)

2. The inverse of Q is available from

1

Q(z)
= Q(z−1). (9.27)

Discrete-time systems having transfer functions that can be represented as a product
of terms of the type seen in (9.25) are frequently used for phase compensation of digital
filters (Oppenheim and Schafer 1989, sect. 5.5).1 As implied by (9.26), cascading a phase
compensator of this type with an arbitrary linear time-invariant filter does not alter the
spectral magnitude of the latter. For this reason, such a system is described as all-pass;
that is, it passes all frequencies without attenuation. In the sequel, we will use the term
all-pass transform to refer to any conformal map satisfying conditions (9.26–9.27).

The placement of poles and zeros in (9.25) is dictated by the argument principle
(Churchill and Brown 1990). In particular, we require that the number of zeros within
the unit circle exceeds the number of poles by exactly one. Moreover, as a consequence
of condition (9.26), the effect of any APT can be equated to a nonlinear warping of
the frequency axis, just as was previously done with the BLT. Details are provided in
(McDonough 2000, sect. 3.2).

Suppose that Q is an RAPT as in (9.25) and that |α|, |β|, and |γ | < 1. Then Q admits
a Laurent series representation

Q(z) =
∞∑

n=−∞
q[n] zn, (9.28)

whose coefficients are given by

q = a ∗ b ∗ g, (9.29)

1 In the mathematical literature, such functions are known as Blaschke factors (Greene and Krantz 1997, sect. 9.1)
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where a↔A, b↔B, and g↔G. The components of a were given in (9.24). Comparable
expressions for the components of b were derived by McDonough (2000). We will only
quote the results here:

B(z) = z2 − 2ρz cos θ + ρ2

sin θ

∞∑
n=0

ρn sin((n + 1)θ)zn,

where we have set β = ρejθ . Solving for the individual coefficients results in the
expression

B(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, ∀ n < 0,

ρ2, for n = 0,

2ρ(ρ2 − 1) cos θ, for n = 1,

1
sin θ

[ρn+2 sin(θ(n + 1)) − 2ρn cos θ sin(θn) + ρn−2 sin(θ(n − 1))], ∀ n ≥ 2.

The components of g are readily obtained from the relation G(z) = B(z−1), as is clear
from (9.25) and (9.27).

As we are transforming a cepstral sequence c[n] which is inherently double-sided, it is
necessary to calculate q(m)[n] for both positive and negative integers m. We can, however,
exploit the special structure of the APT in order to relate the components of q(m) to those
of q(−m) for m ≥ 1. Note that

Q−m(z) =
[

1

Q(z)

]m

= [Q(z−1)]m,

where the final equality follows from (9.27). Hence,

Q−m(z) = Qm(z−1),

which implies

q(−m)[n] = q(m)[−n]. (9.30)

The importance of (9.30) is that only the set of sequences {q(m)[n]} ∀ m ≥ 0 need be
calculated directly, and (9.22) provides the means to accomplish this once q(1)[n] = q[n]
is known; the latter is available from (9.29).

Cepstral Sequence Transformation

We will now specialize the development above for the unique characteristics of cepstral
coefficients. Hence, let us define X̂(z) = log Ĥ (z) and X(z) = log H(z) for some linear
time-invariant system function H(z), so that X̂ = X ◦ Q. If c[n] is the real cepstrum
corresponding to some windowed segment of speech, then c[n] must be even. As in
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(5.45), define x[n] as the minimum phase equivalent of c[n], such that

x[n] =

⎧⎪⎨
⎪⎩

0, for n < 0,

c[0], for n = 0,

2c[n], for n > 0,

and

c[n] =

⎧⎪⎨
⎪⎩

1
2x[−n], for n < 0,

x[0], for n = 0,
1
2x[n], for n > 0.

(9.31)

Exploiting the fact that c[n] is even, we can rewrite (9.18) as

ĉ[n] = q(0)[n] c[0] +
∞∑

m=1

(
q(m)[n] + q(−m)[n]

)
c[m]

= q(0)[n] c[0] +
∞∑

m=1

(
q(m)[n] + q(m)[−n]

)
c[m], (9.32)

where the latter equality follows from (9.30). Substituting (9.31) into (9.32) then provides

ĉ[n] = q(0)[n] x[0] + 1

2

∞∑
m=1

(
q(m)[n] + q(−m)[n]

)
x[m]. (9.33)

Now let us define x̂[n] as the causal portion of ĉ[n], so that

x̂[n] =

⎧⎪⎨
⎪⎩

0, for n < 0,

ĉ[0], for n = 0,

2ĉ[n], for n > 0.

(9.34)

Substituting (9.33) into (9.34) provides

x̂[n] =
{∑∞

m=0 q(m)[0] x[m], for n = 0,∑∞
m=1

(
q(m)[n] + q(m)[−n]

)
x[m], ∀ n = 0.

(9.35)

These relations can be stated more succinctly by defining the transformation matrix A =
{anm} where

anm =

⎧⎪⎨
⎪⎩

q(m)[0], for n = 0, m ≥ 0,

0, for n > 0, m = 0,(
q(m)[n] + q(m)[−n]

)
, for n,m > 0.

(9.36)
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Figure 9.3 Original (thin line) and transformed (thick line) short-term spectra for a male test
speaker regenerated from cepstral coefficients 0–14. The transformed spectrum was produced with
either the BLT or the all-pass transformation by setting α = 0.10

Hence, it is possible to obtain x̂[n] from

x̂[n] =
∞∑

m=0

anm x[m]. (9.37)

From (9.37) it is clear that the composition X̂ = X ◦ Q reduces to a linear transformation
in cepstral space. It is worth noting that this is a consequence of the fact that Q

(1) is analytic on an annular region that includes the unit circle, and
(2) preserves the unit circle,

where the latter characteristic implies that the unit circle is mapped back onto the unit
circle by Q.

The left side of Figure 9.3 shows the original and transformed spectra for a windowed
segment of male speech sampled at 8 kHz. Both spectra were generated from the first
15 components of the original cepstral sequence. The operations employed in calculating
the transformed cepstra x̂[n] were those set forth above. The conformal map used in this
case was a BLT with α = 0.10. As implied by (9.37), some of the information contained
in x[n] for n = 0, 1, . . . , N − 1 is “encoded” in x̂[n] for all n ≥ N ; thus, 25 rather than
15 transformed cepstral coefficients were retained in generating the composite spectrum
plotted in the figure. It is clear from a comparison of the respective spectra that all
formants have been shifted downward by the transformation, and that the extent of the
shift is frequency dependent. Qualitatively, this is just what we should expect based on
the curves plotted on the right side of Figure 9.1.

Shown on the right side of Figure 9.3 are the original and all-pass transformed spectra
for the same segment of male speech. As in the prior case, these plots were generated
from the first 15 components of the original cepstral sequence, but 25 components were
retained in the transformed sequence. The latter was obtained in the manner suggested by
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the development above. The conformal map used in this instance was an RAPT with the
general form in (9.25). From the figure it is apparent that whereas the higher formants
have been shifted down , the lower formants have been shifted up. This stands in sharp
contrast to the effect produced by the BLT, for which the shift depends on frequency but
is always in the same direction, and serves to illustrate the greater generality of the APT.

Sine-Log All-Pass Transforms

In the final portion of this section, we consider a different type of all-pass transform
that shares many characteristics of the RAPT. Its chief advantage over the RAPT is its
simplicity of form and amenability to numerical computation. Regrettably, this simplicity
is not immediately apparent from the abbreviated presentation given here. The interested
reader is referred to McDonough (2000) for further details.

Let us begin by defining the sine-log all-pass transform as

Q(z) � z exp F(z), (9.38)

where

F(z) �
K∑

k=1

αk Fk(z) for α1, . . . , αK ∈ R, (9.39)

Fk(z) � j π sin

(
k

j
log z

)
, (9.40)

and K is the number of free parameters in the transform. The designation “sine-log” is
due to the functional form of Fk(z). It is worth noting that Fk(z) is single-valued even
though log z is multiple-valued (Churchill and Brown 1990, sect. 26). Moreover, applying
the well-known relation,

sin z = 1

2j

(
ejz − e−jz

)
,

to (9.40) provides

Fk(z) = π

2

(
zk − z−k

)
, (9.41)

which is a more tractable form for computation. It can be readily verified that Q as
defined (9.38) satisfies (9.26–9.27), just as the RAPTs considered earlier. Moreover, as z

traverses the unit circle, Q(z) also winds exactly once about the origin, which is necessary
to ensure that spectral content is not doubled or tripled (McDonough 2000, sect. 3.5).

In order to calculate the coefficients of a transformed cepstral sequence in the manner
described above, it is first necessary to calculate the coefficients q in the Laurent series
expansion of Q; this can be done as follows: for F as in (9.39) set

G(z) = exp F(z). (9.42)
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Let g denote the coefficients of the Laurent series expansion of G valid in an annular
region including the unit circle. Then,

g[n] = 1

2πj

∮
G(z) z−(n+1) dz. (9.43)

Moreover, the natural exponential admits the series expansion

ez =
∞∑

m=0

zm

m!
,

so that

G(z) =
∞∑

m=0

Fm(z)

m!
. (9.44)

Substituting (9.44) into (9.43) provides

g[n] = 1

2πj

∮ ∞∑
m=0

Fm(z)

m!
z−(n+1) dz

=
∞∑

m=0

1

m!

1

2πj

∮
F m(z) z−(n+1) dz (9.45)

The sequence f of coefficients in the series expansion of F are available by inspection
from (9.39) and (9.41). Letting f (m) denote the coefficients in the series expansion of
Fm, we have

f (m)[n] = 1

2πj

∮
F m(z) z−(n+1) dz,

and upon substituting this into (9.45) we find

g[n] =
∞∑

m=0

1

m!
f (m)[n].

Moreover, from the Cauchy product it follows

f (m) = f ∗ f (m−1) ∀ m = 1, 2, 3, . . . .

Equations (9.38) and (9.42) imply that Q(z) = z G(z), so the desired coefficients are
given by

q[n] = g[n − 1] ∀ n = 0, ±1, ±2, . . . .
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Parameter Estimation

Let us assume that the parameters specifying a conformal map Q are to be chosen in order
to maximize the likelihood of a set of training data. The likelihood will be calculated with
respect to one or more GMMs. We will assume that a GMM is associated with each state
of a HMM. We will also assume that the covariance matrix �m is diagonal, as in Chapter
8, such that

�m = diag
{
σ 2

m0, σ
2
m1, . . . , σ

2
m,L−1

}
,

where L is the (original) feature length.
The adaptation of a single mean is achieved by forming the product μ̂m = A(s)μm for

some speaker-dependent transformation matrix A(s) = A(α). More precisely,

μkn =
L−1∑
m=0

anm μkm ∀ n = 0, 1, . . . , L′ − 1, (9.46)

where the components {anm} of the transformation matrix are given by (9.36). Hence, the
likelihood p(y; α, �) of a cepstral feature y is given by

p(y;α, �) =
M∑

m=1

wm N (y; A(s)μm, �m).

Parameter optimization is most easily accomplished through recourse to the
expectation-maximization (EM) algorithm. As discussed in Section 8.1, the EM
algorithm requires the formulation of an auxiliary function (Dempster et al. 1977), which
is equivalent to the expected value of the log-likelihood of some set of training data
given the current estimate of the model’s parameters. Hence, define a set Y = {yk} of
training data contributed by a single speaker. Ignoring the dependence on the HMM
states, the log-likelihood of this set can be expressed as

log p(Y (s);α, �) =
∑

k

log p(yk;α, �)

=
∑

k

log

[∑
m

wmp(yk;α, �m)

]

In McDonough (2000), the relevant auxiliary function is shown to be

G(Y (s);α, �) = 1

2

∑
m,n

c
(s)
m

σ 2
m,n

(μ̃mn − μ̂mn)
2 , (9.47)

where μ̃mn is the nth component of μ̃m in (9.12). It is this objective function that is to be
minimized in the second step of the EM algorithm. As given above, G(α) = G(X (s);α, �)
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represents a continuous and continuously differentiable function, and thus is amenable to
optimization by any of a number of numerical methods (Gill et al. 1981; Luenberger 1984).
In order to apply such a method, valid expressions for the gradient and (possibly) Hessian
of G(α) must be available. For reasons of brevity, the derivation of such expressions is
not included here. The interested reader should see McDonough (2000, sect. 5.2).

Inclusion of an Additive Bias

As mentioned in Section 9.2.1, very often a cepstral mean transformation of the form
μ̆k = Aμk is augmented with an additive bias to model the effect of a channel or any
other filtering to which the original speech signal may be subject. This bias is easily
incorporated into our prior analysis. Let us define μ̆m as

μ̆m = μ̂m + b, (9.48)

where b is a bias vector whose components are to be estimated along with the other
transformation parameters α. Replacing μ̂ with μ̆ in (9.47) provides

G(X (s); A(s),�) = 1

2

∑
m,n

c
(s)
m

σ 2
mn

(μ̃mn − μ̆mn)
2, (9.49)

For any given α, it is straightforward to solve for the optimal b by taking partial derivatives
with respect to the components bn on both sides of (9.49) and equating to zero:

∂G
∂bn

= −
∑
m

cm

σ 2
m,n

[
μ̃mn − (μ̂mn + bn)

] = 0.

A trivial rearrangement of the last equation is sufficient to demonstrate that the optimal
bias components for a specified α are given by

bn(α) =

∑
m

cm

σ 2
mn

(μ̃mn − μ̂mn)

∑
m

cm

σ 2
mn

. (9.50)

9.3 Acoustic Model Combination

In contrast to the adaptation techniques described previously, which modify the means and
variances of the acoustic model, the HMM decomposition approach proposed by Varga
(1990) uses separate models for speech and noise and searches the combined state space
with an extended Viterbi algorithm during decoding. Further work in this direction was
undertaken by Gales and Young (1992, 1993) under the name parallel model combination ,
which approximates the distribution of noisy speech by a combination of the clean speech
and noise distribution. This latter approach is illustrated pictorially in Figure 9.4. As x
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Noisy Speech HMM

Noise HMMClean Speech HMM

Model Combination

Figure 9.4 Schematics of parallel model combination. In combining the models, the domain of
each may need to be altered as in the original approach by Gales and Young (1992)

and n are assumed to be independent we can obtain the noisy speech mean and covariance
matrix in the linear domain as

μy = μx + μn

and
�y = �x + �n.

If the distribution of speech consists of a GMM with M Gaussians and the noise GMM
consists of N Gaussians, the parallel model, representing the noisy speech, contains M · N
Gaussians, which potentially represents a significant increase. It is easily observed that
the drawback of this method is its computationally expense for a complex noise HMM.

9.3.1 Combination of Gaussians in the Logarithmic Domain

Figure 9.5 plots the effect of adding noise to speech in the logarithmic spectral domain.
In this case, both noise and speech are modeled by Gaussian distributions. The speech
Gaussian has a mean of 10 and a variance of 6. The noise mean value is varied as
indicated in the figure, while the variance is maintained at 1. Monte Carlo simulation
of the combined distributions reveals that the combined distribution does not follow a
Gaussian curve and that the distribution becomes increasingly bimodal as the noise level
increases (Moreno et al. 1995). When the noise comes to dominate the speech, however,
the combined distribution becomes unimodal once more.

Upon approximating the real distribution by a Gaussian in the logarithmic domain, each
component d of the mean vector and each diagonal component d, d of the covariance
matrix can be calculated in closed form according to Gales (1995):

μ(l)[d] = log(μ(f )[d]) + 1

2
log

(
�(f )[d, d]

(μ(f )[d])2
+ 1

)
,
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Figure 9.5 Effect of noise modeled by a Gaussian distribution on speech also modeled by a
Gaussian distribution in the logarithmic spectral domain

and

�(l)[i, j ] = log

(
�(f )[i, j ]

μ(f )[i]μ(f )[j ]
+ 1

)
.

9.4 Summary and Further Reading

In this chapter, we have discussed two forms of feature adaptation, namely, VTLN and
CMLLR. We have also presented two forms of speaker adaptation based on the trans-
formation of the cepstral means of a HMM, namely, MLLR and APT adaptation. With
the exception of VTLN, all forms of adaptation were based on linear transformations.
The effectiveness of VTLN, CMLLR, and MLLR is demonstrated through the series of
distant speech recognition experiments to be described in Chapter 14. The last section
has presented a model transformation technique which keeps separate models for speech
and noise.

Masry et al. (1968) considered the possibility of representing a continuous-time signal
as a discrete-time sequence. Their approach to this problem was posed in terms of defining
a basis of orthonormal functions that is complete for signals with particular smoothness
properties. Oppenheim and Johnson (1972) took Masry et al. (1968) as their starting point
in deriving a class of transformations that preserve convolution. They found that one of
the principal requirements for such a class is that it have the form of the composition
of two functions. Oppenheim and Johnson (1972) also developed the mathematical basis
for using the BLT to transform discrete-time sequences, and showed this transformation
could be accomplished via a cascade of first-order difference equations.

Zue (1971) used the technique of Oppenheim and Johnson (1972) to restore the speech
of divers breathing helium-rich gas mixtures. Shikano (1986, sect. 7) noticed the sim-
ilarity of the BLT to the mel scale and used it to apply a speaker-independent warp
to the short-time spectrum of speech prior to recognition. Acero (1990, sect. 7) first
proposed using a speaker-dependent BLT to correct for inter-speaker differences in for-
mant frequency locations; in that work, the optimal BLT parameter for each speaker was
estimated by minimizing a vector quantization distortion measure.

Maximum a posteriori adaptation, as implied by its name, applies a transformation –
most often a simple shift – to the means of an HMM to maximize the a posteriori
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probability of the transformation, rather than the likelihood, based on some supervised
enrollment data (Lee and Gauvain 1993).

After lying dormant for several years, the use of VTLN to enhance the performance of
large vocabulary conversational speech recognition systems was reintroduced by Andreou
et al. (1994). Their technique had no recourse to the BLT. Instead, a speech waveform was
sampled at various rates to induce a linear scaling on the frequency axis of the short-time
Fourier transform; the final sampling rate for a particular speaker was chosen to minimize
the number of errors made by an HMM-based large vocabulary conversational speech
recognition system. The publication of Andreou et al. (1994) sparked a flurry of activity:
Eide and Gish (1996) proposed a nonlinear warping of the short-time frequency axis
implemented in the spectral domain; the choice of warp factor was based on explicit
estimates of speaker-dependent formant frequencies. Wegmann et al. (1996) and Lee and
Rose (1996) independently proposed the use of a GMM to obtain ML estimates of the
optimal warping parameters. Pye and Woodland (1997) investigated the use of VTLN
together with MLLR adaptation; their findings indicated that the reductions in word error
rate achieved by VTLN and MLLR when used in isolation were largely additive when
these techniques were combined.

Digalakis et al. (1995) introduced transformed-based adaptation of Gaussian mixtures.
In this scheme, the mth Gaussian mean vector and covariance matrix were transformed
as in (9.1–9.2), where the transform matrix A(s) was assumed to be diagonal. Hence,
the transformation applied to the covariance matrix was completely determined by that
applied to the mean; for this reason, the approach of Digalakis et al. (1995) came to be
known as a constrained adaptation of Gaussian mixtures.

Leggetter and Woodland (1995b) proposed the highly successful MLLR adaptation.
Their technique was similar to that of Digalakis et al. (1995) in that the means of a
speaker-independent HMM were transformed as in (9.10), but differed in that A(s) was
taken as a full, instead of diagonal, matrix. In this initial work, only the Gaussian mean
was transformed; a covariance transform was subsequently added by Gales and Woodland
(1996). In the latter work, the transform applied to the covariance matrix was not explicitly
tied to that applied to the mean; hence, this was the first instance of what came to be
known as an unconstrained adaptation .

The adaptation techniques mentioned above all transform a conventionally-trained
speaker-independent model as described in Section 8.1.2. Anastasakos et al. (1996)
first considered the possibility of training a speaker-independent HMM specifically
for use with speaker adaptation. In their technique, transform parameters are first
estimated for all speakers in a training set. Then the Gaussian means and variances of a
speaker-independent HMM are iteratively re-estimated using the transform parameters of
the training set speakers along with the usual forward–backward statistics, as described
in Section 8.1.3.

An excellent review of the aforementioned transformation-based approaches to speaker
adaptation, along with the requirements of each in terms of computation and memory,
is given by Gales (1998). Another valuable reference is Sankar and Lee (1996), who
formulate a unified basis for ML speaker normalization and adaptation.

More recently there has been a growing interest in performing speaker adaptation with
very limited amounts of enrollment data; e.g., 30 s or less. The results of some preliminary
investigations in this area have been reported by Digalakis et al. (1996), Kannan and
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Khudanpur (1999), and by Bocchieri et al. (1999). A distinctly different approach to the
problem of rapid adaptation is formulated by Byrne et al. (2000); it involves the use of a
discounted likelihood criterion to achieve robust parameter estimation. Another popular
and effective approach to very rapid adaptation, dubbed eigenvoices , was developed by
Kuhn et al. (2000). The theory of speaker adaptation with APTs was extended beyond
the simple BLT by McDonough (2000), who noted that it is essential to combine APT
adaptation with speaker-adapted training, as discussed in Section 8.1.3, due to the highly
constrained nature of the transform. Comparisons between the performance of MLLR and
APT adaptation can be found in McDonough and Waibel (2004).

9.5 Principal Symbols

Symbol Description

μ mean vector
μm mth mean vector
� covariance matrix
�m covariance matrix of mth component
A transformation matrix for MLLR and APT adaptation
b additive shift vector for MLLR and APT adaptation
b additive shift vector for CMLLR
c[n] sequence of cepstral coefficients
ĉ[n] transformed sequence of cepstral coefficients
C(z) z-transform of cepstral coefficients
Ĉ(z) z-transform of transformed cepstral coefficients
q(n)[n] components of the APT transformation matrix
Q(z) conformal mapping
W transformation matrix for CMLLR
y cepstral feature
A(z; α), B(z; β), G(z; γ ) components specifying a RAPT conformal map



10
Speaker Localization and Tracking

While a recognition engine is needed to convert waveforms into word hypotheses, the
speech recognizer by itself is not the only component of a distant speech recognition
(DSR) system. In this chapter, we introduce the first supporting technology required for
a complete DSR system, namely, algorithms for determining the physical positions of
one or more speakers in a room, and tracking changes in these positions with time if
the speakers are moving. Speaker localization and tracking – whether based on acoustic
features, video features, or both – are important technologies, because the beamforming
algorithms discussed in Chapter 13 all assume that the position of the desired speaker
is known . Moreover, the accuracy of a speaker tracking system has a very significant
influence on the recognition accuracy of the entire system. This can be easily observed
from the experiments conducted in Section 14.7

For present purposes, we will distinguish between speaker localization and speaker
tracking as follows. We will say speaker localization is based on an “instantaneous”
estimate of the speaker’s positions, which implies that the data used to form the estimate
lies within a time window of 15 to 25 ms. Speaking tracking systems, on the other hand,
may use single observation windows on the order of 15 to 25 ms, but may combine
multiple observations in order to track a speaker’s trajectory through time.

The balance of this chapter is organized as follows. In Section 10.1, we review the
process of source localization based on the conventional techniques, namely, spherical
intersection, spherical interpolation, and linear intersection. All those techniques use time
delays of arrival between microphone pairs as features for speaker localization. After
this presentation of the classical techniques, we begin our exposition of techniques based
on the family of Bayesian filters described in Chapter 4. In Section 10.2, we formulate
source localization as a problem in nonlinear least squares estimation, then develop an
appropriate linearized model. Thereafter we present a simple model for speaker motion,
and discuss how such a model can be incorporated into the variant of the Kalman fil-
ter (KF) described in Section 4.3.3 to create an acoustic localization system capable of
tracking a moving speaker. Section 10.2.1 presents a numerically stable implementation
of the KF algorithm based on the Cholesky decomposition, which can be used for speaker
tracking. In Section 10.3, we consider how the tracking system can be extended to track
multiple simultaneously active speakers. This extension is based on the joint probabilistic

Distant Speech Recognition Matthias Wölfel and John McDonough
©    2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-51704-8
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data association filter described in Section 4.3.6. Section 10.4 describes how the audio
data streams used for tracking in prior sections can be augmented with video information
from calibrated cameras. The inclusion of such video information conduces to robuster
tracking, particularly during intervals when the speaker is silent. Section 10.5 describes
how the second class of Bayesian filters, namely particle filters, can also be used for
speaker tracking. Section 10.6 summarizes the chapter provides some recommendations
for further reading.

The three conventional techniques discussed in Section 10.1 should be well known
to anyone well familiar with the source localization literature. Although it has appeared
much more recently in the literature, the use of particle filters (PFs) for acoustic source
tracking, as discussed in Section 10.5, has attracted a great deal of attention within the
research community, and hence is likely to be known to anyone familiar with the field.
The material presented in Section 10.2, on the other hand, all of which is based on the
use of variants of the KF for various tracking scenarios, has appeared in the literature
only with the last few years, and is hence of potential interest even to readers well-versed
with other algorithms for speaker tracking.

10.1 Conventional Techniques

We begin here our discussion of speaker tracking with a presentation of the conven-
tional techniques that have been in the literature for 10 years or more. The material in
Sections 10.1.1 and 10.1.2 is based partially on the treatment of these subjects by Huang
et al. (2004).

Consider then a sensor array consisting of N + 1 microphones located at positions
mi ∀ i = 0, . . . , N , and let x ∈ R

3 denote the position of the speaker in a three-dimensional
space, such that,

x �

⎡
⎣x

y

z

⎤
⎦ , and mn �

⎡
⎣mn,x

mn,y

mn,z

⎤
⎦ .

Then the time delay of arrival (TDOA) between the microphones at positions m1 and m2
can be expressed as

T (m1, m2, x) = |x − m1| − |x − m2|
c

(10.1)

where c is the speed of sound, which, as mentioned in Section 2.1.2, is approximately
344 m/s at sea level. Equation (10.1) can be rewritten as

Tmn(x) = T (mm, mn, x) = 1

c
(Dm − Dn), (10.2)

where

Dn =
√

(x − mn,x)2 + (y − mn,y)2 + (z − mn,z)2 = |x − mn| ∀ n = 0, . . . , N (10.3)

is the distance from the speaker to the microphone located at mn.
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Let τ̂mn denote the observed TDOA for the mth and nth microphones. The TDOAs
can be observed or estimated with a variety of well-known techniques. Perhaps the
most popular method involves the phase transform (PHAT), a variant of the generalized
cross-correlation (GCC), which can be expressed as (Carter 1981)

ρmn(τ) � 1

2π

∫ π

−π

Ym(ejωτ )Y ∗
n (ejωτ )∣∣Ym(ejωτ )Y ∗
n (ejωτ )

∣∣ ejωτ dω. (10.4)

where Yn(e
jωτ ) denotes the short-time Fourier transform of the signal arriving at the nth

sensor in the array (Omologo and Svaizer 1994). The definition of the GCC in (10.4)
follows directly from the frequency domain calculation (3.29) of the cross-correlation
(3.27) of two sequences. The normalization term

∣∣Ym(ejωτ )Y ∗
n (ejωτ )

∣∣ in the denominator
of the integrand in (10.4) is intended to weight all frequencies equally. It has been shown
that such a weighting leads to more robust TDOA estimates in noisy and reverberant
environments (DiBiase et al. 2001). Once ρmn(τ) has been calculated, the TDOA estimate
is obtained from

τ̂mn = max
τ

ρmn(τ ). (10.5)

In other words, the “true” TDOA is taken as that which maximizes the PHAT ρmn(τ).
Thereafter, an interpolation is performed to overcome the granularity in the estimate
corresponding to the sampling interval (Omologo and Svaizer 1994). Usually, Yn(e

jωk )

appearing in (10.4) are calculated with a Hamming analysis window of 15 to 25 ms in
duration (DiBiase et al. 2001).

There are several other popular methods for calculating TDOAs, including the adaptive
eigenvalue decomposition algorithm proposed by Benesty (2000), as well as the TDOA
estimator based on mutual information proposed by Talantzis et al. (2005). Chen et al.
(2003b) have also proposed a technique for TDOA estimation that exploits the redundan-
cies in the signals collected by several microphones. A good review of recent advances
in the field of TDOA estimation is given by Chen et al. (2004b).

10.1.1 Spherical Intersection Estimator

The spherical intersection (SX) method proposed by Schau and Robinson (1987) provides
a closed-form estimate of the speaker’s position obtained at each time instant. To describe
the technique, we begin by assuming that the zeroth microphone is located at the origin
of the coordinate system, such that m0 = [0 0 0

]T
. Let us denote the distances from the

origin to the nth microphone and from origin to source as

Rn � |mn| =
√

m2
n,x + m2

n,y + m2
n,z, (10.6)

Rs � |x| =
√

x2 + y2 + z2, (10.7)

respectively. The range difference is defined as

dmn � Dm − Dn ∀ m, n = 0, . . . , N (10.8)

for Dn as in (10.3).
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It follows that, in the absence of estimation errors, the range difference can be deter-
mined from

dmn = c · Tmn(x),

where Tmn(x) is defined in (10.2). From (10.8) and the fact that Rs = D0, it follows

D̂n = Rs + dn0, (10.9)

where D̂n denotes an observation based on the measured range difference dn0. That Dn

predicted by the spherical signal model in the absence of observation and tracking errors
is

D2
n = |mn − x|2 = R2

n − 2 mT
n x + R2

s . (10.10)

The spherical error function for the nth microphone is then the difference between hypo-
thesized and measured values

esp,n(x) � 1

2

(
D̂2

n − D2
n

)
= mT

n x + dn0Rs − 1

2
(R2

n − d2
n0) ∀ n = 1, . . . , N. (10.11)

The total error from all microphone pairs can be expressed in vector form as

esp(x) = Aθ − b (10.12)

where

A �
[
S|d] , S �

⎡
⎢⎢⎢⎣

m1,x m1,x m1,z

m2,x m2,y m2,z

...
...

...

mN,x mN,y mN,z

⎤
⎥⎥⎥⎦ , d �

⎡
⎢⎢⎢⎣

d10

d20
...

dN0

⎤
⎥⎥⎥⎦ , θ �

⎡
⎢⎢⎣

x

y

z

Rs

⎤
⎥⎥⎦ , b � 1

2

⎡
⎢⎢⎢⎣

R2
1 − d2

10
R2

2 − d2
20

...

R2
N − d2

N0

⎤
⎥⎥⎥⎦ .

The least squares criterion is then

Jsp = eT
spesp = (Aθ − b)T (Aθ − b) . (10.13)

The SX algorithm functions in two steps (Schau and Robinson 1987). Firstly, the
least-squares solution for x in terms of Rs is found according to

x = S(b − Rsd), (10.14)

where

Š �
(
ST S

)−1
ST
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is the pseudo-inverse of S. Thereafter, substituting (10.14) into the constraint R2
s = xT

s xs
provides a quadratic equation

R2
s =

[
Š (b − Rsd)

]T [
Š (b − Rsd)

]
,

The last equation can be expressed as

a R2
s + bRs + c = 0, (10.15)

where

a = 1 − |Š|2, b = 2bT ŠT Šd, c = −|Šb|2.
The unique, real, positive root of (10.14) is then taken as the SX estimate of the source
range. Note that this implies that the SX algorithm will fail to provide an estimate of the
speaker’s position if either

• there is no real, positive root, or,
• if there are two real, positive roots.

This is one of the principal drawbacks of this technique; it can simply fail to provide an
estimate of the speaker’s position.

10.1.2 Spherical Interpolation Estimator

The primary limitation of the SX estimator is the restriction that Rs = |x|. In an attempt
to overcome the problems associated therewith, Abel and Smith (1987) proposed the
spherical interpolation (SI) estimator. To develop this method, we begin by substituting
the least-squares solution (10.14) into the spherical model Aθ = b to obtain

Rs P⊥
S d = P⊥

S b, (10.16)

where

P⊥
S = I − SŠ = I − S(ST S)−1ST

is the perpendicular projection operator onto the space orthogonal to the column space of
S; see Section B.17. Then the least squares solution to (10.14) can be expressed as

R̂s,SI = dT P⊥
S b

dT P⊥
S d

. (10.17)

Substituting (10.17) into (10.14) yields the SI estimate

x̂s,SI = Š

[
I −

(
ddT P⊥

S

dT P⊥
S d

)]
b. (10.18)

Huang et al. (2004) comment that the SI estimator outperforms the SX estimator, but is
computationally more demanding.
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10.1.3 Linear Intersection Estimator

The final conventional method for source localization we will consider is the linear
intersection (LI) method proposed by Brandstein (1995), which also returns a closed-form
estimate of the speaker’s position. This technique is based on the fact that if a sensor pair
has locations m1, m2, and a TDOA τ is observed for this pair, then the locus of potential
source locations forms one-half of a hyperboloid of two sheets, which is centered about
the mid-point of m1 and m2 and has the line segment from m1 to m2 as its axis of
symmetry. The bearing line to the source, measured as a deviation from the line segment
between m1 and m2, can be approximated as

θ̂12 = cos−1
(

c · τ̂12

|m1 − m2|
)

. (10.19)

As originally proposed by Brandstein, the LI localization algorithm is based on the
particular microphone configuration shown in Figure 10.1. There are two sensor pairs
(mn1, mn2) and (mn3, mn4), where n is an index over sensor quadruples. The centroid of
the nth sensor quadruple is denoted as cn. The first microphone pair in each quadruple
determines, in an approximate sense, a cone with constant direction angle αn relative to
the xn axis. The second pair determines a cone with direction angle βn relative to the yn

axis. Assuming the location of the source is restricted to the positive z-space, the locus
of potential source points is a bearing line l′n, with remaining direction angle γn that can
be calculated from the identity,

cos2 αn + cos2 βn + cos2 γn = 1, (10.20)

where 0 ≤ γn ≤ π/2. The line segment may be expressed in terms of the local coordinate
system as l′n = [xn yn zn

]T = rn a′
n, where rn is the range of the point on the line from

αn
βn

γn

xn

zn

yn

mn1

mn3

mn2

mn4

ln

bearing line

cn

Figure 10.1 Small array with four microphones for speaker tracking
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the local origin and a′
n is the vector of direction cosines

a′
n �

[
cos αn cos βn cos γn

]
.

To express the same bearing line in terms of global coordinates, a translation and rotation
must be applied according to

ln = rn Rn a′
n + cn, (10.21)

where Rn is the 3 × 3 rotation matrix from the nth local coordinate system into the global
coordinate system. Defining the rotated direction cosine vector

an � Rn a′
n,

allows (10.21) to be rewritten as

ln = rn an + cn.

Now assume that there are M4 orthogonal and bisecting sensor quadruples with the
bearing lines

ln = rnan + cn ∀ n = 1, . . . , M4.

The point of nearest intersection for any pair of sensor lines can then be taken as a
possible location for the source. Figure 10.2 illustrates how the nearest intersection point
for two bearing lines is determined. In particular, given the bearing lines,

lm = rm am + cm, (10.22)

ln = rn an + cn, (10.23)

cm

lm

ln

xnm

xnm

rm

rn

dnm

cn

Figure 10.2 Determining the point of nearest intersection for two bearing lines
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the shortest distance between the lines is measured along a line parallel to their common
normal and is given by (Swokowski 1979)

dmn = |(am × an) · (cm − cn)|
|(am × an)| .

The point on lm closest to ln, which is denoted as x̂mn, and the point on ln with closest
intersection to lm, which is denoted as x̂nm, can be found by solving for the local ranges
rm and rn, then substituting these values into (10.22–10.23). These local ranges can be
obtained by subtracting (10.22) from (10.23) at the point of closest intersection, where
it holds that lm = x̂mn and ln = x̂nm = x̂mn + dmn(am × an). This difference yields the
overdetermined matrix equation

rm am − rn an = cn − cm − dmn(am × an), (10.24)

which, when solved, provides the desired local ranges.
Each point x̂nm of nearest intersection represents a potential source location. In order

to determine the final estimate of the speaker’s position, these potential source locations
are weighted and summed together. Denoting the number of unique microphone pairs as
M2, the weight assigned to x̂nm can be expressed by

Wnm =
M2∏
i=1

N
[
Ti(x̂nm); τi12, σ

2
i12

]
,

where τi12 and σ 2
i12, respectively, are the observed time delay and variance for the ith

microphone pair, and the predicted TDOA, in this case, is defined as

Ti(x̂nm) = T (mi1, mi2, x̂nm) ∀ n = 1, . . . ,M2, (10.25)

for T (m1, m2, x) specified in (10.1). The final location estimate is then given by

x̂LI =
∑M

m=1

∑M
n=1,n�=m Wmnx̂mn∑M

m=1

∑M
n=1,n�=m Wmn

.

By associating each potential source location with a probabilistic value, the weighting
terms Wmn serve as a means for excluding outlier locations stemming from radically errant
TDOA estimates and their consequently incorrect bearing lines. Typically, the weighting
term for an aberrant x̂mn is sufficiently small that the potential location estimate plays
little or no role in the final location estimate.

Note that the three methods described above all fall into the category of speaker locali-
zation systems, inasmuch as they return instantaneous estimates of the speaker’s position.
It should be noted, however, that each technique can readily be extended into a speaker
tracking system by applying a KF to smooth the time series of instantaneous estimates,
as in Brandstein et al. (1997) and Strobel et al. (2001), for example. As an alternative,
instead of splitting the localization and tracking problem into two parts, it is possible to
adopt a unified approach whereby the time series of the speaker’s position is estimated
directly without recourse to any intermediate localization. Such techniques are described
in the next section.
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10.2 Speaker Tracking with the Kalman Filter

In this section, we present the speaker tracking system based on an extended Kalman
filter that was orginally proposed by Klee et al. (2005b). Consider two microphones
located at mn1 and mn2 comprising the nth microphone pair, and once more define the
TDOA as in (10.25), where x represents the position of an active speaker and, as before,
M = M2 denotes the number of unique microphone pairs. Source localization based on
the maximum likelihood criterion (Kay 1993) proceeds by minimizing the error function

ε(x) =
M∑

i=n

1

σ 2
n

[τ̂n − Tn(x)]2 , (10.26)

where σ 2
n denotes the error covariance associated with this observation, and τ̂n is the

observed TDOA as in (10.4) and (10.5). Solving for that x minimizing (10.26) would be
eminently straightforward were it not for the fact that (10.25) is nonlinear in x. In the
coming development, we will find it useful to have a linear approximation. Hence, we
take a partial derivative with respect to x on both sides of (10.25) and write

∇xTn(x) = 1

c
·
[

x − mn1

Dn1
− x − mn2

Dn2

]
,

where
Dnm = |x − mnm| ∀ n = 1, . . . , M;m = 1, 2,

is the distance between the source and the microphone located at mnm.
Although (10.26) implies that we should find the x that minimizes the instantaneous

error criterion, we would be better advised to attempt to minimize such an error crite-
rion over a series of time instants. In so doing, we exploit the fact that the speaker’s
position cannot change instantaneously; thus, both the present τ̂i (k) and past TDOA esti-
mates {τ̂i (n)}k−1

n=1 are potentially useful in estimating a speaker’s current position x(k). Let
us approximate Tn(x) with a first-order Taylor series expansion about the last position
estimate x̂(k − 1) by writing

Tn(x) ≈ Tn(x̂(k − 1)) + cT
n (k) [x − x̂(k − 1)] , (10.27)

where the row vector cT
n (k) is given by

cT
n (k) = [∇xTn(x)]Tx=x̂(k−1) = 1

c
·
[

x − mn1

Dn1
− x − mn2

Dn2

]T

x=x̂(k−1)

∀ n = 1, . . . ,M.

(10.28)
Substituting the linearization (10.27) into (10.26) provides

ε(x; k) ≈
M∑

n=1

1

σ 2
i

{
τ̂n(k) − Tn(x̂(k − 1)) − cT

n (k) [x − x̂(k − 1)]
}2

=
M∑

n=1

1

σ 2
n

[
τn(k) − cT

n (k)x
]2

(10.29)
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where

τn(k) = τ̂n(k) − [Tn(x̂(k − 1)) − cT
n (k)x̂(k − 1)

] ∀ n = 1, . . . ,M. (10.30)

Let us define

τ(k) =

⎡
⎢⎢⎢⎣

τ 1(k)

τ 2(k)
...

τM(k)

⎤
⎥⎥⎥⎦ , τ̂ (k) =

⎡
⎢⎢⎢⎣

τ̂1(k)

τ̂2(k)
...

τ̂M(k)

⎤
⎥⎥⎥⎦ , T(x̂(k)) =

⎡
⎢⎢⎢⎣

T1(x̂(k))

T2(x̂(k))
...

TM(x̂(k))

⎤
⎥⎥⎥⎦ , C(k) =

⎡
⎢⎢⎢⎣

cT
1 (k)

cT
2 (k)
...

cT
M(k)

⎤
⎥⎥⎥⎦ ,

(10.31)

so that (10.30) can be expressed in matrix form as

τ(k) = τ̂ (k) − [T(x̂(k − 1)) − C(k)x̂(k − 1)] . (10.32)

Similarly, defining

� = diag(σ 2
1 , σ 2

2 , · · · , σ 2
M) (10.33)

enables (10.29) to be expressed as

ε(x; t) = [τ (k) − C(k)x]T �−1 [τ (k) − C(k)x] . (10.34)

Klee et al. proposed to recursively minimize the linearized least squares position esti-
mation criterion (10.34) with the (iterated) extended Kalman filter presented in Sections
4.3.2 and 4.3.3. Their algorithm is readily understood as soon as we make an association
between the position x(k) of the speaker and the state xk of the extended Kalman filter
(EKF), as well as between the TDOA vector τ̂ (k) and the observation y. Following Klee
et al. (2005b), we can make a simple assumption that the speaker is “stationary” such
that the state transition matrix Fk|k−1 = I. We further associate the “linearized” TDOA
estimate τ (k) in (10.32) with the modified observation y(k) appearing in (4.49). The
nonlinear functional Hk(x) appearing in (4.44) corresponds to the TDOA model

Hk(xk) = Tk(xk) =

⎡
⎢⎢⎢⎣

T1(xk)

T2(xk)
...

TM(xk)

⎤
⎥⎥⎥⎦ ,

where the individual components Tn(xk) are given by (10.25). Moreover, we recognize
that the linearized observation functional Hk(xk|k−1) in (4.45) required for the EKF filter
is given by (10.28) and (10.31) for our acoustic speaker tracking problem. Furthermore,
we can equate the TDOA error covariance matrix � in (10.33) with the observation noise
covariance Vk. Hence, we have all relations needed on the observation side of the EKF
filter.
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With the above definitions, it is only necessary to specify an appropriate model of the
speaker’s motion to complete the algorithm. Assuming the process noise components in
the three directions are statistically independent, we can write

Uk = σ 2
P T 2

E

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ , (10.35)

where TE is the time elapsed since the last update of the state estimate, and σ 2
P is the

process noise power. Klee et al. (2005b) set σ 2
P based on a set of empirical trials to

achieve the best localization results.
Before performing an update of the speaker’s position estimate xk|k , it was first

necessary to determine the time TE that had elapsed since an observation was last
received. While the audio sampling is synchronous for all sensors, it could not be
assumed that the speaker constantly spoke, nor that all microphones received the direct
signal from the speaker’s mouth; i.e., the speaker might sometimes turn so that he is no
longer facing a given microphone array. As only the direct signal is useful for localization
(Armani et al. 2003), the TDOA estimates returned by those sensors receiving only the
indirect signal reflected from the walls could not be used for position updates. This was
accomplished by setting a threshold on the PHAT (10.4), and using for source localization
only those microphone pairs returning a peak in the PHAT above the threshold (Armani
et al. 2003). This implied that no update was made if the speaker was silent.

As the update of the speaker’s position estimate was obtained from the standard update
formulae (4.57–4.61) of the iterated extended Kalman filter (IEKF), it was no longer
necessary to invoke one of the closed form approximations for the speaker’s position
considered in Section 10.1. Using the formalism of the KF had the added advantage that
the uncertainty with respect to the speaker’s position, which is reflected in the state esti-
mation error covariance matrices Kk|k−1 and Kk , was automatically factored into the state
update. This uncertainty was weighted against the uncertainty of the current observation
specified by �. Finally, the KF formulation provided the additional flexibility afforded
by the model of speaker motion, which could potentially be extended to include velocity
and even acceleration terms.

To gain an appreciation for the severity of the nonlinearity in this particular Kalman
filtering application, Klee et al. (2005b) plotted the actual value of Tn(x(k)) against the
linearized version. These plots are shown in Figure 10.3 for deviations parallel to the x-
and y-axes from the point about which Tn(x(k)) was linearized. The plots correspond to
T-array 4 in the smart room at the Universität Karlsruhe (TH) depicted in Figure 14.1.
The nominal position of the speaker, about which the functional Hk(x) was linearized,
was (x, y, z) = (2.95, 4.08, 1.70) m in room coordinates, which is approximately in the
middle of the room. As is clear from Figure 10.3, for deviations of ±1 m from the
nominal, the linearized TDOA is within 2.33% of the true value for movement along the
x-axis, which was perpendicular to the plane of the array, and within 1.38% for movement
along the y-axis, which was parallel to the plane of the array.

Klee et al. (2005b) investigated the effect of speaker movement on the number of
local iterations required by the IEKF. The local iteration compensates for the difference
between the original nonlinear least squares estimation criterion (10.26) and the linearized
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Figure 10.3 Actual (solid) vs linearized (dashed) Tn(xk) for movement parallel to the x- and
y-axes

criterion (10.29). The difference between the two is only significant during startup or when
a significant amount of time has passed since the last update, as in such cases the initial
position estimate is far from the true position of the speaker. Once the speaker’s position
has been acquired to a reasonable accuracy, the linearized model (10.29) matches the
original (10.26) quite well. Klee et al. (2005b) found that the average number of local
iterations increases in proportion to the time since the last update, the distance moved
since the last update, and the speaker’s velocity. These results correspond well with
our expectations, in that significant speaker movement implies that the linearized error
criterion (10.29) does not initially match the true criterion (10.26), as shown in Figure 10.3.
Hence, several local iterations are required for the position estimate to converge. Five or
fewer local iterations were required for convergence in all cases, which was more than
sufficient for real-time speaker tracking.

10.2.1 Implementation Based on the Cholesky Decomposition

As noted in Section 4.3.4, the Riccati equation has notoriously poor numerical stability
characteristics. In particular, after many iterations wherein the Riccati equation is used to
update the predicted state estimation error covariance matrix Kk|k−1, a phenomenon known
as explosive divergence (Haykin 2002, sect. 11) can occur, whereby Kk|k−1 becomes indef-
inite. As we will now discuss, this undesirable state of affairs can be avoided by replacing
a naive implementation of IEKF based on the Riccati equation with a so-called square-root
implementation. In addition to preventing explosive divergence, such a square-root imple-
mentation effectively doubles the precision of the machine on which it is executed (Simon
2006, sects 6.3–6.4).

Using manipulations similar to those leading to (4.65), it is possible to formulate the
Riccati equation for the IEKF presented in Section 4.3.3 as

Kk+1|k = F Kk|k−1 FT − F Gk(ηi ) Sk(ηi ) GT
k (ηi ) FT + Uk, (10.36)

where F = Fk+1|k is the constant transition matrix, ηi is the current local iterate, and
Sk(ηi ) and GT

k (ηi ) are respectively the innovation covariance matrix and Kalman gain
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calculated at ηi . The Cholesky decomposition (Golub and Van Loan 1990, sect. 4.2) or
square-root K1/2

k+1|k of the state estimation error covariance matrix Kk+1|k is the unique
lower triangular matrix achieving

K1/2
k+1|kKT /2

k+1|k � Kk+1|k.

Square-root implementations of RLS estimators and KFs propagate K1/2
k+1|k forward at

each time step instead of Kk+1|k . The advantage of this approach is that the Cholesky
decomposition exists only for positive definite matrices (Golub and Van Loan 1990, sect.
4.2). Thus, in propagating K1/2

k+1|k instead of Kk+1|k , we ensure that the latter remains
positive definite. The square-root implementation is derived from the following
well-known lemma (Sayed and Kailath 1994).

Lemma 10.2.1 (matrix factorization) Given any two N × M matrices A and B with
dimensions N ≤ M ,

AAT = BBT

iff there exists a unitary matrix θ such that

Aθ = B.

To develop an update strategy based on the Cholesky decomposition, we set Vk = � and
write

A =

⎡
⎢⎣�1/2 ... Hk(ηi)K

1/2
k|k−1

... 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0
... FK1/2

k|k−1

... U1/2
k

⎤
⎥⎦ .

We seek a unitary transform θ that achieves Aθ = B, such that

AAT =

⎡
⎢⎣�1/2 ... Hk(ηi )K

1/2
k|k−1

... 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0
... FK1/2

k|k−1

... U1/2
k

⎤
⎥⎦ ·

⎡
⎢⎢⎢⎢⎢⎣

�T /2 ... 0
. . . . . . . . . . . . . . . . . . . . . . . . .

KT /2
k|k−1H

T

k (ηi )
... KT /2

k|k−1FT

. . . . . . . . . . . . . . . . . . . . . . . . .

0
... UT /2

k

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎣B11

... 0
... 0

. . . . . . . . . . . . . .

B21
... B22

... 0

⎤
⎥⎦
⎡
⎢⎢⎢⎢⎢⎣

BT
11

... BT
21

. . . . . . . . .

0
... BT

22
. . . . . . . . .

0
... 0

⎤
⎥⎥⎥⎥⎥⎦ = BBT , (10.37)
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where both B11 and B22 are lower triangular. Performing the required multiplications on
the block components of (10.37), we find

B11BT
11 = � + Hk(ηi) Kk|k−1 H

T

k (ηi), (10.38)

B21BT
11 = F Kk|k−1 H

T

k (ηi), (10.39)

B21 BT
21 + B22 BT

22 = F Kk|k−1 FT + Uk. (10.40)

Comparing (4.57) and (10.38), it is clear that

B11BT
11 = Sk(ηi ). (10.41)

Hence, as B11 is lower triangular,

B11 = S1/2
k (ηi ). (10.42)

Based on (4.58),

Gk(ηi) Sk(ηi ) = Kk|k−1 H
T

k (ηi ).

Substituting the last equation for Kk|k−1H
T

k (ηi) in (10.39), we find

B21 BT
11 = F Gk(ηi) Sk(ηi ) = F Gk(ηi ) B11 BT

11,

where the last equality follows from (10.41). Hence,

B21 = F Gk(ηi ) S1/2
k (ηi ). (10.43)

Finally, we can rewrite (10.40) as

B22BT
22 = FKk|k−1FT − B21BT

21 + Uk−1 (10.44)

= F Kk|k−1 FT − F GT
k (ηi ) Sk(ηi ) Gk(ηi ) FT + Uk, (10.45)

where (10.45) follows from substituting (10.43) into (10.44). The last equation, together
with (10.36), implies that

B22 BT
22 = Kk+1|k,

or, as B22 is lower triangular,

B22 = K1/2
k+1|k. (10.46)
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In light of (10.42–10.46), we have

Aθ =

⎡
⎢⎣�1/2 ... Hk(ηi ) K1/2

k|k−1

... 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0
... FK1/2

k|k−1

... U1/2
k

⎤
⎥⎦ θ

=

⎡
⎢⎣ S1/2

k (ηi )
... 0

... 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

FGk(ηi)S
1/2
k (ηi )

... K1/2
k+1|k

... 0

⎤
⎥⎦ = B. (10.47)

Although a new estimate of K1/2
k+1|k is generated with each local iteration, only the final

estimate is saved for use in the succeeding time step.
The final position update is accomplished as follows: through forward substitution we

can find that ζ ′
k(ηi) achieving

ζ k(ηi) = S1/2
k (ηi )ζ

′
k(ηi), (10.48)

where ζ k(ηi ) is defined in (4.60). The preceding development shows that F is upper
triangular for the stationary source model of interest here. Hence, we can find that ζ ′′

k(ηi)

achieving
Fζ ′′

k(ηi ) = B21ζ
′
k(ηi )

through back substitution on F. Finally, as in (4.61), we update ηi according to

ηi+1 = x̂k|k−1 + ζ ′′
k(ηi), (10.49)

where η1 = x̂k|k−1. The new state estimate x̂k|k is taken as the final iterate ηf .
A unitary transform θ that imposes the desired zeros on A can be readily constructed

from a set of Givens rotations. The latter are described in Section B.15.
In the acoustic speaker tracking experiments conducted by Klee et al. (2005b), the

numerical stability proved adequate using even the KF based directly on the Riccati
equation. Instabilities arose, however, when the audio features were supplemented with
video information as discussed in Section 10.4.

10.3 Tracking Multiple Simultaneous Speakers

In this section, we consider how the single speaker tracking system based on the KF can
be extended to track multiple simultaneously active speakers. The approach presented
here was proposed by Gehrig et al. (2006), and is based on the generalization of the KF
discussed in Section 4.3.6.

As the joint probabilistic data association filter can maintain tracks for multiple active
speakers, it is necessary to formulate rules for deciding when a new track should be
created, when two tracks should be merged and when a track should be deleted. A
new track was always created as soon as a measurement could not be associated with
any existing track. But if the time to initialize the filter exceeded a time threshold, the
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newly created track was immediately deleted. The initialization time of the filter was
defined as the time required until the variance of each dimension of εk+1|k in (4.25)
fell below a given threshold. Normally this initialization time was relatively short for
a track for which sufficient observations were available, but longer for spurious noises.
To merge two or more tracks, a list was maintained with the time-stamp when the two
tracks approached one another within a given distance. If, after some allowed interval of
overlap, the two tracks did not move apart, then the track with the larger |Kk+1|k| was
deleted. In all cases, tracks were deleted if their position estimate had not been updated
for a given length of time. To detect the active sound source, the track with the smallest
error covariance matrix was used, as an active sound source should be associated with
enough observations so that the covariance decreases, while error covariance matrices
associated with inactive sound sources should increase with time.

10.4 Audio-Visual Speaker Tracking

As mentioned previously, a speaker tracking system based purely on acoustic information
is only able to track a speaker when he actually speaks. If the acoustic observations are
supplemented with visual information, however, it becomes possible to track a speaker
even when he is silent.

An often-cited system for audio-visual source localization was proposed by Strobel et
al. (2001). The system we present here was first described by Gehrig et al. (2005). In the
latter algorithm, no explicit position estimates were made by the individual sensors, either
audio or video. Rather, as in the work of Welch and Bishop (1997), the observations
of the individual sensors were used to incrementally update the state of a KF. This
combined approach yielded a robust speaker tracking system that functioned reliably both
for segments wherein the speaker was silent, which would have been detrimental for
an audio-only tracker, and wherein many faces appeared, which would have confused a
video-only tracker. After testing the algorithm on a data set consisting of seminars held
by actual speakers, Gehrig et al. reported that the audio-visual tracker functioned better
than a speaker tracking system based either solely on audio or solely on video features.

In order to localize the speaker visually, Gehrig et al. minimized a squared-error crite-
rion much like that in (10.26). In this case, the difference between the position produced
by a face detector and the speaker’s predicted position in a video image was minimize.
This two-dimensional difference was calculated in the camera’s image plane. As shown
in Figure 10.4, the predicted speaker position x was projected onto the image plane I
of the camera at position t with focal length f. This resulted in the image point x̂. The
difference between x̂ and the position y returned by the face detector was then minimized.

The extrinsic parameters t and R define a camera’s translation and rotation with respect
to the global three-dimensional coordinate system. To project a point onto the image
plane, it was also necessary to have information about the camera’s intrinsic parameters:
the camera matrix P is determined by the focal length f , the sensor pixel sizes px and
py , and the principal point

[
cx cy 1

]T
according to (Pollefeys 2000)

P =
⎛
⎝f/px 0 cx

0 f/py cy

0 0 1

⎞
⎠ . (10.50)
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Figure 10.4 Back projection of the speaker’s position onto the image plane of a camera

Assuming a simple pinhole camera model, the position estimate x could be projected onto
the image plane using the projection equation ,

x =
⎛
⎝x1

x2

x3

⎞
⎠ = A(x − t), (10.51)

where, for the sake of efficiency,

A = PRT (10.52)

can be calculated in advance, as it is not changing. The two-dimensional projection point
on the image plane is then specified by

f (x) =
(

x̂1

x̂2

)
=
(

x1/x3

x2/x3

)
. (10.53)

As in (10.28) for the audio features, a linearization is required for this nonlinear pro-
jection function. Hence, we take the partial derivative of f (x) with respect to x

C = ∇xf (x) (10.54)

where

cmn = amn − a3nx̂m

x3
for 1 ≤ m ≤ 2, 1 ≤ n ≤ 3 (10.55)

and {amn} are the elements of A.
Face detectors used for visual speaker tracking can be constructed based on the concept

of boosted classifier cascades presented by Lienhart and Maydt (2002) and Jones and
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Viola (2003). In order to be able to detect faces from different views, two separate
cascades – one for frontal and one for profile faces – can be trained, thus covering a
range of ±90◦ horizontal head rotation. In order to reduce the rate of false detections,
an adaptive background model of the scene was maintained and detections that were not
supported by the foreground–background segmentation were ignored.

Performing face detection on an entire video image is computationally expensive. In
order to keep this computational expense within reason, each camera was first sent the
most recent position estimate from the KF. Thereafter, this three-dimensional position
estimate was projected onto the camera’s image plane, and the face detector was used to
search for a face only within a relatively small neighborhood about this point. If a face
was discovered within this region, the innovation vector, given by the difference between
the projected position estimate and the location of the detected face, was calculated and
returned to the KF. This two-dimensional innovation vector was then used to update the
three-dimensional speaker position.

As all video data arrived asynchronously, there was at most a two-dimensional inno-
vation vector available from a single camera to update the three-dimensional speaker
position at any given time instant. As noted by Welch and Bishop (1997), this implies
that the state of the KF was not observable on the basis of the data obtained from any
single video sensor. Nonetheless, the state of the KF could be updated from a single
observation. Moreover, the true state of the KF becomes observable when estimates from
all sensors, both audio and video, are sequentially combined, subject only to very mild
restrictions on the positions of the sensors with respect to the speaker and on the update
rate (Welch 1996).

10.5 Speaker Tracking with the Particle Filter

The first direct applications of Bayesian filtering techniques to the problem of acoustic
source localization without an intermediate position estimate were reported by Vermaak
and Blake (2001) and Ward and Williamson (2002). The material presented in this section
is taken largely from Ward et al. (2003), who formulated the speaker tracking problem
as such. Assuming that the data arriving at each of M sensors of a microphone array is
transformed into the frequency domain with a short-time Fourier transform, let

Yk(ω) �
[
Yk,1(ω) Yk,2(ω) · · · Yk,M(ω)

]T
(10.56)

denote the stacked vector of frequency domain samples at time k and angular frequency
ω. In the sequel, we will suppress the frequency variable ω when convenient. The vector
Yk(ω) is often referred to as the frequency domain snapshot . Moreover, let θ denote a
generic localization parameter and let h(θ , Yk) denote a generic localization function . In
Sections 10.5.1 and 10.5.2, we will consider two possible localization functions. We now
use the localization function to define the observation at time k,

yk(θ) � h(θ , Yk), (10.57)

and let y1:k(θ) denote all observations up to and including time k. In order to estimate
the speaker’s current position, Ward et al. (2003) proposed to use a PF, such as those
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Algorithm 10.1 Algorithm for speaker tracking with a particle filter

Form an initial set of particles {x(m)
0 ∀ m = 1, . . . , N} and give them uniform weights

{w(m)
0 = 1/N ∀ m = 1, . . . , N}. Then as each new frame of data is received:

1. Resample the particles from the previous frame {x(m)
k−1 ∀ m = 1, . . . , N} to form the

resampled set of particles {x̃(m)
k−1 ∀ i = 1, . . . , N}.

2. Predict the new set of particles {x(m)
k ∀ m = 1, . . . , N} by propagating the resampled

set {x(m)
k−1 ∀ m = 1, . . . , N} according to the source dynamics.

3. Transform the raw data into localization measurements through application of the
localization function:

yk(θ) = h(θ, Yk).

4. Form the likelihood function

p(yk|x) = F(yk, x).

5. Weight the new particles according to the likelihood function:

w
(m)
k = p(yk|x(m)

k ),

and normalize such that
∑

m w
(m)
k = 1.

6. Compute the current source location estimate x̂k as the weighted sum of the particle
locations

E{xk} =
N∑

m=1

w
(m)
k x(m)

k .

7. Store the particles and their respective weights {x(m)
k , w

(m)
k ∀ m = 1, . . . , N} for the

next iteration.

described in Section 4.4, to track the filtering density p(xk|y1:k). In principle, this is
achieved through the iterative application of two steps, namely, prediction (4.6) and
correction (4.7).

The only remaining element that must be specified for a complete speaker tracking
system based on the PF is a likelihood function , which is defined through the relation

p(yk|xk) � F(yk, xk).

With these definitions, the operation of the complete speaker tracking system can be
summarized as in Algorithm 10.1.
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10.5.1 Localization Based on Time Delays of Arrival

For speaker tracking based on TDOA information, the localization function corresponds
to (10.4), or one of the other methods for estimating TDOAs, mentioned in Section 10.1.
In order to estimate the filtering density p(xk|y1:k), a set {τ̂i,l}Ll=1 of possible time delays
for the ith microphone pair is determined by choosing the L largest peaks in (10.4). The
locations of these peaks on the time axis are, by assumption, distributed according to the
likelihood function, which in this case is defined as the Gaussian mixture model,

Fi(yt , xk) = w0 +
J∑

j=1

wj N (τ̂i,l; Ti(xk), σ
2),

where J is the number of mixture weights, wj is the weight of the j th mixture, and σ 2

is a predetermined observation variance. The predicted delay Ti(xk) is defined in (10.25).
The weight w0 < 1 is the probability that none of the observations corresponds to the
true source location. Under the assumption that the observations across all sensor pairs
are independent, the complete likelihood function can be expressed as

F(yt , xk) =
M∏
i=1

Fi(yt , xk).

10.5.2 Localization Based on Steered Beamformer Response Power

For localization based on steered beamformer response power (SBRP), the localization
function is defined as

f (x, Yk) �
∫

W(ω)

∣∣∣∣∣
M∑

m=1

Hm(x, ω) Ym(ω)

∣∣∣∣∣
2

dω

where

Hm(x, ω) = am ejω(|x−xm|−dref )/c

is the complex-valued beamformer weighting term on the mth sensor, with am ∈ R the
gain applied to the mth sensor output; xm is the sensor location; and dref is the distance to
some reference point, which is typically chosen as the center of the sensor array. Setting
αm = 1/M is equivalent to the delay-and-sum beamformer discussed in Section 13.1.3.
Chen et al. (2002) report that setting all αm = 1 works nearly as well as the optimal
solution, whereby αm is chosen according to the level of the signal at the mth sensor.

The position of the speaker is then determined according to

x̂k = argmaxx = f (x, Yk). (10.58)

This implies that a multidimensional search over possible speaker positions is required in
order to find the position with maximal steered response, which can potentially be very
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computationally demanding. Speaker position estimation based on SBRP, however, does
not require the estimation of intermediate time delays.

For SBRP-based speaker tracking, the likelihood function can be expressed as

Fi(yt , xk) = w0 +
J∑

j=1

wj N (xk; θ(j), σ 2),

where θ(j) is the j th potential speaker position returned by the localization function
(10.58).

10.6 Summary and Further Reading

In this chapter, we have introduced one of the principal supporting technologies required
for a complete DSR system, namely, algorithms for determining the physical positions
of one or more speakers in a room. Speaker localization and tracking – whether based
on acoustic features, video features, or both – are important technologies, because the
beamforming algorithms discussed in Chapter 13 all assume that the position of the
desired speaker is known . Moreover, the accuracy of a speaker tracking system has a
very significant influence on the recognition accuracy of the entire system.

A class of algorithms was developed wherein the position estimate is obtained from
the intersection of several spheres. The first algorithm in this class was proposed by
Schau and Robinson (1987), and later came to be known as spherical intersection. Per-
haps the best-known. algorithm from this class is the spherical interpolation method of
Smith and Abel (1987). Both methods provide closed-form estimates suitable for real-time
implementation. The latter method was recently extended by Huang et al. (2004).

Brandstein et al. (1997) proposed another closed-form approximation for a speaker’s
position known as linear intersection. Their algorithm proceeds by first calculating a
bearing line to the source for each pair of sensors. Thereafter, the point of nearest approach
is calculated for each pair of bearing lines, yielding a potential source location. The final
position estimate is obtained from a weighted average of these potential source locations.

The first application of Bayesian filtering techniques, namely, PFs, to the acoustic
speaker tracking problem was by Vermaak and Blake (2001), which was quickly fol-
lowed by Ward et al. (2003). Oddly enough, a variant of the more conventional extended
KF was not used for acoustically tracking single speakers until some time later by Klee et
al. (2005a), who found that the KF-based tracking approach described in Section 10.2 pro-
vided performance superior to the three conventional techniques described in Section 10.1.
The use of the EKF for audio-visual tracking was described in Strobel et al. (2001) and
Gehrig et al. (2005). The results obtained with the latter system are also described in
Section 14.6. As described in Section 14.5, the use of probabilistic data association filters
for tracking multiple simultaneous speakers was investigated by Gehrig et al. (2006).

A system for tracking varying numbers of speakers based on PFs was recently proposed
by Quinlan and Asano (2008). A combination of the EKF discussed in Section 10.3 with
the PF described in Section 10.5 has recently been proposed by Zhong and Hopgood
(2008). Other recent work in acoustic speaker tracking is by Cirillo et al. (2008). Brutti
et al. (2005) address a problem related to tracking a speaker’s position, namely, that of
determining the orientation of the speaker’s head.
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10.7 Principal Symbols

Symbol Description

� observation error covariance matrix
A prearray
B postarray
c speed of sound
dmn = Dm − Dn range difference between mth and nth microphones
Dn distance from speaker to nth microphone
Gk Kalman gain
Fk state transition matrix
Hk(x) observation functional
Kk filtered state estimation error covariance matrix
Kk|k−1 predicted state estimation error covariance matrix
mn position of nth microphone
M2 number of unique microphone pairs
M4 number of unique microphone quadruples
N total number of microphones
P camera matrix
Rn distance from origin to nth microphone
Rs distance from origin to speaker
Sk innovation covariance matrix
T (m1, m2, x) time delay of arrival between mth and nth microphones
Uk process noise

w
(m)
k weight of mth particle at kth time step

x position of speaker

x(m)
k mth particle at kth time step



11
Digital Filter Banks

As we will learn in Chapter 13, beamforming in the subband domain offers many advan-
tages in terms of computational complexity and speed of convergence with respect to
beamforming in the discrete-time domain. Hence, we are led to consider filter banks
(FBs), which provide the means for transforming an input signal into the subband domain,
and back again. As the transformation from time domain to the subband domain with M

subbands would entail an M-fold increase in the amount of data to be processed, we will
typically decimate the subband signals. Such decimation can lead to aliasing if care is
not taken in the design of the FB prototype.

The initial work on digital FBs was all but exclusively devoted to subband coding
applications (Jayant and Noll 1984). In such applications, the goal is not to alter the
contents of the individual subbands, but to digitally transmit or store them in such a
way as to achieve the maximum possible fidelity with the minimum number of bits.
Typically this entails allocating different numbers of bits to different subbands. There are
two important properties of any FB used for digital encoding of waveforms. The first
is perfect reconstruction (PR), which implies that the output of the FB is a (possibly)
delayed version of the input, and that the signal is neither modified nor distorted in
any other way. The second is maximal decimation , which implies that if a FB has M

subbands, the signals at the outputs of each of the M bands can be decimated by a factor
of M without losing the PR property. Clearly the requirement for maximal decimation
is directly related to the goal of obtaining the highest fidelity encoding with the fewest
possible bits.

Some time later it was realized that FBs were also potentially useful for adaptive
filtering applications (Haykin 2002). By this time, however, the design of digital FBs
was largely considered to be a “solved problem”. Hence, researchers in this area were
somewhat slow to realize that adaptive filtering imposed very different requirements on
a FB than subband coding. As a result, much of the important work on FB design for
adaptive filtering and beamforming applications has appeared only in the last several
years.

For these reasons, we will present here FB designs based largely on the work of De
Haan et al. (2003). For such designs, aliasing is not eliminated through cancellation.
Rather, the analysis and synthesis prototypes are designed so as to minimize a weighted

Distant Speech Recognition Matthias Wölfel and John McDonough
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combination of the residual aliasing distortion and the total response error of the FB. As
the subbands are then independent, the performance of the FB does not radically degrade
when different scale factors and phase shifts are applied to the subbands. In exchange
for this independence, however, it is necessary to give up the computational efficiency of
maximal decimation, as these designs are highly dependent on the use of oversampling
to reduce the residual aliasing distortion to an acceptable level.

In Section 11.1, we introduce the concepts and notation to be used in the balance of the
chapter. In particular, we describe the basic idea of modulating a single prototype in order
to obtain the impulse responses for an entire bank of filters. Section 11.2 describes how
the FBs described in the prior section can be efficiently implemented with the polyphase
representation. As a digital FB converts a single time series into the complex output of an
entire bank of filters, it produces a large increase in the data rate. Hence, the output of each
filter is typically first decimated by retaining only every Dth sample, then subsequently
expanded by inserting lengths of zeros. The effects of these operations in the frequency
domain are described in Section 11.3. Section 11.4 describes how the processing blocks
of the entire FB can be arranged such that all components run at their lowest possible
rate. In Section 11.5, we present the Nyquist(M) criterion, which dictates how a single
FB prototype can be designed in order to ensure that the sum of all modulated versions
thereof sum to a constant in the frequency domain. Having discussed the principles of
digital FBs, Sections 11.6 through 11.7.3 describe three prototype design techniques, while
Section 11.8 presents metrics comparing the performance of each of these designs.

11.1 Uniform Discrete Fourier Transform Filter Banks

Let us begin our discussion by formally defining a FB as a collection of M filters with a
common input and a common output. Such a system is shown in Figure 11.1. The set of
transfer functions {Hm(z)} comprise the analysis filter bank , which splits the input x[n]
into M subband signals {Xm[n]}M−1

m=0 . The set {Gm(z)} of transfer functions comprise the
synthesis filter bank , which recombines the M subband signals {Ym[n]}M−1

m=0 into a single
output x̂[n]. Each Ym[n] is obtained by multiplying Xm[n] with a complex constant, which
is determined with an adaptive filtering or beamforming operation. We consider then a
class of FBs wherein the impulse response of each filter is obtained by modulating a
prototype impulse response h0[n] according to

hm[n] = h0[n] ej2πnm/M ∀ m = 0, . . . , M − 1, (11.1)

H0(z)

H1(z)

HM−1(z)

X0[n]

X1[n]

XM-1[n]

x[n] G0(z)

G1(z)

GM− 1(z)

Y0[n]

Y1[n]

YM−1[n]

Analysis Filter Bank Synthesis Filter Bank

x[n]ˆ

+

+

Figure 11.1 Analysis and synthesis filter banks with individual impulse response {Hm(z)} and
{Gm(z)}, respectively
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which implies that the prototype h0[n] is modulated as discussed in Section 3.1.2 to obtain
the impulse responses hm[n] of all other filters. The similarity of (3.84) and (11.1) is
readily apparent; to make the two equivalent, we need only set h0[n] = w[−n]. Applying
the z-transform of both sides of (11.1) we obtain

Hm(z) � H0(zW
m
M), (11.2)

where WM = e−j2π/M is the Mth root of unity. Typically the subscript of WM will be
suppressed when it is clear from the context. Equation (11.2) implies that Hm(ejω) is a
shifted version of the frequency response of H0(e

jω) according to

Hm(ejω) = H0(e
j (ω−2πm/M)), (11.3)

which follows from (3.26). Likewise, the similarity of (3.85) and (11.2) is quite evident.
Making them equivalent requires only that we specify H0(z) = W(z−1).

Similarly, for the synthesis bank, we will assume that the impulse responses of the
individual filters are related by

gm[n] = g0[n] ej2πnm/M,

so that we can write

Gm(z) � G0(zW
m
M). (11.4)

A particularly simple prototype impulse response is given by

h0[n] =
{

1, 0 ≤ n ≤ M − 1,

0, otherwise,
(11.5)

or, in the z-transform domain,

H0(z) = 1 + z−1 + · · · + z−(M−1) = 1 − zM

1 − z
. (11.6)

The frequency response of the simple filter H0(z) can be obtained by substituting z = ejω

into the last equation in (11.6), then factoring the terms ejωM/2 and ejω/2 out of the
numerator and denominator, respectively. This provides

H0(e
jω) = sin(Mω/2)

sin(ω/2)
e−jω(M−1)/2, (11.7)

the magnitude of which is plotted in Figure 11.2. While this response is undoubtedly
lowpass in nature, the suppression in the stopband is poor in that the first sidelobe is
only 13 dB below the main lobe. We will shortly see how this stopband attenuation can
be improved by replacing the simple prototype in (11.5) with a prototype designed to
satisfy a number of criteria. In the meantime, we will demonstrate that the analysis bank
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Figure 11.2 Magnitude of the frequency response H0(e
jω) in (11.7)
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Figure 11.3 The uniform DFT filter bank

in Figure 11.1 can be implemented as shown in Figure 11.3, where W denotes the discrete
Fourier transform matrix , which is defined as

[W]mn � Wmn
M = ej2πmn/M, (11.8)

and W∗ denotes the inverse discrete Fourier transform matrix . To begin, let us define the
sequences si[n] = x[n − i] at the outputs of the delay chain of the analysis filter bank in
Figure 11.3. From the definition (11.8) of W, it then follows that

Xm[n] =
M−1∑
i=0

si[n] W−mi
M . (11.9)

Apart from a factor of M , we see that Xm[n] is the inverse discrete Fourier transform
(DFT) of si[n] over the time index i. Now the z-transform of Xm[n] can be expressed as

Xm(z) =
M−1∑
i=0

Si(z) W−mi =
M−1∑
i=0

z−i W−mi X(z) =
M−1∑
i=0

(
z Wm

)−i
X(z). (11.10)
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The first equation in (11.10) follows from (11.9) and the linearity of the z-transform.
The second equation follows from si[n] = x[n − i]. The final equality in (11.10) can be
rewritten as

Xm(z) = Hm(z) X(z),

where

Hm(z) =
M−1∑
i=0

(
zWm

)−i = H(zWm),

which is the desired result.
A FB in which the responses of the filters are related as in (11.2) and (11.4) is known

as a uniform DFT filter bank (Vaidyanathan 1993, sect. 4.1.2). A physical meaning can
readily be attached to the output Xm[n] of the individual filters. In light of (11.9), we
can, for fixed n, write

Xm[n + M − 1] =
M−1∑
i=0

x[n + M − 1 − i] W−mi = Wm

M−1∑
l=0

x[n + l] Wml, (11.11)

where the second equation follows from the change of variables l = M − 1 − i and the
fact that WM = 1. It is clear that Xm[n] is Wm times the mth point of the DFT of the
length-M sequence

x[n], x[n + 1], . . . , x[n + M − 1].

Thus, as was depicted in Figure 3.4, a stationary window w[m] is used to isolate a
segment of x[m], which has been shifted n samples to the left, for the calculation of
a M-point DFT. For the simple prototype in (11.6), the window would be rectangular.
Other windows could be used, however, to reduce the size of the large sidelobes present
in Figure 11.2. In this case, the window would be implemented as a set of unequal scale
factors applied to the outputs of the delay chain in Figure 11.3. Note that the nonzero
portion of w[m] may also be larger than M , in which case the windowed sequence
w[m] x[n + m] must be time-aliased prior to the inverse DFT. Such a filter bank design
is more useful for beamforming, which requires fine frequency resolution, as opposed to
automatic speech recognition, which requires minimal frequency resolution but relatively
good time resolution. As previously mentioned, frequency resolution can, in most cases,
only be increased at the expense of time resolution and vice versa. Finally, upon comparing
the definition (3.80) of the short-time Fourier transform with (11.11) after setting L = M ,
it becomes evident that

Xm[n + M − 1] = Wm Xm[n],

provided that w[n] in the former relation is rectangular. The last equation demonstrates
the equivalence of the short-time Fourier transform and the output of an uniform DFT
filter bank.
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11.2 Polyphase Implementation

The polyphase representation provides an important insight in that it simplifies many
important theoretical results and can be used to achieve an efficient implementation of
digital FBs. To begin the discussion of such an implementation, consider a filter

H(z) =
∞∑

n=−∞
h[n]z−n.

We can develop an equivalent representation by separating H(z) into odd and even com-
ponents, such that

H(z) =
∞∑

n=−∞
h[2n] z−2n

︸ ︷︷ ︸
E0(z2)

+z−1
∞∑

n=−∞
h[2n + 1] z−2n

︸ ︷︷ ︸
E1(z2)

,

where E0(z) and E1(z) are the Type 1 polyphase components . In a more general form,
we can decompose H(z) into M bands by writing

H(z) =
∞∑

n=−∞
h[nM] z−nM + z−1

∞∑
n=−∞

h[nM + 1] z−nM

· · · + z−(M−1)

∞∑
n=−∞

h[nM + M − 1] z−nM.

The latter is equivalent to the Type 1 polyphase representation,

H(z) =
M−1∑
m=0

z−mEm(zM) (11.12)

where

Em(z) �
∞∑

n=−∞
em[n] z−n,

with

em[n] � h[nM + m] ∀ 0 ≤ m ≤ M − 1.

A useful variation of (11.12) can be written as the Type 2 polyphase representation

H(z) =
M−1∑
m=0

z−(M−1−m)Rm(zM) (11.13)
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Figure 11.4 Polyphase implementation of the analysis and synthesis filter banks

where the Type 2 polyphase components Rm(z) are permutations of Em(z), such that
Rm(z) = EM−1−m(z) (Vaidyanathan 1993, sect. 4.3).

For a prototype H0(z) which has been decomposed into polyphase components as in
(11.12), the response (11.2) of the mth filter can be expressed as

Hm(z) = H0(zW
m) =

M−1∑
l=0

(z−1W−m)l El(z
M), (11.14)

which holds because (zWm)M = zM . The output of Hm(z) can then be expressed as

Xm(z) = Hm(z) X(z) =
M−1∑
l=0

W−lm
(
z−l El(z

M) X(z)
)
,

which implies the analysis FB can be implemented as shown on the left side of Figure 11.4.
Similar development can be used to demonstrate that the synthesis bank can be imple-
mented as shown on the right side of Figure 11.4.

11.3 Decimation and Expansion

Having defined the modulated analysis and synthesis FBs, we now introduce two all
important operations and consider their effects in the frequency domain. The first operation
is that of decimation. An M-fold decimator with input x[n] has output

yD[n] = x[nM],

for integer M . In the frequency domain, the output of the decimator can be expressed as

YD(ejω) = 1

M

M−1∑
m=0

X(ej(ω−2πm)/M), (11.15)
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as we now show. The z-transform of yD[n] can be written as

YD(z) =
∞∑

n=−∞
yD[n] z−n =

∞∑
n=−∞

x[nM] z−n.

We define the intermediate sequence

x1[n] =
{

x[n], n = multiple of M ,

0, otherwise,
(11.16)

so that yD[n] = x[nM] = x1[nM]. Then

YD(z) =
∞∑

n=−∞
x1[nM] z−n =

∞∑
m=−∞

x1[m] z−m/M,

which holds because x1[n] is zero whenever n is other than a multiple of M . Hence,

YD(z) = X1(z
1/M). (11.17)

Now we need only express X1(z) in terms of X(z). Note that (11.16) can be rewritten as

x1[n] = CM [n] x[n], (11.18)

where CM [n] is the comb sequence defined as

CM [n] =
{

1, n = multiple of M ,

0, otherwise.

Equation (3.59) indicates that the comb sequence can then be expressed as

CM [n] = 1

M

M−1∑
m=0

W−mn
M . (11.19)

Substituting (11.19) into (11.18) yields

X1(z) =
∞∑

n=−∞
x1[n] z−n =

∞∑
n=−∞

(
1

M

M−1∑
m=0

W−mn
M

)
x[n] z−n.

Regrouping terms on the right-hand side of the last equation, we find,

X1(z) = 1

M

M−1∑
m=0

∞∑
n=−∞

x[n] W−mn z−n = 1

M

M−1∑
m=0

∞∑
n=−∞

x[n] (zWm)−n.
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The inner summation above is equal to X(zWm) so that from (11.17),

YD(z) = 1

M

M−1∑
m=0

X(z1/M Wm), (11.20)

which is clearly equivalent to (11.15) when z is replaced by ejω.
The effect of the decimator in the frequency domain, which we now summarize, is

illustrated in Figure 11.5. Firstly, the decimator stretches the original spectrum X(ejω)

by a factor of M to form X(ejω/M). Secondly, M − 1 copies of the stretched spectrum
are created by shifting X(ejω/M) by increments of 2π . Then these shifted versions of the
spectrum are summed together and divided by M .

An L–fold expander takes as input x[n]

yE[n] =
{

x[n/L], if n is an integer-multiple of L,

0, otherwise,
(11.21)

2π 4π 6π 8π0−8π −6π −4π −2π

Shifted Copy of the Stretched Spectrum

2π 4π 6π 8π0−8π −6π −4π −2π

Shifted Copy of the Stretched Spectrum

X(e j(ω−4π)/3)

2π 4π 6π 8π0−8π −4π −2π

Stretched Spectrum

X(e j(ω−2π)/3)

2π 4π 6π 8π0−8π −6π −4π −2π

Orignial Spectrum
X(e jω)

X(e jω/3)

2π 4π 6π 8π0−8π −6π −4π −2π

Sum of Stretched Spectrum and Shifted Copies

3YD(e jω)

−6π

Figure 11.5 Effect of decimation in the frequency domain
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Figure 11.6 Effect of expansion in the frequency domain

for integer L. We will now analyze the effects of expansion in the frequency domain.
Based on (11.21), we can write

YE(z) =
∞∑

n=−∞
yE[n] z−n =

∑
n=multiple of L

yE[n] z−n (11.22)

=
∞∑

m=−∞
yE[mL] z−mL =

∞∑
m=−∞

x[m] z−mL. (11.23)

The last equality clearly implies

YE(z) = X(zL). (11.24)

The effect of the expander in the frequency domain is illustrated in Figure 11.6. From the
figure it is clear that the expander simply scales the frequency axis, thereby causing the
images, which were previously centered at ω = 0, ±2π,±4π, . . ., to move down within
the range −π ≤ ω < π .

11.4 Noble Identities

Figure 11.7 depicts the noble identities in schematic form. As we will shortly learn, these
identities are very useful for positioning the decimation and expansion blocks of a FB
such that all components run at the lowest possible rate. To prove these identities, we

M

G(z) LL

M

G(zL)

G(zM)x[n]

x[n]

G(z) x[n]

x[n]

y1[n]

y3[n]

y2[n]

y4[n]

Identity 2

Identity 1
y2[n]

y4[n]y3[n]

y1[n]
≡

≡

Figure 11.7 The noble identities for multirate systems
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begin by defining y′
2[n] ↔ Y ′

2(z) as the output of the G(zM) block on the right-hand side
of Identity 1 in Figure 11.7. We can write

Y ′
2(z) = G(zM)X(z).

Then based on (11.20),

Y2(z) = 1

M

M−1∑
m=0

Y ′
2(z

1/M Wm) = 1

M

M−1∑
m=0

G((z1/M Wm)M) X(z1/M Wm)

= G(z) · 1

M

M−1∑
m=0

X(z1/M Wm), (11.25)

where the final equality follows from WmM = 1. Comparing (11.20) and (11.25), it
becomes evident that y1[n] ↔ Y1(z) is equivalent to y2[n] ↔ Y2(z), thereby completing
the proof of Identity 1.

Now let y′
4[n] ↔ Y ′

4(z) denote the output of the expansion block on the right-hand side
of Identity 2, whereupon it follows

Y4(z) = G(zL) Y ′
4(z) = G(zL) X(zL), (11.26)

where the last expression on the right-hand side of (11.26) follows from (11.24). From the
last expression, it is clear that y3[n] ↔ Y3(e

jω) is equivalent to y4[n] ↔ Y4(e
jω), thereby

completing the proof.
Without further modification, an analysis bank with M subbands such as that shown

in Figure 11.4 would represent an M-fold increase in the data rate. Hence, as mentioned
previously the output of the analysis bank is typically decimated by some factor D. Were
the decimation applied only to the subband outputs, the data rate of each of the polyphase
filters would still be equivalent to the input rate of the entire system. To reduce the
amount of computation, the first noble identity can be used to push the decimation block
all the way to left in the analysis bank, so that each polyphase component runs at the rate
M/D. To reconstruct the signal in the synthesis bank, an expansion block is applied to
the subband samples from the analysis blank. In order to minimize the data rate in this
case, the second noble identity is used to push the expansion block all the way to the
right. The resulting analysis and synthesis banks are show in Figure 11.8.

11.5 Nyquist(M) Filters

Suppose that a filter function H(z) has been represented in Type 1 polyphase form, and
the zeroth polyphase component is constant, such that

H(z) = c + z−1 E1(z
M) + · · · + z−(M−1) EM−1(z

M). (11.27)
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Analysis Filter Bank

X0[n]

X1[n]

XM−1[n]
EM−1(zM/D)

E0(zM/D)

E1(zM/D)z−1 z−1

D

D

Dx[n]

W*

Synthesis Filter Bank

RM−1(zM/D)

R0(zM/D)

R1(zM/D)

W

D

D

D

Y0[n]

Y1[n]

YM−1[n]
+z−1 x̂[n]

Figure 11.8 Analysis and synthesis banks after pushing the decimation and expansion blocks all
the way to the left or right, respectively

A filter with this property is said to be a Nyquist(M) or Mth band filter (Vaidyanathan
1993, sect. 4.6.1), and its impulse response clearly satisfies

h[Mn] =
{

c, n = 0,

0, otherwise.
(11.28)

The definition in (11.27) can be generalized by assuming that

H(z) = cz−mdM + z−1 E1(z
M) + · · · + z−(M−1) EM−1(z

M), (11.29)

in which case, the impulse response of H(z) must then satisfy

h[Mn] =
{

c, n = md,

0, otherwise
(11.30)

where md is the input delay.
As shown in Section B.14, if H(z) satisfies (11.27) with c = 1/M , then

M−1∑
m=0

H(zWm
M) = Mc = 1, (11.31)

where WM = e−j2π/M , as before. Hence, all M uniformly shifted versions of H(ejω) add
up to a constant. Similarly, if H(z) satisfies (11.29) then

M−1∑
m=0

H(zWm
M) = z−mdM, (11.32)

in which case, in the absence of decimation, the output of analysis FB would be equivalent
to the input delayed by mdM samples.
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11.6 Filter Bank Design of De Haan et al.

This section considers the design technique of De Haan, which is a typical example
of a “late” FB design. In this method, a separate analysis and synthesis prototype are
designed so as to minimize a weighted combination of the total response error and aliasing
distortion.

Figure 11.9 shows a schematic of a direct form implementation of uniform DFT
analysis and synthesis filter banks. The outputs Vm(z) of the uniform analysis filters
can be expressed as

Vm(z) = Hm(z)X(z) = H(zWm
M) X(z) ∀ m = 0, . . . ,M − 1.

As discussed in Section 11.3, the decimators then expand and copy the output of the
synthesis filters according to

Xm(z) = 1

D

D−1∑
d=0

Vm(z1/DWd
D) = 1

D

D−1∑
d=0

H(z1/DWm
MWd

D)X(z1/DWd
D). (11.33)

The last equation indicates that Xm(z) consists of the sum of a stretched output of the
mth FB and D − 1 aliasing terms.

At this point, the “fixed” subband weights Fm can be applied to the decimated signals
to achieve the desired adaptive filtering effect:

Ym(z) = FmXm(z). (11.34)

The expanders then compress the signals Ym(z) according to

Um(z) = Ym(zD) = 1

D
Fm

D−1∑
d=0

H(zWm
MWd

D)X(zWd
D). (11.35)

In the last step, the signals Um(z) are processed by the synthesis filters Gm(z) in order to
suppress the spectral images created by aliasing, and the outputs of the synthesis filters

F0(z) G0(z)
V0(z) X0(z) Y0(z) U0(z)

F1(z)H1(z) G1(z)
V1(z) X1(z) Y1(z) U1(z)

X(z)

+

D D

D

D

D

D Y(z)

H0(z)

HM−1(z) FM−1(z)

VM−1(z) XM−1(z) YM−1(z) UM−1(z)

GM−1(z) +

Figure 11.9 Schematic of a direct form implementation of uniform DFT analysis and synthesis
filter banks
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are summed together

Y (z) =
M−1∑
m=0

Um(z) Gm(z). (11.36)

Then the final relation between input and output can be expressed as

Y (z) = 1

D

D−1∑
d=0

X(zWd
D)

M−1∑
m=0

Fm H(zWm
MWd

D)G(zWm
M). (11.37)

Upon defining

Am,d(z) � 1

D
Fm H(zWm

MWd
D) G(zWm

M), (11.38)

the output relation (11.37) can be written more conveniently as

Y (z) =
D−1∑
d=0

Ad(z) X(zWd
D), (11.39)

where

Ad(z) �
M−1∑
m=0

Am,d(z). (11.40)

Note that the transfer function A0(z) produces the desired signal, while the remaining
transfer functions Ad(z) ∀ d = 1, . . . ,D − 1 give rise to residual aliasing in the output
signal.

11.6.1 Analysis Prototype Design

To design a suitable prototype for the passband, a number of approaches might be
adopted. One possibility would be to specify some desirable behavior in the passband
�p = [−ωp, ωp] for some ωp > 0. For example, we might define the desired passband
frequency response as constant in magnitude with a linear phase delay:

Hd(e
jω) = e−jωτH for ω ∈ �p, (11.41)

where τH is the delay in samples introduced by the analysis bank. If a relation such as
(11.41) were to hold also for the response of the entire FB, then the output of the FB, in
the absence of aliasing distortion, would simply be a delayed version of the input. In a
popular PR design (Vaidyanathan 1993, sect. 8), a para-unitary constraint is imposed on
the filter prototype through the imposition of a lattice structure on its components. This
para-unitary constraint ensures that the FB will have the desired PR property. Subject to



Digital Filter Banks 373

this PR constraint, the energy in the stopband of the prototype is minimized in order to
provide good frequency resolution.

The design method of De Haan et al. (2003) begins with the specification of a desired
response as in (11.41), then defines the passband response error ,

εp � 1

2ωp

∫ ωp

−ωp

∣∣H(ejω) − Hd(e
jω)

∣∣2
dω. (11.42)

Then, instead of minimizing the energy of the filter prototype in the stopband, De Haan
et al. sought to directly minimize the inband-aliasing distortion , defined as

εi � 1

2πD2

∫ π

−π

D−1∑
d=1

∣∣H(ejω/DWd
D)

∣∣2
dω. (11.43)

The design of the analysis prototype h[n] is then based on minimizing the objective
function

εh � εp + εi. (11.44)

By defining, respectively, the stacked prototype and stacked delay chain

h �
[
h[0] h[1] · · · h[Lh − 1]

]T
, (11.45)

φh(z) �
[
1 z−1 · · · z−(Lh−1)

]T
, (11.46)

where Lh is the length of h, it can be readily demonstrated that the passband response
error can be expressed as (De Haan 2001)

εp = hT Ah − 2hT b + 1, (11.47)

where

A = 1

2ωp

∫ ωp

−ωp

φh(e
jω)φH

h (ejω)dω, (11.48)

b = 1

2ωp

∫ ωp

−ωp

Re
{
ejωτH φh(e

jω)
}
dω. (11.49)

Typically Lh = mhM for integer mh > 1. Based on (11.48–11.49), the components of A
and b can be expressed as

Am,l = sinc(ωp(l − m)), (11.50)

bm = sinc(ωp(τH − m)), (11.51)

where

sinc x = sin x

x
.



374 Distant Speech Recognition

Equations (11.50–11.51) can be readily verified, as we now demonstrate. Let us rewrite
(11.42) as

εp = 1

2ωp

∫ ωp

−ωp

{
H(ejω)H(e−jω) − H(ejω) ejωτH − H(e−jω) e−jωτH + 1

}
dω

= 1

2ωp

∫ ωp

−ωp

{
hT φ(ejω) φT (e−jω) h − 2 Re

[
hT φ(ejω) ejωτH

] + 1
}
dω,

from which (11.47–11.49) follow. The (m, n)th component of A is readily calculated as

Am,n = 1

2ωp

∫ ωp

−ωp

ejω(n−m)dω = 1

2ωp

1

j (n − m)

[
ejωp(n−m) − e−jωp(n−m)

]

= 1

2ωp

1

j (n − m)
· 2j sin ωp(n − m). (11.52)

Then (11.50) follows readily from (11.52). The nth component of b is also straightforward
to calculate as

bn = 1

2ωp

∫ ωp

−ωp

ejω(τH −n)dω = 1

2ωp

1

j (τH − n)
· 2j sin ωp(τH − n),

from which (11.51) follows.
Similarly, the inband aliasing term (11.43) can be expressed as

εi = 1

2π

D−1∑
d=1

hT

[∫ π

−π

φh
(
ejω/DWd

D

)
φH

h

(
ejω/DWd

D

)
dω

]
h. (11.53)

The last equation can be rewritten as

εi = hT C h, (11.54)

where

C = 1

2π

D−1∑
d=1

∫ π

−π

φh
(
ejω/DWd

D

)
φH

h

(
ejω/DWd

D

)
dω. (11.55)

The components of C can then be expressed as

Cm,l =
ϕ[l − m] sin

(
π(l−m)

D

)
π(l − m)/D

, (11.56)

where

ϕ[m] = D

∞∑
n=−∞

δ[m − nD] − 1. (11.57)
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Combining all terms above, De Haan et al. (2003) then minimized the objective function

εh = εp + εi = hT (A + C)h − 2hT b + 1. (11.58)

The optimal prototype h must thus satisfy

(A + C)h = b. (11.59)

11.6.2 Synthesis Prototype Design

We now derive the optimal synthesis prototype. Let us denote the stacked synthesis
prototype as

g = [
g[0] g[1] · · · g[Lg − 1]

]T
,

where Lg is the length of g. As in the case of the analysis prototype, the length of the
synthesis prototype is chosen to be an integer multiple mg of M , such that Lg = mgM .
In order to design the synthesis prototype, De Haan et al. (2003) took as an objective
function

εg(h) = εt(h) + εr(h), (11.60)

where the total response error is defined as

εt(h) � 1

2π

∫ π

−π

∣∣A0(e
jω) − e−jωτT

∣∣2
dω, (11.61)

the total analysis–synthesis FB delay is denoted as τT, and the residual aliasing distortion
is

εr(h) � 1

2π

D−1∑
d=1

M−1∑
m=0

∫ π

−π

∣∣Am,d(e
jω)

∣∣2
dω. (11.62)

Note the functional dependence of (11.60–11.62) on the analysis prototype h. Through
manipulations similar to those used in deriving the quadratic objective criterion for the
analysis FB, it can be shown that

εt(h) = gT Eg − 2gT f + 1, (11.63)

where the components of E and f are given by

Em,l = M2

D2

∞∑
n=−∞

h∗[nM − m] h[nM − l], (11.64)

fm = M

D
h[τT − m]. (11.65)
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Similarly, the quadratic form for the residual aliasing distortion is

εr(h) = gT P g, (11.66)

where the components of P are given by

Pm,l = M

D2

∞∑
n=−∞

h∗[n + l] h[n + m] ϕ[m − l], (11.67)

ϕ[m] = D

∞∑
n=−∞

δ[m − nD] − 1. (11.68)

De Haan et al. (2003) introduce a weighting factor v to emphasize either the total response
error (0 < v < 1) or residual aliasing distortion (v > 1), such that the final error metric
is given by

εg(h) = εt(h) + vεr(h) = gT (E + vP)g − 2gT f + 1. (11.69)

In this case, the optimal synthesis prototype g must satisfy

(E + vP)g = f. (11.70)

11.7 Filter Bank Design with the Nyquist(M) Criterion

We now present a variation on the FB design of De Haan et al. Consider again the
Nyquist(M) filters discussed in Section 11.5. A moment’s thought will reveal that (11.32)
represents a much stronger condition than that aimed at by the minimization of (11.42) or
(11.61), inasmuch as (11.32) implies that the response error will vanish, not just for the
passband of a single filter, but for the entire working spectrum, including the transition
bands between the passbands of adjacent filters. Hence, we are led to consider replacing
the terms εp and εt(h) in the optimization criteria (11.44) and (11.60), respectively, with
constraints of the form (11.30). This section presents the details of such an approach.

11.7.1 Analysis Prototype Design

Under the constraint (11.30), design of the optimal analysis prototype h reduces to mini-
mizing the inband aliasing distortion (11.54). To exclude the trivial solution h = 0 from
this optimization problem, we impose the additional constraint

hT h = 1, (11.71)

which is readily achieved through the method of undetermined Lagrange multipliers . We
posit the modified objective function

f (h) = hT Ch + λ(hT h − 1), (11.72)
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where λ is a Lagrange multiplier . Upon setting

∇hf (h) = 0,

we find

C h + λh = 0,

which implies

C h = −λh. (11.73)

Hence, h is clearly an eigenvector of C. Moreover, in order to ensure that h minimizes
(11.54), it must be that eigenvector associated with the smallest eigenvalue of C. Note
that, in order to ensure that h satisfies either (11.28) or (11.30), we must delete those
rows and columns of C corresponding to the components of h that are identically zero.
We then solve the eigenvalue problem (11.73) for the remaining components of h, and
finally reassemble the complete prototype by appropriately concatenating the zero and
nonzero components. This is similar to the construction of the eigenfilter described by
Vaidyanathan (1993, sect. 4.6.1).

11.7.2 Synthesis Prototype Design

As with the analysis prototype, we can now impose the Nyquist(M) constraint on the
complete analysis–synthesis prototype (h ∗ g)[n] such that

(h ∗ g)[Mn] =
{

c, n = md,

0, otherwise,
(11.74)

in which case the total response error (11.61) must be identically equal to zero. Subject to
this constraint, we wish to minimize the residual aliasing distortion (11.69). Satisfaction
of (11.74) clearly reduces to a set of linear constraints of the form

gT hm =
{

c, for m = md,

0, otherwise,
∀ m = −m + 1, . . . , m − 1,

where hm is obtained by shifting a time-reversed version of h by mM samples and padding
with zeros as needed. All such constraints can be expressed in matrix form as

gT H = cT , (11.75)

where

H = [
h−md+1 · · · hmd · · · hmd−1

]
,

cT = [
0 · · · c · · · 0

]
.
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For the constrained minimization problem at hand, we again draw upon the method of
undetermined Lagrange multipliers and formulate the objective function

f (g) = gT Pg + (gT H − cT )λ (11.76)

where λ = [
λ−md+1 · · · λmd · · · λmd−1

]T
. Then setting

∇gf (g) = 2P g + Hλ = 0, (11.77)

we find

g = −1

2
P−1Hλ. (11.78)

The values of the multipliers {λm} can be determined by substituting (11.78) into (11.75)
and solving, such that

λ = −2
(
HH P−1H

)−1
c. (11.79)

By substituting (11.79) into (11.78), we finally obtain a synthesis prototype

g = P−1H
(
HT P−1H

)−1
c. (11.80)

11.7.3 Alternative Design

The optimal prototypes can be obtained by solving (11.73) and (11.80) if the matrices
C and P are not singular. As the decimation factor D is reduced to control residual
aliasing distortion or as the lengths of the analysis and synthesis prototypes are increased,
however, it can happen that C and P become very ill-conditioned, to the point where they
are numerically rank deficient. If C is in fact singular, we can define its null space Cnull,
which consists of column vectors q ∈ R

n such that Cq = 0. In order to obtain a basis
for the null space, the singular value decomposition (SVD) (Golub and Van Loan 1996b,
sect. 2.5.3) can be used. Under the SVD, C is decomposed as

C = U�VT , (11.81)

where U and V are orthonormal matrices, and � is diagonal. The bases of the null space
of C can be obtained from the columns of U, corresponding to the singular values below
a given threshold. Such a threshold can be chosen according to

σ = max(m, n) × max
i

(σi) × ε,

where m and n, respectively, are the number of rows and columns of C, σi is the ith
singular value, and ε is the machine-dependent floating-point precision.

Obviously, the inband-aliasing distortion can be driven to null by an analysis prototype
which is a linear combination of the basis vectors of the null space h = Cnull x. The free
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parameters x are determined so as to minimize the passband response error (11.47). Such
a solution can be expressed as

h = Cnull(CT
nullACnull)

−1CT
nullb, (11.82)

where the rows and columns of Cnull, A and b, corresponding to the components of h that
are identically zero, are deleted, and h is reassembled in order to maintain the Nyquist(M)
constraint, as before.

For the synthesis prototype design, we can also eliminate residual aliasing distortion
(11.66) in a similar manner. Defining the null space of P to be Pnull, we can express
the synthesis prototype as g = Pnully. Then by substituting this solution into (11.75), we
obtain

y = (HT Pnull)
+c, (11.83)

where (·)+ indicates the pseudo-inverse of the argument. If the dimensionality of Pnull is
greater than or equal to 2m − 1, we can find a synthesis prototype g = Pnully that achieves
zero total response error and zero residual aliasing distortion. Finally, the synthesis pro-
totype can be expressed as a function of the null space Pnull, such that

g = Pnull(HT Pnull)
+c. (11.84)

In practice, as the inband-aliasing distortion decreases, P becomes practically singular.
Hence, with the method described here, both inband and residual aliasing distortion can
be eliminated.

11.8 Quality Assessment of Filter Bank Prototypes

In this section, we will assess the quality of the prototypes obtained using the De Haan and
Nyquist(M) methods. We will evaluate these designs primarily in terms of three figures of
merit, namely, stopband suppression, response error and aliasing distortion, both inband
and residual. We will also present other figures indicating the conditioning of the matrices
used in calculating the prototypes.

As we will ultimately use the filter banks designed here for a beamforming application,
the outputs of all subbands should be statistically independent. Hence, stopband attenu-
ation is an important indicator of the quality of a prototype, as statistical independence
increases with stopband attenuation. Figures 11.10, 11.11 and 11.12 show the frequency
responses of the analysis, synthesis and composite analysis–synthesis prototypes, respec-
tively. Each figure presents the frequency responses of the cosine modulated PR FB
(Vaidyanathan 1993, sect. 8), de Haan FB and the Nyquist(M) FB, where the number of
subbands is M = 8 and the decimation factor is D = 4. From these figures, it is clear
that the FBs designed with the Nyquist(M) constraint provide the best suppression of
stopband energy, followed by de Haan prototype and then the PR filter prototype. As
previously mentioned, when arbitrary magnitude scalings and phase shifts are applied to
the output of each subband in the course of beamforming, the cosine modulated design
no longer retains the PR property. Hence, it is necessary to minimize the stopband energy
and aliasing error of each filter individually.
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Figure 11.10 Frequency response of analysis filter bank prototypes with M = 8 subbands, deci-
mation factor D = 4 and filter length Lh = 16
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Figure 11.11 Frequency response of synthesis filter bank prototypes with M = 8 subbands, dec-
imation factor D = 4, and filter length Lh = Lg = 16

Other important figures of merit for assessing the quality of filter bank prototypes are
inband and residual aliasing distortion (De Haan 2001). Moreover, it is useful to know the
relationship between the aliasing distortion and the number M of subbands, as this can
be helpful for designing a subband domain beamforming system, as described in Chapter
13. Figure 11.13 shows the inband and residual aliasing distortions plotted against the
number of subbands M , where the decimation factor is D = M/2. Decreasing the inband
aliasing distortion reduces the residual aliasing distortion. It is thus important to suppress
the inband aliasing distortion. It is apparent from the figure that the Nyquist(M) filter
prototype provides smaller inband aliasing distortion than that designed with de Haan’s
algorithm. This is quite likely due to the fact that the Nyquist(M) design algorithm
minimizes the inband aliasing distortion directly, while de Haan’s method minimizes a
linear combination of the passband response error and inband aliasing distortion. It is
also apparent from the figure that the Nyquist(M) FB can maintain the residual aliasing
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Figure 11.12 Frequency response of composite analysis–synthesis filter bank prototypes with
M = 8 subbands, decimation factor D = 4 and filter length Lh = Lg = 16
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Figure 11.13 Inband εi and residual εr aliasing distortion as a function of the number M of
subbands for the Nyquist(M) and De Haan filter banks, where the filter length is set to Lh = Lg =
2M

distortion at a much lower level than the conventional method. Moreover, the figure indi-
cates that the residual aliasing distortion of the Nyquist(M) FB decreases monotonically
with an increasing number of subbands M , while the residual aliasing distortion of the de
Haan FB is more or less insensitive to the number of subbands. Once more, De Haan’s
algorithm minimizes a linear combination of the total response error and residual aliasing
distortion (11.62). Hence, the additional term of the total response error εt(h) prevents
the residual aliasing error εr(h) from being perfectly suppressed. On the other hand, in
the design technique proposed in Kumatani et al. (2008d), only the residual aliasing dis-
tortion is minimized, while zero total response error is maintained through the application
of a constraint. As a result, the residual aliasing distortion of the Nyquist(M) prototype
decreases monotonically as M increases.
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Figure 11.14 Inband εp and residual εg(h) aliasing distortion as a function of decimation factor
D. The number of subbands is M = 256 (gray) or M = 512 (black) and the filter lengths are
Lh = Lg = 2M

The aliasing errors can be also reduced by decreasing the decimation factor D, although
this increases the computational complexity associated with adaptive filtering or beam-
forming. Figure 11.14 presents the inband and residual aliasing distortions as a function
of decimation factor D for both the de Haan and the Nyquist(M) FBs, where the number
of subbands is either M = 256 or 512, and the filter lengths are Lh = Lg = 2M . In
designing the de Haan FBs, the weighting factor in (11.70) was v = 100.0. It is clear
from the figure that the Nyquist(M) design has lower aliasing distortion than the de Haan
design in most cases.

In calculating the inband aliasing distortion for a given decimation factor D, Kumatani
et al. (2008d) observed that the matrix C became singular when the number of subbands
and the decimation factor were set to M = 256 and D ≤ 32 or when M = 512 and D ≤ 64.
In such cases, Kumatani et al. computed the nullspace of C and then used the alternative
solution for the design of the analysis and synthesis prototypes instead of that based on
the eigendecomposition. Due to this necessity of using the alternative design method, it
is important to know when the matrices C and P in (11.56) and (11.67), respectively, are
ill-conditioned or numerically singular. A matrix C can always be represented with the
singular value decomposition

C = U�VT ,

where both U and V are unitary matrices, and � is a diagonal matrix. The singular values
are to be found on the main diagonal of �, typically sorted from highest to lowest. The
condition number of C is then defined as the ratio of the largest to the smallest singular
values.

The logarithms of the condition numbers of C and P are plotted in Figure 11.15 for
M = 512 and Lh = Lg = 2M . Practically speaking, a matrix is ill-conditioned when its
condition number approaches the reciprocal of the floating point precision of the machine
used for the calculations. The latter is shown as the threshold in Figure 11.15. As indicated
in the figure, the conditioning degrades with decreasing decimation factor. The condition
numbers reach the threshold of machine precision for D ≤ 64.
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One might intuitively consider that the residual aliasing distortion would decrease
monotonically with decreasing decimation factor. Figure 11.14 shows, however, that the
residual aliasing distortion of de Haan’s FB has a peak at D = M/2. In order to investigate
this phenomenon further, Kumatani et al. calculated the residual aliasing distortions with
D = 256 and D = 512. Figure 11.16 shows the residual aliasing distortions as a function
of the weighting factor v in (11.70). It is apparent from the figure that the residual aliasing
distortion of D = 512 is smaller than that of D = 256 in the case of v ≥ 100.0.

The total response errors as a function of the weighting factor v are also plotted in
Figure 11.16. It is clear from the figure that the residual aliasing distortion can be reduced
by setting a large weighting factor v, but only at the expense of the total response error.
As stated previously, the total response error is zero in the Nyquist(M) filter bank.
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11.9 Summary and Further Reading

In this chapter we have discussed digital FBs, which are arrays of bandpass filters that
separate an input signal into many narrowband components. A very good if somewhat
dated reference for the theory and design of digital filter banks is Vaidyanathan (1993),
which describes clearly with many examples the terms and concepts necessary for the
comprehension of the vast majority of the FB literature. Vaidyanathan (1993, sect. 11)
also describes the relationship between digital FBs and wavelets. A useful summary of
more recent work in FB design and its application to audio coding is presented by Schuler
(2004). Unfortunately, both of the summaries mentioned concentrate all but exclusively on
maximally decimated FB designs which achieve perfect reconstruction through the process
of aliasing cancellation. As mentioned throughout this chapter, while such designs are ideal
for subband coding applications, they are poorly suited for beamforming and adaptive
filtering. Aliasing cancellation functions through the design of a FB prototype such that
the aliasing that is perforce present in one subband is cancelled by the aliasing present
in all other subbands. Hence, the subbands are not truly independent of one another. In
particular, if arbitrary scale factors are applied to the samples of each subband, or, even
worse, if some subbands are suppressed entirely, the aliasing cancellation effect will be
impaired or destroyed, and strong aliasing components will be present in the resynthesized
output of the FB. De Haan (2001) and De Haan et al. (2003) address FB design particularly
for adaptive filtering, as opposed to subband coding, applications. Kumatani et al. (2008d)
presented a variation of the de Haan filter bank with better characteristics in terms of
total response error and residual aliasing distortion. The essential points of De Haan
et al. (2003) were presented in Section 11.6, while those of Kumatani et al. (2008d) were
presented in Sections 11.7 and 11.8.

11.10 Principal Symbols

Symbol Description

εi inband aliasing distortion
εp passband response error
εr residual aliasing distortion
εt total response error
φh delay chain
ω angle frequency
�p passband
A matrix to calculate passband response error
b vector to calculate passband response error
C matrix to calculate inband aliasing error
D decimation factor
g uniform DFT filter bank synthesis prototype
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Symbol Description

Gm(ejω) frequency response of mth synthesis filter
h[n] impulse response
h uniform DFT filter bank analysis prototype
Hm(ejω) frequency response of mth analysis filter
Hd(e

jω) desired passband frequency response
k frame index
m subband index
md processing delay
M number of subbands
n sample index
P matrix to calculate residual aliasing error
T sampling interval
T {·} transformation operator
u[n] step sequence
w[n] window function
WN = e−j2π/N N th root of unity
x, x[n] input signal, input sequence
y, y[n] output signal, output sequence
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Blind Source Separation

Blind source separation (BSS) is a term used to describe the first class of techniques
by which signals from multiple sensors may be combined into one signal for speech
recognition or enhancement. The source separation in BSS alludes to the fact that two
or more sources are typically mixed in the signals reaching the several microphones. For
our purposes, we will assume that at least one of these mixed sources is the desired
speech, which is to be separated from the other sources, noise, and/or interference, then
recognized automatically. This class of methods is known as blind because neither the
relative positions of the sensors, nor the positions of the sources are assumed to be known.

We will define independent component analysis (ICA) as a subcategory of BSS which
attempts to separate different sources based only on their statistical characteristics. As
discussed in Section 12.2.2, separating signals using only knowledge of their statistics
is possible only for non-Gaussian signals; hence, the primary assumption of ICA is that
information-bearing signals are not Gaussian signals. The pdfs of such non-Gaussian
signals can only be adequately characterized through the use of so-called higher order
statistics (HOS), which are by definition the statistical moments of a pdf of greater
than second order. Section 12.2.3 discusses several optimization criteria that are typically
applied in ICA, including mutual information , negentropy , and kurtosis . While mutual
information can be meaningfully defined for both non-Gaussian and Gaussian random
variables, negentropy and kurtosis are both measures of non-Gaussianity, and inherently
assume that the signal of interest is non-Gaussian and hence can only be properly specified
through HOS. In many cases, the use of such HOS leads to better separation and automatic
recognition performance, but often at the cost of the additional complexity required to
estimate the structure of the non-Gaussian pdf.

Buchner et al. (2004) have proposed to divide BSS algorithms into three major
categories:

• those based on non-whiteness ,
• those based on nonstationarity , and
• those based on non-Gaussianity .

All known BSS algorithms use one or more of these characteristics. The subset of ICA
algorithms typically exploit the non-whiteness and non-Gaussianity of the desired sources

Distant Speech Recognition Matthias Wölfel and John McDonough
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in order to achieve separation. The members of the larger class of BSS algorithms exploit
only the second-order statistics (SOS) of the desired sources, in addition to their inherent
nonstationarity and/or non-whiteness.

The balance of this chapter is organized as follows. In Section 12.1, we begin by
explaining the necessity of measuring channel quality in order to determine a subset of
sensors whose signals can be combined in order to reduce word error rate with respect
to that achievable with any single sensor. In Section 12.2 we consider the ICA problem
in general. In particular, Section 12.2.1 first presents the definition of instantaneous ICA,
wherein two or more sources are mixed additively without memory. While this formula-
tion is simplistic, it is well-suited to frequency- or subband-domain implementations of
ICA algorithms. We also consider the ambiguities inherent in ICA algorithms. The defini-
tion and implications of statistical independence are discussed in Section 12.2.2. We will
also present several parametric pdfs which will prove useful for modeling non-Gaussian
random variables. As mentioned above, the assumption of non-Gaussianity is a crucial
component of ICA. This discussion of the representation of non-Gaussian random vari-
ables along with criteria for determining the degree of deviation from Gaussianity will
prove useful not only for the present development, but also for that in Section 13.5, where
beamforming algorithms based on measures of non-Gaussianity will be discussed. The
three most popular optimization criteria in the ICA field, namely, mutual information,
negentropy, and kurtosis, are presented in Section 12.2.3. We will also discuss the impor-
tant relation between mutual information and negentropy. Section 12.2.4 will describe how
the parameters of an ICA system can be updated using the well-known natural gradient
method. BSS based solely on second-order statistics will be presented in Section 12.3.
In order to enable separation based on SOS, it will prove necessary to exploit one or
both of the nonstationarity and non-whiteness of the desired signal. The final section
of this chapter will summarize the development here, and provide references for further
reading.

12.1 Channel Quality and Selection

ICA, BSS, and beamforming entail combining the signals from several microphones in
some advantageous way. Improving recognition accuracy through such a combination
depends critically on using only those channels that are reliable, as the use of unrealiable
channels can actually degrade performance. Hence, such unrealiable channels must be
excluded from the combination, or their contribution must at very least be discounted. To
decide if a particular input stream should be included or how much it should contribute
to the combination, reliable measures for channel quality are required. The worst case is
that wherein a given channel provides no information about the desired source or sources.
In this case, including the uninformative channel in the combination would potentially
introduce additional noise or other distortions into the combination without providing any
additional information. Anguera et al. (2005) have also shown that the robust selection
of the reference channel in array processing has a decisive effect on the effectiveness of
beamforming techniques. An ideal channel selection criterion should be reliable, highly
correlated with word error rate, and function in an unsupervised fashion. Moreover, the
selection criterion should take into account as much knowledge as possible about the
front-end and acoustic models used by the recognition system.
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Several different objective functions have been successfully applied to the channel
selection problem for distant speech recognition.

Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) is possibly the most widely used objective function for
measuring channel quality. This is mainly due to its simplicity and low computational
complexity. The chief advantage of SNR is that it provides a good indication of chan-
nel quality with relatively little computation. SNR has, however, a number of inherent
drawbacks as a measure of channel quality. Firstly, SNR requires speech activity detec-
tion in order to distinguish between speech and silence regions. Secondly, additional
knowledge about the signal is commonly ignored, even though some knowledge of the
human hearing apparatus can easily be integrated. Thirdly, different classes of interest,
such as phoneme classes, are also typically ignored. Finally, SNR cannot be applied in
a number of domains, most particularly, it cannot be applied in the normalized cepstral
domain, which is that most often used for ASR feature extraction.

Decoder-Based Methods

Decoder-based measures use information provided by the recognition system in order to
perform channel selection. Two primary approaches have been proposed in the literature:

• Maximum likelihood – This method chooses the channel achieving the highest like-
lihood as measured with the hidden Markov model used for ASR (Shimizu et al.
2000).

• Difference in feature compensation – Comparing first best word hypothesis of different
recognition passes with uncompensated and unsupervised compensated feature vectors
on a channel indicates how much a system output has changed by adaptation. A channel
is considered to be good or reliable if unsupervised adaptation does not lead to a
significant change in the feature vectors extracted from it (Obuchi 2004).

The principal advantage of decoder-based methods is the close coupling between the
channel selection criteria and the recognition system, which provides more reliable
estimates. The chief disadvantage of decoder-based methods is that they require that the
feature stream from each sensor be decoded separately in order to avoid performance
degradations due to channel mismatch. This in turn can lead to a drastic increase in
computation time. Comparing differences on a word level has the additional disadvantage
that short utterances do not provide sufficient granularity to distinguish channel quality.

Class Separability

To consider all possible information available in the recognition front-end, class
separability-based measures can be used for channel selection, where a channel with
higher class separability is considered to be better. One such measure of class separability
is given in (5.59).

The classes used to determine class separability are not known a priori . Thus, these
classes must be estimated on the observed data; e.g., by split and merge training. It seems
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to be helpful to exclude those segments or classes containing silence regions, as the
separation between the different phonemes is the main focus here. The choice of an ideal
number of classes need not necessarily be equivalent to the number of phonemes, but
might depend on the amount of available data. For very short utterances containing, for
example, 60 or fewer frames of speech, better results may be obtained when the number
of classes is smaller than the number of phonemes (Wölfel 2007).

12.2 Independent Component Analysis

Many BSS algorithms are based on the use of higher order statistics , which, as we will
show in Section 12.2.3, implies the use of non-Gaussian pdfs to model the statistical
behavior of random variables. Collectively, such algorithms are perhaps best known as
belonging to the field of independent component analysis. In this section we first define
ICA and discuss its inherent assumptions. We also present three optimization criteria that
are commonly used in the ICA field. These ICA optimization criteria will prove useful
both for the development in this chapter, as well as that in Section 13.5, where we will
consider nonconventional beamforming algorithms.

Before proceding, we will say a word about the notation used here. To wit, in the
balance of the chapter, we will use upper case letters to denote random variables or
vectors, and lower case letters to denote the particular values these variables assume for
a given trial.

12.2.1 Definition of ICA

Here we will define the simplest form of ICA, namely, instantaneous ICA. Consider a
random vector of N independent components

S = [
S1 S2 . . . SN

]
,

as well as a mixing matrix A. The instantaneous ICA model is by definition

X � A S, (12.1)

where
X = [

X1 X2 . . . XN

]
,

is a random vector of mixtures. Clearly the components {Xn} are not independent, as
each Xn is a linear combination of the independent components {Sn}. The ICA model is
generative in that it describes how the observable components {Xn} are generated through
the process of mixing the independent components {Sn}. The latter are said to be latent
components in that they cannot be observed directly. Moreover, the mixing matrix A
is assumed to be unknown. Only the vector X is observed, and both A and S must be
estimated on the basis of this observation under conditions that are as general as possible.

There are two fundamental assumptions inherent in ICA:

1. The components of S are independent statistically. The nature and implication of such
independence will be discussed in 12.2.2.
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2. The components of S have non-Gaussian pdfs. This non-Gaussianity will be the primary
cue used to determine the identity of the independent components.

Note that these assumptions are not universally made in the more general field of BSS.
In BSS, the desired components are often taken to be merely uncorrelated, and not fully
independent.

For the sake of simplicity, we assume that A is square and invertible. Under these
assumptions, the goal of ICA can be stated as that of finding a demixing matrix B, which
ideally would be equivalent to A−1, such that

Y = BX = BAX = X. (12.2)

Were we unable to achieve (12.2) identically, we might still hope to realize a solution
which would remove all statistical dependence in the extracted outputs. Such a solution
would attempt to adapt the demixing matrix such that

lim
k→∞

B(k) A = � D, (12.3)

where � is an N × N permutation matrix with a single unity entry in every row and
column and D is a diagonal nonsingular scaling matrix. Then each Yn would be a scaled
version of some Sm, where n �= m in general.

In the context of distant speech recognition, we might well associate the components of
S with the voices of several speakers who speak simultaneously, as in the so-called cocktail
party problem (Cherry 1953). While ICA can be posed as a problem in the separation of
convolutive mixtures , the simpler model (12.1) will be sufficient for our purposes here and
in Chapter 13. This is largely due to the fact that our primary interest is in beamforming
methods implemented in the frequency or subband domain based on insights from the
ICA field. In this case, all source separation problems devolve to instantaneous separation
problems. As mentioned previously, we will investigate such beamforming methods in
Sections 13.5.2 through 13.5.4.

It should be noted that the field of BSS, as opposed to that of ICA narrowly understood,
does not always make the latter assumption described above. That is, it is not always
strictly assumed that the signals of interest are non-Gaussian. BSS techniques based on
second-order methods will be discussed in Section 12.3.

Inherent in the ICA model of (12.1) are two ambiguities:

1. The variances of the independent components S cannot be uniquely determined.
2. As implied by (12.3), the order of the independent components S also cannot be

uniquely determined.

The first ambiguity follows from the fact that two or more independent random
variables remain independent if they are multiplied by some scalar. Hence, there is no
basis for determining the variance of the independent components. The most frequent
approach for circumventing this problem is to assume that each component Sn has unit
variance, such that σ 2

n = E{S2
n} = 1. This assumption is typically built into the demixing

matrix B.



392 Distant Speech Recognition

The second ambiguity follows from the observation that, as both S and A are unknown,
any of the independent components could well be the first one, which is clear from (12.3).
Formally, a permutation matrix � and its inverse could be substituted into the model (12.1)
to yield X = A�−1�S. The components of the matrix vector product �S are the same
independent components found in S, but in a different order. Hence, the matrix A�−1

could be viewed as yet another conceivable demixing matrix to be estimated by an ICA
algorithm.

12.2.2 Statistical Independence and its Implications

In this section, we consider the definition of statistical independence, as well as the
implications thereof. In particular, we will discuss that this independence can be applied
to the problem of separating two or more independent components from an additive
combination. By definition, two random variables Y1 and Y2 are said to be statistically
independent (Papoulis 1984) iff

pY1,Y2(y1, y2) = pY1(y1) pY2(y2). (12.4)

Given two functions h1 and h2, it follows from definition (12.4) that if Y1 and Y2 are
statistically independent, then

E{h1(Y1) h2(Y2)} = E{h1(Y1)} E{h2(Y2)}. (12.5)

This fact can readily be proven from the definition of the expectation operator, namely,

E{h1(Y1) h2(Y2)} �
∫ ∫

h1(y1) h2(y2) p(y1, y2) dy1 dy2, (12.6)

=
∫

h1(y1) p(y1) dy1

∫
h2(y2) p(y2) dy2, (12.7)

where (12.7) follows from (12.6) upon substituting (12.4) into the latter.
Two random variables Y1 and Y2 are, by definition, statistically uncorrelated iff

E{Y1 Y2} − E{Y1} E{Y2} = 0. (12.8)

If Y1 and Y2 are independent, they are also uncorrelated, which is readily seen by setting
h1(Y1) = Y1 and h2(Y2) = Y2 in (12.5).

While independent implies uncorrelated, the converse does not hold. The property
(12.5) of independent random variables can be used to demonstrate why uncor-
related and independent are not generally the same. Assume that the random
variables Y1 and Y2 are discrete-valued, and distributed such that the pairs (y1, y2) =
(0, 1), (0, −1), (1, 0), (−1, 0) all have probability 1/4. Then Y1 and Y2 are uncorrelated,
as is apparent from (12.8). They are not independent, however, which is readily seen by
setting h1(Y ) = h2(Y ) = Y 2 and noting

E{Y 2
1 Y 2

2 } = 1 �= 1

4
= E{Y 2

1 } E{Y 2
2 }.
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Hence, the property (12.5) does not hold, from which it follows that Y1 and Y2 are not
independent.

As another example illustrating an instance when uncorrelated does not imply indepen-
dent, consider a random vector S of N zero-mean independent components all having the
same variance σ 2

S . Clearly, the covariance matrix of S can be expressed as

�S � σ 2
S I, (12.9)

where I is the identity matrix. Defining X = VS where V is a N × N unitary transform,
we see that the covariance matrix of X can be expressed as

�X = E{XXT } = VE{SST }VT = σ 2
S I,

where the latter equality follows from (12.9) and VVT = I. Hence, the components of X
are once more uncorrelated. They are by no means independent, however, inasmuch as
they consist of linear combinations of the independent components S.

As explained by Hyvärinen and Oja (2000), the entire field of ICA is based on the
assumption that all signals of real interest are not Gaussian-distributed. Briefly, their
reasoning is founded on two points:

1. The central limit theorem states that the pdf of the sum of independent random vari-
ables will approach Gaussianity in the limit as more and more components are added,
regardless of the pdfs of the individual components. This implies that the sum of
several random variables will be closer to Gaussian than any of the individual compo-
nents. Thus, if the original independent components comprising the sum are sought,
one must look for components with pdfs that are the least Gaussian.

2. As discussed in Section 12.2.2, entropy is the basic measure of information in infor-
mation theory (Gallager 1968). It is well known that a Gaussian random variable has
the highest entropy of all random variables with a given variance (Gallager 1968,
Thm. 7.4.1), which holds also for complex Gaussian random variables (Neeser and
Massey 1993, Thm. 2). Hence, a Gaussian random variable is, in some sense, the
least predictable of all random variables, which is why the Gaussian pdf is most often
associated with noise. Information-bearing signals contain structure that makes them
more predictable than Gaussian random variables. Hence, if an information-bearing
signal is sought, one must once more look for a signal that is not Gaussian.

An illustration of the central limit theorem is provided in Figure 12.1. In this figure, the
pdfs of the random variable given by the sum,

YN =
N∑

n=1

Xn,

are plotted for several values of N , where each Xn is a zero-mean Laplacian random
variable with a variance of σ 2

n = σ 2
N/N . The variance of each Xn is scaled in this fashion
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Figure 12.1 Plot of the Gaussian pdf and the pdf obtained by summing together N Laplacian
random random variables for several values of N . As predicted by the central limit theorem, the
sum becomes ever more Gaussian with increasing N

to ensure that the final sum has variance

σ 2
N =

N∑
n=1

σ 2
n = 1,

regardless of the number N of terms in the sum. The pdf pYN
(y) of YN is readily obtained

from the relation
pYN

(y) = pX1(x) ∗ pX2(x) ∗ · · · ∗ pXN
(x),

where each pXn(x) is the pdf of the random variable Xn, and pXn(x) ∗ pXn+1(x) denotes
the convolution of the pdfs pXn(x) and pXn+1(x) according to (Papoulis 1984, sect. 6.2)

pXn(x) ∗ pXn+1(x) �
∫ ∞

−∞
pXn(z) pXn+1(x − z) dz.

From Figure 12.1 it is clear that adding more Laplacian random variables together brings
the pdf of the sum ever closer to the Gaussian. The left side of the figure, which is
plotted in a linear space, indicates that the sharp peak of the Laplacian is “rounded off”
through the addition of several component random variables, and that the probability mass
formerly in the peak moves into the intermediate regions around the mean. The right side
of Figure 12.1, which is the same plot as that on the left but on a logarithmic scale,
indicates that probability mass is also transferred out of the tail of the pdf through the
addition of more and more Laplacian r.v.s, inasmuch as the tail of pYN

(y) for increasing
N approaches that of the Gaussian pdf.

The fact that the pdf of speech is super-Gaussian has often been reported in the
literature; see, for example, Martin (2005) and Kumatani et al. (2007). Noise, on the other
hand, is typically Gaussian-distributed. As discussed in Section 13.5.2, when speech is
corrupted by noise, reverberation, or the speech of another speaker, its pdf becomes more
nearly Gaussian. Hence, it is possible to remove or suppress the damaging effects of these
distortions by adjusting the demixing matrix of an ICA system or active weight vector of
a beamformer so as to produce output signals that are maximally non-Gaussian.
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In order to optimize the parameters of an ICA system or beamformer with respect to
the negentropy or mutual information criteria considered in Section 12.2.3, it is necessary
to know or estimate the form of the relevant pdf. Alternatively, we can assume that the
required pdf has a known parametric form, and then estimate the parameters of this model
from a set of training data. The generalized Gaussian (GG) pdf, which is well known
and finds frequent application in the ICA field, is one such parametric model. The GG
pdf for a real-valued r.v. Y with zero-mean value can be expressed as

pGG(y) = 1

2 �(1 + 1/f ) σ̂ A(f )
exp

{
−

∣∣∣∣ y

σ̂ A(f )

∣∣∣∣
f
}

, (12.10)

where �(.) denotes the Gamma function, f is the shape factor , which controls how fast
the tail of the pdf decays, and

A(f ) �
[
�(1/f )

�(3/f )

]1/2

. (12.11)

Note that the GG with f = 1 corresponds to the Laplace pdf, and that setting f = 2 yields
the conventional Gaussian pdf, whereas in the case of f → +∞ the GG pdf converges
to a uniform distribution. The GG and several other pdfs are generalized in Section B.5
for the important case of circular, complex random variables.

Plots of the Gaussian and three super-Gaussian univariate pdfs are provided on the left
of Figure 12.2. From the figure, it is clear that the Laplace, K0, and � pdfs exhibit the
“spikey” and “heavy-tailed” characteristics that are typical of super-Gaussian pdfs. This
implies that they have a sharp concentration of probability mass at the mean, relatively
little probability mass as compared with the Gaussian at intermediate values of the argu-
ment, and a relatively large amount of probability mass in the tail; i.e., far from the mean.
The right side of Figure 12.2 shows the GG pdf with the same scaling factor σ̂ 2 = 1 and
various shape factors f = 0.5, 1, 2, and 4. The shape factors f can be estimated from
training data using the method described in Section 13.5.2. As mentioned previously,
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Figure 12.2 Plot of the likelihood of Gaussian, super-Gaussian and GG pdfs. Note that the GG
pdf with f = 1 and f = 2 is equivalent to the Laplacian and Gaussian pdfs, respectively.
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f = 2 corresponds to the conventional Gaussian, and f = 1 yields the Laplacian pdf.
From the figure it is clear that a smaller shape parameter generates a pdf with a spikier
peak and a heavier tail. In Section 13.5.2, we will present empirical evidence that speech
is not only super-Gaussian, but also super-Laplacian .

12.2.3 ICA Optimization Criteria

In this section, we consider three of the optimization criteria that are commonly used
in the ICA field, as well as some relations between them. These optimization criteria
are equivalent to, or – under appropriate conditions – can be equated to, measures of
non-Gaussianity , which stands to reason given the logic of Section 12.2.2. Such measures
are often referred to as contrast functions in the ICA literature (Douglas 2001a), although
this term seems to have different meanings for different authors. Comon (1994), who
was among the first to use the term, defined a contrast function by beginning with the
observation that if X is a vector of N independent random components, then the pdf of
X can be expressed as

p̂X(x) =
N∏

i=1

pXi
(xi). (12.12)

Hence, one natural way of determining whether the components are truly independent
is to measure statistically the distance between the actual pdf pX(x) of X and that pdf
p̂X(x) in (12.12) obtained by assuming that the components of X are truly independent.
Several possible measures for the distance between pdfs of two random vectors X and Y
have appeared in the literature (Basseville 1989). Perhaps the best known of these is the
Kullback divergence, which is defined as

D(pX ||pY) �
∫

pX(x) log
pX(x)

pY(x)
dx. (12.13)

The Kullback divergence satisfies

D(pX ||pY) ≥ 0, (12.14)

with equality iff pX(x) = pY(x) almost everywhere. The latter property is due to the
convexity of the logarithm (Blahut 1987).

Comon (1994) defined a contrast function formally as a mapping � from the set of
densities {pX(x) ∀ x ∈ CN } to R satisfying the following three requirements:

• �(pX) does not change if the components of X are permuted such that

�(p�X) = �(pX) ∀ permutations �.

• �(pX) is invariant to scale changes, such that

�(p�X) = �(pX) ∀ diagonal, invertible �.
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• If X has independent components, then

�(pAX) ≤ �(pX) ∀ invertible A.

Although their definition was not so formal, Hyvärinen and Oja (2000) presented a contrast
function simply as a measure of non-Gaussianity, such as the negentropy and kurtosis
criteria discussed subsequently. These authors have all explored the connection between
such contrast functions and mutual information, which we will shortly consider. We will
first, however, introduce the concept of entropy, which will play a pivotal role in the
definitions of both mutual information and negentropy.

Entropy

As mentioned previously, entropy is the basic measure of pure information in the field of
information theory (Gallager 1968, sect. 2.2). Although entropy cannot be used directly as
a contrast function for source separation or beamforming, it plays a prominent role in the
definitions of mutual information and negentropy, both of which are well-known contrast
functions in the ICA field. Hence, we will define entropy here before proceding to consider
the latter criteria. For a continuous-valued random variable Y , entropy is defined as

H(Y ) � −E {log pY (Y )} = −
∫

pY (y) log pY (y) dy, (12.15)

where pY (y) is the pdf of Y . As we will soon see, entropy as defined in (12.15) is closely
related to mutual information, and also plays a decisive role in the definition of negentropy.

The entropy of a random variable indicates how much information a single observation
of the variable provides. As a larger entropy implies more information is conveyed with
each observation, we associate a large entropy with a lack of predictability, as mentioned
previously. As noted in Section 12.2.2, a Gaussian variable has the largest entropy among
all random variables of equal variance.

It is instructive to consider the entropy of a zero-mean Gaussian random variable Y .
The pdf of Y can be expressed as

pY (y) = 1√
2πσ 2

Y

e−y2/2σ 2
Y ,

where σ 2
Y = E{Y 2} is the variance of Y . The expectation in (12.15) can be evaluated

according to

H(Y ) = −E{log pY (Y )} = EY

{
1

2
log 2πσ 2

Y + 1

2

Y 2

σ 2
Y

}

= 1

2
log 2πσ 2

Y + 1

2

∫ ∞

−∞

y2

σ 2
Y

pY (y) dy. (12.16)

= 1

2

(
1 + log 2πσ 2

Y

)
, (12.17)

where (12.17) follows from (12.16) given that the integral in the latter is unity.
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Mutual information

The mutual information (MI) between two random variables X and Y is a measure of
how much information X and Y have in commmon. Formally, the MI of X and Y is
defined by

I (X; Y ) � E
{

log
p(X, Y )

p(X)p(Y )

}
(12.18)

= E {log p(X, Y )} − E {log p(X)} − E {log p(Y )} . (12.19)

At one extreme, if X and Y are statistically independent, then I (X; Y ) = 0. At the other
extreme, if X and Y are identical, then knowing Y determines X, and vice versa. In this
case, I (X; Y ) = H(X) = H(Y ). From (12.19) it is obvious that MI is symmetric, such
that I (X; Y ) = I (Y ;X).

From the definitions (12.15) and (12.19), it is apparent that MI can be equivalently
expressed as a function of the marginal entropies H(X), H(Y ) along with the joint
entropy H(X, Y ) according to Gallager (1968; sect. 2.2)

I (X; Y ) = H(X) + H(Y ) − H(X, Y ), (12.20)

where, by definition,

H(X, Y ) � −E{log p(X, Y )}. (12.21)

Alternatively, I (X; Y ) satisfies the relation

I (X; Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X),

where H(X|Y ) is the conditional entropy of X given Y , which is by definition

H(X|Y ) � −E{p(X|Y )}.

The quantity H(X|Y ) is known as equivocation because it indicates how much remains
unknown about X once Y is known. A similar expression holds for H(Y |X). More-
over, upon comparing the definitions (12.13) and (12.18), it is clear that I (X; Y ) can be
expressed as the Kullback divergence between the joint probability density pX,Y (X, Y )

and the marginal density of the two random variables pX(X) pY (Y ) as

I (X; Y ) = D(pX,Y ||pX pY ).

Given this interpretation in terms of the Kullback divergence, mutual information can
be viewed as the natural measure of the statistical independence of two or more random
variables. Note that for N random variables Y1, . . . , YN , definition (12.19) can be readily
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extended as

I (Y1; . . . ;YN) � E
{

log
p(Y1, . . . , YN)

p(Y1), . . . , p(YN)

}
. (12.22)

For the development in this chapter, however, we will be concerned exclusively with the
MI of two random variables.

As implied by (12.14) and (12.18), MI is always non-negative, and identically zero
iff the two random variables are statistically independent. The latter property is clear
from (12.19), inasmuch as statistical independence implies p(y1, y2) = p(y1) p(y2) by
definition. For these reasons, MI is in some sense the most natural contrast function.
Subsequently, we will explore the relationship between MI and negentropy, which is
another contrast function typically used in the ICA field.

We will now calculate the mutual information for the zero-mean Gaussian random
variables Y1 and Y2. For jointly Gaussian random variables,

pY1,Y2(y1, y2) = 1√|2π�Y|exp

[
−1

2
yT �−1

Y y
]

,

where y = [y1 y2]T . The covariance matrix �Y � E{yyT } appearing in the last equation
can be written in the form (Anderson 1984, sect. 2.3)

�Y =
[

σ 2
1 σ1σ2ρ12

σ1σ2ρ12 σ 2
2

]
, (12.23)

where

ρ12 = ε12

σ1 σ2
, σ 2

i = E{Y 2
i }, ∀ i = 1, 2, and ε12 = E{Y1 Y2}.

Hence, the joint entropy H(Y1, Y2) defined in (12.21) can be evaluated as

H(Y1, Y2) � −E{log p(Y1, Y2)} = E
{

1

2
log |2π�Y| + 1

2
yT �−1

Y y
}

= 1

2
log |2π�Y| + 1

2

∫
y

yT �−1
Y y p(y) dy. (12.24)

Due to the whitening (Fukunaga 1990, sect. 2.3) provided by the term �−1
Y , the integral

in (12.24) decouples into two integrals of the same form as that in (12.16). Hence, when
(12.17) and (12.24) are substituted back into (12.20), the integral terms cancel out, and
what remains is

I (Y1;Y2) = −1

2
log

[
4π2σ 2

1 σ 2
2 (1 − ρ2

12)
] + 1

2
log 2πσ 2

1 + 1

2
log 2πσ 2

2 ,
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or, upon cancelling common terms,

I (Y1;Y2) = −1

2
log

(
1 − ρ2

12

)
. (12.25)

From (12.25) it is clear that minimizing the MI between two zero-mean Gaussian r.v.s
is equivalent to minimizing the squared magnitude of their cross-correlation coefficient,
and that

I (Y1;Y2) = 0 ↔ ρ2
12 = 0.

This is another illustration of the necessity of using non-Gaussian pdfs in order to account
for the higher order moments of the independent components. That is, under a Gaussian
assumption, uncorrelated and independent are equivalent.

Negentropy

We next consider a second contrast function that is frequently used in the ICA field. The
negentropy J of a random variable Y is defined as

J (Y ) � H(Ygauss) − H(Y ) (12.26)

where Ygauss is a Gaussian random variable with the same variance σ 2
Y as Y . The entropy

H(Ygauss) of this Gaussian random variable is given by (12.17). Given that a Gaussian
random variable has the highest entropy of all random variables with the same vari-
ance, negentropy is non-negative, and identically zero if and only if Y has a Gaussian
distribution.

Note that the differential entropy of the GG pdf for the real-valued random variable Y

can be expressed as

Hgg(Y ) = −
∫ +∞

−∞
pgg(y) log pgg(y) dy

= log 2 + log �

(
1 + 1

f

)
+ log σ̂ + log A(f ) + 1

f
, (12.27)

where pgg(y) is defined in (12.10).
Negentropy is the optimal estimator of non-Gaussianity in the statistical sense, and

possesses the interesting and useful property of being invariant for invertible linear trans-
formations; see Comon (1994) and Hyvärinen (1999). While negentropy finds frequent
application in ICA, it is not used exclusively because it requires knowledge of the
fine structure of the pdf of the desired signal. This is indeed a hindrance if an algo-
rithm is sought, such as fast ICA, that works with any conceivable signal (Hyvärinen
and Oja 2000). For the purposes of the present volume, however, we will confine our
attention solely to speech signals and their subband samples. Hence, as we will discover
in Section 13.5.2, it is very worth-while to estimate the pdf of speech, which is highly
non-Gaussian, from a set of training data. Thereafter, negentropy can be used as the opti-
mization criterion for either source separation or beamforming. Alternatively, it is possible
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to use kurtosis as a measure of non-Gaussianity. As discussed in the next section, kurto-
sis offers the advantage of simplicity in that the exact structure of the pdf need not be
known in order to perform parameter optimization, as with negentropy. Rather, it is only
necessary to calculate the second- and fourth-order moments.

Before leaving this section, we will develop an interesting connection between MI and
negentropy. Based on (12.22), the MI of a set of random variables {X1, X2, . . . , XN } for
some N ≥ 2 can be expressed as

I (X1, X2, . . . , XN) �
N∑

i=1

H(Xi) − H(X);

where
X = [

X1 X2 · · · XN

]T
.

Note that for an invertible linear transformation Y = WX,

I (Y1, Y2, . . . , YN) =
N∑

i=1

H(Yi) − H(X) − log |W|;

where |W| indicates the determinant of W (Cover and Thomas 1991). If all Yi are con-
strained to be uncorrelated and to have unit variance, then

E{YYT } = W E{XXT } WT = I,

from which it follows that

|I| = 1 = |WE{XXT }WT | = |W| |E{XXT }| |WT |.

The last equation implies that |W| is constant. Moreover, for Yi of unit variance, entropy
and negentropy are the same up to a sign change and an additive constant. Hence,

I (Y1, Y2, . . . , YN) = C −
N∑

i=1

J (Yi);

where C is a constant that does not depend on W. Therefore, under the assumption of
uncorrelated random variables, minimizing MI is equivalent to maximizing the negentropy
of each individual Yi .

As mentioned previously, the difficulty of applying negentropy directly as an opti-
mization criterion lies in the requirement of knowing the individual pdfs of the random
components. If MI is used as an optimization criterion, the problem becomes even more
difficult, because the joint pdf of all components must be known in addition to the
marginal pdfs of the individual components. Moreover, the functional form of the joint
pdf changes as the number N of indepedent components increases. Several approaches
for obtaining the required estimates of the pdfs are possible. Two such approaches are
presented in Chapter 13 in the context of acoustic beamforming, which has goals similar
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to BSS and ICA, but begins from different assumptions, namely, that the geometry of
the sensor array is known and the positions of the desired speakers are known or can be
reliably estimated. The first approach, which is described in Sections 13.5.2, is based on
the use of the generalized Gaussian as a parametric model for the pdf of subband samples
of speech. Due to the simplicity of the GG pdf, the scale and shape factors specifying its
form can be readily estimated from a training set. The second approach, which is described
in Sections 13.5.4, is based on the use of the Meier G-function to model a certain class of
super-Gaussian pdfs. The representation of such pdfs with the Meier G-function is con-
venient in that it enables higher order variates to be estimated in a straightforward fashion
as soon as the univariate pdf and the covariance matrix of the components are known.

There are still other possible approaches for modeling super-Gaussian pdfs in terms
of higher order cumulants. Comon (1994) used a fourth-order Edgeworth expansion
(Abramowitz and Stegun 1965, 1972) of a non-Gaussian pdf in order to approximate
the MI (12.14) in terms of higher order cumulants, noting that the latter are more acces-
sible than the fine structure of the pdf itself. Amari et al. (1996), on the other hand,
preferred to use the Gram–Charlier expansion (Stuart and Ord 1994) to model the pdfs
of all non-Gaussian random variables.

Kurtosis

Here we present yet another contrast function from the field of independent component
analysis. The excess kurtosis of a random variable Y with zero mean is defined as

kurt(Y ) � E{Y 4} − 3(E{Y 2})2. (12.28)

Much like the negentropy criterion considered in the last section, kurtosis is a measure
of the non-Gaussianity of Y (Hyvärinen and Oja 2000). The Gaussian pdf has zero
kurtosis, pdfs with positive kurtosis are super-Gaussian , and those with negative kurtosis
are sub-Gaussian . As shown in Table 2.2, of the three super-Gaussian pdfs in Figure 12.2,
the � pdf has the highest kurtosis, followed by the K0, then by the Laplace pdf. This
fact manifests itself in Figure 12.2, where it is clear that as the kurtosis increases, the
pdf becomes more and more spiky and heavy-tailed. As explained in Section 13.5.2, the
kurtosis of the GG pdf can be controlled by adjusting the shape factor f . Although kurtosis
is widely used as a measure of non-Gaussianity, it is relatively sensitive to outliers, in
that the value calculated for kurtosis can be strongly influenced by a few samples with
relatively low observation probability (Hyvärinen and Oja 2000).

Note that the definition of kurtosis is not entirely unproblematic, inasmuch as there is
not one but three such definitions that are often used in the literature. We are already
acquainted with the first definition of kurtosis, namely (12.28), which has the desirable
property of being identically zero for Gaussian random variables. Another common
definition is

kurt(Y ) � E{Y 4}
(E{Y 2})2

,

which assumes a value of 3 for Gaussian random variables. The third definition is

kurt(Y ) � E{Y 4}
(E{Y 2})2

− 3,
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which is sometimes referred to as normalized kurtosis . The latter definition also assumes
a value of zero for Gaussian random variables.

12.2.4 Parameter Update Strategies

In this section, we consider strategies for recursively updating the demixing matrix under
various optimization criteria. We will begin by considering the straightforward stochastic
gradient descent, and thereafter the natural gradient method. The latter method will lead
to faster convergence in many cases.

Let us define the vector

f(y) � [f (y1) f (y2) · · · f (yN)],

where the score function is by definition

f (y) � −∂ log pS(y)

∂y
,

and pS(y) is the pdf of the independent components {Sn}. For convenience, let us assume
that each of the independent components S = [S1 S2 · · · SN ]T is identically distributed,
and that there is no permutation problem such that � = I in (12.3). Then a contrast
function can be defined as

Ĵ (B) � − log

[
|B|

N∏
i=1

ps(yi(k))

]
, (12.29)

where |B| denotes the determinant of the demixing matrix B. So defined, the expected
value of Ĵ (B) is equivalent to the Kullback divergence D(pY || p̂Y) up to a constant,
where p̂Y is the pdf of Y under the assumption of independent components as in (12.12).
A stochastic gradient descent procedure can be readily derived from this contrast function,
with the update rule

B(k + 1) = B(k) − μ(k)
∂Ĵ (B(k))

∂B

= B(k) − μ(k)
[
B−T (k) − f(y(k))xT (k)

]
, (12.30)

where μ(k) > 0 is the step size.
In ICA, as with so many other optimization problems, gradient descent leads to simple

optimization schemes, but very slow convergence. If the optimization surface is quadratic
or nearly so, this speed of convergence can be improved through an update based
on Newton’s rule. Unfortunately, this is not the case in ICA, where all too often the
optimization criterion is not quadratic. A modification of (12.30), dubbed natural
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gradient by Amari (1998) and relative gradient by Cardoso (1998), leads to much faster
convergence. This modification can be expressed as

B(k + 1) = B(k) − μ(k)
∂Ĵ (B(k))

∂B
BT (k) B(k)

= B(k) + μ(k)
[
I − f(y(k)) yT (k)

]
(12.31)

To gain some insight into the behavior of (12.31), let us define the combined system
matrix C(k) as

C(k) � B(k) A. (12.32)

Based on a comparision of (12.3) and (12.32), we would clearly hope that

lim
k→∞

C(k) → � D.

Post-multiplying both sides of (12.31) by A and recognizing that y(k) = C(k) s(k), we
can write the update in (12.31) as

C(k + 1) = C(k) + μ(k)
[
I − f(C(k) s(k)) sT (k)CT (k)

]
C(k).

The last equation depends only on the combined system matrix C(k), the signal vector
s(k) of the source, and the step size μ(k). The effect of the mixing matrix A has been
absorbed as an initial condition into C(0) = B(0) A. Hence, as long as C(k) can “escape”
from bad initial conditions, the evolutionary behavior of the combined system C(k) is not
limited by A.

The uniform performance provided by (12.31) is due to the equivariance property
(Cardoso 1998) achieved by the natural/relative gradient. Moreover, the computational
complexity of the parameter update is actually reduced, in that it is no longer necessary
to calculate B−T (k) as in (12.30). Further details regarding the natural gradient and its
properties can be found in Douglas and Amari (2000).

12.3 BSS Algorithms based on Second-Order Statistics

The algorithms described in this section can more properly be said to belong to the field of
BSS than that of ICA, inasmuch as they rely solely on the use of second-order statistics.
While these algorithms are relatively simple, they are in many cases not as powerful as
their counterparts based on HOS. The following development is based on that in Douglas
(2001b, sect. 7.2.4).

Now rather than requiring that the sources are spatially-independent, we will make the
weaker assumption that the sources are only spatially-uncorrelated, such that

E{Si(k) Sj (k + l)} = 0 ∀ i �= j, l. (12.33)
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This condition is weaker than spatial independence, and opens up the possibility for
separating sources that are nearly Gaussian-distributed. Each source is required to be
temporally correlated, such that the normalized cross-correlation matrix

R̂SS �
[
E{S(k) ST (k)}]−1 E{S(k) ST (k + l)} (12.34)

has N unique eigenvalues for some l �= 0. This condition is identical to the requirement
that the normalized cross-correlation coefficients

ρi(l) � E{Si(k) Si(k − l)}√
E{S2

i (k)} E{S2
i (k − l)}

are distinct ∀ 1 ≤ i ≤ N and at least one value of l �= 0. This additional constraint on
the correlation statistics is required to satisfy certain identifiability conditions, with-
out which this formulation of the BSS problem will not function properly (Douglas
2001b).

In order to understand how (12.33–12.34) yield a separating solution, consider the
corresponding normalized cross-correlation matrix of the input signals,

R̂XX(l) �
[
E{X(k) XT (k)}]−1 E{X(k) XT (k + l)} (12.35)

= [
A E{S(k) ST (k)}AT

]−1
A E{S(k) ST (k + l)}AT . (12.36)

Without loss of generality, we may assume that each source signal has unit variance,
such that

E{S(k) ST (k)} = I.

It then follows that

R̂XX(l) = A−T E{S(k) ST (k + l)}AT = A−T R̂SS(l) AT . (12.37)

Let us define the eigendecomposition of R̂XX(l) as

R̂XX(l) = Q � Q−1,

which implies that
�(l) = �R̂SS(l) �T and Q = A−T �T .

Then the demixing matrix B can be calculated according to

B = QT .

Hence, all that is required is the eigendecomposition of a normalized cross-correlation
matrix.

In practice, most BSS algorithms based on temporal correlation identify the demixing
by solving a system of N2 nonlinear equations for the N2 entries of B = [b1 · · · bN ]T
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such that

bT
i E{X(k)XT (k)}bj = δij ∀ 1 ≤ i ≤ j ≤ N, (12.38)

bT
i E{X(k)XT (k + l)}bj = 0 ∀ 1 ≤ i < j ≤ N, (12.39)

where

δij =
{

1, for i = j ,

0, otherwise.

With regard to the diagonal components of (12.39), it will in general hold that
bT

i E{X(k)XT (k + l)}bj �= 0, 1. Algorithms for solving a system such as (12.38–12.39)
are known as joint diagonalization procedures (Fukunaga 1990, sect. 10.2), inasmuch
as they search for a matrix whose rows are the eigenvectors of at least two different
matrices. Alternatively, a preprocessing stage can be used to calculate a pre-whitened
sequence V(k) whose eigenvectors are the orthogonal separating matrix

WT E{V(k) VT (k)}W = I. (12.40)

BSS using temporal decorrelation has the advantage of requiring only second-order
statistics, which implies that it is more robust when confronted with limited data from
which the data-dependent quantities must be estimated.

Consider once more the mixing and demixing matrix mode in (12.2), where we will
now assume that the number of independent sources N is not necessarily equal to the
number of sensors M . Let us define the coherence function between outputs i and j as

Ci,j (ω, t) � Si,j (ω, t)√
Si,i(ω, t) Sj,j (ω, t)

, (12.41)

where

Si,j (ω, t) � E{Yi(e
jω, t) Y ∗

j (ejω, t)} (12.42)

is the cross-power spectral density at time k. Fancourt and Parra (2001) proposed to per-
form separation on convolutive mixtures by minimizing the sum of the squared magnitudes
between all N × (N − 1)/2 distinct pairs of outputs of the form

J =
∑

k

∑
i,j

∣∣Ci,j (ω, k)
∣∣2

. (12.43)

While the optimization criterion (12.41–12.43) bears a certain similarity to that presented
previously, it should be borne in mind that the criterion (12.41–12.43) is formulated
in the frequency domain. Such a formulation has the advantage that it is no longer
necessary to check that the random components are uncorrelated for all possible time
lags (Fancourt and Parra 2001).

Equations (12.41–12.43) can be expressed in matrix form according to

J =
∑

t

|CYY(ω, k)| = trace
[
CH

YY(ω, k) · CYY(ω, k)
]
, (12.44)
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where CYY(ω, k) is the N × N matrix of coherence functions whose components are
CYi Yj

. The matrix of coherence functions can then be expressed as

CYY(ω, k) = �
−1/2
YY (ω, k) × SYY(ω, k) × �

−1/2
YY (ω, k) (12.45)

in terms of a N × N matrix of cross-spectral densities between the outputs, SYY whose
components are Si,j and a diagonal matrix �

−1/2
YY , whose diagonal elements are Si,i .

Substituting (12.45) into (12.44) provides

J =
∑

t

trace
[
�−1

YY(ω, k) × SYY(ω, k) × �−1
YY(ω, k) × SYY(ω, k)

]
. (12.46)

The cross-power spectral densities required to optimize (12.46) can be obtained from the
recursive update

SYY(ω, k) = μSYY(ω, k − T ) + (1 − μ)Y(ω, k) × YH (ω, k),

where 0 < μ < 1 is a forgetting factor , and T is the sampling interval. Fancourt and
Parra showed that the separation weights can be recursively updated according to

�W(ω, k) = −ν�−1
YY × [SYY(ω, k) − �YY] × �−1

YY × SYX(ω, k), (12.47)

where ν is a step size and SYX(ω, k) is the N × M matrix of cross-power spectral densities
between the output and the inputs , which can be calculated as

SYX(ω, k) = μSYX(ω, k − T ) + (1 − μ)Y(ω, k) × XH (ω, k).

12.4 Summary and Further Reading

In this chapter, we discussed two classes of algorithms, both of which use several micro-
phones in order to separate speech mixed with other speech or noise. This is done with
knowledge neither of the relative locations of the microphones, nor of the positions of
the desired speakers. Independent component analysis is based on the specific assumption
that the source signal of interest has a non-Gaussian pdf, which – in the case of human
speech – is clearly true. In order to perform separation, ICA algorithms estimate a
demixing matrix that returns two or more signals that are as non-Gaussian as possible. We
examined several optimization criteria that are commonly used in ICA, namely, mutual
information, negentropy, and kurtosis. As discussed in this chapter, the latter two criteria
are measures of deviation from Gaussianity, and hence are useful in searching for
non-Gaussian sources. Mutual information is a measure of statistical independence, and
thus can be used to search for statistically-independent sources. Mutual information can
also be directly related to negentropy under the assumption that two or more sources are
uncorrelated.

Blind source separation does not uniformly assume that the desired sources are
non-Gaussian, and thus is somewhat more general than ICA. Instead, the separation
criteria under BSS can be based on assumptions of non-whiteness or nonstationarity.
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Moreover, BSS does not rely exclusively on the use of higher-order statistics of the
source pdfs; many BSS algorithms are based only on the use of second-order statistics.

While negentropy is effective as an optimization criterion for ICA, it has the disadvan-
tage of requiring a specific assumption as regards the pdf of the desired source. Several
proposals to alleviate this requirement have appeared in the ICA literature. Hyvärinen and
Oja (2000) used an approximation of negentropy based on higher order moments, namely,

J (Y ) ≈ 1

12
(E{Y 3})2 + 1

48
kurt2(Y ).

Hyvärinen (1998) also developed new approximations of negentropy based on the
maximum-entropy principle. These approximations can in general be expressed in the
form

J (Y ) ≈
P∑

i=1

ki [E{Gi(Y )} − E{Gi(ν)}]2

where {ki} is a set of positive constants, {Gi} is a set of some nonquadratic constants,
and ν is a Gaussian random variable of zero mean and unit variance.

Cardoso (1998) as well as Hyvärinen and Oja (2000) describe the connection between
MI and other contrast functions such as maximum likelihood and infomax . There are
several useful tutorials and summaries of research within the BSS and ICA fields. A
very accessible and readable treatment is given by Hyvärinen and Oja (2000). A very
comprehensive – if somewhat less accessible – summary of the state-of-the-art in BSS,
including an extensive discussion of the similarities and differences of several extant
algorithms, is given by Buchner et al. (2004). Another useful tutorial is Douglas (2001a).

12.5 Principal Symbols

Symbol Description

ω angular frequency
� permutation matrix
A mixing matrix
B demixing matrix
D diagonal scaling matrix
S vector of independent components
X vector of random mixtures
D(pX||pY) Kullback divergence between pX and pY

H(Y ) entropy of Y

J (Y ) negentropy of Y

pGG(y) generalized Gaussian probability density function
I (Y1, Y2) mutual information between Y1 and Y2



13
Beamforming

In this chapter, we investigate a class of techniques – known collectively as beamform-
ing – by which signals from several sensors can be combined to emphasize a desired
source and suppress interference from other directions. Beamforming begins with the
assumption that the positions of all sensors are known , and that the position of the
desired source is known or can be estimated. The simplest of beamforming algorithms,
the delay-and-sum beamformer , uses only this geometrical knowledge to combine the sig-
nals from several sensors. More sophisticated adaptive beamformers attempt to minimize
the total output power of the array under the constraint that the desired source must be
unattenuated. The conventional adaptive beamforming algorithms attempt to minimize a
quadratic optimization criterion related to signal-to-noise ratio under a distortionless con-
straint in the look direction. Recent research has revealed, however, that such quadratic
criteria are not optimal for acoustic beamforming of human speech. Hence, we also
present beamformers based on non-conventional optimization criteria that have appeared
more recently in the literature.

Any reader well acquainted with the conventional array processing literature will cer-
tainly have already seen the material in Sections 13.1 through 13.4. The interaction of
propagating waves with the sensors of a beamformer are described in Section 13.1.1,
as are the effects of sensor spacing and beam steering on the spatial sensitivity of the
array. The beam pattern , which is a plot of array sensitivity versus direction of arrival of
propagating wave, is defined and described in Section 13.1.2. The simplest beamformer,
namely the delay-and-sum beamformer, is presented in Section 13.1.3, and the effects
of beam steering are discussed in Section 13.1.4. Quantitative measures of beamforming
performance are presented in Section 13.2, the most important of which are directivity,
as presented in Section 13.2.1, and array gain, as presented in Section 13.2.2. These mea-
sures will be used to evaluate the conventional beamforming algorithms described later
in the chapter.

In Section 13.3, we take up the discussion of the conventional beamforming algorithms.
The minimum variance distortionless response (MVDR) is presented in Section 13.3.1, and
its performance is analyzed in Sections 13.3.2 and 13.3.3. The beamforming algorithms
based on the MVDR design, including the minimum mean square error and maximum
signal-to-noise ratio beamformers, have the advantage of being tractable to analyze in
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simple acoustic environments. As discussed in Section 13.3.4, the superdirective beam-
former, which is based on particular assumptions about the ambient noise field, has
proven useful in real acoustic environments. The minimum mean-square error (MMSE)
beamformer is presented in Section 13.3.5 and its relation to the MVDR beamformer is
discussed. The maximum signal-to-noise ratio design is then presented in Section 13.3.6.
The generalized sidelobe canceller (GSC), which is to play a decisive role in the latter
sections of this chapter, is presented in Section 13.3.7. As discussed in Section 13.3.8,
diagonal loading is a very simple technique for adding robustness into adaptive beam-
forming designs.

Section 13.4, the last about the conventional beamforming algorithms, discusses imple-
mentations of adaptive beamforming algorithms that are suitable for online operation.
Firstly, a convergence analysis of designs based on stochastic gradient descent is pre-
sented in Section 13.4.1, thereafter the various least mean-square (LMS) error designs,
are presented in Section 13.4.2. These designs provide a complexity that is linear with the
number N of sensors in the array, but can be slow to converge under unfavorable acoustic
conditions. The recursive least square (RLS) error design, whose complexity increases as
N2, is discussed in Section 13.4.3. In return for this greater complexity, the RLS designs
can provide better convergence characteristics. The RLS algorithms are known to be sus-
ceptible to numerical instabilities. A way to remedy this problem, namely the square-root
implementation, is discussed in Section 13.4.4.

Recent research has revealed that the optimization criteria used in conventional array
processing are not optimal for acoustic beamforming applications. In Section 13.5 of this
chapter we discuss nonconventional optmization criteria for beamforming. A beamformer
that maximizes the likelihood of the output signal with respect to a hidden Markov model
(HMM) such as those discussed in Chapters 7 and 8 is discussed in Section 13.5.1.

Section 13.5.2 presents a nonconventional beamforming algorithm based on the opti-
mization of a negentropy criterion subject to a distortionless constraint. The negentropy
criterion provides an indication of how non-Gaussian a random variable is. Human speech
is a highly non-Gaussian signal, but becomes more nearly Gaussian when corrupted with
noise or reverberation. Hence, in adjusting the active weight vectors of a GSC so as
to provide a maximally non-Gaussian output subject to a distortionless constraint, the
harmful effects of noise and reverberation on the output of the array can be minimized. A
refinement of the maximum negentropy beamformer (MNB) is presented in Section 13.5.3,
whereby a HMM is used to capture the nonstationarity of the desired speaker’s speech.

It happens quite often when two or more people speak together, that they will speak
simultaneously, thereby creating regions of overlapping or simultaneous speech. Thus, the
recognition of such simultaneous speech is an area of active research. In Section 13.5.4,
we present a relatively new algorithm for separating overlapping speech into different
output streams. This algorithm is based on the construction of two beamformers in GSC
configuration, one pointing at each active speaker. To provide optimal separation perfor-
mance, the active weight vectors of both GSCs are optimized jointly to provide two output
streams with minimum mutual information (MinMI). This approach is also motivated in
large part by research within the ICA field. The geometric source separation algorithm
is presented in Section 13.5.5, which under the proper assumptions can be shown to be
related to the MinMI beamformer.
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Section 13.6 discusses a technique for automatically inferring the geometry of a micro-
phone array based on a diffuse noise assumption.

In the final section of the chapter, we present our conclusions and recommendations
for further reading.

13.1 Beamforming Fundamentals

Here we consider the fundamental concepts required to describe the interaction of propa-
gating sound waves with sensor arrays. In this regard, the discussion here is an extension
of that in Section 2.1. The exposition in this section is based largely on Van Trees (2002,
sect. 2.2), and will make extensive use of the basic signal processing concepts developed
in Chapter 3.

13.1.1 Sound Propagation and Array Geometry

To begin, consider an arbitrary array of N sensors. We will assume for the moment that the
locations mn, for n = 0, 1, . . . , N − 1 of the sensors are known. These sensors produce
a set of signals denoted by the vector

f(t, m) =

⎡
⎢⎢⎢⎣

f (t, m0)

f (t, m1)
...

f (t, mN−1)

⎤
⎥⎥⎥⎦ .

For the present, we will also work in the continuous-time domain t . This is done only
to avoid the granularity introduced by a discrete-time index. But this will cease to be an
issue when we move to the subband domain, as the phase shifts and scaling factors to be
applied in the subband domain are continuous-valued, regardless of whether or not this
is so for the signals with which we begin. The output of each sensor is processed with a
linear time-invariant (LTI) filter with impulse response hn(τ) and filter outputs are then
summed to obtain the final output of the beamformer:

y(t) =
N−1∑
n=0

∫ ∞

−∞
hn(t − τ) fn(τ, mn) dτ.

In matrix notation, the sensor weights of the delay-and-sum beamformer can be expressed
as

y(t) =
∫ ∞

−∞
hT (t − τ) f(τ, m) dτ, (13.1)

where

h(t) =

⎡
⎢⎢⎢⎣

h0(t)

h1(t)
...

hN−1(t)

⎤
⎥⎥⎥⎦ .
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Moving to the frequency domain by applying the continuous-time Fourier transform
(3.48) enables (13.1) to be rewritten as

Y (ω) =
∫ ∞

−∞
y(t) e−jωt dt = HT (ω) F(ω, m), (13.2)

where

H(ω) =
∫ ∞

−∞
h(t)e−jωt dt, (13.3)

F(ω, m) =
∫ ∞

−∞
f(t, m)e−jωt dt, (13.4)

are, respectively, the vectors of frequency responses of the filters and spectra of the signals
produced by the sensors.

In building an actual beamforming system, we will not, of course, work with
continuous-time Fourier transforms as implied by (13.2). Rather, the output of each
microphone will be sampled then processed with an analysis filter bank such as was
described in Chapter 11 to yield a set of subband samples. The N samples for each
center frequency ωm = 2πm/M , where M is the number of subband samples, will then
be gathered together and the inner product (13.2) will be calculated, whereupon all M

beamformer outputs can then be transformed back into the time domain by a synthesis
bank. We are justified in taking this approach by the reasoning presented in Section
11.1, where it was explained that the output of the analysis bank can be interpreted as a
short-time Fourier transform of the sampled signals subject only to the condition that the
signals are sampled often enough in time to satisfy the Nyquist criterion. Beamforming in
the subband domain has the considerable advantage that the active sensor weights can be
optimized for each subband independently, which provides a tremendous computational
savings with respect to a time-domain filter-and-sum beamformer with filters of the same
length on the output of each sensor.

Although the filter frequency responses are represented as constant with time in
(13.2–13.4), in subsequent sections we will relax this assumption and allow H(ω) to be
adapted in order to maximize or minimize an optimization criterion. We will in this case,
however, make the assumption that is standard in adaptive filtering theory, namely, that
H(ω) changes sufficiently slowly such that (13.2) is valid for the duration of a single
subband snapshot (Haykin 2002). This implies, however, that the system is no longer
actually linear.

We will typically use spherical coordinates (r, θ, φ) to describe the propagation of sound
waves through space. The relation between these spherical coordinates and the Cartesian
coordinates (x, y, z) is illustrated in Figure 13.1. So defined, r > 0 is the radius or range,
the polar angle θ assumes values on the range 0 ≤ θ ≤ π , and the azimuth assumes values
on the range 0 ≤ φ ≤ 2π . Letting φ vary over its entire range is normal for circular arrays,
but with the linear arrays considered in Section 13.1.3, it is typical for the sensors to be
shielded acoustically from the rear so that, effectively, no sound propagates in the range
π ≤ φ ≤ 2π .

In the classical array-processing literature, it is quite common to make a plane wave
assumption, which implies that the source of the wave is so distant that the locus of points
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Figure 13.1 Relation between the spherical coordinates (r, θ, φ) and Cartesian coordinates
(x, y, z)

with the same phase or wavefront is a plane. Such an assumption is seldom justified in
acoustic beamforming through air, as the aperture of the array is typically of the same
order of magnitude as the distance from the source to the sensors. Nonetheless, such an
assumption is useful in introducing the conventional array-processing theory, our chief
concern in this section, because it simplifies many important concepts. It is often useful
in practice as well, in that it is not always possible to reliably estimate the distance from
the source to the array, in which case the plane wave assumption is the only possible
choice.

Consider then a plane wave shown in Figure 13.1 propagating in the direction

a =
⎡
⎣ax

ay

az

⎤
⎦ =

⎡
⎣− sin θ cos φ

− sin θ sin φ

− cos θ

⎤
⎦ .

The first simplification this produces is that the same signal f (t) arrives at each sensor,
but not at the same time. Hence, we can write

f(t, m) =

⎡
⎢⎢⎢⎣

f (t − τ0)

f (t − τ1)
...

f (t − τN−1)

⎤
⎥⎥⎥⎦ , (13.5)

where the time delay of arrival (TDOA) τn appearing in (13.5) can be calculated through
the inner product,

τn = aT mn

c
= −1

c
[mn,x · sin θ cos φ + mn,y · sin θ sin φ + mn,z · cos θ ], (13.6)
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c is the velocity of sound , and mn = [mn,x mn,y mn,z]. Each τn represents the differ-
ence in arrival time of the wavefront at the nth sensor with respect to the origin.

If we now define the direction cosines

u � −a, (13.7)

then τn can be expressed as

τn = −1

c
[uxmn,x + uymn,y + uzmn,z] = −uT mn

c
. (13.8)

The time-delay property (3.50) of the continuous-time Fourier transform implies that
under the signal model (13.5), the nth component of F(ω) defined in (13.4) can be
expressed as

Fn(ω) =
∫ ∞

−∞
f (t − τn)e

−jωt dt = e−jωτn F (ω), (13.9)

where F(ω) is the Fourier transform of the original source. From (13.7) and (13.8) we
infer

ωτn = ω

c
aT mn = −ω

c
uT mn. (13.10)

For plane waves propagating in a locally homogeneous medium, the wave number is
defined as

k = ω

c
a = 2π

λ
a, (13.11)

where λ is the wavelength corresponding to the angular frequency ω. Based on (13.7),
we can now express the wavenumber as

k = −2π

λ

⎡
⎣sin θ cos φ

sin θ sin φ

cos θ

⎤
⎦ = −2π

λ
u.

Assuming that the speed of sound is constant implies that

|k| = ω

c
= 2π

λ
. (13.12)

Physically, the wavenumber represents both the direction of propagation and frequency of
the plane wave. As indicated by (13.11), the vector k specifies the direction of propagation
of the plane wave. Equation (13.12) implies that the magnitude of k determines the
frequency of the plane wave.

Together (13.10) and (13.11) imply that

ωτn = kT mn. (13.13)
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Hence, the Fourier transform of the propagating wave whose nth component is (13.9) can
be expressed in vector form as

F(ω) = F(ω) vk(k), (13.14)

where the array manifold vector , defined as

vk(k) �

⎡
⎢⎢⎢⎢⎣

e−jkT m0

e−jkT m1

...

e−jkT mN−1

⎤
⎥⎥⎥⎥⎦ , (13.15)

represents a complete “summary” of the interaction of the array geometry with a
propagating wave. As mentioned previously, beamforming is typically performed in
the discrete-time Fourier transform domain, through the use of digital filter banks.
This implies that the time-shifts must be specified in samples , in which case the array
manifold vector must be represented as

vDT(x, ωm) �

⎡
⎢⎢⎢⎣

e−jωm τ0/Ts

e−jωm τ1/Ts

...

e−jωm τN−1/Ts

⎤
⎥⎥⎥⎦ , (13.16)

where the subband center frequencies are {ωm}, the propagation delays {τn} are calculated
according to (13.8), and Ts is the sampling interval defined in Section 3.1.4.

13.1.2 Beam Patterns

In Section 3.1.1 we demonstrated that the complex exponential sequence f [n] = ejωn is
an eigensequence for any digital LTI system. It can be similarly shown that

f (t) = ejωt (13.17)

is an eigenfunction for any analog LTI system. This implies that if the complex exponential
(13.17) is taken as the input to a single-input, single-output LTI system, the output of the
system always has the form

y(t) = G(ω) ejωt ,

where, as discussed in Section 3.1, G(ω) is the frequency response of the system. For the
analysis of multiple-input, single-output systems used in array processing, we consider
eigenfunctions of the form

fn(t, mn) = exp
[
j (ωt − kT mn)

]
, (13.18)
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which is in fact the definition of a plane wave. For the entire array, we can write

f(t, m) = ejωt vk(k). (13.19)

The response of the array to a plane wave input can be expressed as

y(t, k) = ϒ(ω, k) ejωt ,

where the frequency–wavenumber response function (Van Trees 2002, sect. 2.2) is defined
as

ϒ(ω, k) � HT (ω) vk(k),

and H(ω) is the Fourier transform of h(t) defined in (13.3). Just as the frequency response
H(ω) defined in (3.13) specifies the response of conventional LTI system to a sinusoidal
input, the frequency–wavenumber response function specifies the response of an array
to a plane wave input with wavenumber k and angular frequency ω. Observe that the
notation ϒ(ω, k) is redundant in that the angular frequency ω is uniquely specified by
the wavenumber k through (13.12). We retain the argument ω, however, to stress the
frequency-dependent nature of the frequency–wavenumber response function.

The beam pattern indicates the sensitivity of the array to a plane wave with wavenumber
k = 2π

λ
a(θ, φ), and is defined as

B(ω : θ, φ) � ϒ(ω, k)|k= 2π
λ a(θ,φ)

,

where a(θ, φ) is a unit vector with spherical coordinate angles θ and φ. The primary
difference between the frequency–wavenumber response function and the beam pattern
is that the arguments in the beam pattern must correspond to the physical angles θ and φ.

13.1.3 Delay-and-Sum Beamformer

In a delay-and-sum beamformer1 (DSB), the impulse response of the filter on each sensor
is a shifted impulse:

hn(t) = 1

N
δ(t + τn),

where δ(t) is the Dirac delta function. The time shifts {τn} are calculated according to
(13.13), such that the signals from each sensor in the array upon which a plane wave
with wavenumber k and angular frequency ω impinges are added coherently . As we will
shortly see, this has the effect of enhancing the desired plane wave with respect to plane
waves propagating in other directions, provided certain conditions are met. If the signal is

1 Many authors (Van Trees 2002) refer to the delay-and-sum beamformer as the conventional beamformer . In
this volume, however, we will reserve the term “conventional” to refer to the conventional adaptive beamformer
algorithms – namely, the minimum variance distortionless response, MMSE, and maximum signal-to-noise ratio
beamformers – discussed in Section 13.3.
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Figure 13.2 Time and subband domain implementations of the delay-and-sum beamformer

narrowband with a center frequency of ωc, then, as indicated by (3.50), a time delay of
τn corresponds to a linear phase shift, such that the complex weight applied to the output
of the nth sensor can be expressed as

w∗
n = Hn(ωc) = 1

N
ejωcτn .

In matrix form, this becomes

wH (ωc) = HT (ωc) = 1

N
vH

k (k), (13.20)

where the array manifold vector vk(k) is defined in (13.15) and (13.16) for the continuous-
and discrete-time cases, respectively. The narrowband assumption is justified in that,
as mentioned previously, we will apply an analysis filter bank to the output of each
sensor to divide it into M narrowband signals. As discussed in Section 11, the filter bank
prototype is designed to minimize aliasing distortion, which implies it will have good
suppression in the stopband. This assertion is readily verified through an examination
of the frequency response plots in Figures 11.10 through 11.12. Both time and subband
domain implementations of the DSB are shown in Figure 13.2.

A simple discrete Fourier transform (DFT) can also be used for the subband analysis
and resynthesis. This approach, however, is suboptimal in that it corresponds to a uniform
DFT filter bank with a prototype impulse response whose values are constant. This implies
that there will be large sidelobes in the stopband, as shown in Figure 11.2, and that
the complex samples at the output of the different subbands will be neither statistically
independent nor uncorrelated.

In order to gain an appreciation of the behavior of a sensor array, we now introduce
several simplifying assumptions. Firstly, we will consider the case of a uniform linear
array with equal intersensor spacing as shown in Figure 13.1. The nth sensor is located
at

mn,x =
(

n − N − 1

2

)
d, mn,y = mn,z = 0 ∀ n = 0, . . . , N − 1,

where d is the intersensor spacing. As a further simplification, assume that plane waves
propagate only parallel to the x –y plane, so that the array manifold vector (13.15) can
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be expressed as

vk(kx) =
[
e
j
(

N−1
2

)
kxd · · · e

j
(

N−1
2 −1

)
kxd · · · e

−j
(

N−1
2

)
kxd

]T

,

where the x-component of k is by definition

kx � −2π

λ
cos φ = −k0 cos φ,

and

k0 � |k| = 2π

λ
.

Let ux = cos φ denote the direction cosine with respect to the x-axis, and let us define

ψ � −kx d = 2π

λ
cos φ · d = 2π

λ
ux d. (13.21)

The variable ψ contains the all-important ratio d/λ as well as the direction of arrival
(DOA) in u = ux = cos φ. Hence ψ is a succinct summary of all information needed to
calculate the sensitivity of the array. The wavenumber response as a function of kx can
then be expressed as

ϒ(ω, kx) = wH vk(kx) =
N−1∑
n=0

w∗
n e

−j
(
n− N−1

2

)
kx d

. (13.22)

The array manifold vector can be represented in the other spaces according to

[vφ(φ)]n = ej (n− N−1
2 ) 2πd

λ cos φ,

[vu(u)]n = ej (n− N−1
2 ) 2πd

λ u,

[vψ(ψ)]
n

= ej (n− N−1
2 )ψ ,

where [·]n denotes the nth component of the relevant array manifold vector. The
representations of the beam pattern given above are useful for several reasons. Firstly,
the φ–space is that in which the physical wave actually propagates, hence it is inherently
useful. As we will learn in Section 13.1.4, the representation in u–space is useful
inasmuch as, due to the definition u � cos φ, steering the beam in this space is equivalent
to simply shifting the beam pattern. Finally, the ψ –space is useful because the definition
(13.21) directly incorporates the all-important ratio d/λ, whose significance will be
discussed in Section 13.1.4.

Based on (13.21), the beam pattern can also be expressed as a function of φ, u, or ψ :

Bφ(φ) = wH vφ(φ) = e−j ( N−1
2 ) 2πd

λ cos φ

N−1∑
n=0

w∗
n ejn 2πd

λ cos φ,
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Bu(u) = wH vu(u) = e−j ( N−1
2 ) 2πd

λ u

N−1∑
n=0

w∗
n ejn 2πd

λ u, (13.23)

Bψ(ψ) = wH vψ(ψ) = e−j ( N−1
2 )ψ

N−1∑
n=0

w∗
n ejnψ .

Now we introduce a further simplifying assumption, namely, that all sensors are uni-
formly weighted, such that

wn = 1

N
∀ n = 0, 1, . . . , N − 1.

In this case, the beam pattern in ψ-space can be expressed as

Bψ(ψ) = 1

N
e
−j

(
N−1

2

)
ψ

N−1∑
n=0

ejnψ . (13.24)

Using the identity

N−1∑
n=0

xn = 1 − xN

1 − x

it is possible to rewrite (13.24) as

Bψ(ψ) = 1

N
e
−j

(
N−1

2

)
ψ

(
1 − ejNψ

1 − ejψ

)

= 1

N
e
−j

(
N−1

2

)
ψ · ejNψ/2

ejψ/2
· e−jNψ/2 − ejNψ/2

e−jψ/2 − ejψ/2

= sincN

(
ψ

2

)
∀ − 2πd

λ
≤ ψ ≤ 2πd

λ
, (13.25)

where

sincN(x) � 1

N

sin (Nx)

sin x
. (13.26)

From the final equality in (13.25), which is plotted against both linear and decibel axes
in Figure 13.3, it is clear that Bψ(ψ) is periodic with period 2π for odd N . Moreover,
Bψ(ψ) assumes its maximum values when both numerator and denominator of (13.26)
are zero, in which case it can be shown to assume a value of unity through the application
of L’Hospital’s rule.
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Figure 13.3 Comparison between a beam pattern on a linear and logarithmic scale, ψ =
2π
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d cos φ,N = 20

Substituting the relevant equality from (13.21), the beam pattern can be expressed in
φ-space as

Bφ(φ) = sincN

(
πd

λ
cos φ

)
∀ 0 ≤ φ ≤ π. (13.27)

In u-space this becomes

Bu(u) = sincN

(
πd

λ
u

)
∀ − 1 ≤ u ≤ 1. (13.28)

A comparison of the beam pattern in different spaces is provided in Figure 13.4. Note
that in each of (13.25), (13.27) and (13.28), we have indicated the allowable range on
the argument of the beam pattern. As shown in Figure 13.4, this range is known as the
visible region , because this is the region in which waves may actually propagate. It is
often useful, however, to assume that ψ , φ, and u can vary over the entire real axis. In
this case, every point outside of the range outside of the visible region is said to lie in
the virtual region . Clearly, the beam patterns as plotted in the kx-, ψ- and ux-spaces are
just scaled replicas, just as we would expect given the linear relationships between these
variables manifest in (13.21). The beam pattern plotted in φ-space, on the other hand, has
a noticeably narrower main lobe and significantly longer sidelobes due to the term cos φ

appearing in (13.21).
The portion of the visible region where the array provides maximal sensitivity is known

as the main lobe. A grating lobe is a sidelobe with the same height as the main lobe. As
mentioned previously, such lobes appear when the numerator and denominator of (13.26)
are both zero, which for sincN(ψ/2) occurs at intervals of

ψ = 2πm,

for odd N . In direction cosine or u-space, the beam pattern (13.23) is specified by Bu(u) =
sincN(πdu/λ) and the grating lobes appear at intervals of

u = λ

d
m∀ m = 1, 2, . . . . (13.29)
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Figure 13.4 Beam pattern plots in kx-, ψ-, u- and φ-spaces for a linear array with d = λ/2 and
N = 20

The grating lobes are harmless as long as they remain in the virtual region. If the spacing
between the sensors of the array is chosen to be too large, however, the grating lobes
can move into the visible region. The effect is illustrated in Figure 13.5. The quantity
that determines whether a grating lobe enters the visible region is the ratio d/λ. For a
uniformly-weighted, uniform linear array, we must require d/λ < 1 in order to ensure that
no grating lobe enters the visible region. We will shortly find, however, that steering can
cause grating lobes to move into the visible region even when this condition is satisfied.

13.1.4 Beam Steering

Steering of the beam pattern is typically accomplished at the digital rather than physical
level so that the array “listens” to a source emanating from a known or estimated position.
For a plane wave, recall that the sensor inputs are given by (13.19). We would like the
output to be time-aligned to the “target” wavenumber k = kT , which is known as the
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Figure 13.5 Effect of element spacing on beam patterns in linear and polar coordinates for N = 10

main response axis or look direction . As noted before, steering can be accomplished with
time delays, or phase shifts. We will, however, universally prefer the latter based on our
use of filter banks to carve up the sensor outputs into narrowband signals. The steered
sensor inputs can then be expressed as

fs(t, m) = ejωtvk(k − kT ),

and the steered frequency wavenumber response as

ϒ(ω, k|kT ) = ϒ(ω, k − kT ).

Hence, in wavenumber space, steering is equivalent to a simple shift, which is the principal
advantage of plotting beam patterns in this space.

When DSB is steered to k = kT , the sensor weights become

w = 1

N
vk(kT ). (13.30)

The delay-and-sum beam pattern , which by definition is

Bdsb(k : kT ) � 1

N
vH

k (kT )vk(k)

∣∣∣∣
k=a(θ,φ)

, (13.31)
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is that beam pattern obtained when a DSB is steered to wavenumber kT and evaluated
at wavenumber k = a(θ, φ). For a linear array, the delay-and-sum beam pattern can be
expressed as

Bdsb(ψ : ψT ) = 1

N
vH

ψ (ψT )vψ(ψ) = 1

N

sin
(
N

ψ−ψT

2

)
sin

(
ψ−ψT

2

) ,

or alternatively in u-space as

Bdsb(u : uT ) = 1

N
vH

u (uT )vu(u) = 1

N

sin
[

πNd
λ

(u − uT )
]

sin
[

πd
λ

(u − uT )
] .

The broadside angle φ = φ − π/2 is, by definition, measured with respect to the y-axis
and has the same sense as φ. The effect of array steering with respect to φ is illustrated
in Figure 13.6. Based on the fact that steering corresponds to a simple shift in u-space,
we can readily develop a requirement for excluding grating lobes from the visible region.
Replacing u with u − uT in (13.29), we find that the position of the first grating lobe can
be expressed as

u − uT = λ

d
;

hence, keeping grating lobes out of the visible region requires

|u − uT| ≤ λ

d
.
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This inequality can be further overbounded as

|u − uT| ≤ |u| + |uT| ≤ 1 + | sin φmax| ≤ λ

d
,

where φmax is the maximum broadside angle to which the pattern is to be steered. Thus
the condition for excluding grating lobes from the visible region can be expressed as

d

λ
≤ 1

1 + | sin φmax|
.

If the array is to be steered over the full range, which is to say, over the entire half plane,
then we must require

d ≤ λ

2
. (13.32)

This inequality bears a remarkable similarity to the Nyquist criterion described in Section
3.1.4 for the sampling of continuous-time signals, and for good reason. A microphone
array is perhaps best thought of as sampling a wave propagating through space. The wave
is sampled, however, both in time and in space. If not sampled often enough in either
dimension, which means at least twice on every wavelength, aliasing occurs. The entrance
of grating lobes into the visible region is nothing more than the manifestation of spatial
aliasing .

Although it is perhaps not immediately obvious, the inequality (13.32) illustrates why
designing a microphone array for acoustic beamforming applications is such a daunting
task. Consider that speech is typically sampled at 16 kHz for audio applications. This
implies that it must be bandlimited to 8 kHz prior to analog to digital conversion. In
Section 2.1.2, we learned that sound propagates with a speed of roughly 343 m/s at sea
level through air. This implies that the length of the shortest wave, which corresponds to
the highest frequency, can be calculated as

λmin = 34, 300 cm s−1

8, 000 s−1
≈ 4.28 cm.

Hence, based on (13.32), in order to properly sample the wave with the shortest length
using a uniform linear array, we must have an intersensor spacing of approximately 2 cm.
Now consider that the lower limit on the bandwidth of human speech is typically taken
as 300 Hz.2 This implies that the length of the longest wave is

λmax = 34, 300 cm s−1

300 s−1
≈ 114.3 cm.

In order to achieve good directivity at low frequencies, the aperture of the array, which
is equivalent to the total distance between the sensors that are furthest apart, should be

2 Even this lower limit of 300 Hz for bandwidth of human speech is too high, inasmuch as the fundamental
frequency f0 for voiced speech of male speakers is in the range of 120 Hz.
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greater than the length of the longest wave. Taking the quotient of 114.3 cm divided by
2 cm, we find that our uniform linear array requires more than 50 sensors in order to
adequately capture human speech. Moreover, its total length must be more than a meter.
This is why a uniformly weighted, uniform linear array is seldom used in practice.

As we will learn in Section 14.1, using such an enormous array is feasible for some
applications, such as in smart rooms or smart offices. If the array must be mounted
on a humanoid robot, a laptop computer, a rearview mirror, or a PDA, however, such
vast stretches of space are simply unavailable. In such applications, perhaps only four
sensors can be used, and the total available space is perhaps 10 or 20 cm, or even less.
Beamforming is still possible in such cases, but the performance provided by the simple
DSB we have described in this section is insufficient. This is the primary reason for
considering the superdirective and adaptive designs described in subsequent sections of
this chapter.

Early work on the optimal placement of the elements of a microphone array was
described by Silverman (1987). Alvarado (1990) investigated optimal spacing for linear
microphone arrays. Rabinkin et al. (1996) demonstrated that the performance of micro-
phone array systems is affected by the microphone placement. In Rabinkin et al. (1997)
a method to evaluate the microphone array configuration was derived and an outline for
optimum microphone placement under practical considerations was described.

One final note before closing this section: The development based on the definition of
the array manifold vector in (13.15) is useful for demonstrating theoretically the basic
concepts of beamforming. This definition is also sometimes useful practically for building
far-field data capture systems. In acoustic beamforming it may happen, however, that the
distance from the source to any one of the sensors of an array is of the same order as the
aperture of the array itself. In such a case, it is better to use a spherical wave assumption.
The latter implies that the array manifold vector must be redefined as

vx(x) �

⎡
⎢⎢⎢⎣

e−jω|x−m0|/c
e−jω|x−m1|/c

...

e−jω|x−mN−1|/c

⎤
⎥⎥⎥⎦ ,

where x is the position of the desired source in Cartesian coordinates. As before, if we
are working in the discrete-time domain, the time delays must be expressed in samples
such that

vDT(x) �

⎡
⎢⎢⎢⎣

e−jωm|x−m0|/(c Ts)

e−jωm|x−m1|/(c Ts)

...

e−jωm|x−mN−1|/(c Ts)

⎤
⎥⎥⎥⎦ ,

where Ts is once more the sampling interval and {ωm} is the set of center frequencies of
the filter bank. This clearly follows from the fact that the array manifold vector is nothing
more than a vector of linear phase delays.
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13.2 Beamforming Performance Measures

As our principal interest here is in distant speech recognition (DSR), we will in all
cases take word error rate (WER) as the most important measure of system performance.
Nonetheless, it is useful to consider other simpler measures to gauge the performance
of the beamforming component of a DSR system that do not require running the entire
system in order to evaluate. The two most important such measures of array performance
are directivity and array gain . In addition to being inherently useful, these measures are
frequently reported in the array-processing literature. In this section, we introduce both
measures and mention their similarities and differences.

13.2.1 Directivity

The directivity is formally defined as the maximum sensitivity of the array divided by its
average sensitivity over its working range, which is typically either a sphere or hemisphere.
In order to derive a suitable expression for calculating directivity, we may begin by
defining the power pattern as

P(θ, φ) � |B(ω : θ, φ)|2. (13.33)

The differential element of area on the surface of a sphere or hemisphere of radius ρ is
given by

�A = ρ sin θ dθ dφ.

Moreover, the total area of such a sphere is 4πr2 or 2πr2 for a hemisphere. The directivity
D is, as mentioned above, defined as the maximum radiation intensity divided by the
average radiation intensity. Assuming then that only sound radiating in the front half
plane of a hemisphere of radius r = 1 is captured, we can express the directivity as

D � P(θT , φT )
1

2π

∫ π

0 dθ
∫ π

0 dφ sin θ · P(θ, φ)
,

where (θT, φT) are the coordinates of the look direction. Assuming the sensor weights are
normalized such that P(θT , φT ) = 1, then

D =
{

1

2π

∫ π

0
dθ

∫ 2π

0
dφ sin θ · P(θ, φ)

}−1

.

We will now calculate the directivity of a uniformly weighted uniform linear array,
such as that considered in Section 13.1.3. For such a linear array B(θ, φ) = B(φ), which
implies that

D =
{

1

2

∫ π

0
|B(φ)|2 sin φdφ

}−1

.
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Equivalently, in u-space, we set u = cos φ, and can write

D =
{

1

2

∫ 1

−1
|Bu(u)|2du

}−1

.

Substituting for Bu(u) from (13.23), we find

D =
{

1

2

∫ 1

−1

N−1∑
n=0

w∗
ne

jn( 2πd
λ )(u−uT )

N−1∑
m=0

wme−jm( 2πd
λ )(u−uT )du

}−1

.

Rearranging and integrating the latter expression provides

D =
{

N−1∑
n=0

N−1∑
m=0

w∗
m w∗

n ej ( 2πd
λ )(m−n)uT sinc

[
2πd

λ
(n − m)

]}−1

.

Upon defining the sinc matrix as

[S(r)]nm � sinc 2πr(n − m),

and assuming that the steering component is included in ws, we can write

D = wH
s S(d/λ) ws.

For the special case of a standard linear array with d = λ/2, we can further simplify as

D =
{

N−1∑
n=0

|wn|2
}−1

= (wH w)−2 = |w|−1 ,

where |w| = (wH w)1/2. For a uniformly weighted array, wn = 1/N , so that

N−1∑
n=0

|wn|2 = 1

N
,

or, finally,

D = N. (13.34)

Hence, for the special case of a uniformly weighted, uniform linear array with d = λ/2,
the directivity does not depend on the look direction. This, however, does not hold for
other inter-element spacings. It can be shown that uniform weighting maximizes the
directivity of the standard linear array (Van Trees 2002, sect. 2.6.1).

The directivity index is expressed in dB and given by:

DdB � 10 log10 N. (13.35)

The last equation implies that each doubling of the number of elements in a uniformly
weighted, uniform linear array increases the directivity index by approximately 3 dB.
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13.2.2 Array Gain

In the conventional beamforming algorithms, the sensor weights are typically set so as
to maximize the signal-to-noise ratio (SNR), although this maximization is performed
independently in each subband; see the discussion of this point in Section 13.3.6. The
improvement in SNR obtained through the interaction of the propagating wave, the array
geometry, and the sensor weights is measured by the array gain , which by definition is
the ratio of two SNRs, namely, the SNR at the input of any given sensor, and the final
SNR at the output of the beamformer. In this section, we will calculate the array gain
of the DSB, which will serve as a baseline for gauging the effectiveness of the more
elaborate beamformer designs considered in Section 13.3.

In the remainder of this chapter, we consider the desired signal as well as any
interference as random variables , and consequently characterize both by their statistical
properties. In particular, we will initially assume that both source and interference
are zero-mean circular Gaussian complex random processes. This assumption will
be modified in Section 13.5, however, as it clearly does not hold for human speech.
Moreover, in the balance of this section and Section 13.3, we will assume that the
second-order characteristics of both the sources and interferences are known . In
Section 13.4, we will investigate techniques whereby these second-order statistical
characteristics can be deduced directly from the data impinging on a sensor array.

Let X(ω) ∈ C
N denote a subband domain snapshot, which is a vector of N complex

subband samples, one per microphone, for frequency ω. We will assume that X(ω) is
generated by the snapshot model

X(ω) = F(ω) + N(ω), (13.36)

where F(ω) denotes the subband domain snapshot of the desired signal and N(ω) denotes
that of the noise or other interference impinging on the sensors of the array. We will
assume that F(ω) and N(ω) are uncorrelated and that the signal vector F(ω) can be
expressed as in (13.14).

We now introduce the notation necessary for specifying the second-order statistics of
random variables and vectors. In general, for some complex scalar random variable Y (ω),
we will define

Y (ω) � E{|Y (ω)|2}.
Similarly, for a complex random vector X(ω), let us define the spatial spectral matrix as

�X(ω) � E{X(ω)XH (ω)}.
By way of illustrating the concept of array gain with a concrete example, we will now

calculate the array gain for a DSB. Let us begin by assuming that the component of the
desired signal reaching each component of a sensor array is F(ω) and the component of
the noise or interference reaching each sensor is N(ω). This implies that the SNR at the
input of the array can be expressed as

SNRin(ω) � F (ω)

N(ω)
. (13.37)
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Defining wH (ω) = HT (ω) as in (13.20) enables (13.2) to be rewritten as

Y (ω) = wH (ω) X(ω) = YF (ω) + YN(ω), (13.38)

where YF (ω) � wH (ω) F(ω) and YN(ω) � wH (ω) N(ω) are, respectively, the signal and
noise components in the output of the beamformer. Hence, the variance of the output of
the beamformer can be calculated according to

Y (ω) = E{|Y (ω)|2} = YF
(ω) + YN

(ω), (13.39)

where

YF
(ω) = wH (ω) �F(ω) w(ω), (13.40)

is the signal component of the beamformer output, and

YN
(ω) = wH (ω) �N(ω) w(ω), (13.41)

is the noise component. Equation (13.39) follows directly from the assumption that F(ω)

and N(ω) are uncorrelated. Expressing the snapshot of the desired signal once more as in
(13.14), we find that the spatial spectral matrix F(ω) of the desired signal can be written
as

�F(ω) = F (ω) vk(ks) vH
k (ks), (13.42)

where F (ω) = E{|F(ω)|2}. Substituting (13.42) into (13.40), we can calculate the output
signal spectrum as

YF
(ω) = wH (ω) vk(ks)F (ω) vH

k (ks) w(ω) = F (ω), (13.43)

where the final equality follows from the definition (13.20) of the DSB. Substituting
(13.20) into (13.41) it follows that the noise component present at the output of the DSB
is given by

YN
(ω) = 1

N2
vH (ks) �N(ω) v(ks) (13.44)

= 1

N2
vH (ks)ρN(ω)v(ks )N(ω), (13.45)

where the normalized spatial spectral matrix ρN(ω) is defined through the relation

�N(ω) � N(ω) ρN(ω). (13.46)

Hence, the SNR at the output of the beamformer is given by

SNRout(ω) � YF
(ω)

YN
(ω)

= F (ω)

wH (ω) �N(ω)w(ω)
. (13.47)
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Then based on (13.37) and (13.47), we can calculate the array gain of the DSB as

Adsb(ω, ks) = YF
(ω)

YN
(ω)

/
F (ω)

N(ω)
= N2

vH (ks) ρN(ω) v(ks)
. (13.48)

In the presence of isotropic or uncorrelated noise, ρN(ω) reduces to the identity matrix
and the denominator of (13.48) reduces to N . Hence, comparing (13.34) and (13.48), it
becomes apparent that the directivity D is equivalent to the array gain in the presence
of isotropic or uncorrelated noise. For other cases directivity and array gain differ. The
directivity metric takes into account solely the sensitivity of the array as represented by the
power pattern (13.33). The array gain, on the other hand, considers both the sensitivity
of the array as well as the acoustic environment in which it operates as characterized
by the noise snapshot N(ω) in (13.36). Hence, the array gain is more representative of
the performance of a beamformer in a particular acoustic environment. The directivity
is useful, however, as a “rough” indicator of the performance of a beamformer without
knowledge of the specific acoustic environment.

13.3 Conventional Beamforming Algorithms

In this section, we investigate the class of conventional beamforming algorithms. The
reader should please note that this class of conventional beamforming algorithms, all of
which are adaptive, is distinct from the DSB described in Section 13.1.3, which is a fixed
design. The conventional beamforming algorithms are designated as such because they all
seek to minimize a quadratic optimization criterion. While each of the four conventional
algorithms minimizes a different criterion, the various criteria lead to the same matrix
processing element; the four conventional algorithms are then distinguished only by the
scalar processing element or postfilter applied to the output of the matrix processor.
These algorithms were designed not for speech processing, but for other signal processing
applications such as radar, sonar, and radio astronomy (Van Trees 2002, sect. 1.2).

13.3.1 Minimum Variance Distortionless Response Beamformer

Although data-independent designs such as the DSB can give substantial reductions in the
WER of a DSR system, further reductions can be achieved through the use of algorithms
that adapt to a particular acoustic environment. In this section, we will investigate the
first such design. We will maintain the signal model of (13.14) and (13.36). Whenever it
becomes cumbersome, we will suppress the functional dependence of X(ω) on ω. It must
be borne in mind, however, that this frequency dependence is present whether or not it is
explicitly indicated. Moreover, although ω is represented as continuous-valued, we will
typically calculate snapshots X(ω) for a discrete set of filter bank center frequencies {ωm}.

Many adaptive beamforming algorithms impose a distortionless constraint , which
implies that, in the absence of noise, the output of the beamformer is equivalent to
the desired source signal. In particular, a plane wave arriving along the main response
axis ks under a distortionless constraint will be neither amplified nor attenuated by the
beamformer, so that

Y (ω) = F(ω), (13.49)
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where the beamformer output Y (ω) is specified in (13.38), and F(ω) is the Fourier
transform of the original source signal. Substituting (13.14) into (13.36), and the latter
into (13.38), it follows that

Y (ω) = F(ω) wH (ω) v(ks) = F(ω).

Hence, the distortionless constraint can be expressed as

wH (ω) v(ks) = 1. (13.50)

Clearly setting

wH (ω) = 1

N
vH (ks),

as is the case for the DSB, will satisfy (13.50). Thus, the DSB satisfies the distortionless
constraint, as due other quiescent weight vector designs, such as the Dolph–Chebyshev
design (Van Trees 2002, sect. 4.1.8).

Now let us characterize the noise snapshot model as a zero-mean process with spatial
spectral matrix

�N(ω) = E{N(ω)NH (ω)} = �c(ω) + σ 2
wI,

where �c and σ 2
wI are the spatially correlated and uncorrelated portions, respectively,

of the noise covariance matrix. Whereas spatially correlated interference is due to the
propagation of some interfering signal through space, uncorrelated noise is typically due
to the self-noise of the sensors. As we will learn in Section 13.3.8, however, adding
an additional uncorrelated portion to the spatial spectral matrix adds robustness to the
beamformer in the presence of various types of mismatch.

The beamformer output will be as specified in (13.38). When noise is present, we can
write

Y (ω) = F(ω) + YN(ω),

where, according to (13.36), YN(ω) = wH (ω)N(ω) is the component of the noise re-
maining in the output of the beamformer. The power spectrum of the noise at the output of
the beamformer is given by (13.44). In addition to satisfying the distortionless constraint,
we wish also to minimize this output variance, and thereby minimize the influence of
the noise. To solve the constrained optimization problem, we can apply the method of
Lagrange multipliers. As we are dealing here with complex vectors, we must use the
method for taking derivatives described in Appendix B.16. That is, we first define the
“symmetric” objective function

F � wH (ω) �N(ω) w(ω) + λ[wH (ω)v(ks ) − 1] + λ∗[v(ks)
H w − 1], (13.51)
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where λ is a complex Lagrange multiplier, to incorporate the constraint into the objective
function. Taking the complex gradient with respect to wH , equating this gradient to zero,
and solving yields

wH
mvdr(ω) = −λ vH (ks) �−1

N (ω). (13.52)

Applying now the distortionless constraint (13.50), we find

λ = −
[
vH (ks) �−1

N (ω) v(ks)
]−1

.

Thus, the optimal sensor weights are given by

wH
o (ω) = �(ω) vH (ks) �−1

N (ω) = wH
mvdr(ω), (13.53)

where

�(ω) �
[
vH (ks) �−1

N (ω) v(ks)
]−1

. (13.54)

This solution is known as the MVDR and was first derived by Capon (1969). Shown in
Figure 13.7 is a schematic of the MVDR beamformer. The quantity �(ω) is equivalent
to the spectral power of the noise component present in Y (ω), as can be seen from the
following chain of equalities:

YN
(ω) = wH

mvdr(ω) �N(ω) wmvdr(ω) (13.55)

= vH (ks) �−1
N (ω) �N(ω) �−1

N (ω) v(ks) · �2(ω) = �(ω). (13.56)

Equation (13.56) follows from (13.55) upon substituting (13.53) into the latter.
Note that (13.53) implies that the sensor weights for each subband are designed inde-

pendently. This is one of the chief advantages of subband domain adaptive beamforming.
In particular, the transformation into the subband domain has the effect of a divide and
conquer optimization scheme; i.e., a single optimization problem over MN free parame-
ters, where M is the number of subbands and N is the number of sensors, is converted
into M optimization problems, each with N free parameters. Each of the M optimization
problems is solved independently, which is a direct result of the statistical independence
of the subband samples produced by the high stopband suppression of each filter in the
digital filter bank. If a time signal is then required at the output of the beamformer, a syn-
thesis filter of the type discussed in Section 11.1 can be used to transform the beamformed
set of subband samples back into the time domain.

X(ω) Y(ω)Λ(ω)vH(ω:ks)Σ N(ω)−1

Figure 13.7 Minimum variance distortionless response processor
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13.3.2 Array Gain of the MVDR Beamformer

We will now calculate the array gain of the MVDR beamformer, and compare it to that
of the conventional beamformer. As wH

mvdr(ω) satisfies the distortionless constraint, the
power spectrum of the desired signal at the output of the beamformer can be expressed as

YF
(ω) = F (ω),

where F (ω) is the power spectrum of the desired signal F(ω) at the input of each
sensor. Hence, based on (13.56), the output SNR can be written as

F (ω)

YN
(ω)

= F (ω)

�(ω)
.

If we assume that the noise spectrum at the input of each sensor is the same, then the
input SNR is F (ω)/N(ω). As discussed in Section 13.2, the array gain at a particular
frequency is the ratio of the SNR at the output of the array to the SNR at the input, and
can be expressed as

Amvdr(ω, ks) = F (ω)

�(ω)

/
F (ω)

N(ω)
= N(ω)

�(ω)
(13.57)

= N(ω) vH (ks) �−1
N (ω) v(ks), (13.58)

where the final equality follows from (13.54). Hence, based on (13.46) we may rewrite
(13.58) as

Amvdr(ω, ks) = vH (ks) ρ−1
N (ω) v(ks). (13.59)

If the noises at all sensors are spatially uncorrelated, then ρN(ω) is the identity matrix
and the MVDR beamformer reduces to the DSB. From (13.48) and (13.59), it can be seen
that, in this case, the array gain is

Amvdr(ω, ks) = Adsb(ω, ks) = N. (13.60)

In all other cases,

Amvdr(ω, ks) > Adsb(ω, ks).

13.3.3 MVDR Beamformer Performance with Plane Wave Interference

It is instructive to analyze the performance of the conventional and MVDR beamformers in
the presence of both a plane wave interfering signal emanating from a particular direction
and spatially uncorrelated noise. Hence, we consider here a desired signal with array
manifold vector v(ks) and a single plane-wave interfering signal with manifold vector
v(k1), in addition to uncorrelated sensor noise with power σ 2

w. In this case, the spatial
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spectral matrix �N(ω) of the noise can be expressed as

�N(ω) = σ 2
w I + M1(ω) v(k1) vH (k1), (13.61)

where M1(ω) is the spectrum of the interfering signal. Applying the matrix inversion
lemma, as described in Appendix B.2, to (13.61) provides

�−1
N = 1

σ 2
w

[
I − M1

σ 2
w + N M1

v1vH
1

]
, (13.62)

where we have suppressed ω and k for convenience, and defined v1 � v(k1). The noise
spectrum at each element of the array can be expressed as

N = σ 2
w + M1. (13.63)

Substituting (13.62) into (13.53), we find

wH
mvdr = �

σ 2
w

vH
s

[
I − M1

σ 2
w + N M1

v1vH
1

]
. (13.64)

Let us define the spatial correlation coefficient between the desired signal and the
interference as

ρs1 � vH
s v1

N
, (13.65)

and note that

ρs1 = Bdsb(k1 : ks),

where Bdsb(k1 : ks) is the delay-and-sum beam pattern (13.31) aimed at ks, the wavenum-
ber of the desired signal, and evaluated at k1, the wavenumber of the interference. With
this definition (13.64) can be rewritten as

wH
mvdr = �

σ 2
w

[
vH

s − ρs1
NM1

σ 2
w + NM1

vH
1

]
. (13.66)

The normalizing coefficient (13.54) then reduces to

� =
{

1

σ 2
w

N

[
1 − NM1

σ 2
w + NM1

|ρs1|2
]}−1

. (13.67)

The beamformer just derived is represented schematically in Figure 13.8. It is clear that
the upper and lower branches of this MVDR beamformer correspond to conventional
beamformers pointing at the desired signal and the interference, respectively. The necessity
of the bottom branch is readily apparent if we reason as follows: The path labeled N̂1(ω)

is the minimum mean-square estimate of the interference plus noise. This noise estimate
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Figure 13.8 Optimum MVDR beamformer in the presence of a single interferer

is scaled by ρs1 and subtracted from the output of the DSB in the upper path, in order to
remove that portion of the noise and interference captured by the upper path.

Observe that in the case where NM1 � σ 2
w, we may rewrite (13.66) as

wH
mvdr = �

σ 2
w

vH
s P⊥

I ,

where P⊥
I = I − v1vH

1 is the projection matrix onto the space orthogonal to the interfer-
ence, as discussed in Appendix B.17. This case is shown schematically in Figure 13.8,
which indicates that the beamformer is placing a perfect null on the interference.

The array gain of the MVDR beamformer in the presence of plane wave interference
can be calculated by substituting (13.63) and (13.67) into (13.57), which provides

Amvdr = N(1 + σ 2
I )

[
1 + Nσ 2

I (1 − |ρs1|2)
1 + Nσ 2

I

]
,

where the interference-to-noise ratio (INR), defined as

σ 2
I � M1

σ 2
w

,

is the ratio of spatially correlated to uncorrelated noise. Beam patterns corresponding
to several values of σ 2

I and uI, the direction cosine of the interference, are shown in
Figure 13.9. Observe that the suppression of the interference is not perfect when either
σ 2

I is verly low, or uI is very small such that the interference moves within the main lobe
region of the delay-and-sum beam pattern.

The array gain of the DSB in the presence of a single interferer is readily obtained by
substituting (13.61) and (13.63) into (13.48), whereupon we find

Adsb(ω, ks) = N2(σ 2
w + M1)

vH
s (σ 2

wI + M1v1vH
1 )vs

= N(1 + σ 2
I )

1 + σ 2
I N |ρs1|2

.

The array gains for both DSB and optimal MVDR beamformer at various INR levels are
plotted in Figure 13.10. From the figure several facts are evident: Firstly, when 1 − |ρs1|2
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Figure 13.9 MVDR beam patterns for single plane wave interference
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I

approaches zero, which corresponds to the case wherein the interference moves inside
the main lobe, the array gains of both the DSB and MVDR beamformers drop to zero.
Secondly, for moderate to high values of σ 2

I and 1 − |ρs1|2 > 0.2, the MVDR beamformer
provides a substantially higher array gain than the DSB. Thirdly, the MVDR beam-
former is clearly more effective at suppressing correlated than uncorrelated noise, which is
apparent from the fact that the array gain it provides increases with increasing σ 2

I . Finally,
for very low values of σ 2

I , the array gain provided by both beamformers approaches 10 dB
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regardless of 1 − |ρs1|2, which is exactly what is to be expected given that the MVDR
becomes a DSB for ρN(ω) = I; i.e., when the noise is completely uncorrelated. That the
array gain for both beamformers should be 10 dB is evident from (13.60).

13.3.4 Superdirective Beamformers

In this section and the one following, we develop two variants on the MVDR beamformer.
The first variant will involve a specific assumption with respect to the noise field in which
the MVDR beamformer is to operate, and will lead to a particular solution for the sensor
weights. The second variant will not place any restrictions on the sensor weights, but will
instead involve the use of a postfilter at the output of the MVDR beamformer. The latter
design will be shown to be equivalent to the MMSE processor.

Consider the frequency-dependent beam pattern for a linear DSB with an intersensor
spacing of d = 4 cm and N = 10 elements shown on the left side of Figure 13.11. As
is clear from the figure, the directivity of the linear DSB at low frequencies is poor due
to the fact that the wavelength is much longer than the aperture of the array. The beam
pattern for very low frequencies is nearly flat, indicating that the directivity is effectively
zero.

The superdirective beamformer design provides a remedy for such low-frequency direc-
tivity problems. Let us define the cross-correlation coefficient between the inputs of the
mth and nth sensors as

ρmn(ω) � E{Xm(ω)X∗
n(ω)}√

E{|Xm(ω)|2} E{|Xn(ω)|2}
, (13.68)
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Figure 13.11 Frequency-dependent delay-and-sum and superdirective beam patterns for a linear
array with an intersensor spacing of d = 4 cm and N = 10 elements
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where ω is the angular frequency. The superdirective design is then obtained by replacing
the spatial spectral matrix �N in (13.53) and (13.54) with the coherence matrix �N cor-
responding to a diffuse noise field. The (m,n)th component of the latter can be expressed
as

�N,m,n(ω) = sinc

(
ω dm,n

c

)
= ρmn(ω), (13.69)

where dm,n is the distance between the mth and nth elements of the array. The
frequency-dependent beam pattern obtained with this superdirective design is shown on
the right side of Figure 13.11. The name ‘superdirective’ implies that the beamformer
has a higher directivity index, as defined in (13.35), than a DSB with the same array
geometry (Bitzer and Simmer 2001).

As an alternative to the assumption of a spherically isotropic noise field, it is also
common to assume a cylindrically isotropic noise field in the design of superdirective
beamformers. As explained in Elko (2001), the cylindrically isotropic coherence function
can be expressed as

�N,m,n(ω) = J0

(
ω dm,n

c

)
, (13.70)

where J0 denotes the zeroth-order Bessel function3 of the first kind (Cron and Sherman
1962). This design is well suited to modeling babble noise, such as is encountered in the
cocktail party problem . In particular, this design has been used in the design of hearing
aids (Doerbecker 1997). The coherence functions corresponding to the spherically and
cylindrically isotropic noise fields are plotted in Figure 13.12. From the figure, it is clear
that the cylindrically isotropic noise field retains a higher correlation over greater distances
than the spherically isotropic field.
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Figure 13.12 Spherically and cylindrically isotropic coherence functions for 1000 Hz

3 For a brief discussion of Bessel functions, see Appendix B.12.
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13.3.5 Minimum Mean Square Error Beamformer

As we will see in this section, the performance of the MVDR beamformer can be enhanced
by applying a frequency dependent weighting to the output of the beamformer. This has the
effect of introducing a final filtering operation, or a postfilter , on the beamformer output.
Let us again consider the same single plane-wave model as in (13.14) and (13.36), and
once more assume that F(ω) and N(ω) are uncorrelated. The spatial spectral matrix of
X(ω) can be expressed as

�X(ω) = F (ω) v(ks) vH (ks) + �N(ω).

Let D(ω) denote the snapshot of the desired signal, which is equivalent to the source
snapshot F(ω). We now define the matrix processor

D̂(ω) = wH (ω) X(ω).

The mean-square error (MSE) is defined as

ζ(w(ω)) � E
{∣∣D(ω) − wH (ω) X(ω)

∣∣2
}

= E
{
(D(ω) − wH (ω) X(ω))(D∗(ω) − XH (ω) w(ω))

}
.

In order to minimize the MSE, we take the complex gradient of ζ with respect to w(ω)

and equate the result to zero, to find

E
{
D(ω) XH (ω)

} − wH (ω) E
{
X(ω)XH (ω)

} = 0,

so that

�D XH (ω) = wH
mmse(ω) �X(ω).

Hence, the MMSE solution is

wH
mmse(ω) = �D XH (ω) �−1

X (ω). (13.71)

From the signal model, and the assumption that noise and signal are uncorrelated we
find

�D XH (ω) = E{D(ω)D∗(ω)vH (ks) + D(ω) N(ω)} = F (ω) vH (ks),

where D(ω) = F(ω) by assumption. This implies that (13.71) can be specialized accord-
ing to

wH
mmse(ω) = F (ω) vH (ks) �−1

X (ω).
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The spatial spectral matrix of the subband snapshot X can be expressed as

�X(ω) = F (ω) v(ks) vH (ks) + �N(ω).

This latter equation can be rewritten by applying the matrix inversion lemma described
in Appendix B.2, with

A = �N(ω), B = v(ks), C = F (ω), D = vH (ks),

whereupon we find,

�−1
X = �−1

N − F �−1
N v

(
1 + F vH �−1

N v
)−1

vH �−1
N . (13.72)

The dependence on ω in (13.72) has been suppressed out of convenience. Defining �(ω)

as in (13.54) and substituting into (13.72), we learn

wH
mmse(ω) = F (ω)

F (ω) + �(ω)
· �(ω) vH (ks)�−1

N (ω). (13.73)

Comparing (13.53) and (13.73), it is clear that the MMSE beamformer consists of a
MVDR beamformer followed by a frequency-dependent scalar multiplicative factor.
Recall now that F (ω) is the power spectral density of the signal at the input of the
beamformer, which, due to the distortionless constraint (13.50), is also the power spectral
density of the signal at the output of the MVDR beamformer. Also recall that, in light
of (13.56), �(ω) is the power spectral density of the noise at the output of the MVDR
beamformer. Hence, upon comparing the ratio in (13.73) with (4.16), it becomes apparent
that the multiplicative factor mentioned above is equivalent to a Wiener postfilter. The
MMSE beamformer is shown schematically in Figure 13.13.

While (13.73) is optimal in the mean square sense, it is not sufficient to design a MMSE
beamformer. This follows from the fact that the spectra of both the desired signal D(ω)

and disturbance �(ω) at the output of the beamformer must be known . In practice they
can only be estimated, and forming this estimate is the art in Wiener postfilter design. One
of the earliest and best-known proposals for estimating these quantities was by Zelinski
(1988). A good survey of current techniques is given by Simmer et al. (2001). Other
approaches to postfilter design based on the particle filter and other techniques were
discussed in Chapter 6.

ΣF(ω)
ΣF(ω) Λ(ω)+

MVDR Beamformer Wiener Filter

X(ω) F(ω)
Y(ω)

Λ(ω)vH(ω:ks)Σ N(ω)−1

Figure 13.13 MMSE processor
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13.3.6 Maximum Signal-to-Noise Ratio Beamformer

At this point, we have derived the optimal sensor weights for both the MVDR and
MMSE beamformers, and discovered that the MMSE beamformer differs from the MVDR
beamformer only through a scalar factor in the subband domain, which is equivalent to
a postfilter in the time domain. In Section 13.2.2, we also defined the array gain as the
ratio of SNR at the input and output of a beamformer. Given that the array gain is an
often-used metric for the quality of a beamformer, we might well ask what beamformer
design maximizes the array gain? Inasmuch as the SNR at the input to the beamformer
is fixed, maximizing the array gain is equivalent to maximizing SNR at the output of the
beamformer.

Van Trees (2002, sect. 6.2.3) demonstrates that maximizing output SNR results in the
sensor weights

wH
max. SNR = vH (ks)−1

N (ω) (13.74)

Comparing (13.53) and (13.73) with (13.74), it is clear that the matrix processor in
the maximum SNR beamformer is equivalent to that in both the MVDR and MMSE
beamformers. The only difference between the sensor weights produced by the three
optimization criteria is in the final scalar factor or postfilter. This fact indicates that the
MVDR beamformer creates a one-dimensional signal subspace in which all subsequent
processing occurs.

13.3.7 Generalized Sidelobe Canceler

While the distortionless constraint is nearly always the constraint first chosen, it is not
the only reasonable constraint. Quite often additional constraints are applied in order to
prevent the beam from becoming too narrow or too broad, or to place a null on a known
source of interference (Van Trees 2002, sect. 6.7.1). If there are Mc linear constraints in
total, the constraint equation can be written as

wH C = gH , (13.75)

where wH and gH are 1 × N and 1 × Mc vectors respectively, and C is a N × Mc matrix.
In such a case, the first column of C is typically v(ks) and the first element of g is typically
unity, so the processor remains distortionless.

Hereafter we will, as a matter of convenience, suppress the dependence on the frequency
ω in all quantities. In order to derive the optimal sensor weights for the beamformer with
multiple constraints, we define the function

J � wH �N w + (
wH C − gH

)
λ + λH

(
CH w − g

)
, (13.76)

where the vector of Lagrange multipliers λ is of length Mc due to the Mc constraints.
Taking the complex gradient of J with respect to wH and setting to zero provides

�Nw + Cλ = 0,
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or

w = −�−1
N Cλ.

Applying the linear constraint, we find

−λH CH�−1
N C = gH .

Hence, the final result is

wH
lcmv = gH

(
CH�−1

N C
)−1

CH�−1
N , (13.77)

which is known as the linear constraint minimum variance (LCMV) solution.
A useful beamforming structure can be obtained by dividing the total N -dimensional

weight space into constraint and orthogonal spaces. The constraint space is determined
by the range space of the columns of C, an N × Mc matrix. Then let us define the blocking
matrix B as an N × (N − Mc) matrix with linearly independent columns such that

CH B = 0, (13.78)

where 0 is an Mc × (N − Mc) matrix of zeros. The orthogonal space is defined by the
columns of B.

Let us assume that the optimal weights correspond to the LCMV solution (13.77), and
partition wH

lcmv into two components,

wH
o = wH

c − wH
p ,

where wH
c and wH

p are the projections of wH
o onto the constraint and orthogonal spaces,

respectively. As explained in Appendix B.17, the projection matrix onto the constraint
space is

PC = C
(
CH C

)−1
CH , (13.79)

and wH
c can be expressed as

wH
c = wH

lcmvPC. (13.80)

Substituting (13.77) and (13.79) into (13.80) provides

wH
c = wH

o PC = gH
(

CH�−1
N C

)−1
CH�−1

N

[
C

(
CH C

)−1
CH

]
. (13.81)

That component of wo lying in the constraint space is known as the quiescent weight
vector , and will be denoted as wq. Canceling the common terms in (13.81), we find

wH
c = gH

(
CH C

)−1
CH = wH

q . (13.82)
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Observe that wH
c is determined solely by the constraints and is independent of �X, much

as we might expect.
Let P⊥

C denote the projection operator described in Appendix B.17 for the space orthog-
onal to the constraints, which can be expressed as

P⊥
C = B

(
BH B

)−1
BH . (13.83)

Thus, the second component of wH
lcmv can be expressed as

wH
p = wH

lcmvP⊥
C = wH

o B
(
BH B

)−1
BH .

Substituting (13.77) into the last equation provides

wH
p = gH

(
CH�−1

N C
)−1

CH�−1
N · B

(
BH B

)−1
BH .

The formulation leads to the implementation shown in Figure 13.14.
Now note that

Yb = wH
p X

is obtained by multiplying X by a matrix completely contained in the B subspace. Defining
the active weight vector wa through the relation

wH
p � wH

a BH ,

leads to the processor shown in Figure 13.15, whose output can be expressed as

Y = (wq − Bawa)
H X. (13.84)
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+
+

−
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Figure 13.14 Partitioned linearly constrained minimum power beamformer
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Figure 13.15 Generalized sidelobe canceler
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This final configuration is known as the GSC. The active weight vector is known as such
because it is this vector that is adapted during the execution of the adaptive beamforming
algorithms that will be discussed in Section 13.4.

The GSC is useful because it converts a constrained optimization problem into an
unconstrained optimization problem. It is also more computationally efficient than the
direct form given that the optimization is performed in a space with dimensionality N −
Mc instead of N .

Recall that we seek to minimize the output power subject to the constraint (13.75).
Substituting (13.82) into (13.75) we learn that the upper path of the GSC exactly satisfies
this constraint. The lower path is orthogonal to the constraint space, and hence has no
impact on whether or not the complete weight vector satisfies (13.75). Subject to (13.75),
we wish to minimize the total output power

Po = (
wq − Bwa

)H
�X

(
wq − Bwa

)
.

Taking the gradient of Po with respect to wa and equating to zero gives

(
wH

q − wH
a BH

)
�XB = 0,

so that the active weight vector can be expressed as

ŵH
a = wH

q �XB
(
BH�XB

)−1
.

Equation (13.78) implies that B lies entirely in the null space of C. Although B must
satisfy this constraint, its specification is not unique. There remains the question of how
such a blocking matrix may be derived. One common technique is to first form the
projection operator for the space orthogonal to the constraints according to

P⊥
C = I − C

(
CH C

)−1
CH , (13.85)

then to use a modified Gram–Schmidt orthogonalization procedure (Golub and Van Loan
1996b) to construct a basis of N − Mc independent vectors for this orthogonal space.
Another way to obtain a minimal orthonormal basis is to perform a singular value decom-
position (SVD) on P⊥

C to obtain

P⊥
C = U�VT .

Because P⊥
C is rank deficient, Mc of the singular values on the main diagonal of � will be

very close to zero. In order to obtain a minimal basis for the range space of the columns
of P⊥

C , we need only take the N − Mc singular vectors from the columns of U associated
with the largest singular values on the main diagonal of �. An even simpler technique for
determining a basis for the null space of C is to perform a SVD directly on C to obtain

C = UC �C VT
C.
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Figure 13.16 Generalized sidelobe canceler with phase presteering

Thereafter the columns of UC associated with the smallest N − Mc singular values on
the main diagonal of �C can be used as the desired basis for the null space of C.

Another common technique for designing B and wq stems from the need to track a
moving source. In this case, the modified GSC structure shown in Figure 13.16 is used,
wherein beam steering is performed as a preprocessing step by applying appropriate phase
shifts to the beamformer inputs. The presteering vector is exactly that given in (13.20).
This implies that the quiescent weight vector and blocking matrix are real-valued and
have a very simple structure, namely (Griffiths and Jim 1982),

wT
q = [

1 1 · · · 1
]
, (13.86)

BT =

⎡
⎢⎢⎢⎢⎢⎣

1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
0 0 1 −1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 −1

⎤
⎥⎥⎥⎥⎥⎦ . (13.87)

If an orthonormal specification of B is required, the Gram–Schmidt procedure or alter-
natively the SVD can be applied to the rows of (13.87). The advantage of such a design
is that wq and B need not change when the speaker moves, rather, it is only necessary to
adjust the presteering phase shifts.

The GSC was used by Owsley (1971), as well as Applebaum and Chapman (1976).
Griffiths and Jim (1982) analyzed its behavior and coined the term generalized sidelobe
canceller. Other early work with the GSC was due to Er and Cantoni (1983) and Cox
et al. (1987).

13.3.8 Diagonal Loading

A practical beamforming algorithm must typically contend with various forms of mismatch
between the conditions for which the algorithm was designed, and those under which it
must operate in a realistic acoustic environment. The most common form of mismatch
is due to steering errors , whereby there is some inaccuracy in the estimate of the true
speakers’ positions. Another common form of mismatch is due to differences among the
individual sensors of the microphone array, both in their gain or phase responses. Yet
another form of mismatch stems from imprecise knowledge of the exact locations of the
sensors. This latter form of mismatch can arise, for example, when these locations must
be inferred using techniques such as that described in Section 13.6.

The sensitivity of the MVDR beamformer to all such forms of mismatch increases as
|w|2 increases (Van Trees 2002, sect. 6.6.4). This suggests that the robustness of the entire
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system can be increased by limiting the total size of the sensor weight vector through the
use of a quadratic constraint

|w|2 ≤ To,

where To is a design parameter. It must hold that,

To ≥ 1

N
,

as 1/N is the minimum value that |w|2 can assume and still satisfy the distortionless con-
straint (13.50). We can then seek to minimize the variance of the output of the beamformer
subject to both a distortionless and a quadratic constraint according to

minimize wH�Xw, (13.88)

such that wH vm = 1, (13.89)

and wH w = To, (13.90)

where we use an equality constraint in (13.90) for simplicity. Once more applying the
method of undetermined Lagrange multipliers, the function to be minimized in solving
the constrained optimization problem above can be expressed as

F � wH�Xw + λ1
(
wH w − To

) + λ2
(
wH vm − 1

) + λ∗
2

(
vH

m w − 1
)
. (13.91)

Differentiating the last equation with respect to w and setting the result to zero provides

wH�X + λ1wH + λ∗
2vH

m = 0.

Hence, the optimal sensor weights can be expressed as

wH = −λ∗
2vH

m (λ1 I + �X)−1 . (13.92)

Upon substituting the right-hand side of (13.92) into the constraint (13.89), we arrive at
the solution for λ∗

2 as

λ∗
2 = − 1

vH
m (λ1I + �X)−1 vm

. (13.93)

Finally, substituting (13.93) into (13.92) provides

wH = vH
m (�X + λ1I)−1

vH
m (�X + λ1I)−1 vm

. (13.94)

From (13.94) it is clear that the quadratic constraint effectively adds extra weight to the
main diagonal of �X; i.e., wH is designed for a higher level of uncorrelated noise than
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is actually present. For simplicity, let us specify the level λ1 = σ 2
L of diagonal loading

directly and write

wH = vH
m

(
�X + σ 2

LI
)−1

vH
m

(
�X + σ 2

LI
)−1 vm

. (13.95)

Equation (13.95) can be rewritten as

wH
dl−mvdr = vH

m

(
I + �X/σ 2

L

)−1

vH
m

(
I + �X/σ 2

L

)−1
vm

.

Clearly, in the limit of large σ 2
L,

lim
σ 2

L→∞
wH

dl−mvdr = vH
m

vH
m vm

= 1

N
vH

m = wH
dsb,

where the final equality follows from (13.30). In other words, the diagonally loaded
MVDR beamformer approaches the DSB in the limit of very large diagonal loading. This
comes as no surprise given that uniform weighting is optimal for spatially uncorrelated
noise, as discussed in Section 13.2.1.

13.4 Recursive Algorithms

In prior sections, we assumed that the second-order characteristics of both sources and
interferences were known. Henceforth, we will remove this assumption. Instead we con-
sider means by which such statistics can be estimated from the actual data. As we are
considering algorithms for recursively updating the weight vectors of a beamformer, we
will introduce a time index denoted either as k or K ; e.g., the active weight vector at
time k is wa(k). We will adopt the convention that K represents the most recent time
step, but k is still required to indicate summations over the snapshots of prior time steps.
It must be borne in mind that the frequency dependence of wa(k), although not explicitly
indicated, remains nonetheless.

The conventional beamforming algorithms described here are in one way or another
based on the notion of minimizing the output power of the beamformer subject to a
distortionless constraint. Such algorithms were initially proposed not for acoustic beam-
forming applications, but for arrays of antennas and other sensors that can be assumed
to operate, at least approximately, in a free field. Hence, all such algorithms assume that
the desired signal comes from one or more known directions. This assumption is unwar-
ranted for beamforming in realistic acoustic environments inasmuch as hard surfaces such
as walls and tables cause reflections. As mentioned previously, this phenomenon leads
to the well-known signal cancellation problem, whereby the desired signal is canceled
by the action of the beamformer (Widrow et al. 1982). Several methods for combatting
this problem for the conventional beamforming algorithms are mentioned in Section 13.7.
Algorithms that are not based on the concept of minimizing the variance of the beam-
former output subject to a distortionless constraint, and thus are not prone to the signal
cancellation problem, are discussed in Section 13.5.
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13.4.1 Gradient Descent Algorithms

In the sequel, instead of solving for the optimal beamforming weights directly, we will
use a gradient descent procedure (Bertsekas 1995). This implies that at each iteration,
a small step will be taken in the downhill direction of the MSE optimization criterion.
This will in fact yield a set of very simple algorithms, but at the possible price of
slow convergence if the conditions of the acoustic environment are not favorable. The
favorability of the environment will be determined by the distribution of the eigenvalues
in the spatial spectral matrix of the input of the beamformer.

The MSE can be expressed as a function of the vector w of beamforming weights
according to

ξ(w) � E
{(

D − wH X
) (

D∗ − XH w
)}

= D − wH p − pH w + wH�Xw, (13.96)

where

D � E
{
D∗D

}
, (13.97)

p � E
{
XD∗} = �X D∗, (13.98)

�X � E
{
XXH

}
. (13.99)

For our present purposes, we will assume that the quantities in (13.97–13.99) are known.
The gradient of ξ(w) with respect to wH is

∇wH ξ = −p + �Xw. (13.100)

Setting the right-hand side of the last equation to zero gives the familiar Wiener–Hopf
equation,

�Xwo = p. (13.101)

The corresponding MMSE is

ξo = D − wH
o �Xwo = D − pH wo.

In keeping with the gradient descent rule, we will not use (13.101) to solve for the
optimal sensor weights. Rather, the weights w(K) will be iteratively updated according
to

w(K) = w(K − 1) + α(−∇wH ξ),

where α denotes the step size. Substituting the gradient (13.100) into the last equation
provides

w(K) = w(K − 1) + α
[
p − �X w(K − 1)

] ∀ K = 1, 2, . . . . (13.102)
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Now let us define the weight-error vector

we(K) � w(K) − wo.

Substituting for w(K) = we(K) + wo into (13.102), we find

we(K) = (I − α�X) we(K − 1). (13.103)

We now seek to analyze the convergence characteristics of the simple gradient algo-
rithm. Toward this end, let us perform an eigendecomposition on �X, such that,

�X = U�UH . (13.104)

Given the unitary property of UH , substituting (13.104) into (13.103) provides

UH we(K) = (I − α�) UH we(K − 1). (13.105)

Now let us define the vector of independent coordinates

v(K) � UH we(K). (13.106)

Substituting (13.106) into (13.105), we learn

v(K) = (I − α�) v(K − 1). (13.107)

Assuming w(0) = we(K) + wo = 0, it follows from (13.106) that

v(0) = −UH wo.

Let vn(K) denote the nth component of v(K). The term (I − α�) in (13.107) is diagonal,
which implies that the components of v(K) can be treated independently, according to

vn(K) = (1 − αλn) vn(K − 1) ∀ n = 0, 1, . . . , N − 1, K ≥ 0, (13.108)

where 1 − αλn is clearly the nth component on the main diagonal of I − α�.
The solution to (13.108) is

vn(K) = (1 − αλn)
K vn(0) ∀ n = 0, 1, . . . , N − 1, K ≥ 0. (13.109)

As �X is conjugate symmetric and positive definite, all of its eigenvalues are real and
positive. Hence, vn(K) is a geometric series . By defining the time constant

τn = −1

ln(1 − αλn)
, (13.110)

we can create a continuous version of (13.109) according to

vn(t) = e−t/τnvn(0).
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For small step sizes α, it is possible to approximate (13.110) as

τn ≈ 1

αλn

. (13.111)

The convergence of (13.109) requires that

|1 − αλn| < 1 ∀ n = 0, 1, . . . , N − 1.

In order to ensure convergence, α must thus be chosen to satisfy

0 < α <
2

λmax
,

where λmax is the largest eigenvalue of �X. Hence, the maximum admissible step size α

is determined by the largest eigenvalue λmax. Based on (13.111), the corresponding mode
will have a time constant of (αλmax)

−1. The time constant of mode corresponding to the
smallest eigenvalue, however, will have a time constant of (αλmin)

−1. Hence, if the ratio
of the biggest to the smallest eigenvalue is very large, the time required for convergence
of all modes may be unacceptable. This is the primary weakness of LMS estimation, and
the price to be paid for its simplicity.

13.4.2 Least Mean Square Error Estimation

The last section discussed weight vector update formulae based on the notion of steepest
descent . In this section, we consider least mean square error (LMSE) estimation algo-
rithms. Every LMSE estimation algorithm is a stochastic version of a steepest descent
algorithm. The principal advantage of the LMSE algorithms, with respect to the recursive
least squares algorithms described in Section 13.4.3, is their computational simplicity.
The principal disadvantage of the LMSE algorithms is their slow rate of convergence.

In the sequel, we will derive four LMSE beamforming algorithms. The first is the
original LMSE algorithm proposed by Widrow et al. (1967), which is based on a MMSE
criterion and involves an unconstrained optimization. The second algorithm was proposed
by Griffiths (1969), and assumes that both the DOA as well as the power of the desired
signal are known. Unlike the LMS algorithm proposed by Widrow et al., however, direct
knowledge of the desired signal is not required. The last two algorithms are based on the
imposition of linear constraints on the weight vectors of the beamformer. The algorithm
proposed by Frost (1972) partitions the weight vector into two components, namely,
a quiescent weight vector wq which satisfies a distortionless constraint, and a second
component which is constrained to lie in the null space of the constraints. The final
algorithm is the LMS implementation of the GSC discussed in Section 13.3.7, which was
originally proposed by Griffiths and Jim (1982). In keeping with the GSC formalism,
the Griffiths and Jim beamformer performs a LMS update on the active weight vector
wa, while leaving the quiescent weight vector wq unchanged. A recent tutorial on these
algorithms, together with an extensive list of references, can be found in Glentis et al.
(1999).
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Widrow LMS Algorithm

For a vector w of sensor weights, consider again the MSE defined in (13.96) through
(13.99). While we previously assumed that both p and �X were known, an LMS algorithm
requires estimates of the expectations in (13.98) and (13.99). Simple choices for such
estimates are given by the instantaneous values

p̂(K) = X(K)D∗(K), (13.112)

and

�̂X = X(K) XH (K). (13.113)

Substituting (13.112) and (13.113) into (13.100), the estimate of the gradient is found to
be

∇̂ξ(K) = −X(K)D∗(K) + X(K) XH (K)ŵ(K).

The weight vector update formula is then,

ŵ(K) = ŵ(K − 1) + α(K)X(K)
[
D∗(K) − XH (K) ŵ(K − 1)

]
, (13.114)

where α(K) is the step size at time K . The notation ŵ(K) indicates that the algorithm
is based on an estimate of the gradient, instead of the actual gradient. Equation (13.114)
can also be rewritten as

ŵH (K) = ŵH (K − 1) + α(K)XH (K)ep(K), (13.115)

where

ep(K) � D(K) − Ỹp(K), and Ỹp(K) � ŵH (K − 1) X(K). (13.116)

As mentioned previously, this formulation of the LMS beamformer is due to Widrow
et al. (1967).

In order to include a diagonal loading term σ 2
LI, as discussed in Section 13.3.8, we

must modify (13.115) as

ŵH (K) = ŵH (K − 1)+α(K)XH (K)D(K)−α(K)
{
ŵH (K − 1)

[
σ 2

LI+X(K)X(K)H
]}

.

The latter can be rewritten as

ŵH (K) = [
1 − α(K) σ 2

L

]
ŵH (K − 1) + α(K)XH (K) ep(K),

where ep(K) is defined in (13.116). Equivalently,

ŵH (K) = βL(K) ŵH (K − 1) + α(K)XH (K) ep(K), (13.117)
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where

βL(K) = 1 − α(K) σ 2
L .

From (13.115), (13.116), and (13.117), it is evident that the algorithm proposed by Widrow
et al., although simple, requires knowledge of the desired signal D(ω), which is a definite
drawback.

Griffiths LMS algorithm

The algorithm due to Griffiths (1969) assumes that both the DOA and power of the
desired signal are known, but the desired signal D(k) itself is not required. Hence, the
Griffiths algorithm is based on more realistic assumptions than that of Widrow et al. In
order to develop this algorithm, let us once more assume that �X D∗ as defined in (13.98)
is known. Moreover, we shall assume that the desired signal D(K) and noise N(K) are
uncorrelated. For the narrowband case, we will once more adopt the signal model in
(13.14) and (13.36) and write

X(K) = F(K) vs + N(K),

where the desired signal is given by

D(K) = F(K).

Upon defining the signal power F = E{|D(ω)|2}, we can write

�X D∗ = E{[vs F(K) + N(K)]D∗(K)} = F vs.

The Griffiths update formula is then,

ŵH (K) = ŵH (K − 1) + α(K)
[
F vH

s − XH (K) Ỹp(K)
]
. (13.118)

Although F appears in the equation above, it does not impose a hard constraint. With
diagonal loading, the upate formula becomes

ŵH (K) = βL(K) ŵH (K − 1) + α(K)
[
F vH

s − XH (K) Ỹp(K)
]
. (13.119)

From (13.118) and (13.119), it is apparent that the Griffiths algorithm does not require
direct knowledge of the desired signal D(ω), but only of the array manifold vector vs

and signal power F , as maintained at the outset of this discussion.

Frost LMS Algorithm

The third version of the LMS algorithm, due to Frost (1972), is based on the linear
constraint (13.75). Such a constraint can be satisfied by forming a modified objective
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function as in (13.76), and taking the partial derivative with respect to w∗, which yields

∂J

∂w∗ = �Nw(K − 1) + Cλ(K − 1).

The LMS update can now be specified as

w(K) = w(K − 1) − α [�Nw(K − 1) + Cλ(K − 1)] .

We can solve for λ(K − 1) by requiring that w(K) satisfies (13.75). After some straight-
forward manipulations, the solution reduces to

wH (K) = wH (K − 1)(I − α�X)P⊥
C + wH

q , (13.120)

where the quiescent weight vector is given by

wq = C
(
CH C

)−1
g, (13.121)

and, as described in Appendix B.17, P⊥
C is the perpendicular projection operator onto

the space orthogonal to the constraints. The weight update equation is then obtained by
substituting (13.113) into (13.120), from which we find

ŵH (K) =
[
ŵH (K − 1) − α(K) XH (K)Ỹp(K)

]
P⊥

C + wH
q ,

where Ỹp(K) is defined in (13.116).
For the simple MVDR beamformer, the quiescent weight vector can be expressed as

wH
q = 1

N
vH

s ,

and

P⊥
C = I − vs

(
vH

s vs
)−1

vH
s .

For the more general linearly constrained minimum power case, wq is still given by
(13.121), and

P⊥
C = I − C

(
CH C

)−1
CH .

GSC–LMS Algorithm

Here we formulate the GSC version of the LMS algorithm. Recall that, as shown in
Figure 13.15, Yc(K) and Yb(K) in the GSC correspond to D(K) and Y (K), respectively,
in the MMSE algorithm. Hence, we can specialize (13.115) by replacing XH (K) with the
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output ZH (ω) = BH X(K) of the blocking matrix, such that

ŵH
a (K) = ŵH

a (K − 1) + α(K) ZH(K) e(K), (13.122)

where

e(K) = Yc(K) − Ỹb(K)

= [
wq − Bŵa(K − 1)

]H X(K). (13.123)

The total weight vector can then be expressed as

ŵH (K) = [wq − ŵa(K) B]H ,

and the total beamformer output is given by

Y (K) = ŵH (K) X(K) = [wq − ŵa(K) B]H X(K).

A natural choice for the initial condition is

ŵa = 0.

If the columns of B are orthogonal, such that

BH B = I,

then the adaptive performance of the GSC implementation will be identical to that of
the direct form implementation. As previously discussed, the algorithm described above
is the narrowband complex version of the GSC–LMS algorithm originally proposed by
Griffiths and Jim (1982).

Step Size

It remains to choose the step size α(K). Van Trees (2002, sect. 7.7.2.2) describes a
technique for setting the step size proposed by Goodwin and Sin (1984) and Söderström
and Stoica (1989) known as the normalized LMS algorithm. The step size chosen is based
on the sample-dependent estimate

α(K) = γ

β + XH (K) X(K)

with β > 0 and 0 < γ < 2. A second version can be expressed as

α(K) = γ

σ 2
x (K)

,
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where

σ 2
x (K) = βσ 2

x (K − 1) + (1 − β)XH (K) X(K)

with 0 < β < 1 is known as the power-normalized LMS algorithm. In this case, β is
most often set close to 1, such as β ≥ 0.99. The constant γ usually assumes values in
the range 0.005 ≤ γ ≤ 0.05. If γ is too small, the convergence will be slow, while if too
large, there will be stability problems.

13.4.3 Recursive Least Squares Estimation

Here we consider adaptive beamforming algorithms in which an estimate of the inverse
of the spatial spectral covariance matrix �̂

−1
X is recursively updated with each new block

of data. The required recursion will follow directly from the matrix inversion lemma. We
will discuss recursive implementations of the MVDR, MMSE and GSC beamformers.
Of these, the GSC formulation will prove the most useful and practical, as it does not
require the desired signal to be available. In addition, we will find that the recursion
reduces the computational complexity from O(N3) to O(N2). While O(N2) requires more
computation than the O(N) needed by the LMS algorithms discussed in Section 13.4.2,
this additional computational complexity will potentially be offset by a faster rate of
convergence.

In addition to introducing the RLS algorithms themselves, we seek here to accomplish
two further objectives. Firstly, we will investigate the relations between the Kalman
filter (KF) described in Section 4.3.1 and the RLS algorithms described here. Secondly,
we will present a square-root implementation of the MMSE algorithm similar to that
presented previously for the iterated extended Kalman filter (IEKF) described in Section
10.2.1. The square-root implementation considered here, however, will propagate the
Fisher information matrix instead of the state error covariance matrices. Such square-root
implementations were first introduced in the 1960s in connection with the Apollo space
program to cope with the very limited precision of the computers of that day (Kaminski
et al. 1971). While deficiencies related to finite precision are seldom problematic for
modern workstations, they can raise their ugly heads as soon as an algorithm is ported to
an embedded system, which, it must be conceded, is the wave of the future.

In the following, we will not be overly careful in distinguishing between the calcula-
tion and update of �̂

−1
X and the update of �̂

−1
N . This is due to the fact that, for acoustic

beamforming applications, updating �̂
−1
X or �̂

−1
N are largely equivalent, in that the adap-

tation of the sensor weight vectors and hence the update of the spatial spectral covariance
matrix must be halted whenever the desired source is active, which is done to prevent
signal cancellation. Van Trees (2002) actually distinguishes between the MVDR solution,
and the minimum power distortionless response solution based on whether the adaptation
continues when the desired source is active. For the reason mentioned above, we will not
find it necessary to introduce such a distinction here. Note that several authors, including
Herbold and Kellermann (2002); Herbold et al. (2007); Hoshuyama et al. (1999) and
Warsitz et al. (2008), have investigated adapting the blocking matrix during periods when
the desired speaker is silent in order to prevent leakage of the desired signal into the
blocking matrix.
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MVDR Estimation

In this section, we will derive the MVDR form of the RLS estimator. To begin this
derivation, let us express the output of the beamformer as

Y (k) = D(k) + YN(k) ∀ k = 1, 2, . . . , K,

where D(k) is the desired signal and N(k) represents the corrupting influence of noise
and reverberation. In the least squares approach, we seek to minimize

ζYN
(K) =

K∑
k=1

μK−k |YN(k)|2

for real 0 < μ < 1. As before, we will apply the distortionless constraint (13.50). The
latter implies minimizing ζYN

(K) is equivalent to minimizing

ζY (K) =
K∑

k=1

μK−k |Y (k)|2.

As before, the output of the beamformer is given by

Y (k) = wH (k) X(k),

where w(k) is now represented as a function of k inasmuch as it will be adapted whenever
new data is received.

As before, we will apply the method of Lagrange multipliers in order to incorporate
the distortionless constraint (13.50) into the optimization objective function by writing

F � wH (K)�(K) w(K) + λ
[
wH (K) vs − 1

] + λ∗ [
vH

s w(K) − 1
]
,

where vs = v(ks) and

�(K) =
K∑

k=1

μK−k X(k) XH (k) (13.124)

is the exponentially-weighted sample spectral matrix . Proceeding exactly as in
Section 13.3.1, we arrive at

ŵH
mvdr(K) = �(K) vH

s �−1(K), (13.125)

where

�(K) �
[
vH

s �−1(K) v
]−1

.
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Then using manipulations equivalent to those leading to (13.55–13.56), we find

ζY (K) = [
vH

s �−1(K)vs
]−1 = �(K).

Comparing the relations above to (13.53–13.54), it is evident that the least squares distor-
tionless response beamformer is equivalent to the MVDR beamformer with �N replaced
by �(K).

To implement the least square error beamformer efficiently, we must calculate �−1(K)

from �−1(K − 1). From (13.124), it is clear

�(K) = μ�(K − 1) + X(K) XH (K). (13.126)

Applying the matrix inversion lemma described in Appendix B.2 to (13.126), we find

�−1(K) = μ−1 �−1(K − 1) − μ−2 �−1(K − 1) X(K) XH (K) �−1(K − 1)

1 + μ−1 XH (K)�−1(K − 1) X(K)
. (13.127)

Let us define the precision matrix as

P(K) � �−1(K), (13.128)

and the Kalman gain vector as

grls(K) � μ−1 P(K − 1) X(K)

1 + μ−1 XH (K) P(K − 1) X(K)
. (13.129)

Then substituting (13.128) and (13.129) into (13.127) we arrive at the Riccati equation ,

P(K) = μ−1 P(K − 1) − μ−1grls(K) XH (K) P(K − 1). (13.130)

Substituting (13.130) into (13.125) provides

ŵH
mvdr(K) = μ−1�(K) vH

s P(K − 1)
[
I − X(K) gH

rls(K)
]

= ŵH
mvdr(K − 1)

{
�(K)

μ�(K − 1)

[
I − X(K) gH

rls(K)
]}

,

where the second equality follows from ŵH
mvdr(K − 1) = �(K − 1) vH

s P(K − 1). The
term in brackets is a N × N matrix used to update ŵ(K − 1). Clearly, the last equation
provides a recursive solution for ŵ(K). The algorithm is typically initialized by setting

P(0) = 1

σ 2
i

I,
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Algorithm 13.1 MVDR–RLS beamformer

Initialize: P(0) = 1
σ 2

o
I, ŵ(0) = vs

N
.

Compute: At each snapshot K = 1, 2, . . . , compute

g(K) = μ−1 P(K − 1) X(K)

1 + μ−1 XH (K) P(K − 1) X(K)
,

P(K) = μ−1 P(K − 1) − μ−1g(K) XH (K) P(K − 1),

�(K) = [
vH

s P(K) vs
]−1

,

and

ŵH
mvdr(K) = �(K)

μ�(K − 1)
ŵH

mvdr(K − 1)
[
I − X(K) gH

rls(K)
]
,

where the output of the array is given by

Ỹ (K) � ŵH
mvdr(K − 1) X(K).

where σ 2
i is the initial snapshot variance. Moreover, the sensor weights can be initialized

with the weights of the delay-and-sum beamformer,

ŵ(0) = wq = vs

N
,

or some other weights satisfying the distortionless constraint with a better sidelobe pattern
(Van Trees 2002, sect. 4.1.8). The MVDR–RLS beamformer is summarized in Algorithm
13.1.

MMSE Estimation

In order to formulate the MMSE beamformer, let us denote the desired response as D(k),
and MMSE innovation for frame k as

smmse(k) � D(k) − wH (k) X(k) ∀ k = 1, . . . ,K. (13.131)

Hence, we seek to minimize

ζμ(K) =
K∑

k=1

μK−k |smmse(k)|2

=
K∑

k=1

μK−k [D(k) − wH (K) X(k)][D∗(k) − XH (k) w(K)].
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Taking the gradient of ζμ(K) with respect to wH (K) and setting the result to zero provides

�(K)ŵmmse(K) = �XD∗(K), (13.132)

where �(K) is as defined in (13.124) and

�XD∗(K) �
K∑

k=1

μK−k X(k) D∗(k) = X(K) D∗(K) + μ�X D∗(K − 1). (13.133)

Based on (13.132), the optimal weights can be expressed as

ŵmmse(K) = �−1(K)�XD∗(K) = P(K) �XD∗(K). (13.134)

Comparing (13.71) with (13.134), it becomes evident that the RLS version of the MMSE
beamformer is equivalent to that considered before with �X replaced by �(K), and
�XD∗(ω) replaced with �XD∗(K); i.e., the ensemble averages have been replaced by
time averages. The final output is

Y (K) = ŵH
mmse(K) X(K).

The prior partial results (13.129) and (13.130) for the RLS case are still applicable for
MMSE estimation. Substituting (13.130) and (13.133) into (13.134) provides

ŵH
mmse(K) = ŵH

mmse(K − 1) + gH
rls(K) smmse(K), (13.135)

where smmse(K) is defined in (13.131). Clearly, smmse(K) is the error between D(K)

and the beamformer output when the current input sample X(K) is applied to the prior
weight vector ŵmmse(K − 1). The final MMSE–RLS beamforming algorithm is illustrated
in Algorithm 13.2.

The reader will note that we make use of the same terminology, namely, Kalman gain
and Riccati equation, to describe the function of the RLS estimator that was previously
used in Chapter 4 to characterize the operation of the KF. This is so because a RLS
estimator can be likened to a KF, with the following simplications. Firstly, the RLS
estimator is used to estimate a deterministic set of parameters rather than a stochastic
state vector, and hence has no process noise. Secondly, as the RLS estimator assumes
that the parameters to be estimated are fixed and not evolving in time, the transition matrix
Fk|k−1 appearing in the state equation (4.1) of the KF can be assumed to be the identity
matrix.

That the KF subsumes the RLS estimator was first unequivocally demonstrated by Sayed
and Kailath (1994) and can be established in straightforward fashion, as we now show.
For simplicity, we will assume a forgetting factor of μ = 1, although the result holds for
any 0 < μ < 1; see Haykin (2002, sect. 10.8). In light of the simplifications mentioned
above, we will begin by rewriting the process and observation equations (4.1–4.2) as

xk = xk−1, (13.136)

yk = hT
k xk + vk, (13.137)
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Algorithm 13.2 MMSE–RLS beamformer

Initialize: P(0) = 1
σ 2

o
I, ŵ(0) = vs

N
. At each snapshot K = 1, 2, . . . , compute

grls(K) = μ−1 P(K − 1) X(K)

1 + μ−1 XH (K) P(K − 1) X(K)

and

P(K) = μ−1 P(K − 1) − μ−1grls(K) XH (K) P(K − 1)

Compute srls(K) from

srls(K) = D(K) − ŵH
lse(K − 1) X(k)

Compute ŵH
lse(K) from

ŵH
lse(K) = ŵH

lse(K − 1) + gH
rls(K) srls(K)

Compute the beamformer output from

Y (K) = ŵH
lse(K) X(K)

where hk is the observation vector, and yk and vk are the scalar observation and obser-
vation noise, respectively. The process noise is zero and Fk|k−1 = I implies that (4.32)
reduces to

Kk|k−1 = Kk−1.

If we now assume that the scalar observation noise vk has unit variance, and consider
(4.26) and (4.31), the Kalman gain vector can be expressed as

gk = Kk−1hk

1 + hT
k Kk−1hk

. (13.138)

The numerators of (13.129) and (13.138) are seen to be equivalent upon setting

Kk−1 = P(k − 1),

hk = X(k),

whereupon the identity,

gk = grls(K),
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becomes apparent. Finally, comparing (4.29) to (13.135), we associate

x̂k|k = ŵrls(k)

and
sk = s∗

mmse(k),

where sk is the one-dimensional or scalar innovation vector in the KF, and smmse(K) is
MMSE innovation as defined in (13.131).

GSC Estimation

As explained in Section 13.3.7, a beamformer in GSC configuration will attempt to
minimize the total output power of the beamformer under the distortionless constraint.
This implies that the difference between the lower and upper branches of the beamformer
will be minimized in a mean square sense. Hence, the derivation of the GSC form of
the RLS beamformer is eminently straightforward. Beginning with the solution for the
optimal MMSE weights given above, we need only replace the desired signal D(k) with
the output Yc(K) of the upper branch of the GSC. Denoting once more the output of the
blocking matrix as Z(K), as in Figure 13.15, it remains then only to estimate that active
weight vector wH

a (K) which minimizes the difference between Yc(K) and wH
a Z(K) in a

least squares sense.
Based on (13.124) and (13.133), let us write

�Z(K) =
K∑

k=1

μK−k Z(k) ZH (k) = BH �X(K) B

and

�ZY ∗
c (K) =

K∑
k=1

μK−k Z(k) Y∗
c(k) = BH �X(K) wq.

Then the GSC–RLS beamformer can be readily adapted from its MMSE–RLS counter-
part. The final sequence of steps is shown in Algorithm 13.3. In light of (13.134), the
optimal weights are given by

ŵgsc−rls(K) = �−1
Z (K) �ZY ∗

c (K). (13.139)

The GSC–RLS beaformer enjoys a computational advantage over the direct form imple-
mentation inasmuch it operates on a vector of length N − Mc instead of length N , where
N and Mc are the numbers of sensors and constraints, respectively.

13.4.4 Square-Root Implementation of the RLS Beamformer

As we have done in Section 10.2.1 for the IEKF, we will now develop a square-root imple-
mentation of the MMSE version of the RLS beamformer. The development, however, can
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Algorithm 13.3 GSC–RLS beamformer

Initialize: PZ(0) = 1
σ 2
o

I, ŵa(0) = 0. At each snapshot K = 1, 2, . . . , compute

ggsc(K) = μ−1 PZ(K − 1) Z(K)

1 + μ−1 ZH (K) PZ(K − 1) Z(K)

and

PZ(K) = μ−1 PZ(K − 1) − μ−1ggsc(K) ZH(K) PZ(K − 1).

Compute srls(K) from

srls(K) = Yc(K) − ŵH
a (K − 1) Z(k)

Compute ŵH
lse(K) from

ŵH
a (K) = ŵH

a (K − 1) + gH
rls(K) srls(K)

Compute the beamformer output from

Y (K) = Yc(ω) − ŵH
a (K) Z(K)

be readily extended to the case of the GSC RLS beamformer. As mentioned previously,
the square-root implementation is based on the Cholesky decomposition, which exists only
for symmetric positive-definite matrices. Hence, a square-root implementation is immune
to the explosive divergence phenomenon to which direct implementations are subject,
whereby the covariance matrices, which must be updated at each time step, become
indefinite. As noted in Section 4.3.4, square-root implementations effectively double the
numerical precision of the direction form implementation (Simon 2006, sect. 6.3–6.4),
although they require somewhat more computation.

The covariance form of the RLS estimator propagates P1/2(K), the square-root of the
estimation error covariance matrix. Unlike the square-root implementation of the IEKF
presented in Section 10.2.1, the square-root implementation presented here will be based
on the propagation of the square-root of the Fisher information matrix P−1(K), which
is in fact equivalent to the spatial sample spectral matrix �(K) as indicated in (13.128).
As we will see, this strategy will prove conducive to applying diagonal loading, which,
as discussed in Section 13.3.8, is typically done in adaptive beamforming in order to
improve robustness.

Let us begin by rewriting (13.130) as

g(K)XH (K)P(K − 1) = P(K − 1) − μP(K). (13.140)



Beamforming 463

Similarly, we can rewrite (13.127) to show

g(K) + μ−1g(K)XH (K)P(K − 1)X(K) = μ−1P(K − 1)X(K),

from which it follows

g(K) = μ−1P(K − 1)X(K) − μ−1g(K)XH (K)P(K − 1)X(K). (13.141)

Substituting (13.140) into (13.141) and canceling terms, we find

g(K) = μP(K)X(K). (13.142)

Substituting (13.142) into (13.140) then provides

P(K − 1) = μP(K)X(K)XH (K)P(K − 1) + μP(K). (13.143)

Substituting (13.131) and (13.142) into (13.135) yields

wH (K) = wH (K − 1) + μXH (K)P(K)[D(K) − wH (K − 1)X(K)] (13.144)

= wH (K − 1)[I − μX(K)XH (K)P(K)] + μXH (K)P(K)D(K). (13.145)

From (13.143), it is clear

I − μX(K) XH (K) P(K) = μP−1(K − 1) P(K). (13.146)

Then substituting (13.146) into (13.145) provides

wH (K) = μwH (K − 1) P−1(K − 1) P(K) + μXH (K) P(K) D(K).

Upon premultiplying the last equation by P−1(K) and substituting (13.128), we arrive at
the first equation in the information RLS recursion, namely,

wH (K)�(K) = μwH (K − 1) �(K − 1) + μXH (K)D(K). (13.147)

The second equation in the recursion is (13.126), which we repeat here,

�(K) = μ�(K − 1) + X(K)XH (K). (13.148)

Let us express �(K) in factored form as

�(K) = �H/2(K) �1/2(K).

where �H/2(K) is lower triangular. Then (13.147) and (13.148) can be expressed as

wH (K)�H/2(K)�1/2(K) = μwH (K − 1)�H/2(K − 1)�1/2(K − 1) + μD(K)XH (K),

(13.149)

�H/2(K)�1/2(K) = μ�H/2(K − 1)�1/2(K − 1) + X(K)XH (K). (13.150)
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Hence, let us construct the pre-array

A =
[

μ1/2�H/2(K − 1) μ1/2X(K)

μ−1/2ŵH (K − 1) �H/2(K − 1) D(K)

]
.

Once more, we derive a unitary transform �(K) that achieves

A�(K) =
[

μ1/2�H/2(K − 1) μ1/2X(K)

μ−1/2ŵH (K − 1) �H/2(K − 1) D(K)

]
�(K)

=
[

BH
11(K) 0

bH
21(K) b∗

22(K)

]
= B. (13.151)

The construction of such a unitary transform �(K) through a set of Givens rotations is
described in Appendix B.15. By multiplying out the submatrices of A and B, we arrive
at

BH
11(K)B11(K) = μ�H/2(K − 1)�1/2(K − 1) + X(K)XH (K), (13.152)

bH
21(K)B11(K) = wH (K − 1)�H/2(K − 1)�1/2(K − 1) + μD(K)XH (K). (13.153)

Comparing (13.152) to (13.150) and (13.153) to (13.149), it is apparent that

BH
11(K) = �H/2(K),

bH
21(K) = ŵH (K)�H/2(K).

Hence, BH
11(K) is exactly the Cholesky factor needed for the next iteration. Moreover,

we can solve for the optimal ŵH (K) through backward substitution on

ŵH (K)BH
11(K) = bH

21(K),

as described in Appendix B.15.
In Section 13.3.8, we discussed the fact that additional diagonal loading is often applied

to the spatial spectral covariance matrix �X, as in (13.95). This extra diagonal loading
limits the size of ŵ(K) and thereby improves the robustness of the beamformer. As �X is
replaced by �(K) in RLS algorithms, we will now consider a technique whereby diagonal
loading can be applied in the square-root implementation considered above. Whenever
μ < 1, this loading decays with time, in which case ŵ(K) generally grows larger with
increasing K . As we now show, the principal advantage of the information form of the
RLS estimator is that it enables this diagonal loading to be easily replenished.

Let ei denote the ith unit vector. It is desired to add the loading β2(K) to the ith
diagonal component of �(K), such that

�L(K) = �(K) + β2(K) ei eT
i . (13.154)
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This can be accomplished by forming the prearray

A =
[
�H/2(K)

... β(K) ei

]
,

and constructing a unitary transformation θ i that achieves

Aθ i =
[
�

H/2
L (K)

... 0
]
,

where P−H/2
L (K) is the desired Cholesky decomposition of (13.154). The application of

each θ i requires O(N2) operations. Hence, diagonally loading all diagonal components
of �H/2(K) is an O(N3) procedure. The diagonal loading need not be maintained at an
exact level, however, but only within a broad range. Thus, with each iteration of RLS
estimation, the diagonal components of �1/2(K) can be successively loaded. In this way,
the entire process remains O(N2).

13.5 Nonconventional Beamforming Algorithms

While effective in some cases, conventional beamforming makes several assumptions that
are clearly unwarranted when beamforming is performed prior to DSR. Firstly, conven-
tional beamforming assumes that both desired as well as interference or noise sources
are Gaussian-distributed. Although this may be more or less true of noise sources, it is
patently untrue for human speech and subband samples thereof – the source of present
interest. In assuming that speech is Gaussian, a great deal of valuable statistical informa-
tion is discarded – information that could be used for more effective beamforming, as we
will discuss in this section. Secondly, conventional beamforming assumes that the desired
source and the corrupting noise or interference are statistically independent. This is also
untrue. As discussed in Section 2.4.2, the most detrimental distortion with which we must
contend in a DSR scenario are echoes and reverberation. As these are nothing more than
delayed versions of the desired speech, they are highly correlated with it. Thirdly, con-
ventional beamforming assumes that the desired signal emanates from only one direction,
namely, the direct path, while distortions can emanate from any direction. This is also
untrue, in that reflections from hard surfaces such as tables and walls, which are invari-
ably present in realistic acoustic environments, are sufficient to ensure that the desired
source can also emanate from any direction, not merely from the direct path. Fourthly, as
discussed in Section 13.3, conventional adaptive beamformers are most often based either
wholly or in part on the minimization of the variance of the beamformer’s output subject
to a distortionless constraint. While this optimization criterion can effectively null out
interfering signals as discussed in Section 13.3.3, it can also lead to signal cancellation
(Widrow et al. 1982). The most common solution to this problem is to halt the adaptation
of the active weight vector whenever the desired source is active (Cohen et al. 2003;
Herbordt and Kellermann 2003; Nordholm et al. 1993). Such a technique is unlikely to
be effective against reverberation from a speaker’s own voice, however, as if the speaker
is not active, this distortion is not present.

Here, we begin to investigate the possibility of modifying the faulty assumptions inher-
ent in conventional beamforming. In Section 13.5.1, we will consider a beamforming
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algorithm that maximizes the likelihood of the cepstral features, such as used for auto-
matic speech recognition, with respect to an auxiliary HMM. Thereafter, in Section 13.5.2
we consider means of explicitly modeling the non-Gaussian nature of speech with a num-
ber of parameterized super-Gaussian probability density functions. Following Kumatani
et al. (2008a), we will then apply an optimization criterion from the field of ICA, namely,
negentropy, to the task of optimizing the weights of a beamformer. These studies are based
on the observation that the negentropy of subband samples of human speech decreases
when the speech is corrupted by noise or reverberation; i.e., the speech becomes more
nearly Gaussian. Hence, by using a negentropy optimization criterion during beamform-
ing, it is possible to suppress the effects of noise and reverberation. In Section 13.5.3 we
seek to simultaneously model the nonstationary and non-Gaussian nature of speech by
using an auxiliary HMM together with a negentropy optimization criterion during adap-
tive beamforming. Overlapping or competing speech, whereby two or more speakers are
simultaneously active, is a common problem in DSR applications. In Section 13.5.4, we
minimize the MI between the outputs of two beamformers in GSC configuration in order
to effectively separate the voices of two simultaneously active speakers. Section 13.5.5
presents a simpler variant of the MinMI beamformer, known as the geometric source
separation (GSS) beamformer. The characteristics of the MinMI and GSS beamformers
are then compared. In all the beamforming algorithms considered in the chapter thus
far, it has been uniformly assumed that the geometry of the sensor array is known . It is
conceivable, however, to consider another class of nonconventional algorithms whereby
the geometry of the sensor array must be inferred prior to any beamforming operations.
Section 13.6, describes an initial step in that direction, wherein the statistical properties
of diffuse noise are used to estimate the distances between all pairs of microphones in an
array, and these intersensor distances are thereafter used to infer the complete geometry
of the array.

As should be clear from this brief introduction, much of the development in the latter
portion of this chapter concerns the incorporation of as much knowledge as possible about
the nature of human speech into the beamforming process. This includes knowledge
about the statistical characteristics of speech and its subband samples, as well as the
nonstationarity thereof. All of this is in addition to the geometric information that is
taken for granted in all beamforming algorithms. The foundation of this approach to the
beamforming problem was outlined in the invited papers by McDonough and Wölfel
(2008) and McDonough et al. (2008b).

13.5.1 Maximum Likelihood Beamforming

Seltzer et al. (2004) proposed a novel approach to beamforming for DSR applications
whereby a HMM is used to calculate the likelihood of a sequence of acoustic features.
The weight vectors of the adaptive beamformer are then adjusted in order to maximize
this acoustic likelihood. Seltzer et al. investigated the performance of such a maximum
likelihood beamformer (MLB) in a direct form implementation, where the log-likelihood
was calculated in the log-spectral domain. This approach was subsequently extended by
Raub et al. (2004), who considered both a direct form implementation of the MLB, as
well as an implementation based on the GSC. Additionally, Raub et al. (2004) compared
the performance when the active weight vectors of the MLB were optimized, based on
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an acoustic likelihood calculated in the log-spectral versus the cepstral domain. In what
follows, we will present the GSC form of the MLB, where the weight vector optimization
is performed in the cepstral domain.

Let v = {vn} denote a vector of cepstral coefficients associated with a vector V =
{Vm} of subband samples. The relationship between the components of v and V can be
expressed as

vn =
M−1∑
m=0

Tnm log |Vm|2 ∀ n = 0, 1, . . . , N − 1, (13.155)

where Tnm = T
(2)
n,m are the components of the Type 2 discrete cosine transform (DCT)

matrix specified in (B.1), and M and N are the numbers of subbands and cepstral coef-
ficients, respectively. As explained in Section 5.2.2, a nonlinear mel-warping is typically
applied to the frequency axis prior to the calculation of cepstral coefficients. Hence, let
us rewrite (13.155) as

vn =
M−1∑
m=0

Tnm log |Ṽm|2, (13.156)

where
|Ṽm|2 �

∑
l

Mml |Vl |2 (13.157)

are the mel-warped frequency or subband components, and M = {Mml} is the mel-warping
matrix defined in (5.5–5.7).

As explained in Section 13.3.7, conventional GSC beamformers attempt to minimize
output power subject to a distortionless constraint. For present purpose, we will retain the
GSC structure, but consider an optimization metric similar to that proposed by Seltzer
et al. (2004). Assuming that V is the output (13.84) of the GSC, the mth component of
V is given by

Vm = (
wq,m − Bmwa,m

)H Xm,

where wq,m, Bm, wa,m, and Xm, are, respectively, the quiescent weight vector, blocking
matrix, active weight vector and snapshot for the mth subband. This implies

|Vm|2 = (wq,m − Bmwa,m)H Xm XH
m(wq,m − Bmwa,m).

Taking a partial derivative with respect to w∗
a on both sides of (13.156) gives

∂vn

∂w∗
a,m

= ξnm(K) · ∂ |Vm|2
∂w∗

a,m
, (13.158)

where {|Ṽm|2}m are the mel-warped subband components in (13.157), and

ξnm(K) �
M−1∑
l=0

Tnl Mlm

|Ṽl|2
. (13.159)
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Moreover, we can write

|Vm|2 = (wH
q,m − wH

a,mBH
m)Xm XH

m(wq,m − Bmwa,m)

= wH
q,mXm XH

m wq,m − wH
q,m Xm XH

m Bm wa,m

− wH
a,m BH

m Xm XH
m wq,m + wH

a,m BH
m Xm XH

m Bm wa,m.

Taking care to handle the derivative with respect to the complex vector as indicated in
Appendix B.16, we can now evaluate the desired partial derivative as

∂ |Vm|2
∂w∗

a,m
= −BH

m Xm XH
m wq,m + BH

m Xm XH
m Bm wa,m

= BH
m Xm XH

m

(
Bmwa,m − wq,m

)
. (13.160)

Substituting (13.160) into (13.158), we arrive at

∂vn

∂w∗
a,m

= ξnm(K) · BH
m Xm XH

m

(
Bmwa,m − wq,m

)
. (13.161)

We now seek to develop an LMS-style algorithm for the maximum likelihood (ML)
beamformer. Our approach will be based on the recursive expectation–maximization
algorithm described by Titterington (1984). Consider the auxiliary function

Q(�|�(K − 1)) = 1

2

∑
K

[v(K) − μ(K)]T �−1(K) [v(K) − μ(K)] ,

where μ(K) and �(K) denote the mean and variance associated with the K th vector
v(K) of cepstral coefficients, as determined by the Viterbi algorithm discussed in Section
7.1.2. Let us then define the auxiliary function

Q(�|�(K − 1)) � 1

2
[v(K) − μ(K)]T �−1(K)[v(K) − μ(K)]

= 1

2
[vT (K)�−1(K)v(K) − 2vT (K)�−1(K)μ(K)

+ μT (K)�−1(K)μ(K)].

Assuming that �(K) is diagonal as in (8.7), the partial derivative of Q(�|�(K − 1))

with respect to vn(K), the nth component of v(K), can be expressed as

∂Q(�|�(K − 1))

∂vn(K)
= vn(K) − μn(K)

σ 2
n (K)

, (13.162)
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where σ 2
n (K) is the nth diagonal component of �(K). From the chain rule it then follows

that

∂Q(�|�(K − 1))

∂w∗
a,m

=
L−1∑
n=0

∂Q(�|�(K − 1))

∂vn

· ∂vn

∂w∗
a,m

.

Substituting (13.162) into the last equation provides

∂Q(�|�(K − 1))

∂w∗
a,m

= −νm(K) · Zm(K) e∗
m(K), (13.163)

where Zm(K) is the output of the blocking matrix for the mth subband, the output of the
beamformer for the current snapshot Xm(K) using the old sensor weights ŵa,m(K − 1)

is

em(K) �
[
wq,m − Bmŵa,m(K − 1)

]H Xm(K), (13.164)

and

νm(K) �
L−1∑
n=0

vn(K) − μn(K)

σ 2
n (K)

· ξnm(K). (13.165)

The LMS update rule can then be expressed as

ŵa,m(K) = ŵa,m(K − 1) − αm(K) · ∂Q(�|�(K − 1))

∂w∗
a,m

, (13.166)

where αm(K) is the step size. Upon substituting (13.163) into (13.166), we find

ŵH
a,m(K) = ŵH

a,m(K − 1) + αm(K) · νm(K) ZH
m(K) em(K). (13.167)

It is remarkable that (13.164–13.167) differ from the conventional LMS update rule
(13.122–13.123) for a GSC beamformer only by the factor νm(K).

Step Size

With our LMS update rule for the ML beamformer in place, the only thing lacking for
a complete algorithm description is some means of setting the step size αm(K). For the
latter purpose, it is possible to adapt the heuristic described in Section 13.4.2, known
as the power normalized LMS algorithm. For some constant γ with a typical value
0.005 < γ < 0.05, and some constant β close to unity (e.g., β ≥ 0.99), the step size can
be set according to

αm(K) = γ

σ̆ 2
m(K)

,
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where

σ̆ 2
m(K) = βσ̆ 2

m(K − 1) + (1 − β) XH
m (K) Xm(K)

is the average power in the mth subband.

Quadratic Constraint

Van Trees (2002, sect. 7.7.4) describes a simple technique, which was originally proposed
by Cox et al. (1987), for enforcing the quadratic constraint,

|ŵa,m(K)|2 ≤ g2.

Much like the diagonal loading technique described in Section 13.3.8, enforcing such
a quadratic constraint adds robustness to the beamforming algorithm by preventing the
active weight vector from becoming too large. The algorithm first calculates

w̃H
a,m(K) = ŵH

a,m(K − 1) + αm(K) · νm(K) ZH
m(K) em(K).

Thereafter, the final weight vector is obtained from

ŵa,m(K) =
{

w̃a,m(K), if |w̃a,m(K )|2 ≤ g2,

cm(K) w̃a,m(K), otherwise.

The scale factor cm(K) is given by

cm(K) = g

|w̃a,m(K)| .

A schematic of the weight update is shown in Figure 13.17. As shown in the figure,
wH

a (K − 1) is updated through the addition of αm(K) · νm(K) ZH
m(K) em(K), then scaled

back to have size g, as indicated by the half circle.
Note that for the HMM beamformers, the weights in the subbands cannot be set inde-

pendently, as the subbands are no longer truly independent due to the calculation of the
log-likelihood optimization criterion in the cepstral domain. This implies that the same
scale factor c(K) should be used for all subbands, such that

c(K) = min
m

cm(K) = g

maxm |w̃a,m(K)| .

Then the final weight vector is obtained from

ŵa,m(K) =
{

w̃a,m(K), if |w̃a,m(K )|2 ≤ g2,

c(K)w̃a,m(K), otherwise.
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Figure 13.17 Scaling the tentative update vector

13.5.2 Maximum Negentropy Beamforming

In Section 12.2.2, we presented theoretical arguments taken from the field of ICA that
nearly all information bearing signals are not Gaussian-distributed (Hyvärinen and Oja
2000). In this section and those to follow, we seek to exploit this fact in order to perform
more effective acoustic beamforming and, in the case of overlapping or simultaneous
speakers, better speech separation. Let us begin by presenting empirical evidence that
human speech is in fact non-Gaussian.

Figure 13.18 shows histograms of the real parts and magnitudes of subband samples
of human speech at fs = 800 Hz. These samples were generated with the uniform DFT
analysis bank presented in Section 11.1. The speech material, which was recorded with a
close-talking microphone, was taken from the development set of the Speech Separation
Challenge (SSC), Part 2 (Lincoln et al. 2005). Superimposed on the speech histograms

Sa
m

pl
es

Sa
m

pl
es

AmplitudeAmplitude

Real Parts Magnitude

histogram
Gamma
K0
Laplace
Gaussian
GG (fit)

histogram
Gamma
K0
Laplace
Gaussian
GG (fit)

Figure 13.18 Histogram of real parts or magnitude of subband components and the likelihood of
pdfs
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Figure 13.19 Subband domain histograms of clean speech (black line) and speech corrupted with
noise or reverberation

in Figure 13.18 are plots of several well-known pdfs, namely, the �, K0 or Bessel, and
Laplace pdfs, along with both Gaussian and generalized Gaussian (GG) pdfs. Details
of these pdfs are discussed in Appendix B.5. Note that the parameters of the GG pdf
shown in Figure 13.18 were estimated from the same SSC development set. As noted in
Section 12.2.2, the super-Gaussian pdfs exhibit spikey and heavy-tailed characteristics.
It is clear from Figure 13.18 that the distribution of clean speech is not Gaussian but
super-Gaussian. Figure 13.18 also suggests that, among those pdfs shown, the GG is the
most suitable for modeling subband samples of speech.

That human speech and its subband samples are inherently non-Gaussian would not
be a particularly useful property were it not for the fact that such subband samples
become more nearly Gaussian-distributed when corrupted by noise, reverberation, or with
competing speech from another speaker. Empirical evidence of the former two points,
as first appeared in Kumatani et al. (2008b), is presented in Figure 13.19, which shows
histograms of clean speech and speech corrupted with both noise and reverberation in the
subband domain. It is clear from this figure that the pdf of speech corrupted with noise
has less probability mass around the mean and in the tail than the clean speech, but more
probability mass in intermediate regions. This indicates that the pdf of the noise-corrupted
signal, which is in fact the sum of the speech and noise signals, is closer to Gaussian
than that of clean speech. Much the same is true of speech corrupted with reverberation,
which stands to reason inasmuch as reverberant speech is the sum of many different,
independent portions of the original signal. In the cases of both noise and reverberation,
the central limit theorem implies that the corrupted signal should be more nearly Gaussian
than the original clean speech, as discussed in Section 12.2.2.

These facts would indeed support the hypothesis that seeking an enhanced speech signal
that is maximally non-Gaussian is an effective way to suppress the distorting effects of
noise and reverberation. As discussed in Section 12.2.3, two well-known measures of
non-Gaussianity are negentropy and kurtosis. Moreover, the former bears a close relation
with MI, which is another popular optimization criterion in the ICA field.
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Modeling Subband Samples with the Generalized Gaussian PDF

Let the scale and shape factors of the GG pdf be denoted by σ̂ and f , respectively.
Repeating (B.23–B.24) from Appendix B.5.1, the GG pdf can be generalized for complex
circular random variables as

pgg(z) � f

2π σ̂ 2 B2
c (f ) �(2/f )

exp

{
−

∣∣∣∣ z

σ̂ Bc(f )

∣∣∣∣
f
}

, (13.168)

where

Bc(f ) �
[
�(2/f )

�(4/f )

]1/2

. (13.169)

Among several methods for estimating the scale and shape factors of the GG pdf that
have previously appeared in the literature, the moment and ML methods are arguably the
most straightforward. Kumatani et al. (2008b) used the moment method (Kokkinakis and
Nandi 2005) in order to initialize the parameters of the GG pdf and then updated them with
the ML estimate (Varanasi and Aazhang 1989). The shape factors were estimated from
training samples offline and held fixed during the adaptation of the active weight vectors.
The shape factor for each subband was estimated independently, as the optimal pdf is
frequency-dependent. We now describe a somewhat simpler algorithm for estimating the
shape and scale factors.

For a set Y = {Y (k)}K−1
k=0 of real-valued training samples, the log-likelihood function

under the GG pdf can be expressed as

log pgg(Y; σ̂ , f ) = K log
f

2πσ̂ 2B2
c (f ) �(2/f )

− 1

B
f
c (f ) σ̂ f

K−1∑
k=0

|Y (k)|f , (13.170)

which follows directly from (B.27). Based on (13.170), we can express the partial deriva-
tive with respect to σ̂ of the log-likelihood of the entire data set as

∂ log pgg(Y; σ̂ , f )

∂σ̂
= −2K

σ̂
+ f

B
f
c (f ) σ̂ f +1

K−1∑
k=0

|Y (k)|f . (13.171)

By equating the right-hand side of (13.171) to zero and solving for σ̂ , we find

σ̂ = 1

Bc(f )

[
f

2K

K−1∑
k=0

|Y (k)|f
]1/f

. (13.172)

By substituting the optimal value of σ̂ given in (13.172) back into (13.170), the
log-likelihood of the training set can be expressed solely as a function of the shape factor
f . Thereafter, the optimal value of f can be obtained with a simple line search based,
for example, on Brent’s method (Press et al. 1992, sect. 10.2).



474 Distant Speech Recognition

Sc
al

in
g 

Fa
ct

or

Sh
ap

e 
Pa

ra
m

et
er

Scaling Factor Shape Parameter

0

6

5

4

3

2

1

0.2

0.5

0.4

0.35

0.3

0.25

0.45

Kurtosis

C
om

m
on

 L
og

ar
ith

m
 o

f 
K

ur
to

si
s

7

17

11
10
9

12

8

13
14
15
16

42 6
Frequency (kHz)

80 42 6
Frequency (kHz)

80 42 6
Frequency (kHz)

80
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The scale and shape factors estimated from a set of training data provide insight into
the characteristics of human speech. Figure 13.20 shows the scaling parameter σ̂|Y | and
the shape parameter f for each subband. The training samples used for estimating the
GG pdf here were taken from clean speech data in the SSC development set (Lincoln
et al. 2005).

It is clear from Figure 13.20 that the scale factor σ̂|Y |, which is approximately the
square root of the variance, becomes smaller at higher frequencies. Hence, the figure
implies that the lower frequency regions have a higher spectral energy than the higher
frequency regions; this is not surpising given that the highest energy phones, namely, the
vowels, have most of their spectral content below 1000 Hz. That f < 2 for all subbands is
a strong indicator of the super-Gaussian nature of speech. Moreover, the figure indicates
that the subband samples of speech are more super-Gaussian than the Laplace pdf given
that f < 1 for all frequencies.

Differential negentropy (12.26) is a measure of the non-Gaussianity of a pdf.
Unfortunately, the definition of differential negentropy in (12.26) does not admit
a closed-form solution for all choices of the pdf of Y . Hence, as in Rauch
et al. (2008) we will consider instead the empirical negentropy , which can be expressed as

Je(Y) � 1

K

K−1∑
k=0

[
log

pgg(Y (k))

pGauss(Y (k))

]
+ α|wa|2, (13.173)

where α|wa|2 is a regularization term intended to add robustness by penalizing large
active weight vectors in the GSC beamformer shown in Figure 13.15. As the optimization
of the active weights is to be performed for each subband independently, we will
suppress the subband index for the balance of this section. Taking partial derivatives on
both sides of (13.173), we obtain

∂Je(Y)

∂w∗
a

= 1

K

K−1∑
k=0

[
∂ log pgg(Y (k))

∂w∗
a

− ∂ log pGauss(Y (k))

∂w∗
a

]
+ αwa. (13.174)
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Based on (B.24), the partial derivative ∂ log pgg(Y (k))/∂w∗
a can be expressed as

∂ log pGG(Y (k))

∂w∗
a

= f |Y (k)|f −2

2
[
Bc(f ) σ̂

]f BH X Y ∗(k). (13.175)

The comparable term for the Gaussian pdf in (13.174) can be determined by substituting
f = 2 into (13.175), whereupon we find

∂ log pGauss(Y (k))

∂w∗
a

= 1

σ̂ 2
BH X Y ∗(k). (13.176)

Substituting (13.175) and (13.176) into (13.174), we arrive at

∂Je(Y )

∂w∗
a

= 1

K

K−1∑
k=0

{
f |Y (k)|f −2

2
[
Bc(f ) σ̂

]f − 1

σ̂ 2

}
BH X Y ∗(k) + αwa. (13.177)

It is possible to implement a numerical optimization algorithm based on (13.173) and
(13.177).

Simulation

As indicated in Section 13.3.1, a conventional MVDR beamformer attempts to minimize
output power subject to a distortionless constraint. As discussed in Section 13.3.3, such
a beamformer can null out an interfering signal, but is prone to the signal cancellation
problem in the presence of an interfering signal which is correlated with the desired signal
(Widrow et al. 1982). In realistic environments, interference signals are highly correlated
with the desired signal, as the desired signal is reflected from hard surfaces such as
walls and tables. In such environments, the MNB algorithm would attempt not only to
eliminate interfering signals but also strengthen those reflections from the desired source.
Of course, any reflected signal would be delayed with respect to the direct path signal.
Such a delay would, however, manifest itself as a phase shift in the subband domain,
and could thus be removed through a suitable choice of wa. Hence, the MNB offers the
possibility of steering both nulls and sidelobes; the former toward the undesired signal
and its reflections, the latter toward reflections of the desired signal.

In order to verify that the MNB algorithm forms sidelobes directed toward the reflec-
tions of a desired signal, Kumatani et al. (2008a) conducted experiments with a simulated
acoustic environment. As shown in Figure 13.21, these experiments were based on a
simple configuration where there was a sound source, a reflective surface, and a linear
array of eight microphones with 10-cm intersensor spacing. Actual speech data was used
as a source in the simulation, which was based on the image method (Allen and Berkley
1979). Figure 13.22 shows beam patterns at fs = 800 Hz and fs = 1500 Hz obtained
with a DSB and the MNB with the GG pdf.

Given that a beam pattern shows the sensitivity of an array to plane waves, but the
beam patterns in Figure 13.22 were made with a near-field source and reflection, a second
set of simulations was also conducted in which the source and reflection were assumed
to produce plane waves. The results of this second simulation are shown in Figure 13.23.
Once more, it is apparent that the MNB emphasizes the reflection from the desired source.
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Figure 13.21 Configuration of a source, sensors, and reflective surface for simulation
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13.5.3 Hidden Markov Model Maximum Negentropy Beamforming

As explained in Chapter 12, there are three properties of any given signal that can
potentially be exploited for blind source separation (BSS) or ICA, which we repeat
here for convenience: non-whiteness, non-Gaussianity, and nonstationarity. With the
formulation of the maximum negentropy beamformer in Section 13.5.2, we have
exploited the first two of the these three properties, and to this added the geometric
information that comes with knowledge of the geometry of the sensor array as well
as the position of the desired source or sources. The maximum likelihood beamformer
discussed in Section 13.5.1 accounts for the nonstationarity or time evolution of
speech through use of an auxiliary HMM. In this section, we will follow Rauch et
al. (2008) and combine this time evolution modeling with the other three properties
mentioned above, also with the help of an auxiliary HMM. Firstly, we will show how
the cepstral mean of an HMM can be used to derive an estimate of the power spectral
density (PSD) in the subband domain. Indeed, the auxiliary HMM can be adapted to
the characteristics of a given speaker’s voice using the speaker adaptation techniques
based on the all-pass transform presented in Section 9.2.2. Thereafter we will derive
the gradient information needed to implement a conjugate gradients (Bertsekas 1995,
sect. 1.6) algorithm capable of optimizing the active weight vector of a beamformer
in GSC configuration. The result will be the HMM maximum negentropy beamformer
(HMM–MNB).

Reconstructing the Power Spectral Density from the Cepstral Mean

For our negentropy calculations we need an estimate of the variance in the subband
domain. Note that if the mean of the power spectrum is known, such an estimate of the
variance of the mth subband is readily available as σ 2

m(k) = E{|Ym(k)|2}. This is because
the PSD is equivalent to the expected value of the square of the subband magnitude.
Our aim is therefore to obtain the mean PSD value. We will now show the relationship
between the mean cepstral vector and the mean PSD vector.

Let Y(k) and c(k) denote the k th vectors of subband samples and cepstral coefficients,
respectively. The relationship between Y(k) and c(k) can be expressed as

c(k) = Tν log |Y(k)|2, (13.178)

where Tν is the Type 2 DCT matrix, whose components are give in (B.1), which has been
truncated to ν rows .4 In (13.178), the square magnitude and logarithm are calculated
individually for each component Ym(k) of Y(k). Typically, ν will assume a relatively
small value (e.g., ν = 13), which implies that it will model only the spectral envelope
due to the resonances of the vocal tract. The more spectral rapid variations due to the
harmonic structure of voiced speech must then be modeled by the super-Gaussian pdfs.
In this case, no mel warping as in (5.5–5.7) is applied to the subband samples prior
to applying the DCT, as this would only decrease the frequency resolution of the filter
bank.

4 A brief description of the properties of the DCT is provided in Appendix B.1.
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If we calculate the cepstral mean μ over K frames, we have

μ � 1

K

K−1∑
k=0

c(k) = 1

K
Tν

K−1∑
k=0

log |Y(k)|2 . (13.179)

In all that follows, we will use k as an index over time and m as an index over subbands.
Now let

μ̂(k) � A(s)μ(k) + b(s)

denote the transformed speaker-dependent mean aligned to the k th frame of subband
samples by the Viterbi algorithm, where A(s) and b(s) are, respectively, a transformation
matrix and cepstral bias vector intended to compensate for the unique characteristics of
the voice of speaker s. As mentioned previously, for the experiments reported in Rauch et
al. (2008), A(s) and b(s) were determined from sparsely parameterized all-pass transforms
described in Section 9.2.2. Let us further define

μ̃(k) � μ̂(k) + μ.

With this definition, the true k th cepstral mean μ̃(k) is obtained from the sum of a
short-term perturbation μ̂(k) and a long-term average μ that is, obviously, independent
of the frame index k.

The inverse T−1 of T is defined in (B.3). Let T−1
ν denote the inverse of T truncated to ν

columns . The diagonal covariance matrix �Y(k) of the k th frame of subband components
can be approximated as

�Y(k) ≈ exp (η(k)), (13.180)

where

η(k) � T−1
ν μ̃(k) = T−1

ν μ̂(k) + η, (13.181)

and

η = 1

K
T−1

ν Tν

K−1∑
k′=0

log |Y(k′)|2. (13.182)

Clearly �Y(k) is the desired power spectral density. Were ν taken to be equal to the length
of the input feature, it would hold that T−1

ν Tν = I, where I is the identity matrix. For
smaller values of ν, T−1

ν Tν is not diagonal, but remains diagonally dominated . This is an
important characteristic, for it enables the optimization to be done sequentially over the
subbands with little loss in accuracy (Rauch et al. 2008). As with the square magnitude
and logarithm, the exponential operation in (13.180) is applied component by component.

Figure 13.24 shows an example of the reconstructed log PSD for one frame of a test
utterance beamformed with the MNB. The average PSD value is compared to the original
PSD and the PSD reconstructed from the 13 original cepstral coefficients, as well as
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Figure 13.24 Original and reconstructed logarithmic power spectral densities of a test frame

that reconstructed from the 13-coefficient cepstral mean in the HMM state aligned with
this frame. In addition to these cepstral envelopes, the long-term spectral mean averaged
over the entire utterance is also shown in the figure. We observe that the HMM-based
reconstruction approximates the spectral envelope well in the log PSD domain. The PSD
obtained by averaging over the entire utterance, on the other hand, only approximates the
long-term spectral tilt , and hence does not capture the nonstationarity of human speech.

Gradient Calculation

In Kumatani et al. (2008b), time averages of the moments of Ym(k) were used to calculate
the differential entropies required to evaluate (12.26). For the initial study on HMM
negentropy beamforming, Rauch et al. (2008) chose instead to replace the exact differential
entropy with the empirical negentropy given in (13.173). In order to use this empirical
negentropy as an optimization criterion for an adaptive beamformer, it is necessary to
calculate the gradient of empirical negentropy with respect to the active weight vectors
w∗

a .
Based on (13.182), we can denote the mth component of η as ηm and write

∂ηm

∂w∗
a,m

= 1

K
t′mtm

K−1∑
k′=0

1

|Ym(k′)|2 · ∂|Ym(k′)|2
∂w∗

a,m

= 1

K
t′mtmBH

m

K−1∑
k′=0

1

|Ym(k′)|2 · Xm(k′) Y ∗
m(k′), (13.183)

where t′m and tm are, respectively, the mth row of T−1
ν and the mth column of Tν . In

writing (13.183), we account only for the effect of w∗
a,m on ηm, and ignore its effect

on any other ηn for n �= m. Thus we are exploiting the fact that T−1
ν Tν , as previously

mentioned, is diagonally dominated. Let σ̂ 2
m(k) denote the mth diagonal component of

�Y(k). It then follows that

∂σ̂m(k)

∂w∗
a,m

= 1

2
· exp

(
1

2
ηm

)
· ∂ηm

∂w∗
a,m

= 1

2
· σ̂m(k) · ∂ηm

∂w∗
a,m

.



480 Distant Speech Recognition

Finally, based on (B.28), we can write

∂ log p(Ym(k); f, σ̂m(k))

∂σ̂m(k)
· ∂σ̂m(k)

∂w∗
a,m

= 1

2
·
[(

f |Ym(k)|f
B

f
c (f ) σ̂

f
m(k)

− 2

)
· ∂ηm

∂w∗
a,m

]
. (13.184)

The partial derivative ∂Je(Ym)/∂w∗
a,m required for the numerical optimization can be

expressed as

∂Je(Y)

∂w∗
a,m

= 1

K

K−1∑
k=0

[
∂Je(Y)

∂Ym(k)
· ∂Ym(k)

∂w∗
a,m

+ ∂Je(Y)

∂σ̂m(k)
· ∂σ̂m(k)

∂w∗
a,m

]
. (13.185)

Based on manipulations similar to those leading to (13.177), the first term can be expressed
as

∂Je(Y)

∂Ym(k)
· ∂Ym(k)

∂w∗
a,m

= 1

K

{
f |Ym(k)|f −2

2
[
Bc(f ) σ̂

]f − 1

σ̂ 2

}
BH

m Xm(k) Y ∗
m(k).

Following the definition (13.173), the other term in (13.185) can be expressed as

∂Je(Ym)

∂σ̂m(k)
= −∂ log pGauss(Ym(k))

∂σ̂m(k)
+ ∂ log pgg(Ym(k))

∂σ̂m(k)
.

13.5.4 Minimum Mutual Information Beamforming

Competing or overlapping speech, whereby two or more people speak simultaneously,
is a frequently encountered problem in DSR applications (Shriberg et al. 2001). The
minimum mutual information beamformer was proposed by Kumatani et al. (2007) in
order to address the task of separating the speech of two simultaneously active speakers.
Those authors constructed one subband domain beamformer in GSC configuration for each
source. In contrast to the conventional beamforming algorithms described in Section 13.3,
they then jointly adjusted the active weight vectors of both GSCs to obtain two output
signals with MinMI. Assuming that the subband snapshots are Gaussian-distributed, this
MinMI criterion reduces to the requirement that the cross-correlation coefficient of each
of the subband outputs of the two GSCs vanishes. In this section, we describe the MinMI
beamformer of Kumatani et al. In the next section, we describe the GSS algorithm pro-
posed by Parra and Alvino (2002), which attempts to decorrelate the outputs of two GSC
beamformers. We will thereafter compare and contrast the MinMI and GSC beamformers.

Consider a subband beamformer in GSC configuration as described in Section 13.3.7.
Assuming there are two such beamformers aimed at different sources, as shown in
Figure 13.25, the output of the ith beamformer for a given subband can be expressed as

Yi(K) = (
wq,i − Biwa,i

)H X(K)∀ i = 1, 2, (13.186)

where i is an index over active speakers. As the optimization will be performed inde-
pendently for each subband, there is no need to retain an explicit subband index. While
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Figure 13.25 Schematic of generalized sidelobe canceling (GSC) beamformers for each active
source

the active weight vector wa,i is typically chosen to minimize one of the optimization
criteria discussed in Section 13.3, here we will, as previously mentioned, develop an
optimization procedure to find the wa,i that minimizes the MI I (Y1, Y2). Let us define the
cross-correlation coefficient ρ12 between Y1 and Y2 as (Anderson 1984, sect. 2.3)

ρ12 � ε12

σ1 σ2
, (13.187)

where

ε12 � E{Y1Y
∗
2 } = (

wq,1 − B1wa,1
)H

�X
(
wq,2 − B2wa,2

)
, (13.188)

and, based on (13.186), the variance σ 2
i = E

{
Yi Y ∗

i

}
of Yi can be expressed as

σ 2
i = (

wq,i − Biwa,i
)H

�X
(
wq,i − Biwa,i

) ∀ i = 1, 2. (13.189)

In (13.189), the covariance matrix of the snapshot X is once more denoted as �X =
E{XXH }. From (13.187), it then follows that

|ρ12|2 = |ε12|2
σ 2

1 σ 2
2

. (13.190)

It is straightforward to extend the development of Section 12.2.3 for the complex
Gaussian random variables whose pdf is given by (B.25), which yields

I (Y1, Y2) = − log
(
1 − |ρ12|2

)
. (13.191)

This implies that

I (Y1, Y2) = 0 ↔ |ρ12| = 0,

and minimizing I (Y1, Y2) implies minimizing |ρ12|.
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Minimizing the MI criterion yields a weight vector wa,i capable of canceling
interference without the signal cancellation problems encountered in conventional
beamforming. Moreover, the GSC constraint imposed here resolves problems of source
permutation and scaling ambiguity encountered in conventional frequency and subband
domain BSS algorithms (Buchner et al. 2004).

Parameter Optimization: Gaussian pdf

In the absence of a closed-form solution for those wa,i minimizing I (Y1, Y2), we must
use a numerical optimization algorithm. Such an optimization algorithm typically requires
gradient information. In this section, we will derive the relations necessary to mini-
mize the MinMI criterion under the assumption that the outputs of the beamformers are
Gaussian-distributed. Hence, let us apply the chain rule as described in Appendix B.16
to (13.190) by writing

∂|ρ12|2
∂w∗

a,1

= 1

σ 4
1 σ 4

2

(
∂ε12

∂w∗
a,1

ε∗
12σ

2
1 σ 2

2 − ∂σ 2
1

∂w∗
a,1

|ε12|2σ 2
2

)

= 1

σ 4
1 σ 4

2

[−BH
1 �X(wq,2 − B2wa,2)ε

∗
12σ

2
1 σ 2

2 +BH
1 �X(wq,1 − B1wa,1)|ε12|2σ 2

2

]
.

The last equation can be simplified to

∂|ρ12|2
∂w∗

a,1

= 1

σ 4
1 σ 4

2

BH
1 �X · [|ε12|2σ 2

2 (wq,1 − B1wa,1) − ε∗
12σ

2
1 σ 2

2 (wq,2 − B2wa,2)
]
.

(13.192)

From symmetry it then follows that

∂|ρ12|2
∂w∗

a,2

= 1

σ 4
1 σ 4

2

BH
2 �X · [|ε12|2σ 2

1 (wq,2 − B2wa,2) − ε12σ
2
1 σ 2

2 (wq,1 − B1wa,1)
]
.

(13.193)

To formulate an algorithm for minimizing I (Y1, Y2), we need only begin from (13.191)
and write

∂I (Y1, Y2)

∂w∗
a,i

= 1

2
(
1 − |ρ12|2

) · ∂|ρ12|2
∂w∗

a,i
, (13.194)

which, together with (13.192) and (13.193), is sufficient to calculate the required gradients.
As discussed in Section 13.3.8 conventional beamforming algorithms typically apply

a regularization term that penalizes large active weight vectors, and thereby improves
robustness by inhibiting the formation of excessively large sidelobes. Such a regularization
term can be applied in the present instance by defining the modified optimization criterion

I(Y1, Y2;α) = I (Y1, Y2) + α|wa,1|2 + α|wa,2|2 (13.195)
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for some real α > 0. Taking the partial derivative on both sides of (13.195) yields

∂I(Y1, Y2;α)

∂w∗
a,i

= 1

2
(
1 − |ρ12|2

) · ∂|ρ12|2
∂w∗

a,i

+ αwa,i . (13.196)

Parameter Optimization: Super-Gaussian pdfs

While the Gaussian assumption simplifies the parameter optimization problem in that all
relevant information is contained in the covariance matrix of the subband samples, it
is in fact suboptimal inasmuch as human speech, as discussed in Section 13.5.2, is not
Gaussian-distributed. In order to estimate beamforming parameters with an MinMI crite-
rion using non-Gaussian pdfs, we first approximate mutual information with the empirical
mutual information according to

I (Y1, Y2) ≈ 1

N

K−1∑
k=0

[
log p(Y1(k), Y2(k)) − log p(Y1(k)) − log p(Y2(k))

]
, (13.197)

where

Yi(k) = (wq,i − Biwa,i)
H X(k), ∀ i = 1, 2,

for each X(k) drawn from a training set X = {X(k)}K−1
k=0 . From (13.197), it follows that

∂I (Y1, Y2)

∂w∗
a,i

≈ 1

K

K−1∑
k=0

[
∂ log p(Y1(k), Y2(k))

∂w∗
a,i

− ∂ log p(Y1(k))

∂w∗
a,i

− log p(Y2(k))

∂w∗
a,i

]
.

Hence, we need expressions for the partial derivatives of log p(Y1, Y2) and log p(Yi)

with respect to w∗
a,i . Regardless of the precise density, this will require evaluating the

intermediate quantities which we now calculate. Based on (13.189), we have,

∂σ 2
i

∂w∗
a,i

= −BH
i �X(wq,i − Biwa,i).

It is also readily shown that

∂σi

∂w∗
a,i

= 1

2σi

∂σ 2
i

∂w∗
a,i

= − 1

2σi

BH
i �X(wq,i − Biwa,i).

Beginning from (13.186), we can write

|Yi | =
√(

wq,i − Biwa,i
)H XXH

(
wq,i − Biwa,i

)
.

Hence,

∂|Yi|
∂w∗

a,i

= − 1

2|Yi|BH
i XXH

(
wq,i − Biwa,i

)
.
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We can express �Y as

�Y =
[
σ 2

1 ε12

ε∗
12 σ 2

2

]
, (13.198)

where ε12 is defined in (13.188). From (13.198) it is clear that

|�Y| = σ 2
1 σ 2

2 − ε12ε
∗
12. (13.199)

Thus,
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. (13.200)

It then follows from symmetry that

∂|�Y|
∂w∗
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= BH
2 �X

[
ε12

(
wq,1 − B1wa,1

) − σ 2
1

(
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)]
. (13.201)

Based on (13.198) and (13.199), the inverse of �Y can be expressed as

�−1
Y = 1

|�Y|
[

σ 2
2 −ε12

−ε∗
12 σ 2

1

]
= 1

σ 2
1 σ 2
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]
.

Let us now define

s � YH�−1
Y Y = f12

|�Y| , (13.202)

where

f12 = σ 2
2 |Y1|2 − ε∗

12Y1Y
∗
2 − ε12Y

∗
1 Y2 + σ 2

1 |Y2|2.

From the definition (13.202) it then follows that
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and from symmetry,

∂s
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We now specialize the calculation of the gradient of I (Y1, Y2) for two super-Gaussian
pdfs, namely, the Laplace and K0 pdfs.

Laplace Pdf

Based on the univariate complex Laplace pdf in Table B.3, we can write

log pLaplace(Yi) = log 2 − 1

2
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(13.205)

where the final equality follows from

K ′
0(z) = dK0(z)

dz
= K1(z).

Based on the bivariate complex Laplace pdf in Table B.3, we can write

log pLaplace(Y) = log 16 − 3

2
log π − log |�Y| − 1

2
log s + log K1(4

√
s).
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Note that it is also possible to develop the MinMI beamformer under the assumption
of a � pdf. Details are provided in Kumatani et al. (2007).

Recall the relation between MI and negentropy described in Section 12.2.3. Given this
similarity, negentropy is the preferable criterion for two reasons. Firstly, negentropy is
applicable for a single as well as multiple active speakers. Secondly, it does not require the
development of variates p(Y1, . . . , YN) of arbitrarily high order N , as implied by (12.16),
to model a total of N active speakers. Rather, only the complex univariate pdf is required
regardless of the number of active speakers. This is a significant advantage, inasmuch as
the high-order variates can typically only be estimated through such complicated means
as the Meier G-function, as discussed in Appendix B.5.2.

13.5.5 Geometric Source Separation

Parra and Alvino (2002) proposed a geometric source separation algorithm with many
similarities to the algorithm proposed by Kumatani et al. (2007). Their work was based
on two beamformers with geometric constraints that made them functionally equivalent to
GSC beamformers. The GSS beamformer can be likened to a MinMI beamformer under
a Gaussian assumption which minimizes |ε12|2 instead of |ρ12|2. If a regularization term
is added as before, the GSS optimization criteria,

I ′(Y1, Y2;α) = |ε12|2 + α|wa,1|2 + α|wa,2|2, (13.209)

is obtained. Then taking partial derivatives of (13.209) gives

I ′(Y1, Y2;α)

∂w∗
a,1

= −BH
1 �X(wq,2 − B2wa,2) ε∗

12 + αwa,1 (13.210)

I ′(Y1, Y2;α)

∂w∗
a,2

= −BH
2 �X(wq,1 − B1wa,1) ε12 + αwa,2. (13.211)

Although at first blush it may seem that a closed-form solution for wa,1 and wa,2 could be
derived, the presence of ε∗

12 and ε12 in (13.210) and (13.211) respectively actually makes
this impossible. Hence, a numerical optimization algorithm is needed, as before.

While the difference between minimizing |ε12|2, as in the GSS algorithm, instead of
|ρ12|2, as in the MinMI beamformer, may seem very slight, it can in fact lead to radically
different behavior. To achieve the desired optimum, both criteria will seek to place deep
nulls on the unwanted source; this characteristic is associated with |ε12|2, which also
comprises the numerator of |ρ12|2. Such null steering is also observed in conventional
adaptive beamformers, as discussed in Section 13.3.3. The difference between the two
optimization criteria is due to the presence of the terms σ 2

i in the denomimnator of |ρ12|2,
which indicate that, in addition to nulling out the unwanted signal, an improvement of the
objective function is also possible by increasing the strength of the desired signal. For
acoustic beamforming in realistic environments, there are typically strong reflections from
hard surfaces such as tables and walls. A conventional beamformer would attempt to null
out strong reflections of an interfering signal, but strong reflections of the desired signal
can lead to signal cancellation (Widrow et al. 1982). The GSS algorithm would attempt
to null out those reflections from the unwanted signal. But in addition to nulling out
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reflections from the unwanted signal, the MinMI beamforming algorithm would attempt
to strengthen those reflections from the desired source; assuming statistically independent
sources, strengthening a reflection from the desired source would have little or no effect on
the numerator of |ρ12|2, but would increase the denominator, thereby leading to an overall
reduction of the optimization criterion. Of course, any reflected signal would be delayed
with respect to the direct path signal. Such a delay would, however, manifest itself as a
phase shift in the subband domain, and could thus be removed through a suitable choice of
wa. Hence, the MinMI beamformer, much like the MNB and HMM–MNB beamformers
considered in Sections 13.5.2 and 13.5.3, respectively, offers the possibility of steering
both nulls and sidelobes; the former toward the undesired signal and its reflections, the
latter toward reflections of the desired signal. This difference in the behavior between
the MinMI and GSS beamforming algorithms was demonstrated with a simple acoustic
simulation in Kumatani et al. (2007).

13.6 Array Shape Calibration

As a final application, we consider an algorithm proposed by McCowan et al. (2008) that
is related to beamforming in that it provides estimates of the relative positions of several
microphones. This may well be required when beamforming is to be performed using
an array with an unknown geometry. Let Xk(ω) denote the subband sample reaching
the k th microphone. Consider that the coherence between signals reaching microphones
positioned at points mk and ml is defined as

�kl(ω) � γkl(ω)√
γkk(ω) γll(ω)

, (13.212)

where γkl = E{Xk(ω)X∗
l (ω)}. The auto- and cross-spectral densities are readily obtained

from a standard recursive update formula (Allen et al. 1977), according to

γ̂kl(ω) = αγ̂ ′
kl(ω) + (1 − α)Xk(ω)X∗

l (ω), (13.213)

where γ̂ ′
kl(ω) is the density estimate from the prior time step, α = exp(−T /τα), T is the

time step in seconds, and τα is a time constant.
As mentioned in Section 13.3.4, a diffuse noise field is a good model for many common

acoustic environments, including cars and offices (Elko 2000). The diffuse noise field is
characterized by the spherically isotropic coherence function (13.69). The latter implies
that for a given frequency under, the coherence between the signals reaching any two
microphones is a function only of the distance between them. Hence, in order to learn
the distance dkl = |mk − ml|, we can compare the coherence predicted by (13.69) to
that measured by (13.213). To make such a comparison, we adopt the squared error
optimization criterion

εkl(d) =
M/2∑
m=0

∣∣∣∣Re{γ̂kl(ωm)} − sinc

(
ωm d

c

)∣∣∣∣
2

, (13.214)

d̂kl = arg mindεkl(d), (13.215)
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where ωm is the center frequency of the mth subband. The value d̂ achieving the desired
minimum can be found with a straightforward line search such as Brent’s method (Press
et al. 1992, sect. 10.2).

Once the intersensor spacing is known for all pairs of microphones, the configuration
of the entire array can be inferred through the application of the multidimensional scaling
algorithm (Birchfield and Subramanya 2005). McCowan et al. (2008) used additional
steps, however, to achieve more robust estimates of the intersensor distances. To wit, pairs
of sensor spacing and error estimates (dkl(t), εkl(t)) were calculated as in (13.214–13.215)
for several time instants t for each microphone pair (k, l). The several pairs (dkl(t), εkl(t))

were then separated into two clusters using the K-means algorithm (Duda et al. 2001,
sect. 4.4). The motivation for the latter operation is based on the observation that some
frames do not fit the diffuse noise model. Hence, a more robust estimate of the intersensor
spacing can be obtained by removing these frames from the estimation process. The final
estimate of the intersensor spacing is taken as the d-centroid of the cluster with the
smallest ε-centroid.

13.7 Summary and Further Reading

In this chapter, we have presented a class of techniques known collectively as beamform-
ing by which signals from several sensors can be combined to emphasize a desired source
and suppress interference from other directions. Beamforming begins with the assumption
that the positions of all sensors are known , and that the position of the desired source is
known or can be estimated. The simplest of beamforming algorithms, the DSB, uses only
this geometrical knowledge to combine the signals from several sensors. More sophisti-
cated adaptive beamformers attempt to minimize the total output power of the array under
a constraint that the desired source must be unattenuated.

The total output power of the array under a conventional beamforming algorithm is
minimized through the adjustment of an active weight vector, which effectively places a
null on any source of interference, but can also lead to undesirable signal cancellation
(Widrow et al. 1982). To avoid the latter, many algorithms based on conventional opti-
mization criteria have been developed. Among such approaches, the following solutions
have been proposed:

• updating the active weight vector only when noise signals are dominant (Cohen et al.
2003; Herbordt and Kellermann 2003; Nordholm et al. 1993);

• constraining the update formula for the active weight vector (Claesson and Nordholm
1992; Hoshuyama et al. 1999; Nordebo et al. 1994);

• blocking the leakage of desired signal components into the sidelobe canceler by
designing the blocking matrix (Herbordt and Kellermann 2002; Herbordt et al. 2007;
Hoshuyama et al. 1999; Warsitz et al. 2008);

• taking speech distortion due to the the leakage of a target signal into account using
multi-channel Wiener filter which aims at minimizing a weighted sum of residual noise
and speech distortion terms (Doclo et al. 2007); and

• using acoustic transfer functions from a desired source to microphones instead of just
compensating for time delays (Cohen et al. 2003; Gannot and Cohen 2004, Sharon
Gannot et al. 2001; Warsitz et al. 2008).
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All of the algorithms mentioned above attempt to minimize nearly the same crite-
rion based on the second-order statistics, the total output power, while maintaining a
distortionless constraint.

Recent research has revealed that the optimization criteria used in conventional array
processing are not optimal for acoustic beamforming applications. In the latter sections of
this chapter we have discussed nonconventional optmization criteria for beamforming. We
have discussed the negentropy optimization criterion, whereby the active weight vectors
of the beamformer are adjusted in order to provide an output signal that is as non-Gaussian
as possible. We also presented a beamforming algorithm with the ability to separate the
voices of two or more speakers who speak simultaneously by minimizing the MI between
the outputs of two GSCs based on a minimum MI criterion. Both negentropy and MI are
widely-used optimization criteria in the field of ICA.

It is probably safe to say that recent interest in microphone array hardware is moving in
two directions. On one side, there is extensive interest in small arrays based on standard
audio equipment that can be mounted on a wide range of possibly portable devices. These
include PCs, laptops, PDAs, hearing aids and may include cell phones in the near future.
Recent work in designing a distant speech acquisition and recognition system for mobile
devices was described by Takada et al. (2008). Indeed, this trend has been accelerated by
the inclusion of basic beamforming capability in the Microsoft Windows Vista operating
system for PCs (Tashev and Allred 2005). In this category also fall arrays mounted in
automobiles, which often have severe limitations on where the array can be placed and
its physical size; see Nordholm et al. (2001). Because of the small extent of such devices,
the algorithms used to combine the signals from the several sensors become very critical,
as they must bear the brunt of the task of suppressing interference and reverberation.

On the other side, there is now significant interest within the research community in
building specialized hardware that offers a geometry more conducive to acoustic beam-
forming. Such attempts include the NIST Mark III in its several versions. A highly novel
approach to acoustic beamforming is represented by the spherical microphone arrays
originally proposed by Meyer and Elko (2004). Indeed this approach has enjoyed a spate
of popularity, as is evident from several recent publications, including Li and Duraiswami
(2005), Rafaely (2008) and Zotkin et al. (2008). Other work on the decomposition of the
sound field of a regularly-shaped aperture into spatial harmonics is presented by Teutsch
and Kellermann (2005) for cylindrical arrays.

Useful general references on beamforming include the massive volume by Van Trees
(2002), as well as the collection edited by Brandstein and Ward (2000). Another useful
reference to the most recent research is Huang and Benesty (2004). Hänsler and Schmidt
(2004) is also a useful reference to the related field of acoustic echo and noise control.
An interesting survey on the combination of beamforming and acoustic echo cancellation
is given by Kellermann (2001).

The minimum mutal beamformer is presented in Kumatani et al. (2007). The maximum
negentropy design was introduced in Kumatani et al. (2008b), and further refined through
the incorporation of HMM information by Rauch et al. (2008). The use of kurtosis as a
beamforming optimization criterion was introduced in Kumatani et al. (2008c).
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13.8 Principal Symbols

Symbol Description

α step size in least mean square algorithm
ϒ(ω, k) frequency wavenumber response function
λ wavelength
φ azimuth
φ broadside angle
τn time delay of arrival to nth sensor
θ polar angle
θ(K) Givens’ rotation
ω angular frequency
�N(ω) coherence matrix
r range to desired source
a direction of propagation of plane wave
A(K) prearray
B(K) postarray
B(ω) generalized sidelobe canceler blocking matrix
B(ω : θ, φ) beam pattern
c speed of sound
C constraint matrix
d distance between microphones in a uniform linear array
D directivity
g right-hand side of constraint equation
h(t) continuous-time impulse response of a microphone array
H(ω) frequency response of a microphone array
H(Y ) entropy of Y

I (Y1, Y2) mutual information between Y1 and Y2

J (Y ) negentropy of Y

k wavenumber
N number of elements in a microphone array
P(θ, φ) power pattern
vk array manifold vector
w(ω) beamformer weight vector
wq(ω) generalized sidelobe canceler quiescent weight vector
wa(ω) generalized sidelobe canceler active weight vector
ux, uy, uz direction cosines for the Cartesian coordinates
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In this chapter, we present empirical results demonstrating the effectiveness of many
of the techniques for feature enhancement, speaker tracking, beamforming and speaker
adaptation described in this volume. These empirical studies were undertaken on data
captured with real speakers in real acoustic environments. As such, the results of the
experiments reported here are vastly different from those reported in the great majority of
the array processing, independent component analysis (ICA) and blind source separation
(BSS) literature, where, if word error rates are given at all, it is common practice to report
results on data that was originally captured with a close-talking microphone (CTM), and
thereafter artificially convolved with a measured room impulse response, perhaps with
the addition of noise. In the experience of the authors, the results obtained on such data
almost invariably fail to carry over to data captured with real far-field sensors in real
acoustic environments. Moreover, it is not difficult to understand why this is the case: If
the impulse response of a room is fixed, it can be learned and compensated for provided
sufficient adaptation data, typically a few seconds, is available. The great difficulty in
working with real data is that the impulse response between the speaker’s mouth and
each individual element in a sensor array changes constantly. The opening of a door or
window – or even the motion of the speaker’s head by a few centimeters – is sufficient
to radically alter this impulse response. This means that most, if not all, known methods
of explicitly estimating the room impulse response will fail to converge on data captured
in normal acoustic environments.

While the facts outlined above are well known to nearly everyone who has conducted
research in the array processing, ICA, or BSS fields, they are all but unknown to the great
majority of the automatic speech recognition (ASR) research community. This lack of
knowledge is undoubtedly due in large part to the fact that the distant speech recognition
(DSR) performance gap between experiments conducted on real and artificially convolved
data is very seldom mentioned or even alluded to in publications about array processing,
ICA, or BSS. In the experience of the present authors, highly experienced colleagues from
the mainstream ASR community are uniformly surprised to learn that such a performance
gap even exists.

For precisely the reasons outlined above, we report results on no such synthetic data
here. Rather, the data we have used during our evaluations of the algorithms was captured

Distant Speech Recognition Matthias Wölfel and John McDonough
©    2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-51704-8
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with real microphones, in completely normal acoustic environments, and with real human
speakers. Moreover, the speakers received no special instructions about how to speak or
otherwise behave. The results we report in this chapter demonstrate that the algorithms
described in this volume provide state-of-the-art performance. We have indeed docu-
mented this fact by either providing comparisons with other algorithms that have been
proposed in the literature, or by referring to the results of open, international evaluation
campaigns such as the Speech Separation Challenge, Part 2, or the CLEAR evaluations
of audio-visual technologies sponsored by the Computers in the Human Interaction Loop
(CHIL), project. That said, we must hastily add the following: Although the algorithms
for which results are reported here are, as of the time of this writing, the best among those
that have been proposed in the literature, we can make no guarantee that they will remain
the best in several years’ time, or even after the passage of a few months. Indeed, our great
hope in writing this volume was and remains that the current state-of-the-art will soon be
rendered obsolete, both through our own continuing efforts and those of our readers.

We now summarize the remainder of this chapter. In Section 14.1, we describe two
realistic acoustic environments used to capture much of the data for the experiments
reported here. The first environment was an instrumented seminar room built at the
Universität Karlsruhe (TH) during the CHIL project. The second was the instrumented
meeting room created at the Center for Speech Technology Research (CSTR) at the
University of Edinburgh in connection with the Augmented Multi-party Interaction
(AMI) and Augmented Multi-party Interaction with Distance Access (AMIDA) projects.
Section 14.2 describes the decoding configurations of the two ASR engines used for the
experiments reported here, namely, the Janus Recognition Toolkit, as well as Millennium.
Our principal performance metric, word error rate, is defined in Section 14.3. Section 14.4
describes a set of feature enhancement experiments conducted with a single distant
microphone. Acoustic and audio-video speaker-tracking experiments are described in
Sections 14.5 and 14.6, respectively. For the experiments reported in those sections, the
performance metric was tracking accuracy rather than word error rate, while the results
reported in Section 14.7 demonstrate the close relation between tracking accuracy and
recognition performance for DSR systems. Sections 14.8 and 14.9 report the results
of a series of DSR experiments comparing the performance of several beamforming
algorithms, both for a single speaker as well as for two simultaneous speakers.
Section 14.10 presents a comparison of several filter bank designs for the speech
separation application described in Section 14.9. Finally, Section 14.11 summarizes the
results reported here a number of references for further reading.

14.1 Example Room Configurations

Here we describe the two example room configurations depicted in Figure 14.1. The
first configuration is a seminar room of size 7.1 × 5.9 × 3 m and a reverberation time of
approximately 410 ms; the second is a meeting room with dimensions 6.5 × 4.9 × 3.25 m
and a reverberation time of approximately 380 ms. Most of the speaker-tracking and DSR
experiments described in subsequent sections were conducted with data collected in one
of these rooms.

The seminar room located at Universität Karlsruhe (TH) is equipped with a 64-channel
Mark III microphone array developed at US National Institute of Standards and
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Figure 14.1 Sensor configurations in the instrumented seminar and meeting rooms at the Univer-
sität Karlsruhe (TH) and University of Edinburgh

Technologies (NIST). This large array, which was mounted on the wall opposite
the lecturer, was intended primarily for beamforming. For speaker tracking, four
T-shaped arrays were mounted on the walls of the seminar room. The T-shape permits
three-dimensional tracking, which would be impossible with a linear configuration. The
room was also equipped with commercially-available microphones, which were located
on a table next to the presenter. In addition to the audio sensors, calibrated video cameras
were located in each corner of the room near the ceiling. These cameras, which had
been calibrated with the technique proposed by Zhang (2000), were used for audio-video
speaker-tracking experiments, as well as for determining the true speaker positions. The
location of the centroid of the speaker’s head in the images from the four calibrated
cameras was manually marked every 0.7 second. Using these hand-marked labels, the
true position of the speaker’s head in three-dimensional room coordinates was calculated
using the technique described in Zhang (2000). These “ground truth” speaker positions
were accurate to within approximately 10 cm. For details of the data collection apparatus
see Macho et al. (2005).

The meeting room located at the CSTR was equipped with two circular, eight-channel
microphone arrays with diameters of 20 cm. Video data from calibrated cameras was not
captured in the CSTR meeting room. The data from the eight-channel circular arrays
was, however, ideally-suited for the single-speaker beamforming and speech separation
experiments described in Sections 14.8 and 14.9, respectively. Details of the data collec-
tion apparatus at the CSTR are available from Lincoln et al. (2005).
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A precise description of the sensor and room configuration of both rooms is provided in
Figure 14.1. Additionally, in both room configurations each active speaker was equipped
with a CTM to capture the best possible speech signal as a reference for DSR experiments.
In the CHIL seminar room, the sampling rate for the Mark III was 44.1 kHz, while that
for the T-arrays, table top microphones, and CTMs was 48 kHz. After beamforming or
other processing, the data was downsampled to 16 kHz prior to feature extraction and
recognition. The data captured in the meeting room at the University of Edinburgh was
sampled at a rate of 16 kHz, and all processing was conducted at this rate.

As both data sets were captured with real speakers in real acoustic environments, the
recordings contain significant distortions from the three banes of DSR, namely, noise,
reverberation and overlapping speech. Moreover, the speaking volume, head orientation
and positions of the speakers changed constantly in both environments, which provided
an additional challenge for effective DSR.

14.2 Automatic Speech Recognition Engines

All experiments described in the following sections were conducted with either the Janus
Recognition Toolkit , which is developed and maintained jointly at Universität Karlsruhe
(TH), in Karlsruhe, Germany and at Carnegie Mellon University in Pittsburgh, Pennsyl-
vania, USA, or with Millennium , which was formerly developed at Universität Karlsruhe
(TH). Millennium is structured as a set of dynamically-linkable shared-object libraries
that can be accessed from the interpreter of the Python scripting language. These capa-
bilities are contained in four modules: Automatic Speech Recognition (asr), the Source
Localization Toolkit (sltk), the Beamforming Toolkit (btk) and Speech Feature Extrac-
tion (sfe).

The feature extraction used for the DSR experiments reported here was based on cepstral
features estimated with a warped minimum variance distortionless response (MVDR)
spectral envelope of model order 30, as described in Section 5.3.7. Front-end analysis
involved extracting 20 cepstral coefficients per frame of speech, as explained in Section
5.4, and performing global cepstral mean normalization (CMN) as discussed in Section
6.6.1. The final features were obtained by concatenating 15 consecutive frames of cepstral
coefficients together, as indicated in Section 5.6, then performing linear discriminant
analysis (LDA), as described in Section 5.7.2, to obtain a feature of length 42. The LDA
transformation was followed by a global semi-tied covariance transform estimated with a
maximum likelihood criterion (Gales 1999).

For the experiments using the Janus recognition engine reported in subsequent sections,
the SRILM-toolkit (Stolcke 2002) was used to train either tri- or four-gram language
models with vocabulary sizes between 20 and 60 thousand words based on the modified
Kneser and Ney discounting method proposed by Chen and Goodman (1998). The basic
Kneser and Ney approach for modeling the backoff probabilities of a N -gram language
model was presented in Section 7.3.1. The language models were trained on a subset of
the seminar data collected by the CHIL partner sites. Additional corpora were used for
language model (LM) training, such as conference proceedings, the translanguage English
database, as well as data culled from the Internet through key word searches using Google.
The perplexities of the language models on the development sets were between 100 and
150, and the out-of-vocabulary-rates were below 1% for all cases considered.
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For the experiments with Millennium, the standard 5000-word vocabulary Wall Street
Journal (WSJ) LM was used. The WSJ model was converted to a weighted-finite state
transducer. For these experiments, acoustic training was performed on approximately
30 hours of American WSJ and 12 hours of Cambridge WSJ data. The latter dataset
was necessary in order to provide coverage of the British accents for the speakers
in the Speech Separation Challenge (SSC) development and evaluation sets (Lincoln
et al. 2005).

The triphone or quinphone acoustic models used for the Janus system had between 3500
and 4000 context-dependent codebooks with up to 64 Gaussians with diagonal covariances
each. Different hidden Markov model (HMM) training schemes were used to train the
systems required for the several decoding passes:

• conventional maximum likelihood (ML) HMM training, as described in Section 8.1.2;
• conventional maximum mutual information (MaxMI) HMM training, as described in

Section 8.2.1;
• speaker-adapted training under a ML criterion, as described in Section 8.1.3;
• speaker-adapted training under a MaxMI criterion, as described in Section 8.2.4.

The speech recognition experiments in Section 14.4 and Section 14.7 were conducted
with the one pass decoder implemented in the Janus system (Soltau et al. 2001). The
speech recognition experiments reported in Sections 14.8, 14.9 and 14.10 were conducted
with a word trace recognizer in the Millennium system, as described in Section 7.1.4.
For the latter, word lattices for speaker adaptation were written during recognition as
described in Section 7.1.3, and then weighted finite-state transducer operations described
in Section 7.2 were used to produce minimum equivalent lattices; i.e., the raw lattice
from the decoder was projected onto the output side to discard all arc information save
for the word identities, and then compacted through epsilon removal, determinization and
minimization.

Either two or four decoding passes were performed on the waveforms obtained either
by a single microphone or with a microphone array applying beamforming algorithms
as indicated in the particular section. Each pass of decoding used a different speaker
adaptation scheme or acoustic model, while the same language model was used for all
passes.

In the Janus system, the adaptation parameters were estimated on the first best
hypothesis, while in the four-pass system based on Millennium the adaptation parameters
were estimated using the word lattices generated during the prior pass.

The processing steps for the two-pass decoding strategy used for experiments with the
Janus system can be summarized as follows:

1. Decode with the unadapted, conventional MaxMI acoustic model.
2. Estimate vocal tract length normalization (VTLN) parameters, as described in Section

9.1.1, constrained maximum likelihood linear regression (CMLLR) parameters,
as described in Section 9.1.2, and maximum likelihood linear regression (MLLR)
parameters, as described in Section 9.2.1, for each speaker.

3. Redecode with the conventional MaxMI model.
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The processing steps for the four passes of decoding used with Millennium can be sum-
marized as follows:

1. Decode with the unadapted, conventional ML acoustic model.
2. Estimate VTLN and CMLLR parameters for each speaker.
3. Redecode with the conventional ML acoustic model.
4. Estimate VTLN, CMLLR and MLLR parameters for each speaker.
5. Redecode with the conventional model.
6. With the ML-speaker-adapted training (SAT) acoustic model, estimate VTLN,

CMLLR, and MLLR parameters for each speaker.
7. Redecode with the ML–SAT model trained as described in Section 8.1.3.

14.3 Word Error Rate

Word error rate (WER) is the metric of first choice for determining the quality of auto-
matically derived speech transcriptions. As mentioned in Section 1.3, transcription errors
are typically grouped into three categories1:

• insertion: an extra word is added to the recognized word sequence;
• substitution: a correct word in the word sequence is replaced by an incorrect word;
• deletion: a correct word in the word sequence is omitted.

The minimum error rate can be determined by aligning the hypothesized word string
with the correct reference string. This problem is known as maximum substring matching
and can be solved by dynamic programming (Bellman 1957). After the alignment, the
word error rate can readily calculated as

WER = substitutions + deletions + insertions

total number of word tokens in the reference
.

In tabulating the results of the DSR experiments described below, the reference text
was used to perform case-insensitive scoring. Case-sensitive scoring is sometimes used,
however. The nonlexical tokens, such as breath or noise, were not evaluated in scoring.

Burger (2007) investigated the differences between close- and distant-talking micro-
phone transcriptions. Burger found that in order to generate distant-talking microphone
transcriptions from close-talking microphone transcriptions, transcribers had to remove
an average of 4% of complete utterances, 2% of word tokens, 15% of word fragments
and 12% of laughter annotations. The far-field transcriptions show an average of 60%
more labels for nonidentifiable utterances and 19% more word tokens tagged as hard to
identify. Burger did not investigate differences in the annotation of breath noise. Those
values, of course, vary with the test set.

A very useful tool to measure the WER is provided by NIST and is freely available on
the Internet (NIST).

1 Note that changes in word order that do not change the meaning of a sentence are treated as errors under the
WER metric. This makes WER unsuitable for evaluating automatic speech translation systems, for example.
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14.4 Single-Channel Feature Enhancement Experiments

In order to emphasize the importance of speech feature enhancement in DSR under realis-
tic conditions, this section first compares two different speech recognition front-ends and
then compares different single-channel feature enhancement techniques on data recorded
in the seminar room described in Section 14.1. The effect on recognition accuracy by com-
pensation for different distortion types is emphasized by compensating for either additive
or convolutive distortion. Thereafter results are presented which highlight that compen-
sating for both kinds of distortion can lead to additional improvements, in particular when
this compensation is performed jointly.

The GMM representing clean speech in the PF was trained with 64 Gaussians on clean
speech. For the second pass experiments the GMM was trained on features to which vocal
tract length normalization had been applied. The latter is described in Section 9.1.1. The
noise GMM used to initialize the PF was trained for each individual utterance on silence
regions found by voice activity detection. A dynamic autoregressive matrix (Section 6.7.4)
was used to predict the evolution of noise.

We start our analysis by estimating the signal-to-additive-distortion (labeled with addi-
tive), signal-to-reverberation (labeled with reverberation) and signal-to-distortion (labeled
with overall ) ratio calculated within the joint estimation framework. Comparing the dif-
ferent estimates in Table 14.1 to the signal-to-noise (labeled with SNR) estimate based
on voice activity detection we immediately observe that the distortion estimates are sig-
nificantly higher within the joint estimation framework which becomes more pronounced
for higher SNR values.

On the close-talking microphone (CTM) the energy estimates of additive distortions
and the energy estimates of late reverberation are nearly alike. The distortion estimates of
the lapel microphone are higher for late reverberations than for additive distortions which
is also true for the table top microphone. The difference, however, between additive dis-
tortions and late reverberation energies is much smaller. On the wall-mounted microphone
the energy estimates of additive distortions and late reverberation estimates again become
nearly equivalent. In addition, we observe that the energy estimates of late reverberation
only slightly increase between the lapel, table top and the wall-mounted microphone.

Figure 14.2 presents the average energy over all bands of the observed signal, the non-
stationary additive distortion estimate, the late reverberation estimate and the enhanced
signal estimate. Comparing the energies of the additive distortion and reverberation

Table 14.1 Average energy of additive nonstationary noise and reverberation
vs cleaned speech estimate

Microphone Close talk Lapel Table top Wall
Distance 1 cm 20 cm 150–200 cm 300–400 cm
Estimate Average energy vs Cleaned estimate (dB)

SNR 24 23 17 10
Noise 15.1 13.7 12.0 11.3
Reverberation 15.5 11.6 11.5 11.1
Together 12.3 9.5 8.7 8.2
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Figure 14.2 Average energy contours over all frequency bands vs time of the noisy speech frames,
the noise frames, reverberant frames and cleaned speech frames

estimated over different frames we can clearly observe the time-dependent characteristics
of the distortions. Furthermore, we note that the reverberation estimate has a significantly
higher fluctuation than the additive distortion estimate, except for the case of the CTM.

Comparing the first two lines in Table 14.2 demonstrates that robust cepstral feature
extraction, such as that based on the warped MVDR, outperforms the feature extraction
based on the MFCC. Thus, warped MVDR feature extraction was used exclusively for
the subsequent experiments. Comparing the second with the third lines, we observe that
feature enhancement based on the particle filter (PF), as described in Chapter 6, improved
the recognition performance in all tabulated cases. This comes as a little surprise, as it
was not expected that the nearly clean close talk and lapel microphones can profit from
enhancement techniques. Upon compensating for the reverberation using multi-step linear
prediction (MSLP), as described in Section 6.6.5, a different picture emerges: With the
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Table 14.2 Speech recognition experiments on single channel. After Wölfel (2008b)

Microphone Close talk Lapel Table top Wall
Distance 5 cm 20 cm 150–200 cm 300–400 cm
Pass 1 2 1 2 1 2 1 2
Front-end Noise compensation Word error rate (%)

Additive Reverberant

Power spectrum no no 11.3 9.5 12.3 10.3 18.0 14.2 45.9 30.0
Warped MVDR no no 11.2 9.1 10.9 9.2 18.6 14.0 45.4 28.6
Warped MVDR yes no 10.6 9.0 10.7 9.0 17.8 13.2 42.8 25.4
Warped MVDR no yes 14.4 9.5 15.1 9.6 17.7 13.4 39.2 23.9
Warped MVDR yes yes 12.1 9.3 13.4 9.5 17.7 13.3 38.3 23.3
Warped MVDR joint 11.5 8.6 11.9 9.0 16.9 12.6 38.4 22.2

close-talk and lapel microphones, where no reverberation is expected, the word accuracy
deteriorates if the acoustic models are not adapted. As is clear upon comparing the second
pass results, this deterioration is less severe if unsupervised adaptation is performed. On
the table top microphone, the reductions in WER are comparable to those of the PF. On
the wall-mounted microphone, where more reverberation is expected, MSLP is able to
significantly outperform the PF approach. Both the PF as well as the MSLP approaches
are able to compensate for distortions which cannot be treated well by MLLR or CMLLR.
This is apparent by comparing the second pass results. Applying both approaches, MSLP
followed by PF, can either maintain or further reduce the error if the speech signal is
significantly distorted. On the close talk and lapel microphones, the PF can compensate
for some distortions introduced by MSLP. The last line in Table 14.2 presents results
for a joint compensation approach. This approach provides equal or superior recognition
performance on all channels after unsupervised model adaptation. Note that this is in
contrast to a variety of feature enhancement techniques which are able to improve the
accuracy on distorted signals. Such techniques, however, reduce accuracy if the signal
does not contain distortions; e.g., the MSLP approach.

14.5 Acoustic Speaker-Tracking Experiments

This section reports the results of acoustic speaker-tracking experiments conducted on
approximately three hours of audio and video data recorded in the seminar room described
in Section 14.1. An additional hour of test data was recorded at Athens Institute of
Technology in Athens, Greece, IBM at Yorktown Heights, New York, USA, Instituto
Trentino di Cultura in Trento, Italy, and Universitat Politecnica de Catalunya in Barcelona,
Spain. These recordings were made in connection with the European Union integrated
project CHIL.

Acoustic speaker-tracking performance was evaluated on those portions of the seminars
where only a single speaker was active. For these parts, it was determined whether the
error between the ground truth and the estimated position was less than 50 cm. Any
instance where the error exceeded this threshold was treated as a false positive and was
not considered when calculating the multiple object-tracking precision (MOTP), which
is defined as the average horizontal position error. If no estimate fell within 50 cm of
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Table 14.3 Speaker-tracking performance for iterated extended Kalman filter (IEKF) and joint
probabilistic data association filter (JPDAF) systems

Filter Test set MOTP (cm) % Miss % False positive % MOTE

IEKF Lecture 11.4 8.32 8.30 16.6
IEKF Interactive 18.0 28.75 28.75 57.5
IEKF Complete 12.1 10.37 10.35 20.7
JPDAF Lecture 11.6 5.81 5.78 11.6
JPDAF Interactive 17.7 19.60 19.60 39.2
JPDAF Complete 12.3 7.19 7.16 14.3

the ground truth, it was treated as a miss . Letting Nfp and Nm, respectively, denote the
total number of false positives and misses, the multiple object-tracking error (MOTE)
is defined as (Nfp + Nm)/N , where N is the total number of ground truth positions.
Performance was evaluated separately for the portion of the seminar during which only
the lecturer spoke, and that during which the lecturer interacted with the audience. Shown
in Table 14.3 are the experimental results reported in Gehrig et al. (2006); those authors
used the multiple speaker-tracking algorithm described in Section 10.3, which is based
on the joint probabilistic data association filter (JPDAF) discussed in Section 4.3.6.

These results clearly show that the JPDAF provided better tracking performance for both
the lecture and interactive portions of the seminar. As one might expect, the reduction
in MOTE was largest for the interactive portion, where multiple speakers were often
simultaneously active.

Shown in Figure 14.3 are images from the four calibrated video cameras in the CHIL
seminar room. The oval projected on the heads of the two speakers, one sitting and

Camera 1

Camera 3 Camera 4

Camera 2

Figure 14.3 Multiple simultaneous speaker-tracking system. The ovals on the speakers’ heads
represent the uncertainty regions of the speakers’ positions as determined by the state estimation
error covariance matrices Kk and Kk|k−1 in (4.32) and (4.77), respectively. (© Photo reproduced
by permission of Universität Karlsruhe (TH))
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one standing next to the presentation screen, represent the regions of uncertainty of the
speakers’ positions estimated with the JPDAF algorithm. These regions of uncertainty are
based on the predicted Kk|k−1 and filtered Kk state estimation error covariance matrices
in (4.32) and (4.77), respectively, that are propagated forward at every time step during
the state estimate update of the JPDAF.

It is worth noting that the system for tracking multiple simultaneous speakers based on
the JPDAF, as described in Section 10.3, provided the best performance on the acoustic
speaker tracking task in both the 2006 and 2007 CLEAR Evaluations (Stiefelhagen et al.
2008). The other systems for which results were reported in those evaluations were based
on PFs, as described in Section 10.5, or on the generalized coherence field, as proposed in
Brutti et al. (2005). The speaker-tracking system based on the JPDAF also provided the
acoustic speaker position estimates used by the system which achieved the best overall
performance in the audio-video tracking portion of the CHIL evaluations.

14.6 Audio-Video Speaker-Tracking Experiments

Gehrig et al. (2005) used a test set of approximately 2.5 hours of audio and video data
recorded during five seminars by students and faculty at the Universität Karlsruhe (TH) in
order to evaluate the algorithms described in Section 10.4 for audio-video speaker track-
ing. As explained in Section 14.1, the video cameras in the Universität Karlsruhe (TH)
seminar room enabled the true speaker positions in room coordinates to be extracted from
manually-marked video images. These “ground truth” speaker positions were accurate to
within 10 cm.

As the seminars took place in an open lab area, the layout of which is described in
Section 14.1, used both by seminar participants as well as students and staff engaged in
other activities, the recordings were optimally-suited for evaluating speaker-tracking and
other technologies in a realistic, natural setting. In addition to speech from the seminar
speaker, the far-field recordings contained noise from fans, computers, and doors, in
addition to cross-talk from other people present in the room.

Table 14.4 shows the results reported by Gehrig et al. of a set of experiments that
were made to compare the accuracy of a speaker-tracking system running in different
modes. The columns in the table labeled X, Y and Z show the average error in speaker
position for each dimension. The columns labeled 2D and 3D tabulate the root mean
square error on the floor or X–Y plane, and the entire X–Y –Z space, respectively, as
indicated on the left side of Figure 14.1. The audio-video experiment used the same

Table 14.4 Results of audio-only and audio-video
speaker-tracking experiments

Root mean square error (cm)

Tracking mode X Y Z 2D 3D

Audio only 46.7 43.5 22.8 65.1 69.4
Video only 101.5 119.3 24.4 162.6 164.6
Audio-video 41.4 36.9 12.5 56.0 58.6
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parameters that were used to run the experiments on a single modality. To initialize
the tracking algorithm, a common starting position was used for all seminars, so that
the Kalman filter was forced to converge to the true position. The innovation sequence
(4.21) of the Kalman filter was filtered using twice the standard deviation of the innovation
covariance matrix (4.26) as a threshold, in order to remove outliers. The iterated extended
Kalman filter (IEKF) described in Sections 4.3.3 and 10.2 was iterated at most fives times.
Additionally, the position estimates returned by the Kalman filter were restricted to be
within the physical room and the time delays to be within the bounds determined by the
dimensions of the room. Moreover, a threshold of 0.18 on the maximum peak of the
generalized cross-correlation, described in Section 10.1, for each microphone pair was
set, and only those pairs that had correlation values that exceeded that threshold were
used for time delays of arrival (TDOA) estimation. This was done to ensure that only the
signals on the direct path from the speaker’s mouth to each pair of microphones were used
for TDOA estimation. As input for the audio-based speaker tracking, TDOAs estimated
from all combinations of microphone pairs of the T-Arrays B and D on the left side of
Figure 14.1 were used. The measurement noise (10.33) for the microphone pairs was set
between 0.11 ms and 0.54 ms.

The detected positions of the speakers’ faces in the image planes of Cameras 1 through
4 in Figure 14.1 were used as video features for the speaker-tracking experiments. The
size of the face detector’s search window was determined by the projection of a cube
with an edge size of 50 cm. Additionally, the state estimation error of the Kalman filter
projected onto the camera image planes was added to obtain a dynamic search window.
The measurement noise of the cameras was approximately 20 pixels.

From the results reported in Table 14.4, it is clear that the audio-video speaker-tracking
system provided performance superior to either modality taken individually. This was
largely due to the fact that the two modalities had different and complementary failure
modes. The audio-tracking system could obviously not track a speaker when he no longer
spoke, and hence continually lost track during periods of silence. The video tracker, on
the other hand, was unable to distinguish which face in the room was actually speaking,
and hence often confused a person sitting silently in the audience for the person actually
holding the seminar.

14.7 Speaker-Tracking Performance vs Word Error Rate

This section investigates the effect of tracking accuracy using a simple delay-and-sum
beamformer (DSB) implemented in the subband domain. Once more the audio and video
data were recorded in the CHIL seminar room described in Section 14.1. For these
experiments, the data was captured with the 64-channel NIST Mark III. The signals
from all channels were processed with the simple DSB.

As can be seen from Figure 14.4, although the video-only tracker performs considerably
better than the audio-only tracker, the performance can still be significantly increased
by combining both modalities. Wölfel et al. (2005) found that the video-only tracker
had the same performance for all frames and speech-only frames, while the precision of
the audio-only and the combined tracker was higher for the frames in which speech was
present. This stands to reason given that, as discussed in the last section, the acoustic
features could contribute nothing to the tracking accuracy whenever the desired speaker
was silent.
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The accuracy of a speaker-tracking system has a very significant influence on the
recognition accuracy of the entire system. This can be easily observed from Figure 14.4
where the average position error of the source localization is compared to the WER.
Assuming that the hand-labeled position error to the ground truth is around 15 cm (the
calculated error is around 10 cm) then a nearly linear relationship between the source
localization and word error becomes apparent.

14.8 Single-Speaker Beamforming Experiments

This section compares the performance in WER of several conventional and nonconven-
tional beamforming algorithms. In order to make such comparisons on real data, Kumatani
et al. (2008b) performed DSR experiments on the Multi-Channel Wall Street Journal Audio
Visual Corpus which was collected by the AMI project in the meeting room described in
Section 14.1. The far-field speech data used for the experiments reported in this section
were recorded in the stationary single-speaker scenario. The speaker was asked to read
sentences from six positions, four seated around the table in Seats 1–4 shown on the right
side of Figure 14.1, one standing at the white board, and one standing at the presentation
screen.

Prior to beamforming, Kumatani et al. first estimated the speaker’s position relative to
the microphone array with the JPDAF speaker-tracking system described in Section 10.2.
Based on the average speaker position estimated for each utterance, utterance-dependent
active weight vectors wa, as indicated in Figure 13.15, were estimated for the source. The
active weight vectors for each subband were initialized to zero for estimation. Iterations
of the conjugate gradients algorithm (Bertsekas 1995, sect. 1.6) were run over the entire
utterance until convergence was achieved. The parameters of the generalized Gaussian
(GG) pdf were trained as described in Section 13.5.2 with approximately 45 minutes of
CTM speech data taken from the development set of the Speech Separation Challenge,
Part II. Zelinski postfiltering (Simmer et al. 2001) was performed after all beamforming
algorithms, which is a variant of the Wiener postfilter described in Sections 4.2 and 13.3.5.

Table 14.5 shows the WERs for every beamforming algorithm. The configurations of
the recognition and speaker adaptation modules used for the individual decoding passes
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Table 14.5 Word error rates for each beamforming algorithm after every decoding pass

Pass 1 2 3 4

Beamforming algorithm Word error rate (%)

DSB with postfilter 79.0 38.1 20.2 16.5
Minimum mean square error beamformer 78.6 35.4 18.8 14.8
Generalized eigenvector beamformer 78.7 35.5 18.6 14.5
Maximum negentropy beamformer with � pdf 75.6 34.9 19.8 15.8
Maximum negentropy beamformer with GG pdf 75.1 32.7 16.5 13.2

Single distant microphone 87.0 57.1 32.8 28.0
Close-talking microphone 52.9 21.5 9.8 6.7

reported in the figure were described in Section 14.2. As references, WERs in recogni-
tion experiments on speech data recorded with the single distant microphone and CTM
are reported in Table 14.5. It is clear from Table 14.5 that the maximum negentropy
beamforming algorithm provided better recognition performance than the simple DSB. It
is also clear from Table 14.5 that maximum negentropy beamforming with the GG pdf
assumption achieved the best recognition performance. This is because the GG pdf was
able to model the subband samples of speech best, inasmuch as the shape factors were
estimated for each subband independently, as described in Section 13.5.2.

Table 14.5 suggests that the � pdf assumption led to better noise suppression per-
formance to some extent. The reduction in WER over the DSB was, however, limited
because the � pdf could not model the subband components of speech as precisely as
the GG pdf. DSR experiments were also performed on speech enhanced by the MVDR
beamformer with Zelinski postfiltering, which, as shown in Section 13.3.5, is equivalent
to the minimum mean squared error (MMSE) beamformer. It is clear from Table 14.5
that the MMSE beamformer provided better performance than DSB with postfilter. The
MMSE beamformer could suppress correlated background noise, but could not enhance
the target signal. On the other hand, as demonstrated in Section 13.5.2, the maximum
negentropy beamforming algorithm can suppress both noise and interference, as well as
strengthen the target signal by concentrating reflections solely based on the maximum
negentropy criterion. Note that MMSE beamforming algorithms require speech activity
detection in order to halt the adaptation of the weight vector when the desired speaker is
active, and thereby avoid canceling the desired signal. For the adaptation of the MMSE
beamformer, the first 0.1 and last 0.1 seconds in each utterance data, which contain
only background noise, were used. In contrast to conventional beamforming methods, the
maximum negentropy algorithm described in Section 13.5.2 did not require the start and
end points of the target speech, as this method can suppress noise and reverberation
without canceling the desired signal.

Table 14.5 also shows the recognition results obtained with the generalized eigenvector
beamformer proposed by Warsitz et al. (2008). The latter algorithm achieved slightly
better recognition performance than the MMSE beamformer. In this DSR task, the transfer
function from the sound source to the microphone array changed in time due to movements
of the speaker’s head. Moreover, it was difficult to determine whether or not the signal
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Table 14.6 Word error rates as a function
of the regularization parameter α

Pass 1 2 3 4

Value of Word error rate (%)

α = 0.0 72.7 31.9 16.4 13.7
α = 10−3 73.9 32.2 16.6 13.6
α = 10−2 75.1 32.7 16.5 13.2
α = 10−1 76.2 32.5 17.5 13.5

observed at any given time contained both speech and noise components in each frequency
bin, which is required to estimate the transfer function. Due to the difficulties inherent in
this real acoustic environment, the performance improvement provided by the generalized
eigenvector beamformer was limited.

Kumatani et al. (2008b) also examined the effect of the regularization term α in (13.173)
on DSR performance. Table 14.6 shows WER as a function of the regularization parameter
α. It is apparent from the table that the regularization parameter α = 10−2 provided the
best result, although the overall impact on the recognition performance was slight. The
requirement of a small α seems to imply that the input data are not sufficiently reliable
to completely determine the active weight vector due, for example, to steering errors.
As described in Section 13.3.8, a steering error occurs when the position estimated by a
speaker-tracking system does not correspond to the speaker’s true position.

14.9 Speech Separation Experiments

This section compares the performance in WER of the delay-and-sum and minimum
mutual information (MinMI) beamformers in a DSR task where two speakers were speak-
ing at the same time. The MinMI beamformer was described in Section 13.5.1. The data
collection apparatus used to capture the data for the Speech Separation Challenge, Part 2
was the same as that previously described in Section 14.8. In this case, however, the
dataset contained recordings of five pairs of speakers who were simultaneously active.
Given that the room is reverberant and some recordings included significant amounts of
noise in addition to the second speaker, it is obvious that this is a challenging source
separation task.

Kumatani et al. (2007) and McDonough et al. (2008a) found that in addition to
the speaker’s position, the information when each speaker is active proved useful in
segmenting the utterances of each speaker. The utterance spoken by one speaker was
often much longer than that spoken simultaneously by the other. In the absence of per-
fect separation, running the speech recognizer over the entire waveform produced by the
beamformer instead of only that portion where a given speaker was actually active would
have resulted in significant insertion errors. These insertions would also have proven dis-
astrous for the speaker adaptation algorithms described in Chapter 9, as the adaptation
data from one speaker would have been contaminated with speech of the other speaker.

Table 14.7 shows WERs for every beamforming algorithm and speech recorded with the
CTM after every decoding pass on the SSC development data. These results were obtained
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Table 14.7 Word error rates for every beamforming
algorithm after every decoding passes

Pass 1 2 3 4

Beamforming algorithm Word error rate (%)

Delay and Sum 85.1 77.6 72.5 70.4
MinMI: Gaussian 79.7 65.6 57.9 55.2
MinMI: Laplacian 81.1 67.9 59.3 53.8
MinMI: K0 78.0 62.6 54.1 52.0
MinMI: � 80.3 63.0 56.2 53.8
CTM 37.1 24.8 23.0 21.6

with subband-domain beamforming where subband analysis and synthesis were performed
with the perfect reconstruction cosine modulated filter bank described in Vaidyanathan
(1993, sect. 8). After the fourth pass, the DSB had the worst recognition performance of
70.4% WER. The MinMI beamformer with a Gaussian pdf achieved a WER of 55.2%.
The best performance of 52.0% WER was achieved with the MinMI beamformer by
assuming that the subband samples were distributed according to the K0 pdf. Under the
� pdf, a WER of 53.8% was achieved. This performance was indeed better than that
obtained under the Gaussian assumption, and equivalent to the WER under the Laplacian
assumption pdf, but worse than that obtained with the K0 pdf. The complex uni- and
bivariates required for MinMI beamforming with super-Gaussian pdfs were calculated
with the help of Meier G-function, as described in Appendix B.5.2.

14.10 Filter Bank Experiments

All of the beamforming algorithms described in Chapter 13, including the MinMI beam-
former discussed in Section 13.5.4, operate in the frequency or subband domain. Hence,
as previously explained in Section 11.1, the digital filter bank used for subband analysis
and resynthesis is an important component of a complete DSR system. For the experi-
ments reported in this section, four different filter bank designs were compared on the
basis of the SSC, Part 2 data described earlier, including:

1. The cosine modulated filter bank described by Vaidyanathan (1993, sect. 8), which
yields perfect reconstruction (PR) under optimal conditions. In such a filter bank, PR
is achieved through aliasing cancellation , wherein the aliasing that is perforce present
in one subband is canceled by the aliasing in all others. Aliasing cancellation breaks
down if arbitrary complex factors are applied to the subband samples. For this reason,
such a PR filter bank is not optimal for beamforming or adaptive filtering applications.

2. A discrete Fourier transform (DFT) filter bank based on overlap-add.
3. The uniform DFT filter bank proposed by De Haan described in Section 11.6, whereby

separate analysis and synthesis prototypes are designed to minimize an error criterion
consisting of a weighted combination of the total spectral response error and the
aliasing distortion. This design is dependent on the use of oversampling to reduce
aliasing error.
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Table 14.8 DSR results on the speech separation challenge development data

Pass 1 2 3 4

Filter bank Word error rate (%)

Perfect reconstruction 87.7 65.2 54.0 50.7
Perfect reconstruction + postfilter + binary mask 87.1 66.6 55.7 52.5
DFT 88.5 71.1 58.8 55.5
De Haan 88.7 68.2 56.1 53.3
De Haan + postfilter + binary mask 82.7 57.7 42.7 39.6
Nyquist(M) + postfilter + binary mask 84.8 58.0 43.4 40.9

4. A uniform DFT design which differs from the De Haan filter bank in that a Nyquist(M)
constraint, as described in Section 11.5, is imposed on the prototype in order to ensure
that the total response error vanishes. Thereafter, the remaining components of the
prototype are chosen to minimize aliasing error, as with the De Haan design. As
discussed in Section 11.7, the Nyquist(M) design is dependent on oversampling to
reduce aliasing distortion, much like the De Haan design.

As reported by McDonough et al. (2008a) and Kumatani et al. (2008d), the WERs
obtained with the four filter banks on the SSC development data are shown in Table 14.8.
For these experiments, the Gaussian pdf was used exclusively. McDonough et al. and
Kumatani et al. also investigated the effect of applying a Zelinski postfilter (Simmer
et al. 2001) to the output of the beamformer in the subband domain, as well as the binary
mask described in McCowan et al. (2005). The results indicate that the performance of
a PR filter bank is actually quite competitive if no postfiltering or binary masking is
applied to the output of the beamformer. For the PR design, performance degrades from
50.7% WER to 52.5% when such postfiltering and masking are applied, which is not
surprising given that both will tend to destroy the aliasing cancellation on which this
design is based. When postfiltering and masking are applied using either the De Haan
or the Nyquist(M) designs, performance is greatly enhanced. With the De Haan design,
the addition of postfiltering and masking reduced the WER from 53.5% to 39.6%. With
postfiltering and masking, the Nyquist(M) design achieved a WER of 40.9%, which was
very similar to that of the De Haan filter bank. For both the De Haan and Nyquist(M)
designs, an oversampling factor of 8 was used. The simple DFT achieved significantly
worse performance than all of the subband filter banks.

14.11 Summary and Further Reading

This chapter began with a brief statement of the importance of reporting results of
experiments conducted on real acoustic data, captured from real speakers in real acous-
tic environments. Briefly, the extreme necessity of conducting and reporting the results
of such experiments follows directly from the fact that only such experiments have any
worth in assessing the true performance of a DSR system. Experiments conducted on data
that has been artificially created through the convolution of data captured with a CTM
with measured impulse responses, or through the addition of noise, have little or – more
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likely – no worth in predicting the performance of a DSR system under actual operating
conditions. In Section 14.1, we described two realistic acoustic environments, as well
as the sensor configurations used in each for far-field data capture. In Section 14.2, we
described general recognizer configurations as were used in latter sections. Section 14.3
described the most important metric of the performance of a DSR system, namely, the
word error rate. In Section 14.4, the results of several single-channel feature enhancement
experiments based principally on particle filters were described. There, we learned that it
is in fact straightforward to compensate for different types of distortions with various tech-
niques. We also saw that compensating for several distortions jointly leads to improved
DSR performance in contrast to their independent compensation. The results of a set of
experiments designed to assess the performance of the speaker-tracking component in
isolation from the rest of the DSR system were presented in Sections 14.5 and 14.6 for
acoustic-only and audio-video tracking, respectively. Section 14.7 presented experimental
results illustrating the overall effect of the speaker-tracking component on final word error
rate. The results of beamforming experiments for both single speakers and two simulta-
neous speakers were presented in Sections 14.8 and 14.9. Finally, in Section 14.10, the
effect of the filter bank design on DSR system performance was illustrated through a set
of empirical studies.

The problems entailed in improving the overall performance of DSR systems for a
wide variety of applications, as described in this chapter and throughout this volume, are
the subjects of continuing research and study. This book by no means represents the last
word toward this end, nor was it ever intended to. Rather, our intention in writing this
work was to provide an accessible “snapshot” of the current state-of-the-art, as well as
to assemble in one place many references into the wider literature in order to provide
a starting point for further investigations and research. Those readers wishing to keep
abreast of future progress in the field are advised to consult the technical journals and
conference proceedings mentioned in Section 1.6. New publications by the current authors
should appear on the companion website of this volume

http://www.distant-speech-recognition.org

in a timely fashion. Reference implementations and documentation of the algorithms
described here can also be downloaded from the companion website.
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A
List of Abbreviations

AM Acoustic Model
AMI Augmented Multi-party Interaction
AMIDA Augmented Multi-party Interaction with Distance Access
APT All-Pass Transform
AR AutoRegressive
ARMA AutoRegressive Moving Average
ASR Automatic Speech Recognition
BIBO Bounded Input, Bounded Output
BLT Bilinear Transformation
BSS Blind Source Separation
CHIL Computers in the Human Interaction Loop
CMLLR Constrained Maximum Likelihood Linear Regression
CMN Cepstral Mean Normalization
CTM Close-Talking Microphone
DARPA Defense Advanced Research Project Agency
dB deciBel
DCT Discrete Cosine Transform
DFS Discrete Fourier Series
DFT Discrete Fourier Transform
DOA Direction Of Arrival
DSB Delay-and-Sum Beamformer
DSR Distant Speech Recognition
DSP Digital Signal Processing
DTS Discrete-Time System
EAA European Acoustics Association
EKF Extended Kalman Filter
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EM Expectation–Maximization
FB Filter Bank
FFT Fast Fourier Transformation
FIR Finite Impulse Response
FOI Frequency Of Interest
FSA Finite-State Automaton
FSG Finite-State Grammar
FSM Finite-State Machine
GCC Generalized Cross-Correlation
GG Generalized Gaussian
GMM Gaussian Mixture Model
GSC Generalized Sidelobe Canceling
GSS Geometric Source Separation
HCI Human–Computer Interaction
HMM Hidden Markov Model
HMM-MNB HMM Maximum Negentropy Beamformer
HOS Higher Order Statistics
ICA Independent Component Analysis
IEKF Iterated Extended Kalman Filter
iff if and only if
i.i.d. independent identically distributed
IIR Infinite Impulse Response
INR Interference-to-Noise Ratio
IPA International Phonetic Alphabet
JPDAF Joint Probabilistic Data Association Filter
KF Kalman Filter
LCBE Logarithmic Critical Band Energies
LCMV Linear Constraigned Minimum Variance
LDA Linear Discriminant Analysis
LI Linear Intersection
LM Language Model
LMS Least Mean - Square
LMSE Least Mean Square Error
LP Linear Prediction
LPC Linear Prediction Coefficients
LTI Linear Time Invariant
MA Microphone Array or Moving Average
MFCC Mel-Frequency Cepstral Coefficient
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MI Mutual Information
ML Maximum Likelihood
MLB Maximum Likelihood Beamformer
MLLR Maximum Likelihood Linear Regression
MaxMI Maximum Mutual Information
MinMI Minimum Mutual Information
MMSE Minimum Mean Squared Error
MNB Maximum Negentropy Beamformer
MOTE Multiple Object-Tracking Error
MOTP Multiple Object-Tracking Precision
MPE Minimum Phone Error
MSE Mean Squared Error
MSLP Multi-Step Linear Prediction
MVDR Minimum Variance Distortionless Response
MWE Minimum Word Error
NIST National Institute of Standards and Technology
OOV Out Of Vocabulary rate
ORC Optimal Regression Class
PCA Principal Component Analysis
pdf probability density function
PDAF Probabilistic Data Association Filter
PF Particle Filter
PHAT Phase Transformation
PLP Perceptual Linear Predictive
PMF Probability Mass Function
PR Perfect Reconstruction
PSD Power Spectral Density
RAM Random Access Memory
RAPT Rational All-Bass Transform
RASTA RelAtive SpecTrA
RLS Recursive Least Squares
RMS Root Mean Square
ROC Region of Convergence
ROVER Recognizer Output Voting Error Reduction
RSR Residual Systematic Resampling
RT Rich Transcription
r.v. random variable
SAT Speaker-Adapted Training
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SBRP Steered Beamformer Response Power
SI Speaker - Independent or Spherical Interpolation
SIA Statistical Inference Approach
SIRP Spherically Invariant Random Processes
SNR Signal-to-Noise Ratio
SOS Second-Order Statistics
SPL Sound Pressure Level
SSC Speech Separation Challenge
SR Systematic Resampling
SRR Signal-to-Reverberation Ratio
STC Semi-Tied Covariance
SVD Singular Value Decomposition
SX Spherical Intersection
TDOA Time Delays Of Arrival
TP Turning Point
VAD Voice Activity Detection
VTLN Vocal Tract Length Normalization
VTS Vector Taylor Series
WER Word Error Rate
WFSA Weighted Finite-State Acceptor
WFST Weighted Finite-State Transducer
WSJ Wall Street Journal



B
Useful Background

In this appendix we present a brief review of several topics that are useful for under-
standing the techniques described in the book, but which are somewhat outside the topic
of speech processing or recognition. We also provide proofs of several results that would
have disrupted the flow of the presentation in the main text. All of this material is standard
and can be found in any one of a number of sources. We have included this material here
only to save the reader the trouble of pulling out the appropriate reference.

B.1 Discrete Cosine Transform

The discrete cosine transform (DCT) has several applications in science and engineering.
In particular, it is useful for solving certain partial differential equations under given
boundary conditions. It also finds application for lossy data compression due to its good
energy compaction properties. The latter refers to the fact that when audio signals or
video images are encoded with the one- or two-dimensional DCTs, respectively, the most
important information is encoded in the lowest coefficients. Hence, the low coefficients can
be transmitted or stored with a relatively large number of bits, while the higher coefficients
can be allocated fewer bits if not ignored entirely, without seriously compromising the
fidelity of the reproduced signal or image. This use of the DCT is most similar to our
intended application, whereby we seek to “encode” a log-power spectral density with as
few coefficients as possible. For reasons which will shortly become apparent, this encoding
will produce a cepstral sequence. Indeed, this encoding has another useful property in that
truncating the cepstral sequence serves to eliminate the harmonic structure of the spectrum
due to the fundamental frequency. In the automatic recognition of Western languages, the
latter provides no information relevant to classification, and is thus typically eliminated.

Here we will consider the definition of two DCT matrices, the Type 2 matrix, which
will prove useful in calculating cepstral sequences, and the Type 3 matrix, which will
prove useful in that it can be used to obtain the inverse of the Type 2 matrix.

The components of the Type 2 DCT matrix T(2) of dimension N × N are by definition

T (2)
m,n � cos

[
π

N

(
n + 1

2

)
m

]
∀ m,n = 0, . . . , N − 1. (B.1)
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Figure B.1 Plot of the discrete cosine transformation matrix

The Type 2 DCT, which is typically referred to as simply the discrete cosine transform ,
is plotted in Figure B.1. Let us define the length-N vector X as the DCT of the input
sequence x[n] ∀ k, n = 0, . . . , N − 1. The components of X can then be expressed as

Xm �
N−1∑
n=0

T (2)
m,n x[n].

Given this definition, two important properties of the DCT come to light. Firstly, the
sequence Xm will have even and odd symmetry about m = 0 and m = N , respectively.
Secondly, Xm can be regarded as one-half of the DFT (3.61) of the length-4N sequence
given by

x′[n] =

⎧⎪⎨
⎪⎩

x[(n − 1)/2], for odd n : 1 ≤ n < 2N ,

x[(4N − n)/2], for odd n : 2N ≤ n < 4N ,

0, for even n.

This property enables Xm to be readily computed with the fast Fourier transform.
The Type 3 DCT matrix T(3) has components

T (3)
m,n �

{
1
2 , for n = 0,

cos
[

π
N

(
m + 1

2

)
n
]
, otherwise.

(B.2)

As mentioned previously, the Type 3 matrix is of interest because it enables the inverse
of T(2) to be calculated according to

(
T(2)

)−1 = 2

N
T(3). (B.3)

This property was used in deriving the hidden Markov model maximum negentropy
beamformer in Section 13.5.3 and the dimension reduced logarithmic spectra as used in
Section 10.6.

B.2 Matrix Inversion Lemma

We will now consider the matrix inversion lemma , which was applied in analyzing the
performance of the minimum variance distortionless response in Section 13.3.3, and in
deriving the recursive least squares beamformer in Section 13.4.3, among others. Let us
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make the following defintions: A is an N × N matrix, B is N × M , C is M × M , and D is
M × N . Assuming that the required inverses exist, the matrix inversion lemma states that

(A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1. (B.4)

A simplification of (B.4) is known as Woodbury’s identity , which can be stated as

(
A + xxH

)−1 = A−1 − A−1xxH A−1

1 + xH A−1x
, (B.5)

where x is a vector of length N . Several other useful relations following from (B.4) are:

(
A−1 + BH C−1B

)−1 = A − ABH
(
BABH + C

)−1
BA, (B.6)(

A−1 + BH C−1B
)−1

BH C−1 = ABH
(
BABH + C

)−1
, (B.7)

and
C−1 − (

BABH + C
)−1 = C−1B

(
A−1 + BH C−1B

)−1
BH C−1. (B.8)

B.3 Cholesky Decomposition

Given a symmetric positive-definite matrix A, the Cholesky decomposition constructs a
lower triangular matrix L such that A = LLT . The matrix L is called the square root
of A.

The first column of L are determined by

l1,1 = √
a1,1, l2,1 = a1,2

l1,1
, · · · , ln,1 = a1,n

l1,1

With the first columns i − 1, the ith column can be determined by

li,i =
√√√√ai,i −

i−1∑
k=1

l2
i,k, li+1,i =

ai,i+1 −
i−1∑
k=1

li,kli+1,k

li,i
, · · · , ln,i =

ain −
i−1∑
k=1

li,kln,k

li,i
.

B.4 Distance Measures

Distance measures are used to calculate the space between two classes. The different
distance measures are defined by a combination of the class means

μ(m) = 1

Nm

Nm∑
i=1

xm,i (B.9)
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and the within-class variance or covariance matrix

�(m) = (
xm,i − μ(m)

) (
xm,i − μ(m)

)T
. (B.10)

The within-class variance represents how much the samples vary within a class. The
covariance matrix itself can be classified into

• spherical – the covariance matrix is a scalar multiple of the identity matrix, �(m) =
σ 2

(m)I,
• diagonal – the covariance matrix is diagonal, �(m) = diag(σ 2

(m,1), σ
2
(m,2), . . . , , σ

2
(m,d)),• full – the covariance matrix is allowed to be any positive-definite matrix with rank

d × d .

With the class means and covariance matrices, the distance between the two classes
�(p) and �(q) can be defined as

• the Euclidean distance

DEuclidean
(p,q) =

√
(μ(p) − μ(q))

T (μ(p) − μ(q)), (B.11)

which is based upon the Pythagorean theorem
• the Mahalanobis distance

DMahalanobis
(p,q) =

√
(μ(p) − μ(q))

T �−1
(q)(μ(p) − μ(q)) (B.12)

where �−1
(p) represents the inverse of the covariance matrix of class �(p). The Maha-

lanobis distance is therefore a weighted Euclidean distance where the weighting is
determined by the range of variability of the sample point; expressed by the covariance
matrix. The Mahalanobis distance can be extended to account for the variability of both
classes �(p) and �(q) as

D(p,q) =
√

(μ(p) − μ(q))
T
(
�(p) + �(q)

)−1
(μ(p) − μ(q)). (B.13)

• The Kullback–Leibler distance for Gaussians has already been defined in (B.46).
• the Bhattacharya Distance

D
Bhattacharya
(p,q) = 1

4
(μ(p) − μ(q))

T
(
�(p) + �(q)

)−1
(μ(p) − μ(q))

+ 1

2
log

⎛
⎜⎝

∣∣�(p) + �(q)

∣∣
2
√(∣∣�(p)

∣∣ ∣∣�(q)

∣∣)
⎞
⎟⎠ .
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To measure the distance of more than two classes the distance measures introduced before
have to be extended to a multiclass measure. One possibility is to sum over different
classes under the consideration of the a priori probability P(�) of each class {�}M1
where M is the number of classes

Daverage =
M∑

m=1

m−1∑
k=1

P(�m)P (�k)D(m,k). (B.14)

B.5 Super-Gaussian Probability Density Functions

In this section, we present several super-Gaussian densities that have been shown to
be useful in speech processing. As discussed in Section 12.2.3, super-Gaussian random
variables are those with positive kurtosis, while those random variables with negative
kurtosis are called sub-Gaussian .

B.5.1 Generalized Gaussian pdf

The generalized Gaussian (GG) pdf is well known and finds frequent application in the
blind source separation and independent component analysis fields. Moreover, it subsumes
the Gaussian and Laplace pdfs as special cases. This particular pdf is specified by three
free parameters, a mean, a scale factor σ̂ , and a shape factor f . The GG pdf with zero
mean for a real-valued r.v. y is by definition

pGG(y) � 1

2�(1 + 1/f ) B(f ) σ̂
exp

{
−
∣∣∣∣ y

B(f ) σ̂

∣∣∣∣
f
}

, (B.15)

where

B(f ) �
[
�(1/f )

�(3/f )

]1/2

, (B.16)

and �(.) is the Gamma function (Luke 1969). As indicated in Figure 12.2, the shape factor
f controls how fast the tail of the pdf decays. Note that the GG with f = 1 corresponds
to the Laplacian pdf, and that f = 2 yields to the Gaussian pdf, whereas in the case of
f → +∞ the GG pdf converges to a uniform distribution.

We will begin the derivation of the GG pdf of a circular complex random variable
by assuming that z = ρ eφ is such a random variable, which implies that the pdf of z is
independent of φ and thus has the functional form

p(z) = p(ρ, φ) = 1

c
exp

{
−
[

ρ

σ̂ Bc(f )

]f
}

,

where c is the normalization constant required to ensure that p(z) is a valid pdf. Let
us firstly calculate c. In polar coordinates a differential element of area �A can be
expressed as

�A = ρ dρ dφ.
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Hence, the normalization constant must satisfy

c =
∫ π

−π

∫ ∞

0
ρ exp

{
−
[

ρ

σ̂ Bc(f )

]f
}

dρ dφ

= 2π

∫ ∞

0
ρ exp

{
−
[

ρ

σ̂ Bc(f )

]f
}

dρ. (B.17)

Under the change of variables

v = ρ

σ̂ Bc(f )
, (B.18)

(B.17) can be rewritten as

c = 2πσ̂ 2 B2
c (f )

∫ ∞

0
v exp(−vf ) dv. (B.19)

Next we must calculate the variance of z = ρejφ , which is by definition

σ 2
z � E{|z|2} =

∫ π

−π

∫ ∞

0
ρ ejφ · ρ e−jφ · p(ρ, φ) · ρ dρ dφ

= 2π

c

∫ ∞

0
ρ3 exp

{
−
[

ρ

σ̂ Bc(f )

]f
}

dρ.

Once more introducing the change of variables (B.18) provides

σ 2
z = 2πσ̂ 4 B4

c (z)

c

∫ ∞

0
v3exp(−vf ) dv. (B.20)

The calculation of both c and σ 2
z in (B.19) and (B.20) involves integrals of the form

In(f ) =
∫ ∞

0
vn exp

(−vf
)

dv = 1

f
· �
(

n + 1

f

)
∀ n = 1, 3. (B.21)

Substituting (B.21) into (B.19) provides

c = 2π σ̂ 2 B2
c (z) · 1

f
· �
(

2

f

)
. (B.22)

Then substituting (B.21) and (B.22) into (B.20), we arrive at

σ 2
z = σ̂ 2 B2

c (f ) · � (4/f )

� (2/f )
.
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Hence, in order to ensure that σ 2
z = σ̂ 2, we must set

Bc(f ) �
[
�(2/f )

�(4/f )

]1/2

. (B.23)

Moreover, the final GG pdf for circular, complex data can be expressed as

pgg(z) � f

2π σ̂ 2 B2
c (f ) �(2/f )

exp

{
−
∣∣∣∣ z

σ̂ Bc(f )

∣∣∣∣
f
}

. (B.24)

Note that for the Gaussian case, f = 2 and the pdf reduces to

pGauss(z) = 1

πσ̂ 2
exp

{
−
∣∣∣ z
σ̂

∣∣∣2} , (B.25)

which is the correct form for complex data (Neeser and Massey 1993). Similarly, for
Laplacian random variables f = 1, and the pdf can be expressed as

pLaplace(z) = 3

πσ̂ 2
exp

{
−
∣∣∣∣∣
√

6 z

σ̂

∣∣∣∣∣
}

. (B.26)

Among several methods for estimating the shape parameter f of the GG pdf (Kokki-
nakis and Nandi 2005; Varanasi and Aazhang 1989), the moment and maximum likelihood
(ML) methods are arguably the most straightforward. Kumatani et al. (2008a) used the
moment method to initialize the parameters of the GG pdf, and then updated them with
the ML estimate (Varanasi and Aazhang 1989). The shape factors were estimated from
training samples offline and were held fixed during the adaptation of the active weight
vector wa, as described in Sections 13.5.2 and 13.5.3. The shape factor of each subband
was estimated individually; hence, the optimal pdf was frequency-dependent.

Based on (B.24), the log-likelihood of the GG pdf for a complex r.v. can be expressed as

log p(Y ; f, σ̂ ) = − log

{
2π

1

f
�(2/f )B2

c (f ) σ̂ 2
}

− |Y |f
B

f
c (f ) σ̂ f

. (B.27)

Then the derivative of log p(Y ; f, σ̂ ) with respect to σ̂ is given by

∂ log p(Y ; f, σ̂ )

∂σ̂
= f |Y |f

B
f
c (f ) σ̂ f +1

− 2

σ̂
. (B.28)

These relations were used in Section 13.5.2 in order to develop formulae for estimating
optimal shape factors and active weight vectors.

B.5.2 Super-Gaussian pdfs with the Meier G-function

As explained in Brehm and Stammler (1987b), it is useful to make use of the fact that the
Laplace, K0, and � pdfs can be modeled with the Meijer G-functions for two principal
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reasons. Firstly, it implies that multivariates of all orders can be readily derived from the
univariate pdf as soon as the covariance matrix is known. Secondly, such variants can be
extended to the case of complex r.v.s, which is essential for our current development. In
this section, we very briefly introduce the notation of Meijer G-functions, and their use
in modeling spherically invariant random processes (SIRPs).

In this section, we very briefly introduce the notation of the Meijer G-function , along
with the most important relations required to use G-functions to model super-Gaussian
pdfs.

To denote the Meijer G-function, we will use one of the following equivalent forms

Gmn
pq

(
z

∣∣∣∣∣
ap

bq

)
= Gmn

pq

(
z

∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq

)

= Gmn
pq

(
z

∣∣∣∣∣
a1, . . . , an | an+1, . . . , ap

b1, . . . , bm | bm+1, . . . , bq

)
.

The G-function is defined by the contour integral

Gmn
pq

(
x

∣∣∣∣∣
a1, . . . , ap

b1, . . . , bq

)
= 1

2πi

∮
�L

xsds ×

m∏
j=1

�(bj − s)

n∏
j=1

�(1 − aj + s)

p∏
j=n+1

�(aj − s)

q∏
j=m+1

�(1 − bj + s)

,

where �L is a contour of integration defined as in Brehm and Stammler (1987b). The
definition (B.29) implies

Gmn
pq

(
z

∣∣∣∣∣
ap

bq

)
= z−uGmn

pq

(
z

∣∣∣∣∣
ap + u

bq + u

)
(B.29)

where ap + u and bq + u indicate that u is to be added to all a1, . . . , ap and all b1, . . . , bq ,
respectively. To determine the normalizing constants of the several pdfs generated from
the Meijer G-function, it will be useful to apply the Mellin transform

M{f (x); z} =
∫ ∞

0
xz−1 f (x) dx. (B.30)

Under suitable conditions (Brehm and Stammler 1987b), the Mellin transform of a Meijer
G-function can be expressed as

M

{
Gmn

pq

(
z

∣∣∣∣∣
ap

bq

)
; z

}
=

m∏
i=1

�(bi + z)

n∏
i=1

�(1 − ai − z)

m∏
i=1

�(1 − bi − z)

n∏
i=1

�(ai + z)

.



Useful Background 525

We now show how G-functions can be used to represent SIRPs. To begin, we can
express a univariate pdf of a SIRP as

p1(x) = AGmn
pq

(
λ x2

∣∣∣∣∣
ap

bq

)
(B.31)

for all −∞ < x < ∞. As can be verified by the Mellin transform relations (B.30–B.31),
the normalization factor A and the constant λ, which assures unity variance, must be
chosen according to

A = λ1/2

q∏
i=m+1

�
( 1

2 − bi

) p∏
i=n+1

�
( 1

2 + ai

)
m∏

i=i

�
(

1
2 + bi

) n∏
i=1

�
(

1
2 − ai

) , (B.32)

λ = (−1)ε

q∏
i=1

(
1
2 + bi

)
p∏

i=1

( 1
2 + ai

) , ε = n − (q − m). (B.33)

Let us now consider the G-function as Gmn
p q(λx2|b1, b2) for two real parameters b1 and

b2. Brehm and Stammler (1987b) note that the subclass of SIRPs that are useful for
modeling the statistics of speech can be expressed as

p1(y) = A G2 0
0 2(λx2|b1, b2) (B.34)

where

λ = ( 1
2 + b1

) ( 1
2 + b2

)
(B.35)

and

A = λ1/2

�
( 1

2 + b1
)
�
( 1

2 + b2
) (B.36)

Table B.1 lists the values of these parameters for the Laplace, K0 and � pdfs.
In general, the multivariate density of order ν can also be expressed in terms of Meijer’s

G-functions according to (Brehm and Stammler 1987b)

pν(x) = π−ν/2fν(s), (B.37)

where

fν = π1/2 Aν s(1−ν)/2 · G3 0
1 3

(
λνs

∣∣∣∣∣
0

1
2 (ν − 1), b1, b2

)
(B.38)
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Table B.1 Meijer G-function parameters for the Laplace, K0

and � pdfs. After Brehm and Stammler (1987b)

pdf p(x) b1 b2 A λ

Laplace 1√
2
e−√

2|x| 0 1
2 (2π)−1/2 1

2

K0
1
π
K0(|x|) 0 0 (2π)−1 1

4

�
√

3
4
√

π

(√
3|x|
2

)−1/2
e−√

3|x|/2 − 1
4

1
4

√
3/2

4π
3
16

and s = xT x. In this case, equations (B.33–B.32) can be specialized as

ε = 0,

λν = ν
( 1

2 + b1
) ( 1

2 + b2
)
, (B.39)

Aν = λ1/2
ν

�
( 1

2

)
�
( 1

2ν
)
�
( 1

2 + b1
)

�
( 1

2 + b2
) . (B.40)

The bivariate is obtained by specializing (B.37–B.38) as,

p2(x) = A2√
πs

· G3 0
1 3

(
λ2s

∣∣∣∣∣
0

1
2 , b1, b2

)
. (B.41)

For the moment, assume x is real-valued; this analysis will be extended to the case of
complex x in Appendix B.5.2. If the components of x are correlated, we must set

s = xT �−1
X x

and modify (B.41) according to

p2(x) = A√
πs|�X| · G3 0

1 3

(
λs

∣∣∣∣∣
0

1
2 , b1, b2

)
. (B.42)

where �X = E{XXT } is the covariance matrix of X.
For the four-variate case, we have

p4(x) = A4

(πs)3/2 |�X|1/2
· G3 0

1 3

(
λ4s

∣∣∣∣∣
0

1.5, b1, b2

)
. (B.43)

Specializing the above we arrive at the bi- and four-variates shown in Table B.2.
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Table B.2 Bi- and four-variates of the Laplace and K0 pdfs

pdf ν = 2 ν = 4

Laplacian
1√

π |�X| K0(2
√

s)
4
√

2

π3/2 s1/2 |�X|1/2
K1(2

√
2s)

K0
1√

2π s|�X| e−√
2s (1 + 2

√
s)

(πs)3/2|�X|1/2
e−2

√
s

Complex Distributions

The multivariate pdfs derived thus far have been for real-valued random vectors. In order
to extend this development for complex-valued subband samples, we make use of the
following lemma.

Lemma B.5.1 Let Xc, Xs ∈ R
N be two random vectors drawn from the same random

process. Define the stacked vector

X =
[

Xc

Xs

]

and the covariance matrix of X as

�X = E{X XT },

Now let
Y = Xc + jXs

and define the covariance of Y as

Y = E{Y YH }.

Then, √
|�X| = 2−N |Y|, (B.44)

xT −1
X x = 2 yH−1

Y y. (B.45)

This result is proven in the appendix of Kumatani et al. (2007).
Based on Lemma B.5.1, we arrive at the complex uni- and bi-variates shown in

Table B.3.
Figure B.2 shows the region of the b1 –b2 parameter space that yields valid pdfs, along

with the points corresponding to the Laplace, K0 and � pdfs (Brehm and Stammler
1987b).
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Table B.3 Uni- and bi-variates of the complex Laplace and K0 pdfs

pdf ν = 1 ν = 2

Laplacian
2√
πσ 2

Y

K0

(
2
√

2 |Y |
σY

)
16

π3/2|�Y|√s
K1
(
4
√

s
)

K0
1√

πσY |Y |e
−2 |Y |/σY

√
2 + 4

√
s

π3/2 |�Y| s3/2
e−2

√
2 s

b1

b2

−0.5
−0.5

0.5

0.5
K0 L

0.25

0.25

Γ

Figure B.2 The b1 –b2 parameter space of G2 0
0 2(λx2|b1, b2). The gray region yields valid pdfs.

(After Brehm and Stammler 1987b)

B.6 Entropy

The concept of entropy was first introduced in the now classic paper by Shannon (1948)
and is defined by

H(X) = H(p) = −
∑
x∈X

p(x) log2 p(x).

It measures the uncertainty associated with a discrete r.v. x and thus quantifies the infor-
mation contained in the data. Entropy can be measured in bits for the given equation.
For the natural logarithms it is measured in nits while for the logarithm of base 10 it is
measured in hartleys .

The joint entropy as defined by

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x, y)

measures how much entropy is contained in a system with two r.v.s.
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The conditional entropy , or equivocation, as defined by

H(Y |X) = −
∑
x∈X

∑
y∈Y

p(y, x) log p(y|x) = H(Y, X) − H(X)

quantifies the uncertainty of a r.v. Y given that the value of a second r.v. X is known.
Conditional entropy is zero iff the value of Y is completely determined by the value of
X. Conversely, H(Y |X) = H(Y ) iff Y and X are independent r.v.s.

B.7 Relative Entropy

The relative entropy or Kulback–Leibler distance (Kullback and Leibler 1951) defines
the similarity of two probability mass functions p and q as

D(p|q) =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
.

Typically p represents data, observations or a precisely calculated probability distribution.
The measure q typically represents a theory, a model, a description or an approximation of
p. From the equation it is obvious that the Kulback–Leibler divergence is not symmetric.
Kullback and Leibler themselves have defined the divergence as the symmetrical measure

DS(p|q) = 1

2
(D(p|q) + D(q|p)) .

The Kulback–Leibler distance can be solved in close form if both distributions are
assumed to be Gaussian by

D(p|q) = 1

2

(
log

∣∣�(q)

∣∣∣∣�(p)

∣∣ + trace�−1
(q)�(p) +

√
(μ(p) − μ(q))

T �−1
(q)(μ(p) − μ(q)) − d

)

(B.46)

where d is the dimensionality.

B.8 Transformation Law of Probabilities

The pdf py(u) of a random variable y = f (x) might be a transformation with the deter-
ministic function f (x) of another random variable x with pdf px(u). Then, provided the
derivative of f −1(u) with respect to u is well defined, py(u) can be calculated by the
fundamental transformation law of probabilities as

py(u) =
∣∣∣∣df −1(u)

du

∣∣∣∣px

(
f −1(u)

)
(B.47)
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if x and y are scalars. If x and y are vectors we have to use the Jacobian determinant and
get

py(u) =
∣∣∣∣det

df −1(u)

du

∣∣∣∣px
(
f −1(u)

)
(B.48)

This relationship holds since the probability density py(u) is just the derivative of its
cumulative distribution function

Py(u
′) =

∫ u′

−∞
py(u)du =

∫ f (u′)

f (−∞)

df −1(u)

du
px

(
f −1(u)

)
du

Note that the absolute value of the derivative has to be taken, since probability densities
are supposed to be ≥ 0.

B.9 Cascade of Warping Stages

We show that two stages of bilinear transformation with the warping parameter α1 and α1
are equivalent to applying one stage. To do so, let z be the variable in the original space,

s−1 = z−1 − α1

1 − α1z−1
(B.49)

the variable after one transformation and

u−1 = s−1 − α2

1 − α2s−1
(B.50)

the variable after the second bilinear transformation.
With (B.49) and (B.50) we obtain

u−1 =
z−1−α1

1−α1z−1 − α2

1 − α2
z−1−α1

1−α1z−1

= (1 + α1α2)z
−1 − (α1 + α2)

1 + α1α2 − (α1 + α2)z−1
= z−1 − α

1 − αz−1

where
α = α1 + α2

1 + α1α2
.

B.10 Taylor Series

The Taylor series of a function f (x) that is infinitely differentiable in the neighborhood
a, is defined as the power series

f (x) =
∞∑

n=0

f (n)(a)

n!
(x − a)n

= f (a) + f ′(a)

1!
(x − a) + f ′′(a)

2!
(x − a)2 + · · · + f (n)(a)

n!
(x − a)n + · · ·
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The partial sums (the Taylor polynomials) of the Taylor series can be used to approxi-
mate the value of an entire function in every point for sufficiently many terms.

B.11 Correlation and Covariance

Correlation is a statistical measurement, ranging between −1 and +1, of the degree to
which the movements of two variables are related. A negative value indicates an inverse
relationship meaning that if one variable goes up, the other goes down. A positive value
indicates a movement in the same direction. The higher the correlation, the closer is the
value to either −1 or +1. If the variables are independent of each other the correlation is
zero. Cross-correlation characterizes the causal relationship between two vectors x and y.

The cross-correlation matrix is defined as

Rxy = Rxy = E
{
xyT

}
.

The cross-covariance matrix is defined with μx = E {x} and μy = E {y} as

�xy = �yx = E
{(

x − μx

) (
y − μy

)T } = Rxy − μxμ
T
y .

Similar the auto-correlation matrix Rxx and the auto-covariance matrix �xx are defined
as special cases of the cross-correlation and cross-covariance matrices respectively, com-
paring different sections of the same signal x. The auto-correlation can be interpreted as
the degree of randomness in a signal.

B.12 Bessel Functions

Bessel functions1 of the first kind Jn(x), defined by Daniel Bernoulli and generalized by
Friedrich Bessel, are defined as the solutions to Bessel’s differential equation

x2 d2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0

which are nonsingular at the origin. Alternatively, they can also be defined by the contour
integral

Jn(z) = 1

2πi

∮
e((z/2)(t−1/t))t(−n−1)

dt

where the contour encloses the origin and is traversed in a counterclockwise direction.
Assuming that n is integer it is possible to define the function by its Taylor series

expansion around x = 0 by

Jα(x) =
∞∑

m=0

(−1)m

m!�(m + α + 1)

(x

2

)2m+α

1 Bessel functions are also known as cylinder functions or cylindrical harmonics.
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where
�(n) = (n − 1)!

is the Gamma function.
A reasonable approximation of J0(x) is given by

J0(x) = 1√
2πx

ex

for large values, say x > 5, while it is a very bad approximation for small values.

B.13 Proof of the Nyquist–Shannon Sampling Theorem

Applying the continuous-time inverse Fourier transform (3.49) at time t = nT0, we have

x(nT0) = 1

2π

∫ ∞

−∞
X(ω) e−jωnT0 dω. (B.51)

The infinite integral in (B.51) can be decomposed into an infinite sum of finite integrals,
each of length 2πT0, such that

x(nT0) = 1

2π

∞∑
k=−∞

∫ (2k+1)π/T0

(2k−1)π/T0

X(ω)e−jωnT0 dω.

Applying the variable substitution ω = ω′ − 2π/T0, the last equation becomes

x(nT0) = 1

2π

∞∑
k=−∞

∫ π/T0

−π/T0

X

(
ω′ − 2πk

T0

)
exp

[
j

(
ω′ − 2πk

T0

)
nT0

]
dω′

= 1

2π

∞∑
k=−∞

∫ π/T0

−π/T0

X

(
ω′ − 2πk

T0

)
ejω′nT0dω′.

Using another variable substitution, ω′ = θ/T0 and exchanging the order of summation
and integration, we find

x(nT0) = 1

2π

∫ π

−π

[
1

T0

∞∑
k=−∞

X

(
θ − 2πk

T0

)]
ejθndθ. (B.52)

Upon comparing (B.52) with (3.15), we realize that the term within brackets is the
discrete-time Fourier transform of x[n] = x(nT0).

B.14 Proof of Equations (11.31–11.32)

Repeating (11.27) we can express the Type 1 polyphase representation of the filter function
H(z) as

H(z) = c + z−1 E1(z
M) + · · · + z−(M−1) EM−1(z

M), (B.53)
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where {Ei(z)} are the Type 1 polyphase components. If we now sum over all subbands,
we obtain

M−1∑
k=0

H(zWk
M)

=
M−1∑
k=0

[c + (zWk
M)−1E1(z

MWkM
M ) + · · · + (zWk

M)−(M−1)EM−1(z
MWkM

M )]

=
M−1∑
k=0

[c + W−k
M · z−1E1(z

M) + · · · + W
−(M−1)k
M · z−(M−1)EM−1(z

M)]

= Mc + z−1E1(z
M)

M−1∑
k=0

W−k
M + · · · + z−(M−1)EM−1(z

M)

M−1∑
k=0

W
−k(M−1)
M . (B.54)

Now note that
M−1∑
k=0

zk = 1 − zM

1 − z
.

Hence,
M−1∑
k=0

W−km
M = 1 − W−mM

M

1 − WM

and as W−mM
M = 1 ∀ m = 0, 1, 2, . . . , M − 1, it is clear that all terms in (B.54) vanish,

save for the first. Therefore, for H(z) in (B.53) with c = 1/M ,

M−1∑
k=0

H(zWk
M) = 1.

Similarly, if the impulse response associated with H(z) is delayed by mdM samples to
obtain a causal system, then

H(z) = cz−mdM + z−1 E1(z
M) + · · · + z−(M−1) EM−1(z

M)

and it is readily verified that

M−1∑
k=0

H(zWk
M) = z−mdM,

which implies the composite analysis-synthesis filter bank produces a simple delay of the
input in the absence of aliasing.
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B.15 Givens Rotations

Givens rotations are a convenient means for implementing a Cholesky or QR decomposi-
tion. They also find frequent application in other matrix decomposition and decomposition
updating algorithms, inasmuch as they provide a convenient means of imposing a desired
pattern of zeros on a given matrix. For instance, they can be used to restore the prearray
described in Section 13.4.4 to lower triangular form, as is required for the square-root
implementation of the recursive least squares (RLS) estimator.

In order to describe the use of Givens rotations, let us define the complex vector of
length 2,

v =
[
v1

v2

]
.

For this simple case, we will define the 2 × 2 unitary Givens matrix as

G �
[

c∗ s

−s∗ c

]
. (B.55)

It is desired that the second component of the rotated vector Gv is driven to zero, or
annihilated , such that

Gv =
[

c∗ v1 + s v2

−s∗ v1 + c v2

]
�
[
v′

1

0

]
= v′.

Clearly, annihilating the second component of v′ requires that

s∗ v1 = c v2,

and the unitarity of the final transformation requires

|c|2 + |s|2 = 1.

Both objectives are accomplished by setting

c = v1√
|v1|2 + |v2|2

,

s = v∗
2√

|v1|2 + |v2|2
.

In this case v′ will have the same length as v, but only one nonzero component.
The simple technique can readily be extended to higher dimensional vectors. Consider

a K × 1 complex vector

v = [
v0 · · · vm · · · vn · · · vK−1,

]T
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and a K × K Givens rotation matrix

G(m, n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0. . .
cmm smn. . .

I . . .
snm cnn . . .

0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.56)

The cosine cmm and sine snm parameters are chosen such G(m, n) is unitary and

v′ = G(m, n) v = [
v0 · · · v′

m · · · 0 · · · vK−1
]T

.

The effect of applying this rotation is that the nth component of v is annihilated , vm is
altered, and all other components are unchanged. Annihilating vn requires that

s∗vm = cvn

and the unitarity of the final transformation requires that

|c|2 + |s|2 = 1,

much as in the simple case considered before. Both objectives are accomplished by setting

c = c∗
mm = cnn = vm√

|vm|2 + |vn|2
, (B.57)

s = smn = v∗
n√

|vm|2 + |vn|2
, (B.58)

and

snm = s∗
mn = −s∗. (B.59)

It is then readily verified that G(m, n) is unitary and that

v′ = G(m, n) v =
[
v0 · · ·

√
|vm|2 + |vn|2 · · · 0 · · · vK−1

]T
.

Multiplying G(m, n) by any other arbitrary vector

u = [
u0 · · · um · · · un · · · uK−1

]T
we obtain

u′ = G(m, n)u = [
u0 · · · c∗um + sun · · · −s∗um + cun · · · uK−1

]T
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If it is desired to annihiliate the nth component of a row vector x, we can simply define
G(m, n) as in (B.56–B.59) and form the product x GT (m, n).

In the remainder of this section, we develop a procedure based on Givens rotations for
performing the update inherent in the covariance form of the square-root implementation
of the RLS estimator. As described in Section 13.4.4, this requires restoring the prearray

[
μ1/2�H/2(K − 1) μ1/2X(K)

μ−1/2ŵH (K − 1) �H/2(K − 1) D(K),

]

to lower triangular form. This in turn entails forcing a desired pattern of zeros on the first
row and last column of the prearray in order to obtain the postarray.

As we have seen, a Givens rotation is completely specified by two indices, the element
which is to be annihilated, and the element into which the annihilated element is to be
rotated. Our convention in the following schematic illustration of a factorization update
algorithm will be:

• the element annihilated by the last rotation is marked with ·
• nonzero elements that were altered by the last rotation are marked with ⊗
• nonzero elements that were not altered by the last rotation are marked with ×
• zero elements that were annihilated in prior rotations, or that will become nonzero, are

marked with 0
• other zero elements are not shown.

The update is actually very straightforward and involves rotating the elements in the last
column into the leading diagonal, as shown below.

Such an update can also be devised for the square-root implementation of the iterated
extended Kalman filter described in Section (10.2.1).

A more detailed discussion of Givens rotations can be found in Golub and Van Loan
(1996a, sect. 5.1). Another rotation that is frequently used to enforce a desired pattern of
zeros on an array is the Householder transform , which was introduced in Householder
(1958). The properties of the Householder transformation are also discussed in Golub and
Van Loan (1996a, sect. 5.1).

It is worth noting that using Givens rotations to extract the Cholesky factors of a
matrix can, for many important cases, serve the same purpose as extracting the inverse.
Suppose, for example, we are confronted with a problem of finding that x satisfying
A x = b for some known b and symmetric positive-definite (N × N) matrix A. A naive
solution would entail forming the inverse A−1, then solving as x = A−1 b. The inverse,
however, is notoriously unstable numerically (Golub and Van Loan 1996b). Thus, instead
of forming the inverse, we might first extract the lower triangular Cholesky factor A1/2
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either by the direct construction presented in Section B.3, or through the application of a
set of Givens rotations as described above. Thereafter, we can set y = AT /2x and write

A1/2y = b.

Let us represent the Cholesky factor A1/2 as

A1/2 =

⎡
⎢⎢⎢⎣

a0,0 0 · · · 0
a1,0 a1,1 · · · 0
...

...
. . .

...

aN−1,0 aN−1,1 · · · aN−1,N−1

⎤
⎥⎥⎥⎦ .

Then we can readily solve for the components of y through the forward substitution

y0 = b0

a0,0
, (B.60)

y1 = b1 − a1,0 y0

a1,1
, (B.61)

...
... (B.62)

yN−1 = 1

aN−1,N−1

(
bN−1 −

N−2∑
n=0

aN−1,n yn

)
. (B.63)

The name forward substitution stems from the fact that the complete solution is obtained
by beginning with y0 and working forward through the rest of the components. Once y
is known, we can write

AT /2 x = y,

and perform backward substitution to solve for the components of x, which entails first
solving for xN−1 = yN−1/aN−1,N−1, then working backward to solve for the rest of the
components of y.

B.16 Derivatives with Respect to Complex Vectors

As we learned in Chapter 13, adaptive beamforming algorithms typically operate in
the frequency or subband domain. This implies that the weights applied to the output
of each sensor are complex-valued. While subband processing offers the considerable
advantage that the active weights for each subband can be designed independently of all
others, it brings with it the necessity of optimizing a real-valued function with respect
to a vector of complex-valued weights. Formulating an optimization algorithm typically
entails calculating gradients of the optimization criterion with respect to the vector of
complex-valued sensor weights. A naive approach to this problem would be to express
the sensor weights w as

w = x + jy,
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for the real-valued vectors x and y, then to take partial derivatives with respect to x and
y. Such an approach, however, would lead to a great deal of tedium. For the optimization
criteria of interest in array processing, we can more simply work directly with the vector
w. The material and presentation in this section are based on the work of Brandwood
(1983) as summarized by Van Trees (2002, sect. A.7.4).

Let us denote the optimization function of interest as

f (z) = f (x, y)

where z = x + jy. Let g(z, z∗) denote a function that is analytic with respect to z and z∗
independently, and set

g(z, z∗) = f (x, y).

Brandwood shows that the partial derivative of g(z, z∗) with respect to z, whereby z∗ is
treated as a constant in g, yields the result

∂g(z, z∗)
dz

∣∣∣∣
z=x+jy

= 1

2

[
∂f (x, y)

dx
− j

∂f (x, y)

dy

]
.

Similarly,
∂g(z, z∗)

dz∗

∣∣∣∣
z∗=x−jy

= 1

2

[
∂f (x, y)

dx
+ j

∂f (x, y)

dy

]
.

Brandwood also demonstrates that a necessary and sufficient condition for f (z) to have
a stationary point is either

∂g(z, z∗)
∂z

= 0,

where z∗ is treated as a constant in calculating the partial derivative, or

∂g(z, z∗)
∂z∗ = 0,

where z is treated as a constant in the partial derivative.
In order to manipulate vector values, it is necessary to define the complex gradient

operator

∇z =
[

∂
∂z1

∂
∂z2

· · · ∂
∂zN

]T
where

∂

∂zn

� ∂

∂xn

− j
∂

∂yn

∀ 1, . . . , N.

Similarly,

∇zH =
[

∂
∂z∗

1

∂
∂z∗

2
· · · ∂

∂z∗
N

]T
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where
∂

∂z∗
n

� ∂

∂xn

+ j
∂

∂yn

∀ 1, . . . , N.

Now let us define
f (z) � f (x, z) = g(z, zH )

where g(z, zH ) is a real-value function of z and zH , which is analytic with respect to z
and zH independently. Then f (z) will have a stationary point if either

∇zg(z, zH ) = 0, (B.64)

where zH is treated as a constant, or

∇zH g(z, zH) = 0, (B.65)

where z is treated as a constant. Normally, we will find (B.65) more useful than (B.64)
in practice.

Consider now an application taken from Section 13.3.1, namely, that of minimizing
a scalar product wH Rw subject to a linear constraint wH c = a, where R is a N × N

Hermitian matrix, w and c are N × 1 complex vectors, and a is a complex scalar. Let us
define the real-valued cost function

g(w, wH ) = wH Rw + 2Re
[
λ(wH c − a)

]
= wH Rw + λ(wH c − a) + λ∗(cH w − a∗), (B.66)

where λ is a complex Lagrange multiplier. Taking the gradient of g(w, wH ) with respect
to wH and equating it to zero yields

∇wH g(w, wH ) = R wo + λ c = 0.

Hence, we can solve for the optimal weights wo according to

wo = −λ R−1c. (B.67)

We can now apply the constraint wH c = a to calculate λ, according to

wH
o c = −λ cH R−1 c = a

or, equivalently,

λ = − a

cH R−1 c
. (B.68)

Substituting (B.68) into (B.67) provides the final solution,

wH
o = cH R−1 a∗

cH R−1 c
.
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B.17 Perpendicular Projection Operators

Consider an N -dimensional vector x, and an N × M matrix C whose linearly independent
columns define an M-dimensional subspace of the complete N -dimensional space. We
wish to find the perpendicular projection of x onto the C subspace. The projection can
be expressed as Cy where the M-dimensional y minimizes

|x − Cy|2 = (x − Cy)H (x − Cy) (B.69)

= xH x − yH CH x − xH Cy + yH CH Cy. (B.70)

Equation (2.69) is a statement that the perpendicular projection is the point in the subspace
defined by C with minimal Euclidean distance to x. Taking the gradient of (B.70) with
respect to yH and equating it to zero, we find

−CH x + CH Cy = 0,

or
ŷ = (CH C)−1CH x.

The inverse must in the last equation exist, because the columns of C are linearly
independent. Hence, the desired projection is

xC = Cŷ = PCx,

where the perpendicular projection operator is by definition

PC � C(CH C)−1CH .

Moreover, it is possible to define a projection operator P⊥
C onto the space orthogonal to

the columns of C according to

P⊥
C � I − PC = I − C(CH C)−1CH .
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Hänsler, E. and Schmidt, G. (2004) Acoustic Echo and Noise Control: A Practical Approach . John Wiley &
Sons.
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pre-processing, 135
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grid-based approximation, 123
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matrix, 438
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Cholesky, 109
deconvolution, 198
degeneracy, 128
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importance

optimal, 127

deterministic, 246
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direct MMSE Bayesian estimate, 188
directivity, 426

factor, 32
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critical, 50
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expected, 57
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measure, 520

distortion
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estimation, 193
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nonstationary, 204
residual aliasing, 375

distortionless constraint, 151, 430
dynamic
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system model, 204
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early reflections, 49, 201
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EM, 286
entropy, 397, 528
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joint, 398, 529
relative, 529
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equation
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wave, 30
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error

cross-term, 216
magnitude, 216
minimum mean squared, 97, 188
phase, 216
predicted state estimation, 103
search, 238
term, 147, 187
total response, 375

estimation
density, 97
direct, 188
error filtered state, 104
indirect, 189
parameter, 97

Euler’s formula, 74
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EUSIPCO, 17
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campaigns, 18
language model, 262
word error rate, 498

expander, 367
explosive divergence, 109

factor
directivity, 32
warp, 142

feasible event, 117
feature

augmentation, 169
correction, 178
delta, 169
dynamic, 169
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direct, 188
indirect, 188

extraction, 135, 173
minimum phone error, 178
reduction, 171, 173

static, 169
temporal patterns, 171

fence, 277
fidelity criterion, 182
filter, 65
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band, 370
bandpass, 139
bank, 359

analysis, 359, 360
Nyquist(M) criterion, 376
synthesis, 359, 360
uniform DFT, 363

Bayesian, 93
Chebychev, 79
comb, 366
density, 96
digital, 66
distortionless, 151
eigen, 377
global, 94
glottal, 35
inverse, 153, 199

ideal, 198
joint probabilistic data association, 95
Kalman, 93, 101
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lip radiation, 35
local, 94
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Nyquist(M), 370
particle, 121
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probabilistic data, 94
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state-space-model, 95
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filtering, 96
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finite elements, 55
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forward substitution, 537
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kernel, 69
transform

continuous, 79
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time-dependent, 138

frame
shift, 136
size, 136

free field, 31
frequency

masking, 44
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of interest, 151
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sampling, 80
shift, 361
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function

cost, 9
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gain, 190
Gamma, 395, 523, 532
objective, 9
probability mass, 113
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fundamental theorem of algebra, 75
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function, 190

Gamma function, 395, 523, 532
gate probability, 111
Gaussian
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matrix, 534
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gradient descent, 403
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hands-free, 1, 8
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orientation, 47, 55
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hidden activation TRAPS, 171
hidden Markov model, 233, 256, 283

recognition, 235
training, 235

higher order statistics, 387, 390
Hilbert transform, 201
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humanoid robot, 3
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image

source, 33
theory, 33

importance
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sampling, 124

fundamental identity, 125
weight, 125

normalized, 125
impulse

response, 49, 67, 68, 198
finite, 77
infinite, 77
measure, 200

train, 80
unit, 67

independent, 531
component analysis, 387, 390

fast, 400
fundamental assumptions,
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conditional, 234
statistically, 392

indirect MMSE Bayesian estimate, 189
information

audiovisual, 15
masking, 44

innovation, 102, 104
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input modalities
merging, 15

instantaneous ICA model, 390
INTEL technique, 215
intelligent environment, 2
intelligibility, 181
interacting multiple model, 183
interaural

intensitive difference, 45
level difference, 45
time difference, 45

interference-to-noise ratio, 435
Interspeech, 17
invariant, 67

inverse
filter, 153, 199
Fourier transform, 69
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square law, 31
system, 76
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Jensen’s Inequality, 285
joint association events, 115
joint diagonalization, 406

Kalman filter, 93, 101, 183
extended, 94
iterated extended, 94

Kalman gain, 104, 457
knowledge

a priori, 12
redundant, 12

Kolmogorov, 124
Kullback divergence, 396
kurtosis, 40, 402, 472

negative, 402
normalized, 403
positive, 402

Lagrange multipliers, 376
language model, 231

backoff, 256
N-gram, 256
statistical, 256

late reflections, 49, 201
latent components, 390
lattice

rescoring, 238
word, 238

law of reflection and refraction, 33
leakage, 136
lemma

matrix inversion, 519
Levinson–Durbin recursion, 149
liftering, 166
linear
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maximum likelihood, 177
minimum phone error, 177

intersection, 342
prediction

envelope, 147
perceptual, 153
warped, 153

time-invariant system, 166
transformation, 320

LMS algorithm
normalized, 454
power-normalized, 455

lobe
main, 420

location
poles, 77
zeros, 77

Lombard effect, 8, 54
longitudinal wave, 28
look direction, 61, 422
loudness, 43

machine
finite-state, 251
Mealy, 234
Moore, 234

main lobe, 361
main response axis, 422
Markov

chain, 233
process, 96

masking, 44
binaural level difference, 14
frequency, 44
information, 44
simultaneous, 44
spatial release, 45
temporal, 44

mass, 28
matrix

blocking, 442
inversion lemma, 519
observation, 101
scatter

between-class, 172
total, 173
within-class, 172

transition, 101
matrix inversion lemma, 519
maximizing information, 16
Maximum

likelihood, 9
likelihood beamformer, 466
likelihood linear regression, 321
mutual information, 9, 302
Negentropy Beamformer, 471
substring matching, 498

McGurk effect, 15
Mealy machine, 234
mean

conditional, 98
measurement model, 95
mel filter bank, 141
microphone, 58

array, 8, 61, 62
carbon, 60
characteristics, 8, 60
piezo, 60
placement, 62, 425

minimization, 239, 251
minimum

mean square error, 97
mean squared error, 188
mutual information, 480
phase, 165, 327
phone error, 9, 302, 308

feature-space, 178
statistics, 195
variance distortionless response, 150

envelope, 150
warp, 156
warped-twice, 157

word error, 302, 308
missing

feature theory, 13
information, 161

mixed state, 214
mixing matrix, 390
MLMI, 17
modal frequencies, 54
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axial, 55
first, 55
oblique, 55
pattern, 55
room, 54, 55
second, 55
tangential, 55

model
acoustic, 231
background, 111
clutter, 111
Gaussian mixture, 122
language, 231
measurement, 95
nonparametric, 114
order, 147
parametric, 113
Poisson, 114
state-space, 95
switching, 211, 213
system, 95

modulating, 360
modulation, 72
moment, 41
Monte Carlo, 123, 125

sequential, 126
Moore machine, 234
morpheme, 36
moving average, 66, 76, 77
MP3, 44
multimodality, 15
musical tones, 198, 216, 217
mutual information, 303, 398,
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N-gram, 12, 256
narrow-band, 138
nasal, 37
natural gradient, 404
near-field, 62
negative dilatation, 28
negentropy, 10, 400, 472

empirical, 474, 479
nits, 528
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noise, 8, 47
field

cylindrically isotropic, 438
diffuse, 438

floor, 194, 204
microphone, 62
nonstationary, 47
observation, 95
quantization, 62
stationary, 47

nonGaussianity, 387
nonpulmonic, 37
nonstationary, 47
nonwhiteness, 387
nonparametric, 145

approach, 192
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nonstationarity, 387
normalization, 318
normalized LMS algorithm, 454
null steering, 487
number

condition, 382
Nyquist

sampling theorem, 81
criterion, 81
frequency, 81
rate, 82

Nyquist(M) filter, 370

objective function, 9
observation, 233

acoustic, 231
association indicator, 117
equation, 95
noise, 95
uncertainty, 227
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omnidirectional, 58
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optimal regression class, 300
order

higher, 40
model, 147

Orthogonality, 102
principle, 99



Index 569

out of vocabulary, 263
overfitting, 171
overlap-add, 85
overlap-save, 85, 87
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overtraining, 310

parametric
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Parseval’s theorem, 79
partial fraction expansion, 76
partials, 35
particle, 126

effective, 129
filter, 121, 183
weight, 95

passband, 78, 373
path, 243

successful, 243
pdf
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Gaussian, 472
generalized Gaussian, 472
importance, 124
Laplace, 472
proposal, 124

pentaphone model, 264
perception

human, 12
loudness, 43

perfect reconstruction, 359
perplexity, 9, 259
perseverative, 38
phase

insensitivity, 42
shift, 70

phon, 43
phone, 36
phoneme, 34, 36
phonemic restoration, 13
pitch, 34

human perception, 42
virtual, 46

plosive, 37
Poisson model, 114

poles, 75
simple, 75

Polyak average, 205
polyphase representation, 364

Type 1, 364
Type 2, 364

positive-definite, 105
power

pattern, 426
spectral density, 477, 517
spectrum, 136, 145

power-normalized LMS algorithm, 455
pre-emphasis filter, 138
prediction, 94, 96, 103, 106, 193

code-excited, 147
dynamic autoregressive process, 207
extended Kalman filter, 209
linear, 147
multi-step, 203
Polyak averaging and feedback, 205
step-size, 203

pressure, 28
principle of superposition, 67
probability

backoff, 259
mass function, 113

process, 95
stochastic, 233

product rule, 101
projection equation, 353
proposal pdf, 124
prototype, 360, 371

analysis–synthesis, 377
proxemics, 57
pulmonic, 37

quantile, 197
quasi-stationary, 136

radiation, 55
random walk, 204
rarefaction, 28
rate, 263
Rayleigh quotient, 174
recognition, 235
reconstruction, 359
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recovery, 89
reducing variance, 16
reference, 498
reflections

early, 201
late, 201

reflectogram, 200
region

convergence, 73
virtual, 420
visible, 420

relative gradient, 404
resampling, 128

semi-deterministic, 130
residue, 46
reverberation, 47, 48, 52

radius, 50
time, 50

reversibility, 102
Riccati equation, 104
Rich Transcription, 18
ROVER, 278

sample, 123
effective size, 128
variance, 208

sampling, 79
frequency, 80
importance, 124
interval, 80
Nyquist, 81
rate, 80, 82
subband, 90
theorem

Nyquist, 81
spatial, 61

scale
Bark, 140
bilinear transform, 142
factor, 69
mel, 140

scatter
matrix

between-class, 172
total, 173
within-class, 172

score function, 403
search, 231

error, 238
graph, 235

second-order statistics, 388
self-loop, 233
semiring, 241

log-probability, 242
string, 242
tropical, 242

semivowel, 38
sensor

combination, 16
integration, 16

septaphone model, 264
sequence

periodic, 83
sequential, 246
series expansion, 73
set partitioning algorithm, 251
shape factor, 395
shift, 361
shifting property, 67
sibilant, 38
sidelobe, 72, 136, 361, 363, 420
signal

cancellation problem, 447
noise ratio, 51
quality, 181
reconstruction, 79
reverberation ratio, 52
sampling, 79

signal-to-noise ratio, 10
a posteriori, 197
a priori, 198

simultaneous
masking, 44

skewness, 40
smoothing, 96
soft-decision, 195
sonogram, 138
sound

capture, 7
distance, 45
intensity, 31

inverse square law, 31
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pressure, 28, 29
pressure level, 42
properties, 27
speed, 29

source
geometric separation, 466, 487
image, 33
point, 30
simple, 30
virtual, 33

spatial
aliasing, 61, 424
correlation coefficient, 434
sampling theorem, 61
spectral matrix, 428

normalized, 429
speaker

adaptation, 317
adapted training, 299
localization, 337
tracking, 337

specific gas constant, 28
spectra

analysis, 145
comparison, 159
envelope, 146
estimation, 145, 224

nonparametric, 145
parametric, 145

floor, 217
leakage, 136
linear prediction, 147
matrix, 438
minimum variance distortionless

response, 150
warped, 156
warped-twice, 157

power, 136, 145, 146
relationship, 152
relative, 191
resolution, 42, 143
scaling, 160
shaping, 138
subtraction, 215

non-linear, 217
tilt, 144, 187, 479

spectral
subtraction, 182

spectrogram, 137
speech, 35

enhancement, 182
feature
fields in recognition, 10
parameters, 34
power, 43
statistical properties, 39
unvoiced, 35, 36, 136
voiced, 35, 136

speed of sound, 29
spherical

coordinates, 30
interpolation, 341
intersection, 339
waves, 33

SPLICE, 192
stability, 77
stable, 68
stacking, 170
state

clustering, 265
equation, 28, 95
final, 233
hidden Markov model, 233
initial, 233

static features, 169
stationary, 28, 47
statistical

inference, 221
language model, 256

statistically
uncorrelated, 392

statistics, 39
higher order, 40, 387, 390
second-order, 388

steering, 422
error, 445
function, 159

step size, 448
stereo data, 192, 193
stiffness, 31
stop, 37
stopband, 78, 361
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string-to-weight subsequential transducer,
247

strong law of large numbers, 124
sub-Gaussian, 521
subband, 89, 90, 359

domain, 90
domain snapshot, 428
samples, 90

successful path, 243
super-Gaussian, 521
superdirective, 437
switching

dynamic system model, 206
model, 211, 213

syllable, 37
synthesis, 83, 371
systems

discrete-time, 66
function, 73
inverse, 76
linear, 66
linear time-invariant, 65
minimum phase, 76
model, 95
time invariant, 67

systematic resampling, 130

Taylor series, 531
vector, 218

telephone, 58
channel, 47

temperature, 28
temporal patterns, 171
testing data, 8
time

arrival, 45
delay, 66
delay of arrival, 338, 413
invariant, 67

token, 236
trace back, 237, 301
track detection indicator,

117
tracking, 97
training, 235

data, 8

discriminative, 302
label, 301, 302
Viterbi, 301, 302

transducer
finite-state

weight, 243
sequential, 274
string-to-weight, 247

transfer function, 73, 198
transform

bilinear, 142, 324
discrete cosine, 517
Fourier

discrete, 82, 85
discrete-time, 69
fast, 82
inverse, 69
short-time, 72, 87, 89
time-dependent, 87

Householder, 537
operator, 66
pair, 70
phase, 339
sine-log all-pass, 329

transition, 242
band, 78

TRAPS, 171
trigram, 258
triphone model, 264
Type 2 DCT matrix, 517

uncertainty
observation, 227
processing, 13

unidirectional, 59
unit

circle, 73, 77
impulse, 67

update, 96, 104, 193

validation
matrix, 116
observation, 110
region, 110

virtual
pitch, 46
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source, 33
Viterbi

algorithm, 232, 235, 236, 301
path, 236, 302
training, 302

vocal
system, 34
tract, 34–36

filter, 35
normalization, 318

voice activity detection, 194
voiceprint, 138
volume, 28

compression, 28
density, 29

vowel, 37

warp
bilinear transform, 142
cepstral domain, 322
factor, 142
frequency, 142
frequency domain, 143
LP, 153
MVDR, 156
time domain, 143
turning point, 144

WASPAA, 17
wave

direct, 48
equation, 30
length, 31
number, 31, 414
plane, 32, 412
propagation speed, 29
standing, 54

weight
combination, 122
composition, 244
cumulative sum, 129

curves, 45
determinization, 231, 246
error vector, 449
finite-state acceptor, 242
finite-state tranducer, 241
finite-state transducer, 243
importance, 125

normalized, 125
language model, 237
minimization, 231, 251, 253
particles, 94, 95
pushing, 231, 242, 249, 250
samples, 94
vector

active, 443
quiescent, 442

Whiteness, 102
wide-band, 138
Wiener

filter, 98, 183
postfilter, 440

Wiener–Hopf equation,
99

window
Hamming, 137
rectangular, 136
sequence, 88

windowing, 71
within-class variance, 520
Woodbury’s identity, 519
word

error rate, 9, 498
history, 258
lattice, 238
sequence, 231
trace, 239

zero-order hold, 82
zeros, 75

simple, 75


	Distant Speech Recognition
	Front Matter
	Contents
	Chapter 1: Introduction
	Chapter 2: Acoustics
	Chapter 3: Signal Processing and Filtering Techniques
	Chapter 4: Bayesian Filters
	Chapter 5: Speech Feature Extraction
	Chapter 6: Speech Feature Enhancement
	Chapter 7: Search: Finding the Best Word Hypothesis
	Chapter 8: Hidden Markov Model Parameter Estimation
	Chapter 9: Feature and Model Transformation
	Chapter 10: Speaker Localization and Tracking
	Chapter 11: Digital Filter Banks
	Chapter 12: Blind Source Separation
	Chapter 13: Beamforming
	Chapter 14: Hands on
	Appendices
	A: List of Abbreviations
	B: Useful Background

	Bibliography
	Index




