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 Michael Blumenstein, Griffith University, Australia

Cursive handwriting recognition is a challenging task for many real-world applications such as document 
authentication, form processing, postal address recognition, reading machines for the blind, bank cheque 
recognition, and interpretation of historical documents. Therefore, in the last few decades, researchers 
have put enormous effort into developing various techniques for handwriting recognition. This chapter 
reviews existing handwriting recognition techniques and presents the current state of the art in cursive 
handwriting recognition. The chapter also presents segmentation strategies and a segmentation-based 
approach for automated recognition of unconstrained cursive handwriting. The chapter provides a com-
prehensive literature with basic and advanced techniques and research results in handwriting recognition 
for graduate students and also for advanced researchers.

Chapter II
Elastic Matching Techniques for Handwritten Character Recognition  ............................................... 17
 Seiichi Uchida, Kyushu University, Japan

This chapter reviews various elastic matching techniques for handwritten character recognition. Elastic 
matching is formulated as an optimization problem of planar matching, or pixel-to-pixel correspondence, 
between two character images under a certain matching model such as affine and nonlinear. Use of elastic 
matching instead of rigid matching improves the robustness of recognition systems against geometric 
deformations in handwritten character images. In addition, the optimized matching itself represents the 
deformation of handwritten characters and thus is useful for statistical analysis of the deformation. This 
chapter argues the general property of elastic matching techniques and their classification by match-
ing models and optimization strategies. It also argues various topics and future work related to elastic 
matching for emphasizing theoretical and practical importance of elastic matching.

Detailed Table of Contents



Chapter III
State of the Art in Off-Line Signature Verification  .............................................................................. 39
 Luana Batista, École de technologie supérieure, Canada
 Dominique Rivard, École de technologie supérieure, Canada
 Robert Sabourin, École de technologie supérieure, Canada
 Eric Granger, École de technologie supérieure, Canada
 Patrick Maupin, Defence Research and Development Canada (DRDC), Canada

Automatic signature verification is a biometric method that can be applied in all situations where hand-
written signatures are used, such as cashing a check, signing a credit card, authenticating a document, and 
others. Over the last two decades, several innovative approaches for off-line signature verification have 
been introduced in literature. Therefore, this chapter presents a survey of the most important techniques 
used for feature extraction and verification in this field. The chapter also presents strategies used to face 
the problem of limited amount of data, as well as important challenges and research directions.

Chapter IV
An Automatic Off-Line Signature Verification and Forgery Detection System  .................................. 63
 Vamsi Krishna Madasu, Queensland University of Technology, Australia
 Brian C. Lovell, NICTA Limited (Queensland Laboratory),
                 and University of Queensland, Australia

This chapter presents an off-line signature verification and forgery detection system based on fuzzy mod-
eling. The various handwritten signature characteristics and features are first studied and encapsulated 
to devise a robust verification system. The verification of genuine signatures and detection of forgeries 
is achieved via angle features extracted using a grid method. The derived features are fuzzified by an 
exponential membership function, which is modified to include two structural parameters. The structural 
parameters are devised to take account of possible variations due to handwriting styles and to reflect other 
factors affecting the scripting of a signature. The efficacy of the proposed system is tested on a large 
database of signatures comprising more than 1,200 signature images obtained from 40 volunteers.

Chapter V
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cessful technology in the computer science field related to multiple disciplines such as signal processing 
and analysis, mathematical statistics, applied artificial intelligence, linguistics, and so forth. The unit of 
essential information used to characterize the speech signal in the most widely used ASR systems is the 
phoneme. However, several researchers recently have questioned this representation and demonstrated 
the limitations of the phonemes, suggesting that ASR, which is better performance, can be developed, 
replacing the phoneme by triphones and syllables as the unit of essential information used to character-
ize the speech signal. This chapter presents an overview of the most successful techniques used in ASR 
systems together with some recently proposed ASR systems that intend to improve the characteristics 
of conventional ASR systems.
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effective. Acceptable performance can be obtained in many situations using these features. However, 
the effect of handwriting forgery/disguise or conscious speech imitation/alteration on these features 
is not investigated. New and more powerful features are needed in the future if high accuracy person 
identification can be achieved in the presence of disguise or forgery.

Chapter VII
Image Pattern Recognition-Based Morphological Structure and Applications  ................................. 140
 Donggang Yu, Bioinformatics Applications Research Centre, James Cook University, 
      Australia
 Tuan D. Pham, Bioinformatics Applications Research Centre, James Cook University, 
                   Australia
 Hong Yan, City University of Hong Kong, Hong Kong

This chapter describes a new pattern recognition method: pattern recognition-based morphological struc-
ture. First, smooth following and linearization are introduced based on different chain codes. Second, 
morphological structural points are described in terms of smooth followed contours and linearized lines, 
and then the patterns of morphological structural points and their properties are given. Morphological 
structural points are basic tools for pattern recognition-based morphological structure. Furthermore, we 
discuss how the morphological structure can be used to recognize and classify images. One application 
is document image processing and recognition, analysis, and recognition of broken handwritten digits. 
Another one is dynamic analysis and recognition of cell-cycle screening based on morphological struc-
tures. Finally, a conclusion is given: advantage, disadvantage, and future research.

Chapter VIII
Robust Face Recognition Technique for a Real-Time Embedded Face Recognition System  ........... 188
 Ting Shan, National ICT Australia, and The University of Queensland, Australia
 Abbas Bigdeli, National ICT Australia, Australia
 Brian C. Lovell, National ICT Australia, and The University of Queensland, Australia
 Shaokang Chen, National ICT Australia, and The University of Queensland, Australia

In this chapter, we propose a variability compensation technique that synthesizes realistic frontal face 
images from nonfrontal views. It is based on modeling the face via Active Appearance Models and esti-



mating the pose through a correlation model. The proposed technique is coupled with Adaptive Principal 
Component Analysis (APCA), which was previously shown to perform well in the presence of both 
lighting and expression variations. The proposed recognition techniques, although advanced, are not 
computationally intensive. So they are quite well suited to the embedded system environment. Indeed, 
the authors have implemented an early prototype of a face recognition module on a mobile camera phone 
so the camera could be used to identify the person holding the phone.

Chapter IX
Occlusion Sequence Mining for Activity Discovery from Surveillance Videos  ............................... 212
 Prithwijit Guha, Indian Institute of Technology - Kanpur, India
 Amitabha Mukerjee, Indian Institute of Technology - Kanpur, India
 K.S. Venkatesh, Indian Institute of Technology - Kanpur, India

Complex multi-object interactions result in occlusion sequences, which are a visual signature for the 
event. In this work, multi-object interactions are tracked using a set of qualitative occlusion primitives 
derived on the basis of the Persistence Hypothesis— objects continue to exist even when hidden from 
view. Variable length temporal sequences of occlusion primitives are shown to be well correlated with 
many classes of semantically significant events. In surveillance applications, determining occlusion 
primitives is based on foreground blob tracking and requires no prior knowledge of the domain or camera 
calibration. New foreground blobs are identified as putative objects, which may undergo occlusions, 
split into multiple objects, merge back again, and so forth. Significant activities are identified through 
temporal sequence mining, which bear high correlation with semantic categories (e.g., disembarking from 
a vehicle involves a series of splits). Thus, semantically significant event categories can be recognized 
without assuming camera calibration or any environment/object/action model priors.

Chapter X
Human Detection in Static Images  .................................................................................................... 227
 Hui-Xing Jia, Tsinghua University - Beijing, China
 Yu-Jin Zhang, Tsinghua University - Beijing, China

Human detection is the first step for a number of applications such as smart video surveillance, driving 
assistance system, and intelligent digital content management. It’s a challenging problem due to the 
variance of illumination, color, scale, pose, and so forth. This chapter reviews various aspects of human 
detection in static images and focuses on learning-based methods that build classifiers using training 
samples. There are usually three modules for these methods: feature extraction, classifier design, and 
merge of overlapping detections. The chapter reviews most of the existing methods for each module and 
analyzes their respective pros and cons. The contribution includes two aspects: first, the performance of 
existing feature sets on human detection are compared; second, a fast human detection system based on 
Histogram of Oriented Gradients features and cascaded Adaboost classifier is proposed. This chapter 
should be useful for both algorithm researchers and system designers in the computer vision and pattern 
recognition community.



Chapter XI
A Brain-Inspired Visual Pattern Recognition Architecture and Its Applications  ............................... 244
 Fok Hing Chi Tivive, Member, IEEE, and University of Wollongong, Australia
 Abdesselam Bouzerdoum, Senior Member, IEEE, and University of Wollongong, Australia

With the ever-increasing utilization of imagery in scientific, industrial, civilian, and military applications, 
visual pattern recognition has been thriving as a research field and has become an essential enabling 
technology for many applications. In this chapter, we present a brain-inspired pattern recognition ar-
chitecture that easily can be adapted to solve various real-world visual pattern recognition tasks. The 
architecture has the ability to extract visual features from images and classify them within the same 
network structure; in other words, it integrates the feature extraction stage with the classification stage, 
and both stages are optimized with respect to one another. The main processing unit for feature extrac-
tion is governed by a nonlinear biophysical mechanism known as shunting inhibition, which plays a 
significant role in visual information processing in the brain. Here, the proposed architecture is applied 
to four real-world visual pattern recognition problems; namely, handwritten digit recognition, texture 
segmentation, automatic face detection, and gender recognition. Experimental results demonstrate that 
the proposed architecture is very competitive with and sometimes outperforms existing state-of-the-art 
techniques for each application.

Chapter XII
Significance of Logic Synthesis in FPGA-Based Design of Image
and Signal Processing Systems  .......................................................................................................... 265
 Mariusz Rawski, Warsaw University of Technology, Poland
 Henry Selvaraj, University of Nevada, USA
 Bogdan J. Falkowski, Nanyang Technological University, Singapore
 Tadeusz Łuba, Warsaw University of Technology, Poland

This chapter, taking FIR filters as an example, presents the discussion on efficiency of various imple-
mentation methodologies of DSP algorithms targeted at modern FPGA architectures. Nowadays, pro-
grammable technology provides the possibility to implement a digital system with the use of specialized 
embedded DSP blocks. In the first place, however, this technology gives the designer the possibility 
to increase efficiency of a designed system by exploitation of parallelisms of implemented algorithms. 
Moreover, it is possible to apply special techniques such as distributed arithmetic (DA). Since in this ap-
proach general-purpose multipliers are replaced by combinational LUT blocks, it is possible to construct 
digital filters of very high performance. Additionally, application of the functional decomposition-based 
method to LUT blocks optimization and mapping has been investigated. The chapter presents results of 
the comparison of various design approaches in these areas.



Chapter XIII
A Novel Support Vector Machine with Class-Dependent Features for Biomedical Data  ................. 284
 Nina Zhou, Nanyang Technological University, Singapore
 Lipo Wang, Nanyang Technological University, Singapore

This chapter introduces an approach to class-dependent feature selection and a novel support vector 
machine (SVM). The relative background and theory are presented for describing the proposed method, 
and real applications of the method on several biomedical datasets are demonstrated in the end. The 
authors hope that this chapter can provide readers a different view of feature selection method and also 
the classifier so as to promote more promising methods and applications.

Chapter XIV
A Unified Approach to Support Vector Machines  .............................................................................. 299
 Alistair Shilton, The University Of Melbourne, Australia
 Marimuthu Palaniswami, The University Of Melbourne, Australia

This chapter presents a unified introduction to support vector machine (SVM) methods for binary clas-
sification, one-class classification, and regression. The SVM method for binary classification (binary 
SVC) is introduced first and then extended to encompass one-class classification (clustering). Next, us-
ing the regularized risk approach as a motivation, the SVM method for regression (SVR) is described. 
These methods are then combined to obtain a single, unified SVM formulation that encompasses binary 
classification, one-class classification, and regression (as well as some extensions of these), and the dual 
formulation of this unified model is derived. A mechanical analogy for the binary and one-class SVCs 
is given to give an intuitive explanation of the operation of these two formulations. Finally, the unified 
SVM is extended to implement general cost functions, and an application of SVM classifiers to the 
problem of spam e-mail detection is considered.

Chapter XV
Cluster Ensemble and Multi-Objective Clustering Methods  ............................................................. 325
 Katti Faceli, Federal University of São Carlos, Brazil
 Andre C.P.L.F. de Carvalho, University of São Paulo, Brazil
 Marcilio C.P. de Souto, Federal University of Rio Grande do Norte, Brazil

Clustering is an important tool for data exploration. Several clustering algorithms exist, and new algo-
rithms are frequently proposed in the literature. These algorithms have been very successful in a large 
number of real-world problems. However, there is no clustering algorithm, optimizing only a single 
criterion, able to reveal all types of structures (homogeneous or heterogeneous) present in a dataset. In 
order to deal with this problem, several multi-objective clustering and cluster ensemble methods have 
been proposed in the literature, including our multi-objective clustering ensemble algorithm. In this 
chapter, we present an overview of these methods, which, to a great extent, are based on the combina-
tion of various aspects from traditional clustering algorithms.



Chapter XVI
Implementing Negative Correlation Learning in Evolutionary Ensembles
with Suitable Speciation Techniques  ................................................................................................. 344
 Peter Duell, The Centre of Excellence for Research in Computational Intelligence 
                 and Applications (CERCIA), University of Birmingham, UK
 Xin Yao, The Centre of Excellence for Research in Computational Intelligence 
                 and Applications (CERCIA), University of Birmingham, UK

This chapter examines the motivation and characteristics of the NCL algorithm. Some recent work 
relating to the implementation of NCL in a single objective evolutionary framework for classification 
tasks is presented, and we examine the impact of two speciation techniques: implicit fitness sharing and 
an island model population structure. The choice of such speciation techniques can have a detrimental 
effect on the ability of NCL to produce accurate and diverse ensembles and should therefore be chosen 
carefully. This chapter also provides an overview of other researchers’ work with NCL and gives some 
promising future research directions.

Chapter XVII
A Recurrent Probabilistic Neural Network for EMG Pattern Recognition  ........................................ 370
 Toshio Tsuji, Hiroshima University, Japan
 Nan Bu, Hiroshima University, Japan
 Osamu Fukuda, National Institute of Advanced Industrial Science and Technology, Japan

In the field of pattern recognition, probabilistic neural networks (PNNs) have been proven as an impor-
tant classifier. For pattern recognition of EMG signals, the characteristics usually used are amplitude, 
frequency, and space. However, a significant temporal characteristic exists in the transient and nonsta-
tionary EMG signals, which cannot be considered by traditional PNNs. In this chapter, a recurrent PNN 
called Recurrent Log-Linearized Gaussian Mixture Network (R-LLGMN) is introduced for EMG pattern 
recognition, with the emphasis on utilizing temporal characteristics. The structure of R-LLGMN is based 
on the algorithm of a hidden Markov model (HMM), which is a routinely used technique for modeling 
stochastic time series. Since R-LLGMN inherits advantages from both HMM and neural computation, 
it is expected to have higher representation ability and show better performance when dealing with time 
series like EMG signals. Experimental results show that R-LLGMN can achieve high discriminant ac-
curacy in EMG pattern recognition.

Compilation of References  .............................................................................................................. 388

About the Contributors  ................................................................................................................... 424

Index  ................................................................................................................................................ 433



  xiii

Preface

The history of automated pattern recognition can be traced back to the advent of modern computing mid-
way through the 20th century. Since that time, the popularity and growth of the pattern recognition field 
has been fueled by its scientific significance and its applicability to the real world. Pattern recognition 
is a very challenging and multidisciplinary research area attracting researchers and practitioners from 
many fields, including computer science, computational intelligence, statistics, engineering, and medical 
sciences, to mention just a few. Pattern recognition is a process described as retrieving a pattern from a 
database of known patterns. It has numerous real-world applications in areas such as security, medicine, 
information processing, and retrieval. Some pattern recognition applications in areas such as handwriting 
recognition, document retrieval, speech recognition, signature verification, and face recognition are the 
main focus of the current research activities in the pattern recognition and computational intelligence 
communities around the globe. Researchers and developers are facing many challenges to applying 
pattern recognition techniques in many real-world applications. This book consists of 17 peer-reviewed 
chapters that describe theoretical and applied research work in this challenging area. The state of the art 
in areas such as handwriting recognition, signature verification, speech recognition, human detection, 
gender classification, morphological structures for image classification, logic synthesis for image and 
signal processing, occlusion sequence mining, probabilistic neural networks for EMG patterns, multi-
objective clustering ensembles, evolutionary ensembles, support vector machines for biomedical data, 
and unified support vector machines is presented in various chapters of this book.

The first two chapters focus on off-line cursive handwriting recognition. In Chapter I, Verma and 
Blumenstein review existing handwriting recognition techniques and present the current state of the art 
in cursive handwriting recognition. Standard handwriting recognition processes are presented, and each 
process is described in detail. Some novel segmentation strategies and a segmentation-based approach 
for automated recognition of unconstrained cursive handwriting are also presented.

In Chapter II, Uchida investigates the theoretical and practical importance of elastic matching for 
handwriting recognition. He argues that the use of elastic matching techniques instead of rigid match-
ing techniques improves the robustness of handwriting recognition systems. In addition, the optimized 
matching represents the deformation of handwritten characters and, thus, is useful for statistical analysis 
of the deformation. Elastic matching is formulated as an optimization problem of planar matching, or 
pixel-to-pixel correspondence, between two character images under a certain matching model such as 
affine and nonlinear.

The next two chapters focus on off-line signature verification. In Chapter III, Batista, Rivard, Sab-
ourin, Granger, and Maupin present the current state of art in automatic signature verification. Automatic 
signature verification is a biometric method that can be applied in all situations where handwritten sig-
natures are used, such as cashing a check, signing a credit card, and authenticating a document. They 
review existing approaches in the literature and present a survey of the most important techniques used 
for feature extraction and verification in this field. They also present strategies used for problems such 
as limited amounts of data and show important challenges and some new research directions.



xiv  

In Chapter IV, Madasu and Lovell present an off-line signature verification and forgery detection 
system based on fuzzy modeling. The various handwritten signature characteristics and features are first 
studied and encapsulated to devise a robust verification system. The verification of genuine signatures 
and detection of forgeries is achieved via angle features extracted using a grid method. The derived 
features are fuzzified by an exponential membership function, which is modified to include two struc-
tural parameters. The structural parameters are devised to take into account the possible variations due 
to handwriting styles and to reflect other factors affecting the scripting of a signature. The proposed 
system has been tested on a large database of signatures comprising more than 1,200 signature images 
obtained from 40 volunteers.

Chapters V and VI focus on speech recognition. In Chapter V, Suárez-Guerra and Oropeza-Rodriguez 
present the state of the art in automatic speech recognition. Speech recognition is very challenging for 
researchers in many fields, including computer science, mathematical statistics, applied artificial intel-
ligence, and linguistics. The unit of essential information used to characterize the speech signal in the 
most widely used ASR systems is the phoneme. However, several researchers recently have questioned 
this representation and demonstrated the limitations of the phonemes, suggesting that ASR with better 
performance can be developed replacing the phoneme by triphones and syllables as the unit of essential 
information used to characterize the speech signal. This chapter presents an overview of the most suc-
cessful techniques used in ASR systems, together with some recently proposed ASR systems that intend 
to improve the characteristics of conventional ASR systems. 

In Chapter VI, Leedham, Pervouchine, and Zhong investigate features of handwriting and speech 
and their effectiveness at determining whether the identity of a writer or speaker can be identified from 
handwriting or speech. For handwriting, some of the subjective and qualitative features used by docu-
ment examiners are investigated in a scientific and quantitative manner based on the analysis of three 
characters (d, y, and f) and the grapheme th. For speech, several frequently used features are compared 
for their strengths and weaknesses in distinguishing speakers. The results show that some features do 
have good discriminative power, while others are less effective. Acceptable performance can be obtained 
in many situations using these features. However, the effect of handwriting forgery/disguise or conscious 
speech imitation/alteration on these features is not investigated. New and more powerful features are 
needed in the future if high accuracy person identification can be achieved in the presence of disguise 
or forgery. 

In Chapter VII, Yu, Pham, and Yan present a new pattern recognition method using morphological 
structure. First, smooth linearization is introduced based on various chain codes. Second, morphological 
structural points are described in terms of smooth followed contours and linearized lines, and then the 
patterns of morphological structural points and their properties are given. Morphological structural points 
are basic tools for pattern recognition-based morphological structure. Furthermore, how the morphologi-
cal structure can be used to recognize and classify images is presented. One application is document 
image processing and recognition, analysis, and recognition of broken handwritten digits. Another one 
is dynamic analysis and recognition of cell-cycle screening based on morphological structures. 

In Chapter VIII, Shan, Bigdeli, Lovell, and Chen propose a variability compensation technique that 
synthesizes realistic frontal face images from nonfrontal views. It is based on modeling the face via ac-
tive appearance models and estimating the pose through a correlation model. The proposed technique is 
coupled with adaptive principal component analysis (APCA), which was previously shown to perform 
well in the presence of both lighting and expression variations. The proposed recognition techniques, 
although advanced, are not computationally intensive. So they are quite well suited to the embedded sys-
tem environment. Indeed, the authors have implemented an early prototype of a face recognition module 
on a mobile camera phone so the camera could be used to identify the person holding the phone.
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In Chapter IX, Guha, Mukerjee, and Venkatesh present complex multi-object interactions resulting 
in occlusion sequences that are a visual signature for the event. In this chapter, multi-object interactions 
are tracked using a set of qualitative occlusion primitives derived on the basis of the persistence hy-
pothesis—objects continue to exist even when hidden from view. Variable length temporal sequences of 
occlusion primitives are shown to be well correlated with many classes of semantically significant events. 
In surveillance applications, determining occlusion primitives is based on foreground blob tracking and 
requires no prior knowledge of the domain or camera calibration. New foreground blobs are identified 
as putative objects that may undergo occlusions, split into multiple objects, merged back again, and so 
forth. Significant activities are identified through temporal sequence mining, which bear a high correla-
tion with semantic categories. Thus, semantically significant event categories can be recognized without 
assuming camera calibration or any environmental/object/action model prior.

In Chapter X, Jia and Zhang review human detection techniques. Human detection is the first step 
for a number of applications such as smart video surveillance, driving assistance systems, and intelligent 
digital content management. It is a challenging problem due to the variance of illumination, color, scale, 
pose, and so forth. This chapter reviews various aspects of human detection in static images and focuses 
on learning-based methods that build classifiers using training samples. There are usually three modules 
for these methods: feature extraction, classifier design, and merging of overlapping detections. The chapter 
reviews most of the existing methods for each module and analyzes their respective pros and cons. The 
contribution includes two aspects: first, the performance of existing feature sets on human detection are 
compared; second, a fast human detection system based on the histogram of oriented gradients features 
and a cascaded Adaboost classifier is proposed. This chapter is useful for both algorithm researchers 
and system designers in the computer vision and pattern recognition communities. 

In Chapter XI, Tivive and Bouzerdoum present a brain-inspired pattern recognition architecture. With 
the ever-increasing utilization of imagery in scientific, industrial, civilian, and military applications, visual 
pattern recognition has been thriving as a research field and has become an essential enabling technology 
for many applications. In this chapter, a brain-inspired pattern recognition architecture that easily can be 
adapted to solve various real-world visual pattern recognition tasks is presented. The architecture has 
the ability to extract visual features from images and classify them within the same network structure; 
in other words, it integrates the feature extraction stage with the classification stage, and both stages are 
optimized with respect to one another. The main processing unit for feature extraction is governed by a 
nonlinear biophysical mechanism known as shunting inhibition, which plays a significant role in visual 
information processing in the brain. The proposed architecture is applied to four real-world visual pat-
tern recognition problems; namely, handwritten digit recognition, texture segmentation, automatic face 
detection, and gender recognition. Experimental results demonstrate that the proposed architecture is very 
competitive with and sometimes outperforms existing state-of-the-art techniques for each application.

In Chapter XII, Rawski, Selvaraj, Falkowski, and Łuba present the discussion on efficiency of 
various implementation methodologies of DSP algorithms targeting modern FPGA architectures. Nowa-
days, programmable technology provides the possibility of implementing digital systems with the use 
of specialized embedded DSP blocks. In the first place, however, this technology gives the designer the 
possibility to increase the efficiency of designed systems by exploitation of parallelisms of implemented 
algorithms. Moreover, it is possible to apply special techniques such as distributed arithmetic (DA). Since 
in this approach general-purpose multipliers are replaced by combinational LUT blocks, it is possible to 
construct digital filters of very high performance. Additionally, application of the functional decomposi-
tion-based method to LUT block optimization and mapping has been investigated. The chapter presents 
results of the comparison of various design approaches in these areas.
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In Chapter XIII, Zhou and Wang present an approach to class-dependent feature selection and a novel 
support vector machine (SVM). The relative background and theory are presented for describing the 
proposed method, and real applications of the method on several biomedical datasets are demonstrated. 
The authors hope that this chapter can provide readers with a different view of the feature selection 
method and also the classifier so as to promote more promising methods and applications. 

In Chapter XIV, Shilton and Palaniswami present a unified introduction to support vector machine 
(SVM) methods for binary classification, one-class classification, and regression. The SVM method 
for binary classification (binary SVC) is introduced first and then extended to encompass one-class 
classification (clustering). Next, using the regularized risk approach as a motivation, the SVM method 
for regression (SVR) is described. These methods are then combined to obtain a single, unified SVM 
formulation that encompasses binary classification, one-class classification, and regression (as well as 
some extensions of these), and the dual formulation of this unified model is derived. A mechanical anal-
ogy for the binary and one-class SVCs is given to provide an intuitive explanation of the operation of 
these two formulations. Finally, the unified SVM is extended to implement general cost functions, and 
an application of SVM classifiers to the problem of spam e-mail detection is considered.

In Chapter XV, Faceli, Carvalho, and Souto investigate multi-objective clustering ensembles for 
clustering techniques. Clustering is an important tool for data exploration. Several clustering algorithms 
exist, and new algorithms are frequently proposed in the literature. These algorithms have been very suc-
cessful in a large number of real-world problems. However, there is no clustering algorithm, optimizing 
only a single criterion, able to reveal all types of structures (homogeneous or heterogeneous) present 
in a dataset. In order to deal with this problem, several multi-objective clustering and cluster ensemble 
methods have been proposed in the literature, including a multi-objective clustering ensemble algorithm. 
In this chapter, an overview of these methods, which, to a great extent, are based on the combination of 
various aspects from traditional clustering algorithms, is presented.

In Chapter XVI, Duell and Yao present negative correlation learning in evolutionary ensembles with 
suitable speciation techniques. Negative correlation learning (NCL) is a technique that attempts to create 
an ensemble of neural networks whose outputs are accurate but negatively correlated. The motivation 
for such a technique can be found in the bias-variance-covariance decomposition of an ensemble of the 
learner’s generalisation error. NCL is also increasingly used in conjunction with an evolutionary process, 
which gives rise to the possibility of adapting the structures of the networks at the same time as learning 
the weights. This chapter examines the motivation and characteristics of the NCL algorithm. Some recent 
work relating to the implementation of NCL in a single objective evolutionary framework for classification 
tasks is presented, and the authors examine the impact of two different speciation techniques: implicit 
fitness sharing and an island model population structure. The choice of such speciation techniques can 
have a detrimental effect on the ability of NCL to produce accurate and diverse ensembles and should, 
therefore, be chosen carefully. This chapter also provides an overview of other researchers’ work with 
NCL and gives some promising future research directions.

In Chapter XVII, Tsuji, Bu, and Fukuda present a recurrent probabilistic neural network for EMG 
pattern recognition. In the field of pattern recognition, probabilistic neural networks (PNNs) have been 
proven as an important classifier. For pattern recognition of EMG signals, the characteristics usually 
used are amplitude, frequency, and space. However, significant temporal characteristics exist in the tran-
sient and nonstationary EMG signals, which cannot be considered by traditional PNNs. In this chapter, 
a recurrent PNN called recurrent log-linearized Gaussian mixture network (R-LLGMN) is introduced 
for EMG pattern recognition, with the emphasis on utilizing temporal characteristics. The structure of 
R-LLGMN is based on the algorithm of a hidden Markov model (HMM), which is a routinely used 
technique for modeling stochastic time series. Since R-LLGMN inherits advantages from both HMM and 
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neural computation, it is expected to have a higher representation ability and show better performance 
when dealing with time series such as EMG signals. Experimental results show that R-LLGMN can 
achieve high discriminant accuracy in EMG pattern recognition.

Brijesh Verma, Central Queensland University, Australia
Michael Blumenstein, Griffith University, Australia
Editors
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AbstrAct

Cursive handwriting recognition is a challenging task for many real-world applications such as document 
authentication, form processing, postal address recognition, reading machines for the blind, bank check 
recognition, and interpretation of historical documents. Therefore, in the last few decades, research-
ers have put an enormous effort into developing various techniques for handwriting recognition. This 
chapter reviews existing handwriting recognition techniques and presents the current state of the art 
in cursive handwriting recognition. The chapter also presents segmentation strategies and a segmen-
tation-based approach for automated recognition of unconstrained cursive handwriting. The chapter 
provides a comprehensive literature review with basic and advanced techniques and research results in 
handwriting recognition for graduate students as well as for advanced researchers.

INtrODUctION

Cursive handwriting recognition systems are in 
enormous demand by law enforcement agencies, 
financial institutions, postal services, and a variety 
of other industries in addition to the general public 
nationally and globally. Currently, there are no 

commercial solutions available to deal with the 
problem of automated reading of totally uncon-
strained cursive handwriting from static surfaces 
(i.e., paper-based forms, envelopes, documents, 
checks, etc.). The domain of reading handwriting 
from static images is called off-line recognition, 
not to be confused with online approaches com-
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monly associated with personal digital assistants 
(PDAs) and hand-held computers.

The research on cursive handwriting recogni-
tion has grown significantly in recent years. In 
the literature, many papers have been published 
with research detailing new techniques for the 
classification of handwritten numerals, charac-
ters, and words (Arica & Yarman-Vural, 2002; 
Blumenstein, Liu, & Verma, 2004; Blumenstein 
& Verma, 1999; Blumenstein & Verma, 2001; Blu-
menstein, Verma, & Basli, 2003; Britto, Sabourin, 
Bortolozzi, & Suen, 2004; Camastra & Vinciarelli, 
2003; Casey & Lecolinet, 1996; Chevalier, Geof-
frois, Preteux, & Lemaltre, 2005; Chiang, 1998; 
Cho, 1997; Dimauro, Impedovo, Pirlo, & Salzo, 
1998; Dunn & Wang, 1992; Eastwood, Jennings, & 
Harvey, 1997; Elliman & Lancaster, 1990; Fan & 
Verma, 2002; Fujisawa, Nakano, & Kurino, 1992; 
Gader, Mohamed, & Chiang, 1997; Gang, Verma, 
& Kulkarni, 2002; Gatos, Pratikakis, Kesidis, & 
Perantonis, 2006; Gilloux, 1993; Günter & Bunke, 
2004; Günter & Bunke, 2005; Hanmandlu, Mu-
rali, Chakraborty, Goyal, & Choudhury, 2003; 
Kapp, de Almendra Freitas, & Sabourin, 2007; 
Koerich, Britto, Oliveira, & Sabourin, 2006; Lee 
& Coelho, 2005; Liu & Fujisawa, 2005; Lu, 1995; 
Lu & Shridhar, 1996; Marinai, Gori, & Soda, 2005; 
Martin, Rashid, & Pittman, 1993; Plamondon & 
Srihari, 2000; Schambach, 2005; Singh & Amin, 
1999; Srihari, 1993; Srihari, 2006; Suen, Legault, 
Nadal, Cheriet, & Lam, 1993; Suen & Tan, 2005; 
Verma, 2003; Verma, Blumenstein, & Ghosh, 
2004; Verma, Blumenstein, & Kulkarni, 1998; 
Verma, Gader, & Chen, 2001; Viard-Gaudin, 
Lallican, & Knerr, 2005; Vinciarelli, Bengio, & 
Bunke, 2003; Wang, Ding, & Liu, 2005; Wen, Lu, 
& Shi, 2007; Xiao & Leedham, 2000; Xu, Lam, 
& Suen, 2003; Yanikoglu & Sandon, 1998). Some 
researchers have obtained very promising results 
for isolated/segmented numerals and characters 
using conventional and intelligent techniques. 
However, the results obtained for the segmenta-
tion and recognition of cursive handwritten words 
have not been satisfactory in comparison (Arica 

& Yarman-Vural, 2002; Blumenstein & Verma, 
1999; Blumenstein & Verma, 2001; Blumenstein et 
al., 2003; Camastra & Vinciarelli, 2003; Chevalier 
et al., 2005; Chiang, 1998; Dimauro et al., 1998; 
Eastwood et al., 1997; Fan & Verma, 2002; Gader 
et al., 1997; Gang et al., 2002; Gatos et al., 2006; 
Gilloux, 1993; Günter & Bunke, 2004; Günter & 
Bunke, 2005; Hanmandlu et al., 2003; Kapp et al., 
2007; Koerich et al., 2006; Lee & Coelho, 2005; 
Martin et al., 1993; Schambach, 2005; Srihari, 
1993; Srihari, 2006; Verma, 2003; Verma et al., 
1998; Verma et al., 2001; Verma et al., 2004; Vi-
ard-Gaudin et al., 2005; Vinciarelli et al., 2003; 
Xiao & Leedham, 2000; Yanikoglu & Sandon, 
1998) The reason for not achieving satisfactory 
recognition rates is the difficult nature of cursive 
handwriting (cursive, touching, individual, etc.) 
and difficulties in the accurate segmentation and 
recognition of cursive and touching characters. 

This chapter reports on the state of the art in 
handwriting recognition research and methods 
for segmentation of cursive handwriting. The 
remainder of this chapter is broken up into four 
sections. Section 2 provides an overview of 
handwriting recognition and methodologies used 
for this process. Section 3 reviews the accuracy 
of existing systems/techniques for handwrit-
ing recognition. Section 4 deals with fusion of 
segmentation strategies for cursive handwriting 
recognition, and Section 5 provides conclusions 
and future research.

tYPIcAL HANDWrItING
rEcOGNItION sYstEM

A typical handwriting recognition system is char-
acterized by a number of steps, which include (1) 
digitization/image acquisition, (2) preprocessing, 
(3) segmentation (4) feature extraction, and (5) 
recognition/classification. Figure 1 illustrates one 
such system for handwritten word recognition.

The steps required for typical handwriting 
recognition are described next in detail. 
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Preprocessing

Preprocessing aims at eliminating the variability 
that is inherent in cursive and hand-printed words. 
Following is a list of preprocessing techniques 
that have been employed by various researchers 
in an attempt to increase the performance of the 
segmentation/recognition process:

• Deskewing
• Scaling
• Noise Elimination
• Slant Estimation and Correction
• Contour Smoothing
• Thinning

Deskewing is the process of first detecting 
whether the handwritten word has been written 
on a slope and then rotating the word if the slope’s 
angle is too high so the baseline of the word is 
horizontal. Some examples of techniques for cor-
recting slope are described in Senior (1994) and 
Brown and Ganapathy (1983). 

Scaling sometimes may be necessary to pro-
duce words of relative size. In the case of Burges, 
Be, and Nohl (1992), the authors used a neural 

network for the segmentation stage of their system. 
The neural network accepted areas between the 
upper and lower baselines of each word as input. 
This area, called the core, must be of fixed height 
to be used in conjunction with the neural net. 
Therefore, it was necessary to scale the words so 
that all cores were of an identical height. 

Noise (small dots or blobs) may be introduced 
easily into an image during image acquisition. 
Noise elimination in word images is important 
for further processing; therefore, these small 
foreground components are usually removed. 
Chen, Kundu, Zhou, and Srihari (1992) used 
morphological opening operations to remove 
noise in handwritten words. Kim, Govindaraju, 
and Srihari (1999) identified noise in a word 
image by comparing the sizes and shapes of 
connected components in an image to the aver-
age stroke width. Madhvanath, Kleinberg, and 
Govindaraju (1999) also analyzed the size and 
shape of connected components in a word image 
and compared them to a threshold to remove salt 
and pepper noise. In postal address words and 
other real-world applications, larger noise such 
as underlines is sometimes present. Therefore, 
some researchers have also applied some form of 
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Figure 1. Typical segmentation-based handwriting recognition system
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underline removal to their word images (Dimauro, 
Impedovo, Pirlo & Salzo, 1997). 

Slant estimation and correction is an integral 
part of any word image preprocessing. Bozinovic 
and Srihari (1989) employed an algorithm that 
estimated the slant of a word by first isolating 
those parts of the image that represented near ver-
tical lines (accomplished by removing horizontal 
strokes through run-length analysis). Second, an 
average estimation of the slant given by the near-
vertical lines was obtained. The word was then 
slant corrected by applying a transformation. In 
their system, the presence of a slant correction 
procedure was essential for segmenting their 
words using vertical dissection. Other estimation 
and correction techniques have been employed 
in the literature. Some have accomplished this 
using the chain code histogram of entire border 
pixels (Ding, Kimura, Miyake & Shridhar, 1999; 
Kimura, Shridhar & Chen, 1993), while others 
have estimated the slope through analysis of the 
slanted vertical projections at various angles (Guil-
levic & Suen, 1994). The process of slant correc-
tion introduces noise in the contour of the image 
in the form of bumps and holes. Therefore, some 
sort of smoothing technique is usually applied (as 
previously discussed for numeral recognition) 
to remove contour noise. As also previously de-
scribed, some researchers have used the skeleton 
of the word image to normalize the stroke width. 
This operation is still a topic of debate, as there 
are advantages and disadvantages to using the 
skeleton for word recognition.

segmentation

Segmentation of handwriting is defined as an 
operation that seeks to decompose a word image 
of a sequence of characters into subimages of 
individual characters. Research surveys on seg-
mentation by Casey and Lecolinet (1996), Dunn 
and Wang (1992), Lu (1995), Lu and Shridhar 
(1996), Elliman and Lancaster (1990), Fujisawa, et 
al. (1992), Blumenstein and Verma (2001), Gang, 

et al. (2002), Verma, et al. (1998), Blumenstein, et 
al. (2003), Verma (2003), Blumenstein and Verma 
(1999), Fan and Verma (2002), and Verma, et al. 
(2001) confirmed that segmentation is one of the 
most difficult processes in cursive handwriting 
recognition. Some recent work by a number of 
researchers has demonstrated encouraging results 
for the segmentation of cursive handwriting. 
Eastwood, et al. (1997) proposed a neural-based 
technique for segmenting cursive script. In their 
research, they trained a neural network with 
feature vectors representing possible segmenta-
tion points as well as “negative” features that 
represented the absence of a segmentation point. 
The feature vectors were manually obtained from 
training and test words in the CEDAR benchmark 
database. The accuracy of the network on a test 
set of possible segmentation points was 75.9%. 
Yanikoglu and Sandon (1998) proposed a seg-
mentation algorithm by evaluating a cost function 
to locate successive segmentation points along 
the baseline. They reported an accuracy of 92% 
for their custom database of words. Dimauro, et 
al. (1998) proposed an advanced technique for 
segmenting cursive words as part of a recogni-
tion system to read the amounts on Italian bank 
checks. The segmentation technique is based on a 
hypothesis-then-verification strategy. The authors 
did not report a measure of the segmentation 
accuracy but indicated that the new approach 
improved the recognition of cursive words on 
bank checks by 6%. Nicchiotti, Scagliola, and 
Rimassa (2000) presented a simple but effective 
segmentation algorithm. The algorithm is divided 
into three main steps: (1) possible segmentation 
points detection; (2) determining the cut direc-
tion; and (3) merging of oversegmented strokes to 
the main character by some heuristic rules. The 
authors reported results of 86.9% on a subset of 
words from the CEDAR database. Finally, Xiao 
and Leedham (2000) presented a knowledge-based 
technique for cursive word segmentation. They 
obtained segmentation results of 78.3% (correct 
rate) on a custom dataset collected by the authors, 
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and 82.9% on a subset of words from the CEDAR 
database. 

Most work in the area of cursive handwriting 
recognition focuses on oversegmentation and 
primitive matching, which has many problems. 
The detailed analysis (Blumenstein & Verma, 
2001; Verma et al., 2004) conducted by Blumen-
stein and Verma has shown that most existing 
segmentation algorithms have three major prob-
lems: (1) inaccurately cutting characters into parts; 
(2) missing many segmentation points; and (3) 
oversegmenting a character many times, which 
contributes to errors in the word recognition pro-
cess. This chapter presents the solution in Section 
IV for the aforementioned problems.

Feature Extraction

A crucial component of the segmentation-based 
strategy for handwriting recognition is the de-
velopment of an accurate classification system 
for scoring individual characters and character 
combinations, as identified in our preliminary 
work (Verma et al., 2004). The literature is 
replete with high accuracy recognition systems 
for separated handwritten numerals (Cho, 1997; 
Kapp et al., 2007; Plamondon & Srihari, 2000; 
Suen et al., 1993; Wen et al., 2007; Xu et al., 2003); 
however, it is clear from recent studies (Arica & 
Yarman-Vural, 2002; Britto et al., 2004; Camas-
tra & Vinciarelli, 2003; Hanmandlu et al., 2003; 
Suen & Tan, 2005; Wang et al., 2005) that the 
same measure of success has not been obtained 
for cursive character recognition. One of the ways 
in which researchers have tackled the problem 
of cursive/segmented character recognition is 
through the investigation of a variety of feature 
extraction techniques. However, the extraction of 
appropriate features has proved difficult based on 
three factors inherent in cursive/segmented char-
acter recognition: (1) the ambiguity of characters 
without the context of the entire word; (2) the il-
legibility of certain characters due to the nature 
of cursive writing (e.g., ornamentation, distorted 

character shape, etc.) (Blumenstein et al., 2004); 
and (3) difficulties in character classification due 
to anomalies introduced during the segmentation 
process (i.e., dissected character components 
(Blumenstein & Verma, 2001).

Feature selection

There has been a significant number of feature 
extraction techniques developed and employed for 
segmentation and overall handwriting recognition 
(Arica & Yarman-Vural, 2002; Blumenstein 
& Verma, 1999; Blumenstein & Verma, 2001; 
Blumenstein et al., 2003; Blumenstein et al., 2004; 
Britto et al., 2004; Camastra & Vinciarelli, 2003; 
Casey & Lecolinet, 1996; Chiang, 1998; Cho, 
1997; Dimauro et al., 1998; Dunn & Wang, 1992; 
Eastwood et al., 1997; Elliman & Lancaster, 1990; 
Fan & Verma, 2002; Fujisawa et al., 1992; Gader 
et al., 1997; Gang et al., 2002; Gilloux, 1993; 
Günter & Bunke, 2004; Hanmandlu et al., 2003; 
Kapp et al., 2007; Lu, 1995; Lu & Shridhar, 1996; 
Martin et al. 1993; Plamondon & Srihari, 2000; 
Singh & Amin, 1999; Srihari, 1993; Suen et al., 
1993; Verma, 2003; Verma et al., 1998; Verma 
et al., 2001; Verma et al., 2004; Vinciarelli et al., 
2003; Wang et al., 2005; Wen et al., 2007; Xiao, 
& Leedham, 2000; Xu et al., 2003; Yanikoglu 
& Sandon, 1998); however, the importance of a 
particular feature or feature value in recognizing 
a character has not been fully investigated. The 
selection of features is very important because 
there might be only one or two values, which are 
significant to recognize a particular segmented 
character/primitive. The research on feature 
selection in other pattern recognition areas has 
achieved promising results. The selection can 
be manually determined, or a better way is to 
automate and optimize the process by using neural 
genetic algorithms. The neural genetic algorithm 
has great advantages over traditional techniques. 
Our recent research has shown that neural genetic 
algorithms perform better in the selection of 
features than traditional techniques.
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Genetic algorithms are a class of search meth-
ods deeply inspired by the natural process of 
evolution. In each iteration of the algorithm (gen-
eration), a fixed number (population) of possible 
solutions (chromosomes) is generated by means of 
applying certain genetic operations in a stochastic 
process guided by a fitness measure. The most 
important and commonly used genetic opera-
tors are recombination, crossover, and mutation. 
Canonical genetic representations will be chosen 
for feature selection because in canonical GAs, 
a chromosome is represented through a binary 
string. If a bit is 1, it means that the corresponding 
feature value is selected. Otherwise, the feature 
value is omitted in that particular iteration. The 
mutation operator functions on a single string 
and changes a bit randomly. Crossover operates 
on two parent strings to produce two offspring. 
The fitness evaluation determines the confidence 
level of the optimized solution. In the feature 
selection process, the objective is to minimize 
the number of feature values. The character clas-
sification rate is used for fitness evaluation. In 
the selection phase, the population is initialized 
randomly. For each member in the population, 
if the bit position holds a zero value, the feature 
is assigned to zero, and a new dataset is created. 
With that dataset, the neural network is trained. 
So for individual members in the population, there 
is an individual neural network that is trained 
with a separate dataset. Then that trained neural 
network is used to calculate the fitness. The stop-
ping condition for training the neural network is 
equal for all the members in the population, and 
it is taken as the classification error. The stopping 
criterion of the genetic algorithm is the number 
of generations.

Classification

Classification in handwriting recognition refers 
to one of the following processes: (1) classifica-
tion of characters; (2) classification of words; 
and (3) classification of features. A number of 

classification techniques has been developed and 
investigated for the classification of characters, 
words, and features. The classification techniques 
have used various statistical and intelligent classi-
fiers, including k-NN, SVMs, HMMs, and neural 
networks.

For the classification of numerals/characters, a 
profuse number of techniques have been explored 
in the literature. Many statistical techniques have 
been employed for classification, such as k-Nearest 
Neighbor. However, some statistical methods have 
been found to be impractical in real-world applica-
tions, as they require that all training samples be 
stored and compared for the classification process 
(Liu & Fujisawa, 2005). In recent times, some 
of the most popular, powerful, and successful 
methods have employed neural network classifiers 
(Cho, 1997; Verma et al., 2004) and HMM-based 
techniques (Arica & Yarman-Vural, 2002; Cai 
& Liu, 1999), obtaining recognition rates above 
99% for off-line handwritten, isolated numerals. 
Recently, support vector machines have been 
employed for numeral/character classification, 
also obtaining impressive results above 99% (Liu 
& Fujisawa, 2005). It has also been found that 
the use of multistage and combined classifiers 
has been very successful for numeral/character 
classification (Camastra & Vinciarelli, 2003; Cao, 
Ahmadi & Shridhar, 1995).

For the word recognition problem, HMM-
based techniques have been popular for holistic 
methods (Plamondon & Srihari, 2000). Whereas 
for segmentation-based word recognition, neural 
network classification has been commonly used in 
conjunction with dynamic programming (Gader 
et al., 1997). HMMs continue to be a popular 
classification method in recent times (Günter & 
Bunke, 2005; Schambach, 2005; Viard-Gaudin et 
al., 2005), as is the use of classifier combinations 
such as neural networks and HMMs (Koerich et 
al., 2006). SVMs also have been used success-
fully for classification of words in recent studies 
(Gatos et al., 2006).
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rEVIEW OF EXIstING
HANDWrItING rEcOGNItION 
tEcHNIQUEs/sYstEMs

An enormous number of papers have been pub-
lished in the handwriting recognition literature 
in the last few decades (Arica & Yarman-Vural, 
2002; Blumenstein & Verma, 1999; Blumen-
stein & Verma, 2001; Blumenstein et al., 2003; 
Blumenstein et al., 2004; Bozinovic & Srihari, 
1989; Britto et al., 2004; Brown & Ganapathy, 
1983; Burges et al., 1992; Camastra & Vinciarelli, 
2003; Casey & Lecolinet, 1996; Chen et al., 1992; 
Chevalier et al., 2005; Chiang, 1998; Cho, 1997; 
Davis, 2005; Dimauro et al., 1997; Dimauro et 
al., 1998; Ding et al., 1999; Dunn & Wang, 1992; 
Eastwood et al., 1997; Elliman. & Lancaster, 1990; 
Fan & Verma, 2002; Fujisawa et al., 1992; Gader 
et al., 1997; Gang et al., 2002; Gatos et al., 2006; 
Gilloux, 1993; Guillevic & Suen, 1994; Günter & 
Bunke, 2004; Günter & Bunke, 2005; Hanmandlu 
et al., 2003; Howe, Rath, & Manmatha, 2005; 
Kim et al., 1999; Kimura et al., 1993; Koerich 
et al., 2006; Koerich, Sabourin, & Suen, 2005; 
Lee & Coelho, 2005; Liu & Fujisawa, 2005; Lu, 
1995; Lu & Shridhar, 1996; Madhvanath et al., 
1999; Marinai et al., 2005; Martin et al., 1993; 
Schambach, 2005; Senior, 1994; Singh & Amin, 
1999; Srihari, 1993; Srihari, 2006; Suen & Tan, 
2005; Suen et al., 1993; Verma, 2003; Verma et 
al., 1998; Verma et al., 2001; Verma et al., 2004; 
Viard-Gaudin et al., 2005; Vinciarelli et al., 2003; 
Wang et al., 2005; Xiao, & Leedham, 2000; Ya-
nikoglu & Sandon, 1998). A number of review 
papers on off-line handwriting recognition have 
been published (Koerich, Sabourin, & Suen, 2003; 
Plamondon. & Srihari, 2000; Steinherz, Rivlin, 
& Intrator, 1999; Verma et al., 1998; Vinciarelli, 
2002). In their review, Steinherz, et al. (1999) cat-
egorize off-line handwriting recognition systems 
into three categories: segmentation-free methods, 
segmentation-based methods, and perception-ori-
ented approaches, which the authors include as 
methods that perform similarly to human-reading 

machines using features located throughout the 
word. The authors did not compare the experi-
mental results of approaches reviewed, as it was 
felt that the field was not sufficiently mature for 
this. However, the authors commented that one 
of the most integral components of a handwriting 
recognition system related to the features used.

The review of Vinciarelli (2002) focused on 
a general discussion of off-line cursive word 
recognition and subsequently the pertinent appli-
cations relating to cursive word recognition (i.e., 
bank check recognition) (highest recognition rate 
reported: 89.2%), postal applications (highest rec-
ognition rate reported: 96.3%), and finally, generic 
recognition (highest recognition rate reported: 
99.3%). The main approaches that Vinciarelli 
identified in his review are explicit segmenta-
tion-based approaches, implicit segmentation-
based approaches, and human-reading-inspired 
approaches. The latter is similar to Steinherz’s 
perception-oriented approaches. Vinciarelli points 
out that these approaches are limited to the ap-
plication of bank check recognition, as they can 
only cope well with a small lexical. Although 
some high recognition rates were detailed in the 
review, most approaches dealt with were used on 
small vocabularies (lexical) for experimentation. 
The new frontier has been the exploration of large 
vocabulary off-line handwriting recognition.

The final review to be described was presented 
by Koerich, et al. (2003), which concentrated on 
the discussion of large vocabulary-based hand-
writing recognition systems. The authors stressed 
that in large vocabulary applications, segmenta-
tion-based approaches are recommended due to 
the large amount of training data required for use 
with holistic approaches. The review discussed 
methods for handling large vocabulary recognition 
such as lexicon reduction. The research of some 
authors was compared in this area. A case study 
was also included in the review featuring the 
authors’ system based on HMMs. For the largest 
lexicon (30,000 words), a top recognition accuracy 
of 73.3% was achieved. The authors commented 
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on the number of applications available for large 
vocabulary systems such as postal applications, 
reading handwritten notes, information retrieval, 
and reading fields in handwritten forms. Overall, 
it was concluded that large vocabulary recogni-
tion systems were still immature, and accurate 
recognition (with a reasonable speed) was still an 
open-ended problem.

state of the Art in cursive Word
recognition

In the current section, a number of very recent 
systems are presented, and some future directions 
are discussed in the field. Günter and Bunke’s 
recent research (2004, 2005) has focused on 
the use of ensemble methods and HMMs. On a 
medium-sized vocabulary, their results (Table 1) 
achieved 70% to 75% accuracy. The HMM-based 
technique proposed by Schambach (2006) on a 
large vocabulary has shown reduced recognition 
accuracy at 60%. Meanwhile, Koerich, et al. 
(2005) and Koerich, et al. (2006) obtained results 
close to 78% on a relatively large vocabulary 
problem combining neural networks and HMMs. 
These results are in contrast to Viard-Gaudin, et 
al.’s work (2005) and that of Gatos, et al. (2006) 

on a smaller vocabulary problem, obtaining re-
sults, respectively, above 90% using HMMs and 
just below 90% with SVMs. Finally, the boosted 
tree approach proposed by Howe, et al. (2005) 
obtained results between 50% and 60%.

Based on the results presented, a significant 
difference may be noted between small-medium 
vocabulary research presented and those using 
large vocabularies. Many researchers have em-
ployed HMM-based approaches; however, some 
have presented hybrids using neural networks 
(segmental neural networks). In the hybrid ap-
proaches, the use of supporting classifiers and 
segmentation-based methods has assisted the 
recognition accuracy for unconstrained, large 
vocabulary word recognition problems. It is 
this fusion/combination and the potential for 
improving segmentation-based techniques that 
will continue to be promising for future work in 
unconstrained cursive word recognition.

Cursive word segmentation poses a number 
of the following problems:

• Algorithms to tackle the variety of writing 
styles as well as appropriate features to 
describe the suitable segmentation points of 
interest and for subsequently determining 
correct/incorrect segmentations are lacking. 

Authors Accuracy (%) Technique Database

Koerich et al. (2006) 78% SNN & HMM combining low-level and high-level 
features

SRTP

Gatos et al. (2006) 87.68% SVM IAM

Howe et al. (2005) 51.1% - 63.5% Boosted Trees GW20

Günter and Bunke 
(2005)

75.61% - 82.28% HMMs and Ensemble Methods IAM

Viard-Gaudin et al. 
(2005)

92.4% HMMs IRONOFF

Koerich et al. (2005) 77.62% (large lexicon) 
- 99.29%

SNN and HMMs SRTP

Schambach (2005) 60% (large lexicon) HMMs Siemens DB

Günter and Bunke 
(2004)

71.58% HMMs and Classifier Ensembles IAM

Table 1. Accuracy for word recognition
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• In addition, the problem of cursive character 
recognition remains very much an open 
problem despite the success in the area of 
numeral recognition, as cursive characters 
appear ambiguous and in some cases in-
complete. 

• Salient features have still not been deter-
mined to adequately distinguish difficult/
ambiguous, segmented/cursive characters.

In the next section, we try to tackle and solve 
some of the aforementioned problems by intro-

ducing combined strategies for segmentation of 
handwritten words.

PrOPOsED strAtEGIEs FOr 
sEGMENtAtION-bAsED
HANDWrItING rEcOGNItION

As can be seen in previous sections, the segmen-
tation and feature extraction processes create 
major problems in achieving good classification 

Handwritten Word
Preprocessing
- Slant Correction 
- Baseline Estimation 
- Denoising 

Oversegmentation
Combination Strategies 
-Contour Extraction 
-Precedence and Forced 
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Figure 2. Proposed strategies for segmentation-based handwriting recognition
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accuracy. In this section, we propose various 
strategies for improving the segmentation-based 
handwriting recognition. An overview of the 
proposed combination strategies for segmenta-
tion-based cursive handwriting recognition is 
shown in Figure 2.

Most work in the area of segmentation focuses 
on oversegmentation and primitive matching, 
which have many problems. The detailed analysis 
conducted by Blumenstein and Verma (2001) and 
Verma, et al. (2004) has shown that most exist-
ing segmentation algorithms have three major 
problems: (1) inaccurately cutting characters into 
parts; (2) missing many segmentation points; 
and (3) oversegmenting a character many times, 
which contributes to errors in the word recogni-
tion process.

First, we propose a contour-based segmenta-
tion method, which should solve the first problem. 
A contour extraction approach for the extraction 
of the character’s contour between two segmenta-
tion points is very significant and useful. Contour 
extraction is very important because an extraction 
based on a vertical dissection may cut a character 
in half or in an inappropriate manner (missing 
important character components). The contour 
between two consecutive segmentation points 
is extracted using the following few steps. In 
the first step, disconnect the pixels near the first 
segmentation point, and disconnect the pixels near 
the second segmentation point. Find the nearest 
distance of the first black pixel from the first 
segmentation point and the baselines. Follow the 
contour path across that baseline having minimum 
distance. Find the connecting contour. Mark it 
as “visited” once it is located. If the contour has 
already been visited, then discard that and take 
the other part, if any.

Second, we propose a “precedence” and 
“forced” segmentation-based approach, which 
should solve the second problem. Here, the main 
aim is to develop an approach, which is based 
on evaluation of precedence and a rule to force 
a segmentation point. During oversegmentation, 

we detect the human-recognized features in 
handwriting, such as loops, hat shape, valleys, 
and so forth, which are used to determine real 
segmentation points. The problem here is that 
we miss some segmentation points because of 
errors in feature detection. A method that sets 
a precedence to various features such as to set 
highest priority for a blank vertical line (space 
between two characters) with the next priority 
given to average character width (to assist in 
accurate segmentation point placement), and so 
forth, is developed. Based on the aforementioned 
precedences, the method is forced to segment. In 
this way, we do not neglect any suspected points, 
which are “real” segmentation points. 

Finally, we propose a neural validation ap-
proach to remove incorrect segmentation points 
(third problem). This approach is based on three 
classifiers utilizing both multilayer perceptrons 
(MLPs) and support vector machines (SVMs). The 
success of neural-based techniques for numeral 
and character recognition (Chiang, 1998; Gader et 
al., 1997; Marinai et al., 2005; Verma et al., 2001) 
has provided the motivation for their use in the 
current context. The recent success in applying 
SVMs in the area of handwriting recognition justi-
fies their use alongside neural-based techniques, 
in some cases outperforming neural networks (Liu 
& Fujisawa, 2005). The first classifier is trained 
with information from left and right strokes of a 
character. The second classifier is trained with 
descriptive information from the segmentation 
points themselves. The third classifier is trained 
with the compatibility of adjacent characters. The 
final scores are fused, and the segmentation points 
are removed or retained based on the final score 
(confidence of the fused network output). 

In order to contend with the difficult prob-
lems inherent in accurately representing cursive 
character patterns, we propose a methodology 
to (1) simplify a character’s contour or thinned 
representation, (2) allow the extraction of local 
features determined from the directions of identi-
fied strokes/line segments, and (3) global features 
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obtained through the analysis of a character’s 
entire contour and dimensions (e.g., the width-
to-height ratio).

It is our contention that the key to effectively 
extracting the most meaningful features from 
segmented/cursive characters is through the lo-
cal and global analysis of a character’s contour. 
Hence, in order to obtain these local and global 
features, we require that the image is preprocessed 
(Blumenstein et al., 2004) and a binary bound-
ary retrieved. In the next step, it is necessary to 
trace the boundary, appropriately distinguishing 
individual strokes and determining appropriate 
direction values. This can be achieved by locating 
appropriate starting points and then investigat-
ing rules for determining the beginning and end 
of individual strokes. In this process, individual 
pixel directions are defined, and subsequently, a 
single value defining an individual stroke’s direc-
tion is recorded.

The goal of simplifying a character’s repre-
sentation is to dispense with the problem of il-
legibility based on the difficult nature of cursive 
handwriting. The local information is extracted 
from the character’s simplified representation to 
assist in the effective description of the character, 
to compress this information, and to facilitate the 
creation of a feature vector. It is proposed that 
this local information is extracted by zoning the 
character, processing the stroke data (i.e., encod-
ing it from each zone) and subsequently storing it 
for later processing. Once the local features are 
obtained, complimentary global information is 
extracted. 

The measurement of the physical location of 
each pixel in the simplified character boundary 
(obtained as mentioned in the previous paragraph) 
is obtained, which is then processed and recorded. 
In addition to this and in order to dispel the prob-
lem of ambiguity between character classes, the 
width-to-height ratio of each character is deter-
mined and stored. Other aspects of the character 
pattern also can be studied, such as the surface 
area and relative size. Hence, the output includes 

a global feature representation of the character’s 
boundary along with additional information such 
as its width-to-height ratio, surface area, and 
relative size.

Once these subtasks are completed, an inves-
tigation of the local and global features on their 
own and as a single vector is required. A classifier 
based on MLP and SVM is used.

cONcLUsION AND FUtUrE
rEsEArcH

In this chapter, a state of the art in handwriting 
recognition has been presented. A segmentation-
based handwriting recognition technique and 
its components are described in detail, which 
will help graduate students, researchers, and 
technologists understand the handwriting rec-
ognition processes. A critical literature review of 
existing techniques and challenges in the area of 
handwriting recognition has been presented. A 
comparative performance of recent developments 
in the area, including accuracies on benchmark 
databases, is presented. Some novel strategies to 
improve segmentation-based handwriting recog-
nition have also been presented. Future research 
will focus on the investigation and development 
of the presented strategies to improve segmenta-
tion accuracy and overall accuracies for general 
handwriting recognition systems.
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AbstrAct

This chapter reviews various elastic matching techniques for handwritten character recognition. Elastic 
matching is formulated as an optimization problem of planar matching, or pixel-to-pixel correspondence, 
between two character images under a certain matching model, such as affine and nonlinear. Use of 
elastic matching instead of rigid matching improves the robustness of recognition systems against geo-
metric deformations in handwritten character images. In addition, the optimized matching represents the 
deformation of handwritten characters and thus is useful for statistical analysis of the deformation. This 
chapter argues the general property of elastic matching techniques and their classification by match-
ing models and optimization strategies. It also argues various topics and future work related to elastic 
matching for emphasizing theoretical and practical importance of elastic matching. 

INtrODUctION

In handwritten character recognition, it is impor-
tant to tackle geometric deformations of charac-
ters. The geometric deformations are classified 
into the following four types: fluctuation of stroke 
thickness, linear deformations (e.g., translation, 
scaling, shear, and rotation), nonlinear and topol-
ogy-preserving deformations, and deformations 
changing topology. Those deformations will be 

caused by many factors; for example, writing 
material, writer’s habit, writing speed, writing 
style (especially cursive style), character size, 
inherent character shape, and noise and geometric 
transformation at character image acquisition.

The purpose of this chapter is to overview 
various elastic matching (EM) techniques for 
handwritten character recognition. EM is also 
called deformable template (Trier, Jain & Taxt, 
1996), flexible matching (Mori, Yamamoto & 
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Yasuda, 1984), or nonlinear template matching 
(Mori, Suen & Yamamoto, 1992), and has been 
developed by many researchers to tackle the 
geometric deformations. EM has been employed 
in not only handwritten character recognition but 
also many other image pattern matching problems, 
such as face recognition, fingerprint recognition, 
gesture recognition, medical image analysis, au-
tomatic image morphing, computer vision (e.g., 
stereo), and motion analysis. For more general 
surveys, see Glasbey and Mardia (1998), Jain, 
Zhong, and Dubuisson-Jolly (1998), Lester and 
Arridge (1999), Redert, Hendriks, and Biemond 
(1999), and Zitová and Flusser (2003).

EM is formulated as an optimization problem 
of planar matching, or 2D-2D mapping between 
two character images, A and B. From another 
viewpoint, EM treats a character image A like 
a “rubber sheet”’ and fits it to another character 
image B as closely as possible. Hereafter, this 
2D-2D mapping from A to B is called 2D warp-
ing (2DW). Note that we can consider EM based 
on 1D-2D mapping, where a 1D-stroke model 
is fitted to input image, although this chapter 
mainly concerns EM techniques based on 2DW. 
In a later section, we will briefly review these EM 
techniques based on 1D-2D mapping.

For handwritten character recognition, EM 
possesses two merits. The first merit is that the 
distance evaluated under the optimized 2DW is 
deformation-invariant. Thus, by using the EM 
distance as a discriminant function, we can realize 
character recognition systems robust to the geo-
metric deformations. The range of the invariance 
depends on the definition of 2DW; that is, the more 
flexible 2DW becomes, the more invariant the 
EM distance becomes. Thus, EM has a potential 
to provide more intuitive and robust recognition 
frameworks than other deformation-invariant 
techniques, such as invariant feature (e.g., the 
horizontal projection profile by Nakata, Nakano, 
and Uchikura (1972)) and shape normalization 
(Lee & Park, 1994; Liu, Nakashima, Sako, & 
Fujisawa, 2004).

The second merit is that the optimized 2DW 
itself describes the deformation of subjected 
characters. This fact shows that EM possesses a 
useful property of structural analysis techniques. 
Furthermore, EM can be linked to statistical and 
stochastic frameworks by the merit. Active shape 
models (Cootes, Taylor, Cooper & Graham, 1995; 
Shi, Gunn, & Damper, 2003; Uchida & Sakoe, 
2003a) and (pseudo-) 2D HMMs (Agazzi, Kuo, 
Levin, & Pieraccini, 1993; Kuo & Agazzi, 1994; 
Levin & Pieraccini, 1992; Park & Lee, 1998) are 
two good examples.

The remaining part of this chapter is organized 
as follows. First, EM is formulated as an optimi-
zation problem of 2D-2D mapping (i.e., 2DW). 
General properties of EM and the EM distance 
are also described. Second, EM techniques are 
classified according to their specific formulations 
of 2DW and optimization strategies. It will be 
emphasized that there is a strong relation between 
the formulation and the optimization strategy. 
Third, several related topics are discussed, such 
as incorporation of category-dependent deforma-
tion tendency. Fourth, EM techniques based on 
1D-2D mapping are briefly reviewed, which is 
another type of EM used in handwritten character 
recognition. Finally, conclusions are presented 
after listing various future tasks for EM.

OUtLINE OF ELAstIc MAtcHING

Formulation of EM

As described before, EM is formulated as an opti-
mization problem of 2D-2D mapping (i.e., 2DW) 
between two character images, A and B. Let ai,j 
and bx,y denote pixel values (e.g., intensity values) 
or pixel feature vectors (e.g., RGB vectors) at pixel 
(i,j) on A and (x,y) on B, respectively. While we 
can deal with the matching between two images 
of arbitrary sizes, we hereafter assume N N×  
images for simplicity. 
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Let F denote 2DW from A to B (i.e., 
( ) ( ): , ,i j x yF   ). The 2DW F represents the 

pixel-to-pixel correspondence between A and B 
as shown in Figure 1. Using F, we can consider 

( ){ },i j=F FB b  which is the deformed image of B 
by the 2DW F. If F is a topology-preserving 2DW, 
BF undergoes rubber-sheetlike deformations.

EM is formulated as the minimization problem 
of the following objective function with respect 
to F:

( ) ( ), , ( , )
1 1

,
N N

i j i j
i j

J D
= =

= = -∑∑A B F FF A B a b  ,

where D(A, BF) is a simple “rigid”’ distance 
between A and BF, and ⋅  denotes a distance 
metric between two pixel feature vectors, such as 
Euclidean distance and absolute distance. 

The EM distance ( )EM ,D A B  is obtained as the 
solution of the previous minimization problem; 
that is, 

( ) ( ) ( )EM , ,, minD J J= =A B A BF
A B F F ,

where F  denotes the optimal F, which minimizes 
JA,B(F). Clearly, ( ) ( )EM , ,D D= FA B A B



. That is, 
EM distance is the rigid distance between A and 
B after fitting B to A as closely as possible. 

Figure 2 shows two examples of EM results 
(Uchida & Sakoe, 1998), where the 2DW F  is rep-
resented as a deformed mesh. If the optimal 2DW 
F  shows correct correspondence, it represents the 
deformation of B relative to A.

Recognizers based on the EM distance 
( )EM ,D A B  are expected to be robust to geomet-

ric deformations. This is because ( )EM ,D A B  is 

x

y

i

j

A={ ai,j } B={ bx,y }

2D-2D mapping F
(2D warping)

(x, y)

..
.

..
.

(i, j)

Figure 1. 2DW defined between two handwritten character images (© copyright 2005IEICE)

F~ F~BA B F~ F~B

Figure 2. Examples of EM results
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invariant to the deformations compensable by F. 
For example, if the 2DW F is defined as an affine 
transformation, ( )EM ,D A B  is theoretically invari-
ant to any affine transformed version of B. 

Although past literatures have reported the 
usefulness of the EM distance on its robustness to 
the deformations, the EM-based recognizers often 
suffer from overfitting, which is the phenomenon 
that the distance between similar-shaped char-
acters of different categories is underestimated. 
For example, if F is an affine transformation, 

( )EM "9","6"D  becomes a very small value because 
the affine transformation can compensate 180° 
rotation. Thus, the input “9” may be misrecognized 
to the different category “6”. Generally, there is 
a trade-off between the ability of compensating 
deformations (i.e., the flexibility of F) and the 
risk of overfitting.

Anisotropy is another important aspect of 
the EM distance ( )EM ,D A B . Unlike Euclidean 
distance, the set of patterns equidistant from a 
certain pattern do not form a hypersphere. Con-
sequently, the centroid (the center of gravity) of a 
set of patterns may not be placed around the center 
of their distribution in Euclidean space. Figure 3 
(Matsumoto, Uchida, & Sakoe, 2004) shows an 
experimental result of deriving a centroid for a set 
of patterns. The small dots are actual handwrit-
ten numeral patterns of a category, and the black 
triangle is their centroid. They are displayed in the 
2D subspace spanned by their first two principal 

axes. When the Euclidean distance is used, the 
centroid is placed around the center of pattern 
distribution (Figure 3(a) ). In contrast, when the 
EM distance is used, the centroid is not placed 
around the center (Figure 3(b) ).

The EM distance is often asymmetric; that 
is, ( ) ( )EM EM, ,D D≠A B B A , and therefore just a 
pseudodistance metric. This asymmetric prop-
erty comes from the fact that the 2DW defined 
previously is not a bijective mapping. If sym-
metric property is necessary, one may simply use 

( ) ( )EM EM, ,D D+A B B A  instead of ( )EM ,D A B . 
 A more plausible solution is the use of a bijec-
tive 2DW; in this case, not only B but also A 
are deformed by the 2DW, and the optimization 
of the bijective 2DW tends to be a complicated 
one. As reported in past literatures, this asym-
metric property is not crucial for the recognition 
performance. 

cLAssIFIcAtION OF ELAstIc 
MAtcHING tEcHNIQUEs

In this section, EM techniques are classified into 
several types. The classification can be done by 
two factors: the specific formulation of 2DW 
and the optimization strategy of 2DW. Figure 4 
(Uchida & Sakoe, 2005) shows a classification 
tree based on those factors.

The first factor affects the range of compen-
sable deformations. While 2DW F was formulated 

(a) (b)

Figure 3. The centroids under (a) Euclidean distance and (b) EM distance (© copyright 2005IEICE)
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as a general 2D-2D mapping in the previous 
section, specific formulations are necessary for 
individual tasks. As shown in Figure 4, the EM 
techniques can be divided roughly into two classes 
by the 2DW formulation: parametric 2DW-based 
EM and nonparametric 2DW-based EM. In para-
metric 2DW, each variable does not represent pixel 
correspondence but represents a parameter that 
controls 2DW indirectly. In nonparametric 2DW, 
each variable that controls F directly represents 
pixel correspondence. 

On the formulation of 2DW, it is important 
to consider the deformation characteristics of 
handwritten characters. For example, when we 
can assume that handwritten characters mainly 
undergo rubber-sheetlike deformations, topol-
ogy-preserving 2DW is a natural choice. Both 
parametric 2DW and nonparametric 2DW are 
further classified into several classes, depending 
on this consideration. 

The second factor, the optimization strategy 
of 2DW, affects the accuracies of the results of 
EM; namely, the accuracies of the minimized 
distance and the optimized 2DW. Generally, opti-
mization strategies for globally optimal solutions 

will provide more accurate results than those for 
suboptimal solutions. 

As shown in Figure 4, each class by the for-
mulation of 2DW is closely related to several 
optimization strategies. In other words, possible 
optimization strategies are almost determined 
according to the formulation. 

We should note that those two factors mutually 
affect the computational complexity of EM. For 
example, strategies for globally optimal solutions 
will require more computations than those for 
suboptimal solutions in general. The effect of the 
formulation of 2DW on computational complex-
ity is more complicated. In the following, the 
computational complexity of each EM technique 
is discussed carefully. 

Parametric 2DW

Linear �DW

Among parametric 2DWs, linear 2DW is the 
simplest and the most common one. Linear 2DW 

( ) ( ): , ,i j x yF   is generally formulated as:

elastic image matching
for handwritten character recognition

parametric 2D W non-parametric 2D W
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Figure 4. Classification of planar EM techniques for handwritten character recognition (© copyright 
2005IEICE)
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, )+ += + +1 2 3 4 5 6( , ) ( ,x y i j i j

where α1, α2, …, and α6 are real-valued param-
eters that control F. If α1= α5=1 and α2= α4=0, this 
linear 2DW will compensate translation only. 
If α2= α3= α4= α6=0, the 2DW will compensate 
horizontal and vertical scaling. If all of the six 
parameters are controllable, F becomes the affine 
transformation. 

Although the formulation of linear 2DW is 
very simple, its optimization problem becomes a 
complicated one. In fact, since the parameters to 
be optimized are involved in a nonlinear image 
pattern function B, the optimization problem also 
becomes nonlinear. Thus, EM techniques based 
on linear 2DW have employed iterative solutions 
or approximate solutions.

An example of the iterative solution of lin-
ear 2DW is done by Wakahara and colleagues 
(Wakahara, Kimura, & Tomono, 2001; Waka-
hara, & Odaka, 1998). They have employed 
affine transformation as 2DW. The optimization 
problem of the parameters α1, α2, …, and α6 is 
approximated as a linear problem by a successive 
iteration method.

The tangent distance method (Keysers, Dah-
men, Theiner, & Ney, 2000; Simard, Le Cun, 
& Denker, 1993) has been proposed as another 
linear 2DW-based EM where a nonlinear optimi-
zation problem of linear 2DW is approximated 
as a linear problem by Taylor series expansion. 
Specifically, the tangent distance method assumes 
a nonlinear manifold that contains all deformed 
character patterns of a certain category. Then, this 
manifold is approximated to be its tangent plane. 
Consequently, the EM problem is reduced to the 
minimum distance problem between the tangent 
plane and an input pattern; that is, a linear problem. 
Recently, this idea was successfully linked with 
statistic framework (Keysers, Macherey, Ney, & 
Dahmen, 2004). 

A more straightforward solution is also pos-
sible by using an exhaustive search strategy. 
Yasuda, Yamamoto, and Yamada (1997) proposed 

the perturbed correlation method, where a 2D 
reference pattern is “perturbed” by a huge number 
of affine transformations. Each perturbed pattern 
is rigidly matched with a 2D input pattern, and 
the best perturbed pattern is searched for. Since 
the number of possible parameter values becomes 
very large, this method requires numerous and re-
petitive 2D-2D rigid matching. Recent hardware, 
however, makes the method a computationally 
tractable one. A similar method can be found in 
Ha and Bunke (1997).

Perspective transformation is another impor-
tant class of linear transformation. Nowadays, 
camera-based character recognition is widely 
investigated (Liang, Doermann & Li, 2005), and 
one of its main hurdles is how to compensate 
the perspective transformation due to an oblique 
camera angle. In past researches, perspective 
transformation has not been compensated by 
2DWs at individual characters of a document; 
instead, it has been compensated by a preprocess-
ing technique, called dewarping, for the entire 
document image. When camera-based character 
recognition tackles “rumpled” documents, EM 
should be applied to individual characters for 
compensating perspective transformation. 

Orthogonal �DW

In several EM techniques, 2DW F is represented as 
a linear combination of orthogonal functions:

( ) ( )
1

, ,
K

k k
k

x y x y
=

= ∑ ,   (1)

where φ1, ..., φk, ..., φK are orthogonal 2D-2D 
functions; that is, , 0k l =  for k l≠ , and 

1, , , ,k K   are parameters to be opti-
mized.

One of the most reasonable choices of { }k  
will be orthogonal sinusoids. Jain and Zongker 
(1997) have proposed a sinusoid-based 2DW 
and optimized its gain parameters { }k  by a 
natural coarse-to-fine strategy; the parameters 
of low-frequency sinusoids are first determined 
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and fixed by the gradient descent method (i.e., 
an iterative method), and then the parameters 
of high-frequency sinusoids are determined in 
a similar way. 

The active shape model (ASM) proposed 
by Cootes, et al. (1995) is a statistical deforma-
tion model defined as a linear combination of 
orthogonal deformations that are provided by 
applying principal component analysis (PCA) 
to actual deformations collected from training 
patterns. Inspired by ASM, Shi et al. (2003) have 
proposed a 1D-2D EM technique for the character 
recognition task. In this work, a linear (e.g., 1D) 
reference pattern is fitted to a 2D input pattern. 
The fitting is governed by the principal deforma-
tions of the 1D reference pattern and evaluated 
by the chamfer distance. The optimal fitting that 
minimizes the chamfer distance is searched for by 
a gradient descent method. A related idea can be 
found in Kimura, Yoshimura, Miyake, and Ichi-
kawa (1970), where the displacement between the 
strokes of two skeletonized handwritten characters 
is evaluated by the Maharanobis distance.

Uchida and Sakoe (2003a) have extended ASM 
to fully 2D-2D EM (i.e., planar EM) and applied 
to handwritten character recognition. Figure 5 
shows the reference pattern of “A” deformed by 
applying the principal deformations 1 2 3, ,  
(called the eigen-deformations in Uchida and 
Sakoe, 2003a) of “A” positively or negatively. 
The first eigen-deformation represents the slant 
deformation, and the second represents the vertical 
shift of the horizontal stroke. It is interesting to 
note that those eigen-deformations were estimated 
from the deformations collected as a result of 
nonparametric EM, as noted later. 

Uchida and Sakoe (2003b) have combined 
the previously mentioned ASM technique with 
the tangent distance method. In this strategy, 
the eigen-deformations of Figure 5 are converted 
into the tangent vectors of  by the Taylor series 
expansion. Those tangent vectors will span the 
tangent plane of the manifold, which contains all 
the patterns realized by the ASM. Those tangent 
vectors are then used as { }k  in (1), while they are 
not orthogonal.

 
1st 
eigen-def.

2nd 
eigen-def.

3rd 
eigen-def.

0 +-

1st 
eigen-def.

2nd 
eigen-def.

3rd 
eigen-def.

0 +-

Figure 5. Top three eigen-deformations of “A”

Figure 6. Tangent vectors for the top three eigen-deformations of Figure 5.
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Nonparametric 2DW

Nonparametric 2DW is treated as a set of indi-
vidual pixel-to-pixel correspondences between 
two images. This implies that nonparametric 2DW 
is controlled more directly than parametric 2DW 
and therefore more flexible than parametric 2DW. 
The nonparametric 2DWs can be divided into two 
classes: continuous 2DW and discrete 2DW.

Continuous �DW

Continuous (and nonparametric) 2DW is formu-
lated as a mapping ( ) ( )2 2: , ,i j x y∈ℜ ∈ℜF  ; 
that is, a 2D-2D function. Consequently, the opti-
mization problem of the continuous 2DW is often 
formulated as a variational problem; a continuous 
2DW F is considered an argument function of the 
underlying variational problem, and JA,B(F) is the 
functional to be minimized. 

The variational problem often is solved by 
the deterministic relaxation (Sakaue, Amano & 
Yokoya, 1999). Specifically, the Euler-Lagrange 
equation is first derived and discretized to obtain 
a system of nonlinear equations. Then a subopti-
mal 2DW is obtained by solving the equations by 
some iterative method, such as the Gauss-Seidel 
method. Mizukami (1998) has successfully ap-
plied the deterministic relaxation to handwritten 
character recognition. 

Regularization techniques and/or coarse-
to-fine strategies are necessary for solving the 
variational problem based on the deterministic 
relaxation. This is because the Euler-Lagrange 
equation is only a necessary condition for the 
optimal solution of the variational problem. In ad-
dition, since the system of equations is nonlinear, 
the Gauss-Seidel method cannot guarantee even 
its convergence. Mizukami (1998) has employed 
a regularization technique and a careful coarse-
to-fine strategy.

Another interesting approach is to relate con-
tinuous 2DW to physical phenomena. Webster and 
Nakagawa (1997) and Nakagawa, Yanagida, and 

Nagasaki (1999) have proposed a motion equa-
tion-based EM technique. In their techniques, an 
elastic membrane created from B is falling into 
a potential field created from A. The membrane 
showing BF is updated iteratively by calculating 
its motion equation until an equilibrium state. 
For EM of medical images, we can find differ-
ent physical formulations (Bajscy & Broit, 1982, 
Christensen, Rabbitt & Miller, 1996). 

As already seen, continuous 2DW has often 
been assumed as a differentiable function and 
optimized by some iterative optimization strat-
egy. In this sense, continuous 2DW is similar to 
several parametric 2DWs.

Discrete and Unconstrained �DW

The discrete 2DW is formulated as a set of 2N2 
variables:

( ) ( ) ( )( )1,1 1,1 , , , ,, , , , , , ,i j i j N N N Nx y x y x y 

where ( ), ,,i j i jx y  denotes the pixel on B correspond-
ing to the pixel (i,j) on A. The discrete 2DW is fur-
ther divided into two classes: unconstrained 2DW 
and constrained 2DW. In unconstrained 2DW, 
the mapping of the pixel (i,j); that is, ( ), ,,i j i jx y , 
is independent of the mapping of other pixels. 

Since there is no constraint among pixels, it is 
possible to determine the optimal ( ), ,,i j i jx y  for each 
pixel (i,j) independently. This pixel-independent 
optimization strategy is called local perturbation 
(Burr, 1981, Hattori, Watanabe, Sanada & Te-
zuka, 1983; Izui, Harashima & Miyagawa, 1985; 
Liolios, Kavallieratou, Fakotakis & Kokkinakis, 
2002; Meguro & Umeda, 1978; Saito, Yamada & 
Yamamoto, 1982; Yamada, Saito & Mori, 1981), 
or image distortion model (Keysers et al., 2000; 
Keysers, Gollan & Ney, 2004). For each pixel (i,j) 
on A, its best corresponding pixel ( ), ,,i j i jx y  on B 
is searched for locally and independently. The 
great merit of this simplest optimization strategy 
is its far less complexity than other optimization 
strategies. 
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Local perturbation, however, possesses a weak 
point: the resulting 2DW becomes jaggy due to the 
noise and the ambiguity in pixel features. Thus, 
careful coarse-to-fine strategies (Izui et al., 1978), 
smoothing of local displacements (Burr, 1981; 
Hattori et al., 1983), sequential (outside-to-inside) 
optimization with mild constraints (Hattori et al., 
1983), and/or sophisticated pixel features (Keysers 
et al., 2004; Saito et al., 1982) will be indispens-
able to expect sufficient performance.

Discrete and Constrained �DW

In discrete and constrained 2DW, the mapping 
of the pixel (i,j) is constrained by the mapping 
of adjacent pixels of (i,j) for regulating flex-
ibility. For example, continuity constraints, such 
as , 1,i j i jx x xi-- ≤ ∆  where ∆xi is a positive small 
constant, are often imposed on 2DW to exclude 
large gaps from 2DW. The four parameters  
∆xi, ∆xj, ∆yi, and ∆yj of Figure 7 are often used 
for specifying the constraints; that is, for speci-

fying the flexibility of the 2DW. Monotonicity 
constraints such as , 1, 0i j i jx x -- ≥  are also popular 
constraints to exclude foldover from 2DW.

According to the constraints imposed on the 
adjacent pixels, previous discrete and constrained 
2DWs can be classified into DP1-DP5 of Figure 
8. Each node of the graph on B represents the 
pixel ( ), ,,i j i jx y  corresponding to a pixel (i,j) on 
A. Each link represents the dependency between 
the mappings of adjacent pixels on A (e.g., the 
dependency between ( ), ,,i j i jx y  and ( )1, 1,,i j i jx y- -  ). 
As shown in the figure, it is often assumed that 
all 2DWs are restricted by boundary constraints 
that any boundary pixel of A corresponds to a 
boundary pixel of B.

Note that a discrete and constrained 2DW 
other than DP1-DP5 has been proposed in Moore 
(1979), Tanaka (1985), and Wu, Liu, and Chang 
(1995). This 2DW is optimized diagonally from 
one corner (1,1) to its opposite corner (N,N) while 
extending a rectangular region being processed. 
Despite its computational feasibility, its flexibility 
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does not seem to match actual deformations of 
handwritten characters.

Table 1 summarizes the constraints specify-
ing the 2DWs, DP1-DP5. DP1-DP4 are specified 
by asymmetric constraints; the constraints in 
vertical direction are different from those in 
horizontal direction. Thus, DP1-DP4 are not fully 
two-dimensional 2DWs and cannot compensate 
truly 2D deformations such as rotation and slant. 
This fact can be understood from the fact that 
all the pixels on each column of A are mapped 
together to the same column of B. In contrast, 
DP5 is specified by symmetric constraints and 
thus fully two-dimensional. Note that every type 
except DP5 has its transposed (i.e., rotated 90 
degrees) version. 

Table 1 also summarizes the computational 
complexity to obtain the optimal 2DW when 
dynamic programming (DP) is used as the op-
timization strategy. DP has been employed for 
many discrete and constrained 2DWs because of 
its useful properties. DP can guarantee globally 
optimal 2DW and be free from numerical errors. 
Those properties imply high accuracy of the 
2DW optimized by DP. In addition, DP accepts 
undifferentiable objective functions, position-
dependent constraints, and various pixel features. 
Furthermore, DP framework can be readily ex-
tended to be HMM. (Note that HMM and DP are 
not distinguished in this section unless otherwise 
mentioned.) Those versatility and extension abili-
ties are other useful properties of DP. 

Constraints Computational
Complexity by DP

Note
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Table 1. Property of discrete and constrained EMs, DP1-DP5
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DP1 is the simplest 2DW and can compensate 
simple (and intrinsically 1D) deformations where 
all the pixels of each column are shifted equally 
and horizontally. DP1 itself has been employed in 
word recognition (Cho, Lee & Kim, 1995; Mak-
houl, Schwaltz, Lapre & Bazzi, 1998; Mohamed 
& Gader, 1996; Shiku, Nakamura, Kuroda & 
Miyahara, 2000) rather than isolated handwritten 
character recognition. 

While the optimization of DP1 requires fewer 
computations than others, DP1 cannot compensate 
for any vertical deformation. Thus, DP1 is often 
repeated to compensate for deformations that are 
more complex. Nakano, Nakata, Uchikura, and 
Nakajima (1973) have proposed a DP-based EM 
technique where the vertical version of DP1 is op-
timized after the horizontal version is optimized. 
Hallouli, Likforman-Sulem, and Sigelle (2002) 
have compared several combinations of vertical 
and horizontal versions of DP1 in the framework 
of HMM. In Nishimura, Tsutsumi, Maruyama, 
Miyao, and Nakano (2001), DP1 is repeated four 
times under different feature vectors having dif-
ferent roles on representing spatial distribution of 
strokes. Wang, Brakensiek, Kosmala, and Rigoll 
(2001) first use a horizontal DP1 for segmenting a 
handwritten word into its component characters, 
and second use a vertical DP1 for compensating 
the vertical deformation of each of those compo-
nent characters.

DP2 is comprised of independent one-dimen-
sional vertical warpings. DP2 cannot compensate 
for any horizontal deformation. Thus, DP2 is 
often repeated like DP1. In Isomichi and Ogawa 
(1975), the vertical version of DP2 is optimized 
after the horizontal version is optimized. Tsukumo 
(1992) has proposed a smart technique where a 
blurring operation is employed to complement 
the compensation ability of DP2. 

DP3 is the most popular 2DW among discrete 
and constrained 2DWs. DP3 can compensate both 
vertical and horizontal deformations simultane-
ously with polynomial-order computations. The 
HMM version of DP3 is so-called Pseudo-2D 

HMM (Agazzi et al., 1993; Kuo & Agazzi, 1994; 
Levin & Pieraccini, 1992) and widely used in 
recognizing handwritten characters (Levin & 
Pieraccini, 1992), machine-printed words (Agazzi 
et al., 1993; Kuo & Agazzi, 1994; Yen, Kuo, & 
Lee, 1999), and handwritten words (Bippus & 
Märgner, 1999). 

DP3 has been extended by Keysers, et al. 
(2004). Their 2DW allows columnwise local 
perturbation on the 2DW given by DP3. This 
extended DP3 can provide truly 2D warping 
with a feasible amount of computations. Large 
perturbation should be used carefully because it 
may lose continuity and monotonicity.

DP4 can realize a topology-preserving 2DW 
since it is constrained in both vertical and horizon-
tal directions at each pixel. Thus, DP4 can avoid 
the overfitting of “P”' to “b”' by the discontinuity 
between two strokes. (This overfitting can happen 
in DP2 and DP3.) 

The computational amount of DP4 is an expo-
nential order of N and thus far larger than DP1-
DP3. This is because it is impossible to optimize 
the mapping of each column independently; that 
is, the mutual relation between the mappings of 
adjacent columns should be considered during the 
optimization. DP4 is a restricted version of DP5, 
and therefore, its algorithm can be derived easily 
from DP5 (Uchida & Sakoe, 1998, 1999).

DP5, which is a truly 2D 2DW, was originally 
proposed by Levin and Pieraccini (1992). In their 
technique, ∆xi, ∆xj, ∆yi, and ∆yj are set at their 
maximum value, N. Thus, their 2DW can preserve 
upper/lower and left/right relationships (i.e., verti-
cal and horizontal monotonicity) and does not care 
about continuity of character patterns. In other 
words, their 2DW allows large discontinuities and 
thus is not a topology-preserving 2DW. (Theoreti-
cally, their 2DW can map “A” to “H” by losing 
the continuity around the top of “A.”) Inspired by 
Levin and Pieraccini (1992), Uchida and Sakoe 
(1998, 1999) have proposed a topology-preserving 
and truly 2D 2DW (i.e., truly rubber-sheet EM), 
where 2xi yj∆ = ∆ =  and 1xj yi∆ = ∆ = . 
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Although DP5 has a good potential to realize 
truly rubber-sheet EM, its optimization of DP5 
is an NP-hard problem (Keysers & Unger, 2003) 
and thus requires exponential-order computations. 
Even if character images are small (N ≈ 20), it is 
impossible to obtain the globally optimal 2DW. 
Thus, some approximation should be introduced 
for the practical use of DP5. In Uchida and Sakoe 
(1998, 1999), beam search is incorporated into the 
DP optimization process to obtain a suboptimal 
2DW with fewer computations. One can employ 
other local search-based approximation algo-
rithms for DP-based EM. In Sugimura, Iiguni, 
and Adachi (1997), the optimization of DP5 is 
performed in a sequential (i.e., column-by-col-
umn) and greedy manner. In Chen and Willson 
(2000), this sequential and greedy optimization 
is iterated to refine the result. In Quénot (1992), 
the iteration proceeds alternately in horizontal 
and vertical directions. Uchida and Sakoe (2000a) 
have proposed an approximation algorithm that 
exploits the fact that the global optimization by 
DP can be done very fast if an image pattern is 
an elongated one.

Hybrid between Parametric 2DW and 
Nonparametric 2DW

The boundary between parametric 2DW and 
nonparametric 2DW is not strict, and in fact, their 
hybrids have been proposed. A popular way to 
realize the hybrids is to employ piecewise linearity, 
or local linearity. DP6 and DP7 (Ronee, Uchida & 

Sakoe, 2001; Uchida & Sakoe, 2000b) of Figure 
9 is a piecewise linear version of DP5. In DP6, 
the mapping of each column (i.e., the mapping of 
N pixels) is represented as line segments whose 
control points are fewer than N. DP7 employs more 
drastic linearization that the column is mapped as 
a line. The merit of the DP6 and DP7 is that they 
can compensate 2D deformations (unlike DP1-
DP4) with polynomial-order computations. (For 
DP6 and DP7, the optimization by DP requires 
O(N6) and O(N4) computations.) 

Local affine transformation (LAT) proposed by 
Wakahara (1994) is also a hybrid based on local 
linearization. In LAT, 2DW is described by a set 
of many locally effective affine transformations. 
Thus, LAT is a parametric 2DW in a microscopic 
sense and simultaneously a nonparametric 2DW 
in a macroscopic sense.

Uchida and Sakoe (2003b) also present a hybrid 
2DW, different from local/piecewise linearization. 
This 2DW is a parametric and orthogonal 2DW 
where the principal components of within-cat-
egory deformations, called eigen-deformations, 
are used as orthogonal functions. The eigen-defor-
mations themselves, however, are estimated from 
the results of some nonparametric 2DW. Thus, this 
technique can be considered a parametric 2DW 
on its optimization and a nonparametric 2DW on 
the ability of compensating deformations. 

The deformations of handwritten characters 
can be decomposed into global deformations and 
local deformations. Scaling, rotation, translation, 
and projective transformation of an entire char-
acter image are examples of the global deforma-
tions. Independent and partial changes of stroke 
direction, curvature, and length are examples of 
local deformations. EM should compensate both 
deformations. Since the parametric 2DW and the 
nonparametric 2DW are suitable for compensating 
the global deformations and the local deforma-
tions, respectively, their cooperative combination 
will be promising.

DP 6 DP 7

Figure 9. Piecewise linear 2DW
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rELAtED tOPIcs

comparison with shape
Normalization

Shape normalization (Lee & Park, 1994; Liu et 
al., 2004) is another strategy to provide a defor-
mation-invariant distance. For example, linear 
scaling of the bounding box of a character is the 
simplest normalization technique and enough to 
realize scale-invariant recognition. Line density 
equalization (Yamada, Yamamoto & Saito, 1990) 
is a nonlinear shape normalization technique and 
can adjust nonlinear deformations.

Figure 10 illustrates the difference between 
shape normalization and EM. As shown in Fig-
ure 10(a), EM shifts B to a pattern close to A. In 
contrast, as shown in Figure 10(b), shape normal-
ization shifts A to a pattern having some ideal 
property and shifts B independently to another 
pattern having the same property. In general, EM 
has a greater ability to compensate deformations. 
This fact also indicates that EM has more risks of 
providing underestimated distance between two 
character patterns of different categories; namely, 
EM has more risks of overfitting.

EM and shape normalization can be utilized 
in a collaborative manner like the collaboration 
of parametric 2DW and nonparametric 2DW 
discussed previously. For example, shape nor-
malization is applied first to remove global and 

simple deformations, and then EM is applied 
to remove local and complicated deformations. 
This collaboration may suppress the overfitting 
by EM. Tsukumo’s (1992) EM technique based 
on DP2 is another good example where blurring 
normalization is employed to complement the 
lesser flexibility of DP2. 

reference Patterns for EM

EM-based recognition can be considered multiple 
reference-based recognition since EM generates a 
reference pattern BF adaptively to the input pattern 
A. Thus, the seed of the adaptive generation (i.e., 
the original reference pattern B) should be care-
fully designed. Most of EM-based recognizers, 
however, do not pay much attention to this point; 
several patterns manually designed/selected are 
often used as B, or all of training patterns are 
directly used as a set of B (Jain & Zongker, 1997; 
Simard et al., 1993).

Like other recognizers, clustering will be 
promising to set reference patterns in a sophisti-
cated manner. Actually, any clustering technique 
(e.g., k-means, ISODATA, LVQ, and GLVQ) can 
be used for EM. Matsumoto, et al. (2004) have 
pointed out that the objective function of cluster-
ing should be designed using the EM distance 
instead of the conventional Euclidean distance. 
This is because the reference patterns optimized 
under a Euclidean distance-based clustering are 

 A

B

pattern space

dist. bet.A andB

(a)

. ..
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B

pattern space
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(b)

. ..
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Figure 10. Distance between A and B given by EM (a) and normalization (b)
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not optimal for EM distance-based discrimina-
tion (see Figure 3). Accordingly, Matsumoto, et 
al. (2004) have proposed a k-means algorithm 
based on the EM distance. Another trial can be 
found in Hastie, Simard, and Säckinger (1995), 
where clustering based on the tangent distance 
has been proposed.

Pixel Feature

In general, the less ambiguous a pixel feature 
vector becomes, the more accurate the optimized 
2DW becomes. In the ultimate case that only a 
pair of pixels corresponding truly has the same 
pixel feature vector, local perturbation (the most 
naïve optimization strategy) is sufficient to obtain 
optimal 2DW. Conversely, the more ambiguous a 
pixel feature vector becomes, the less accurate the 
optimized 2DW becomes. For example, if we try to 
find 2DW with binary pixel feature (black/white), 
it is very hard to obtain a reasonable 2DW.

Local context (Keysers et al., 2004) and direc-
tional feature (Mizukami, 1998; Uchida & Sakoe, 
1999) are simple and reasonable choices as a less 
ambiguous pixel feature. Those shape-sensitive 
features, however, face a problem of inconsistency. 
As shown in Figure 11, those feature vectors are 
often not the same at corresponding pixel pairs. 
Local contexts, each of which is a subimage, are 
different at the pixels corresponding truly. 

There are two possible remedies for this prob-
lem of inconsistency. One is the adaptation of the 
feature vectors according to 2DW. For example, 

under the 2DW showing the rotation of angle θ, 
the directional feature becomes consistent by 
shifting the original directional feature by θ. 
The other is the use of invariant features, such 
as moments. 

category-Dependent Deformation 
tendency

Each category has its own deformation tendency. 
Figure 12 is a simple example that proves its 
existence. In category “M,” two parallel verti-
cal strokes are often slanted to be closer (Figure 
12(a) ). The same deformation, however, is rarely 
observed in “H” (Figure 12(b) ). Consequently, 
if an EM technique based on the assumption can 
compensate the deformations of “M,” it may suffer 
from the overfitting of “H” to “A.” 

The necessity of the category-dependent EM 
techniques indicated by this simple example will be 
confirmed by the result of a character recognition 
experiment. Six hundred handwritten character 
samples of ETL6 (http://www.is.aist.go.jp/etlcdb/) 
were prepared for each of 26 categories of English 
alphabets. Four-dimensional directional features 
(0, 45, 90, and -45 degrees) were extracted at each 
pixel. Then they are combined with a gray-level 
feature to be a five-dimensional pixel feature vec-
tor. Each sample was linearly scaled to 20 x 20. 
The first 100 samples of each category were simply 
averaged to create one reference pattern B. The 
remaining 500 samples were used as test samples 
A. The EM techniques based on DP1 ( 2xi∆ = ), 

(b) directional feature(a) local context

Figure 11. Inconsistency in pixel features
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DP3 ( 2xi yj∆ = ∆ = ) ,  DP5  ( 2xi yj∆ = ∆ = , 
1xj yi∆ = ∆ = ), and DP6 were chosen, and DP 

was used as their optimization strategy. 
The necessity of the category-dependent EM 

techniques is proved by the category-wise result 
of this experiment shown in Figure 13; that is, the 
most appropriate flexibility is different in each 
category. The most flexible 2DW (DP5) could not 
provide the best result in many categories; on the 
contrary, the most rigid 2DW (DP1) could provide 
the best result for several categories. That is, each 
category has its own range of deformations, and 
excessive/insufficient flexibility often degrades 
the recognition performance. In this sense, cat-
egory-dependent EM techniques, such as HMM 
and ASM-based EM, are more promising than 
category-independent ones.

EM tEcHNIQUEs bAsED ON 1D-2D 
MAPPING

Since any character is a “linear” pattern, it is also 
natural to use a one-dimensional stroke model 
instead of a two-dimensional image model. When 
we use these 1D-stroke models, our task becomes 
the fitting of the 1D model onto a 2D input pattern. 
This task is an optimization problem of a 1D-2D 
mapping function between the 1D model and the 
2D input and therefore also a kind of EM. 

The 1D-2D EM techniques can be classified 
by their stroke models. One stroke model will 
be defined as a sequence of x-y coordinates, and 
another will be defined as a sequence of line seg-
ments. More generally, the model will be defined 
as a sequence of states, each of which represents 
a local shape of a stroke.

Rubber-string (RS) matching (Sakoe, 1974) is 
one of the most classical 1D-2D EM techniques. 
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0

5

10

15

20

25

30

35

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Figure 12. Example of category-dependent deformation tendency (© copyright 2005IEICE)

Figure 13. The number of misrecognized samples by DP1 ( ), DP3 ( • ), DP5 (× ), and DP6 ( ∆ )
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As shown in Figure 14, its stroke model is a 
sequence of line segments. The direction of the 
line segment is fixed, but the length is flexible. 
Thus, the optimal fitting problem is reduced to 
the optimization problem of the lengths of the 
line segments (and the initial point). In Sakoe 
(1974), a DP-based algorithm has been proposed 
for solving the optimization problem. In Sakoe, 
Ali, and Katayama (1994), RS matching has been 
extended to increase its ability to represent fine 
deformations within line segments. 

The stroke model by Revow, Williams, and 
Hinton (1996) is a more elaborated one. It is a sto-
chastic model and represents stroke shape varia-
tions by a sequence of Gaussian ink generators. 
The ink generator outputs ink dots according to a 
probabilistic distribution. The similarity between 
the model and the input image is evaluated as a 
likelihood of the input image by the model and 
calculated through an expectation-maximization 
estimation of the location and the variance of the 
ink generators. This approach has been rearranged 
in a Bayesian framework in Cheung, Yeung, and 
Chin (1998). Kato, Omachi, and Aso (2000) have 
introduced a multiresolution framework for deal-
ing with characters with heavier deformations. 

A weak point of the 1D-2D EM is its embed-
ment problem; the stroke model of the digit “1” 
may be fitted (or embedded) perfectly to character 
images with a vertical line (e.g., “4,” “5,” “7,” and 

“9”). Once the stroke model is embedded into an 
input character image, the fitting is evaluated only 
around the stroke model, and the input character 
image may be considered a similar image to the 
model. Hastie and Tibshirani (1994) called this 
situation uncovered. One possible remedy is a 
posteriori evaluation of a residual part on the 
input image. For example, we will have a “c”-
shaped residual part on fitting the model “1” to 
an input image “9,” and therefore, we can avoid 
the misrecognition by penalizing the residual 
part. Another remedy is the regulation of global 
deformation of the stroke model. Revow, et al. 
(1996) employ affine transformation to fit their 
model roughly to the input image.

We can find 1D-2D EM techniques in other for-
mulations, such as contour matching techniques 
by Yamada (1984) and Yamamoto and Rosenfeld 
(1982) and thinned pattern matching proposed by 
Fujimoto, Kadota, Hayashi, Yamamoto, Yajima, 
and Yasuda (1976). The ASM-based method 
(Shi et al., 2003) is also a 1D-2D EM technique, 
where a chamfer matching distance is employed 
to evaluate the fitting between a stroke model and 
a binary character image. Kobayashi, Nakamura, 
Muramatsu, Sugiyama, and Abe (2001) have pro-
posed a SNAKES-like deformable model where 
optimal fitting, which gives minimum energy, is 
searched for in an iterative manner. 

1D stroke model
(a sequence of line 
segments) input image

1D stroke model
(a sequence of line 
segments) input image

Figure 14. 1D-2D EM technique with a 1D stroke model
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FUtUrE tAsKs

We still have many tasks to utilize EM techniques 
in practical problems such as commercial OCR 
for handwritten characters. The following is a 
list of those tasks.

reduction of computational
complexity

Generally speaking, EM requires a fair amount of 
computations. This fact is crucial, especially for a 
character set comprised of many categories such 
as Chinese characters. Thus, acceleration of the 
EM algorithm is necessary. Coarse classification 
based on a rigid distance is a possible remedy.

Design of 2DW by category-
Dependent characteristics 

As proved by the experiment, category-dependent 
EM is very promising. Statistic and/or stochastic 
frameworks will help realize it. Discriminative 
learning of 2DW will be useful to suppress the 
misrecognitions due to overfitting. Kernel ma-
chines are also promising partners.

Multistep Deformation
compensation

As discussed, we can apply parametric 2DW 
to compensate global deformations and then 
nonparametric 2DW to compensate local and 
complicated deformations. This two-step frame-
work may reduce the degradation by overfitting. 
Shape normalization also compensates for global 
deformations, and therefore, it is useful to narrow 
the range of 2DW.

Feature Extraction

Less ambiguous pixel features are required for 
accurate 2DW. If such a desirable pixel feature 
is available, we will be able to use unconstrained 

2DW instead of costly constrained 2DW. Adapta-
tion of pixel features for consistent correspondence 
is still an open problem. 

EM for Handwritten Word
recognition

EM techniques employed in word recognition are 
rather simple like DP1. In handwritten words, not 
only deformations within individual characters 
but also deformations between adjacent characters 
are observed. The compensation of such complex 
deformations is challenging.

Utilization of Optimized 2DW

It is important to note that the optimized 2DW 
represents the deformation of B relative to A. This 
fact implies that EM is one of structural analysis 
techniques for image patterns. The utilization of 
the optimized 2DW is very promising to extract 
various properties of handwritten characters. 

EM for camera-based character 
recognition

Camera-based character recognition is a recent 
research trend with many open problems (Liang 
et al., 2005). Due to an oblique camera angle, each 
character undergoes perspective transformation. 
Due to a nonflat document surface, each character 
undergoes nonlinear geometric transformation 
as well as photometric deformation. Past trials 
to tackle those problems are called dewarping 
and treated as preprocessing techniques. Al-
though they are superficially different from EM 
techniques reviewed in this chapter, the various 
techniques to optimize 2DW will be applicable 
to the dewarping problem. In fact, the document 
dewarping method by Ezaki, Uchida, and Sakoe 
(2005) relies on a DP-based 2DW optimization 
technique.
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EM for Kernel Machines

Recently, EM techniques have been linked to 
kernel machines, since the distance by EM can be 
considered a nonlinear kernel between two pat-
terns. Especially the DP-based EM techniques are 
strongly related to string kernels based on the edit 
distance, or Levenshtein distance, which is often 
provided by DP. The use of EM will extend the 
horizon of kernel machines so they can deal with 
a set of patterns with different dimensionalities.

cONcLUsION

This chapter reviewed elastic matching (EM) 
techniques. Since the distance provided by EM 
is invariant to a certain range of geometric defor-
mations, EM has been employed in handwritten 
character recognition tasks. EM is defined as 
the optimization problem of two-dimensional 
warping (2DW), which specifies 2D-2D mapping 
between two image patterns. In a discrete case, 
2DW specifies pixel-to-pixel correspondence 
between them.

This chapter also showed that EM techniques 
can classify by two factors: the formulation of 
2DW and the optimization strategy of 2DW. Those 
factors actually are strongly related to each other; 
that is, each kind of 2DW has its appropriate 
optimization strategy. 

As noted in the last section, there remain many 
open problems and future work in the application 
of EM to handwritten character/word recognition. 
Further researches tackling these problems will 
be very meaningful from not only theoretical but 
also practical viewpoints.
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AbstrAct

Automatic signature verification is a biometric method that can be applied in all situations where handwrit-
ten signatures are used, such as cashing a check, signing a credit card, authenticating a document, and 
others. Over the last two decades, several innovative approaches for off-line signature verification have 
been introduced in literature. Therefore, this chapter presents a survey of the most important techniques 
used for feature extraction and verification in this field. The chapter also presents strategies used to face 
the problem of a limited amount of data, as well as important challenges and research directions.
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INtrODUctION

Biometrics refers to automated methods used to 
verify or recognize the identity of a person. In 
contrast to the conventional identification systems 
whose features such as ID cards or passwords can 
be forgotten, lost, or stolen, biometric systems 
are based on physiological or behavioral features 
that are difficult for another individual to repro-
duce, thereby reducing the possibility of forgery 
(Kung, Mak & Lin, 2004). Fingerprints, voice, 
iris, retina, hand, face, handwriting, keystroke, 
and finger shape are examples of popular features 
used in biometrics. The use of other biometric 
measures such as gait, ear shape, head resonance, 
optical skin reflectance, and body odor is still in 
an initial research phase (Wayman, Jain, Maltoni 
& Maio, 2005).

The handwritten signature has always been 
one of the most simple and accepted ways to 
authenticate an official document. It is easy to 
obtain, results from a spontaneous gesture, and is 
unique to each individual (Abdelghani & Amara, 
2006). Automatic signature verification, therefore, 
can be applied in all situations where handwritten 
signatures are currently used, such as cashing a 
check, signing a credit card transaction, and au-
thenticating a document (Griess & Jain, 2002). 

The goal of a signature verification system is 
to verify the identity of an individual based on an 
analysis of his or her signature through a process 
that discriminates a genuine signature from a 
forgery (Plamondon, 1994). Figure 1 shows an 
example of a signature verification system. The 
process follows the classical pattern recognition 
model steps; that is, data acquisition, preprocess-
ing, feature extraction, classification (generally 
called “verification” in the signature verification 
field), and performance evaluation. 

Depending on the data acquisition mecha-
nism, the process of signature verification can 
be classified online and off-line. In the online (or 
dynamic) approach, specialized hardware such as 
a digitizing tablet or a pressure-sensitive pen is 
used in order to capture the pen movements over 
the paper at the same time of the writing. In this 
case, a signature can be viewed as a space-time 
variant curve O(t) = [∑(t), Θ(t), Γ(t)], where ∑(t) is 
the curvilinear displacement, Θ(t) is the angular 
displacement, and Γ(t) is the torsion of its trajectory 
(Plamondon & Lorette, 1989). On the other hand, 
in the off-line (or static) approach, the signature 
is available on a sheet of paper, which is later 
scanned in order to obtain a digital representation 
composed of M x N pixels. Hence, the signature 
image is considered as a discrete 2D function 
f(x,y), where x = 0, 1, 2, …, M and y = 0, 1, 2, …, 
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Figure 1. Block diagram of a generic signature verification system
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N denote the spatial coordinates. The value of f in 
any (x,y) corresponds to the grey level (generally 
a value from 0 to 255) in that point (Gonzalez & 
Woods, 2002).

Over the last two decades, and with renewed 
interest in biometrics caused by the tragic events 
of 9/11, several innovative approaches for off-line 
signature verification have been introduced in 
literature. Therefore, this chapter presents a sur-
vey of off-line signature verification techniques, 
focusing on the feature extraction and verification 
strategies. The goal is to present the most impor-
tant advances as well as the current challenges in 
this field. Of particular interest are the techniques 
that allow for designing a signature verification 
system based on a limited amount of data.

The chapter is organized as follows. In the 
next section, the types of signatures and forgeries 
are defined. Next, a literature review in feature 
extraction techniques and verification strategies 
proposed in this field is presented. Some strategies 
used to face the problem of a limited amount of 
data are then discussed. Finally, the conclusions 
of the chapter are presented.

sIGNAtUrE AND FOrGErY tYPEs

Signature verification is directly related to the 
alphabet (e.g., Roman, Chinese, Arabic, etc.) 

and the form of writing of each region (Justino, 
2001). The occidental signatures can be classified 
in two main styles: cursive and graphical (Figure 
2). With cursive signatures, the author writes his 
or her name in a legible way, while the graphical 
signatures contain complex patterns that are very 
difficult to interpret as a set of characters.

According to Coetzer, Herbst, and du Preez 
(2004), forged signatures can be classified in 
three basic types:

1. Random forgery. The forger has no access to 
the genuine signature (not even the author’s 
name) and reproduces a random one. A ran-
dom forgery may also include the forger’s 
own signature.

2. Simple forgery. The forger knows the author’s 
name but has no access to a sample of the 
signature. Thus, the forger reproduces the 
signature in his or her own style.

3. Skilled forgery. The forger has access to one 
or more samples of the genuine signature and 
is able to reproduce it. Skilled forgeries even 
can be subdivided according to the level of 
the forger’s skill. Figure 3 presents examples 
of the mentioned types of forgeries.

Generally, only random forgeries are used to 
train the classifier(s) of a signature verification 

Figure 2. Examples of cursive (a) (b) and graphi-
cal (c) signatures

Figure 3. Examples of (a) genuine signature, 
(b) random forgery, (c) simple forgery, and (d) 
skilled forgery
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system. The reason is that, in practice, it is rarely 
possible to obtain samples of forgeries; and, when 
dealing with banking applications, for example, 
it becomes impracticable (Murshed, Bortolozzi 
& Sabourin, 1995). On the other hand, all types 
of forgeries are used to evaluate the system’s 
performance.

FEAtUrE EXtrActION
tEcHNIQUEs

Feature extraction is essential to the success of a 
signature verification system. In an off-line envi-
ronment, signatures are acquired from a medium, 
usually paper, and preprocessed before the feature 
extraction begins. Off-line feature extraction is a 
fundamental problem because of a handwritten 
signature’s variability and the lack of dynamic 
information about the signing process. An ideal 
feature extraction technique extracts a minimal 
feature set that maximizes interpersonal distance 
between signature examples of various persons 
while minimizing intrapersonal distance for those 
belonging to the same person.

There are two classes of features used in off-
line signature verification: (1) static, related to the 
signature shape, and (2) pseudo-dynamic, related 
to the dynamics of the writing. These features 
can be extracted locally if the signature is viewed 
as a set of segmented regions, or globally if the 
signature is viewed as a whole. It is important to 

note that techniques used to extract global fea-
tures also can be applied to specific regions of the 
signature in order to produce local features. In the 
same way, a local technique can be applied to the 
whole image to produce global features. Figure 
4 presents a way to visualize the categories of 
features used in signature verification.

Moreover, local features can be classified as 
contextual and noncontextual. If the signature 
segmentation is performed in order to interpret the 
text (e.g., bars of “t” and dots of “i”), the analysis 
is considered contextual (Chuang, 1977). This 
type of analysis is not popular for two reasons: 
(1) it requires a complex segmentation process, 
and (2) it is not suitable to deal with graphical 
signatures. On the other hand, if the signature is 
viewed as a drawing composed by line segments 
(as it occurs in the majority of the works), the 
analysis is considered noncontextual. 

Before describing some of these features, the 
many ways to represent a signature image are 
discussed.

representations of a signature

Some extraction techniques transform the sig-
nature image into another representation before 
extracting the features. The literature is quite 
extensive in signature representations. 

Box and convex hull representations have been 
used to represent signatures (Frias-Martinez, 
Sanchez & Velez, 2006). The box representation 

Static

Pseudo-
dynamic

Global

FEATURES

Dynamic Local

Figure 4. Features used in signature verification; the dynamic features are used only in online ap-
proaches
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is composed of the smallest rectangle fitting the 
signature. Its perimeter, area, and perimeter/area 
ratio can be used as features. The convex hull 
representation is composed of the smallest con-
vex hull fitting the signature. Its area, roundness, 
compactness, and length and orientation of its 
maximum axis can be used as features. 

The skeleton of the signature, its outline, di-
rectional frontiers, and ink distributions also have 
been used as signature representations (Huang & 
Yan, 1997). The skeleton (or core) representation 
is the pixel wide strokes resulting from the ap-
plication of a thinning algorithm to a signature 
image. The skeleton can be used to identify the 
signature edge points (1-neighbor pixels) that mark 
the beginning and ending of strokes (Ozgunduz, 
Senturk & Karsligil, 2005). Further, pseudo-
Zernike moments also have been extracted from 
this kind of representation (Wen-Ming, Shao-Fa 
& Xian-Gui, 2004). 

The outline representation is composed of 
every black pixel adjacent to at least one white 
pixel. Directional frontiers (also called shadow 
images) are obtained when keeping only the black 
pixels touching a white pixel in a given direction 
(there are 8 possible directions). To perform ink 
distribution representations, a virtual grid is posed 
on the signature image. The cells containing more 
than 50% of black pixels are completely filled 
while the others are emptied. Depending on the 
grid scale, the ink distributions can be coarser or 
more detailed. The number of filled cells can also 
be used as a global feature. 

Upper and lower envelopes (or profiles) are also 
found in the literature. The upper envelope is ob-
tained by selecting column-wise the upper pixels 
of a signature image, while the lower envelope is 
achieved by selecting the lower pixels. As global 
features, the number of turns and gaps in these 
representations have been extracted (Ramesh & 
Murty, 1999). 

Mathematic transforms have been used to 
represent signature images. Nemcek and Lin 
(1974) chose the fast Hadamard transform in their 

feature extraction process as a tradeoff between 
computational complexity and representation 
accuracy, when compared to other transforms. 
Discrete Radon transform is used to extract an 
observation sequence of the signature, which is 
used as a feature set (Coetzer et al., 2004). 

Finally, signature images also can undergo a 
series of transformations before feature extraction. 
For example, Tang, Tao, and Lam (2002) used a 
central projection to reduce the signature image 
to a 1-D signal that is in turn transformed by a 
wavelet before fractal features are extracted from 
its fractal dimension.

Geometrical Features

Global geometric features measure the shape of a 
signature. The height, width (Armand, Blumen-
stein & Muthukkumarasamy, 2006) and area (or 
pixel density) (Abdelghani & Amara, 2006) of 
the signature are basic features pertaining to this 
category. The height and width can be combined 
to form the aspect ratio (or caliber) (Oliveira, 
Justino, Freitas & Sabourin, 2005). 

More elaborate geometric features consist of 
proportion, spacing, and alignment to baseline. 
Proportion measures the height variations of the 
signature, while spacing describes the gaps in 
the signature (Oliveira et al., 2005). Alignment 
to baseline extracts the general orientation of the 
signature according to a baseline reference (Ab-
delghani & Amara, 2006; Armand et al., 2006; 
Frias-Martinez et al., 2006; Oliveira et al., 2005; 
Senol & Yildirim, 2005). 

Connected components also can be extracted as 
global features, such as the number of 4-neighbors 
and 8-neighbors pixels in the signature image 
(Frias-Martinez et al., 2006).

statistical Features

Many authors use projection representation. It 
consists of projecting every pixel on a given 
axis (usually horizontal or vertical), resulting in 
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a pixel density distribution. Statistical features, 
such as the mean (or center of gravity), global, 
and local maximums, can be extracted from 
this distribution (Frias-Martinez et al., 2006; 
Ozgunduz et al., 2005; Senol & Yildirim, 2005). 
Moments, which can include central moments 
(i.e., skewness and kurtosis) (Bajaj & Chaudhury, 
1997; Frias-Martinez et al., 2006) and moment 
invariants (Al-Shoshan, 2006; Lv, Wang, Wang, 
& Zhuo, 2005; Oz, 2005), are also extracted from 
the pixel distributions. 

Moreover, other types of distributions can be 
extracted from a signature. Sabourin and Drou-
hard (1992) extracted directional PDF from the 
gradient intensity representation of the silhouette 
of a signature. Stroke direction distributions 
have been extracted using structural elements 
and morphologic operators (Frias-Martinez et 
al., 2006; Lv et al., 2005; Madasu, 2006; Ozgun-
duz et al., 2005). A similar technique is used to 
extract edge-hinge (strokes changing direction) 
distributions (Madasu, 2006). Based on an 
envelope representation of the signature, slope 
distributions are also extracted in this way (Fier-
rez-Aguilar, Alonso-Hermira, Moreno-Marquez 
& Ortega-Garcia, 2004; Lee, Lizárraga, Gomes 
& Koerich, 1997), whereas Madasu, Hanmandlu, 
and Madasu (2003) extracted distributions of 
angles with respect to a reference point from a 
skeleton representation.

similarity Features

Similarity features differ from other kinds of 
features in the sense that they are extracted from 
a set of signatures. Thus, in order to extract these 
features, one signature is the questioned signature, 
while the others are used as references. 

In literature, dynamic time warping (DTW) 
seems to be the matching algorithm of choice. 
However, since it works with 1D signals, the 
2D signature image must be reduced to one di-
mension. To that effect, projection and envelope 
representations (Fang, Leung, Tang, Tse, Kwok& 

Wong, 2003; Kholmatov, 2003) have been used. A 
weakness of the DTW is that it cumulates errors, 
and for this reason, the sequences to match must 
be the shortest possible. To solve this problem, a 
wavelet transform can be used to extract inflection 
points from the 1D signal. Then DTW matches 
this shorter sequence of points (Deng, Jaw, Wang 
& Tung, 2003). The inflection points can also be 
used to segment the wavelet signal into shorter 
sequences to be matched by the DTW algorithm 
(Ye, Hou & Feng, 2005). 

Among other methods, a local elastic algorithm 
has been used to match the skeleton representa-
tions of two signatures (Fang et al., 2003; You, 
Fang, He & Tang, 2005), and cross-correlation 
has been used to extract correlation peak features 
from multiple signature representations obtained 
from identity and Gabor filters (Fasquel & Bruy-
nooghe, 2004).

Fixed Zoning

Fixed zoning defines arbitrary regions and uses 
them for all signatures. To perform fixed zoning 
based on the pixels, all the pixels of a signature are 
sent to the classifier after a normalization of the 
signature image to a given size (Frias-Martinez 
et al., 2006; Martinez, Travieso, Alonso & Ferrer, 
2004; Mighell, Wilkinson & Goodman, 1989). 
Otherwise, numerous fixed zoning methods are 
described in the literature. Usually, the signature is 
divided into strips (vertical or horizontal) or uses 
a layout like a grid or angular partitioning. Then 
geometric features (Abdelghani & Amara, 2006; 
Armand et al., 2006; Ferrer, Alonso, & Travieso, 
2005; Huang & Yan, 1997; Justino, Bortolozzi, & 
Sabourin, 2005; Martinez et al., 2004; Ozgunduz 
et al., 2005; Qi & Hunt, 1994; Santos, Justino, 
Bortolozzi, & Sabourin, 2004; Senol & Yildirim, 
2005), wavelet transform features (Abdelghani & 
Amara, 2006), and statistical features (Fierrez-
Aguilar et al., 2004; Frias-Martinez et al., 2006; 
Hanmandlu, Yusof & Madasu, 2005; Justino et 
al., 2005; Madasu, 2006) can be extracted. 
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Other techniques are specially designed for 
extracting local features. Strip-based methods 
include peripheral features extraction from 
horizontal and vertical strips of a signature edge 
representation. Peripheral features measure the 
distance between two edges and the area between 
the virtual frame of the strip and the edge of the 
signature (Fang & Tang, 2005; Fang, Leung, Tang, 
Tse, & Wong, 2002). 

Most fixed zoning techniques use a grid layout. 
For example, the modified direction feature (MDF) 
technique (Armand et al., 2006) extracts the loca-
tion of the transitions from the background to the 
signature and their corresponding direction values 
for each cell of grid superposed on the signature 
image. The Gradient, Structural, and Concavity 
(GSC) technique (Kalera, Srihari & Xu, 2004; 
Srihari, Xu & Kalera, 2004) extracts gradient 
features from edge curvature, structural features 
from short strokes, and concavity features from 
certain hole types independently for each cell of a 
grid covering the signature image. The Extended 
Shadow Code (ESC) technique, proposed by Sa-
bourin and his colleagues (Sabourin, Cheriet & 
Genest, 1993; Sabourin & Genest, 1994, 1995), 
centers the signature image on a grid layout. Each 
rectangular cell of the grid is composed of six 
bars: one bar for each side of the cell plus two 
diagonal bars stretching from a corner of the cell 
to the other in an “X” fashion. The pixels of the 
signature are projected perpendicularly on the 
nearest horizontal bars, on the nearest vertical 
bars, and on both diagonal bars. The features 
are extracted from the normalized area of each 
bar that is covered by the projected pixels. The 
envelope-based technique (Ramesh & Murty, 
1999; Bajaj & Chaudhury, 1997) describes for each 
grid cell the comportment of the upper and lower 
envelope of the signature. The pecstrum technique 
(Sabourin, Genest & Prêteux, 1996; Sabourin, 
Genest & Prêteux, 1997b) centers the signature 
image on a grid of overlapping retinas and then 
uses successive morphological openings to extract 
local granulometric size distributions.

signal-Dependent Zoning

Signal-dependent zoning generates different 
regions adapted to individual signature. When 
signal-dependent zoning is performed using the 
pixels of the signature as local regions, position 
features are extracted from each pixel with respect 
to a coordinate system. Ferrer, et al. (2005) and, 
previously, Martinez, et al. (2004) extracted posi-
tion features from a contour representation in polar 
coordinates. Using this same coordinate system, 
signal-dependent, angular-radial partitioning 
techniques have been developed. These techniques 
adjust themselves to the circumscribing circle of 
the signature to achieve scale invariance. Shape 
matrices have been defined this way to sample the 
silhouette of two signatures and extract similarity 
features (Sabourin, Drouhard, & Wah, 1997a). 
This technique achieves rotation invariance by 
synchronizing the sampling with the baseline 
of the signature. A similar method is used by 
Chalechale, Naghdy, Premaratne, and Mertins 
(2004), although edge pixel area features are ex-
tracted from each sector and rotation invariance 
is obtained by applying a 1-D discrete Fourier 
transform to the extracted feature vector. 

In the Cartesian coordinate system, signal-
dependent retinas have been used to define local 
regions capturing best the intrapersonal similari-
ties from the reference signatures of individual 
writers (Ando & Nakajima, 2003). A genetic 
algorithm is used to optimize the location and 
size of these retinas before similarity features 
are extracted from the questioned signature and 
its reference set. 

Connectivity analysis has been performed on 
a signature image to generate local regions before 
extracting geometric and position features from 
each region (Igarza, Hernaez, & Goirizelaia, 
2005). Even more localized regions (signal-de-
pendent) are achieved using stroke segmentation. 
Perez-Hernandez, Sanchez, and Velez (2004) 
achieved stroke segmentation by first finding 
the direction of each pixel of the skeleton of the 
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signature and then using a pixel tracking process. 
Then the orientation and endpoints of the strokes 
are extracted as features. Another technique is 
to erode the stroke segments into regions before 
extracting similarity features (Franke, Zhang & 
Koppen, 2002) from these bloated regions. In-
stead of focusing on the strokes, the segmentation 
can be done in other signature representations. 
Chen and Srihari (2006) matched two signature 
contours using DTW before segmenting and 
extracting Zernike moments from the segments. 
Xiao and Leedham (2002) segmented upper and 
lower envelopes where their orientation changes 
sharply. After that, they extracted length, orienta-
tion, position, and pointers to the left and right 
neighbors of each segment.

Pseudo-Dynamic Features

The lack of dynamic information is a serious 
constrain for off-line signature verification 
systems. The knowledge of the pen trajectory, 
along with speed and pressure, gives an edge to 
online systems. To overcome this difficulty, some 
approaches use dynamic signature references 
to develop individual stroke models that can be 
applied to off-line questioned signatures. For 
instance, Guo, Doermann, and Rosenfeld (2001) 
used stroke-level models and heuristic methods to 
locally compare dynamic and static pen positions 
and stroke directions. Lau, Yuen, and Tang (2005) 
developed the universal writing model (UWM), 
which consists of a set of distribution functions 
constructed using the attributes extracted from 
online signature samples, whereas Nel, du Preez, 
and Herbst (2005) used a probabilistic model of 
the static signatures based on hidden Markov 
models (HMM). The HMM restricts the choice 
of possible of pen trajectories describing the mor-
phology of the signature. Then the optimal pen 
trajectory is calculated using a dynamic sample 
of the signature.

However, without resorting to online examples, 
it is possible to extract pseudo-dynamic features 

from static signatures. Pressure features can be 
extracted from pixel intensity (i.e., grey levels) 
(Huang & Yan, 1997; Lv et al., 2005; Santos et al., 
2004; Wen-Ming et al., 2004) and stroke width 
(Lv et al., 2005; Oliveira et al., 2005), whereas 
speed information can be extrapolated from 
stroke curvature (Justino et al., 2005; Santos et al., 
2004), stroke slant (Justino et al., 2005; Oliveira 
et al., 2005; Senol & Yildirim, 2005), progression 
(Oliveira et al., 2005; Santos et al., 2004), and 
form (Oliveira et al., 2005).

Discussion

This section presented important feature extrac-
tion techniques used to extract global and local 
information from signatures. The choice of using 
global or local features will depend mainly on the 
types of forgeries to be detected by the system. 
The global features are extracted at a low compu-
tational cost, and they have good noise resilience. 
However, they have less capacity to discriminate 
between genuine signatures and skilled forgeries. 
On the other hand, local features are more suitable 
to identify imitations, despite their dependence 
on the zoning process. 

An issue that has received little attention in 
literature is the generally low quantity of available 
signature samples vs. the generally high number 
of extracted features. This issue may be solved 
by the following:

1. Selecting the most discriminating features: 
In the work of Xuhua, Furuhashi, Obata, 
and Uchikawa (1996), for example, genetic 
algorithms were used to select the optimal 
set of partial curves from an online signature 
and the best features of each partial curve.

2. Using regularization techniques to obtain a 
stable estimation of the covariance matrix 
(Fang & Tang, 2005).

3. Generating synthetic samples: This can be 
done by adding noise or applying transfor-
mations to the real signatures (Fang et al., 
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2002; Fang & Tang, 2005; Huang & Yan, 
1997; Vélez, Sánchez & Moreno, 2003).

4. Using dissimilarity representation: this 
technique makes it possible to reduce the 
number of classes as well as increase the 
quantity of feature vectors (Santos et al., 
2004).

The two last points are discussed in more detail 
in the section entitled “Dealing with a Limited 
Amount of Data.”

VErIFIcAtION strAtEGIEs AND 
EXPErIMENtAL rEsULts

This section categorizes some work in off-line 
signature verification according to the technique 
used to perform verification; that is, distance clas-
sifiers, artificial neural networks, hidden Markov 
models, dynamic time warping, support vector 
machines, structural techniques, and Bayesian 
networks.

In signature verification, the verification strat-
egy can also be categorized as writer-independent 
or writer-dependent (Srihari et al., 2004). With 
writer-independent verification, an n-class classi-
fier deals with the whole population of writers. In 
contrast, with the writer-dependent verification, a 
one-class or a two-class classifier is employed per 
writer. As the majority of the work presented in 
literature is designed to perform writer-dependent 
verification, this aspect is mentioned only when 
writer-independent verification is considered. 
The same procedure is taken regarding the type 
of forgeries used for training, since only random 
forgeries are generally used in this phase. 

Before describing the work, some measures 
used to evaluate the performance of signature 
verification systems are presented. The section 
concludes with a discussion of the main challenges 
to be faced in this field. 

Performance Evaluation Measures

In signature verification systems, the simplest way 
to report their performances is in terms of error 
rates. The false rejection rate (FRR) is related 
to genuine signatures that were rejected by the 
system; that is, classified as forgeries, whereas the 
false acceptance rate (FAR) is related to forgeries 
that were misclassified as genuine signatures. FRR 
and FAR are also known as type 1 and type 2 er-
rors, respectively. Finally, the average error rate 
(AER) is related to the total error of the system; 
that is, type 1 and type 2 errors together.

On the other hand, if the decision threshold 
of a system is set to have the percentage of false 
rejections approximately equal to the percentage 
of false acceptances, the equal error rate (EER) 
is calculated.

Distance Classifiers

A simple distance classifier is a statistical tech-
nique that usually represents a pattern class with 
a Gaussian probability density function (PDF). 
Each PDF is uniquely defined by the mean vec-
tor and covariance matrix of the feature vectors 
belonging to a particular class. When the full 
covariance matrix is estimated for each class, the 
classification is based on Mahalanobis distance. 
On the other hand, when only the mean vector 
is estimated, classification is based on Euclidean 
distance (Coetzer, 2005).

Approaches based on distance classifiers are 
traditionally writer-dependent. The reference 
samples of a given author are used to compose 
the class of genuine signatures (w1), and a sub-
set of samples from each other writer is chosen 
randomly to compose the class of forgeries (w2). 
Once the smallest distance between a reference 
signature and a questioned signature is found, 
the latter is classified according to the label of the 
reference signature (w1 or w2). If the classifier is 
designed to find a number of k nearest reference 
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signatures, a voting scheme is used to take the 
final decision.

Distance classifiers were one of the first clas-
sification techniques used in off-line signature 
verification. One of the earliest reported works 
was by Nemcek and Lin (1974). By using a fast 
Hadamard transform extraction technique on 
genuine signatures and simple forgeries, and 
maximum likelihood classifiers, they obtained 
an FRR of 11% and an FAR of 41%.

After that, Nagel and Rosenfeld (1977) pro-
posed a system to discriminate between genuine 
signatures and simple forgeries using images 
obtained from real bank checks. A number of 
global and local features were extracted con-
sidering only the North American signature 
style. Using weighted distance classifiers, they 
obtained an FRR ranging from 8% to 12% and 
an FAR of 0%. 

Some years later, skilled forgeries have begun 
to be considered in off-line signature verification. 
Besides proposing a method to separate the sig-
natures from noisy backgrounds and to extract 
pseudo-dynamic features from static images, 
Ammar and colleagues (Ammar, 1991; Ammar, 
Yoshida, & Fukumura, 1986, 1999) were the 
first to try to detect skilled forgeries in an off-
line signature verification system. In their work, 
distance classifiers were used, combined with the 
leave-one-out, cross-validation method since the 
number of signatures examples were small.

Qi and Hunt (1994) presented a signature veri-
fication system based on global geometric features 
and local grid-based features. Different types of 
similarity measures such as Euclidean distance 
were used to discriminate between genuine signa-
tures and forgeries (including simple and skilled). 
They achieved an FRR ranging from 3% to 11.3%, 
and an FAR ranging from 0% to 15%.

Sabourin and colleagues (Sabourin & Pla-
mondon, 1986; Sabourin et al., 1993) have done 
extensive research in off-line signature verifica-
tion since the mid-1980s. In one of their works 
(Sabourin et al., 1993), the Extended Shadow 

Code was used in order to extract local features 
from genuine signatures and random forgeries. 
The first experiment used a k-nearest neighbors 
(k-NN) classifier with voting schema, obtaining an 
AER of 0.01% when k = 1. The second experiment 
used a minimum distance classifier, obtaining an 
AER of 0.77% when 10 training signatures were 
used for each writer. In another relevant work, 
Sabourin et al. (1997b) used granulometric size 
distributions as local features, also in order to 
eliminate random forgeries. By using k-nearest 
neighbors and threshold classifiers, they obtained 
an AER around 0.02% and 1.0%, respectively. 

Fang, Wang, Leung, and Tse (2001) developed 
a system based on the assumption that the cur-
sive segments of skilled forgeries are generally 
less smooth than those of genuine signatures. 
Besides the utilization of global shape features, 
a crossing and fractal dimension methods were 
proposed to extract the smoothness features from 
the signature segments. Using a simple distance 
classifier and the leave-one-out, cross-validation 
method, an FRR of 18.1% and an FAR of 16.4% 
were obtained. More recently, Fang, et al. (2002) 
extracted a set of peripheral features in order to 
describe internal and the external structures of 
the signatures. To discriminate between genu-
ine signatures and skilled forgeries, they used 
a Mahalanobis distance classifier together with 
the leave-one-out, cross-validation method. The 
obtained AERs were in the range of 15.6% (without 
artificially generated samples) and 11.4% (with 
artificially generated samples). 

Artificial Neural Networks

An artificial neural network (ANN) is a massively 
parallel distributed system composed of process-
ing units capable of storing knowledge learned 
from experience (examples) and using it to solve 
complex problems (Haykin, 1998). Multilayer 
perceptron (MLP) trained with the error back 
propagation algorithm (Rumelhart, Hinton & Wil-
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liam, 1986) has so far the most frequently ANN 
architecture used in pattern recognition. 

Particularly in off-line signature verification, 
ANNs have been used extensively both in writer-
independent and writer-dependent approaches. 
To perform writer-independent verification, the 
network is generally trained by using one class 
per writer. On the other hand, writer-dependent 
verification is generally performed by using two 
classes: one for the genuine signatures and another 
for the forgeries.

Mighell, et al. (1989) were the first ones to 
apply ANNs for off-line signature verification. 
In order to eliminate simple forgeries, they used 
the raw images as input to an MLP. In the ex-
periments, by using a training set composed by 
genuine signatures and forgeries, they achieved 
an EER of 2%.

Sabourin and Drouhard (1992) used directional 
PDFs as global feature vectors and MLP as classi-
fier in order to eliminate random forgeries. Since 
their database was composed of few data, some 
signature samples were generated by rotating 
the directional PDFs. In the experiments, they 
obtained an FRR of 1.75% and an FAR of 9%.

Cardot, Revenu, Victorri, and Revillet (1994) 
used outline and geometric measures of the sig-
nature images to compose two types of feature 
vectors. The most important contribution of their 
work was the proposal of a multilevel neural net-
work architecture to eliminate random forgeries. 
The first level is composed of two Kohonen maps 
(one for each set of features) in order to perform 
an initial classification and to choose the random 
forgeries to train the second level networks. As 
the number of writers was very large (more than 
300), they had to limit the number of classes to 
fewer than 50. In the second level, two MLPs for 
each writer are used to perform writer-dependent 
verification. Finally, in the last level, an MLP ac-
cepts or rejects the signature. By using a dataset of 
signatures extracted from real postal checks, they 
achieved an FRR of 4% and an FAR of 2%.

Murshed, et al. (1995) proposed a verification 
strategy based on fuzzy ARTMAPs in the context 
of random forgeries. Different from other neural 
networks types, the fuzzy ARTMAPs allow 
training by using examples of only one class. 
Therefore, in this approach, the genuine signatures 
are used for training and the random forgeries (as 
well as some unseen genuine signatures samples) 
for testing. In order to simulate different experts 
examining different regions of the signature, 
the image is divided in a number of overlapping 
squares according to the writer signature shape. 
After that, each signature region is reduced by 
applying an MLP network, and verified by a 
specialized fuzzy ARTMAP. Finally, based on 
the results given by each fuzzy ARTMAP, the 
final decision is taken. In the experiments, they 
obtained an AER of 9.14%.

Bajaj and Chaudhury (1997) used an ensemble 
of MLPs to perform writer-independent verifica-
tion. In order to discriminate between genuine 
signatures and random forgeries, one MLP per 
feature vector (moments, upper envelope, and 
lower envelop) was trained. Moreover, each MLP 
was composed of 10 outputs (one for each writer). 
In the verification phase, the output of the three 
classifiers was combined to obtain a final deci-
sion. In the experiments, a substantial reduction of 
the error rate was obtained when using the three 
classifiers together (FRR=1%; FAR=3%). 

Fadhel and Bhattacharyya (1999) proposed a 
signature verification system based on Steerable 
Wavelets as feature extraction technique and MLP 
as classifier. In the first experiment, by selecting 
only the first two of the 16 coefficients, which 
represent each signature image, they obtained a 
classification rate of 85.4%, whereas in a second 
experiment, by using all 16 coefficients, the clas-
sification rate was improved to 93.8%.

Sansone and Vento (2000) proposed a three-
stage, multi-expert system in order to deal with 
all types of forgeries. The first stage was designed 
to eliminate random and simple forgeries by us-
ing only the signature’s outline as a feature. The 
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second stage receives the signatures accepted 
by the previous stage, which can be classified as 
genuine or as skilled forgery. The features used in 
this stage are the high-pressure regions. Finally, 
a third stage takes the final decision. Using MLP 
as classifiers, they obtained an FRR of 2.04% 
and FARs of 0.01%, 4.29%, and 19.80% with 
respect to random, simple, and skilled forgeries, 
respectively. 

Blatzakis and Papamarkos (2001) used global 
geometric features, grid features, and texture fea-
tures to represent the signatures. They proposed 
a two-stage system in order to eliminate random 
forgeries. In the first stage, three MLPs (one for 
each feature set) and the Euclidean distance metric 
perform a coarse classification. After that, an RBF 
(radial basis function) neural network, trained with 
samples that were not used in the first stage, takes 
the final decision. An FRR of 3% and an FAR of 
9.8% were obtained in the experiments. 

Quek and Zhou (2002) proposed a system based 
on fuzzy neural networks in order to eliminate 
skilled forgeries. To represent the signatures, 
they used reference pattern-based features, global 
baseline features, pressure features, and slant 
features. In the first set of experiments, using 
both genuine signatures and skilled forgeries to 
train the network, an average EER of 22.4% was 
obtained. Comparable results were obtained in the 
second set of experiments, in which only genuine 
signatures were used as training data.

Vélez, et al. (2003) performed signature veri-
fication by comparing subimages or positional 
cuttings of a test signature to the representations 
stored in compression neural networks. In this 
approach, neither image preprocessing nor feature 
extraction is performed. By using one signature 
per writer, together with a set of artificially gener-
ated samples, they obtained a classification rate 
of 97.8%. 

In a recent work, Armand, et al. (2006) pro-
posed the combination of the modified direction 
feature (MDF), extracted from the signature’s 
contour, with a set of geometric features. In the 

experiments, they compared RBF and resilient 
backpropagation (RBP) neural network perfor-
mances. Both networks performed writer-inde-
pendent verification and contained 40 classes—39 
corresponding to each writer and one correspond-
ing to the forgeries. In this case, skilled forgeries 
were used in the training phase. The best clas-
sification rates obtained were 91.21% and 88.0%, 
using RBF and RBP, respectively. 

Hidden Markov Models

Hidden Markov models (Rabiner, 1989) are finite 
stochastic automata used to model sequences of 
observations. Although this technique is more 
suitable to model dynamic data (e.g., as speech 
and online signatures), it has also been applied in 
segmented off-line signatures. Generally, HMMs 
are used to perform writer-dependent verifica-
tion by modeling only the genuine signatures of 
a writer. In this case, the forgeries are detected 
by thresholding. 

Rigoll and Kosmala (1998) presented a com-
parison between online and off-line signature 
verification using discrete HMMs. To represent 
the signatures in the online model, they used 
both static and pseudo-dynamic features. In the 
first set of experiments, in which each feature 
was investigated separately, surprising results 
were obtained. The bitmap feature was the most 
important one, achieving a classification rate 
of 92.2%. The Fourier feature also supplied a 
high classification rate. Finally, another surprise 
was the low importance of the acceleration. As 
expected, good results were obtained using the 
velocity feature. Other experiments using several 
features together were performed in order to 
obtain high classification rates. The best result 
(99%) was obtained when only four features 
(bitmap, velocity, pressure, and Fourier feature) 
where combined.

To represent the signatures in the off-line 
model, they subdivided the signature image into 
several squares of 10x10 pixels. After that, the 
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grey value of each square was computed and used 
as a feature. In the experiments, a classification 
rate of 98.1% was achieved. The small difference 
between the online and off-line classification rates 
is an important practical result, since off-line 
verification is simpler to implement.

El-Yacoubi, Justino, Sabourin, and Bortolozzi 
(2000) proposed an approach based on HMM and 
pixel density features in order to eliminate random 
forgeries. To perform training while choosing the 
optimal HMMs’ parameters, the Baum-Welch 
algorithm and the cross-validation method were 
used. In the experiments, each signature was 
analyzed under three resolutions (100x100, 40x40, 
and 16x16 pixels) by applying the Forward algo-
rithm. Finally, a majority-vote rule took the final 
decision. An AER of 0.46% was obtained when 
both genuine and impostor spaces were modeled, 
and AER of 0.91% was obtained when only the 
genuine signatures were modeled.

Justino, Bortolozzi, and Sabourin (2001) used 
HMMs to detect random, simple, and skilled 
forgeries. Also using a grid-segmentation scheme, 
three features were extracted from the signatures: 
pixel density feature, Extended Shadow Code, 
and axial slant feature. They applied the cross-
validation method in order to define the number 
of states for each HMM writer model. Using the 
Bakis model topology and the forward algorithm, 
they obtained an FRR of 2.83% and FARs of 
1.44%, 2.50%, and 22.67% for random, simple, 
and skilled forgeries, respectively. 

Coetzer, et al. (2004) used HMMs and discrete 
random transforms to detect simple and skilled 
forgeries. In this work, some strategies were 
proposed in order to obtain noise, shift, rotation, 
and scale invariances. By using a left-to-right ring 
model and the Viterbi algorithm, EERs of 4.5% 
and 18% were achieved for simple and skilled 
forgeries, respectively. 

Dynamic time Warping

Widely applied in speech recognition, dynamic 
time warping (DTW) is a template matching tech-

nique used for measuring similarity between two 
sequences of observations. The primary objective 
of DTW is to nonlinearly align the sequences be-
fore they are compared (matched) (Coetzer, 2005). 
Despite being more suitable to model data that 
may vary in time or speed, dynamic time warping 
has been used in off-line signature verification. 
As usually occurs in HMM-based approaches, 
a test signature is compared to the genuine ones 
of a writer (writer-dependent verification), and a 
forgery is detected by thresholding. 

Wilkinson and Goodman (1990) used DTW 
to discriminate between genuine signatures 
and simple forgeries. Assuming that curvature, 
total length, and slant angle are constant among 
different signatures of a same writer, they used 
a slope histogram to represent each sample. In 
the experiments, they obtained an EER of 7%. 
Increases in the error rates were observed when 
the forgers had some a priori knowledge about 
the signatures.

Deng, Liao, Ho, and Tyan (1999) proposed a 
Wavelet-based approach to eliminate simple and 
skilled forgeries. After applying a closed-contour 
tracing algorithm to the signatures, the curvature 
data obtained were decomposed into multireso-
lutional signals using wavelets. Then DTW was 
used to match the corresponding zero-crossings. 
Experiments were performed using English and 
Chinese signature datasets. For the English data-
set, an FRR of 5.6% and FARs of 21.2% (skilled 
forgeries) and 0% (simple forgeries) were obtained, 
whereas using the Chinese dataset, an FRR of 
6.0% and FARs of 13.5% (skilled forgeries) and 
0% (simple forgeries) were achieved.

Fang, et al. (2003) proposed a method based on 
DTW and one-dimensional projection profiles in 
order to deal with intrapersonal signature varia-
tions. To achieve discrimination between genuine 
signatures and skilled forgeries, nonlinear DTW 
was used in a different way. Instead of using the 
distance between a test signature and a reference 
sample to take a decision, the positional distor-
tion at each point of the projection profile was 
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incorporated into a distance measure. Using the 
leave-one-out, cross-validation method and the 
Mahalanobis distance, they obtained AERs of 
20.8% and 18.1%, when binary and grey level 
signatures were considered, respectively. 

support Vector Machines

Support vector machines (SVMs) (Vapnik, 1999) 
is a kernel-based learning technique that has 
shown successful results in applications of vari-
ous domains (e.g., pattern recognition, regression 
estimation, density estimation, novelty detection, 
etc.). 

Signature verification systems that use SVMs 
as classifiers are designed in a similar way to 
those that use neural networks. That is, in a 
writer-dependent approach, there is one class for 
the genuine signatures and another class for the 
forgeries. In addiction, by using one-class SVMs 
(Scholkopf, Platt, Taylor, Smola & Williamson, 
2001), it is possible to perform training by using 
only genuine signatures. In the work of Srihari, et 
al. (2004), the authors tried to use it in the context 
of skilled forgeries. However, by using the tra-
ditional two-class approach, the AER decreased 
from 46.0% to 9.3%.

Martinez, et al. (2004) used SVM with RBF 
kernel in order to detect skilled forgeries. In the 
experiments, different types of geometrical fea-
tures as well as raw signatures were tested. The 
best result—an FAR of 18.85%—was obtained 
when raw images with a scale of 0.4 were used. 

Justino, et al. (2005) performed a comparison 
between SVM and HMM classifiers in the detec-
tion of random, simple, and skilled forgeries. By 
using a grid-segmentation scheme, they extracted 
a set of static and pseudo-dynamic features. Under 
different experimental conditions (i.e., varying the 
size of the training set and the types of forgeries), 
the SVM with a linear kernel performed better 
than the HMM.

Ozgunduz, et al. (2005) used support vector 
machines in order to detect random and skilled 

forgeries. To represent the signatures, they 
extracted global geometric features, direction 
features, and grid features. In the experiments, 
a comparison between SVM and ANN was per-
formed. Using an SVM with RBF kernel, an FRR 
of 0.02% and an FAR of 0.11% were obtained, 
whereas the ANN, trained with the backpropaga-
tion algorithm, provided an FRR of 0.22% and 
an FAR of %0.16. In both experiments, skilled 
forgeries were used to train the classifier.

structural techniques

In structural techniques, the patterns are orga-
nized hierarchically in a way that in each level, they 
are viewed as being composed of simpler subpat-
terns. By using a small number of primitives (the 
most elementary subpatterns) and grammatical 
rules, it is possible to describe a large collection 
of complex patterns (Coetzer, 2005). Therefore, 
it is possible to interpret the scene both globally 
and locally.

Sabourin, Plamondon, and Beaumier (1994) 
were the first ones to propose a structural repre-
sentation of handwritten signatures images. In 
their approach, a segmentation process breaks up 
the signature into a set of primitives. From these 
shape primitives, both static and pseudo-dynamic 
features are extracted. The comparison process is 
composed of two stages: Local interpretation of 
primitives (LIP) and global interpretation of the 
scene (GIS). In the LIP stage, a template match 
process is performed in which each primitive of the 
test signature image is labeled, taking into account 
the reference set. Finally, the GIS stage takes the 
final decision by computing a similarity measure 
between the test primitive set and the reference 
primitive set. The experiments were performed 
in order to eliminate random forgeries. By using 
a minimum distance classifier with two reference 
signatures, they obtained an AER of 1.43%.

Bastos, Bortolozzi, Sabourin, and Kaestner 
(1997) proposed a mathematical signature rep-
resentation in terms of ellipses, parabolas, and 
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hyperboles. The goal of this approach is to allow 
a simplification of the signature tracing when 
detecting random forgeries. After performing a 
thinning process, junction and endpoints are found 
in the signatures. Next, an algorithm is applied 
in each part of the signature tracing (between an 
endpoint and a junction point) in order to obtain 
all necessary points for modeling a mathemati-
cal equation. Finally, the least square method of 
curve adjusting is applied to each set of tracing 
points, resulting in a number of equations of el-
lipses, parabolas, and hyperboles. Performing 
superpositions between the found equations and 
the respective signatures, they obtained similar-
ity indices ranging from 86.3% and 97.3% with 
respect to different writers.

Huang and Yan (2002) proposed a two-stage 
signature verification system based on ANN and 
a structural approach. To represent the signatures, 
they used geometric and directional frontier 
features. In the first stage of the system, a neural 
network attributes to the signature three possible 
labels: pass (genuine signature), fail (random or 
less skilled forgery), and questionable (skilled 
forgery). For the questionable signatures, the 
second stage uses a structural feature verification 
algorithm to compare the detailed structural corre-
lation between the test signature and the reference 
samples. In the experiments, the first classifier 
rejected 2.2% of the genuine signatures, accepted 
3.6% of the forgeries, and was undecided on 32.7% 
of the signatures. The second classifier rejected 
31.2% of the questionable genuine signatures and 
accepted 23.2% of the questionable forgeries. 
Therefore, for the combined classifier, an FRR of 
6.3% and an FAR of 8.2% were obtained.

Discussion

This section presented some verification strategies 
proposed in the field of off-line signature verifica-
tion. Even though the error rates are reported, it 
is very difficult to compare the performances of 
different verification strategies, since each work 
uses different feature extraction techniques, ex-

perimentation protocols, and signature databases 
(see Tables 1 and 2). 

Despite the great recognition rates obtained 
by using classifiers, which learn from examples 
(e.g., ANNs, HMMs, and SVMs), there are some 
difficulties to be faced. The first one is the large 
number of examples required to ensure that the 
classifier will, in fact, learn (Leclerc & Plamondon, 
1994). On the other hand, classifiers that do not 
require many reference samples, since there is no 
explicit training phase (e.g., distance classifiers), 
have a low generalization capability.

Another difficulty, which occurs mainly with 
ANNs and SVMs, is the necessity of using forg-
eries in the training phase in order to allow class 
separation by the classifier. However, the authors 
have already been dealing with this problem by 
using one-class classifiers (Murshed et al., 1995; 
Srihari et al., 2004), computer-generated forgeries 
(Mighell et al., 1989), and a subset of genuine sig-
natures from other writers (random forgeries). 

The utilization of multiple classifiers has im-
proved the recognition performance in difficult 
classification problems. Using just one optimal 
classifier, it is possible to lose valuable information 
contained in the other suboptimal classifiers. It 
has been show that when a set of R classifiers is 
averaged, the variance contribution in the bias-
variance decomposition decreases by 1/R, result-
ing in a smaller expected error (Tax, 2001).

In a multistage approach, each classification 
level receives the results of the previous one, re-
ducing the complexity of the problem (Blatzakis & 
Papamarkos, 2001; Huang & Yan, 2002; Sansone 
& Vento, 2000). Particularly in signature verifica-
tion, the complexity can be reduced even further 
if the system combines both writer-independent 
verification (to eliminate random and simple 
forgeries) and writer-dependent verification (to 
eliminate the skilled forgeries). However, few 
systems (Cardot et al., 1994) use this strategy to 
improve their performances.

Moreover, ensemble of classifiers has been 
less explored in this field (Bajaj & Chaudhury, 
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1997; Cardot et al., 1994; Sabourin et al., 1997b). 
In this approach, classifiers may be combined in 
parallel by changing (1) the training set (Breiman, 
1996), (2) the input features (Alkoot & Kittler, 
2000; Günter & Bunke, 2002), and (3) the param-
eters/architecture of the classifier. It is, therefore, 
possible to have an ensemble of classifiers in each 
level of a multistage system.

Another question is related to the number 
of classes used to perform writer-independent 
verification. Usually, this task has been done 
by using one class per writer (Armand et al., 
2006; Bajaj & Chaudhury, 1997), a strategy not 
suitable to be applied in real-world applications, 
in which the number of writers to be verified is 
generally high.

Finally, one aspect that has not been discussed 
in the signature verification literature is the use 
of incremental learning. As a signature varies 
according to psychological and physical state, it 
is very difficult to get all possible variations dur-
ing the training phase. Besides, the signature may 
change over time. Thus, updating the classifier 
as new examples are available may be useful in 
real signature verification systems.

DEALING WItH A LIMItED 
AMOUNt OF DAtA

Mainly for practical reasons, a limited number 
of signatures by writers is available to train a 

References Images Signatures Forgery 
Types

(Nemcek & Lin, 1974) 128x256 pixels
binary

600G / 15I
120F / 4I Simple

(Nagel & Rosenfeld, 1977) 500 ppi
64 grey levels

11G / 2I 
14F / 2I Simple

(Ammar et al., 1986) 256x1024 pixels
256 grey levels 

200G / 10I 
200F / 10I Skilled

(Qi & Hunt, 1994) 300 dpi
256 grey levels

300G / 15I
150F / 10I

Simple and 
Skilled

(Sabourin et al., 1993)
(Sabourin et al., 1997b)
(Sabourin & Drouhard, 1992)
(Sabourin et al., 1994)

128x512 pixels
256 grey levels 800G / 20I Random

(Fang et al., 2002)
(Fang et al., 2003)

300 dpi
256 grey levels

1320G / 55I
1320F / 12I Skilled

(Mighell et al., 1989) 128x64 pixels
binary

80G / 1I 
66F Skilled

(Cardot et al., 1994) 1024x512 pixels
256 grey levels 6000G/ 300I Random

(Murshed et al., 1995) 128x512 pixels
256 grey levels 200G / 5I Random

(Bajaj & Chaudhury, 1997) 200 dpi
binary 150G / 10I Random

(Fadhel & Bhattacharyya, 
1999)

340 dpi
256 grey levels 300S / 30I Skilled

(Sansone & Vento, 2000) 300 dpi
256 grey levels

980G / 49I
980F / 49I

Simple and 
Skilled

Table 1. Signature verification databases (I = Individual; G = Genuine; F = forgeries; S = Samples)
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classifier for signature verification.1 However, 
by using a small training set, the class statistics 
estimation errors may be significant, resulting in 
unsatisfactory verification performance (Fang & 
Tang, 2005). 

Huang and Yan (1997) applied slight trans-
formations to the genuine signatures in order to 
generate additional training samples, and heavy 
transformations, also to the genuine signatures, in 
order to generate forgeries. In the two cases, the 
transformations were slant distortions, scalings 
in horizontal and vertical directions, rotations, 
and perspective view distortions; whereas Vélez 
et al. (2003) tried to reproduce intrapersonal vari-

ability by using only one signature per writer. To 
generate additional training samples, they applied 
rotations (in the range of ±15°), scalings (in the 
range of ±20%), horizontal and vertical displace-
ments (in the range of ±20%), and various types 
of noise for each original signature. 

By using a different approach, Fang and Tang 
(2005) proposed the generation of additional 
samples in the following way:

1. Two samples are selected from the set of 
genuine signatures.

2. Then an elastic matching algorithm is applied 
to the pair of signatures in order to estab-

References Images Signatures Forgery 
Types

(Blatzakis & Papamarkos, 
2001) binary 2000G / 115I Random

(Quek & Zhou, 2002) 516x184 pixels
256 grey levels 

535G / 24I
15-20F x 5I Skilled

(Vélez et al., 2003) 300 dpi
256 grey levels 112S / 28I not 

specified

(Armand et al., 2006) not specified 936G / 39I
1170F / 39I Skilled

(Rigoll & Kosmala, 1998) not specified 280G / 14I
60F

Simple and 
Skilled

(El-Yacoubi et al., 2000) 300 dpi
binary 4000G / 100I Random

(Justino et al., 2001)
(Justino et al., 2005)

300 dpi
256 grey levels

4000G / 100I
1200F / 10I

Simple and 
Skilled

(Coetzer, 2005) 300 dpi
binary

660G / 22I
264F / 6I

Simple and 
Skilled

(Deng et al., 1999) 600 ppi
256 grey levels

1000G / 50I
2500G / 50I

Simple and 
Skilled

(Srihari et al., 2004) 300 dpi
256 grey levels

1320G/ 55I
1320F / 55I Skilled

(Martinez et al., 2004) not specified 3840G / 160I
4800F / 160I Skilled

(Ozgunduz et al., 2005) 256 grey levels 1320S / 70I Skilled

(Bastos et al., 1997) not specified 120G / 6I Random

(Huang & Yan, 2002) 100 dpi
256 grey levels

1272G / 53I
7632F / 53I Skilled

Table 2. Signature verification databases (continuation) (I = Individual; G = Genuine; F = forgeries; 
S = Samples)
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lish correspondences between individual 
strokes.

3. Next, corresponding stroke segments are 
linked up by displacement vectors.

4. Finally, these displacement vectors are used 
to perform an interpolation between the two 
signatures, thus to produce a new training 
sample.

Based on the dissimilarity representation 
approach (Bicego, Murino & Figueiredo, 2004; 
Cha, 2001; Pekalska & Duin, 2000) in which an 
object is described by its distances with respect 
to a predetermined set of prototypes, Santos, et 
al. (2004) solved the problem of having a limited 
number of samples to perform signature verifica-
tion. Instead of using one class per writer to train a 
global classifier, only two classes are used: genuine 
and forgery. After the usual feature extraction 
phase, new feature vectors are generated in the 
following way:

1. Compute the Euclidean distance vector 
between each pair of signatures.

2. If the pair of signatures belongs to the same 
writer, set the feature vector to 1; otherwise, 
set the feature vector to 0.

3. Finally, train the classifier by using these 
vectors.

In the verification phase, the distance vectors 
are computed between the input signature and the 
reference vectors of its probable class and sent as 
input to the classifier. The final decision is taken by 
combining all classifier outputs in voting schema. 
Similar signature verification approaches have 
also been developed by Srihari and colleagues 
(Kalera et al., 2004; Srihari et al., 2004).

cONcLUsION

This chapter presented a survey of techniques 
developed in the field of off-line signature verifica-

tion over the last 20 years. As we could observe, 
despite the vast amount of work performed in order 
to solve this problem, there are still many chal-
lenges to be faced due to the investigation of the 
trade-off between the quantity of available train-
ing samples and the number of extracted features 
to proposals of powerful verification strategies to 
deal with all the types of forgeries and dynamic 
environments. Moreover, for security reasons, it 
is not easy to make a signature dataset available 
in the signature verification community, mainly 
if the signatures come from a real situation (e.g., 
banking documents). However, the availability of 
datasets could make it possible to define a com-
mon experimentation protocol in order to perform 
comparative studies in this field.

Dissimilarity representation is an interest-
ing approach because although it copes with the 
problem of having a reduced training set, it also 
solves the problem of having many classes in a 
writer-independent verification. Thus, the com-
bination of this approach with SVM (to perform 
writer-independent verification) and with HMM 
(to perform writer-dependent verification) may 
be an interesting choice of a multistage system. 
Moreover, the utilization of SVMs facilitates the 
implementation of a reject mechanism based on 
ROC (receiver operating characteristic) curves 
(Fawcett, 2006; Tortorella, 2005). 

Finally, regarding feature extraction tech-
niques, the ESC (Sabourin et al., 1993) appears 
to be a good trade-off between global and local 
features since it permits the projection of the 
handwriting at several resolutions. 
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1 In real situations (e.g., banking transactions), 
a client is asked to supply from three to five 
signature samples at the time of subscrip-
tion.
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AbstrAct

This chapter presents an off-line signature verification and forgery detection system based on fuzzy mod-
eling. The various handwritten signature characteristics and features are first studied and encapsulated 
to devise a robust verification system. The verification of genuine signatures and detection of forgeries 
is achieved via angle features extracted using a grid method. The derived features are fuzzified by an 
exponential membership function, which is modified to include two structural parameters. The structural 
parameters are devised to take account of possible variations due to handwriting styles and to reflect 
other factors affecting the scripting of a signature. The efficacy of the proposed system is tested on a large 
database of signatures comprising more than 1,200 signature images obtained from 40 volunteers. 

INtrODUctION

A handwritten signature can be defined as the 
scripted name or legal mark of an individual, 
executed by hand for the purpose of authenticating 
writing in a permanent form. The acts of signing 
with a writing or marking instrument such as a 

pen or stylus is sealed on the paper. The scripted 
name or legal mark, while conventionally ap-
plied on paper, may also be accomplished using 
other devices that capture the signature process 
in digital format.

Hilton (1992) discusses what a signature is and 
how it is produced. He notes that the signature 
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has at least three attributes: form, movement, 
and variation. Since signatures are produced by 
moving a pen on a paper, movement perhaps is 
the most important aspect of a signature. Move-
ment is produced by muscles of the fingers, hand, 
wrist, and, for some writers, arm; these muscles 
are controlled by nerve impulses. Once a person 
is used to signing his or her signature, these nerve 
impulses are controlled by the brain without any 
particular attention to detail.

The variations in handwritten signatures are 
quite immense, both within samples from the same 
individual and to an even larger degree across the 
population of individuals. The susceptibility of a 
signature to false imitation is clearly a function of 
the nature of the signature itself. In a broad sense, 
signatures can be classified as simple, cursive, 
or graphical based on their form and content, as 
shown in Figure 1.

A simple signature is one where a person 
scripts his or her name in a stylish manner. In this 
type of signature, it is very easy to interpret all 
the characters in the name. Cursive signatures, 
on the other hand, are more complex. Though the 
signatures still contain all the individual charac-
ters within the name, they are, however, drafted 
in a cursive manner, usually in a single stroke. 
Lastly, the signatures are classified as graphical 
when they portray complex geometric patterns. It 
is very difficult to deduce the name of the person 

from a graphical signature, as it is more of a sketch 
of the name of the signer.

HANDWrIttEN sIGNAtUrEs

It is a well-known fact that no two signatures, even 
if signed by the same person, are ever the same. 
However, if two signatures are exactly alike, then 
one of them is not a genuine signature but rather 
a copy of the other—either a machine copy such 
as one produced by a computer or photocopier, 
or a manually produced copy such as tracing. In 
addition, simulation must be taken into account, 
where an individual copies the signature of another 
using a genuine signature as a model. In these 
cases, the simulated writing usually exhibits an 
incorrect interpretation of inconspicuous charac-
teristics of a genuine signature, which are quite 
hard to recognize by a nonexpert. 

Osborn (1929), one of the earliest experts in 
the field of document examination, observed 
that variations in handwriting are themselves 
habitual. This is clearly seen in any collection of 
genuine signatures produced at different times 
and under a great variety of conditions. When 
carefully examined, these signatures show that 
running through them is a marked, unmistakable 
individuality even in the manner in which the 
signatures vary as compared with one another. He 
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Figure 1. Types of signatures
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further notes that unusual conditions under which 
signatures are written may affect the signature. 
For example, hastily written, careless signatures, 
cannot always be used unless one has sample 
signatures that have been written under similar 
conditions. Furthermore, signatures written with 
a strange pen and in an unaccustomed place are 
likely to be different than the normal signatures 
of a person. 

Locard (1936), another expert document 
analyst, surveyed graphometric techniques used 
for the authentication of questioned documents. 
Locard categorizes the characteristics of genuine 
handwritten signatures into two broad classes. The 
first class is related to those characteristics of 
genuine signatures that are quite difficult to imitate 
such as the rhythmic line of the signature consist-
ing of the positional variation of the maximum 
coordinate of each character in the signature; the 
local variation in the width of the signature line, 
which is closely related to the dynamics of the 
writing process; and the variation in the aspect 
ratio of the complete signature followed by other 
local features such as the difference in orienta-
tion and relative position. The characteristics of 
the second class are the ones that are very easily 
perceived by a casual forger and are therefore 
easier to imitate. These are usually the general 
shape of the signature such as the signature’s overall 
orientation and its position on the document.

Osborn (1929) states that the successful forg-
ing of a signature or simulating another person’s 
writing by a forger involves not only copying 
the features of the genuine signature but also 
hiding his or her own personal handwriting 
characteristics. 

Forgeries in handwritten signatures have been 
categorized based on their characteristic features 
(Suen, Xu & Lam, 1999). Following are the three 
major types of forgeries:

• Random forgery: The signer uses the name 
of the victim in his or her own style to create 
a forgery known as simple forgery or random 

forgery. These forgeries represent almost 
95% of all the fraudulent cases generally 
encountered, although they are very easy 
to detect even by the naked eye (Harrison, 
1958).

• Unskilled forgery: The signer imitates the 
signature in his or her own style without 
any knowledge of the spelling and does not 
have any prior experience. The imitation is 
preceded by observing the signature closely 
for a while.

• Skilled forgery: Undoubtedly the most diffi-
cult of all forgeries is created by professional 
impostors or persons who have experience 
copying the signature. In order to achieve 
this, one could either trace or imitate the 
signature by hard way. 

We now list some of the most important char-
acteristics of genuine signatures and forgeries as 
outlined by several document examiners in the 
past. The understanding of these characteristics 
is important for determining those aspects or fea-
tures of the signatures that are most important for 
automatic signature verification. Once the unique 
features have been selected, a knowledge base of 
all the feature values of the reference signature 
can be built so that when a test signature comes 
across the system, only the feature values are 
needed. This will eliminate the need for storage 
of all the signature images.

• Enlargement of characters: A forgery is 
usually larger than the original signature. 
This is due to the fact that a forger care-
fully observes the genuine signature before 
imitating it at the same time. The feedback 
mechanism in the brain of the forger is 
slower than the process taking place in the 
mind of the original writer, and consequently 
more time is spent drawing each letter. This 
makes a forgery larger than the original 
both in terms of the size of letters and the 
size of the entire signature. Similarly, the 
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complete signature can also be larger than 
the original, so enlargement does not just 
apply to individual letters. 

• Tendency of curves to become angles: 
Curved letters are often observed in the 
forgery as being more angular. The forger 
takes care to obtain the correct letter shape 
by using a slower speed to produce the curve 
accurately. Ironically, this results in more 
angular letters as greater time elapses in 
the making of the curves. In the same way, 
angled letters in the original signature can 
become smooth curves.

• Retouching: Retouching results when the 
imitation has been done already but an ad-
dition is made to it at a later stage. Lines 
may appear to be thicker at these points, 
or there may be lines that do not follow the 
continual flow of the pen as in the original 
signature.

• Poor line quality: The ink reveals variation 
in light and shade; pressure and speed, with 
either more or less ink appearing on the page. 
It is more usual to find that the pressure used 
for the questioned signature is harder than 

that of the real signature. However, a lighter 
pressure can sometimes be detected. This 
may be due to a tremor caused by trembling 
of the hand; poor line quality, or writing too 
slowly. 

• Hesitation: In the process of creating a 
forgery, the forger may pause to consult 
the genuine signature and then continue 
duplicating it. This can often create blobs 
(when the pen leaves an ink mark on the 
page), which may not be obvious.

• Punctuation: Full stops, dots on small let-
ter “i” are in the wrong place, missing, or 
added. 

• Differing pressure: Refers to the differences 
in pen pressure applied while signing. The 
pen pressure may be too heavy or too light, 
depending on the style of the forger. Pres-
sure differences occur at different places 
from the genuine signature, as identical pen 
pressure is difficult to achieve. Most of the 
forgeries come out too dark or too light, as 
everyone has a different pen style, but it is 
also hard to vary pressure in the same way 
as a genuine signer. 

Genuine Skilled forgery Unskilled forgery Random forgery 

   
 

    

   
 

    

  
 

 

Figure 2. Types of forgeries
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• Sudden endings: Usually the original signa-
ture just trails off, whereas the forgery just 
stops. Sudden endings are a characteristic 
feature of a forgery, as it is very difficult 
to trail off in the same way as the genuine 
signature. Most often, it is simply easier to 
end more definitely rather than trailing off 
in a particular pattern.

• Forger’s characteristics: The forger uncon-
sciously reveals characteristics of his or her 
own handwriting when doing the forgery. 
Basic letter shapes, spacing, and position of 
letters in relation to base line are very similar 
to the forger’s own. However, this is difficult 
to detect if the forger is unknown or, in 
other words, only possible when the forger’s 
characteristics are definitely known. 

• Baseline error: The forger, in an attempt 
to correctly imitate the size and shape of a 
signature, often neglects to ensure that the 
imaginary line that runs across the base of the 
signature is similar in the forged signature 
to the genuine signature. The baseline in a 
signature is not horizontal, and any notable 
variances in the baseline are almost sure 
signs of forgery.

• Spacing: Spacing may be larger or smaller 
between individual letters, between whole 
words, and between punctuation and letters 
that cannot be copied by tracing a signa-
ture. 

• Bad line quality: Bad line quality is ap-
parent by hesitant or shaky pen strokes and 
occurs when the forgery has been done too 
slowly.

• Forming characters not appearing in 
signatures: Unintelligible signatures are 
rationalized by a forger so that individual 
letters can be discerned in the forgery, 
whereas they are not apparent in the genuine 
signature. A characteristic of poor forgers 
is often caused by them knowing the name 
they are trying to forge and by unconsciously 
including letters that do not appear in the 

genuine signature. If the forger is unsure of 
the name, then incorrect letters may appear 
clearly in the forgery.

These characteristics demonstrate that hu-
man signature verification is far from trivial, but 
clearly, most of these points cannot be applied to 
computerized signature verification. The aim of 
this study is therefore to investigate the intrinsic 
properties of signatures that are repeated again and 
again so as to increase the reliability of uniquely 
identifying a person on the basis of his or her 
handwritten signature. 

HANDWrIttEN sIGNAtUrE
FEAtUrEs

The handwritten signature is a behavioral biomet-
ric, which means that the biometric measurement 
is not based on any physiological characteristic of 
the individual, but on behavior that can change 
over time. The process of determining the le-
gitimacy of a handwritten signature is termed 
signature verification. Since an individual’s 
signature alters over time, the use of signature 
verification for authenticating sensitive financial 
transactions over a long period may lead to high 
error rates. Enrollment to a signature verification 
system requires the collection of an exclusive set 
of signature samples that are similar in nature 
so as to locate an adequate number of common 
characteristics. Inconsistent signatures lead to 
high false rejection rates and high enrollment 
failure rates for individuals who do not sign in 
a consistent way. However, the positive aspect 
of signature verification technology is that un-
like other physiological biometrics such as face, 
fingerprint, or iris, if the signature biometrics of 
an individual are compromised, individuals can 
simply change their signatures.

In the recent past, many questions have been 
raised about the scientific basis of the expert 
opinion offered by forensic document examin-
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ers. In order for forensic document examination 
to retain its credibility and legal acceptability as 
a science, there must be some statistically sound 
basis for the decision. In addition, such scientific 
information is also useful for the efficient develop-
ment of automatic signature verification systems. 
This research is concerned with the automatic 
analysis of perceptible features in handwritten 
signatures to determine the features that dis-
tinguish a forgery from a genuine signature. In 
static or off-line signature verification systems, 
the signature image is characterized as a vector 
of elements, each one representative of the value 
of a feature. The careful selection of this feature 
vector is crucial for the success of any signature 
verification system.

types of Features

Features extracted for off-line signature verifica-
tion can be broadly divided into three main types 
(Fang, Leung, Tang, Tse, Kwok & Wong, 2003; 
Lee & Pan, 1992):

i. Global features depict or categorize the 
signature as a whole. These features are 
usually extracted from all the pixels that 
lie within the region circumscribing the 
signature image, such as the length, width 
or baseline of the signature, although global 
features are easily extractable and less sensi-
tive to noise, as small distortions in isolated 
regions of the signature do not cause a major 
impact on the global feature vector. They are, 
however, dependent upon the overall position 
alignment and therefore highly susceptible 
to distortion and style variations. 

ii. Local features represent a segment or 
limited region of the signature image, such 
as critical junctions and gradients. These 
features are generally derived from the 
distribution of pixels of a signature, such as 
local pixel density or slant. Local features 
are more sensitive to noise within the region 

under consideration but unaffected by other 
regions of the signature. Although they are 
computationally expensive, they are much 
more accurate than global features.

iii. Geometric features describe the character-
istic geometry and topology of a signature, 
thereby preserving their global as well as 
their local properties. These features have 
a high tolerance to alterations and style 
variations, and they can also tolerate a 
certain degree of translation and rotation 
variations.

General Overview of signature
Features 

Many types of features have been proposed for off-
line signature verification systems with varying 
degrees of success. Since dynamic information is 
not available in static signatures, features can only 
be extracted from the geometric analysis of signa-
tures. Some of the most widely used parameters are 
the signature image area, the signature height and 
width, the ratio between the signature height and 
its width, the ratio between middle zone width and 
signature width, global and local slant, the number 
of characteristics points (endpoints, cross-points, 
cusps, etc.), number of loops, the presence of the 
lower zone parts, and the number of elements in 
the signature (Ammar, 1991; Ammar, Yoshida, & 
Fukumura, 1990; Blatzakis & Papamarkos, 2001; 
Plamondon & Lorette, 1989). 

The coefficients obtained from Fourier, Ha-
damard, and Wavelet transforms have also been 
used as parameters for off-line signature verifi-
cation (Deng, Liao, Ho, & Tyan, 1999; Fadhel 
& Bhattacharyya, 1999; Murshed, Sabourin, 
& Bortolozzi, 1997; Nagel & Rosenfeld, 1977). 
Projection-based features include the number 
of vertical and horizontal projection peaks, and 
maximum vertical and horizontal projections 
(Ammar, 1991; Ammar et al., 1990). The main 
contour-based features are concerned with the use 
of parameters extracted from signature envelope 
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and outlines (Bajaj & Chaudhury, 1997; Cardot, 
Revenu, Victorri, & Revillet, 1994). Furthermore, 
texture-based features derived from the co-oc-
currence matrices of the signature image have 
also been considered by Blatzakis & Papamarkos 
(2001).

Many of the local features are of the same 
characters as the global ones. The difference is 
that they are applied either to the cells of a grid 
covering the signature or to the specific elements 
obtained after signature segmentation. They in-
clude slant of the element; density factor; length 
ratio of two consecutive parts; position relation 
between the global baseline and the local one; up-
per, central, and corner line features; and critical 
points (Ismail & Gad, 2000; Qi & Hunt, 1994; 
Quek & Zhou, 2002). In grid-based features, the 
signature image is divided into rectangular re-
gions, and ink distribution in each region is evalu-
ated (Blatzakis & Papamarkos, 2001; Drouhard, 
Sabourin, & Godbout, 1996; Sabourin, Genest, 
& Prêteux, 1997).

The features based on geometrical properties 
of a signature image are useful for the detection 
of random and simple forgeries, but they fail to 
recognize skilled forgeries, which are almost iden-
tical to the genuine signatures in terms of global 
shape and orientation. There have been attempts to 
extract dynamic information from static images. 
Parameters like stroke direction, length, width, 
and curvature variation are estimated with these 
techniques. Various levels of pressure features 
have also been extracted from the signature images 
(Ammar, 1991; Ammar et al., 1990; el-Yacoubi, 
Justino, Sabourin & Bortolozzi, 2000; Justino, 
Bortolozzi & Sabourin, 2001; Rigoll & Kosmala, 
1998). It is assumed that they are connected with 
varying speeds at various parts of the signature 
(Quek & Zhou, 2002). 

Qi and Hunt (1994) discuss a static signature 
verification based on global and local features of 
a signature image. The global features are height 
and width of a signature image, width of the signa-
ture image with blank spaces between horizontal 

elements removed, slant angle of the signature, 
vertical center of gravity of black pixels, maximum 
horizontal projection, area of black pixels, and 
baseline shift of the signature image. The local 
(or grid) features include the structural informa-
tion of image elements; for example, angle of a 
corner, curvature of an arc, intersection between 
the line strokes, and number of pixels within each 
grid. These features are found to give good results 
compared to structural features. 

From this discussion, it is understood that 
an appropriate combination of global and local 
features will produce more distinctive and more 
efficient features, because by localizing global 
features, the system will be able to avoid major 
shortcomings of both the approaches and at the 
same time benefit from their combined advan-
tages.

DAtA AcQUIsItION

The first step in the design of a static signature 
verification system is data acquisition. Handwrit-
ten signatures are collected from various indi-
viduals, and some unique features are extracted 
from them to create a knowledge base for each 
individual. The features stored in the knowledge 
base are then learned by the system and used as 
a reference for comparing with those of the test 
signature in the recognition phase. A standard 
database of signature samples is thus needed 
for calculating the performance of the signature 
verification system and also for comparison with 
the results obtained using other techniques on the 
same database. Unfortunately, no such standard 
benchmark database exists in the field of signature 
verification due to the confidentiality and privacy 
issues associated with handwritten signatures. 

The proposed signature verification system 
is trained and tested on a database consisting of 
a total of 1,200 handwritten signature images. 
Out of these, 600 are authentic signatures, and 
the other 600 are forgeries. These signatures are 
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obtained from 40 volunteers with each person 
contributing 15 signature samples, among which 
10 are used for learning purposes and the rest for 
testing (see Table 1). 

The selection of an optimum number of 
samples for training is a critical point during the 
construction of the signature databases. To in-
vestigate signatures, Osborn (1929) recommends 
that several genuine signatures should always be 
obtained, if possible, and five signatures always 
provide a more satisfactory basis for an opinion 
than just one signature, and 10 signatures being 
better than five. Hence, after much consideration, 
we have fixed the size of the training set to 10 
samples for each person to reflect their signature 
variations optimally. In addition, the system is 
trained with only genuine signatures (i.e., none 
of the forgeries are used for training the system). 
Most of the signature verification systems trained 
with both genuine and forged signatures have been 
subject to errors. For example, the automatic off-
line signature verification of Pender (1991) has a 
false acceptance rate (FAR) of 100% when trained 
with only genuine signatures. This means that it 
could not distinguish even a single forgery from 
genuine signatures when the system is not trained 
with the samples of forged signatures.

The signatures are handwritten on a white 
sheet of paper using any type of pen or pencil, 
and are scanned at a resolution of 300 dpi. A 
scanned image of the special sheet designed for 
collecting signatures is shown in Figure 3. The 
signatures are collected over a period of four 
weeks to account for the variations in signature 

style with time. The forgeries are also collected 
over the same time frame. The random forger-
ies are obtained by supplying only the names of 
the individuals to the casual forgers who never 
had any access to the actual genuine signatures. 
The unskilled forgeries, in turn, are obtained by 
providing sample genuine signatures to the forg-
ers, who are then allowed to practice for a while 
before imitating them to create the forgeries.  Each 
volunteer had to provide five imitations of any 
one of the genuine signatures, apart from his or 
her own signature. These samples constitute the 
set of unskilled forged signatures for the set of 
genuine signatures. We have then requisitioned 
the services of two expert forgers to provide five 
forgeries of each genuine signature in the test 
set so as to create the skilled forged samples of 
all the persons.

PrEPrOcEssING

The signature images scanned during the data 
acquisition phase are extracted and preprocessed 
in this module. The steps of preprocessing are 
briefly discussed in the following sections.

binarization

Binarization is the first step in preprocessing of 
signature images. In this process, the input gray 
scale image is converted into a two-tone image 
format (i.e., black and white pixels, commonly 
represented by 1 and 0, respectively). 

Types of Signatures Training Set Test Set TOTAL

Genuine signatures 40 x 10 40 x 5 600

Skilled forgeries - 40 x 5 200

Unskilled forgeries - 40 x 5 200

Random forgeries - 40 x 5 200

Table 1. Signature database
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slant Normalization

A practical signature verification system must 
be able to maintain high performance regardless 
of the size and slant of a given signature. For 
handwritten signatures, one of the major varia-
tions in writing styles is caused by slant, which is 
defined as the slope of the general writing trend 
with respect to the vertical line. It is important 
that the system be insensitive to slant; hence, the 
need for slant correction in the signature image. 

The image matrix is divided into upper and 
lower halves. The centers of gravity of the lower 
and upper halves are computed and connected. 
The slope of the connecting line defines the slope 

β of the window (image matrix). The slant-cor-
rected image is obtained by applying the following 
transformation to all black pixels with coordinate 
points x, y in the original image:

( ) ( )' '
0tan ,    x x y y y= - × - =  (1)

where 'x  and 'y  are slant corrected coordinates 
and 0 is a parameter specifying the default 
(normal) slant.

Slant correction needs to precede other prepro-
cessing tasks (i.e., it is applied before smoothing), 
because smoothing tends to change the image 
topology, and the correction operation usually 
creates rough contours to the character.

Figure 3. Signature data acquisition
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Skeletonization

A two-tone digitized image is defined by a matrix 
A, whose element ai,j is either 1 if character is 
present or 0 otherwise. Iterative transformations 
are applied on A to obtain a thinned image, 
which is of one pixel thickness. This process is 
termed “skeletonization,” as the output image is 
a skeleton of the original image. The modified 
safe point thinning algorithm (SPTA) (Shih & 
Wong, 1995) is used in this work for the task of 
skeletonization. 

smoothing

Because of the excessive processing performed 
during the slant correction and thinning stage, 
we find that a signature often contains barbs and 
some redundant dark pixels that are not relevant in 
maintaining the connectivity of the image. Some 
such points have been identified and Boolean ex-
pressions developed to rid the image of points such 
as those described next. In the following depic-
tions, “1” represents a dark pixel, “0” represents 
a white pixel, while “X” represents a don’t-care 
condition. The central pixel is not relevant in 
maintaining the connectivity of the image, as path 
depicted by the arrows connects the remaining 
pixels. Points of similar configuration but different 
orientations (three other possible) are identified 
and removed (converted to white). Another set of 
points, termed extra corners, is also identified and 
deleted, as shown in Figure 4(b). Again, seeing 

the connectivity, we remove the central dark pixel. 
Three other orientations can be easily identified 
and the corresponding points deleted. Finally, the 
following set of points is identified in Figure 4(c). 
Here again, the central point is deleted.

Endpoint Smoothing

Another novel approach has been devised to 
smoothing and removal of spurious tails of signa-
ture images that are distorted initially or during 
preprocessing. Two types of points in signatures 
are considered for this process:

• Endpoints: Dark points with only one dark 
neighbor out of eight closest neighbors.

• Junction points: Dark points with more 
than two dark neighbors out of eight closest 
neighbors.

The approach essentially involves identifica-
tion of all endpoints in the preprocessed image. 
Starting with each endpoint, a path is traced 
until we either reach a junction point or exceed a 
heuristically determined path length. If we reach 
a junction point within the length specified, the 
path of dark pixels starting from that endpoint to 
the junction point is determined a spurious tail 
and deleted. If during traversal the path length 
is exceeded, we retain the branch and divert our 
search to the next endpoint until all points are 
covered. A bottleneck faced in the performance 
of this approach is the size of the heuristically 
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Figure 4. Smoothing using maintenance of connectivity



  ��

An Automatic Off-Line Signature Verification and Forgery Detection System

determined path length. If correctly chosen, it 
gives some spectacular results. However, incor-
rectly chosen lengths would either leave the image 
unaffected or may delete branches that should not 
be deleted otherwise.

size Normalization

After the binarization process, there would be 
extra zeros on all four sides of the signature im-
age, as zero padding is applied during binariza-
tion. To standardize the size of the signatures, 
extra rows and columns containing only zeros 
are removed from all four sides of the image. 
Normalization is thus the process of equating 
the size of all signature samples so as to extract 
features on the same footing. To achieve this, we 
use standard bilinear transformation, by which 
every input bitmap P of size m×n is transformed 
into a normalized bitmap Q of size p×q. Both p 
and q are quadrilateral regions. All the signature 
images are standardized to a fixed window of size 
120 x 60 pixels.

FEAtUrE EXtrActION

The success of a pattern recognition system de-
pends largely on the type of features extracted 
from the dataset. The chief objective of this pro-
cess is to extract those features that will enable 
the system to correctly discriminate one class 
from the other. In this section, we will present 
our signature grid method, which has been de-
vised for extracting innovative angle and distance 
features. The motivation behind the design of the 
grid is illustrated to prove its efficacy. Edge-based 
direction features adopted from handwriting 
recognition are also discussed.

Grid-based Approaches

The structural information contained in a hand-
written signature is obtained using a grid that is 

superimposed on the size-normalized signature 
image. The feature vector of each grid element 
includes the boundary code and the total number 
of pixels inside the grid. The boundary grid is a 
binary vector that is defined as:

th       1                    pixel at i position 0            
0                               otherwiseib

 >
= 


      (2)

where bi is the distance from the upper-left corner 
of each grid when moving counterclockwise on 
the boundary. 

The length of the boundary code is equal to four 
times the side of each square grid. This bound-
ary code is an incomplete, linear approximation 
to the structure within each grid when the size 
of the grid is relatively small, because there are 
multiple ways to linearly connect a given set of 
boundary locations within a grid. To alleviate 
this ambiguity, the intersection between the line 
stroke and the grid is thinned so each intersection 
is represented by only one code element bi. The 
total grid feature is thus represented as:

( ) ( )1 2 4, , ,....,     0,1g l iv n b b b b i= ∈ ∀  (3)

where n is the total number of pixels within each 
grid, and l is the side length (in pixels) of the 
squared grid. 

Murshed, et al. (1997) performed a local 
analysis of the shape of a signature within a 
predefined search region called the identity grid, 
which is designed for each writer in the system. 
The signature image is centralized on the iden-
tity grid, which is divided into nine regions that 
are further divided into squares of size 16 x 16 
pixels. The xy-coordinates of each 16 x 16-pixel 
square indicate a location of a graphical segment 
in the identity grid of a particular writer. Feature 
extraction is performed on each of the 16 x 16-
pixel squares that contain a graphical segment by 
first calculating the center of the square and then 
extracting the graphical segment enclosed within 
the 32 x 32-pixel square. 
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A signature image of 512 x 128 pixels is cen-
tered on a grid of rectangular retinas, which are 
excited by local portions of the image (see Figure 
5). Each retina has only a local perception of the 
entire scene, and granulometric size distributions 
are used for the definition of local shape descrip-
tors in an attempt to characterize the amount of 
signal activity exciting each retina on the focus 
of the attention grid.

In Quek and Zhou (2002), the skeletonized 
image is divided into 96 rectangular segments 
and for each segment; area (the sum of foreground 
pixels) is calculated. The results are normalized 
so the lowest value (for the rectangle with the 
smallest number of black pixels) would be zero, 
and the highest value (for the rectangle with the 
highest number of black pixels) would be one. The 
resulting 96 values form the grid feature vector. 
A representation of a signature image and the 
corresponding grid feature vector is shown in 
Figure 6. A black rectangle indicates that for the 
corresponding area of the skeletonized image, 

there would be the maximum number of black 
pixels. On the contrary, a white rectangle indicates 
the smallest number of black pixels.

signature Grid Method

The signature grid is defined as the region of 
interest within which the signature image is en-
closed. The size of the grid, therefore, depends on 
the signature being enclosed within it. The grid 
is divided into eight partitions, which in turn are 
subdivided into 12 equal boxes. 

The chief motivation behind the use of a sig-
nature grid is to divide the signature into local 
regions or boxes, which, over a set of all samples 
of a writer, form a fuzzy set. In this way, we are 
able to capture the global behavior through the 
local features, which forms an intelligent knowl-
edge base of unique features for a particular 
individual. The other motivation for designing 
the grid is to reduce the area of focus to just the 
signature image.

 

Figure 5. A signature image centered on a grid of rectangular retinas 

Figure 6. The grid feature vector for a signature 
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The preprocessed image is partitioned into 
eight portions using the equal horizontal density 
method. In this method, the binarized image is 
scanned horizontally from left to right and then 
from right to left, and the total number of dark 
pixels is obtained over the entire image. The 
pixels are clustered into eight regions such that 
an approximately equal number of dark pixels 
falls in each region. This process, known as the 
horizontal density approximation method, is il-
lustrated in Figure 7.

From Figure 7, we note that the total number 
of points (dark pixels) is 48. If we divide the total 
pixels by four, we obtain 12 pixels per partition. 
Since the partition is done columnwise, obtain-
ing exactly 12 points in each partition is difficult. 
Therefore, we take approximately 12 points in each 
partition using a two-way scanning approach. In 
this method, we scan the image from left to right 
until we reach the column where the number of 
points in a particular partition is 12 or more. We 
repeat the same procedure while scanning the 
image in a right-to-left direction. Then we parti-
tion the image in both directions: from left to 
right and right to left. Next, we take the average 
of two column numbers in each partition. Each 
partition is now resized to a fixed window of size 
38 x 60 pixels and is thinned again. This parti-
tion is again subdivided into four rows and three 
columns, constituting 12 boxes. In total we have 
96 boxes for a single signature. This approach is 
termed the signature grid method. The idea behind 

this method is to collect the local information 
contained in the box.

signature Grid Features 

Signature grid features are extracted using the sig-
nature grid method, which is based on the spatial 
division of the signature image. The signature is 
initially preprocessed and partitioned using the 
signature grid, as explained in the previous sec-
tions. The signature grid is divided into 96 (12 
x 8) equal boxes superimposed on the signature 
image. The bottom left corner of each box is taken 
as the absolute origin (0,0), and distance and angle 
features are computed with reference to the origin 
of the box. The vector distance for kth pixel in 
bth box at location (i, j) is calculated as:

( )2 2b
kd i j= +     (4)

These vector distances constitute a set of fea-
tures based on distance. Similarly, for each kth 
black pixel in a box at location (i, j), the correspond-
ing angle is computed in a similar manner. 

By dividing the sum of distances of all black 
pixels (having value ‘1’) present in a box with 
their total number, a normalized vector distance, 

b , for each box is obtained as:

1

1 bn
b

b k
kb

d
n =

= ∑     (5)

where, nb is number of pixels in bth box.

1     2     3      4    5      6       7     8     9    10    11   12   13   14   15    16   17   18   19   20    21   22   23   24   25   26    27   28   29   30 

Figure 7. Partition using horizontal density approximation method
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Then the sum of all angles in a box b is divided 
by the number of ‘l’ pixels present in that box to 
yield a normalized angle b :

1

1 bn
b

b k
kbn =

= ∑     (6)

where, nb is number of pixels in bth box. 
The angle and distance features obtained from 

all 96 boxes constitute the complete feature set 
of a particular signature sample. For the present 
problem of signature verification and forgery de-
tection, we have experimented with both distance 
and angle distributions. However, it is found that 
the angle distribution is better than distance dis-
tribution due to its nonlinearity (see Figure 9). 

Hence, the choice fell on extracting angle 
information from the boxes. We now discuss the 

computational aspects. Table 2 gives the angle 
features of one of the signatures used for training. 
The eight rows stand for the eight partitions of 
the signature, while the columns symbolize the 
further divisions within each partition. 

VErIFIcAtION sYstEM

Automatic verification of handwritten signatures 
on bank checks is integral to the success of a bank 
check processing and authentication system. The 
focus of this chapter is hence on the development 
of an automatic system for verification and forgery 
detection of handwritten signatures extracted 
from paper documents. The features considered 
in the recognition system are angle and distance 
features.

 
 
 
 
 
 
        
 

  
Sharpened and 
binarized image 

 
 
Original image 
 

 
Normalized and thinned 
image 

 
 
Image is partitioned into 8 partitions using equal horizontal density 
approximation method. Then each partition is resized to a fixed size 
window/box and then thinned again. 

         
 
Each box (e.g. third box) then partitioned into 4 rows X 3 
columns using equal size p artitioning method,  altogether 
make up to 12 boxes. In total we have 96 partitions for a 
signature. 

 
 
We  then calculate the 
summation of the angles of all 
points in each box t aken w ith 
respect to  t he bottom left 
corner  and  normalise  it by 
dividing  with the number  of 
points. 

Figure 8. Preprocessing and feature extraction
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The verification system is based on the Takagi-
Sugeno (TS) fuzzy model (Takagi & Sugeno, 
1985). A Takagi-Sugeno fuzzy inference system 
is well suited to the task of smoothly interpolat-
ing the linear gains that would be applied across 
the input space; it is a natural and efficient gain 
scheduler. It is also suitable for modeling nonlinear 
systems by interpolating multiple linear models. 
A graphical representation of a TS model is il-
lustrated in Figure 10. 

Signature verification and forgery detection are 
carried out using angle features extracted from 
the signature grid. Each feature corresponds to 
a fuzzy set over all the samples of the training 
set. The features are fuzzified by an exponential 
membership function involved in the TS model, 
which is modified to include structural parameters 
to account for variations in signing styles. The 
membership functions constitute weights in the 
TS model. The optimization of the output of the 
TS model with respect to the structural parameters 
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1 2 3 4 5 6 7 8 9 10 11 12

1 21.1 46.8 38.1 23.9 41.6 40.1 0 0 0 0 0 0

2 0 0 0 44.8 54.8 41.7 24.7 54.5 76.1 0 0 0

3 0 0 40.1 46.9 39.8 0 72.4 60.2 21.0 46.1 56.4 0

4 0 0 30.5 20.5 3.7 49.4 70.2 81.9 58.0 57.5 54.2 0

5 0 0 35.6 12.7 21.3 90 0 0 61.6 63.3 63.3 0

6 0 0 54.7 13.6 26.9 45.6 50.6 79.9 60.9 63.3 60.5 0

7 0 0 36.1 30.1 39.4 33.9 73.4 0 59.6 61.3 59.6 57.4

8 0 0 52.1 90 0 47.1 56.6 30.7 57.4 59.1 63.3 0

Figure 9. Distance and angle feature distributions for signatures

Table 2. Angle features of one of the signatures used for training
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yields the solution for the parameters. The simpli-
fied form of the TS model is derived by fixing the 
coefficients of consequent parts of the rules made 
up of all input features and also by considering a 
single rule for all input features.

system Design

The proposed system includes both signature 
verification and forgery detection modules. The 
difference between them is that verification is 
based on inherent characteristics of a signer, 
whereas detection is based on specification of a 
limit, which exceeds the inherent variation in the 
genuine signatures of a signer. Various catego-
ries of forgery arise, depending on the limit of 
variation allowed over the inherent variation. The 
various phases of the verification and detection 
are discussed in the following sections.

Model Formulation

Since the main thrust here is to establish the 
genuineness of the signature, thereby detecting the 
forgeries, we have employed the TS fuzzy model 
for this purpose. In this study, we consider each 
feature as forming a fuzzy set over large samples, 
because the same feature exhibits variation in 

different samples giving rise to a fuzzy set. So 
our attempt is to model the uncertainty through 
a fuzzy model such as the TS model. The overall 
system organization is depicted in Figure 11.

The First Formulation
Let xk be the kth feature in a fuzzy set Ak, so the 
kth IF THEN fuzzy rule in the TS model has the 
following form:

Rule k: IF xk is Ak
  THEN 0 1k k k ky c c x= +   (7)

Each feature will have a rule, so we have as 
many rules as the number of features. The fuzzy 
set Ak is represented by an exponential member-
ship function (MF) that includes two structural 
parameters, sk and tk. This membership function 
is expressed as:

2

2 2

(1 )
( ) exp

(1 )
k k k k

k k
k k k

s s x x
x

t t

 - + -
 = -

+ + 
 

 (8)

where kx  is the mean, and 2
k  is the variance of 

kth fuzzy set.
The structural parameters are included in the 

TS model so as to track the intraclass variations in 

Figure 10. Takagi-Sugeno fuzzy model
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the various samples of signatures obtained from 
the same individual. A special condition of this 
function occurs when sk = 1 and tk = -1. In that 
case, the MF becomes devoid of the structural 
parameters and is solely dependent on means and 
variances. The significance of this condition is that 
the reference signature and the signatures under 
investigation will have the same statistics. This 
choice is guided by the consideration of no role 
for parameters if the signatures of a person don’t 
change. The justification for the modified MF is 
twofold: (i) easy-to-track variations in means and 
variances and (ii) no need for any sophisticated 
learning technique. 

The strength of the rule in Equation 7 is ob-
tained as:

( )k k kw x=     (9)

The output is expressed as:

1

L

k k
k

Y w y
=

= ∑     (10)

where L is the number of rules.
We define the performance function as:

2( )rJ Y Y= -     (11)

where, Y and Yr denote the output of the fuzzy 
model and of the real system, respectively.

Since the output of a verification system Yr 
is not available, it can be safely assumed to be 
unity. In order to learn the parameters involved 
in the membership function (i.e., sk and tk ) and 
the consequent parameters ck0 and ck1 , Equation 
11 is partially differentiated with respect to each 
of these parameters. Accordingly, we have:

1 1

k

k k k

yJ J Y
c Y y c

∂∂ ∂ ∂
= ⋅ ⋅

∂ ∂ ∂ ∂  
( )2 r k kY Y w x= -

 (12)

0 0

k

k k k

yJ J Y
c Y y c

∂∂ ∂ ∂
= ⋅ ⋅

∂ ∂ ∂ ∂  
[ ]2 2r k kY Y w w= - =

      (13)

TS Model with structural parameters 

Formulation 1 Formulation 2 

Fixed Coefficients Adapted Coefficients Fixed Coefficients Adapted Coefficients 

J Average J 

Maximum J 

Average J  Maximum J 

Figure 11. System organization
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where, rY Y= -  , 2 2(1 )k k kT t t= + + , and 1,..,k L=  
denotes the rule number.

The gradient descent learning technique is 
applied to learn the parameters as follows:

1 , 0,1new old
ki ki

ki

Jc c i
c

∂
= -∈ =

∂
  (16)

2
new old
k k

k

Js s
s

∂
= -∈

∂    (17)

3
new old
k k

k

Jt t
t

∂
= -∈

∂    (18)

where 1 2 3, ,∈ ∈ ∈ , are the learning coefficients such 
that 1 2 3, and∈ ∈ ∈  +∈ℜ . 

We can make use of global learning when we 
have large datasets, say M. This is known as a batch 
learning scheme in which change in any parameter 
is governed by the following equation:

1
( ) ( ) ( 1) ( )

M

j mj
w q w q w q w q

=
∆ = Σ ∆ + ∆ - -
      (19)

The parametric update equation is:

( ) ( ) ( )1w q w q w q+ = + ∆   (20)

where, w in (21) may stand for any of the param-
eters , ,ki k kc s t  , q is the qth epoch, αm is a momentum 
coefficient in the limits 0 1m≤ <  (typically αm = 
0.9), and  is a decay factor (typically in the range 
of 10-3 to 10-6 ).

We can obtain initial ( )w q∆  from Equations 
16–18 by computing the partial derivatives of J. 
We will now show that the recognition approach 
explained previously is a special case of TS model. 
For this, assume ck0 = 1/L and ck1 = 0 so that  
yk = 1/L in Equation 7. Substituting this in Equa-
tion 10 yields:

1

1 L

i
i

Y
L =

= ∑     (21)

In Equation 21, Y is given by the average of 
the membership functions (MFs), and we will 
now prove that this average MF is a special case 
of the TS model. The recursive equations, Equa-
tions 16–18, are iterated until the summation 
of δ for all feature values is small enough. The 
initial values of the structural parameters are 
obtained from:

0 1 2 0k k k
k

J s x x
s

∂
= ⇒ - - =

∂
 ⇒ 1

2k
k k

s
x x

=
-

      (22)

20 1 2 0k k
k

J t
t

∂
= ⇒ + =

∂
 ⇒ 

2

1
2k

k

t = -  (23)

Note that these initial values do not yield 
satisfactory results. We have to fine tune these 
values to obtain an efficient set of values.

k

k k k

wJ J Y
s Y w t

∂∂ ∂ ∂
= ⋅ ⋅

∂ ∂ ∂ ∂  

{ }
{ }2 2

1 2
2( )
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k k k k
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k k k

s x x
Y Y y
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- -
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+ +      (14)

         { }2 1 2k k k k ky s x x T = - -
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wJ J Y
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The Second Formulation
Alternatively, it is possible to use only a single 
rule for all input features. The corresponding TS 
model will have the fuzzy rule of the form:

Rule: IF x1 is A1, x2 is A2,..., xn is An

  THEN 0
1

n

i i
i

y c c x
=

= + ∑   (24)

The performance function now becomes:

{ }2
rJ Y wy= -  with 1

n
j jw == Π   (25)

The derivatives of J with respect to c0, ci, si, ti 
are given by the following equations:

{ } 1
0

2 n
r j j

J Y wy
c =

∂
= - - Π

∂   (26)

{ } 12 n
r i j j

i

J Y wy x
c =

∂
= - - Π

∂   (27)

{ }
{ }
{ }2 2

1 2 ( )
2

(1 )

i i i
r i

i i i i

s x xJ Y wy y
s t t

- -∂
= - -

∂ + +  (28)

{ }
{ }{ }

{ }

2 2

22 2

(1 ) ( ) 1 2
2

(1 )

i i i i i i
r i

i i i i

s s x x tJ Y wy y
t t t

- + - +∂
= - -

∂ + +

      (29)

The parameters can be found by the gradient 
descent technique. We will now derive the sim-
plified version of the performance function. For 
this, assume c0 = 0 and 0ic∀ =  in Equation 23. 
This results in the equation:

1
n
j jy w == = Π     (30)

From Equations 21 and 30, we observe that if 
we have a rule for each input feature, the simpli-
fied performance function is given by the average 
MF, whereas if all input features are linked by a 
single rule, the simplified performance function 
corresponds to the multiplication of all MFs. 
We find that Equation 30 is more stringent than 
Equation 21 as it requires that all membership 

values must be nonzero. The recognition using 
Equation 21 is bound to be better in view of a 
large number of rules and parameters involved. 
So our implementation follows this recognition 
strategy, but by making subtle changes to suit 
real-world problems.

Implementation

The proposed system is applied on the signature 
database described in detail in Section 4.  For 
implementation, we will consider two cases: in 
the first case, we use the simplified TS model in 
which the coefficients of the THEN part (conse-
quent) are fixed, whereas in the second case, we 
adapt the coefficients.

Case �: TS Model with Consequent 
Coefficients Fixed

In view of Equation 21 and taking Yr = 1, Equa-
tion 11 becomes:

2

1

1(1 )
L

i
i

J
L =

= - ∑    (31)

With this performance index, we compute 
i

J
s

∂
∂

 
and 

i

J
t

∂
∂

 in order to update the structural parameters 
si and ti; i = 1,..,96. Using these values, we compute 
the membership functions for all the features. This 
process is repeated for all the training samples 
of a person. Here, we have devised an innovative 
approach for the classification of all signatures 
(i.e., test signatures and random, skilled, and 
unskilled forgeries) of a person.

Innovative approach using variation in MF
In order to know the extent of variation in the 
genuine signatures, we determine the maximum 
and minimum membership functions for each 
feature over all signatures in the training set. The 
difference between these two gives the inherent 
variation in the signatures of a person. We add 
some tolerance to the maximum and delete the 
same from the minimum so as to increase the 
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range of variation in the various signatures. This 
tolerance is meant for possible increase in the 
inherent variation over a time.

We now use the inherent variation to judge the 
test signatures. We will also explain its utility in 
the testing phase. For a particular feature, if the 
membership value lies within the range of varia-
tion, which is given by the difference of minimum 

and maximum thresholds, it is counted as “true.” 
The total number of “true” cases for a particular 
signature is divided by the total number of fea-
tures (i.e., 96) to get the percentage. For example, 
in Figure12a, the test signature has 99% of its 
features lying well within the threshold, as can 
be seen from the membership function (i.e., 95 
out of 96 features are within the range of inherent 
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Figure 12. Membership graph of (a) genuine, (b) skilled forgery, and (c) unskilled forgery
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variation). The skill-forged and unskilled-forged 
signatures have corresponding figures of 88.5% 
(Figure12b) and 82.3% (Figure12c), respectively. 
We set the minimum limit or acceptable percent-
age for genuine signature at 91%, referring to 
the output result of signature of one particular 
individual. Signatures that have a percentage 
less than 91% are treated as forged signatures. 
Table 3 gives the initial values of learning and 
structure parameters. 

Intuitive Approaches Taking the Average and 
Max of J
Next, we used the performance index given 
by Equation 11 and its derivatives to adapt the 
structural parameters during the training phase. 
These are used to determine the extent of inherent 
variation in terms of J in the training phase. We 
have tried two intuitive approaches. In the first 
case, we have taken average J, and in the second 
case, we have taken maximum J, both serving 
as thresholds. The samples in the testing phase 
are judged by comparing their J values against 

Parameter Simplified TS Model 
Initial Values

TS Model 
Initial Values

s 0.1 1

t 1.4 2

c0 1/96 1/96

c1 0 0

ε1 - 0.00000001

ε2 0.01 0.01

ε3 0.01 0.01

Precision 0.01 0.01

Table 3. Initial values of the structural and learning parameters

Signature Type Total Accepted Rejected

(a) J 

Genuine
Skilled forgery

Unskilled forgery
Random forgery

200
200
200
200

200 (100%)
0 (0%)
0 (0%)
0 (0%)

0 (0%)
200 (100%)
200 (100%)
200 (100%)

(b) Average J

Genuine
Skilled forgery

Unskilled forgery
Random forgery

200
200
200
200

184 (92%)
44 (22%)
8 (4%)
0 (0%)

16 (8%)
156 (78%)
192 (96%)
200 (100%)

(c) Maximum J

Genuine
Skilled forgery

Unskilled forgery
Random forgery

200
200
200
200

200 (100%)
42 (21%)
6 (3%)
0 (0%)

0 (0%)
158 (79%)
194 (97%)
200 (100%)

Table 4. Results using formulation 1 with fixed consequent coefficients
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the thresholds. Table 4(a) summarizes the results 
of forgery detection using this innovative ap-
proach. Tables 4(b) and 4(c) provide the results 
of forgery detection using the average J and max 
of J, respectively. Comparing these results, we 
find that the innovative approach yields the best 
performance. 

Case �. TS Model with Adaptive
Consequent Coefficients

Next, we used the performance index given in 
Equation 11 and its derivatives to adapt both con-
sequent coefficients and the structural parameters 
during the training phase. As already mentioned, 
we used both the average and maximum values 
of J for the detection of forgeries. Tables 5(a) and 
5(b) show results using these two thresholds.

The trained features and structural parameters 
for one signature set are enumerated in Table 7. 
For the second formulation involving a single 
TS rule, the results with consequents fixed are 
shown in Table 6(a), and results with coefficients 
adapted are shown in Table 6(b). As compared to 
the results of the first formulation, these results 
are not promising for the reasons cited previously. 
Here, we have not made use of the average and 
maximum values of J.

Figure 13 shows the sample output of the pro-
gram for two authors. All the experiments have 
been carried on a Pentium III, 1.1GHz Celeron 
processor having 256MB SDRAM with a Win-
dows XP operating system. With this configura-
tion, the system takes about 19 seconds to train 10 
signature images, while it takes about two seconds 
to test one signature. Surprisingly, only a single 

Signature Type Total Accepted Rejected

(a) Average J

Genuine
Skilled forgery

Unskilled forgery
Random forgery

200
200
200
200

172 (86.0%)
47 (23.5%)

8 (4%)
0 (0%)

28 (14%)
153 (76.5%)
192 (96.0%)
200 (100%)

(b) Maximum J

Genuine
Skilled forgery

Unskilled forgery
Random forgery

200
200
200
200

200 (100.0%)
44 (22%)
6 (3%)
0 (0%)

0 (0%)
156 (78%)

194 (97.0%)
200 (100%)

Signature Type Total Accepted Rejected

(a) Fixed Consequent coefficients

Genuine
Skilled forgery

Unskilled forgery
Random forgery

200
200
200
200

125 (62.5%)
68 (34%)

51 (25.5%)
50 (25%)

75 (37.5%)
132 (66%)
149 (74.5)
150 (75%)

(b) Adapted Consequent coefficients

Genuine
Skilled forgery

Unskilled forgery
Random forgery

200
200
200
200

107 (53.5%)
84 (42%)
68 (34%)

45 (22.5%)

93 (46.5%)
116 (58%)
132 (66%)

155 (77.5%)

Table 5. Results using formulation 1 with coefficients adapted

Table 6. Results using formulation 2
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Table 7. Trained features and structural parameters of one particular signature set
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iteration is required to achieve the convergence 
as the learning parameters and initial structure 
parameters have been selected optimally.

Experiments

In this section, we will describe a few experiments 
we conducted on the signature database using the 
grid method to test its robustness with respect to 
scale invariance, continuity, and stability.

In the first experiment, to test the efficacy of 
the proposed signature verification system, we 
have subjected it to a typical assessment. The 
current signatures of a particular signer who had 
changed his signature a few years ago have been 
used to train the parameters and thresholds for 
testing the old signatures. As the old signatures 
have a slight change at their ends, the verification 
system declared the old signatures as forged. The 
sample outputs for the typical case are shown in 

Figure 13. Sample outputs from the program for the signer (a) Weewee (b) Mionfai

     

   
(a) Current signature of the signer  (b) Old signature of the same signer

Figure 14. Sample outputs from system showing the old signatures are treated as forged when the thresh-
olds of the current signatures are applied
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Figure 14. This test demonstrates the capability of 
the system in detecting even the slightest changes 
in the signature samples, even if they are acquired 
from the same person who has changed his or her 
signature style. This is because of the change in 
the s and t parameters, which are crucial to the 
success of the system. It is therefore important 
to adapt these parameters according to the new 
reference signatures, as the previous values were 
computed using the old reference signatures. 

In the second experiment, we took signatures 
of various sizes of the same person to test the ef-
fectiveness of the signature grid that encompasses 
the signature samples (see Figure 15). We have 
also analyzed the effect of an elongated signature 
grid whenever the width of the signature strokes 
extends beyond the normal signing style. This can 
easily happen as some of the extreme features of 
the signature may alter from time to time, depend-
ing on the width of the signature strokes. For this 
purpose, we took signature samples of varying 
stroke widths and used them as test signatures 
for computing the recognition accuracies. It has 

been observed that even after size normalization, 
the inherent features of a person’s signature are 
preserved, as the recognition rates come out to be 
near perfect. This particular characteristic of the 
system is vital for the success of a commercial 
signature verification system because of the ten-
dency of signers to sign their names with varying 
stroke widths, depending on the availability of 
space for putting the signature.

cONcLUsION

In this chapter, an off-line signature verification 
and forgery system based on additive fuzzy mod-
eling is presented. The handwritten signature im-
ages are preprocessed and angle features extracted 
from them via a novel grid method. These features 
are then modeled using the Takagi-Sugeno fuzzy 
model, which involves two structural parameters 
in its exponential membership function. Each 
angle feature yields a fuzzy set when its values 
are gathered from all samples because of the 

Figure 15. Signature samples of an individual of varying sizes and stroke widths
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variations in handwritten signatures. Two cases 
are considered.  In the first case, the coefficients 
of the consequent part of the rule are fixed so as 
to yield a simple form of the TS model, and in the 
second case, the coefficients are adapted. In this 
formulation, each rule is constituted by a single 
feature. In the second formulation, we consider 
only one rule encompassing all the features. Here 
again, we have derived two models, depending 
on whether coefficients of the consequent part 
are fixed or adapted. However, this formulation 
is not implemented, as the membership values 
are found to be very small for some fuzzy sets. 
The efficacy of this system has been tested on 
a large database of signatures. The verification 
system achieved 100% success in verifying 
genuine signatures and detecting all types of 
forgeries (i.e., random, unskilled, and skilled) on 
a signature database consisting of 1,200 signature 
samples. A simple form of the TS model in the 
first formulation is found to be better than that 
with coefficients adapted. We have also demon-
strated the effectiveness of the intuitive approach 
for signature verification over other approaches 
using the performance index.
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AbstrAct

This chapter presents the state-of-the-art automatic speech recognition (ASR) technology, which is a 
very successful technology in the computer science field, related to multiple disciplines such as the signal 
processing and analysis, mathematical statistics, applied artificial intelligence and linguistics, and so 
forth. The unit of essential information used to characterize the speech signal in the most widely used 
ASR systems is the phoneme. However, recently several researchers have questioned this representation 
and demonstrated the limitations of the phonemes, suggesting that ASR with better performance can be 
developed replacing the phoneme by triphones and syllables as the unit of essential information used 
to characterize the speech signal. This chapter presents an overview of the most successful techniques 
used in ASR systems together with some recently proposed ASR systems that intend to improve the char-
acteristics of conventional ASR systems.

INtrODUctION

Automatic speech recognition (ASR) has been one 
of the most successful technologies allowing the 
man-machine communications to request some 
information from it or to request to carry out some 
given task using the natural oral communication. 
The artificial intelligence field has contributed 

in a remarkable way to the development of ASR 
algorithms. 

The more widely used paradigm in ASR 
systems has been the phonetic content of the 
speech signal, which varies from language to 
language, but there are no more than 30 differ-
ent phonemes without some variations, such as 
accentuation, duration, and the concatenation. 
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The last one includes the co-articulation such 
as demisyllables and triphones. Considering all 
variations, the number of phonetic units will be 
increased considerably. Recently some research-
ers have considered the use of syllables instead 
of phonemes as an alternative for development 
of the ASR systems, because in general, the 
natural way to understand the language by the 
human brain is to store and recognize syllables 
not phonemes.

The automatic speech recognition is a very 
complex task due to the large amount of varia-
tions involved in it, such as intonation, voice level, 
health condition and fatigue, and so forth (Suárez, 
2005). Therefore, in the automatic speech recogni-
tion system, for specific or general tasks, there is 
an immense amount of aspects to be taken into 
account. This fact has contributed to increase the 
interest in this field, and as a consequence, several 
ASR algorithms have been proposed during the 
last 60 years.

A brief review of ASR systems can be sum-
marized as follows. At the beginning of 1950s, 
the Bell Laboratories developed an ASR system 
that was able to recognize isolated digits. The 
RCA Laboratories developed a single-speaker 
ASR for recognition of 10 syllables. The Uni-
versity College in England developed a phonetic 
recognizer, and in the MIT Lincoln Laboratory 
a speaker independent vowel recognizer was 
developed. During the 1960s, some basic tools 
for ASR systems were developed. The dynamic 
time warping is developed by the NEC Labo-
ratories and Vintsyuk of the Soviet Union. In 
the Carnegie Mellon University, the automatic 
continuous speech recognition system with small 
vocabularies HAL 9000 was developed. During 
the 1970s, several isolated word recognition sys-
tems were developed, such as a large vocabulary 
ASR system by IBM. During this time also there 
was an important increase on the investment to 
develop ASR systems, such as the DARPA and 
HARPY project in the U.S. During the decade 
of the 1980s, the first algorithms for continuous 

speech recognition system with large vocabular-
ies appeared. Also during this time the hidden 
Markov model (HMM) and neural networks were 
introduced in (development of) the ASR systems; 
one of these types of systems is a SPHINX system. 
The ASR systems have appeared as commercial 
systems during the decade of the 1990s thanks 
to the development of fast and cheap personal 
computers that allow the implementation of dicta-
tion systems and the integration between speech 
recognition and natural language processing. 
Finally, during recent years, it was possible to 
use the voice recognition systems in the operating 
systems, telephone communication system, and 
Internet sites where Internet management using 
voice recognition, Voice Web Browsers, as well 
as Voice XML standards are developed. 

stAtE-OF-tHE-Art

During the last few decades, the study of the syl-
lables as a base of language model has produced 
several beneficial results (Hu, Schalkwyk, Bar-
nard, & Cole, 1996). Hu et al. (1996) realized an 
experiment where syllables belonging to the name 
of months in English were recognized. They cre-
ated a corpus with a total of 29 syllabic units, and 
84.4% efficiency was achieved in their system. 
Boulard (1996) realized similar works using the 
syllables in German. Hauenstein (1996) devel-
oped a hybrid ASR system: HMM-NN (hidden 
Markov models-neural networks) using syllables 
and phonemes as basic units for the model. He 
realized a performance comparison between the 
system using only syllables and another one using 
only phonemes, and he concluded that the system 
that combined both units (syllables and phonemes) 
presents higher performance than the system us-
ing syllables or phonemes separately. Wu, Shire, 
Greenberg, and Morgan (1997) proposed an in-
tegration of information at syllables level within 
the automatic speech recognizer to improve their 
performance and robustness (Wu, 1998; Wu et 
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al., 1997), taking 10% of the recognition error for 
digits voices of OGI (Oregon Graduate Institute) 
corpus. In a work by Wu (1998), 6.8% of recog-
nition error rate for digits data using corpus of 
digits from telephone conversation was reported; 
here, the RSA system was a phoneme-syllable 
hybrid system. Jones, Downey, and Mason (1999) 
experimented with HMM to obtain the representa-
tions of the units at the syllable level. From these 
experiments they concluded that it is possible to 
substantially improve the performance of the ASR 
using a medium size database comparing with the 
monophonic models (Jones et al., 1999). In this 
case, the recognition rate was 60% compared with 
35% obtained when a monophonic model was 
used, concluding that the practical applications 
must be satisfied by a hybrid system (Fosler-Lus-
sier, Greenberg, & Morgan, 1999). They found 
that a great amount of phonetic phenomena that 
appeared in the spontaneous speech have syllabic 
features, and it is necessary to use more phonetic 
contextual windows for phonetic-based ASR 
systems (Fosler et al., 1999).

Weber (2000), in his experiments using seg-
mentation of speech signal with different duration, 
found the recognition error rate of word (WER: 
Word Error Rate) is increased when the speech 
signal is distorted by noise. WER can be reduced 
increasing segmentation size using syllabic-based 
ASR. Meneido and Neto (2000) used the informa-
tion at the syllable level to apply an automatic word 
segmentation system to improve ASR systems, 
which was applied to the Portuguese, and the WER 
was reduced. Some works began to consider a 
language model to improve the ASR system. The 
work of Meneido in Portuguese showed a method 
of incorporation of the speech information at the 
syllable level with Spanish language, because both 
languages share common features in the syllable 
level (Meneido & Neto, 2000; Meneido, Neto, & 
Almeida, 1999). Also the work of Menido et al. 
(1999) reports a successful detection of starting 
point of the syllable with about 93%, and they 

considered that wide range windows of context 
entrance (260m) are most appropriate.

In 1996, a summer meeting about continuous 
speech recognition was held in the Language 
and Speech Processing Center of Johns Hopkins 
University, where it was demonstrated that the 
use of the syllable level and the use of the indi-
vidual internal pressure can reduce the WER of 
the triphones-based ASR systems (Wu, 1998). 
In the same year, Hauenstein (1996) introduced 
the syllabic units into the continuous speech 
recognition systems and realized a performance 
comparison with a phonetic units-based system. 
His experiments showed that a phonetic-based 
system presents better performance for the con-
tinuous speech recognition system, while a syl-
labic-based system is better for the discontinuous 
speech recognition system, reaching more than 
17.7% of a recognition error. 

Five years later, Ganapathiraju, Hamaker, 
Picone, and Doddington (2001) showed that the 
syllabic-based system reaches a similar perfor-
mance to the phonetic-based system for continuous 
speech recognition task. Firstly, they observed 
that there are a considerable number of triphones 
with little information to construct an appropriate 
speech model. In addition, they noticed that in the 
triphones, there is minimum integration of the 
spectral and temporal dependencies due to the 
short duration of masks, and one by one mapping 
of the words to its corresponded phonemes caused 
a great amount of different categories for the same 
sound. To solve this problem, they proposed an 
integrated system with syllables model and an 
acoustic model. The proposed system reduced 1% 
of WER with respect to a triphones-based system; 
here a switchboard database was used. They 
reported an 11.1% error rate when the syllable of 
the context was used independently. In 1997, the 
project generated by Edinburgh, “Improvement of 
the speech recognition using syllabic structure” 
(Project ESPRESSO), which is motivated by the 
fact that the conventional HMM-based ASR sys-
tem no longer provided the expected performance, 
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and it is necessary to find more efficient models 
than the conventional one that used phonemes of 
the context. The project intended to find a suitable 
model to capture the context dependency without 
requiring an excessive number of parameters for 
its representation. Its first stage, in which the use 
of the phonetic syllables characterized for speech 
recognition was researched by King, Taylor, 
Frankel, and Richmond (2000), was finished in 
1999, while in the second phase, new models for 
the speech recognition were developed, taking 
into account the continuous nature of the schemes 
found in the previous phase. This phase still is in 
the accomplishment process. 

For the Spanish, speech recognizers for spe-
cific applications have been developed. Córdoba, 
Menéndez-Pidal, and Macías Guasara (1995) 
worked in an ASR system for digits for telephony 
applications. Also the problem of variation by 
the emotional state of the speaker was analyzed 
(Montero, Gutiérrez Arreola, & Colás, 1999). In 
Mexico the authors have worked on the develop-
ment of an ASR version for the Spanish spoken 
in Mexico, which is based on a platform devel-
oped originally by the English language (Fanty, 
1996; Munive, Vargas, Serridge, Cervantes, & 
Kirschnning, 1998). Regarding the study about 
the syllables, Feal (2000) mentioned the idea to 
use them as a unit for the synthesis of the Spanish 
spoken speech, and presents a list of the syllables 
that are used in this language, using a database 
created from books of Spanish Literature (Feal, 
2000). Also, he proposed an algorithm for syl-
lables segmentation in continuous text from the 
phonetic transcription of the words. 

For languages like the Cantonés, spoken in 
China, which are also based on syllabic units, 
several experiments have been carried out to 
analyze the performance of a speech recognition 
system based on syllables (Lee & Ching, 1997; 
Peskin, Gillick, & Liberman, 1991). Lee and Ching 
(1997) used a speaker dependent speech recogni-
tion system, with a vocabulary of between 40 and 
200 syllables. In the case of the 200 syllables, a 

recognition rate of 81.8% was obtained. Some 
languages, such as Cantonese, are mainly based 
on tones with monosyllabic features; thus the ASR 
systems suitable for this kind of language were 
developed. The system proposed by Peskin et al. 
(1991) consists of two essential parts: a detector 
of tones and a basic syllables recognizer using 
a multilayer perceptron neuronal network. The 
vocabulary used to evaluate the ASR system was 
of 40 to 200 syllables, which represent the 6.8% 
and 34.4% of the total of the syllables of such lan-
guage. The number of speakers was equal of 10: 
five men and five women. Another language that 
has been the object of study is Mandarin language 
(Chang, Zhou, Di, Huang, & Lee, 2000), which 
is similar to the previous one; it is based on tones 
and syllables, but unlike Cantonese, the tone at 
the end of the syllable is emphasized. Within the 
main features of this language is that it inserts 
the fundamental tone (“pitch”) as a recognition 
parameter. The database used in this case included 
a total of 500 speakers and 1000 phrases; the 
algorithm obtains the “pitch” in real time, add-
ing also the delta and double delta components. 
They obtained an error rate of 7.32% when no 
pitch processing was made. When they added the 
pitch for the analysis of tones, the error rate was 
reduced to 6.43%. When the information of the 
pitch and the set of syllables were combined, the 
error rate was 6.03%, which represents a reduction 
of an accumulated error of 17.6%. 

These results denote that factors such as the 
signal energy and the duration can contribute to 
reduce the ambiguity problem of different tones. 
As mentioned in some references of this chapter, 
it can be applied to the Spanish language such as 
the works of Meneido, Neto and Almeida (1999) 
and Meneido and Neto (2000), which were done 
for the Portuguese. Meneido et al. (1999) show 
that recent developments have allowed the obser-
vance that the syllable can be used like a unit of 
recognition for the Portuguese language, which is 
a highly syllabic language, because the borders of 
the syllables are better defined than the phonemes 
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borders. Among their main works, the segmenta-
tion of speech signal to syllabic units is proposed; 
it is realized by means of the feature extraction 
oriented to perception. These features were post-
processed by means of a simple threshold-based 
system or neural networks based on the syllables 
borders estimation. The experimental results 
showed 93% of correct detection of beginning of 
syllables with 15% of insertion rate, using a win-
dow of approximately 260 ms. The obtained results 
showed that, with a window of approximately 260 
ms, 93% of correct detection of the beginnings 
was reached, with an insertion rate of 15%. The 
inclusion of the triphones on part of the study of 
the syllables is another excellent aspect mentioned 
by Meneido and Neto (2000). As an introduction 
to their research, they considered that an exact 
knowledge of the beginnings of the syllable can 
be useful to increase the recognition rate obtained 
until now. The database used for testing the ASR 
system was the BD-PUBLIC, from which they 
obtained a segmentation adapted of the same one 
of the order of 72%. In this work they propose four 
methods to segment the signal in syllabic units. 
Using the database under analysis they extracted 
a corpus with a total of 750 phrases, containing 
a total of 3408 words, from which 1314 were dif-
ferent with a total of 616 different syllables. It is 
possible to emphasize that the work of Meneido 
and Neto (2000) looks strongly influenced by the 
work of Villing, Timoney, Ward, and Costello 
(2004), in which the utility that has the syllabic 
unit is mentioned. These results were obtained 
from a set of experiments using digits of the 
database SWITCHBOARD. In such experiments 
they demonstrated that the syllables have better 
execution than the triphones in approximately 
1.1%. Also, the analysis of an algorithm used for 
the segmentation of syllabic units appears, which 
are compared with the results of the algorithms of 
Mermelstein and Howitt used to make the same 
activity. A recognition rate of 93.1% reported 
is greater than the 76.1% obtained by the algo-
rithm of Mermelstein and the 78.9% obtained 

by the Howitt algorithm. Another contribution 
of Meneido (Meneido & Neto, 2000) consists in 
the performance analysis that used the neuronal 
network and the Hidden Markov Models, and 
in the recognition of phrases of the Portuguese 
by means of a new method of segmentation in 
syllabic units. Hartmut et al. (1996) proposed an 
algorithm for the segmentation of the word in 
syllabic units, providing a segmentation error of 
the 12.87% for isolated words and of the 21.03% 
for the spontaneous speech. This algorithm used 
a great amount of digital filters to perform the 
corresponding segmentation.

FUNDAMENtALs OF VOIcE
rEcOGNItION

The automatic speech recognition is a complex 
pattern recognition task in which the speech signal 
is analyzed to extract the most significant features, 
once the speech signal has been digitalized with a 
sampling rate between 8 and 16 kHz. This section 
describes some of the most used feature extraction 
methods reported in the literature (Jackson, 1996; 
Kirschning-Albers, 1998; Kosko, 1992; Sydral, 
Bennet, & Greenspan, 1995).  The first method 
is the Fourier analysis, which can be observed 
from Figure 1, which consists of applying the 
fast Fourier transform (FFT) to the set of samples 
under analysis. Regularly, this representation in 
the frequency domain is distributed by using the 
well-known MEL scale, where the frequencies 
smaller than 1KHz are analyzed using a linear 
scale, and the frequencies larger than 1kHz use a 
logarithmic scale (Bernal, Bobadilla, & Gomez, 
2000), with the purpose of creating an analogy with 
the internal cochlea of the ear that in its natural 
way works like a frequencies splitter. This can be 
observed in the expression of equation 1. 

Linear predictive coding (LPC) is a method 
whose purpose is to find a set of representative 
vectors denominated vectors code, from which it 
forms a matrix of representative vectors that as 
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well conforms what book is denominated code. 
Based on its hypothesis in the fact that sample XT 
of a signal can be predetermined from the k previ-
ous samples, if we know the weight by which each 
one of them is affected by all the XT-K, previous 
XT-K-1, XT-K-2, and so forth, samples. 

Cepstrales coefficients analysis is another 
method used for feature extraction of speech sig-
nals that represent the inverse Fourier transform 
of the logarithm of power spectral density of the 
speech signal (Rabiner & Biing-Hwang, 1993). 
Finally, the perceptual linear prediction analysis 
(PLP) is another widely used method, resulting of 
the physiological characteristics, but that cannot 
be represented graphically (Kirschning-Albers, 
1998). 

10( ) log (1 ),= +
fMel f b
c

       (1)

The essential characteristic of the speech signal 
is its excessive time varying characteristics. At 
the present time, the speech signal is analyzed 
from two different points of view: the acoustic 
level and the temporary level (Tebelskis, 1995). 
From the acoustic point of view, the aspects to 
be analyzed are the accent, the pronunciation, the 

frequency resonance of vocal tract (“pitch”), and 
the volume, among others, while in the case of 
the temporary variation, the different durations 
presented in a set of speech samples are analyzed. 
Although in general, both previously mentioned 
aspects are not independent, they are assumed to 
independent among them. Between both aspects 
mentioned before, the time variation is easier to 
handle. In principle, a linear deformation type of 
an unknown speech signal was used to compare 
with a given reference signal. In this case the 
obtained result was not optimal. Next, a non-lin-
ear type deformation was used, which gave as a 
consequence the appearance of DTW (Dynamic 
Time Warping) algorithm (Rabiner & Levinson, 
1990). At the present time, such algorithm has 
yet to be used to a great extent. The acoustic 
variation is more difficult to model, due to its 
heterogeneous nature. Therefore, the study of the 
speech recognition has extended its field in this 
aspect. The different perspectives to analyze the 
speech recognition are reduced to the following 
ones: models of reference or groups, knowledge, 
stochastic or statistical models, artificial neuronal 
networks, and hybrid methods. Among them the 
most widely used method is the statistical method 

Figure 1. Filters banks implementation for cepstral-based system proposed by Suk and Flanagan
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that makes use of the hidden Markov model 
(Kita, Morimoto, & Sagayama, 1993). Several 
developed systems using such methods appear 
in specific domains, although these present some 
limitations that suggest the necessity to develop 
new methods. 

The speech is a continuous time signal and 
then in order to be processed by a digital proces-
sor is indispensable in its digitalization, with an 
appropriate sampling rate. This factor is very 
important, however, although a high quality 
digitalized speech signal could be available since 
there are still many factors that must be taken in 
account to be able to develop reliable ASR systems 
(Kirschning-Albers, 1998) such as the vocabulary 
size, if the system is speaker dependent or speaker 
independent, if the ASR is required to recognize 
isolate words or continuous speech, if the ASR 
is intended for a particular task, or for general 
applications, and so forth.

The number of words that the ASR system is 
required to recognize is a very important factor 
because the system performance decreases when 
the vocabulary size increases. Reports of an ac-
ceptable recognition average show that most ASR 
performs fairly well when the word numbers is 
smaller than 1000 and that the performance wors-
ens when the word number is beyond 1000.

The ASR, depending on the particular applica-
tion, can be speaker dependent and the speaker 
independent. The speaker dependent ARS is 
commonly used when a high recognition rate 
is required, although its use is restricted to one 
particular speaker, while the speaker independent 
ASR can be used in applications that require 
handling a relatively large number of users, 
although its recognition performance degrades 
when the number of speakers increases. Also, 
both ASR systems can be classified into isolated 
and continuous speech ASR, depending on the 
particular application. In the first case, the ASR 
is required to recognize isolated words or short 
sentences without relation with other previous 
speech. In continuous speech recognitions, the 

system is required to recognize long sentences 
and even a conversation. In this case, the rela-
tions among the different components of a given 
sentence become very important. Because both 
situations are quite different, the ASR systems 
required in both applications are substantially 
different. Besides the characteristics mentioned 
previously, the ASR systems can be divided also 
into ASR systems for particular applications such 
as to recognize some specific commands, or for 
general applications.

Another aspect that must be taken in account 
to develop reliable ARS systems is the distor-
tion introduced by the additive noise as well as 
variation introduced in the speaker voice due to 
sickness, possible stress, and so forth. 

GENErAL FrAMEWOrK FOr 
sPEEcH rEcOGNItION

All researches related with speech recognition 
require carrying out a set of tasks to be performed 
independently of the goal to be reached; some of 
them are summarized as follows: (a) to prepare the 
speech corpus to use in the research; (b) analysis 
of the required conditions to obtain a corpus of 
good quality; (c) to define the preprocessing to 
be applied to the corpus file; (d) determine the 
algorithms and methods that will be used for 
features extraction to be use in speech recogni-
tion; (e) estimate the cepstrals or melspec and so 
forth; (f) to train the recognition system; and g) to 
verify the system performance using the correct 
recognition average. 

Prepare the speech corpus to Use in 
the research

The speech corpus is a set of files with digitized 
speech that are used for feature extraction during 
training and evaluation of the developed ASR 
system. Independently of the application, isolated 
word recognition, that is, words or short phrases, 
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speaker dependent or independent approach, as 
well as speaker recognition application, which 
will be analyzed in an accompanying chapter, 
the method to construct a reliable speech corpus 
is basically the same one. The continuous speech 
problem is not analyzed in this chapter.

To construct a reliable speech corpus, the fol-
lowings aspects must be considered: (a) a codebook 
must be designed containing the words or phrase 
to be recognized by the ASR system. Here the 
codebook size depends on the application; (b) 
for each speaker working in the developing of the 
system (K speakers), N files of each command 
will be recorded; (c) the recorded files are divided 
into sets, M commands, will be used to train the 
system, and N-M for testing the behavior of the 
system using the recognition rate.

requirements to Obtain a Good 
Quality corpus 

It is very important, during the sound recording 
stage, to consider the recording conditions, such as 
distance to the microphone and adjustment of the 
gain and sensitivity of the microphone. All record-
ed commands must be monitored graphically to be 
sure that they fulfill the minimum requirements 
such as the signal level. It is important that all 
recorded signals have similar average amplitude 
and that these must not be saturated nor have very 
little amplitude. An example of these two cases is 
shown by Figure 3(a) and 3(b), respectively, while 
Figure 3(c) shows the same signal with a good 

amplitude level. It is very important to avoid the 
situations shown in Figure 3(a) and 3(b), which 
can be a cause of performance degradation. The 
amplitude normalization, in the preprocessing 
stage, can be used to reduce this problem; however, 
it is important to avoid the recording and storage 
of files in the corpus with very low or very large 
amplitude. In Figure 3, three examples of recorded 
signals are shown. The first one (Figure 3[a]) is 
saturated; the second one (Figure 3[b]) has very 
low amplitude; and the third (Figure 3[c]) is an 
amplitude normalized signal.

Preprocessing Applied to the corpus 
Files 

The preprocessing stage is commonly used to 
improve the system during the training and nor-
mal operation stages. It is usually carried out in a 
series of steps that standardize the characteristics 
of the speech signals recorded in the time domain. 
This stage can be summarized as follows: (a) 
normalization of the recorded signal amplitude, 
(b) pre-emphasizing the standardized signal, 
and (c) detection of the starting and final speech 
signal point, with the purpose of eliminating the 
silent intervals at the beginning and ending of 
the words. 

The file amplitude normalization is done with 
the purpose of obtaining a greater similarity 
between files that contain the same command, 
avoiding variations of the amplitude during the 
recording process due to speaker position with re-
spect to the microphone, fatigue, or distraction. 

Figure 2. Three-dimensional representation speech corpus
N M 

K 

J 
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The pre-emphasis is used to compensate the 
lost that suffer the high speech signal frequencies 
by effect of the propagation and radiation from the 
vocal cavity to the microphone. The pre-emphasis 
is performed by filtering the speech signal with a 
first order filter whose output signal is given by 
passing the speech signal through a first order filter 
as shown in Figure 4. This filter improves the ef-
ficiency of the stages used to calculate the speech 
spectrum, increasing, from the hearing point of 
view, the sensibility of the frequencies components 
larger than 1 KHz. Note that the pre-emphasis is 
not applied if the task consists of the analysis and 
extraction of the fundamental tone. 

The detection of beginning and final point of 
a word is done by taking into account the activ-
ity, the energy activity, and zero crossing of the 

speech signal, S(n), with respect to the values 
that are in silence conditions. The duration of the 
segment under analyze is of 5 ms approximately. 
The behavior of the energy increase or the zero 
crossing indicates that a speech signal is present. 
Clearly, this activity can be due to additive noise; 
however, in most cases the ASR system can control 
the presence of it during the recordings. The zero 
crossing variation is mainly due to the emission of 
an explosive signal (`p’, ̀ t’, ̀ k’, ̀ b’) or random noise 
(`s’, `f’, `ch’, `j’, `z’), while the energy variation 
happens in the presence of loudness vowels (`á’, 
`é’, `í’, `ó’, `ú’), semivowels, or consonants (`m’, 
‘n’, `ñ’, `w’, `d’, `l’, `g’, `y’). In order to detect the 
presence of isolated words, the same procedure 
is done, but in this occasion the detection starts 
at the end of the data set and proceeds toward the 

Figure 3. Examples of recording with amplitude: (a) saturate, (b) low, and (c) medium

(a)

(b)

(c)

Figure 4. Pre-emphasis filter response
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principle. If the task of determining beginning and 
end involves a phrase where several words exist, 
the process is done by determining where there 
are segments larger than, usually between 30 and 
50 milliseconds, according to the characteristics 
of the speaker who produces the voice. 

In Figure 5 we can observe the necessity of 
working with the energy threshold and zero cross-
ing, according to the type of sound to be analyzed 
at the initial word: (a) sonorous sound “ahora,” 
(b) noise sound “silos.” How it is possible to be 
appreciated. For the case of the word “silos,” the 
energy threshold does not detect the beginning of 
the word, and the same happens for the end.

Energy Analysis

Consider the energy contained in a silence segment 
of 1s duration, which for N = fs, where fs is the 
sampling frequency has an energy given by:

1
2

0
( )

-

=

= ∑
N

sil i
i

E S ,     (2)

while the energy average is given by: 

20
= sil

sil
E

Ep .     (3)

It is the average energy in a 5 ms segment, that 
is, the size of segment that is used to estimate the 
time interval in which the voice activity is present. 
Next the energy threshold use to determine the 
starting and ending point of the speech segment 
is given by:

(1 %)= +silEu Ep , 0.1 < % < 0.2,  (4)

where the parameter % is chosen by the user. 
This is the value that must be considered during 
the analysis. The first sample of the segment that 
fulfills that condition is considered as the starting 
point of the speech segment under analysis, while 
the last sample of the last segment that satisfies 
this condition is considered as the ending point. 

Analysis of Zero Crossing

Consider the number of zero crossings of a si-
lence segment of 1s length, assuming that N = 
fs samples:

1

0
( 1) ( ) 0

-

= + - >∑
N

silNZ Signo Si Signo Si . (5)

In a similar way the average value for a seg-
ment of 5 ms is given by:

20
=sil

NZsilNZP .    (6)

This value represents the average of zero 
crossing in a 5 ms segment, which is the size of 
the segment used to analyze and to determine the 
starting point of speech segment when it begins 
with a noise consonant. Next, NZu, which is the 
zero crossing threshold, is given by:

Figure 5. Start and end point detection in (a) Span-
ish word “ahora,” (b) Spanish word “silos”
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(1 %)= +silNZu MZp ,   (7)

where the value of % is chosen by the ASR user. 
This value must be considered by the analysis. 
Here, as in the energy average method, the first 
sample of the first segment that fulfills this 
condition is considered as the first sample of the 
speech signal segment. Once the starting point 
is detected, a segment of 20 or 25 ms is used for 
feature extraction.

Feature Extraction Algorithms 

Some authors consider the feature extraction as 
part of the preprocessing stage; however, because 
of the importance that the feature extraction has in 
the performance of ASR systems, the feature ex-
traction is presented separately. Several methods 
have been proposed to feature extraction; among 
them, the autoregressive parameters obtained us-
ing the linear prediction method, ap, provides the 
better results to characterize the human speech. 
Using these parameters we can assume that the 
speech signal can be represented as the output 
signal of an all pole digital filter whose excita-
tion is an impulse sequence with a frequency 
equal to the pitch of speech signal under analysis, 
when the segment is voiced, or with noise when 

the segment is unvoiced. A variant is to use 
the cepstrales coefficients of the speech signal, 
which can be obtained from the LPC coefficients; 
both of them have been shown to perform fairly 
well in feature extraction in speech recognition 
system. The speech production model is shown 
in Figure 6. 

The speech production model shown in Figure 
6 is strongly dependent on the estimation of the 
autoregressive parameters, ap , which can be ob-
tained using the linear prediction method, which 
can be summarized as follows: (a) firstly the input 
signal is segmented to obtain the useful signal, 
without silence, in segments from 25 to 20 ms 
overlapping the segments; (b) apply the Hamming 
window to the segmented signal (Childers, 2000; 
Williams, 1996); (c) estimate the prediction order, 
that is, the amount of p values for each segment; (d) 
calculate the autoregressive coefficients or linear 
prediction coefficients, LPC, for each segment; 
(e) using the estimated LPC parameters estimate 
the cepstrales coefficients, (f) finally obtain the 
coefficients average. 

To obtain the features vector, firstly the speech 
signal is divided in segments of 20 to 25 ms, 
which is an established standard to characterize 
the dynamics of the operation of the phonate sys-
tem. From multiple observations one concludes 

Figure 6. Speech signal production model
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that the change from a phoneme to another one 
in the speech happens approximately in that time 
interval, although there are phonemes like the 
explosives that are a little shorter. The overlapping 
of segments is necessary to obtain the dynamics 
of change of the most representative segment 
characteristics. Usually the overlapping is ap-
plied with a 50% overlap. If the objective using 
the autocorrelation is to determine the existence 
of the pitch, FO, in the segment under analysis, 
the segment duration is taken with a length of 
40 ms. 

To avoid distortion of the segmented speech 
due to the discontinuities introduced during the 
segmentation process, a window function, typi-
cally the Hamming window, given by following 
equation, is used:

)/2cos(46.054.0)( NnnW -= , for 0 1≤ ≤ -n N , 
       
where N is the number of samples of the used 
segment. 

After the speech signal is segmented, the p 
autocorrelation coefficients are estimated, where 
p is the linear predictor order. The autocorrela-
tion function can be estimated using the unbiased 
autocorrelation or the biased autocorrelation 
algorithms (Childers, 2000), where for the biased 
case we have:

1

0

1( ) ( ) ( )
- -

=

= +
- ∑

N k

i
Rss k S i k S i

N k
, (8)

where |k| < p +1. And for the unbiased case;

1

0

1( ) ( ( ( )
- -

=

= +∑
N k

i
Rss k S i k S i

N
,  (9)

where |k| < p +1, N is the number of speech data 
and p the linear prediction order. The more widely 
used autocorrelation estimation method is the 
unbiased one, although solutions exist using the 
biased algorithm. However, in such a case the 
calculation of LPC coefficients is done using the 
covariance matrix. 

Once p autocorrelation coefficients are esti-
mated for each segments I, the linear prediction 
coefficients, ap, coefficients for each segment, 
are estimated minimizing the mean square value 
of prediction error as follows (Childers, 2000): 
consider that the signal at time n is estimated as 
a linear combination of the pass samples of input 
signal, such that:

ŝ(n) = 1 2( ( 1) ( 2) ... ( ))pa s n a s n a n p- - + - + + - ,
      (10)

ŝ(n) = 
1

( )
p

k
k

a s n k
=

- -∑ ,   (11)

where ak, k=1,2,…,p are the linear prediction 
coefficients. Notice that with this model a real 
value sampled data at time n is predicted, using 
a linear combination from the previous sampled 
data. Therefore, it is valid to affirm that a filter 
can be designed that be able to estimate the data 
at time n only using the previous data at times 
n–1, because:

ŝ(n) = ( 1)ea s n- - ,   (12)

where ae is the linear prediction coefficient and s(n) 
and ŝ(n) are discrete samples. The error sequence 
between both sequences is given by:

e(n) = s(n) – ŝ(n) = s(n) + ae s(n–1), (13)

where the linear predictor coefficients are esti-
mated such that mean square value of prediction 
error becomes a minimum. Consider: 

ET
2 = 

1
2

0
( )

N

n
e n

-

=
∑  = 

1

0
( ( )

N

n
s n

-

=

-∑  ŝ(n))2

=
1

2

0
( ( ) ( ))

N

e
n

s n a s n k
-

=

+ -∑ .   (14)

In order to obtain the linear predictor coef-
ficient, ae, we take the partial derivative of ET

2 
with respect to ak and set it to zero, that is:
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2 1

0
0 2 ( ( ) ( 1)) ( 1)

N
T

e
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a

-

=

∂
= = + - -

∂ ∑ , (15)

to obtain,
1

0
1

0

1 ( ) ( 1)
(1)

1 (0)( 1) ( 1)

N

n
e N

n

s n s n
RssNa
Rsss n s n

N

-

=
-

=

- -
= = -

- -

∑

∑
. (16)

In order to generalize the previous result for 
p coefficients, it is necessary firstly to consider 
that (13) and (15) show that the prediction error 
is orthogonal to the input data (Figure 7).

Consider a general case in which the speech 
sample at time n is estimated as a linear combina-
tion of p previous samples as follows: 

ŝ(n) = 
1

( )
p

k
k

a s n k
=

- -∑      (17)

s(n) = 
1

( ) ( )
p

k
k

a s n k e n
=

- - + =∑  ŝ(n)+e(n). (18)

Next consider the Z transform of equation (18), 
which is given as:

1
( ) ( ) ( )

p
k

k
k

S z a z S z E z-

=

 
= - + = 

 
∑ Ŝ(z) + E(z). 

               (19)

Then,

1

( ) ( )( )
( )

1
p

k
k

k

E z E zS z
A z

a z-

=

= =
 

+  
 
∑

,  (20)

where,

1
( ) 1

p
k

k
k

A z a z-

=

= + ∑ .   (21)

Equation (20) denotes the transfer function of 
an all pole filter shown in Figure 8.

The total quadratic error for this interval is 
given in Equation 22, where s(n) are the windowed 
data. Next consider the minimization of equation 
(22) that is obtained taking the derivate of ET 
with respect to the filter coefficients and setting 
it equal to zero, that is,

2

0, 1, 2,...T

k

E k p
a

∂
= =

∂
.   (23)

Thus, from equations (22) and (23) it follows 
that:

1 1

1 0 0
( ) ( ) ( ) ( ), 1, 2,...

p N N

k
k n n

a s n k s n i s n s n i k p
- -

= = =

- - = - - =∑ ∑ ∑

      (24)

Figure 7. Orthogonally between the data and error

21 1 1
2 2 2

0 0 0 1

ˆ( ) ( ( ) ( )) ( ) ( )
pN N N

T k
n n n k

E e n s n s n s n a s n k
- - -

= = = =

 
= = - = + - 

 
∑ ∑ ∑ ∑

     (22)

Equation 22.
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which can be expressed in terms of the autocor-
relation function of input signal as follows:

1
( ) ( ), 1, 2,...

p

k
k

a Rss i k Rss i k p
=

- = - =∑ , (25)

where,

1

0

1( ) ( ) ( )
N k

n
Rss k s n s n k

N

- -

=

= +∑ .      (26)

The term 1/N, not mentioned previously, is the 
scale factor of the partial autocorrelation, which is 
a guarantee for the stability of the estimated LPC 
coefficients. Writing equation (25) in a matrix 
form can be seen in Equation 27.

Taking into account that autocorrelation 
coefficients are real and even, that is, Rss(k–
m)=Rss(m–k), for k=1,2,3,..p and m=1,2,3,…,p, the 
matrix on the left part becomes a Toeplitz type 

matrix (left part), and then the terms ak can be 
obtain by using the Levinson-Durbin algorithm. 
An additional equation for the estimation of ak  is 
based on total quadratic prediction error, which 
is given by:

2
0

1
(0) ( )

p

T k
k

E Rss a a Rss k
=

= + -∑ ,  (28)

where a0=1. Again assuming that the autocorre-
lation coefficients are even, as in equation (27), 
from equation (28), what follows can be seen in 
Equation 29.

Finally, the linear predictor coefficients can 
be obtained solving the normal equations given 
by equations (27) or (29), using the Leveinson-
Durbin algorithm (see Box 1).

Within the second loop, the one of k, is formed 
the ap LPC coefficients. 

Figure 8. AR filter
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Equation 29.
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The advantage of estimating the coefficients 
of the all pole filter using the partial correlation 
coefficients α is that the resulting filter is always 
stable. Thus from the previous process it follows 
that the LPC coefficients are estimated in a re-
cursive form as shown in Table 1 for a predictor 
order equal to p=10.

From the table it follows that the terms 0, 1ma = , 
 because the estimation task due to in each iteration, 
the terms a#,m and am,# , are different, 1,2 1,2a a≠ ; the 
columns value are the result of the vector ap of LPC 
coefficients 0 1, , ,p pa a a a=  , in each iteration. 

Depending on the ARS application, it may be 
useful to take the LPC averages of each word or 
word sections of each word. This ap coefficients 
average may be used as the behavior model of each 
word or section (Buzo & Gray, 1980).  Thus in the 
case of all word, the mth LPC becomes:

âm = ,
1

1ˆ , 1
I

m i m
i

a a m p
I =

= ≤ ≤∑ .    (30)

The cepstral coefficients, which are widely 
used in both speech as well as speaker recognition 
problems, can be directly obtained from the LPC 

coefficients, or by means of the inverse Fourier 
transform of input signal power spectral density. 
These coefficients have shown to be very good 
parameters for the development of speech recogni-
tion, sometimes better than the LPC. 

The ceptrals coefficients can be estimated 
from the LPC coefficients applying the following 
expression:

1

1

1 ( )
n

n n i n i
i

c a n i a c
n

-

-
=

= - - -∑ , for n > 0, (31)

where cn is the nth LPC-cepstral coefficients 
(CLPC), ai are the LPC coefficients, and n is the 
cepstral index. 

Another form to carry out the cepstrals esti-
mation is use of the power spectral density of the 
input signal. To this end we can use the homo-
morphic techniques of signal processing, which 
have had great importance within the speech 
recognition field. The homomorphic systems 
are a class of non-linear systems that obey to a 
superposition principle. The motivation to do a 
homomorphic processing of the speech signal is 
shown in Figure 9.

Given:  p, Rss[0,p]
Calculate:   {αm, ak,m, cm: 1≤ m ≤ p, 1 ≤ k ≤ p}
Begin:   α0 = Rss[0,0]
    a0,0 = 1
Body of the program: for m =0 to p–1, do
              m
    γm = ∑ Rss[m +1 –k] ak,m
             k = 0
    cm +1 = –gammam/αm
    αm + 1 = αm(1 – c2

m+1)
    am + 1,m = 0
    for k =0 to m +1, do
     ak,m +1 = ak,m + cm + 1 am + 1 – k,m
    end loop k
   end loop m

Box 1. Leveinson-Durbin algorithm
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The cepstrum estimation involves firstly the 
calculation of the power spectral density of input 
signal. Once the power spectral density of the input 
signal in the selected interval is obtained, next the 
logarithm of the previous power spectral density 
is calculated, and the inverse Fourier transform 
is applied to the resulting signal, which is all 
defined positive. This procedure is illustrated in 
Figure 10.

The cepstrum of a speech signal can be di-
vided in two parts: the lower portion of time that 
corresponds to the transfer function of the vocal 
track and the high portion that corresponds to the 
excitation. To smooth the cepstral estimation of 
the vocal track, the high portion of it can do zero 
and the Fourier transform applied to the low por-
tion part of the ceptrum, resulting in a smoothed 
cepstral spectrum. This represents the magnitude 
of vocal tract response when the excitation effect 

has been removed, including the fundamental 
tone. Whereas the LPC analysis represents only 
the poles of the system, the use of the cepstrales is 
better like the solution to represent the nasalized 
voice (Chen, 1988). 

Usually the number of cepstrales coefficients 
that are used is similar to the number of LPC coef-
ficients, by convenience and to avoid noise. 

Consider the inverse Fourier transform of the 
logarithm of input signal power spectral density 
given by:

21

10
0

1( ) log ( ) , 0 1
N j kn

N
med

k
c n S k e n N

N

-

=

= ≤ ≤ -∑ . 
           (32)

In equation (32), the c(n) is known as the nth 
cepstral coefficient derived from the Fourier 
transform and N is the number of points used to 
calculate the discrete Fourier transform (DFT). 

Iteration
Coefficients

0 1 2 3 … 9 10

a0 1 1 1 1 … 1 1

a1 - a1,1 a1,2 a1,3 … a1,p-1 a1,p

a2 - - a2,2 a2,3 … a2,p-1 a2,p

a3 - - - a3,3 … a3,p-1 a3,p

a4 - - - - … a4,p-1 a4,p

a5 - - - - … a5,p-1 a5,p

a6 - - - - … a6,p-1 a6,p

a7 - - - - … a7,p-1 a7,p

a8 - - - - … a8,p-1 a8,p

a9 - - - - - a9,p-1 a9,p

a10 - - - - - - ap,p

Table 1. Vector ap in iteration p selected 

Figure 9. The homomorphic technique can be use to separate the vocal tract action of the excitation 
signal (lineal filter on the time variable) 

 
Vocal filter tract 
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This equation is also known as the inverse DFT 
of the logarithmic spectrum. It can be properly 
simplified considering that the spectrum of the 
logarithm is a symmetrical real function, thus 
equation (32) becomes:

1

2 2( ) ( ( )) cos
N

med
k

c n S I k kn
N N

=

 =  
 ∑ , (33)

 

where n is the coefficient index, which is usually 
keep lower than 20, that is, ( 20)n ≤ . I(k) denotes 
a function that translates the position of a value 
in frequency at the interval where it is contained. 
It is in fact the measurement of the period of the 
frequencies that contains the signal. The ceps-
trum is also useful for the detection of the pitch 
in voiced segments. In such a case, as shown by 
Veeneman (1998), the distance from the origin of 
the graph to its maximum value is the period of 
the fundamental tone (T0). Usually, to this end, a 
segment signal of 64 ms, sampled to 8000 Hertz, 
is used. The election of the maximum point to 
determine the position of the fundamental tone 
is based on the fact that for standard voices the 
pitch takes place between 80 and 250 Hertz, 
corresponding to the maximum level with the 
frequency for women and the minimum for the 
men. That in time is equivalent to an interval 
between 4 and 12.5 ms. 

For isolated words recognition, it is possible to 
take the average from the LPC or cepstrales coef-
ficients (CLPC) of the total of segments contained 
in the word to generate an averaged feature vec-
tor to be used during the ASR training or during 
normal operation parameters to determine their 
similarity with the training models. 

system training 

The system training has the purpose to provide 
the ASR system the capacity to recognize isolated 
words depending on the speaker or independently 
of the speaker. In the first case the system will 
be trained with a corpus consisting of all words 
that the system must recognize spoken by all 
possible users of the system; in the second case, 
the system is trained with a corpus containing 
all words spoken by a specific speaker. In both 
cases it is desirable that each word be repeated 
several times by each speaker, if possible, during 
different days. Usually some part of the recorded 
speech signal is used for training and another part 
is used for testing. 

The technique used for the training is chosen 
by the system designers and can be vector quan-
tization (Barrón, Suárez-Guerra, & Moctezuma, 
1999), neuronal networks, self-organized maps, 
Gaussian mixtures model, hidden Markov mod-
els, or combinations of the previous ones, with 
applications of vocalized segments, continuous 
speech, and so forth. 

Asr testing 

Following the ASR training, system verification 
will be done using the N-M words not used for 
ASR training; the recognition success will be 
verified using these commands. 

During the case of training, a question that must 
be considered is when we must stop the training 
process to avoid the overtraining phenomenon. It 
is understood like overtraining, the moment from 
which the system instead of reducing the error with 
respect to the testing set when the training time 
increase, the recognition error increases when the 

Figure 10. Algorithm for cepstrum estimation

Window DFT Log IDFT Speech 
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training time increases. From the methodology 
point of view, to detect this moment of increase 
of the error of recognition in the system due to 
overtraining, it is recommendable to perform a 
system test at the end of each training session. 
Also it is recommend that, for the case of neuronal 
networks to initiate the training of the system with 
different weights from probability in the vectors 
that interconnect the cells of the system and to 
remain in the end with the network that provides 
the smaller error of trained recognition after. 

cONcLUsION

This chapter presents an overview of the speech 
recognition technology, analyzing the main com-
ponents of a speech recognition system. Topics 
such as signal capture, consideration that must 
be taken to construct a reliable corpus for system 
training, as well as different methods used for 
features extraction are analyzed in detail. This 
chapter complements Chapter XII provided in 
this book, related to advanced topics of speech 
and speaker recognition algorithms.
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AbstrAct

This chapter examines features of handwriting and speech and their effectiveness at determining whether 
the identity of a writer or speaker can be identified from his or her handwriting or speech. For hand-
writing, some of the subjective and qualitative features used by document examiners are investigated in 
a scientific and quantitative manner based on the analysis of three characters (“d,” “y,” and “f”) and 
the grapheme “th.” For speech, several frequently used features are compared for their strengths and 
weaknesses in distinguishing speakers. The results show that some features do have good discriminative 
power, while others are less effective. Acceptable performance can be obtained in many situations using 
these features. However, the effect of handwriting forgery/disguise or conscious speech imitation/altera-
tion on these features is not investigated. New and more powerful features are needed in the future if 
high accuracy person identification can be achieved in the presence of disguise or forgery. 

INtrODUctION

In forensic analysis, there is often a need to identify 
a person or persons from evidence obtained at the 

scene of a crime. For example, evidence is often 
needed in criminal investigations to determine 
whether or not a piece of writing or a signature 
was written by a particular individual. Or it may 



  ���

Seeking Patterns in the Forensic Analysis of Handwriting and Speech

be necessary to produce evidence on the identity 
of the speaker in a recorded voice message left 
on an answering machine. Alternatively, such 
analysis may need to be applied to detect the 
identity of wanted individuals passing through 
security monitoring and screening operations in 
such sensitive areas as airport boarding gates and 
immigration desks. 

In all these scenarios, it is necessary to accom-
modate the natural variations in handwriting and 
voice caused by environmental factors such as 
background noise and personal stress/emotional 
level, which affect both speech and handwriting, 
and the writing implement or physical position 
(e.g., sitting, standing, or writing while traveling in 
a vehicle), which affects the handwriting. In addi-
tion, writers or speakers may attempt to disguise 
their handwriting or voices to avoid detection. Or 
people may wish to try to pass themselves off as 
someone else by forging their handwriting so it 
looks like that of someone else, or they may adjust 
their voices or accents to imitate someone else.

When there is a need to seek the identity 
of an unknown speaker or writer, the existing 
techniques for such forensic analysis are carried 
out by experts who use their experience and 
knowledge of handwriting and speech to reach 
an expert decision. The techniques they use 
involve detailed examination of the handwriting 
or speech using various tools such as imaging 
devices and microscopes for handwriting, and 
spectral analysis and signal processing tools for 
speech analysis.

Generally, in forensic analysis, there is a 
questioned sample of handwriting or speech from 
an unknown person and other known samples of 
handwriting or speech from known individuals. 
These known samples are usually from suspects 
who may have uttered or written the questioned 
sample. It is the task of the forensic expert to reach 
an expert opinion, with supporting evidence, as 
to whether the unknown sample is the same or 
different from a known sample.

While forensic examiners use various com-
puter tools to extract features and information 
from speech and handwriting samples, the final 
pattern matching or decision-making process to 
determine whether there is a match between the 
questioned sample and one of the known handwrit-
ing or speech samples is left to human judgment. 
This is not entirely without justification, as people 
are extremely capable of matching patterns and 
seeing similarities between samples, especially 
when they have become skilled in examining 
particular types of data. However, the techniques 
experts use are generally qualitative in nature, 
and there is little scientific basis on which to base 
their pattern-matching decision.

In this chapter, we describe the research work 
we and others have carried out to produce tools that 
assist forensic examiners in their pattern-match-
ing process. The research seeks to identify and 
extract important and significant unique features 
of handwriting and speech and then automatically 
extract those features and apply automatic pattern-
matching techniques to assist the experts in their 
forensic examination and provide a more scientific 
basis to support their expert opinion.

bAcKGrOUND

Handwriting and speech are personal biometrics 
that have long been considered unique to a person 
and his or her recognition used as evidence in 
court. However, the methods used to determine 
the authenticity of speech or handwriting and 
attributing it to an individual author have been 
increasingly questioned, as they are heavily reli-
ant on qualitative opinion of expert witnesses and 
not always supported by quantitative scientific 
evidence.

For many years there has been considerable 
research into identifying what a speaker is say-
ing (speech recognition) and, to a lesser extent, 
who the speaker is (speaker recognition). How-
ever, within the forensic context, differences in 
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recording equipment and transmission channels 
used, the presence of background noise, and voice 
variation due to differences in communication 
context (voice changes due to the environment 
and emotional state of the speaker) are a major 
challenge. Consequently, the impact of automatic 
speaker recognition technology in forensic analy-
sis has been relatively modest, and forensic speaker 
identification remains dominated by the use of a 
variety of largely subjective procedures. Recent 
developments in the interpretation of the eviden-
tial value of forensic evidence favor methods that 
make it possible for results to be expressed in 
terms of a likelihood ratio. Traditional methods 
in the field of speaker identification generally do 
not meet this requirement. Conclusions in the 
form of a binary yes/no decision or a qualified 
statement from an expert witness of the prob-
ability of the hypothesis rather than the evidence 
are increasingly criticized for being logically 
flawed. Against this background, the need to put 
alternative scientifically supported validation 
procedures into place is becoming more widely 
accepted (Broeders, 2001).

Similarly, for many centuries, handwriting 
examination in the form of signature verification 
has been used for authentication purposes; in more 
recent years, considerable research has been car-
ried out to automatically recognize handwriting. 
Experts in forensic document analysis throughout 
the world daily perform examinations of hand-
written documents to determine the authorship 
of a questioned document or to detect evidence 
of forgery or disguise. The methods used by 
forensic document examiners are based on a set 
of established and well-documented techniques 
(Harrison, 1981; Hilton, 1993; Robertson 1991). 
Examiners look at features of handwriting that 
characterize shapes of letters, lines, and the docu-
ment as a whole. The techniques have been derived 
from experience and are generally internationally 
accepted by various forensic laboratories. How-
ever, while they are intuitively reasonable, the 
methods of document analysis lack a scientific 

basis. Because of this, a fundamental question 
has arisen in several recent court cases query-
ing whether the results of forensic document 
analysis are scientific and acceptable as evidence 
(Daubert et al. vs. Merrell Dow Pharmaceuticals, 
1993; United States vs. Starzecpyzel, 1995). In 
order to establish the acceptability of forensics 
examination as a scientifically proven process, it 
is necessary to carry out a detailed examination 
of handwriting to determine (i) whether it is a 
biometric (i.e., does it exhibit the individuality of 
the writer) and (ii) whether the methods used by 
forensic document examiners can be supported 
by scientific study.

The remainder of this chapter describes re-
search that examines pattern recognition and 
matching techniques by computer, which can be 
applied to the forensic analysis of both handwrit-
ing and speech.

FOrENsIc FEAtUrEs OF
HANDWrItING

Introduction and Problem statement

There are two types of features that can be ex-
tracted from images of handwriting: document 
examiner features and computational features. 
Computational features are features that can be 
automatically and readily measured by computer 
algorithms but do not necessarily have any visu-
ally perceivable meaning to humans. Normally, 
such features are extracted by applying various 
mathematical filters and transforms to the docu-
ment image or its parts. The advantage of using 
computational features is that they are strictly 
defined and can usually be measured regardless 
of the content of a document. Extensive study of 
such features, their consistency, and discrimina-
tive power as well as their application to writer 
classification has been performed in the Center 
of Excellence for Document Analysis and Rec-
ognition (CEDAR) at the State University of New 
York at Buffalo.
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In establishing the scientific basis for forensic 
analysis of handwriting, the first issue to solve 
is the questionable individuality of handwriting. 
Computational features have been shown suf-
ficient to validate the individuality hypothesis 
(Srihari, Cha, Arora & Lee, 2002). However, 
many of the computational features are purely 
computational; they do not represent any features 
that forensic document examiners use in their 
methods. The features that document examiners 
extract to determine the authorship of documents 
under question are, however, entirely structural 
and visually discernable features. Huber and 
Headrick (1999) compiled a list of frequently 
used document examiner features into a set of 21 
discriminating elements of handwriting.

If handwriting is indeed individual, then in 
order to establish the scientific basis for forensic 
document analysis, it is necessary to determine 
whether the current methods that forensic docu-
ment examiners use do enable them to distinguish 
writers and accurately and correctly detect and 
measure the individuality in handwriting. Hence, 
it is important to determine whether writers can be 
distinguished using document examiner features 
of handwriting. Here arises a problem. Many of 
the 21 features in the list proposed by Huber and 
Headrick (1999) are defined quite ambiguously 
and can be very subjective in terms of their valid-
ity and usage. A possible solution is to formalize 
some of those features from the list; that is, to map 
them into other features that in turn are strictly 
defined and can be expressed in a numerical man-
ner and automatically extracted and measured by 
computer algorithms. It is likely to be impossible 
to fully formalize all 21 features of handwriting 
used by forensic document examiners. Hence, 
reasonable assumptions are that a human ex-
pert can (i) effectively utilize more features of 
handwriting than a computer system and (ii) 
determine which features should and should not 
be used in a particular case (i.e., having looked 
at the handwritten samples under investigation, 
a human expert is able to intuitively select only 

the important features of the handwriting under 
examination). Lack of important features can 
degrade the performance of a pattern classifica-
tion machine; presence of unimportant features 
can also degrade its performance. Consequently, 
it can be assumed that a human expert is able to 
distinguish writers or determine the authorship 
of questioned documents with higher accuracy 
than a computer system when only document 
examiner features are used. 

The problem of validation of individuality 
of handwriting has been studied extensively in 
recent years (Srihari et al., 2002; Srihari, Tomai, 
Zhang & Lee, 2003; Zhang, Srihari & Lee, 2003). 
Issues regarding techniques used in the forensic 
analysis of handwriting, detection and measure-
ment of features, comparison based on pictorial 
similarities between samples, and so forth have 
previously been discussed (Found & Rogers, 1995, 
1998). It has also been demonstrated that profes-
sional document examiners are more accurate and 
correct in their analyses than lay people (Kam, 
Fielding, & Conn, 1997, 1998; Kam, Gummadi-
dala, Fielding, & Conn, 2001; Kam, Wetstein, & 
Conn, 1994).

The work on handwriting analysis presented in 
this chapter focuses on the problem of validating 
the methods used by forensic document examin-
ers. Such a study has received little attention 
previously. The objective of the current work 
is to formalize some of the document examiner 
features, particularly micro features; that is, we 
want to develop a means of measuring these 
features and expressing them in mathematical 
terms so they can be used with general pattern 
classification techniques and enable us to investi-
gate how useful the features are for distinguishing 
different writers. According to the definitions of 
computational and document examiner features 
given in Srihari, Cha, and Lee (2001), the problem 
of document examiner feature formalization can 
be seen as a problem of mapping the document 
examiner features into computational features. 
However, in this work, the features obtained via 
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such mapping (all features under investigation) 
are still referred to as document examiner fea-
tures in order to distinguish them from purely 
computational features such as GSC features 
(Govindaraju, Srihari & Shin, 1999).

Analysis of Forensic Document
Features

Only unconstrained genuine handwriting was con-
sidered in the study reported here. The problem of 
authorship identification in court cases frequently 
involves forged and disguised handwriting. Such 
documents have not been considered in this study 
for two reasons. The first and main reason is that 
before studying complicated cases of deliberately 
changed handwriting, it is important to study the 
general case of people’s normal handwriting. If 
the results achieved from the study are negative 
(i.e., the considered features cannot help dis-
tinguish writers based on their normal genuine 
handwriting), there is no point in applying the 
same approach to the more complicated cases 
of disguised or forged handwriting. The second 
and more practical reason is a lack of available 
data for forged and disguised handwriting for 
such studies.

It was decided to formalize some of the features 
from the “21 discriminating elements” (Huber & 
Headrick, 1999) and learn how to measure those 
features and  extract them automatically, and 
evaluate their discriminating power by building a 
classifier. Since the shape of a character is usually 
affected by the preceding and following characters 
as well as the writing conditions such as type of 
pen and paper, writing constraints, and so forth, 
it is desirable to extract features of handwriting 
from samples written under similar conditions 
and having similar content so the influence of 
those factors is minimized. Handwriting samples 
from the CEDAR letter are suitable for this kind 
of study. The text of the letter was specially de-
signed in the Center of Excellence for Document 
Analysis and Recognition at the State University 

of New-York at Buffalo for research purposes and 
contains each of the 26 English characters at the 
beginning of a word as a capital and as a small 
letter in the middle and at the end of a word. The 
database used in the current study consists of 
8-bit grayscale images of 600 samples from 200 
writers scanned at 300 dpi and separated from the 
background. It is part of the CEDAR handwrit-
ing database, which was kindly provided for this 
study by CEDAR.

Choice of Characters for Feature
Extraction

According to Srihari, et al. (2001), there are two 
categories of features classified by the extraction 
level: macro features (up to the word level) and 
micro features (character level). The current study 
is focused on micro features because (i) they are 
thought to be better endowed with individual traits 
and are thought to be harder to change under at-
tempts at forgery or disguise, and (ii) extraction 
of document examiner macro features has been 
investigated in other studies (Chong, 1996 ; Hol-
combe & Leedham, 1995; Leedham, Holcombe 
& Sagar, 1995).

It was necessary to make a decision on three 
important issues: (1) because the work is too large 
to undertake on all letters a subset had to be se-
lected for feature extraction; (2) having selected 
the letters to study, it was necessary to select which 
features to extract from the chosen letters; and 
(3) it was necessary to resolve the issue of how 
to express the features numerically.

In order to decide which letters or letter com-
binations (graphemes) to use for micro feature 
extraction, several considerations were taken 
into account: (1) the letters and/or graphemes 
must be sufficiently frequent so a number of them 
can be found in most handwriting samples and 
hence make it possible to obtain the statistically 
reliable feature values; (2) according to Eldridge, 
Nimmo-Smith, Wing, and Totty (1984), letters 
with ascenders or descenders are particularly 
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useful for the purpose of writer identification; and 
(3) there are existing techniques for extraction of 
some features that can be used. 

For the analysis of letter and grapheme frequen-
cies, several books available in the public domain 
online libraries were used. The total number of 
words in these novels was about 220,000. The 
frequencies of occurrence were calculated for 
each letter as the number of occurrences of the 
letter normalized to the total number of letters. For 
grapheme analysis, only two-letter combinations 
were considered. Figures 1(a) and 1(b) display the 
observed frequency of occurrences of most fre-
quent letters and graphemes correspondingly.

Based on these observations, a decision was 
made to choose four letters for feature extraction: 
“d,” “y,” “f,” and the grapheme “th.” It should be 
emphasized that the frequency of the letter and 
grapheme occurrence is limited to English. In 
other languages (e.g., German) the distribution 
is different, and other letters or graphemes may 
be preferred. The samples of the characters and 
grapheme were extracted manually from the 
CEDAR letter samples. In order to minimize 
the influence of the adjacent characters, it was 
decided to extract samples of “d” and “y” only 

from the end position in a word. Samples of the 
grapheme “th” were extracted from the starting 
positions.

Choice of Features to Study

The selection of which features to extract from 
each character and grapheme was motivated by 
discussion of micro features in several books 
on forensic document analysis (Harrison, 1981; 
Hilton, 1993; Huber & Headrick, 1999). In par-
ticular, the list of 21 discriminating elements of 
handwriting was used as a reference. The list of 
features extracted in the study is shown in Tables 
1(a) through 1(d). Each feature is denoted as fi, 
where i is the unique feature index. Not all of the 
features were extracted at once; initially, only 21 
features from the three characters and 10 features 
( f43...f52) from the grapheme were extracted. Some 
of the features of the grapheme “th” could not be 
extracted reliably when thinning-based skeletoni-
zation was used ( f57...f67) and were extracted later 
when vector skeletonization was developed.

An important question that arises at this point 
is, how adequate are the feature extraction meth-
ods developed in this research for the purpose of 

 

 
(a). Character frequency in English texts. 
 

 
(b). Grapheme frequency in English texts.

Figure 1. Character (a) and grapheme (b) frequencies in English text
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Height f1

Width f2

Height to width ratio f3

Relative height of ascender f4

Slant of ascender f5

Final stroke angle f6

Fissure angle f7

Table 1(a). Features extracted from “d”

Height f8

Width f9

Height to width ratio f10

Relative height of descender f11

Descender loop completeness f12

Slant at point YT f14

Slant of descender f15

Final stroke angle f16

Table 1(b). Features extracted from “y”

Height f19

Width f20

Height to width ratio f21

Slant f22

Presence of loop at FT f27

Presence of loop at FB f28

Table 1(c). Features extracted from “f”

Height f43

Width f44

Height to width ratio f45

Distance HC f46

Distance TC f47

Distance TH f48

Angle between TC and TH f49

Slant of t f50

Slant of h f51

Position of t-bar f52

Connected/disconnected t and h f53

Average stroke width f54

Average stroke pseudo-pressure f55

Standard deviation of pseudo-pressure f56

   Features extracted from vector skeleton only

Standard deviation of stroke width f57

Number of strokes f58

Number of loops and retraced strokes f59

Straightness of t-stem f60

Straightness of t-bar f61

Straightness of h-stem f62

Presence of loop at top of t-stem f63

Presence of loop at top of h-stem f64

Maximum curvature of h-knee f65

Average curvature of h-knee f66

Relative size (diameter) of h-knee f67

Table 1(d). Features extracted from “th”

the study. To answer this question, two types of 
features need to be clearly distinguished. One 
type of feature is the original document examiner 
feature selected from the 21 discriminating ele-
ments of handwriting (type 1). The problem with 
those features is their vague definition. If it is not 
possible to unambiguously define what the feature 

really is, it is not possible to extract it objectively 
and correctly. The other type of feature (type 2) is 
those features that were actually studied. These 
features were defined so their extraction was 
straightforward from their definition.

The purpose of the feature extraction was 
basically to mimic the extraction of features as 
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performed by document examiners; that is, to 
extract and study type 1 features from the list 
of 21 discriminating elements of handwriting. 
The mapping from features of type 1 to features 
of type 2 was the formalization of the document 
examiner features. The question “how suited 
were the extraction methods of type 2 features for 
extraction of type 1 features” is, hence, equiva-
lent to the question “how do you evaluate the 
adequateness of the formalization.” In general, 
it is not clear how to make such an evaluation. 
For some features, like dimensional features, the 
formalized features are exactly the same as the 
originals. For others, like line quality, it is not 
possible to provide a clear answer because the 
original feature is not clearly defined. How suitable 
is the set of features “straightness of t-bar, t-stem, 
and h-stem” to describe “quality of line?” In order 
to answer this question, one needs to understand 
what “quality of line” actually means, and that 
is not at all clear.

The feature set consists of geometrical charac-
teristics of characters, various angular measures, 
loop characteristics, and stroke features. There 
are several binary features that denote presence 
or absence of some elements such as the t-bar and 
loops. Such features are assigned the value of 1 
(TRUE) if the corresponding element is found in 
the character image and the value of 0 (FALSE) 
otherwise. Presence of point D in character “y” 
corresponds to the intersection of the descender 
and the base, as shown in Figure 2(c). The posi-
tion of the t-bar feature in grapheme “th” is also 
a binary feature and is equal to 1 when the t-bar is 
crossing the stem and 0 in the cases of touching, 
detached, or absent t-bar. 

Characters “d” and “y” were divided into two 
parts consisting of the base part and the ascender 
(descender). The border between the parts was 
defined by the upper point of the loop forming 
the base part of “d” and the lower point of the 
base part of “y” correspondingly. When no clear 
base part could be found, the relative height of 
the ascender (descender) became equal to 1. If 

the base part was detected, the feature value was 
calculated as a/f1 for character “d” and 1-d/f8 for 
character “y.”

For each character, its slant was measured. For 
characters “d,” “h,” and “y” slant was defined as 
the slant of the ascender (descender). For characters 
“f” and “t,” the slant was defined as the slant of the 
stem. Such definitions of slant seem reasonable, 
as people usually make their judgements about 
the slants of these five characters by the slants of 
the major strokes of those characters.

A final stroke was defined as the angle between 
the tangent at the endpoint of the stroke and a 
horizontal line. Fissure angle for character “d” ( f7) 
was defined as the angle between the two tangents 
to the two strokes that form the fissure, as shown 
in Figure 2(a). Slant at point YT of character “y” 
was defined as the angle between the tangent line 
at point YT and a vertical line.

Loop area was approximated by the number 
of pixels inside the loop, and loop length was 
approximated by the number of border pixels. 
Loop slant was defined the same way as in the 
FOX system (Solihin, 1997). Loop completeness 
was defined through the length of the loop and the 
distance between the starting and ending points. 
If a loop is complete, the latter is 0.

The length of the descender loop of character 
“y” was calculated as the distance between the 
descender self-intersection point and the bottom-
most or turning point of the descender. 

Average stroke width was calculated in two 
ways: via the number of border pixels and the 
total number of black pixels in a binarized image 
and via tracing the strokes with a small step and 
evaluating the stroke width at each sample point 
using the distance map of the binarized image. 
The latter method could be used only with a vector 
skeleton. Although the difference in the resulting 
feature values was insignificant, the latter method 
also enabled extraction of the standard deviation 
of the stroke width ( f57). Pseudo-pressure was 
calculated by averaging the gray values of all the 
pixels that form the strokes.
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Figure 2(a). Features of “d”

Figure 2(b). Features of “y”

Figure 2(c). Features of “y”

Figure 2(d). Features of “f”

Figure 2(e). Features of “th”

Figure 2. Illustration of some of the structural features extracted from the characters/grapheme stud-
ies

Straightness of t-stem and h-stem (ascender) 
were defined as the ratio of the length of the curve 
to the distance between its endpoints. Maximum 
and average curvatures of the h-knee as well as the 
relative size (diameter) of the h-knee were calcu-

lated in a straightforward way from the B-spline 
representation of the corresponding stroke. 

Definitions of other features can be derived 
from Figures 2(a)2(e).

Extraction of Features

Initial Image Preprocessing

The automatic feature extraction engine requires 
the gray-scale image of a character or grapheme 
sample, the binarized version of this image, and 
the skeleton of it. Binarization of the images was 
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straightforward, as the handwriting in the CEDAR 
samples was on clean white paper. A constant 
global grey-level threshold of 250 was used, and 
a pixel was marked as white if its value exceeded 
the threshold and black otherwise.

In the initial experiments involving the 
extraction of document examiner features, a 
skeletonization method based on thinning was 
used. The thinning-based skeletonization method 
was developed using the basic thinning function 
provided in the Matlab Image Processing Toolbox 
(Guo & Hall, 1989), which is a modified version 
of the Zhang and Suen (1984) thinning algorith-
mther thinning methods were also tried (Suen & 
Wang, 1994), but no significant improvement in 
feature extraction was observed. The thinning 
algorithm was applied to a character image, and 
then correction of some artefacts produced by the 
thinning process was performed, as shown in the 
following pseudo-code:

do {
 remove small connected components
 find junction points
 find endpoints
 correct spurious loops
 prune short branches
} while there are some changes in the skeleton image

Figure 3(c) shows some artefacts that were 
removed. Artefact (1) is a spurious loop; Artefact 
(2) is a small connected component; Artefacts (3) 
are extra branches. 

In later experiments, a new improved skel-
etonization algorithm was developed that was 
able to preserve the original junction points and 
approximate the original handwriting strokes 
with smooth B-spline curves. The resulting 
skeleton was in a vector form (a set of B-splines). 
The feature extraction algorithms were changed 
so they could extract features from the new 
skeletons (Pervouchine, Leedham & Melikhov, 
2005a, 2005b).

 
Figure 3(a) 

  
Figure 3(b) 

 
Figure 3(c) 

 
Figure 3(d) 

Figure 3. Example images used to extract fea-
tures of the handwriting from raster skeletons. 
(a) original, (b) binarized, (c) thinned, and (d) 
corrected image

Extraction of Skeleton-Independent 
Features

Several features were extracted from either the 
original or the binarized image of handwriting 
samples. Height, width, and height-to-width ra-
tio were measured from the binarized image by 
determining the bounding box of the image. The 
bounding box coordinates x1, y1, x2, y2, correspond 
to the topmost, leftmost, bottommost, and right-
most black pixels on the image correspondingly. 
The feature values were calculated as:
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height = y2 - y1 + 1, width = x2 - x1 + 1,
ratio = height/width

Pseudo-pressure was estimated from the 
grey levels of the image pixels. Let the set of 
the foreground pixels be S and the intensity of 
a pixel be:

I(x,y), ( )0 , 1black I x y white= ≤ ≤ =

The average pseudo-pressure was calculated 
as:

( )
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And the standard deviation of the pseudo-
pressure was calculated as:
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Extraction of Angular Features

Slant was calculated in two ways for raster and 
vector skeletons. In both cases, a set of strokes 
or skeletal branches was first located, which rep-
resents the element from which the slant feature 
was extracted. These elements were ascender for 
character “d,” descender for “y,” stems for “t,” “f,” 
“h,” and so forth. Then, for the raster skeleton, the 
pixels that belong to the located set of branches 
were taken, and a regression line x = ky + b was 
fitted to that set of points, as shown in Figures 
4(a) and 4(b). The choice of the fitting line is ex-
plained by the fact that slant is normally closer to 
a vertical line than to a horizontal line. If the set 
of points to which a line is to be fitted is denoted 
by (xi, yi), i = 1...N, slant was calculated as:

( )
1

22
arctan

N
i i i ii i i

i ii i

N x y x y
slant

N y y
=

-
=

-

∑ ∑ ∑
∑ ∑

For the vector skeleton, the slant value was 
calculated by taking a set of sample points si along 
each spline-approximated stroke that represented 
the element of interest (ascender, descender, etc.) 
and calculating the angles of tangents at these 
points αi = arctanki. The slant was calculated as 
the weighted average of those angles:

i ii
slant

ii

l
l

= ∑
∑

where li is the length of the corresponding curve 
segment (see Figure 4 (c)).

For the case of the vector skeleton, the final 
stroke angle was calculated as the angle of the 
tangent to the corresponding endpoint. For the case 
of the raster skeleton, a straight line was initially 
fitted into a set of pixels, but later that was changed 
to fitting an ellipse into a set of pixels representing 
the final stroke, and the tangent to the ellipse at 
the point nearest to the endpoint of the stroke was 
taken for calculation (Figure 5(a) ). In these cases, 
ellipse fitting algorithm produced high residual 

 
Figure 4(a). Element of interest. 
 

 
Figure 4(b). Fitting a line of best fit. 

Figure 4. Calculating the slant of a stroke
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error. To correct this, a straight line was fitted into 
the set of pixels instead of an ellipse.

Fissure angle measurement was performed 
similarly to the final stroke measurement. Once 
the fissure point was located, extraction of the 
fissure angle in the case of a vector skeleton was 
straightforward. In the raster skeleton case, two 
regression lines were fitted, each one approximat-
ing the tangent line to the corresponding stroke 
(see Figure 5(c) ). The angle between the regression 
lines was taken as the fissure angle.

Extraction of Ascender and Descender 
Features

The descender of “y” was detected by tracing it in 
both directions from the bottommost black pixel of 
the skeletonized image, which always belonged to 
the descender. After tracing of the descender, all 
the visited pixels were erased and the horizontal 
distance from the image left border to the leftmost 
black pixel was calculated. The horizontal level at 
which the distance function had a sharp increase 
was taken as the bottommost lowest base level. In 
cases when no sharp increase was observed, the 
bottommost black pixel was taken as the lowest 
base level. If the ordinate of this pixel was ybase , 
the relative height of descender was calculated 
as f11 = (yb - ybase )/ f8 , where f8 was the character 
height feature (Figure 6).

Due to the frequent presence of spurious loops 
resulting from the skeletonization process or 
small loops in the ascender of “d,” tracing of the 
ascender part of the skeleton proved to be not as 
robust as it was for the descender of “y.” In order 
to find the horizontal level that corresponded to 
the top of the base, two algorithms were used. In 
the first algorithm, the distance between the left 
edge of the image and the leftmost black pixel 
was calculated the same way as for the base part 
of “y.” Sharp increases in the distance function 
value were marked and sorted according to their 
increase value. The largest increase was compared 
to a threshold value. If its magnitude was more 

Figure 5(a). Final stroke angle

Figure 5(b). Fissure angle

Figure 5(c). Slant from vector skeleton

Figure 6. Extraction of descender features
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than the threshold, ordinate y that corresponded to 
that increase was taken to be the top of the base, 
as shown in Figure 7(a). If none of the increases 
was larger than the threshold, the second detection 
algorithm was run. The value of the threshold was 
determined empirically. The second algorithm 
extracted the width of the character skeleton as 
the function of y (see Figure 7(b)). The value of y 
at which the resulting function width(y) reached 
its minimum was taken to be the top of the base. 
In cases when there were several minima, the 
lowest one was taken.

Extraction of Other Features

Detection of the top points was made by first 
detecting all the endpoints in the upper half of 
a sample skeleton image and then tracing the 
branches from those endpoints to determine 
which of them correspond to which elements of 
“th.” Cases of “t” and “h” sharing the top stem 
point were taken into account. Once the top of 

the stem points was detected, extraction of the 
related distance features was simple.

The number of strokes and number of loops 
and retraced strokes were available directly from 
the skeleton. Since each retraced stroke can be 
considered a small loop or a hidden loop, the 
number of loops, the number of hidden restored 
loops, and the number of retraced strokes were 
summed to give the feature value.

Standard deviation of stroke width was ex-
tracted by taking a set of sampling points on the 
skeleton curves with a small step and measuring 
the cross-section of the strokes on the underlying 
binarized image as shown in Figure 8. The ob-
tained measurements were then used to calculate 
the feature value.

The presence of loops at the top of t-stem and 
h-stem could also be extracted from the raster 
skeleton. However, experiments on extraction of 
similar features from character “f” showed that 
extraction of these features from the skeleton 
produced by the thinning-based method was 
unreliable due to spurious loops introduced by 
the thinning process. Extraction of these features 
from a vector skeleton was straightforward once 
the corresponding endpoints were determined.

Straightness of a stroke (t-bar, t-stem, h-stem) 
was calculated in a similar manner to the descender 

Figure 7. Extraction of the height of the ascender 
in character “d”

 
Figure 7(a). Relative height of ascender, first algorithm. 
 

 
Figure 7(b). Relative height of ascender, second algorithm. 

Figure 8. Stroke cross-section to estimate stroke 
width
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of “y” completeness feature. If the distance be-
tween the two endpoints was d and the length of 
the stroke was L, the straightness of the stroke 
was given by straightness = L / d. It was close to 
unity for a straight stroke and significantly larger 
for a curved stroke.

Maximum and average curvature of a stroke 
(h-knee) was calculated by taking sample points 
at small steps along the curve, calculating the 
curvature at each point and taking the largest 
value and the weighted average.

Relative size of h-knee was calculated as the 
largest distance from h-stem to the h-knee curve. 
It was approximately calculated as the largest 
horizontal distance between the curves represent-
ing the stem and the knee.

Evaluation of the Features

Features of “d,” “y,” “f,” and “th”

Suppose there is a set of features and all subsets 
are found that are equally good for writer classifi-
cation. Equally good means that the classification 
accuracies achieved when those subsets are used 
do not differ significantly—their average values 
are indistinguishable. There are three classes of 
features according to their inclusion in the found 

feature sets: some features are included in all fea-
ture sets, some are not included at all, and the rest 
are included in some of the sets. The first category 
of features comprises indispensable features, the 
second category contains irrelevant features, and 
the rest of the features are partially relevant.

For each feature subset, its performance was 
measured in a series of experiments involving 
writer classification, producing the average ac-
curacy of classification along with its standard 
deviation. The experiments used n-fold cross-vali-
dation (Weiss & Kulikowski, 1991). The data were 
divided into n approximately equal parts, and the 
classification experiments were then performed 
n times. Each time, another part of the data was 
taken out. The remaining n - 1 parts were used 
to train the classifier, and the other part was used 
for testing. The n values of the classification ac-
curacy obtained were averaged.

A DistAl neural network was used as a clas-
sifier (Yang, Parekh & Honavar, 1997), and the 
fivefold cross-validation method was used to 
estimate the writer classification accuracy. The 
total number of different feature subsets that can 
be formed from a set of M features is 2M - 1. When 
this number is low (e.g., for individual character 
features), an exhaustive search is possible. When 
the number becomes large, an exhaustive search is 

Table 2. Optimal feature sets, accuracy values, and standard deviations; bit 1 corresponds to presence 
of the feature in the subset, bit 0 to absence of it
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not feasible. In this case, it was decided to employ 
a genetic algorithm for the search.

Table 2 shows the feature subsets of the entire 
four-character feature set that gave the same high-
est classification accuracy. The accuracy values 
presented in the table are indistinguishable from 
each other at the 1% significance level.

Division of the feature set into three categories 
of indispensable, partially relevant, and irrelevant 
features was performed according to the results 
presented in Table 2. As seen from the results, the 
highest number of indispensable features belongs 
to grapheme “th.”

Dependence of the classification accuracy on 
the number of writers whose samples needed to 
be classified was measured on best feature sub-
sets of individual character feature sets for “d,” 
“y,” “f,” and “th,” and on the best subsets of the 
feature sets of two-, three-, and four-character 
combinations. Figure 9 shows the degradation of 
the classifier performance due to the increasing 
number of writers. For two- and three-character 
combinations, the accuracies obtained on various 
combinations were averaged. As seen from Figure 
9, inclusion of more features from more characters 
into the feature set used for writer classification 

both increases the classification accuracy and 
makes the decrease of the performance less rapid. 
It is worth noting that there is little difference in 
the classification accuracy between feature sets of 
three-character and four-character combinations. 
This resulted from the fact that inclusion of fea-
tures of grapheme “th” made the most significant 
contribution to the performance of the classifier 
compared to inclusion of features of any of the 
three single characters.

Features of “th” with Vector
Skeletonization

An optimal feature subset search was performed 
using a GA with sharing in the same way as 
was performed for feature subsets of the three 
characters and one grapheme. The feature data 
extracted from samples of 165 writers using vector 
skeletonization were used. The resulting feature 
subsets that gave the highest classification accu-
racy are shown in Table 3. The accuracy values 
presented in the table are indistinguishable from 
each other at the 1% significance level.

Figure 9. Degradation of writer classification accuracy with an increasing number of writers when 
features of different characters/grapheme are included in the feature set



  ���

Seeking Patterns in the Forensic Analysis of Handwriting and Speech

cONcLUsION

It is necessary to note that the features for which 
relevance was assessed were not exact docu-
ment examiner features but rather a quantifiable 
representation of them (formalization). That is 
why, for example, it is incorrect to say that the 
final stroke shape of “d” has no discriminative 
power. Rather, the final stroke angle measured 
as the tangent angle to its endpoint is not useful 
for writer classification. It is possible that the cur-
rent formalization is not sufficiently descriptive, 
and another formalization of a final stroke shape 
would change this situation. The same applies to 
the fissure of character “d.” The main purpose of 
using features that represented loops at the top 
and bottom points of the f-stem as well as at point 
YT of “y” was to distinguish between the hand-
printed and cursive forms of characters. From the 
results obtained, it is concluded that these features 
do not help discriminate effectively between the 
two character forms.

It was shown that a number of the considered 
document examiner (structural) features indeed 
possess discriminating power, and thus, use of 
these features for the purpose of writer identifica-
tion is justified. It was demonstrated that different 
characters have different discriminative powers 
(Figure 9), and there exists a noticeable difference 

in discriminative power between characters and 
graphemes. Use of features of grapheme “th” re-
sulted in significantly more accurate identification 
of writers than the use of any of the features of the 
three single characters. This supports the sugges-
tion often made in forensic document examination 
that the shape of a character can (and usually is) 
greatly affected by its adjacent characters.

The most important (indispensable), partially 
relevant, and irrelevant features were identified 
under the assumption that the data were all genuine 
unconstrained handwriting. The identification of 
indispensable features provides the information 
about which features should be given priority in 
handwriting analysis when the aim is to identify 
writers. It is possible, however, that under con-
ditions different from those used in the current 
study (normal unconstrained handwriting), the 
distribution of the features into the three categories 
according to their relevance may be different. For 
example, height-to-width ratio of a character or 
grapheme is thought to be a more useful feature 
than both height and width when handwriting 
is constrained, as in cases where handwriting is 
extracted from forms. Also when grapheme “th” 
is not extracted from the beginning of words, the 
presence of a loop at the top of the t-stem could 
possibly be more often included in the best fea-
ture subsets.

Table 3. Optimal feature subsets of “th” feature set, accuracy values, and standard deviations; bit 1 
corresponds to presence of the feature in the subset, bit 0 to absence of it; features are divided into 
groups of five for convenience
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FOrENsIc stUDY OF sPEEcH 
FEAtUrEs

Speaker Verification in Forensic 
Analysis

Speaker verification is part of a general speaker 
recognition system. It is a technique to verify 
or reject the claimed speaker’s identification by 
analyzing the features of the speech from the 
speaker (as opposed to attempting to recognize 
the words spoken) and comparing them against 
known samples of the speaker for whom verifica-
tion is required. This enables voice to be used to 
identify a person for user authentication purposes 
(Kunzel, 1994).

The speech of humans contains rich infor-
mation such as emotion, identity, content, and 
language. Using speech as a biometric enables a 
simple and natural form of identification to take 
place. For example, in banking transactions over 
the telephone or other networks, speaker verifica-
tion can help determine whether it is the correct 
or authentic person asking for the transaction 
service. Other biometric applications such as se-
cure access controlled by voice also find speaker 
verification quite helpful. 

In order to teach a machine to distinguish 
people by voice as precisely as the trained human 
ear, research into speaker verification involves 
many techniques such as pattern recognition, 
feature extraction, and classification. Features 
that are extracted from the speech signal are 
important for the accuracy of the verification 
system. Although the features contain rich 
information, only some of the information is 
valuable for identifying speakers. The rest of the 
features may not be helpful and may even disturb 
the speaker verification process and degrade its 
performance. It is therefore important to extract 
effective features for speaker recognition. The 
following sections discuss further investigations 
that have been performed using various kinds of 
speech features to determine which features are 
most useful for speaker identification.

Structure of a Speaker Verification 
system

Figure 10 shows the basic structure of a speaker 
verification system. Each speaker in the database 
has a model or reference template that represents 
their speech. When there is a speaker who claims 
he or she is speaker A in the database, the template 
of speaker A will be picked out of the database 
and sent to the compare block. The speech from 
the claimed speaker will be processed, features 
will be extracted, and a model of the speech will 
be formed. By comparing the similarity of the 
two models, the reference template for speaker A 
and the model of the incoming speech, a decision 
will be made according to similarity or match-
ing threshold. The result of the speaker verifica-
tion system is only acceptance or rejection. The 
complete performance of the verification system 
has no relationship to the number of speakers 

Speech signal 

Feature extraction 

Speaker ID 
(speaker x) 

Extract speaker x 
reference template 
from the database 

Construct speech 
model 

Similarity 

Decision Threshold 

Verification result 
(accept/reject) 

Figure 10. Structure of a speaker verification 
system
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in the database, as it is a one-to-one and not a 
one-to-many match. Therefore, as the number of 
speakers in the database rises, the performance 
of the verification system remains constant. The 
accuracy is a function of the uniqueness of the 
speech features extracted and the similarity 
measure employed.

For forensic purposes, a soft decision is 
required that provides a probabilistic measure 
that the speaker is who he or she claims to be 
(Doddington, 1985). To achieve this, the value is 
not compared to the threshold but rather mapped 
into the probability value. Establishing the map-
ping is called calibration (Brummer & du Preez, 
2006; Campbell, Brady, Campbell, Granville & 
Reynolds, 2006; Campbell, Reynolds, Campbell 
& Brady, 2005).

Features for Speaker Verification

In order to compare the similarity and make a 
reliable acceptance/rejection decision, all the 
models/references in the system must be built 
using the same kind of speech features. 

Speech is a complicated signal and can be 
analyzed at several levels such as the semantic, 
linguistic, or acoustic level. The transformations 
of the signal can be used as features that can 
distinguish differences in the acoustic properties 
of the speech signal. For a speaker verification 
system, features that have speaker-dependent 
differences are more of interest than speaker-in-
dependent features. Speaker-dependent features 
are the result of a combination of anatomical 
differences inherent in the vocal tract and the 
learned speaking habits of different individuals 
(Campbell, 1997). By building statistical models 
or references that approximate the distribution of 
these feature vectors for different speakers, the 
conditional probability of the speaker matching 
the template of who he or she claims to be can 
be estimated.

Among all the features that can be extracted 
from speech, the speech spectrum has been shown 

to be very effective for speaker identification 
(Campbell, 1997). This is because the spectrum 
reflects a person’s vocal tract structure, the pre-
dominant physiological factor which distinguishes 
one person’s voice from others. Linear Prediction 
cepstral and reflection coefficients have been used 
extensively for speaker recognition. 

The popular features that are currently be-
ing used for speaker identification are acoustic 
features (e.g., MFCC [mel frequency cepstral 
coefficients], pitch, LSP [line spectrum pairs], 
and LPC [linear prediction coefficients]). They 
are regarded as robust features, but they are not 
perfect as they contain both speech and speaker 
information. The presence of speech information 
can disturb the speaker recognition system and 
cause accuracy to degrade. Experiments have 
shown that no single feature achieves high accu-
racy in speaker recognition. Therefore, a detailed 
study is needed of efficient features for speaker 
verification that eliminate the features represent-
ing the speech information but retain the features 
containing the speaker information.

In the following sections, a number of novel 
acoustic features proposed recently are discussed 
and compared. Features studied are Mel linear 
spectral frequencies (MLSF), Hurst parameter 
related features (pH), linear prediction residual 
phase, and features based on fractional Fourier 
transform (MECB, DMECB). All these features 
are compared with the classic MFCC features to 
provide a baseline of performance.

Frame-Level Analysis

Extraction of all features discussed here is based 
on dividing a speech signal into short frames of 
20 to 80 milliseconds duration. The frames are 
obtained using a Hamming window, and one 
feature vector is obtained for each frame. Thus, 
the distribution of the feature vectors obtained 
from the speech signal represents the speaker in 
the feature space.
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Mel Frequency Cepstral Coefficients 
(MFCC)

MFCCs are popular acoustic features and have 
been demonstrated to work well for both speaker 
recognition and speech recognition. 

The first step in extracting these features is 
to perform a fast Fourier transform (FFT) of 
the speech frame. The second step is to take the 
magnitude. The third step is to warp the frequen-
cies according to the mel scale. The mel scale is 
based on the nonlinear human perception of the 
frequency of the sounds. Therefore, the warp-
ing transforms the frequency scale to place less 
emphasis on high frequencies. In this step, by 
setting the mel scale window number, the num-
ber of MFCC features is determined. The fourth 
step is to take the logarithmic value of the mel 
scale result. The fifth and final step is to take the 
inverse FFT. 

Difference feature vectors calculated between 
the vectors of the adjacent frames are called 
∆MFCC (first difference), and the difference vec-
tors calculated in the similar manner using the 
∆MFCC are called ∆∆MFCC (second difference). 
Both the first and second difference features are 
used together with MFCC because they capture 
short-term speech dynamics in a time interval of 
50 to 100 milliseconds. It is thought that short-term 
speech dynamics can additionally characterize 
a person’s vocal tract (Oppenheim & Schafer, 
2004). However, this interval does not capture 
longer-term features such as prosodic gestures 
and syllable usage.

The feature vectors are normalized by sub-
tracting the mean vector and dividing each vector 
component by its standard deviation.

Mel Linear Spectrum Frequencies 
(MLSF)

Mel linear spectrum frequencies are similar to lin-
ear spectrum frequencies (LSP), calculated from 
linear prediction (LP) coefficients. To overcome 

the drawback of the line spectrum frequencies 
features in that they do not take advantage of 
the properties of the human ear, such as using 
mel filter bank to reduce the information in high 
frequencies, MLSFs are computed from the mel-
spectrum energies (Cordeiro & Ribeiro, 2006). 

Fast Fourier transform (FFT) and mel filter 
banks were used to generate the mel spectrum. 
Then the inverse Fourier transform was applied 
to calculate the mel autocorrelation of the signal. 
The MLSF features were then calculated using the 
Levinson-Durbin recursion. A linear prediction 
filter of order 16 was used, resulting in 16-dimen-
sional feature vectors. The feature values were 
normalized by subtracting the mean and dividing 
by the standard deviation. Since addition of first 
and second differences (∆MLSF and ∆∆MLSF) 
may increase the speaker verification accuracy, 
both differences were calculated.

Residual Phase

Extraction of most acoustic features is based on 
a model of a person’s vocal tract that consists of 
an excitation source and a number of linear filters 
that approximate the vocal tract shape (Campbell, 
1999). If the vocal tract-transfer function of the 
speech production model can be characterized by 
the predictive coefficients, the prediction error, 
referred to as the LP (linear prediction) residue, 
will characterize the excitation signal (Zheng & 
Ching, 2004). Thus, the LP residue can be used 
to derive the source information that contains 
additional information useful for speaker rec-
ognition.

One way to extract the speaker-related in-
formation is to extract the phase information as 
proposed by Murty and Yegnanarayana (2006). 
If the residual signal is n n k n kk

r s a s -= + ∑ , the 
analytic signal is given by:

n n nR r jh= +  ,
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where hn is the Hilbert transform of rn. The mag-
nitude of the analytic signal Rn is 2 2| |n n nR r h= + , 
and the phase θn is calculated as:

2 2

( )arccosn

n n

r n
r h

=
+

The phase is calculated from short frames of 
speech of around 5 milliseconds duration, which 
is approximately the period of the bursts in the 
excitation source.

Hurst Parameter Features (pH)

Hurst parameter features have been proposed 
for speaker recognition problem by Sant’Ana, 
Coelho, and Alcaim (2006). The statistical feature 
pH is a vector of Hurst parameters obtained from 
the windowed short-time segments of speech. It 
expresses the time-dependence of a stochastic 
process. Since it models the stochastic behavior 
of the speech signal, it is robust to channel dis-
tortion. Because it is not related to the transfer 
function of the vocal tract, the extraction methods 
of pH are less complex, and pH can be extracted 
in real time. 

The Hurst parameter is defined by the decay-
ing rate of the autocorrelation coefficient function 
(ACF): ρ(k) (-1 < ρ(k) < 1) as k → ∞. If the speech 
signal is sn with the finite variance, the autocor-
relation coefficient is:
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where -1 ≤ ρ(k) ≤ 1 and ( )lim 0k k->∞ = .
The asymptotic behavior of ρ(k) is be given 

by:

2( 2)( ) ~ (2 1) Hk H H k --

The feature vector is a vector of Hurst param-
eters H calculated for frames of a speech signal 
via Abry-Veitch estimator using discrete wavelet 
transform (Veith & Abry, 1994). Daubechies 
wavelets with four, six, and 12 coefficients were 
used, thus resulting in pH4, pH6, and pH12 features 
correspondingly.

Features Based on Fractional Fourier 
Transform

The fractional Fourier transform is a generaliza-
tion of the Fourier transform. If the conventional 
Fourier transform is Fn, where n can only be an 
integer (n = 1 for the direct transform, n = -1 for 
the inverse transform, etc.), the fractional Fourier 
transform can be thought as Fp, where p is a real 
number. Thus, it is said to transform a function 
to an intermediate domain between time and 
frequency (Almeida, 1994).
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The fractional Fourier transform is given by 
Box 1, and the inverse fractional Fourier trans-
form by Box 2.

Mean energy within critical bands (MECB) 
features based on the fractional Fourier transform 
have been proposed by Wang and Wang (2005) 
for speaker recognition and evaluated on a custom 
dataset. The critical bands are formed by warping 
frequency according to mel or bark scale. MECBp 
are calculated by taking the fractional Fourier 
transform of order p of each frame of the signal 
and then calculating the logarithm of the energy 
within bands. For the i-th critical band fi...fi+1, the 
mean energy is:

1 2

1

| ( ) |i

i

f
f

i
i i

F f df
E

f f

+

+

=
-

∫

For two MECB features of orders p1 and p2, 
the difference MECB (DMECB) features are 
calculated as:

1 2 1 2log exp( ) exp( )p p p pDMECB MECB MECB- = -

Techniques for Speaker Recognition

Beside the speech features, the other aspect that 
affects the similarity comparison is the technique 
used to build up models or reference templates. 
The techniques for speaker recognition can be 
categorized into three major approaches. 

The first approach is to use long-term aver-
ages of acoustic features such as spectrum rep-
resentations or pitch. It is also the earliest way 
researchers used to extract information from a 
speech waveform. Through averaging out other 
factors influencing the acoustic features, such 
as phonetic variations, the speaker-dependent 
components remain. For spectral features, the 
long-term average represents a speaker’s average 
vocal tract shape. However, the averaging process 
lowers the speaker-dependent information, and 
it is not stable in the long term. The stable long-
term statistics can only be derived from analysis 
of long periods of speech.

The second and most frequently used approach 
is to build a statistical model of each speaker 
using speaker-dependent acoustic features that 
represent the distribution of the feature vectors 
for each particular speaker. By comparing the 
acoustic features from phonetic sounds in a test ut-
terance with speaker-dependent acoustic features 
from similar phonetic sounds, the comparison 
measures speaker differences rather than textual 
differences. These probabilistic models are used 
in speaker recognition, and experiments show 
that the model of acoustic speech events and a 
framework is good for dealing with noise and 
channel degradations.

There are several methods of building models 
for speakers. One such model is vector quantiza-
tion (VQ). For VQ, each speaker is represented 
by a codebook of spectral templates representing 
the phonetic sound clustered in speech. But the 
VQ is limited in its ability to model the possible 
variability encountered in an unconstrained 
speech task, although this technique has good 
performance on limited vocabulary tasks. 

Hidden Markov modeling (HMM) is another 
popular technique that is used for probabilistic 
speaker models for speaker recognition (Matsui 
& Furui, 1994; Poritz, 1982). The HMM models 
are not only for the underlying speech sounds, 
but also for the temporal sequencing among these 
sounds. Although temporal structure modeling is 
advantageous for text-dependent tasks, for text-
independent tasks, the sequencing of sounds found 
in the training data does not necessarily reflect 
the sound sequences found in the testing data and 
contains little speaker-dependent information.

The Gaussian mixture model (GMM) (Reyn-
olds & Rose, 1995) is also used in speaker recogni-
tion. The GMM attempts to build a probabilistic 
model of the underlying sounds of a person’s 
voice, and does not impose any Markovian con-
straints between the sound classes. After you have 
well-trained models of speakers, the models can 
be readily implemented in a real-time speaker 
recognition application, as it is computationally 
efficient.
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The third approach to speaker recognition is 
to use a kernel-based learning method, such as 
discriminative neural networks (NN) or a sup-
port vector machine (SVM). Rather than training 
individual models to represent particular speakers, 
SVMs are trained to determine the best decision 
function plane that discriminates speakers within 
a known set. For NN, this requires a smaller 
number of parameters but produces better speaker 
recognition performance than the idea of building 
speaker models such as VQ systems. But there 
is a major drawback to using NN in that when a 
new speaker is added to the system, the complete 
network must be retrained again.

Among these techniques, GMM is used in 
this chapter as the verification system for testing 
various features. There are two principal moti-
vations for using Gaussian mixture densities as 
a representation of speaker identity (Reynolds 
& Rose, 1995). The first motivation is that the 
acoustic classes of a speaker’s voice, such as 
vowels and fricatives, can be represented by 
individual component densities of a multimodal 
density. These acoustic classes reflect some gen-

eral speaker-dependent vocal tract configurations 
that are useful for characterizing speaker identity. 
Assuming independent feature vectors, the ob-
servation density of feature vectors drawn from 
these hidden acoustic classes is a Gaussian mix-
ture. The second motivation for using Gaussian 
mixture densities for speaker identification is that 
a linear combination of Gaussian basis functions 
is capable of representing a large class of sample 
distributions. In some sense, the GMM acts as a 
hybrid between these Gaussian models and VQ 
by using a discrete set of Gaussian functions, each 
with their own mean and covariance matrix, to 
allow a better modeling capability.

In Figure 11, the similarity comparison part 
and building models part of Figure 10 are mod-
eled in detail. It shows how the GMM is used in 
the speaker verification process. Variious kinds 
of features will generate and input into this GMM 
verification system.

Experiments and results

In the experiments described here, the GMM 
classifier with 512 multivariate normal distribu-

GMM model 
of speaker 1 

GMM model 
of speaker 2 

…
…  Speakers’ 

data 
Feature 

extraction 

UBM models 

Claimed 
speaker 

Feature 
extraction 

Likelihood 
calculation 

GMM model 
of speaker n 

Result 
(reject/accept) 

Figure 11. The use of GMM for speaker verification
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tions with diagonal covariance matrices was 
used. The NIST 2001 Speaker Recognition 
Evaluation dataset was used for comparative 
evaluation. The speech signal recorded from a 
person was pre-emphasised using a linear filter  
H(z) = (1 + 0.97z-1)-1 . The results are presented in 
the form of detection error tradeoff (DET) curves 
as well as the equal error ratio (EER).

Mel Frequency Cepstral Coefficients 
(MFCC)

For MFCC feature extraction, the speech signal 
was divided into 30-millisecond frames with 1/3 
overlap. Twelve MFCC coefficients were calcu-
lated along with the first and second differences, 
resulting in 36 dimensional feature vectors. The 
DET curve for the MFCC + ∆ + ∆∆ is shown in 
Figure 12.

Mel Linear Spectrum Frequencies 
(MLSF)

MLSF features were extracted from frames of 30-
millisecond length with 1/3 overlap. Adding the 

first and both the first and second differences was 
tried. It was found that adding the first order dif-
ferences improved the EER from 18.8% to 16.4%. 
Adding the second order differences improved the 
accuracy further, with EER equal to 16.0%. The 
DET curves are shown in Figure 13.

Hurst Parameter Related Features (pH)

For pH feature extraction, various frame lengths 
were tried (30, 60, 80, and 100 milliseconds) as 
well as various frame overlaps (1/3, 1/2, and 2/3). 
It was found that a frame length of 60 to 100 
milliseconds gave the best results in terms of 
speaker recognition accuracy, while the shorter 
frames resulted in degraded performance. The 
frame overlap was not found to show any notice-
able difference. 

The feature vectors were extracted using 
Daubechies wavelets of different orders giving 
pH4, pH6, and pH12 features with dimensionality 
of 5, 4, and 3, respectively. They were also con-
catenated, resulting in pH4+6+12 feature vectors. 

It was found that the performance of the 
speaker verification system does not depend on 

Figure 12. DET curve and EER value for MFCC 
features with first- and second-order differences

Figure 13. DET curves and EER values for MLSF 
features with first- and second-order differences
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which wavelets are used for feature extraction, as 
all three pH features resulted in similar speaker 
verification accuracy, as shown in Figure 14. 
However, the combined features pH4+6+12 resulted 
in a significant improvement of the accuracy with 
the EER dropping from 29.0% to 20.8%. 

Linear Prediction Residual Phase

For the residual phase features, various frame 
lengths and LP orders were tried. The results are 
summarized in Table 10. It was found that the 
frame length of around 6 milliseconds gave the 
highest accuracy of speaker verification, although 
varying the frame length from 3 to 12 milliseconds 
as well as varying LP order from 6 to 10 did not 
result in large changes in accuracy. 

Figure 15 shows the DET curves obtained us-
ing LP residual phase features with frame length 
of 6 milliseconds and LP orders of 6 and 10. It 
was also found that adding the first difference 
features did not change the system performance. 
Consequently, adding the second difference was 
not tried.

Features Based on Fractional Fourier 
Transform

MECB and DMECB features were extracted 
from 30-ms-long frames with 1/3 overlap. A 
fractional Fourier transform of orders p = 0.1, 
0.2,...,1.0 was tried resulting in features MECBp. 
DMECBp1-p2 calculated between p1 = 1.0 and p2 
= 0.1, 0.2,...,0.9. The EER values achieved with 
MECBp for p = 0.5...1.0 are summarized in Table 
11, and the DET curves are shown in Figure 16. 
The accuracy achieved with MECB of orders 
less than 0.5 was very low. It was found that as 
p decreased from 1.0 to 0.1, the accuracy of the 
speaker verification also decreased. Adding the 
first difference features to MECB did not result 
in significant changes in the accuracy.

The EER values for DMECB1.0-p2 features are 
summarized in Table 12, and the DET curves for 
the three features, which resulted in the highest 
speaker verification accuracy, are shown in Figure 
17. As seen from the table, the accuracy of speaker 
verification increases gradually as the difference 

Figure 14. DET curves and EER values pH 
features

Figure 15. DET curves and EER values for residual 
phase features
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between p1 and p2 increases. However, starting 
from p2 = 0.5, the increase changes to a plateau. 

Combination of Features

To determine whether some of the studied features 
carry any additional information compared to 
MFCC features, a combination of classifiers that 
used various features was tried. The combination 
was implemented using an SVM classifier, where 
original scores were used as feature values. Part of 
the score was used to train the classifier, and the 
rest was used to test the performance. The SVM 
used had a radial basis function kernel:

( )2( , ) expK u v u v= - -
   

Good values of parameter  and error cost C 
were determined by trial and error. To make the 

results comparable to those of acoustic features 
alone, a fivefold cross-validation scheme was ap-
plied. The test set of speakers was divided into five 
approximately equal parts. Each time, one part 
was left as a testing set, and the remaining four 
were used to train the SVM. The results of the five 
tests were then united. The SVM was designed to 
produce a soft decision rather than a binary class 
label. The values obtained from all five tests were 
treated as new scores and used to plot the DET 
curve as well as calculate the EER value.

It was decided to combine scores produced 
by GMM using the following features: MFCC 
with the first and second differences, MLSF with 
the first and second differences, LP Residual 
Phase (LP order 6, frame length 3 milliseconds), 
pH4+6+12, MECB1.0, and DMECB1.0-0.3. The 
resulting speaker verification accuracy is pre-
sented in Figure 18. For the purpose of compari-
son, the DET curve for the MFCC features with 
the first and second differences is also shown in 
the figure.

LP order

Frame Length

3 ms 6 ms 12 ms

6 21.8% 21.5% 22.7%

10 21.6% 22.0% 21.9%

Table 10. EER achieved with LP residual phase 
using various LP orders and frame lengths

MECBp, p 1.0 0.9 0.8

EER, % 17.6 18.7 21.2

MECBp, p 0.7 0.6 0.5

EER, % 24.2 27.5 31.4

Table 11. Equal error rates for MECB features 
of various orders

DMECB1.0-p2, p2 0.9 0.8 0.7 0.6

EER, % 19.7 19.4 18.9 18.3

DMECB1.0-p2, p2 0.5 0.4 0.3 0.2 0.1

EER, % 17.8 17.5 17.1 17.6 17.6

Table 12. Equal error rates for DMECB features 
of various orders

Figure 16. DET curves with EER values for MECB 
features extracted using various order fractional 
Fourier transform
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attractive in applications where the training data 
are small. These features were also reported to 
be less sensitive to channel variation (Sant’Ana 
et al., 2006), but this has not been investigated 
in our study. 

Mel linear spectrum frequencies (MLSF), 
mean energy within critical bands (MECB), and 
DMECB result in speaker recognition accuracy 
that is comparable to that of MFCC features.

LP residual phase features carry additional 
information about the speaker compared to other 
LP-derived features and thus are useful in com-
bination with other acoustic features that depend 
on a person’s vocal tract.

A combination of several acoustic features 
resulted in higher accuracy of speaker recogni-
tion than that achieved using each single acoustic 
feature type. We conclude, therefore, that the 
novel features do carry additional information 
compared to the MFCC features. 

Thus, even though it is possible to reduce 
errors in speaker verification using a number of 
features and combining scores obtained from 
UBM-GMM classifiers, the improvement in 
accuracy is not dramatic. One issue for future 
investigation is the classifier. It is possible that a 
GMM classifier is good for MFCC features, but 
for other features, either a different classifier or 
different classifier parameters may be needed. 
For example, Sant’Ana, et al. (2006) used a new 
classifier for Hurst parameter features, which, 
they argue, is more suitable for this type of fea-
ture than GMM. 

There are also other ways that should be inves-
tigated to improve the speaker verification system. 
It would be helpful if there were new novel and 
efficient features investigated. A good technique 
of selecting features among existing features is 
also another interesting area in speaker verification 
research. To make the system robust, there are 
also other problems that people have to consider, 
such as noise and channel attributes. 

Figure 17. DET curves with EER values for some 
DMECB features calculated as difference between 
MECB1.0 and MECB of other orders

Figure 18. DET curve for combination of acoustic 
features using SVM

summary of studied Features

Several acoustic speech features for speaker rec-
ognition have been studied in this chapter.

Hurst parameter features (pH) are features of 
low dimensionality compared to other acoustic 
features. Yet they result in a good accuracy of 
speaker recognition, which suggests they may be 
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cONcLUsION

In this chapter, we have examined a number of 
features from handwriting and speech that can be 
used to extract forensic evidence about the identity 
of an individual based on matching his or her 
speech or handwriting against known samples.

For handwriting, it has been shown that a 
number of the structural features that document 
examiners extract and present as evidence in an 
objective but qualitative manner do indeed pos-
sess discriminating power, and thus, use of these 
features for the purpose of writer identification 
is justified. It was demonstrated that different 
characters have different discriminative power, 
and there exists a noticeable difference in discrimi-
native power between characters and graphemes. 
This was demonstrated by the observation that 
the features of grapheme “th” resulted in signifi-
cantly more accurate identification of writers than 
the use of any of the features of the three single 
characters studied. 

The most important (indispensable), partially 
relevant, and irrelevant features were identified 
under the assumption that the data used were all 
genuine unconstrained handwriting. The iden-
tification of indispensable features provides the 
information about which features should be given 
priority in handwriting analysis when the aim is 
to identify writers. It is possible, however, that 
under conditions different from those used in the 
current study (normal unconstrained handwrit-
ing), the distribution of the features into the three 
categories according to their relevance may be 
different. For example, height-to-width ratio of 
a character of grapheme is thought to be a more 
useful feature than both height and width when 
handwriting is constrained, as in cases where 
handwriting is extracted from forms. Also, when 
the grapheme “th” is extracted not from the be-
ginning of words, the presence of loop at the top 
of the t-stem may more often be included in best 
feature subsets.

For speech, it was found that even though it is 
possible to reduce errors in speaker verification 
using a number of traditional speech and speaker 
recognition features and combining scores ob-
tained from UBM-GMM classifiers, the improve-
ment in accuracy is not dramatic. It is evident that 
while existing features provide a reasonable level 
of accuracy for speaker recognition and verifica-
tion, they are far from perfect. 

One issue for future investigation is the classi-
fier. It is possible that the GMM classifier is good 
for MFCC features, but for different features, 
either a different classifier or different classifier 
parameters may be needed. There are also other 
ways that should be investigated to improve the 
speaker verification performance. It would be 
particularly useful if novel and efficient features 
were investigated. A good technique of selecting 
features among existing features is also another 
interesting area in speaker verification research. 
To make the system robust, there are also other 
problems that people have to consider, such as 
noise and channel. 

While some progress has been made in un-
derstanding the nuances of both handwriting and 
speech, and in particular detecting those features 
that are unique to an individual, it is apparent 
that there is still considerable improvement and 
further work to be carried out.

Mechanisms by which speech and handwriting 
changes depending on emotion are not under-
stood. Neither is it currently possible to determine 
whether a person is disguising their handwriting 
or their voice or attempting to forge/imitate the 
handwriting or voice of another person. Determin-
ing whether there exist handwriting and speech 
features that remain unique even during attempts 
at forgery and disguise remains an unsolved and 
largely uninvestigated problem. It is likely that in-
vestigation of such features will remain the subject 
of future research for many years to come.
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AbstrAct

This chapter describes a new pattern recognition method: pattern recognition-based morpho-
logical structure. First, smooth following and linearization are introduced based on difference 
chain codes. Second, morphological structural points are described in terms of smooth followed 
contours and linearized lines, and then the patterns of morphological structural points and their 
properties are given. Morphological structural points are basic tools for pattern recognition-
based morphological structure. Furthermore, we discuss how the morphological structure can 
be used to recognize and classify images. One application is document image processing and 
recognition, analysis and recognition of broken handwritten digits. Another one is dynamic 
analysis and recognition of cell-cycle screening based on morphological structures. Finally, a 
conclusion is given, including advantages, disadvantages, and future research.
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INtrODUctION

In intelligent information systems such as docu-
ment and medical image processing, pattern rec-
ognition of images play an important role. The 
origin of character and shape recognition can be 
found as early as 1870, although it became a real-
ity in the 1950s when computers were commonly 
used. For example, pattern recognition has wide 
applications in modern society: document reading 
and sorting, postal address reading, bank check 
reading, form recognition, writer recognition, 
signature verification, digital bar code reading, 
engineering drawing recognition, analysis and 
recognition of cells, face recognition, and shape 
recognition of various objects (e.g., ships, air-
planes, etc.).

If postal codes can be recognized, then mail can 
be separated automatically in a processing system. 
In banks, a lot of checks need to be processed 
every day. One very hard task is that the dollar 
amount has to be input into computers by people. 
If these handwritten digits can be processed and 
recognized, one check processing system instead 
of people can do the job automatically.

One important problem is that there are broken 
and spurious segments caused by segmentation 
and threshold errors of noisy digits, the tools used 
or the writing style in handwritten digits in docu-
ment images. In this case, it is difficult for most 
recognition methods to deal with them, including 
both structural and statistical approaches (Hu, 
1998; Lee, 1996; Malaviya & Klette, 1996; Shi, 
2002; Yan, 1993, 1994). In structural recogni-
tion method (Hu, 1998), it is difficult to describe 
the structure of the parts of broken segments of 
handwritten digits and spurious segments. If 
optimized nearest neighbor classifier (ONNC) 
(Yan, 1993) is used, the parts of broken segments 
of handwritten digits and spurious segments can 
influence training result. If the handwritten digits 
with broken and spurious parts belong to the test 
set, it is not easily recognized because there is a 

big difference between the digit shape and the 
normal digits.

In fact, it is based on the morphology structure 
of an object for a human to recognize an image. 
For example, if there are only two right-concave 
changes of one object skeleton, and the object is 
a digit based on prior knowledge, then the object 
is digit 3 for most of handwritten digit 3.

Morphological structure includes the morphol-
ogy of lines, arcs, contours, and shapes. Also, all 
convex and concave changes have direction for 
each morphology change. Therefore, for the same 
shape of arcs, there are two directions: convex arc 
and concave arc. This chapter has made a new 
breakthrough in pattern recognition of images 
based on morphological structure. In this chapter, 
many new concepts of morphology description 
features are proposed; that is, contour smoothing 
following, smoothing of skeleton, linearization 
based on difference codes, structural points 
of contours, and description of morphological 
structures. Two applications, reconstruction and 
recognition of broken handwritten digits in docu-
ment images and dynamic analysis and recognition 
of cell images, are described in detail.

sMOOtH FOLLOWING

Accurate representation and processing of the 
contour of a binary image play an important 
role in processing and recognition of images. 
For example, the result of thinning, curve fit-
ting, contour following, polygon clipping, and 
mathematical morphology operations may depend 
on the contour shape of the image (Gonzalez & 
Woods, 1993; Freeman, 1961; Pavlidis, 1982; 
Rosenfeld, 1973).

In practical applications, the contour of a 
binary image is often corrupted by noise, which 
makes the recognition of the image unreliable. 
We propose an efficient method to smooth and 
linearize the contour of an image. Our method 
is developed based on a set of rules implemented 
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for contour tracing, which does not require any 
float point average operations.

The contour of a binary image can be repre-
sented with the Freeman code (Freeman, 1961). 
Many binary image processing algorithms based 
on contour following have been developed in the 
past (Pavlidis, 1982; Wang, Qi, Yu & Xu, 1990). 
The contour direction chain code can be used 
to represent a contour. For pixels sampled on 
rectangular grids, the Freeman code is shown in 
Figure 1(1).

For a pixel pєP, we call NBp =(b7b6b5b4b3b2b1b0) 
the 8-neighborhood byte of p shown in Figure 1(2) 
(Pavlidis, 1982; Wang et al., 1990). Contour fol-
lowing is a procedure to determine the sequence 
of all contour pixels of an object. If p is a contour 
pixel, then one neighborhood pixel in NBP must 
be the next contour pixel in the sequence. If  
bi (0 ≤ bi ≤7) is the next contour pixel, then the 
index number i is the direction chain code of the 
pixel p. We can make use of two types of binary 
image contour connections. Suppose P is a bi-
nary image, S is an object with pixel value 1, 

_

S is 
the background with pixel value 0, and Sk is the 
set of pixels of contour k in the image. If 

_

S is 8-
connected, then both S and 

_

S are 4-connected, and 
if 

_

S is 4-connected then S and Sk are 8-connected. 
Here, we assume that Sk is 8-connected.

In a binary image such as a handwritten 
character, there can be many spurious pixels that 
make the contour description of an object diffi-

cult. For example, Figures 2(1-3) contain several 
handwritten-connected numerals taken from the 
U.S. National Institute of Science and Technology 
(NIST) database.

The results of contour following are shown 
in Figures 2(1-3). Since there are many spurious 
points, it is not easy to describe the contour of 
handwritten numerals 23, 01, and 58 with the 
direction chain code.

For example, it is difficult to represent the 
outer contour of numeral 23, the internal contour 
of numeral 01, and both the outer and the internal 
contours of numeral 58. Thus, it is necessary to 
modify the followed pixels, delete noisy ones, and 
set the starting pixel at the upper-left corner so 
the character contour can be represented reliably 
for further processing. Our algorithm for contour 
smooth following is developed based on difference 
codes. The algorithm is able to delete noisy pixels, 
modify followed ones, and determine the starting 
pixel of a contour chain. If the absolute value of 
the difference code of each pair of neighborhood 
pixels is less than 2, the procedure produces the 
desired result.

contour smooth Following with
Difference codes

The k-th contour, Sk, of a binary image P can be 
represented as:

 
Figure 1. Freeman codes and neighboring bytes
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{ }0 1 1, ... ,... ,i n nK c c c c cC -=   (1)

{ }0 1 1, ... ,... ,i n nK x x x x xX -=   (2)

{ }0 1 1, ... ,... ,i n nK y y y y yY -=   (3)

where Ck is the direction chain code set of contour 
k, i is the pixel index of the contour, c0 is the start-
ing direction code pointing from the first pixel to 
the second pixel of the contour, ci is the direction 
code of pixel i pointing from pixel i to pixel (i+1), 
cn-1 is the direction code of pixel (n-1) (the last 
pixel in the sequence) pointing from pixel (n-1) 
to the first pixel of the contour, and cn is same as 
c0. Xk and Yk are the x and y coordinate sets of 
contour k, respectively.

The difference code of a contour is defined 
as follows:

1i i id c c+= -     (4)

It can be calculated as:

1 1

1 1

1

| | 4
8 | | 4

4 | | 4

i i i i

i i i i

i i

c c if c c
d c c if c c

if c c

+ +

+ +

+

- - <
= - - - >
 - =   (5)

Therefore, the difference code value is 0, ±1, 
±2, ±3, or 4. If di is equal to ±1, ±2, or ±3, then the 
current direction chain code of pixel i is changed 
with an anticlockwise or clockwise rotation of 
45o, 90o, or 135o. If di is equal to ±4, the current 
direction chain code of pixel i is changed with a 
rotation of 180o. In general, most contour pixel 
direction chain codes are 0 or ±1. Otherwise, there 
should be some noisy contour pixels.

In terms of Equation 5, if the difference code 
value is ±2, ±3, or 4, all difference code groups 
are shown in Figures 4-8. It is necessary to note 
that some difference codes of these groups do not 
appear if contour following is carried out with an 
8-connected contour.

The algorithm for smoothing a contour is devel-
oped based on the following criteria, correspond-
ing to the transformations of the contour codes 
shown with the dashed lines in Figures 4-8.

 

Figure 2. Original images of handwritten connected digits, 01, 23, and 58

Figure 3. Contours of handwritten connected digits, 01, 23, and 58
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Figure 4. The contour smoothing procedure with 
di = 2, ci being even and ci+1 being even

 

Figure 5. The contour smoothing procedure with 
di = 2, ci being odd and ci+1 being odd

Figure 6. The contour smoothing procedure with 
di = 3, ci being even and ci+1 being odd

Figure 7. The contour smoothing procedure with 
di = 3, ci being odd and ci+1 being even

 

Figure 8. The contour smoothing procedure with 
di = 4 Here, we assume that csj, xsj, and ysj are the new 

direction chain code, x and y coordinate of pixel 
i on the image contour, respectively.

Criterion 2.1.1: If | di |≤1, then:

• csj = ci
• xsj = xi
• ysj = yi
• The next pixel is the pixel (i+1) in the original 

contour chain.

Criterion 2.1.2: If |di|=2, ci is even and ci+1 
is even, then:
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• csj = ci-1 (mod 8);  if di=6 or -2 (clockwise)
• csj = ci+1 (mod 8);  if di=-6 or 2 (anticlock-

wise)
• xsj = xi
• ysj = yi
• The next pixel is the pixel (i+2) in the original 

contour chain.

Criterion 2.1.3: If |di|=2, ci is odd and ci+1 is 
odd, then:

• csj = ci-1 (mod 8);  if di=6 or -2 (clockwise)
• csj = ci+1 (mod 8);  if di=-6 or 2 (anticlock-

wise)
• xsj = xi
• ysj = yi

• Set:
1. ci+1 = ci-1 (mod 8);  if di=6 or -2 (clock-

wise)
2. ci+1 = ci+1 (mod 8);  if di=-6 or 2 (clock-

wise)
3. x and y coordinates of the pixel (i+1) 

based on Figure 5
4. The next pixel is the pixel (i+1) in the 

original contour chain.

Criterion 2.1.4: If |di|=3, ci is even and ci+1 
is odd, then:

• ci+1= ci-1 (mod 8);  if di=5 or -3 (clock-
wise)

• ci+1= ci-1 (mod 8);  if di=-5 or 3 (clock-
wise)

• xsj = xi
• ysj = yi
• The next pixel is the pixel (i+2) in the original 

contour chain.

Criterion 2.1.5: If |di|=3, ci is odd and ci+1 is 
even, then:

• ci+1= ci-1 (mod 8);  if di=5 or -3 (clock-
wise)

• ci+1= ci-1 (mod 8);  if di=-5 or 3 (clock-
wise)

• xsj = xi
• ysj = yi
• The next pixel is the pixel (i+2) in the original 

contour chain.

Criterion 2.1.6: If |di|=4, then:

• Remove pixels i and (i+1)
• The next pixel is the pixel (i+2) in the original 

contour chain.

It is possible that the starting pixel of the new 
chain is not the same as that of the original chain, 
because the starting pixel of the original chain 
may be processed based on the previous criteria. 
Therefore, it is necessary to redetermine the start-
ing pixel of the new contour chain according to 
the following criterion. We assume that the origin 
is at the upper-left corner of the image.

Criterion 2.1.7: Assume:

{ }0 1 ( 1), ... ,... ,mi s s si s n sny y y y y y-=

where ymi is the y coordinate of pixel i, which has 
the minimum y coordinate in the new contour 
chain:

{ }0 1, ...m m m mty y y y=    (6)

where ym0 = ym1 = ... = ymt , ym is the y coordinate 
set of the corresponding minimum y coordinate. 
The x coordinate set corresponding to the mini-
mum y is:

{ }0 1, ...m m m mtx x x x=    (7)

Then the x and y coordinates of the starting 
pixel in the new contour chain are:

ysp=ym

{ }0 1min , ...sp m m mtx x x x=
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After the new starting pixel is determined, 
all pixels of the new contour chain need to be 
reordered based on the new starting pixel. In 
terms of the previous algorithm, contour chain 
can be smoothed several times until |di| =1 for all 
pixels in the contour chain. Suppose the direction 
chain code set of the final result produced by the 
smoothing algorithm is:

{ }0 1 ( 1), ... ,... ,ls ls lsi ls l lsllsk c c c c cC -=   (8)

Then:

dsi=cls(i+1)-clsi    (9)

The smoothed contour chain has the follow-
ing properties:

• Its difference code |dlsi| ≤1 (i = 0,1,...l)
• The starting direction chain code cls0 = code 5
• The last direction chain code cls(l-1) = code 4

For the binary images in Figures 2(1-3), the 
processed results made by the smoothing algo-
rithm are shown in Figures 9(1-3). We can see 
that the noisy pixels of the contour have been 
removed. Also, smoothing makes the lineariza-
tion procedure possible, which will be discussed 
in the next section.

the smoothing Following based on 
removing spurious Point Groups

A followed chain based on the algorithm intro-
duced in the previous section can be processed 
in terms of following procedure, which can 
remove some spurious point groups in a chain. 
The modified results of these pattern models 
with a spurious point group that has two convex 
or concave points in the direction of a special 
chain code are demonstrated in Figure 10. In 
this figure, i represents the i-th point of a chain, 
a circle is represented as a point of the previous 
chain, and a circle dot is represented as a modified 
result point. Figure 10 demonstrates that there are 
two convex and concave spurious points in the 
direction of code 0. In these cases, two criteria 
described next are used.

Criterion 2.2.1: (ci=0)Λ (ci+1=1) Λ (ci+2=0) Λ 
(ci+3=7) Λ (ci+4=0), then:

• cs(i+1)=0, xs(i+1)= x(i+1), ys(i+1)= y(i+1)
• cs(i+2)=0, xs(i+2)= x(i+2), ys(i+2)= y(i+2)+1
• cs(i+3)=0, xs(i+3)= x(i+3), ys(i+3)= y(i+3)+1

Criterion 2.2.2: (ci=0)Λ (ci+1=7) Λ (ci+2=0) Λ 
(ci+3=1) Λ (ci+4=0), then:

• cs(i+1)=0, xs(i+1)= x(i+1), ys(i+1)= y(i+1)
• cs(i+2)=0, xs(i+2)= x(i+2), ys(i+2)= y(i+2)-1
• cs(i+3)=0, xs(i+3)= x(i+3), ys(i+3)= y(i+3)-1

Figure 9. The contours of smooth following of handwritten connected digits, 01, 23, and 58
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Similar to Criteria 2.2.1 and 2.2.2, we can 
introduce Criteria 2.2.3 to 2.2.8 based on Figures 
10(3-8).

Figures 10(9-10) demonstrate that there are 
two convex and concave spurious points in the 
direction of code 7. In these cases, two criteria 
described next are used. 

Criterion 2.2.9: (ci=7)Λ (ci+1=0) Λ (ci+2=7) Λ 
(ci+3=6) Λ (ci+4=7), then:

• cs(i+1)=7, xs(i+1)= x(i+1), ys(i+1)= y(i+1)
• cs(i+2)=7, xs(i+2)= x(i+2), ys(i+2)= y(i+2)+1

• Remove (i+3)th point of the smoothed chain 
and reorder points of the smoothed chain.

Criterion 2.2.10: (ci=7)Λ (ci+1=6) Λ (ci+2=7) 
Λ (ci+3=0) Λ (ci+4=7), then:

• cs(i+1)=7, xs(i+1)= x(i+1), ys(i+1)= y(i+1)
• cs(i+2)=7, xs(i+2)= x(i+2)+1, ys(i+2)= y(i+2)

• Remove (i+3)th point of the smoothed chain 
and reorder points of the smoothed chain.

Similar to Criteria 2.2.9 and 2.2.10, we can 
introduce Criteria 2.2.11 to 2.2.16 based on Fig-
ures 10(11-16).

Figure 10. The pattern models of spurious point group (two points)
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Based on the property of smoothed contour 
chain, the only remaining task is to select the 
first point and the last point of the chain based 
on the pattern model of Figure 10. In this case, it 
is necessary to redetermine the starting pixel of 
the new contour chain based on Criterion 2.1.7. 
The previous processing is finished until there 
are no spurious point groups like those shown in 
Figure 10 in the new contour. For the images of 
Figures 9(1-3), the processed results are shown in 
Figures 11(1-3), respectively. For example, Figure 
11(3) demonstrates that the spurious point groups 
(two points) of Figure 11(3) have been removed 
(see the upper-left part of the digit). We can see 
that the noisy pixels of the contour have been 
removed based on the models of the spurious 
points. Similarly, the pattern models with a spuri-
ous point group that has more than two points and 
modifying results can also be constructed.

Skeleton and Its Smoothing

Many methods of image processing and recogni-
tion are based on the skeleton, which is obtained 
by a thinning algorithm. Generally, skeletons of 
binary images are not smooth because there are 
some spurious points, which make it difficult to 
extract skeleton features. Therefore, it is useful to 
remove spurious points by smoothing skeletons. 
Also, the connection of the skeleton should be 
retained. An example image of a thinned broken 
digit is shown in Figure 12.

The original image and its smoothed contours 
are shown in Figures 12(1-2), respectively, and the 
skeleton is shown in Figure 12(3). The skeleton 
can further be smoothed based on some patterns 
as shown in Figure 13(1), where “0” represents 
background pixel, “1” represents a skeleton pixel, 
and “x” stands for “don’t care” point. In this way, 

Figure 11. The contours of smooth following of handwritten connected digits 01, 23, and 58 based on 
the pattern models of spurious point group (two points)

Figure 12. Thinning and smoothed skeleton
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some “corner” points of the skeletons are removed. 
In order to retain the continuity of the skeletons, 
if the pixels of the skeleton belong to one of the 
patterns in Figure 13(2), they are saved. Based on 
our algorithm, the skeleton (as shown in Figure 
12(3) ) is smoothed, and the final skeleton is shown 
in Figure 12(4). Also, the “end” and “junction” 
points of the smoothed skeletons can be extracted 
(shown in Figure 12(4) ), where the character “e” 
represents the “end” point of the skeleton, and 
character “j” represents the “junction” point of 
the skeletons. If we calculate the difference code 
of two neighboring pixels between one “e” point 
and its neighboring “j” point of smoothed skeleton, 
then |di|equals 0 or 1. If there is no “junction” point 
on the smoothed skeleton, |di| between two “e” 
points of the skeleton equals 0 or 1. Therefore, they 
can be linearized, and the structural points can 
be extracted based on the algorithm described in 

Sections-Linearization and Structural Point, and 
then we can detect the morphological change of 
the smoothed skeleton. The geometrical location 
and direction change of the “end” points and the 
structure of the smoothed skeletons are useful to 
determine spurious segments and broken points 
of broken handwritten digits.

For example, the original binary image of 
typhoon is shown in Figure 14(1). After some 
preprocessing such as dilating, contour following, 
reconstructing, filling, and smooth following, the 
reconstructed typhoon image is shown in Figures 
14(2-3). The filled image is shown in Figure 14(4). 
Its skeleton can be obtained in Figure 14(5). Based 
on our algorithm of smoothing skeleton (see the 
patterns in Figure 13), its smoothing skeleton is 
shown in Figure 14(6). Furthermore, the “end” 
and “junction” points are found, which are shown 
in Figures 14(7-8).

 

Figure 13. The pattern models for the smoothing skeleton
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summary

Some efficient algorithms of smooth following 
are developed based on smoothing structure 
patterns. Two types of patterns are constructed 
based on the structures of difference chain codes. 
Using these algorithms, some spurious points or 
spurious point group (two points) of contours 
are removed from the starting point to the last 
point of contours. For the skeletons of images, 
the corresponding smooth structural patterns 
are described. Based on these smooth patterns, 
the spurious points of each skeleton segment are 
removed. After smooth following of contours, the 
difference codes between the neighboring points 
of contours are less than 2. For the skeletons of 
images, the difference codes between the neigh-
boring points of each skeleton segment are also 
less than 2. For each skeleton segment, there are 
three cases: (a) the skeleton segment is between 
neighboring “end” and “junction” points; (b) the 
skeleton segment is between two neighboring 
“junction” points of skeletons; (c) the skeleton 
segment is between two “end” points, if there 
are only two “end” points in the skeleton. In this 
way, the results of smooth following of contours 
make the linearization of contours possible. 
Also, the smoothing of skeleton of image makes 
the linearization of skeleton possible. Therefore, 
smooth following of contours and the smoothing 

of skeleton overcome the question that makes 
Freeman codes to describe contour and skeleton 
difficult because of spurious points of contours 
and skeleton.

LINEArIZAtION OF cONtOUrs-
bAsED DIFFErENcE cHAIN cODEs

The description of binary image contour plays 
an important role for the shape description and 
recognition of images. One useful description of 
binary image contour should contain a suitable 
series of lines (critical points) and their series of 
description features, which are linearity, convex-
ity or concavity of lines, curvature angle, bend 
angle, and convexity or concavity of bend angle. 
The method proposed in this section can make 
it possible. 

Some original binary images are shown in 
Figures 15(1,4), 16(1). Their contour following 
results are shown in Figures 15(2,5), 16(2).

The difference code is defined as:

1i i id c c+= -     (10)

In the smoothed contour, |di| equals 0 or 1 
based on the algorithm described in Section-
Smooth Following. The smooth following results 

Figure 14. The preprocessing, smoothing, skeleton and smoothing skeleton of a typhoon object image 
from GIS image
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of four examples are shown in Figures 15(3,6) 
and 16(3).

The smoothed contour can be converted to 
a set of lines that consist of ordered pixels. Our 
task here is to approximate the contour of an im-
age using straight lines. We call this procedure 
linearization of a contour.

Definition of Linearizing Line Based 
on Difference codes

Suppose that a linearized line consists of some 
ordered pixels and its chain code set is:

ln ln ln ln ln ln{ [0], [1]... [ ],... [ 1]},k k k k k kc c c c i c n= -  (11)

where k is represented as contour k of an image, ln 
as line ln of contour k, and ln

kn  as the total number 
of pixels contained in the line ln. A linearized line 

consists of ordered pixels that have the following 
property. If:

ln ln[ ] [ ]ij k kd c i c j= -    
ln( 0,....[ 1]),ki n= -

ln( 0,....[ 1]),kj n= -    (12)

Then:

| | 1ijd ≤  mod 8 ln( 0,....[ 1]),ki n= -
ln( 0,....[ 1])kj n= -    (13)

Therefore, a linearized line contains only 
two elements whose chain codes meet Equation 
13; they are chain codes 0, 1, 2, 3, 4, 5, 6, or 7, 
respectively. We call two elements the element 
code; they are represented by cdir1 and cdir2, 
respectively. For example, if cdir1 is chain code 
6, then cdir2 is only chain code 7 or 5 based on 
Equation 13. In terms of the previous lineariza-
tion definition and property of smooth following, 

Figure 15. Handwritten digit 7 and its processing results

 

Figure 16. Handwritten digit 68 and its processing results
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the algorithm of linearizing lines of a smoothed 
contour can be described as follows.

Criterion 3.1: A line includes two element 
codes so the first pixel of a new line is defined 
as the first element code, cdir1.

Criterion 3.2: If cdir1 is found, the difference 
code, dcn, between cdir1 and the chain code of the 
next contour pixel, cn, is calculated as:

1cn nd c cdr= -      (14)

If |dcn| = 0, then cn is not the second element code 
of the new line and the next search is needed.

If |dcn| = 1, then cn is the second element code 
of the new line, cdir2.

Criterion 3.3:

1. If two element codes, cdir1 and cdir2, are 
found, the difference code dc1n between cdr1 
and cn and the difference code dc2n between 
cdir2 and cn are calculated as:

 dc1n = cn - cdr1   (15)

and 

 dc2n = cn - cdr2   (16)

2. If |dc1n| = 2 or |dc2n| = 2, then a new line is 
found. In this case, the chain code cn of pixel 
n in the smoothed contour is the first element 
code of the next new line, and the contour 
pixel is the first pixel of the new line.

3. If both |dc1n| < 2 and |dc2n| < 2, then the pixel 
n belongs to the same line and next search 
is needed.

The starting pixel of a contour should be the 
first pixel, which belongs to the first linearized 
line. Its chain code is the first element code of the 
first linearized line, and the cdr1 is chain code 
5 based on Criterion 3.1 and the property of the 
smoothed contour described in Section-Smooth 
Following. The second element code (cdr2) of 

the first linearized line is chain code 4 or code 
6 based on Criterion 3.2. From the second line, 
the starting pixel of other linearized lines can be 
determined based on Criterion 3.3. Other linear-
ized lines of the smoothed contour can be found 
based on the previous criteria in order of pixels 
of the smoothed contour except the last pixel of 
the smoothed contour.

Criterion 3.4:

1. Based on the property of a smoothed con-
tour, the chain code of the last pixel in the 
smoothed contour is chain code 4 based on 
Section-Smooth Following. When the last 
pixel is searched, the following three cases 
should be considered. If cdir1 of the current 
line is chain code 3, then chain code 4 of the 
last contour pixel should be the same as the 
second element code (cdr2) of the current line 
or be the second element code of the current 
line. The last pixel of the smoothed contour 
belongs to the current line. The current line 
is the last line of a smoothed contour.

2. If cdir1 of the current line is chain code 4, the 
last pixel of the smoothed contour belongs 
to the current line. The current line is the 
last line of the smoothed contour.

3. If cdir1 or cdir2 of the current line is chain 
code 2, then the last pixel of the smoothed 
contour belongs to a new line. The new 
line only consists of the last pixel and has 
one element code, chain code 4. Therefore, 
the current line is not the last line of the 
smoothed contour.

A smoothed contour can be linearized based 
on the previous algorithm, and its related chain 
code set ln

kc  and x and y coordinate sets of linear-
ized lines can be found. Two handwritten digits 
7 in Figure 15 are taken from the NIST database. 
Their linearization result is shown in Figures 
15(1,4), and the starting point of each linearized 
line is represented by character “Y.” The element 
codes cdir1 and cdir2 of the first line of Figure 
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15(3) are chain codes 5 and 4 based on Criterion 
3.3, respectively. It contains 22 points. The ele-
ment codes cdir1 and cdir2 of the second line of 
its contour are chain codes 6 and 7, respectively. It 
contains two points. They can be found in Figure 
15(3). For the handwritten digit 68 in Figure 16(1), 
its linearizing result is shown in Figure 16(3).  

strUctUrAL POINts OF bINArY 
IMAGE cONtOUrs

For description and recognition of contour shape, 
one important feature is the morphological struc-
tures change (structure segment) of contours. 
In fact, humans recognize object image based 
on a series of morphological structures change 
of contours in the object image and some prior 
information. Some methods have been developed 
in the past (Fu, Yan & Huang, 1997; Moktarian & 
Mackworth, 1992; Suters & Yan, 1994). There are 
three problems in these algorithms: (a) extracted 
features (structure segments) are uncompleted; (b) 
there is no direction change of features; and (c) 
it is not easy to form a series of feature vectors. 
The reason is that linearization method-based 
difference codes are not developed.

Morphological structural Point of 
contours

Linearized lines and feature description are 
described in the last section based on difference 
codes. The linearized lines make morphological 
structural points of contours possible. There is a 
morphological change between two neighboring 
linearized lines (structure segments). Some special 
points are defined to represent these morphological 
changes along the contours. These special points 
are called the structural point of contours. The 
structural points not only describe the convex 
or concave change of line segments but also de-
termine the change is in the direction of which 
chain code along the image contour. Therefore, 

these structural points can be used to represent 
convex or concave segments along the contour 
and the relation between the feature points and the 
object S. Their definition and detection are based 
on the structure patterns of element codes of two 
lines, which are shown in Figure 17. Assume that 
line[ln] is the current line, that line[ln-1] is the 
previous line, and that line[ln+1] is the next line 
along a contour. These lines are produced in the 
contour linearization procedure.

Definition 1. The convex point in the direction 
of code 4 (represented with “Λ’’). 

If the element codes 3, 4, and 5 occur succes-
sively as a group of neighborhood linearized lines, 
then the point is a convex point in the direction 
of code 4. Two cases of the convex points in the 
direction of code 4 can be defined (represented 
with a small circle) in Figure 17(1):

1. If the first element code cdir1 of line[ln] is 
code 4, the second element code cdir2 is 
code 5, and the direction chain code of the 
last pixel of line[ln-1] is code 3; then the first 
pixel of the current line line[ln] is a convex 
point in the direction of code 4.

2. If the element code cdir1 or cdir2 of line[ln] 
is code 3, the direction chain code of the last 
pixel of line[ln] is code 4, and the first ele-
ment code cdir1 of line[ln+1] is code 5; then 
the last pixel of the current line line[ln] is a 
convex point in the direction of code 4.

Definition 2. The concave point in the direction 
of code 4 (represented with the character “m”).

If the element codes 5, 4, and 3 occur suc-
cessively as a group of neighborhood linearized 
lines, then the point corresponding to code 4 is a 
concave point in the direction of code 4.

Two cases of the concave points in the direc-
tion of code 4 can be defined (represented with a 
small circle) in Figure 17(2):

1. If the first element code cdir1 of line[ln] is 
code 4, the second element code cdir2 is 
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code 3 and the direction chain code of the 
last pixel of line[ln-1] is code 5; then the 
first pixel of the current line, line[ln], is a 
concave point in the direction of code 4.

2. If the element code cdir1 or cdir2 of line[ln] 
is code 5, the direction chain code of the 
last pixel of line[ln] is code 4, and the first 
element code cdir1 of line[ln+1] is code 3; 
then the last pixel of the current line line[ln] 
is a concave point in the direction of code 4. 

Definition 3. The convex point in the direction 
of code 0 (represented with the character “v”).

If the element codes 7, 0, and 1 occur succes-
sively as a group of neighborhood linearized lines, 
then the point is a convex point in the direction 
of code 0.

Two cases of the convex points in the direc-
tion of code 0 can be defined (represented with a 
small circle) in Figure 17(3):

1. If the first element code cdir1 of line[ln] is 
code 0, the second element code cdir2 is 
code 1, and the direction chain code of the 
last pixel of line[ln-1] is code 7; then the first 
pixel of the current line line[ln] is a convex 
point in the direction of code 0.

2. If the element code cdir1 or cdir2 of line[ln] 
is code 7, the direction chain code of the last 
pixel of line[ln] is code 0, and the first ele-
ment code cdir1 of line[ln+1] is code 1; then 
the last pixel of the current line line[ln] is a 
convex point in the direction of code 0.

Definition 4. The concave point in the direction 
of code 0 (represented with the character “$”).

If the element codes 1, 0, and 7 occur suc-
cessively as a group of neighborhood linearized 
lines, then the point is a concave point in the 
direction of code 0.

Figure 17. Structural patterns of structural points
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Two cases of the concave points in the direc-
tion of code 0 can be defined (represented with a 
small circle) in Figure 17(4):

1. If the first element code cdir1 of line[ln] is 
code 0, the second element code cdir2 is 
code 7, and the direction chain code of the 
last pixel of line[ln-1] is code 1; then the first 
pixel of the current line line[ln] is a concave 
point in the direction of code 0.

2. If the element code cdir1 or cdir2 of line[ln] 
is code 1, the direction chain code of the 
last pixel of line[ln] is code 0, and the first 
element code cdir1 of line[ln+1] is code 7; 
then the last pixel of the current line line[ln] 
is a concave point in the direction of code 
0.

Similar to definitions 1- 4, other structural 
points can be defined and found as follows: the 
convex point in code 6 (“[”), the concave point in 
code 6 (“]”), the concave point in code 2 (“(”), the 
convex point in code 2 (“)”), the convex point in 
code 5 (“F”), the concave point in code 5 (“f”), 
the convex point in code 1 (“o”), the concave point 
in code 1 (“O”), the convex point in code 3 (“T”), 
the concave point in code 3 (“t”), the convex point 
of code 7 (“s”), and the concave point in code 7 
(“S”) (see Figure 17).

These structural points describe the convex 
or concave change in different chain code direc-
tions along the contour of a binary image. Sixteen 
different characters in these figures are used to 
represent different structural points. It is neces-
sary to note that if the processed line is the last 
line, then there must be an upper convex point. 
It is the last pixel of the last line. This is because 
the direction chain code of the last point in a 
smoothed contour is code 4, and the direction 
chain code of the first pixel in a smoothed contour 
is code 5 based on the property of the smooth 
following contour.

Also, although the represented contour shape 
of point “Λ” is the same as that of concave point 

“$”, two types of structural points have different 
morphological structural properties. Point “Λ” is 
convex, but point “$” is concave. Similarly, the 
represented contour shape of point “m” is the 
same as that of point “v,” but the morphology 
of point “m” is concave, and that of point “v” is 
convex. There is similar property for structural 
points “[” and “(”, points “]” and “)”, points “F” 
and “O,” points “f” and “o,” points “T” and “S,” 
and points “t” and “s” (see Figure 17). Therefore, 
structural points not only describe the shape of 
contour segments but also determine the convex-
ity or concavity of contour segments. It is clear 
that the series of structural points of a contour 
can describe the shape of the contour.

Experiment results

If the contours of an image are smooth followed 
and linearized, then all structural points of these 
linearized contours can be extracted based on the 
previous definitions and algorithms. The process-
ing results of four sample images are shown in 
Figures 18-21.

For the outer contour in Figure 18, there is a 
series of structural points:

“Λ”→ “F” → “[” →“s” →“v” (convex)→ “$” 
→“S”→ “]” → “f” (concave) → “F”→ “[”→ 
“s”→ “v” (convex)→ “$” → “S” → “]” → “f” → 
“m”(concave) → “Λ”→ “F”→ “[” → “s”→ “v”→ 
“o”→ “)” → “T”→ “Λ” (convex).

Each convex or concave change consists of 
a group of convex or concave structural points, 
respectively. For example, the first convex change 
of the previous series consists of convex structural 
points “Λ”, “F”, “[”, “s”, and “v”.

For the outer contour in Figure 19, the series 
of structural points is:

“Λ”→“F”→“[”→“s”(convex)→“S”→“]”→“f” 
(concave)→“F”→“[”→“s”(convex)→“S”→“]”→
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Figure 18. Original image, contour, smooth fol-
lowing, linearization, and structural points of one 
handwritten digit 3

 

Figure 19. Original image, contour, smooth fol-
lowing, linearization, and structural points of 
another handwritten digit 3

 

Figure 20. Binary image, contour and smooth following, linearization, and structural points of one lily 
flower image
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“f”→“m”(concave)→“Λ”→“F”→“[“→“s”→“v”
→“o”→“)”(convex)→“(”(concave)→ “T’→“Λ” 
(convex).

There are similar concave changes that con-
tain a group of points “S” and “]” in both of the 
previous series of structural points. If recognized 
object images are handwritten digits based on 
prior information, then two handwritten digits 
are recognized as digit 3. The reason is that there 
is such a morphological structure pattern (two 
groups of structural points “S” and “]”) on the 
smoothed contours of all types of digits 3 (both of 
printed and handwritten digits 3). For handwritten 
digits, handwritten digit 7 (with one horizontal 
line) contains two groups of structural points “S” 
and “].” However, digit 7 can be distinguished 
with handwritten digits 3 based on other location 
features of structural points.

For the outer contour in Figure 20, the series 
of structural points is:

“Λ” →“F” →“[” (convex)→ “]”→ “f” (concave)→ 
“F”→ “[” →“s” (convex)→ “S” (concave)→ “s”→ 

“v”(convex)→ “$” (concave)→“v”→“o”→“)” 
(convex)→“(”→ “O” (concave)→ “o”→ “)”→“T” 
(convex)→ “t”→ “(” (concave)→ “)”→“T”→ “Λ” 
(convex)→ “m” (concave)→ “Λ” (convex).

It is clear that the outer contour is six angles, 
because there are six pairs of convex and concave 
change. If the flower image is recognized, it can be 
recognized as a lily flower. For most sorts of lily 
flowers, there are six petals that are constructed 
of six angles.

Another example is shown in Figure 21. Its 
original image and contour and smooth contour 
images are shown in Figures 21(1-3), respectively. 
For the outer contour in Figure 21(4), the series 
of structural points is:

“Λ”→ “F” (convex)→ “f’”→ “m” →“t” (con-
cave)→ “T”→ “Λ”→ “F”→“[”(convex)→“]” 
(concave)→“s”→ “v”→“o”(convex)→“O”→“$”
→“S”→“]”(concave)→“[”→ “s”→ “v”→ “o”→ 
“)”→“T”→ “Λ”(convex).

Figure 21. Binary image, contour and smooth following, linearization, and structural points of con-
nected handwritten digits 0 and 1
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The outer contour mainly consists of two con-
vex shapes between which there are two concave 
shapes. One concave shape is mainly in the direc-
tion of chain code 4, and another concave shape 
is in the direction of chain code 0.

ANALYsIs AND rEcOGNItION OF 
brOKEN HANDWrIttEN DIGIts

Machine recognition of handwritten digits plays 
an important role in intelligent document process-
ing systems. When handwritten digits contain 
broken strokes and spurious segments in their 
fields, it is difficult for most recognition meth-
ods to deal with them, including both structural 
and statistical approaches (Hu, 1998; Lee, 1996; 
Malaviya & Klette, 1996; Shi, 2002; Yan, 1993, 
1994). Broken handwritten digits are caused by 
segmentation and threshold errors of noisy digits, 
the writing style, or the tools used. Some examples 
of broken handwritten digits are shown in Figures 
22(1-4). They are taken from the U.S. National 
Institute of Science and Technology (NIST) da-
tabase (Garris & Wilkinson, 1992).

Some methods have been developed to resolve 
the problem in the past. The general stroke exten-
sion procedure for reconstructing broken digits 
may create links that actually do not exist, thereby 

creating an additional problem (Whichello & Yan, 
1996). Another approach is to use variable sized 
masks to increase the size of the link (Whichello 
& Yan, 1996). However, with this algorithm, if 
the distance between two points of a broken digit 
(without a link) is less than that between two points 
(with a link), it will result in a bad reconstruction 
of the broken digit. 

This section presents an efficient method of 
reconstructing and recognizing broken handwrit-
ten digits. First, we describe some algorithms for 
preprocessing broken digits before introducing 
the set of structural rules. Second, the broken 
points of broken digits are preselected based on 
the minimum distance between two “end” points 
of skeletons that belong to the main and adjunctive 
segments, respectively, and some correction rules 
of the preselected broken points are discussed 
based on the structure analysis and comparison 
of digit fields. The diagram of reconstructing 
broken digits is shown in Figure 23. Finally, a 
summary is given.

Preprocessing Algorithms of Broken 
Digits

In this section, a set of preprocessing algorithms 
is introduced. Here, suppose the starting point 
for the process is the upper-left corner point (the 

Figure 22. Sample images of broken handwritten digits and final processed results
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upper-left point) of the object, Freeman codes are 
used, and the contour of image is 8-connected.

Filling and Constrained Dilation

In many cases, there are some small gaps and 
spurious holes in a broken handwritten digit. The 
dilation process can be used to fill the small gaps, 
and it can be interpreted as follows:

| [( ) ] ,xA B x B A A
∧  ⊕ = ∩ ⊆ 

     (17)

where A is the processed image, B is the structural 
element in dilation, and x is the displacement (Gar-
ris & Wilkinson, 1992). The structural element 
for dilation is shown in Figure 24(1).

The structural element for dilation is shown 
in Figure 24(1). If the input image is processed by 
such a dilation once, then the small gaps between 
the two regions and the small holes can be filled. 
However, there is a danger of forming links that 
do not exist. Such an example is shown in Figure 

24(4), which shows that the small gap of the lower 
block region in Figure 24(4) should not be linked. 
We therefore need to impose some conditions on 
the dilation operation to avoid such cases. Two 
constrained conditions are as follows.

Condition 1. If a candidate contour point is a 
convex point in the direction of code 4, calculate 
the distance between it and other contour points 
whose y coordinate is less than the candidate’s y 
coordinate. If these distances are less than or equal 
to 3, then this candidate point and corresponding 
contour points found are the points that should 
not be dilated.

Condition 2. If a candidate contour point is a 
convex point in the direction of code 0, calculate 
the distance between it and other contour points 
whose y coordinate is greater than the candidate’s 
y coordinate. If these distances are less than 
or equal to 3, then this candidate point and its 
corresponding contour points found are not the 
dilated points.

For example, there are three convex points 
in the direction of code 0 and two convex points 
in the direction of code 4 in Figure 24(4). Based 

Figure 23. Block diagram of the algorithm for the reconstruction of handwritten broken digits
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on the previous conditions, the undilated points 
in Figure 24(4) can be determined. The dilation 
operation with the previous constraining condi-
tions can be represented as follows:

,])[(|
c

x AABxBA












⊆∩=⊕
∧

  (18)

where c represents the conditions. The processed 
results of the original sample images in Figures 
24(2,4) are shown in Figures 24(3,5) based on 
the previous filling and constrained dilation al-
gorithm, respectively. We can see that spurious 
holes in Figure 24(2) are filled, and some spurious 
spaces in Figures 24(2,4) are smoothed, but the 
small gap of the lower region in Figure 24(4) is 
not linked.

Preprocessing

Contour following and smooth following, lin-
earization and description features of contour, 
and detection of structural points are used to 
preprocess the broken handwritten digits. Also, 
the project filling method is used to fill the smooth 
following contours, and then the skeletons of the 
filled images are extracted. In general, broken 
points are located between two skeletons that 
belong to two neighboring regions. Therefore, 
it is necessary to extract the skeleton of broken 
digits. The smoothed contours are filled and then 

thinned by a parallel thinning algorithm (Zhang 
& Suen, 1984). An example image of a thinned 
broken digit is shown in Figure 12. The original 
image and its smoothed contours are shown in 
Figures 12(1-2), respectively, and its skeleton is 
shown in Figure 12(3). The skeleton can further 
be smoothed based on some patterns as shown 
in Figure 13(1). Based on our algorithm, the 
skeleton (see Figure 12(3) ) is smoothed, and the 
final skeleton is shown in Figure 12(4).

Broken Points of Broken Digits

If all possible morphological structural patterns 
of broken digits are compared and analyzed, then 
all related detection rules can be constructed and 
described. Some structure patterns are shown in 
Figure 25.

If the contour length of a segment is largest, 
then the segment is defined as the main segment of 
the digit field, and the other segments are defined 
as the adjunctive segment. In general, if a segment 
is spurious, it is an adjunctive segment, and there 
are no crossing points between the extension lines 
of the main and adjunctive segments. We can 
determine whether an adjunctive segment is spuri-
ous or not based on the morphological structure 
of main and adjunctive segments. Here, suppose 
that the adjunctive segment is not spurious.

Basically, a large gap is caused by the broken 
stroke of a digit. Broken points are defined as 
those region points between which there is a gap. 

Figure 24. Constrained dilation and two examples
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If we can correctly determine the broken points 
of a digit, we can bridge the gap between them 
and reconstruct the broken digit. A new approach 
for finding broken points is based on the analysis 
and comparison of structure and skeleton of the 
digit region.

Preselection of Broken Points

In most cases, if one gap can be correctly deter-
mined, then there is a minimum distance between 
the two “end” points that belong to two different 
skeletons. The two skeletons are neighboring; one 
belongs to the main segment, and another one 
belongs to the adjunctive segment. We call these 
two “end” points the preselected “end” point. 
Furthermore, if there is a minimum distance 
between one structural point (only structural 
points “[,” “v,” “Λ,” or “)” being considered) and 
the found “end” point, then such a structural 
point is a broken point. Two found “end” points 
correspond to two broken points. Based on this 

description, the preselection criteria for broken 
points can be summarized as follows:

1. Extract the structural points and skeleton 
of digit regions by algorithms in Section-
Structural Points.

2. Calculate the distance between the two 
“end” points that belong to different block 
regions (the main and adjunctive segments, 
respectively). 

3. Select the two “end” points between which 
there is minimum distance. 

4. For each “end” point selected by Step 3, 
if there is minimum distance between the 
“end” point and a structural point (only 
structural points “[,’, “v,” “Λ,” or “)” being 
considered) that belongs to its corresponding 
block region, then the structural point is a 
preselected broken point.

For example, one original image is shown 
in Figure 31(1), the extracted structural points 

Figure 25. Some structures of relation between the main and adjunctive segments
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and skeleton are shown in Figure 31(2) based on 
Step 1, two preselected “end” points are selected 
based on Steps 2, 3 (shown in Figure 31(2) ), and 
the preselected broken points are selected based 
on Step 4 (see Figure 31(3) ). It can be seen that 
the preselected broken points in Figure 31(4) are 
correct.

Two segments of a broken digit are selected to 
preselect the broken points. One is the main seg-
ment, and another one is its neighboring adjunctive 
segment. If the adjunctive segment is above the 
main segment, it is chosen to preselect the broken 
point. Otherwise, this lower adjunctive segment 
is chosen to preselect the broken point. When a 
gap is bridged, the number of segments of a bro-

ken digit can be decreased by one. For example, 
selected broken points are shown in Figure 31(3), 
the linked image is shown in Figure 31(4), and we 
can see that the number of segments is changed 
from 4 to 3. After all gaps are linked, it only 
contains one block region, and the final result is 
shown in Figure 31(12). If there is only one block 
region in the processed digit, the digit does not 
contain an outer gap. In this case, there is only one 
segment, and its recognition can be done based 
on the algorithm described in Figure 36.

Figure 26. The selection of broken points and correction rule 4
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Correction of Preselected Broken 
Points

In most cases, the preselected broken points are 
correct. However, some false selection of bro-
ken points may occur, especially if the distance 
between the two preselected broken points is 
large. For example, an original image is shown 
in Figure 26(1).

Its preselected “end” points and preselected 
broken points (see Figures 26(2-3) ) are based on 
the preselection algorithm of broken digits. We can 
see that the distance between the two preselected 
broken points (shown in Figure 26(3) ) is large 
compared to the height of the whole digit. In this 
example, the preselected broken points are false. 
For the sample image in Figure 27, only one pair of 
broken points is preselected (see Figures 27(2-3) ), 
but in fact, there is another pair of broken points. 
The other three examples are shown in Figure 28, 
and the preselected broken points are also false 
(see Figures 28(2-3,6-7,10-11) ). In these cases, 
it is necessary to correct the preselected broken 
points. The available prior knowledge is that the 
processed object is handwritten digits. We can 
construct all possible morphological structure 
patterns of broken handwritten digits whose 

preselected broken points are not correct. Some 
of examples are shown in Figures 25(41-48).

In fact, although a digit is broken, its segments 
contain the morphological structural information 
of the digit, especially in its main segment. Correc-
tion rules are constructed based on the description 
analysis and comparison of these morphological 
structure patterns and on the shape recognition of 
the main segment, and then determined whether 
the preselected broken points are reasonable. If 
not, the correction methods are proposed. Some 
correction rules are described as follows.

Correction rule 1. If (1) the main segment is 
the uppermost block region and is the shape of 
digit 3; (2) the neighboring adjunctive segment is 
at the lower-left corner of the main segment, then 
(a) one broken point is a structural point (points 
“Λ,” “[,”“v,” or “)”) of the main segment, and there 
is a minimum distance between the broken point 
and the lower-right “end” point of the skeleton of 
the main segment; (b) another broken point is a 
structural point (points “Λ,” “[,” “v,” or “)”) of 
the neighboring adjunctive segment, and there is 
a minimum distance between the broken point 
and a selected “end” point of the skeleton of the 
adjunctive segment. This “end” point is selected 
as follows: if the outer contour of the adjunctive 

Figure 27. The selection of broken points and Correction rule 5
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segment contains point “(” (concave change in 
code 2), the selected “end” point is the lower-
most “end” point of its skeleton. Otherwise, the 
selected “end” point is the rightmost “end” point 
of its skeleton.

One example is shown Figure 28 (2). It meets 
correction rule 1(1-2), and the preselected broken 
points need to be corrected. The selected broken 
points are determined based on correction rule 
1(2)(a-b) (shown in Figure 28(3) ). Based on the 
selected broken points, the broken digit is recon-
structed and shown in Figure 28 (4).

Correction rule 2. If (1) the main segment 
is over the adjunctive segment and there is one 
point “S” in the series of structural points of the 
main segment; (2) there is no internal contour 
in the main segment; and (3) the skeleton of the 
main segment contains one “junction” point 
which is at the bottom of the skeleton, then (a) 
one broken point is a structural point (points “Λ,” 
“[,” “v,” or “)”) of the main segment, and there 
is a minimum distance between the broken point 
and the right one of the two lower “end” points 
of the skeleton of the main segment; (b) another 
broken point selected is the same as that of cor-
rection rule 1(2)(b).

One sample is shown in Figure 28(6); it 
meets correction rule 2(1-3), and the preselected 
broken points need to be corrected. The selected 
broken points can be found based on correction 
rule 2(3)(a-b) and shown in Figure 28(7). Based 
on the selected broken points, the broken digits 
reconstructed and shown in Figure 28(8).

Correction rule 3. If (1) the main segment is 
over the adjunctive segment, and there are one 
point “S” and point “(” in the series of structural 
points of the main segment; (2) there is no “junc-
tion” point on the skeleton of its neighboring 
adjunctive segment, and there is no point “t” 
(concave change in code 3); (3) the right “end” 
point of the skeleton of the adjunctive segment is 
on the right of the lower “end” point of the skeleton 
of the main segment, then two broken points can 
be selected as follows: (a) one broken point is a 

structural point (points “Λ,” “[,” “v,” or “)”) of the 
main segment, and there is a minimum distance 
between the broken point and the right “end” 
point of the skeleton of the adjunctive segment; (b) 
another broken point is a structural point (points 
“Λ,” “[,” “v,” or “)”) of the adjunctive segment, and 
there is a minimum distance between the broken 
point and the right “end” point of the skeleton of 
the adjunctive segment.

One sample is shown in Figure 28(10); it 
meets correction rule 3(1-3), and the preselected 
broken points need to be corrected. The selected 
broken points can be found based on correction 
rule 3(3)(a-b) and shown in Figure 28(11). Based 
on the selected broken points, the broken digit is 
reconstructed and shown in Figure 28(12).

Sometimes, false broken points may occur, 
especially if the distance between the two prese-
lected broken points is large. Such an example is 
shown in Figure 26. In this case, it is necessary 
to correct the preselected broken points. Deter-
mining whether the preselected broken points are 
correct can be based on the structural and skeleton 
extending analysis of the digit.

Correction rule 4. If (1) the main segment is 
under the adjunctive segment and is the one shape 
of digit 0; (2) the adjunctive segment is the shape 
of digit 1; (3) there exist crossing points between 
the down extension lines of the adjunctive seg-
ment and up extension lines of the left “end” part 
of the main segment, then two broken points can 
be selected as follows: (a) one broken point is a 
structural point (points “Λ,” “[,” “v,” or “)”) of the 
main segment, and there is a minimum distance 
between the broken point and the lower “end” 
point of the skeleton of the main segment; (b) 
another broken point is a structural point (points 
“Λ,” “[,” “v,” or “)”) of the adjunctive segment, 
and there is a minimum distance between the 
broken point and “end” point of the skeleton of 
the adjunctive segment. 

One sample is shown in Figure 27(2); it meets 
correction rule 4(1-3), and the preselected broken 
points need to be corrected. The selected broken 
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Figure 28. The selection of broken points and correction rules 1, 2 and 3
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points can be found based on correction rule 
4(3)(a-b) and shown in Figure 27(3). Based on 
the selected broken points, the broken digit is 
reconstructed and shown in Figure 27(5). 

In some cases, it is possible that there are 
two missing links. Some examples are shown 
in Figures 25(17-19, 23-24). A practical example 
is shown in Figure 27. Its structural points and 
skeleton are shown in Figure 27(2). The related 
correction rule is based on the morphological 
structure analysis and shape recognition of the 
main and adjunctive segments. Here, the main 
segment is one shape of digit 8 because: (a) there 
exists a series of structural points on its outer 
contour: “[”→“]” →“[” →“$” →“)”→“(”→“)”; (b) 
there is one upper internal contour. The related 
correction rule can be described as follows.

Correction rule 5. If (1) the main segment 
is over the adjunctive segment and is the shape 
of digit 8 (see the previous description); (2) the 
skeleton of the main and adjunctive segments all 
contain two “end” points, then two pairs of broken 
points can be selected as follows: (a) one pair of 
selected broken points is two preselected broken 
points; (b) another pair of selected broken points 
is: one broken point is a structural point (points 
“Λ,” “[,” “v,” or “)”) of the main segment, and 
there is a minimum distance between the broken 
point and another lower “end” point of the skeleton 
of the main segment; another broken point is a 
structural point (points “Λ,” “[,” “v,” or “)”) of 
the adjunctive segment, and there is a minimum 
distance between the broken point and another 
upper “end” point of the skeleton of the adjunctive 
segment. One sample is shown in Figure 27(2); 
it meets correction rule 5(1-2). The selected pair 
of broken points is two preselected broken points 
based on correction rule 5(2)(a), and another 
pair of broken points is based on correction rule 
5(2)(b) and corresponds to the left pair of “end” 
points of the main and adjunctive segments. They 
are shown in Figure 27(3). Based on the selected 
broken points, the broken digit is reconstructed 
and shown in Figure 27(4).

One morphological structure pattern of broken 
digit is shown in Figure 25(7), and a practical 
sample is shown in Figure 29. In this case, the 
preselected “end” and broken points are shown in 
Figures 29(2-3) based on the algorithms described 
in the preselection algorithm of broken digits. The 
preselected broken points are incorrect.

The corresponding correction rule can be 
constructed as follows.

Correction rule 6. If (1) the main segment is 
the shape of digit 1; (2) there are structural point 
“O” (concave change in code 1) but no structural 
points “S” (concave change in code 7), “m” (con-
cave change in code 4), or “$” (concave change in 
code 0) on the outer contour of the adjunctive seg-
ment; (3) the adjunctive segment is on the middle 
left side of the main segment, then two broken 
points can be selected as follows: (a) one broken 
point is the lower-right point “)” of the adjunctive 
segment; (b) another broken point is on the outer 
contour of the main segment, between which and 
the selected broken point (by the previous Step (a) ), 
there is a minimum horizontal distance. 

One sample is shown in Figure 29; it meets 
correction rule 6(1-3), and the preselected broken 
points need to be corrected (see Figure 29 (2)). 
The selected broken points can be found based 
on correction rule 6(a-b) and shown in Figure 
29(3). Based on the selected broken points, the 
broken digit is reconstructed and shown in Fig-
ure 29(4).

Other structural patterns of unreasonable pre-
selected broken points can be found from possible 
broken structural patterns. Some of examples are 
shown in Figures 25(6,18-19,23-24,41-48).

Similar to the previous six correction rules, 
another 22 corresponding correction rules can 
be set up based on the analysis of morphological 
structural patterns, shape recognition, skeleton 
analysis, and geometrical features of broken digits. 
Based on these correction rules, unreasonable 
preselected broken points can be corrected.

Based on these procedures, the broken digits 
can be reconstructed until there is only one block 
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Figure 29. The selection of broken points and Correction rule 6

Figure 30. Example 1 of multi-broken handwritten digits
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region for these broken digits. Two multibroken 
digits are shown in Figures 30(1) and 31(1).

Based on the constrained dilation algorithm, 
the upper segment is linked with its neighboring 
segment, and the processed result is shown in 
Figure 30(2). We can determine that the newly 

formed segment (upper block region) is the main 
segment, and another segment is the adjunctive 
segment and a nonspurious segment based on 
the structure of segments. The preselected “end” 
points and broken points can be selected based 
on the algorithms described in this section; they 

Figure 31. Example 2 of multibroken handwritten digits
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are shown in Figures 30(3-4). However, based on 
correction rule 1, the preselected broken points 
need to be corrected. Here, the main segment is 
recognized as the shape of digit 3. The selected 
broken points are found, and the first link result 
is shown in Figure 30(5). Furthermore, the broken 
points can be found and shown in Figure 30(7) 
based on the reconstruction algorithm of internally 
broken digits, which is introduced in the section 
Analysis and Recognition. The final reconstruc-
tion result is shown in Figure 30(8).

The original image of another sample that has 
four segments is shown in Figure 31(1). Based on 
our algorithms, the upper segment is an adjunc-
tive segment, and its neighboring segment is the 
main segment. The preselected broken points 
between the main and adjunctive segments are 
correct, and the missing link can be bridged (see 
Figure 31(4) ). Using our procedures repeatedly 
for the image in Figure 31(5), we can determine 
that the newly formed upper segment is the new 
main segment, and its neighboring segment is the 
adjunctive segment. The preselected “end” points 
and broken points can be determined (see Figures 
31(6-7) ) based on the preselection algorithm of 
broken digits. Based on correction rule 3, the 
preselected broken points need to be corrected, 
and the selected broken points can be determined 
(see Figure 31(7) ). The linked result is shown in 

Figure 31(8). Using our procedures repeatedly for 
the image in Figure (9), we can determine that the 
second-formed upper segment is the main seg-
ment, and its neighboring segment is the adjunc-
tive segment. The preselected “end” points and 
broken points can be determined (shown in Figures 
31(10-11) ) based on the preselection algorithm of 
broken digits. In this case, the preselected broken 
points are the same as the selected broken points 
(see Figures 31(10-11) ). The final reconstructed 
result is shown in Figure 31(12).

reconstruction and recognition of 
Internally Broken Handwritten Digits

The handwritten broken digit, shown in Figure 
30(5), contains internally broken strokes. An 
internal gap structure is unavoidably caused by 
a broken internal contour during extraction of 
the digit fields. Some example images are shown 
in Figure 32.

These internally broken digits can be recon-
structed and recognized based on some structural 
patterns. The internally broken digits are mainly 
made by the broken internal contours of handwrit-
ten digits 0, 2, 4, 6, 8, and 9. In some cases, a digit 
is broken internally because of writing styles. Such 
examples are shown in Figures 33(5,14,17,21). We 
call the location where a digit is broken a “cut.” 

Figure 32. Sample images and their processed results of internally broken digits
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There are some internally broken handwritten 
digits in the NIST database. Two sample images 
are shown in Figures 34(1,5). Most recognition 
methods are unable to classify them. In order to 
reconstruct and recognize these digits, we need to 
analyze and describe the morphological structure 
of internally broken digits. If we can distinguish 
between different structures in Figure 33, we can 
recognize these internally broken digits and recon-
struct them. The shape description of internally 
broken digits can be represented by a structural 
feature vector (SFV), which is a series of ordered 
structural points, the geometrical locations of 
some structural points, and skeleton structure.

The extraction of SFV is from the first line to 
the last line along the processed outer contour. 
Suppose the height and width of a processed digit 
is h and w, respectively.

The algorithm for the reconstruction and rec-
ognition of internally broken digits is described 
next.

Case �

One pattern model of digit 8, which includes 
two “cuts,” is shown in Figure 33(13). A real 
sample is shown in Figure 34. Its original image 
is shown in Figure 34(1). It is preprocessed by 
the algorithms described in the section Smooth 
Following, Linearization, and Structural Points, 

and its extracted structural points and skeleton 
are shown in Figure 34(2). Its morphological 
structure belongs to one model of Figure 33(13). 
The reconstruction and recognition of this model 
are based on the following algorithm:

1. There exists the following SFV in the image 
(see Figure 34(2) ): “[”→“]” →“[” →“$”→ 
“v”→ “O” →“Λ”→ “m” →“Λ.”

2. Suppose the y coordinate of the point “m” 
in the selected SFV is hm , then hm>h/4. This 
means that the selected point “m” (the con-
cave change in code 2) is near the middle 
of the digit.

3. Suppose the y coordinate of the point “$” 
in the selected SFV is h$ , then h$ <3h/4. 
This means that the selected point “$” (the 
convex change in code is near the middle 
of the digit.

4. There are only four “end” points in the 
skeleton of the digit.

5. The y coordinates of two lower “end” points 
are greater than 3h/4. That means that the 
two “end” points are near the bottom of the 
digit.

Steps 1–5 describe the morphological structure 
of the model in Figure 34(2). Therefore, if Steps 
a–e are true, this digit is digit 8, which has two 
“cuts,” and two pairs of broken points can be 
selected as follows:

Figure 33. Pattern models of internally broken digits
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1. Two lower “end” points of the skeleton are 
extended in the direction of their chain codes 
(see Figure 34(2) ).

2. If there is a minimum distance between the 
extension point and the outer contour, the 
found point of the outer contour is a selected 
broken point.

3. In this way, two broken points can be selected 
based on the two lower “end” points of the 
skeleton (see Figure 34(2) ).

4. Similarly, another pair of broken points can 
be selected based on the two upper “end” 
points of the skeleton.

Based on this algorithm, the selected broken 
points are shown in Figure 34(2) in our sample. 
The final reconstructed result is shown in Figure 
34(4) based on the selected broken points. An-
other sample of digit 8 is shown in Figure 32(6). 
It belongs to another model of Figure 33(13). The 
difference between it and Case 1 is that its SFV 
is “[”→“]” →“[” →“$” →“)”→“(”→ “)”→“m” 
→“Λ”. Its reconstruction result is shown in Figure 
32(12).

Case �

The internally broken digit 6, which includes a 
right “cut,” is shown in Figure 33(11). A real ex-
ample is shown in Figure 34. Its original image 
is shown in Figure 34(5). It is preprocessed by 
the algorithm described in the sections Smooth 
Following, Linearization and Structural Points, 
and the structural points and the skeleton can be 
found and shown in Figure 34(6). Its morphological 
structure belongs to one model of Figure 33(11). 
The reconstruction and recognition of this model 
are based on the following algorithm:

1. There exists the following SFV in the image 
(see Figure 34(6) ): “F”→ “[”→ “v”→ “Λ”→ 
“m”→ “(”→“$”→ “v”→ “Λ”→ “m”→ “t”→ 
“Λ.”

2. Suppose the y coordinate of the first point 
“m” in the selected SFV is hm1, then hm1>3h/4. 
This means that the first selected point “m” 
(the concave change in code 2) should be 
near the bottom of the digit.

3. Suppose the y coordinate of the point “$” 
in the selected SFV is h$, then h$>h/3. This 
means that the selected point “$” (the convex 
change in code 6) is near the middle of the 
digit.

4. Suppose the y coordinate of the second point 
“m” in the selected SFV is hm2, then hm2 >h/2. 
This means that the second selected point 
“m” (the concave change in code 2) is below 
the middle of the digit.

5. There are only three “end” points in the 
skeleton of the digit.

6. The x coordinates of two lower “end” points 
are greater than w/2, where w is the width 
of the digit. This means that the two lower 
“end” points are near the right-hand side of 
the digit.

These steps describe the morphological struc-
ture of the model in Figure 34(6). Therefore, if 
steps 1-6 are true, this digit is digit 6, which has 
a right “cut.” Its broken points are the extension 
points of the two lower “end” points in the direc-
tion of their chain codes, which can be selected 
(see Figure 34(6) ) based on the similar algorithm 
described in Case 1. The final reconstructed im-
age is shown in Figure 34(8). Similarly, we can 
deal with other models in Figure 33. Based on 
our algorithm, the internally broken digits can be 
reconstructed and recognized. Other samples are 
shown in Figures 32(1-6), and their reconstructed 
results are shown in Figures 32(7-12).

Experimental results of
reconstruction

All image data are taken from the NIST database. 
In order to set up all structural patterns, 210 
patterns (sample images) of broken digits were 
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Figure 34. Two sample models of the internally broken handwritten digits
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selected from the broken digit set (1,236 broken 
handwritten digits) of the training set (11,639 
handwritten digits of SD3). Two hundred ten 
sample images are selected based on all possible 
structural patterns, which are used to recognize 
the shape of segments, to determine whether a 
segment is spurious, and to detect whether the 
preselected broken points need to be corrected. 
Some structural patterns are constructed based on 
possible shape structure analysis and comparison 
of broken digits, and these patterns are shown 
in Figure 25. For the training data set (1,236 
broken handwritten digits), a reconstruction rate 
of 97.35% with 0.33% substitution and 2.32% 
rejection is achieved. For the testing dataset, 3,631 
broken handwritten digits are extracted from 
42,698 extracted handwritten digits of SD3, and 
there is a reconstruction rate of 96% with 0.36% 
substitution and 3.14% rejection. 

The method of linking broken digits with 
variable sized masks (Whichello & Yan, 1996) 
cannot be used to link digits with large gaps. 
Such examples are shown in Figures 28(5), 26(1), 
29(1), and 22(1,4). Also, if a digit is broken, there 
is at least one gap. However, if there is a gap, it 
is possible that the gap is the normal structure of 
the digit and should not be linked. After a mask 
size is selected, it is still possible for both true and 
normal gaps to be linked. If a large sized mask 
is selected for a large gap, then the reconstructed 
broken digit will be distorted (Whichello & Yan, 
1996). If the general stroke extension method is 
used, it is difficult to select the threshold of the 
extending link length. If this threshold is small, 
then a big gap cannot be linked. Such examples are 
shown in Figures 28(5), 26(1), 29(1), and 22(1,4). 
If the threshold is large, then it is possible that the 
normal gaps of broken digits are linked incorrectly. 
Such an example is shown in Figure 28(5). Also, 
the two methods cannot deal with the problem of 
spurious segments of a digit field.

recognition of Handwritten Digits 
based on reconstruction and ONNc

The input images of optimized nearest neighbor 
classifier (ONNC) (Yan, 1993) are original and 
normalized images in the NIST database. If the 
recognition algorithm of ONNC is used, a total of 
11,639 extracted handwritten digits of SD3 (taken 
from the NIST database) are used as the training 
dataset, a total of 42,698 extracted handwritten 
digits of SD3 are used as the testing data set, 
and the recognition rate is 96.1%. The improved 
recognition algorithm of handwritten digits is that 
the input images of ONNC are preprocessed based 
on the methods described in the sections Smooth 
Following, Linearization and Structural Points, 
and this section. Therefore, the quality of the input 
images of ONNC is improved. After removing 
the spurious segments of handwritten digits and 
reconstructing broken handwritten digits, the 
algorithm, ONNC, is used to recognize these 
handwritten digits. For the same testing dataset 
(42,698 extracted handwritten digits of SD3), the 
recognition rate of 99.7% is achieved. This is be-
cause the quality of the input images is improved 
after the input images are preprocessed, spurious 
segments of the input images are removed, and the 
broken input images are reconstructed. Another 
testing dataset totally consists of 11,495 extracted 
handwritten digits of SD7. For the testing dataset 
from SD7, if ONNC is used, the reconstruction 
rate is 94.87%. After the reconstruction of the 
testing dataset, if the classifier ONNC is used, 
the recognition rate is 97.62%. For the new test 
dataset, the reconstruction rate is decreased and 
the rejection rate increased because some new 
broken morphological structure patterns are not 
considered in our methods for the testing data. In 
order to improve the processing result, more train-
ing data need to be used for the classifier ONNC, 
and more new structure patterns need to be used 
to construct some new reconstruction rules. 

One efficient recognition method is to use 
gradient and curvature of gray scale image (Shi, 
2002). By using this method, its recognition rate 



���  

Image Pattern Recognition-Based Morphological Structure and Applications

is 99.49% and 98.25% for 223,124 handwritten 
digits of SD3 and 58,646 handwritten digits of 
SD7, respectively. Our recognition rate of 99.7% 
is a little higher than 99.49%, but only 42,698 
extracted handwritten digits of SD3 are used in 
our algorithm. For testing the dataset of SD7, the 
method (Shi, 2002) is more efficient. One pos-
sible approach is to use our method to process 
the dataset, and then the method (Shi, 2002) is 
used for recognition.

If the recognition algorithm is an ONNC on 
a Sun Sparc 2 workstation, the average time of 
recognizing one handwritten digit is 0.02 seconds 
where the handwritten digits mainly consist of one 
segment. However, if the reconstruction of broken 
handwritten digits and processing of spurious 
segments are used, the average time of recogniz-
ing one broken handwritten digit with spurious 
segments is 0.19 seconds. Therefore, although 
recognition rate is improved, total recognition 
time is increased after using our reconstruction 
algorithm.

recognition of Handwritten Digits 
based on Morphological structures

The structure recognition is used to recognize 
handwritten digits (Hu, 1998). However, most 
structure recognition algorithms cannot recognize 
those handwritten digits that contain the spuri-
ous segments or are the broken digits. One new 

structure recognition algorithm is based on all 
possible morphological structures of handwritten 
digits that may contain the spurious segments or be 
the broken digits. The new structural recognition 
method is based on the following procedures: (1) 
preprocessing (smooth following, linearization-
based chain codes, extraction of skeleton, and 
filling); (2) feature extraction (structural points, 
curvature, bend angles, etc.); (3) analysis and 
recognition of handwritten digits with spurious 
segments; (4) reconstruction and recognition of 
broken handwritten digits; and (5) recognition of 
handwritten digits with one segment. 

The block diagram of the recognition method 
is shown in Figure 35. Some morphological struc-
ture patterns are shown in Figures 25(1-32). The 
segments in these images are analyzed and then 
determined whether they are spurious. If a seg-
ment is spurious, then it is removed.

After separation of spurious segments, there 
are three cases:

1. If the digit contains more than one segment, 
then it is a broken digit. Such examples are 
shown in Figures 25(1-16). In this case, the 
broken digit is reconstructed based on the 
algorithm described in this section.

2. If the digit only contains one segment and 
it is an internally broken digit, the digit is 
recognized based on the structure patterns of 
internally broken digits, which are shown in 

Figure 35. The block diagram of recognition based on morphological structures
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Figure 34. Based on these structure patterns, 
the relative recognition patterns can be con-
structed in terms of their series of structural 
points, geometric features (i.e., geometric 
location of some special structural points), 
and the number of internal contours.

3. If the digit only contains one segment and 
it is not an internally broken digit, the case 
is general. In fact, handwritten digits only 
contain one segment (except digit 5) in most 
cases.

4. The recognition of handwritten digits with 
one segment is based on all possible morpho-
logical structure patterns. The recognition 
of handwritten digits containing only one 
segment is based on the description of their 
morphological structure patterns.

The description of morphological structure 
patterns is based on:

• Series of structural points of outer contour 
(from starting point to end point of the 
contour)

• Geometrical location of structural points; 
the number of internal contours and their 
properties (geometrical location)

• The property and geometrical location of 
lines

The classification is based on these descriptions 
(how many pairs of structural points “S” and “],” 
how many internal contours, etc.). For example, 
the shape recognition of digits 3 and 7 has been 
described, where two handwritten digits 3 in Fig-
ures 18-19 contain two pairs of structural points, 
“S” and “].” Most of handwritten digits can be 
considered as those cases in which the digit field 
only consists of one segment, and their morpho-
logical structure patterns can be constructed to 
recognize these handwritten digits based on the 
above algorithm description. 

After reconstruction of broken handwritten 
digits and separation of spurious segments, the 
processed digits only consist of one segment. If 

the processed digits do not belong to internally 
broken digit structure, then the flow diagram of 
their recognition is shown in Figure 36. In Figure 
36, k is the number of pairs of structural points 
“S,” “[” (the concave change in the direction of 
codes 7 and 6), yf7 is the y coordinate of the first 
structural point “S” of series of structural points, 
and ymlse=(yled-ylsu)/4 + ylsu (ylsu and yled being the y 
coordinate of the uppermost and lowest position 
of the digit respectively). The inequality, yf7 < 
ymlse, means that point “S” (the concave change 
in the direction of code 7) is at the upper of the 
digit. Based on all possible recognition rules 
and the previous processing procedures, general 
handwritten digits (with one segment) can be 
recognized. 

summary

A new and efficient method of reconstructing and 
recognizing broken handwritten digits has been 
developed. The preprocessing algorithms can be 

 

Figure 36. The flow diagram of shape recognition 
of handwritten digits with one segment
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used to fill and smooth some spurious holes and 
spaces and make the morphological structural 
analysis of broken digits possible. All algorithms 
of preselecting broken points and correcting some 
preselected broken points are described. Our 
new method is more efficient because it not only 
uses some features such as geometry and stroke 
extension information but also uses morphologi-
cal structure and skeleton information of broken 
digits. Therefore, both small and large true gaps 
of broken digits are linked, and the normal gaps 
of broken digits are not based on our method. 
These newly developed algorithms of structural 
analysis are invariant to broken digit size, but not 
rotation in variant.

DYNAMIc ANALYsIs AND
rEcOGNItION OF HIGH cONtENt 
cELL-cYcLE scrEENING bAsED 
ON MOrPHOLOGIcAL
strUctUrEs

In order to assist scientists to understand the 
complex process of cell division or mitosis 
(Dunkle, 2003; Feng, 2002; Fox, 2003; Hiraoka 
& Haraguchi, 1996; Yarrow et al., 2003), analysis 
of cell-cycle screening by automated fluorescence 

microscopy is used. An essential task for cell-cycle 
screening is to measure cell-cycle progression 
(interphase, prophase, metaphase, and telophase), 
which can be identified by measuring nuclear 
changes. The most difficult task of such analysis 
(Chen, Zhou & Wong, 2007), (Pham, Tran, Zhou & 
Wong, 2005), (Pham, Tran, Zhou & Wong, 2006) 
is finding different stages that can be presented 
by nuclear size and shape changes during cell mi-
tosis. One example, the nuclear migration during 
cell division (eight series of times), is shown in 
Figure 37, which is the section of large original 
microscope images.

the Morphological structure of
Various cell Phases

In order to find the morphological structure of vari-
ous cell phases, we can use the methods described 
in the sections Smooth Following, Linearization, 
and Structural Points to process and analyze these 
original microscope cell images. The description 
of image contour plays an important role in the 
shape analysis and recognition of image. Line 
segment, critical points, and their convexity and 
concavity are useful features to analyze the shape 
of image contour. Many methods and algorithms 
are developed for the description of contours in 

          
                        (1)                         (2)                       (3)                       (4) 

          
                       (5)                          (6)                        (7)                        (8) 

Figure 37. One example of cell-cycle screening
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the past (Fu et al., 1997; Moktarian & Mackworth, 
1992; Yang & Yan, 2000). However, these descrip-
tions cannot form series of sets, or the intercontour 
of a binary image cannot be processed based on 
these algorithms, which make the analysis and 
understanding of contour shape difficult. Also, no 
one uses difference code to describe and extract 
these series of features. The methods proposed 
can make it possible.

Binarization

The Ostu (1978) thresholding method is used to 
separate binary cell images in cell-cycle screening 
and is shown in Figure 38.

Smooth Following and Linearization

The contours in Figures 38(1-8) are followed 
smoothly and linearized based on the algorithms 
described in the section Smooth Following and 
Linearization. For example, the processed results 
of the bottom-left cell in the cell screen (Figures 
38(1-8) ) are shown in Figure 39, where the spuri-
ous points in contours are removed and character 
“Y” is the first point of each linearized line.

The Series of Structural Points of Cell 
Images

The series of structural points of cell images in 
Figure 39 can be found in Figure 40.

Figure 40 is based on the algorithm described 
in the section Structural Points. For the outer 
contour in Figure 40(1), the series of structural 
points is:

“Λ”→ “F”→ “[”→“s”→ “v”→ “o”→ “)”→“T.”

It is clear that the contour shape is convex 
polygon, where it can be approximately defined 
as an ellipse shape. 

For the outer contour in Figure 40(7), the series 
of structural points is:

“Λ”→ “F” →“[” →“s”(convex)→ “S”→ “]” 
→“f” (concave)→ “F”→ “[”→“s” → “v”→ 
“o”→ “)”(convex)→ “(” (concave)→ “)”→“T” 
(convex).

It is clear, that this contour shape consists of 
two pairs of convex and concave change. It can 
be approximately defined as a barbell shape.

          
                           (1)                        (2)                      (3)                     (4) 

          
                           (5)                        (6)                      (7)                      (8) 

Figure 38. Binarization of cell images in one cell-cycle screening (Figure 37)
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separation and reconstruction of 
touching cells

There are some images of touching cells in a frame 
of microscope image. We can see that there are 
nine groups of touching cell images in Figure. 
41(1-2), respectively.

Therefore, these groups of touching cell images 
make analysis and recognition of the cell images 
of cell-cycle screening automatically very difficult 
because the size and shape of some cells cannot 
be found. In order to resolve the problem, we need 
to determine which image is a group of touching 
cell images, and then find all separation points of 

the group of touching cell images. Finally, each 
touched cell image needs to be reconstructed.

Morphology Structures of Touching Cell 
Images

Based on the prior knowledge, the cell shape of 
cell-cycle screening images can approximate as 
an ellipse before it is divided. Therefore, if two 
or more cells are touched, there is one concave 
structural point at least on its outer contour. Also, 
its size is larger than that of one cell image, as a 
touching cell image consists of two or more cells. 
Some binarization images of touching cell images 

 

 

    
                               (1)                                                                 (2) 

Figure 39. Smooth following and linearization of 
contours of the bottom-left cell in the cell screen 
(Figure 37)

Figure 40. Cell morphological structures of 
different phases (the bottom-left cell in the cell 
screen) (Figure 39)

Figure 41. Binary images of two frames in one cell-cycle screening (frame time: 15 minutes)
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are shown in Figures 42(1-3), and the image in 
Figure 42(4) is not a touching cell image because 
of its small size.

The smooth following and linearization results 
of images in Figure 42 can be shown in Figures 
43(1-4) based on algorithms of smooth following 
and linearization, which are described in the sec-
tions Smooth Following and Linearization.

Furthermore, the structural points of the im-
ages in Figures 43(1-4) can be extracted based 
on an algorithm of extracting structural points, 
as shown in Figure 44. We can see that there are 
some concave structural points on the contours 
of the images in Figures 44(1-4). Based on the 
definition of structural points, one concave point 
means a concave change in the direction of one 

            
(1)                                                          (2) 

     
                                    (3)                                                           (4) 

 

   
                           (1)                                                                  (2) 

   
                           (3)                                                                  (4) 

Figure 42. Binarization images of three touching cell images and one telophase cell image taken from 
Figure 41

Figure 43. The results of smooth following and linearization for the images in Figures 42(1-4)
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chain code on the contour. Generally, there is at 
least one concave change on the outer contour of 
an image if two or more ellipses are touching each 
other. Therefore, we can detect whether there is 
any concave on the image contour to determine if 
there is a touching cell image. Also, the separation 
points of a touching cell image can be found based 
on the concave points of a touching cell image.

Let a series of concave structural points on the 
outer contour of touching cell images be:

( ), (1)... ( ),... ( 1), ( )cc cc cc cc cc ccS s o s s i s n s n= -
      (19)

where scc (i) is the structural point number of 
the ith concave structural point on the contour, 
and there are n concave structural points on the 
contour. It is clear that scc (i) < scc (i + 1). In fact, 
one concave change on the contour may consist 
of several closest concave structural points. For 
example, if there exists scc (i + 1) - scc (i) =1 and scc 
(i + 2) - scc (i + 1) =1, then that means one concave 
change consists of three concave structural points, 
scc (i), scc (i + 1) and scc (i + 2). In this case, these 
three concave structural points should be merged 

into one group of concave structural points. After 
this merging processing for Scc, a series of groups 
of concave structural points represented as Scg: 

( ), (1)... ( ),... ( 1), ( )cg cg cg cg cg cgS s o s s i s k s k= -
      (20)

can be found, where k is the number of groups 
and k≤n .

For example, nine concave structural points 
in Figure 44(2) are merged into three groups of 
concave structural points. The morphological 
patterns of touching cell images can be deter-
mined based on the number of groups of concave 
structural points.

• If k=1 or k=2, two cells are touched.
• If k=3, three cells are touched.
• If k=4, four cells are touched.

Separation Points of Touching Cell
Images

The method of searching separation points can 
be described as follows.

 

   
                           (1)                                                                  (2) 

   
                            (3)                                                                  (4)     

Figure 44. The extracting structural points of the images in Figures 43(1-4)
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Case 1 (k=1)
If k=1, there is one group of concave points, scg (0). 
Suppose scg (0) contains p concave points, scg (0),… 
scg (p - 1) p<4. For each concave point, find its 
matching convex structural points, which are de-
fined as its corresponding convex structural points 
in the approximate reverse direction of chain code. 
For example, if scg (0) is concave structural point 
“Λ”, then its match convex structural points are 
“s,” “v,” and “o.” Let q be the number of the cor-
responding match convex structural points for all 
scg (0),… scg (p - 1), and they are represented as 
scv (0),… scv (q - 1). We can determine separation 
points that make minimum distance between one 
pair of one concave structural points in scg (0),… 
scg (p - 1) and one convex structural point in scv 
(0),… scv (q - 1). That is:

{ } { }0 0( ), ( ) min | ( ), ( ) | , ,cg cc cg ccs m s n s i s j i p j q= < <
      (21)

where scg (m) and scc (n) are the point numbers of 
the selected separation points, respectively.

Case 2 (k=2)
If k=2, there are two groups of concave points, 
scg (0) and scg (1). Suppose the number of concave 
structural points in scg (0) is p0, and in scg (1) is 
p1, respectively. In this case, we can determine 
separation points that make minimum distance 
between one pair of one concave structural point 
in scg (0),… scg (p0) and another one in scg (1),… 
scg (p1). That is:

{ } { }0 1 0 1 0 1( ), ( ) min | ( ), ( ) | , ,cg cg cg cgs m s n s i s j i p j p= < <

      (22)

where scg0 (m) and scg1 (n) are the point numbers of 
the selected separation points, respectively.

Case 3 (k>2)
If k>2, there are more than two groups of concave 
points, scg (0),… scg (l) l>2. In this case, we can 
determine each pair of separation points that 

make minimum distance between each pair of 
one concave structural point in scgx (0),… scgx (px ) 
and another one in scgy (0),… scgy (py ) where they 
are neighboring groups of concave structural 
points. That is:

{ } { }( ), ( ) min | ( ), ( ) | , ,cgx cgy cgx cgy x ys m s n s i s j i p j p= < <

      (23)

where scgx (px ) and scgy (py ) are the point number 
of the selected separation points.

For example, if k=3, there are three pairs of 
groups of concave structural points, scg (0) and 
scg (1), scg (1) and scg (2), and scg (2) and scg (0), 
respectively.

Based on this algorithm, we can find all 
separation points of images in Figures 44(1-4). 
We can find related separation lines (see Figures 
44(1-4) ) and the coordinate data of related arcs, 
which are shown in Figures 45(2,3), 46(2,3), and 
47(2,3,4), based on these separation points and 
series of points of the contour. These contours of 
touching cell images are shown in Figures 45(1), 
46(1), and 47(1).

Reconstruction of Touching Cell Images

We have found the coordinate data of all related 
arcs that are separated based on the previous 
algorithm. As all cell shapes are approximately 
as an ellipse, touching cell images can be re-
constructed based on these separated arcs. The 
reconstruction method is direct least square fitting 
of ellipses (Fitzgibbon, Pilu & Fisher, 1999). The 
reconstructed cell images are shown in Figures 
45(4,5), 46(5,6,7), and 47(4,5) based on the coor-
dinate data of separated arcs, respectively.

Dynamic Analysis and recognition 
of Different cell Phases

In order to detect the morphological structures of 
cells, it is necessary to recognize the cell shape 
of different cell phases. We can see that there 
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are mainly two classes of cell shapes, ellipse 
and barbell, for our cell screening. The ellipse 
shapes can be three types—skew, horizontal, 
and vertical—based on the relation between their 
major and minor axes. It is clear here that “skew,” 
“horizontal,” and “vertical” are fuzzy. Some rec-
ognition models of cell shapes can be described 
as the following, based on their morphological 
structures.

If a cell shape is an ellipse, there are no concave 
structural points on the outer contour of the cell 

contour. Furthermore, four models of ellipse can 
be described as follows: Calculate the number 
of groups of codes (codes 0, 4, 5, and 1), (codes 
5, 1, 2, and 6), (codes 6, 2, 7 and 3), (codes 7, 3, 
0 and 4), on the outer contour of the cell image 
contour, respectively.

Morphological Model �: Ellipse shapes 
e(�,�,�,�) and e(�,�,�,�)

For these shapes, the number of groups of codes, 
(codes 5, 1, 2, and 6), is largest. Let c5,6,1,2 be the 

 

       
                               (1)                                 (2)                               (3) 

                                                        
                                                                     (4)                               (5) 

Figure 45. The contour, separated arcs, and reconstructed ellipses of sample touching cell image 1 in 
Figure 44(1)

 

 
(1) 

       
                              (2)                               (3)                                 (4) 

      
                              (5)                                (6)                                 (7) 

Figure 46. The contour, separated arcs, and reconstructed ellipses of sample touching cell image 2 in 
Figure 44(2)

 

       
                               (1)                                 (2)                               (3) 

                                       
                                       (4)                                (5)  

Figure 47. The contour, separated arcs, and reconstructed ellipses of sample touching cell image 3 in 
Figure 44(3)
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total number of codes 5, 6, 1, and 2, ct be the to-
tal number of all codes, c5,1 be the total number 
of codes 5 and 1, and c6,2 be the total number of 
codes 6 and 2 on the outer contour of the cell 
image, respectively. If (1) the previous condition 
is met; (2) its outer contour mainly consists of 
chain codes 5, 6, 1, and 2 ( 1

5,6,1,2 2 tc c≥ ); (3) the 
number of chain codes 5 and 1 is more than that 
of chain codes 6 and 2 (c5,1 ≥ c6,2), then the cell 
image shape is recognized as the shape e(5,1,2,6); 
otherwise, (c5,1 < c6,2) the cell image is recognized 
as the shape e(6,2,1,5) .

In this model, the cell image shape, e(5,1,2,6) , 
is a skew ellipse in the direction of code 5 or 
1, and the cell image shape, e(6,2,1,5), is mainly a 
vertical ellipse. 

Morphological Model �: Ellipse shapes 
e(�,�,0,�) and e(0,�,�,�)

For these shapes, the number of groups of codes 
(codes 7, 3, 0, and 4) is largest. Let c7,0,3,4 be the 
total number of codes 7, 0, 3, and 4, ct be the to-
tal number of all codes, c0,4 be the total number 
of codes 0 and 4, and c7,3 be the total number of 
codes 7 and 3 on the outer contour of the cell 
image, respectively. If (1) the previous condition 
is met; (2) its outer contour mainly consists of 
chain codes 7, 0, 3, and 4 ( 1

7,3,0,4 2 tc c≥ ); (3) the 
number of chain codes 7 and 3 is more than that 
of chain codes 0 and 4 (c7,3 ≥ c0,4), then the cell 
image is recognized as the ellipse shape e(7,3,0,4) ; 
otherwise, (c7,3 < c0,4) the cell image is recognized 
as the shape e(0,4,3,7) . 

In this model, the cell image shape e(7,3,0,4) is 
considered as a skew ellipse in the direction of 
code 7 or 3, and the cell image shape, e(0,4,3,7) a 
horizontal ellipse. 

Morphological Model �: Ellipse shapes 
e(�,�,�,�) and e(�,�,�,�)

For these shapes, the number of groups of codes 
(codes 6, 2, 7, and 3) is largest. Let c6,7,2,3 be the 

total number of codes 6, 7, 2, and 3, ct be the to-
tal number of all codes, c6,2 be the total number 
of codes 6 and 2, and c7,3 be the total number of 
codes 7 and 3 on the outer contour of the cell im-
age, respectively. If (1) the previous condition is 
met; (2) its outer contour mainly consists of chain 
codes 6, 7, 2, and 3 ( 1

6,7,2,3 2 tc c≥ ); (3) the number 
of chain codes 6 and 2 is more than that of chain 
codes 7 and 3 (c6,2 ≥ c7,3), then the adjunctive seg-
ment is recognized as the ellipse shape e(6,2,7,3); 
otherwise, (c6,2 < c7,3) the cell image is recognized 
as the shape e(7,3,2,6). 

Morphological Model �: Ellipse shapes 
e(�,�,0,�) and e(0,�,�,�)

For these shapes, the number of groups of codes, 
(codes 5, 1, 0, and 4) is largest. Let c4,5,0,1 be the 
total number of codes 4, 5, 0, and 1, ct be the to-
tal number of all codes, c5,1 be the total number 
of codes 5 and 1, and c4,0 be the total number of 
codes 4 and 0 on the outer contour of the cell 
image contour, respectively. If (1) the previous 
conditions are met; (2) its outer contour mainly 
consists of chain codes 4, 5, 0, and 1 ( 1

4,5,0,1 2 tc c≥ ); 
(3) the number of chain codes 5 and 1 is more than 
that of chain codes 4 and 0 (c5,1 ≥ c4,0), then the 
cell image shape is recognized as ellipse shape 
e(5,1,0,4); otherwise, (c5,1 < c4,0) the cell image shape 
is recognized as the shape e(0,4,5,1). 

Based on the previous recognition models, 
the cell image in Figure 40(1) is recognized as 
shape e(6,2,7,3), the cell images in Figures 40(2-3) 
are recognized as shape e(6,2,1,5), and the cell im-
ages in Figures 40(5-6) are recognized as ellipse 
shape e(0,4,3,7).

Morphological Model �: Barbell Shapes

If (1) there are two concave structural changes; 
(2) there is one pair of corresponding concave 
structural points, “Λ” and “$” (horizontal), “]” 
and “(” (vertical), “f” and “O” (skew), or “t” 
and “S” (skew), then cell image contour can be 
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recognized as the barbell shape. There are four 
types of barbell shapes that can be defined based 
on which pair of concave structural points is 
found. The cell image contour in Figure 40(7) 
can be recognized as a barbell shape, and its pair 
of corresponding concave structural points are 
structural points “]” and “(”.

Cell Phases

The different phases of a cell are determined based 
on the shape and size of the cell image in the cur-
rent frame and those in its neighboring frames of 
the cell screening. As the shape ellipse, its shape 
change is mainly based on the rate between major 
and minor axes, and area size of cell image.

Basically, if there are concave changes in the 
cell image and its size is large, then the cell image 
is touching cell image. First, if the cell image’s 
size is not too large, then different cell phases can 
be traced and recognized as follows:

1. If (a) the cell shape is an ellipse and (b) the 
area size of the cell image is large enough 
(threshold can be found from statistical 
analysis of cell screening), then the cell is 
a normal changing one (metaphase). In this 
case, there are two phases: (1) if its chang-
ing trend is that the rate between major and 
minor axes of the cell image is decreased 
with time (compare these features between 
two neighboring frames), then the phase is 
changing from prophase to metaphase; (2) 
otherwise, from metaphase to telophase.

2. If the rate between major and minor axes 
of the cell image is large enough (threshold 
can be found from statistical analysis of cell 
screening), there are two phases: (1) if there 
are two new small cells at tracing location, 
then the cell has split; (2) otherwise, the cell 
will be split soon (telophase).

3. If the cell shapes are a barbell shape and the 
area size of the cell image is not large, then 
the cell will be split (telophase).

4. If (a) the cell shape is an ellipse and (b) the 
area size of the cell image is small enough, 
then the cell is a newly changing one, and 
its changing trend is that the area size of the 
cell image is increased with time (compare 
these features between two neighboring 
frames) (prophase). 

5. If the cell shapes and area are not changed 
for a long time, it should be a dead cell.

Based on the previous analysis, the cells in 
Figures 40(1-5) are at metaphase, the cells in 
Figures 40(6-7) are at telophase soon, and the 
cells in Figure 40(8) are at prophase. In this way, 
cell screening can be analyzed and recognized 
dynamically and automatically.

summary 

An efficient and new method has been developed 
for analysis and recognition of cell-cycle screen-
ing based on morphological structures. The 
morphological structures of cells are described 
based on structural points. The different cell 
phases are determined in terms of cell shape 
recognition, cell size between neighboring frames 
of cell screening. The touching cell images are 
recognized, segmentation points are detected, 
and separated cell images are reconstructed. Our 
algorithms have been used to process the cell 
database, which consists of 480 frames. Average 
division time is 1,830 minutes (tracing the cell 
from prophase to telophase). All phases of cells 
of the database can be traced and recognized. The 
dynamic analysis and recognition of cell-cycle 
screening are approached based on morphologi-
cal structure models and prior knowledge of cell 
images. The best useful contribution is that some 
series of structural features of linearized lines of 
contours are found, and morphological models of 
cell contour shapes are described based on our 
algorithm, but not other methods. Our method is 
efficient and new because morphological structure 
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models of cell images are constructed, and these 
models simulate artificial intelligence.

cONcLUsION

In this chapter, we have described morphological 
structure of images: smooth following, linear-
ization-based difference codes, patterns, and 
extraction of structural points. Finally, we have 
discussed how to use morphological to analyze 
and recognize practical object images based on 
morphological structure by two applications. One 
is reconstruction and recognition of handwritten 
broken digits, and another one is dynamic analy-
sis and recognition of cell-cycle screening based 
on morphological structures. Smooth following 
techniques are developed to smooth contours of 
images. The spurious pixels (points) of contours 
in images can be removed based on the structural 
patterns of difference codes and of spurious point 
groups. The algorithm can let the abstract value 
of difference codes between neighboring points 
be less than 2. This makes the linearization of 
contours possible.

The skeletons of images can be smoothed based 
on the structural patterns of skeleton smoothing, 
and some spurious points in the skeleton are re-
moved. Based on the new algorithm, the abstract 
value of difference between neighboring “end” 
and “junction” points is less than 2. Smoothed 
skeleton can make the extraction of skeleton 
features possible.

A new and efficient algorithm about lineariza-
tion-smoothed contours is discussed. A series of 
linearized lines in a contour is formed based on 
element chain codes, which are found in terms 
of difference chain codes. A series of description 
features of contours is formed, but not by other 
methods.

The morphological structural points are pro-
posed. The morphological structural points are 
defined to describe morphological structures 
between neighboring linearized lines along con-

tours. Extraction of structural points is based 
on structural patterns, which are determined by 
element chain codes. Two applications are used 
to discuss how to analyze and recognize object 
images. One application is reconstructing and 
recognizing broken handwritten digits based on 
their morphological structure and skeleton. The 
preselected broken points are made based on mini-
mum distance between skeletons of neighboring 
segments. Correction rules of some preselected 
broken points are constructed based on the shape 
recognition and the geometrical location of the 
neighboring segments, the relation between 
neighboring segments, the shape structure of a 
digit, the geometrical property of segments, and 
the extending results of segments. The algorithm 
is more efficient because it not only uses some 
features such as geometry and stroke extension 
information, but also uses the morphological struc-
ture and skeleton information of broken digits. 
Therefore, based on his method, both small and 
large true gaps of broken digits are linked, but 
the normal gaps of broken digits are not.

Also, two methods of recognizing handwritten 
digits are discussed. One method combines the 
reconstruction of handwritten digits and ONNC. 
Another recognition method of handwritten digits 
is based on all possible morphological structures 
of handwritten digits. Experiments with large 
numbers of testing data show satisfactory results 
for these algorithms.

Another application is dynamic analysis and 
recognition of cell-cycle screening based on mor-
phological structures. The algorithm of extracting 
structural features (structural points) is described 
based on smooth followed contour, linearized line, 
and difference chain codes. The morphological 
structures of cell contour shapes are constructed 
based on the structure points, difference chain 
code of linearized line, and geometry features. 
The dynamic analysis and recognition of cell-cycle 
screening are approached based on morphologi-
cal structure models and prior knowledge of cell 
images. Comparing our algorithm with other 
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methods, the best useful contribution is that some 
series of structural features of linearized lines of 
contours are found, and morphological models of 
cell contour shapes are described based on our 
algorithm, but other methods do not. Our method is 
efficient and new because morphological structure 
models of cell images are constructed, and these 
models simulate artificial intelligence.
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AbstrAct

In this chapter, we propose a pose variability compensation technique, which synthesizes realistic fron-
tal face images from nonfrontal views. It is based on modeling the face via active appearance models 
and estimating the pose through a correlation model. The proposed technique is coupled with adaptive 
principal component analysis (APCA), which was previously shown to perform well in the presence of 
both lighting and expression variations. The proposed recognition techniques, though advanced, are not 
computationally intensive. So they are quite well suited to the embedded system environment. Indeed, the 
authors have implemented an early prototype of a face recognition module on a mobile camera phone 
so the camera can be used to identify the person holding the phone.
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INtrODUctION

Although face recognition has been researched 
for many years, promising laboratory systems 
developed with off-line face databases have not 
fared well when deployed in the real world. This 
is largely because of the deleterious effect of im-
age acquisition problems such as lighting angle, 
facial expression, and head pose. Accuracy may 
drop to 10% or even lower under uncontrolled 
image acquisition conditions. Such conditions are 
often encountered in automatic identity capture 
for video surveillance and for identification of 
faces from a mobile camera phone.

Indeed, the mobile phone is a very interesting 
target platform for advanced pattern recognition. 
Many modern phones can reliably recognize 
speech in noisy environments. Some recognize 
handwriting, including Chinese characters. Newer 
phones are equipped with fingerprint reading 
sensors and software. At first glance, it seems 
strange that such advanced pattern recognition 
algorithms representing decades of research are 
found on garden-variety mobile handsets. Yet the 
small size of the mobile phone encourages the 
development of pattern recognition interfaces 
rather than bulky keyboards. The high cost of 
licensing these algorithms is defrayed by the sheer 

volume of mobile phones being sold every year. 
With this in mind, the authors have implemented 
an early prototype of a face recognition module 
on a mobile camera phone so the camera can be 
used to identify the person holding the phone and 
unlock the keyboard. Robust face recognition is 
a key requirement of such a system.

Our recent research has led to recognition sys-
tems that are much less sensitive to uncontrolled 
image capture. These methods are described in 
this chapter. Now the challenge is to incorporate 
these new algorithms into embedded platforms 
to help realize our dream of ubiquitous, low-cost 
face recognition.

bAcKGrOUND OF FAcE
rEcOGNItION

Face recognition under uncontrolled image acqui-
sition conditions is a challenging goal, not only 
because of the gross similarity of all faces, but 
also because of the vast differences between face 
images of the same person due to variations in 
lighting conditions, facial expression, and pose. 
Figure 1 shows example images of the same 
person with the lighting source positioned in 
front, above, bottom, right, and left of the person, 

Figure 1. Example images of the same person with the lighting source from front, above, bottom, right, 
and left of the person, respectively, from Asian Face Database (© copyright 2007, I.M. Lab; used with 
permission)
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respectively. Figure 2 shows example images of a 
person with neutral, smiling, surprising, and sad 
expressions, respectively. Finally Figure 3 shows 
example images of the same person with different 
presentation angles.

An ideal face recognition system should rec-
ognize new images of a known face from a novel 
image and be maximally insensitive to nuisance 
variations in image acquisition. However, the 
fact that differences between images of the same 
face due to these nuisance variations are nor-
mally greater than those between different faces 
(Adini, Moses & Ullman, 1997) makes this task 
exceedingly difficult. Variations in illumination, 
facial expression, and head pose significantly 

degrade the performance of a face recognition 
system. Among these three important varia-
tions, pose variation is the hardest one to model 
(Phillips, Grother, Micheals, Blackburn, Tabassi 
& Bone, 2003). Therefore, most of the existing 
face recognition systems only work well in well 
controlled environments (Chellappa, Wilson & 
Sirohey, 1995) with frontal images taken under 
constrained or laboratory conditions. However, 
this requirement is too strict to be met in many 
situations or when only a few gallery images are 
available, such as in recognizing people from 
images captured on mobile cameras.

Figure 2. Example images of the same person with neutral, smiling, surprising, and sad expressions, 
respectively, from Yale Face Database (Yale, 1997)

Figure 3. Example images of the same person with different presentation angles, from Feret Database 
(NIST, 2001)
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Illumination-Insensitive Face
recognition

Many approaches have been proposed for il-
lumination-invariant recognition (Yilmaz & 
Gokmen, 2000; Yongsheng & Leung, 2002) 
and expression-invariant recognition (Beymer 
& Poggio, 1995; Black, Fleet & Yacoob, 2000). 
Many of these methods suffer from the need to 
have large numbers of example images for train-
ing, or they are computationally too expensive 
to be used in mobile camera phone platforms. In 
2004, we developed adaptive principal compo-
nent analysis (APCA) and rotated APCA (Chen 
& Lovell, 2004; Lovell & Chen, 2005), which 
inherited merits from both PCA and FLD (Fisher 
linear discriminant) (Belhumeur, Hespanha & 
Kriegman, 1997) by warping the face subspace 
according to the within-class and between-class 
covariance to compensate for illumination and 
facial expression variations. We sometimes refer 
to the highly representative features used in these 
techniques as “eigenfisher-faces” to reflect the 
hybrid nature of their derivation.

We first apply principal component analysis 
(PCA) (Turk & Pentland, 1991a, 1991b) to project 
each face image into a face subspace with reduced 
dimension to form an m-dimension feature vector 
sj,k with k = 1, 2, …, Kj denoting the kth sample of 
the class Sj. After constructing the face subspace 
for image representation, we warp this space to 
enhance class separability. According to Bayes 
rule, the conditional density function is:

1

1
2 2

1exp[ ( ) ( )]
2( | )

(2 ) | |
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where uj is the mean of class Sj and covj is the 
covariance matrix of Sj under the assumption of 
a Gaussian distributed random variables.

In order to compensate for the influence of 
between-class covariance on the estimation of 
the pdf, we use a whitening power parameter, p, 
to whiten the distribution:

2 2 2
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where ( [1... ])i i m=  are the eigenvalues extracted 
by PCA. Each eigenface ui is whitened according 
to the corresponding eigenvalue i using the power 
p. We then apply filtering to weigh each eigenface 
according to the corresponding identity-to-varia-
tion (ITV) ratio, which measures the correlation 
of a change in person vs. a change in variation 
for each of the eigenface. For an M class problem, 
assume that for each of the M classes (persons) 
we have examples under K standardized different 
lighting conditions. We denote the ith element of 
the face vector of the kth lighting sample for class 
(person) Sj by si,j,k . What follows is displayed in 
Box 1.

,i k represents the ith element of the mean face 
vector for lighting condition k for all persons, and 

,i j represents the ith element of the mean face 
vector for person j under all lighting conditions. 
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We then define the filtering matrix γ by:

1 2{ , , }q q q
mdiag ITV ITV ITV= 

where q is an exponential scaling factor deter-
mined empirically. 

We use the following cost function, which 
is a combination of error rate and the ratio of 
within-class distance to between-class distance, 
and optimize it empirically using an objective 
function defined by Box 2, where djj,k0 is the 
distance between the sample sj,k and sj,0 , which 
is the standard image reference (typically the 
normally illuminated neural image) for class 
Sj. Correspondingly, djm,k0 is the between-class 
distance between sample sj,k and the reference 
image sm,0 for class Sm .

Expression Invariant Face
recognition

We rotate the feature space according to within-
class covariance to enhance the representativeness 
of the features and to improve estimation of the 
conditional pdf. The rotation matrix R is a set of 
eigenvectors obtained by applying singular value 
decomposition to the within-class covariance 
matrix. Every face vector s is transformed into 
the new space by R:

r = RT s

We test RAPCA, APCA, and PCA on the Asian 
Face Image Database (I.M. Lab), which consists of 
535 facial images under five different standardized 
illuminations and 428 images with four different 
facial expressions corresponding to 107 subjects. 

Each image is 171*171 pixels with 256 grey levels 
per pixel. We perform threefold cross-validation 
on the database in an attempt to obtain reliable 
estimates of accuracy on unknown faces. Figure 4 
shows that our methods offer significant recogni-
tion performance gains over standard PCA when 
changes in lighting, expression, and both lighting 
and expression are present. 

APCA and RAPCA perform well against both 
lighting variation and expression change, but they 
only perform well with frontal face images as 
registered in the database. In the mobile camera 
phone scenario, many face images captured by 
the cameras are not perfectly frontal, so the need 
for a pose-invariant face recognizer becomes 
crucial.

Background of Pose-Insensitive 
Face recognition

The performance of face recognition systems 
drops significantly when large pose variations 
are present (Phillips et al., 2003). Many ap-
proaches have been proposed to compensate for 
pose change. 

Wiskott, Fellous, Kuiger, and von der Malsburg 
(1997) extend the DLA- (dynamic link architec-
ture-) based face recognizer (Lades et al., 1993) to 
deal with larger pose variations. The face image 
is represented by a labeled graph called the face 
bunch graph (FBG), which consists of N nodes 
connected by E edges. The nodes are located at 
facial landmarks , 1, ,nx n N=



 , which are called 
fiducial points. By using such a graph, the cor-
respondences between face images across differ-
ent viewpoints can be found. Matching an FBG 
on a new image is done by maximizing a graph 
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similarity between an image graph and the FBG 
at that pose. DLA approaches are invariant to 
pose change with rotations in depth less than 30 
degrees, but the computation is too expensive1 to 
be used in a real-time face recognition system.

In 1994, Pentland, Moghaddam, and Starner 
(1994) proposed two methods for use in face 
recognition using variable pose. Given N indi-
viduals under M different views, face recognition 
and pose estimation is carried out in a universal 
eigenspace computed from the combination of 
all the NM images. In this way, a “parametric 
eigenspace” will encode both identity and view 
conditions (Murase & Nayar, 1993). The other 
method is to build a “view-based” set of M sepa-

rate eigenspaces, each capturing the variation of 
the N individuals in a common view (Darrell & 
Pentland, 1993). In the view-based method, each 
view space’s eigenvectors are used to compute 
the “distance-from-face-space” (DFFS) (Turk 
& Pentland, 1991a, 1991b); once the proper view 
space is determined, the input face image is en-
coded using the eigenvectors of that view space 
and then recognized. 

In 2003, Chai, Shan, and Gao (Xiujuan, 
Shiguang & Wen, 2003) presented a framework 
for pose-invariant face recognition using a pose 
alignment method, which is based on a statisti-
cal transformation. Their algorithm partitions 
the face into three rectangular regions, and the 

 

 

Figure 4. Recognition rates for APCA and RAPCA with variations in lighting (top left), expression (top 
right), and both lighting and expression (bottom) (Chen & Lovell, 2004; Lovell & Chen 2005)
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affine transformation parameters associated with 
various poses are learned from the one-to-one 
rectangle mapping relations. The affine trans-
formation parameters associated with different 
poses can be used to align the input nonfrontal 
face image to frontal view face image, and the 
virtual frontal view can be generated through the 
polynomial warping. Experiments on the FERET 
dataset (NIST, 2001) show that their method can 
increase recognition rate by an average of 17.75% 
compared to face recognition without pose align-
ment. But their recognition rate was still quite 
low, only reaching an average of 58% under pose 
rotations of 30 degrees. Moreover, they did not 
develop an automatic way to mark the key points 
on facial structures. 

In 2000, Cootes, Walker, and Taylor (2000) 
proposed “view-based active appearance models,” 
which was based on the idea that a small number 
of 2D statistical models are sufficient to capture 
the shape and appearance of a face from any 
viewpoint. They demonstrated that to deal with 
pose angle change from left to right profile, only 
three distinct models were needed; each model 
is trained on the labeled images of a variety of 
people. They learn the relationship between model 
parameters and head orientation based on the as-
sumption that the model parameters trace out an 
approximately elliptical path, which can be used 
to estimate both the orientation of any head pose 
and synthesize a new face at any orientation. They 
applied this method to face tracking but did not 
do any face recognition experiments. 

Sanderson, Bengio, and Gao (2006) address the 
pose mismatch problem by extending each frontal 
face model with artificially synthesized models 
for nonfrontal views. The synthesized methods 
are based on several implementations of maxi-
mum likelihood linear regression (MLLR) and 
standard multivariate linear regression (LinReg). 
In the MLLR-based approaches, they used prior 
information to construct generic statistical face 
models for different views. A “generic” GMM was 
used to represent a population of faces. Each non-

frontal generic model is constructed by learning 
and applying an MLLR-based transformation to 
the frontal generic model. The LinReg approach 
is similar to the MLLR-based approach. The main 
difference is that it learns a common relation be-
tween two sets of feature vectors instead of learn-
ing the transformation between generic models. 
They evaluate these two approaches by applying 
it to two face verification systems: a holistic sys-
tem based on PCA-derived features, and a local 
feature system based on DCT-derived features 
(Sanderson & Paliwal, 2002). Experiments on the 
FERET database show that for the holistic system, 
the LinReg-based technique is more suited than 
the MLLR-based technique. It also shows that 
the local feature system is less affected by view 
changes than the holistic system.

HEAD POsE cOMPENsAtION

Facial Feature Interpretation

Active shape models (ASMs) (Cootes, 1992; Coo-
tes, Taylor, Cooper & Graham, 1995) and active 
appearance models (AAMs) (Cootes, Edwards & 
Taylor, 2001; Edwards, Taylor & Cootes, 1998), 
first introduced by Cootes and Taylor, is the most 
famous and robust approach to build such deform-
able models and used to interpret images. 

Statistical Models of Shape and
Appearance

The shape of an object is represented by a set of n 
landmarks, which can be in any dimension. Good 
landmarks are the points that lie at the corners 
of object boundaries or obvious biological land-
marks. For instance, a face image can be labeled by 
N landmark points, {( , )}i ix y , which are located on 
key feature points such as the eyes, nose, mouth, 
chin, and so forth, and be represented by a 2N 
element vector x:
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1 2 1 2, ,( , , , , , )T
N Nx x x x y y y=





After shape normalization, we apply principal 
component analysis (PCA) to the sample shape 
to reduce the dimensionality. Any shape x in the 
training set can be represented by:

s sx x Pb= +

where x is the mean shape vector, Ps is a ma-
trix containing the k eigenvectors with largest 
eigenvalues, and bs is a vector representing the 
weighting of the eigen-components.

We can also generate a statistical appearance 
model to represent texture variations. We warp 
each training sample to the mean shape to form 
a texture vector gim , which is the texture covered 
by the mean shape. We then apply PCA to these 
data and use similar methods to generate statisti-
cal shape models. Any texture g in the training 
set can be represented as:

g gg g P b= +

where g is the mean appearance vector, Pg is 
the matrix describing the appearance variations 
matrix learned from the training sets, and bg is 
the component vector.

 
Combination of Statistical Shape and 
Appearance Models

The shape and appearance parameters bs and bg 
can be used to describe the shape and appearance 
of any example. As there are correlations between 
the shape and appearance variations of the same 
person, we can apply PCA to these data:

( )

( )

T
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T

b g

W P x xW b
b

b P g g

 - 
 = =   -   

where Ws is a diagonal matrix that represents the 
change between shape and texture. We apply PCA 
to these vectors to get:

b = Pc c

where Pc are eigenvectors and c is a vector of ap-
pearance parameters controlling both shape and 
texture of the model.

sx x Q c= +

where

 
cssss PWPQ 1-=

cggg PPQ =

 








=

cg

cs
c P
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P

Here, x is the mean shape, g is the mean ap-
pearance, Qs is the matrix describing the shape 
variations that have the shape eigenvectors at 
its columns, and Qg is the matrix describing the 
texture that has the texture eigenvectors as its 
columns. The vector of components c is used to 
control the shape and texture change.

Interpreting Images Using Active Shape 
and Appearance Models

Interpreting images means we try to find a set of 
model parameters containing shape, orientation, 
scale, position, and texture information of this 
object to generate a sample of this model that can 
best match the input image. Given a novel image, 
active shape models are used to interpret the shape 
information, and active appearance models are 
used to interpret the texture information.

combination of cascade Face
Detector with Active Appearance 
Model search

The initialization of the active appearance model 
search is a critical problem since the original AAM 
search is a local gradient ascent. Some failed 
AAM searches due to the poor initialization can 
be seen in Figure 5.
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In 2001, Viola and Jones (2001) proposed 
an image-based face detection system that can 
achieve remarkably good performance in real 
time. The main idea of their method is to combine 
weak classifiers based on simple binary features, 
which can be computed extremely fast. Simple 
rectangular Haar-like features are extracted; face 
and nonface classification is done using a cascade 
of successively more complex classifiers that 
discards nonface regions and only sends facelike 
candidates to the next layer’s classifier. Thus, it 
employs a “coarse-to-fine” strategy (Fleuret & 
Geman, 2001). Each layer’s classifier is trained 
by the AdaBoost learning algorithm. AdaBoost 

is a boosting learning algorithm that can fuse 
many weak classifiers into a single more power-
ful classifier. Our face detector is based on the 
Viola-Jones approach using our own training sets, 
as illustrated by Figure 6. 

The cascade face detector finds the location 
of a human face in an input image and provides 
a good starting point for the subsequent AAM 
search. which then precisely marks the major 
facial features such as mouth, eyes, nose, and 
so forth. 

Pose Estimation

Here we follow the method of Cootes, et al. (2000). 
They assume that the model vector c is related 
to the viewing angle, θ, approximately by a cor-
relation model:

 )sin()cos(0 sc cccc ++=

where c0, cc and cs are vectors that are learned 
from the training data. (Here we consider only 
head turning. Head nodding can be dealt with in 
a similar way).

For each of the images labeled with pose θ in the 
training set, we perform active appearance models 
search to find the best fitting model parameters ci ; 

Figure 5. Failed AAM search due to poor initial-
ization on images from Feret Database (NIST, 
2001)

Figure 6. The cascade detection process
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then c0 , cc , and cs can be learned via regression 
from the vectors  }{ ic  and vectors {(1,cos ,sin ) '}i i . 
Given a new face image with parameters c, we can 
estimate orientation as follows. We first transform 
 )sin()cos(0 sc cccc ++=  to:

 
( ) 








=-

sin
cos

0 sc cccc

Using 1
cR- , which is the left pseudo-inverse of 

the matrix ( sc cc | ), then this becomes:

1
0

cos
( )

sincR c c-  
- =  

 

Letting )(),( 0
1' ccRyx c -= - , then the best 

estimate of the orientation is:

 )/(tan 1 xy-=

The estimation of θ is not entirely accurate 
due to landmark annotation errors or possibly 

regression learning errors. But this model appears 
to be quite sufficient to be used to synthesize the 
face images for recognition.

Frontal View synthesis

After we estimate the angle θ, we can use the 
model to synthesize new views. Here we will 
synthesize a frontal view face image, which will 
be used for face recognition.

Let cres be the residual vector, which is not 
explained by the correlation model:

0( cos( ) sin( ))res c sc c c c c= - + +

To reconstruct at a new angle, α, we simply 
use the parameters:

0( ) cos( ) sin( )c s resc c c c c= + + +

Figure 7. (L to R) Frontal view, turned view, synthesized frontal view from turned view using frontal 
rotation model on a face image from the Feret Database (NIST, 2001)
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As we want to synthesize frontal view face 
image, α is 0, so this becomes:

0(0) c resc c c c= + +

The shape and texture at angle 0° can be 
calculated by:

)0()0( cQxx s+=

and

)0()0( cQgg g+=

The new frontal face image then can be recon-
structed. A front view synthesized from the frontal 
correlation model can be seen in Figure 7.

rEsULts FrOM EXPErIMENts

training of Frontal Face Models

To train the frontal face model, we collected 
face image samples from 40 individuals for the 
training set. For each person, we had three im-

Figure 8. Sample training face images from Feret database (NIST, 2001) with 58 points labeled on the 
main facial features to determine the face model
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ages in three pose views (left 15°, frontal, right 
15°); all these images are extracted from the Feret 
database (NIST, 2001). We labeled each of these 
120 face images with 58 points around the main 
features, including eyes, mouth, nose, eyebrows, 
and chin. Some labeled training face images can 
be seen in Figure 8.

searching results of Active shape 
Models (AsMs) and Active
Appearance Models (AAMs)

Some search results of active shape models and 
active appearance models on the Feret Database 
(NIST, 2001) using the statistical appearance 

Figure 9. Active shape models (ASMs) search results on Feret database (NIST, 2001)
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models we trained can be seen in Figure 9 and 
Figure 10.

training of correlation Model

We then apply our combined AdaBoost-based 
cascade face detector and AAM search on the rest 
of the images of the Feret b-series dataset where 
each person has seven pose angles, ranging from 

left 25°, 15°, 0°, to right 15°, 25°. Despite Cootes, 
et al.’s statement that a near frontal face model 
can deal with pose change from left 45° to right 
45°, we found that the AAM search cannot locate 
the facial features precisely on most face images 
with high (40°) pose rotation, even given a very 
good initialization position, especially for face 
images with a large noise. AAM searching on the 
remaining face images with smaller pose angle 

Figure 10. Some active appearance models (AAMs) search results on Feret database (NIST, 2001)
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Figure 11. Original frontal face image from Feret database (NIST, 2001)

change can achieve 95% search accuracy rate. 
Frontal parameters c0 , cc , and cs are learned from 
the successful AAM search samples. By using the 
same method, we get the rotation parameters for 
left and right rotation model, respectively.

synthesis results from a Frontal 
Face Image

Given a frontal face image as in Figure 11, Figure 
12 shows the synthesized results from left 45° to 
right 45°.

Figure 12. Synthesized results from left 45° to right 45°
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High Pose Angle Face recognition 
results

We trained our APCA face recognition model 
using the Asian Face Database (I.M. Lab). We 
selected face images from 46 persons with good 
AAM search results; each person had seven pose 
angles ranging from left 25°, 15°, 0°, to right 15°, 
25°. We then formed two datasets: one is the 
original image set and the other is the synthe-
sized frontal image set; each of them contains 
322 images. We only registered the frontal view 
images into the gallery and applied both PCA and 
APCA on the high pose angle images for testing 
(276 images on each of the datasets). The overall 
recognition results from the threefold cross-vali-
dated trials are shown in Figure 13. 

It can be seen from Figure 13 that the recogni-
tion rates of PCA and APCA on synthesized im-
ages is much higher than that of the original high 
pose angle images. The recognition rate increases 
by up to 48 percentage points from 9% to 57% 
for images with a view angle of 25º. Yet even for 
smaller rotation angles less than 15º, the accuracy 
increases by up to 29 percentage points from 50% 
to 79%. Note that the recognition performance of 

APCA is always significantly higher than PCA, 
which is consistent with the results in Chen and 
Lovell (2004) and Lovell and Chen (2005). 

rEAL-tIME AUtOMAtED FAcE 
rEcOGNItION sYstEMs

To date, the majority of the research work on 
automated face recognition (AFR) has focused 
primarily on developing novel algorithms and/or 
improving the efficiency and accuracy of existing 
algorithms. As a result, most solutions developed 
(similar to the examples given in previous sec-
tions) are typically high-level software programs 
targeted for general-purpose processors that are 
expensive and usually nonreal-time solutions. 
Since face recognition is typically the first step 
and frequently a bottleneck in most solutions due 
to the large search space and computationally 
intensive operations, it is reasonable to suggest an 
embedded implementation specifically optimized 
to detect faces and recognize them. An embedded 
solution would entail many advantages such as 
cost and miniaturization, as only a subset of the 
hardware components are required compared to 

Figure 13. Recognition rate for PCA and APCA on original and synthesized images with small rotation 
angles
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the general computer-based solutions. The result-
ing solution can then be integrated with other 
technologies such as security cameras to create 
smart devices.

Now that reliable, accurate, and efficient face 
recognition algorithms are available, coupled with 
advances in embedded technologies, low-cost 
implementations of robust real-time face detec-
tors can be explored. The following subsection 
discusses the common embedded technologies and 
known embedded implementations of automatic 
face recognition (AFR) systems.

Related Work

There is a vast range of embedded technologies 
and associated design methodologies that can be 
employed for the design of an embedded AFR 
system. The most common technologies are 
pure hardware, embedded microprocessors, and 
configurable hardware.

Pure hardware systems are typically based 
on very large-scale integrated circuit (VLSI) 
semiconductor technology implemented as ap-
plication-specific integrated circuits (ASIC). 
Compared to the other technologies, ASICs have 
a high operating frequency resulting in better per-
formance, low power consumption, high degree 
of parallelism, and well-established design tools. 
However, a large amount of development time is 
required to optimize and implement the designs. 
Also, due to the fixed nature of this technology, 
the resulting solutions are not flexible and cannot 
be easily changed, resulting in high development 
costs and risk.

On the other hand, software programs imple-
mented on general purpose processors (GPPs) 
offer a great deal of flexibility, coupled with 
very well-established design tools that can auto-
matically optimize the designs; little development 
time and costs are required, thus assuming less 
risk. GPPs are ideally suited to applications that 
are primarily made up of a control processing 
because operations are carried out sequentially 

(one operation after another). However, they are 
disadvantaged because minimal or no special 
instructions are available to assist with data 
processing (B.D.T. Inc., 2004). Digital signal 
processors (DSPs) extend GPPs in the direction 
of increasing parallelism and providing additional 
support for applications requiring large amounts 
of data processing. The drawbacks of micropro-
cessors (both GPPs and DSPs) are high-power 
consumption and inferior performance compared 
to an ASIC. The performance of the final solution 
is limited to the selected processor.

Finally, configurable platforms such as field 
programmable gate arrays (FPGAs) combine some 
of the advantages from both pure hardware and 
pure software solutions (B.D.T. Inc., 2002); more 
specifically, the high parallelism and computation-
al speed of hardware and the flexibility and short 
design cycle of software. By inheriting character-
istics from both hardware and software solutions, 
naturally the design space for FPGAs is extended 
for better trade-offs between performance and 
cost. These design trade-offs are far superior to 
that of pure hardware or software solutions alone 
(B.D.T. Inc., 2005). From an efficiency point of 
view, the performance measures for FPGAs (i.e., 
operating frequency, power consumption, etc.) 
are generally halfway between the corresponding 
hardware and software measures.

VLsI-based Face Detector

Theocharides, Link, Vijaykrishnan, Irwin, and 
Wolf (2004) investigated the implementation of 
a neural network-based face detection algorithm 
in 160nm VLSI technology. The authors’ motiva-
tion in selecting this technology is due largely to 
its ability to support a compact and high-speed 
implementation. The face detection algorithm 
used is that proposed by Rowley, Baluja, and 
Kanade (1998a), which is selected for the follow-
ing properties: high detection rate, faces can be 
in different orientations, and the algorithm has a 
high degree of parallelism. The last property is 
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the most important one in pure hardware-based 
implementations.

The implemented system operates on grey-
scale images with a dimension of 300x300 pixels 
exhibiting the following operating characteristics: 
clock frequency of 409.5 KHz, power consumption 
of 7.35 Watts, and area of 30.4 mm2. Though the 
operating frequency is relatively low, a through-
put of 424 images per second was achieved. The 
system is also able to maintain a reasonably high 
detection accuracy of 75%, which is comparable 
to its software counterpart.

As illustrated by Theocharides, et al. (2004), 
a VLSI-based implementations can yield an ac-
curate solution with high throughput and low 
power consumption. However, as mentioned 
previously, pure hardware-based systems are 
extremely inflexible. If any system parameters 
require changing, for example, the size of the 
input image, the overall system including the 
environment in which the circuit is integrated, 
may need to be redesigned. 

Face Detection Implemented on
Configurable Platforms

Several configurable hardware-based implemen-
tations exist, including that by McCready (2000), 
Sadri, et al. (2004), and Paschalakis and Bober 
(2003). McCready (2000) specifically designed 
a novel face detection algorithm for the Trans-
mogrifier-2 (TM-2) configurable platform. The 
Transmogrifer-2 is a multiboard FPGA-based 
architecture proposed by Lewis, Galloway, Van 
Ierssel, Rose, and Chow (1998) that is made up 
of between one and 16 boards. Each prototyping 
board consists of two Altera Flex 10K100 FPGA 
chips, four ICube field programmable intercon-
nect device (FPID) chips, and 8MB of SRAM, 
and operates at a frequency of 12.5 MHz.

The algorithm was intentionally designed 
with minimal mathematical operations that could 
execute in parallel—engineering effort has been 
put in to reduce the number of multiplications 

required. The implemented system required nine 
boards of the TM-2 system, requiring 31,500 
logic cells (LCs). The system can process 30 
images per second with a detection accuracy of 
87%. The hardware implementation is said to be 
1,000 times faster than the equivalent software 
implementation.

On the other hand, Sadri, et al. (2004) imple-
mented the neural network-based algorithm 
proposed by Rowley, et al. (1998) on the Xilinx 
Virtex-II Pro XC2VP20 FPGA. Skin color filtering 
and edge detection is incorporated to reduce the 
search speed. The solution is partitioned such that 
all regular operations are implemented in hard-
ware, while all irregular control-based operations 
are implemented on Xilinx’s embedded hardcore 
PowerPC processor. This partitioning allows the 
advantages of both hardware and software to be 
simultaneously exploited. The system operates at 
200MHz and can process up to nine images per 
second. Inadequate information is given regard-
ing the resource usage, but a minimum of 18,000 
look-up tables (LUTs) and 2Mbytes of memory 
are required. 

Finally, Paschalakis and Bober (2003) designed 
a system with the intention of integrating it within 
a power- and resource-constrained environment 
such as 3G mobile phones, where the face can be 
tracked for mobile conferencing applications. The 
algorithm is based on skin color modeling, which 
makes use of the LogRG 2D color space proposed 
by Forsyth, et al. (2005). Essentially, detection is 
implemented by identifying the largest skin region 
and tracking the change in the centroids of these 
regions over subsequent frames. Strictly speak-
ing, this is not face detection, but it is adequate 
for the application in which it is intended. The 
system is implemented on an Altera Apex20K 
EP20K1000EBC652-1 device requiring 8.3% of 
the total logic elements (LE), 1.4% of embedded 
system blocks (ESB), and 700 bytes of memory. 
The operating frequency is 33MHz and can pro-
cess up to 434 frames per second. 
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The examples presented illustrate the obvious 
compromises between accuracy and algorithm 
robustness vs. the amount of resources required; 
that is, to improve the performance of the face 
detection algorithms, either increase the embed-
ded design complexity, which generally results in 
higher power consumption and hardware costs, 
or settle for the less superior solution.

system Level-based Design
Methodology

Kianzad, et al. (2005) present a framework for 
designing and exploring different possible face 
detection implementations on embedded recon-
figurable systems. The face detection algorithm 
employed is that presented by Moon, Chellappa, 
and Rosenfeld (2002), which is based on using 
edge information to detect objects in 2D. In order 
to exploit parallelism, multiple processors are 
instantiated and synchronous dataflow diagrams 
based on synchronization graph models are used 
to analyze and schedule task execution on each 
processor. The proposed design was implemented 
on the Xilinx ML310 development board and is 
able to process 12 frames per second. 

The problem with this proposed design ap-
proach is that the model is not easily extendable 
to other face detection algorithms and hardware 
platforms. The models created are tightly coupled 
with the face detection algorithm and hardware 
architecture used. As a result, in order to consider 
different design alternatives, several models will 
need to be created. 

DsP-based Implementations

There are two DSP-based AFR system implemen-
tations by Batur, Flinchbaugh, and Hayes (2003) 
and Wei and Bigdeli (2004) that are reported in 
the literature. 

The implementation by Batur, et al. (2003) 
consists of four stages: face detection, face feature 
localization, face normalization, and face recogni-

tion. The probabilistic visual learning algorithm 
proposed by Moghaddam and Pentland (1997) is 
used for face detection. The system was imple-
mented on the Texas Instruments TMS320C6416 
fixed point DSP operating at 500 MHz. 

On the other hand, the system implemented 
by Wei and Bigdeli (2004) is made up of three 
stages: image normalization, face detection, and 
face recognition. Where face detection is per-
formed using the algorithm proposed by Rowley, 
et al. (1998). The system was implemented on 
the Analog Devices ADSP-BF535 EZ-KIT Lite 
development board containing a 16-bit fixed point 
DSP operating at 300MHz.

Similar optimization techniques were em-
ployed by both systems, including converting 
floating point operations to fixed point, write time-
consuming functions in assembly, use available 
parallelism in the DSPs, and use look-up tables in 
place of complex arithmetic operations. Unfortu-
nately, both implementations still require over a 
second to process an image where face detection 
consumes the majority of the processing time.

Future Directions

Field programmable gate array technology has 
gained considerable attention over the last de-
cade as an established platform for embedded 
systems. With the improvement of design tools, 
it is a platform that supports easy integration of 
both hardware and software solutions, allowing 
their advantages to be easily exploited. Software 
support takes the form of embedded processors, 
which provides flexibility, while hardware sup-
port is in the form of custom instructions, custom 
peripherals, or coprocessors allowing parallel and 
fast execution. The advantage of this design para-
digm is that existing high-level software solutions 
can be easily ported onto an embedded system, 
and unlike GPPs or DSPs, hardware support is 
readily available. Also, this form of hardware-
software partitioning provides an easy means 
of continual design refinement directed toward 
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evolving system specifications and performance 
improvements.

As most existing AFR algorithms inherently 
make use of complex operations and are generally 
not parallel, pure hardware- or software-based 
implementations are not the most ideal solutions. 
Our proposed method will use an embedded soft-
core processor integrated with custom processor 
instructions to aid with complex operations relat-
ing to the face detection algorithm. 

Optimization Using custom
Instructions

Configurable custom processors are becoming 
an ever more popular implementation technology 
of choice for addressing the demands of complex 
embedded applications. Unlike traditional hard-
wired processors that consist of a fixed instruc-
tion set from which application code is mapped, 
configurable processors can be augmented with 
application-specific instructions, implemented 
as hardware logic to optimize bottlenecks. This 
lends toward a method for hardware-software 
partitioning whereby the efficiency of hardware 
and the flexibility of software are integrated.

There is a number of benefits in extending a 
configurable processor with custom instructions. 
First, transparency: the added custom instruc-
tions will improve the performance of the tasks 
for which they are designed with minor changes 
to the original code. Second, rapid development 
and short time-to-market: there is a wide variety 
of off-the-shelf configurable cores that could 
be used as a base for development. Additional 
instructions could be integrated into the proces-
sor core as the need to extend its computational 
capabilities arises. Finally, low-cost access to 
domain specific processors: generally, the funda-
mental characteristics of an application area are 
similar. These characteristics can be summarized 
as a set of instructions and applied to a variety 
of similar applications; for example, multimedia 
applications (Bigdeli, Biglari-Abhari, Leung & 
Wang, 2004).

Unfortunately, there are two minor drawbacks 
to using custom instructions. For one, additional 
hardware is required, as such a bank of resources 
needs to be set aside specifically for custom in-
structions. This is becoming less of an issue as 
embedded technologies become more economical. 
Second, as the custom instructions are directly 
integrated into the processor’s pipeline, the maxi-
mum operating frequency may be degraded if the 
instruction is poorly designed.

Augmenting configurable processor cores 
with custom instructions is a proven optimization 
technique that has been applied to a wide and 
varied range of embedded applications. Some 
published examples include encryption (Gro-
szschaedl, Kumar & Paar, 2004; Juliato, Araujo, 
Lopez & Dahab, 2005; Tai-Chi, Zeien, Roach & 
Robinson, 2006), audio encoding (Bower, 2004), 
embedded real-time operating systems (RTOS) 
(Oliver, Mohammed, Krishna & Maskell, 2004), 
biometrics (Aarajt, Ravit, Raghunathant & Jhat, 
2006; Gupta, Ravit, Raghunathan & Jha, 2005), 
and multimedia (Tsutsui, Masuzaki, Izumi, Onoye 
& Nakamura, 2002).

custom Instruction Design Flow

The design flow for identifying and integrating 
custom instructions into configurable processors 
is summarized in Figure 14. This is a generic 
framework that could be applied to any applica-
tion. First, the software code is profiled to reveal 
bottlenecks that could be alleviated with the in-
troduction of custom instructions. Obviously, the 
operation, which has the most significant impact 
on the overall performance, is optimized first. 

There are two approaches to designing the new 
custom instructions. One method is to reuse IP 
cores already available in the development suite 
or third-party libraries, which will further shorten 
development time. Alternatively, the instructions 
are designed from scratch. This generally requires 
greater engineering effort, but the designer has 
better control over design decisions.
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possible. Furthermore, in real-world applications, 
lighting condition is not usually desirable. In order 
to achieve real-time performance, a combination 
of optimization techniques that are low resolution 
images, fixed-point arithmetic, conversion of key 
functions to low-level codes, and most importantly 
through custom instruction, are applied to improve 
the overall system speed and performance.

cONcLUsION AND FUtUrE WOrK

In this chapter, we described the face recognition 
algorithm adaptive principal component analysis 
(APCA) and rotated adaptive principal component 
analysis (RAPCA), which are insensitive to illumi-
nation and expression variations. We then extend 
our previous work to multiview face recognition 
by interpreting facial features and synthesizing 
realistic frontal face images when given a single 
novel face image. The experimental results show 
that after frontal pose synthesis, the recognition 
rate increases significantly, especially for larger 
rotation angles.

Furthermore, we examined how an automated 
face recognition system can be implemented on 
embedded systems. We also explored various 
design approaches. We currently have two 
prototype systems for the real-time automated 
face recognition. The first prototype was entirely 
implemented on an Analog Devices Blackfin 
DSP processor capable of verifying a face from 
a database of 16 faces under a second. This was 
done as a replacement for PIN identification on a 
NOKIA mobile phone. The second prototype was 
developed using a hardware-software approach on 
a NIOS II processor with extended instructions. 
The NIOS II processor was configured on an 
Altera FPGA.

In our continuing work, we will extend the 
work described in this chapter to pose angle change 
larger than 25º. We also will use the face models 
and correlation models developed in this chapter 
to synthesize virtual views under different lighting 

Application Software
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Figure 14. Custom instructions design flow

Once the hardware module for the instruc-
tion is implemented and tested, it is added to the 
processor, and the whole system is regenerated. 
Then the software code is updated to make use 
of the new instructions. Finally, the functionality 
of the system is verified to ensure bugs are not 
introduced with the new instruction. This process 
is repeated until either the performance require-
ments or resource limits are met.

Design considerations

As discussed in previous sections, in practice, 
most cameras such as those used in CCTV are 
positioned so that capturing frontal image is not 
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conditions, facial expressions, and poses when 
given a frontal face image. These synthesized 
virtual images can be used as training samples 
for face recognition algorithm, like support vector 
machine (SVM) or neural network. Thus, we 
can form a face recognition system using dual 
algorithms: one is adaptive principal component 
analysis, and the other is SVM- or neural network-
based algorithm, which would enhance the system 
performance.
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AbstrAct

Complex multiobject interactions result in occlusion sequences, which are a visual signature for the 
event. In this work, multiobject interactions are tracked using a set of qualitative occlusion primitives 
derived on the basis of the persistence hypothesis: objects continue to exist even when hidden from view. 
Variable length temporal sequences of occlusion primitives are shown to be well correlated with many 
classes of semantically significant events. In surveillance applications, determining occlusion primi-
tives is based on foreground blob tracking and requires no prior knowledge of the domain or camera 
calibration. New foreground blobs are identified as putative objects that may undergo occlusions, split 
into multiple objects, merge back again, and so forth. Significant activities are identified through tem-
poral sequence mining; these bear high correlation with semantic categories (e.g., disembarking from 
a vehicle involves a series of splits). Thus, semantically significant event categories can be recognized 
without assuming camera calibration or any environment/object/action model priors.
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INtrODUctION

Unsupervised activity discovery remains one of 
the more challenging areas in computer vision. 
Key problems involve the identification of object 
and action features, and temporal data mining 
for abstracting the activity from the data. This 
chapter presents a set of occlusion features that 
are tracked over time to yield a surprisingly rich 
inventory of actions involving interactions among 
multiple objects. 

Object interactions in 3D space often leave 
their imprint in image space in terms of occlu-
sions. Instead of treating occlusions as a problem, 
we show that temporal sequences of occlusion 
phenomena constitute a qualitative signature 
for large classes of events. In particular, events 
involving actual contact (e.g., push, embark, hit) 
necessarily involve overlap in image space for 
part of the event history. However, many classes 
of noncontact situations also result in occlusions, 
and the sequence of such occlusions can (depend-
ing on viewpoint) lead to characterization of 
specific events (e.g., overtaking, crossing). We 
claim that occlusions among objects constitute 
an inexpensive and cognitively important cue to 
reasoning about interactions in space.

Here we explore the limits of what can be 
learned based on occlusion phenomena. The 
primary advantage of such an approach is that 

unlike quantitative approaches using supervised 
priors for object behavior recognition (Gavrilla, 
2005; Haritaoglu, Harwood & Davis, 2000; Zhao 
& Nevatia, 2004), occlusion signatures do not 
require any priors for either objects or events. 
From a cognitive perspective, categorizing events 
by combining occlusion with other low-level 
features such as trajectory and segmentation 
may constitute a key part of the process leading 
to formation of image schema (Mandler, 1992). 
Working together with preattentive cues such 
as image flow and motion, temporal learning in 
sequences of occlusion phenomena may constitute 
a prelinguistic model for concept formation for 
both activities and objects. These links to cognitive 
processes also reflect computational efficiencies 
to be gained by focusing attention and avoiding 
more expensive 3D computations as called for in 
Granlund (2003).

In order to discover events from sequences of 
occlusion states, we mine variable-length temporal 
sequences of occlusion primitives and learn sig-
natures for a wide class of actions. For example, 
a group of people hugging each other; a person 
coming on a bicycle, getting off, and going into a 
building; a crowd of people embarking a tempo; a 
person boarding and riding a cycle (Figure 1) are 
all events that have stable signatures in terms of 
occlusion primitives or O-primitives. The feature 

Figure 1. Person boarding and riding a cycle: (a) Cycle static and person moving—both are isolated 
from each other; (b) person and cycle are in contact—both are static; (c) person and cycle are in 
contact—both are moving

   
(a) (b) (c) 
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set for sequence mining constitutes the O-primi-
tives together with quantified motion features.

Occlusion mining is especially relevant for 
activities where object trajectories result in oc-
clusion at least for part of its scene presence. Such 
activities may include: 

• Objects interacting without contact (e.g., 
two cars crossing each other)

• Limited contact situations (e.g., two persons 
shaking hands)

• Objects completely enclosed within other 
objects (e.g., people entering a bus)

• Objects emerging from other objects (e.g., 
disembarking a vehicle)

Occlusion signatures constitute an extremely 
general feature set; clearly finer discrimination 
calls for more object specific features (e.g., in 
distinguishing actions such as hugging from 
handshaking).

Once events are discovered from sequence 
mining, an important discovery constitutes the 
number of objects involved in the activity. These 
are relevant in conceptual and linguistic models 
for the action. Single object actions correspond 
to intransitive verbs in language, while multiple 
object interactions corresponding to transitive 
verbs. These are distinguished by the number of 
objects whose features participate in the event 
discovery process. Single object actions like 
“turning left onto the road” are based on a mo-
nadic set of features (based on an object’s motion 
vectors), while multiple object interactions mostly 
involve some degree of occlusion in actions such 
as overtake, embark, and so forth.

FOrEGrOUND EXtrActION

Objects are identified as foreground regions based 
on one of two kinds of evidence: first, as regions 
of change with respect to a learned background 
model; and second, as regions exhibiting motion. 

Learning the background model in the presence of 
objects is a challenging problem in itself. Several 
approaches have been proposed to incrementally 
learn the background scene model in the pres-
ence of objects. The most commonly adopted 
algorithms include the computation of median 
(Haritaoglu et al., 2000) or fitting (temporally 
evolving) Gaussian mixture models (Stauffer & 
Grimson, 1999; Zivkovic, 2004) on the temporal 
pixel color histogram of the image sequence. 
These approaches continuously learn the multi-
modal mixture models with the assumption that 
the moving objects appear at a certain pixel only 
temporarily and the true background remains ac-
cessible to the system more frequently leading to 
higher weight of the corresponding mode. How-
ever, such an approach is prone to transient errors 
persisting over a number of frames (depending on 
the learning rate), resulting in two types of errors. 
First, if objects learned as part of the background 
suddenly start moving, ghosts (uncovered back-
ground regions classified as foreground) appear 
in the foreground segmentation. Second, when 
a moving object comes to stasis, it is eventually 
learned as a part of the background, which may 
not be desirable in itself, and also in the transi-
tion period, objects interacting with it would not 
be identified. Both these problems are averted in 
the present approach by combining background 
model and motion evidence, and updating based 
on tracking/previous motion-history feedback.

Generally, the background model Bt at the tth 
instant is selectively updated based on the clas-
sification results of the tth frame Ω t. Classification 
based on Bt-1 first results in a set of foreground 
pixels Fb(t) ⊆ Ω t. Next, an interframe motion 
estimation (Proesmans, Gool, Pauwels & Oster-
linck, 1994) is performed between Ωt and Ωt+1 
to delineate the set of moving foreground pixels 
Fm(t) ⊆ Ω t. This results in single-frame latency 
that helps us in identifying the regions that sud-
denly start moving or come to a stop.

Pixels identified as both foreground and mov-
ing are clearly identified as object pixels. Among 
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the mismatched pixels, moving pixels not identi-
fied as foreground are denoted as Fhole(t) = Fm(t) 
– Fb(t). On the other hand, the set of nonmoving 
pixels in Fb(t), is given by Fghost(t) = Fb(t) – Fm(t) 
and is identified as a possible background can-
didate. However, these nonmoving ghost pixels 
may contain actual object regions that have not 
shown up in the optical flow, or where an object 
has actually come to a stasis. Using information 
from the motion history and tracking (discussed 
in the next section), we delineate the set of object 
pixels that are known to have come to rest, F0(t) ⊆ 
Fghost(t). The set of object pixels that emerge from 
this analysis is defined as F(t) = ( Fb(t) – Fghost(t) ) 

 Fhole(t)  F0(t). Now, the complement of F(t) is 
used to update the background model to B(t). The 
set of detected foreground pixels F(t) is further 
subjected to shadow removal (based on the criteria 
of equality among subunity intensity modulations 
in the three color channels), neighborhood vot-
ing, followed by connected component analysis 
to obtain the set of disjoint foreground blobs Ft 
= { Fi(t) : i = 1,…nt }. These blobs constitute the 
basic units (putative objects) that are tracked over 
the entire sequence, and it is their participation in 
occlusion that results in O-primitive identification 
and eventually in the activity discovery.

  
(a)  (b) 

  
(c)  (d) 

Figure 2. Results of foreground detection. (a) The tempo in the leftmost bounding box starts moving, 
and the tempo to the right has already come to rest; Foreground extraction results (b) using only per 
pixel Gaussian mixture model with traditional exponential forgetting; (c) with motion detection only 
(Fm ) and (d) combining motion evidence with tracking feedback (Ft ).
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trAcKING MULtIPLE ObJEcts

Here we adopt the multiobject tracking algorithm 
proposed in Guha, Mukerjee, and Venkatesh 
(2005), which works by comparing the foreground 
blobs at time t, Fi(t) with the predictions based 
on their previous positions and shape. The same 
foreground (object) pixel being claimed by more 
than one object (foreground blob) is one of the 
primary indicators of occlusion.

We define several elementary occlusion be-
haviors according to the persistence hypothesis: 
Objects continue to exist even when hidden from 
view. The object-blob association is performed 
over an active set SA(t) containing objects tracked 
until the tth instant and also a set Slost(t-1) of objects 
that have disappeared within the viewing window. 
The system initializes itself with empty sets, and 
the objects are added (removed) as they (dis)appear 
in the field of view. The proposed approach is a 
two-stage process. Initially, the objects in SA(t-1) 
are localized in the current frame Ωt. This is 
followed by the identification of O-primitives 
by the process of object-blob association with 
selective updates of object features. This process 
is detailed next.

Object representation and
Localization

All moving objects are considered as objects, are 
detected based on extracted foreground blobs, 
and are initialized with features computed from 
the blobs. Objects maintain their identity as they 
are successfully tracked across frames, and even 
when they are reidentified upon reappearance. The 
jth object Aj(t) is characterized by its supporting 
region (the set of pixels it occupies, aj(t) ), color 
(weighted color distribution hj(t) ), and motion 
(position history of minimum bounding rectangle 
of aj(t), as its previous τ centers Cj(t) ).

The pixel set aj(t) and weighted color distribu-
tion hj(t) are initially learned from the foreground 
blob extracted at the first appearance of the object 

and are then updated throughout the sequence 
whenever it is in isolation. The color distribution 
hj(t) is computed from the b-bin color histogram 
of the region aj(t) (in Ωt) weighted by the Epanech-
nikov kernel (Comaniciu, Ramesh & Meyer, 2003) 
supported over the minimum bounding ellipse of 
aj(t) (centered at Cj(t) ) and is given by:
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where CE is the normalizing constant computed 
from the Epanechnikov kernel KE and the func-
tion Bf maps the pixel location X ≡ (x,y) to its 
corresponding color bin derived from the pixel 
Ωt(x,y).

The objects in the tth frame are localized by 
their trajectory information and color distribu-
tion obtained until the (t-1)th instant. An estimate 
C(0)

j(t) is obtained by extrapolating from the trajec-
tory {Cj(t-1),...Cj(t-τ)}. The mean-shift iterations 
(Comaniciu et al., 2003), initialized at an elliptic 
region centered at C(0)

j(t) further localize the 
object region at aj(t) ∈ Ωt.

Identifying Occlusion Primitives

The extent of association between a predicted ob-
ject region aj(t) for an object in SA(t-1) = { Aj(t-1) : 
j = 1,…mt-1 } and the foreground blob Fi(t) ∈ F(t) is 
estimated by constructing a thresholded localiza-
tion confidence matrix ΘAF(t) and the attribution 
confidence matrix ΨFA(t). These confidences are 
computed by a fractional overlap measure:

1 2
1 2

1
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∩

=

signifying the fraction of the region 1 overlapped 
with 2.
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where the thresholds A and F signify the 
extent of allowable localization and attribution 
confidences. The number of foreground regions 
attributed to the jth object can be computed as 
either,
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Similarly, objects localized in Fi(t) can also be 
obtained as,
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A discussion on using these measures for 
identifying the occlusion cases can be found in 
Guha, et al. (2005).

The jth object in SA(t-1) is isolated or unoc-
cluded O(I)[j,t], if the localization confidence is 
significantly high and the associated foreground 
blob is not overlapped with other objects. How-
ever, when the object disappears (O(D)[j,t]) both 
localization and attribution confidences fall below 

A and F signifying very poor or no association 
of the object to any foreground blob. In case of 
partial occlusions (O(P)[j,t]), the attribution 

Figure 3. Cases of occlusions: (a) isolation: object unoccluded by other objects or parts of background; 
in this state, both visual characteristics and motion history of the object is updated; (b) crowding: 
multiple objects merge into a single blob; (c) partial occlusion: object occluded by tree is visible as 
three fragmented blobs; in the states (b) and (c), the object is recognized, and only motion history is 
updated; (d) disappear: object is not associated to a foreground blob due to either complete occlusion 
by a static object learned as the part of the background (here a tree) or tracking failure

  
(a) (b) 

  
(c) (d) 
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confidence of one or more foreground blobs to the 
jth object remains high, although the localization 
confidence falls significantly. On the other hand, 
while in a crowd (O(C)[j,t]), the localization 
confidence of the jth object in the crowded blob 
(overlapped with more than one object) remains 
high, although the attribution confidence of that 
blob to the object remains low. Thus, the four 
Boolean predicates for these occlusion primitives 
can be constructed as follows in Box 1.

To construct the current active set SA(t), up-
dates are applied to all color, shape, and trajectory 
of individual objects under O(I), but only to the 
trajectory of objects under O(P) and O(C). Objects 
under O(D) are moved from SA(t) to Slost(t). This 
enables the system to remain updated with object 
features while keeping track of them.

The entry/reappearance of an object is at-
tributed to the existence of a foreground blob 
Fi(t) in the scene having no association with 
any object from SA(t-1) and is thus detected as 

( ) ( ) [ ]( ) [ ]( )0 0
i F F

O N t i t i t   = Θ = ∧ =      
The features of the new blob Fi(t) are matched 
against those in Slost(t-1) to search for the reappear-
ance of objects. If a match is found, the object is 
moved from Slost(t-1) to SA(t) and a reappearance 
is noted. Otherwise, a new object is added to SA(t), 
and the system detects an entrance. Similarly, an 
object is declared to exit the scene if its motion-
predicted region lies outside the image region and 
is thus removed from the active set.

ActIVItY DIscOVErY

Activities can be broadly classified into two 
categories:

• Single-object actions or events with a single 
participant, the object. Such actions have no 
object on which the action is being performed 
and correspond in natural language syntax 
to the intransitive verb category (e.g., “John 
runs”).

• Object-object interactions or events with 
two or more participants, the object, as well 
as an object on which the action is taking 
place (e.g., “John rides a bike”), which cor-
responds to the transitive verb category in 
syntax.

Models of single-object behaviors are charac-
terized by the object and some characterization 
of the temporal character of the action (e.g., the 
class of trajectories the object may take, the path 
taken by a vehicle in a traffic scenario, or the 
pose sequence exhibited by a dancer). Activities 
in this class include “Cars drive toward the left,” 
“the motorcycle joins the road,” “the man hides 
behind the tree,” and so forth.

Object-object interactions exhibit several 
different modes. The actions may involve actual 
contact (e.g., riding a bike, boarding or disem-
barking a vehicle, grouping, etc.), or they may 
involve interactions at a distance (e.g., follow-
ing, chasing, overtaking, etc.). In terms of image 
space, actual contacts are necessarily reflected in 
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Box 1.
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O-primitive structures, but noncontact situations 
in the 3D world are not necessarily characterized 
by nonoverlap in the image space. More so, the 
interacting objects may be either homogeneous 
(e.g., “car 1 overtaking car 2”) or heterogeneous 
(e.g., “man entering the tempo”). 

Both single-object actions and object-object 
interactions can be expressed as temporal se-
quences of object states (actions) or co-occurring 
states of interacting objects. Thus, the domain 
of activity analysis demands efficient statistical 
sequence modeling techniques for recognizing 
significant temporal patterns from the time-series 
data of action/interaction features. A number of 
methodologies employing hidden Markov models, 
time-delay neural networks, recurrent networks, 
and so forth, have been proposed for modeling 
and recognition of action/interaction sequences 
in a supervised learning framework. On the other 
hand, unsupervised learning of activity patterns 
have also been proposed by trajectory clustering 
(Johnson & Hogg, 1995) or variable length Markov 
model learning (Galata, Johnson & Hogg, 2001). 
A good overview of such techniques can be found 
in Buxton (2003). 

Supervised activity modeling techniques are 
mostly task oriented and hence fail to capture 
the corpus of events from the time-series data 
provided to the system. Unsupervised data mining 
algorithms, on the other hand, discover the modes 
of spatio-temporal patterns, thereby leading to 
the identification of a larger class of events. The 
use of VLMM in the domain of activity analysis 
was introduced for automatic modeling of the 
actions in exercise sequences (Johnson, Galata 
& Hogg, 1998) and interactions like handshak-
ing (Galata et al., 2001) or overtaking of vehicles 
(Galata, Cohn, Magee & Hogg, 2002) in a traffic 
scenario. These approaches propose to perform 
a vector quantization over the object feature and 
trajectory space to generate temporally indexed 
object-state sequences from video data. These 
sequences are parsed further to learn VLMMs 

leading to the discovery of behavioral models of 
varying temporal durations.

Motion (pose) primitives derived from object 
(state) trajectories are a necessary set of activity 
descriptors but are not sufficient, as they lack 
the power to describe the interactions involving 
object-region contacts in the image space. We thus 
augment the activity feature space with the set of 
occlusion primitives that form a more fundamental 
notion of interaction signatures. More so, we rec-
ognize that the occlusion state transition sequence 
forms a more significant interaction description 
than the occlusion state sequences. In this work, 
we aim to discover the interactions arising out of 
objects moving in complex environments and un-
dergoing both static and dynamic occlusions with 
parts of background and other moving objects, 
respectively. In the following subsections, we 
discuss the methodologies adopted for sequence 
modeling and event primitive representations for 
interaction modeling.

Incremental transition sequence 
Learning

Activities of a single object and interactions 
among multiple objects are captured as sequences 
of occlusion primitives, together with object mo-
tion data. The combined atomic event primitive ε 
constitutes the set E. Our approach to mining in 
this space involves the construction of an activity 
tree Tα whose branches represent variable length 
event sequences. 

An empty (first in, first out) buffer βj (of length 
L, the maximum sequence length) and the null 
activity tree Tα(j) (containing only the root node 
ρj) are initialized at the very first appearance of 
every jth object Aj. Each node of Tα(j) is a two tuple 
Tn ≡ ( ε , π ) containing the primitive ε ∈ E and a 
real number π ∈ (0,1] signifying the probability 
of occurrence of the path { ρj,…, Tn } among the 
set of all possible paths of the same length.

Let ε(j,t) be the event primitive observed for Aj 
at time t. If there is a transition in this event primi-
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tive (i.e., if ε(j,t) ≠ ε(j,t-1)), then ε(j,t) is pushed to 
βj. Let the set of l-length paths (originating from 
ρj) of Tα(j,t) be B(l)(j,t) = { αu

(l)(j,t): u = 1,… bl 
}, where bl is the number of l-length branches in 
the tree. More so, if the sequence βj[l-k](t) ( k = 
1,…l ) signifies the bth path of B(l)(j,t), then the 
probabilities π(l)(j,t) ( u = 1,… bl ) of the nodes 
of Tα(j,t) at the lth depth are updated as:

( )( ) ( )( ) ( )( ) ( ) ( ), 1 , 1
l l

l l
j t t j t t u b

u u
= - - + -

      (9)

where, ( )l t  is the rate of learning l-length se-
quences at the tth instant, and ( )⋅  is the Kronecker 
delta function. In the current implementation, 
a fixed learning rate η is employed such that 

1( ) max( , ),l t t l-= ∀ . 
Occurrence of a new event primitive results in 

the formation of newer variable length sequences 
in the buffer. Thus, new nodes signifying this event 
primitive are added at various levels of the tree, 

thereby growing newer branches. Each new node 
is initialized with an initial probability of ( )l t , 
whereas the older node probabilities in the same 
levels are penalized by multiplying with a factor 
of (1.0 - ( )l t  ). This ensures the self-normalizing 
nature of node probability updates (as in equation 
9 such that they add up to 1.0 at each depth.

Unsupervised Interaction Learning

We construct event primitives for objects by 
combining their occlusion states and motion 
primitives. The occlusion states of isolation (O(I)), 
partial occlusion (O(P)), crowding (O(C)), disap-
pearance (O(D)), exit (O(X)), entry (O(E)), and 
entrance of new object in neighborhood (O(N)) 
unite to form a seven-bit occlusion-driven inter-
action descriptor. The direction of motion of the 
object is quantized to assign one of the eight mo-
tion primitives M1 to M8 signifying the compass 
directions of east, northeast, to southeast (going 
counterclockwise), respectively. Besides, a motion 

Figure 4. Event primitive descriptors: monadic action model: One of the seven occlusion primitives 
and the motion primitive are combined to obtain the single-object atomic event descriptor; dyadic 
interaction model: Attentive focus (query object) is A; object B, if within the attention window of A, 
is considered to interact with A. The two co-occurring occlusion and motion primitives of A and B 
constitute the atomic interaction descriptor; temporally ordered sequences of these descriptors are 
parsed to discover meaningful activity.
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Figure 5. Example video sequence: man walks from left to right behind a tree; frames and object states: 
(a) 1-5: isolated; (b) 6: partially occluded; (c) 7-8: disappeared; (d) 9: partially occluded; (e) 10-18: 
isolated; (f) learning the Activity Tree; the left-most nodes are just below the root of the growing tree; 
results of incremental transition sequence learning are shown after frames 1, 6, 7, 9, and 18. Branches 
encode different variable length event sequences along with relative frequencies; thus, in column 2 (after 
Frame 9), the sequence { (I→P→D) , 0.89 } corresponds to the event primitive sequence (O(I),M1)→
(O(P),M1)→(O(D),M0) (i.e., the event sequence “coming from the left and getting hidden” occurs with 
relative frequency, 89% among observed three-length sequences.

   
(a) (b) (c) 

  
(d) (e) 

 
(f) 
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primitive M0 is used to signify the state of stasis of 
the object. The final event descriptor for a single 
object is formed by concatenating the occlusion 
and motion primitives, as shown in Figure 4.

Consider a short video sequence where a per-
son walks behind a tree from left to right in the 
image space from which we sample 18 frames to 
illustrate the process of object-background inter-
action discovery. Incremental transition sequence 
learning is performed with a maximum depth of 
L = 10 and a learning rate inversely proportional 
to the frame number. Key frames from this se-
quence along with the growth of the activity tree 
are shown in Figure 5.

Semantic labels can be assigned to the se-
quences in the occlusion-primitive space to 
denote different activities, and subsequences 
may constitute subactivities. For example, con-
sider the longest path (O(I),M1) → (O(P),M1) → 

(O(D),M0) → (O(P),M1) → (O(I),M1) learned in 
the activity tree from the video that corresponds 
to the activity of walking across a tree from left 
to right. Subsequences of this path (i.e., 

(O(I),M1) → (O(P),M1) → (O(D),M0) and 
(O(D),M0) → (O(P),M1) → (O(I),M1)) also cor-
respond to the visually significant events of going 
to hide from left to right and reappearing and 
moving to the right.

We consider the object B to be interacting with 
A if the center of the minimum bounding box of 
the former lies within an attention window of the 
latter (Galata et al., 2002). The interaction primi-
tives are formed by combining the co-occurring 
occlusion and motion states of the two interacting 
objects (Figure 5). Figure 6 shows the results of 
discovering the interaction sequences of overtak-
ing and crossing from a traffic video. 

Figure 6. Overtaking sequence: (a)-(c) A man on bike (Object A) overtaking another man on bike 
(Object B) generating a sequence (OA(I), M4 , OB(I), M4) → (OA(C) , M4 , OB(C) , M4 )→ ( OA(I), M4, 
OB(I), M4 ). Crossing sequence: (d)-(f) an SUV (Object A) crossing a rickshaw (Object B) generating a 
sequence (OA(I), M4, OB(I), M8)→ (OA(C), M4, OB(C), M8)→ (OA(I), M4, OB(I), M8)

   
(a) (b) (c) 

   
(d) (e) (f) 
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rEsULts

Experiments are performed on a traffic surveil-
lance video of 5,000 frames consisting of a wide 
variety of vehicles like bikes, rickshaw, cars, 
heavy vehicles, and so forth, along with men and 
animals. The background modeling is performed 
by learning a pixelwise mixture of Gaussians 
over the RGB color space with a learning rate of 
α = 0.01 and a diagonal covariance matrix Σinit 
= {4.0}. The foreground extraction is performed 
with interframe motion information and selective 
model update with higher layer object position 
feedback. Comparative results of foreground 
extraction are shown in Figure 2. 

Multiple objects in the traffic video are tracked 
with O-primitive identification. The tracking 
performance of the jth object at the tth instant 
is evaluated by the fraction of the ground-truth 
region of the same (Gj(t) ) overlapped with the 
region aj(t), localized by the proposed algorithm, 
and is thus given by the quantity γ( Gj(t) , aj(t) ). 
Hence, if there are mg(t) (number of) objects 
present in the ground-truth marked images at the 
tth instant, then the overall performance P for a 
video of T frames is given by 

( ) ( ) ( )( )
( )

1 1

1 1 ,
gm tT

i j
t jg

p G t a t
T m t= =

= ∑ ∑  (10)

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 7. (a)-(i) Results of tracking multiple objects in the traffic surveillance video.
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This measure of overall performance P sig-
nifies the average fraction of the actual object 
regions (or ground-truth regions) localized by the 
tracking algorithm in a certain video sequence. 
The overall performance varies as the thresholds 

A and F are changed. It is evident from equa-
tions 3 and 4 that as the thresholds A and F are 
increased, the detection rates of correspondences 
between predicted object regions and foreground 
blobs decrease, and thus, the rate of track loss 
increases. On the other hand, too low values of 
these thresholds would increase the number of 
false detections of the O-primitives. Thus, to 
achieve optimal performances, we have chosen A

= F = 0.6, and an overall tracking performance 
of approximately 68% is observed. The results 
of tracking in the traffic surveillance video are 
shown in Figure 7.

The results of multiobject tracking are logged 
into a database, where each object is stored with 
its various appearances (learned only when iso-
lated), image space trajectory, and occlusion state 
sequence for its scene presence in the surveillance 
video. These constitute the surveillance logs from 
which object information can be retrieved with 
simple SQL queries. We assume the availability 
of object recognition modules that can categorize 
the objects based on their appearance features. 

The activities are learned with a maxi-
mum depth of L = 10 and a learning rate of 

1( ) max( ,0.01)t t-=  at the tth instant. Activities 
are discovered for a particular query object by 
mining its monadic and dyadic occlusion and 
motion primitive sequences. We have empirically 
chosen an attention window of size 1.5 times 
the minimum bounding box of the object for all 

Figure 8. Results of activity discovery: (a-c) Disembarking from vehicle (blue bounding box): (a) tempo 
comes to stop (frame 1440); (b) fragmentation due to people disembarking (frame 1610); (c) new 
objects (people) formed in neighborhood of tempo (frame 1622); (d-f) boarding on vehicle (green 
bounding box); (d) people approaching tempo (static), entering its attention horizon (frame 1900); 
(e) people crowded with tempo (frame 2070); (f) people disappear, tempo moving and is still tracked 
(frame 2330)

   
(a) (b) (c) 

   
(d) (e) (f) 
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our experiments. In addition to overtaking and 
crossing, we have discovered the activities of 
disembarking from and boarding vehicles in the 
traffic video. The results of these interactions are 
shown in Figure 8.

cONcLUsION

This chapter demonstrates the extent to which 
unsupervised activity discovery is possible by 
merely constructing sequences of occlusion events 
along with the image plane motion. Temporal 
sequences of O-primitives are posited as a power-
ful tool for identifying multiobject interactions. 
The computation of occlusion is made possible 
by robust foreground extraction (even in the pres-
ence of gross occlusion) that enable us to track 
an object across lengthy image sequences, the 
occlusion patterns during which are a surprisingly 
rich indicator of the activity involved.

The generality of occlusion as a phenomenon 
that pervades all types of object interactions 
clearly makes it an important area of study. To 
our knowledge, this is the first work to focus on 
this domain. Perhaps owing to the same reason, 
the child learner also quickly becomes sensitive 
to the presence of objects that are occluded from 
sight, and occlusion is perhaps the key perceptual 
indicator for fundamental spatial notions such 
as containment and contact. In addition, image-
plane motions are indicative of other perceptually 
salient features such as path, source, goal, and 
so forth.

In future work, we plan to explore other low-
level tools available for activity recognition. With 
qualitative information on camera calibration, 
one can add detailed spatial characterizations for 
the motions translate left / right / toward / away, 
rotate, speed-up, halt, and so forth, which can by 
themselves be informative for many actions.

Event predicates are characterized by the 
type of activity (modeled as a fine-grained image 
schema), the ordered set of objects participating in 

it, as well as optional characteristics such as time, 
place, manner, and so forth. These arguments also 
emerge from the work as the dimensions in the 
feature space where the events are discovered. 

In this work, we have classified objects only 
by their shape and motion characteristics, but 
possibly a more important characterization is in 
terms of actions in which an object participates 
(e.g., what objects participate in embark/disem-
bark events?). This leads to a chicken-and-egg 
problem: one needs objects to recognize events, 
and actions to characterize objects. This will 
remain an important area for object discovery 
for many years to come. 

Based on these low-level categories, one can 
build up to higher-level constructs based on several 
sources of additional information: 

• Multimodal Learning. Given cotempora-
neous linguistic descriptions and given the 
event and object characterization already at 
hand, it would be a simple enough matter 
to build grounded models of the head verb 
and its noun subcategories. 

• Camera Calibration/Ground-Plane As-
sumption. By using camera calibration data 
and making ground-plane assumptions for 
the objects in a given domain, considerable 
detail can be added to the event character-
izations. 

• Shape and Scene Priors. While supervised 
object and event characterization may be 
extremely useful, we would like to avoid this 
for some time since it limits the scalability 
of the approach. 

In addition to these aspects, it would be im-
portant to extend the work to more general situa-
tions (e.g., cameras that can move) (initially with 
pan-tilt motions) and for dynamic backgrounds 
(e.g., trees, fountains). 
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AbstrAct

Human detection is the first step for a number of applications such as smart video surveillance, driving 
assistance systems, and intelligent digital content management. It’s a challenging problem due to the 
variance of illumination, color, scale, pose, and so forth. This chapter reviews various aspects of human 
detection in static images and focuses on learning-based methods that build classifiers using training 
samples. There are usually three modules for these methods: feature extraction, classifier design, and 
merge of overlapping detections. The chapter reviews most existing methods for each module and 
analyzes their respective pros and cons. The contribution includes two aspects: first, the performance 
of existing feature sets on human detection are compared; second, a fast human detection system based 
on histogram of oriented gradients features and cascaded AdaBoost classifier is proposed. This chapter 
should be useful for both algorithm researchers and system designers in the computer vision and pattern 
recognition community. 

INtrODUctION

Human detection is the first step for a number of 
applications such as smart video surveillance, 
driving assistance system, and intelligent digital 
content management. Surveillance cameras 
are already prevalent in a lot of areas such as 

banks, department stores, airports, and parking 
lots. The aim of smart video surveillance is to 
analyze the video data real-time and alert se-
curity officers when predefined events such as 
burglary happen. Human detection, tracking, 
and activity recognition are key techniques for 
the application. Pedestrian safety has become a 
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worldwide problem with the popularity of vehicles. 
Accurately detecting pedestrians using a camera 
and warning the drivers before a crash happens 
will greatly increase the safety of pedestrians. 
With the popularity of digital cameras, personal 
photos have increased exponentially. Manually 
searching and locating these photos are very 
tedious. Intelligent digital content management 
software that automatically adds tags to images 
to facilitate search is thus an important research 
area. Most of the images taken are of human, so 
human detection will form an integral part of 
such tools.

Human detection is a challenging problem 
due to a lot of factors (Dalal, 2006). First, the 
within-class variations are very large. A robust 
human detector must deal with the change of 
viewpoint, pose, clothing, illumination, and so 
forth. Second, background clutter is common and 
varies from image to image. The detector must be 
capable of distinguishing the object from complex 
background regions. Third, partial occlusions 
create further difficulties because only part of 
the object is visible for processing. The first two 
difficulties present conflicting challenges, which 
must be tackled simultaneously. A detector that is 
very specific to one type of human instance will 
give less false detections on background regions, 
while an overly general detector can handle large 
intraclass variations but will generate a lot of false 
detections on background regions. 

Given a single image, an ideal human detector 
should be able to identify and locate all the present 
humans regardless of their position, scale, or pose. 
However, because of the articulations of the human 
body, it will be a very difficult problem to detect 
humans of all poses and viewpoints; most existing 
systems only deal with stand-up humans and use 
learning-based methods. Within learning-based 
methods, the processing is done as follows: an 
input image is scanned at all possible locations 
and scales by a subwindow. Human detection is 
posed as classifying the pattern in the subwindow 
as either human or nonhuman. The human/

nonhuman classifier is learned from training 
examples using a machine learning technique. A 
human detector usually includes three modules: 
feature extraction, classification, and fusion of 
multiple detections. The feature extraction module 
needs to extract the most relevant features for 
classification; the classifier classifies the feature 
vector into human or nonhuman. When scanning 
the image using a human classifier, there will be 
many positive responses around the object. How 
to merge these responses to achieve the final 
position is also an important topic. 

The rest of this chapter is organized as follows: 
section 2 reviews previous work on human 
detection; sections 3 through 5 introduce various 
methods for feature extraction, classifier design, 
and merge of overlapping detections; section 6 
proposes the human detection system based on 
histogram of oriented gradients (HOG) features 
and cascaded AdaBoost classifier; section 7 
compares the performance of various features 
and classifiers. Finally, section 8 presents some 
issues for further research. 

bAcKGrOUND

Previous methods on human detection differ in 
three perspectives: first, they may use different 
features such as edge features, Haar-like fea-
tures, and gradient orientation features; second, 
they may use different classifiers such as neutral 
network (NN), support vector machine (SVM), 
and cascaded AdaBoost; third, they may treat the 
image region as a whole or detect each part first 
and then combine them by these parts’ geometric 
configurations. In this chapter, these methods 
are classified into three categories based on the 
features they use.

Edge features have been used in earlier works. 
Gavrila and Philomin (1999) use edge template as 
the feature and compare edge images to a template 
dataset using the chamfer distance. This method 
has been experimented on with a DaimlerChrysler 
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vehicle (Gavrila, Giebel & Munder, 2004). Broggi, 
Bertozzi, Fascioli, and Sechi (2000) built a tem-
plate of head and shoulder for pedestrian detection. 
Edge feature is affected by background clutter 
greatly and is not very robust.

Haar-like features have been used successfully 
in face detection and also adopted by a lot of 
researchers for human detection. Oren, Papageor-
giou, Sinha, Osuna, and Poggio (1997) combine 
over-complete Haar wavelets and SVM classifiers 
to detect pedestrians. Mohan, Papageorgiou, and 
Poggio (2001) extend Oren et al.’s work using a 
cascade of SVM to detect human components 
first and then vote for a human. Viola, Jones, and 
Snow (2003) extend the Haar features to capture 
spatial-temporal information for moving-human 
detection in video streams under a surveillance 
system but adopt the cascaded AdaBoost clas-
sifier. Haar-like features can be evaluated very 
quickly using the integral images together with 
the cascade classifier structure, making a real-
time detector possible. 

Recently, gradient orientation features such 
as scale invariance feature transform (SIFT) 
(Lowe, 2004) descriptor and HOG descriptor 
(Dalal & Triggs, 2005) have attracted more atten-
tion. In order to detect pedestrians on a moving 
vehicle, Shashua, Gdalyahu, and Hayon (2004) 
manually divide the human into 13 regions and 
compute SIFT-like features of each region, then 
combine these features and train a classifier using 
AdaBoost. Dalal and Triggs (2005) propose HOG 
features as human representation, which achieves 
amazingly good results on human detection 
combined with SVM classifiers. Later, they extend 
their approach to detect humans in video streams 
using oriented histograms of flow and appearance 
(Dalal, Triggs & Schimid, 2006). Zhu, Avidan, 
Yeh, and Cheng (2006) integrate the cascaded 
AdaBoost approach with HOG features to speed 
up Dalal’s method greatly, using linear SVM as a 
weak classifier. There are also other systems that 
use gradient orientation features but adopt a parts-
based approach that aims at dealing with the great 

variability in appearance due to body articulation 
or occlusion. For example, Mikolajczyk, Schmid, 
and Zisserman (2004) represent human parts as 
co-occurrences of local orientation features. Their 
system proceeds by detecting features and then 
parts, and eventually humans are detected based 
on assemblies of these parts.

FEAtUrE EXtrActION

The ultimate goal of feature extraction for object 
detection is to find one representation that yields 
high interclass variability and at the same time 
achieves low intraclass variability. The feature 
extraction module needs to extract the most 
relevant features for classification and provides 
invariance to changes in illumination, viewpoints, 
color, and so forth. This section focuses on the 
Haar-like features and HOG features that have 
been widely used for human detection, while using 
the principal component analysis (PCA) coeffi-
cients as the baseline features for comparison.

PCA Coefficients

PCA is the most famous feature extraction method 
that has been used widely in statistical pattern 
recognition area. In PCA, a linear subspace that 
best explains the variations of origin data points 
is constructed. The eigenvectors and eigenvalues 
of the covariance matrix are computed. The 
eigenvectors with the largest eigenvalues are 
identified as the most expressive features, while 
those with small eigenvalues are assumed as noise 
and are cut off accordingly, as in Figure 1. The 
kept eigenvectors form the linear subspace, and 
the PCA coefficients for each input feature vector 
are computed by projecting the input feature vector 
to this subspace. PCA can decrease the dimen-
sion greatly while keeping most of the variance. 
However, PCA coefficients are not guaranteed 
to be good for classification (Forsyth & Ponce, 
2003).
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Haar-Like Features

The Haar-like features are first proposed by Oren, 
et al. (1997) as overcomplete Haar wavelets for 
pedestrian detection. Later, Papageorgiou & 
Poggio (2000) make a thorough study of the 
overcomplete Haar wavelets for the detection 
of face, car, and pedestrian. Following the idea 
of overcomplete Haar wavelets, Viola and Jones 
(2001) propose the Haar-like rectangle features 
and the fast evaluation method for face detection. 
Later, Lienhart and Maydt (2002) added rotated 
rectangle features to the feature set, which is 
called extended Haar-like features. The Haar-
like features can be computed very quickly 
using auxiliary integral images, together with 
the cascaded AdaBoost algorithm, forming a 
very powerful object detection framework. The 
rest of this section introduces the definition and 
evaluation of overcomplete Haar wavelets and 
the Haar-like features. 

Haar wavelets can encode the difference in 
average intensity between local regions along 
different orientations in a multiscale framework, 
enabling an effective representation for human 
class. For a given pattern, the Haar wavelet 
transform computes the responses of the wavelet 
filters over the image. Each of the three oriented 
wavelets (vertical, horizontal, and diagonal, as in 
Figure 2) is computed at several different scales, 
allowing the system to represent coarse scale 
features all the way down to fine scale features. 
In the traditional wavelet transform, the wavelets 
do not overlap; they are shifted by the size of the 
support of the wavelet in x and y. To achieve bet-

ter spatial resolution and a richer set of features, 
the overcomplete transform shifts by 1/4 of the 
size of the support of each wavelet, yielding an 
overcomplete dictionary of wavelet features. The 
resulting high dimensional feature vectors are 
used as training data for classification. Certain 
prior knowledge is embedded in the choice of 
the wavelets. First, the absolute values of the 
magnitudes of the wavelets are used. Second, for 
color images, the wavelet transform in each of the 
three color channels is computed, and then the 
largest one in magnitude is chosen. Third, only 
the two medium scales of wavelets are selected. 
Wavelets of the finest scale are assumed to rep-
resent noise, and the very coarse scale wavelets 
that have support as large as the object itself are 
assumed to encode no information. For example, 
for image  size 18x36 in the experimental section, 
we selected wavelets of 4x4 and 8x8, from which 
we obtained 15x33 and 6x15 features, respectively, 
for each orientation; hence, a total of 1,755 features. 
Experiments demonstrate that the overcomplete 
Haar wavelet is an effective representation for 
human classification (see Figure 3). 

Inspired by the overcomplete Haar wavelets, 
Viola and Jones (2001) propose the Haar-like 
features for face detection. The basic four feature 
types are shown in Figure 4. Such a block feature 
is located in a subregion of a subwindow and varies 
in shape (aspect ratio), size, and location inside 
the subwindow. For a small subwindow, there can 
be thousands of such features for varying shapes, 
sizes, and locations. These Haar-like features are 
very useful for object detection for two reasons: 
first, they form a feature pool that is effective for 

Figure 1. An illustrating example of principle components obtained on the DaimlerChrysler pedestrian 
dataset introduced in the experiment section, sorted in descending order of corresponding eigenvalues 
(first 10 and last 5)
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classification and can be selected by AdaBoost; 
second, they can be evaluated efficiently using 
integral images (Viola & Jones, 2001). The 
integral image ii(x, y) at location (x, y) contains 
the sum of the previous pixels and to the left of 
(x, y) inclusive, defined as:

' ',

( , ) ( , )
x x y y

ii x y i x y
≤ ≤

= ∑
   (1)

The image can be computed in one pass over 
the original image using the following pair of 
recurrences: 

( , ) ( , 1) ( , )
( , ) ( 1, ) ( , )

s x y s x y i x y
ii x y ii x y s x y

= - +
= - +   (2)

where s(x, y) is the cumulative row sum, s(x, -1) = 
0 and ii(-1, y) = 0. Using the integral image, any 
rectangular sum can be computed in four array 
references (see Box 1).

Histogram of Oriented Gradients

Image edges and gradient orientation features 
have also been used for object detection for 
a long time, as introduced in the background 

(a) (b) (c)
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Figure 2. Haar wavelets of three different orientations: vertical, horizontal, and diagonal

Figure 3. Ensemble average values of the wavelet coefficients on the DaimlerChrysler pedestrian dataset 
coded using grey level. Coefficients whose values are above the template average are lighter; those below 
the average are darker. (a-c) vertical, horizontal, and diagonal coefficients of scale 4x4; (d-f) vertical, 
horizontal, and diagonal coefficients of scale 8x8.

(a) (b) (c) (d)

Figure 4. Haar-like features shown relative to the enclosing detection subwindow; the sum of the pixels 
that lie within the white rectangles are subtracted from the sum of pixels in the black rectangles (Viola 
& Jones, 2001)
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section. Dalal and Triggs (2005) and Dalal, et al. 
(2006) do a thorough study of representations 
using gradient orientation features and propose 
histogram of oriented gradients features, which 
have demonstrated excellent results for human 
detection both on static images (Dalal & Triggs, 
2005) and video streams (Dalal et al., 2006).

The method is based on evaluating a dense 
grid of well-normalized local histograms of image 
gradient orientations over the image windows. 
The hypothesis is that local object appearance 
and shape can often be characterized rather well 
by the distribution of local intensity gradient di-
rections, even without precise knowledge of the 
corresponding gradient or edge positions. The 
descriptors can be computed as follows (Dalal, 
2006):

1. Normalize gamma and color. The aim of 
gamma normalization is to reduce the in-
fluence of illumination effects. In practice, 
either computing the square root or the log 
of each color channel can be used. 

2. Compute gradients. This stage computes 
the first order image gradients, which can 
capture contour, silhouette, and some texture 
information, while providing resistance to 
illumination variations. Several derivative 
masks (uncentered [-1 1], centered [-1 0 1], 
and cubic-corrected [1 -8 0 8 -1]) can be used, 
and experiments show that the simplest 1-D 
mask [-1 0 1] performs best. 

3. Accumulate weighted votes for gradient 
orientation over spatial cells. The third 
stage aims to produce an encoding that is 
sensitive to local image content while re-
maining resistant to small changes in poses 

or appearance. The image window is divided 
into small spatial regions called “cells.” For 
each cell, a local 1-D histogram of gradient 
or edge orientations over all the pixels in the 
cell is accumulated. Each orientation histo-
gram divides the gradient angle range into 
a fixed number of predetermined bins. The 
gradient magnitudes of the pixels in the cell 
are used to vote the orientation histogram. 
To reduce aliasing, votes are interpolated 
bilinearly between neighboring bin centers 
in both orientation and position. Experi-
ments show that the “unsigned” gradient 
performs better than “signed” gradient for 
human detection.

4. Normalize contrast within overlapping 
blocks of cells. Normalization introduces 
better invariance to illumination, shadow-
ing, and edge contrast. It is performed by 
accumulating a measure of local histogram 
“energy” over local groups of cells called 
“blocks.” The result is used to normalize 
each cell in the block. Typically, each indi-
vidual cell is shared among several blocks, 
but its normalizations are block dependent 
and thus different. The cell thus appears 
several times in the final output vector with 
different normalizations. This may seem 
redundant, but experiments show that this 
strategy improves the performance. The 
normalized block descriptors are referred to 
as Histogram of Oriented Gradient (HOG) 
descriptors.

5. Collect HOGs for all blocks over detection 
window. The final step collects the HOG 
descriptors from all blocks into a combined 
feature vector for use in the window clas-

 

' '
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Box 1.
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sifier. For example, if the template size is 
64x128, each cell size being 8x8 with nine 
bins, four cells in one block, the stride step 
of adjacent blocks being one cell in both 
horizontal and vertical directions, there 
are 7x15=105 blocks in total, and the total 
feature number is 105x4x9 = 3780.

The HOG representation has several advan-
tages. The use of orientation histograms over 
image gradients allows HOG to capture local 
contour information (i.e., the edge or gradient 
structure), which is very characteristic of local 
shape. In conjunction with the spatial quantiza-
tion into cells, it allows them to capture the most 
relevant information with controllable precision 
and invariance (e.g., by changing the number of 
bins and the cell size). Translations and rotations 
make little difference so long as they are much 
smaller than the local spatial or orientation bin 
size. Gamma normalization and local contrast 
normalization contribute another key component: 
illumination invariance. The use of overlapping of 
blocks provides alternative normalizations so the 
classifier can choose the most relevant one. These 
steps ensure that as little information as possible 
is lost during the encoding process. 

cLAssIFIcAtION MEtHODs

This section focuses on discriminative methods 
that build a decision boundary directly from 
the input samples instead of density estimation 
methods. Machine learning techniques such 
as support vector machine (Vapnik, 2000) and 
AdaBoost (Freund & Schapire, 1997) have be-
come the most popular discriminative methods 
for object recognition owing to their superior 
performance and relative ease of use. This section 
first introduces SVM briefly and then introduces 
a detection framework based on AdaBoost and 
cascaded classifier structure. 

support Vector Machine

SVM is a technique to train classifiers that is well-
founded in statistical learning theory (Vapnik, 
2000). SVM minimizes a bound on the empirical 
error and the complexity of the classifier at the 
same time. The concept of SVM is formalized 
in the theory of uniform convergence in prob-
ability:

( ) ( ) ( )log
,emp

hR R
l l

- 
≤ + Φ  

  (4)

with probability 1-η. Here, R(α) is the expected 
risk; Remp (α) is the empirical risk; l is the number of 
training examples; h is the Vapnik-Chernovenkis 
(VC) dimension of the classifier that is being used; 
and ( )Φ ⋅  is the VC confidence of the classifier. 
Intuitively, what this means is that the uniform 
deviation between the expected risk and empirical 
risk decreases with larger amounts of training data 
l and increases with the VC dimension h. 

The separating boundary is in general of the 
form:

( ) ( )
1

,
l

i i i
i

f x y K b
=

 = + 
 
∑ x x

  (5)

where l is the number of training data points 
(xi,yi ), (yi being the label ±1 of training point xi ); 
αi are non-negative parameters learned from 
the data; and ( ),K ⋅ ⋅ is a kernel that defines a dot 
product between projections of the two arguments 
in some feature space where a separating 
hyperplane is then found. For example, when 

( ),K = ⋅x y x y is the kernel, the separating surface 
is a hyperplane in the space x (input space). Other 
kernels include the Gaussian radial basis function 

( ) ( )2, expK = - -x y x y  and the polynomial 
function ( ) ( ), 1 nK = ⋅ +x y x y . In general, any 
positive definite function can be used as the 
kernel. The main feature of SVM is that it finds 
among all possible separating surfaces of the form 
Equation (5), the one that maximizes the distance 
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between the two classes of points (as measured 
in the feature space defined by K). The support 
vectors are the nearest points to the separating 
boundary and are the only ones (typically a small 
fraction of the training data) for which αi in Equa-
tion (5) is positive.

SVM has been widely used for object recogni-
tion for the past decade. Papageorgiou and Poggio 
(2000) build a generic object detection system 
based on Haar wavelets and SVM classifier, which 
demonstrate excellent results in pedestrian, car, 
and face detections. Mohan, et al. (2001) create 
a two-stage cascade of SVM classifiers. The first 
stage creates part (head, left arm, etc.) detectors 
from Haar wavelets. The second stage combines 
the part detections to obtain the final object de-
tector. Dalal and Triggs (2005) and Dalal, et al. 
(2006) use HOG features and SVM, build state-
of-the-art human detection systems both in static 
images and videos. The advantage of SVM is that 
it can build a classifier that generalizes well. The 
disadvantage of SVM is that for classification 
problems in object detection community, there 
are always too many support vectors, making the 
detection speed very slow. 

cascaded Adaboost

AdaBoost is a machine learning technique to get a 
strong classifier by boosting an ensemble of weak 
classifiers. For AdaBoost learning, a complex 
nonlinear strong classifier HT(x) is constructed as a 
linear combination of T simpler, easily construct-
ible weak classifiers in the following form:

( ) ( )1

T
T t tt

H x h x
=

= ∑    (6)

where x is a pattern to be classified; ( ) { }0,1th x ∈
are the T weak classifiers; 0t ≥   are the combining 
coefficients. The aim of AdaBoost is to learn a 
sequence of best weak classifiers ht (x) and the 
best combining weights αt . The simplest type of 
weak classifiers is a “stump,” which is a single-
node decision tree. A “stump” weak classifier hj 

(x) consists of a feature fj , a threshold θj and a 
polarity pj indicating the direction of the inequi-
tably sign: 

( ) ( )1

0
j j j j

j

if p f x p
h x

otherwise
<= 

   (7)

The weak learning algorithm is designed to 
select the feature that best separates the positive 
and negative examples. For each feature, the weak 
learner determines the optimal threshold classifi-
cation function, such that the minimum number 
of examples is misclassified. So AdaBoost can 
select the feature and train the strong classifier 
at the same time. The flow of the algorithm is as 
follows (Viola & Jones, 2001):

• Given example images ( ) ( ){ }1 1, , , ,N Nx y x y  
where yi = 0,1 for negative and positive 
examples, respectively.

• Initialize weights 1 1
1, 2 2,i m l=  for yi = 0,1 

respectively, where m and l are the number 
of negatives and positives respectively.

• For t = 1,...,T :
1. N o r m a l i z e  t h e  w e i g h t s 

, , ,
1

N

t i t i t j
j=

← ∑
 so that t is a probability distribu-

tion.
2. For each feature j train a classifier hj 

which is restricted to using a single 
feature. The error is evaluated with 
respect to t ,

 ( )j i j i ii
h x y= -∑ .

3. Choose the classifier ht with the lowest 
error t.

4. Update the weights: 1
1, ,

ie
t i t i t

-
+ ← , 

where ei = 0 if example xi is classi-
fied correctly, ei = 1 otherwise, and 

1
t

t
t

=
-

.
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• The final strong classifier is:

 
( ) ( )1 1

11
2

0

T T
t t tt t
h x

h x
otherwise

= =

 ≥= 


∑ ∑
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1logt

t

=

AdaBoost can select features and train a strong 
classifier at the same time. However, a single strong 
classifier trained by AdaBoost is not efficient for 
object detection task. For the detection problem, 
most of the subwindows are negative, which re-
quires the classifier to have an extremely low false 
positive rate; for example, 10-6. A single strong 
classifier will consist of too many features, which 
makes the detection speed very slow. Since most of 
the negative subwindows can be determined with 
a very simple classifier, Viola and Jones (2001) 
propose the cascade classifier structure to speed 
up the detection process. The cascade classifier 
structure, together with the AdaBoost algorithm, 
forms a general object detection framework 
referred to as cascaded AdaBoost.

The cascaded AdaBoost classifier consists 
of a cascade of strong classifiers, as in Figure 5. 
Simpler classifiers are used to reject the majority 
of subwindows before more complex classifiers 
are called upon to achieve low false positive rates. 
A positive result from the first classifier triggers 
the evaluation of a second classifier. A positive 
result from the second classifier triggers a third 
classifier, and so forth. A negative outcome at 
any point leads to the immediate rejection of the 
subwindow. Since most of the subwindows are 
simple negative examples, they can be rejected at 
very early stages of the cascade. So this strategy 
can increase the detection speed greatly. During 
training, the number of weak classifiers of each 
stage and output threshold can be adjusted to meet 
a predefined hit rate h and false alarm rate f. If 
there are m stages in the cascade classifier, the 
final detection rate is hm, and false alarm rate is f m. 
For example, if h = 0.995, f = 0.5, m = 20, the 
final detection rate is about 0.99, and false alarm 
rate is about 10-6.

 
All subwindows

1 2 3 Object candidates for 
further processing

Rejected subwindows

T T T

F F F

Figure 5. Schematic depiction of the detection cascade; a series of classifiers are applied to every sub-
window; the initial classifier eliminates a large number of negative examples with very little process-
ing; subsequent layers eliminate additional negatives but require additional computation; after several 
stages of processing, the number of subwindows has been reduced radically; further processing can 
take any form such as additional stages of the cascade or an alternative detection system such as SVM 
(Viola & Jones, 2001)



���  

Human Detection in Static Images

FUsION OF MULtIPLE
DEtEctIONs

There are usually multiple overlapping detections 
for each object in the image, and these must be 
merged. Rowley (1999) proposes a heuristic meth-
od for fusing overlapping detections. The number 
of detections within a specified neighborhood is 
computed, and if it is greater than a threshold, the 
centroid of these detections is taken as the location 
of the detection result. Centroids are computed 
in 3-D position and scale space. The number of 
detections gives the detection score. Viola and 
Jones (2001) propose a simpler method. The set 
of detections is partitioned into disjoint subsets, 
and each partition corresponds to a single final 
detection. Two detections are taken to be in the 
same subset if their bounding regions overlap a 
threshold. The final detection and location region 
is the average of all the detections in the set. Dalal 
(2006) proposes a generalized solution to the 
fusion of multiple overlapping detections. The 
problem is posed as a kernel-density estimation 
problem. The solution is given by locating modes 
of the density estimate using a mean shift-based 
mode detection procedure (Comaniciu & Meer, 
2002). Experiments in Dalal (2006) show that 
this method is superior to previous heuristic 
methods. 

FAst HUMAN DEtEctION bY 
bOOstING HOG FEAtUrEs

In this section, we present a novel real-time hu-
man detection system based on Viola’s cascaded 
AdaBoost framework and HOG features. Each bin 
of the histogram is treated as a feature and used as 
the basic building element of the cascade classifier. 
The system keeps both the discriminative power 
of HOG features for human detection and the 
real-time property of the cascaded AdaBoost 
framework.

The Framework

The architecture of the system is the same as the 
structure shown in Figure 5. The stage classifier 
consists of an ensemble of classification and 
regression tree (CART) as weak classifiers 
combined by AdaBoost. During training, the 
threshold of each stage classifier is adjusted, and 
the number of weak classifiers is increased until 
the hit rate and false alarm rate meet predefined 
values. The CART classifier is trained aggressively 
(i.e., the leaf of the tree that decreases the error 
most will be split, and corresponding feature and 
threshold will be saved as the parameters of the 
node). The node number of each CART can be 
used as a meta-variable to control the complex of 
the whole system.

the HOG Feature Pool

From the results in Dalal and Triggs (2005) and 
Dalal, et al. (2006), we know that the HOG feature 
is more suitable for human detection than PCA 
coefficients and Haar-like features. By treating 
each bin of origin HOG features as a feature, we 
create a new feature pool for human detection 
used by AdaBoost algorithm and cascade training. 
With the help of an array of integral images, each 
feature in our feature pool can be computed at any 
position and any scale in constant time; only eight 
look-ups are needed, which enables the real time 
properties of our human detection system. 

Each feature is defined by its cell posi-
tion ( ), , ,C x y w hc c c c , the parent block position 
( ), , ,B x y w hb b b b , and the orientation bin number 

k, so each feature f is denoted by f (C, B, k). Let 
G(x,y) and ( ),x y be the strength and orienta-
tion of the gradient at point (x,y). We divide the 
orientation range [ ],0  into K bins and denote the 
value of kth bin to be:

( ) ( ) ( ), ,
,

0

G x y if x y binkx yk otherwise

∈
=



  (8)



  ���

Human Detection in Static Images

Then the feature value is defined as:

( )
( )

( )

( )
( )

,
,

, ,
,

,

x ykx y C
f C B k

G x y
x y B

+∑
∈

=
+∑

∈
  (9)

All the features can be computed very quickly 
and in constant time by eight look-ups with the 
help of K + 1 auxiliary integral images:

( ) ( )

( ) ( )

, , , 1, ,
' ',

, ,
' ',

IG x y x y k Kk k
x x y y

IG x y G x y
x x y y

= =∑
≤ ≤

= ∑
≤ ≤



 (10)

Then what follows is displayed in Box 2. 
Each feature f (C, B, k) can be evaluated in eight 
look-ups. 

If we do not put any constraint on the relative 
position and size of the cell and the block, the 
feature number will be too large. Inspired by the 
extended Haar-like feature definition of Linehart 

and Maydt (2002), we only consider the relative 
position of the cell and the block shown in Figure 
6. The black rectangle represents the position of 
the cell, while the whole large rectangle denotes 
the position of the block. The ratio between the 
width and the height of the block is 1:2, 1:1, and 
2:1. For a predefined training sample size, the 
feature template can be moved at a predefined 
stride step and enlarged at a scale step, forming 
a feature pool learned by AdaBoost. We should 
note here that this feature pool is much richer 
than Dalal’s HOG feature, which only contains 
the templates 2(a-d) in Figure 6 at a fixed scale. 
Our feature pool contains many more templates 
and can change the scale and position freely. 

EXPErIMENts

There are striking differences in the performance 
reported in the literature. The variations come 
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( ) ( )

( ) ( )
( )

( )
( ) ( )
( ) ( )

, 1, 1 1, 1
,

1, 1 1, 1

, 1, 1 1, 1
,

1, 1 1, 1

x y IG x y IG x w y hc c c c c ck k kx y C

IG x y h IG x w yc c c c c ck k

x y IG x y IG x w y hb b b b b bx y B

IG x y h IG x w yb b b b b b

= - - + + - + -∑
∈
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∈
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Box 2.

(1). One block contains one cell

(a) (b) (c) (d)

(2). One block contains four cells

(3). One block contains two cells

(a) (b) (c) (d)

Figure 6. HOG feature templates. The whole rectangle denotes the block, and the black rectangle denotes 
the relative position of the cell; the orientation histogram in the cell is normalized by the gradient 
strength in the block.
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from various datasets and test criteria they use. 
In this section, we make performance evaluation 
on human classification by various combinations 
of different features and classifiers using the 
DaimlerChrysler pedestrian database and test 
criteria reported in Munder and Gavrila (2006). 
Besides, we also compare our human detection 
system with Viola and Jones’ (2001) and Dalal 
and Trigg’s (2005) system. 

Figure 7 and Table 1 show the content of the 
DaimlerChrysler pedestrian dataset. Pedestrian 
examples are extracted manually from video im-
ages recorded at various daytimes and locations 
with no particular constraints on pedestrian pose 
or clothing, except that they are standing in an 
upright position and are fully visible. Pedestrian 
images are mirrored, and the bounding boxes are 
shifted randomly by a few pixels in horizontal 
and vertical directions; six pedestrian examples 
are thus obtained from each label. Nonpedestrian 
examples are generated by extracting represen-
tative patterns from video images known not to 

contain any pedestrian. The databases are split 
into five fully disjointed sets, three for training 
and two for testing, which allows for a variation 
of training and test sets during the experiments. 
Examples recorded at the same time and location 
are kept within the same set so that, for example, a 
pedestrian captured in a sequence of images does 
not show up in multiple datasets. This ensures 
truly independent training and test sets, but also 
implies that examples within a single dataset are 
not independent. 

Classification performance is evaluated by 
ROC curves, which quantify the trade-off between 
detection rate (the percentage of positive examples 
correctly classified) and the false positive rate (the 
percentage of negative examples incorrectly clas-
sified). In order to compare the performance of 
two classifiers, a confidence interval is needed to 
decide whether performance differences are sig-
nificant or represent noise. For each combination 
of the feature and classification method, three 
classifiers are trained, each by selecting one out 

#Datasets Pedestrian Labels 
Per Set

Pedestrian Examples 
Per Set

Nonpedestrian 
Examples Per Set

Additional 
Nonpedestrian 
Images

Training Sets 3 800 4800 5000 1200

Test Sets 2 800 4800 5000 0

Figure 7. Pedestrian and nonpedestrian samples from the DaimlerChrysler benchmark dataset (Munder 
& Gavrila, 2006)

Table 1. DaimlerChrysler pedestrian dataset (Munder & Gavrila, 2006)

“Pedestrian Labels” denotes the number of pedestrians manually labeled, whereas “Pedestrian Examples” denotes the number 
of pedestrian examples in each dataset derived from the pedestrian labels by mirroring and shifting.
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of the three training sets. Testing the three classi-
fiers on the two test sets yields six different ROC 
curves (i.e., six different detection rates for each 
possible number of false positives). When taken 
as six independent tests that follow a normal 
distribution, a confidence interval of the true 
mean detection rate is given by the distribution 
(Munder & Gavrila, 2006) as:

( )2, 1 1.05N

sy t y s
N-± ≈ ±

  (12)

where y and s denote the estimated mean and 
standard deviation, respectively; 1 - α = 0.95 
is the desired confidence interval; N = 6 is the 
number of tests. Hence, the estimated standard 
deviation of the detection rate approximately 
represents 95% confidence interval. Although 
this analysis is somewhat optimistic, as it assumes 
independency of the individual ROC curves, it still 

provides a reasonable indicator for performance 
comparison.

comparisons of Different Feature 
and Classifier

We apply each classification method to each type 
of feature to get a separate investigation into the 
effectiveness of features and classifiers. For the 
PCA coefficients, we consider values that capture 
95% of the variance. For the overcomplete Haar 
wavelets, given the input images of size 18x36, we 
selected wavelets of 4x4 and 8x8, from which we 
obtained 15x33 and 6x15 features, respectively, for 
each orientation; hence, a total of 1,755 features. 
For the HOG features, the cell size is 4x4, the bin 
number being 9, from which we obtained 864 
features. For each feature set, the linear SVM 
and discrete AdaBoost with “stump” are used; 
the associated parameters are selected by cross-
validation using only the training dataset. 
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Figure 8. Comparison of various feature extraction and classification methods on DaimlerChrysler 
pedestrian dataset
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The results are shown in Figure 8. Two 
observations can be made: First, HOG features 
outperform PCA coefficients and overcomplete 
Haar wavelets; the reason for this may lie in the 
fact that HOG can describe the local shape of 
human more efficiently. PCA coefficients are 
global features, but the global shape of humans 
varies greatly. The color also varies greatly, so 
overcomplete Haar wavelets are not as effective 
on human detection as on face detection. Second, 
SVM generally outperform AdaBoost with 
“stump” as a weak classifier. The reason for this 
lies in that the features are not independent, and 
the “stump” cannot capture the relationship very 
well. 

comparisons of three systems

The three systems we compare include Dalal and 
Trigg’s (2005) HOG-SVM-Bootstrapping system, 
Viola and Jones’ (2001) Haar-AdaBoost-Cascade 
system, and our HOG-AdaBoost-Cascade 
system. Dalal’s system uses HOG features and 
SVM classifier to train an initial classifier, 
and then collects more negative images by 
bootstrapping techniques on the associated ad-
ditional nonpedestrian images for each training 
set. The final classifier is trained using initial 
positive samples and all the negative samples. 
The ROCs are obtained by varying the threshold 

0 0.� 0.� 0.� 0.� 0.�
0.�

0.�

0.�

0.�

0.�

0.�

0.�

0.�

�

False Positive Rate

D
et

ec
tio

n 
R

at
e

Classification Performance on DaimlerChrysler Database

HoG-SVM-Bootstrapping
Haar-Adaboost-Cascade
HoG-Adaboost-Cascade

Figure 9. Classification performance of three systems

Sparse Scan
(800 windows per image)

Dense Scan
(12800 windows per image)

HOG-SVM-Bootstrapping 300ms 5sec

Haar-AdaBoost-Cascade 5ms 32ms

HOG-AdaBoost-Cascade 29ms 51ms

Table 2. Speed comparisons of three systems (CPU P4 3GHz, RAM 1G)
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of the SVM classifiers. Viola’s system is designed 
for face detection and can also be used on human 
detection directly. It uses Haar-like features, 
discrete AdaBoost with “stump” as weak classifier, 
and the cascade structure. The ROCs are obtained 
by varying the stage number of the classifiers. 
Our system uses the same framework as Viola’s 
system, except that we use HOG features instead 
of Haar-like features. 

The classification results on DaimlerChrysler 
pedestrian database are shown in Figure 9. We 
also test the speed on the INRIA human database 
(Dalal & Triggs, 2005), and the results are shown 
in Table 2. From the results, we can see that HOG 
features are more powerful than Haar-like features 
on classification at a little cost of speed; the SVM-
Bootstrapping classifier structure outperforms 
the AdaBoost-Cascade structure in classification 
performance, but the AdaBoost-Cascade structure 
can increase the speed greatly. We should note 
that the speed of our HOG-AdaBoost-Cascade 
system does not increase greatly from a sparse 
scan to a dense scan. This is because most of the 
time is spent on the evaluation of the auxiliary 
integral images instead of the evaluation of each 
subwindow. Some of the detection results of our 
HOG-AdaBoost-Cascade system are shown in 
Figure 10. From the results, we can see that our 
system can detect human accurately, irrespective 
of the illumination. 

FUtUrE trENDs

Although a lot of work has been done in the past 
decade, human detection is still a problem that 
is far from solved. There are a lot of problems 
that need to be solved in the future. First, this 
chapter focuses on the detection of human in static 
images; how to detect human in video streams 
is a problem. There are usually two strategies 
for human detection in video sequence. The first 
strategy is to detect humans in each static frame 
and then combine these results through tracking, 
as in Gavrila, et al. (2004) and Shashua, et al. 
(2004). The second strategy is to extract features 
using more than one frame and then build a 
classifier for human detection, as in Viola, et al. 
(2003) and Dalal, et al. (2006). Which strategy 
is more effective needs further research. Second, 
this chapter only deals with PCA, Haar, and HOG 
features. It is worth investigating texture and color 
invariant descriptors. The overall system could 
use AdaBoost to learn the most relevant features 
to increase the detection performance. Third, it 
would be interesting to use the top-down context 
information. Several researchers have begun to 
use context by modeling the relationships between 
different objects or object classes, surrounding 
image regions, or scene categories (Hoiem, Efros 
& Hebert, 2006; Kumar & Hebert, 2005; Murphy, 
Torralba, & Freeman, 2003). In the future, it would 
be interesting to add these higher-level contexts 
information to detect human. 

Figure 10. Some of the detection results of INRIA human database
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cONcLUsION

This chapter proposes an in-depth study of several 
aspects of human detection in static images. 
Most of existing systems for human detection 
use learning-based methods. There are three 
major modules: feature extraction, classification, 
and merge of overlapping detections. Haar-like 
features and HOG features are the most popular 
feature sets; SVM and cascaded AdaBoost are the 
most popular classifier design methods. Heuristic 
clustering and mean shift mode seeking are two 
major methods for fusion of overlapping blocks. 
We evaluate the first two modules for different 
methods using the DaimlerChrysler pedestrian 
classification benchmark dataset. Experiments 
show that HOG feature performs the best for 
pure classification among all the feature sets. The 
cascaded AdaBoost classifier performs better in 
speed at a little cost of accuracy than SVM. We also 
design a novel fast human detection system based 
on HOG and cascaded AdaBoost. Experiments 
demonstrate its efficiency for human detection. 
Future researches should include the detection of 
human in video streams, the inclusion of color 
and texture features, and the use of top-down 
context information. 
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AbstrAct

With the ever-increasing utilization of imagery in scientific, industrial, civilian, and military applications, 
visual pattern recognition has been thriving as a research field and has become an essential enabling 
technology for many applications. In this chapter, we present a brain-inspired pattern recognition ar-
chitecture that can easily be adapted to solve various real-world visual pattern recognition tasks. The 
architecture has the ability to extract visual features from images and classify them within the same 
network structure; in other words, it integrates the feature extraction stage with the classification stage, 
and both stages are optimized with respect to one another. The main processing unit for feature extrac-
tion is governed by a nonlinear biophysical mechanism known as shunting inhibition, which plays a 
significant role in visual information processing in the brain. Here, the proposed architecture is applied 
to four real-world visual pattern recognition problems; namely, handwritten digit recognition, texture 
segmentation, automatic face detection, and gender recognition. Experimental results demonstrate that 
the proposed architecture is very competitive with and sometimes outperforms existing state-of-the-art 
techniques for each application.
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INtrODUctION

Humans and other advanced species rely heav-
ily on their visual pattern recognition system for 
survival. They possess an innate ability to process 
visual information and make decisions on the fly. 
For example, humans can recognize familiar faces 
in a crowd, characters and words in a newspaper, 
and a signature on a bank check, whereas animals 
can easily distinguish prey from predator in a 
cluttered natural environment. Despite several 
decades of intensive research effort, the design 
of human-competitive visual pattern recognition 
machines remains a difficult and illusive task. 
The traditional pattern recognition approach is 
to divide the system into two stages: the feature 
extraction stage and the pattern classification 
stage. The success of such an approach relies 
heavily on the successful extraction of salient 
features that are robust to intrinsic and extrinsic 
variations in the input image. However, feature 
extraction can be a computationally intensive 
process and depends heavily on the expert knowl-
edge of the designer—it is more of an art than an 
exact science. More recently, many researchers 
have shifted their attention to natural intelligence 
in an attempt to design intelligent machines and 
pattern recognition systems. Among the new 
computational paradigms inspired by natural 
intelligence are artificial neural networks (ANNs) 
and evolutionary computation. Artificial neural 
networks achieve their computational power by 
learning complex models from examples, similar 
to a human brain. For example, the conventional 
feedforward artificial neural networks, also known 
as multilayer perceptrons (MLPs), have been 
shown to be universal approximators under very 
general conditions (Cybenko, 1989; Funahashi, 
1989; Hornik, Stinchcombe & White, 1989). Due 
to their capability to learn directly from input 
data and produce accurate results, ANNs have 
been applied to a broad spectrum of applications, 
covering areas as diverse as finance, medicine, 

engineering, geology, physics, genomics, and 
so forth. 

However, one of the drawbacks of conven-
tional feedforward ANNs is that the size of the 
network (i.e., the number of its free parameters) 
grows with the input dimension, making learning 
a much harder task. Moreover, the generalization 
ability of the network suffers due to the problem 
of overfitting and loss of crucial information as 
correlations between neighboring inputs are to-
tally ignored. Therefore, in the past two decades, 
researchers have focused their attention not only 
on the development of fast learning algorithms, 
but also on the identification of significant net-
work structures and weight constraints that can 
improve the generalization ability and simplify the 
network architecture. Inspired by the hierarchical 
and retinotopic organization of the early visual 
system, a number of researchers have developed 
hierarchical neural networks that can operate 
on two-dimensional (2-D) input images, extract 
visual features, and perform classification within 
the same network architecture. For example, 
Fukushima, Miyake, and Ito (1983) proposed 
the well-known neocognitron for visual pattern 
recognition based on the structure of the visual 
cortex suggested by Nobel laureates Hubel and 
Wiesel (1965). Years later, LeCun and his col-
leagues (1989) proposed a series of convolutional 
neural network (CoNN) architectures based upon 
the three structural ideas of local receptive fields, 
weight sharing, and subsampling. These hierarchi-
cal neural networks can easily deal with variability 
in object shape and possess a certain degree of lo-
cal invariance to distortions and translations; they 
exhibit better generalization ability compared to 
the fully-connected feedforward networks (Kro-
ner & Moratz, 1996; LeCun, 1989). However, the 
resulting network architectures are often massive 
with a very large number of free parameters to 
be determined through learning. Furthermore, 
most convolutional neural network architectures 
employ the simple sigmoid neuron as the main 
processing element of the architecture. 
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In this chapter, we present a brain-inspired 
neural network architecture that can easily be 
adapted to solve various visual pattern recog-
nition tasks. The architecture is derived from 
its predecessor convolutional neural network 
models (Fukushima et al., 1983; LeCun, Bottou, 
Bengio & Haffner, 1998). However, the proposed 
architecture employs shunting inhibition as the 
elementary visual processing mechanism for 
feature extraction; the biophysical mechanism of 
shunting inhibition plays a major role in visual 
information processing in the brain. Furthermore, 
three systematic connection schemes have been 
developed to link the processing layers in a hier-
archical structure. The next section describes the 
network architecture, the shunting neural model, 
the connection schemes, and a hybrid learning 
method developed for training the proposed visual 
pattern recognition architecture. In Section 3, the 
proposed brain-inspired neural network architec-
ture is employed for solving four visual pattern 
recognition problems based on real-world data. 

Experimental results are presented, which show 
that the proposed architecture achieves competi-
tive performance as the state-of-the-art solutions 
developed specifically for these problems. Finally, 
concluding remarks are presented in Section 4.

tHE brAIN-INsPIrED NEUrAL 
NEtWOrK ArcHItEctUrE

The proposed visual pattern recognition architec-
ture is based upon the three concepts of weight 
sharing, subsampling, and local receptive fields 
(Fukushima et al., 1983; LeCun et al., 1998). It 
has a 2-D multilayered network topology with 
feedforward connections. The input layer, also 
called the network retina, is a 2-D array of input 
nodes that receive signals from images of arbi-
trary size. The input layer is succeeded by several 
feature extraction layers. The feature extraction 
stage is then followed by a pattern classification 
stage, which may comprise one or more process-
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Figure 1. A three-layer architecture of the proposed brain-inspired neural network: the first hidden layer 
contains two feature maps, followed by four feature maps in the second hidden layer and one output 
layer. Local averaging and down-sampling operations are applied to the second hidden layer to reduce 
the number of input signals fed to the classification layer.
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ing layers. Figure 1 illustrates a three-layered 
architecture comprising two feature extraction 
layers and one classification layer.

Visual Feature Extraction

Each feature extraction layer comprises several 
planes of shunting neurons, known as feature 
maps. In a conventional fully connected MLP 
architecture, each neuron receives inputs from all 
neurons in the previous layer, and the number of its 
free parameters, or weights, is equal to the number 
of connections (plus the bias term). By contrast, 
each neuron in a feature map receives inputs only 
from a local region in the input plane, the local 
receptive field. Therefore, the number of connec-
tion weights is related to the receptive field size 
and not the size of the input plane. Furthermore, 
all the neurons in a feature map share the same 
set of connection weights, or weight sharing. The 
mechanism of weight sharing forces the neurons 
in a feature map to perform the same operation on 
different parts of the input plane. Hence, the role 
of a feature map is to extract the same elementary 
feature from several locations in the input; other 
feature maps in the same layer extract different 
features using different sets of weights. 

Another operation that is implemented at each 
hidden layer is the down-sampling of the feature 
maps, which has the effect of reducing the number 
of connections and introducing into the archi-
tecture some degree of tolerance to spatial shifts 
and distortions. By down-sampling, some infor-
mation about the exact location of the detected 
visual feature is discarded, but once a feature is 
detected, its absolute location is no longer impor-
tant—only its position relative to other features is 
relevant to the classification (LeCun et al., 1998). 
Down-sampling by a factor of two is achieved 
by simply shifting the centers of receptive fields 
of adjacent neurons in the feature map by two 
positions: horizontally and vertically. However, 
if the subsampling factor is greater than two, the 
output of the feature map is first convolved with 

a low-pass filter before down-sampling in order 
to reduce the aliasing effect.

Network Connection Schemes

Even though the link between the neuron and its 
inputs is established by the use of a local recep-
tive field, a connection scheme between layers 
is required to construct the network topology. A 
common connection scheme is to connect each 
feature map to all the feature maps in the suc-
ceeding layer (i.e., a full-connection scheme). In 
a fully connected network, each hidden layer has 
an arbitrary number of feature maps, depending 
on the number of visual features to be extracted. 
In addition, there are two partial-connection 
schemes that have been developed for the proposed 
architecture: binary and toeplitz. In these partial-
connection schemes, each hidden layer contains 
twice as many feature maps as the previous layer, 
barring the first layer, which can have an arbitrary 
number of feature maps. A schematic diagram of 
these two partial connection schemes is shown 
in Figure 2. In a binary-connected network, each 
feature map branches out to two feature maps, 
forming a binary tree. In the toeplitz connection 
scheme, all feature maps in the first hidden layer 
connect to the same number of feature maps in 
the second layer, but the number of connections 
is determined by the number of feature maps in 
the second layer. A feature map in the second 
layer may have one-to-one or one-to-many con-
nections with the feature maps in the preceding 
layer, but the connection matrix has a toeplitz 
form. As an example, suppose the first hidden 
layer has four feature maps, labeled A, B, C, and 
D, and the second hidden layer has eight feature 
maps, labeled F1 to F8. The toeplitz connections 
between these two layers are shown in Table 1. In 
this case, the first and last feature maps, F1 and F8, 
form one-to-one connections with feature maps 
A and D, respectively; F2 forms connections with 
feature maps A and B; and F3 is connected to 
feature maps A, B, and C. The remaining feature 
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maps (F4–F7) complete the toeplitz connection 
matrix. Note that each feature map of the first 
hidden layer connects to five feature maps of the 
second hidden layer. 

Pattern Classification Stage

The pattern classification stage may comprise one 
or more processing layers. It receives inputs from 
the last feature maps and outputs a class label 
for the input pattern. There are two possibilities 
for generating input signals to the pattern clas-
sification stage. In the first case, the outputs of 
the feature extraction neurons are used directly 

as input signals, without preprocessing. This, 
however, may result in a large number of noisy 
inputs. To reduce the number of inputs and noise, 
filtering and subsampling operations are applied 
to all the feature maps. Then the filtered signals 
are used as inputs to the classification stage. The 
classification stage may be any classifier that can 
be trained together with the feature extraction 
stage.

Although, any type of classifier may be used 
in the classification stage, herein we restrict 
the classification stage to being a single layer 
of sigmoid neurons. Therefore, the response of 
an output neuron is a weighted sum of its input 
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(b) Toeplitz-Connection

Figure 2. Partial-connection schemes: (a) Binary connection scheme, each feature map branches out 
to two feature maps of the succeeding layer forming a binary tree; (b) toeplitz connection scheme, each 
feature map in the first hidden layer connects to five feature maps in the second hidden layer forming a 
toeplitz connection matrix

Layer 2 / Layer 1 F1 F2 F3 F4 F5 F6 F7 F8

A X X X X X

B X X X X X

C X X X X X

D X X X X X

Table 1. Toeplitz connections scheme: An X signifies the presence of a connection between the feature 
maps of the first and second hidden layers
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signals, added to a bias term and passed through 
an activation function:

( )V Zy h b= ⋅ +
 

    (1)

where y is the output of the neuron, h is the output 
activation function, V



 is the vector of connection 
weights, and  Z



 is the vector of feature inputs from 
the last hidden layer of the network.

shunting Neuron Model

It is well known that biological neurons receive 
inputs from excitatory and inhibitory synapses. 
In particular, the biophysical mechanism of 
shunting inhibition has been shown to play a 
very important role in neuronal information pro-
cessing in the brain. Mitchell and Silver (2003) 
investigated the ability of shunting inhibition 
to modulate neuronazl gain during synaptic 
excitation and suggested that it can act as a cel-
lular mechanism for gain control, which is vital 
for normal sensory and cognitive activity in the 
brain. Prescott and Koninck (2003) observed that 
shunting inhibition can indeed mediate firing rate 
gain control under background synaptic noise 
and dendritic saturation, and established that 
the nonlinearity caused by dendritic saturation 
enhances the divisive effect of shunting inhibi-
tion on the output firing rate. Other researchers 
have also shown that the mechanism of shunting 
inhibition plays a major role in the functional 
organization and visual information processing 
in cortical cells (Anderson, Carandini, & Ferster, 
2000; Borg-Graham, Monier, & Fregnac, 1998; 
Fregnac, Monier, Chavane, Baudot, & Graham, 
2003). More recently, experiments conducted by 
Vida, Bartos, and Jonas (2006) demonstrated that 
shunting inhibition introduces several functional 
advantages to the interneuron network function, 
such as increasing the robustness of gamma 
oscillations and boosting of coherent oscillatory 
activity in interneuron networks. 

Bouzerdoum and Pinter (1993), inspired by this 
biophysical mechanism, developed an artificial 
shunting neuron model that was used to solve 
various image processing tasks (Beare & Bou-
zerdoum, 1999; Bouzerdoum, 1993, 1994; Bou-
zerdoum & Pinter, 1992; Cheung, Bouzerdoum, 
& Newland, 1999; Pontecorvo & Bouzerdoum, 
1997). This type of neuron was subsequently used 
in feedforward networks for supervised pattern 
classification and regression (Arulampalam & 
Bouzerdoum, 2003; Bouzerdoum, 1999, 2000). 
It has been established that shunting inhibitory 
neurons are more computationally powerful than 
their sigmoid counterparts; a single shunting neu-
ron can solve linearly nonseparable classification 
problems (e.g., the XOR and parity problems).

To mimic the process of visual feature extrac-
tion in the brain, shunting inhibition is employed 
here for information processing by the feature 
maps. The response of a static feedforward shunt-
ing neuron can be modeled as:

( )
( )

W I

C I

g b
z

a f d

⋅ +
=

+ ⋅ +

 

 

   (2)

where z is the neuron output, I


 is the vector of 
external inputs, a is the passive decay rate, W



 and 
C


 are, respectively, sets of excitatory and inhibitory 
weights, b and d are constants known as the bias 
terms, and f and g are the activation functions of 
the neuron. As stated earlier, all the neurons in 
a feature map share the same set of weights (i.e., 
W


 and C


). However, there are two strategies for 
adapting the bias terms and the passive decay rate. 
All the neurons in a feature map can either share 
the same bias parameters as well as the passive 
decay rate or have their own biases and passive 
decay rates. Herein, all the neurons in a feature 
map share the same set of weights, the bias terms, 
and the passive decay rate. 

One of the virtues of the shunting inhibitory 
neuron is that it possesses an adaptive input-output 
transfer characteristic. By contrast, sigmoid and 
radial basis function neurons have their input-



��0  

A Brain-Inspired Visual Pattern Recognition Architecture and Its Applications

output transfer characteristic fixed by the choice 
of the activation function and can only be trans-
lated, rotated, or stretched. On the other hand, the 
shape of the input-output transfer characteristic of 
a shunting neuron is determined by the network 
parameters as well as the activation functions. 
The advantage is that by just varying the network 
parameters (e.g., through learning), different types 
of decision surfaces can be generated. Figure 3 
illustrates some examples of input-output transfer 
characteristics of a shunting neuron with fixed 
activation functions f and g.

Network Training Process 

Since the purpose of the proposed architecture is 
to learn various visual pattern recognition tasks, 
a series of supervised learning algorithms have 
been developed based on error backpropagation. 

The algorithms are batch training techniques, 
ranging from the simple gradient steepest descent 
to quasi-Newton optimization and Levenberg-
Marquardt algorithms. In particular, a fast hybrid 
first-order method, based on the combination of 
Rprop (Riedmiller, 1994), Quickprop (Fahlman, 
1988), and SuperSAB (Tollenaere, 1990), has 
been developed to train the proposed architecture 
(Tivive & Bouzerdoum, 2006). The weight update 
rule of this hybrid method is given by:

( 1)  ( )  ( ) ( )  ( 1)w k w k w k k w k+ = + ∆ + ∆ -
      (3)

where ( )w k∆  is the local update weight and is 
computed based on the behavior of the local 
gradient g(k) during two successive iterations, 
similar to the Rprop technique. The mathematical 

Figure 3. Different shapes of input-output transfer characteristics can be generated by adapting the 
weights and bias terms of the shunting neuron
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expressions for the step size and weight update 
of the local weight are given by:

k g

k g
g k10

min(1.2 ( 1),10)      if  ( ) ( 1) 0
( ) max(0.5 ( 1),10 )  if  ( ) ( 1) 0

1)                         if  ( ) ( 1) 0

k g k
k k g k

k g k

-

γ - - >
γ = γ - - <
γ( - - =

      (4)

and

( ) ( ( )) ( )w k sign g k k∆ = -   (5)

In the traditional gradient descent with mo-
mentum algorithm, the momentum term µ(k) is 
often fixed to a predefined value in the interval 
(0, 1). In the hybrid training method, however, it 
is adjusted with respect to the magnitude of the 
Quickprop step; that is,

( )( )
( 1) ( )

g kk
g k g k

=
- -



   (6)

To prevent the momentum term from domi-
nating the weight update, it is restricted to the 
interval [0.5, 1.5]. Moreover, when either the 
previous or current local gradient is zero, the 
momentum rate is set to zero in order to prevent 
a weight update in the succeeding iteration. In 
other words, at the kth iteration, the momentum 
term µ (k) is given by:

min( ( ),1.5),                if  ( ) ( 1) 0
( ) max(min( ( ),1.5),0.5), if  ( ) ( 1) 0

0,                                     if  ( ) ( 1) 0

k g k g k
k k g k g k

g k g k

- >
= - <
 - =





      (7)

To further increase the convergence speed of 
the hybrid method, a small portion of the current 
gradient is added to the weight whenever there is 
a decrease in error:

( 1) ( 1) ( ) ( )w k w k k g k+ = + -   (8)

The method used to compute the learning rate 
α(k) is based on the SuperSaB training method:

( ) min( ( ),0.9)k k=     (9)

where

k g
g k

k g1.2 1)      if  ( ) ( 1) 0
( ) 0.5 ( 1)      if  ( ) ( 1) 0

( 1)           if  ( ) ( 1) 0

k g k
k k g k

k g k

α( - - >
α = α - - <
α - - =



      (10)

To summarize the hybrid training method, a 
pseudo-code of the algorithm is given in Table 
2.

Before training commences, the weights of 
the neurons are initialized with small random 
values taken from a uniform distribution on the 
interval [-1/N, 1/N], where N is the receptive field 
size; the biases are initialized similarly with N = 
1. To prevent the denominator term in (2) from 
becoming zero, and hence avoid division by zero, 
it is bounded from below by a small positive 
constant :

( )C I 0a f d+ ⋅ + ≥ >
 

   (11)

This was achieved by placing a lower bound 
on the passive decay rate:

( )mina f≥ -     (12)

where f is the activation function of the denomina-
tor. Accordingly, the passive decay rate is initial-
ized in the range (0, 1].

APPLIcAtIONs

This section presents four visual pattern recogni-
tion applications based on real-world data. The 
first two, visual document analysis and texture 
segmentation, are multiclass problems where the 
networks are trained to classify input patterns 
into one of several classes. The other two, face 
detection and gender recognition, are tackled 
because of their importance and large potential 
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Figure 4. A pseudo-code of the hybrid training method

in biometric applications. Since we are stepping 
into a new era of intelligent man-machine inter-
actions, the latter two applications have recently 
attracted considerable interest.

Visual Documents Analysis

One of the very first visual pattern recognition 
tasks that researchers attempted to solve is opti-
cal character recognition. Handwritten character 
and digit recognition is a challenging problem 
because of the difficulty of designing algorithms 
that can tolerate distortions in the input data and 
variations in the writing styles. Many techniques 
have been reported, and those that have achieved 
state-of-the-art performance are mostly neural-
based methods (Calderon, Roa & Victorino, 2003; 
LeCun et al., 1998; Poisson, Gaudin & Lallican, 
2002; Simard, Steinkraus & Platt, 2003). However, 
the neural networks used in these handwritten 

digit recognition systems often have massive and 
complex architectures with a very large number 
of weights; consequently, a very large training 
dataset is often required to properly train the 
neural network.

The proposed pattern recognition architecture 
was applied to handwritten digit recognition. 
First, three networks—binary-, toeplitz-, and 
fully connected networks—were trained on a 
small data set containing 10,000 patterns (1,000 
patterns per digit class) taken from the MNIST 
database.1 All three networks contain two feature 
extraction layers comprising 12 feature maps and 
one classification layer comprising 10 output units; 
the input retina has the size of 24x24 pixels, and 
all neuron receptive fields are 5x5. After training, 
the networks were tested on the entire test set of 
the MNIST database; their classification rates are 
listed in Table 2. With a small training set, the 
proposed networks already achieve classification 
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rates higher than 90%. Moreover, these results 
show that the partially connected networks per-
form better than the fully connected one. 

In the second stage, a binary-connected net-
work comprising 24 feature maps (eight in the first 
layer and 16 in the second layer) and 2,722 weights 
was trained using the 60,000 training patterns in 
the MNIST database. The results on the test set 
are shown in Table 3. The network achieves an 
overall recognition rate of 97.3%. Most of the false 
recognitions are due to the writing style; some 
patterns are written with heavy strokes that even 
humans have trouble recognizing correctly. 

texture segmentation

Texture segmentation is one of the most widely 
studied pattern recognition problems because the 
textural features of an image are vital cues for 
many machine vision applications such as classifi-
cation of ground cover types in satellite imagery, 
industrial and biomedical surface inspection, 
and content-based image retrieval. A number of 
texture analysis techniques have been reported in 
the literature, and two comprehensive reviews on 
common texture analysis approaches are given in 
Materka and Strzelecki (1998) and Tuceryan and 
Jain (1998). Even though numerous studies have 
been conducted, texture segmentation remains a 

Network
Architecture

Classification Rate for Each Digit Class (%) Accuracy
(%)0 1 2 3 4 5 6 7 8 9

Binary 98.3 97.9 95.1 92.2 93.0 91.3 95.9 93.4 93.0 91.8 94.1

Toeplitz 97.1 96.7 96.6 95.0 92.8 92.2 95.5 91.0 89.3 90.1 93.6

Full 95.9 96.5 92.4 86.6 89.1 85.2 93.7 89.0 84.7 88.2 90.2

Table 2. Classification performances of the binary-connected, toeplitz-connected, and fully connected 
networks on the test set (10,000 handwritten digit patterns) of the MNIST database

Actual 
Class

Network Predicted Class Recognition 
Rate (%)0 1 2 3 4 5 6 7 8 9

0 970 0 1 0 0 0 6 2 1 0 99.0

1 0 1120 2 2 0 0 2 1 8 0 98.7

2 7 1 1001 6 1 0 0 3 5 0 97.8

3 0 0 5 982 0 7 0 6 10 0 97.2

4 1 0 3 0 954 0 4 1 0 19 97.1

5 3 0 2 11 1 862 5 1 4 3 96.6

6 8 3 4 0 2 2 935 2 2 0 97.6

7 1 2 8 6 2 0 0 999 0 6 97.6

8 4 2 1 6 4 5 1 3 945 3 97.6

9 4 4 0 10 11 7 1 5 8 959 95.0

Overall accuracy 97.3

Table 3. A confusion matrix showing the performance of the binary-connected network, trained on the 
entire training set of the MNIST database. An additional column is added to the confusion matrix to list 
the recognition rate for each digit class.
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subtle pattern recognition problem because the 
extraction of informative features from texture 
images is a very difficult task. In recent years, 
Gabor and wavelet frame decompositions have 
become popular analysis tools for texture analy-
sis, and significant improvement in classification 
results have been achieved. Nevertheless, there 
is still the problem of selecting the appropriate 
filter banks for the given set of texture images. 
Some researchers have attempted to develop ar-
tificial neural network techniques to extract the 
discriminative features from the texture images 
by either manual tuning or using a supervised 
learning algorithm to adapt the network weights 
as texture filters (Jain & Karu, 1996; Lin & Shou, 
2005).

In the proposed texture segmentation system, 
a three-layer binary network with a 13x13 pixel 
retina has been used to produce an output that 
indicates the texture class to which the center 
pixel belongs. The receptive fields used in the 
first and second hidden layers are 7x7 and 5x5, 
respectively. The down-sampling operation is 
performed only at the first hidden layer in order 

to reduce the spatial resolution of the feature maps 
to 6x6. Between the second hidden and the output 
layers, a local averaging operation is performed 
on all the feature maps; that is, a nonoverlap-
ping mask of 2x2 is used to average every four 
outputs into a single signal, which is then fed to 
the output neurons. Figure 5 shows a schematic 
diagram of the binary-connected network for 
texture classification.

The training patterns are texture images from 
the Brodatz image database (Brodatz, 1966), 
which contains natural textures with different 
density, roughness, and regularity. This database 
has been widely used and has become a benchmark 
for texture analysis algorithms. Randen and Husøy 
(1999) created a set of texture mosaics from these 
images to compare different texture classification 
approaches.2 To evaluate the texture segmentation 
system, five texture mosaics are used: 11(a) (Nat-
5c), 11(d) (Nat-5v3), 11(h) (Nat-10), 12(a) (D4D84), 
and 12(c) (D5D92) (see Figure 6).

Most texture segmentation approaches include 
a feature conditioning stage to improve the clas-
sification performance; it usually consists of a 

 

Receptive Fields

Input Layer

Feature Maps with
(Shunting Inhibitory Neurons)

Perceptron

�� x �� � x � � x �Down-
sampling

F� Layer F� Layer Output Layer

� x � Local Averaging

Figure 5. The architecture of a binary-connected network used for texture classification. In the first hid-
den layer, the feature map is down-sampled to 6x6, and between the second and output layers, a local 
averaging operation is employed.
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smoothing filter followed by a nonlinear squash-
ing transformation. In our segmentation method, 
a smoothing filter is convolved with the output 
images obtained from the network responses 
before applying the winner-take-all scheme to 
generate the segmented output image. Figure 
7 demonstrates that the classification error rate 
decreases markedly by increasing the width of 
the smoothing filter.

For each texture mosaic shown in Figure 6, 
a different network was developed; the different 
network configurations are shown in Table 4. Each 
output neuron represents a texture class and pro-
duces an image of network responses having the 
same size as the input texture mosaic. A winner-
take-all scheme is used to determine the class of 
the input pixel (i.e., the maximum output indicates 
the texture class of the corresponding pixel in the 
input image). Table 5 presents the classification 
error rates of the five networks, along with the 
performance results of other texture classification 
approaches; namely, the co-occurrence matrix, 

Gabor, wavelet, and quadrature mirror filters 
(QMF); the results of other approaches are taken 
from Randen and Husøy (1999). The experimental 
results in Table 5 show that the proposed brain-
inspired pattern recognition architecture can 
easily be employed for texture segmentation. On 
the texture mosaics 11(d) and 11(h), the proposed 
system performs better than the co-occurrence, 
wavelet, and Gabor filter methods. Furthermore, 
when a lowpass filtering is applied to the network 
outputs, the classification error rates across all five 
texture images decrease markedly. Figure 8 shows 
an example of the segmented output images of a 
texture mosaic with and without filtering.

Automatic Face Detection

With the increasing demand for visual surveillance 
and security systems, face detection has attracted 
considerable attention from the computer vision 
research community. It has become an important 
technology for many applications such as bio-
metric authentication, surveillance, intelligent 
man-machine interactions, and so forth. For a 
human to recognize faces in a crowd is an easy 

Figure 6. Texture mosaics used to evaluate the 
proposed network

Figure 7. The classification performances of the 
texture segmentation system as a function of the 
smoothing mask size, which is applied to the 
output image before the winner-take-all opera-
tion is invoked
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task, but for a machine to identify and locate a 
human face in an image or a sequence of images 
is still a challenging problem due to the fact that 
human faces are highly nonrigid objects with 
intrinsic and extrinsic variations. Yang, Krieg-
man, and Ahuja (2002) and Hjelmas and Low 
(2001) published two comprehensive surveys on 
face detection techniques. Most of the popular 
face detectors are appearance-based, which can 
capture the representative variability of facial 
appearance from the training images (Garcia & 
Delakis, 2004; Rowley, Baluja & Kanade, 1998; 

Viola & Jones, 2001). The general framework of 
these face detection systems comprises two basic 
components: a face classifier that can distinguish 
between face and nonface pattern, and a face 
localization procedure that uses the output of the 
face classifier to detect and localize human faces 
in a given image.

Face Classifier

The face classifier is a network with three pro-
cessing layers and a 36x36 input retina; the first 

Network Index No. of Weights No. of Feature Maps No. of Output 
NeuronsLayer 1 Layer 2

Net-01 974 4 8 2

Net-02 1490 5 10 5

Net-03 3106 8 16 10

Table 4. Network configuration used for different number of texture classes

Texture Classification Approach Texture Mosaics Used for Testing Mean
(%)11(a) 11(d) 11(h) 12(a) 12(c)

Proposed method 11.7 21.9 26.2 6.8 9.4 15.2

Proposed method with post filtering 1.9 3.8 4.2 0.3 2.6 2.6

Co-occurrence 9.9 51.1 35.3 1.9 3.3 20.3

Gabor filter bank 8.2 36.9 39.7 6.5 15.6 21.4

Wavelet – Daubechies 4 8.7 23.4 40.9 5.7 8.2 17.4

QMF filter bank – f16b (d) 8.7 18.4 39.8 8.1 8.2 16.6

Table 5. Error rates of different texture classification approaches

                                            
                     (a)                                                             (b)                                                               (c) 

Figure 8. Example of a segmented texture mosaic: (a) Input image, (b) network responses, and (c) seg-
mented image of the texture mosaic
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hidden layer has two feature maps, and the second 
layer has four feature maps. The feature maps of 
the first and second hidden layers are subsampled 
by a factor of two, and those feature maps in 
the second layer are convolved with a low-pass 
filter followed by a down-sampling operation. 
The output layer has one neuron whose output is 
used to classify the input pattern into a face or a 
nonface. The training data were taken from the 
Phung face database (Phung, Bouzerdoum & Chai, 
2005). This database contains a large number 
of face patterns segmented from digital images 
collected from various sources. These images 
contain faces of people of different ages, ethnic 
backgrounds, and genders. The images also vary 
in terms of background, lighting conditions, facial 
expression, and pose. Figure 9 shows a sample of 
the facial images in the database. 

The desired outputs corresponding to the 
face and nonface patterns are set to 1 and -1, 
respectively. Generating a training set with rep-
resentative nonface patterns is a difficult task 
because the nonface class is extremely large; any 
background window can be regarded as a nonface 
pattern. To overcome this problem, a bootstrap 
training procedure (Rowley et al., 1998) was used 
to avoid collecting nonface patterns manually. A 
separate test set of segmented face and nonface 
patterns was used to assess the performance of 
the face classifier. The ROC (receiver operating 
characteristic) curve of the classifier is presented 
in Figure 10. There is a trade-off between the 
correct classification rate and the false alarm 
rate; by simply changing a threshold value, the 
correct classification rate may be increased arbi-
trarily at the expense of the false alarm rate. At 

Figure 9. Examples of face patterns used to train the face classifier

Figure 10. The ROC curve for the face/nonface classifier
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5% false alarm rate, the correct face detection 
rate is 97.6%.

Face Localization

After the network is trained as a face/nonface 
classifier, it is employed to detect and localize 
faces in digital image, or image sequences. Since 
the network retina is a fixed-size array of 36x36 
input nodes and the human faces often appear with 
different sizes, the input image is subsampled at 
different scales to form an image pyramid. At each 
level of the pyramid, the image is processed by 
the network, resulting in a pyramid of network 
responses. Due to the twofold down-sampling 
operation performed at each processing layer, the 
image generated at the output layer is 1/16 the size 
of the input image. This means that adjacent pixels 
in the output image represent network responses 
to input windows whose centers are located four 
pixels apart. Once an output image is computed, 
a threshold Tnet is applied, and those network re-
sponses that are greater than Tnet are considered 
face candidates; their positions are mapped back 
to an image having the same size as the original 
input image. This process is repeated for every 
level of the image pyramid. The threshold Tnet is 
often computed from a set of face and nonface pat-
terns where the minimum error occurs; however, 
in practice, this threshold does not work well for 
every image. One solution to overcome this is to 
set Tnet initially to zero and process the smallest 
image (i.e., the top-level image) of the pyramid. 
Then the mean of all the network responses that 
are greater than zero is used as the threshold for 
the next level of the pyramid, and so forth.

During the face detection process, there is 
always a certain number of background windows 
that will generate high network responses and 
hence will be misclassified as face candidates. 
To reduce the number of false alarms, the fol-
lowing postprocessing steps are taken. Assuming 
the human face is symmetric, the detected face 
candidate is folded along the Y-axis (mirror face 

image) and passed back to the network. The av-
erage of both network responses is taken as the 
final score of the detected face candidate. If the 
final score is less than Tnet, the network response 
at that location is set to zero. Moreover, a number 
of overlapping detections usually occurs around 
the true face position. To fuse these overlapping 
detections into a single face candidate, a simple 
clustering method is applied. First, at each level 
of the image pyramid, a search in an 8x8 region 
is performed around each face candidate, and the 
number of positive responses within the search 
grid is taken as the confidence score of the face 
candidate. Then all the face candidates from the 
series of output images are stored in a list and 
sorted in descending order according to their 
confidence scores. Suppose that Smax is the size 
of the top face candidate in the list (i.e., the face 
candidate with the highest score). All face candi-
dates whose centers are within a neighborhood of 
0.25Smax from the center of the top face candidate 
and whose sizes are between 0.6Smax and 1.4Smax 
are grouped into a single face candidate cluster, 
and the cluster is removed from the list of face 
candidates. The process is repeated until all face 
candidates in the list are clustered. For each clus-
ter, the center of the representative face is taken 
as the centroid of the cluster, and its confidence 
score is computed as the sum of all face candidate 
scores in the cluster. The confidence score of the 
cluster can be used to verify the corresponding 
representative face candidate by comparing it to a 
given threshold. This verification scheme has also 
been applied in other face detection systems to 
reject false detections (Garcia and Delakis, 2004; 
Rowley et al., 1998; Sung & Poggio, 1998).

Furthermore, to estimate the size and posi-
tion of the detected faces, two fine searches are 
performed. The face candidate is first tested at 
nine scales, ranging from 0.4 to 1.6 of the detected 
size. Then, the size of the representative face is 
computed as the average size of the positive detec-
tions; its score is taken as the sum of the responses 
of networks that give positive detections. The 
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position of the face is sought in a search grid of 
eight pixels around the center of the representative 
face. The location of all detected face candidates 
within that region are averaged to give the final 
location. The confidence score of the face is also 
computed as the sum of all positive network 
responses, together with its previous confidence 
score. Although the remaining face candidates 
have passed all these postprocessing steps, there 
may still be some multiple detections around the 
true face. All remaining face candidates that now 
have high confidence scores are stored in a list 
and sorted in descending order. Then a search for 
overlapping face candidates is performed, start-
ing around the center of the face with the highest 
confidence score. Those overlapping face candi-
dates whose centers are within a search region 
of size 0.5Smax are rejected. Furthermore, if the 

intersecting area of the overlapping face candidate 
is greater than 0.2(Smax)

2, the face candidate is also 
removed. The remaining representative faces are 
passed to the network for final verification.

Performance of the Face Detection 
System

The overall face detection system (face classifica-
tion and face localization) was evaluated on digital 
images taken from three databases: MIT-CMU, 
FERET, and BioID. The detection rates of the face 
detector are presented in Table 6, together with 
the number of false detections. Figure 11 shows 
some detected images from the MIT-CMU and 
BioID face databases.

Test set No. of faces Correct detection rate False detections

BioID Database 1522 98.3 % 238

FERET Database 1762 98.4 % 25

MIT-CMU Database 507 87.7 % 138

Web Images 1871 98.0 % 252

Table 6. Detection performance of the face detector on BioID, FERET and MIT/CMU databases

Figure 11. Output images generated from the face detection system
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Gender recognition

Human facial attributes such as gender, age, 
ethnicity, and identity are important visual cues 
that humans use constantly for social interactions 
and communication. These demographic features 
are significant for the development of intelligent 
machine vision systems. Since the early 1990s, 
there has been a strong research effort in gender 
classification due to its potential applications 
in man-machine interaction, face recognition, 
passive demographic data collection, surveil-
lance, security, animation, and so forth. Various 
approaches have been developed for gender 
recognition, including MLPs (Balci & Atalay, 
2002; Golomb, Lawrence, & Sejnowski, 1991; 
Sun, Yuan, Bebis, & Louis, 2002), radial basis 
function networks (RBFs) (Brunelli & Poggio, 
1992), AdaBoost classifier (Shakhnarovich, Viola, 
& Moghaddam, 2002; Wu, Ai, & Huang, 2003), 

and support vector machines (SVMs) (Moghad-
dam, & Yang, 2002). However, gender recognition 
remains a difficult perceptual task for machines 
because of changes in facial appearance and other 
extrinsic image variations (e.g., lighting condi-
tions, image quality, face size, and pose). 

The brain-inspired pattern recognition ar-
chitecture was used for gender recognition. The 
network architecture contains three processing 
layers—two hidden layers and one output layer—
and an input layer of size 32x32. The two hidden 
layers contain a number of feature maps, ranging 
from two to eight. The output layer consists of a 
single neuron used to classify the input image as a 
male or female. The toeplitz- and binary-connec-
tion schemes are used to connect the feature maps 
between layers. Both the toeplitz- and binary-
connected networks were trained and evaluated 
on two face datasets: the first one, DB-1, is the 
FERET database containing 1,152 male and 610 

Figure 12. Examples of face images used for training and testing the gender classifier: (a) Male face 
images and (b) female face images

Table 7. Gender classification performance of the binary-connected networks (BCs) on DB-1 and DB-2 
databases

Network 
Index

No. of 
Weights

No. of Feature Maps Classification Rate (%)

DB-1 (FERET) DB-2 (Phung)

L1 L2 Male Female Total Male Female Total

BC-01 575 2 4 97.1 94.3 96.1 86.1 90.2 88.1

BC-02 862 3 6 97.1 93.6 95.9 88.4 87.8 88.1

BC-03 1149 4 8 97.6 96.4 97.2 87.0 90.3 88.7
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female face images; and the second one, DB-2, 
is the Phung database (Phung et al., 2005), with 
4,000 male and 4,000 female face images. Figure 
12 shows some examples of the male and female 
faces taken from the DB-1 database.

The evaluation of the networks is based on a 
fivefold cross-validation procedure. The classifica-
tion rates of the binary- and toeplitz-connected 
networks are listed in Tables 7 and 8, respectively. 
On the FERET database, both the toeplitz- and 
binary-connected networks achieve excellent re-
sults with classification accuracy over 95%. Using 
12 feature maps, the binary-connected network 
slightly outperforms the SVM-based system 
of Moghaddam and Yang (2002); it achieves a 
classification accuracy of 97.2%, (see Table 9). 
On DB-2, the classification rates are lower than 
those achieved with the FERET database, but all 
the networks achieve a classification rate around 
88% (see Tables 7 and 8). One of the reasons for 
the drop in performance on DB-2 is that the data 
contain faces of people of different ages (ranging 
from children to the elderly); some of the faces 
are difficult to classify even for humans.

cONcLUsION

A multilayered pattern recognition architecture 
was presented, which is inspired by the func-
tional and structural organization of the brain. It 
operates directly on two-dimensional inputs and 
preserves the input topographic mapping in the 
intermediate layers. The network architecture 
can easily be trained to solve various visual pat-
tern recognition tasks using supervised learning. 
The artificial neuron used for the extraction of 
visual features is governed by the biophysical 
mechanism of shunting inhibition, which plays a 
significant role in visual information processing 
in the brain. The proposed architecture was ap-
plied to four real-world visual pattern recognition 
problems; namely, handwritten digit recognition, 
texture segmentation, face detection, and gender 
classification.
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Network 
Index

No. of 
Weights

No. of Feature Maps Classification Rate (%)

DB-1 (FERET) DB-2 (Phung)

L1 L2 Male Female Total Male Female Total

TC-01 575 2 4 96.9 94.3 96.0 85.9 89.7 87.8

TC-02 862 3 6 97.1 95.4 96.5 88.7 88.9 88.8

TC-03 1149 4 8 97.6 94.3 96.4 87.0 89.9 88.4

Table 8. Gender classification performance of the toeplitz-connected networks (TCs) on DB-1 and DB-2 
databases

Face Database Classifier Classification Rate (%)

Male Female Total

Phung Toeplitz-connected network 88.7 88.9 88.8

FERET Binary-connected network 97.6 96.4 97.2

FERET SVM Moghaddam-Yang 97.95 95.21 96.62

Table 9. Comparison of performance of various gender classifiers
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AbstrAct

This chapter, taking FIR filters as an example, presents the discussion on efficiency of different imple-
mentation methodologies of DSP algorithms targeting modern FPGA architectures. Nowadays, pro-
grammable technology provides the possibility to implement digital systems with the use of specialized 
embedded DSP blocks. However, this technology gives the designer the possibility to increase efficiency 
of designed systems by exploitation of parallelisms of implemented algorithms. Moreover, it is possible 
to apply special techniques, such as distributed arithmetic (DA). Since in this approach, general-pur-
pose multipliers are replaced by combinational LUT blocks, it is possible to construct digital filters of 
very high performance. Additionally, application of the functional decomposition-based method to LUT 
blocks optimization, and mapping has been investigated. The chapter presents results of the comparison 
of various design approaches in these areas.
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INtrODUctION

The pattern recognition research field aims to 
design methods that allow recognition of patterns 
in data. It has important application in image 
analysis, character recognition, speech analysis, 
and many others. A pattern recognition system 
is composed of sensors gathering observations 
that have to be classified, a feature extraction part 
that provides specific information from gathered 
observation, and a classification mechanism that 
classifies observation on the basis of extracted 
features. Feature extraction methods are re-
sponsible for reducing the resources required to 
describe observation accurately. In the case of 
image analysis, character recognition, or speech 
analysis, various digital signal-processing (DSP) 
algorithms are used to detect desired features 
of digitalized image or speech signal. Efficient 
implementation of feature extraction-based DSP 
methods requires specific hardware solutions.

The commercial success of hardware imple-
mentations of image processing systems is due 
in large part to revolutionary development in 
microelectronic technologies. By taking advan-
tage of the opportunities provided by modern 
microelectronic technology, we are in a position 
to build very complex digital circuits and systems 
at relatively low cost. There is a large variety of 
logic building blocks that can be exploited. The 
library of elements contains various types of 

gates, a lot of complex gates that can be gener-
ated in (semi-) custom CMOS design, and the 
field programmable logic families that include 
various types of (C)PLDs and FPGAs. The other 
no less important factors of the success are the 
automation of the design process and hardware 
description languages. Modern design tools have 
enabled us to move beyond putting together digital 
components in a schematic entry package to start 
writing code in an HDL specification. However, 
the opportunities created by modern microelec-
tronic technology are not fully exploited because 
of weaknesses in traditional logic design meth-
ods. According to the International Technology 
Roadmap for Semiconductors (1997), the annual 
growth rate in design complexity is equal to 58%, 
while the annual growth rate in productivity is 
only 21% (Figure 1). This means that the number 
of logic gates available in modern devices grows 
faster than the ability to design them meaningfully. 
New methods are required to aid design process 
in a way that possibilities offered by modern 
microelectronics are utilized in the highest pos-
sible degree.

In recent years, digital filtering has been recog-
nized as a primary digital signal processing (DSP) 
operation. With advances in technology, digital 
filters are rapidly replacing analogue filters, which 
were implemented with RLC components. Digital 
filters are used to modify attributes of signal in 
the time or frequency domain through a process 

Figure 1. Difference in growth of device complexity and productivity
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called linear convolution. Traditionally, digital 
signal filtering algorithms are being implemented 
using general-purpose programmable DSP chips. 
Alternatively, for high-performance applications, 
special-purpose fixed function DSP chipsets and 
application-specific integrated circuits (ASICs) 
are used. Typical DSP devices are based on the 
concept of RISC processors with an architecture 
that consists of fast array multipliers. In spite of 
using pipeline architecture, the speed of such 
implementation is limited by the speed of ar-
ray multiplier. Digital filters are implemented 
in such devices as multiply-accumulate (MAC) 
algorithms (Lapsley, Bier, Shoham & Lee, 1997; 
Lee, 1988, 1989). However, the technological 
advancements in field programmable gate arrays 
(FPGAs) in the past decade have opened new 
paths for DSP design engineers.

Digital filtering plays an extremely important 
role in many signal and image processing algo-
rithms. An excellent example is wavelet transform, 
which has gained much attention in recent years. 
Discrete wavelet transform (DWT) is one of the 
useful and efficient signal and image decompo-
sition methods with many interesting properties 
(Daubechies, 1992; Falkowski, 2004; Falkowski 
& Chang, 1997; Rao & Bopardikar, 1998; Rioul 
& Vetterli, 1991). This transformation, similar to 
the Fourier transform, can provide information 
about frequency contents of signals. However, 
unlike Fourier transform, this approach is more 
natural and fruitful when applied to nonstation-
ary signals, like speech, signal, and images. The 
flexibility offered by discrete wavelet transform 
allows researchers to develop and find the right 
wavelet filters for their particular application. For 
example, in fingerprints compression, a particular 
set of bio-orthogonal filters—Daubechies bio-
orthogonal spine wavelet filters—is found to be 
very effective (Brislawn, Bradley, Onyshczak & 
Hopper, 1996). The computational complexity of 
the discrete wavelet transform is very high. Hence, 
efficient hardware implementation is required to 
achieve very good real-time performance. Ap-

plication of the DWT requires convolution of the 
signal with the wavelet and scaling functions. Ef-
ficient hardware implementation of convolution is 
performed as a finite impulse response (FIR) filter. 
Two filters are used to evaluate a DWT: a high-pass 
and a low-pass filter, with the filter coefficients 
derived from the wavelet basis function. 

Progress in the development of program-
mable architectures observed in recent years 
has resulted in digital devices that allow build-
ing very complex digital circuits and systems 
at relatively low cost in a single programmable 
structure. FPGAs are an array of programmable 
logic cells interconnected by a matrix of wires 
and programmable switches. Each cell performs 
a simple logic function defined by a designer’s 
program. An FPGA has a large number (64 to 
more than 300,000) of these cells available to use 
as building blocks in complex digital circuits. The 
ability to manipulate the logic at the gate level 
means that a designer can construct a custom 
processor to efficiently implement the desired 
function. FPGA manufacturers have for years 
been extending their chips’ ability to implement 
digital-signal processing efficiently; for example, 
by introducing low-latency carry-chain-routing 
lines that sped addition and subtraction operations 
spanning multiple logic blocks. Such a mecha-
nism is relatively efficient when implementing 
addition and subtraction operations. However, it 
is not optimal in cost, performance, and power 
for multiplication and division functions. As a 
result, Altera (with Stratix), QuickLogic (with 
QuickDSP, now renamed Eclipse Plus), and Xilinx 
(with Virtex-II and Virtex-II Pro) embedded in 
their chips dedicated multiplier function blocks. 
Altera moved even further along the integration 
path, providing fully functional MAC blocks 
called the DSP blocks. 

Programmable technology makes it possible 
to increase the performance of a digital system 
by implementing multiple, parallel modules in 
one chip. This technology allows also the appli-
cation of special techniques such as distributed 
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arithmetic (DA) (Croisier, Esteban, Levilion & 
Rizo, 1973; Meyer-Baese, 2004; Peled & Liu, 
1974). DA technique is extensively used in com-
puting the sum of product in filters with constant 
coefficients. In such a case, partial product term 
becomes a multiplication with a constant (i.e., 
scaling). DA approach significantly increases the 
performance of an implemented filter by remov-
ing general-purpose multipliers and introducing 
combinational blocks that implement the scaling. 
These blocks have to be efficiently mapped onto 
FPGA’s logic cells. This can be done with the use 
of such advanced synthesis methods as functional 
decomposition (Rawski, Tomaszewicz, & Łuba, 
2004; Rawski, Tomaszewicz, Selvaraj, & Łuba, 
2005; Sasao, Iguchi, & Suzuki, 2005).

In the case of applications targeting FPGA 
structures based on look-up tables (LUTs), the 
influence of advanced logic synthesis procedures 
on the quality of hardware implementation of 
signal and information processing systems is 
especially important. Direct cause of such a situ-
ation is the imperfection of technology mapping 
methods that are widely used at present, such 
as minimization and factorization of Boolean 
function, which are traditionally adapted to be 
used for structures based on standard cells. These 
methods transform Boolean formulas from a 
sum-of-products form into a multilevel, highly 
factorized form that is then mapped into LUT cells. 
This process is at variance with the nature of the 
LUT cell, which from the logic synthesis point 
of view is able to implement any logic function 
of limited input variables. For this reason, for the 
case of implementation targeting FPGA structure, 
decomposition is a much more efficient method. 
Decomposition allows synthesizing the Boolean 
function into a multilevel structure that is built 
of components, each of which is in the form of 
the LUT logic block specified by truth tables. 
Efficiency of functional decomposition has been 
proved in many theoretical papers (Brzozowski & 
Łuba, 2003; Chang, Marek-Sadowska & Hwang, 
1996; Rawski, Jóźwiak & Łuba, 2001; Scholl, 

2001). However, there are relatively few papers in 
which functional decomposition procedures were 
compared with analogous synthesis methods used 
in commercial design tools. The reason behind 
such a situation is the lack of appropriate inter-
face software that would allow a transforming 
description of project structure obtained outside 
a commercial design system into a description 
compatible with its rules. Moreover, the compu-
tation complexity of functional decomposition 
procedures makes it difficult to construct efficient 
automatic synthesis procedures. These difficul-
ties have been eliminated at least partially in so-
called balanced decomposition (Łuba, Selvaraj, 
Nowicka & Kraśniewski, 1995; Nowicka, Łuba 
& Rawski, 1999).

bAsIc tHEOrY

In this chapter, only such information necessary 
for an understanding of this chapter is reviewed. 
More detailed description of functional decom-
position based on partition calculus can be found 
in Brzozowski and Łuba (2003).

cube representation of boolean 
Functions 

A Boolean function can be specified using the 
concept of cubes (e.g., input terms, patterns) 
representing some specific subsets of minterms. 
In a minterm, each input variable position has a 
well-specified value. In a cube, positions of some 
input variables can remain unspecified, and they 
represent “any value” or “don’t care” (–). A cube 
may be interpreted as a p-dimensional subspace of 
the n-dimensional Boolean space or as a product 
of n–p variables in Boolean algebra (p denotes 
the number of components that are “–“). Bool-
ean functions are typically represented by truth 
tables. A truth table description of a function 
using minterms requires 2n rows for a function 
of n variables. For function from Table 1, a truth 
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table with 26 = 64 rows would be required. Since 
a cube represents a set of minterms, application 
of cubes allows for much more compact descrip-
tion in comparison with minterm representation. 
For example, cube 0101–0 from row 1 of the truth 
table from Table 1 represents a set of two minterms 
{010100, 010110}.

For pairs of cubes and for a certain input subset 
B, we define the compatibility relation COM as 
follows: each two cubes S and T are compatible 
(i.e., S, T ∈ COM(B) ) if and only if x(S) ~ x(T) 
for every x ⊆ B. The compatibility relation ~ on 
{0, –, 1) is defined as follows: 0 ~ 0, – ~ –, 1 ~ 
1, 0 ~ –, 1 ~ –, – ~ 0, – ~ 1, but the pairs (1, 0) 
and (0, 1) are not related by ~. The compatibility 
relation on cubes is reflexive and symmetric, but 
not necessarily transitive. In general, it generates 
a “partition” with nondisjoint blocks on the set of 
cubes representing a certain Boolean function F. 
The cubes contained in a block of the “partition” 
are all compatible with each other.

”Partitions” with nondisjoint blocks are re-
ferred to as blankets (Brzozowski & Łuba, 2003). 
The concept of blanket is a simple extension of 
ordinary partition, and typical operations on 
blankets are strictly analogous to those used in 
ordinary partition algebra.

representation and Analysis of 
Boolean Functions with Blankets

A blanket on a set S is such a collection of (not 
necessarily disjoint) subsets Bi of S, called blocks, 
that:

i
i

B  S=


The product of two blankets β1 and β2 is defined 
as follows:

β1 • β2 = { Bi ∩ Bj | Bi ∈ β1 and Bj ∈β2 }

For two blankets we write β1 ≤ β2 if and only if for 
each Bi in β1 there exists a Bj in β2 such that Bi ⊆ Bj. 
The relation ≤ is reflexive and transitive.

Example 1: Blanket-Based
representation of boolean
Functions

For function F from Table 1, the blankets induced 
by particular input and output variables on the 
set of function F’s input patterns (cubes) are as 
follows:

βx1 = {1  2, 3,  4, 5, 6, 8, 9; 3,  6, 7,  9, 10}, ,
βx2 = {5 6,  7, 8, 10; 1, 2, 3, 4,  6, 7,  9, 10, },
βx3 = {1 2,  3, 4, 8, 9; 5, 6, 7, 8,  10, },
βx4 = {2,  3, 5, 8, 9, 10; 1, 2, 4, 5,  6, 7,  8},
βx5 = {1,  2, 3, 5, 6, 7, 8, 10; 1, 4, 5, 6,  8, 9,  10},
βx6 = {1 2,  3, 4, 7, 8, 9, 10; 3,  4, 5,  6, 7,  9, 10, },
βy1 = {1 2,  3, 4, 5, 6, 7; 8,  9, 10, },

The product of two blankets β1 and β2:

βx2x4 = βx2 • βx4 = 
{5, 8, 10; 5, 6, 7, 8; 2, 3, 9, 10; 1, 2, 4, 6, 7},
βx2x4 ≤ βx2 .

Information on the input patterns of a certain 
function F is delivered by the function’s inputs and 

x1 x2 x3 x4 x5 x6 y1

1 0 1 0 1 – 0 0

2 0 1 0 – 0 0 0

3 – 1 0 0 0 – 0

4 0 1 0 1 1 – 0

5 0 0 1 – – 1 0

6 – – 1 1 – 1 0

7 1 – 1 1 0 – 0

8 0 0 – – – 0 1

9 – 1 0 0 1 – 1

10 1 – 1 0 – – 1

Table 1. Boolean function F(x1 , x2 , x3 , x4 , x5 , 
x6 )
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used by its outputs with respect to the blocks of 
the input and output blankets. Knowing the block 
of a certain blanket, one is able to distinguish the 
elements of this block from all other elements, but 
is unable to distinguish between elements of the 
given block. In this way, information in various 
points and streams of discrete information systems 
can be modeled using blankets.

serial Decomposition

The set X of a function’s input variable is par-
titioned into two subsets: free variables U and 
bound variables V, such that U ∪ V = X. Assume 
that the input variables x1,...,xn have been relabeled 
in such way that:

U = {x1,...,xr} and
V = {xm–s+1,...,xn}.

Consequently, for an n-tuple x, the first r 
components are denoted by xU, and the last s 
components, by xV.

Let F be a Boolean function, with n > 0 inputs 
and m > 0 outputs, and let (U, V) be as previously 
indicated. Assume that F is specified by a set F 
of the function’s cubes. Let G be a function with 
s inputs and p outputs, and let H be a function 
with r + p inputs and m outputs. The pair (G, H) 
represents a serial decomposition of F with re-

spect to (U, V), if for every minterm b relevant 
to F, G(bV) is defined, G(bV) ∈ {0, 1}p., and F(b) 
= H(bU, G(bV) ). G and H are called blocks of the 
decomposition (Figure 2). 

theorem 1: Existence of serial
Decomposition (Brzozowski & Łuba, 
2003)

Let βV , βU , and βF be blankets induced on the 
function’s F input cubes by the input subsets V 
and U, and outputs of F, respectively.

If there exists a blanket βG on the set of func-
tion F’s input cubes such that βV ≤ βG , and βU • 
βG ≤ βF , then F has a serial decomposition with 
respect to (U, V).

Proof of Theorem 1 can be found in Brzozowski 
and Łuba (2003).

As follows from Theorem 1, the main task in 
constructing a serial decomposition of a function 
F with given sets U and V is to find a blanket βG 
that satisfies the condition of the theorem. Since 
βG must be ≥ βV , it is constructed by merging 
blocks of βV as much as possible.

Two blocks Bi and Bj of blanket βV are com-
patible (merge able), if blanket γij obtained from 
blanket βV by merging Bi and Bj into a single block 
satisfies the second condition of Theorem 1; that 
is, if βU • γij ≤ βF. Otherwise blocks Bi and Bj are 
incompatible (unmergeable). A subset δ of blocks 
of the blanket βV is a compatible class of blocks if 
the blocks in δ are pairwise compatible. A com-
patible class is maximal if it is not contained in 
any other compatible class.

From the computational point of view, finding 
maximal compatible classes is equivalent to find-
ing maximal cliques in a graph Γ = (N, E), where 
the set N of nodes is the set of blocks of βV and set 
E of edges is formed by set of compatible pairs.

The next step in the calculation of βG is the 
selection of a set of maximal classes, with minimal 
cardinality, that covers all the blocks of βV . The 
minimal cardinality ensures that the number of 

Figure 2. Schematic representation of the serial 
decomposition
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blocks of βG, and hence the number of outputs of 
the function G, is as small as possible.

In certain heuristic strategies, both procedures 
(finding maximal compatible classes and then 
finding the minimal cover) can be reduced to the 
graph coloring problem.

Calculating βG corresponds to finding the mini-
mal number k of colors for graph Γ = (N, E). 

Example 2

For the function from Table 1 specified by a set 
F of cubes numbered 1 through 10, consider a 
serial decomposition with U = {x2, x4, x5} and V 
= {x1, x3, x6}.

We find:

βU = βx2 x4 x5 = βx2 • βx4 • βx5= 
{5, 8, 10; 5, 6, 7, 8; 2, 3, 10; 1, 2, 6, 7; 9, 10; 1, 4, 6 },
βV = βx1 x3 x6 = βx1 • βx3 • βx6= 
{1, 2, 3, 4, 8, 9; 3, 4, 9; 8; 5, 6; 3, 9; 7, 10 ; 6, 7, 10},
βF = βy1= {1, 2, 3, 4, 5, 6, 7; 8, 9, 10},

For:

βV = {
1 2 3 4 5 6 7B B B B B B B           

1, 2, 3, 4, 8, 9 ; 3, 4 ,9 ; 8 ; 5, 6 ; 3, 9 ; 7, 10 ; 6, 7, 10 }

the following are the unmergeable pairs: (B1, B4), 
(B1, B6), (B1, B7), (B2, B6), (B2, B7), (B3, B4), (B3, 
B6), (B3, B7), (B4, B6), (B4, B7), (B5, B6), and (B5, 
B7). Using the graph coloring procedure, we find 
that three colors are needed here (Figure 3). 

Nodes B1, B3 are assigned one color, nodes 
B2, B4, B5 are assigned a second color, and a 
third color is assigned for nodes B6, B7. The sets 
of nodes assigned to different colors form the 
blocks of βG.

βG = {1, 2, 3, 4, 8, 9 ;  3, 4, 5, 6, 9 ;  6, 7, 10}

It is easily verified that βG satisfies the condi-
tion of Theorem 1. Thus, function F has a serial 
decomposition with respect to (U, V).

Since βG has 3 blocks, to encode blocks of this 
blanket, two encoding bits g1 and g2 have to be used. 
Let us assume that we use the encoding:

βG = {
100 0 10

   
1, 2, 3, 4, 8, 9 ;  3, 4, 5, 6, 9 ; 6, 7, 10 }.

To define a function G by a set of cubes, we 
calculate all the cubes, r(Bi ), assigned to each 
block Bi of βV. The relationship between blocks 
of βV and their cube representatives, r(Bi ), relies 
on containment of block Bi in blocks of βxj from 
xj ∈ V.

Denoting blocks of βV from Example 2 as B1 
through B7, we have r(B1) = 000. This is because 
B1 = {1, 2, 3, 4, 8, 9} is included in the first blocks 
of βx1, βx3 and βx6. For B2 = {3, 4, 9}, we have: B2 is 
included in the first block of βx1, in the first block 
βx3 and in both blocks of βx6. Hence, r(B2) = 00–. 
Similarly, r(B3) = 0–0, r(B4) = 011, r(B5) = –0–, 
r(B6) = 11–, r(B7) = 111.

Finally, the value of function G is obtained on 
the basis of containment of blocks Bi in blocks of βG. 
Block B1={1, 2, 3, 4, 8, 9} of blanket βV is contained 
in block βG that has been encoded with 00. Since 
r(B1) = 000, we have G(r(B1)) = G(x1 = 0, x3 = 0, x6 
= 0) = 00. Similarly, G(r(B3)) = 00, G(r(B4)) = 01, 
G(r(B6)) = 10 and G(r(B7)) = 10. However, block 
B2 = {3, 4, 9} is contained in two blocks of βG (one 

Figure 3. Incompatibility graph of βV’ s blocks
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encoded “00” and the second “01”). The represen-
tative “00–” of this block has nonempty product 
with representative “000” of B1 and representative 
“0–0” of B3, which was assigned output “00.” To 
avoid conflicts, we must subtract cubes “000” and 
“0–0” from cube “00–.” The result is cube “001” 
that may be assigned output “01.” The same applies 
to block B5. The representative “–0–” of this block 
has nonempty product with representative of B1 
and B3, which was assigned output “00.” We must 
subtract cubes “000” and “0–0” from cube “0–0,” 
and the result in the form of cube “10–” may be 
assigned output “01”.

Truth table of function G is presented in Table 
2a. To compute the cubes for function H, we 
consider each block of the product βU • βG . Their 
representatives are calculated in the same fashion. 
Finally, the outputs of H are calculated with respect 
to βF (Table 2b).

The process of functional decomposition 
consists of the following steps:

• Selection of an appropriate input support V 
for block G (input variable partitioning)

• Calculation of the blankets βU , βV and βF
• Construction of an appropriate multiblock 

blanket βG (corresponds to the construction 
of the multivalued function of block G)

• Creation of the binary functions H and G 
by representing the multiblock blanket βG 
as the product of a number of certain two-

block blankets (equivalent to encoding the 
multivalued function of block G defined by 
blanket βG with a number of binary output 
variables)

In a multilevel decomposition, this process is 
applied to functions H and G repetitively, until each 
block in the obtained network in this way can be 
mapped directly to a logic block of a specific imple-
mentation structure (Łuba & Selvaraj, 1995).

The selection of an appropriate input variable 
partitioning is the main problem in functional 
decomposition (Rawski, Jóźwiak & Łuba, 1999a; 
Rawski, Selvaraj & Morawiecki, 2004). The choice 
of sets U and V from set X determines the construc-
tion of an appropriate blanket βG, which satisfies 
Theorem 1. The existence of such a blanket βG 
implies the existence of a serial decomposition. 
Blankets βV, βG, βU • βG, and βF constitute the basis 
for the construction of subfunctions H and G in 
serial decomposition. In other words, knowing 
βV , βU , and βF , and having βG, one can construct 
particular subfunctions G and H.

x1 x3 x6 g1 g2

1 0 0 0 0 0

2 0 0 1 0 1

3 0 – 0 0 0

4 0 1 1 0 1

5 1 0 – 0 1

6 1 1 – 1 0

7 1 1 1 1 0

x2 x4 x5 g1 g2 y1

1 1 1 – 0 0 0

2 1 – 0 0 0 0

3 1 0 0 0 0 0

4 1 0 0 0 1 0

5 1 1 1 0 0 0

6 1 1 1 0 1 0

7 0 1 1 0 1 0

8 – 1 – 0 1 0

9 – 1 – 1 0 0

10 – 1 0 1 0 0

11 0 – – 0 0 1

12 1 0 1 0 0 1

13 1 0 1 0 1 1

14 – 0 – 1 0 1

Table 2a. Function G of the serial decomposition

Table 2b. Function H of the serial decomposition
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The input variables of block G and their cor-
responding blankets, and the output blanket βG of 
block G define together the multivalued func-
tion of block G. The structure of βG obviously 
influences the shape of the subfunctions G and 
H (Figure 2). Blanket βG determines the output 
values of function G. Each value of this multi-
valued function corresponds to a certain block of 
the blanket βG. Considering the number of values 
of the multivalued function of a certain subsys-
tem in decomposition is therefore equivalent to 
considering the number of blocks in blanket βG 
of this subsystem. A minimum of  log2 q binary 
variables is required for encoding q values. Thus, 
if q denotes the number of blocks in βG, then the 
minimum required number of binary outputs from 
G is equal to k = log2 q. 

Since function H is constructed by substitut-
ing in the truth table of function F the patterns of 
values of the primary input variables from set V 
(bound variables) with the corresponding values 
of function G, it is obvious that the choice of βG 
influences the subfunction H. The outputs of G 
constitute a part of the input support for block H. 
Thus, the size of block G and the size of block H 
both grow with the number of blocks in blanket 
βG. The minimum possible number of blocks in 
βG strongly depends on the input support chosen 
for block G, because βG is computed by merging 
some blocks of βV , this being the blanket induced 
by the chosen support.

Function H is decomposed in the successive 
steps of the multilevel synthesis process. This is 
why blanket βG has a direct influence on the next 
steps of the process. The structure of the blanket 
βG determines the difficulty of the successive de-
composition steps and influences the final result of 
the synthesis process (characterized by the number 
of logic blocks and number of logic levels). The 
number of blocks in blanket βG is the most decisive 
parameter. The strong correlation of the number 
of blanket βG’s blocks with the decomposition’s 
quality has been shown in Rawski, Jóźwiak, and 
Łuba (1999b), and this number can be used as a 
criterion for testing individual solutions.

In multilevel logic synthesis methods, the se-
rial decomposition process is applied recursively 
to functions H and G obtained in the previous 
synthesis steps until each block of the resulting 
net can be mapped directly to a single logic block 
of a specific implementation structure (Łuba, 1995; 
Łuba & Selvaraj, 1995). In the case of look-up table 
FPGAs, the multilevel decomposition process 
ends when each block of the resulting net can be 
mapped directly into a configurable logic block 
(CLB) of a specific size (typically the CLB size is 
from 4 to 6 inputs and 1 or 2 outputs). Although 
algorithms of multilevel logic synthesis can also 
use parallel decomposition in order to assist the 
serial decomposition (Łuba et al., 1995), the final 
results of the synthesis process strongly depend 
on the quality of the serial decomposition.

Parallel Decomposition

Consider a multiple-output function F. Assume 
that F has to be decomposed into two components, 
G and H, with disjoint sets YG and YH of output 
variables. This problem occurs, for example, when 
we want to implement a large function using 
components with a limited number of outputs. 
Note that such a parallel decomposition can also 
alleviate the problem of an excessive number of 
inputs of F. This is because for typical functions, 
most outputs do not depend on all input variables. 
Therefore, the set XG of input variables on which 
the outputs of YG depend may be smaller than X. 
Similarly, the set XH of input variables on which 
the outputs of YH depend may be smaller than X. 
As a result, components G and H have not only 
fewer outputs but also fewer inputs than F. The 
exact formulation of the parallel decomposition 
problem depends on the constraints imposed by 
the implementation style. One possibility is to find 
sets YG and YH , such that the combined cardinality 
of XG and XH is minimal. Partitioning the set of 
outputs into only two disjoint subsets is not an 
important limitation of the method, because the 
procedure can be applied again for components 
G and H. 
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Example 3

Consider the multiple-output function given in 
Table 3. The minimal sets of input variables on 
which each output of F depends are:

y1: {x1, x2, x6}
y2: {x3, x4}
y3: {x1, x2, x4, x5, x9}, {x1, x2, x4, x6, x9}
y4: {x1, x2, x3, x4, x7}
y5: {x1, x2, x4}
y6: {x1, x2, x6, x9}

An optimal two-block decomposition, mini-
mizing the card XG + card XH (where card X is 
the cardinality of X), is YG = {y2, y4, y5} and YH 
={y1, y3, y6}, with XG = {x1, x2, x3, x4, x7} and 
XH = {x1, x2, x4, x6, x9}. The truth tables for com-
ponents G and H are shown in Table 4. 

The algorithm itself is general in the sense that 
the function to be parallel decomposed can be 
specified in compact cube notation. Calculation 
of the minimal sets of input variables for each 
individual output can be a complex task. Thus, 
in practical implementation, heuristic algorithms 
are used, which support calculations with the help 
of so-called indiscernible variables.

x1 x2 x3 x4 x5 x6 x7 x8 x9 y1 y2 y3 y4 y5 y6

1 0 0 0 1 1 1 0 0 0 0 0 0 0 – 0

2 1 0 1 0 0 0 0 0 0 0 0 – 1 0 1

3 1 0 1 1 1 0 0 0 0 0 1 1 0 1 1

4 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0

5 1 0 1 0 1 0 0 0 0 0 0 0 – 0 1

6 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0

7 1 1 1 0 0 0 0 0 0 1 0 – 0 1 0

8 1 0 1 1 0 1 0 0 0 1 1 0 0 – 1

9 1 0 1 1 0 1 1 0 0 – 1 0 1 – 1

10 1 1 1 0 0 0 0 1 0 1 0 1 0 1 –

11 0 0 0 1 1 1 0 0 1 0 0 1 0 – 1

12 0 0 0 1 1 0 0 0 1 – – 1 0 0 0

Table 3. Function F

x1 x2 x3 x4 x7 y2 y4 y5

1 0 0 0 1 0 0 0 0

2 1 0 1 0 0 0 1 0

3 1 0 1 1 0 1 0 1

4 1 1 1 1 0 1 1 1

5 0 0 1 1 0 1 1 0

6 1 1 1 0 0 0 0 1

7 1 0 1 1 1 – 1 –

x1 x2 x4 x6 x9 y1 y3 y6

1 0 0 1 1 0 0 0 0

2 1 0 0 0 0 0 0 1

3 1 0 1 0 0 0 1 1

4 1 1 1 1 0 0 1 0

5 0 0 1 0 0 1 0 0

6 1 1 0 0 0 1 1 0

7 1 0 1 1 0 1 0 1

8 0 0 1 1 1 0 1 1

9 0 0 1 0 1 – 1 0

Table 4a. Function G of parallel decomposition

Table 4b. Function H of parallel decomposition
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balanced Functional Decomposition

The balanced decomposition is an iterative 
process in which, at each step, either parallel or 
serial decomposition of a selected component is 
performed. The process is carried out until all 
resulting subfunctions are small enough to fit 
blocks with a given number of input variables.

Example 4

The influence of the parallel decomposition on the 
final result of the FPGA-based mapping process 
will be explained with the function F given in 
Table 5, for which cells with four inputs and one 
output are assumed (this is the size of Altera’s 
FLEX FPGAs).

As F is a 10-input, two-output function, in 
the first step of the decomposition, particularly 
in automated mode, serial decomposition is per-
formed. The algorithm extracts function g with 
inputs numbered 1, 3, 4, and 6; thus, the next step 
deals with seven-input function H, for which again 
serial decomposition is assumed, now resulting 
in block G, with four inputs and two outputs 
(implemented by two cells). It is worth noting that 
the obtained block G takes as its inputs variables 
denoted 0, 2, 5, and 7, which, fortunately, belong 
to primary variables, and therefore the number of 
levels is not increased in this step as it is shown 
in Figure 4a. In the next step, we apply parallel 
decomposition. Parallel decomposition generates 
two components, both with one output but four 
and five inputs, respectively. The first one forms 
a cell (Figure 4b). The second component is sub-
ject to two-stage serial decomposition as shown 
in Figure 4c. The obtained network can be built 
of seven (four to one) cells, where the number of 
levels in the critical path is three.

The same function decomposed with parallel 
decomposition, the first step shown in Figure 5, 
leads to a completely different structure. Parallel 
decomposition applied directly to function F gen-
erates two components, both with six inputs and 

type fr
.i 10
.o  2
.p 25
0101000000 00
1110100100 00
0010110000 10
0101001000 10
1110101101 01
0100010101 01
1100010001 00
0011101110 01
0001001110 01
0110000110 01
1110110010 10
0111100000 00
0100011011 00
0010111010 01
0110001110 00
0110110111 11
0001001011 11
1110001110 10
0011001011 10
0010011010 01
1010110010 00
0100110101 11
0001111010 00
1101100100 10
1001110111 11
.e

Table 5.

one output. Each of them is subject to two-stage 
serial decomposition. For the first component, 
a disjoint serial decomposition with four inputs 
and one output can be applied (Figure 5a). The 
second component can be decomposed serially 
as well; however, with the number of outputs of 
the extracted block, G equals two. Therefore, 
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to minimize the total number of components, a 
nondisjoint decomposition strategy can be applied. 
The truth tables of the decomposed functions g1, 
h1, g2, h2, are shown in Table 6. The columns in 
the tables denote variables in the order shown 
in Figure 5; for example, the first left-hand side 
column in Table 6b denotes variable numbered 
4, the second variable numbered 6, and the third 
denotes variable g1. Such a considerable impact on 
the structure results from the fact that the parallel 
decomposition simultaneously reduces the num-
ber of inputs to both the resulting components, 
leading to an additional improvement in the final 
representation.

The idea of intertwining parallel and serial 
decomposition has been implemented in a pro-
gram called DEMAIN. DEMAIN has two modes: 
automatic and interactive. It can also be used for 
the reduction of the number of inputs of a func-
tion when an output depends on only a subset of 
the inputs. From this point of view, DEMAIN 
is a tool specially dedicated to FPGA-oriented 
technology mapping.

Given a function F with n inputs and m out-
puts, and a logic cell (LC) with Cin inputs and Cout 
outputs, a decomposition process is carried out by 
the following steps:

1. If n ≤ m, use parallel decomposition. Continue 
iteratively for each of the obtained compo-
nents.

2. If n > m, try disjoint serial decomposition 
with the number of block G inputs equal to 
the number Cin of LC inputs, and the number 
of block G outputs equal to the number Cout 
of LC outputs. If such a serial decomposition 
is found, find the corresponding H. Continue 
iteratively with F = H. Otherwise, try to find 
G with fewer inputs than Cin and/or fewer 
outputs than Cout. If such a G is found, find H. 
Continue iteratively with F = H. In case a G 
that fits in one cell cannot be found, try a larger 
G. This step is repeated until decomposition 
with a function G larger than the cell exists. 
Find H and continue with F = H. Function G 
will have to be decomposed later.

The decomposition is carried out until all re-
sulting subfunctions are small enough to fit into 
logic cells available in the assumed implementa-
tion technology. 

Figure 4. Decomposition of function F obtained 
with a strategy, where serial decomposition is 
performed at first

Figure 5. Decomposition of function F with a 
strategy, where parallel decomposition is per-
formed at first
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There are only a few applications (e.g., adaptive 
filters) where general programmable filter archi-
tecture is required. In many cases, the coefficients 
do not change over time—linear time—invariant 
filters (LTI). Digital filters are generally classified 
as being finite impulse response (FIR) or infinite 
impulse response (IIR). As the names imply, an 
FIR filter consists of a finite number of sample 
values, reducing the previously presented con-
volution to a finite sum per output sample. An 
IIR filter requires that an infinite sum has to be 
performed. In this chapter, implementation of the 
LTI FIR filters will be discussed.

The output of an FIR filter of order (length) L, 
to an input time-samples x[n], is given by a finite 
version of convolution sum:

1

0
[ ] [ ] [ ]

L

k
y n x k c k

-

=

= ⋅∑    (2)

The L-th order LTI FIR filter is schematically 
presented in Figure 6. It consists of a collection 
of delay line, adders, and multipliers.

Much available digital filter software enables 
very easy computation of coefficients for a given 
filter. However, the challenge is mapping the FIR 
structure into suitable architecture. Digital filters 
are typically implemented as multiply-accumulate 
(MAC) algorithms with the use of special DSP 
devices. 

Efficient hardware implementation of a filter’s 
structure in programmable devices is possible 
by optimizing the implementation of multipliers 
and adders. In modern programmable structures, 
specialized embedded blocks can be used to imple-
ment multipliers, increasing the performance 
of the designed system. Moreover, in the case 
of Altera’s devices, a whole MAC unit can be 
implemented in embedded DSP block, making 
the design methodology very similar to the one 
used in the case of DSP processors.

In the case of programmable devices, how-
ever, direct or transposed forms are preferred for 
maximum speed and lowest resource utilization. 

a) function g1

0110 1

1101 1

1000 1

0010 1

0000 0

0101 0

1100 0

0100 0

0011 0

1011 0

1111 0

b) function h1

-01 0

011 1

111 0

100 1

0-0 0

110 0

c) function g2

0110 1

0011 1

0100 1

1000 1

0101 1

1100 0

0010 0

1010 0

1110 0

0001 0

0111 0

1111 0

d) function h2

10-1 0

-101 1

-111 1

0011 0

0001 1

1-00 0

0000 0

1110 1

1010 0

0100 1

0010 1

Table 6.

DIGItAL FILtErs

Digital filters are typically used to modify the 
attributes of a signal in the time or frequency do-
main through a process called linear convolution 
(Meyer-Baese, 2004). This process is formally 
described by the following formula:

[ ] [ ] [ ] [ ] [ ] [ ] [ ]
k k

y n x n f n x k f n k x k c k= ∗ = ⋅ - = ⋅∑ ∑
      (1)

where the values c[i] ≠ 0 are called the filter’s 
coefficients.
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This is because the approach enables exploitation 
of prevalent parallelism in the algorithm.

A completely different FIR architecture is 
based on the distributed arithmetic concept. In 
contrast to a conventional sum-of-products archi-
tecture, in the distributed arithmetic method, the 
sum of products of a specific bit of the input sample 
over all coefficients is computed in one step.

DIstrIbUtED ArItHMEtIc
MEtHOD

The distributed arithmetic method is a method 
of computing the sum of products. In many DSP 
applications, a general-purpose multiplication 
is not required. In the case of filter implementa-
tion, if filter coefficients are constant in time, 
then the partial product term x[n] ∙ c[n] becomes 
a multiplication with a constant. Then, taking 
into account the fact that the input variable is a 
binary number:

1

0
[ ] [ ] 2 ,   where  [ ] [0,1]

B
b

b b
b

x n x n x n
-

=

= ⋅ ∈∑
 (3)

The whole convolution sum can be described 
as shown next:

1 1 1 1

0 0 0 0
[ ] 2 [ ] [ ] 2 ( [ ], [ ])

B L B L
b b

b b
b k b k

y n x k c k f x k c k
- - - -

= = = =

= ⋅ ⋅ = ⋅∑ ∑ ∑ ∑
       (4)

The efficiency of filter implementation based 
on this concept strongly depends on the implemen-

tation of the function f(xb[k],c[k]). The preferred 
implementation method is to realize the mapping 
f(xb[k],c[k]) as the combinational module with L 
inputs. The schematic representation of signed 
DA filter structure is shown in Figure 7, where 
the mapping f is presented as a lookup table that 
includes all the possible linear combinations of 
the filter coefficients and the bits of the incoming 
data samples (Meyer-Baese, 2004). The utility 
programs that generate the look-up tables for 
filters with given coefficients can be found in 
the literature.

In the experiments presented in this chapter, 
a variation of DA architecture has been used. It 
increases the speed of a filter at the expense of 
additional LUTs, registers, and adders. The basic 
DA architecture for computing the length L sum 
of products accepts one bit from every L input 
word. The computation speed can be significantly 
increased by accepting for the computation more 
bits per word. Maximum speed can be achieved 
with a fully pipelined parallel architecture, as 
shown in Figure 8. Such an implementation can 
outperform all commercially available program-
mable signal processors.

The HDL specification of the look-up table 
can be easily obtained for the filter described 
by its c[i] coefficients. Since the size of look-up 
tables grows exponentially with the number of 
inputs, efficient implementation of these blocks 
becomes crucial to the final resource utilization 
of filter implementation. Here, advanced synthesis 
methods based on balanced decomposition can 
be successfully applied for technology mapping 
of DA circuits onto FPGA logic cells.

rEsULts

Experimental results for FIR filter implementation 
with different design methodologies are presented 
in this section. Filter with length (order) 15 has 
been chosen for the experiment. It has eight-bit 
signed input samples, and its coefficients can 

Figure 6. Direct form FIR filter
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be found in Goodman and Carey (1977). For 
comparison, the filter has been implemented in 
Stratix EP1S10F484C5, Cyclone EP1C3T100C6, 
and CycloneII EP2C5T144C6 structures using 
Altera QuartusII v5.1 SP0.15.

Table 7 presents the comparison of implemen-
tation results for different design methodologies. 
The column falling under the “MAC” label 
presents the results obtained by implementing 
the multiply-and-accumulate strategy with the 
use of logic cell resources; without utilization 
the embedded DSP blocks. Multipliers as well 
as accumulators were implemented in a circuit of 
logic cells. This implementation, due to its serial 

character, requires 15 clock cycles to compute 
the result. It requires a relatively large amount of 
resources, while delivering the worst performance 
in comparison to other implementations.

The next column, “MULT block,” holds the 
implementation results of a method similar to 
“MAC” with a difference where multipliers were 
implemented in dedicated DSP-embedded blocks. 
It can be noticed that the performance of the fil-
ter increased at the cost of additional resources 
in the form of DSP-embedded blocks. Results 
in the column falling under “DSP block” were 
obtained by implementing the whole MAC unit 
in the embedded DSP block. Further increase in 

Figure 7. DA architecture with look-up table (LUT)

Figure 8. Parallel implementation of a distributed arithmetic scheme
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performance could be noticed, but still 15 clock 
cycles have to be used to compute the result. 

Results given in the “Parallel” column were 
obtained by implementing the filter in a parallel 
manner. In this case, the results were obtained in 
a single clock cycle. Even though, the maximum 
frequency of this implementation is less than pre-
vious ones, it outperforms these implementations 
due to its parallel character.

Application of the DA technique results in 
the increased performance since the maximum 
frequency has increased. However, in this ap-
proach, more logic cell resource has been used 
since multipliers have been replaced by large 
combinational blocks and no DSP-embedded 
modules have been utilized.

Finally, results presented in the column 
“DA decomposed” demonstrate that the appli-
cation of the DA technique combined with an 
advanced synthesis method based on balanced 
decomposition results in a circuit that not only 
outperforms any other implemented circuit but 
also reduces the necessary logic resource. The 
balanced decomposition technique was applied 
to decompose the combinational blocks of the 
DA implementation.

In Table 8, the experimental results of 
Daubechies’ dbN, coifN, symN, and 9/7-tap bio-
orthogonal filter banks are presented. Filters 9/7 
are in two versions: (a) analysis filter and (s) syn-
thesis filter. Filters dbN, coifN, symN are similar 
for analysis and synthesis (a/s). All filters have 
16-bit signed samples and have been implemented 
with the use of distributed arithmetic concept in 
the fully parallel way. Balanced decomposition 
software was also added to increase efficiency of 
the DA tables’ implementations.

Table 8 presents the result for filter imple-
mentations using Stratix EP1S10F484C5 device, 
with a total count of 10,570 logic cells. In the 
implementation without decomposing the filters, 
the new method was modeled in AHDL, and 
Quartus2v6.0SP1 was used to map the model 
into the target structure. In the implementation 
using decomposition, the automatic software 
was used to initially decompose DA tables, and 
then the Quartus system was applied to map the 
filters into FPGA.

The application of the balanced decomposi-
tion concept significantly decreased the logic cell 
resource utilization and at the same time increased 
the speed of the implementation.

Chip MAC MULT Block DSP Block Parallel DA DA Decomposed

S

LC 448 294 225 402 997 567

DSP 0 2 4 30 0 0

fmax [MHz] 74.6 85.06 107.30 53.3 65.14 78.75

C

LC 429 436 429 961 997 567

DSP 1) – – – – – –

fmax [MHz] 77.85 79.31 77.85 57.71 72.56 70.87

CII

LC 427 294 275 670 952 567

DSP 0 2 2 26 0 0

fmax [MHz] 82.62 97.5 105.59 67.02 78.21 81.46

Table 7. Implementation results for different design methodologies. Chip: S – Stratix EP1S10F484C5; 
C – Cyclone EP1C3T100C6, CII – CycloneII EP2C5T144C6 1) DSP blocks are not present in this 
device family.
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cONcLUsION

The modern programmable structures deliver 
the possibilities to implement DSP algorithms in 
dedicated embedded blocks. This makes designing 
of such an algorithm an easy task. However, the 
flexibility of programmable structures enables 
more advanced implementation methods to be 
used. In particular, exploitation of parallelism 
in the algorithm to be implemented may yield 
very good results. Additionally, the application 
of advanced logic synthesis methods based on 
balanced decomposition, which is suitable for 
FPGA structure, leads to results that cannot be 
achieved with any other method.

The presented results lead to the conclusion 
that if the designer decides to use the methodol-
ogy known from DSP processor application, 
the implementation quality will profit from the 
utilization of specialized DSP modules embed-
ded in the programmable chip. However, best 

results can be obtained by utilizing the parallel-
ism in implemented algorithms and by applying 
advanced synthesis methods based on decomposi-
tion. Influence of the design methodology and the 
balanced decomposition synthesis method on the 
efficiency of practical digital filter implementa-
tion is particularly significant when the designed 
circuit contains complex combinational blocks. 
This is a typical situation when implementing 
digital filters using the DA concept. 

The most efficient approach to logic synthesis 
of FIR filter algorithms discussed in this chapter 
relies on the effectiveness of the functional de-
composition synthesis method. These methods 
were already used in decomposition algorithms; 
however, they were never applied together in a 
technology-specific mapper targeted at a look-up 
table FPGA structure. This chapter shows that it 
is possible to apply the balanced decomposition 
method for the synthesis of FPGA-based circuits 
directed toward area or delay optimization.

Filter Order Without Decomposition With Decomposition

LC fmax [MHz] LC fmax [MHz]

db3, a/s low-pass 6 1596 278,63 1345 254,26

db4, a/s low-pass 8 3747 212,9 2891 201,73

db5, a/s low-pass 10 10057 169,81 7377 119,39

db6, a/s low-pass 12 –** – 31153 –*

9/7, a low-pass 9 3406 206,61 1505 212,86

9/7, s low-pass 7 1483 273,37 881 263,5

9/7, a high-pass 7 2027 253,29 1229 223,16

9/7, s high-pass 9 4071 180,93 1616 189,47

coif6, a/s low-pass 6 1133 283,45 1041 260,62

coif12, a/s low-pass 12 –** – 1614 196,85

sym8, a/s low-pass 8 3663 212,72 2249 197,94

sym12, a/s low-pass 12 –** – 2313 198,61

sym14, a/s low-pass 14 –** – 2345 200,24

sym16, a/s low-pass 16 –** – 2377 206,83

Table 8. Implementation results of filters with and without decomposition

* does not fit in EP1S10F484C5
** too long compilation time (more than 24 hours)
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AbstrAct

This chapter introduces an approach to class-dependent feature selection and a novel support vector 
machine (SVM). The relative background and theory are presented for describing the proposed method, 
and real applications of the method on several biomedical datasets are demonstrated in the end. The 
authors hope this chapter can provide readers a different view of feature selection method and also the 
classifier so as to promote more promising methods and applications. 

INtrODUctION

Since the datasets we process are becoming in-
creasingly larger in the number of patterns and 
the dimension of features or attributes, data pre-
processing has already become a very necessary 
step for us to reduce the computational complexity, 
save computational cost, and also improve the 
efficiency of many learning algorithms used on 
the data. Data preprocessing techniques can be 
classified into two categories: sample selection 

(Blum & Langley, 1997) to reduce the number 
of patterns and data dimensionality reduction 
(Guyon & Elisseeff, 2003; Liu & Motoda, 1998; 
Wang & Fu, 2005) to reduce the dimensionality 
of the features (e.g., feature selection and feature 
extraction). In the majority of cases, since the 
data have no irrelevant samples, feature selection 
or feature extraction is our major challenge due 
to the prevalence of high-dimensional data with 
some irrelevant or redundant features. 
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The support vector machine (SVM) as a 
learning algorithm has been successfully used 
in the field of computational biology, such as 
microarray gene expression analysis (Weston, 
Mukherjee, Chapelle, Pontil, Poggio & Vapnik, 
2000), cancer classification (Wang, Chu & Xie, 
2006), and protein secondary structure prediction 
(Hua & Sun, 2001). In this chapter, we review 
the background of feature selection and state an 
application of the SVM on feature selection and 
classification for biomedical datasets with class-
dependent feature subsets. 

bAcKGrOUND

Feature extraction (Liu & Motoda, 1998; Wang 
& Fu, 2005) is the process of transforming the 
original features into a new form of feature space. 
Feature extraction does not delete any features but 
extracts a set of new features from the original set 
by a certain mapping. The most typical example of 
feature extraction is principal component analysis 
(PCA) (Liu & Motoda, 1998). PCA first calculates 
the covariance matrix from the input data and the 
eigenvalues and eigenvectors of the matrix, and 
ranks them in descending order with respect to 
the eigenvalues. Second, PCA takes a predefined 
number of components (eigenvectors) to form a 
transformation matrix. Although feature extrac-
tion (e.g., PCA) is an efficient data dimensionality 
reduction technique, the newly generated features 

are usually difficult to interpret. Therefore, we 
prefer feature selection. 

Feature selection (Liu & Motoda, 1998; Wang 
& Fu, 2005) is the process of eliminating irrelevant 
or redundant features, leaving the best subset of 
features, which retains sufficient information so 
as to discriminate well among classes. It usually 
involves ranking the features first (Fu & Wang, 
2003; Guyon & Elisseeff, 2003) and then deleting 
those irrelevant or redundant features. Hence, 
how to rank features and how to remove those 
irrelevant or redundant features are the main 
objectives of feature selection. 

Based on the various measures used to find the 
best feature subset, feature selection usually can 
be classified into the two broad categories (Liu & 
Motoda, 1998): filter approaches (Almauallium 
& Dietterich, 1991; Kira & Rendell, 1992) and 
wrapper approaches (Devijver & Kittler, 1982; 
John, Kohavi & Pfleger, 1994). In addition, some 
authors refer to one more category—embedded 
approaches (see references cited in Blum & 
Langley, 1997)—which will not be mentioned in 
this chapter. Filter approaches (Figure 1) select 
features independent of any classifiers. Some filter 
approaches first evaluate the features’ relevance 
in terms of the intrinsic properties of the data 
and then select features according to a predefined 
threshold. For example, the RELIEF algorithm 
(Kira & Rendell, 1992) and its extended version 
RELIEFF (Kononenko, 1994) assign a weight to 
each feature and then update the weight according 

Input Features

Feature Subset Search 

Optimal feature 
subsets

Feature Subset Evaluation 

Threshold Measure 

Figure 1. Filter approaches 
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to training instances. These weights correspond 
to relevance of features. All features are ranked 
according to their weights and features; weights 
above a predefined threshold are selected, whereas 
other features with weights below the threshold 
are deleted. Not using the ranking strategy, some 
filter approaches attempt the greedy search for all 
feature subsets to find a proper feature subset (e.g., 
FOCUS) (Almauallium & Dietterich, 1991) and 
cross-entropy filter (Koller & Sahami, 1996). FO-
CUS stops search when a minimal feature subset 
is consistent with training data. The cross-entropy 
filter uses a predefined threshold to determine the 
proper feature subset. 

Wrapper approaches (Figure 2) “wrap” feature 
selection around a learning algorithm. Wrapper 
approaches utilize some heuristic search tech-
niques (e.g., sequential forward and backward 
search) (Langeley & Sage, 1994a; Wang & FU, 
2005;), hill climbing (Caurana & Freitag, 1994), 
best-first search (Kohavi & John, 1998, cited in 
Blum & Langley, 1997), and beam search (Aha & 
Bankert, 1995, cited in Blum & Langley, 1997), 
to search for possible feature subsets and use 
a learning algorithm (classifier) to evaluate the 
feature subsets and determine the optimal one 
in terms of classification accuracy. For example, 
Langeley and Sage (1994a) adopted the search 
strategy of backward elimination and used the 
simple nearest neighbor classifier to find the 
proper feature subset. The algorithm begins with 

all features, each time removing one feature from 
the whole set and evaluating the performance of 
the current feature subset by the nearest neighbor 
classifier. The feature whose removal leads to the 
best learning performance is finally gotten rid of. 
This process is repeated until no improvement on 
accuracy can be achieved. Caurana and Freitag’s 
(1994) wrapper approach uses hill climbing as the 
search strategy and the decision tree as the leaning 
algorithm. Compared to filter approaches, wrapper 
approaches are computationally more expensive 
due to the introduction of a learning machine 
(classifier). But for the same reason, wrapper 
approaches usually lead to better classification 
accuracy than filter approaches. In order to strike 
a balance between speed and accuracy for wrap-
per approaches, many researchers have tried to 
reduce evaluation time of learning algorithms. For 
example, Caurana and Freitag (1994) cached deci-
sion trees. Moore and Lee (1994) tried to reduce 
the number of training instances so as to speed 
up the evaluation process. In real applications, if 
the number of features or instances is not very 
large, the usual choice is a wrapper approach so 
as to achieve better classification accuracy. In 
this chapter, we choose a wrapper approach to 
process biomedical data. 

Rather than the previous two categories of 
filter and wrapper approaches, feature selection 
methods may also be divided into another two cat-
egories: class-independent feature selection (Fu 

Input Features Feature Subset Evaluation 

Learning Algorithm 
(Classifier)

Feature Subset Search     

Optimal Feature 
Subset

Figure 2. Wrapper approaches
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& Wang, 2003; Gilad-Bachrach, Navot & Tishby, 
2004; Kira & Rendell, 1992), and class-dependent 
feature selection (Fu & Wang, 2002; Oh, Lee & 
Suen, 1998, 1999), which are based on whether 
the selected feature subset is related to classes. 
Class-independent feature selection chooses a 
feature subset without regard to the classes in 
a given classification problem. Class-dependent 
feature selection chooses feature subsets with 
regard to the classes (i.e., different feature subsets 
for different classes). Most of the feature selection 
methods, filters, or wrappers mentioned in the 
previous paragraph (Almauallium & Dietterich, 
1991; Kira & Rendell, 1992; Kononenko, 1994) ) 
belong to the category of class-independent feature 
selection. However, they have not considered the 
possibility that different groups of features may 
have different power in distinguishing different 
classes (Fu & Wang, 2002; Oh et al., 1998, 1999). 
Furthermore, class-dependent feature selection 
can theoretically improve upon or at least match 
the performance of class-independent feature 
selection because the latter can be considered a 
special case of the former. In order to take advan-
tage of the possibility that different features have 
different classification power and demonstrate 
it in practice, we adopt class-dependent feature 
selection and use a wrapper approach to select-
ing class-dependent features for biomedical data 
(Newman, Hettich, Blake & Merz, 1998).

Many classifiers have been employed in feature 
selection (e.g., decision trees) (Doak, 1992; John 
et al., 1994), the naive Bayes classifier (Langeley 
& Sage, 1994b), neural networks, and the support 
vector machine (SVM) (Guyon, Gunn, Ben-Hur 
& Dror, 2004; Vapnik, 1998; Wang, 2005), to 
determine the optimal feature subset. In the 
NIPS 2003 feature selection challenge (Guyon 
et al., 2004), most winners chose the SVM as 
their classifiers. In addition, considering many 
attractive features (Hua & Sun, 2001) such as ef-
fectively avoiding overfitting and accommodating 
large feature spaces, we will use the SVM in our 
wrapper approach.

This chapter is organized as follows. In Sec-
tion 2, we first review the two adopted feature 
importance ranking measures (i.e., the RELIEFF 
and class separability measure (CSM) ) and then 
introduce our wrapper approach to class-de-
pendent feature selection. We will also review 
the basic theory of the SVM. In Section 3, we 
present experiment results about our method on 
three datasets from the UCI machine learning 
repository databases (Newman et al., 1998) and 
make a comparison on classification accuracies 
between class-dependent and class-independent 
feature selection methods. In the end, we present 
conclusions about the present work and discus-
sions for future work.

 

MEtHODOLOGY

In our wrapper approach to feature selection, 
the basic process is first to rank each feature by 
a ranking measure, and then, according to the 
ranking list, form different feature subsets. The 
formation process of feature subsets starts with 
the top one feature, followed by additions of the 
next top feature into the previous subset until 
we find the best feature subset that leads to the 
highest classification accuracy. 

Feature Importance Ranking
Measures

There are many measures that can be used to 
evaluate feature importance, such as the class 
separation measure (Devijver & Kittler, 1982; 
Oh et al., 1999), the information theoretic ranking 
criteria (Guyon & Elisseeff, 2003), the RELIEF 
(Kira & Rendell, 1992), and the separability-
correlation measure (SCM) (a combination of a 
class separability measure and an attribute-class 
correlation measure) (Fu & Wang, 2003; Wang & 
Fu, 2005). In this chapter, we adopt the RELIEF 
and the class separability measure (CSM) pro-
posed by Fu and Wang (2003). In the following, 
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we will give a brief description of the RELIEF 
and CSM.

RELIEF Ranking Measure

RELIEF, proposed by Kira and Rendell (1992), 
is a feature weight-based evaluation algorithm. 
For each feature, RELIEF calculates a relevance 
score according to the difference between the 
distance of each sample and the current sample’s 
nearest hit and the distance of each sample and 
the current sample’s nearest miss. A nearest hit 
is the sample closest to and with the same class 
as the current sample, and a nearest miss is the 
sample closest to but in different classes from the 
current sample. The relevance score is assigned 
to the feature as the feature’s weight. RELIEF is 
a very efficient evaluation algorithm, but it was 
designed for two-class problems. Kononenko 
(1994) extended RELIEF to RELIEFF, which can 
handle multiclass problems. First, for each sample, 
RELIEFF finds the nearest hit of the sample in 
the same class and the nearest misses in all the 
other classes. Then the algorithm averages over 
the different misses by the weights of the a priori 
probability of each class (Bins, 2000). 

The RELIEF evaluation algorithm can be 
described in the following five steps:

1. Given a weight vector with each element 
corresponding to one feature, set it to zero 
(i.e., {w1,...,wi,...,wN} = 0 ). N is the number 
of features. 

2. From the training instance set S, ran-
domly select an input vector (e.g., the 
j-th sample 1{ ,..., ,..., }j j ji jNx x x x=

 ) and 
assume that it belongs to class c1. Then 
find the nearest hit h

jx  that satisfies 
( , ) arg min ( , )h h

j j i jDist x x Dist x x=
   

( B i n s , 
2000), in which h

jx  and ,h
ix S∈
  h

jx  and 1,
h

ix c∈
  

and the nearest miss m
jx  which satisfies 

( , ) arg min ( , )m m
j j i jDist x x Dist x x=
   

 (Bins, 
2000), in which m

ix  and 1
m

jx c∉  ) .

3. Calculate and update the weight wi of the 
i-th feature in the case of sample jx  :

 2 2( ) ( )h m
i i ji ji ji jiw w x x x x= - - + - ,

 1, 2,...,i N=

 m
jix  and h

jix  represent the i-th elements of m
jx  

and h
jx  , respectively. The updating (Bins, 

2000) means the weight will increase if the 
hit difference (the difference between the 
feature and its hit (i.e., 2( )h

ji jix x- ) is less than 
the miss difference (the difference between 
the feature and its miss (i.e., 2( )m

ji jix x- ). 
4. Repeat step 2 and 3 over the training instance 

set S.
5. Rank the features according to their weights. 

The basic rationale is the larger the weights, 
the more important (relevant) the features.

class separability Measure

Class separability measure has been used by 
many people with different versions. For example, 
Devijver and Kittler (1982) defined the class sepa-
rability for a dataset in the form of 1( )b wtrace M M- . 
Here, Mb is the between-class scatter matrix, and 
Mw is the within-class scatter matrix. The detailed 
formula descriptions about the two matrices are 
available in Devijver and Kittler (1982). Oh, et al. 
(1999) also defined a class separation to measure 
how well two classes are separated by a feature 
vector x. The class separation proposed by Oh, 
et al. (1999) is represented by ( , , )cc

i jS c c x , where 
ci and cj represent the i-th class and the j-th class 
of the dataset, respectively. ( , , )cc

i jS c c x  calculates 
the difference of two classes ci and cj using es-
timated class distributions for the feature vector 
x. Each feature’s class separation is calculated 
individually (e.g., Scc (ci,cj,xp ) ) for the p-th feature, 
and features are ranked according to their class 
separation values. Fu and Wang (2003) defined 
another class separation measure to rank each 
feature’s classification capability. This CSM (Fu & 
Wang, 2003) includes two distance elements: the 
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within-class distance (distance between patterns 
within each class) and the between-class distance 
(the distance between patterns among different 
classes). Usually the smaller the within-class dis-
tance and the greater the between-class distance, 
the smaller the ratio of the within-class distance 
to the between-class distance, then the more ac-
curate the classification. Therefore, according to 
Fu and Wang (2003), the ratio of the within-class 
distance to the between-class distance is used to 
measure the feature’s classification ability; that 
is, each time, we have one feature removed from 
the training data and calculate the ratio. If one 
feature is very important (relevant), its removal 
will lead to the increase of the ratio compared to 
the one without removing any features, and vice 
versa. Therefore, we say that the greater the ratio 
after removing the feature, the more important 
the removed feature for the classification. Let us 
see more details about the algorithm. 

For the whole training data, the within-class 
distance Sw (Fu & Wang, 2003) is calculated as:

1 1
( )( )

cnC
T

w c cj c cj c
c j

S P x m x m
= =

= - -∑ ∑
 

 

  (1)

and the between-class distance Sb (Fu & Wang, 
2003) is calculated as:

1
( )( )

C
T

b c c c
c

S P m m m m
=

= - -∑
   

  (2)

Here, C refers to the number of classes, and Pc 
refers to the probability of the c-th class. nc refers 
to the number of samples in the c-th class, and cjx  
refers to the j-th sample in the c-th class. cm



 refers 
to the mean vector of the c-th class, and m



 refers 
to the mean vector of all the training samples. As 
mentioned previously, the smaller the ratio Sw / Sb , 
the better the separability. When evaluating each 
feature’s classification ability, we use ' 'w bS S  to 
represent the ratio after removing a feature. The 
greater ( )' ' r

w bS S , the more important the removed 
feature (the r-th) is. For example, assume (1)' 'w bS S  

represents the ratio after removing the first feature 
and (2)' 'w bS S  represents the ratio after removing 
the second feature. If (1)' 'w bS S  is greater than 

(2)' 'w bS S , then the first feature is more important 
than the second feature. Hence, we may evaluate 
the importance level of the features according 
to the ratio ' 'w bS S  (Fu & Wang, 2003) with an 
attribute deleted each time in turn. 

Although the two measures cannot detect 
redundancy in features, the RELIEF and CSM 
perform well on detecting relevance of features 
even in the presence of features interaction, which 
is the reason why the two measures are widely 
used in feature selection.

The Classifier: The Support Vector 
Machine

As a classifier, the SVM has already been used 
successfully in many fields and proves to have 
significantly better performance than or at least 
the same as traditional machine learning ap-
proaches, including neural networks (Hua & 
Sun, 2001). The basic idea of the SVM refers to 
a space transformation with a nonlinear mapping 
(i.e., transforming the linearly inseparable data 
in the original feature space into a new linearly 
separable space). The dimensionality of the new 
feature space is much higher than the original 
one so that the optimal separating hyperplane 
(i.e., the best decision function) can be found in 
the new feature space (Vert, 2001). 

To make this more concrete, let us begin 
with a linearly separable case with two classes. 
Assume that the whole training dataset is 

1, 1{( ),..., ( , )}m mS x y x y=
 

, in which { 1, 1}iy ∈ - +  
(i = 1,2,...m) is the class label of the input sample ix . 
The SVM tries to find an optimal hyperplane:

0T
iw x b+ =

 

    (3)

to maximize the margin of the separation be-
tween the two classes of data. In Equation (3), 
w  is a weight vector connecting the input to the 
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hyperplane, and b is called a bias. The optimal 
hyperplane is obtained by solving the following 
constrained optimization problem:

minimizing 21
2

w    (4)

subject to ( ) 1T
i iy w x b+ ≥
 

 (i = 1,2,...m) (5)

If the data are linearly inseparable, the con-
strained optimization problem will be different. 
For the linearly inseparable case, a set of non-nega-
tive slack variables 1 2,, ..., m are introduced to 
penalize the training error, and a regularization 
parameter  is introduced to control the trade-off 
between the training error and the margin. The 
corresponding constrained optimization problem 
is changed into:

minimizing 2

1

1
2

m

i
i

w
=

+ ∑   (6)

subject to ( ) 1T
i i iy w x b+ ≥ -
 

 ( 0, 1,2,... )i i m≥ =
      (7)

When using the Lagrangian function to solve 
the constrained minimization problem, the prob-
lems become:

maximizing 
1 1 1

1
2

m m m
T

i i j i j i j
i i j

y y x x
= = =

-∑ ∑∑  

      (8)

subject to 
1

0
m

i i
i

y
=

=∑   (0 )i≤ ≤  (9)

αi and αj are the Lagrangian multipliers 
within the range of [0, ] (  is the regularization 
parameter). For this linearly inseparable prob-
lem, a space transformation is needed. Suppose 
 is a vector of transformation functions, which 

can realize the transformation from a lower di-
mensional input space into a higher dimensional 
space. The transformation of the input vector x 
(with the dimension N) from the input space to 
the transformed space is defined as: 

1 2( ) [ ( ), ( ),..., ( )]T
Nx x x x=

   

  (10)

The decision function in the transformed 
space:

1
( ) 0

N

j j
j

w x b
=

+ =∑ 

   (11)

can be further simplified as:

0
( ) 0

N

j j
j

w x
=

=∑ 

  ( ) 0Tw x =


            (12)

where w0 is a given bias and 0 ( ) 1x =


. wj ( j = 
1,2,...,N) is a given weight connecting the feature 
space to the output space. The connecting weight 
can be obtained through a quadratic programming 
(QP) solver (Vapnik, 1998; Wang, 2005) (note that 

1 2{ , ,..., }Nw w w w=


 does not include the bias):

1
( )

m

i i i
i

w y x
=

= ∑ 

      (13)

Applying Equation (13) to Equation (12), we 
obtain:

1
( ) ( ) 0

m
T

i i i
i

y x x
=

=∑  

   (14)

Instead of calculating the transformation 
function , an inner product kernel function K is 
introduced to realize the mapping:

( , ) ( , ) ( ) ( )T
i i iK x x K x x x x= =

     

  (15)

The optimal hyperplane is found by solving:

maximizing 
1 1 1

1 ( , )
2

m m m

i i j i j i j
i i j

y y K x x
= = =

-∑ ∑∑  

      (16)
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subject to 
1

0
m

i i
i

y
=

=∑   (0 )i≤ ≤  (17)

The inner product kernel function represents 
the transformation function  and makes the 
inseparable data separable in new feature space. 
In summary, the introduction of kernel function 
can help avoid the curse of dimensionality during 
optimization in high-dimensional spaces. Hence, 
choosing an appropriate kernel function is very 
important to the SVM’s performance. There are 
three popular types of kernels (Hsu, Chang & Lin, 
2003; Vert, 2001) used in most SVM packages 
(i.e., the polynomial learning machine, the radial-
basis function (RBF) network, and the two-layer 
perceptron. Because the RBF kernel has many 
advantages compared with other kernels (e.g., 
with less parameters), we will choose the RBF 
kernel in our application.

Our class-Dependent Feature
selection Approach

To realize the class-dependent feature selection 
for multiclass problems, we will adopt the strat-
egy of “one-against-all” (Bottou et al., 1994; Hsu 
& Lin, 2002) (i.e., the current class vs. all the 
other classes. If the number of classes and the 
number of features are C and N, respectively, the 
computation complexity of the class-dependent 
ranking measure will be O(C•N). We describe the 
proposed wrapper approach to class-dependent 
feature selection in three steps. 

In step one, according to the idea of one-
against-all, we convert a C-class classification 
problem to C 2-class classification problems (i.e., 
problem 1, …, problem i, …, and problem C). Each 
problem has only two classes: one is the original 
class, and the other one includes all the classes 
except the original class.

In step two, for each 2-class problem, we 
adopt the RELIEF ranking measure and CSM to 
evaluate the importance of the features. C 2-class 
problems will have C different feature importance 

ranking lists. For example, for problem 1, the im-
portance ranking is to measure how the features 
classify class 1 from the other classes; thus, the 
feature importance ranking list is specific to class 
1. Likewise for class 2, class 3, …, and class C. 
Therefore, we call the feature importance ranking 
thus obtained class-dependent feature importance 
ranking. In the experiment, we compare the two 
ranking measures’ performance.

In step three, for each feature, based on the 
class-dependent feature importance ranking list, 
we form different feature subsets by sequentially 
adding one feature into the previous subset. The 
optimal feature subset (i.e., the one with the high-
est classification accuracy) is determined by the 
classifier SVM. For each class, we start with the 
feature with the top ranking value as the first 
subset and then each time add one feature into the 
previous subset from the ranking list to form a new 
feature subset until all the features in this class 
are added or the highest classification accuracy 
is reached. We evaluate each feature subset with 
a classifier, and the feature subset corresponding 
to the highest classification accuracy will be our 
choice for this class.

For convenience, we introduce a feature mask 
to represent the state of each feature. The feature 
mask has only two elements, ‘0’ and ‘1’, in which 
‘0’ represents the absence of a particular feature, 
and ‘1’ represents the presence of the feature. For 
example, consider a dataset with five features {x1, 
x2, x3, x4, x5} if the optimal feature subset obtained 
is {x1, x3, x5} with the second and fourth features 
deleted, the feature mask for this feature subset 
should be {1, 0, 1, 0, 1}.

After finishing these three steps, we obtain the 
class-dependent feature subset, which cannot be 
classified by any single classifier except the RBF 
neural network (Fu & Wang, 2002, 2003). Here, 
we attempt to use the SVM instead, considering 
the advantages of the SVM.
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the constructed Novel sVM
Classifier for Class-Dependent
Features

The SVM was originally designed for the binary 
classification, although most problems are multi-
class. In order to solve those multiclass problems, 
some methods have been proposed to effectively 
extend the binary SVM to the multiclass classi-
fication (e.g., the one-against-all method (Bottou 
et al., 1994), the one-against-one method (Kres-
sel, 1999), and the DAGSVM method (Platt, 
Cristianini & Shawe-Taylor, 2000). With regard 
to those methods, Hsu and Lin (2002) made a 
comparison and pointed out that the one-against-
one and DAGSVM methods are more suitable 
for practical use, and one-against-all is a good 
method whose performance is comparable to 
one-against-one. For classification, all these SVM 
classifiers mentioned in Bottou, et al. (1994), 
Kressel (1999), and Platt, et al. (2000) cannot 
directly accommodate class-dependent feature 
subsets. Considering the characteristic of class-
dependent feature subsets and the process of the 
feature selection, we use one-against-all in the 
construction of the novel SVM classifier. The 
novel SVM classifier is constructed by building 
several SVM models and then combining them 
together for accommodating class-dependent 
feature subsets. Each model is a binary classifier 
and is specific for one class. In the following, we 
will introduce the construction process:

1. The training process. In this process, we 
use training patterns to construct C SVM 
models. Each class has its own model ac-
cording to its specific feature subset. The 
model i is trained with all the training 
examples in the i-th class having positive 
labels and all the examples in other classes 
having negative labels. Specifically, all the 
training examples need to be filtered by a 
feature mask of the i-th class before they 
are input for training. For instance, if the 
feature mask of the i-th class has n(i) ‘1’, all 

the training examples to form the i-th model 
will have the corresponding n(i) features as 
the input, and those features corresponding 
to ‘0’ in the feature mask are removed. The 
output yi has the value of ‘+1’ and ‘-1’. If the 
input pattern ix  belongs to the i-th class, we 
consider it a positive sample (‘+1’), or we 
consider it a negative sample, denoted as 
‘-1’.

 The i−th SVM model solves the following 
problem:

 i , ,
min i iw b   1

1 ( )
2

m
i T i i i

j
j

w w
=

+ ∑ 

 ( ) ( ) 1 ,i T i i i
j jw x b+ ≥ -

   if jy i= ;  
     (18)

 ( ) ( ) 1 ,i T i i i
j jw x b+ ≤ -

   if jy i≠ ;
 0i

j ≥
2. The testing process. After the class-depen-

dent models are constructed, we will use 
them to test unlabeled patterns. Same as 
the training process, each testing pattern is 
filtered with one class’s feature mask before 
input into the corresponding SVM model 
(i.e., the original attributes corresponding 
to ‘0’ in the feature mask are removed). 
Among the C outputs, the testing pattern 
(e.g., x) belongs to the class with the largest 
output value:

 Class of 1,2,...,arg max (( ) ( ) )i T i i
i Cx w x b=≡ +

  

      (19)

 
EXPErIMENts AND ANALYsIs

We experiment on three biomedical datasets from 
the UCI machine learning repository databases 
(Newman et al., 1998). Our major goal is to ana-
lyze whether the class-dependent feature selection 
can obtain more efficient feature subsets so as to 
improve the classification accuracy more than the 
class-independent feature selection. Therefore, we 
make the comparison between the two methods 
in terms of the number of deleted features and 
the classification accuracy. 
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Experimental Data

The first benchmark data is the breast cancer da-
taset from the University of Wisconsin Hospital. 
The breast cancer dataset has 699 samples, nine 
attributes, and two classes (benign and malignant), 
in which benign has 458 samples and malignant 
has 241 samples. The second dataset is the E. coli 
dataset. It has seven attributes (localization sites 
of the protein) and eight classes. The number of 
instances is 336. 

The third dataset is called the processed Cleve-
land dataset. It mainly concerns heart disease di-
agnosis and is collected from the Cleveland Clinic 
Foundation. There are originally 303 samples, 13 
features, and five classes. Because there are six 
samples with unknown feature values, we remove 
the six samples from our experiment. 

software Preparations

Since there are many kinds of SVM software pack-
ages available, we choose LIBSVM 2.8 (Chang & 
Lin, 2001) with the RBF kernel functions in our 
experiment. We use the 10 fold-cross validation 
method to train and test the three datasets; that is, 
we separate the whole dataset into 10 equal subsets, 
each time having one subset as the testing part 
and the rest of nine subsets as the training part. 

The whole training process can be described in 
the following steps (Hsu et al., 2003):

1. Format the datasets to make them suit the 
functions and normalize the datasets. 

2. Set the regularization parameter  and the 
kernel parameter (the radial basis function 
[RBF] kernel) . Use the cross-validation 
and grid-search to find the best pair of the 
parameter ( , ). Grid-search involves try-
ing pairs of ( , ), and the one with the best 
cross-validation accuracy is chosen, in which 
 and  have 15 values, respectively.  has 

the value from [ 4 3 0 1 102 , 2 ,..., 2 , 2 ,..., 2- - ], and 
 has the value from [ 12 11 0 22 , 2 ,..., 2 ,..., 2- ]. 

3. Use the best pair of parameters ( , ) to train 
the whole training set and obtain a trained 
model.

4. Use the trained model to test the testing 
set.

Experiment results and Analysis

First, we do the test on the breast cancer dataset, 
respectively with the RELIEF (Table 1) and CSM 
(Table 2) to rank the features. Since the breast 
cancer dataset has only two classes, the results 
with class-independent and class-dependent fea-
ture selection methods are the same. The second 
column in Tables 1 and 2 lists the number of 

Feature selection approach The number of features deleted in each of  the 10 simulations 
(RELIEF)

Average 
(RELIEF)

Class-independent 3 3 4 3 3 0 0 4 1 1 2.2 

Class-dependent 3 3 4 3 3 0 0 4 1 1 2.2 

Table 1. The breast cancer dataset with the RELIEF measure

Table 2. The breast cancer datasets with the CSM ranking measure

Feature selection approach The number of features deleted in each of the 10 simulations 
(CSM)

Average (CSM)

Class-independent 0 0 0 0 0 1 1 1 0 0 0.3 

Class-dependent 0 0 0 0 0 1 1 1 0 0 0.3 
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deleted features in each of the 10 simulations. 
The third column lists the average number of 
deleted features. 

The results in Tables 1 and 2 show us that the 
breast cancer dataset has very few irrelevant or 
redundant features. The RELIEF measure makes 
it have on average two features removed, while 
CSM on average does not make any features 
deleted. Second, we present the results for the E. 
coli dataset in Tables 3 and 4. We can see that 
the E. coli dataset has very different numbers of 
features deleted for different classes with class-
dependent feature selection. For example, in 
Table 3, for classes 1, 3, 4, 5, and 6, the average 
number of features eliminated is few, while for 

classes 7 and 8, the number of deleted features is 
on average six. At last, we make the test on the 
Cleveland dataset. The result shows us that dif-
ferent classes have very different feature subsets. 
Class 1 has few features removed (i.e., on average 
1.2 for the RELIEF (Table 4) and on average 1.9 
for the CSM (Table 6) ), while for classes 2, 3, 
4, and 5, the number of features deleted in the 
10 simulations is on average within the range of 
[9,12]. Compared with class-independent feature 
selection, the class-dependent feature selection 
method can show us that different classes have 
different feature subsets that can retain the most 
characteristic information.

Feature selection approach Classes The number of features deleted in each of the 10 
simulations

Average 
(RELIEF)

Class-independent All classes 0 0 0 0 1 0 0 1 0 0 0.2

Class-dependent

Class 1 2 2 2 2 3 2 2 2 3 2 2.2

Class 2 3 5 5 3 5 3 1 2 5 4 3.6

Class 3 0 1 1 1 0 2 0 0 1 1 0.7

Class 4 1 3 2 4 5 2 2 2 2 1 2.4

Class 5 3 4 3 2 1 4 0 4 4 1 2.6

Class 6 0 0 0 4 2 2 5 1 0 0 1.4

Class 7 6 6 6 6 6 5 6 6 6 6 5.9

Class 8 6 6 6 6 6 6 6 6 6 6 6.0

Feature selection approach Classes The number of features deleted in each of the 10 
simulations (CSM)

Average (CSM)

Class-independent All classes 0 0 0 0 0 1 0 0 0 0 0.1

Class-dependent

Class 1 0 0 0 0 1 1 0 0 1 0 0.3

Class 2 0 0 0 0 0 0 0 0 0 0 0

Class 3 0 0 1 1 1 1 0 1 1 1 0.7

Class 4 2 4 1 4 2 4 4 5 4 4 3.4

Class 5 2 1 3 0 0 3 1 2 2 3 1.7

Class 6 4 4 4 4 4 2 4 4 4 4 3.8

Class 7 6 6 6 6 6 4 6 6 6 6 5.8

Class 8 6 6 6 6 6 6 6 6 6 6 6.0

Table 4. The E. coli dataset with the CSM ranking measure

Table 3. The E. coli datasets with the RELIEFF ranking measure
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In Table 7, we present the classification ac-
curacies, without feature selection, with two 
ranking measures and two feature selection 
methods (class-dependent and class-independent). 
The proposed feature selection method and the 
constructed SVM classifier have improved the 
accuracy on average 2% on the Cleveland dataset. 
For the other two biomedical datasets, there are 
few improvements on the classification accuracies. 

This can be understood in two ways: one is because 
the two datasets have less noise themselves, and 
the other reason is that those removed features in 
fact do not disturb the classification. 

Although it may be unfair to compare our 
results with published results because of differ-
ent classifiers, training methods, training data, 
and so forth, we still list some published results 
on the breast cancer dataset (Table 8) from Ruiz, 

Feature selection approach Classes The number of features deleted in each of the 10 
simulations (RELIEF)

Average 

Class-independent All classes 1  6  1 1  0 1 6 1 0 3 2.0

Class-dependent

Class 1 6  4  0 0  0 0 0 1 0 1 1.2

Class 2 12 12 12 12 12 12 12 12 12 12 12

Class 3 12 12 7 5  12 12 7 12 6 12 9.7

Class 4 5 12 7 12 12 12 12 12 12 12 10.8

Class 5 12 12 5 12 12 12 12 12 12 12 11.3

Feature selection approach Classes The number of features deleted in each of the 10 
simulations (CSM)

Average 
(CSM)

Class-independent All classes 1  3  7 1 0 7 4  7 3  2 3.5

Class-dependent

Class 1 1  7  1 4 1 1  1 1 1  1 1.9

Class 2 12 12 12 12 12 2 12 12 12 12 11

Class 3 12 12 9 4 12 12 0 12 12 12 9.7

Class 4  8  5 1 12 5 12 12 12 12 11 9.0

Class 5 12 12 12 12 12 12 12 12 12 12 12

Data method Breast cancer dataset E. coli dataset Cleveland dataset

Without feature selection 96.49% 86.81% 55.56%

Class-independent feature selection with 
RELIEF

96.34% 85.71% 56.23%

Class-dependent feature selection with 
RELIEF

96.34% 86.31% 58.93%

Class-independent feature selection with 
CSM

96.49% 86.61% 56.23%

Class-dependent feature selection with 
CSM

96.49% 86.91% 58.61%

Table 5. The Cleveland dataset with the RELIEF ranking measure

Table 6. The Cleveland dataset with the CSM ranking measure

Table 7. Classification accuracies’ comparison among different feature selection methods for the three 
data sets
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Aguilar-Ruiz, and Riquelme (2002). They used 
selection of attributes by projection (SOAP) and 
the RELIEF method to select features (class-in-
dependent) and used C4.5 as the classifier. The 
accuracy is the average value of the 10 tenfold 
cross-validation runs. There are some published 
results available for the Cleveland dataset, but 
those classification results are about discriminat-
ing only two classes (Jin & Zhang, 2005) of the 
original five classes.

cONcLUsION

In this chapter, we demonstrated the proposed 
novel SVM with class-dependent feature selec-
tion and classification. For feature selection, we 
adopt the RELIEF weight measure and class 
separability measure (Fu & Wang, 2003) to 
evaluate the features’ importance and select the 
optimal feature subset from the ranking list for 
each class through the classifier SVM. For the 
classification on the class-dependent feature 
subsets, we constructed a novel SVM classifier 
that can accommodate class-dependent feature 
subsets. The experimental results for the three 
biomedical datasets (Newman et al., 1998) show 
that each class has different feature subsets that 
keep the representative features for classifying this 
class from the other classes, and the novel SVM 
can improve or at least maintain the classification 
accuracy after doing the feature selection. Since 
the three datasets we experimented on have few 
noises, the proposed class-dependent feature 
selection cannot completely show its advantage, 
nor can the novel SVM classifier. However, we 
believe that in real life, there will be some data 

that have many noises. For those data, our class-
dependent feature selection method will more 
effectively select class-dependent feature subsets 
than class-independent feature selection methods 
so the novel SVM classifier can realize a good 
classification. 

We selected features in terms of the RELIEF 
and CSM ranking measure and did not deal with 
the redundant features. Although the existence 
of redundant features in the feature subset will 
not degrade the classification, the feature subset 
obtained will not be the simplest (minimum) one. 
Hence, in the future work, we need to consider 
about how to determine the redundancy of the 
features and further simplify the feature subsets. 
At the same time, we should notice that select-
ing class-dependent feature subsets involves the 
necessity of considering a feature subset for each 
class, which is computationally more expensive 
than selecting class-independent feature subsets. 
However, the extra computational cost may be 
worthwhile in certain applications where im-
provements of accuracy are very important and 
meaningful. 
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AbstrAct

This chapter presents a unified introduction to support vector machine (SVM) methods for binary clas-
sification, one-class classification, and regression. The SVM method for binary classification (binary 
SVC) is introduced first, and then extended to encompass one-class classification (clustering). Next, 
using the regularized risk approach as a motivation, the SVM method for regression (SVR) is described. 
These methods are then combined to obtain a single unified SVM formulation that encompasses binary 
classification, one-class classification, and regression (as well as some extensions of these), and the dual 
formulation of this unified model is derived. A mechanical analogy for binary and one-class SVCs is 
given to give an intuitive explanation of the operation of these two formulations. Finally, the unified SVM 
is extended to implement general cost functions, and an application of SVM classifiers to the problem 
of spam e-mail detection is considered.

INtrODUctION

Support vector machines (SVMs) are a class of 
nonlinear learning algorithms that may be applied 
to many problems, including but not limited to 
binary classification, one-class classification 
(anomaly detection), and regression (function 
approximation). Over the last decade, SVMs have 

gained popularity due to their ability to tackle 
complex, highly nonlinear problems in a consis-
tent, structured manner, while simultaneously 
avoiding problems of overfitting on more simple 
problems (see, for example, Wang, 2005).

SVMs work by implicitly mapping inputs into 
what is known as feature space, in which a linear 
max-margin classification or linear, flattened 
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regression method is applied to the problem. By 
using the kernel trick, SVMs are able to avoid 
any direct use of the feature map itself, allowing 
them to utilize extremely high (or even infinite) 
dimensional implicitly defined feature spaces 
without difficulty.

The aim of this chapter is to provide a unify-
ing framework for the support vector classifier 
(C-SVC), one-class support vector classifier (one-
class C-SVC), and support vector regressor (ε 
-SVR) framework, highlighting the similarities 
and connections among them. In so doing, we are 
incidentally able to introduce a simple extension 
to the standard ε-SVR method, whereby inequal-
ity constraints may be included directly and 
naturally in the training set of the unified SVM 
model. To give a more intuitive feel for the dual 
SVM training problem, we describe a mechanical 
analogy due to Burges (1998), which may be used 
to understand the role of the dual variables α in 
the C-SVC training problem. After introducing 
this analogy, we show how it may be extended 
to describe the one-class C-SVC in an intuitive 
manner in terms of forces acting on a decision 
sheet in feature space.

Throughout this chapter, column vectors 
will be written in lower-case bold (e.g., a,g) and 
matrices in uppercase bold (e.g., K); 1 will be 
used to indicate a vector every element of which 
is 1, and I is defined to be the identity matrix. 
We use N to indicate the integers modulo N 
(so { }0,1, , 1N N= -  ), R1  the set of positive 
real numbers, and 1 the set of positive integers. 
Indices are assumed to range from 0,1,… unless 
otherwise stated.

sUPPOrt VEctOr cLAssIFIErs

Let us begin by considering the problem of binary 
classification (Cortes & Vapnik, 1995; Burges, 
1998). Suppose we have some set of objects X (e.g., 
images of faces, e-mail content, or MRI images 
of a human brain) that for technical and practical 

reasons (not least of which is the requirement that 
objects x be in a format a computer can process) 
we shall assume is Lebesgue measurable. We will 
call this set input space.

Suppose that each object x ∈ X in our set be-
longs to a class d ∈ D. Such classes may include 
“this e-mail is spam,” “this student is fast asleep,” 
or “this is an image of the Scarlet Pimpernel,” but 
more conventionally, and as we are dealing only 
with binary (two-class) classification, are (rather 
prosaically) defined to be D = {-1, +1}.

Our task is to construct a machine (by which 
we mean a computer program) that, given an 
object x ∈ X, can assign a class d ∈ D to this 
object such that the assignment is correct, if not 
always, then as often as possible or practical. To 
attempt this, however, some information about 
the underlying objects is required. In the context 
of support vector classifiers (SVCs), we assume 
that this information is in the form of a training 
set (Haykin, 1999):
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wherein each pair (xi,di) represents an object xi 
∈ X and a classification di ∈ D for this object, 
which has been provided to us by an expert of 
some description. If, for example, we are deal-
ing with images of rocks and our classes –1 and 
+1 represent, respectively, “igneous rock” and 
“sedimentary rock,” then our expert might be 
a friendly geologist. In any case, based on this 
training set, our aim is to construct a classifier 
that is able to classify objects that may or may not 
have been contained in the training set, and to do 
so with the best possible (or practical) accuracy.

The approach to this problem, which we will be 
describing in this section, is known as the support 
vector machine method for binary classification, 
or support vector classification (C-SVC, where 
the prefix C is used to differentiate between this 
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formulation and a reasonably common variant 
known as v-SVC (Herbrich & Weston, 1999) for 
short. The title support vector machine actually 
describes a range of algorithms that may be applied 
to many problems, not just binary classification, 
some of which will be covered later in this chapter. 
However, most (if not all) SVM methodologies 
share two main characteristics; namely:

1. The actual work of constructing the clas-
sifier is done in feature space, not input 
space, where feature space and input space 
are linked by the (implicit)1 feature map 

: HdX →   from input space X to a (possibly 
infinite dimensional) feature space Hd

 .
2. The trained machine g is defined by a linear 

function g of position in feature space, hav-
ing universal approximator form:

 ( ) ( )Tg x x b= +w

 where the weight vector w ∈ Hd
  and bias 

b ∈ R characterize the trained machine.

Now it may seem odd that we are interested in 
functions of the form g:X→R rather than func-

tions of the form f:X→D. However, a function of 
the latter type may be obtained from the former 
by simply taking the sign of the result, so there is 
no need to worry. Given a training set Θ and an 
implicitly defined feature map : HdX →  , our 
aim is then to find w and b so that g may take 
the place of our friendly (but not always avail-
able) expert when classifying objects x ∈ X. The 
resulting classifier is called the trained machine, 
and the process of obtaining it training.

the separable case

We will begin by assuming that it is possible to 
achieve perfect classification of the training set 
using some function g:X→R in universal approxi-
mator form. This is known as the separable case, 
and while it is clearly not always achievable, it is 
nevertheless a useful starting point, as it allows 
us to better illustrate the underlying principles of 
the C-SVC method.

Note that the trained machine g:X→R speci-
fied by the pair (w,b) defines a decision surface 

( ) 1, HdS b -≅w   in feature space given by:

Figure 1: Examples of possible decision surfaces 
in feature space (dH = 2).  Key: class +1 training 
vectors =  , class –1 training vectors =  .

Figure 2. Optimal hyperplane selection via max-
margin. Key: class +1 training vectors = , class 
–1 training vectors = .
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( ) { }, 0Hd TS b b= ∈ + =w w

which is a hyperplane in feature space. This 
decision surface is said to separate the training 
set Θ if ( ) ( )0 ,i i i id g x x d> ∀ ∈Θ, as illustrated 
in Figure 1.

Now it is clear from these expressions that 
for all κ ∈ R+, the decision surfaces S(κw, κb) 
and S(w,b) will be identical; moreover, if S(w,b) 
separates the training set, then so too will S(κw, 
κb) So, without loss of generality, we may restrict 
our search to those parameters (w,b) for which:

( ) 1 i i Nd g x i≥ ∀ ∈

Of course, if the training set is separable, 
there will still be infinitely many decision sur-
faces satisfying these constraints. In the C-SVC 
theory, the optimal decision surface is defined 
as the decision surface that has the maximum 
perpendicular distance between itself and the 
images of those training vectors lying closest to 
it in feature space (called the support vectors) 
that is equidistant from the support vectors of 
both classes, as shown in Figure 2. It may be seen 
that the shortest Euclidean distance r(xi) between 
the image of any training vector xi and a decision 
surface in feature space is:

( )
( )

2

i
i

g x
r x =

w

and hence, the perpendicular distance between 
the decision surface and the training point(s) of 
a particular class lying closest to it is:

( )

( )
, 1

, 1

min

min
N i

N i

ii d

ii d

≥ ∈ =+

≤ ∈ =-

=

=




The margin of separation is the sum of these 
distances, ρ = τ≥ + τ≤. The condition that the de-
cision surface be equidistant from the support 

vectors of either class implies that τ≥ + τ≤. It fol-
lows that for any decision surface satisfying the 
equidistance requirement, (w,b) may be scaled 
so that:

2

2
=

w     (1)

Formally, the problem of finding the classifier 
g:X→R that maximizes the margin of separation 
(1) is equivalent to finding a pair (w,b) that solves 
the optimization problem:

      (2)( )

( )( )
0,

1min ,
2

such that: 1 

T

b

T
i i N

R b

d x b i

=

+ ≥ ∀ ∈

w
w w w

w 

which is called the primal form of the C-SVC 
training problem (separable case). It should be 
noted that one does not normally attempt to 
solve this problem directly, as it has a complex 
constraint set and may be very high dimensional 
if dH is large. Instead, the so-called dual form of 
this problem is solved, as will be described later 
in this chapter.

Example: XOr Gate

Let us briefly consider a trivial yet instructive 
example; namely, the standard XOR gate example. 
In this case, our C-SVC is required to mimic a 
2 input exclusive OR logic gate. We define our 
input space to be X = R2, where each axis repre-
sents one input to the gate (negative being logic 
0, positive logic 1), and define our class –1 and 
+1 to be an outputs of logic level 0 and logic level 
1, respectively.

Our training set is shown in Box 1. Using the 
feature map:

( )
0

1

0 1

x
x

x x

 
 =  
  

x
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the primal C-SVC training problem becomes:

( ) 2 2 2
0 0 1 2,

0 1 2

0 1 2

0 1 2

0 1 2

1 1 1min ,
2 2 2

such that: 1
1
1
1

b
R b w w w

w w w b
w w w b
w w w b
w w w b

= + +

- - + + ≥
+ - + + ≥
- + + + ≥
+ + + + ≥

w
w

which has a unique solution w = [0,0,1], b = 0, 
giving a trained machine:

g(x) = x0x1

which, in this case, exactly duplicates the real 
XOR gate (recalling that we are only interested 
in the sign of g, not the magnitude), as shown in 
Figure 3.

Of course, this example is somewhat artificial 
insofar that if we had selected a different feature 
map there is no guarantee that the optimization 
problem would have had any solution at all. 
Furthermore, the training set for this example 
trivially covers all possible combinations and is 
noiseless and free from errors. In general, neither 
of these assumptions may be taken for granted. 

This motivates us to extend the C-SVC method 
in the following section.

the Inseparable case

If the training classes are not separable, it is 
necessary to relax the inequalities in (2) using 
slack variables and modify the cost function to 
penalize any failure to meet the original (strict) 
inequalities. Using the standard (linear) penalty 
function (Cortes & Vapnik, 1995), the primal form 
of the C-SVC training problem becomes:

      (3)( )

( )( )
1, ,

1min , ,
2

such that: 1 

T T

b

T
i i i N

CR b
N

d x b

= +

+ ≥ - ∀ ∈

≥

w
w

w 

where the constant C ∈ R+ controls the trade-
off between empirical risk minimization (and 
potential overfitting if C is large) and margin 
maximization (and potential underfitting if C is 
small), as will be discussed shortly. This is the 
primal form of the C-SVC training problem in 
the nonseparable (general) case. Once again, it 

 [ ]( ) [ ]( ) [ ]( ) [ ]( ){ }1, 1 , 1 , 1, 1 , 1 , 1, 1 , 1 , 1, 1 , 1Θ = - - + - + - + - - + + +

Box 1.

Figure 3. XOR gate example, viewed from input space. Key: class +1 training vectors =  , class –1 
training vectors =
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should be noted that the dual form of this prob-
lem described later, not the primal form already 
presented, is usually solved.

Figure 4 shows a graphical representation of 
this formulation. As seen in this diagram, the 
training vectors xi may be split into four catego-
ries; namely:

1. di g(xi)>1: Nonsupport vector
2. di g(xi)=1: Boundary support vector
3. di g(xi)∈(0,1): Correctly classified error 

(support) vector
4. di g(xi)≤0: Incorrectly classified error (sup-

port) vector

support Vector Machines and the 
Risk Bound

The previous section contained some rather 
cryptic allusions to the connection between the 
parameter C and the problems of overfitting and 
underfitting, which we will now clarify. The dis-
cussion in this section centers on the concept of 
the capacity of a particular set of classifiers and, 
in particular, the set of possible functions g:X→R 
from which the trained machine is selected. The 
following section is by no means a complete in-
troduction to the theory of risk bounds, structural 
risk minimization methods (of which the SVM is 
but one example), and related subjects, but rather 

attempts to summarize the more salient points. 
For a more detailed introduction, see, for example, 
Kecman (2001).

Before proceeding, we must introduce some 
terms. Let us suppose that objects x ∈ X are always 
drawn according to some distribution P(x) in an 
independent, identically distributed manner. The 
(actual) risk associated with a classifier g:X→R 
characterized by w and b is defined to be:

( ) ( ) ( )( ) ( )ˆ, ,
x X

R b c g x g x dP x
∈

= ∫w

 
where { }2: 0c +→ ∪   is some measure of the 
“goodness” of the estimate provided by g known 
as the cost function, and ĝ:X→D maps an object x 
to its true classification d. The cost function used 
in standard C-SVC theory is:

c(δ,d)=max(0,1-dδ)

Now, for any classifier parameterized by w 
and b, the risk R(w,b) provides a direct measure 
of the performance of that classifier—essentially, 
the smaller the risk, the better the classifier. Ide-
ally, we would like to directly minimize this risk. 
However, as we know neither P(x) nor ĝ, we must 
rely on the training set Θ to approximate R(w,b). 
This approximation is known as the empirical 
risk:

Figure 4. Optimal hyperplane selection via max-margin (inseparable case). Key: class +1 training vec-
tors = , class –1 training vectors = .
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( ) ( )( )1, ,

1
N

emp i i
i

T

R b c g x d
N

N

∈

Θ =

=

∑w

1



which is precisely equivalent to the penalty term 
in our primal (3), neglecting the scale factor C.

However, as we will see shortly, direct mini-
mization of this empirical risk Remp (w,b|Θ) is not 
guaranteed to lead to minimization of the actual 
risk R(w,b) due to what is known as overfitting. 
This is closely linked to the concept of the capacity 
of the set of possible classifiers g. Loosely speak-
ing, the capacity of a set of functions is a measure 
of their ability to describe complex relationships. 
If we start with a set of functions with too much 
capacity, our C-SVC, once trained, may be able 
to classify the vectors from its training set with 
near perfect accuracy. However, it may do so by 
learning inconsequential information. So, for 
example, it may differentiate spam and nonspam 
e-mails by simply recalling the precise wording 
of all the spam e-mails in the training set, and 
then classifying any e-mail not containing this 
text as nonspam e-mail. On the other hand, if 
we start with a set of functions without enough 
capacity, the resulting classifier may not be able 
to differentiate between the two classes at all well, 
as it may not even be able to pick up on the more 
relevant differences between messages, let alone 
the more minor, inconsequential differences. In the 
former case, we say that our classifier is overfitted 
to the training set, and in the latter case, we say it 
is underfitted. But in either case, the performance 
of the trained machine is likely to be poor. Ide-
ally, we want to arrive at a compromise between 
these two extremes, whereby the set of possible 
classifiers has enough capacity to encapsulate 
the necessary information required for its task, 
but not so much that it will encapsulate not only 
this information but also irrelevant and mislead-
ing details.

One measure of the capacity of a set of func-
tions is the Vapnik-Chervonenkis (VC) dimension. 

Before defining the VC dimension, however, it is 
necessary to define the concept of shattering of 
points in X. A set of l distinct points (vectors) is 
said to be shattered by a set of functions if, for each 
of the 2l possible ways of labeling the points in an 
arbitrary binary manner, there exists a member 
of the set of functions that can correctly assign 
these labels. Based on this, the VC dimension h 
of a set of binary functions is defined to be the 
maximum number of distinct points h, which can 
be shattered by that set of functions (which, it is 
important to note, does not imply that any arbitrary 
set of h points in X may be shattered by this set 
of functions). The VC dimension is important in 
the present context due to the following theorem 
(the so-called risk bound) (Vapnik, 1995):

Theorem 1: For any 0<η≤1 there is a probabil-
ity of 1-η that the following bound will hold:

( ) ( )
2log log

4, ,emp

Nh
hR b R b

N

    -        = Θ +w w

The second term on the right in this expression 
is called the VC confidence. If h is too small, then 
the empirical risk Remp (w,b|Θ) may be large, and 
so the actual risk R(w,b) may be large. Conversely, 
if h is too large, the VC confidence will be large, 
and so the previous bound will be ineffectual in 
limiting the size of the actual risk. Ideally, h should 
be somewhere between these two extremes and 
moreover chosen to minimize the risk bound.

For the C-SVC, the VC dimension h and the 
margin of separation r are connected by the fol-
lowing theorem (Burges, 1998):

Theorem 2: Let D denote the diameter of 
the smallest ball in feature space containing all 
training vector images φ(xi). Then the subset of 
possible classifiers g with a margin of separa-
tion of at least ρ has a VC dimension h bounded 
previously by:
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2

2min , 1H
Dh d

  
≤ +     

Using this, and assuming that 2 2/ HD  ≤  , 
the risk bound may be rewritten in terms of the 
minimum margin of separation r as follows in 
Box 2.

Now, the primary cost function (3) may be 
rewritten:

( ) ( )1 2

2, , ,empR b CR b= Θ +w

f r om  wh ich  i t  m ay  b e  s e e n  t h a t 
( ) ( )1 , , ,empR b CR b≈ Θw w  for very large values 

of C; and ( ) 2
2

1 , ,R b ≈w  for very small values of 
C. It follows that for very large values of C mini-
mization of the primal cost is essentially equivalent 
to empirical risk minimization. Subsequently, 
there is nothing to stop the second term in the risk 
bound from “blowing up” (becoming very large), 
resulting in poor generalization performance 
through overfitting. Likewise, if C is very small, 
then minimizing the primal cost will maximize 
r, which will minimize the VC confidence, but 
with nothing to rein in the empirical risk, the total 
risk bound is once again prone to “blowing up,” 
resulting in poor generalization performance, this 
time due to underfitting.

If, however, we chose an appropriate value for 
C (which is typically found using some form of 
cross-validation), then we may trade off empirical 
risk minimization (overfitting) and VC dimension 
minimization (underfitting) to achieve minimiza-
tion of the total risk bound, thereby minimizing 
the bound on the actual risk to give optimal per-
formance. The upshot of this is that C-SVCs are 

able, within reason, to overcome the usual capacity 
selection problem encountered with many other 
classifiers. The inclusion of the max-margin term 
allows us to use feature maps with large feature 
space dimension dH (and hence potentially large 
capacity) without worrying overly about the 
problems of overfitting.

ONE-cLAss sUPPOrt VEctOr 
cLAssIFIErs

The C-SVC, as described in the previous section, 
is a remarkably useful classification technique if 
we have a good training set containing training 
samples from both the +1 and –1 classes. Consider, 
however, a network intrusion detection scheme. 
In this case, we will likely have a good range of 
“condition normal” training vectors, which we 
will arbitrarily label class +1. However, there 
is a good chance that we will have very few (if 
any) training vectors for our “intruder alert” (-1) 
class for both practical and theoretical reasons. 
For example, it would be foolish indeed to allow 
hackers to enter a non-honey-pot computer sys-
tem simply to gather training data on what hacks 
“look like,” and in any case, new attacks surface 
on a regular basis, so even if we have “–1” train-
ing samples, there is a good chance they will not 
match new attacks.

For this reason, it is often useful to have a clas-
sifier that only requires points from one class for 
training purposes. Let us arbitrarily suppose that 
all training points in our training set Θ are of class 
+1. The question is, if we wish to apply C-SVC 
methods in this situation, how may we modify 

 

  

( ) ( )
2

2

2

2
21 log log

41
, ,

D

emp

D N

R b R b
N

  
   + -           +        = Θ +w w

Box 2.
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the C-SVC primal problem (3) to make up for our 
lack of any training samples of class –1?

The answer to this question lies with the 
bias b in the universal approximator form of g. 
Recall that:

( ) ( )Tg x x b= +w

If our training set Θ contains only samples from 
class +1, then it is not hard to see that the solution 
to (3) is simply w=0, ξ=0, and b=1, and hence, 
g(x)=b=+1 for all x ∈ X. This does not actually 
define a decision surface in the usual sense and 
is clearly not a satisfactory solution to the one-
class C-SVC problem. However, if we add a new 
term b to the primal cost, then in combination 
with usual factors of empirical risk minimization 
and margin maximization, the one-class C-SVC 
will attempt to choose the most negative (or least 
positive) allowable bias b.

Specifically, the primal form of the one-class 
C-SVC training problem is (Manevitz & Yousef, 
2001; Scholkopf, Platt, Shawe-Taylor, Smola, & 
Williamson, 1999):

( )

( )( )
1, ,

1min , ,
2

such that:  

T T

b

T
i i i N

CR b b
N

d x b

= + +

+ ≥ - ∀ ∈

≥

w
w

w 

(4)

where it is customary to set 1C =  and also to 
replace b with r= -b (where r is not the margin 
of separation in this case). However, none of these 
conventions is strictly necessary, and by leaving 
the form of the one-class C-SVC as similar as 
possible to the usual C-SVC, we hope to under-
line the fact that this is just a simple variation 
of the C-SVC primal. For technical reasons, we 
must in this case restrict our choice of C to the 
range C≥1.

An alternative approach to the one-class SVC 
is to attempt to construct a sphere of minimal 
radius in feature space (Lee & Lee, 2005). How-

ever, while there are some advantages to this 
approach, it does not fit into the unified method 
we are constructing in this chapter, and so we 
will not go into detail here.

sUPPOrt VEctOr rEGrEssOrs

The final type of SVM under consideration here 
is the support vector regressor (Drucker, Burges, 
Kaufman, Smola & Vapnik, 1997; Smola, 1996; 
Smola & Scholkopf, 1998; Vapnik, Golowich 
& Smola, 1997) (or ε-SVR for short, where the 
prefix ε is included to differentiate between the 
formulation introduced here and a variant known 
as the v-SVR (Scholkopf, Bartlett, Smola & Wil-
liamson, 1999). ε-SVRs tackle the problem of 
function approximation and find application in a 
huge variety of areas, including weather predic-
tion, stock market trend analysis, and adaptive 
control systems, to name a few.

To be specific, ε-SVR is concerned with the 
following problem. Suppose we have some system 
with a measurable input x ∈ X (where we will 
once again assume that X is Lebesgue measur-
able) and a measurable real valued output z ∈ R. 
For example, our input might be a series of stock 
prices for a company over the previous financial 
year, and z the projected growth for the next. In 
this case, we may wish to estimate z in advance, 
allowing us to make a more informed decision 
about whether or not the company in question 
would be a good investment.

Let us write the “true” output z given input 
x as z=ĝ(x). The aim of ε-SVR is to construct a 
function of the familiar universal approximator 
form:

( ) ( )Tg x x b= +w

which approximates ĝ, noting that this is a linear 
function of the position of the image of x ∈ X in 
feature space.
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As for the binary classification case, we are 
given a training set Θ:

( ) ( ) ( ){ }0 0 1 1 1 1, , , , ,

 
 

N N

i N

i N

x z x z x z

x X i
z i

- -Θ =

∈ ∀ ∈
∈ ∀ ∈





 

where, in this case, each pair (xi,zi) represents an 
input xi ∈ X to our system and the measured output 
zi ∈ R of our system given this input. Based on 
this training set, the aim of ε-SVR is to construct 
a regressor that is able to mimic ĝ as accurately 
as possible (or practical).

Continuing our analogy with the C-SVC, as-
suming objects x ∈ X are selected according to 
some distribution P(x), we would like to minimize 
the actual risk:

( ) ( ) ( )( ) ( )ˆ, ,
x X

R b c g x g x dP x
∈

= ∫w

where { }2: 0c +→ ∪   is known as the cost 
function and is a measure of the error in our ap-
proximation g(xi ). Traditionally, ε-SVR uses the 
cost function:

( )
( )

,

max 0,

c z z

z

= -

= - -

which is known as Vapnik’s e-insensitive cost 
(Haykin, 1999) ( { }0+∈ ∪  being a constant), 
as shown in Figure 5. However, since we know 
neither P(x) nor ĝ, we must once again resign 
ourselves to dealing instead with the empirical 
risk, namely:

( ) ( )( )1, ,
N

emp i i
i

R b c g x z
N ∈

Θ = ∑w


But if we attempt to select w and b by mini-
mizing the empirical risk directly, we are once 
again faced with the problem of overfitting if 
the set of possible trained machines g:X→R 
has too much capacity for the problem at hand. 
In this particular case, overfitting will manifest 
itself in the “bumpiness” (i.e., the rate of change 
of g(x) as x is varied) of the trained machine g. 
Loosely speaking, the more rapidly g varies in 
response to small changes in x, the more complex 
the surface and the more likely that overfitting 
has occurred.

Motivated by these observations, rather than 
minimize the empirical risk directly to find w 

Figure 5. Vapnik’s e-insensitive cost function (e=1 in this case)
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and b, instead we minimize the regularized risk, 
which in general is defined to be:

( ) ( ) ( ), , ,reg empR b CR b bΘ = Θ +w w w

where the regularization term f(w,b) is some 
measure of the “bumpiness” of the trained ma-
chine g, and C ∈ R+ is a constant. Noting that if 

LdX =  , then ( ) 1
2

Tg∇ ∝x x w w, ε-SVR use the 
regularization term ( ) 1

2, Tb =w w w giving the 
regularized risk function:

( ) ( )1, ,
2

T
reg empR b CR bΘ = + Θw w w w

In much the same way that the constant C ∈ 
R+ controls the trade-off between capacity mini-
mization and empirical risk minimization in the 
binary classification case, the same constant C ∈ 
R+ in the previous expression controls the trade-off 
between empirical risk minimization (and possible 
overfitting) if C is large, and function flattening 
(and potential underfitting) if C is small.

The primal form of the e-SVR training prob-
lem may be expressed in terms of slack variables 
as follows:

+ - ≥ - - ∀ ∈

( ) ( )
( )
( )

*

* *
1, , ,

*

*

1min , , ,
2

such that:  
 

T T

b

T
i i N

T
i i N

CR b
N

x b z
x b z

= + +

+ - ≤ + + ∀ ∈
≥
≥

w
w

w
w





      (5)

As for binary classification, it is important to 
note that one does not normally attempt to solve 
this problem directly to find w and b (the dual is 
solved instead). Note also that * 0 i i N= ∀ ∈  
and furthermore:

( )*  i i i i N+ = - ∀ ∈

Geometrically, the ε-SVR formulation may be 
visualized, as shown in Figure 6. In this interpreta-
tion, feature space is extended by one dimension, 
namely z. The training points in this (extended) 
feature space are (φ (xi), zi ), and one aims to con-
struct an ε-tube (a tube whose width along the z 
axis is 2ε, as shown in the figure. The “tube” is 
made up of two parallel hyperplanes separated 
by a distance of 2ε along the z axis) such that all 

Figure 6. Geometric interpretation of the standard SV regressor
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(extended) training points lie inside this tube (or 
as close to the tube as possible if this is not achiev-
able) and the tube itself is as flat as possible with 
respect to the z axis. The empirical risk term of 
the cost function works toward the former goal, 
and the regularization term the latter.

Example: XOr Gate revisited

We now revisit our earlier XOR gate example. 
Once again, we aim to mimic a 2-input exclusive 
OR logic gate, assuming that –1 represents logic 
0 and +1 represents logic 1, and our feature map 
is ( ) [ ]0 1 0 1, ,x x x x x= . Let us further assume that 
ε=0.1 and that C is very large (effectively the same 
as the separable case in the C-SVC insofar as it 
ensures that ξ=0.

Our training set is the same as found in Box 1, 
and hence, the ε-SVR training problem is:

( )

[ ]
[ ]
[ ]
[ ]

2 2 2
0 0 1 2,

0 1 2

0 1 2

0 1 2

0 1 2

1 1 1min ,
2 2 2

such that: 0.9,1.1
0.9,1.1
0.9,1.1
0.9,1.1

b
R b w w w

w w w b
w w w b
w w w b
w w w b

= + +

- - + + ∈
+ - + + ∈
- + + + ∈
+ + + + ∈

w
w

The mathematics is slightly more complicated 
in this case (we will not go into details). Suffice it 
to say that it can be shown that this has a unique 
solution w=[0,0,0.9], b=0, giving the trained 
machine:

( ) 0 10.9g x x=x

This seems reasonably close to the answer 
achieved previously, and indeed, if we neglect the 
magnitude of the output, it is precisely the same. 
However, as this is a regression problem, we are 
interested in the magnitude, so this solution is 
different. In general, it is not wise to formulate 
pattern classification problems as regression 
problems, although it is clearly possible to do so 
by simply setting zi=di . The reason for this may 

be seen by considering what would happen if 
one were to include an additional training vector 
([-1.5,+1],-1) in the previous training set. This 
should clearly not change the decision function 
and indeed does not in the C-SVC case. In the 
ε-SVR case, however, it will distort the decision 
function, which, while desirable in a regressor, 
is clearly not desirable in a classifier.

UNIFIcAtION AND DUALItY

Consider all of the SVM formulations considered 
in this chapter up until the present. In each case, 
our aim is to construct a trained machine g:X→
R of the form:

( ) ( )Tg x x b= +w

parameterized by w and b. The parameters w and 
b may (in principle) be found by solving the ap-
propriate primal training problem ( (3) for C-SVC, 
(4) for one-class C-SVC, (5) for ε-SVR), which in 
all cases is a linearly constrained dH-dimensional 
convex quadratic programming problem. In the 
present section, we take the obvious similarities 
between the various formulations to its logical 
conclusion and construct an SVM framework 
that encompasses binary classification, one-class 
classification, and regression as simply special 
cases of a more general, unified SVM formulation. 
We then construct the dual form of this unified 
formulation.

To understand the connection between regres-
sion and pattern classification, consider Figure 7, 
which shows the graph of g(x) as distance above (or 
below) feature space in an augmented (extended by 
one dimension) feature space. The decision surface 
in this case is the intersection between the graph 
of g(x) and feature space. For the two boundary 
vectors φ(xi ) and φ(xj ) shown, the perpendicular 
(to feature space) distance between φ(xi ) (or φ(xi ) ) 
in feature space and the graph is ε=1. If the margin 
of separation is ρ, then the gradient of the graph 
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must be 2 , and so minimizing this gradient (flat-
tening the graph) will maximize the margin of 
separation ρ, and vice versa.

Unification

Let us begin by defining a universal training 
set:

( ) ( ) ( ){ }

{ }

0 0 0 1 1 1 1 1 1, , , , , , , ,

 
1,0, 1 
 

N N N

i N

i N

i N

x d z x d z x d z

x X i
d i
z i

- - -Θ =

∈ ∀ ∈

∈ - + ∀ ∈

∈ ∀ ∈







 

and associating with it the (universal) primal 
SVM training problem (see Box 3) where C 
∈ R+, { }0+∈ ∪ , ζ ∈ R and χ ∈ {-1,+1} are 
constants, and we require that χ=-1 if di=0 for 
any i ∈ N .

It is not too hard to see that this will reduce to 
the standard primal C-SVC (3), one-class C-SVC 
(4), or e-SVR (5) training problem under the fol-
lowing special conditions:

• C - S VC :  χ =1 ,  ε =1 ,  ζ= 0  a n d 
{ }0, 1, 1 i i Nz d i= ∈ - + ∀ ∈ .

• One-class C-SVC: χ=1, ε=0, ζ=1 and 
0, =+1 i i Nz d i= ∀ ∈ .

• ε-SVR: χ= -1, ζ=0 and 0 i Nd i= ∀ ∈ .

Figure 7. Relationship between the concepts of max-margin (for the pattern recognition case) and flat-
tening (for the regression case). (a) shows the max-margin case, and (b) an alternative, nonoptimal 
margin. Note that the gradient of the surface is smaller (i.e., it is “flatter”)

 

( )

( )
( )

*

* *
1, , , : 0 : 0
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*
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2

such that:  , 0
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 , 0
 , 0
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T
i ib i d i d

T
i i N i

T
i i N i

N i

N i

CR b
N

x b z
x b z

i d
i d

∈ ≥ ∈ ≤

 
= + + +  

 
+ - ≥ + - ∀ ∈ ≥
+ - ≤ - + ∀ ∈ ≤

≥ ∀ ∈ ≥
≥ ∀ ∈ ≤

∑ ∑
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w

w
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      (6)

Box 3.
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Of course, so long as we satisfy the require-
ment χ= -1 if di=0 for any i ∈ N , there is no 
reason to restrict ourselves to these three standard 
problems. For example, if we wish to include in-
equality constraints in the ε-SVR formulation, we 
may do so by including training tuples (xi,+1,zi ) 
to add lower bound constraints of the type g(xi ) 
≥zi -ε to the problem, and likewise by including 
training tuples (xi, -1,zi ) to add upper-bound 
constraints of the type g(xi )≤ zi -ε.2

the Dual Formulation

As has been mentioned previously, there are two 
difficulties with the primal form (6) that make 
it difficult to solve directly. The first is the rela-
tive complexity of the constraint set (especially 
when compared with the dual form). The second, 
more serious problem is the fact that the primal 
problem is a dH-dimensional quadratic problem, 
which places direct, practical limitations on our 
choice of feature map. For this reason, we con-
struct the dual optimization problem (Fletcher, 
1981), which, as we will show, is a much more 
convenient optimization problem.

To begin, note that (6) is a linearly constrained 
convex quadratic programming problem and, 
hence, amenable to Lagrangian methods. Hence, 
for each of the constraints:

( )  if 0T
i i i ix b z+ - ≥ + - ≥w

we associate a Lagrange multiplier βi ≥ 0. Similarly, 
for each of the constraints:

( )  if 0T
i i i ix b z+ - ≤ + - ≤w

we associate a Lagrange multiplier * 0i ≤ . For 
convenience, we also define βi = 0 for all training 
tuples for which di< 0, and similarly * 0i ≤  for all 
training tuples for which di > 0. Finally, we define 
a Lagrange multiplier γi ≥ 0 for each constraint 
ξi ≥ 0  (with γi = 0 otherwise) and a Lagrange 
multiplier *

i  ≥ 0 for each constraint * 0i ≥  (with 

*
i  ≥ 0 otherwise). So, for each training tuple  

(xi,di,zi ) ∈ Θ, we have four corresponding La-
grange multipliers βi , 

*
i , γi and *

i .
Using this notation, the Lagrangian of (6) is:

( )( )( )
( )( )( )

*
1

: 0

* * * *

: 0

1
2

N i

N i

T T T

T
i i i i i i

i d

T
i i i i i i

i d

C CL
N N

∈ ≥

∈ ≥

= + + +

- + + - - +

- + + - + -

∑

∑

w w 1

w

w





      (7)

and the Wolfe dual of (6) is:

* * *

*

1, , , , , ,

1

1

1

1

* *

* *

min max

such that:
0
0 : 0

0 : 0

, , ,
0 : 0
0 : 0

i

i

b

b

N i

i i N i

i i N i

L

L
L
L i d

L i d

=
∇ =
∇ = ∀ ∈ ≥

∇ = ∀ ∈ ≤

- ≥
= = ∀ ∈ <
= = ∀ ∈ >

w

w 0









∇

      (8)

which has the KKT optimality conditions:

1 0 : 0
ii∇ = ∀ ∈ ≥   (9)
*

*
1 0 : 0

i
i N i∇ = ∀ ∈ ≤   (10)

1 0 : 0
ii∇ = ∀ ∈ ≥   (11)

*
*

1 0 : 0
i

i N i∇ = ∀ ∈ ≤   (12)

1L∇ =w 0    (13)

1 0bL∇ =     (14)
1 0 : 0

i
L i d∇ = ∀ ∈ ≥   (15)

∇ = ∀ ∈ ≤* 1 0 : 0
i

N iL i d   (16)
* *, , ,- ≥     (17)

0 : 0i i N i= = ∀ ∈ <   (18)
* * 0 : 0i i N i= = ∀ ∈ >   (19)
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Conditions (16) - (19) imply that:

( ) ( )*

N

i i i
i∈

= +∑w


  (20)

( )*T= +1     (21)

∀ ∈  : 0i i N i
C
N

= - ≥   (22)

* *  : 0i i N i
C
N

- = - ∀ ∈ ≤
  (23)

and hence, 0 : 0C
i N iN≤ ≤ ∀ ∈ ≥

 and 
* 0 : 0C
i N iN- ≤ ≤ ∀ ∈ ≤ . Consider some 

training tuple (xi,di,zi ) for which di = 0 (and 
hence, χ = -1 by definition). Suppose ε > 0. If βi 
> 0, then using the previous conditions, it follows 
that ( )T

i ix b z+ ≤ -w , and hence, * 0i = . 
Using similar reasoning, it may be seen that if 

*
i  > 0, then βi  = 0. So if ε > 0, then βi

*
i  = 0 and 

* *
i i i i- = +  for all i ∈ N . Hence, defining 

α = β+β*, we may rewrite the Wolfe dual in the 
following dual unified SVM training problem 
form (see Box 4), where:

if 0
0 otherwise

if 0
0 otherwise

C
iN

i

C
iN

i

d
l

d
u

- ≤
= 


≥

= 


and K ∈ RNxN, Ki,j = K(xi, xj ) and K(x,y) = φT(x)φ(y) 
is the kernel function, which we will discuss in 
detail shortly. The trained machine g may be 
expressed solely in terms of α and b using (20) 
as follows:

( ) ( ),
N

i i
i

g y
∈

= +∑
   (25)

We have chosen to leave the bias b in the previ-
ous statement of the dual problem (24). This has 
certain advantages (Shilton, Palaniswami, Ralph, 
& Tsoi, 2005), not least of which is that it results 
in a very simple constraint set and removes the 
necessity of calculating the bias b after the opti-
mization process has been completed. However, 
if so desired we may make direct use of (21) to 
obtain the alternative dual formulation:

( ) 1min
2

such that:
N

T T
i

i

T

Q
∈

= - -

≤ ≤
=

∑
l u
1



 (26)

Where the bias b may be calculated postop-
timization using:

,
N

i i j j
j

b d K
∈

= - ∑


This formulation is, in fact, more common 
in the literature. However, for the reasons stated 
previously (namely, that the constraint set is more 
complex and that the bias b must be calculated 
postoptimization), we favor the use of the previ-
ous, partially dual formulation (24).

The optimality conditions for (24), reexpressed 
from the KKT conditions (9) - (19), may now be 
stated. Defining:

0Th b
     

=     
     

g K 1
1

 
         

( ) 1min max ,
02

such that:
N

T T

iTb i
Q b

b b b ∈

         
= - -         

≤ ≤

∑1
l u



    (24)

Box 4.
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and noting that ( ) i i Ng g x i= ∀ ∈ , the optimal-
ity conditions of the dual SVM training problem 
(24) are:

 i i i Nl ≤ ≤ ∀ ∈    (27)
∀ ∈  : 0i i N i ig z≥ - = <  (28)
∀ ∈  : 0i i N i ig z= - < <  (29)
∀ ∈  : 0i i N i ig z≤ - = >  (30)
∀ ∈  : 0i i N i ig z≥ + = <  (31)
∀ ∈  : 0i i N i ig z= + < <  (32)

 : 0i i N i ig z≤ + ∀ ∈ = >  (33)
h = ζ     (34)

Properties of the Dual

A number of properties of the dual unified SVM 
training problem (24) is noteworthy. First, the dual 
is a convex quadratic programming problem (the 
convexity of the dual following directly from the 
convexity of the primal), meaning that it has no 
nonglobal minima.3 Moreover, the quadratic form 
is particularly straightforward to solve, especially 
as we do not have to worry about becoming “stuck” 
in local minima.

Second, each training tuple (xi,di,zi ) is uniquely 
associated with a single dual variable αi . It may 
be seen from the optimality conditions (28)-(33) 
that we can classify the training vectors xi into 
nonsupport, boundary (support), and error (sup-
port) vectors using the corresponding αi value 
directly as follows:

• αi = 0 for nonsupport vectors
• 0 C

i N< ≤  for boundary (support) vectors
• C

i N=  for error (support) vectors

It follows from this that, assuming ε > 0, the 
solution α is likely to be sparse, by which we mean 
that a proportion of the dual variables αi will be 
zero. This follows from the fact that only support 
vectors have corresponding nonzero αi values, 

and geometrically it is unlikely that all (or even 
a significant proportion of) training vectors will 
be support vectors.

Finally, let us return to the kernel function  
K:X x X →R defined previously. It may be noted 
that we do not actually need to know the exact 
form of the feature map : HdX →  , so long as 
we know that it exists. It can be shown (Mercer, 
1909; Cochran, 1972) that for any symmetric 
function K:X x X →R for all functions :X→R 
for which:4

( )2

x X
x dx

∈
< ∞∫

satisfies:

( ) ( ) ( ), 0
x X y X

x K x y y dxdy
∈ ∈

≥∫ ∫

there must exist a map : HdX →   such that:

( ) ( ) ( ),
dH

n n
n

K x y
∈

= ∑


(where we define ∞ = 

  to encompass the in-
finite dimensional case) is valid and converges 
absolutely and uniformly. This is known as 
Mercer’s condition (Mercer, 1909).

The implication of this result is that we 
do not actually need to know the feature map 

: HdX →   or to retrieve w in order to use our 
trained machine. Indeed, given a training set Θ 
(be it binary classification training set, a one-
class training set, a regression training set, or 
some hybrid) and a Mercer kernel K:X x X →R, 
we can find the optimal decision function g by 
solving the dual training problem (24) to obtain 
α and b, and then make use of the subsequent 
trained machine (25), all without knowledge of 
the feature map : HdX →   or the weight vec-
tor w. This decoupling of the training problem 
dimension N and the dimensionality (and hence, 
to some extent, the complexity) of the implicit 
feature map dH is one of the great strengths of 
the SVM approach. In essence, it allows us to 
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use very complex, potentially very high capacity 
feature maps without overfitting or increasing the 
complexity of the training algorithm.

Mercer kernels for the case LdX =   in-
clude:

• Linear kernel: K(x,y)=xTy
• Polynomial kernel: K(x,y)=(1+ xTy)p, where 

p ∈ +.
• Gaussian RBF kernel: ( )

2

,K e
-

-
=

x y

x y , 
where γ ∈ R+.

• Multilayer perceptron: K(x,y) = tanh(xTy + 
β), where β ∈ R is selected such that K(x,y) 
satisfies Mercer’s condition.

• Vovk’s real  polynomial  kernel: 

( ) ( )1
,

1

pT

TK
+

=
+

x y
x y

x y
, where p ∈ +.

It may be shown that if K1,K2:X x X →R are 
Mercer kernels, L1,L2:X x X →R are symmetric 
functions, and { }, 0c d +∈ ∪ , then the following 
will be Mercer kernels:

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2

1 2

1 2

, , ,

, , ,

, , ,

a

b

c z X

K x y cK x y dK x y

K x y K x y K x y

K x y L x z L z y dz
∈

= +

=

= ∫
 
special cases

At this point, it may be useful to step back briefly 
from the unified SVM to consider the special 
cases; namely, C-SVC, one-class C-SVC, and 
ε-SVR, and how the dual problem and its optimal-
ity conditions look in each case.

The C-SVC

This is equivalent to the unified case with χ = 1, 
ε = 1 , ζ = 0 and { }0, 1, 1 i i Nz d i= ∈ - + ∀ ∈ . 
No t i n g  t h a t  0 : 1i N i≥ ∀ ∈ = +  a n d 

0 : 1i N i≤ ∀ ∈ = -  (as 0 : 1i N il i d= ∀ ∈ = +

, and 0 : 1i N iu i d= ∀ ∈ = - ), the dual training 
problem may be seen to be:

( ) 1min max ,
02

such that: 0 : 1
0 : 1

T
T

Tb

C
i N iN

C
i N iN

Q b
b b

     
= -     

     
≤ ≤ ∀ ∈ = +

- ≤ ≤ ∀ ∈ = -

1




      (35)

which has the optimality conditions:

≤ ≤ ∀ ∈0 C
i i NNd     (36)

1 : 0i i N id g i≥ + ∀ ∈ =   (37)
1 : 0 C

i i N i Nd g i= + ∀ ∈ < <   (38)
1 : C

i i N i Nd g i≤ + ∀ ∈ =   (39)
h = 0     (40)

The One-Class C-SVC

This is equivalent to the unified case with χ = 1, 
ε = 1 , ζ = 0 and 0, 1 i i Nz d i= = + ∀ ∈ . Noting 
that 0 i N≥ ∀ ∈  (as 0 : 1i N il i d= ∀ ∈ = + ), the 
dual may be seen to be:

( ) 1min max ,
02

such that:

T

Tb

C
N

Q b b
b b

     
= -     

     
≤ ≤

1
0  (41)

which has the optimality conditions:

0 C
i NN≤ ≤ ∀ ∈    (42)
1 : 0i N ig i≥ + ∀ ∈ =   (43)
1 : 0 C

i N i Ng i= + ∀ ∈ < <   (44)
1 : C

i N i Ng i≤ + ∀ ∈ =   (45)
h = 0     (46)

The ε-SVR

This is equivalent to the unified case with χ = -1, 
ζ = 0 and 0 i Nd i= ∀ ∈ . In this case, the dual 
is:
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( ) 1min max ,
02

such that:
N

T
T

iTb i

C C
N N

Q b
b b ∈

     
= - +     

     
- ≤ ≤

∑1
1



      (47)

which has the optimality conditions:

 C C
i NN N- ≤ ≤ ∀ ∈    (48)

∀ ∈  : C
i i N i Ng z≥ + = -   (49)

∀ ∈  : 0C
i i N iNg z= + - < <  (50)

[ ], : 0i i i N ig z∈ - + ∀ ∈ =  (51)
∀ ∈  : 0 C

i i N i Ng z= - < <   (52)
∀ ∈  : C

i i N i Ng z≤ - =   (53)
h = 0     (54)

A MEcHANIcAL ANALOGY

For the C-SVC, there is a very useful mechanical 
analogy (Burges, 1998), which may be used to 
give an intuitive interpretation of the dual vari-
ables α. Recall that the trained machine g:X→R 
defines a decision surface S(α,b) in feature space 
given by:

( ) ( ), 0
N

T
i i

i
S b

∈

  = + = 
  

∑


which is a hyperplane in feature space.
Let us suppose that we have a rigid, flat sheet 

lying on this hyperplane, which we will call the 
decision sheet. Let us further suppose that the 
image of each support vector xi exerts a force 

ˆi i iF = w perpendicularly onto the decision sheet 
(i.e., by means of a rod set perpendicular to the 
decision sheet between the decision sheet and the 
support vector image φ(xi ) ), as shown in Figure 
8. The conditions for mechanical equilibrium for 
this system are then (Burges, 1998):

0 1 3;

ˆForces 0

Torques 0
N

dH
N

i i
i

i
i

-

∈

∈

= =

= Γ =

∑ ∑

∑ ∑

w






The first of these is automatically satisfied 
by any C-SVC decision surface by virtue of the 
optimality condition h = 1T α = 0. For the second, 
note that the torque exerted on the decision sheet 
by any training vector (support or otherwise) is 
displayed in Box 5, where 0 1 1dH -  is the com-

Figure 8. Mechanical analogy for the C-SVC
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pletely antisymmetric tensor.5 Combined with 
(20), what is displayed in Box 6 may be seen.

From these results, we see that the decision 
sheet lies at a point of mechanical equilibrium. 
So in the separable case, all support vectors exert 
some force on the decision sheet or surface, with 
the “most important” support vectors exerting the 
most force. In the nonseparable case, the same 
is again true, except that in this case, we place a 
limit on the magnitude of the force, which any 
one support vector may exert, effectively limit-
ing the amount of influence any given training 
vector may have on the position of the decision 
surface. In this analogy, the support vectors 
actually physically “support” the decision sheet 
at a position of mechanical equilibrium, which 
justifies the name.

It is not difficult to extend this analogy to the 
one-class C-SVC. Indeed, the only difference 
is that all support vectors are exerting force in 
the same direction, and we add a uniform (i.e., 
distributed evenly across the decision sheet) op-
posing force ζ on the decision sheet. So:

0 1 3;

ˆ ˆForces 0

Torques 0
N

dH
N

i i
i

i
i

-

∈

∈

= - =

= Γ =

∑ ∑

∑ ∑

w w






as shown in Figure 9. Once again, the optimality 
conditions ensure that both conditions are met.

We could also trivially extend this analogy 
directly to the ε-SVR case. However, in this case, 
the decision surface is less meaningful than in 
the C-SVC case, and hence, the analogy is less 
useful.

GENErAL cOst FUNctIONs IN 
tHE UNIFIED sVM

It is good to consider for a moment the issue of 
cost functions and their selection. It may be asked 
precisely why we have chosen the cost functions 
that we have for the problems of classification 
and regression. In particular, the cost function 
used for C-SVC:

c(δ,d)= max(0,1-dδ)

appears questionable. If we are only interested in 
the sign of the trained machine g(x), then why are 
we penalizing errors based on both the sign and 
the magnitude of g(x)? Surely, a more sensible cost 
function for binary classification would be:

( ) ( ) ( )1 if sgn sgn
,

0 otherwise
d

c
 =

= 


We may also ask why we have chosen the 
cost function:

 

( )

( )

0 1 3 0 1 1 2 1

2 1

0 1 1 2

2 1

;
,

1
,

ˆ

d d d dH H H H
d d dH H H

d d HH H
d d dH H H

i - - - -

- -

- -

- -

∈

-
∈

Γ =

=

∑

∑

 







Box 5.

 ∈ ∈ 

Γ = =∑ ∑0 1 3 0 1 1 2 1

2 1
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,

ˆ ˆ 0
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Box 6.
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( ) ( ), max 0,c = - -

for the ε-SVR. After all, there is no guarantee 
that an alternative cost function might not give 
better results.

In either case, the answer is a mixture of 
pragmatism and historical accident. Essentially, 
these cost functions both result in particularly 
simple dual optimization problems that have 
been shown to perform quite well in many prac-
tical applications. Nevertheless, some work has 
been done looking at alternative cost functions 
(Smola & Scholkopf, 1998; Smola, Scholkopf & 
Muller, 1998a, 1998b) for SVMs, which we now 
discuss.

In general, let t,t*:R→R be differentiable, 
nondecreasing penalty functions such that t(0) = 
t*(0) = 0 (we will see shortly that these functions 
define a general cost function). Based on these 
penalty functions, the generalized unified SVM 
primal training problem is defined to be (Shilton, 
2006; Shilton & Palaniswami, 2004) (see Box 7), 
where once again C ∈ R+, { }0+∈ ∪ , ζ ∈ R 
and χ ∈ {-1,+1} are constants; and we require that 
χ = -1 if di = 0 for any i = N . Examination of 
(55) will show that the cost function associated 
with (55) in the case of classification (χ = +1, ε = 1 
and { }0, 1, 1 i i Nz d i= ∈ - + ∀ ∈ ) is:

 

( ) ( ) ( )

( )
( )

*

* *
1, , , : 0 : 0

*

*

1min , , ,
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such that:  , 0
 , 0

 , 0
 , 0

N i N i

T
i ib i d i d

T
i i N i

T
i i N i

N i

N i

CR b t
N

x b z
x b z

i d
i d

∈ ≥ ∈ ≤

 
= + + +  

 
+ - ≥ + - ∀ ∈ ≥
+ - ≤ - + ∀ ∈ ≤

≥ ∀ ∈ ≥
≥ ∀ ∈ ≤

∑ ∑
w

w

w
w

 







    (55)

Box 7.

Figure 9. Mechanical analogy for the one-class C-SVC
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< <  1( )
( )
( )*

1 if 0 and 1
, 1 if  0 and

0 otherwise

t d
c

 - > < +
= - +



and similarly, the cost function associated with 
(55) in the case of regression (χ = -1, ζ = 0 and 

N0 iid = ∀ ∈ ) is:

= - > +( )
( )
( )*

if 

, if 

0 otherwise

t

c

 - < -






We will not give a detailed derivation of the 
dual form of this primal training problem for 
reasons of brevity (the derivation is not overly 
different to what was given previously, and more-
over, may be found in (Shilton, 2006; Shilton & 
Palaniswami, 2004; Smola & Scholkopf, 1998; 

Smola et al., 1998a, 1998b). Suffice it to say that the 
dual generalized unified SVM training problem 
is shown in Box 8, where we have defined:
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One example of an alternative penalty function 
is the quadratic function t(ξ) = t*(ξ) = ξ2. Using 
this penalty function, the generalized unified SVM 
training problem (56) becomes what is shown in 
Box 9, which should provide a better measure of 
risk (in the maximum likelihood sense) in the case 
of regression training data affected by Gaussian 
noise. It also has the advantage that the matrix 

N
C+K I is positive definite, whereas K on its own 

is only guaranteed to be positive semidefinite. 
Note that in the regression case, if we set ε = 0, 
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this simplifies to Suykens’ least-squares support 
vector machine (LS-SVM) form (Suykens, Van 
Gestel, De Brabanter, De Moor & Vandewalle, 
2002); namely:

( ) 1min max ,
02 0

T TN
C

Tb
Q b

b b b
+        

= -        
        

K I 1
1

and so:
1

00

N
C

Tb

-
+    

=     
    

K I 1
1

More generally, though, the generalized dual 
form (55) allows us to experiment with very 
general cost functions. Such functions need not 
be smooth or symmetrical, so long as they satisfy 
the very minor requirements stated previously. 
However, there is a price: rather than having to 
deal with a simple, readily solvable dual train-
ing problem, we instead may be faced with a 
complicated dual optimization problem (a major 
exception to this being the quadratic function 
described previously). The dual can be solved in 
general (Smola & Scholkopf, 1998; Smola et al., 
1998a, 1998b), but even so, the generic training 
process will usually take longer than the standard 
training process, which could be a serious impedi-
ment when dealing with larger training sets.

A PrActIcAL EXAMPLE: sPAM 
DEtEctION

To get a better feel for the steps involved in train-
ing an SVM, we consider the problem of spam 
e-mail detection. In this case, we are given objects 
x ∈ X, where X is the set of all possible e-mails, 
and asked to classify these as either spam e-mail 
(class +1) or nonspam e-mail (class –1).

For the purposes of this experiment, we used 
the spam-base dataset from the UCI repository 
(Blake & Merz, 1998). The spam-base dataset 
consists of 4,601 training pairs, 1,813 of which are 

labeled as spam (class –1), the remainder being 
nonspam (class +1). Input space is X = R57.

We will consider two approaches here. Our 
first, more conventional approach uses a C-SVC 
trained on the complete spam-base dataset. We 
test a range of kernels and C values, using fivefold 
cross-validation6 to find the optimal parameters 
for this training set. Our second, less conventional 
approach also uses the spam-base dataset, but 
in this case, we attempt to solve the problem by 
training a one-class C-SVC using only nonspam 
e-mails to train our SVM.

Let us first consider the results achieved for the 
C-SVC trained with the full spam-base dataset. 
In any SVM training process, two steps must be 
completed:

1. Data normalization. Vectors in the train-
ing set Θ must be normalized. This ensures 
that the matrix K is well scaled and prevents 
preferential bias toward particular attributes. 
Normalization is done on an attribute-by-
attribute basis by shifting by m ∈ Ld

  and 
scaling by s ∈ Ld

 . Typically, m and s are 
selected to ensure that each attribute either 
lies in some predetermined range (usually 
[-1,+1] ) or that the attribute has zero mean 
and unit variance over the entire training 
set. We used the latter in this experiment. 
Mathematically, the normalization operation 
is:

 ( )( ) ( )1
: diag i i Ni

-
= - ∀ ∈x s x m 

 
2. Parameter selection. The kernel and trade-

off parameter C must be selected. The most 
common way of doing this is to select a grid 
of potential kernels and C values and then 
test each in turn. Testing is typically done 
using cross-validation, and the pair kernel 
C with the smallest cross-validation error is 
selected. Some human interaction is required 
during this process, both in selecting appro-
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priate ranges for kernel C and adjusting these 
appropriately as results come to hand.

As is common practice, we have selected 
out kernel from a set of “common” kernels; 
namely:

• Linear: K(x,y) = xTy
• Polynomial: K(x,y) = (1+xTy)p, where p ∈ 

{2,3}
• Gaussian RBF: ( )

21

,K e
- -

=
x y

x y ,
 where γ ∈ {1,3,10,30,100,300}

The process of selecting C must be done on 
a kernel-by-kernel basis, and the range from 
which it is selected may need to be adjusted as 
the experiment progresses. In this case, how-
ever, we chose to select C from the range 

{ }0.1,0.3,1,3,10,30,100,300,1000,3000C
N ∈
. One may always use a finer grid for both kernel 
and C, or use a recursive approach to hone in on 
the true “best” value. However, such a process 
can be very time-consuming, and it is important 
to know when to desist from “fine tuning” and 
accept that results are “good enough.”

The results achieved for this dataset are shown 
in Table 1, where for brevity we have included 
only best C value for each kernel. Best results 

were achieved using a Gaussian RBF kernel with 
γ = 100 and 100C

N =  with 93.92% of all e-mails 
correctly labeled on average during the fivefold 
cross-validation process.

For comparative purposes, we also ran the same 
tests using an alternative penalty function:

t(ξ) = t*(ξ) = tanh(ξ)

which is designed to apply a uniform penalty to all 
wrongly classified error vectors, thereby ignoring 
the magnitude of these errors. Using the same 
set of tests, the best result achieved for this cost 
function was 94.22 of e-mail correctly classified 
for an RBF Gaussian kernel, again with γ = 100 
and 100C

N = . It should be noted, however, that 
while we were able to achieve better results using 
this cost function, the overall training process in 
this case took marginally longer to complete. As 
this is a relatively small dataset, the slowdown 
experienced was not too serious, but for signifi-
cantly larger datasets, this time factor must be 
taken into account.

For our one-class C-SVC experiment, we are 
attempting to test the trained machine’s ability to 
differentiate spam essentially blind, based only 
on nonspam e-mail samples. This experiment 
is somewhat artificial, although one may seek 

Kernel Type C / N NS NE Accuracy

Linear Kernel 30 892 835 93.13%

Quadratic Kernel 0.1 799 255 92.87%

Cubic Kernel 0.3 786 40 92.43%

Gaussian RBF  γ = 1 10 3919 31 80.78%

Gaussian RBF  γ = 3 10 3326 49 85.80%

Gaussian RBF  γ = 10 3 2179 248 91.85%

Gaussian RBF  γ = 30 10 1301 323 93.50%

Gaussian RBF  γ = 100 10 984 601 93.92%

Gaussian RBF  γ = 300 10 975 829 93.89%

Table 1. Results summary for the spam-base dataset using various kernel functions; only results for the 
optimal C parameter are given in each case
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to justify it by arguing that the ever-changing 
nature of spam e-mail content and presentation 
will quickly render our “spam” training vectors 
redundant.

For simplicity, we test only one kernel; namely, 
the RBF kernel with γ = 100 with C varied over 
a much smaller yet more fine-grained region 
(chosen experimentally to give a good sample 
of the results that are achievable). In this experi-
ment, we have two types of errors; namely, false 
positives (nonspam e-mails incorrectly labeled as 
spam) and false negatives (spam e-mails incor-
rectly labeled as nonspam), where in general, the 
former is considered to be more important than 
the latter. A graph of these results over a range 
of C values is shown in Figure 10.

cONcLUsION

In this chapter, we have introduced a unified SVM 
formulation that incorporates binary classifica-

tion, one-class classification, and regressions. In 
so doing, we have endeavored to highlight the 
connections between the various formulations, 
which are often introduced entirely separately. 
In particular, we have discussed the equivalence 
between margin maximization in the classifica-
tion case and function flattening in the regression 
case. Using a mechanical analogy, we have given 
an intuitive interpretation of both binary and one-
class classification, and the connection between 
them. Finally, we have extended the SVM model 
to cover general, asymmetric cost functions, and 
given an example of an application of SVMs to 
spam e-mail detection to highlight the practical 
issues involved in their use.
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ENDNOtEs

1 It will be seen later that the feature map 
: HdX →   is never actually defined or 
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used explicitly. Instead, a kernel function K:
X x X →R satisfying Mercer’s (1909) condi-
tion and hence implicitly defining such a map 
will be used. As a result, the feature map 
or kernel function used may be as complex 
or as simple as required to fit the problem 
without direct penalty in terms of training 
time or implementation difficulty.

2 As an aside, it may be noted that each tuple 
(x,0,z) ∈ Θ may be removed and replaced 
by two tuples (x,-1,z) and (x,+1,z) without 
changing the constraint set of the primal 
(6) in any nontrivial manner. Hence, we 
do not strictly require the pseudo-class 0 
to achieve regression in our unified SVM. 
From a practical standpoint, however, ap-
plying this reasoning to an ε-SVR problem 
would double the size of the training set, 

which would, as we will see shortly, double 
the dimensionality of the dual training 
problem. So, while theoretically possible, 
this approach is inadvisable.

3 There may be local minima, but all local 
minima will be global.

4 The integrals here are defined by the Leb-
esgue measure on X.

5 Specifically (see Box 10).
6 n-fold cross-validation involves splitting 

the training set into n equally sized subsets. 
The SVM is trained on n - 1 of these and 
tested on the remaining subset; results are 
recorded, and the process is repeated n times, 
leaving out a different subset each time. The 
results are then averaged to give the n-fold 
cross-validation error.
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AbstrAct

Clustering is an important tool for data exploration. Several clustering algorithms exist, and new algo-
rithms are frequently proposed in the literature. These algorithms have been very successful in a large 
number of real-world problems. However, there is no clustering algorithm, optimizing only a single 
criterion, able to reveal all types of structures (homogeneous or heterogeneous) present in a dataset. In 
order to deal with this problem, several multi-objective clustering and cluster ensemble methods have 
been proposed in the literature, including our multi-objective clustering ensemble algorithm. In this 
chapter, we present an overview of these methods, which, to a great extent, are based on the combination 
of various aspects of traditional clustering algorithms.

INtrODUctION

Clustering is an important tool for the exploration 
of datasets with no or very little prior information 
(Jain & Dubes, 1988). Several clustering algo-
rithms have been proposed in the literature. They 
have been very successful to solve a large number 

of real problems in areas as diverse as biology, 
medicine, engineering, marketing, and remote 
sensing. A recent area in which cluster analysis 
has contributed with very important results is 
bioinformatics (Narayanan, 2005; Wang, Zaki, 
Toivonen & Shasha, 2003). In bioinformatics, 
researches related to functional genomics and gene 
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expression data analysis are employing clustering 
techniques to find clusters of genes (e.g., for the 
identification of gene functions) and clusters of 
tissue samples (e.g., for discovering groups and 
subgroups of cancer) (Costa, Carvalho & Souto, 
2004; D’haeseleer, 2005; Eisen, Spellman, Brown 
& Botstein, 1998; Golub et al., 1999; Hautaniemi 
et al., 2003; Nikkilä, Törönen, Kaski, Venna, 
Castrén & Wong, 2002; Pal, Aguan, Sharma & 
Amari, 2007; Spellman et al., 1998; Tamayo et 
al., 1999). 

In spite of this success, traditional cluster 
analysis algorithms present several limitations 
that need to be addressed. For instance, there is 
no precise definition of cluster. As a consequence, 
the literature describes a large number of clus-
tering algorithms, each one looking for clusters 
according to a given clustering criterion, or cluster 
definition (Law, Topchy, & Jain, 2004). 

Another problem is the fact that there is no 
clustering algorithm, optimizing a single criterion 
and able to reveal all types of structures (homo-
geneous or heterogeneous) present in a dataset. In 
fact, it is unfeasible to establish, a priori, which 
clustering criterion is more appropriated to capture 
the true structure. It is also important to mention 
that clustering algorithms can find structures at 
various refinement levels, depending on their 
parameter settings (Jain & Dubes, 1988). 

Moreover, the same data can have more than 
one relevant structure, each one in accordance 
with a different cluster definition and/or with a 
different refinement level (e.g., number of clus-
ters). For example, in functional genomics and 
gene expression data analysis, data usually have 
multiple meaningful interpretations; genes can 
fit into more than one functional category, or a 
disease such as cancer may have different subtypes 
depending on the required level of investigation 
(Alizadeh et al., 2000; Golub et al., 1999; Yeoh 
et al., 2002).

By contrast, the usual application of cluster 
analysis for the exploration of a dataset focuses 
on the discovery of only a single structure that 

best fits the data (Handl & Knowles, 2005; Jain 
& Dubes, 1988; Xu & Wunsch, 2005). In these 
cases, several clustering algorithms are applied to 
the dataset, extracting different structures. Next, 
a validation method selects the structure that best 
fits the data. However, the search for only one 
best-fit structure limits the amount of knowledge 
that might be obtained. Besides, most validation 
measures are biased toward a given clustering 
criterion, which reduces the robustness of the 
analysis performed.

As an attempt to overcome the limitations 
of traditional clustering algorithms, finding a 
higher-quality solution and improving the robust-
ness against different data conformations, recent 
works have proposed the use of multi-objective 
clustering algorithms (Handl & Knowles, 2007; 
Korkmaz, Du, Alhajj, & Barker, 2006; Liu, Ram, 
& Lusch, 2005; Naverniouk, 2005; Ripon, Tsang, 
& Kwong, 2006) and cluster ensemble methods 
(Ayad & Kamel, 2003; Boulis & Ostendorf, 2004; 
Fern & Brodley, 2004; Fred & Jain, 2005; Law 
et al., 2004; Monti, Tamayo, Mesirov, & Golub, 
2003; Strehl & Ghosh, 2002; Topchy, Jain, & 
Punch, 2004; Topchy, Jain, & Punch, 2005). In 
fact, any area that benefits from using cluster 
analysis can take advantage of using cluster 
ensemble or multi-objective clustering methods. 
Applications of the first started in domains like 
network anomaly detection (Munson & Caruana, 
2006), document clustering (Greene, Tsymbal, 
Bolshakov, & Cunningham, 2006), image analysis 
(Lourenco & Fred, 2005), medical diagnostics 
(Greene, Tsymbal, Bolshakov, & Cunningham, 
2006), and bioinformatics (Asur, Parthasarathy, & 
Ucar, 2006; Hu, 2006; Hu, Yoo, Zhang, Nanavati, 
& Das, 2005; Monti et al., 2003; Souto, Araujo, 
& Silva, 2006). Multi-objective clustering ap-
plications started in the following applications: 
marketing (Liu et al., 2005), computer networks 
(Cheng, Cao, Wang, & Das, 2006), and bioinfor-
matics (Handl, 2006; Mitra & Banka, 2006).

Despite their advantages when compared with 
traditional clustering methods, each previous ap-
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proach has its own limitations (Faceli, Carvalho, 
& Souto, 2006; Handl & Knowles, 2007). Cluster 
ensemble techniques, which aim to result in a 
single consensus structure, require fine param-
eters tuning and could have a poor performance 
if a large number of the partitions to be combined 
are of low quality. The multi-objective approaches 
produce a set of partitions, instead of a single 
partition, as the final solution. From this set, the 
users can choose the solutions that seem to be 
more appropriate for their particular application. 
Nevertheless, as the size of the solution set in-
creases, this user-based selection becomes harder 
(Handl & Knowles, 2007). Handl and Knowles 
(2007) and Naverniouk (2005) have proposed 
the use of an automatic selection method, which 
provides an indication of the best partitions in the 
solution set. However, in our experimental works, 
we have observed that these indications do not 
always correspond to the best solutions present 
in the solution set.

In an attempt to minimize these problems, 
we have proposed a multi-objective clustering 
ensemble (MOCLE) method that combines as-
pects from cluster ensemble and multi-objective 
clustering algorithms (Faceli, 2006; Faceli et 
al., 2006). In our approach, we first generate a 
set of individual partitions by running several 
traditional clustering algorithms with different 
parameters settings. These partitions are then 
used as the initial population for a Pareto-based 
multi-objective genetic algorithm. The optimiza-
tion process is used to combine and select the best 
set of alternative partitions. 

The initial population and the optimization 
of different objective functions (validation mea-
sures biased toward distinct clustering criteria) 
compose the multi-objective aspect of MOCLE. A 
special crossover operator that finds the consensus 
between two partitions guarantees the ensemble 
aspect. These characteristics give MOCLE the 
ability to (1) robustly deal with different types of 
clusters that occur at different refinement levels, 
(2) find a concise set of high-quality alternative 

structures, and (3) reduce the need for user exper-
tise on either cluster analysis or the data domain 
in order to improve the performance obtained by 
a clustering technique. Moreover, MOCLE allows 
the integration of previous domain knowledge by 
means of the objective functions.

In this chapter, we describe the state of the 
art of the research in both cluster ensemble and 
multi-objective clustering algorithms. For such, 
first we will present the main problems faced by 
traditional clustering algorithms, which motivated 
the development of the cluster ensemble and multi-
objective clustering approaches. Next, we will 
show the advantages provided by these methods 
to cluster analysis and their current limitations. 
To illustrate these approaches, we will briefly 
describe three cluster ensemble methods and one 
multi-objective clustering algorithm. We will also 
present the proposed multi-objective clustering 
ensemble (MOCLE) method and show how it 
relates to the other methods described. Then, to 
illustrate the techniques discussed throughout the 
chapter, we will present an application example 
from the area of bioinformatics. The limitations 
and future trends associated with the ensembles 
and multi-objective approaches will be discussed 
at the end of this chapter.

bAcKGrOUND

The main goal of a clustering technique is to 
find a structure of clusters in the dataset where 
the objects belonging to each cluster share some 
relevant properties regarding the data domain 
(Handl & Knowles, 2005; Jain & Dubes, 1988; 
Xu & Wunsch, 2005). Here we will focus on a 
particular type of structure: a hard partition (or 
partition, for short). In such a structure, each object 
should be assigned to only one cluster, and all 
objects must be assigned to one of the clusters. 

Cluster analysis comprises several steps, as 
shown in Figure 1 (Barbara, 2000; Jain, Myrthy 
& Flynn, 1999). The data preparation includes 
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the preprocessing of the objects (normalization, 
type conversions, feature selection, or extrac-
tion) and their representation in a proper way for 
a particular clustering algorithm. Afterwards, 
an adequate proximity measure must be chosen 
to evaluate the similarity between objects. The 
main task of clustering consists of the application 
of a clustering algorithm to the dataset, given a 
proximity measure. Next, the results must be 
evaluated in an objective way to check if the 
clusters are valid (they did not occur by chance 
or as an artifact of the algorithm). An additional 
step of clusters interpretation can be included to 
establish their meaning. 

One can see in Figure 1 that expert knowledge 
is important in all steps of the cluster analysis 
process. This includes knowledge of the cluster-
ing technique, the data gathering process, and on 
the domain (Jain et al., 1999). Even so, clustering 

can still be considered an important tool for the 
exploration of data when no or very little prior in-
formation is available, since the expert knowledge 
is applied only to guide some choices during the 
process (Handl & Knowles, 2005; Jain & Dubes, 
1988; Xu & Wunsch, 2005). However, there are 
several difficult issues in cluster analysis. The first 
issue is that a precise definition of cluster does 
not exist (Xu & Wunsch, 2005). Some common 
definitions of cluster are (Barbara, 2000): 

• Well-separated cluster: Each object in 
a cluster is closer to every other object in 
this cluster than to any object in another 
cluster.

• Center-based cluster: Each object in a 
cluster is closer to this cluster center than 
to the center of any other cluster.

• Contiguous cluster: Each object in a clus-
ter is closer to one or more objects in this 
cluster than to any other object outside the 
cluster.

• Density-based cluster: A cluster is a region 
with a high density of objects separated from 
other high-density regions by regions of low 
density of objects.

• Similarity-based cluster: The objects in a 
cluster are similar, while objects in different 
clusters are dissimilar.

The mathematical formulation of the intuitive 
cluster definition is named clustering criterion or 
objective function. The clustering criterion con-
sists of a way of selecting a structure (or model) 
to represent the clusters that best fit the dataset 
being analyzed (Estivill-Castro, 2002). As a con-
sequence of such a diversity of cluster definitions, 
there is a large number of clustering algorithms, 
each one looking for clusters according to a dif-
ferent cluster definition (or clustering criterion) 
(Law et al., 2004). For example, algorithms that 
look for compact clusters (e.g., k-means) are biased 
toward spherically shaped clusters. On the other 
hand, algorithms optimizing a criterion based in 

Figure 1. Clustering process
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the concept of connectedness (e.g., single-link), 
which captures local densities, can detect arbi-
trarily shaped clusters but are not robust against 
overlapping or not well-separated clusters.

Consider the datasets shown in Figure 2. The 
dataset on the left presents two globular clusters 
not well separated. The dataset on the right con-
tains two clusters with a ring shape. The k-means 
algorithm is able to find the globular clusters in 
the dataset on the left, but it fails for the data-
set on the right with ring-shaped clusters. The 
single-link algorithm, in its turns, can find the 
ring clusters on the right, but it is inefficient for 
globular clusters. Therefore, the first difficulty 
in cluster analysis is to choose the most suitable 
algorithm to the dataset. 

Another important aspect regarding clustering 
algorithms is the possibility of finding structures 
(partitions) at different refinement levels (different 
numbers of clusters or cluster densities), depend-
ing on their parameter settings (Jain & Dubes, 
1988). This results in difficulties for the parameter 
adjustment. Clustering validation techniques can 
be used to guide the choice of the algorithm or its 
parameter adjustment (Handl & Knowles, 2005). 
However, most of these techniques are biased 
toward a clustering criterion. Therefore, several 
validation measures should be applied to select the 
most consistent results among those obtained with 

a variety of clustering algorithms using different 
parameter configurations (Handl & Knowles, 
2005). That is, this whole process requires a deeper 
knowledge in cluster analysis than the experts in 
the data domain usually have. 

Furthermore, each algorithm looks for a homo-
geneous structure (all clusters are in accordance 
with the same cluster definition), while data can 
present a heterogeneous structure (each cluster 
conforms to a different clustering criterion) (Law 
et al., 2004). For example, the dataset in Figure 3 
contains three clusters: one ring-shaped cluster 
and two globular clusters. One can see that for 
this dataset, k-means distinguished the globular 
clusters but missed the ring-shaped one. On the 
other hand, single-link distinguished only the ring-
shaped cluster. In fact, there is no single clustering 
algorithm able to find all kinds of clusters that can 
be present in a particular dataset (Estivill-Castro, 
2002; Kleinberg 2002).

An additional issue that makes the cluster 
analysis difficult is that the same dataset can 
have more than one relevant structure, each one 
representing a different interpretation of the da-
taset (Handl & Knowles, 2007). These structures 
can be consistent with a different cluster defini-
tion and/or with a different refinement level. For 
example, consider the dataset shown in Figure 
4. This dataset contains three structures: E1, E2, 

Figure 2. Datasets with different types of clusters
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and E3. The simplest structure is E1, with two 
spherically shaped and well-separated clusters. In 
principle, any clustering algorithm and validation 
index would be able to identify it. The structure 
E2 is a refinement of E1, containing five clusters. 
E3 is also a refinement of E2, with 13 clusters. E2 
and E3 are highly heterogeneous regarding the 
shape of the clusters. The traditional application 
of cluster analysis to explore a dataset focuses on 
the discovery of only a single structure that best 
fits the data. This limits the amount of knowledge 
that could be obtained. For this particular example, 
the structure E1 would be identified, and the 
structures E2 and E3 would be missed.

As previously mentioned, there exist several 
approaches in the literature trying to overcome 
some of the difficulties found in the traditional 
cluster analysis. These approaches are mainly 
based on cluster ensemble and the multi-objective 
clustering methods. There are several techniques 
related to each approach. In this chapter, we will 
describe three cluster ensembles techniques (Fern 
& Brodley, 2004; Law et al., 2004; Strehl & 
Ghosh, 2002) and one on multi-objective cluster-

ing algorithm (Handl & Knowles, 2007). These 
approaches are better suited to deal with different 
data conformations than the traditional clustering 
algorithms. However, as will be discussed later, 
each of them presents its own limitations. 

A cluster ensemble is a way to obtain a con-
sensus partition of high quality given a diverse 
set of individual (base) partitions. It comprises 
two steps: the generation of the base partitions 
and the combination of these partitions in order to 
produce a consensus partition. This last step is ac-
complished via a consensus function (Kuncheva, 
Hadjitodorov & Todorova, 2006). A few alterna-
tives have been proposed for both tasks (Kuncheva 
et al., 2006; Topchy et al., 2004). Regarding the 
type of base partitions used as input for the con-
sensus function, an ensemble can be homogeneous 
or heterogeneous. In a homogeneous ensemble, 
all base partitions are generated with the same 
clustering algorithm. In contrast, in a heteroge-
neous ensemble, the base partitions are generated 
with different clustering algorithms. Here, we 
will focus on the heterogeneous ensembles. Three 

Figure 3. Dataset with a heterogeneous structure
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good examples of such ensembles can be seen in 
Fern and Brodley (2004), Law, et al. (2004), and 
Strehl and Ghosh (2002).

The work presented in Strehl and Ghosh (2002) 
is one of the most popular approaches for cluster 
ensemble. In this work, the authors formalize 
the cluster ensemble problem as a combinatorial 
optimization problem in terms of shared mutual 
information. In order to tackle the combinatorial 
complexity of the problem, they propose three 
algorithms (consensus functions): CSPA (cluster-
based similarity partitioning algorithm), HGPA 
(hyper-graph partitioning algorithm), and MCLA 
(meta-clustering algorithm). A supra-consensus 
function based on the shared mutual information 
can be applied to select the best partition among 
the results produced by the three algorithms. 

The CSPA algorithm starts with the construc-
tion of a new similarity matrix, according to the 
base partitions. The entries of this matrix denote 
the fraction of partitions in which two objects are 
assigned to the same cluster. The matrix is then 
employed to cluster the objects with any similar-
ity-based clustering algorithm, producing the 
consensus partition. In the HGPA algorithm, the 
combination is treated as a problem of partitioning 

a hypergraph. In this hypergraph, the clusters of 
the base partitions are represented as hyperedges. 
The hypergraph is partitioned by cutting a mini-
mal number of hyperedges. The MCLA algorithm 
considers the combination as a problem of finding 
the correspondence between the clusters of the 
base partitions. First, a metagraph is constructed 
where each cluster of the base partitions is a vertex. 
The edge weights are proportional to the similarity 
between the vertices. There are no edges connect-
ing vertices from the same partition. Next, the 
metagraph is partitioned. The clusters assigned 
to the same group (metacluster) are considered 
correspondents. The objects are then assigned to 
the metaclusters to which they are more strongly 
associated, generating the consensus partition.

Another cluster ensemble method, based on 
graph partitioning, is proposed in Fern and Brod-
ley (2004)—hybrid bipartite graph formulation 
(HBGF). In this method, first a bipartite graph 
is constructed using the set of base partitions, 
modeling their objects and clusters simultane-
ously as vertices. Next, the graph is partitioned 
by a traditional graph partitioning technique. The 
resulting division of the objects is the consensus 
partition.

Figure 4. Dataset with several structures
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In all the previously reviewed cluster ensemble 
methods, the goal is to find a consensus partition 
that agrees (resembles) as much as possible with 
all base partitions used as inputs. This goal can 
lead to two main problems. First, in this context, 
a large number of base partitions of poor qual-
ity can also result in a poor consensus partition, 
even if among the base partitions there are few 
of high quality. The second problem is related to 
the difficulty in the generation of a heterogeneous 
structure; that is, a partition with different types 
of clusters. For instance, even if each of the base 
partitions contains one cluster of excellent qual-
ity, according to one of the cluster definitions, 
this cluster will not appear in the final consensus 
partition because its information will be “over-
written” by the poor-quality clusters from other 
partitions. Thus, although considering multiple 
criteria in the individual partitions, the consensus 
function does not consider different clustering 
criteria for different regions of the feature space 
(Law et al., 2004).

Differently from the works of Fern and Brodley 
(2004) and Strehl and Ghosh (2002), the authors 
in Law, et al. (2004) proposed a cluster ensemble 
method that is not based on graph partitioning 
procedures. In fact, they call their approach a 
multi-objective data clustering algorithm. Even 
so, we decided to classify it as a cluster ensemble 
technique. This option was followed because this 
method differs significantly from the simultaneous 
optimization of multiple clustering criteria, which 
usually characterize multiobjective clustering. 
This method works as follows. Several cluster-
ing algorithms are employed to find different 
base partitions. Next, by using a given quality 
measure (stability of the clusters under the resa-
mpling of the dataset), some clusters of these base 
partitions are chosen to compose the consensus 
partition. By doing so, the algorithm chooses the 
best objective function for different parts of the 
feature space. One deficiency of this algorithm 
is its poor performance when the clusters formed 

according to different clustering criteria present 
a significant overlap.

One of the main disadvantages found in clus-
ter ensemble methods is that, like the traditional 
clustering methods, they produce as a final result 
only a single partition. As previously discussed, 
this limits the amount of information that can be 
extracted from the data. Also, as in most of the 
traditional clustering algorithms, these methods 
rely on the fine adjustments of parameters to 
obtain a high-quality consensus partition. In 
several cases, the user must supply the number 
of clusters in advance. However, for real datas-
ets, this number is usually not known a priori. 
Because of this complex parameter setting, the 
validation step for these methods requires a good 
deal of expertise, similar to what happens with 
traditional clustering algorithms.

The multi-objective clustering method 
described in Handl and Knowles (2007) over-
comes several of the previous limitations. For 
example, different from the traditional clustering 
algorithms and the cluster ensemble methods, 
this approach can find solutions corresponding 
to different trade-offs between the clustering 
criteria being optimized. More precisely, Handl 
and Knowles (2007) describe a multi-objective 
evolutionary algorithm, MOCK (multi-objective 
clustering with automatic K-determination), able 
to simultaneously optimize two complementary 
clustering criteria: overall deviation and connec-
tivity. MOCK returns a large number of different 
trade-off partitions over a range of different cluster 
numbers (solution set). However, as the number 
of alternatives increases, the analysis becomes 
harder (Handl & Knowles, 2007). To avoid this 
difficulty, MOCK includes a mechanism to au-
tomatically select the best partitions from the 
solution set. The selection is based on the shape 
of the Pareto front. This selection strategy relies 
on domain-specific considerations, which limits 
its application. Furthermore, we have found in 
our experimental work that the best partitions 
selected by MOCK did not always correspond 
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to the best partitions found by MOCK (Faceli, 
2006; Faceli et al., 2006).

MULtI-ObJEctIVE cLUstErING 
ENsEMbLE

In an attempt to overcome the difficulties found 
in traditional cluster analysis algorithms, our 
multi-objective clustering ensemble algorithm 
(MOCLE) combines characteristics from both the 
cluster ensemble and multi-objective clustering 
methods (Faceli et al., 2006). As any cluster en-
semble, MOCLE is composed of two main steps: 
(1) generation of a diverse set of base partitions and 
(2) determination of the consensus partition. Our 
approach differs from cluster ensemble methods 
in two ways. First, we look for a set of “consen-
sus” partitions instead of only one. In fact, our 
set of solutions may contain partitions that are 
combinations of other partitions or high-quality 
partitions from the set of individual partitions. 
Second, we combine pairs of partitions iteratively 
in an optimization process instead of the usual 
combination of all partitions at the same time. 
This iterative combination/selection of partitions 
avoids the negative influence of low-quality base 
partitions, which can decrease the quality of the 
ensemble results.

More precisely, MOCLE works as follows. 
Initially, a set of base partitions is generated. 
Conceptually different clustering algorithms, op-
timizing different clustering criteria, are employed 
for this purpose. For example, algorithms looking 
for compact clusters may be used together with 
algorithms looking for connected clusters. The 
more diverse the algorithms are, the larger the 
number of types of cluster that can be discovered. 
Several parameter settings for the algorithms are 
also considered in the construction of the set of 
base partitions. These different settings generate 
partitions with clusters at different refinement 
levels (e.g., partitions with different numbers 
of clusters or partitions with clusters of several 

densities). It is important to have partitions with 
different types of clusters at several refinement 
levels so MOCLE can receive as much informa-
tion as possible. As a result, the algorithm will be 
able to generate a large number of the structures 
present in the dataset. In fact, we assume that 
the relevant structures will be among the base 
partitions.

After generating the base partitions, the set 
of “consensus” partitions are found by the opti-
mization of different objective functions using a 
Pareto-based multi-objective genetic algorithm. 
Any known algorithm can be employed. We have 
already investigated two of them: SPEA (strength 
Pareto evolutionary algorithm) (Zitzler & Thiele, 
1999) and NSGA-II (non-dominated sorting genet-
ic algorithm) (Deb, Pratap, Agarwal, & Meyrivan, 
2002). Similar results were obtained with both 
algorithms (Faceli, 2006; Faceli et al., 2006). The 
use of this class of genetic algorithm results in a 
set of partitions, as previously mentioned, instead 
of a single partition produced by traditional and 
cluster ensemble methods. This is an important 
feature in domains like bioinformatics, where the 
data may have several interpretations.

The base partitions constitute the initial popu-
lation to be used with the genetic algorithm. Each 
partition is an individual and is represented by 
an array of sets. Each set, in its turn, represents a 
cluster and contains the labels of its objects. Figure 
5 illustrates the representation of an individual. 
In addition to the special initial population, two 
other adaptations are made in the traditional ge-
netic algorithm: a special crossover operator and 
the use of diverse clustering validation measures 

Figure 5. Individual
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as objective functions. Together with the initial 
population, our special crossover operator is re-
sponsible for the ensemble aspect of MOCLE. This 
operator finds the consensus between two parent 
partitions. Any existing cluster ensemble method 
that can be applied to a pair of partitions can be 
used as crossover operator. We have investigated 
two methods for this step: HBGF and MCLA. 
Thus, our consensus crossover works as follows. 
Two parents are selected by binary tournament. 
Next, the cluster ensemble method is applied to 
combine the parent partitions. The number of 
clusters of the resulting consensus partition is 
randomly chosen in the interval of variation of 
the numbers of clusters of the parents. 

With this operator, the partitions are com-
bined in pairs, iteratively, during the evolution-
ary process. The consensus partitions generated 
at each iteration are also considered in the next 
combinations. This iterative combination avoids 
the negative influence of the low-quality partitions 
present in most of the traditional cluster ensemble 
methods. The low-quality partitions are gradually 
eliminated, while the best individual partitions 
and the good combinations are maintained for 
further combination. 

Since we want to restrict the search space to the 
base partitions and their combinations, we do not 
apply a mutation operator. Therefore, the genetic 
algorithm tries to select the best partitions, not 
exploring the whole space of possible partitions. 
In the pure Pareto-based multi-objective clustering 
scenario, differences in the assignment of only 
one object to a different cluster in two partitions 
can result in a different trade-off of the measures 
optimized. This may result in a high number of 
very similar partitions in the approximation of the 
Pareto front obtained. Previous works on multi-
objective clustering suggest the analysis of the 
Pareto front in order to select the best solutions 
(Handl & Knowles, 2007, Naverniouk, 2005). 
This is the approach followed by MOCK.

In contrast, we argue that in the context of 
clustering, the aim should not be the generation 

of the most complete Pareto front approximation 
possible. Indeed, having solutions representing 
each region of the Pareto front is enough to provide 
a relevant set of alternative partitions. 

Considering this fact, MOCLE aims at the 
generation of a concise set of solutions that are 
representative of the Pareto front. As already 
mentioned, MOCLE relies on the ability of the 
clustering algorithms in finding high-quality parti-
tions according to the employed criteria. Starting 
with a set of potentially good partitions, MOCLE 
uses the multiple objectives to select the best 
compromises. New partitions are created only by 
means of the crossover operator and represent the 
consensus among other existing partitions. As our 
crossover operator only produces combinations 
of existing partitions and no mutation is used, the 
search space will not be explored in detail. Thus, 
the large amount of similar partitions will not be 
produced by MOCLE, resulting in a concise set 
of solutions.

Finally, the objective functions should repre-
sent validation indexes able to measure the quality 
of partitions in different ways, each one related 
to a different clustering criterion. They should 
also complement each other. In our experiments, 
we have used the same measures employed in 
Handl and Knowles (2007): overall deviation and 
connectivity. The overall deviation of a partition 
measures the overall summed distances between 
objects and their corresponding cluster center. 
This measure is strongly biased toward spherically 
shaped clusters and improves with the increase in 
the number of clusters. The connectivity reflects 
how often neighboring objects have been placed 
in the same cluster. It improves with the decrease 
in the number of clusters. The connectivity is 
able to detect arbitrarily shaped clusters, but it 
is not robust to overlapping clusters. These two 
objectives, to be minimized, balance each other’s 
tendency to increase or decrease the number of 
clusters, avoiding the convergence to trivial solu-
tions. The objective functions are responsible for 
the selection of the high-quality partitions and the 
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robustness of MOCLE with respect to different 
data conformation.

Prior knowledge regarding one known struc-
ture of the data can also be integrated into MOCLE, 
helping the discovery of other structures. This 
can be accomplished by using an extra objec-
tive function that, for example, takes external 
information into account. We have investigated 
the information gain measure for this purpose 
(Raileanu & Stoffel, 2004). Such a characteris-
tic is very useful, for instance, in an application 
whose aim is the discovery of disease subtypes by 
means of gene expression data analysis (Alizadeh 
et al., 2000; Azuaje, 2000; Bittner et al., 2000; 
Golub et al., 1999; Sorlie et al., 2001; Yeoh et al., 
2002). We have developed some experiments in 
this context using bioinformatics data and found 
very interesting results (Faceli, 2006).

An important issue regarding our technique 
is that, like MOCK, it does not require a fine 
adjustment of parameters for its application to 
different datasets. The values of the parameters 
that we have employed depend only on the size 
of the dataset. Thus, the user easily adjusts the 
parameters without any additional knowledge on 
the algorithm or the dataset. 

It should also be mentioned that, like other 
multi-objective clustering techniques, MOCLE 
is time-consuming. However, there are many 
applications (e.g., in bioinformatics) where the 
quality of the solutions obtained is more important 
than the computational time spent to find them. 
Besides, the computational time of the clustering 
method usually represents a small portion of the 
total time involved in these applications. 

In summary, MOCLE automatically performs 
important steps of cluster analysis. It runs several 
conceptually different clustering algorithms with 
various parameter configurations, combines the 
partitions resulting from these algorithms, and 
selects the partitions with the best trade-offs for 
different validation measures. In this manner, 
MOCLE represents a useful approach to explor-
atory data analysis. It results in a concise and stable 

set of high-quality alternative structures without 
the need of previous knowledge about the data 
or deep knowledge on cluster analysis. Further-
more, MOCLE allows the automatic integration 
of previous knowledge. All these characteristics 
make MOCLE an attractive approach to experts 
from various domains that are making use of 
cluster analysis.

APPLIcAtION

To illustrate the ideas previously discussed, we 
show the results obtained with the application 
of different clustering techniques, including en-
semble and multi-objective methods, to a dataset 
with several known structures. We selected a 
bioinformatics dataset frequently used for cluster 
analysis: the gene expression data from acute leu-
kemia patients described in Golub, et al. (1999). 
This dataset has 72 objects (examples) with 3571 
attributes (genes). For our experiments, we con-
sider as known structures four distinct existing 
classifications for this dataset (E1, E2, E3, and 
E4). The two main classifications refer to types 
and subtypes of acute leukemia: E1 classifies the 
examples into Acute Lymphoblastic Leukemia 
(ALL) and Acute Myeloid Leukemia (AML). E2 
includes a refinement of the ALL class, dividing 
the data into the classes AML, T-ALL (T-lineage 
ALL), and B-ALL (B-lineage ALL). The other 
structures correspond to different types of infor-
mation. E3 classifies the examples according to 
the institution from which the examples came: 
DFCI (Dana-Farber Cancer Institute), CALGB 
(Cancer and Leukemia Group B), SJCRH (St. 
Jude Children’s Research Hospital), and CCG 
(Children’s Cancer Group). E4 defines if the 
examples are from bone marrow (BM) or from 
peripheral blood (PB). For the experiments, the 
dataset was preprocessed in the same way as in 
Golub, et al. (1999).

More specifically, in this section, we pres-
ent the results obtained with the application of 
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four traditional clustering algorithms (k-means, 
average-link, single-link, and shared nearest 
neighbors [SNN]) (Ertöz, Steinbach & Kumar, 
2002; Jain & Dubes, 1988), the ensemble method 
of Strehl and Ghosh (2002) (ES for short), the 
multi-objective clustering MOCK, and our multi-
objective clustering ensemble MOCLE. The ES’s 
code was obtained at http://www.lans.ece.utexas.
edu/~strehl/soft.html, and MOCK’s code was 
obtained at http://dbkgroup.org/handl/mock/. In 
order to evaluate the results, we used the cor-
rected Rand index, CR (Jain & Dubes, 1988). 
This index measures the similarity between two 
partitions. A value of CR close to 0 means that the 
clustering method produced a random partition, 
and close to 1 indicates a perfect match between 
the partitions.

To run the traditional algorithms, we adjust 
their parameters to generate partitions with a 
number of clusters k varying from 2 to 8. These 
values are, respectively, the number of clusters 
in E1 and two times the number of clusters in 
E2. The k-means algorithm was run 30 times for 
each k, with a random choice of initial centers. For 
the average-link and single-link algorithms, we 
generated the hierarchies and cut them in order 
to produce one partition for each value of k. In 
the case of SNN, we ran it with several values 
for its parameters NN (2%, 5%, 10%, 20%, 30%, 
and 40% of the number of objects in the dataset), 
topic (0, 0.2, 0.4, 0.6, 0.8, and 1), and merge (0, 
0.2, 0.4, 0.6, 0.8, and 1). Preliminary experiments 
showed that variations of the other parameters did 
not produce very different results. Thus, we used 
the default value for the parameter strong and the 
value 0 for the parameters noise and label. From the 
partitions created with these parameter values, we 
selected only the partitions having k in the interval 
of interest. To run the k-means, average-link, and 
single-link algorithms, we employed the software 
Cluster 3.0, which is available at http://bonsai.
ims.u-tokyo.ac.jp/~mdehoon/software/cluster/
software.htm. For SNN, its authors sent us their 
implementation of the algorithm.

For the experiments with MOCLE, we em-
ployed the partitions generated with the traditional 
algorithms as the initial population. In the case 
of k-means, among all 30 partitions produced for 
a given k, we selected the partition with the low-
est squared error for the initial population. This 
minimizes the occurrence of suboptimal solutions. 
The maximum number of generations used was 
defined as 50. In the first experiments, we observed 
that increasing the number of generations did not 
modify the Pareto front approximation obtained. 
The internal population size used was 46; that 
is, the number of partitions generated with the 
traditional algorithms (the base partitions for 
the ensemble). The number of nearest neighbors 
used to calculate the connectivity was set to 4 
(5% of the number of objects in the dataset). In 
this section, we show only the results obtained 
in the experiments using NSGA-II and the cross-
over implemented with MCLA. We include two 
versions of MOCLE: one that does not consider 
prior knowledge, referred to as MOCLE; and a 
version that includes prior knowledge via the 
use of information gain, referred to as MOCLE-
Gain. In the latter, the structure E1 is used as 
prior knowledge.

In the case of MOCK, we set the number of 
nearest neighbors to the same value used with 
MOCLE and the maximum number of clusters 
to 8. We employed five control fronts. We used 
the default values for all other parameters. For 
the ensemble, we considered the same initial 
population used by MOCLE. For the number of 
clusters, k, we adopted the same range used for 
the individual algorithms.

As previously ment ioned ,  MOCLE 
and MOCK produce a set of nS solutions, 

1 2{ , ,..., }
SS S Sn

SΠ = . The individual al-
gorithms and the ES do not generate a set of 
solutions. Thus, in order to include the results 
obtained by these techniques in the comparison, 
we form a set of solutions for each algorithm. This 
is accomplished by putting together the partitions 
generated for the different values of k used. For 
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k-means, we obtained 30 sets of solutions, one 
for each run. 

For the deterministic techniques (average-
link, single-link, and SNN), there is just one set 
of solutions, ΠS. In these cases, we calculated the 
CR between each solution partition, �Si ∈ ΠS, and 
each known structure, Ej. Next, for each known 
structure, Ej, we selected the best partition in 
ΠS (the partition �Si with the highest CR, when 
compared with Ej). These values are shown in 
Table 1.

As ES, MOCLE, and MOCK, like the k-
means, are not deterministic, we run them 30 
times with the same initial configurations. For 
these techniques, the experiments produced 30 
sets of solutions, 

1 30
...S SΠ Π

 . For each set, 
lSΠ , we 

calculated the CR between each solution partition, 
1

l

S i
S∈Π  and each known structure Ej. Next, for 

each known structure Ej, we selected the best 
partition in each 

lSΠ  (the partition 1S i with the 
highest CR when compared with Ej). 

Finally, for each known structure, we calcu-
lated the mean and standard deviation of the CR for 
the 30 selected partitions (one for each 

lSΠ  ). For 
the MOCK algorithm, we considered two sets of 
solutions: the complete Pareto front approximation 
obtained (MOCK) and a reduced set of solutions 
recommended as the best solutions of the Pareto 
front approximation (MOCK-R). These values are 

shown in Table 1, with the highest value of CR for 
each known structure highlighted in boldface.

Looking at the traditional algorithms, the first 
aspect that we can observe is that for each known 
structure, a different algorithm achieved the best 
performance. This illustrates the previously dis-
cussed difficulty in the choice of an appropriate 
algorithm to be used for a particular dataset.

Now, turning the attention to MOCK and ES, 
for each known structure, we can observe that they 
did not outperform the best traditional algorithm. 
Nevertheless, they not only presented a relatively 
high performance, but also such a performance 
was uniform across the different structures when 
compared to the traditional algorithms. This 
shows that these strategies for the combination 
of different clustering criteria can be more robust 
with respect to different data conformations 
(observed in the different known structures) than 
the traditional algorithms. In contrast, MOCK-R 
showed a very poor performance for all known 
structures. That is, although MOCK was able to 
find relatively good solutions, the heuristic used to 
build MOCK-R was not able to identify them.

MOCLE and MOCLE-Gain, in their turn, 
showed a similar or superior performance for all 
known structures when compared to all other tech-
niques. More specifically, in all cases, MOCLE 
presented the same performance obtained by 
the best traditional algorithm. This means that 

Technique E1 E2 E3 E4 

single-link 0.078 0.003 0.108 0.315

SNN 0.855 0.855 0.677 0.112

average-link 0.876 0.798 0.693 0.057

k-means 0.507 (0.211) 0.502 (0.127) 0.402 (0.147) 0.024 (0.015)

MOCK 0.684 (0.059) 0.795 (0.059) 0.622 (0.055) 0.057 (0.008)

MOCK-R 0.012 (0.138) 0.262 (0.141) -0.015 (0.154) -0.070 (0.043)

ES 0.743 (0.175) 0.637 (0.129) 0.589 (0.124) 0.110 (0.074)

MOCLE 0.876 (0) 0.855 (0) 0.693 (0) 0.315 (0)

MOCLE-Gain 0.942 (0.037) 0.857 (0.009) 0.723 (0.015) 0.315 (0)

Table 1. Performance of the clustering techniques
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MOCLE was able to keep the high-quality solu-
tions belonging to the initial population, which 
were found by the traditional algorithms, in the 
final set of solutions. 

Indeed, MOCLE-Gain was even able to im-
prove the quality of initial solutions found for the 
known structures E1, E2, and E3. This was, in 
fact, expected for the structure E1, since such a 
structure was provided to the algorithm as prior 
knowledge. The superiority of MOCLE-Gain over 
MOCLE for the structures E2 and E3 illustrates 
that the integration of prior knowledge from one 
structure can be useful for the analysis of the 
other structures.

For the structure E4, all techniques showed a 
very poor performance. This is clearly the case 
where the classification is not consistent with at 
least one of the clustering criteria optimized. More 
precisely, classes are entities related to categories 
previously defined in the real world to organize the 
objects. Clusters, on the other hand, are entities 
defined by the application of mathematical/sta-
tistical concepts to the data. The classes can be 
related to one or more of the mathematical/statis-
tical concepts. Here, we assume that the known 
classifications are in accordance with some of the 
clustering criteria used. However, a classification 
could be unrelated to a clustering criterion. This 
would result, as in the case for E4, in a low per-
formance for all clustering techniques.

It is important to mention that we used the 
CR only for evaluation purposes. Among all 
partitions from a set of solutions, we selected the 
partition closest to each known structure only to 
emphasize the ability of MOCLE in the recovery 
of more than one structure. MOCLE does not 
provide a method to select the best partitions 
from the solution set, as MOCK does. Neverthe-
less, the results of our experiments showed that 
the solution set generated with MOCLE is more 
concise than MOCK (the version without the 
selection heuristic), allowing the domain expert 
to individually analyze each of the solutions and 
identify the high-quality ones. 

For instance, in the experiments reported, 
we obtained with MOCK a set of 79 solutions 
on average, with a standard deviation of 10.6. In 
contrast, for MOCLE, we obtained on average a 
set of 14 solutions (with a standard deviation of 
0.3). In the context of MOCLE-Gain, we achieved 
a set of 20 solutions on average (with a standard 
deviation of 1.6). Finally, it is important to point 
out that although MOCK recommends only one or 
two best solutions (MOCK-R), the quality of these 
solutions is very poor, as previously mentioned.

Now if we observe the standard deviations, 
we can see that the ones calculated from the so-
lutions found with MOCLE and MOCLE-Gain 
were smaller than those of the other techniques. 
A low standard deviation in our experiments 
means that one partition with a similar quality 
with respect to a given known structure was 
found in each run. 

In summary, the experimental results pre-
sented in this section illustrate some of the prob-
lems of the traditional clustering techniques, the 
abilities of the ensembles, and the multi-objective 
clustering techniques, as well as how the com-
bination of all these approaches could be useful 
for the experts in the data domain performing 
cluster analysis.

FUtUrE trENDs

Most of the directions for future work discussed 
in previous publications on cluster ensembles and 
multi-objective clustering methods are related 
to the adjustment of their components in order 
to improve the quality of their results. For the 
cluster ensembles, this involves the generation of 
the base partitions (trying different algorithms or 
different strategies) and the consensus function 
(investigating small changes of the existing func-
tions or evaluating new functions). In the case of 
multi-objective clustering methods, much effort 
has been spent in the investigation of different 
objective functions, optimization strategies (e.g., 
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genetic algorithms), representation of the solu-
tions, operators, and strategies to construct the 
initial population. 

MOCLE can benefit from several of these pro-
posals. For example, a straightforward improve-
ment for the MOCLE algorithm is the inclusion 
of new clustering algorithms in the generation 
of the base partitions. There are novel clustering 
algorithms that, by themselves, overcome some 
of the difficulties found in the more traditional 
algorithms. This could lead to an improvement 
in the quality of the solutions obtained. The use 
of other objective functions or genetic algorithms 
could also lead to improvements and are objects 
of future research.

These more basic research directions, together 
with the application of the proposed techniques to 
other domains, are important for the consolidation 
of the approaches discussed. 

The approaches presented here are usually 
time-consuming, mainly the multi-objective al-
ternatives. This restricts their applicability in 
problems with hard time constraints. Hence, an 
important concern for future efforts is the reduc-
tion in their time cost (Handl, 2006; Naverniouk, 
2005). Furthermore, the study of strategies to 
reduce the number of solutions returned by the 
multi-objective approaches is also a challenging 
topic for future research. For some algorithms, 
such as MOCK, more general and sophisticated 
strategies to select the best solutions are required 
(Handl, 2006; Naverniouk, 2005).

For the cluster ensemble approaches, the de-
velopment of methods to find the best number of 
clusters is an issue that has received increasing 
attention and also constitutes a subject of interest 
for further investigation (Kuncheva et al., 2006; 
Monti et al., 2003; Strehl & Ghosh, 2002).

Regarding the types of data and structures the 
clustering approaches discussed in this chapter can 
deal with, the main trends have been the extension 
of these approaches to fuzzy clustering, where the 
clusters can share objects (Ayad & Kamel, 2003; 
Law et al., 2004; Strehl & Ghosh, 2002); and to 

biclustering, which consists of grouping objects 
and attributes at the same time (Fern & Brod-
ley, 2004; Handl, 2006, Mitra & Banka, 2006). 
The application of the discussed approaches to 
heterogeneous databases, where the data come 
from different sources, is an issue that started 
to be investigated in Strehl and Ghosh (2002) 
and showed to be another promising direction 
for future research (Jouve & Eric, 2003; Kasturi 
& Acharya, 2005; Tanay, Steinfeld, Kupiec, & 
Shamir, 2005). 

Another issue that deserves attention is the 
representation of a set of partitions in such a way 
that the domain experts can easily compare them. 
For this, techniques to support the visualization of 
partitions are of great importance (Faceli, 2006; 
Faceli, Carvalho, & Souto, 2005; Handl, 2006; 
Monti et al., 2003). 

cONcLUsION

Cluster analysis is a research area that has been 
active for many decades and is continually watch-
ing the proposal of new algorithms, methods, and 
evaluation criteria, addressing limitations found 
in previous techniques or providing solutions to 
new challenging problems.

In this chapter, we presented an overview of 
techniques based on the combination of different 
clustering criteria for the solution of common 
problems found in traditional cluster analysis 
approaches. First, we discussed these basic dif-
ficulties, which encompass the inexistence of a 
precise definition of cluster, the need of expert 
knowledge to select the best algorithms and to 
adjust their parameters, the heterogeneity of the 
clusters belonging to a certain dataset, and the 
possible existence of more than one structure 
in a dataset. Next, we presented more sophisti-
cated approaches to deal with these difficulties, 
cluster ensembles and multi-objective clustering 
algorithms; discussed how they can overcome 
the previous difficulties; and pointed out their 
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limitations. In this context, as the central topic 
of the chapter, we presented our multi-objective 
clustering ensemble algorithm, which combines 
characteristics from the more sophisticated ap-
proaches described in a way that many of their own 
difficulties are minimized. We also presented an 
illustrative application example. The characteris-
tics, advantages, and limitations of our approach 
were also described in detail. 

Regarding relevant future research in the 
context of cluster ensemble and multi-objective 
clustering methods, we pointed out a few issues, 
such as the need to reduce the computational 
time spent by the existing techniques to find a 
suitable solution. The issues discussed in this 
chapter have also started to be applied to other 
types of clustering tasks, such as fuzzy clustering 
and biclustering. 
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AbstrAct

Negative correlation learning (NCL) is a technique that attempts to create an ensemble of neural net-
works whose outputs are accurate but negatively correlated. The motivation for such a technique can 
be found in the bias-variance-covariance decomposition of an ensemble of learner’s generalization 
error. NCL is also increasingly used in conjunction with an evolutionary process, which gives rise to 
the possibility of adapting the structures of the networks at the same time as learning the weights. This 
chapter examines the motivation and characteristics of the NCL algorithm. Some recent work relating 
to the implementation of NCL in a single objective evolutionary framework for classification tasks is 
presented, and we examine the impact of two speciation techniques: implicit fitness sharing and an island 
model population structure. The choice of such speciation techniques can have a detrimental effect on 
the ability of NCL to produce accurate and diverse ensembles and should therefore be chosen carefully. 
This chapter also provides an overview of other researchers’ work with NCL and gives some promising 
future research directions.
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INtrODUctION

Ensembles of neural networks remain at the 
forefront of current pattern recognition research. 
Ensembles offer the possibility to improve on the 
performance of single learners if their members 
can meet the criteria of being both accurate and 
diverse (Hansen & Salamon, 1990; Krogh & 
Vedelsby, 1995; Opitz & Shavlik, 1996; Diet-
terich, 2000). The design of ensembles of neural 
networks that meet these criteria, however, is not 
an easy task, since there exists a trade-off between 
accuracy and diversity. This chapter presents a 
researcher’s analysis of the issue of diversity in 
ensembles and discusses one method for managing 
the trade-off during learning: negative correla-
tion learning (NCL) (Liu, 1998). NCL proposes 
a penalty term for correlated individuals during 
learning and therefore encourages networks to 
be both accurate and negatively correlated. NCL 
has been used in traditional ensemble learning 
(Brown, 2001, 2003; Islam, Yao & Murase, 2003; 
Liu, 1998; Liu & Yao, 1999) as well as in com-
bination with evolutionary approaches (Chandra 
& Yao, 2004, 2006; Liu, Yao & Higuchi, 2000). 
NCL takes its inspiration from the analysis of 
regression ensembles, but it has also been ap-
plied with success to classification tasks (Liu & 
Yao, 1998).

Evolutionary ensemble learning is an interest-
ing field of research since it offers the possibility 
to not only manage the accuracy-diversity trade-
off, but also to explore other areas of ensemble 
design. We need not limit ourselves to adapting 
weights, but also individual network structures 
(Yao, 1999). One evolutionary approach that uti-
lizes NCL and is also readily adaptable to evolving 
network structures is evolutionary ensembles with 
negative correlation learning (EENCL) (Liu et al., 
2000). This chapter analyzes the use of NCL in 
EENCL and also the suitability of the speciation 
technique used. NCL is found to be ineffective in 
EENCL as it was presented by Liu, and similar 
results can be achieved by a simpler local search 

technique (Duell, Fermin & Yao, 2006a). EENCL 
uses implicit fitness sharing to promote diversity 
at the evolutionary level (Liu et al., 2000), and this 
renders NCL ineffectual (Duell et al., 2006a). We 
also present our experiments with an alternative 
speciation technique in Island-model with negative 
correlation learning (INCL) and find this method 
much better suited for use with NCL (Duell, 
Fermin & Yao, 2006b). We compare EENCL 
and INCL to some other popular ensemble tech-
niques on a number of pattern recognition tasks 
and find that EENCL often performs poorly by 
comparison. INCL, however, provides comparable 
performance to the other methods tested, while 
still offering the same adaptability as EENCL 
to evolving structures as well as weights. Our 
analysis of the bias, variance, and covariance of 
INCL and EENCL on an artificial regression task 
suggest that INCL is more effective at reducing 
the covariance of the ensemble. 

The rest of this chapter contains a discus-
sion on the concept of diversity in ensembles of 
neural networks, and the analysis of a number of 
researchers is presented. NCL is explained, along 
with a brief overview of some of the work under-
taken with this technique. We present our work 
by using NCL in a single-objective evolutionary 
framework, and finally, we draw conclusions about 
such an approach and indicate some promising 
future directions.

DIVErsItY AND MOtIVAtION FOr 
ENsEMbLEs

Importance of Diversity

The following sections detail a number of methods 
that have been used to justify and guide ensemble 
research; in particular, the need for diversity and 
what this term means. The literature mostly deals 
with regression tasks to separate these methods 
from classification (i.e., a zero-one loss function), 
which is much less understood theoretically. For 
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neural networks outputting real values, however, 
we can reformulate the classification task into a 
prediction of posterior probabilities, and then 
the following analysis continues to hold (Brown, 
Wyatt, Harris & Yao, 2005).

Ensembles of Independent
Estimators

Perrone and Cooper (1993) provided the math-
ematical justification for the combination of 
neural networks into an ensemble. The outputs 
of each network first are combined by means of 
a simple average (basic ensemble method) and 
then by a weighted average (generalized ensemble 
method).

The errors of the individual networks are 
assumed to be mutually independent with zero 
mean for the basic ensemble method. Under these 
conditions, they show that the average mean 
square error for the population can be reduced by 
a factor equal to the number of networks in the 
ensemble. If these conditions hold, then simply 
increasing the number of networks will reduce 
the error to an arbitrarily level. In practice, of 
course, the networks to be ensembled will not 
meet these assumptions, especially as the number 
of networks increases.

To remove the need for these two unrealistic 
assumptions to hold, they propose a generalized 
method. In this method, the sample correlation ma-
trix is used as an estimate of the actual correlation 
matrix of the networks. This correlation matrix is 
then used to find an optimal weight for a weighted 
average of the outputs of the networks. This is 
guaranteed to be better than the best individual and 
the simple average mentioned previously, since 
both methods are special cases of the generalized 

method. Two assumptions are necessary for this 
method to work. First, the correlation matrix is 
an estimate, not the true correlation matrix. As 
such, it is assumed that this estimate is accurate 
in order to find optimal weights. Second, inverting 
the correlation matrix requires the columns and 
rows to be linearly independent, or the inversion 
will be unstable. A linear dependency would arise 
when two networks are almost identical. This 
method, therefore, requires a degree of vetting 
of candidate ensembles to remove any that are 
too similar.

Although the generalized method seems to 
promise a guaranteed improvement in generaliza-
tion performance, it still relies on assumptions that 
cannot be guaranteed to hold. Although problems 
with linear dependency can be eliminated by dis-
carding some networks, similar networks on the 
training data may prove very different on unseen 
data. Discarding these networks may result in a 
loss to possible ensemble performance that is 
not immediately obvious from the training data 
alone. More significantly, the assumption that the 
training sample correlation matrix is an accurate 
estimate of the true correlation matrix may not 
hold, particularly for limited training data sets 
or for noisy data.

Turner and Ghosh (1996a, 1996b) arrived at 
the following equation for the added error of an 
ensemble of posterior probability estimators. The 
added error is the error in excess of the Bayes-
ian error; that is, the error occurring when the 
decision boundary is at the intersection of two 
true posterior probability curves (Equation (1) ), 
 where Eens

add is the expected added error for the 
ensemble, Eadd is the expected added error of the 
individual members, and M is the number of 
learners and a measure of correlation.

Equation (1).



  ���

Implementing Negative Correlation Learning in Evolutionary Ensembles

In this analysis, the errors of the individual 
classifiers are assumed to be equal and have 
the same variance, and the probability curves 
are monotonic at the decision boundary. The 
individuals are combined by a simple average. 
Under these assumptions, we arrive at Equation 
(1). When it equals 1, the individual members 
are perfectly correlated (i.e., the same posterior 
probability curves), and the ensemble error is just 
that of the individual members. If it equals 0, the 
individuals have no correlation (are independent), 
and the ensemble error is reduced by a factor of 
M. These conclusions mirror those of Perrone 
and Cooper’s (1993) but are based on similar as-
sumptions. However, like Perrone and Cooper’s 
(1993) work, it does illustrate the potential of 
the idealized ensemble, justifying further work 
on how we can create constituent members that 
approach these assumptions.

the Ambiguity Decomposition

Krogh and Vedelsby (1995) decomposed the 
generalization error of an ensemble of regressors 
on a single dataset into the errors and ambiguity 
of the networks. They show that the generaliza-
tion error for the ensemble must be less than the 
weighted average of the network generalization 
errors, and that this difference is increased as 
the weighted average ambiguity of the networks 
increases. In other words, the greater the output 
of the individual networks vary from the average 
output, the greater the difference between the 
ensemble error and the (weighted) average errors 
of the networks. Our aim then should be to create 
accurate and diverse (uncorrelated) outputs.

It is significant that there is no assumption here 
that individual estimators should be independent, 

unlike Perrone and Cooper’s (1993) model. The 
gains from the ensemble are unquantified in this 
case, but the ambiguity is naturally at its highest 
when estimators are completely independent, 
and Perrone and Cooper’s equation can be seen 
as the upper limit achievable. In reality there is a 
trade-off here between increasing the ambiguity 
and decreasing the accuracy (Krogh & Vedelsby, 
1995).

bias-Variance Dilemma

While the ambiguity decomposition is carried 
out for a single training set, an alternative ap-
proach considers the generalization error over all 
possible training sets for an ensemble. First, we 
must consider a single network before extending 
the analysis to a group. 

The generalisation error of an estimator can 
be decomposed into two components: bias and 
variance (Geman, Bienenstock & Doursat, 1992). 
The bias (squared) and variance terms of the 
error are as follows in Equations (2) and (3). ED 
represents the expectation over all datasets, f(x; 
D) is the output of the classifier trained on data-
set D, and E[y|x] is the expected (target) output 
given input x.

Bias represents how far on average the model 
differs from the desired function over the entire 
space of possible training sets. The variance is 
how sensitive the model is to randomness involved 
in training, including the dataset used and, for 
neural networks, the initial weights.

These two concepts are illustrated graphically 
in Figure 1 for a training set randomly sampled 
from the true function plus an element of noise.

The high-bias estimate in Figure 1 shows an 
estimator that disregards the training data com-

Equations (2) and (3).
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pletely. One such estimator would be a network 
whose weights are arbitrarily initialized and no 
training takes place. The network is likely to 
display a high bias since the function it forms is 
unlikely to represent the desired function. How-
ever, the function will not change, regardless of 
what sample of the training data population is 
used (since the network simply ignores it and 
sticks to its initialization), and so it will have no 
variance.

The high-variance estimate in Figure 1 over-
fits to the training data. This could be a network 
with a sufficient number of weights, trained on 
the data until the training error is very small. 
The network’s function, however, is overfitted to 
the particular data points in the training set and 
does not represent the true function. This network 
displays a high variance since a different set of 
training data would yield a different function. The 
bias of this network, however, is lower since it is 
closer on average to the true function.

A parametric model that assumes a linear 
function will display a high bias when trying to 
represent a quadratic function, since it cannot 
accurately approximate its true form. Neural 
networks with two layers of logistic functions are 
capable of approximating any function (Bishop, 
1996). Such a network can be seen as a nonpara-
metric model, since it makes no assumptions about 
the function it seeks to represent. Consequently, 

a neural network with two logistic layers is in 
principle capable of achieving arbitrarily low bias. 
However, variance can only be guaranteed to be 
minimized if the training set is infinitely large. 
The complexity necessary to model an arbitrary 
function and the availability of only limited data 
can result in overfitting to the training data and, 
therefore, to a high variance.

Generally, we can say that by training a 
network, we are reducing the bias. However, as 
the network continues to be trained, variance 
will increase as the network minimizes the er-
ror between its output and the training data, the 
network fits itself more and more to the training 
data. This is the problem of overfitting. The re-
duction in bias caused by training is eventually 
exceeded by the increase in variance, and so the 
overall generalization error begins to increase. 
In this way, there is a trade-off between bias and 
variance (Figure 2).

Bias, Variance, and Covariance

Extending the previous analysis for a single 
network to an ensemble, we decompose the vari-
ance term further into a variance and covariance 
(Ueda & Nakano, 1996). Here, fi is the output of 
network i, <d> is the target output, and bias_avg, 
var_avg and covar_avg are the average of the bias, 
variance and covariance across the networks. E 

Figure 1. Illustration of high-bias and high-variance estimators in relation to the desired function
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stands for the expectation across all datasets (see 
Equation (4) ).

Brown, et al. (2005) have recently shown that 
the previous decomposition is, in fact, equivalent 
to the ambiguity decomposition when taken over 
the set of possible datasets.

If the covar term is reduced to zero (uncorre-
lated network outputs), then the overall variance 
term is reduced by a factor of M, the number 
of networks in the ensemble. Both the bias and 
var terms are constrained to be positives, but 
interestingly, the covar can be either positive or 
negative. As such, an even greater reduction in 
the generalization error can be achieved, if the 
network outputs are negatively correlated.

Diversity creation taxonomy

One attempt to provide a taxonomy of diversity 
creation methods was proposed by Sharkey (1999). 
Sharkey defines all ensemble techniques as en-
couraging diversity by varying either the initial 
weights, training data, architectures, or training 
algorithms. However, recent methods do not fit 
well into these categories. Brown, et al. (2005) 
suggest an alternative taxonomy that differenti-
ates between explicit and implicit methods. The 
former deterministically encourage diversity in 
the ensemble, whereas the latter rely on random-
ness. Current approaches also can be categorized 

Figure 2. The bias/variance trade-off

Equation (4).
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according to their manipulation of the hypoth-
esis space into the following: starting point in 
hypothesis space, set of accessible hypotheses, 
and traversal of hypothesis space (Brown et al., 
2005). A learner represents an hypothesis as to 
the true function or decision boundary we seek 
to represent. The hypothesis space is the space 
of all possible hypotheses and hence translates 
to the set of all possible learners. For an MLP 
with a single hidden layer of arbitrary length, 
there exists a representable hypothesis space. 
Hypotheses outside this space are not represent-
able by the learner. Random initialization of 
weights corresponds to a single point in a set of 
feasible hypotheses, and the object of learning is 
to move toward the true hypothesis. We can create 
diversity in the ensemble either by varying the 
starting point, by using different training sets or 
network structures to vary the accessible regions, 
or finally, by directly influencing the traversal of 
the hypothesis space (e.g., by including penalty 
terms in the learning process).

NEGAtIVE cOrrELAtION
LEArNING

rosen’s Decorrelation Penalty term

Rosen (1996) proposed the inclusion of a penalty 
term during training to encourage the formation 

of decorrelated networks. Starting from the bias, 
variance, and covariance decomposition, Rosen 
proposed a learning algorithm to minimize the 
covariance term and hence to decorrelate the 
ensemble members. Each network is trained in 
sequence to decorrelate its output from the previ-
ous network. A new error function for each learner 
is introduced in Equation (5), where Ej is the error 
of network j, yp is the target output for pattern p, 
xp is the input vector for pattern p, f is the output 
of a network, λ(t) is a possibly time-dependent 
scaling function, d is an indicator function for 
decorrelation between networks i and j, and P is 
a correlation penalty function. The purpose of 
this error function is to minimize the (squared) 
difference between the target and network out-
put (the first term), and also to apply a penalty 
to positively correlated networks (second term). 
Rosen suggests that a suitable correlation penalty 
is (see Equation (6) ), and an indicator function 
d, shown in Equation (7).

Original NcL Penalty Function

NCL was first proposed by Liu and Yao as a means 
to generate an ensemble of neural networks whose 
outputs would be negatively correlated (Liu, 1998). 
It built upon Rosen’s (1996) concept of a penalty 
term for correlated networks, but here the networks 
are trained in parallel rather than sequentially. The 

Equations (5), (6), and (7).
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justification for desiring such networks has been 
derived earlier in relation to the bias, variance, 
and covariance decomposition. 

Standard back-propagation is used to train 
the network, but the error to be minimized is 
now shown in Equation (8) (Rumelhart, Hinton 
& Williams, 1986; Liu & Yao, 1999), where N is 
number of training patterns, Ei(n) is the error of 
network i on training pattern n, Fi(n) is the out-
put of network i on pattern n, λ is the strength of 
penalty parameter, and pi(n) is the penalty term, 
defined for noiseless data as Equation (9).

NCL is an explicit diversity creation method 
that directly influences the hypothesis space tra-
versal for all ensemble members simultaneously. 
This is an advantage over methods such as Boost-
ing, where the members are fixed once created, 
because the algorithm can adapt the composition 
of its members to take into account the learning 
of all members, not just previously created ones 
(Schapire, 1990).

The danger of NCL is that a highly negative 
correlation among the networks is likely to also 
have an impact on the bias of the individual 
members. In fact, a large negative correlation may 
disguise a very inaccurate learner with a high 
bias. As such, it is important that the strength 

parameter be well understood, a task undertaken 
by Brown (2003).

Amended Derivation of NcL Penalty 
Function

Islam, et al. (2003) and later Brown (2003) showed 
that Liu’s derivation of the error from (8) to give 
the derivative shown in Equation (10) is flawed, 
and that the correct derivation should be as seen 
in Equation (11), where γ is now used in place of 
λ as the penalty strength to distinguish it from 
Liu’s derivation.

Conversion from one value to another is pos-
sible by means of the equality shown in Equation 
(12).

Additional NcL Developments

Liu found that NCL was capable of producing 
biased individual networks whose errors tend to 
be negatively correlated on both classification and 
regression tasks (Liu & Yao, 1999). McKay and 
Abbass (2001) proposed an alternative penalty 
function in the form of root quadratic negative 
correlation learning (RTQRT-NCL), which they 
applied to a genetic programming system and 

Equations (8)-(11).
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found an improvement in performance over 
standard negative correlation learning for large 
ensembles. RTQRT may be more successful than 
NCL at producing small widely separated clusters 
of networks. Brown examined NCL in the wider 
context of diversity creation techniques, explored 
bounds on the penalty strength parameter (Brown, 
2003; Brown et al., 2005), and also found that 
NCL is most effective with less complex networks 
(Brown, 2001). Islam, et al. (2003) used NCL as 
part of a constructive approach to ensemble design, 
as well as providing a new version of the penalty 
strength parameter. The communication costs 
of NCL have also been reduced through the use 
of correlation-corrected data (Chan & Kasabov, 
2005). NCL has also been applied to the creation 
of fuzzy rules (Cai, Sun & Jia, 2004).

Multi-objective evolution is also a promising 
area of current ensemble research increasingly 
explored (Abbass, 2003; Kottathra & Attikiouzel, 
1996; Kupinski & Anastasio, 1999). In multi-ob-
jective evolution, we seek to find the set of non-
dominated solutions: the pareto optimal front. The 
concept of a population of good solutions fits well 
with the concept of an ensemble of good learners. 
Chandra and Yao (2004, 2006) use the two terms 
of the NCL error function: accuracy and penalty 
term (see Equation (8) ) as two objectives in a 
multi-objective approach named DIVACE. The 
next section of this chapter examines attempts to 
combine NCL with a single-objective evolution-
ary approach.

sINGLE-ObJEctIVE EVOLUtION 
AND NcL

This chapter examines two attempts to combine 
NCL with a single-objective evolutionary ap-
proach.

EENcL Algorithm

Algorithm Description

EENCL uses partial training with the NCL 
algorithm alongside an evolutionary process to 
form a population of neural networks suitable for 
combination into an ensemble (Liu et al., 2000). 
EENCL exploits two mechanisms to ensure that 
the final networks are both accurate and diverse. 
First, NCL encourages the negative correlation 
of the outputs of the networks in the population. 
Second, the fitness of individuals in the population 
is evaluated with implicit fitness sharing (Horn, 
Goldberg & Deb, 1994) based on the coverage 
of patterns in the training set. The entire final 
population is used to form either the ensemble 
or some subset. In all the experiments in this 
chapter, the entire final population is used. The 
outputs of the individual networks are combined 
by either a simple average, a majority vote, or a 
winner-takes-all procedure.

The algorithm proceeds according to the fol-
lowing steps, shown in Box 1 (Liu et al., 2000).

Our implementation of the EENCL algorithm 
differs from Liu’s in one respect: we use the 
amended derivative of the penalty term (Equa-
tion (11) ). The learning rate is set to 0.1, and the 
NCL penalty term γ is set at 0.390625 in EENCL 
in order to provide a comparison to the lambda 

Equation (12).
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value of 0.75 in Liu’s original experiments (Liu et 
al., 2000), according to the equivalence provided 
in Equation (12). 

The raw fitness of an individual is converted 
to an implicit shared fitness according to:

1
share

n n

F
p

= ∑

where Fshare is the shared fitness, n is the train-
ing pattern, and pn is the number of individuals 
in the population that correctly classifies pattern 
n. Implicit fitness sharing is an extension to the 
original fitness sharing. Like the original, it also 
reduces the realized fitness at heavily populated 
regions of the search space (Darwen & Yao, 1997). 
However, it differs from the original, where a 
sharing radius must be defined to determine if 
two individuals will share their fitness.

Experiments with Local Search in 
EENCL

Liu, et al. (2000) showed that the combination 
of evolution with fitness-sharing and NCL could 
produce competitive results in comparison to a 
number of other classification techniques. It is 
less clear to what extent these learning mecha-

nisms are responsible for this performance. We 
sought to establish whether NCL was a neces-
sary component of the EENCL algorithm or if 
similar results could be obtained by means of an 
alternative (and less complex) local search. These 
results and analysis are also presented in Duell, 
et al. (2006a).

We applied the EENCL algorithm to four 
datasets—Australian Credit Card, Wisconsin 
Breast Cancer, Pima Indian Diabetes, and Heart 
Disease—over 30 independent runs. The number 
of instances, input attributes, classes, and class 
distributions of the datasets are presented in Table 
1. These datasets are all available by anonymous 
ftp from the UCI Machine Learning Repository 
at ics.uci.edu (128.195.1.1) in /pub/machine-learn-
ing-databases. For each run, the datasets were 
shuffled and divided into three equal size sets 
to compose a training set, a validation set, and a 
testing set. The validation set is not used in these 
experiments. Each network learns the same train-
ing set. The results on the test sets are averaged 
to approximate the generalization error of the 
resulting ensembles. Three combination schemes 
are tested (simple average, majority vote, and 
winner-takes-all), and the ensemble is composed 
of the entire final population. In each case, the 
classification accuracy is shown in Table 2.

Box 1.
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The EENCL algorithm was implemented as 
described by Liu, et al. (2000). The initial popu-
lation is a set of randomly initialized MLPs with 
full connection and a single hidden layer of five 
nodes. Output nodes are encoded using a 1-of-c 
scheme, and all nodes are a sigmoidal logistic of 
the form:

1( )
1 ( )

f x
exp x

=
+ -

where x is the input to the node and f(x) is the 
output of the node. The node with the highest 
output is considered to be the classification of the 
network. The initial population M is set to 25, and 
the number of offspring per generation, nb, is 2. 
The population is allowed to evolve for 200 gen-
erations. Both the initial population and offspring 
are trained for five epochs, ne. The learning rate 
is set to 0.1, and the networks are trained using 
mean-square-error. The NCL penalty term γ is set 
at 0.390625. This is identical to the experimental 
setup described by Liu and Yao, arrived at in the 

original study after limited experimentation (Liu 
et al., 2000). 

Here we also define a new algorithm, EE-
backprop. This algorithm is identical to EENCL, 
except that NCL is no longer used as the local 
search technique in steps 1 and 4 of the algorithm. 
In EE-backprop, the penalty strength, λ is set to 
0. As can be seen in Equation (8), the right-hand 
side now disappears, and we are left with a con-
ventional mean-square-error. Hence, EENCL with 
a penalty of 0 is equivalent to using conventional 
backpropagation for the local search. In all other 
ways, EE-backprop is identical to EENCL and is 
also used with the same set of parameters.

Results and Discussion

The classification accuracies for EENCL and 
EE-backprop are shown in Table 2. Interestingly, 
no statistically significant difference between 
the techniques could be found using a student 
t-test with a 1% confidence interval. EENCL 
was found to be most effective with the winner-

Table 1. Description of the datasets used in the experiments

Table 2. Testing classification accuracies for the EENCL and EE-Backprop algorithms over four datasets, 
with three combination schemes. No statistically significant difference between the algorithms is found 
using a student t-test with a confidence of 1%.
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takes-all combination scheme over the Australian 
and diabetes datasets in Liu’s experiments (Liu 
et al., 2000). Unlike Liu, we do not observe that 
EENCL is more suited to the winner-takes-all 
combination scheme for all problems (only in 
the diabetes problem is the accuracy highest). 
This may be because winner-takes-all works well 
with specialized networks, and our ensembles 
have been trained on a smaller proportion of the 
datasets than Liu’s and, therefore, had less op-
portunity to specialize.

EE-backprop is a simpler algorithm; each net-
work learns independently and does not require 
the setting of a penalty strength parameter. How-
ever, it is just as effective as EENCL in terms of 
classification accuracy, so it is difficult to justify 
the added complexity of NCL. NCL alone is able 
to significantly improve on backpropagation and 
many other algorithms (Liu & Yao, 1999), but 
it appears that when used in conjunction with 
fitness sharing in an evolved ensemble, NCL’s 
effectiveness is no longer apparent. 

One method to analyze diversity in the final 
ensemble is to compare their correct response 
sets (Liu & Yao, 1999). Here we define the cor-
rect response set of a network i, Ωi, as the set of 
examples it correctly classifies. We also define 
the joint correct response set between networks 
i and j, Ωi,j, as the set of examples that both net-
works classify correctly. Table 3 shows the mean 

individual correct response sets, Ωi, and the mean 
joint correct response sets for all networks in the 
final population, Ω∀i, over 30 runs for both EENCL 
and EE-backprop. Liu found that NCL produced 
significantly lower joint correct response sets to 
independent training with backpropagation (Liu 
& Yao, 1999). Our results show that this is not 
the case for EENCL and EE-backprop, where no 
significant difference could be found in Ω∀i except 
for the heart disease set, where Ω∀i is significantly 
lower for EE-backprop.

We also measured the average pairwise cor-
relation between the networks in each ensemble. 
For the Australian credit card and breast cancer 
datasets, EENCL reduced correlation to a greater 
degree than EE-backprop, as expected. This was 
expected because EENCL explicitly seeks to 
minimize correlation, whereas EE-backprop seeks 
only to minimize error during local search. The 
other datasets, however, provided counterintui-
tive results, with EENCL creating more highly 
correlated ensembles. One possible explanation 
for these unexpected results is that they are a 
consequence of using two ways of encouraging 
diversity. EENCL can only effectively decorrelate 
the networks if the offspring that are trained are 
fit enough to survive; otherwise, the offspring 
will be discarded. In EENCL, fitness is awarded 
according to accuracy and also coverage of train-
ing patterns, which is not necessarily the same 

Table 3. Correct response sets for EENCL and EE-Backprop across four datasets. Ωi is the mean 
individual correct response set over 30 runs. Ω∀i is the mean joint correct response. σ is the standard 
deviation. No significant difference was found using student t-tests with a 1% confidence interval, except 
for Ω∀i for the heart disease problem, where EE-Backprop is significantly lower.
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as correlation of outputs. NCL warps the mean-
square-error landscape and then descends this 
new landscape (Brown, 2003). Fitness sharing, 
however, operates on a different landscape—a 
warping of the classification accuracy landscape 
according to the coverage of training patterns 
among the ensemble.

Our analysis shows that NCL is not integral 
to the success of the EENCL algorithm for these 
datasets. We have demonstrated that EE-backprop 
produces comparable classification accuracies. 
Likewise, we find that both techniques produce 
similar joint response sets, showing that EENCL 
is no more effective in producing specialization 
within the ensemble. We obtained surprising 
results that show that on some problems, EE-
backprop was able to produce lower correlation 
among the ensemble than EENCL, but this did not 
necessarily translate into improved classification 
accuracy. We hypothesize that the explanation 
for how a method that explicitly seeks to reduce 
correlation such as EENCL can produce higher 
correlated networks than EE-backprop, which 
only implicitly reduces correlation, is to be found 
in the different and not necessarily complementary 
representations of diversity in EENCL. EENCL 
also requires the setting of a penalty strength 
parameter, which does not significantly improve 
performance over EE-backprop. We hypothesised 
that better results could be achieved if both local 
search and global evolution had complementary 
implementations of diversity, (e.g., both based on 
the coverage of training patterns or on correlation 
of outputs).

INcL Algorithm

Algorithm Description

Here we introduce a new algorithm (Duell et 
al., 2006b) based on EENCL without implicit 
fitness sharing. Instead, it follows the island 
model (Back, Fogel & Michalewicz, 1997). Ac-
cording to this model, the population is divided 

into subpopulations (islands), which have periods 
of isolated evolution. In the end of these periods, 
communication between neighboring subpopula-
tions can occur through migration of individuals. 
Such parallel evolutionary algorithms have been 
used to produce more efficient evolution and also 
to maintain a diverse set of solutions in numer-
ous studies (Cantu-Paz, 1997). We term the new 
algorithm based on the island model Island model 
with negative correlation learning (INCL). 

INCL differs from EENCL in the following 
ways. In our implementation, the overall popula-
tion is divided into equal-sized subpopulations. 
Offspring are trained using NCL to decorrelate 
their outputs from the other members of the 
same subpopulation. No migration takes place 
between subpopulations. Fitness is evaluated on 
raw classification accuracies, with no implicit 
fitness sharing. At the end of the evolutionary 
process, the subpopulations are merged into a 
single ensemble.

Experiments with speciation
techniques in Evolutionary
Ensembles

Here we examine whether it is possible to improve 
on the performance of EENCL by replacing fitness 
sharing with a subpopulation model (INCL) as an 
alternative method for encouraging speciation, to 
test whether fitness sharing is integral to EENCL’s 
performance.

We applied the EENCL and INCL algorithms 
to the same four datasets described in Table 1 
(Australian Credit Card, Wisconsin Breast Cancer, 
Pima Indian Diabetes, and Heart Disease) over 
30 independent runs. For each run, the datasets 
were shuffled and divided into three equal-sized 
sets to compose a training set, a validation set, 
and a testing set. The validation set is not used 
in these experiments. Each network learns the 
same training set. The results on the test sets are 
averaged to approximate the generalization error 
of the resulting ensembles. Three combination 
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schemes are tested: simple average, majority vote, 
and winner-takes-all. In each case, the classifica-
tion accuracy is shown in Table 4.

In the following experiments, the experimental 
setup for EENCL is as previously shown. The 
parameters for INCL are identical to EENCL 
except that the overall population of 25 is now 
arbitrarily divided into five subpopulations, each 
with five individuals. In this implementation, no 
migration occurs between the subpopulations. 
It is also worth noting that no attempt has been 
made to tune the parameters of INCL in order 
to achieve optimal performance. These results 
and analysis were previously presented in Duell 
et al., 2006b).

results and Discussion

Classification accuracies for EENCL and INCL 
can be found in Table 4. Ensemble outputs are 

obtained using either simple-average (AVG), 
majority vote (MAJ), or winner-takes-all (WTA) 
combination scheme. Using a student t-test with 
a 1% confidence interval, INCL has significantly 
better performance for AVG and MAJ combina-
tions on the breast cancer and heart disease sets, 
and WTA on the Australian credit card datasets 
(Table 5). For all other comparisons, no significant 
difference was found, although in each case, INCL 
had a higher accuracy, and in no comparison was 
EENCL significantly better than INCL. 

By replacing fitness sharing in EENCL with 
an alternative diversity creation technique during 
global evolution, classification accuracy can be 
significantly improved for some problems without 
significant reduction in others. Our earlier work 
(Duell et al., 2006a) showed that fitness sharing 
negates the effects of NCL in EENCL on the 
problems we tested and was clearly the most sig-

Table 4. Classification accuracies for EENCL and INCL using simple-average (AVG), majority vote 
(MAJ) and winner-takes-all (WTA) combination schemes

Table 5. Probability that classification results are from the same distribution using student t-test
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nificant aspect of EENCL. This work suggests that 
the algorithm can be further improved if fitness 
sharing is replaced by a more suitable speciation 
technique, such as the island model in INCL.

Table 6 gives the average pairwise correlation 
between the networks in the ensembles, averaged 
over the output nodes and 30 runs. The results 
for the breast cancer and diabetes datasets are 
significantly different, based on a student t-test 
with a 1% confidence interval (Table 7). For the 
breast cancer dataset, a lower correlation was 
found with the INCL ensemble over the EENCL, 
but for the diabetes dataset, the opposite is true. 
This is not surprising since both EENCL and 
INCL attempt to decorrelate the outputs of the net-
works. However, INCL only decorrelates within 
a subpopulation, and so there is no guarantee 
that two networks from different subpopulations 
will be decorrelated. Further analysis would be 
interesting to see how correlation differs as the 
number of subpopulations changes, and also how 
the correlation in a particular subpopulation is af-
fected. It is expected that smaller subpopulations 
will lead to a lower subpopulation correlation, 
but that this may lead to a higher population cor-

relation, since each network is decorrelated from 
fewer other networks.

Correlation among the final population is sig-
nificant, since the concept that decorrelated (and 
accurate) networks will reduce generalization er-
ror is the theoretical underpinning for NCL. NCL 
attempts to manage the trade-off between reducing 
the bias and covariance terms of the bias-variance-
covariance trade-off (Ueda & Nakano, 1996). Our 
results show that for different problems, EENCL 
and INCL have differing success in reducing co-
variance, but that overall, generalization error is 
reduced most by INCL. Consequently, it appears 
that INCL is better suited to successfully exploit 
the trade-off between reducing covariance while 
also maintaining a low bias. In order to analyze 
diversity in the final ensemble, we will compare 
their correct response sets (Liu & Yao, 1999), as in 
the previous Results and Discussion section. Table 
8 shows the mean individual correct response sets, 
Ωi, and the mean joint correct response sets for 
all networks in the final population, Ω∀i, over 30 
runs for both EENCL and INCL. Interestingly, 
while our previous work (Duell et al., 2006a) 
found no significant difference between the size 
of correct response sets when changing the local 

Table 7. Probability that correlation results are from the same distribution using student t-test

Table 6. Pairwise correlations averaged over each network and output node
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search in EENCL, here the results are all found 
to be significantly different, except the joint set 
for the breast cancer dataset, using a student t-test 
with a 1% confidence interval (Table 9).

The joint sets for INCL are higher for all the 
tested datasets, indicating that by this measure, 
EENCL produces more diverse ensembles. This 
is as expected, since implicit fitness sharing re-
wards diversity based on the overlap of correct 
response sets. This does not, however, necessar-
ily translate into a higher accuracy, as seen in 
Table 4. Therefore, in the presented experiments, 
EENCL is enforcing a larger degree of diversity 
than is desirable. INCL, on the other hand, does 
not enforce diversity (during evolution) but 
merely provides a framework where diversity 
can prosper. These results provide evidence that 
the latter approach may be preferable, especially 
when it is unclear how well a particular measure 
of diversity is suited to a problem.

Our analysis shows that implicit fitness sharing 
may not be the best way to encourage diverse and 
accurate evolved ensembles. We find that more 

accurate ensembles can be produced by providing 
the conditions for diversity to survive at the global 
evolutionary level through subpopulations rather 
than attempting to enforce a particular definition 
of diversity within the fitness evaluation. Our 
results show that in terms of correlation, fitness 
sharing does not produce more diverse ensembles 
than the island model in INCL across the datasets 
we tested. In terms of joint correct sets, however, 
EENCL does produce significantly more diverse 
ensembles on three out of four datasets, as this is 
the type of diversity that is being encouraged. That 
this does not translate into improved performance 
over INCL is evidence that this type of diversity is 
given too much weight in the EENCL algorithm. 
We suggest that better results can be obtained by 
methods that allow diversity to evolve, since they 
do not attempt to impose a potentially unsuitable 
predefined concept of “useful” diversity to an 
arbitrary problem.

Table 8. Average individual (Ωi
-) and joint (Ω∀i

-) correct response sets

Table 9. Probability that correct set results are from the same distribution using student t-test
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comparison of INcL and EENcL to 
Alternative Ensemble techniques

Here we compare the classification performance 
of both EENCL and INCL to other popular en-
semble learning techniques. The comparison is 
made to Bagging (Breiman, 1996), NCL (Liu, 
1998), and an ensemble where each network is 
trained independently on the dataset from a dif-
ferent initialization. The purpose of this work is 
to gain a better understanding of the EENCL and 
INCL algorithms.

We applied the algorithms to the same four 
datasets as in the previous section (Australian 
Credit Card, Pima Indian Diabetes, Heart Disease, 
and Wisconsin Breast Cancer) over 30 independent 
runs. Each set was again equally divided into 
training, validation, and testing sets. A validation 
set was used to determine a suitable number of 
epochs/generations for the each algorithm on each 
problem. Each network learns the same training 
sets. The results of all 30 runs on the test set are 
averaged to approximate the generalization error 
of the resulting ensembles.

The EENCL and INCL algorithms were 
implemented as described previously. This time, 
however, the number of generations is determined 
from limited experimentation with a validation 
set. It is also worth noting that no attempt has been 
made to tune the parameters of INCL in order 
to achieve optimal performance except for the 
number of generations to run the algorithm.

In Bagging (Breiman, 1996), each network is 
presented with a different training set, sampled 
with replacement from the original set. In NCL 
(Liu, 1998), the networks are trained as in the local 
search of EENCL, except that gamma is now set 
at 0.390625, again to replicate a lambda value of 
0.75. For the independently trained ensemble, each 
network learns from different initializations on 
the same data. No other diversity creation tech-
niques are employed. In each case, the number 
of epochs is determined by the performance on 
the validation set as before.

Error rates

Tables 10, 11, 12, and 13 show the classification 
accuracy of each tested algorithm on the Aus-
tralian credit card, breast cancer, diabetes, and 
heart disease datasets, respectively, as well as 
the number of generations or epochs each ran for. 
The probabilities that the difference between the 
algorithms are insignificant using a student T-test 
are given in Tables 14, 15, 16, and 17, again for 
the Australian credit card, breast cancer, diabetes, 
and heart disease datasets, respectively. In the fol-
lowing discussion, a probability of less than 1% 
is taken to indicate that a significant difference 
exists between the results.

For the Australian credit card dataset, INCL, 
NCL, and bagging are all significantly better than 
independent training. Although no significant 
difference could be found between INCL, NCL, 

Table 10. Classification accuracies on Austra-
lian credit card dataset for ensembles trained by 
EENCL, INCL, bagging, independent training, 
and NCL

Table 11. Classification accuracies on breast 
cancer dataset for ensembles trained by EENCL, 
INCL, bagging, independent training, and NCL
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Table 12. Classification accuracies on diabetes 
dataset for ensembles trained by EENCL, INCL, 
bagging, independent training, and NCL

Table 13. Classification accuracies on heart dis-
ease dataset for ensembles trained by EENCL, 
INCL, bagging, independent training, and NCL

Table 14. Probability that classification results are from the same distribution using student t-test: Aus-
tralian credit card problem

Table 15. Probability that classification results are from the same distribution using student t-test: breast 
cancer problem

Table 16. Probability that classification results are from the same distribution using student t-test: dia-
betes problem

Table 17. Probability that classification results are from the same distribution using student t-test: heart 
disease problem
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bagging, and EENCL, it is important to note that 
in this case, EENCL’s classification accuracy is 
not significantly better than independent training. 
All of the other algorithms have a significantly 
higher classification accuracy than EENCL on the 
diabetes dataset. NCL has a significantly higher 
classification accuracy than INCL, bagging, and 
independent training on the diabetes dataset; 
and bagging is also significantly better than 
independent training. Here, neither EENCL nor 
INCL are significantly better than independent 
training, whereas both NCL and bagging are. 
For the heart disease problem, all the algorithms 
have a significantly higher classification rate 
than EENCL. NCL, bagging, and independent 
training are significantly better than INCL, and 
independent training is significantly better than 
all the other algorithms, perhaps indicating that 
this problem contains too few examples to ef-
fectively produce a diverse ensemble by any of 
these methods.

For the problems tested here, EENCL has a 
significantly lower classification rate than all the 
other algorithms on half of the datasets (breast 
cancer and heart disease) and is not significantly 
better than any of the other algorithms on the other 
two problems (Australian credit card and diabetes). 
So EENCL’s strength lies not in its increase in 
classification performance, but in the use of an 
evolutionary approach that is easily adaptable to 
evolve more than just the weights of the networks. 
However, INCL also utilizes an evolutionary ap-
proach but has a comparable performance to the 
other algorithms tested except for NCL on the 
diabetes problem (which also outperforms bag-
ging here) and on the heart disease problem. Even 
on the heart disease problem, an improvement on 
EENCL’s performance is made (although not a 
significant one). It therefore appears that INCL is 
able to match or improve upon the performance of 
EENCL on the tested problems without losing the 
evolutionary approach and redresses some of the 
shortfall in performance of EENCL compared to 
NCL, bagging, and independent training.

Our previous work suggested that one possible 
explanation for why EENCL produced less accu-
rate ensembles was that fitness sharing promotes a 
different kind of diversity than NCL, and that the 
two are not necessarily complementary (Duell et 
al., 2006b). Our results showed that EENCL was 
more effective than INCL at reducing the overlap 
in the correct sets of the ensembles (encouraged 
by fitness sharing), but that this did not necessar-
ily translate into a reduced correlation of outputs 
(encouraged by NCL). Our hypothesis was that 
by attempting to manage two kinds of diversity, 
EENCL was less effective at reducing covariance 
in the ensemble. The next section analyzes EENCL 
and INCL in terms of the bias-variance-covari-
ance decomposition (Ueda & Nakano, 1996) in 
order to test this hypothesis.

Bias, Variance, and Covariance 
Analysis

In order to understand why EENCL performed 
poorly in comparison to the other ensemble 
techniques, we conducted further experiments 
to determine the bias, variance, and covariance 
decomposition (Ueda & Nakano, 1996) of the 
generalization error. This decomposition is well 
defined and understood for regression problems, 
but not for classification problems. Implicit fitness 
sharing as implemented in EENCL is, however, 
only applicable to classification problems, since 
it is dependent on coverage of training patterns 
and is therefore not easily translated into a regres-
sion context. Implicit fitness sharing is, however, 
a parameterless approximation to the classical 
fitness-sharing technique (Goldberg, 1989), re-
quiring the setting of a sharing radius. Now an 
individual’s fitness is reduced, depending upon 
the number of other individuals whose outputs 
are similar within the sharing radius for each 
pattern. This explicit fitness sharing will allow 
us to investigate EENCL in the better-understood 
regression context in order to explain its behavior 
on classification problems. INCL is applicable 
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to both classification and regression problems 
without alteration.

Here, we analyze EENCL and INCL on an 
artificial regression problem in order to esti-
mate the bias, variance, and covariance of the 
algorithms. We examine each in the context of a 

zero-, small-, and large-noise situation. For ease 
of comparison, the experimental setup follows 
as closely as possible Liu’s work on NCL (Liu, 
1998). The function to be learned is shown in 
Equation (13), where x1, x2, x3, x4, and x5 are inputs 
in the range of [0,1]. The target value f(x) lies in 

Equation (13).

Figure 3. Bias estimation of EENCL and INCL on an artificial regression problem in the zero-, small-, 
and large-noise condition
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Figure 4. Variance estimation of EENCL and INCL on an artificial regression problem in the zero-, 
small-, and large-noise conditions

the range [-1,1]. We created 25 training sets of 
500 examples randomly, with the inputs sampled 
uniformly from the range [0,1]. In the zero-noise 
problem, the target outputs were not corrupted by 
noise, but in the small-noise and large-noise cases, 
Gaussian noise was added from σ2 = 0.1 and σ2 = 
0.2, respectively. A testing set of 1,024 examples 
was created in the same manner, except the target 
outputs were not corrupted by noise. 

Network structures are as described in the 
previous experiments, except that the output layer 

was changed to linear nodes rather than logistic. 
For EENCL, each ensemble consisted of nine 
individual networks, and for INCL, there were 
three subpopulations, each with three individu-
als. A λ value of 0.75 for both algorithms is again 
used, giving γ values of 0.42188 for EENCL and 
0.56250 for INCL. For both EENCL and INCL, 
each ensemble was trained on each of the 25 
training sets from the same randomly initial-
ized weights for 400 generations. For EENCL, a 
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Figure 5. Covariance estimation of EENCL and INCL on an artificial regression problem in the zero-, 
small-, and large-noise conditions

sharing radius of 0.2 was selected after limited 
experimentation. 

Figures 3, 4, 5, and 6 show the bias, vari-
ance, covariance, and generalization error of the 
ensembles during the simulation. Each figure 
is divided into a zero-, small-, and large-noise 
condition. For both algorithms, bias is reduced 
at a similar rate during learning in the noise and 
noise-free conditions. For both algorithms, in the 
zero-noise condition, variance rises at first but 
then declines. In the small-noise condition, vari-

ance rises and stabilizes, and in the large-noise 
variance, it rises.

Both algorithms exhibit similar trends, but at 
most points in the learning process, INCL displays 
a slightly lower variance. Covariance is more 
interesting, falling at first before stabilizing. How-
ever, as the noise in the dataset increases, INCL 
becomes more efficient at reducing covariance 
(and from the previous Figures 3 and 4, bias and 
variance remain comparable). This lends support 
to our hypothesis that implicit fitness sharing in 
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Figure 6. Generalization error (MSE) estimation of EENCL and INCL on an artificial regression problem 
in the zero-, small-, and large-noise conditions

EENCL is preventing NCL from effectively re-
ducing the covariance of the ensemble, and shows 
that INCL is able to improve on the performance 
of EENCL because it more effectively reduces 
covariance.

Discussion

The purpose of these experiments was to gain a 
better understanding of the EENCL and INCL 
algorithms. Our empirical studies show that 

EENCL is not as effective as some other ensemble 
learning algorithms in some cases on the problems 
we tested. Our hypothesis for these results and 
those reported in our paper (Duell et al., 2006b) 
was that fitness sharing was not appropriate 
for use with NCL, since they both encourage 
diversity but measure their success in differing 
ways. However, such evolutionary approaches 
to ensemble design remain desirable since they 
have the potential to adapt more than just net-
work weights. As such, an alternative method 
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for speciation during evolution is necessary. One 
approach is to divide the population according to 
an island model, which is the approach followed 
in INCL. We have shown that INCL improves on 
the classification performance of EENCL, making 
it comparable with the other algorithms on all 
but one of the tested datasets. Our analysis of the 
bias-variance-covariance decomposition supports 
our earlier hypothesis: replacing fitness sharing 
with an alternative speciation method led to lower 
covariance in the ensemble, maintaining compa-
rable bias and variance values. As such, INCL 
improves on EENCL because it better exploits 
the bias-variance-covariance trade-off.

cONcLUsION

The concept of diversity for creating effective en-
sembles remains an interesting field of study. This 
chapter examines one mechanism for producing 
diverse ensembles: negative correlation learning 
(NCL). We have motivated the desire for diversity 
in ensembles and reviewed how NCL is intended 
to exploit the bias, variance, and covariance de-
composition. Several researchers have begun to 
include NCL in a wider evolutionary framework, 
giving rise to the possibility of determining not 
just the weights of neural networks, but network 
architectures as well. In such a framework, it 
is important that we maintain diversity during 
the selection process. The work presented here 
shows that the choice of such a diversity creation 
mechanism to work alongside NCL is an important 
one. Implicit fitness sharing tends to dominate 
the effect of NCL when used in combination (as 
in EENCL), and as such is not a suitable choice. 
We suggest that an island population structure (as 
in INCL) is a better alternative since it does not 
enforce a predefined concept of “good” diversity 
onto an arbitrary problem, but simply provides 
a structure in which diversity is able to survive. 
In a comparison to some other nonevolutionary 
ensemble methods, we find that EENCL’s perfor-

mance is significantly worse on some problems 
and never significantly better. INCL, however, 
improves on the performance of EENCL and 
proves comparable to the other methods tested. 
Therefore, INCL provides the advantages of an 
evolutionary approach (i.e., the ability to evolve 
more than just weights) without the cost to clas-
sification performance exhibited by EENCL. Our 
analysis of the bias, variance, and covariance for 
both INCL and EENCL on an artificial problem 
suggests that the lower generalization error is the 
result of a more effective reduction of Covariance, 
the better the diversity creation mechanisms of 
INCL are at producing desired diversity.
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AbstrAct

In the field of pattern recognition, probabilistic neural networks (PNNs) have been proven as an impor-
tant classifier. For pattern recognition of EMG signals, the characteristics usually used are: (1) ampli-
tude, (2) frequency, and (3) space. However, significant temporal characteristic exists in the transient 
and non-stationary EMG signals, which cannot be considered by traditional PNNs. In this article, a 
recurrent PNN, called recurrent log-linearized Gaussian mixture network (R-LLGMN), is introduced 
for EMG pattern recognition, with the emphasis on utilizing temporal characteristics. The structure 
of R-LLGMN is based on the algorithm of a hidden Markov model (HMM), which is a routinely used 
technique for modeling stochastic time series. Since R-LLGMN inherits advantages from both HMM and 
neural computation, it is expected to have higher representation ability and show better performance 
when dealing with time series like EMG signals. Experimental results show that R-LLGMN can achieve 
high discriminant accuracy in EMG pattern recognition. 
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INtrODUctION

Electromyographic (EMG) signals provide in-
formation about neuromuscular activities and 
have been recognized as efficient and promising 
resources for human-machine interface (HMI) 
used for the rehabilitation of people with mobility 
limitations and those with severe neuromuscular 
impairment. Typically, a pattern recognition 
process is applied to translate EMG signals into 
control commands for the HMIs, such as powered 
prostheses and functional electrical stimulation 
devices (Englehart et al., 2001; Fukuda et al., 2003; 
Hudgins et al., 1993; Lusted & Knapp, 1996). 
Generally speaking, a successful EMG pattern 
recognition technique relies on two principle 
elements: a pattern classifier with reliable dis-
crimination accuracy and efficient representation 
of EMG feature characteristics.

Probabilistic neural networks (PNNs) devel-
oped in the field of pattern recognition make a 
decision according to the probability density dis-
tribution of patterns in the feature space (Specht, 
1990; Tsuji et al., 1999). Since PNNs integrate 
statistical models into the neural networks’ archi-
tecture as prior knowledge, outstanding perfor-
mance has been reported. Recently, PNNs have 
become widely accepted as important classifiers 
and have been proven to be efficient, especially for 
complicated problems such as pattern recognition 
of bioelectric signals.

For EMG pattern recognition using PNNs, the 
feature characteristics usually used include: (1) 
amplitude, (2) frequency, and (3) spatial infor-
mation from multiple channels of EMG signals. 
However, significant temporal characteristics exist 
in the transient and non-stationary EMG signals, 
which cannot be considered by the traditional 
PNNs based on static stochastic models, and, in 
some cases, temporal characteristics could be the 
only clues for reliable recognition. 

This chapter introduces a recurrent PNN 
called recurrent log-linearized Gaussian mixture 
network (R-LLGMN) (Tsuji et al., 2003) into 

EMG pattern recognition, with emphasis on uti-
lizing temporal characteristics. The structure of 
R-LLGMN is based on the hidden Markov model 
(HMM) algorithm, which is a routinely used 
technique for modeling stochastic time series. 
Since R-LLGMN inherits the advantages from 
both HMM and neural computation, it is expected 
to have higher representation ability and exhibit 
better classification performance when dealing 
with time series like EMG signals.

After a review of the literature, the structure 
and algorithm of R-LLGMN are explained. The 
proposed EMG pattern recognition method using 
R-LLGMN is then described, and experiments on 
filtered EMG and raw EMG signals are presented. 
Based on the experimental results, the possibil-
ity of applying the proposed method to practical 
human interface control is discussed. The final 
section offers some concluding remarks.

bAcKGrOUND

Up to now, many techniques have been developed 
for EMG pattern recognition using statistical 
methods and neural networks (NNs). Kang et al. 
(1995) proposed a maximum likelihood method 
(MLM) based on Mahalanobis distances be-
tween input pattern and the prototypes, and the 
Bayes decision rule is applied in this method. A 
traditional linear discriminant analysis (LDA) 
classifier is used in an EMG classification scheme 
for multifunction myoelectric control (Englehart 
et al., 2001). 

Due to NNs’ learning capability of finding 
near-optimum functional relationships between 
the class memberships and the EMG patterns, 
several NN-based EMG pattern recognition 
methods have been presented. For example, Hi-
raiwa et al. (1989) used a multilayer perceptron 
(MLP) NN to perform pattern discrimination of 
five finger motions. Kelly et al. (1990) applied an 
MLP to classify four arm functions. Hudgins et 
al. (1993) devised a control system for powered 
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upper-limb prostheses using a set of time-domain 
features extracted from EMG signals and a simple 
MLP as a classifier. Also, similar studies have 
been developed using MLPs to classify EMG 
features, such as autoregressive (AR) parameters 
(Lamounier et al., 2002) and features of filtered 
EMG signals (Tsuji et al., 1993). However, several 
factors have hindered the extension of MLP clas-
sifiers for other applications, such as the choice 
of network structure, slow learning convergence, 
the need for a large amount of training data, and 
local minima. 

To tackle these problems, numerous attempts 
have been made by the pattern recognition com-
munity to integrate statistical models, as prior 
knowledge, into the classifier’s architecture, to 
take advantage of both statistical classification 
methods and neural computation. Consequently, 
probabilistic neural networks (PNNs) have been 
developed for pattern recognition (Specht, 1990; 
Zhang, 2000). In particular, Tsuji et al. (1999) 
proposed a feedforward PNN, a log-linearized 
Gaussian mixture network (LLGMN), which is 
based on the Gaussian mixture model (GMM) 
and a log-linear model. Although weights of the 
LLGMN correspond to a non-linear combination 
of the GMM parameters, such as mixture coef-
ficients, mean vectors, and covariance matrices, 
constraints on the parameters in the statistical 
model are relieved in the LLGMN. Therefore, a 
simple backpropagation-like learning algorithm 
can be derived, and the parameters of LLGMN 
are trained according to a criterion of maximum 
likelihood (ML). The LLGMN has been suc-
cessfully applied to EMG pattern recognition, 
where eight motions of the forearm have been 
classified using EMG signals measured by several 
pairs of electrodes (Fukuda et al., 2003). Also, 
the LLGMN has been further used to develop 
interface applications like prosthetic devices and 
EMG-based pointing devices (Fukuda et al., 1997, 
1999; Fukuda et al., 2003). 

However, since the GMM is a static stochastic 
model, it cannot make efficient use of temporal 

(time-varying) characteristics in EMG signals. 
Generally, pattern recognition using LLGMN is 
made under the assumption that feature patterns 
are stationary or change very slowly. EMG signals, 
in fact, are non-stationary and vary significantly 
in amplitude and frequency, even in the space 
domain. Due to the complicated nature of EMG 
signals, it is widely accepted that the temporal 
characteristic contains information important for 
pattern recognition (Englehart et al., 1999).

In order to cope with the time-varying char-
acteristics of EMG signals, a pattern recognition 
method using an MLP classifier and a neural filter 
(NF) was applied (Tsuji et al., 2000). Continuous 
motions by the operators can be discriminated with 
sufficient accuracy even using the non-stationary 
time series of EMG signals. In addition to improv-
ing the classifiers, time-frequency representations 
of EMG signals have been adopted to gain a high 
level of discrimination accuracy (Englehart et al., 
1999, 2001; Hussein & Granat, 2002). Although 
these methods can generate sufficient discrimina-
tion accuracy, there may be some criticism due to 
more complicated signal processing required or 
more intricate structure of classifiers. Also more 
parameters in the algorithm(s) of the signal pro-
cessing and/or the classifier need to be determined 
by the user. Optimization of the whole pattern 
recognition method is almost impossible, and it is 
hard to gain a high performance of discrimination, 
especially in practical applications. 

The present study focuses on the classifier 
aspect of EMG pattern recognition and introduces 
a recurrent PNN to improve discrimination ac-
curacy when dealing with non-stationary EMG 
signals.

A rEcUrrENt PrObAbILIstIc
NEUrAL NEtWOrK

The recurrent PNN, R-LLGMN (Tsuji et al., 2003), 
is based on the algorithm of continuous density 
hidden Markov model (CDHMM), which is a 
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combination of the GMM and the HMM (Rabiner, 
1989). The probability density function (pdf) of 
input patterns is estimated using GMM; HMM 
is used simultaneously to model the time-varying 
characteristics in stochastic time series. In the 
R-LLGMN, recurrent connections are incorpo-
rated into the network structure to make efficient 
use of the time-varying characteristics of EMG 
signals. With the weight coefficients well trained 
using a learning scheme of the backpropagation 
through time (BPTT) algorithm, R-LLGMN can 
calculate posterior probabilities of the discrimi-
nating classes.

HMM-based Dynamic Probabilistic 
Model

First, let us consider a dynamic probabilistic 
model, as shown in Figure 1. There are C classes 
in this model, and each class c (c ∈{1,⋅⋅⋅,C}) is 
composed of Kc states. Suppose that, for the given 
time series (1), (2), , ( )T=x x x x

   ( ( ) )dt ∈ℜx , at 
any time x(t) must occur from one state k of class 
c in the model. With this model, the posterior 
probability for class c, ( | )P c x , is calculated as

' '
1 1 '' 1 ' 1

( )( | ) ( , | )
( )

c c

c

K K c
k

C K c
k k kc k

TP c P c k
T= =

= =

= =∑ ∑
∑ ∑

x x 

. 

      (1)

Here, ( )c
k T  is the forward variable, which 

is defined as the probability for time series 
(x(1),x(2),..., x(T) ) to be generated from class c, 
and vector x(T) occurs from state k in class c. 
According to the forward algorithm (Rabiner, 
1989), it can be derived as:

(1) ( (1)),c c c
k k kb= x    (2)

' ',
' 1

( ) ( 1) ( ( ))   (1 ),
cK

c c c c
k k k k k

k
t t b t t T

=

= - < ≤∑ x

      (3)

where ',
c
k k is the probability of the state chang-

ing from k' to k in class c, and ( ( ))c
kb tx  is defined 

as the posterior probability for state k in class c 
corresponding to x(t). Also, the prior probability 

c
k is equal to 0( , ) |tP c k = . 

In this model, the posterior probability 
( ( ))c

kb tx  is approximated by summing up Mc , k 
components of a Gaussian mixture distribution, 
and ', ( ( ))c c

k k kb tx  on the right side of (3) is de-
rived in the form shown in Box 1, where r(c , k , m) , 

( , , ) ( , , ) ( , , ) T
1( , , )c k m c k m c k m

d=  ,  ( , , )c k m d d×Σ ∈ℜ , 
( , , )c k m
jls  and xj(t) stands for the mixing proportion, 

the mean vector, the covariance matrix of each 
component {c,k,m}, the element of the inverse 
of covariance matrix ( , , ) 1c m k -Σ , and the element 
of x(t).

1

K

k

Gaussian mixture model

Mc,k
m1

P

state k

k

1
2

KC

c

class Cclass c

x

Figure 1. HMM-based dynamic probabilistic model with C classes and Kc states in class c
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The R-LLGMN is developed from the model 
defined above. For an input time series x , the pos-
terior probability for each class can be estimated 
with a well-trained R-LLGMN. The R-LLGMN 
network structure and learning algorithm are 
explained in the following.

Network Architecture

R-LLGMN is a five-layer recurrent NN with 
feedback connections between the fourth and the 
third layers, the structure of which is shown in 
Figure 2. First, the input vector series ( ) dt ∈ℜx   
(t=1,...,T) is preprocessed into the modified input 
series ( ) Ht ∈ℜX  as follows: 

T 2
1 1 2 1

2 2 T
2 2 3 2

( ) (1, ( ) , ( ) , ( ) ( ), , ( ) ( ),

           ( ) , ( ) ( ), , ( ) ( ), ( ) ) ,
d

d d

t t x t x t x t x t x t
x t x t x t x t x t x t

=X x 

 

      (5)

where the dimension H is determined as H = 1 
+ d (d + 3)/2. The vector X(t) acts as the input of 
the first layer, and the identity function is used to 
activate each unit. The output of the hth (h = 1,⋅⋅⋅,H) 
unit in the first layer is defined as (1)Oh(t). 

Unit {c,k,k’,m} (c = 1,⋅⋅⋅,C; k’,k = 1,⋅⋅⋅,Kc; m = 
1,⋅⋅⋅,Mc , k) in the second layer receives the output of 
the first layer, weighted by the coefficient ', , ,

c
k k m hw

. The input (2)
', , ( )c

k k mI t  and the output (2)
', , ( )c

k k mO t  
are defined as:

(2) (1)
', , ', , ,

1
( ) ( ) ,

H
c c
k k m h k k m h

h
I t O t w

=

= ∑   (6)
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Box 1.

Figure 2. The structure of R-LLGMN



  ���

A Recurrent Probabilistic Neural Network for EMG Pattern Recognition

(2) (2)
', , ', ,( ) exp( ( )) ,c c

k k m k k mO t I t=   (7)

where C is the number of discriminating classes, 
Kc is the number of states in class c, and Mc , k 
denotes the number of GMM components in the 
state k of class c. In (7), the exponential function 
is used in order to calculate the probability of the 
input pattern.

The outputs of units {c,k,k',m} in the second 
layer are summed and input into a unit {c,k,k'} 
in the third layer. Also, the output of the fourth 
layer is fed back to the third layer. These are 
expressed as follows:

,
(3) (2)

', ', ,
1

( ) ( ) ,
c kM

c c
k k k k m

m
I t O t

=

= ∑
  (8)

(3) (4) (3)
', ' ',( ) ( 1) ( ) ,c c c

k k k k kO t O t I t= -   (9)

where (4)
' (0) 1.0c

kO =  is for the initial phase. The 
recurrent connections between the fourth and the 
third layers play an important role in the process, 
which corresponds to the forward computation; 
see Equation (3).

The activation function in the fourth layer is 
described as:

(4) (3)
',

' 1
( ) ( ) ,

cK
c c
k k k

k
I t O t

=

= ∑    (10)

'

(4)
(4)

(4) '
'' 1 ' 1

( )( ) .
( )c

c
c k
k C K c

kc k

I tO t
I t

= =

=
∑ ∑   (11)

In the fifth layer, the unit c integrates the out-
puts of Kc  units {c,k} (k = 1,⋅⋅⋅,Kc) in the fourth layer. 
The relationship in the fifth layer is defined as:

(5) (4)

1
( ) ( ) ,

cK
c c

k
k

I t O t
=

= ∑
   (12)

(5) (5)( ) ( ) .c cO t I t=    (13)

In R-LLGMN, the posterior probability of 
each class is defined as the output of the last layer. 

After optimizing the weight coefficients ', , ,
c
k k m hw  

between the first layer and the second layer, the 
NN can estimate the posterior probability of 
each class. Obviously, the R-LLGMN’s structure 
corresponds well with the HMM algorithm. R-
LLGMN, however, is not just a copy of HMM. 
The essential point of R-LLGMN is that the 
parameters in HMM are replaced by the weight 
coefficients ', , ,

c
k k m hw , and this replacement removes 

restrictions of the statistical parameter in HMM 
(e.g., 0 ≤ the transition probability ≤ 1, and standard 
deviations > 0). Therefore, the learning algorithm 
of R-LLGMN is simplified and can be expected 
to have higher generalization ability than that of 
HMMs. That is one of the major advantages of 
R-LLGMN.

A Maximum Likelihood Training
Algorithm

A  s e t  o f  i n p u t  v e c t o r  s t r e a m s 
( ) ( ) ( ) ( )( (1) , (2) , , ( ) )n n n n

nT=x x x x
  (n=1,...,N) and 

the teacher vector ( ) ( ) ( ) ( ) T
1( , , , , )n n n n

c CT T T=T    are 
given for the learning of R-LLGMN. We assume 
that the network acquires the characteristics of 
the data through learning if, for all the streams, 
the last output of stream ( )nx , namely (5) ( )c

nO T  , is 
close enough to the teacher signal T(n). The objec-
tive function for the network is defined as:

( ) (5)

1 1 1
log ( ) .

N N C
n c

n c n
n n c

J J T O T
= = =

= = -∑ ∑∑
 (14)

The learning process attempts to minimize 
J, that is, to maximize the likelihood that each 
teacher vector T(n) is obtained for the input stream 
x (n).

The weight modification ∆ ', , ,
c
k k m hw  for ', , ,

c
k k m hw  

is defined as:

∆ =', , ,
1 ', , ,

,
N

c n
k k m h c

n k k m h

Jw
w=

∂
∂∑

   (15)
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in a collective learning scheme, where η > 0 is the 
learning rate. Due to the recurrent connections 
in R-LLGMN, a learning algorithm based on 
the BPTT algorithm has been applied. It is sup-
posed that the error gradient within a stream is 
accumulated, and weight modifications are only 
computed at the end of each stream; the error is 
then propagated backward to the beginning of the 
stream. The term 

', , ,

n
c
k k m h

J
w

∂

∂
 in (15) can be defined as 

seen in Box 2, where Γ(c ', k '') ,  (c , k ) is defined as:

k k
( ', ''),( , )

1 ( ' ;  '' )
,

0 (otherwise)c k c k

c c= =
Γ = 

  (17)

and ( ) '
''( )n c

k t∆  is the partial differentiation of Jn to 
(4) '

'' ( )c
k nO T t-  (see Box 3 for Equation (19) ):

( )
( ) ' '

'' (5) '(0) ,
( )

n
n c c

k c
n

T
O T

∆ =    (18)

It should be mentioned that all intermediate 
values of the R-LLGMN’s feedforward compu-
tation are used in the calculation of Equations 
(16)-(19).

EMG PAttErN rEcOGNItION
UsING r-LLGMN

The structure of the proposed EMG pattern rec-
ognition system is shown in Figure 3. This system 
consists of three parts in sequence: (1) EMG sig-
nal processing, (2) recurrent probabilistic neural 
network, and (3) discrimination rule.

1. EMG signal processing
 The EMG signals are processed to extract 

the feature patterns. In this study, feature 
patterns extracted from filtered EMG signals 
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Box 2.
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Box 3.
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and raw EMG signals are used for motion 
discrimination. Also, the force information 
is extracted for motion onset detection and 
to determine the speed of the motion clas-
sified.

2. Recurrent probabilistic neural network
 The R-LLGMN described in the previous 

section is employed for motion discrimi-
nation. Using samples labeled with the 
corresponding motions, R-LLGMN learns 
the non-linear mapping between the EMG 
patterns and the forearm motions. Given an 
EMG feature stream with length T, the output 
(5 )Oc (T) (c = 1,⋅⋅⋅,C) presents the posterior 
probability of each discriminating motion.

3. Discrimination rule
 In order to recognize whether the motion has 

really occurred or not, the force information 
σ(t) is compared with a prefixed motion 
appearance threshold Md . The motion is 
considered to have occurred if σ(t) exceeds 
Md . The entropy of R-LLGMN’s outputs is 
also calculated to prevent the risk of mis-
discrimination. The entropy is defined as:

(5) (5)
2

1
( ) ( ) log ( ) .

C
c c

c
H t O t O t

=

= -∑
  (20)

 If the entropy H(t) is less than the discrimi-
nation threshold Hd , the specific motion 
with the largest probability is determined 

according to the Bayes decision rule. If not, 
the determination is suspended. 

The discriminated motion can be used as con-
trol commands for HMIs, for example, powered 
prosthetic limbs. 

Experimental conditions

Five subjects (amputee subjects A and B, and 
normal subjects C, D, and E) participated in this 
study. Six pairs of Ag/AgCl electrodes (NT-511G: 
NIHON KOHDEN Corp.) with conductive paste 
were attached to the forearm and upper arm 
(Flexor Carpi Radialis (FCR), Extensor Carpi 
Ulnaris (ECU), Flexor Carpi Ulnaris (FCU), 
Biceps Brachii (BB), Triceps Brachii (TB): two 
pairs on FCR and one pair on the others). The 
subjects were asked to continuously perform six 
motions (C = 6) : flexion, extension, supination, 
pronation, hand grasping, and hand opening. The 
motions are shown in Figure 4. 

The differential EMG signals were amplified 
(70 [dB]) and filtered out with a low-pass filter 
(cut-off frequency: 100 [Hz]) by a multi-telemeter 
(Web5000: NIHON KOHDEN Corp.), as shown 
in Figure 5, then digitized by an A/D converter 
(sampling frequency: 200 [Hz]; quantization: 12 
[bits]).

In the experiments, the network structure of 
R-LLGMN is set as (C = 6), Kc = 1 (c = 1,⋅⋅⋅C), 

Figure 3. Structure of the proposed EMG pattern recognition system
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and the component for each unit in the third 
layer is one. The parameters used are chosen to 
make conditions of comparison experiments as 
equal as possible. The lengths of training sample 
streams, Tn (n = 1,⋅⋅⋅,N), are set as T, which was 
determined with respect to the EMG features. 
In accordance with previous researches on EMG 
pattern classification (Tsuji et al., 1993; Fukuda 
et al., 2003), the determination threshold Hd was 
set to 0.5, and the motion appearance threshold 
Md to 0.2. All pattern recognition experiments 
were conducted off-line.

Pattern recognition of Filtered EMG 
signals

First, motion discrimination experiments using 
filtered EMG signals were conducted to examine 
the performance of the proposed method. In the 
experiments, the training sample consists of 20 
EMG patterns extracted from the filtered EMG 
signals for each motion. 

Six channels of EMG signals (L = 6) are recti-
fied and filtered by a second-order Butterworth 
filter (cut-off frequency: 1 [Hz]). The filtered 
EMG signals are defined as FEMGl(t) (l = 1,⋅⋅⋅,L) 
and are normalized to make the sum of L chan-
nels equal to 1:

' '' 1

( )( ) ( 1, ) ,
( )

st
l l

l L st
l ll

FEMG t FEMGx t l L
FEMG t FEMG

=

-
= =

-∑
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where st
lFEMG  is the mean value of FEMGl(t) 

measured while the arm is relaxed. The feature 
vector x(t) = [x1(t),x2 (t),⋅⋅⋅xL(t)] is used for the input 
of the neural classifier, R-LLGMN, where the 
dimension of R-LLGMN’s input, d, is set as d = 
L. In this study, it is assumed that the amplitude 
level of EMG signals varies in proportion to muscle 
force. Force information σF (t) for the input vector 
x(t) is defined as follows:

max
1

( )1( ) ,
stL

l l
F st

l l l

FEMG t FEMGt
L FEMG FEMG=

-
=

-∑  (22)

where max
lFEMG  is the mean value of FEMGl(t) 

measured while maintaining the maximum arm 
voluntary contraction. 

An example of the discrimination results of 
subject A is shown in Figure 6. The subject was an 
amputee (51-year-old male), whose forearm, three 
cm from the left wrist joint, was amputated when 
he was 18 years old as the result of an accident. He 
has never used EMG controlled prosthetic limbs 
and usually uses a cosmetic hand. In the experi-
ments, he was asked to perform six motions in 
the order continuously for six seconds. Figure 6 

Figure 4. Six motions used in the experiments Figure 5. The multi-telemeter (Web5000) and 
electrodes (NT-511G) used in the experiments
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plots six channels of the input EMG signals, the 
force information σF (t), the entropy H(t), and the 
discrimination results. The labels of the vertical 
axis in the discrimination results correspond to 
the motions shown in Figure 4, and SUS means 
that the determination was suspended. The gray 
areas indicate that no motion was determined 
because the force information was less than Md . 
Incorrect determination was eliminated using the 
entropy. Figure 6 demonstrates that the proposed 
method achieves high discrimination accuracy 
with filtered EMG signals during continuous 
motion.

The discrimination accuracy for five subjects 
was then investigated, and LLGMN and an MLP 
classifier were used for comparison. The same 
preprocessing method and discrimination rule 

were applied to the experiments using LLGMN 
and MLP. The number of units in the input layer 
of LLGMN was equal to the dimension of input 
signal (L). Units in the hidden layer corresponded 
to the Gaussian components in GMM, the number 
of which was set in the same manner as for the 
R-LLGMN. The output layer included C units, 
and each unit gave the posterior probability for 
the input pattern. In contrast, MLP had four lay-
ers (two hidden layers), and the units of the layers 
were set at 6, 10, 10, and 6. Each output of MLP 
corresponded to a motion, and all six outputs were 
normalized to make the sum of all outputs equal 
1.0 for comparison with R-LLGMN and LLGMN. 
The learning procedure of MLP continued until 
the sum of the square error was less than 0.01, 
where the learning rate was 0.01. However, if the 

Figure 6. Example of the discrimination results for filtered EMG signals (subject A)
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sum of the square error after 50,000 iterations 
was still not less than 0.01, the learning procedure 
was stopped. In all three methods, ten different 
sets of initial weights (all randomized between 
[0, 1]) were used.

Discrimination rate, which is defined as the 
ratio of correctly classified data to the total test 
set, is used to evaluate discrimination accuracy of 
three methods. The mean values and the standard 
deviations of the discrimination rates are shown in 
Table 1. It can be seen that R-LLGMN achieved the 
best discrimination rate among all three methods 
and had the smallest standard deviation.

Also, the classification results were examined 
by altering the experiment conditions, such as 
the length of sample data. Experiments were 
performed using various lengths of sample data. 
For each sample data, R-LLGMN was trained 
with ten different sets of initial weights, which 
were randomly chosen in the range [0, 1]. The 
mean values of the discrimination rates for each 
length are shown in Figure 7, where the standard 
deviations are all very small, close to 0. It can be 
seen from Figure 7 that the discrimination rate 
maintains a high level when the sample data is of 
an appropriate length (T). However, if T > 5, it is 

DR : Discrimination rate [%], SD : Standard deviation [%]

Type of the methods

DR
SD

DR
SD

DR
SD

DR
SD

DR
SD

Subject A
(Amputee)

MLP

46.5
12.3
44.2
10.4
69.8
10.0
69.2
7.0

73.4
7.9

LLGMN

82.8
0.0

88.5
0.0

88.7
0.2

89.3
0.1

94.0
5.5

R-LLGMN

89.3
0.4

93.0
0.1

93.5
0.0

92.8
0.0

99.1
0.0

Subject B
(Amputee)
Subject C
(Normal)
Subject D
(Normal)
Subject E
(Normal)

Table 1. Discrimination results of five subjects with filtered EMG signals

Figure 7. Discrimination rates for various data lengths (subject B)
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too long to train R-LLGMN using filtered EMG 
signals. The discrimination rate tends to deterio-
rate because R-LLGMN, which was trained using 
the long-length sample data, failed to discriminate 
the switching of motions.

Pattern recognition of raw EMG 
signals

This subsection presents pattern recognition ex-
periments of time series of raw EMG signals. In 
the previously proposed methods for classifying 
the intended motion of an operator, the filtered or 
smoothed EMG signals (Fukuda et al., 1997, 2003; 
Kelly et al., 1990; Tsuji et al., 1993, 2000) or the 
extracted characteristics in a fixed time window 
(Hiraiwa et al., 1989; Hudgins et al., 1993) have 
been used as the input vector to the NN classifier. 
However, these signal-processing steps result in 
considerable phase delay and time delay caused 
by the low-pass filtering and the time window 
operation. To avoid such delay, raw EMG signals 
without any preprocessing are used as the input 
to R-LLGMN. The experiments were performed 
with the subjects (A, B, C, D, and E) who had 
experience in manipulating the EMG signals.

As raw EMG signals, six channels of EMG 
signals (L=6) sampled from the input of multi-
telemeter are denoted by REMGl(t) (l = 1,⋅⋅⋅,L). 
For the case of raw EMG signals, force informa-
tion σR (t) is obtained calculating moving average 
within the length T: 

max
1

1 ( )( ) ,
L

i
R

l l

REMG tt
L REMG=

= ∑    (23)

1

0

1( ) ( ) ,
T

l l
j

REMG t REMG t j
T

-

=

= -∑  (24)

where 
max
lREMG  is the premeasured integral EMG 

of each channel under the maximum voluntary 
contraction. Also, it should be noted that REMGl(t 
– j) = 0 when t – j < 0. 

The input vector x(t) (t = 1,⋅⋅⋅,T) of R-LLGMN 
is normalized REMGl(t) with σR (t) as 

1( ) ( ) ( ) .l R lx t T REMG t-=    (25)

Here, the normalization enables R-LLGMN 
to discriminate motions from a pattern of all 
channels as well as from the amplitude of the 
raw EMG signals. 

In pattern recognition experiments of raw 
EMG signals, the length of training sample stream 
T is set as 20. Eight sample streams are used for 
each motion. The threshold for motion onset 
detection Md is 0.155. 

Figure 8 provides an example of the clas-
sification results of subject A. The figure shows 
six channels of the raw EMG signals, the force 
information σR (t), the entropy H(t) calculated 
from the output probability of R-LLGMN, and 
the classification results of the R-LLGMN. The 
discrimination rate was about 95.5% in this ex-
periment. It can be seen that R-LLGMN generates 
acceptable classification results during continuous 
motion, and the entropy is low during motions 
except for the motion one (Flexion). It indicates 
that R-LLGMN can discriminate the hand and 
forearm motions from the raw EMG signals, even 
for control purposes.

Comparisons were conducted with discrimi-
nation results of MLP, LLGMN, and R-LLGMN 
using filtered EMG signals. It should be noted that 
due to the stochastic nature of raw EMG signals, 
MLP and LLGMN could not learn motion patterns 
of raw EMG signals. The network structures of 
MLP and LLGMN were set to the same as those in 
pattern recognition experiments of filtered EMG, 
and the beginning and ending of motions were rec-
ognized according to the force information σR (t). 
The discrimination threshold Hd was not used in 
the comparison, so that all classification results 
were used for comparison. Each experiment was 
repeated ten times with different randomly chosen 
initial weights. Table 2 depicts the mean values 
and the standard deviations of the discrimina-
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Figure 8. Example of the discrimination result for raw EMG signals (subject A)

DR : Discrimination rate [%], SD : Standard deviation [%]

Type of the methods

DR
SD

DR
SD

DR
SD

DR
SD

DR
SD

Subject A
(Amputee)

70.1
10.8
80.5

8.1
78.9

4.1
75.8

4.5

66.1
14.0

MLP
(Filtered EMG)

R-LLGMN
(Raw EMG)

91.2
1.3

94.1
0.4

0.0

90.4

93.8

0.9
91.0

1.8

89.3
0.0

82.9
0.0

88.3
0.0

85.9
0.0

89.8
0.0

LLGMN
(Filtered EMG)

92.5
0.0

94.2
0.0

97.4
0.0

90.7
0.0

96.1
0.0

R-LLGMN
(Filtered EMG)

Subject B
(Amputee)
Subject C
(Normal)
Subject D
(Normal)
Subject E
(Normal)

Table 2. Motion discrimination results for raw EMG signals, comparing with methods using filtered 
EMG signals
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tion rates for five subjects. Due to the filtering 
processes, onsets of the filtered EMG signals are 
delayed, and the EMG patterns vary significantly 
in time domain during the transient phase. Since 
MLP cannot deal well with time-varying patterns, 
MLP’s discrimination result is the worst among 
these methods. Although LLGMN shows better 
discrimination accuracy than MLP due to the 
statistical model incorporated in its structure, 
it still provides poor discrimination accuracy 
since the model is static. Consequently, it is can 
be concluded that phase delay due to the filtering 
processes is one of the major causes of degrada-
tion in the discrimination results in cases of MLP 
and LLGMN. In contrast, R-LLGMN provides 
superior discrimination results for both the filtered 
EMG signals and the raw EMG. Also, we found 

that patterns of raw EMG signals are much more 
complicated than that of filtered EMG signals, 
and training and estimation of R-LLGMN using 
raw EMG signals are more difficult. Therefore, 
the classification performance of R-LLGMN with 
filtered EMG signals is a little higher than that 
using raw EMG signals. However, since no signal 
processing is used, the latter has a faster response. 
There is thus a trade-off between discrimination 
accuracy and response speed.

The response time of raw EMG-based motion 
discrimination was further investigated, and the 
proposed method and traditional classifiers (MLP 
and LLGMN) were compared. Figure 9 illustrates 
the signals magnified from 6.3 s to 9.9 s in Figure 
8 during the wrist extension motion. This figure 
depicts the EMG signal of the channel 3, the fil-

Figure 9. Changes of the discrimination results by three types of neural networks (subject A)
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tered EMG signal that is rectified and filtered out 
by the second-order Butterworth low-pass filter 
(cut-off frequency: 1.0 [Hz]), the force informa-
tion σR (t), and the discrimination results of three 
comparison methods. The MLP and LLGMN 
used the features extracted from filtered EMG 
signals as the input, while the R-LLGMN achieved 
motion discrimination based on the raw EMG 
signals. It can be seen from the figure that there 
is a considerable phase delay between the raw 
EMG and the filtered EMG signals, which causes 
the misdiscrimination in the results of MLP and 
LLGMN. In contrast, using the raw EMG signals, 
R-LLGMN achieves higher discrimination accu-
racy than the others, and a correct classification 
is made just after the beginning of motion. It 
was also found that the discrimination rates of 
both MLP and LLGMN decreased considerably 
when the cut-off frequency of the low-pass filter 
increased. The increase of the cut-off frequency 
results in filtered EMG signals containing high 
frequency components, so that the learning of the 
NNs becomes very difficult.

Then, discrimination accuracy during the be-
ginning and ending of motions was investigated. 
In these experiments, EMG signals during 100 
msec from onset and 100 msec before ending 
of each motion were used. Similarly, MLP and 

LLGMN using filtered EMG signals were used 
for comparison. Table 3 presents the discrimina-
tion results for five subjects using three different 
methods. The mean values and the standard de-
viations of the discrimination rates are computed 
for ten randomly chosen initial weights. From this 
table, it can be seen that R-LLGMN attained the 
best discrimination rates during the beginning 
and ending of motions; therefore, the R-LLGMN 
provides superior response performance. 

DIscUssIONs

A new EMG pattern recognition method using 
R-LLGMN is proposed to improve discrimina-
tion accuracy when dealing with non-stationary 
EMG signals. R-LLGMN performs both the 
filtering process and pattern classification within 
the same network architecture, so the proposed 
method outperforms the previous methods with 
filtered EMG and raw EMG patterns. What is 
even more encouraging is that the response time 
of discrimination results can also be shortened 
by using raw EMG signals.

In the studies on human-machine interfaces 
(HMIs), it is widely believed that the response 
time is an important aspect, especially for practi-

DR : Discrimination rate [%], SD : Standard deviation [%]

Type of the methods BPNN LLGMN R-LLGMN

DR
SD

DR
SD

DR
SD

DR
SD

DR
SD

Subject A
(Amputee)

67.2
11.0
49.4
11.5
52.8
3.8

64.4
3.0

30.4
13.6

63.7
0.2

50.0
0.0

58.3
0.0

63.3
0.0

58.3
4.1

75.0
0.0

91.7
0.0

73.8
0.0

66.7
0.0

89.6
0.3

Subject B
(Amputee)
Subject C
(Normal)
Subject D
(Normal)
Subject E
(Normal)

Table 3. Discrimination results for five subjects
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cal application systems. For HMIs used in daily 
activities, it has been mentioned that techniques 
for real-time classification are needed in order 
to decrease global time delay of response, which 
would reduce the operator’s mental burden and 
increase the range of applications and number of 
potential users (Chang et al., 1996; Vuskovic & 
Du, 2002). A classification system based on digital 
signal processors (DSP) was used to realize the 
pattern classification algorithm for fast process-
ing (Chang et al., 1996). Vuskovic and Du (2002) 
attempted to simplify a fuzzy ARTMAP network 
used for EMG classification, which resulted in 
overall smaller computational times. On the other 
hand, since the EMG signals include high-fre-
quency components, adequate signal processes 
such as low-pass filtering are necessary in order 
to extract meaningful information for HMIs. 
Actually, this low-pass filtering process increases 
the time delay. 

In contrast to these previous studies, which 
focus on reduction of the computational time 
(complexity) of classifiers, a pattern recognition 
technique that directly uses raw EMG signals is an 
interesting choice. Given the experimental results 
in the previous section, it is expected that improved 
response performance is possible by adopting the 
proposed raw EMG pattern recognition scheme 
into traditional HMIs, which use filtered EMG 
patterns (Fukuda et al., 1997, 2003; Kelly et al., 
1990; Tsuji et al., 1993, 2000). Further studies 
should focus on this idea.

This chapter introduced R-LLGMN in or-
der to make effective use of the non-stationary 
(time-varying) characteristics in EMG signals. 
In recent years, time-frequency analysis has 
attracted increasing attention for representing 
the non-stationary essence of frequency domain 
(Englehart et al., 1999, 2001; Hussein & Granat, 
2002). Since the wavelet transform results in a 
good time-frequency resolution, it has become 
a very popular feature extraction method for 
time-frequency representation of EMG signals. 
Based on the idea of building prior information 

into neural network design, the algorithm of 
wavelet transform can be incorporated into the 
probabilistic neural network, so that the PNNs 
could process frequency information of EMG 
signals more effectively. 

sUMMArY

This chapter proposes a new EMG pattern recog-
nition method based on a recurrent log-linearized 
Gaussian mixture network (R-LLGMN). Because 
of the recurrent connections in the R-LLGMN’s 
structure, the temporal information of EMG 
signals can be used to improve discrimination 
accuracy. 

To examine the discrimination capability and 
accuracy of the proposed method, EMG pattern 
recognition experiments were conducted with 
five subjects. In the experiments, the proposed 
method achieved high discrimination accuracy 
for varying EMG signals, and its discrimination 
results are superior to those of the LLGMN and 
MLP classifiers. We found that the discrimination 
results change when different lengths of sample 
stream T are used. The length T should be well 
modulated according to the input signals. For 
example, to discriminate filtered EMG signals, 
T should be less than five.

Even more encouraging is the outcome of EMG 
pattern recognition experiments using the non-
stationary time series of raw EMG signals. Results 
of these experiments demonstrate that R-LLGMN 
performs both the filtering process and pattern 
recognition within the same network architecture 
and can realize a relatively high discrimination 
rate that is good enough for control purposes. It 
should be noted that there is a trade-off between 
discrimination accuracy and response speed when 
using R-LLGMN as a classifier. In practical ap-
plications, such as prosthetic control, the latter 
may be preferred.
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