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Preface

The digital processing, storage, and transmission of speech signals have gained
great practical importance. The main application areas are digital mobile radio,
acoustic human–machine communication, and digital hearing aids. In fact, these
applications are the driving force behind many scientific and technological develop-
ments in this field. A specific characteristic of these application areas is that theory
and practice are closely linked; there is a seamless transition from theory to sys-
tem simulations using general-purpose computers and to system realizations with
programmable processors.

This book has been written for electrical engineers, information technology engi-
neers, as well as for engineering students. It summarizes recent developments in
the broad field of digital speech transmission and is based to a large extent on
joint research of the authors. This book is used in courses at RWTH Aachen Uni-
versity and Ruhr-Universität Bochum. Portions of this volume are translated and
revised from the German edition of Digitale Sprachsignalverarbeitung, by P. Vary,
U. Heute, and W. Hess, with kind permission of Teubner Verlag. The reader will
find supplementary information, publications, programs, and audio samples on the
following web sites:

http://www.ind.rwth-aachen.de

http://www.rub.de/ika

The scope of the individual subjects treated in the book often exceeds that of the
lectures; recent research results, standards, problems of realization, and applica-
tions have been included, as well as many suggestions for further reading. To gain
maximum benefit from the text, the reader should be familiar with the funda-
mentals of digital signal processing and statistical signal and system description.
A summary of spectral analysis, digital filter banks, as well as stochastic signals
and estimation is provided.
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Introduction

Language is the most essential means of human communication. It is used in two
modes: as spoken language (speech communication) and as written language (tex-
tual communication). In our modern information society both modes are greatly en-
hanced by technical systems and devices. E-mail, short-messaging, and the world-
wide web have revolutionized textual communication while

• digital mobile radio systems,

• acoustic human–machine communication, and

• digital hearing aids

have significantly expanded the possibilities and convenience of speech communi-
cation.

Digital processing of speech signals for the purpose of transmission (or storage)
is a branch of information technology and an engineering science which draws
on various other disciplines such as physiology, phonetics, linguistics, acoustics,
and psychoacoustics. It is this multidisciplinary aspect which makes digital speech
processing a challenging as well as rewarding task.

The goal of this book is a comprehensive discussion of fundamental issues, stan-
dards, and recent trends in speech communication technology. Speech communi-
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cation technology helps to mitigate a number of physical constraints and techno-
logical limitations, most notably

• bandwidth limitations of the telephone channel,

• shortage of radio frequencies,

• acoustic background noise,

• interfering acoustic echo signals from loudspeaker(s), and

• (residual) transmission errors caused by the radio channel.

The enormous advances in signal processing technology have contributed to the
success of speech signal processing. At present, integrated digital signal processors
allow economic real-time implementations of complex algorithms which require
several thousand operations per speech sample. For this reason advanced speech
signal processing functions can be implemented in cellular phones as illustrated in
Fig. 1.1.

Figure 1.1: Speech signal processing in a handsfree mobile terminal
BF : Beamforming
AEC : Acoustic Echo Cancellation
NR : Noise Reduction
SC : Speech Coding
ERC : Equivalent Radio Channel
EC : Error Concealment
SD : Speech Decoding
BWE: Bandwidth Extension

The handsfree terminal in Fig. 1.1 facilitates communication via a microphone
and a loudspeaker. Handsfree telephone facilities are installed in motor vehicles in
order to enhance road safety and to increase convenience in general.

At the near end of the transmission system, three different pre-processing steps are
taken to improve communication in the presence of ambient noise and loudspeaker
signals. In the first step, two or more microphones are used to enhance the near-end
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speech signal by beamforming (BF). Specific characteristics of the interference,
such as the spatial distribution of the sound sources and the statistics of the spatial
sound field, are exploited.

Acoustic echoes occur when the far-end signal leaks from the loudspeaker of
the handsfree set into the microphone(s) via the acoustic path. As a consequence,
the far-end speaker will hear his or her own voice delayed by twice the signal
propagation time of the telephone network. Therefore, in a second step, the acous-
tic echo must be compensated by an adaptive digital filter, the acoustic echo
canceller (AEC).

The third module of the pre-processing chain is noise reduction (NR). Single
channel noise reduction systems are most effective for short-term stationary noise.
They are based on optimal filters and estimation techniques.

Speech coding (SC), error concealment (EC), and speech decoding (SD)
facilitate the efficient use of the mobile radio channel. Speech coding algorithms for
mobile communications with typical bit rates between 4 and 13 bit/s are explicitly
based upon a model of speech production and exploit properties of the hearing
mechanism.

At the receiving side of the transmission system, the speech quality is ensured
by means of error correction (channel decoding), which is not within the scope
of this book. In Fig. 1.1 the (inner) channel coding/decoding as well as modula-
tion/demodulation and transmission over the physical radio channel are modeled
as an equivalent radio channel (ERC). In spite of channel coding, quite fre-
quently residual errors remain. The negative auditive effects of these errors can be
reduced by error concealment (EC) techniques. In many cases, these effects can
be reduced by exploiting both residual source redundancy and information about
the instantaneous quality of the transmission channel.

Finally, the decoded signal might be subjected to artificial bandwidth exten-
sion (BWE) which expands narrowband (0.3 – 3.4 kHz) to wideband (0.05 –
7.0 kHz) speech. With the introduction of true wideband speech coding into tele-
phone networks this step will be of significant importance as, for a long transition
period, narrowband and wideband speech terminals will coexist.

Some of these processing functions find applications in multimedia terminals and
digital hearing aids.

The book is organized as follows. The first part (Chapters 2–5) deals with the fun-
damentals of speech processing: models of speech production and hearing, spectral
transformations, filter banks, and stochastic processes.
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The second part (Chapters 6–8) covers the issue of speech coding. Quantization,
differential waveform encoding, linear prediction, and especially the concepts of
code excited linear prediction (CELP) are discussed. Finally, some of the most
relevant speech codec standards are presented. Recent developments such as the
Adaptive Multi-Rate (AMR, narrowband and wideband) codec for GSM and UMTS
or variable rate coding for Internet telephony are addressed.

The third part of the book (Chapters 9–13) is concerned with the measures of
speech enhancement of Fig. 1.1: error concealment, single channel noise reduction,
acoustic echo cancellation, multi-channel noise reduction and beamforming, and,
finally, artificial bandwidth extension.



2

Models of Speech
Production and Hearing

Modern digital speech communication is largely based on knowledge of speech
production, hearing, and perception. In this chapter, we will discuss some funda-
mental aspects in so far as they are of importance for optimizing speech processing
algorithms such as speech coding, speech enhancement, or feature extraction for
automatic speech recognition.

In particular, we will study the mechanism of speech production and the typical
characteristics of speech signals. The digital speech production model will be de-
rived from acoustical and physical considerations. The resulting all-pole model of
the vocal tract is the key element of most of the current speech coding algorithms
and standards. The parameters of the all-pole model can also be used for speech
recognition, which, however, will not be treated here.

Furthermore, we will analyze how the human auditory system works, and we will
focus on perceptual fundamentals which can be exploited to improve the quality
and the cost effectiveness of speech processing algorithms to be discussed in later
chapters. With respect to perception, the main aspects to be considered in digi-
tal speech transmission are the masking effect and the spectral resolution of the
auditory system.

Digital Speech Transmission: Enhancement, Coding and Error Concealment

Peter Vary and Rainer Martin
c© 2006 John Wiley & Sons, Ltd
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As a detailed discussion of the acoustic theory of speech production, phonetics,
psychoacoustics, and perception is beyond the scope of this book, the reader is
referred to the literature (e.g., [Fant 1970], [Flanagan 1972], [Rabiner, Schafer
1978], [Picket 1980], [Zwicker, Fastl 1999]).

2.1 Organs of Speech Production

The production of speech sounds involves the manipulation of an airstream. The
acoustic representation of speech is a sound pressure wave originating from the
physiological speech production system. A simplified schematic of the human
speech organs is given in Fig. 2.1.

The main components and their functions are:

• lungs: the energy generator,

• trachea: for energy transport,

• larynx with vocal cords: the signal generator, and

• vocal tract: the acoustic filter.
(pharynx, oral and nasal cavities)

Figure 2.1: Organs of speech production
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0 T0 2T0 3T0

Figure 2.2: Glottis airflow during voiced sounds

By contraction, the lungs produce an airflow which is modulated by the larynx ,
processed by the vocal tract , and radiated via the lips and the nostrils. The larynx
provides several biological and sound production functions. In the context of speech
production, its purpose is to control the stream of air that enters the vocal tract
via the vocal cords.

Speech sounds are produced by means of various mechanisms. Voiced sounds are
produced if the airflow is interrupted periodically by the movements (vibration)
of the vocal cords (see Fig. 2.2). This self-sustained oscillation, i.e., the repeated
opening and closing of the vocal cords, can be explained by the so-called Bernoulli
effect as in fluid dynamics: as airflow velocity increases, local pressure decreases.
At the beginning of each cycle the area between the vocal cords, which is called the
glottis, is almost closed by means of appropriate tension of the vocal cords. Then an
increased air pressure builds up below the glottis, forcing the vocal cords to open.
As the vocal cords diverge, the velocity of the air through the glottis increases
suddenly, which causes a drop of the local pressure. Thus, the vocal cords are
closed again and the next cycle can start if the airflow from the lungs and the
tension of the vocal cords are sustained. Due to the abrupt periodic interruptions
of the airflow, as schematically illustrated in Fig. 2.2, the resulting excitation
(pressure wave) of the vocal tract has a fundamental frequency of f0 = 1/T0 and
has a large number of harmonics. These are spectrally shaped according to the
frequency response of the acoustic vocal tract. The length T0 of the cycle is called
pitch period .

Unvoiced sounds are generated by a constriction at the open glottis or along the
vocal tract causing a non-periodic turbulent air flow.

Plosive sounds are caused by building up the air pressure behind a complete con-
striction somewhere in the vocal tract, followed by a sudden opening. The released
flow may create a voiced or an unvoiced sound or even a mixture of both, depending
on the actual constellation of the articulators.

The vocal tract can be subdivided into three sections: the pharynx, the oral cav-
ity, and the nasal cavity. As the entrance to the nasal cavity can be closed by
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the velum, a distinction is often made in the literature between the nasal tract
(from velum to nostrils) and the vocal tract (from trachea to lips, including the
pharynx cavity).

In what follows we will define the vocal tract as a variable acoustic resonator in-
cluding the nasal cavity with the velum either open or closed, depending on the
specific sound to be produced. From the engineering point of view, the resonance
frequencies are varied by changing the size and the shape of the vocal tract us-
ing different constellations and movements of the articulators, i.e., tongue, teeth,
lips, velum, lower jaw, etc. A human can produce quite different sounds based on
different vocal tract constellations and different excitations.

2.2 Characteristics of Speech Signals

Most languages can be described as a set of elementary linguistic units which are
called phonemes. A phoneme is defined as the smallest unit which differentiates
between two words in one language. The acoustic representation associated with
a phoneme is called a phone. American English, for instance, consists of about 42
phonemes, which are subdivided into four classes:

Vowels are voiced and belong to the speech sounds with the largest energy. They
exhibit a quasi-periodic time structure caused by oscillation of the vocal cords.
The duration varies from 40 to 400 ms. Vowels can be distinguished by the time-
varying resonance characteristics of the vocal tract. The resonance frequencies are
also called formant frequencies. Examples: /a/ as in “father”, /i/ as in “eve”.

Diphthongs involve a gliding transition of the articulators from one vowel to another
vowel. Examples: /oU/ as in “boat”, /ju/ as in “you”.

Approximants are a group of voiced phonemes for which the airstream escapes
through a relatively narrow aperture in the vocal tract without friction. They
can thus be regarded as intermediate between vowels and consonants [Gimson,
Cruttenden 1994]. Examples: /w/ in “wet”, /r/ in “ran”.

Consonants are produced with stronger constriction of the vocal tract than vowels.
All kinds of excitation can be observed. Consonants are subdivided in nasals , stops ,
fricatives, aspirates, and affricatives. Examples of these five subclasses: /m/ as in
“more”, /t/ as in “tea”, /f/ as in “free”, /h/ as in “hold”, and /t

∫
/ as in “chase”.

Each of these classes may be further divided into subclasses which are related to the
interaction of the articulators within the vocal tract. The phonemes can further
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be classified as either continuant (excitation of a more or less non-time-varying
vocal tract) or non-continuant (rapid vocal tract changes). The class of continuant
sounds consists of vowels and fricatives (voiced and unvoiced). The non-continuant
sounds are represented by diphthongs, semivowels, stops, and affricates.

For the purpose of speech signal processing, the articulatory and phonetic aspects
are not as important as the typical characteristics of the signal waveforms, namely,
the categories

• voiced,

• unvoiced,

• mixed voiced/unvoiced,

• plosive, and

• silence.

Voiced sounds are characterized by their fundamental frequency, i.e., the frequency
of vibration of the vocal cords, and by the specific pattern of amplitudes of the
spectral harmonics.

In the speech signal processing literature the fundamental frequency is usually
called pitch and the respective period is called pitch period . It should be noted
that in the field of psychoacoustics the term pitch is used differently, i.e., for the
perceived fundamental frequency of a sound, whether or not that frequency is
actually present in the waveform (e.g., [Deller Jr. et al. 2000]). The pitch of male
voices usually ranges from 50 to 250 Hz, while for female voices it is in the interval
120–500 Hz.

Unvoiced sounds are determined mainly by their characteristic spectral envelopes.
Voiced and unvoiced excitation do not exclude each other. They may occur simul-
taneously, e.g., in fricative sounds.

The distinctive feature of plosive sounds is the dynamically transient change of the
vocal tract. Immediately before the transition, no sound is radiated from the lips
for a short period because of a total constriction in the vocal tract. There might be
a small amount of low-frequency components radiated through the throat. Then
the sudden change with release of the constriction produces a plosive burst.

Some typical speech waveforms are shown in Fig. 2.3.
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plosive

("burst")

voicedstop

Figure 2.3: Characteristic waveforms of speech signals (each line = 100 ms)
[Vary et al. 1998]
a) Voiced (vowel with transition to voiced consonant)
b) Unvoiced (fricative)
c) Transition stop–plosive–vowel

2.3 Model of Speech Production

The purpose of developing a model of speech production is not to obtain an accu-
rate description of the real anatomy and physiology of the human speech system.
We would rather like to achieve a simplifying mathematical representation for
reproducing the essential characteristics of speech signals.

In analogy to the human speech production system as discussed in Section 2.1, it
seems reasonable to design a parametric two-stage model consisting of an excitation
source and a vocal tract filter , see also [Rabiner, Schafer 1978], [Parsons 1986],
[Quatieri 2001], [Deller Jr. et al. 2000]. The final digital source–filter model as
illustrated in Fig. 2.4 will be derived below.
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Figure 2.4: Digital source–filter model

The model consists of two components:

• the excitation source featuring mainly the influence of the lungs and the
vocal cords (voiced, unvoiced, mixed) and

• the time-varying digital vocal tract filter approximating the behavior of the
vocal tract (spectral envelope and dynamic transitions).

In the first and simple model, the excitation generator only has to deliver either
white noise or a periodic sequence of pitch-pulses for synthesizing unvoiced and
voiced sounds respectively, whereas the vocal tract is modeled as a time-varying
digital filter.

2.3.1 Acoustic Tube Model of the Vocal Tract

The digital source–filter model of Fig. 2.4, especially the vocal tract filter, will
be derived from the physics of sound propagation inside an acoustic tube in this
section. To estimate the complexity in terms of the necessary filter degree, we
start with the extremely simplifying physical model of Fig. 2.5. The pharynx and

Figure 2.5: Simplified physical model of the vocal tract
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oral cavities are represented by a lossless tube with constant cross-section and the
nasal cavity by a second tube which can be closed by the velum. The length of
L = 17 cm corresponds to the average length of the vocal tract of a male adult.
The tube is (almost) closed at the glottis side and open at the lips.

In the case of a non-nasal sound the velum is closed. Then the wavelength λi of
each resonance frequency fulfills the standing wave condition

(2i − 1) · λi

4
= L ; i = 1, 2, 3, . . . . (2.1)

For L = 17 cm we compute the resonance frequencies

fi =
c

λi
= (2i − 1)

c

4L
∈ {500, 1500, 2500, 3500, . . .}Hz (2.2)

where the sound velocity is given by c = 340 m/s.

Taking (2.2) into account, as well as the fact that conventional telephone speech
has a frequency limitation of about 4000 Hz, we would have to consider only four
resonance frequencies within the frequency band of telephone speech. Thus, the
overall filter degree for synthesizing telephone speech is roughly only n = 8 as each
resonance frequency corresponds to a pole-pair or second-order filter section. As a
rule of thumb we can state the need for “one resonance per kHz”.

In a second step, we improve our acoustic tube model as shown in Fig. 2.6. For
simplicity, the nasal cavity is not considered (velum is closed). The cylindrical tube

( )

∆  =

Figure 2.6: a) Tube model with continuous area function A(x)
b) Stepwise approximation of A(x)
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Figure 2.7: Representation of the vocal tract by a concatenation of uniform
lossless acoustic tube segments each of length ∆x = L/n

of Fig. 2.5 is replaced by a tube with continuous area function A(x). This area
function can be approximated by a piecewise constant contour which corresponds
to a concatenation of n short cylindrical tubes each of length ∆x = L/n but of
(possibly) different constant area Ai, i = 1, 2, . . . , n, as shown in Fig. 2.7.

The generation of sound is related to the vibration and perturbation of air particles.
When describing sound propagation through the concatenated tube segments, we
have to deal with the particle velocity u(x, t) (unit m/s) and the pressure, strictly
speaking the pressure fluctuations p(x, t) (unit N/m2) about the ambient or av-
erage (atmospheric) pressure. There is a vast amount of literature on relations
between the velocity and the pressure (e.g., [Fant 1970]) inside a tube segment,
taking different degrees of simplifying assumptions into account.

It is not within the scope of this book to discuss this theory as such, as we are
interested primarily in developing the discrete-time filter structure which is widely
used for digital speech synthesis and speech coding. It will be outlined here that
this filter can be derived under simplifying assumptions from the acoustic vocal
tract model of Fig. 2.7.

If we make the usual assumptions of lossless tube segments, fixed area A in
both time and space, no friction, and plane wave propagation, the sound veloc-
ity and the pressure are related by the following partial differential equations,
e.g., [O’Shaughnessy 2000]:

−∂p

∂x
= ρ · ∂u

∂t
(2.3-a)

−∂u

∂x
=

1

ρc2
· ∂p

∂t
. (2.3-b)

These plane wave equations are based on elementary physical laws relating the
mass, energy, and velocity of an infinitesimal small volume of air particles.
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The equations (2.3-a) and (2.3-b) are the starting point for the derivation of the
discrete-time vocal tract filter.

First, we introduce the volume velocity v as the product of the particle velocity u
and the cross-sectional area A

v = u · A (2.4)

and modify (2.3-a) and (2.3-b) as follows:

−∂p

∂x
=

ρ

A
· ∂v

∂t
(2.5-a)

−∂v

∂x
=

A

ρc2
· ∂p

∂t
. (2.5-b)

Next, the combination of both equations (2.5-a) and (2.5-b) leads to differential
equations of second order for the pressure p and the volume velocity v

∂2p

∂x2
=

1

c2
· ∂2p

∂t2
(2.6-a)

∂2v

∂x2
=

1

c2
· ∂2v

∂t2
. (2.6-b)

Pressure p and volume velocity v are dependent on time t and space x. The dif-
ferential equations (2.6-a) and (2.6-b) can be solved by combining a forward and
backward traveling wave f and b, respectively, both moving at velocity c. The
general solution for the volume velocity v and the pressure p is then given by

v(x, t) = f
(
t − x

c

)
− b

(
t +

x

c

)
(2.7-a)

p(x, t) =
[
f
(
t − x

c

)
+ b

(
t +

x

c

)]
· Z with Z =

ρ · c
A

, (2.7-b)

where the quantity Z represents an acoustic impedance.

This solution can be applied to each of the tube segments which can be identified by
the index i, where boundary conditions exist at the transitions between adjacent
segments. In each of these segments we use a local space coordinate x, ranging
from 0 to ∆x as shown in Fig. 2.8, and consider the junction of segment i with
segment i− 1. Pressure and volume velocity must be continuous both in time and
in space. At the junction, the following constraints have to be fulfilled:

vi(x = ∆x, t) = vi−1(x = 0, t) (2.8-a)

pi(x = ∆x, t) = pi−1(x = 0, t) . (2.8-b)

Using the general solution (2.7-a) and (2.7-b) with the boundary conditions (2.8-a),
(2.8-b) and introducing the notation τ = ∆x/c for the propagation time through
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Figure 2.8: Wave equations and junctions of tube segments

the tube segment, we get the boundary conditions in terms of the forward and
backward traveling waves

fi(t − τ) − bi(t + τ) = fi−1(t) − bi−1(t) (2.9-a)

Zi ·
[
fi(t − τ) + bi(t + τ)

]
= Zi−1 ·

[
fi−1(t) + bi−1(t)

]
. (2.9-b)

Note that we have eliminated the space coordinate as we are now considering the
forward and backward traveling waves at the junction only. With respect to seg-
ment i, we are interested in the input–output dependencies, i.e., the two functional
relations

fi−1 = F1(fi, bi−1) (2.10-a)

bi = F2(fi, bi−1) . (2.10-b)

After some elementary algebraic operations we obtain

fi−1(t) = (1 + ri) · fi(t − τ) + ri · bi−1(t) (2.11-a)

bi(t) = − ri · fi(t − 2τ) + (1 − ri) · bi−1(t − τ) , (2.11-b)

where

ri =
Zi − Zi−1

Zi + Zi−1
=

Ai−1 − Ai

Ai−1 + Ai
, (2.12)

which is called the reflection coefficient.1 From Ai > 0 it readily follows that
− 1 ≤ ri ≤ + 1.

1Note, in the literature the reflection coefficient is partly defined with the opposite sign.
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Figure 2.9: Illustration of the solution (2.11-a) and (2.11-b)

The solutions (2.11-a), (2.11-b) are called the Kelly–Lochbaum equations [Kelly,
Lochbaum 1962]. Kelly and Lochbaum used this structure, which is illustrated in
Fig. 2.9, for computer generation of synthetic speech in 1962.

The forward traveling wave fi−1(t), leaving segment i on the right and entering
segment i − 1, consists of two components:

• a portion of the backward traveling wave bi−1(t) which is partly reflected at
the junction with weight +ri and

• a portion of the forward traveling wave fi(t) which is delayed by τ due to
the segment length ∆x and partly propagated into segment i−1 with weight
1 + ri.

The backward traveling wave bi(t), leaving segment i on the left and entering
segment i + 1, consists also of two components:

• a portion of the backward traveling wave bi−1(t) which is partly propagated
at the junction with weight 1 − ri and delayed by τ and

• a portion of the forward traveling wave fi(t) which is partly reflected at the
junction i/(i − 1) with weight −ri and delayed by 2τ due to traveling back
and forth through segment i.

Note that the reflection coefficient ri can take positive and negative values de-
pending on the relative sizes of the areas Ai and Ai−1.

We illustrate the complete solution in Fig. 2.10. Special considerations are needed
at the terminating glottis and at the lips. We can model the free space beyond the
lips as an additional tube with index 0, with an infinite area A0, and with infinite
length. Thus, the first reflection coefficient becomes

r1 =
A0 − A1

A0 + A1
= + 1 . (2.13)
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Figure 2.10: Solution of the wave equations for the complete
concatenated set of tube segments
a) Acoustical tube model
b) Blockdiagram

A backward traveling wave does not exist, i.e., b0(t) = 0. Taking into considera-
tion the solution of Eq. (2.7-a), we get for the segment i = 0 (free space beyond
the lips, segment with infinite length, no backward traveling wave b0(t), infinite
area A0 = ∞) at the local space coordinate x = 0

vL(t)
.
= v0(0, t) = f0(t) . (2.14)

At the glottis, the left side of segment i = n is almost closed. The backward travel-
ing wave bn(t) is partly reflected according to the effective reflection coefficient rG.
The active excitation vG(t) might be modeled by a vibrating wall or piston, driven
solely by the airflow from the lungs, i.e., bn+1 = 0. Following once more the for-



18 2 Models of Speech Production and Hearing

Figure 2.11: Concatenation of electrical line segments as analogy
to the concatenation of acoustic tube segments

mal solution of Eq. (2.7-a), the volume velocity of the virtual segment n + 1 is
dependent on the forward traveling wave only, i.e., strictly speaking,

vG(t)
.
= fn+1(t − τ) = vn+1(∆x, t) . (2.15)

In (2.15) the delay parameter τ is irrelevant; it is introduced just for formal reasons
to model a virtual segment n + 1 of length ∆x.

The volume velocity vG is weighted by the factor (1 + rG)/2. The division of
(1+ rG) by 2 may be considered as a matter of normalization as the concatenated
tube is a passive device. This normalization by 0.5 can be derived by considering
the acoustic impedances of the excitation generator and the acoustic load of the
concatenated tube.

There is an analogy between the concatenation of acoustic tube segments and the
serial connection of homogeneous electrical line segments (e.g., [Rabiner, Schafer
1978]). Basically, the mathematical description by the differential equations (2.6-a),
(2.6-b), (2.7-a), and (2.7-b) is the same, where the pressure pi(t) corresponds to
the voltage and the volume velocity vi(t) has the meaning of a current.

A detailed discussion of this analogy is beyond the scope of this book. Neverthe-
less, the block diagram of Fig. 2.11 can be used to outline the derivation of the
normalization by 0.5.

The excitation source is a current source with “current” vG(t) and impedance ZG.
Thus the “input current” vn(0, t) to the “line segment i = n” is given by

vn(0, t) = vG(t) − pn(0, t)

ZG
. (2.16)

Using this relation as the boundary constraint and the solution (2.7-a) and (2.7-b)
for segment n at the space variable x = 0, i.e.,

vn(0, t) = fn(t) − bn(t) (2.17-a)

pn(0, t) =
[
fn(t) + bn(t)

]
· Zn with Z =

ρ · c
A

, (2.17-b)
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we derive from (2.16) and (2.17-a) with a few algebraic steps the equation

fn(t) = vG(t) · ZG

Zn + ZG
+ bn(t) · ZG − Zn

Zn + ZG
(2.18-a)

= vG(t) · 1 + rG

2
+ bn(t) · rG (2.18-b)

with

rG =
ZG − Zn

Zn + ZG
. (2.18-c)

This analogy between the acoustical system and the electrical transmission line can
also be used for further refinements of the model, in particular in modeling the
glottal excitation and the load effects from lip radiation. For more detailed studies
of this analogy the reader is referred to the literature (e.g., [Rabiner, Schafer 1978]).

2.3.2 Digital All-Pole Model of the Vocal Tract

So far we have derived a solution for the wave equations of the propagation of
sound in the concatenated lossless tube segments. We obtained a functional relation
between the volume velocity vL(t) at the lips and the volume velocity vG(t) at the
glottis as described by the block diagram of Fig. 2.10. From this representation an
equivalent discrete-time or digital filter model can easily be derived.

The structure in Fig. 2.10 may be interpreted as an analog network consisting of
delay elements, multipliers, and adders, which in the case of constant coefficients
rG, rL, and ri, i = 1, 2, . . . , n, can be interpreted as a linear time-invariant system
(LTI system). Any LTI system may be characterized by its impulse response or its
corresponding frequency response. Obviously, the impulse response of the system
in Fig. 2.10 is discrete in time, as the internal signals fi(t) and bi(t), i = 1, 2, . . . , n,
are delayed by multiples of the basic one-way delay τ caused by each of the tube
segments.

If we apply a Dirac impulse δ(t) as stimulus signal to the system input, i.e.,
vG(t) = δ(t), we observe a response vL(t) at the output which is the impulse re-
sponse h0(t). Although time t is still a continuous variable, it is obvious that the
output takes non-zero values at multiples of the basic delay time τ only. The first
non-zero value occurs at time t = n · τ after the propagation time through the n
tube segments. Due to the feedback structure, the output signal is a sequence of
weighted Dirac impulses with a minimum distance between the pulses of 2τ . More
specifically, the system response can be written as

vL(t) = h0(t) =
∞∑

κ=0

δ(t − nτ − 2κτ) · h(κ) , (2.19)
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Figure 2.12: Discrete-time models of the vocal tract (example n = 3)
a) Structure derived from the wave equations; z−1/2 ≡ delay by τ
b) Modified structure with delay elements T = 2τ ≡ z−1

where the values h(κ) denote the weights and the first weight is given by

h(0) =
1 + rG

2
·

n∏

i=1

(1 + ri) . (2.20)

Thus, the impulse response of the tube model is already discrete in time, and the
signal-flow graph of the equivalent digital filter may be considered as a one-to-one
translation as shown in Fig. 2.12-a. Note that in Fig. 2.12 we have introduced
the z-transforms VG(z) and VL(z) of the sequences vG(κ · T ) and vL(κ · T ), with
T = 2·τ respectively. Therefore, a delay by τ is denoted in Fig. 2.12-a by z−1/2. The
time discretization τ of the block diagram is intimately connected with the spatial
discretization ∆x of the tube model. However, the effective time discretization
(sampling interval) of the output signal vL is T = 2τ . Thus, the digital filter
would have to be operated at twice the sampling rate, i.e.,

1

τ
=

2

T
= 2 · fs . (2.21)

By systematically shifting the delay elements z−1/2 across the nodes, the equiva-
lent signal-flow graph of Fig. 2.12-b can be derived. This structure contains only
internal delays of T = 2τ corresponding to z−1 and one external delay at the
output of n/2 · τ = 3/2 · τ corresponding to z−3/2. If the number n of segments
is not even, the delay by n/2 · τ would imply an interpolation by half a sampling
interval. In any case the output delay will not have any influence on the quality of
the synthesized speech. Therefore, the delay by n/2 · τ can be omitted in practical
implementations and the digital filter can operate at the sampling rate fs.
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Figure 2.13: Equivalent filter sections
a) Ladder structure
b) Lattice structure

The structure of Fig. 2.12-b without the output delay according to z−n/2 is used
for speech synthesis and model-based speech coding. This special structure is called
the ladder structure.

It is known from network theory that there are digital filter structures having
the same transfer function but different signal-flow graphs. They may differ, for
instance, with respect to the number of arithmetic operations needed to calculate
one output sample or with respect to numerical problems in the case of finite
precision arithmetic (fixed point arithmetic).

Two equivalent structures are shown in Fig. 2.13. The first structure is the ladder
structure we have derived above. The equivalence can readily be checked by the
analysis of the block diagram of the so-called lattice structure of Fig. 2.13-b:

Fi−1(z)=(1 + ri) · Fi(z) + ri · Bi−1(z) (2.22-a)

Bi(z)=
1

1 + ri
·
[
−(1 + ri) · ri · Fi(z) + (1 − r2

i ) · Bi−1(z)
]
· z−1 (2.22-b)

=[−ri · Fi(z) + (1 − ri) · Bi−1(z)] · z−1 . (2.22-c)
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Figure 2.14: Vocal tract model as a cascade of lattice filter sections
a) Lattice sections with four multipliers
b) Lattice section i with shifted scaling multipliers
c) Lattice sections with two multipliers and gain scaling by gr at the output

The lattice structure also requires four multiplications and four additions per sec-
tion. However, the pre- and post-scaling factors 1+ri and 1/(1+ri) can be shifted
and merged along the cascade of filter sections (cf. Fig. 2.14-a,b) in such a way
that they can be combined to a single scaling or gain factor

gr =

n∏

i=1

(1 + ri) (2.23)

at the filter output cascade as shown in Fig. 2.14-c.

Now we need only two multiplications and additions per section and one scaling
multiplication by gr, i.e., a total number of 2n + 1 operations per output sample
vL(κ · T ), where we use a basic multiply-and-add operation (MAC operation) as
available in many signal processors.
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In comparison to the ladder structure, we have reduced the computational com-
plexity by a factor of almost 2. The ladder and the lattice structure are stable as
long as the reflection coefficients are limited to the range

−1 < ri < + 1 . (2.24)

This stability can be guaranteed due to the underlying physical tube model of the
vocal tract.

The input and output signals of the 2-multiplier-lattice elements of Fig. 2.14-c are
different from those of the original lattice structure of Fig. 2.14-a by the corre-
sponding scaling factors. Therefore, the z-transforms of the intermediate signals
of the lattice sections are denoted by F̃i(z) and B̃i(z).

The lattice structure of Fig. 2.14 can be translated into the direct-form struc-
ture. The equivalent direct-form coefficients can be derived from a vector product
representation of the input–output relation of the 2-multiplier-lattice elements of
Fig. 2.14-b,c. For reasons of simplicity we use the notation F̃i instead of F̃i(z), etc.

F̃i−1 = F̃i + ri · B̃i−1 (2.25-a)

B̃i = −ri · F̃i−1 · z−1 + B̃i−1 · z−1 . (2.25-b)

From (2.25-a) and (2.25-b) we derive the following representation
(

F̃i

B̃i

)
=

(
+1 −ri

−ri · z−1 +z−1

)
·
(

F̃i−1

B̃i−1

)
. (2.26)

Furthermore, we have constraints at the lips

VL = F̃0 · gr (2.27-a)

B̃0 = 0 (2.27-b)

(
F̃1

B̃1

)
=

(
+1 −r1

−r1 · z−1 +z−1

)
·
(

F̃0

0

)
(2.27-c)

=

(
+1 −r1

−r1 · z−1 +z−1

)
·
(

1
0

)
· VL

g
(2.27-d)

and at the glottis

F̃n = VG · 1 + rG

2
+ rG · B̃n , (2.28-a)

i.e.,

VG =
2

1 + rG
· [F̃n − rG · B̃n] (2.28-b)

=
2

1 + rG
·
(

1 −rG

)
·
(

F̃n

B̃n

)
, (2.28-c)



24 2 Models of Speech Production and Hearing

where
(

1 −rG

)
denotes a row vector with two elements. From (2.26), (2.27-d),

and (2.28-c) we finally derive the following expression

VG(z) =
2

1 + rG
·
(

1 −rG

) n∏

i=1

(
+1 −ri

−ri · z−1 +z−1

)(
1
0

)
· VL(z)

gr

=
2

1 + rG
· 1

gr
· D(z) · VL(z) (2.29)

where D(z) can be evaluated as

D(z) = 1 −
n∑

i=1

ci · z−i = 1 − C(z) . (2.30)

By inversion of (2.29) we find with (2.23) the frequency response H(z) and its
dependency on z

H(z) =
VL(z)

VG(z)
=

1 + rG

2
· gr

D(z)
(2.31-a)

=
1 + rG

2
· gr

1 − C(z)
(2.31-b)

=
1 + rG

2
·

n∏
i=1

(1 + ri)

1 −
n∑

i=1
ci · z−i

. (2.31-c)

The direct-form vocal tract transfer function H(z) has n poles and no non-trivial
zeros (z = 0). This type of filter is called an all-pole filter . The corresponding
direct-form implementation is illustrated in Fig. 2.15.

( )

+

(z) ( ) = ( )

( )

Figure 2.15: All-pole vocal tract model
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Figure 2.16: Glottis model for voiced excitation

For producing unvoiced sounds, a noise-like excitation signal vG(k) is required. A
sequence of pitch pulses according to Fig. 2.2 is needed for producing purely voiced
sounds.

The periodic voiced excitation signal vG(k) can be generated as illustrated in
Fig. 2.16 where

δ(k) =

{
1 k = 0
0 k �= 0

(2.32)

denotes the unit impulse. The output signal is given by

vG(k) =
∑

λ

p(k − λ · N0) (2.33)

with the glottis impulse response p(k) and the pitch period N0. The impulse re-
sponse p(k) determines the shape of a single pitch cycle. In practical implemen-
tations of speech codecs, usually the glottis impulse response is merged with the
impulse response of the vocal tract filter. Furthermore, it should be noted that the
model of Fig. 2.15 is to a certain degree too simple as, e.g., some speech sounds
require a mixed voiced/unvoiced excitation. This is taken into consideration in the
different speech coding algorithms by replacing the source switch in Fig. 2.15 by
a weighted superposition of the noisy and periodic excitation.

2.4 Anatomy of Hearing

The peripheral hearing organ is divided into three sections (e.g., [Hudde 2005]):

• outer ear,

• middle ear, and

• inner ear,

as illustrated in Fig. 2.17.

The outer ear consists of the pinna, the outer ear canal, and the ear drum. The
pinna protects the opening and contributes to the directivity of hearing in combi-
nation with the head and the shoulders. The outer ear canal is a nearly uniform
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Figure 2.17: Schematic drawing of the ear ([Zwicker, Fastl 1999])

tube, closed at the inner end, with a length up to 3 cm and a diameter of about
0.7 cm. This tube transmits the sound to the ear drum. Within the frequency range
of speech it has a single resonance frequency between 3 kHz and 4 kHz. This is the
reason for the increased sensitivity of the ear in this frequency range. The ear drum
is a stiff, conical membrane, which vibrates because of the forces of the oscillating
air particles.

The middle ear is an air-filled cavity which is connected to the outer ear by the ear
drum and to the inner ear by the round window and the oval window. It contains
three tiny bones, the ossicles, which provide the acoustic coupling between the ear
drum and the oval window. A mechanical impedance transformation by a factor
of about 15 from the airborne sound to the fluids of the inner ear is performed
according to the area ratio of ear drum and the oval window. Consequently, oscil-
lations of the air particles by small forces and large displacements are transformed
into large forces and small displacements.

Additionally, the middle ear is connected to the upper throat via the Eustachian
tube, which is opened briefly during swallowing, to equalize the air pressure in the
middle ear to that of the environment. This is necessary to adjust the resting point
of the ear drum and the working point of the middle ear ossicles.
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Figure 2.18: Frequency-to-place transformation along the basilar membrane (adapted
from [Zwicker, Fastl 1999]); O.W.=Oval Window; R.W.=Round Window
a) Top-down view into the unwound cochlea
b) Side view
c) Tripple-tone audio signal (sound pressure, 500Hz, 2000Hz, 8000 Hz)
d) Displacement D(l) by excitation (traveling waves and envelopes)

The inner ear consists of the organs for the sense of equilibrium and the sense
of orientation with the semicircular canals (which are not involved in the hearing
process) and the cochlea with the round and the oval window. The cochlea con-
tains the basilar membrane with the organ of Corti , which converts mechanical
vibrations into impulses in the auditory nerve. The cochlea is formed like a snail-
shell and consists of 2.5 turns. Figure 2.18 illustrates the schematic view of the
“untwisted” cochlea, which has a length of about 32 mm. The movements of the
air particles are transmitted by the ossicles through the oval window (O.W.) to
the incompressible fluids which drive the basilar membrane (B.M.). The uncoiled
cochlea is separated by the basilar membrane into an upper and a lower chamber
(scala vestibuli and scala tympani , Fig. 2.18-a) which are connected at the far end
by an opening which is called the helicotrema.

The organ of Corti, which sits above the basilar membrane, senses vibrations
with about 3600 inner hair cells and about 26000 outer hair cells and passes the
information on to the auditory nerve and to the brain via neural synapses.
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Through the helicotrema and the round window (R.W.), pressure compensation
of the traveling fluidic waves is performed.

The basilar membrane is about 0.05 mm wide at the oval window and about 0.5 mm
wide at the helicotrema (see Fig. 2.18-b). The basilar membrane performs a trans-
formation of sound frequency to place by means of a traveling wave mechanism.
High frequencies stimulate the membrane and thus the hair cells of the organ of
Corti near the oval window, while the resonances for low frequencies are near to
the helicotrema. This transformation corresponds to a spectral analysis using a
(non-uniform) filter bank.

A schematic drawing of the frequency-to-place transformation is shown in
Fig. 2.18-c,d for an audio signal (sound pressure p(t)), consisting of three sinusoidal
tones of 500, 2000, and 8000 Hz. The three signal components cause vibrations in
separate regions of the basilar membrane in such a way that the envelope of the dy-
namical displacement D(l) reaches local maxima at certain locations. The envelope
of the displacements is quite steep towards the helicotrema, while in the direction
of the oval window a flat descent can be observed. This behavior determines the
characteristics of the masking effect to be discussed in Section 2.5.3.

2.5 Psychoacoustic Properties of the Auditory
Organ

2.5.1 Hearing and Loudness

Speech is carried by small temporal variations of the sound pressure p(t). The
physical unit of p(t) is the pascal (Pa), where the relevant range for hearing covers
more than seven decades from the threshold of hearing at 10−5 Pa to the thresh-
old of pain at 102 Pa. The normalized sound pressure p/p0 or equivalently the
normalized sound intensity I/I0 are measured on a logarithmic scale

L = 20 · log10

(
p

p0

)
= 10 · log10

(
I

I0

)
. (2.34)

The level L is given in decibels (dB), with the reference sound pressure p0 = 20 µPa
and the reference sound intensity I0 = 10−12 W/m2.

The audible ranges of frequency and sound pressure level can be visualized in the
so-called hearing area as shown in Fig. 2.19. The abscissa represents the frequency
f on a logarithmic scale, the ordinate the sound pressure level L.

The threshold in quiet is dependent on frequency. The highest sensitivity between
3 and 4 kHz is due to the resonance frequency of the outer ear canal as mentioned
above.
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Figure 2.19: The hearing area ([Zwicker, Fastl 1999])

The dotted line indicates the limit of damage risk for an “average person”, which
also strongly depends on frequency and takes the smallest values in the range
between 1 and 5 kHz. The areas of speech and music sounds are indicated by
different hatched patterns.

In general, the perceived loudness level LL is a function of both frequency f and
sound pressure level L as shown in Fig. 2.20.

Contours of constant subjective loudness can be found by auditive comparison of
a sinusoidal test tone at different frequencies and amplitudes with a sinusoidal
reference at 1 kHz. At the reference frequency, the loudness level is identical to
the sound pressure level. The loudness level LL of a test tone is the same as the
loudness level of a reference 1 kHz tone with sound pressure level L = LL. The
loudness level LL is given in the pseudo-unit phon.

In psychoacoustics the perceived loudness, which is defined in the unit sone, is
often evaluated by auditive tests. The relation between loudness N in sones and
loudness level LL in phons can be approximated by

N ≈ 2(LL − 40)/10 . (2.35)

A perceived loudness of N = 1 sone corresponds to a loudness level of
LL = 40 phon.
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Figure 2.20: Contours of equal loudness level LL for sinusoidal tones
([Zwicker, Fastl 1999])

2.5.2 Spectral Resolution

The spectral resolution of the ear is related to the frequency-to-place transforma-
tion on the basilar membrane. The frequency resolution can be analyzed by specific
auditive tests.

The just noticeable variations in frequency can be measured as follows. Sinusoidal
frequency modulation with a modulation frequency of about 4 Hz and different val-
ues of the modulation index and thus different frequency deviations ∆f is applied
to a “carrier sine wave” of frequency f0. The test persons are asked to detect the
difference between the unmodulated carrier signal with frequency f0 and the mod-
ulated tone. As the frequency-modulated signal has two main spectral components
at f0 ± ∆f , the effective variation in frequency is 2 · ∆f .

At frequencies f0 < 500 Hz, a constant, just noticeable difference of 2 ·∆f = 3.6 Hz
can be measured. Above 500 Hz this value increases proportionally according to

2 · ∆f ≈ 0.007 · f0 . (2.36)

We can distinguish very small changes in frequency of about 0.7% in this range. In
the frequency range up to 16 kHz, about 640 frequency steps can be distinguished.

Another important aspect is the effective spectral resolution, which is responsible
for a certain loudness perception. By using test signals either consisting of several
sinusoidal tones closely spaced in frequency or consisting of bandpass noise with
adjustable bandwidth, it can be shown that the ear integrates the excitation over
a certain frequency interval. By means of listening experiments, 24 intervals can
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be identified in the audible frequency range up to 16 kHz which are called the
critical bands, e.g., [Zwicker, Fastl 1999]. In technical terms they can be described
as a filter bank with non-uniform spectral resolution. There is a strong correlation
between the critical bands and the excitation patterns of the basilar membrane.
If the basilar membrane of length d = 32 mm is divided into 24 uniform intervals
of length dB = d/24 = 4/3 mm, each segment is equivalent to a critical band.
The critical bands do not correspond to 24 discrete filters, but they quantify the
effective frequency-dependent frequency resolution of loudness perception. The
uniform subdivision of the basilar membrane is widely known as the Bark scale in
honor of the famous physicist H. G. Barkhausen. Table 2.1 lists the Bark number
b (critical-band rate), the center frequency fc, and the bandwidth ∆fb of each
critical band. Within the frequency band 100Hz ≤ f ≤ 3400Hz of voice telephony,
there are 16 critical bands.

The Bark scale in Table 2.1 is approximately related to linear frequency f according
to the following analytical expressions:

b

Bark
= 13 arctan

(
0.76

f

kHz

)
+ arctan

(
f

7.5 kHz

)
(2.37)

and

∆fc

Bark
= 25 + 75 ·

[
1 + 1.4

(
f

kHz

)2
]0.69

. (2.38)

The critical-band feature and the masking effect resulting from it can be exploited
to improve the performance and to reduce the complexity of speech signal process-
ing algorithms such as speech recognition, speech coding, or speech enhancement.

Table 2.1: Critical bands (adapted from [Zwicker, Fastl 1999])
(b = critical-band rate; fc = center frequency; ∆fc = bandwidth)

b/Bark fc/Hz ∆fc b/Bark fc/Hz ∆fc

0.5 50 100 12.5 1850 280
1.5 150 100 13.5 2150 320
2.5 250 100 14.5 2500 380
3.5 350 100 15.5 2900 450
4.5 450 110 16.5 3400 550
5.5 570 120 17.5 4000 700
6.5 700 140 18.5 4800 900
7.5 840 150 19.5 5800 1100
8.5 1000 160 20.5 7000 1300
9.5 1170 190 21.5 8500 1800
10.5 1370 210 22.5 10500 2500
11.5 1600 240 23.5 13500 3500
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2.5.3 Masking

Masking occurs in many everyday situations, where a dominant sound renders
a weaker sound inaudible. One example is music at “disco level” which might
completely mask the ringing of a mobile phone. In that situation the music signal
is called the masker and the ringing tone is called the test tone.

The masking effect can easily be demonstrated by using a narrow bandpass noise or
a sinusoidal tone with fixed frequency fM = fc as masker and a sinus with variable
frequency fT or a fixed narrowband noise as test tone. Narrowband means that in
the masking experiment the bandwidth of the noise (being either masker or test
signal) does not exceed the critical bandwidth at this frequency.

One example is given in Fig. 2.21 for a narrowband noise as masker centered at
fM = 1 kHz, having a bandwidth of ∆fM = 160 Hz and a fixed sound pressure level
LM . For any frequency fT of the test tone, the sinusoidal tone is masked by the
noise as long as its level LT is below the masking threshold. The masking curves
are not symmetric with frequency fT . They are steeper towards lower frequencies
than towards higher frequencies. This follows, as discussed in Sec. 2.4, from the
shape of the traveling wave envelope on the basilar membrane (see also Fig. 2.18).
The dips in the curves at masker levels LM of 80 dB and 100 dB are caused by
non-linear effects of the hearing system, if the masker is a sinusoidal signal.

As mentioned earlier, noise can also be masked by a sinus signal. Furthermore,
the masking threshold can be evaluated for complex test sounds such as speech

Figure 2.21: Level LT of a sinusoidal test tone of frequency fT masked by
—— a sinusoidal masker with fM = 1 kHz
....... narrowband noise with level LM and with critical bandwidth,

centered at fM = fc = 1 kHz ([Zwicker, Fastl 1999])
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Figure 2.22: Pre- and post-masking: necessary level LT for the audibility of a
sinusoidal burst (test tone) masked by wideband noise (adapted
from [Zwicker, Fastl 1999])

signals. This is widely used in speech and audio coding to mask quantization noise,
i.e., to improve at a given bit rate the subjective quality of the decoded signal.

The masking effect discussed so far is called masking in the frequency domain or
simultaneous masking as the masker and the test signal are present at the same
time.

Apart from this, non-simultaneous masking can be observed in the time domain.
The test sound is switched on before the masker occurs or after the masker is
switched off. The onset of the test tone may become inaudible or masked. This is
called pre-masking and post-masking . The effect of pre-masking is not very strong
but post-masking is quite pronounced. The latter can be explained by the fact
that the basilar membrane and the organ of Corti need some time to recover the
threshold in quiet after the masker has been switched off. The principle of masking
with wideband noise as masker and sinusoidal bursts as test tone is illustrated
in Fig. 2.22.

Pre- and post-masking are exploited in speech and audio processing, such as
frequency-domain-based coding, to hide pre- and post-echoes originating from non-
perfect reconstruction.
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3

Spectral Transformations

Spectral transformations are key to many speech processing algorithms. The pur-
pose of the spectral transformation is to represent a signal in a domain where
certain signal properties are better accessible or a specific processing task is more
efficiently accomplished. In this chapter, we will summarize the definitions and
properties of the Fourier transform (FT) for continuous and discrete time sig-
nals as well as the discrete Fourier transform (DFT), its fast realizations, and the
z-transform. No extensive derivations will be given. For more elaborate expositions
of this material the reader is referred to the many excellent textbooks on digital
signal processing. The chapter concludes with an introduction into the real and
the complex cepstrum and applications.

3.1 Fourier Transform of Continuous Signals

The Fourier transform (FT) provides an analysis of signals in terms of its spectral
components. It relates a continuous (time) domain signal xa(t) of, in general,
infinite support to its Fourier domain representation Xa(jω)

Xa(jω) =

∞∫

−∞

xa(t)e−jωtdt (3.1)

Digital Speech Transmission: Enhancement, Coding and Error Concealment

Peter Vary and Rainer Martin
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with ω = 2πf denoting the radian frequency. The inverse transformation is given
by

xa(t) =
1

2π

∞∫

−∞

Xa(jω)ejωtdω . (3.2)

The FT converges in the mean square if

∞∫

−∞

|xa(t)|2dt < ∞ . (3.3)

This condition includes all signals of finite duration. When x(t) is absolutely
summable and other conditions, known as the Dirichlet conditions, e.g., [Oppen-
heim et al. 1996], are met, the inverse FT reconstructs a signal which is identical to
the original signal except for a finite number of discontinuities. Xa(jω) is, in gen-
eral, a continuous and non-periodic function of frequency. The FT has a number
of well-known properties, which are summarized in Table 3.1.

Table 3.1: Properties of the FT

Property Time domain Frequency domain

Definition x(t) =
1

2π

∞∫

−∞

X(jω) ejωtdω X(jω) =

∞∫

−∞

x(t) e−jωtdt

Linearity a x1(t) + b x2(t) a X1(jω) + b X2(jω)

Conjugation x∗(t) X∗(−jω)

Symmetry x(t) is a real-valued signal X(jω) = X∗(−jω)

Even part xe(t) = 0.5 (x(t) + x(−t)) Re{X(jω)}

Odd part xo(t) = 0.5 (x(t) − x(−t)) j Im{X(jω)}

Convolution x1(t) ∗ x2(t) X1(jω) · X2(jω)

Time shift x(t − t0) e−jωt0X(jω)

Modulation x(t) ejωM t X(j(ω − ωM ))

Scaling x(at), a ∈ R, a �= 0
1

|a|
X

(
j
ω

a

)

Parseval’s theorem

∞∫

−∞

x(t)y∗(t)dt =
1

2π

∞∫

−∞

X(jω)Y ∗(jω)dω



3.2 Fourier Transform of Discrete Signals 37

3.2 Fourier Transform of Discrete Signals

The Fourier transform of discrete signals (FTDS)1 is derived using the represen-
tation of sampled signals as pulse trains

xs(t) =

∞∑

k=−∞

xa(kT ) δa(t − kT ) (3.4)

and the shifting property of the Dirac impulse2

∞∫

−∞

δa(t − t0) f(t) dt = f(t0) . (3.5)

For a sampling period of T =
1

fs
we obtain from the continuous time FT (3.1)

Xs(jω) =

∞∫

−∞

xs(t) e−jωt dt =
∞∑

k=−∞

xa(kT )

∞∫

−∞

δa(t − kT ) e−jωt dt

=
∞∑

k=−∞

xa(kT ) e−jωkT .

Xs(jω) is a continuous and periodic function of the radian frequency ω and hence
also of frequency f . To see this we note that the complex phasor

e−jωkT = e−j2πfkT = cos(2πfkT )− j sin(2πfkT )

is periodic in f with period f =
1

T
= fs. Therefore, we have

Xs

(
j

(
ω +

2πℓ

T

))
= Xs(jω) for any ℓ ∈ ZZ.

To facilitate the treatment of sampled signals in the Fourier domain we normalize
the frequency variable f on the sampling rate fs and introduce the normalized
radian frequency Ω = ωT = 2πfT = 2π f

fs
. We then obtain the FTDS and the

inverse transform with x(k) = xa(kT ) as

X(ejΩ) =

∞∑

k=−∞

x(k) e−jΩk and x(k) =
1

2π

π∫

−π

X(ejΩ) ejΩk dΩ . (3.6)

1The FTDS is also known as the discrete time Fourier transform (DTFT), e.g. [Oppenheim
et al. 1996]. We prefer the more general terminology.

2We will denote the continuous time Dirac impulse by δa(t) and use δ(k) for the discrete unit
impulse (3.8).
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Note that the inverse transform is evaluated over one period of the spectrum only.
X(ejΩ) is a complex quantity and may be written in terms of its real and imaginary
parts

X(ejΩ) = Re{X(ejΩ)} + j Im{X(ejΩ)} = XR(ejΩ) + jXI(e
jΩ)

or in terms of its magnitude and phase

X(ejΩ) = |X(ejΩ)| ejφ(Ω) .

|X(ejΩ)| is called the amplitude spectrum and φ(Ω) is called the phase spectrum.
The principal value of the phase is denoted by arg{X(ejΩ)} ∈ {−π, π}. Frequently,
we will also use the logarithm of the amplitude spectrum 20 log10(|X(ejΩ)|). The
properties of the FTDS are summarized in Table 3.2.

As an example we compute the FTDS of a discrete rectangular pulse

x(k) =

(N−1)/2∑

ℓ=−(N−1)/2

δ (k − ℓ) (3.7)

Table 3.2: Properties of the FTDS

Property Time domain Frequency domain

Definition x(k) =
1

2π

π∫

−π

X(ejΩ) ejΩkdΩ X(ejΩ) =
∞∑

k=−∞

x(k) e−jΩk

Linearity a x1(k) + b x2(k) a X1(e
jΩ) + b X2(e

jΩ)

Conjugation x∗(k) X∗(e−jΩ)

Symmetry x(k) is a real-valued signal X(ejΩ) = X∗(e−jΩ)

Even part xe(k) = 0.5 (x(k) + x(−k)) Re{X(ejΩ)}

Odd part xo(k) = 0.5 (x(k) − x(−k)) j Im{X(ejΩ)}

Convolution x1(k) ∗ x2(k) X1(e
jΩ) · X2(e

jΩ)

Time shift x(k − k0) e−jΩk0X(ejΩ)

Modulation x(k) ejΩM k X(ej(Ω−ΩM ))

Parseval’s theorem
∞∑

k=−∞

x(k)y∗(k) =
1

2π

π∫

−π

X(ejΩ)Y ∗(ejΩ)dΩ
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Figure 3.1: FT of a discrete rectangular pulse (N = 13)

where N is odd and δ(k) is the discrete unit impulse sequence, i.e.,

δ (k) =

{
1 k = 0

0 k �= 0 .
(3.8)

With

X(ejΩ) =

(N−1)/2∑

k=−(N−1)/2

e−jΩk = ejΩ(N−1)/2
N−1∑

k=0

e−jΩk =
ejΩN/2 − e−jΩN/2

ejΩ/2 − e−jΩ/2

we obtain

X(ejΩ) =
sin (ΩN/2)

sin (Ω/2)
. (3.9)

For N = 13, the sequence x(k) and the FTDS X(ejΩ) are plotted in Fig. 3.1. For
the above example, X(ejΩ) is a real-valued function.

3.3 Linear Shift Invariant Systems

Systems map one or more input signals onto one or more output signals. In the
case of a single input and a single output we have

y(k) = T{x(k)} (3.10)

where T{·} defines the mapping from any input sequence x(k) to the corresponding
output sequence y(k).

A system is linear if and only if for any two signals x1(k) and x2(k) and any
a, b ∈ C we have

T{a x1(k) + b x2(k)} = a T{x1(k)} + b T{x2(k)} . (3.11)
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Figure 3.2: LSI system

A system is memoryless when y(k = k0) depends only on x(k = k0) for any k0.

A system is shift invariant if for any k0

y(k − k0) = T{x(k − k0)} . (3.12)

A system which is linear and shift invariant is called a linear shift invariant (LSI)
system.

An LSI system is defined by a mapping TLSI {·} as shown in Fig. 3.2. It may also
be characterized by its impulse response h(k) = TLSI {δ(k)} if we assume that the
system is at rest before any signal is applied. The latter condition implies that
initially all system state variables are zero.

Using the linearity and the shift invariance, we obtain

y(k) = TLSI {x(k)}

= TLSI

{
∞∑

l=−∞

x(l) δ(k − l)

}
=

∞∑

l=−∞

x(l) TLSI {δ(k − l)}

=

∞∑

l=−∞

x(l) h(k − l) = x(k) ∗ h(k) .

This relation is known as convolution and denoted by ∗:

y(k) = x(k) ∗ h(k) =

∞∑

l=−∞

x(l) h(k − l)

=
∞∑

l=−∞

h(l) x(k − l) = h(k) ∗ x(k) . (3.13)

An especially useful class of systems is specified via a difference equation with
constant coefficients aµ and bν

y(k) = b0x(k) + b1x(k − 1) + · · · + bNx(k − N)

+ a1y(k − 1) + a2y(k − 2) + · · ·+ aMy(k − M) (3.14)
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where input and output samples with index l ≤ k contribute to the current output
sample y(k). This equation may be cast in a more compact form

M∑

µ=0

ãµ y(k − µ) =
N∑

ν=0

bν x(k − ν) ã0 = 1 and ãµ = −aµ ∀µ > 0 . (3.15)

The maximum of N and M is called the order of the system. Additionally, we
must specify M initial conditions to obtain a unique solution. In most practical
cases, however, we assume that the system is causal and that it is at rest before
an input signal is applied.

3.3.1 Frequency Response of LSI Systems

The complex exponential x(k) = ej(Ω0k+φ0) is an eigenfunction of an LSI system,
i.e.,

y(k) =

∞∑

ℓ=−∞

h(ℓ) ej(Ω0(k−ℓ)+φ0) = ej(Ω0k+φ0)
∞∑

ℓ=−∞

h(ℓ) e−jΩ0ℓ (3.16)

= ej(Ω0k+φ0) H(ejΩ0) (3.17)

where the frequency response

H(ejΩ) =
∞∑

k=−∞

h(k) e−jΩk

is the FT of the discrete impulse response h(k) at Ω = Ω0 and

H(ejΩ) = Re{H(ejΩ)} + j Im{H(ejΩ)} = |H(ejΩ)| ejφ(Ω) .

3.4 The z -transform

The FTDS does not converge for signals such as the unit step u(k), which is defined
as

u(k) =

{
1 k ≥ 0

0 k < 0 .
(3.18)

Therefore, we extend the FTDS into the complex plane by substituting

jΩ = jωT → sT with s = α + jω .
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To avoid the periodic repetition of the resulting spectral function along the imag-
inary axis, it is common practice to map the left half plane into the unit circle
and to map periodic repetitions onto each other. This is achieved by introducing
the complex variable z = esT = eαT ejωT = rejΩ with r = eαT . The two-sided
z-transform of a discrete sequence x(k) is then given by

Z {x(k)} = X(z) =

∞∑

k=−∞

x(k)z−k . (3.19)

Alternatively, we could use the Laplace transform [Oppenheim et al. 1996] of a
sampled signal xs(t) as in (3.4) and obtain

∞∫

−∞

xs(t) e−stdt =
∞∑

k=−∞

xa(kT )

∞∫

−∞

δa(t − kT ) e−stdt =
∞∑

k=−∞

x(k) e−sTk

which, with the above mapping z = esT , results in the definition (3.19) of the
z -transform.

The z -transform converges for a given z when

|X(z)| =

∣∣∣∣∣

∞∑

k=−∞

x(k) z−k

∣∣∣∣∣

attains a finite value, i.e.,
∣∣∣∣∣

∞∑

k=−∞

x(k) z−k

∣∣∣∣∣ < ∞ .

Since

X(z) =

∞∑

k=−∞

x(k) z−k =

∞∑

k=−∞

x(k) e−αTk e−jωTk =

∞∑

k=−∞

x(k) r−k e−jωTk

the z -transform converges when

∞∑

k=−∞

|x(k) r−k| < ∞ . (3.20)

The region of the complex plane for which the above condition holds is known as
the region of convergence (ROC). The ROC depends only on |z| since within the
ROC we have

∞∑

k=−∞

∣∣x(k) z−k
∣∣ =

∞∑

k=−∞

|x(k)|
∣∣z−k

∣∣ =

∞∑

k=−∞

|x(k)| |z|−k
< ∞ . (3.21)
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Table 3.3: Properties of the z -transform

Properties Time domain z -domain ROC

Definition x(k) =

∫

C

©∨
X(z)

2πj
zk−1dz X(z) =

∞∑

k=−∞

x(k) z−k Rx

Linearity a x1(k) + b x2(k) a X1(z) + b X2(z)

Contains at least
Rx1 ∩ Rx2 ; it
may be larger,
when poles and
zeros cancel

Conjugation x∗(k) X∗(z∗) Rx

Time reversal x(−k) X(z−1) 1/Rx

Convolution x1(k) ∗ x2(k) X1(z) · X2(z)

Contains at least
Rx1 ∩ Rx2 ; it
may be larger,
when poles and
zeros cancel

Time shifting x(k + k0) zk0X(z)
Rx (it may not
contain z = 0 or
z = ∞)

Note that the z -transform of a sequence with finite support with |x(k)| < ∞ does
converge in the whole complex plane except for z = 0. Other properties of the
z -transform are summarized in Table 3.3. The last column of Table 3.3 specifies
the ROC. For example, when the ROC of X1(z) is Rx1

and the ROC of X2(z)
is Rx2

then the ROC of aX1(z)+bX2(z) is at least equal to the intersection of both
ROC’s. Since poles of the individual z -transforms may cancel, it can be larger than
the intersection of Rx1

and Rx2
. Finally, we state the initial value theorem: when

x(k) is causal we have x(0) = lim
z→∞

X(z). The proofs for this and the theorems in

Table 3.3 can be found, for instance, in [Oppenheim et al. 1999].

3.4.1 Relation to FT

In general, the z -transform is equivalent to the FT of x(k) r−k. Moreover, for
z = ejΩ we obtain

X(ejΩ) =
∞∑

k=−∞

x(k) e−jΩk ,

which is the FT of a discrete signal x(k), provided that the unit circle is within
the ROC.
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The z -transform may be interpreted as a Laurent series expansion of X(z). X(z)
is an analytic (holomorphic, regular) function within the ROC. Therefore, the
z -transform and all its derivatives are continuous functions in the ROC. More
details on complex analysis can be found, for instance, in [Churchill, Brown 1990].

We may also define a one-sided z-transform

Z1 {x(k)} =

∞∑

k=0

x(k) z−k

which is identical to the two-sided transform for causal signals.

3.4.2 Properties of the ROC

For a z -transform which is a rational function of z we summarize the following
properties of the ROC [Oppenheim, Schafer 1975]:

• The ROC is a ring or a disk centered around the origin. It cannot contain
any poles and must be a connected region.

• If x(k) is a right-sided sequence, the ROC extends outward from the outer-
most pole to |z| < ∞.

• If x(k) is a left-sided sequence, the ROC extends from the innermost pole to
z = 0.

• The FT of x(k) converges absolutely if and only if the ROC includes the unit
circle.

3.4.3 Inverse z -transform

The inverse z -transform is based on the Cauchy integral theorem

1

2πj

∫

C

©∨ zk−1dz =

{
1 k = 0

0 k �= 0
(3.22)

and may be written as

x(k) =
1

2πj

∫

C

©∨ X(z) zk−1dz . (3.23)
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To prove the inverse transform we note that

x(k) =
1

2πj

∫

C

©∨ X(z)zk−1dz =
1

2πj

∫

C

©∨
∞∑

m=−∞

x(m) z−m zk−1dz

=
∞∑

m=−∞

x(m)
1

2πj

∫

C

©∨ zk−m−1dz = x(k) .

In general, the evaluation of the above integral is cumbersome. For rational z -
transforms methods based on

• long division,

• partial fraction expansions, and

• table look-up

are much more convenient. A description of these methods can be found, for in-
stance, in [Proakis, Manolakis 1992], [Oppenheim et al. 1999]. A selection of trans-
form pairs is given in Table 3.4.

Table 3.4: Selected z -transform pairs

Sequence z -transform ROC

δ(k) 1 all z

δ(k − k0), k0 > 0 z−k0 all z except 0

δ(k − k0), k0 < 0 z−k0 all z except ∞

u(k)
1

1 − z−1
|z| > 1

aku(k)
1

1 − az−1
|z| > |a|

cos(Ω0k)u(k)
1 − cos(Ω0)z

−1

1 − 2 cos(Ω0)z−1 + z−2
|z| > 1

sin(Ω0k)u(k)
sin(Ω0)z

−1

1 − 2 cos(Ω0)z−1 + z−2
|z| > 1

rk cos(Ω0k)u(k)
1 − r cos(Ω0)z

−1

1 − 2r cos(Ω0)z−1 + r2z−2
|z| > r

rk sin(Ω0k)u(k)
r sin(Ω0)z

−1

1 − 2r cos(Ω0)z−1 + r2z−2
|z| > r
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3.4.4 z -transform Analysis of LSI Systems

When states are initially zero, the z -transform of the output signal y(k) of an LSI
system TLSI {·} is given by

Y (z) = H(z)X(z) (3.24)

where X(z) and H(z) are the z -transforms of the input signal x(k) and the impulse
response h(k), respectively. This a direct consequence of the convolution theorem
as stated in Table 3.3. We call H(z) the system response (or transfer function) of
the system TLSI (see also Fig. 3.3).

Figure 3.3: Input–output relation of LSI systems in the z -domain

An especially important class of LSI systems is characterized by a rational system
response H(z) with constant coefficients

H(z) =
B(z)

Ã(z)
=

N∑
ν=0

bν z−ν

M∑
µ=0

ãµ z−µ

=

N∑
ν=0

bν z−ν

1 −
M∑

µ=1
aµ z−µ

= b0

N∏
ν=1

(1 − z0,ν z−1)

M∏
µ=1

(1 − z∞,µ z−1)

where we have set ã0 = 1 and ãk = −ak. We distinguish the following cases:

• General recursive (zeros and poles):

H(z) =
B(z)

1 − A(z)
=

N∑
ν=0

bν z−ν

1 −
M∑

µ=1
aµ z−µ

=
zM

zN

N∑
ν=0

bν zN−ν

zM −
M−1∑
µ=1

aµ zM−µ

.

• Non-recursive (all zeros):

H(z) = B(z) =
N∑

ν=0

bν z−ν =

N∑
ν=0

bν zN−ν

zN
.

• Purely recursive (all poles):

H(z) =
b0

1 − A(z)
=

b0

1 −
M∑

µ=1
aµ z−µ

=
b0 zM

zM −
M−1∑
µ=0

aµ zM−µ

.
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Note that the frequently used terminology in the brackets does not account for
zeros and poles at z = 0. Furthermore:

• H(z) does not uniquely specify the impulse response of the system. We must
also specify an ROC.

• If the system is stable, the impulse response must be absolutely summable.
Therefore, the ROC must include the unit circle.

• If the system is causal, the ROC must extend from the outermost pole out-
ward.

• For a stable and causal system, we must require that all poles lie within the
unit circle.

• For a stable and invertible system, we must require that all poles and all
zeros are within the unit circle. Systems which meet this condition are also
called minimum-phase systems.

3.5 The Discrete Fourier Transform

The FTDS is not directly suited for numerical computations since it requires in
principle an input signal of infinite support and delivers a continuous spectral
function X(ejΩ).

By contrast, the discrete Fourier transform (DFT) computes a finite set of discrete
Fourier coefficients Xµ from a finite number of signal samples. The DFT coefficients
represent the spectrum of the input signal at equally spaced points on the frequency
axis. However, when the support of the signal is larger than the transformation
length, the DFT coefficients are not identical to the FT of the complete signal
at these frequencies. Nevertheless, the DFT is an indispensable tool for numerical
harmonic analysis of signals of finite or infinite support.

The coefficients Xµ of the DFT are computed via the finite sum

Xµ =
M−1∑

k=0

x(k) e−j 2πµk
M , µ = 0, . . . , M − 1 . (3.25)

The M signal samples are recovered by the inverse relationship

x(k) =
1

M

M−1∑

µ=0

Xµ ej 2πµk
M , k = 0, . . . , M − 1 . (3.26)

The DFT coefficients Xµ are periodical, i.e., Xµ+λM = Xµ for λ ∈ ZZ. The
same is true for the signal x(k) reconstructed from M complex DFT coeffi-
cients, since, using (3.26), we have x(k + λM) = x(k). Therefore, we may
extend the M samples of x(k), k = 0, . . . , M −1, into an M -periodic signal x

M̃
(k)
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where x
M̃

(k) = x([k]mod M ). We then have

x
M̃

(k) =
1

M

M−1∑

µ=0

Xµej 2πµ
M k (3.27)

for any k.

The coefficients of the DFT are spaced by ∆Ω = 2π
M on the normalized frequency

axis Ω. When the signal samples x(k) are generated by means of sampling a con-
tinuous signal xa(t) with sampling period T = 1

fs
, the coefficients of the DFT are

spaced by ∆f = fs

M , i.e., fµ = µfs

M .

When the signal x(k) is real valued, the DFT coefficients have a number of sym-
metry properties which can be exploited to reduce the complexity of frequency
domain algorithms. These and other properties of the DFT are summarized in
Table 3.5. For a real input sequence the symmetry properties of the DFT are

Table 3.5: Properties of the DFT

Property Time domain Frequency domain

Definition x(k) =
1

M

M−1∑

µ=0

Xµ ej2π µk
M Xµ =

M−1∑

k=0

x(k) e−j2π µk
M

k = 0 . . . M − 1 µ = 0 . . . M − 1

Linearity a x(k) + b y(k) a Xµ + b Yµ

Symmetry x(k) is real valued Xµ = X∗
[−µ]mod M

Convolution

M−1∑

ℓ=0

x(ℓ) y([k − ℓ]mod M) XµYµ

Multiplication x(k) y(k)

1

M

M−1∑

ℓ=0

Xℓ Y[µ−ℓ]mod M

Delay x([k + k0]mod M ) e+j2π
µk0
M Xµ

Modulation x(k) e−j2π
kµ0
M

X[µ+µ0]mod M

Parseval’s
theorem

M−1∑

k=0

x(k)y∗(k) =
1

M

M−1∑

µ=0

XµY ∗
µ
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µ

µ

µ

µ

( )

µ

µ

µ

µ

Figure 3.4: Real part, imaginary part, magnitude, and phase
of DFT coefficients of a real-valued sequence x(k)

illustrated in Fig. 3.4. While the real part and the magnitude are even symmetric,
the imaginary part and the phase are odd symmetric.

In what follows, we will discuss some of the properties in more detail.
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3.5.1 Linear and Cyclic Convolution

The multiplication of two sequences of DFT coefficients, XµYµ, corresponds to a
cyclic convolution of the corresponding time domain sequences x(k) and y(k). The
cyclic convolution may be written as

M−1∑

ℓ=0

x(ℓ) y([k − ℓ]mod M ) =

M−1∑

ℓ=0

x(ℓ) y
M̃

(k − ℓ)

= x(k) RM(k) ∗ y
M̃

(k)

where ∗ denotes the aperiodic (linear) convolution and RM (k) denotes a rectan-
gular window

RM (k) =

{
1 0 ≤ k ≤ M − 1

0 otherwise .
(3.28)

To see this, we write the inverse DFT (IDFT) of XµYµ as

IDFT {XµYµ} =
1

M

M−1∑

µ=0

XµYµ ej 2πk
M µ

=
1

M

M−1∑

µ=0

M−1∑

ℓ=0

x(ℓ) e−j 2πℓ
M µ Yµ ej 2πk

M µ

=
M−1∑

ℓ=0

x(ℓ)
1

M

M−1∑

µ=0

Yµ ej
2π(k−ℓ)

M µ

=
M−1∑

ℓ=0

x(ℓ) y
M̃

(k − ℓ) .

The cyclic convolution is therefore equivalent to an aperiodic convolution of M
samples of one sequence with the M -periodic extension of the other sequence.

The cyclic convolution of two sequences is illustrated in Fig. 3.5 and Fig. 3.6,
where the result in Fig. 3.6 corresponds to a linear convolution. To obtain the
linear convolution of two sequences of lengths N and L, the DFT length must be
larger than or equal to N + L − 1. In the example this is achieved for M ≥ 15.
Significant cyclic effects are observed for M < 15 as seen in Fig. 3.5.
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Figure 3.5: Cyclic convolution of two sequences x(k) and y(k) with M = 11

( ) ( )

( ) * M( )~

Figure 3.6: Cyclic convolution of two sequences x(k) and y(k) with M = 15.
The DFT length is chosen such that a linear convolution is obtained.
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3.5.2 The DFT of Windowed Sequences

Quite frequently, the DFT is applied to signals which extend beyond the length
M of the DFT. In this case, the DFT uses only M samples of the signal. The
application of a window of length M to the time domain signal corresponds to a
convolution of the FTDS of the complete signal with the FTDS of the window
function in the spectral domain. After applying a window w(k) to sequence x(k),
the DFT coefficients Xµ are equal to the spectrum of the windowed sequence
w(k)x(k) at the discrete frequencies Ωµ = 2πµ

M . For µ = 0, . . . , M − 1, we may
write this as

Xµ =
[
X(ejΩ) ∗ W (ejΩ)

]
Ω=Ωµ

=

M−1∑

k=0

w(k) x(k) e−j 2πµk
M . (3.29)

We find that the DFT spectrum is a sampled version of the spectrum
X(ejΩ) ∗ W (ejΩ) where W (ejΩ) is the FTDS of the window function w(k). The
spread of the spectrum due to this convolution in the frequency domain is also
known as spectral leakage and illustrated in Fig. 3.7.

-1

0

µ

µ

|Xµ|

( )

( )

|Xµ|

Figure 3.7: DFT and FTDS (dashed) of a finite segment of a sinusoid
Top: Integer multiple of period is equal to the DFT length M
Bottom: Integer multiple of period is not equal to the DFT length M
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Figure 3.8: Frequently used window functions for M = 61

Spectral leakage may be reduced

• by increasing the DFT length M or
• by using a tapered window w(k).

Compared to the rectangular window, tapered windows possess a wider main lobe
in their frequency response (Fig. 3.8) and thus lead to reduced frequency resolution.
Some of the frequently used window functions may be written as

w(k) = a − (1 − a) cos

(
k

2π

M − 1

)
, k = 0 . . .M − 1 , (3.30)
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with a = 1 for the rectangular (boxcar) window,
a = 0.54 for the Hamming window, and
a = 0.5 for the Hann window.

The frequency response of these window functions is given by

W (ejΩ) =e−j M−1
2 Ω

[
a
sin

(
M
2 Ω

)

sin
(

1
2
Ω
)

− 1 − a

2




sin
(

M
2 (Ω − 2π

M−1 )
)

sin
(

1
2 (Ω − 2π

M−1 )
) +

sin
(

M
2 (Ω + 2π

M−1 )
)

sin
(

1
2(Ω + 2π

M−1 )
)




]
.

Other well-known windows are the Blackman, the Tukey, and the Kaiser window,
e.g., [Oppenheim et al. 1999]. The Blackman window is quite similar to the Hann
and Hamming windows, but it has one additional cosine term to further reduce the
ripple ratio. Figure 3.8 illustrates the trade-off between the width of the main lobe
and the side-lobe attenuation while Fig. 3.9 exemplifies the reduction of spectral
leakage when a Hamming window is used.

µ

µ

Figure 3.9: DFT and FTDS (dashed) of Hamming windowed sinusoids
Top: Integer multiple of period is equal to DFT length
Bottom: Integer multiple of period is not equal to DFT length
In both cases, spectral leakage is significantly reduced.
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3.5.3 Spectral Resolution and Zero Padding

The DFT length M is identical to the number of discrete bins in the frequency
domain. These bins are spaced on the normalized frequency axis according to

∆Ω =
2π

M
. (3.31)

However, the spacing between frequency bins must not be confused with the spec-
tral resolution of the DFT. Spectral resolution may be defined via the capability
of the DFT to separate closely spaced sinusoids as illustrated in Fig. 3.10. In gen-
eral, the spectral resolution depends on the number of samples of the transformed
sequence x(k) and the window function w(k). Spectral resolution of the DFT is
best for the boxcar window. Tapered windows reduce the spectral resolution but
also the spectral leakage. The spectral resolution of the DFT may be increased
by increasing the length M of the data window, i.e., using more signal samples to
compute the DFT coefficients.

Figure 3.10: Resolution of two closely spaced sinusoids at frequencies Ω1 and Ω2

Top: Ω1 = 2π/8, Ω2 = 5π/16 Bottom: Ω1 = 2.2π/8, Ω2 = 2.2π/8 + 2π/16
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Figure 3.11: Zero padding a sequence x(k)
Top: Sequence (left) and DFT coefficients (right) without zero padding
Bottom: Sequence (left) and DFT coefficients (right) after zero padding
The dashed line indicates the FTDS spectrum of the sequence, which is
the same for both cases.

The technique known as zero padding increases the number of frequency bins in the
DFT domain. It does not increase the spectral resolution in the sense that closely
spaced sinusoids can be better separated. Obviously, appending zeros to a segment
of a signal, where the signal is in general much longer than the DFT length, does
not add information about this signal. This is illustrated in Fig. 3.11. However, for
finite length signals, the DFT and zero padding allow us to compute the FTDS
without error for any number of frequency bins. This is useful, for example, when
the frequency response of a finite impulse response (FIR) filter must be computed
with high resolution.

3.5.4 Fast Computation of the DFT: The FFT

Fast Fourier transform (FFT) algorithms were used by C. F. Gauß in the 19th
century, temporarily forgotten, and rediscovered [Cooley, Tukey 1965] when digital
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computers emerged [Cooley 1992]. FFT algorithms provide for an exact computa-
tion of the DFT, however, at a significantly reduced complexity.

In fact, the FFT is not a single algorithm but a family of different algorithms
which rely on the principle of “divide and conquer” and symmetry considerations.
The basic idea of the FFT algorithm is to divide the overall DFT computation into
smaller subtasks, compute these subtasks, and then recombine the results. FFT
algorithms can be classified with respect to

• their design procedure (decimation-in-time, decimation-in-frequency)

• their radix (2, 3, 4, . . . )

• memory requirements (in-place vs. not in-place)

• addressing schemes (bit-reversal vs. linear).

It should be pointed out that FFT algorithms do not exist only for DFT lengths
M = 2p (powers of two) although these constitute the most widespread form of
the FFT. Efficient algorithms are available for other DFT lengths M �= 2p as well,
e.g., [Oppenheim, Schafer 1975]. In what follows we demonstrate the basic idea for
a radix-2 decimation-in-time algorithm [Cochran et al. 1967].

3.5.5 Radix-2 Decimation-in-Time FFT

The decimation-in-time algorithm splits the sequence of spectral coefficients

Xµ =
M−1∑

k=0

x(k) e−j 2πµk
M , µ = 0, . . . , M − 1 ,

where M = 2p, into an even-indexed and odd-indexed subsequence

Xµ =

M/2−1∑

k=0

x(2k) e−j 4πµk
M +

M/2−1∑

k=0

x(2k + 1) e−j
2πµ(2k+1)

M

which may be rewritten as two DFTs of length M/2

Xµ =

M/2−1∑

k=0

x(2k) e−j 2πµk
M/2 + e−j 2πµ

M

M/2−1∑

k=0

x(2k + 1) e−j 2πµk
M/2 .

While the computational effort of the DFT is M2 complex multiplications and

additions, the effort is now reduced to 2
(

M
2

)2
+M = M2

2 +M multiplications and
additions.
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Figure 3.12: Signal-flow graph after the first decimation step (M = 8)

To prepare for the next decomposition we set M2 = M/2, x2e(k) = x(2k),

x2o(k) = x(2k + 1), and define a complex phasor WM = e−j 2π
M . We then obtain

Xµ =

M2−1∑

k=0

x2e(k) e−j 2πµk
M2 + Wµ

M

M2−1∑

k=0

x2o(k) e−j 2πµk
M2 , (3.32)

a signal-flow graph of which is shown in Fig. 3.12. Two DFTs of length M2 = M/2
are combined by means of the “twiddle factors” Wµ

M , µ = 0 . . .M − 1. Since these
DFTs of length M2 are M2-periodic, we compute them for µ = 0 . . .M2 − 1 only
and reuse the results for µ = M2 . . .M − 1.

In the next decomposition step we split each of the two sequences x2e(k) and
x2o(k) into two subsequences of length M/4. After this decomposition, which is
shown in Fig. 3.13, the computational effort is reduced to

2

(
2

(
M

4

)2

+
M

2

)
+ M =

M2

4
+ 2M

complex multiplications and additions. After p−1 decimation steps we have 2(p−1)

sequences of length 2. Hence, the computational effort is

M2

2p
+ (p − 1)M = M + (p − 1)M = pM = p 2p = M log2(M) (3.33)
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Figure 3.13: Signal-flow graph after the second decimation step (M = 8)
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Figure 3.14: Signal-flow graph after the third decimation step (M = 8)
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Figure 3.15: The basic computational element of the radix-2 FFT:
Left: The butterfly
Right: An efficient implementation

complex multiplications and additions. The signal-flow graph of the final result is
shown in Fig. 3.14. For example, when the DFT length is M = 1024, we obtain a

complexity reduction of M log2(M)
M2 ≈ 0.01.

The regular structure which we find at all stages of the algorithm is called a “but-
terfly”. The left plot and the right plot in Fig. 3.15 show the butterfly as it was used
in the preceding development and in a form which requires only one complex mul-

tiplication, respectively. The latter makes use of the relation W
ℓ+M/2
M = −W ℓ

M .
Without further optimizations, the computational complexity of the FFT algo-
rithm is therefore

M log2(M) complex additions and

M

2
log2(M) complex multiplications,

(3.34)

where one complex addition requires two real-valued additions, and one complex
multiplication needs two real-valued additions and four real-valued multiplications.

As a result of the repeated decimations, the input sequence x(k) is not in its natural
order. However, the elements of the scrambled input sequence can be addressed
using the bit-reversal addressing mode which is supported on most digital signal
processors (DSPs). Bit-reversal addressing reads the address bits of each input
element in reverse order. For example, the address of the second and the seventh
element of the sequence 0 0 1 and 1 1 0, respectively, are read in reverse order as
1 0 0 and 0 1 1. The latter addresses correspond to the actual position of these
elements in the scrambled sequence.
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3.6 Fast Convolution

The use of the convolution theorem of the DFT presents an attractive alternative
to the direct computation of the convolution sum. In conjunction with the FFT
this method is called fast convolution.

The linear convolution of two complex-valued sequences of length N requires two
FFTs and one inverse FFT (IFFT) of length M = 2N − 1 and M complex multi-
plications. If the computational effort for one FFT or IFFT is KM log2(M), where
K depends on the algorithm and the computer hardware, we then have

3KM log2(M) + M

complex operations for a fast convolution. This compares favourably to N2 op-
erations for the direct computation of the convolution sum when N is large. For
example, for N = 1024 and K = 1 we need 69594 complex operations for the fast
convolution compared to 1048576 complex operations for the direct computation.

3.6.1 Fast Convolution of Long Sequences

Another, even more interesting case is the convolution of a very long causal se-
quence x(k), e.g., a speech signal, with a relatively short impulse response h(k) of
an FIR filter with N non-zero taps. This convolution may be performed in seg-
ments using a DFT of length M > N . In this case, the impulse response of the
filter is transformed only once, leading to additional savings.

There are two basic methods (and numerous variations thereof) for the fast con-
volution of long sequences which are known as the overlap-add and overlap-save
techniques.

The overlap-add method uses non-overlapping segments of the input sequence and
adds partial results to reconstruct the output sequence. In contrast, the overlap-
save method uses overlapping segements of the input sequence and reconstructs
the output sequence without overlapping the results of the partial convolutions.
In what follows we will briefly illustrate these two techniques.

3.6.2 Fast Convolution by Overlap-Add

The overlap-add technique segments the input signal x(k) into non-overlapping
shorter segments x1(k), x2(k), . . . of length Nx < M , with

xℓ(k) =

{
x
(
k + (ℓ − 1)Nx

)
0 ≤ k < Nx

0 elsewhere .
(3.35)
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Each of these segments is convolved with the impulse response h(k). The results
of these convolutions, y1(k), y2(k), . . . , are then overlap-added to yield the final
result

y(k) =
N−1∑

ν=0

h(ν) x(k − ν)

=

N−1∑

ν=0

h(ν)
∑

ℓ

xℓ

(
k − (ℓ − 1)Nx − ν

)

=
∑

ℓ

N−1∑

ν=0

h(ν) xℓ

(
k − (ℓ − 1)Nx − ν

)

︸ ︷︷ ︸
=yℓ

(
k−(ℓ−1)Nx

)

.

With appropriate zero padding the convolutions of the shorter segments with the
impulse response h(k) may be performed in the frequency domain. The overlap-
add method requires that the convolution is linear. Therefore, we must choose
N + Nx − 1 ≤ M . This is illustrated in Fig. 3.16, where the top part of the graph
shows the linear convolution of the full sequence while the lower parts depicts the
partial convolutions of zero-padded shorter segments.

3.6.3 Fast Convolution by Overlap-Save

For the overlap-save procedure we use segments x1(k), x2(k), . . . of length
Nx = M > N which contain N − 1 (“saved”) samples of the previous segment
and M − N + 1 new samples,

xℓ(k) =

{
x
(
k + (ℓ − 1)M − ℓ(N − 1)

)
0 ≤ k < M

0 elsewhere .
(3.36)

After padding the impulse response with M − N zeros the cyclic convolution
of these segments with impulse response h(k) yields N − 1 invalid samples and
M−N +1 valid samples. The latter are concatenated with the valid samples of the
previously computed segment. In this way, all of the output signal is constructed.
The overlap-save procedure is illustrated in Fig. 3.17. The invalid samples of the
output sequences y1(k), y2(k), . . . are marked x and are discarded. Only the valid
samples (marked •) are concatenated.
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Figure 3.16: Illustration of the overlap-add technique. Nx = 13, N = 4, and M = 16.
∗◦ denotes a fast convolution.
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Figure 3.17: Illustration of the overlap-save technique. Nx = M = 16 and N = 4. Samples
marked x are discarded. ∗◦ denotes a fast convolution.
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3.7 Cepstral Analysis

The convolution of two discrete time sequences corresponds to a multiplication
of their spectra. It turns out that the logarithm of the spectrum and its inverse
transform are also very useful as the logarithm of the product corresponds to a
sum of the logarithms. The inverse transform of the logarithm of the spectrum is
called the cepstrum. The processing related to the computation of the cepstrum
is a special case of the more general concept of homomorphic processing [Oppen-
heim, Schafer 1975]. Cepstral analysis is also useful in the context of stochastic
signals, especially when the power spectrum of these signals is obtained from an
autoregressive model. It has been used in speech coding for the quantization of the
spectral envelope [Hagen 1994], and in speech recognition for the computation of
spectral features [Davis, Mermelstein 1980], [Jankowski et al. 1995]. In this section
we briefly summarize some properties and applications of the cepstrum.

3.7.1 Complex Cepstrum

The complex cepstrum xcc(k) of a sequence x(k) with X(z) = Z {x(k)} is defined
as the sequence whose z -transform yields the logarithm of X(z),

∞∑

k=−∞

xcc(k)z−k = ln(X(z)) = Xcc(z) (3.37)

where we use the natural complex logarithm ln(X(z)) = loge(X(z)). The logarithm
of the z -transform may be written in terms of the magnitude and the phase of X(z)
as

ln(X(z)) = ln(|X(z)| ejφ(z)) = ln(|X(z)|) + jφ(z) . (3.38)

We further assume that Xcc(z) = ln(X(z)) is a valid z -transform and thus con-
verges in some region of the complex z -plane. For practical reasons we also require
that x(k) and xcc(k) are real and stable sequences. Then, both X(z) and Xcc(z)
converge on the unit circle and ln(|X(ejΩ)|) and φ(Ω) are even and odd functions
of Ω, respectively. In this case we may obtain xcc(k) from an inverse FT

xcc(k) =
1

2π

π∫

−π

[
ln(|X(ejΩ)|) + jφ(Ω)

]
ejΩk dΩ . (3.39)

Since singularities of ln(X(z)) are found at the poles and the zeros of X(z), a
stable and causal sequence xcc(k) is only obtained when both poles and zeros are
within the unit circle. As a consequence, x(k) is a minimum-phase sequence if and
only if its complex cepstrum is causal [Oppenheim et al. 1999].
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The definition of the complex logarithm in (3.37) is not at all trivial as Xcc(z) must
be an analytic and hence continuous function in the ROC. Since the imaginary
part of Xcc(z) is identical to the phase of X(z), we cannot substitute the principal
value −π < arg{X(z)} ≤ π for the phase in general. The complex logarithm must
therefore be defined such that it is invertible and analytic in the ROC [Oppenheim,
Schafer 1975].

It can be shown that the complex cepstrum satisfies

x(k) =
∞∑

ℓ=−∞

(
ℓ

k

)
xcc(ℓ) x(k − ℓ) , k �= 0 . (3.40)

When x(k) is a minimum-phase sequence with x(k) = 0 for k < 0 and X(z) is a
rational function, we have xcc(k) = 0 for k < 0. For a minimum-phase sequence,
the complex cepstrum may be computed recursively

xcc(k) =





0 k < 0

ln(x(0)) k = 0

x(k)

x(0)
−

k−1∑

ℓ=0

ℓ

k
xcc(ℓ)

x(k − ℓ)

x(0)
k > 0 .

(3.41)

3.7.2 Real Cepstrum

Because of the difficulties in the definition and evaluation of the complex logarithm,
the real cepstrum, or cepstrum for short, is preferred in many applications. Also,
for minimum-phase signals the real cepstrum captures all information about the
signal since the phase is determined by the magnitude spectrum [Oppenheim,
Schafer 1975]. The real cepstrum is defined as

cx(k) =
1

2π

π∫

−π

ln(|X(ejΩ)|) ejΩk dΩ (3.42)

where we assume that all singularities of ln(|X(z)|) are within the unit circle.
This implies that x(k) as well as xcc(k) are causal, minimum-phase sequences. It
therefore suffices to evaluate the real part of Xcc(z) which is ln(|X(z)|). Note that

cx(0) =
1

2π

π∫

−π

ln
(∣∣X(ejΩ)

∣∣) dΩ , (3.43)

which, for an all-pole signal model X(ejΩ) = σ/(1 − A(ejΩ)), evaluates to
cx(0) = ln(σ) [Markel, Gray 1976]. For the all-pole model we might transform



3.7 Cepstral Analysis 67

the coefficients ak into cepstral coefficients cx(k) and vice versa using the recur-
sive relation

cx(k) = ak +

k−1∑

ℓ=1

k − ℓ

k
cx(k − ℓ) aℓ = ak +

k−1∑

ℓ=1

ℓ

k
cx(ℓ) ak−ℓ, k ≥ 1 (3.44)

with cx(0) = ln(σ) and cx(k) = cx(−k) for k < 0. This recursion can be used in
both directions. By definition, the summations in (3.44) yield zero for k = 1.

Since ln(|X(ejΩ)|) is a real and even function of Ω, cx(k) is also real and even and
may be obtained as the even part of xcc(k),

cx(k) =
xcc(k) + x∗

cc(−k)

2
, (3.45)

since ln
(∣∣X(ejΩ)

∣∣2
)

= ln
(
X(ejΩ)

)
+ ln

(
X∗(ejΩ)

)
. Furthermore, xcc(k) = 0 for

k < 0 and

xcc(k) = cx(k) (2 u(k) − δ(k)) (3.46)

for k ≥ 0 where u(k) and δ(k) are the unit step and the unit impulse sequences,
respectively.

3.7.3 Applications of the Cepstrum

3.7.3.1 Construction of Minimum-Phase Sequences

The above relations may be used to construct a minimum-phase sequence from
a given non-minimum-phase sequence x(k). Any rational z -transform X(z) of a
stable sequence x(k) may be decomposed into

X(z) = Xmin(z)XAP(z)

where Xmin(z) and XAP(z) correspond to a minimum-phase and an all-pass se-
quence, respectively. In general, the ROC of X(z) is an annular region in the
z -plane which contains the unit circle. The corresponding complex cepstrum is a
two-sided sequence. With

ln(X(z)) = ln(Xmin(z)) + ln(XAP(z))

we obtain the minimum-phase sequence by extracting the causal part of the com-
plex cepstrum. An example is shown in Fig. 3.18.
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0

Figure 3.18: Linear-phase sequence (top) and corresponding minimum-phase sequence
(bottom). Both sequences have the same magnitude spectrum.

3.7.3.2 Deconvolution by Cepstral Mean Subtraction

When a speech signal is recorded in a reverberant acoustic environment, it may be
written as the convolution of the original, unreverberated speech signal s(k) with
the impulse response h(k) of this environment,

x(k) = h(k) ∗ s(k) ⇔ X(ejΩ) = H(ejΩ) S(ejΩ) .

A similar situation occurs when a speech signal is recorded via a telephone line.
In this case, network echoes contribute to what is called convolutive noise in the
speech recognition community. The use of the real cepstrum obviously leads to

log
(
|X(ejΩ)|

)
= log

(
|H(ejΩ)|

)
+ log

(
|S(ejΩ)|

)
⇔ cx(k) = ch(k) + cs(k)

or, using the DFT, to the short-term relation

log (|Xµ(λ)|) ≈ log (|Hµ(λ)|) + log (|Sµ(λ)|) (3.47)
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provided that circular convolutive effects are negligibly small. µ denotes the fre-
quency bin and λ the frame index, respectively. The deconvolution might be now
achieved by subtracting log (|Hµ(λ)|) from log (|Xµ(λ)|). When the impulse re-
sponse of the reverberant system is constant over time, an estimate of log (|Hµ(λ)|)
is given by the expectation of log (|Xµ(λ)|)−log (|Sµ(λ)|). In a practical realization
of this method, we approximate the expectation of log (|Xµ(λ)|) by a time average
and compute E {log (|Sµ(λ)|)} from undisturbed speech data. We then obtain

̂log (|Sµ(λ)|) = log (|Xµ(λ)|) −
(

1

N

λ∑

i=λ−N+1

log (|Xµ(i)|) − E {log (|Sµ(λ)|)}
)

.

Note that the cepstral coefficients of zero mean Gaussian signals are not zero mean
[Stockham et al. 1975], [Ephraim, Rahim 1999]. This technique and its variations
[Stockham et al. 1975], [Acero, Huang 1995], [Rahim et al. 1996] are frequently
used in speech recognition. They are less successful in combating acoustic echoes,
as the acoustic echo path is typically of high order and not stationary.

3.7.3.3 Computation of the Spectral Distortion Measure

When we are given two magnitude squared spectra |H(ejΩ)|2 and |Ĥ(ejΩ)|2, where
the latter may be an approximation of the former, the total log spectral distance
(SD) of the two spectra is defined as

SD =

√√√√√ 1

2π

π∫

−π

[
20 log10 |H(ejΩ)| − 20 log10 |Ĥ(ejΩ)|

]2

dΩ . (3.48)

This distance (or distortion) measure is used, for instance, for the quantization of

the spectral envelopes of speech signals [Hagen 1994]. When H(ejΩ) and Ĥ(ejΩ)
represent minimum-phase signals with

π∫

−π

ln |H(ejΩ)|dΩ =

π∫

−π

ln |Ĥ(ejΩ)|dΩ = 0 , (3.49)

the distortion measure may be computed using cepstral coefficients [Markel, Gray
1976]:

SD =

√√√√√ 1

2π

π∫

−π

[
20 log10 |H(ejΩ)| − 20 log10 |Ĥ(ejΩ)|

]2

dΩ

= 20 log10(e)
√

2

√√√√
∞∑

k=1

(ch(k) − ĉh(k))
2
. (3.50)
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To prove this relation we use log10(x) = loge(x) log10(e) and note that

SD =

√√√√√ 1

2π

π∫

−π

[
20 log10 |H(ejΩ)| − 20 log10 |Ĥ(ejΩ)|

]2

dΩ

= 20 log10(e)

√√√√√ 1

2π

π∫

−π

[
∞∑

k=−∞

ch(k) e−jkΩ −
∞∑

k=−∞

ĉh(k) e−jkΩ

]2

dΩ .

Parseval’s theorem (see Table 3.2)

1

2π

π∫

−π

(
∞∑

k=−∞

(ch(k) − ĉh(k)) e−jkΩ

)(
∞∑

k=−∞

(ch(k) − ĉh(k)) e−jkΩ

)∗

dΩ

=

∞∑

k=−∞

(ch(k) − ĉh(k)) (ch(k) − ĉh(k))
∗

yields

SD = 20 log10(e)

√√√√√ 1

2π

π∫

−π

∣∣∣∣∣

∞∑

k=−∞

(ch(k) − ĉh(k)) e−jkΩ

∣∣∣∣∣

2

dΩ

= 20 log10(e)

√√√√
∞∑

k=−∞

(ch(k) − ĉh(k))
2

.

(3.51)

The relation ch(0) = 0, ch(−k) = ch(k), finally leads to

SD = 20 log10(e)
√

2

√√√√
∞∑

k=1

(ch(k) − ĉh(k))
2
. (3.52)

This spectral distortion measure [Quackenbush et al. 1988] is widely used to assess
the performance of vector quantizers in speech coding [Kleijn, Paliwal 1995] as well
as the quality of speech enhancement algorithms, e.g., [Gustafsson et al. 2002],
[Cohen 2004].
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4

Filter Banks for Spectral
Analysis and Synthesis

4.1 Spectral Analysis Using Narrowband Filters

In contrast to the transform-based methods of the previous chapter we will now
discuss spectral analysis using narrowband filters. Two equivalent measurement
procedures are illustrated in Fig. 4.1. We are interested in the temporal evolution
of a signal x(k) at a certain frequency Ωµ. The first approach (see Fig. 4.1-a)
consists of three steps: narrow bandpass filtering, spectral shifting by Ωµ, and
sampling rate decimation by r.

The intermediate bandpass signal vµ(k), which is centered at Ωµ, is shifted to
the baseband by complex demodulation, i.e., by multiplication with e−jΩµk. The
resulting complex-valued baseband signal xµ(k) is called the subband signal. This
signal gives information about the signal x(k) at frequency Ωµ and time instant
k. The resolution in time and frequency is determined by the impulse response
hBP

µ (k) and the frequency response HBP
µ (ejΩ) of the bandpass, respectively.

The same result can be obtained by applying first modulation and then feeding
the modulated signal to an equivalent lowpass filter with frequency response H as
shown in Fig. 4.1-b. The intermediate output signals xµ(k) of both systems are

Digital Speech Transmission: Enhancement, Coding and Error Concealment

Peter Vary and Rainer Martin
c© 2006 John Wiley & Sons, Ltd
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Figure 4.1: Spectral analysis by
a) Bandpass filtering and subsequent complex demodulation
b) Complex demodulation and subsequent lowpass filtering

identical if the frequency responses of the bandpass (BP) and the lowpass filters
satisfy the following relation:

HBP

µ (ejΩ) = H
(
ej(Ω−Ωµ)

)
. (4.1-a)

According to the modulation theorem of the Fourier transform the corresponding
time domain impulse responses are related by

hBP

µ (k) = h(k) ejΩµk . (4.1-b)

The signal xµ(k) in Fig. 4.1-a can be formulated explicitly as

xµ(k) = e−jΩµk
∞∑

κ=−∞

x(κ) hBP

µ (k − κ) (4.2-a)

= e−jΩµk
∞∑

κ=−∞

x(κ) h(k − κ) ejΩµ(k−κ) (4.2-b)

=

∞∑

κ=−∞

x(κ) e−jΩµκ h(k − κ) (4.2-c)

where (4.2-c) describes the lowpass approach of Fig. 4.1-b. If the complex samples
xµ(k) are calculated at frequencies

Ωµ = ∆Ω · µ, µ = 0, 1, 2, . . . , M − 1
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and if the whole frequency range 0 ≤ Ω ≤ 2π is covered, then each set of M
samples xµ(k), µ = 0, 1, 2, . . . , M − 1, at any time instant k is called the short-
term spectrum.

The complex samples xµ(k) may be represented either by their real and imaginary
parts or by (short-term) magnitude and phase

xµ(k) = xRe,µ(k) + j · xIm,µ(k) (4.3-a)

= |xµ(k)| · ejϕµ(k) . (4.3-b)

If the filter is causal and stable, the impulse response h(k) is zero for k < 0, and
|h(k)| will decay with time k. The time dependency of the short-term spectrum is
due to the position k of the time-reversed impulse response h(k−κ) which acts as
a sliding window. As shown examplarily in Fig. 4.2, the impulse response h(k−κ)
weights the most recent signal samples x(κ) up to the observation time instant k.

Because of the decay of |h(k)|, the older parts of the signal have less influence than
the most recent samples. Furthermore, the sampling rate of the subband signals

1 (κ)

κ

1 ( -κ)

κ

1 (κ) · ( -κ)

κ

κ =

Figure 4.2: a) Signal x(κ)
b) Impulse response h(k − κ)
c) Weighted signal history x(κ) ·h(k−κ)
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xµ(k) can be decimated due to the narrow bandwidth ∆Ω of the frequency selective
filter H. By decimating the sampling rate by r, we obtain the output sequence

xµ(k
′

) = xµ(k = k
′ · r) . (4.4)

The bandwidth of the signals xµ(k) is limited to the passband width ∆Ω of the
filter. Usually ∆Ω is markedly smaller than π. If the stopband attenuation of the
selective filter is sufficiently high, the output signal xµ(k) can be calculated at the
reduced rate

f
′

s = fs
∆Ω

2π
. (4.5)

Due to the computational complexity of any further processing of xµ(k), the sam-
pling rate should be reduced – according to the sampling theorem – as much as
possible by an integer factor r > 1 with

r ≤ rmax =
2π

∆Ω
; r ∈ IN. (4.6)

In the extreme case with r = rmax, which is called critical decimation, aliasing can
only be avoided by using ideal lowpass or bandpass filters. With non-ideal filters
the decimation factor r has to be chosen somewhat smaller.

For ease of analytical description a special version x̃µ(k) of the decimated sequence
is introduced with the original sampling rate fs but with r−1 zeros filled in between
the decimated samples xµ(k

′

). The relations between these different sequences are
illustrated in Fig. 4.3.

The following notations are used throughout this chapter for decimated and up-
sampled versions of any sequence:

• k, κ: time indices at original sampling rate fs

• k
′

, κ
′

: time indices at reduced sampling rate f
′

s = fs/r

• decimated sequence at sampling rate f
′

s/r without intermediate zero samples

xµ(k
′

) = xµ(k = k
′ · r) (4.7)

• upsampled sequence at sampling rate fs with intermediate zero samples

x̃µ(k) =

{
xµ(k) if k = k

′ · r, k
′

= 0,±1,±2, . . .
0 else .

(4.8)
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Figure 4.3: Decimation and zero filling for r = 4 with p(r)(k) =
∞∑

k
′
=−∞

δ(k−k
′

r)

a) Signals
b) Block diagram
c) Equivalent model

The process of sampling rate reduction by r with subsequent upsampling by r
(zero filling) can be described analytically by multiplying xµ(k) with a periodic
pulse sequence p(r)(k) (Fig. 4.3)

x̃µ(k) = xµ(k) · p(r)(k) (4.9)

p(r)(k) =

∞∑

k
′
=−∞

δ(k − k
′

r) . (4.10)

The sequence p(r)(k) can be expressed as

p(r)(k) =
1

r

r−1∑

i=0

ejki 2π
r , (4.11)

as the complex exponential is periodic in i. According to the modulation theorem,
we get

X̃µ(ejΩ) =
1

r

r−1∑

i=0

Xµ

(
ej(Ω− 2π

r i)
)

. (4.12)

An example with r = 4 is illustrated in Fig. 4.4.
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Ω

1

Figure 4.4: Spectra before and after decimation (with zero filling) for r = 4

In (4.8) the decimation grid is aligned to the origin of the time axis, i.e., with k = 0.
In some cases it will be necessary that upsampled sequences have a constant time
shift by k0 so that k = 0 is not a decimation instant. In any case upsampled
sequences with or without time shift but with intermediate zero samples will be
marked by “ ˜ ”.

Note that a displacement of the decimation grid by k0 samples, which will be
needed in the context of polyphase network filter banks (see Section 4.2), can be
described as follows:

p(r)(k − k0) =
1

r

r−1∑

i=0

ej 2π
r (k−k0)i (4.13-a)

=

{
1 if k = k

′ · r + k0, k
′

= 0,±1,±2, . . .
0 else .

(4.13-b)

As we have kept the zero samples in the time domain, the spectrum is periodic
with 2π/r. If these zeros are deleted, we have to consider the normalized frequency
Ω

′

= r · Ω (period 2π) corresponding to the reduced sampling rate f
′

s = fs/r.

4.1.1 Short-Term Spectral Analyzer

The behavior of the system of Fig. 4.1 can be described in the frequency domain
by considering the Fourier transforms of the signals x(k), xµ(k), and x̃µ(k). For
reasons of simplicity, we assume an ideal bandpass with center frequency Ωµ. The
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Figure 4.5: Spectral relations of the short-term spectrum analyzer of Fig. 4.1-a
[Vary, Wackersreuther 1983]
a) Selection of a narrow band by bandpass filtering
b) Frequency shift of the filter output by complex demodulation with e−jΩµk

c) Periodic spectrum after critical decimation by r = M = 16.

The normalized frequency axis f
′

s = fs
r

= fs
16

is denoted by Ω
′

= rΩ.

spectral relations are explained exemplarily by Fig. 4.5. In this example a passband
width of

∆Ω =
2π

16

and a center frequency of

Ωµ = Ω3 =
2π

16
· 3

are considered; Ωµ is an integer multiple of 2π/r. Then the frequency shift of the
bandpass signal vµ(k) by Ωµ is not explicitly necessary, as the decimation process
of (4.12) implicitly produces the required component in the baseband. This effect
can easily be explained in the time domain, if we take into consideration that the
complex exponential with frequency

Ωµ =
2π

M
µ

is periodic with length M/µ, where M is an integer multiple of r according to

M = m · r ; m ∈ IN.



80 4 Filter Banks for Spectral Analysis and Synthesis

Then the decimation process delivers the samples (see also Fig. 4.1-a)

xµ(k
′

) = xµ(k = k
′

r) = vµ(k
′

r) e−j 2π
m·r µ·k

′
·r (4.14-a)

= vµ(k
′

r) e−j 2π
m µ·k

′

. (4.14-b)

Two cases are of special interest:

a) Critical Decimation

r = M , i.e., m = 1 .

Equation (4.14-b) results in

xµ(k
′

) = vµ(k
′

r) .

In this case we can omit the demodulation process in Fig. 4.1-a, i.e., the multipli-
cation by e−jΩµk, and apply the decimation process immediately to vµ(k). This
procedure is called integer-band sampling.

b) Half-Critical Decimation

Due to non-ideal filter characteristics a decimation factor of

r = M/2 , i.e., m = 2 ,

is often chosen and (4.14-b) results in

xµ(k
′

) = vµ(k
′

r) e−jπµ·k
′

= vµ(k
′

r) · (−1)µ·k
′

. (4.15)

For channels with even-frequency index µ we get the same result as before. Explicit
demodulation (frequency shift) of vµ(k) is not necessary, the decimation process
can be applied to vµ(k). However, if the channel index µ is not even, the decimated

samples vµ(k
′

r) have to be multiplied by (−1)k
′

to obtain the same result as in

the case with explicit demodulation. At the reduced sampling rate f
′

s = fs/r
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this corresponds to a frequency shift by π, and the lowpass frequency spectra of
channels having odd indices are mirrored. This should be taken into consideration
if we process the decimated samples vµ(k

′

r) without the correction (4.15).

So far we have discussed the measurement of a single component xµ(k
′

) (fixed µ) of
the short-term spectrum. If we are interested in the complete spectrum we need M
parallel filters with different center frequencies Ωµ = 2πµ/M , µ = 0, 1, . . . , M − 1,
to achieve a uniform spectral resolution with

∆Ω =
2π

M
.

According to (4.1), the impulse responses of these bandpass filters are modulated
versions of the lowpass impulse response h(k), which is called the prototype im-
pulse response. The block diagram of the complete short-term spectrum analyzer
(analysis filter bank) with M bandpass impulse responses

hBP

µ (k) = h(k) ej 2π
M

µk, µ = 0, 1, . . . , M − 1 (4.16)

is shown in Fig. 4.6. In what follows, this block diagram will serve as a reference
model, although this implementation is obviously suboptimal with respect to the
computational effort:

• most of the filter output samples vµ(k) are discarded by decimation

• the impulse responses hBP
µ and hBP

M−µ are complex conjugates in pairs.

( ) M-1( )

µ( )

1( )

M-1( ')

µ( ')

1( ')

0( ')
0( )

M-1( )
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1 ( )

0 ( )

↓r

↓r

↓r

↓r

BP

BP
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BP

.

.

.

.

.

.

.

.

.

.

.

.

M-1( )
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.

.
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.

Figure 4.6: Short-term spectral analyzer with M parallel channels and decimation by r
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If the bandpasses are FIR (finite impulse response) filters, the computational effort
can significantly be reduced by calculating output samples only at the decimated
rate. Furthermore, if the input signal x(k) is real-valued, the output samples xµ(k

′

)

and xM−µ(k
′

) are complex conjugates of each other. We only need to calculate
the samples for µ = 0, 1, . . . , M/2. We will see later on that the computational
complexity can be further reduced by using the FFT algorithm in combination
with any FIR or IIR (infinite impulse response) prototype impulse response h(k)
(see Section 4.2).

Nevertheless, this reference system is well suited for studying the filter design
issues.

4.1.2 Prototype Filter Design for the Analysis Filter Bank

First of all we have to specify the desired spectral resolution, i.e., the number
M of channels, the passband width ∆Ω, and the stopband attenuation. We can
use any filter design method such as [Dehner 1979], [Parks et al. 1979], [Parks,
Burrus 1987], [Schüssler 1994], as available in MATLAB

� to approximate the desired
frequency response H(z = ejΩ) according to an error criterion (e.g., “Minimum
Mean Square”, “Min-Max”-, “Equi-Ripple”- or “Tschebyscheff”-behavior).

However, the overall frequency response of the filter bank has to be taken into
account as a second design criterion.

A reasonable design constraint is that the overall magnitude response should be
flat, or that in case of a linear-phase prototype filter with impulse response h(k)
the overall impulse response hA(k) of the analysis filter bank should be a mere
delay of k0 samples:

hA(k) =

M−1∑

µ=0

hBP

µ (k)
!
= δ(k − k0) . (4.17-a)

By inserting (4.16) we get

hA(k) =
M−1∑

µ=0

hBP

µ (k) (4.17-b)

=
M−1∑

µ=0

h(k) ej 2π
M µk (4.17-c)
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hA(k) = h(k) ·
M−1∑

µ=0

ej 2π
M µk (4.17-d)

= h(k) · M · p(M)(k) (4.17-e)

with

p(M)(k) =
1

M

M−1∑

µ=0

ej 2π
M µk

=

{
1 if k = λM, λ = 0,±1,±2, . . .
0 else .

(4.17-f)

As the bandpass responses are modulated versions of the prototype impulse re-
sponse h(k), the effective overall impulse response hA(k) has non-zero samples only
at k = λM . Therefore, an ideal overall response can be obtained if the prototype
lowpass filter with k0 = λ0 · M satisfies the condition

h(λM) =

{
1/M λ = λ0

0 λ �= λ0 .
(4.18)

These filters are also known as M -th band filters. The prototype impulse response
has equidistant zeros and a non-zero sample at time instant k0 = λ0 · M . The
samples h(k) with k �= λ · M have no direct influence on the effective overall
frequency response. They can be designed to optimize the frequency selectivity of
the filter bank.

The design criterion (4.18) can easily be met if we use the “modified Fourier ap-
proximation” method, e.g., [Mitra 1998]. The prototype impulse response of odd
length L, e.g., L = 4 · M + 1, is obtained by multiplying the non-causal impulse
response hLP (k) of the ideal lowpass filter with cutoff frequency Ωc = 2π/M by
any window w(k) of finite length L centered symmetrically around k = 0. Finally,
the impulse response is made causal by delaying the product hLP (k) · w(k) by
k0 = (L − 1)/2 samples:

h(k) = hLP (k − k0) · w(k − k0) .
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1

δ  · 

Figure 4.7: Design criterion for a perfect overall frequency response hA(k)
a) Prototype impulse response h(k) = hLP (k − k0) ·w(k − k0):

L = 4 · M + 1, M = 4, Hamming window w(k)
b) Decimation function p(M)(k)
c) Effective overall impulse response hA(k)

A design example is illustrated in Fig. 4.7.

If the impulse response h(k) of the prototype lowpass filter of order 4M (length
L = 4M + 1) follows (4.18), the effective overall impulse response hA(k) corre-
sponds to a pure delay of k0 = 2M samples.

4.1.3 Short-Term Spectral Synthesizer

In some applications, such as noise suppression, transform, or subband coding, we
need to recover a time domain signal y(k) from the samples xµ(k

′

) of the short-

term spectrum. For any frequency index µ, the samples xµ(k
′

) are to be considered
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Figure 4.8: Short-term spectral synthesizer with M parallel channels

as decimated subband signals associated with center frequency Ωµ. If we assume

a decimation factor r = M/m, the subband signals xµ(k
′

) can be represented as

lowpass signals at the reduced sampling rate f
′

s = fs/r. As indicated in Fig. 4.8,
the process of reconstruction or resynthesis consists of the following steps:

1. Upsampling from f
′

s to fs = f
′

s ·r by filling in r−1 zeros in between adjacent
samples of xµ(k

′

).

2. Interpolation by applying a filter with impulse response g(k).

3. Frequency shift of the interpolated lowpass signal yµ(k) by Ωµ (modulation).

4. Superposition of the interpolated bandpass signals yµ(k).

The interpolation is achieved by applying the samples x̃µ(k) to a lowpass filter with
(two-sided) passband width ∆Ω and impulse response g(k). The spectral relations
are described by Fig. 4.9 (in case of an ideal lowpass g(k)).
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Figure 4.9: Spectral relations of short-term spectral synthesis
a) Magnitude spectrum of subband signal x̃µ(k)
b) Magnitude frequency response of the interpolator g(k)
c) Magnitude spectrum of the interpolated subband signal yµ(k)
d) y(k): superposition of the frequency-shifted signals yµ(k)

4.1.4 Short-Term Spectral Analysis and Synthesis

If the subband signals are not modified at all, the signal x(k) can be reconstructed
perfectly at the output. As some algorithmic delay caused by filter operations
cannot be avoided, it should be a delayed version of the input signal

y(k)
!
= x(k − k0) .

The overall model of the spectral analysis–synthesis system without any modifica-
tion of the subband signals is shown in Fig. 4.10-a. The more detailed sub-channel
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Figure 4.10: Reference model of the analysis-synthesis system
a) Overall system
b) Sub-channel model

model for the contribution yµ(k) to the reconstructed output signal y(k) is illus-
trated in Fig. 4.10-b. With the spectral representation of the intermediate signal
xµ(k)

Xµ(ejΩ) = X(ej(Ω+ 2π
M µ)) · HBP

µ (ej(Ω+ 2π
M µ)) (4.19-a)

= X(ej(Ω+ 2π
M µ)) · H(ejΩ) (4.19-b)

we get the baseband contribution Y µ(ejΩ) of channel µ under the assumptions
that

• the decimation factor r is chosen according to the bandwidth ∆Ω of the
prototype lowpass filter

• the stopband attenuation of h(k) is sufficiently high so that any aliasing due
to the decimation process can be neglected

• the interpolation filter g(k) is designed properly, i.e., the spectral repetitions
due to the zero filling process are sufficiently suppressed

as follows (see also, e.g., [Vaidyanathan 1993]):

Y µ(ejΩ) =
1

r
· X̃µ(ejΩ) · G(ejΩ) (4.20-a)

=
1

r
· X(ej(Ω+ 2π

M µ)) · H(ejΩ) · G(ejΩ) (4.20-b)
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and finally the spectrum of the output signal (cf. Fig. 4.9 and Fig. 4.10)

Y (ejΩ) =

M−1∑

µ=0

Yµ(ejΩ) (4.21-a)

=

M−1∑

µ=0

Y µ(ej(Ω − 2π
M µ)) (4.21-b)

=
1

r
·

M−1∑

µ=0

X(ejΩ) · H(ej(Ω − 2π
M µ)) · G(ej(Ω − 2π

M µ)) (4.21-c)

= X(ejΩ) · 1

r
·

M−1∑

µ=0

H(ej(Ω − 2π
M µ)) · G(ej(Ω − 2π

M µ)) (4.21-d)

= X(ejΩ) · HAS(ejΩ) . (4.21-e)

The frequency response HAS(ejΩ) denotes the effective overall response of the
short-term analysis–synthesis system.

4.1.5 Prototype Filter Design for the Analysis–Synthesis
Filter Bank

From (4.21-d) a criterion for perfect reconstruction (neglecting aliasing and inter-
polation errors but allowing a delay of k0 samples) can be derived,

HAS(ejΩ) =
1

r
·

M−1∑

µ=0

H(ej(Ω − 2π
M µ)) · G(ej(Ω − 2π

M µ)) (4.22-a)

!
= e−jk0·Ω , (4.22-b)

which corresponds to

hAS
!
= δ(k − k0) (4.23)

in the time domain.

Equation (4.22-a) can be interpreted as the superposition of M frequency responses

Qµ(ejΩ) = H(ej(Ω − 2π
M µ)) · G(ej(Ω − 2π

M µ))
!
= Q(ej(Ω − 2π

M µ)) , (4.24)

which are weighted by the constant factor 1/r. The corresponding time domain
responses

qµ(k) = q(k) · ej 2π
M µk (4.25)
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Figure 4.11: Effective prototype impulse response of the analysis–synthesis system

are modulated versions of the resulting overall prototype impulse response q(k),
which is the convolution of h(k) and g(k) as indicated in Fig. 4.11. Finally, the
overall impulse response hAS(k) of the analysis–synthesis system should be a delay
of k0 samples. In analogy to (4.17-a) we get

hAS(k) =
1

r
·

M−1∑

µ=0

qµ(k) (4.26-a)

= q(k) · 1

r
·

M−1∑

µ=0

ej 2π
M µk (4.26-b)

= q(k) · 1

r
· M · p(M)(k) (4.26-c)

!
= δ(k − k0) . (4.26-d)

According to (4.26-c), the effective overall impulse response hAS(k) has non-zero
samples only at times k = λM . Therefore, an ideal overall response can be obtained
if q(k) with k0 = λ0 · M satisfies the following condition:

q(λM) =

{
r/M λ = λ0

0 λ �= λ0 .
(4.27)

The convolutional product q(k) = h(k) ∗ g(k) should have equidistant zeros and
a non-zero sample at time instant k0 , i.e., q(k) should be the impulse response of
an M -th band filter. The samples q(k) with k �= λ · M have no direct influence
on the effective overall frequency response. They can be chosen to optimize the
frequency selectivity ∆Ω of the filter bank.

The impulse response q(k) can easily be designed, e.g., by the“modified Fourier ap-
proximation”method as described in Section 4.1.1. However, the decomposition of
q(k) into h(k) and g(k) is not trivial, especially if identical linear-phase prototypes
h(k) = g(k) are used. In this case the product transfer function Q(z) should have
double zeros only. Different exact and approximate solutions have been proposed
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in [Wackersreuther 1985], [Wackersreuther 1986], [Wackersreuther 1987], [Nguyen
1994], [Kliewer 1996]; see also [Vaidyanathan 1993].

An alternative method is to split Q(z) into a minimum-phase response h(k) and
a maximum-phase component g(k) (or vice versa) by cepstral domain techniques
as proposed in [Boite, Leich 1981].

4.1.6 Filter Bank Interpretation of the DFT

The discrete Fourier transform (DFT) may be interpreted as a special case of the
short-term spectral analyzer of Fig. 4.1. We consider the calculation of the DFT
of a block of M samples from an infinite sequence x(k). M samples are extracted
from x(k) by applying a sliding window function w(λ), λ = 0, 1, . . . , M − 1, of
finite length so that the most recent sample x(k) is weighted by w(M −1) and the
oldest sample x(k − M + 1) by w(0).

The input sequence to the DFT at time k is defined as

x(k − M + 1), x(k − M + 2), . . . , x(k − M + 1 + λ), . . . , x(k)

and the µ-th DFT coefficient Xµ(k) at time k is given by

Xµ(k) =

M−1∑

λ = 0

x(k − M + 1 + λ) w(λ) e−j 2π
M µλ . (4.28-a)

For the sake of compatibility with the reference configuration of Fig. 4.6, we select a
window function which is the time-reversed version of a prototype lowpass impulse
response h(k) of length M :

w(λ) = h(M − 1 − λ) ; λ = 0, 1, . . . , M − 1 (4.28-b)

and get

Xµ(k) =
M−1∑

λ = 0

x(k − M + 1 + λ) h(M − 1 − λ) e−j 2π
M µλ . (4.28-c)

With the substitution

k − M + 1 + λ = κ, i.e., M − 1 − λ = k − κ and λ = κ − k + M − 1
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we obtain

Xµ(k) =
k∑

κ=k−M+1

x(κ) h(k − κ) e−j 2π
M µ(κ−k+M−1) (4.28-d)

= ej 2π
M µ(k+1) ·

∞∑

κ=−∞

x(κ) h(k − κ) e−j 2π
M µκ (4.28-e)

= ej 2π
M µ(k+1) · xµ(k) . (4.28-f)

In (4.28-d) we can replace the explicit summation limits by ±∞ as the window
h(k) implicitly performs the necessary limitation. Thus, the final expression for
Xµ(k) is – except for the modulation factor (whose magnitude is 1) – identical to
the intermediate signal xµ(k) of the bandpass or lowpass short-time analyzer of
Fig. 4.1 for

Ωµ =
2π

M
· µ and hLP (k) = h(k)

(see also (4.2-a) and (4.2-c)). Thus, the result

Xµ(k) = DFT
{

x(κ) h(k − κ)
}

; µ = 0, 1, . . . , M − 1

of the DFT of any windowed signal segment may be interpreted in terms of modu-
lation, filtering, and decimation. At time instant k we obtain a set of (modulated)
short-term spectral values

Xµ(k) = ej 2π
M µ(k+1) · xµ(k) , (4.29)

where k determines the position of the sliding window (see also Fig. 4.2). If the
position of the window is shifted between successive DFT calculations by r = M ,
successive DFT calculations do not overlap in time. The “DFT-observation in-
stances” are

k = k
′ · M − 1 , k

′ ∈ IN.

In this case, which corresponds to critical decimation, the modulation factor van-
ishes

Xµ(k = k
′ · M − 1) = xµ(k = k

′ · M − 1) = xµ(k
′

) (4.30)

and the DFT delivers – with respect to magnitude and phase – exactly the same
samples as the short-term analyzers of Fig. 4.1.

Note that in (4.30) the decimation grid has a time shift of ∆k = −1, i.e., k = −1
and k = k

′ · M − 1 are on the decimation grid, but neither k = 0 nor k = k
′ · M .



92 4 Filter Banks for Spectral Analysis and Synthesis

If the DFT calculation overlaps, e.g., by half a block length (half-critical decima-
tion, r = M/2), the output samples are calculated at the time instances

k = k
′ · M/2 − 1 , k

′ ∈ ZZ .

Then the modulation factor has to be taken into consideration as follows:

Xµ(k = k
′ · M/2 − 1) = ejπµk

′

· xµ(k = k
′ · M/2 − 1)

= (−1)µk
′

· xµ(k = k
′ · M/2 − 1) ,

if we are interested in the samples xµ(k
′

) according to Fig. 4.1. In both cases,
r = M and r = M/2, the samples are produced by the DFT on a decimation grid
k

′ · r − 1, which is displaced from the origin (k = 0) by one sample interval. A
block diagram of the windowed DFT is given in Fig. 4.12. The samples x(k) are
fed into a delay chain (delay operator z−1) and the delayed samples x(k − λ) are
multiplied by the window coefficients w(M − 1 − λ) = h(λ). It is obvious that
the delay chain has to be operated at the original sampling rate fs, whereas the
window multiplications and the DFT calculations can be carried out at the reduced
sampling rate f

′

s = fs/r if decimation by r is applied to the output.

( )

( )

µ( )

X0( )

-λ

z -1

DFT

λ
µ

λ=0
µ=0

λ

µ

Figure 4.12: Implementation of the sliding window DFT



4.2 Polyphase Network Filter Banks 93

4.2 Polyphase Network Filter Banks

The polyphase network filter bank (PPN filter bank) is a very efficient implemen-
tation of the short-term spectral analyzer and the short-term spectral synthesizer
of Sections 4.1.1 and 4.1.3, respectively. The computational complexity of the two
systems given in Fig. 4.6 and Fig. 4.8 can be reduced significantly.

The key points are:

1. The output samples of the analyzer (Fig. 4.6) are calculated only at the
reduced sampling rate f

′

s = fs/r.

2. At each (decimated) time instant k
′

the complete set of output samples
xµ(k

′

), µ = 0, 1 . . . , M − 1, can be obtained by a single FFT of length M .

3. The output of the synthesizer (Fig. 4.8) can be calculated using one FFT of
length M per r samples, which performs interpolation and spectral transla-
tion in combination with the impulse response g(k).

If FIR prototype impulse responses h(k) and g(k) are used, there are two equivalent
implementations:

A: overlapping of windowed segments

B: polyphase filtering.

Concept B is the more general one, as it can be applied to FIR as well as to IIR
prototype impulse responses. The term polyphase network (PPN) is widely used in
the literature (e.g., [Bellanger et al. 1976], [Vary 1979], [Vary, Heute 1980], [Vary,
Heute 1981], [Vaidyanathan 1990], [Vaidyanathan 1993]) because different phase
characteristics of decimated subsequences and partial impulse responses can be
identified, which play an important role.

4.2.1 PPN Analysis Filter Bank

In this section the two equivalent approaches A and B will be derived from the
reference short-term spectral analyzer of Fig. 4.1 using an FIR prototype impulse
response hLP (k) = h(k) of length L (k = 0, 1, . . . , L − 1), where L may be larger
than M , the number of channels. For reasons of simplicity, we define

L = N · M ; N ∈ IN (4.31)

and append zero samples if the length of h(k) is not an integer multiple of M .
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Approach A: Overlapping of Windowed Segments

The lowpass signal xµ(k) of the µ-th channel before sampling rate decimation
can be formulated equivalently either by bandpass filtering and complex post-
modulation (Fig. 4.1-a, Eq. (4.2-a)) or by complex pre-modulation and lowpass
filtering (Fig. 4.1-b, Eq. (4.2-c)) as

xµ(k) = e−j 2π
M µk ·

∞∑

κ=−∞

x(k − κ) · ej 2π
M µκ · h(κ) (4.32-a)

=

∞∑

κ=−∞

x(κ) · e−j 2π
M µκ · h(k − κ) . (4.32-b)

Due to the length L = N · M of the FIR impulse response h(k), the summation
index κ in (4.32-a) is limited to the range

κ = 0, 1, . . . , N · M − 1 .

The key to the derivation of the overlap structure A consists in the index substi-
tution

κ = ν · M + λ ; λ = 0, 1, . . . , M − 1

ν = 0, 1, . . . , N − 1 .

Thus, (4.32-a) can be rearranged as follows:

xµ(k) = e−j 2π
M µk ·

N−1∑

ν=0

M−1∑

λ=0

x(k − νM − λ) · h(νM + λ) · ej 2π
M µλ (4.32-c)

= e−j 2π
M µk ·

M−1∑

λ=0

(
N−1∑

ν=0

x(k − νM − λ) · h(νM + λ)

)

︸ ︷︷ ︸
uλ(k)

ej 2π
M µλ (4.32-d)

= e−j 2π
M µk ·

M−1∑

λ=0

uλ(k) · ej 2π
M µλ (4.32-e)

= e−j 2π
M µk ·

[
M−1∑

λ=0

uλ(k) · e−j 2π
M µλ

]∗

(4.32-f)

= e−j 2π
M µk · [DFT{uλ(k)}]∗ (4.32-g)

= e−j 2π
M µk · [Uµ(k)]

∗
(4.32-h)

= Wµk
M · [Uµ(k)]

∗
(4.32-i)
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where [..]∗ denotes the complex conjugate operation,

Wµk
M = e−j 2π

M µk (4.33)

are the complex post-modulation terms, and

uλ(k) =
N−1∑

ν=0

x(k − νM − λ) · h(νM + λ) ; λ = 0, 1, . . . , M − 1 (4.34)

is the real-valued input sequence to the DFT.

The resulting expression (4.32-g) looks like the DFT of the intermediate sequence
uλ(k), λ = 0, . . . , M − 1, of length M . As the sequence uλ(k) is real-valued, we
may use either the DFT or the inverse DFT. In the latter case a scaling factor of
1/M has to be taken into account. Here we prefer the DFT for the analysis part
of the filter bank.

In conclusion, the complete set of samples xµ(k), µ = 0, 1, . . . , M − 1, can be
calculated very efficiently for any FIR prototype impulse response h(κ) of length
L by applying the FFT algorithm to the sequence uλ(k), λ = 0, 1, . . . , M−1, at the
fixed but arbitrary time instant k. If we are interested not only in the magnitude
samples |Xµ(k)|, but also in the magnitude and phase or real and imaginary parts

of Xµ(k), respectively, then the post-modulation by Wµk
M has to be carried out

according to (4.32-i).

In a pre-processing step the intermediate sequence uλ according to (4.34) has to be
determined as illustrated in Fig. 4.13 by overlapping N windowed segments, each

1

κ -κ

κ

λ λ λ λ

Figure 4.13: Overlapping of windowed segments; example M = 8, N = 4
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Figure 4.14: Polyphase network (PPN) filter bank according to approach A;
example L = N · M = 2M ; [...]∗ denotes complex conjugation

of length M (ν = 0, 1, . . . , N−1). The complete pre-processing step requires M ·N
multiplications and additions which are not more than the number of operations
needed to calculate one output sample of a single lowpass filter of length L = N ·M .

The corresponding block diagram is shown in Fig. 4.14 for the special case
L = N · M = 2M .

So far we have not considered the fact that the narrowband signals xµ(k) may
be represented at a reduced sampling rate. In the algorithm of Fig. 4.14 the pre-
processing step and the DFT are carried out at each time instant k and the sample
rate is decimated afterwards by r. However, the output samples can be calculated
immediately at the reduced sampling rate, i.e., the pre-processing step, the DFT,
the“[...]∗-complex conjugation”, and the post-modulation has to be calculated only
at the decimated time instances, e.g., at

k = k
′ · r , (4.35)

while the delay chain at the input has to be operated at the original sampling rate.
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The two decimation cases of special interest are critical decimation (r = M) and
half-critical decimation (r = M

2 ), with the post-modulation factors

Wµ·k
′
·r

M = e−j 2π
M µk

′
r =

{
1 r = M

(−1)µk
′

r = M/2 .
(4.36)

Note that in Fig. 4.14 the order of the input index λ is reversed in comparison to
Fig. 4.12. This difference is due to the fact that the decimation grid with k = k

′ · r
is not displaced with respect to the origin and the simple post-modulation factors
of (4.36) are desired here. If we considered the expression (4.32-i) for the decimated
instances k = k

′ · r − 1 a post-modulation term

e−j 2π
M µ(k

′
r−1) = Wµk

′
·r

M · e+j 2π
M µ

would result. The combined effect of the second factor e+j 2π
M µ with the “[...]∗-

complex conjugation” is equivalent to a cyclic shift and an inversion of the order
of the DFT input sequence uλ(k). If this is taken into consideration, it can easily
be shown that for L = M the two block diagrams of Fig. 4.14 and Fig. 4.12 are
equivalent as given by (4.29).

In any case the output samples xµ(k
′

) are exactly the same as those of the reference
structure of Fig. 4.1.

Approach B: Polyphase Filtering

The second approach is an alternative interpretation of (4.34) in terms of con-
volution instead of overlapping weighted segments. This allows us to use an FIR
or even an IIR prototype lowpass filter. For an FIR prototype filter the actual
difference lies in the organization of the two nested loops (ν and λ) within the
pre-processing step.

The alternative implementation B consists of reorganizing the block diagram of
Fig. 4.14 and the key equation (4.32) by taking the decimation process into ac-
count.

We introduce M subsequences

x̃λ(k) =

{
x(k) k = i · M + λ

0 else
λ = 0, 1, . . . , M − 1 (4.37)

decimated and upsampled by M and furthermore M partial impulse responses

h̃λ(k) =

{
h(k) k = i · r − λ

0 else
λ = 0, 1, . . . , M − 1 , (4.38)

decimated and upsampled by r which are defined on decimation grids with different
displacements in time by ±λ. There are M partial impulse responses; however, for
r = M/2 only M/2 responses are different (h̃M/2+i = h̃i, i = 0, 1, . . . , M/2).
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)

)

)

) )

)

Figure 4.15: Polyphase filtering: convolution of subsequences
with partial impulse responses
a) Block diagram
b) Example M = 8, λ = 2, r = M

Each intermediate sequence ũλ(k) can be interpreted for any fixed index λ as a time
sequence, i.e., as convolution of the subsequence x̃λ(k) with the partial impulse
response h̃λ(k)

ũλ(k) = x̃λ(k) ∗ h̃λ(k)

{
�= 0 k = k

′ · r
= 0 else .

(4.39)

For the special case r = M , Fig. 4.15 illustrates exemplarily that the intermediate
signals ũλ(k) take non-zero values only at the decimation instances

k = k
′ · M ; k

′ ∈ ZZ . (4.40)

Assuming a causal signal x(k) and a causal impulse response h(k), the first non-
zero value of x̃λ(k) is at k = λ and the first non-zero sample of h̃λ(k) is at
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Figure 4.16: Basic polyphase network (PPN) filter bank according to approach B;
example L = N · M = 2M, r = M

k = M −λ (λ = 1, . . . , M−1) or k = 0 (λ = 0). As a result all partial convolutions
produce non-zero output signals ũλ(k) on the same decimation time grid

k = k
′ · M . (4.41)

Thus, the partial filters perform different phase shifts, this is why the term
polyphase filtering was introduced ([Bellanger et al. 1976]).

For the special case r = M and L = 2M , the block diagram of approach B is
shown in Fig. 4.16. In comparison to Fig. 4.14 only the pre-processing has been
reorganized, taking the decimation by r = M as well as the post-modulation terms

Wµ·k
′
·M

M = 1 (see also (4.36)) into account.

Because of (4.37) and (4.38) the zero samples of h̃λ(k), x̃λ(k), and ũλ(k) need not
be processed. This is illustrated in Fig. 4.17. The decimation by r = M takes place
at the taps of the delay line with unit delays T = 1/fs, whereas the partial filters
and the DFT run at the reduced sample rate f

′

s = fs/M .

In the general case with decimation by r, there are r − 1 intermediate zero coef-
ficients between two non-zero coefficients of h̃λ(k) and M − 1 intermediate zeros
between the samples of the subsequences x̃λ(k). As the input samples to the par-
tial filters, running at the reduced sample rate, are needed at the time instances
k = k

′ · r, we first have to decimate the delayed versions of the input signal by
r = M and then to upsample them by m = M/r.
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↓
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Figure 4.17: Efficient implementation of the polyphase network (PPN) filter bank

with partial filters running at the reduced sampling rate f
′

s = fs/M ;
example L = N · M = 2M, r = M

The solution for the general case producing output samples xµ(k
′

) at the reduced

sampling rate f
′

s = fs/r, with r = M
m

and any prototype lowpass filter with im-
pulse response h(k), is shown in Fig. 4.18. The decimated partial impulse responses
are defined by

hλ(k
′

) = h(k
′ · r − λ) ; λ = 0, 1, . . . , M − 1 . (4.42)

Usually half-critical decimation r = M/2 is chosen to avoid spectral aliasing in the
subband signals xµ(k

′

). The decimated partial filters hλ(k
′

) and the DFT have
to be computed at the reduced sampling rate fs/r only. For r = M/2 the signals
x̃λ(k

′ · r) are obtained by decimation of the delayed versions of x(k) by M and
subsequent upsampling by 2 to achieve the reduced sampling rate. Therefore, we
have M/r − 1 = 1 zero sample in between two decimated samples.

The PPN approach of Fig. 4.18 may be interpreted as a generalization of the win-
dowed DFT (Fig. 4.12) so that the window multiplication in Fig. 4.12 is replaced
by a convolution (polyphase filter) with the decimated partial impulse responses
hλ(k

′

).

If the prototype lowpass impulse response is of length L = M , both systems are
identical according to (4.29).

The main advantage of the PPN concept is that the spectral selectivity, i.e., the
frequency response H(ejΩ), can be designed independently of the number M of
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Figure 4.18: General solution: polyphase network (PPN) filter bank with partial filters

hλ(k
′

) running at the reduced sampling rate fs/r; r = M
m

channels and that even IIR prototype filters are possible (e.g., [Vary 1979]). The
discussion of the latter possibility is beyond the scope of this book.

Finally, it should be noted that instead of the DFT the discrete cosine transform
(DCT) or some generalized versions (GDFT, GDCT) (e.g., [Crochiere, Rabiner
1983], [Vary et al. 1998]) can be used.

With the generalized DCT the individual bandpass impulse responses can be for-
mulated as

hBP

µ (k) = h(k) cos
( π

M
(µ + µ0)(k + k0)

)
; (4.43)

µ = 0, 1, . . .M − 1; µ0, k0 ∈ {0, 1/2} .

4.2.2 PPN Synthesis Filter Bank

The short-term spectral synthesizer of Fig. 4.8 can be implemented very efficiently
using the inverse discrete Fourier transform (IDFT) and a polyphase network
(PPN) as shown in Fig. 4.19. The PPN consists of partial impulse responses gλ(k

′

),
which are obtained by subsampling the impulse response g(k) of the interpolation
filter of the reference structure given in Fig. 4.8. The impulse response g(k) can
also be regarded as the prototype impulse response of the synthesis filter bank.

The structure of this efficient PPN filter bank can be derived straightforwardly
from the reference synthesizer of Fig. 4.8. The output signal y(k) is obtained as
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Figure 4.19: Basic structure of the polyphase synthesis filter bank:
example r = M, L = N · M = 2M , convolution of upsampled subsequences
ṽλ(k) �= 0 only for k = k

′

·M with partial impulse responses of length N = 2

the superposition of the interpolated and modulated subband signals:

y(k) =
M−1∑

µ=0

yµ(k) (4.44-a)

=
M−1∑

µ=0

yµ(k) · ej 2π
M µk (4.44-b)

=

M−1∑

µ=0

k∑

κ=0

x̃µ(κ) · g(k − κ) · ej 2π
M µk , (4.44-c)

with the causal FIR g(k) of length L, where L might be larger than M .

The key points in the derivation of the structure of the PPN synthesis filter bank
of Fig. 4.19 from the reference structure of Fig. 4.8 are

1. substitution k = i · M + λ ; λ ∈ {0, 1, . . . , M − 1} ; i ∈ ZZ

2. exchange of the order of the two summations in (4.44-c).

Due to the periodicity of the complex exponential function with

e+j 2π
M µ(i·M+λ) = e+j 2π

M µλ
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we obtain

y(i · M + λ) =
i·M+λ∑

κ=0

(
M−1∑

µ=0

x̃µ(κ) · e+j 2π
M µλ

)

︸ ︷︷ ︸
ṽλ(κ)

·g(i · M + λ − κ). (4.44-d)

For each fixed but arbitrary value of κ, the expression inside the brackets is the
IDFT of the complex samples x̃µ(κ), µ = 0, 1, . . . , M − 1. If the IDFT routine
includes a scaling factor of 1/M , this can be corrected by subsequent multiplication
with M according to

ṽλ(κ) =
M−1∑

µ=0

x̃µ(κ) · e+j 2π
M µλ

= M · IDFT {x̃µ(κ)} ; κ = fixed .

It should be noted that x̃µ(κ) is an upsampled sequence with (in the general
case) r − 1 intermediate zero samples between each pair of the decimated samples
according to (4.8). The sequence ṽλ(κ) has the same temporal structure

ṽλ(κ)

{
�= 0 κ = κ

′ · r
= 0 else .

(4.44-e)

Finally, we get for each fixed index λ = 0, 1, . . . , M −1 and variable time or frame
index i

y(i · M + λ) =

i·M+λ∑

κ=0

ṽλ(κ) · g(i · M + λ − κ) (4.44-f)

= ṽλ(κ) ∗ g̃λ(κ) . (4.44-g)

At the time instances k = i · M + λ the output sample y(k) is determined solely
by the sequence ṽλ(κ) filtered with the partial impulse response

g̃λ(κ) =

{
g(κ) κ = κ

′ · r + λ
0 else

λ = 0, 1, . . . , M − 1, (4.45)

i.e., a decimated and upsampled version of the interpolator impulse response g(k).

Therefore, we only need to deal with the decimated sequences xµ(κ
′

) and vλ(κ
′

)
and to carry out the IDFT every r-th sampling interval.

The corresponding block diagram is shown for the special case r = M and L = 2M
in Fig. 4.19. For the sake of compatibility with (4.44-f), the input sequences ṽλ(k)
to the partial filters are obtained here from the sequences vλ(k

′

) by upsampling.
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However, as ṽλ(k) as well as the partial impulse g̃λ(k) responses have r − 1 zero
samples between each pair of non-zero samples, only every r-th output sample of
each of the partial filters can take non-zero values according to

w̃λ(κ)

{
�= 0 κ = κ

′ · r + λ
= 0 else .

(4.46)

The superposition of the filter output samples w̃λ(k) of Fig. 4.19 can be performed
by the superposition

y(k) =
M−1∑
λ=0

w̃λ(k) ; any k

= w̃λ(k) ; k = i · M + λ .

(4.47)

Furthermore, the polyphase filters can also be run at the decimated sampling rate
and upsampling of vλ(k

′

) is not required. This leads to the final and efficient
solution as given in Fig. 4.20, with

gλ(k
′

) = M · g(k
′ · r + λ) (4.48)

Gλ(z) = M ·
∞∑

k
′
=0

gλ(k
′

) · z−k
′

. (4.49)

↑λ

↑

↑ M-1(

λ λλ

M-1( ')

λ

λ

~

~

~

( ')

')

Figure 4.20: General solution of the efficient polyphase synthesis filter bank:
DFT and partial filters are running at the reduced sampling rate fs/r
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Note that in comparison to Fig. 4.19 the scale factor M is now applied by scaling
the partial filters for reasons of simplicity. The delays z−λ of the individual filter
branches are provided by the output delay chain.

The chain of delay elements and adders at the output performs the superposition
of the samples w̃λ(k) according to (4.47).

The conventional IDFT synthesis turns out to be a special case of the structure of
Fig. 4.20 if the interpolator has rectangular impulse response

g(k) =

{
1 0 ≤ k < L − 1
0 else .

(4.50)

Note that in contrast to the conventional analysis and synthesis by DFT and IDFT,
the polyphase concept allows us with little additional complexity to improve sig-
nificantly the spectral selectivity and the interpolation task. In the analysis stage,
each of the M window multiplications actually has to be replaced by a short con-
volution with only N = L/M coefficients hλ(k

′

). The typical parameter selection
is N = 2, . . . , 4. In the synthesis stage we need L/r multiplications for each of the
partial filters gλ(k

′

). The design criteria and procedures for the prototype lowpass
h(k) and the interpolator g(k) as described in Sections 4.1.1 and 4.1.4 apply to
the PPN analysis and PPN synthesis filter bank without any modification.

4.3 Quadrature Mirror Filter Banks

The objective of the QMF approach is the spectral decomposition of the signal
x(k) into M = 2K real-valued subband signals with maximum sampling rate dec-
imation as well as the reconstruction (synthesis) of the signal from the subband
signals. The analysis and the synthesis filter banks are based on special half-band
filters which are called quadrature mirror filters (QMFs) (e.g., [Esteban, Galand
1977], [Vaidyanathan 1993]). These filters are used in a tree structure with deci-
mation/interpolation by r = 2 in each stage of the tree.

4.3.1 Analysis–Synthesis Filter Bank

We first consider the special case with M = 2, which is the basic block of the tree
structure.

The input signal is split by a lowpass filter with impulse response hLP (k) and a
complementary highpass filter with impulse response hHP (k) into a lowpass signal
x0(k) and a highpass signal x1(k). As the lowpass and highpass filters are half-band
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Figure 4.21: QMF analysis–synthesis bank
a) Block diagram of basic building block M = 2
b) Simplified block diagram
c) Schematic of frequency responses

filters, the sample rate can be decimated by a factor r = 2 (see Fig. 4.21):

x0(k
′

) = x0(2 · k′

) ; x1(k
′

) = x1(2 · k′

+ ρ) ; ρ ∈ {0, 1} . (4.51)

It is assumed that in the lowpass channel the even-numbered samples are selected
and in the highpass channel either the even samples (ρ = 0) or the odd samples
(ρ = 1) .

In the synthesis building block the subband signals are upsampled by a factor 2
(insertion of zero samples) and interpolated by lowpass and highpass filters with
impulse responses gLP (k) and gHP (k). The interpolated signals w0(k) and w1(k)
are added. As the filters are non-ideal, aliasing cannot be avoided (see Fig. 4.21-c).
However, the disturbing aliasing components can be eliminated within the synthe-
sis process as shown below.

With the basic blocks of Fig. 4.21-b a tree-structured analysis–synthesis filter bank
can be constructed as illustrated in Fig. 4.22 for M = 2K = 8. The input signal
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(k) ( )

Figure 4.22: Tree-structured QMF analysis–synthesis bank, N = 2K = 8 channels

x(k) is decomposed into M = 8 subband signals by K = 3 stages. In each stage
the sampling rate is decimated by r = 2 .

4.3.2 Compensation of Aliasing and Signal Reconstruction

In what follows the analysis–synthesis blocks of Fig. 4.21-a will be discussed in
detail.

We assume a lowpass filter with impulse response hLP (k) = h(k) and transfer
function HLP (z) = H(z). Furthermore, the highpass filter is obtained from the
lowpass filter by modulation

hHP (k) = e±jπk · hLP (k) = (−1)k · h(k) (4.52-a)

HHP (ejΩ) = H(e+j(Ω∓π)) (4.52-b)

HHP (z) = H(−z) . (4.52-c)

The two subband signals x0(k) and x1(k) are described in the z-domain according
to Fig. 4.21-a as

X0(z) = X(z) · H(z) (4.53)

X1(z) = X(z) · H(−z) . (4.54)

The sampling rate decimation with subsequent upsampling by r = 2 can be formu-
lated analytically by multiplication of x0(k) and x1(k) with a sampling function
in the time domain:

x̃0(k) = x0(k) · p(2)(k − ρ) ; ρ ∈ {0, 1} (4.55-a)

x̃1(k) = x1(k) · p(2)(k − ρ) . (4.55-b)
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The decimation in the two channels can be in phase (ρ = 0 or ρ = 1 in both
channels) or out of phase (ρ = 0 in channel 0 and ρ = 1 in channel 1, or vice versa)
with

p(2)(k − ρ) =
1

2

[
1 + (−1)ρ · (−1)k

]
; ρ ∈ {0, 1} . (4.56)

Because (−1)k = e+jπk the z-domain representation of (4.55-a) and (4.55-b) can
easily be obtained by using the modulation theorem. For reasons of simplicity we
assume that the lowpass signal x0(k) is decimated by p(2)(k) and the highpass
signal x1(k) either by applying p(2)(k) or p(2)(k − 1):

X̃0(z) =
1

2

[
X0(z) + X0(−z)

]
(4.57-a)

X̃1(z) =
1

2

[
X1(z) + (−1)ρ · X1(−z)

]
. (4.57-b)

The schematics of the frequency characteristics are given in Fig. 4.23. Note that
after decimation the frequency axis has been normalized to Ω

′

= r ·Ω = 2 ·Ω and
that the highpass signal occurs in a mirrored version in the baseband 0 ≤ Ω

′ ≤ π.

Within the synthesis building block the two signals x̃0(k) and x̃1(k) are interpo-
lated using the filters with the z-transforms GLP (z) and GHP (z) to obtain the
intermediate signals w0(k) and w1(k) at the original sampling rate.

The reconstructed output signal y(k) is finally given in the z-domain by

Y (z) = W0(z) + W1(z) (4.58-a)

= GLP (z) · X̃0(z) + GHP (z) · X̃1(z) (4.58-b)

= GLP (z) · 1

2

[
X(z)H(z) + X(−z)H(−z)

]

+ GHP (z) · 1

2

[
X(z)H(−z) + (−1)ρ · X(−z)H(z)

]
(4.58-c)

=
1

2
X(z) ·

[
GLP (z)H(z) + GHP (z)H(−z)

]

+
1

2
X(−z) ·

[
GLP (z)H(−z) + (−1)ρ · GHP (z)H(z)

]
. (4.58-d)

The first part of (4.58-d) constitutes the desired signal and the second part the
disturbing aliasing component

(
X(−z)=̂X(ej(Ω−π))

)
. The aliasing component can

be compensated as follows:
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Figure 4.23: Spectral relations in the QMF analysis block
a) Block diagram
b) Schematics of spectra

(Ω
′

= normalized frequency after decimation)
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a) Aliasing compensation for ρ = 0

The requirement

GLP (z) · H(−z) + GHP (z) · H(z)
!
= 0 (4.59)

can be fulfilled if

GLP (z) = H(z) and GHP (z) = −H(−z) = −GLP (−z) . (4.60-a)

b) Aliasing compensation for ρ = 1

The requirement

GLP (z) · H(−z) − GHP (z) · H(z)
!
= 0

can be met if

GLP (z) = H(z) and GHP (z) = H(−z) . (4.60-b)

The general solution for a) and b) is

GLP (z) = H(z) (4.60-c)

GHP (z) = −(−1)ρ · H(−z) .

Hence, only the lowpass filter with transfer function H(z) has to be designed.
Thus, the effective transfer function of the analysis–synthesis system is given by

HAS(z) =
1

2

[
H2(z) − (−1)ρ · H2(−z)

]
. (4.60-d)

Perfect reconstruction of the signal is achieved if the overall frequency response is
a delay by k0 samples, i.e.,

HAS(z)
!
= z−k0 (4.61)

according to y(k) = x(k − k0) .

The desired behavior (4.61) can be approximated with an accuracy which is suf-
ficient for practical applications by appropriate design of a linear-phase FIR h(k)
of length L = n + 1 with

h(k) = h(n − k) ; k = 0, 1, . . . , n . (4.62)
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In the case of ρ = 0 , it can be shown that an impulse response of even length and
in the case of ρ = 1 a filter with odd length are needed to avoid |HAS(ej π

2 )| = 0.

The desired compensation of the aliasing components does not necessarily require
the selection GLP (z) = H(z). A more general condition can be derived from the
second part of (4.58-d) with

GLP (z)

GHP (z)

!
= −(−1)ρ H(z)

H(−z)
. (4.63)

This condition provides new degrees of freedom for the optimization. Various so-
lutions can be found in the literature (e.g., [Jain, Crochiere 1983], [Jain, Crochiere
1984], [Johnston 1980], [Wackersreuther 1987], [Smith, Barnwell 1986]).

4.3.3 Efficient Implementation

The QMF analysis and synthesis filter bank with M = 2 can be considered as
a special case of the PPN filter bank with DFT length M = 2. Therefore, the
computationally efficient approaches according to Fig. 4.17 and Fig. 4.20 can be
applied here.

For reasons of simplicity we will consider only the case ρ = 0 and the filter de-
sign according to (4.60-a) with even length L = n + 1. Taking into account the
sampling rate decimation and the fact that the relation between the lowpass re-
sponse hLP (k) = h(k) and the highpass response is given in the time domain by
(see (4.52-a))

hHP (k) = (−1)k · h(k) , (4.64)

we get (see also Fig. 4.21)

x0(k = 2k
′

) =

n∑

κ=0

h(κ)x(2k
′ − κ)

=

n−1
2∑

κ
′
=0

h(2κ
′

)x(2k
′ − 2κ

′

) +

n−1
2∑

κ
′
=0

h(2κ
′

+ 1)x(2k
′ − 2κ

′ − 1)

= a(k
′

) + b(k
′

) (4.65)

x1(k = 2k
′

) =

n∑

i=0

h(κ) · (−1)κ · x(2k
′ − κ)

= a(k
′

) − b(k
′

) . (4.66)
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↑

↑

↓

↓

Figure 4.24: Efficient implementation of QMF bank
a) Analysis filter bank
b) Synthesis filter bank

Both decimated samples, x0(k = 2k
′

) and x1(k = 2k
′

), can be calculated from the
quantities a(k

′

) and b(k
′

). a(k
′

) is the result of the convolution of the even samples
of x(k) with the even samples of h(k), and b(k

′

) results from the convolution of
the respective odd samples. If the original impulse response is decomposed into its
two polyphase components, the overall computational complexity for calculating
x0(2k

′

) and x1(2k
′

) is only slightly higher than the complexity of a single convolu-
tion of length n + 1. The corresponding block diagram for the QMF analysis bank
is illustrated in Fig. 4.24-a.

The derivation of the efficient structure of the synthesis block is slightly more
complicated. Again, we consider the case ρ = 0 and the filter selection

gLP (k) = h(k) ; gHP (k) = −(−1)k · h(k) (4.67)

with even length L = n + 1. Furthermore, we have to take into consideration that
the interpolator input signals x̃0(k) and x̃1(k) in Fig. 4.21-a have non-zero values
only at even time instances, i.e.,

x̃µ(k) =

{
xµ(k

′

) k = 2k
′

; µ ∈ {0, 1}
0 k = 2k

′

+ 1 .
(4.68)
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We get

y(k) =
n∑

κ=0

h(κ) · x̃0(k − κ) +
n∑

κ=0

−(−1)κ · h(κ) · x̃1(k − κ) (4.69)

=

n−1
2∑

κ
′
=0

h(2κ
′

) ·
[
x̃0(k − 2κ

′

) − x̃1(k − 2κ
′

)
]

+

n−1
2∑

κ
′
=0

h(2κ
′

+ 1) ·
[
x̃0(k − 2κ

′ − 1) + x̃1(k − 2κ
′ − 1)

]
(4.70)

=





n−1
2∑

κ
′
=0

h(2κ
′

) · β
(
k

′ − κ
′
)

k = 2k
′

n−1
2∑

κ′=0

h(2κ
′

+ 1) · α
(
k

′ − κ
′
)

k = 2k
′

+1.

Due to (4.68), the first summation in (4.70) contributes to the even time instances
k = 2k

′

and the second summation to the odd instances k = 2k
′

+ 1 only.

The block diagram of the efficient structure is given in Fig. 4.24-b. The multi-
plexing, i.e., interlacing of the even and the odd samples, can be described by
upsampling by factor the r = 2 in combination with the delay and sum operation.

An example application is the QMF bank of the G.722 wideband speech codec (see
Appendix A) with M = 2 channels and a prototype lowpass filter with n = 24. The
frequency responses of the lowpass and highpass filters, and the overall frequency
response of the analysis–synthesis filter bank, are given in Fig. 4.25.

The QMF concept can easily be modified to achieve non-uniform frequency resolu-
tion by leaving out some of the filters of the tree structure. For a QMF bank with
M = 8, the structure of the analysis filter bank and a schematic of the frequency
response are illustrated in Fig. 4.26. It should be noted that this filter bank struc-
ture is closely related to the wavelet transform, e.g., [Burrus et al. 1998], [Vetterli,
Kovačević 1995], [Vaidyanathan 1993].
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a)

b)

Figure 4.25: Example: QMF bank of the G.722 wideband speech codec
with M = 2 channels
a) Magnitude response of the half-band filters
b) Resulting overall magnitude response

3(8 )

2(4 )

1(2 )

4(8 )

Hµ

µ=1 µ=2 µ=3 µ=4

/20

Figure 4.26: QMF tree structure for non-uniform frequency resolution
a) Block diagram
b) Schematic of the effective frequency resolution
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5

Stochastic Signals and
Estimation

In this chapter, we will review the basic concepts and tools which are required
to deal with stochastic signals such as speech signals. Among these are random
variables and stochastic processes as well as power spectra and fundamentals of
estimation theory. The objective is to provide a compilation of useful concepts
and theorems. More extensive discussions of these subjects can be found in many
excellent textbooks, for instance, [Papoulis, Unnikrishna Pillai 2001] and [Melsa,
Cohn 1978].

5.1 Basic Concepts

5.1.1 Random Events and Probability

Modern theory of probability [Kolmogorov 1933] defines the probability P (Ai) of
an event Ai on the basis of set-theoretic concepts and axioms, not on the basis of
observed random phenomena. It thus facilitates the treatment of random processes
as it provides a clear conceptual separation between observed random phenomena
and theoretical models of such phenomena.

Digital Speech Transmission: Enhancement, Coding and Error Concealment

Peter Vary and Rainer Martin
c© 2006 John Wiley & Sons, Ltd
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QQ

Figure 5.1: Two random events Ai and Aj in the probability space Q

a) Events are mutually exclusive
b) Events are not mutually exclusive

Given a set Q of elementary events {ξ1, ξ2, . . .} and a set F of subsets {A1, A2, . . .}
of Q, we call the subsets Ai in F random events. We assume that F includes Q, the
empty set φ, any union ∪Ai of subsets, and the complement Ai of any subset Ai.

1

The complement Ai of a subset Ai is defined as the set Q without the elementary
events in Ai. We may then assign a probability measure P (Ai) to a random event
Ai in such a way that

• the probability is a non-negative real number: P (Ai) ≥ 0;

• the probability of the certain event is one: P (Q) = 1;

• the probability that either Ai or Aj occurs is P (Ai ∪Aj) = P (Ai) + P (Aj),
provided that the two events Ai and Aj are mutually exclusive.

The last condition is illustrated in Fig. 5.1-a. When two random events Ai and Aj

are disjoint, the probability of Ai or Aj is the sum of the individual probabilities.
If these events are not mutually exclusive (Fig. 5.1-b), the sum of the probabilities
of the individual events is not equal to the probability of the event that Ai or Aj

occurs. The triple (Q, F, P ) is called a probability space.

The joint probability of two events Ai and Aj is the probability that Ai and Aj

occur and is denoted by P (Ai, Aj). With respect to the set representation, the
joint probability is a measure assigned to the intersection of events Ai and Aj in
a space which contains all possible joint events (product space).

In the general case of N events Ai, i = 1 . . .N , we denote the probability of the
simultaneous occurrence of these events as P (A1, A2, . . . , AN ).

1These properties define a σ-algebra [Kolmogorov 1933].



5.1 Basic Concepts 121

5.1.2 Conditional Probabilities

Conditional probabilities capture the notion of a priori information. The condi-
tional probability of an event B, given an event A, with P (A) �= 0, is defined as
the joint probability P (B, A) normalized on the probability of the given event A

P (B | A) =
P (B, A)

P (A)
. (5.1)

When N mutually exclusive events A1, A2, . . . , AN partition the set of elementary
events Q in such a way that P (A1) + P (A2) + · · ·+ P (AN ) = 1, we may write the
total probability of an arbitrary event B as

P (B) = P (B | A1)P (A1) + P (B | A2)P (A2) + · · ·+ P (B | AN )P (AN ) .

Furthermore, for any of these events Ai we may write

P (Ai | B) =
P (B, Ai)

P (B)

=
P (B | Ai)P (Ai)

P (B)

=
P (B |Ai)P (Ai)

P (B |A1)P (A1) + P (B |A2)P (A2) + · · · + P (B |AN)P (AN )
.

This is also known as Bayes’ theorem.

5.1.3 Random Variables

A random variable x maps elementary events ξi onto real numbers and, thus, is the
basic vehicle for the mathematical analysis of random phenomena. In our context,
random variables are used to represent samples of signals, parameters, and other
quantities. A random variable may be continuous or discrete valued. While the
former can attain any range of values on the real line, the latter is confined to
countable and possibly finite sets of numbers.

Random variables may be grouped into vectors. Vectors of random variables may
have two elements (bivariate) or a larger number of elements (multivariate). We
may also define complex-valued random variables by mapping the real and the
imaginary parts of a complex variable onto the elements of a bivariate vector of
real-valued random variables.
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5.1.4 Probability Distributions and Probability
Density Functions

The (cumulative) distribution function Px of a random variable x is defined as the
probability that x is smaller than or equal to a threshold value u,

Px(u) = P (x ≤ u) . (5.2)

We obtain the whole distribution function by allowing u to range from
−∞ to ∞. Obviously, Px is non-negative and non-decreasing with Px(−∞) = 0.
Px(∞) corresponds to the certain event, therefore Px(∞) = 1.

The probability density function (PDF) is defined as the derivative (when it exists)
of the distribution function with respect to the threshold u

px(u) =
dPx(u)

du
. (5.3)

A PDF always satisfies

∞∫

−∞

px(u) du = 1 . (5.4)

Using Dirac impulses, a PDF may be defined for probability distribution func-
tions Px(u) with discontinuities.

The joint PDF of N random variables x1, x2, . . . , xN is defined as

px1···xN
(u1, . . . , uN ) =

dNPx1···xN
(u1, . . . , uN )

du1 . . .duN
(5.5)

where Px1···xN
(u1, . . . , uN ) is given by

Px1···xN
(u1, . . . , uN ) = P (x1 ≤ u1, . . . , xN ≤ uN ) . (5.6)

Given a joint PDF, we compute marginal densities by integrating over one or
more variables. For example, given px1···xN

(u1, . . . , uN ) we compute the marginal
density px1···xN−1

(u1, . . . , uN−1) as

px1···xN−1
(u1, . . . , uN−1) =

∞∫

−∞

px1···xN
(u1, . . . , uN ) duN . (5.7)
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5.1.5 Conditional PDFs

We define the conditional probability density function px|A(u | A) of a random
variable x given an event A via the relation

px|A(u | A) P (A) = pxA(u, A) (5.8)

where pxA(u, A) is defined as

pxA(u, A) =
dPxA(u, A)

du
=

dP (x ≤ u, A)

du
. (5.9)

The event A may comprise a random variable y which is equal to a value v. For
a discrete random variable we may restate the above relation in terms of densities
using the simplified notation

px|y(u | v) P (y = v) = pxy(u, v) . (5.10)

This is called the mixed form of the Bayes’ theorem, which also holds for continuous
random variables, as

px|y(u | v) py(v) = pxy(u, v) . (5.11)

Furthermore, we write the density version of Bayes’ theorem as

px|y(u | v) py(v) = pxy(u, v) = py|x(v | u) px(u) , (5.12)

or with (5.7) as

px|y(u | v)

∞∫

−∞

px,y(u, v) du = px|y(u | v)

∞∫

−∞

py|x(v | u) px(u) du . (5.13)

Any joint probability density may be factored into conditional densities as

p(x1, . . . , xN ) = p(x1|x2, . . . , xN) p(x2, . . . , xN )

= p(x1|x2, . . . , xN) p(x2|x3, . . . , xN ) p(x3, . . . , xN)

= p(x1|x2, . . . , xN) p(x2|x3, . . . , xN ) · · · p(xN−1 | xN ) p(xN ) .

For three random variables, x1, x2, and x3 , the above chain rule simplifies to

p(x1, x2, x3) = p(x1 | x2, x3) p(x2 | x3) p(x3) . (5.14)
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5.2 Expectations and Moments

For continuous random variables, the mean of a random variable x is given by its
expected value E {x},

µx = E {x} =

∞∫

−∞

u px(u) du , (5.15)

and for a discrete random variable x which assumes one of M values ui, i = 1 . . .M ,
by

µx =

M∑

i=1

ui px(ui) . (5.16)

The expectation is easily evaluated if the PDF of the random variable is known. In
the remainder of this chapter we will be mostly concerned with continuous random
variables. All of these results can easily be adapted to discrete random variables
by exchanging the integration for a summation.

More generally, we may write the expectation of any function f(x) of a random
variable x as

E {f(x)} =

∞∫

−∞

f(u) px(u) du . (5.17-a)

Thus, despite the transformation of x into y = f(x), we may still use the probabil-
ity density function px(u) to compute the expected value E {f(x)}. More specifi-
cally, with

f(x) = (x − x0)
m

we obtain the m-th central moment with respect to x0. For x0 = 0 and m = 2 we
have the power of x

E
{
x2

}
=

∞∫

−∞

u2 px(u) du , (5.17-b)

and for x0 = µx and m = 2 the variance

σ2
x = E

{
(x − µx)2

}
= E

{
x2

}
− µ2

x. (5.17-c)



5.2 Expectations and Moments 125

5.2.1 Conditional Expectations and Moments

The expected value of a random variable x conditioned by an event y = v is defined
as

Ex|y {x | y} =

∞∫

−∞

u px|y(u | v) du , (5.18)

and, when no confusion is possible, also written as E {x | y}. Using the relation

Ef(x)|y {f(x) | y} =

∞∫

−∞

f(u) px|y(u | v) du (5.19)

and f(x) = (x − x0)
m we may compute any conditional central moment.

5.2.2 Examples

In what follows, we will discuss some of the frequently used PDFs and their mo-
ments. For an extensive treatment of these and other PDFs we refer the reader to
[Papoulis, Unnikrishna Pillai 2001], [Johnson et al. 1994], [Kotz et al. 2000].

5.2.2.1 The Uniform Distribution

When a random variable x is uniformly distributed in the range [X1, X2] , its
probability density is given by

px(u) =

{
1

X2 − X1
u ∈ [X1, X2]

0 u /∈ [X1, X2] .
(5.20)

Figure 5.2 illustrates this density. For the uniform density we find the mean, the
power, and the variance as follows:

mean: µx =
1

2
[X1 + X2] , (5.21)

power: E
{
x2

}
=

1

3

[
X2

1 + X1X2 + X2
2

]
, (5.22)

variance: σ2
x =

1

12
(X2 − X1)

2
. (5.23)
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Figure 5.2: Uniform probability density

5.2.2.2 The Gaussian Density

The Gaussian density is defined as

px(u) =
1√

2πσx

exp

(
−(u − µx)2

2σ2
x

)
(5.24)

and parameterized by its mean µx and variance σ2
x > 0. The Gaussian density

is plotted for three different variances in Fig. 5.3-a. The power of a Gaussian
distributed random variable is given by E

{
x2

}
= σ2

x + µ2
x.

By definition, a complex Gaussian random variable is a pair of real-valued random
variables which are jointly Gaussian distributed. This definition includes the case
of two independent real-valued Gaussian random variables which represent the real
and the imaginary parts of the complex variable.

Figure 5.3: a) Gaussian probability density functions
b) Exponential probability density functions
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5.2.2.3 The Exponential Density

For σx > 0 the (one-sided) exponential density (see Fig. 5.3-b) is given by

px(u) =





1

σx
exp

(
− u

σx

)
u ≥ 0

0 u < 0
(5.25)

where σ2
x is again the variance of the density function. The mean of an exponen-

tially distributed random variable is given by σx, and hence its power is 2σ2
x.

5.2.2.4 The Laplace Density

For σx > 0, the two-sided exponential density (also known as the Laplace density)
is defined as

px(u) =
1√
2σx

exp

(
−
√

2
|u − µx|

σx

)
(5.26)

where µx is the mean and σ2
x is the variance. The Laplace density function is

plotted in Fig. 5.4-a.
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Figure 5.4: a) Laplace probability density functions
b) Gamma probability density functions
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5.2.2.5 The Gamma Density

For σx > 0, the gamma density2 (see Fig. 5.4-b) is given by

px(u) =
4
√

3

2
√

2 π σx

1√
|u − µx|

exp

(
−
√

3

2

|u − µx|
σx

)
, (5.27)

where µx is the mean and σ2
x is the variance.

5.2.3 Transformation of a Random Variable

Frequently, we will consider the PDF of a random variable y = f(x) which is a
deterministic function of another random variable x. To specify the PDF py(u),
we must first solve u = f(x) for the real roots x〈k〉, k = 1 . . .N(u), where N(u)
depends on the value u. When for a specific value of u no real roots exist, we set
N(u) = 0. The PDF of y is then given by [Papoulis, Unnikrishna Pillai 2001]

py(u) =





px(x〈1〉)

|f ′(x〈1〉)| + · · ·+ px(x〈N(u)〉)

|f ′(x〈N(u)〉)| N(u) > 0

0 N(u) = 0

(5.28)

where f ′(x) is the derivative of f(x) with respect to x.

For any invertible function u = f(x), we only have one single root x = f−1(u) and

1

f ′(x)|x=f−1(u)
=

df−1(u)

du
. (5.29)

Hence,

py(u) =

∣∣∣∣
df−1(u)

du

∣∣∣∣ px

(
f−1(u)

)
. (5.30)

As an example, we compute the PDF of the square of a random variable, i.e.,
y = f(x) = x2 with f ′(x) = 2x. Since for u < 0 the equation u = x2 has no real
roots we have py(u) = 0 for u < 0. For u > 0 we find two real roots x〈1〉 =

√
u and

x〈2〉 = −√
u. Therefore, we may write

py(u) =





px(
√

u)

2
√

u
+

px(−√
u)

2
√

u
u > 0

0 u ≤ 0 .
(5.31)

2Our definition is a special case of the more general gamma density function as defined in
[Johnson et al. 1994]
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Thus, if x is a Gaussian random variable with

px(u) =
1√

2πσx

exp

(
− u2

2σ2
x

)
(5.32)

we find the density of y = x2 as

py(u) =





1√
2πuσx

exp

(
− u

2σ2
x

)
u > 0

0 u ≤ 0 .
(5.33)

5.2.4 Relative Frequencies and Histograms

In contrast to the abstract concept of probabilities and PDFs, the relative frequen-
cies of events and the histogram are closely linked to experiments and observed
random phenomena. When we consider an experiment with L possible outcomes
{A1, A2, . . . , AL} and repeat this experiment N times, the relative frequency Ni

N
may serve as an estimate of the probability of event Ai.

A histogram is a quantized representation of the absolute or relative frequencies
of events. Frequently, the events under consideration consist of a random variable
x within a given range of values. The histogram divides the range of the variable
into discrete bins and displays the combined frequencies of values which fall into
one of these bins.

Figure 5.5 depicts two histograms of computer-generated Gaussian noise. While
the histogram on the left hand side displays absolute frequencies, the histogram
on the left hand side uses relative frequencies.

Figure 5.5: Histogram (21 bins) of 100000 samples of a computer-generated Gaussian-
distributed random process with zero mean and unit variance
a) Absolute frequencies
b) Relative frequencies
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The random variable x and the histogram provide for a numerical representation
of events, which makes them accessible for mathematical analysis such as the
computation of average values etc. We may also fit a PDF to a histogram of
relative frequencies. This may then serve as a parametric model for the observed
frequencies of the random phenomenon.

5.3 Bivariate Statistics

As a special case of the multivariate PDF in (5.5) we define the joint probability
density function of two random variables x and y as the derivative of the bivariate
probability distribution function Pxy(u, v)

pxy(u, v) =
d2Pxy(u, v)

du dv
(5.34)

where Pxy is given by

Pxy(u, v) = P (x ≤ u, y ≤ v) , (5.35)

and u and v are threshold values for x and y, respectively.

5.3.1 Marginal Densities

We obtain the monovariate density of either random variable by integrating
pxy(u, v) over the other random variable,

px(u) =

∞∫

−∞

pxy(u, v) dv , (5.36)

py(v) =

∞∫

−∞

pxy(u, v) du . (5.37)

5.3.2 Expectations and Moments

The cross-correlation of two random variables x and y is given by

ϕxy = E {x · y} =

∞∫

−∞

∞∫

−∞

u v pxy(u, v) du dv (5.38)
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and the cross-covariance by

ψxy = E {(x − µx)(y − µy)} = ϕxy − µxµy . (5.39)

The normalized cross-covariance rxy is given by

rxy =
ψxy

σxσy
(5.40)

with |rxy| ≤ 1.

5.3.3 Uncorrelatedness and Statistical Independence

Two random variables x and y are referred to as uncorrelated if and only if their
cross-covariance is zero, i.e.,

E {(x − µx)(y − µy)} = 0 . (5.41)

Two random variables x and y are statistically independent if and only if their
joint probability density pxy(u, v) factors into the marginal densities px(u) and
py(v),

pxy(u, v) = px(u) py(v) . (5.42)

Two statistically independent random variables x and y are always uncorrelated
since

E {(x − µx)(y − µy)} =

∞∫

−∞

∞∫

−∞

(u − µx)(v − µy) px(u) py(v) du dv (5.43)

=

∞∫

−∞

(u − µx) px(u) du

∞∫

−∞

(v − µy) py(v) dv = 0 .

(5.44)

The converse is in general not true. A notable exception, however, is the bivariate
(or multivariate) Gaussian density. Whenever jointly Gaussian random variables
are uncorrelated, they are also statistically independent.

When two random variables x and y are statistically independent, the PDF of
their sum z = x + y is the convolution of the individual PDFs,

pz(w) =

∞∫

−∞

px(w − u) py(u) du . (5.45)
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As an example, we compute the density function of the sum z = x2
1 + x2

2 of two
squared zero mean Gaussian random variables x1 and x2 which have the same
variance σ2 and are statistically independent. From (5.33) we recall that the PDF
of y = x2 is given by

py(u) =





1√
2πuσ

exp
(
− u

2σ2

)
u > 0

0 u ≤ 0 .
(5.46)

Assuming independence, we compute the density function of z by convolving the
density (5.46) with itself. The resulting density is the exponential density, a special
case of the more general χ2-density [Johnson et al. 1994]:

pz(u) =





1

2σ2
exp

(
− u

2σ2

)
u ≥ 0

0 u < 0 .
(5.47)

Note that the above density also arises for the squared magnitude of a complex
zero mean Gaussian random variable when the real and imaginary parts are inde-
pendent and of the same variance σ2.

5.3.4 Examples of Bivariate PDFs

Two widely used bivariate density functions are the uniform and the Gaussian
density.

5.3.4.1 The Bivariate Uniform Density

Figure 5.6 depicts the joint density of two statistically independent, uniformly
distributed random variables x and y. If x and y are uniform in [X1, X2] and
[Y1, Y2] respectively, their joint probability density is given by

pxy(u, v) =





1
(X2 − X1)(Y2 − Y1)

u ∈ [X1, X2] and v ∈ [Y1, Y2]

0 elsewhere .
(5.48)
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Figure 5.6: Bivariate uniform probability density of two statistically independent
random variables x and y with X1 = Y1 = −0.5 and X2 = Y2 = 0.5

5.3.4.2 The Bivariate Gaussian Density

The Gaussian density of two random variables x and y may be parameterized by
the means µx and µy, the variances σ2

x and σ2
y, and the normalized cross-covariance

rxy. It is given by

pxy(u, v) =
1

2πσxσy

√
1 − r2

xy

(5.49)

· exp

(
− (u − µx)2

2(1 − r2
xy)σ2

x

− (v − µy)2

2(1 − r2
xy)σ2

y

+ rxy
(u − µx) (v − µy)

(1 − r2
xy)σxσy

)

and depicted in Fig. 5.7 for various values of σx, σy, and rxy.

If x and y are uncorrelated, i.e., rxy = 0, the bivariate density factors into two
monovariable Gaussian densities. Therefore, two uncorrelated Gaussian random
variables are also statistically independent. Furthermore, the marginal densities of
a bivariate Gaussian density are Gaussian densities.

5.3.5 Functions of Two Random Variables

Given two functions y1 = f1(x1, x2) and y2 = f2(x1, x2) of two random variables
x1 and x2, we find the joint density function of y1 and y2 in terms of the joint
density of x1 and x2 as [Papoulis, Unnikrishna Pillai 2001]

py1y2
(u, v) =

px1x2
(x

〈1〉
1 , x

〈1〉
2 )

|J(x
〈1〉
1 , x

〈1〉
2 )|

+ · · ·+ px1x2
(x

〈N〉
1 , x

〈N〉
2 )

|J(x
〈N〉
1 , x

〈N〉
2 )|

(5.50)
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Figure 5.7: Bivariate Gaussian densities with µx = µy = 0 and
a) σx = 0.1, σy = 0.25, rxy = −0.75
b) σx = 0.1, σy = 0.25, rxy = 0
c) σx = σy = 0.25, rxy = 0
d) σx = σy = 0.25, rxy = −0.75

where x
〈k〉
1 and x

〈k〉
2 , k = 1 . . .N , are the real roots of the simultaneous equations

u = f1(x1, x2) and v = f2(x1, x2). |J(x
〈k〉
1 , x

〈k〉
2 )| is the determinant of the Jacobian

matrix

J(x
〈k〉
1 , x

〈k〉
2 ) =




∂y1

∂x1 |x1=x
〈k〉
1

∂y1

∂x2 |x2=x
〈k〉
2

∂y2

∂x1 |x1=x
〈k〉
1

∂y2

∂x2 |x2=x
〈k〉
2


 . (5.51)

When there is no solution to the simultaneous equations, we obtain py1y2
(u, v) = 0.

In the special case of a linear transform with u = ax1 + bx2, v = cx1 + dx2, and
|ad − bc| �= 0 we have single roots x1 = Au + Bv and x2 = Cu + Dv and obtain

py1y2
(u, v) =

1

|ad − bc|px1x2
(Au + Bv, Cu + Dv) . (5.52)

As an example, we consider the additive signal model y = x+n where x and n are
statistically independent. We are interested in the computation of pxy(u, v) and of
py|x(v | u). We define x1 = x and x2 = n and have u = x1 = x, v = x1+x2 = x+n,
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a = c = d = 1, and b = 0. The inversion of these equations yields x1 = u and
x2 = v − u. Since |ad − bc| = 1, we find

pxy(u, v) = pxn(u, v − u) = px(u) pn(v − u) and py|x(v | u) = pn (v − u) .

5.4 Probability and Information

5.4.1 Entropy

The entropy H(x) of a discrete random variable x with x = ui, i = 1 . . .M ,
describes the average uncertainty that one of M values is attained. In the case of
a discrete random variable it is defined as

H(x) = −
M∑

i=1

px(ui) log(px(ui)) (5.53)

and measured in “bits” if the logarithm is computed with respect to base 2, and
in “nats” if the logarithm is computed with respect to base e. As uncertainty is
equivalent to information, H(x) is also a measure of information. The uncertainty
of a random variable x with fixed amplitude limits is maximal if the random
variable is uniformly distributed within these limits.

For a continuous random variable with a non-zero probability density on the in-
terval [a, b] uncertainty is measured in terms of its differential entropy

H(x) = −
b∫

a

px(u) log(px(u)) du . (5.54)

5.4.2 Kullback–Leibler Divergence

The Kullback–Leibler divergence D(px || py) is a measure of similarity of two dis-
crete PDFs px(u) and py(u),

D(px || py) =

M∑

i=1

px(ui) log

(
px(ui)

py(ui)

)
. (5.55)

Clearly, the Kullback–Leibler divergence is not symmetric, i.e.,

D(px || py) �= D(py || px) .



136 5 Stochastic Signals and Estimation

The Kullback–Leibler divergence is always non-negative, and zero if and only if
px = py. Frequently, the symmetric Kullback–Leibler distance

DS(px || py) =
1

2
(D(px || py) + D(py || px)) (5.56)

is used.

5.4.3 Mutual Information

The mutual information I(x, y) measures the information about a random variable
x conveyed by another random variable y. It gives an indication of the dependence
of two random variables and may be expressed as the Kullback–Leibler divergence
between the joint probability density and the marginal densities of the two random
variables, i.e.,

I(x, y) = D(pxy || px · py) =
M∑

i=1

N∑

ℓ=1

pxy(ui, vℓ) log

(
pxy(ui, vℓ)

px(ui)py(vℓ)

)
. (5.57)

The mutual information measure is symmetric in px and py and non-negative. It
is equal to zero if the two random variables are statistically independent.

5.5 Multivariate Statistics

For the treatment of multivariate statistics it is convenient to introduce vector
notation. We now consider vectors of random variables

x =




x1

x2

...
xN


 (5.58)

and define the first- and second-order statistics in terms of the vector components.
The mean vector is given by

µx = E {x} =




E {x1}
E {x2}

...
E {xN}


 =




µx1

µx2

...
µxN


 (5.59)
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and the covariance matrix by

Cxx = E
{
(x− µx)(x− µx)T

}
(5.60)

=




ψx1x1
ψx1x2

· · · ψx1xN

ψx2x1
ψx2x2

· · · ψx2xN

...
...

. . .
...

ψxN x1
ψxN x2

· · · ψxN xN


 . (5.61)

The correlation matrix Rxx is then computed as

Rxx = E
{
xxT

}
= Cxx + µxµT

x . (5.62)

5.5.1 Multivariate Gaussian Distribution

The multivariate Gaussian probability density of a vector-valued random variable
x with M components is defined by

N(x, µx,Cxx) =
1√

(2π)M | Cxx |
exp

(
−1

2
(x− µx)T C−1

xx (x− µx)

)
(5.63)

where µx and Cxx denote the mean vector and the covariance matrix respectively.
| Cxx | is the determinant of the covariance matrix.

5.5.2 χ2-distribution

When N independent and identically distributed zero mean Gaussian random
variables with variance σ2 are added, the resulting random variable

χ2 = x2
1 + x2

2 + · · · + x2
N (5.64)

is χ2-distributed with N degrees of freedom. The χ2-density is given by

pχ2(u) =





uN/2−1 exp
(
− u

2σ2

)

(
√

2σ2)NΓ(N/2)
u ≥ 0

0 u < 0

(5.65)

where Γ(·) is the complete gamma function. With [Gradshteyn, Ryzhik 2000, The-
orem 3.381.4]

∞∫

0

xne−ax dx =
Γ(n + 1)

an+1
, Re{a} > 0, Re{n} > 0 (5.66)
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we find the mean of a χ2-distributed random variable as µχ2 = Nσ2 and the
variance as σ2

χ2 = 2Nσ4.

The normalized sum of squares

χ̃2 =
1

N
(x2

1 + x2
2 + · · ·+ x2

N ) (5.67)

is also χ2-distributed with

pχ̃2(u) =





uN/2−1 exp

(
−uN

2σ2

)

(
√

2σ2/N)NΓ(N/2)
u ≥ 0

0 u < 0

(5.68)

with mean σ2 and variance 2
N

σ4. The same density arises when we divide the sum

of N squared independent Gaussians, each of which has the variance σ2/2, by N
2 .

This is the case, for example, when we average K = N/2 independent magnitude,
squared, complex Gaussian random variables and when the mean of the squared
magnitude of each complex Gaussian is equal to σ2.

5.6 Stochastic Processes

An indexed sequence of random variables . . . , x(k−1), x(k), x(k+1), . . . , k ∈ ZZ, is
called a stochastic process. For any index k, a random experiment determines the
value of x(k). However, the outcome of an experiment at k = k1 may also depend
on the outcomes for k �= k1. Then, the variables are statistically dependent. In our
context, stochastic processes are used to model sampled stochastic signals such as
speech signals. An observed speech sample is then interpreted as a specific instan-
tiation of the underlying random process. Stochastic processes are characterized
in terms of their monovariate distribution function or their moments for each k, as
well as their multivariate statistical properties. In general, all of these quantities
are functions of the sampling time k.

5.6.1 Stationary Processes

A stochastic process is called strict sense stationary if all its statistical properties
(such as moments) are invariant with respect to a variation of k.

A stochastic process is wide sense stationary if its first- and second-order moments
are invariant to a variation of the independent variable k, i.e.,

E {x(k)} = µx ∀ k and (5.69)

E {x(k)x(k + λ)} = ϕxx(λ) ∀ k . (5.70)
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Clearly, speech signals are neither strict nor wide sense stationary. However, within
sufficiently short observation intervals, the first- and second-order statistical prop-
erties of speech signals show only little variations. Speech signals can therefore be
considered to be short-time wide sense stationary.

5.6.2 Auto-correlation and Auto-covariance Functions

The auto-correlation function quantifies the amount of correlation between the
variables of a stochastic process. It is defined as

ϕxx(k1, k2) =E {x(k1) x(k2)} =

∞∫

−∞

∞∫

−∞

u v px(k1)x(k2)(u, v) du dv (5.71)

and is related to the auto-covariance function

ψxx(k1, k2) = E {(x(k1) − µx(k1)) (x(k2) − µx(k2))} (5.72)

by

ϕxx(k1, k2) = ψxx(k1, k2) + µx(k1)µx(k2) . (5.73)

For a wide sense stationary process the auto-correlation function depends only
on the difference λ = k2 − k1 of indices k1 and k2 and not on their absolute
values. Thus, for a wide sense stationary process we may define the auto-correlation
function for any k1 as

ϕxx(λ) =E {x(k1) x(k1 + λ)}

=

∞∫

−∞

∞∫

−∞

u v px(k1)x(k1+λ)(u, v) du dv = ψxx(λ) + µ2
x , (5.74)

with

ψxx(λ) = E {(x(k1) − µx) (x(k1 + λ) − µx)}

= ϕxx(λ) − µ2
x . (5.75)

The auto-correlation function, as well as the auto-covariance function, are sym-
metric, i.e., ϕxx(λ) = ϕxx(−λ). The auto-correlation function attains its maximum
and its maximum absolute value for λ = 0, thus |ϕxx(λ)| ≤ ϕxx(0).

For λ = 0 we have

ϕxx(0) = ψxx(0) + µ2
x = σ2

x + µ2
x . (5.76)
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In general, we find the moments of a function g of x(k1) and x(k1 + λ) as

E {g (x(k1), x(k1 + λ))} =

∞∫

−∞

∞∫

−∞

g(u, v) px(k1)x(k1+λ)(u, v) du dv . (5.77)

5.6.3 Cross-correlation and Cross-covariance Functions

In analogy to the above definitions, the cross-correlation and the cross-covariance
functions may be used to characterize the second-order statistics of two (different)
stochastic processes x(k) and y(k) and may be written as

ϕxy(k1, k2) = E {x(k1) y(k2)}

=

∞∫

−∞

∞∫

−∞

u v px(k1)y(k2)(u, v) du dv (5.78)

= ψxy(k1, k2) + µx(k1)µy(k2) .

As before, we may simplify our notation for stationary processes x(k) and y(k)

ϕxy(λ) = E {x(k1)y(k1 + λ)} (5.79)

and

ψxy(λ) = E {(x(k1) − µx) (y(k1 + λ) − µy)}
= ϕxy(λ) − µxµy .

(5.80)

5.6.4 Multivariate Stochastic Processes

Similarly to the definition of vectors of random variables, we may define vector-
valued (multivariate) stochastic processes as

x(k) =




x1(k)
x2(k)

...
xN (k)


 . (5.81)

The first- and second-order statistics are then also dependent on index k. For
example, the mean is given by

µx(k) = E {x(k)} =




E {x1(k)}
E {x2(k)}

...
E {xN (k)}


 (5.82)
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and the correlation matrix Rxx(k1, k2) of the process x(k) at indices k1 and k2 by

Rxx(k1, k2) = E
{
x(k1)xT (k2)

}
(5.83)

=




E {x1(k1)x1(k2)} E {x1(k1)x2(k2)} · · · E {x1(k1)xN (k2)}
E {x2(k1)x1(k2)} E {x2(k1)x2(k2)} · · · E {x2(k1)xN (k2)}

...
...

. . .
...

E {xN (k1)x1(k2)} E {xN (k1)x2(k2)} · · · E {xN (k1)xN (k2)}




which is in general not a symmetric matrix. In analogy to the monovariate case,
we may also define a covariance matrix, i.e.,

Cxx(k1, k2) = E
{
(x(k1) − µx(k1)) (x(k2) − µx(k2))

T
}

. (5.84)

When x(k) is a stationary process, the above quantities will not depend on the
absolute values of the time indices k1 and k2 but on their difference λ = k2 − k1

only.

An interesting special case arises when the elements of the random vector x(k) are
successive samples of one and the same monovariate process x(k),

x(k) =




x(k)
x(k − 1)

...
x(k − N + 1)


 . (5.85)

In this case the correlation matrix is given by

Rxx(k1, k2) = E
{
x(k1)xT (k2)

}
(5.86)

=




ϕxx(k1, k2) ϕxx(k1, k2 − 1) · · · ϕxx(k1, k2 − N + 1)
ϕxx(k1 − 1, k2) · · · · · · ϕxx(k1 − 1, k2 − N + 1)

...
...

. . .
...

ϕxx(k1 − N + 1, k2) · · · · · · ϕxx(k1 − N + 1, k2 − N + 1)




which is a symmetric matrix for k1 = k2 = k, i.e., Rxx(k, k) = RT
xx(k, k).
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When the monovariate process x(k) is wide sense stationary the elements of the
correlation matrix are independent of the absolute time indices and depend only
on the index difference λ = k2 − k1. Then,

Rxx(λ) = E
{
x(k1)xT (k1 + λ)

}
(5.87)

=




ϕxx(λ) ϕxx(λ − 1) · · · ϕxx(λ − N + 1)
ϕxx(λ + 1) ϕxx(λ) · · · ϕxx(λ − N + 2)

...
...

. . .
...

ϕxx(λ + N − 1) ϕxx(λ + N − 2) · · · ϕxx(λ)


 .

All matrix elements aij which have the same difference i − j of their row and
columns indices are identical. A matrix of this structure is called a Toeplitz matrix.
For k1 = k2 = k, i.e., λ = 0, we obtain a correlation matrix

Rxx = E
{
x(k)xT (k)

}
(5.88)

=




ϕxx(0) ϕxx(−1) · · · ϕxx(−N + 1)
ϕxx(1) ϕxx(0) · · · ϕxx(−N + 2)

...
...

. . .
...

ϕxx(N − 1) ϕxx(N − 2) · · · ϕxx(0)




which is a symmetric Toeplitz matrix. This matrix is completely specified by its
first row or column. For a discrete time stochastic process, the correlation matrix
is always non-negative definite and almost always positive definite [Haykin 1996].

In analogy to the above definitions, the cross-correlation matrix of two vector-
valued processes x(k) and y(k) is given by

Rxy(k1, k2) = E
{
x(k1)y(k2)

T
}

(5.89)

with the above special cases defined accordingly.

5.7 Estimation of Statistical Quantities by

Time Averages

5.7.1 Ergodic Processes

Quite frequently we cannot observe more than a single instantiation of a stochas-
tic process. Then, it is not possible to estimate its statistics by averaging over
an ensemble of observations. However, if the process is stationary, we might re-
place ensemble averages by time averages. Whenever the statistics of a stationary
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random process may be obtained with probability one from time averages over a
single observation, the random process is called (strict sense) ergodic. This defi-
nition implies that specific instances of the random process may not be suited to
obtain time averages. These instances, however, occur with probability zero.

Ergodicity is an indispensable prerequisite for many practical applications of sta-
tistical signal processing, yet in general it is difficult to prove.

5.7.2 Short-Time Stationary Processes

Strictly speaking, the estimation of statistical quantities via time averaging is
only admissible when the signal is stationary and ergodic. As speech signals and
many noise signals are not stationary and hence not ergodic, we must confine time
averages to short segments of the signal where stationarity is not grossly violated.
To apply time averaging we must require that the signal is at least short-time
stationary.

We define the short-time mean of M successive samples of a stochastic process
x(k) as

x(k) =
1

M

k∑

κ=k−M+1

x(κ) (5.90)

and the short-time variance

σ̂2(k) =
1

M − 1

k∑

κ=k−M+1

(x(κ) − x(k))2 . (5.91)

When x(k) is a wide sense stationary and uncorrelated random process, i.e.
E
{
(x(ki) − µx(ki))(x(kj) − µx(kj))

}
= 0 for all i �= j, it can be shown that these

estimates are unbiased, i.e.,

E {x(k)} = E {x(k)} and E
{
σ̂2(k)

}
= E

{
(x(k) − µx)2

}
.

It is not at all trivial to identify short-time stationary segments. On the one hand
one is tempted to make the segment of assumed stationarity as long as possible in
order to reduce the error variance of the estimate. On the other hand the intrinsic
non-stationary nature of speech and many noise signals does not allow the use of
long averaging segments without introducing a significant bias. Thus, we have to
find a balance between bias and error variance.
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Similar averaging procedures may be employed to estimate the cross- and auto-
correlation functions on a short-time basis, i.e.,

ϕ̂xy(λ, k) =
1

M

k∑

κ=k−M+1

x(κ) y(κ + λ) , (5.92)

and

ϕ̂xx(λ, k) =
1

M

k∑

κ=k−M+1

x(κ) x(κ + λ) . (5.93)

The latter estimate is not symmetric in λ. A symmetric estimate might be obtained
by first extracting a signal segment of length M

x̃(u) =

{
x(u) if k − M + 1 ≤ u ≤ k

0 else
(5.94)

and then computing the sum of products

ϕ̂xx(λ, k) =
1

M − |λ|

k∑

κ=k−M+1

x̃(κ) x̃(κ + λ)

=
1

M − |λ|

M−1∑

κ=0

x̃(k + κ − M + 1) x̃(k + κ + λ − M + 1) (5.95)

for 0 ≤ λ < M on the assumption that the signal x̃(k) is zero outside this segment.
It can be shown that this estimate is unbiased. For a stationary random process
and M → ∞ it approaches ϕ̂xx(λ) with probability one.

5.8 Power Spectral Densities

We define the auto-power spectral density of a wide sense stationary stochastic
process x(k) as the Fourier transform of its auto-correlation function,

Φxx(ejΩ) =
∞∑

λ=−∞

ϕxx(λ) e−jΩλ , (5.96)

and the cross-power spectral density of two processes x(k) and y(k) as the Fourier
transform of their cross-correlation function

Φxy(ejΩ) =

∞∑

λ=−∞

ϕxy(λ) e−jΩλ (5.97)
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whenever these transforms exist. The auto-correlation function may be obtained
from an inverse Fourier transform of the power spectral density,

ϕxx(λ) =
1

2π

π∫

−π

Φxx(ejΩ) ejΩλ dΩ , (5.98)

and the signal power from

ϕxx(0) =
1

2π

π∫

−π

Φxx(ejΩ) dΩ . (5.99)

5.8.1 White Noise

For an uncorrelated and stationary noise signal n(k), we obtain
E {n(k)n(k + λ)} = δ(λ) ϕnn(0). Thus, we may write

Φnn(ejΩ) =
∞∑

λ=−∞

δ(λ) ϕnn(0) e−jΩλ = ϕnn(0) . (5.100)

As the power spectral density is constant over the full range of frequencies, uncor-
related noise is also called white noise.

5.9 Estimation of the Power Spectral Density

An estimate of the power spectrum may be obtained from the estimate ϕ̂xx(λ, k)
of the auto-correlation function as in (5.95) and a subsequent Fourier transform
[Oppenheim et al. 1999]. Although this auto-correlation estimate is unbiased, its
Fourier transform is not an unbiased estimate of the power spectral density. This
is a result of the finite segment length involved in the computation of the auto-
correlation.

5.9.1 The Periodogram

An estimate of the power spectral density of a wide sense stationary random pro-
cess may be obtained by computing the Fourier transform of a finite signal seg-
ment x(k),

X(ejΩ, k) =

M−1∑

ℓ=0

x(k + ℓ − M + 1) e−jΩℓ (5.101)
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where we now include the dependency on the time index k in our notation. The
magnitude squared Fourier transform normalized on the transform length is called
a periodogram and denoted by

I(ejΩ, k) =
1

M
|X(ejΩ, k)|2 . (5.102)

The periodogram I(ejΩ, k) is identical to the normalized magnitude squared DFT
coefficients of this signal segment at discrete equispaced frequencies
Ωµ = 2πµ/M . For a real-valued signal x(k), the periodogram may be written
as

I(ejΩ, k) =
1

M

∣∣∣∣∣

M−1∑

κ=0

x(k + κ − M + 1) e−jΩκ

∣∣∣∣∣

2

(5.103)

=
1

M

M−1∑

κ=−M+1

M−1∑

ℓ=0

x̃(k + ℓ − M + 1) x̃(k + ℓ + κ − M + 1) e−jΩκ

where x̃(u) is defined as in (5.94).

The inner sum in (5.103) is recognized as an estimate of the auto-correlation
function (5.95). Thus, the periodogram corresponds to the Fourier transform of
the windowed estimated auto-correlation function,

I(ejΩ, k) =

M−1∑

λ=−M+1

(
M − |λ|

M

)
ϕ̂xx(λ, k)e−jΩλ . (5.104)

Using a tapered analysis window w(k) on the signal segment, we obtain a modified
periodogram which is defined as

IM (ejΩ, k) =
1

M−1∑
ℓ=0

w2(ℓ)

∣∣∣∣∣

k∑

ℓ=k−M+1

w(ℓ)x(ℓ)e−jΩℓ

∣∣∣∣∣

2

. (5.105)

In conclusion we note that

• because of the finite limits of summation the periodogram is a biased esti-
mator of the power spectrum,

• the periodogram is asymptotically (M → ∞) unbiased, and,

• since its variance does not approach zero for M → ∞ the periodogram is not
consistent [Oppenheim et al. 1999]. In fact, the variance of the periodogram
does not depend on the transform length. In the computation of the pe-
riodogram, the additional data associated with a larger transform length
increases the frequency resolution but does not reduce the estimation error.
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5.9.2 Smoothed Periodograms

To reduce the variance of the power spectrum estimate, some form of smoothing is
required. A variance reduction might be obtained by smoothing successive (mod-
ified) periodograms IM (ejΩ, k) over time or by smoothing a single periodogram
over frequency. We briefly outline two methods of time domain smoothing.

Non-recursive Smoothing in Time The non-recursively smoothed periodo-
gram, defined as

P (MA)(ejΩ, k) =
1

KMA

KMA−1∑

κ=0

IM (ejΩ, k + (κ − KMA + 1) r) , (5.106)

uses a sliding signal frame of length M and a frame advance of r. It can be shown
that for uncorrelated signal frames its variance approaches zero for KMA → ∞.
For a fixed total number of signal samples, the variance of this estimate may be
reduced by overlapping successive signal segments [Welch 1967]. For example, for
half-overlapping signal segments the variance is reduced by a factor of 11/18 [Welch
1967].

Recursive Smoothing in Time To compute the Welch periodogram, KMA

periodograms must be stored. The recursively smoothed periodogram,

P (AR)(ejΩ, k + r) = α P (AR)(ejΩ, k) + (1 − α) IM (ejΩ, k + r) , (5.107)

is more memory efficient. It can be interpreted as an infinite sum of periodograms
weighted over time by an exponential window. This corresponds to a first-order
low-pass filter and for stability reasons we have 0 < α < 1. For α ≈ 0, little
smoothing is applied and hence the variance of the estimate is close to the variance
of the periodogram. For α ≈ 1 and stationary signals, the variance of the estimate is
small. The above procedure may also be used for smoothing short-time stationary
periodograms and for tracking the mean value of the periodograms over larger
periods of time. Then, we must strike a balance between smoothing for variance
reduction and tracking of non-stationary signal characteristics.

5.10 Statistical Properties of Speech Signals

The statistical properties of speech signals have been thoroughly investigated and
are well documented, e.g., [Jayant, Noll 1984], [Brehm, Stammler 1987]. They are
of interest, for instance, in the design of optimal quantizers. In general, speech
signals can be modeled as non-stationary stochastic processes. The power, the
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Figure 5.8: Logarithmic plot of relative histogram of normalized speech amplitudes
(n = 489872 speech samples, 1024 histogram bins)

correlation properties, and the higher-order statistics vary from one speech sound
to the next. For most practical purposes statistical parameters may be estimated
on short, quasi-stationary segments of the speech signal.

It is also instructive to consider the long-term histogram of speech signals as shown
in Fig. 5.8. Small amplitudes are much more frequent than large amplitudes and
the tails of the density do not decay as fast as for a Gaussian signal. Thus, the PDF
of speech signals in the time domain is well modeled by supergaussian distributions
such as the Laplace, gamma, or K0 PDFs [Brehm, Stammler 1987].

5.11 Statistical Properties of DFT Coefficients

Frequently, we analyze and process speech signals in the spectral domain using
short-term spectral analysis and the DFT. It is therefore of interest to investigate
the statistical properties of DFT coefficients. We assume that a signal x(k) is
transformed into the frequency domain by applying a window w(k) to a frame
of M consecutive samples of x(k) and by computing the DFT of size M on the
windowed data. This sliding window DFT analysis results in a set of frequency
domain signals Xµ(k) (see Chapter 4) which can be written as

Xµ(k) =

M−1∑

κ=0

w(κ) x(k − M + 1 + κ) e−j 2πµκ
M (5.108)

where µ is the frequency bin index, µ ∈ {0, 1, . . . , M − 1}. The index µ is related
to the normalized center frequency Ωµ of each frequency bin by Ωµ = 2πµ/M .
Thus, the complex Fourier coefficients Xµ(k) constitute a random process.



5.11 Statistical Properties of DFT Coefficients 149

Using the above definitions, individual variables may be split into their real and
imaginary parts

Xµ(k) = Re{Xµ(k)} + j Im{Xµ(k)} (5.109)

or into their magnitude and phase

Xµ(k) = Rµ(k) ejθµ(k) . (5.110)

To simplify notations, we will drop the dependency of all the above quantities on
the time index k whenever this is possible.

5.11.1 Asymptotic Statistical Properties

For the discussion of asymptotic properties of the DFT coefficients we assume

• that the transform length M approaches infinity, M → ∞, and

• that the transform length M is much larger than the span of correlation of
signal x(k).

The latter condition excludes, for instance, periodic signals from our discussion.
If the input signal is sufficiently random we may conclude from the central limit
theorem that for µ �∈ {0, M/2}, the real and imaginary parts of the DFT coeffi-
cients Xµ can be modeled as mutually independent, zero-mean Gaussian random
variables [Brillinger 1981] with variance 0.5 σ2

Xµ
= 0.5 E

{
|Xµ|2

}
, i.e.,

pRe{Xµ}(u) =
1√

πσXµ

exp

(
− u2

σ2
X,µ

)
,

pIm{Xµ}(v) =
1√

πσXµ

exp

(
− v2

σ2
X,µ

)
.

(5.111)

For a real-valued input signal x(k) and µ ∈ {0, M/2} the imaginary part of Xµ is
zero and the real part is also Gaussian distributed with variance σ2

X,µ = E
{
|Xµ|2

}
.

For µ �∈ {0, M/2} the joint distribution of the real and imaginary parts is given by

pRe{Xµ}, Im{Xµ}(u, v) =
1

πσ2
X,µ

exp

(
−u2 + v2

σ2
X,µ

)
(5.112)

or with z = u + jv by

pXµ
(z) =

1

πσ2
X,µ

exp

(
− |z|2

σ2
X,µ

)
. (5.113)
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Conversion to polar coordinates, Xµ = Rµejθµ , yields a Rayleigh density for the
magnitude |Xµ| = Rµ,

pRµ
(u) =





2u

σ2
X,µ

exp

(
− u2

σ2
X,µ

)
u ≥ 0

0 u < 0

(5.114)

and a uniform distribution for the principal value of the phase θµ, 0 ≤ θµ ≤ 2π,

pθµ
(u) =





1

2π
0 ≤ u ≤ 2π

0 elsewhere .

(5.115)

Since for the Gaussian model the magnitude and the phase are statistically in-
dependent, the joint density is the product of the component densities [Papoulis,
Unnikrishna Pillai 2001],

pRµ,θµ
(u, v) = pRµ

(u) pθµ
(v)

=





u

πσ2
X,µ

exp

(
− u2

σ2
X,µ

)
u ≥ 0 and 0 ≤ v ≤ 2π

0 elsewhere .

(5.116)

Furthermore, each magnitude squared frequency bin |Xµ|2 = R2
µ is an exponen-

tially distributed random variable with PDF

pR2
µ
(u) =





1

σ2
X,µ

exp

(
− u

σ2
X,µ

)
u ≥ 0

0 u < 0 .

(5.117)

5.11.2 Signal-plus-Noise Model

In applications such as speech enhancement we consider an observed signal
x(k) = s(k) + n(k) which is a sum of a desired signal s(k) and a noise
signal n(k) where n(k) is statistically independent of the desired signal s(k).
Obviously, this also leads to an additive noise model in the Fourier or in
the DFT domain, Xµ(k) = Sµ(k) + Nµ(k). We now compute the conditional
density for the observed DFT coefficients Xµ given the desired coefficients
Sµ = Aµejαµ = Aµ (cos(αµ) + j sin(αµ)) on the Gaussian assumption. Since the
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desired signal and the noise are additive and statistically independent, the condi-
tional densities for the real and imaginary parts are given by

pRe{Xµ}|Re{Sµ}(u | Re{Sµ}) =
1

σNµ

√
π

exp

(
−(u − Aµ cos(αµ))2

σ2
N,µ

)

pIm{Xµ}|Im{Sµ}(v | Im{Sµ}) =
1

σNµ

√
π

exp

(
−(v − Aµ sin(αµ))2

σ2
N,µ

) (5.118)

where we conditioned on the real and the imaginary parts of the desired coefficients.
With z = u + jv the conditional joint density is given by

pRe{Xµ},Im{Xµ}|Sµ
(u, v | Sµ)

=
1

πσ2
N,µ

exp

(
−|z − Aµ exp(jαµ)|2

σ2
N,µ

)

=
1

πσ2
N,µ

exp

(
−
|z|2 + A2

µ − 2AµRe{exp(−jαµ)z}
σ2

N,µ

)
. (5.119)

Since a rotation in the complex plane does not change the magnitude

|z|2 = |z exp(−jαµ)|2 = Re{z exp (−jαµ)}2 + Im{z exp (−jαµ)}2 , (5.120)

the conditional joint density can be also written as

pRe{Xµ},Im{Xµ}|Sµ
(u, v | Sµ)

=
1

πσ2
N,µ

exp

(
−(Re{exp(−jαµ)z} − Aµ)

2
+ Im{exp(−jαµ)z}2

σ2
N,µ

)

(5.121)

which leads to a Rician PDF for the conditional magnitude [Papoulis, Unnikrishna
Pillai 2001], [McAulay, Malpass 1980]

pRµ|Sµ
(u | Sµ) =





2u

σ2
N,µ

exp

(
−

u2 + A2
µ

σ2
N,µ

)
I0

(
2Aµu

σ2
N,µ

)
u ≥ 0

0 u < 0

(5.122)

where I0(·) denotes the modified Bessel function of the first kind. When no speech
is present, the magnitude obeys a Rayleigh distribution as before.
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5.11.3 Statistical Properties of DFT Coefficients for Finite
Frame Lengths

We now investigate the probability distribution of speech coefficients in the DFT
domain. Unlike in the previous section, we consider a short transform length M as
it is used in mobile communications and other applications. There, the asymptotic
assumptions are not well fulfilled, especially for voiced speech sounds which exhibit
a high degree of correlation [Martin 2002], [Martin, Breithaupt 2003], [Martin
2005b].

We suggest that also in the short-term Fourier domain (frame size < 100ms) the
Laplace and gamma densities are much better models for the PDF of the real
and imaginary parts of the DFT coefficients than the commonly used Gaussian
density. In this section, we will briefly review these densities and provide examples
of experimental data.

Let Re{Sµ} = SR and Im{Sµ} = SI denote the real and the imaginary part of
a clean speech DFT coefficient respectively. To enhance the readability we will
drop both the frame index k and the frequency index µ and consider a single
DFT coefficient at a given time instant. σ2

s/2 denotes the variance of the real
and imaginary parts of the DFT coefficient. Then, the Laplacian and the gamma
densities (real and imaginary parts) are given by

pSR
(u) =

1

σs
exp

(
−2|u|

σs

)

pSI
(v) =

1

σs
exp

(
−2|v|

σs

) (5.123)

and

pSR
(u) =

4
√

3

2
√

πσs
4
√

2
|u|− 1

2 exp

(
−
√

3|u|√
2σs

)

pSI
(v) =

4
√

3

2
√

πσs
4
√

2
|v|− 1

2 exp

(
−
√

3|v|√
2σs

)
,

(5.124)

respectively. The gamma density diverges when the argument approaches zero but
provides otherwise a good fit to the observed data.

Figures 5.9 and 5.10 plot the histogram of the real part of the DFT coefficients
(M = 256, fs = 8000Hz) of clean speech averaged over three male and three
female speakers. Since speech has a time-varying power, the coefficients represented
in the histogram are selected such as to range in a narrow power interval. For
the depicted histogram, coefficients are selected in a 2 dB wide interval across all
frequency bins except for the lowest and the highest bins. Thus, the histogram and
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Figure 5.9: Gaussian (dotted), Laplace (dashed), and gamma (solid) density
fitted to a histogram of the real part of clean speech DFT coefficients
(shaded, M = 256, fs = 8000 Hz) [Martin 2002]; c© 2002 IEEE

Figure 5.10: Gaussian (dotted), Laplace (dashed), and gamma (solid) density
fitted to a histogram of the real part of clean speech DFT coefficients
(shaded, M = 256, fs = 8000 Hz) [Martin 2002]; c© 2002 IEEE
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the corresponding model densities are in fact conditioned on the measured SNR
of the spectral coefficients. The full histogram in Fig. 5.9 as well as the enlarged
section in Fig. 5.10 show that indeed the Laplace and gamma densities provide
a much better fit to the DFT data than the Gaussian distribution. This result is
also reflected by the estimated Kullback-Leibler divergence D(px || py) [Kullback
1997] between the histogram data pH(x) and one of the above PDF candidates
pSR

(u). We find that the Kullback-Leibler distance is about 3 times smaller for
the gamma density and about 6 times smaller for the Laplace density than for the
Gaussian density [Martin 2005b]. An even better match of the measured PDF can
be obtained with a linear combination of the Laplacian and the gamma model,
where the weights 0.7 and 0.3 are assigned to the Laplacian and the gamma model
respectively, or with a generalized gamma density [Shin et al. 2005].

Similar approximations may be developed for the magnitude A = |S| of the DFT
coefficients. A good fit to the observed data is obtained for the generalized gamma
density [Lotter, Vary 2003], [Dat et al. 2005]

pA(u) =
γν+1

Γ(ν + 1)

uν

σν+1
S

exp

{
−γ

u

σS

}
(5.125)

where for E
{
A2

}
= σ2

S the constraint γ =
√

(ν + 1)(ν + 2) applies. The parame-
ters ν, µ determine the shape of the PDF and thus allow to adapt the underlying
PDF of the conditional estimator to the real distribution.

5.12 Optimal Estimation

Quite often we are faced with the task of estimating the value of a random variable
x when observations of another random vector y = (y1, . . . , yN )T are given. The
resulting estimator x̂ = f(y) maps the random observed variables y onto the
estimated variable x̂ which is then in turn random.

In the context of speech processing, various optimization criteria are used [Vary
2004]. The maximum likelihood (ML) estimator selects a value in the range of
x such that the conditional joint probability density of the observed variables is
maximized, i.e.,

x̂ = arg max
x

py|x (y | x) . (5.126)

The maximum a posteriori (MAP) estimator is defined by

x̂ = arg max
x

px|y (x | y) = arg max
x

py|x (y | x) px (x)

py(y)
(5.127)
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where now the a priori distribution px (x) of the unknown variable x is employed.
When the a priori density px (x) is uniformly distributed, the MAP estimator
results in the same estimate as the ML estimator.

In a more general setting we might strive to minimize the statistical expectation

Exy {C(x, x̂)} =

∞∫

−∞

. . .

∞∫

−∞

C(u, f(y))pxy(u, y1, . . . , yN) du dy1 . . .dyN

(5.128)

of a cost function C(x, x̂) over the probability spaces of x and y. The most promi-
nent of these estimators is the minimum mean square error (MMSE) estimator
where C(x, x̂) = (x − x̂)2. MMSE solutions to the estimation problem will be
discussed in more detail below.

5.12.1 MMSE Estimation

We show that the optimal solution x̂ in the MMSE sense is given by the expectation
of x conditioned on the vector of observations y = (y1, . . . , yN )T , i.e.,

x̂ = Ex {x | y} =

∞∫

−∞

u px|y(u | y1, . . . , yN) du . (5.129)

The optimal solution x̂ = f(y) is a function of the joint statistics of the observed
variables and x. The computation of the mean square error Exy

{
(x − x̂)2

}
requires

averaging over the probability space of x as well as of y. Thus, we might expand
the mean square error into

Exy

{
(x − x̂)2

}
=

∞∫

−∞

· · ·
∞∫

−∞

(u − x̂)2pxy(u, y1, . . . , yN ) du dy1 . . .dyN

(5.130)

=

∞∫

−∞

· · ·
∞∫

−∞

(u − x̂)2px|y(u | y1, . . . , yN )py(y1, . . . , yN) du dy1 . . .dyN .

Since PDFs are non-negative, it is sufficient to minimize the inner integral

∞∫

−∞

(u − x̂)2px|y(u | y1, . . . , yN ) du (5.131)
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for any given vector y of observations. Setting the first derivative with respect to
x̂ to zero then yields the desired result

x̂ =

∞∫

−∞

u px|y(u | y1, . . . , yN) du = Ex {x | y} . (5.132)

In general, x̂ is a non-linear function of the observed values y.

5.12.2 Optimal Linear Estimator

We simplify the estimation procedure by constraining the estimate x̂ to be a linear
combination of the observed data, i.e.,

x̂ = hT y (5.133)

where hT = (h1, . . . , hN ) is a vector of constant weights. The expansion of
E
{
(x − x̂)2

}
leads to

E
{
(x − x̂)2

}
= E

{
x2

}
− 2E

{
xyT

}
h + hT E

{
yyT

}
h (5.134)

and the minimization of the mean square error for an invertible autocorrelation
matrix Ryy to

h = R−1
yy rxy (5.135)

where rxy is defined as

rxy = (E {x y1} , . . . , E {x yN})T . (5.136)

Thus, for a given vector of observations y, we compute the estimated value as

x̂ = yT R−1
yy rxy . (5.137)

In contrast to the general non-linear solution, the probability densities of the signal
and the noise are not involved in the computation of the linearly constrained
solution. The weight vector h = R−1

yy rxy is a function of second-order statistics
but not a function of the observed vector y itself.

The linear estimator may be extended to the more general non-homogeneous case

x̂ = hT y + a . (5.138)
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We obtain

h = C−1
yy cxy = (R−1

yy − µyµ
T
y )−1(rxy − µyµx) (5.139)

and

a = µx − µT
y C−1

yy cxy . (5.140)

The estimate is therefore given by

x̂ = (yT − µy)C−1
yy cxy + µx . (5.141)

If we assume an additive signal plus noise model, y = x + n, where the signal x
and the noise n are mutually uncorrelated signals with E {x} = µx, E {n} = 0, and
E {x n} = 0, we may further simplify the above result. It is especially instructive
to interpret the solution in the case of a single observation y. Then, we have

x̂ = (y − µx)
σ2

x

σ2
x + σ2

n

+ µx = (y − µx)
ξ

1 + ξ
+ µx (5.142)

where ξ = σ2
x/σ2

n is called the a priori signal-to-noise ratio (SNR). For ξ ≫ 1 we
have x̂ ≈ y. The estimate is approximately equal to the observed variable. For a
low a priori SNR, ξ � 0, we have x̂ ≈ µx. In this case, the best estimate is the
unconditional mean of the desired variable x.

5.12.3 The Gaussian Case

We will show that for the additive noise model, a scalar observation y, and jointly
Gaussian signals the non-linear MMSE estimator is identical to the linearly con-
strained estimator. Since x and n are uncorrelated and have zero mean, the PDF
of y = x + n is given by

py(v) =
1√

2π(σ2
x + σ2

n)
exp

(
− v2

2(σ2
x + σ2

n)

)

because the convolution of two Gaussians is a Gaussian. The conditional density
py|x(v | u) = pn(v−u) and the density of the undisturbed signal x may be written
as

pn(v − u) =
1√

2πσn

exp

(
−(v − u)2

2σ2
n

)
(5.143)

and

px(u) =
1√

2πσx

exp

(
− u2

2σ2
x

)
(5.144)
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respectively. The non-linear MMSE estimate is therefore given by

x̂ =

∞∫

−∞

u px|y(u | v) du (5.145)

=
1

py(v)

∞∫

−∞

u py|x(v | u) px(u) du (5.146)

= K

∞∫

−∞

u exp

(
−u2 σ2

x + σ2
n

2σ2
xσ2

n

+
vu

σ2
n

)
du (5.147)

with

K =
1

py(v)

exp
(
−v2/(2σ2

n)
)

2π
√

σ2
nσ2

x

.

With [Gradshteyn, Ryzhik 2000, Theorem 3.462]

∞∫

−∞

x exp
(
−px2 + 2qx

)
dx =

q

p

√
π

p
exp

(
q2

p

)
, Re{p} > 0 (5.148)

we obtain the estimator in terms of the observed random variable y as

x̂ =
σ2

x

σ2
x + σ2

n

y =
ξ

1 + ξ
y (5.149)

with ξ as defined above. This result can be extended to multiple observations and
multivariate estimates as well.

5.12.4 Joint Detection and Estimation

In a practical application, the desired signal x is not always present in the observed
noisy signal y. The optimal estimator must be adapted to this uncertainty about
the presence of the desired signal and must deliver an optimal estimate regardless
of whether the signal is present or not. In a slightly more general setting, we assume
that there are two versions x0 and x1 of the desired signal, which are present in
the observed signal with a priori probabilities P (H(0)) and P (H(1)) = 1−P (H(0))
respectively, where we denote the presence of x0 and the presence of x1 as the two
hypotheses

H(0) : x = x0 and (5.150)

H(1) : x = x1 . (5.151)
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The two versions of the signal x are treated as random variables with possibly
different probability density functions. With these assumptions, the PDF of x
may be written as

px(u) = px|H(0)(u | H(0))P (H(0)) + px|H(1)(u | H(1))P (H(1)) . (5.152)

Again, we use a quadratic cost function C(x, x̂) = (x̂ − x)2 where x̂ is in general
a function of the observed variable y = x + n. We minimize the total (Bayes) cost

J =

∞∫

−∞

∞∫

−∞

C(u, x̂(v))pxy(u, v) du dv (5.153)

=

∞∫

−∞

∞∫

−∞

(x̂(v) − u)2
(
pxy|H(0)(u, v | H(0))P (H(0))

+ pxy|H(1)(u, v | H(1))P (H(1))
)

du dv . (5.154)

Setting the first derivative of the inner integral with respect to x̂ to zero, we obtain

∞∫

−∞

(x̂(v)−u)
(
pxy|H(0)(u, v |H(0))P (H(0)) + pxy|H(1)(u, v |H(1))P (H(1))

)
du = 0

and substituting

pxy|H(0)(u, v | H(0))P (H(0)) = py|H(0)(v | H(0))px|y,H(0)(u | v, H(0))P (H(0))

pxy|H(1)(u, v | H(1))P (H(1)) = py|H(1)(v | H(1))px|y,H(1)(u | v, H(1))P (H(1))

yields

x̂(v)
[
py|H(0)(v | H(0))P (H(0)) + py|H(1)(v | H(1))P (H(1))

]

= py|H(0)(v | H(0))P (H(0))

∞∫

−∞

upx|y,H(0)(u | v, H(0)) du

+ py|H(1)(v | H(1))P (H(1))

∞∫

−∞

upx|y,H(1)(u | v, H(1)) du . (5.155)
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We introduce the generalized likelihood ratio

Λ(v) =
py|H(1)(v | H(1))

py|H(0)(v | H(0))

P (H(1))

P (H(0))
(5.156)

and obtain the solution [Middleton, Esposito 1968]

x̂(v) = Ex

{
x | v, H(0)

} 1

1 + Λ(v)
+ Ex

{
x | v, H(1)

} Λ(v)

1 + Λ(v)
. (5.157)

The joint MMSE detection and estimation problem leads to a linear combination of
the MMSE estimators for the two hypotheses H(0) and H(1). The weights of the two
estimators are in the range [0, 1] and are determined as a function of the generalized
likelihood ratio Λ(v). Since the likelihood ratio is in general a continuous function
of the observed data v, (5.157) comprises a soft decision weighting of the two
conditional estimators.
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6

Linear Prediction

This chapter is concerned with the estimation of the spectral envelope of speech
signals and its parametric representation. By far the most successful technique,
known as linear predictive analysis, is based on autoregressive (AR) modeling.
Linear prediction (LP) enables us to estimate the coefficients of AR filters and is
thus closely related to the model of speech production. It is in fact a key component
of all speech compression algorithms, e.g. [Jayant, Noll 1984], [Vary et al. 1998].
AR modeling, in conjunction with linear prediction, not only is used successfully
in speech coding, but has also found numerous applications in spectral analysis,
in speech recognition, and in the enhancement of noisy signals. The application of
LP techniques in speech coding is quite natural, as (simplified) models of the vocal
tract correspond to AR filters. The underlying algorithmic task of LP modeling
is to solve a set of linear equations. Fast and efficient algorithms, such as the
Levinson–Durbin algorithm [Durbin 1960], [Makhoul 1975], are available and will
be explained in detail. Speech signals are stationary only for relatively short periods
of 20 to 400 ms. To account for the variations of the vocal tract, the prediction filter
must be adapted on a short-term basis. We discuss block-oriented and sequential
methods.

Digital Speech Transmission: Enhancement, Coding and Error Concealment

Peter Vary and Rainer Martin
c© 2006 John Wiley & Sons, Ltd
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6.1 Vocal Tract Models and Short-Term
Prediction

At the outset of our considerations we recall that speech may be modeled as the
output of a linear, time-varying filter excited either by periodic pulses or by random
noise, as shown in Fig. 6.1.

The filter with impulse response h(k), which is assumed time invariant at first, is
excited with the signal

v(k) = g · u(k) , (6.1)

where the gain factor g controls the amplitude, and thus the power of the excitation
signal v(k).

To synthesize voiced segments, a periodic impulse sequence

u(k) =

+∞∑

i=−∞

δ(k − iN0) (6.2)

with the period N0 is used; to synthesize unvoiced segments, a white noise signal
u(k) with variance σ2

u = 1 is applied.

In general, the relation between the excitation signal v(k) and the output signal
x(k) is described in the time domain by the difference equation

x(k) =

m′∑

i=0

bi v(k−i) −
m∑

i=1

ci x(k−i) . (6.3)

Figure 6.1: Discrete time model of speech production
N0 : pitch period
S : voiced/unvoiced decision
g : gain
h(k) : impulse response
x(k) : speech signal
v(k) : excitation signal
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The output signal x(k) is generated by a linear combination of the instantaneous
excitation sample v(k), m′ delayed samples v(k− i) (i = 1, 2, . . . , m′), and m past
output values x(k − i) (i = 1, 2, . . . , m). In the z-domain, this leads with c0 = 1
to the transfer function

X(z)

V (z)
= H(z) =

m′∑
i=0

bi z−i

m∑
i=0

ci z−i

=

zm
m′∑
i=0

bm′−i zi

zm′
m∑

i=0
cm−i zi

. (6.4)

This function has the form of a general, recursive digital filter with infinite impulse
response (IIR). Depending on the choice of the coefficients, the following signal
models can be distinguished:

a) All-Zero Model

For c0 = 1 and ci ≡ 0 (i = 1, 2, . . . , m), the filter is purely non-recursive, i.e., in
the time domain we obtain

x(k) =

m′∑

i=0

bi v(k−i) (6.5-a)

and in the frequency domain

H(z) =

m′∑
i=0

bm′−i zi

zm′ =
1

zm′ ·
m′∏

i=1

(z − z0i) . (6.5-b)

The transfer function has an m′-th order pole at z = 0 and it is determined by
its zeros z0i alone. This model is known as the all-zero model or moving-average
model (MA model).

b) All-Pole Model

With b0 �= 0 and bi ≡ 0 (i = 1, 2, . . . , m′) a recursive filter with

x(k) = b0 v(k) −
m∑

i=1

ci x(k−i) (6.6-a)

and

H(z) = b0
zm

m∑
i=0

cm−i zi

= b0
zm

m∏
i=1

(z − z∞i)
(6.6-b)

results.
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Figure 6.2: All-pole filter as model of the lossless tube
a) Acoustical tube model
b) Corresponding digital AR filter

Except for the m-th order zero at z = 0, this filter has only poles z∞i. Therefore,
it is called an all-pole model. In signal theory, (6.6-a) is associated with an autore-
gressive process or AR process . This process corresponds to the model of speech
production introduced in Section 2.3, neglecting the nasal tract and the glottal
and labial filters. The corresponding discrete-time filter is the equivalent model of
the lossless acoustical tube as illustrated in Fig. 6.2.

In this case, the effective transfer function of (6.4) for b0 = 1 is

H(z) =
1

1 − C(z)
(6.7-a)

with

C(z) = −
m∑

i=1

ci · z−1 . (6.7-b)

c) Pole-Zero Model

The general case is described by (6.3) and (6.4) and represents a mixed pole–zero
model. In statistics, this is called an autoregressive moving-average model (ARMA
model).

This would be the adequate choice, if we include the pharynx (C), the nasal cavity
(D), and the mouth cavity (E) separately in our model, as indicated in Fig. 6.3-a.
As the radiations of the nostrils and the lips superimpose each other, we have a
parallel connection of the tubes (D) and (E) and a serial connection of the two
with tube (C).

The three tubes can be modeled by three individual AR filters with the transfer
functions

HC(z) =
1

1 − C(z)
, HD(z) =

1

1 − D(z)
, HE(z) =

1

1 − E(z)
, (6.8)

where D(z) and E(z) are defined analog to (6.7-b).



6.1 Vocal Tract Models and Short-Term Prediction 167

Figure 6.3: Pole–zero filter as model of connected lossless tube sections
a) Acoustical tube model
b) Corresponding digital ARMA filter

Thus, we obtain the overall transfer function

H(z) =
1

1 − C(z)
·
(

1

1 − D(z)
+

1

1 − E(z)

)
(6.9-a)

=
2 − D(z) − E(z)

(1 − C(z)) (1 − D(z)) (1 − E(z))
(6.9-b)

=

m′∏
i=1

(z − z0i)

m∏
i=1

(z − z∞i)
(6.9-c)

having poles and zeros.

However, in connection with coding and synthesis of speech signals, the all-pole
model is most frequently used in practice. This would mean that the nasal cavity
is neglected and sections (C) and (E) of Fig. 6.3-a can jointly be modeled by one
single all-pole model of corresponding degree.

The predominance of the all-pole model in practical applications will be further
justified by the following considerations (e.g., [Deller Jr. et al. 2000]). First, the
general pole–zero filter according to (6.4), which is assumed to be causal and stable,
will be examined. In the z-plane, the poles are located inside the unit circle, while
the zeros may also lie outside the unit circle. Such a situation is illustrated in
Fig. 6.4-a for two pole–zero pairs.
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Figure 6.4: Pole–zero locations
a) Original filter H(z)
b) Decomposition into minimum-phase and all-pass filter

o = location of a zero
× = location of a pole

The transfer function H(z) can now be split into a minimum-phase system Hmin(z)
and an all-pass transfer function HAp(z) according to

H(z) = Hmin(z) · HAp(z) . (6.10)

In order to do so, the zeros z0 and z∗0 outside the unit circle are first reflected into
the circle to the positions 1/z∗0 and 1/z0. Then, they are compensated by poles at
the same (reflected) position, as depicted in Fig. 6.4-b. At z = w and z = w∗, we
now have a zero, as well as a pole. The two locations of the zeros and the poles at

w =
1

z∗0
and w∗ =

1

z0
(6.11)

are assigned to a minimum-phase system having zeros inside the unit circle

Hmin(z) =
(z − w)(z − w∗)

(z − z∞)(z − z∗∞)
. (6.12)

The two zeros outside the unit circle and the poles at w and w∗ form an all-pass
system

HAp(z) =
(z − z0)(z − z∗0)

(z − w)(z − w∗)
, (6.13)

with a constant magnitude

∣∣HAp(z = ejΩ)
∣∣ = |z0|2 . (6.14)
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For the synthesis of speech it is sufficient to realize only the minimum-phase system,
since speech perception is relatively insensitive to phase changes caused by all-
pass filtering. Therefore, a minimum-phase pole–zero filter can be used to model
the speech synthesis process according to Fig. 6.1. This leads to three important
consequences:

1. Since the poles and zeros are located within the unit circle, a stable inverse
filter exists with

H−1
min(z) =

1

Hmin(z)
. (6.15)

The vocal tract model filter 1/Hmin(z) can thus be inverted to recover an
excitation signal.

2. Every minimum-phase pole–zero filter can be described exactly by an all-
pole filter of infinite order, which in turn can be approximated by an m-th
order filter (e.g., [Marple Jr. 1987]). This justifies the use of an all-pole filter
for the synthesis of speech in practical applications.

3. The coefficients of an all-pole filter can be derived from the speech samples
x(k) by solving a set of linear equations. Fast algorithms are available to
fulfill this task (see Section 6.3).

In accordance with these considerations, the model of speech production is usually
based on an all-pole filter. The coefficients of this filter can be determined, as
will be shown below, using linear prediction techniques. The prediction implies the
above-mentioned inverse filtering of the speech signal x(k), so that, apart from the
filter parameters, an excitation signal v(k) according to the model in Fig. 6.1 can
be obtained for speech synthesis or coding.

The all-pole model, which is defined by difference equation (6.6-a), shows that
successive samples x(k) are correlated. With given coefficients ci, each sample
x(k) is determined by the preceding samples x(k−1), x(k−2), . . . , x(k−m), and
v(k) which is also called innovation. For reasons of simplicity, we assume that
b0 = g = 1. Therefore, it must be possible to estimate or predict the present
sample x(k) despite the contribution of the innovation v(k) by a weighted linear
combination of previous samples:

x̂(k) =

n∑

i=1

ai x(k−i) . (6.16)

This operation is called linear prediction (LP). The predicted signal x̂(k)
is a function of the unknown coefficients ai and the previous samples
x(k − i), i = 1, 2, . . . , n. The difference

d(k)
.
= x(k) − x̂(k) (6.17)

is termed prediction error signal.
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Figure 6.5: Linear prediction with a non-recursive filter of order n

The prediction task and the generation of the error signal can be described, as
shown in Fig. 6.5, by non-recursive filtering of signal x(k). The overall filter with
input x(k) and output d(k) is called the LP-analysis filter. As the number n
of predictor coefficients ai, i = 1, 2, . . . , n is relative small, the memory of the
predictor is quite short according to

n · T = n · 1

fs
. (6.18)

A typical figure is n = 8, fs = 8 kHz and n · T = 1 ms. Therefore, the predictor of
Fig. 6.5 is usually called the short-term predictor.

Referring to (6.6-a) and (6.16) for n = m we obtain

d(k) = x(k) − x̂(k) (6.19-a)

= v(k) −
m∑

i=1

ci x(k−i) −
m∑

i=1

ai x(k−i) (6.19-b)

= v(k) −
m∑

i=1

(
ci + ai

)
x(k−i) . (6.19-c)

If we could adjust the predictor coefficients ai in such a way that

ai = − ci , (6.20-a)

we obtain

d(k) = v(k) . (6.20-b)

In this case, the LP-analysis filter would compensate the vocal tract filter. There-
fore, the coefficients ai implicitly describe the (instantaneous) spectral envelope
of the speech signal. In the following section, it will be shown how to calculate
optimal coefficients ai by performing a system identification according to (6.20-a).
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6.2 Optimal Prediction Coefficients for
Stationary Signals

In this section it will be shown that prediction coefficients ai, which minimize the
mean square error

E{d2(k)} = E{(x(k) − x̂(k))
2} , (6.21)

also obey (6.20-a). Furthermore, an algorithm for calculating the coefficients ai

from the speech signal x(k) is derived.

For the sake of simplicity, it is first presumed that the unknown coefficients ci

of the model filter, or the impulse response h(k) of the vocal tract respectively,
are time invariant and that the order m = n is known. Furthermore, a real-
valued, stationary, uncorrelated, and zero-mean excitation signal v(k) (white noise,
unvoiced stationary speech) is assumed. Then, the case of periodic pulse excitation
v(k) (voiced stationary speech) will be considered as well.

6.2.1 Optimum Prediction

Within the optimization procedure, the auto-correlation functions of the sequences
v(k) and x(k) and their cross-correlation are of interest:

ϕvv(λ) = E{v(k) v(k±λ)} =

{
σ2

v for λ = 0
0 for λ = ±1,±2, . . .

(6.22)

ϕxx(λ) = E{x(k) x(k±λ)} = σ2
v

∞∑

i=0

h(i) h(i ± λ) (6.23)

ϕvx(λ) = E{v(k) x(k+λ)} = E

{
∞∑

i=0

h(i) v(k+λ−i) v(k)

}
(6.24-a)

=
∞∑

i=0

h(i) ϕvv(λ−i) = h(λ) σ2
v . (6.24-b)

The predictor coefficients ai, i = 1, 2, . . . , n are chosen to minimize the mean
square prediction error according to (6.21).
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Taking (6.16) and (6.17) into account, the partial derivative of (6.21) with respect
to the coefficient aλ is set to 0

∂E{d2(k)}
∂aλ

= E

{
2 d(k)

∂d(k)

∂aλ

}
(6.25-a)

= E {−2 d(k) x(k − λ)} !
= 0 ; λ = 1, 2, . . . , n (6.25-b)

and the second derivation results in

∂2E{d2(k)}
∂a2

λ

= E
{
2 x2(k − λ)

}
≥ 0 , (6.25-c)

proving that the solution is a minimum. Equation (6.25-b) has a single solution

ai = − ci , (6.26)

as with (6.20-b), (6.24-b), (6.25-b), and the assumed causality (h(−λ) = 0 ;
λ = 1, 2, . . . , n) the following holds

E{−2 d(k) x(k−λ)} = −2 E{v(k) x(k−λ)} (6.27-a)

= −2 ϕvx(−λ) = 0 . (6.27-b)

The prediction process compensates the model filter, as was shown with (6.20-b).
The complete filter of Fig. 6.5 with the input signal x(k) and the output signal
d(k) can be interpreted as the inverse of the vocal tract model.

If, in case of voiced segments, the excitation signal is not a white noise but a
periodic pulse train

v(k) = g ·
∞∑

i=−∞

δ (k − i · N0) (6.28)

with N0 > n then (6.22) is valid for λ = 0,±1,±2, . . . ,±(N0 − 1) with

σ2
v =

g2

N0
. (6.29)

Then (6.27-b) is fulfilled for the interesting range of λ = 1, 2, . . . , n < N0 too.

With the above assumptions, the power minimization of the prediction error im-
plies in the unvoiced as well as in the voiced case a system identification process,
as the coefficients ai of the optimal non-recursive predictor match the coefficients
ci of the recursive model filter.
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Equation (6.25-b) can be transformed into an explicit rule to calculate the predictor
coefficients ai. For this purpose, d(k) and x(k) according to (6.17) and (6.16) are
inserted into (6.25-b)

−2 E{d(k) x(k − λ)}=−2 E

{(
x(k) −

n∑

i=1

ai x(k − i)
)

x(k − λ)

}
(6.30-a)

=−2 ϕxx(λ) + 2

n∑

i=1

ai ϕxx(λ − i)
!
= 0 . (6.30-b)

For λ = 1, 2, . . . , n, this results in the so-called normal equations in vector matrix
notation



ϕxx(1)
ϕxx(2)

...
ϕxx(n)


 =




ϕxx(0) ϕxx(−1) . . . ϕxx(1−n)
ϕxx(1) ϕxx(0) . . . ϕxx(2−n)

...
...

. . .
...

ϕxx(n−1) ϕxx(n−2) . . . ϕxx(0)







a1

a2

...
an


 (6.30-c)

or

ϕxx = Rxx a , (6.30-d)

respectively, where ϕxx denotes the correlation vector and Rxx the correlation
matrix. Rxx is a real-valued, positive-definite Toeplitz matrix.

The solution of the normal equations provides the optimal coefficient vector

aopt = R−1
xx ϕxx . (6.31)

The power of the prediction error in the case of optimal predictor coefficients can
be calculated explicitly:

σ2
d = E{(x(k) − x̂(k))2} (6.32-a)

= E{x2(k) − 2 x(k) x̂(k) + x̂2(k)} . (6.32-b)

In vector notation

x̂(k) = aT x(k − 1)

with a
.
= (a1, a2, . . . , an)T and x(k−1)

.
= (x(k−1), x(k−2), . . . , x(k−n))T , we get

σ2
d = σ2

x − 2 aT ϕxx + aT Rxx a . (6.32-c)

Inserting (6.30-d) results in

σ2
d = σ2

x − aT ϕxx (6.32-d)

= σ2
x −

n∑

λ=1

aλ ϕxx(λ) . (6.32-e)
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Figure 6.6: Logarithmic prediction gain 10 lg
(
σ2

x/σ2
d

)
of a time-invariant prediction filter

for two different speakers (signal length 30 s, fs = 8 kHz)

Alternatively, (6.32-d) can be reformulated with (6.31) into

σ2
d = σ2

x − ϕT
xx R−1

xx ϕxx , (6.32-f)

where the optimal coefficients ai are not explicitly needed to calculate σ2
d .

The power ratio

Gp =
σ2

x

σ2
d

(6.33)

is called the prediction gain. This gain is a measure for the bit rate reduction that
can be achieved through predictive coding techniques (cf. Section 8.3.3). Figure 6.6
depicts the prediction gain for two speech signals with a duration of 30 seconds each
as a function of the predictor order n. For each predictor order n = 1, 2, . . . , 30, a
set of coefficients which is optimal for the respective complete signal was calculated
according to (6.31).

It becomes apparent that for predictor orders n ≥ 2 the prediction gain increases
rather slowly. The achievable prediction gain depends to a certain extent on
the speaker.

6.2.2 Spectral Flatness Measure

The achievable prediction gain is related to the spectral flatness of the signal x(k).
No prediction gain can be achieved for white noise which has a constant power
spectral density

Φxx(ejΩ) = const. = σ2
x . (6.34)
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This power spectral density is completely flat; the signal is not correlated. With
increasing correlation the prediction gain increases while the spectral flatness de-
creases.

A first measure of spectral flatness is the average of the logarithmic normalized
power spectral density, e.g., [Markel, Gray 1976], [Sluijter 2005]

sfx =
1

2π

π∫

−π

ln

[
Φxx

(
ejΩ

)

σ2
x

]
dΩ (6.35)

with

σ2
x =

1

2π

π∫

−π

Φxx

(
ejΩ

)
dΩ . (6.36)

The measure (6.35) is bounded according to

−∞ < sfx ≤ 0

where the maximum value sfx = 0 applies in case of white noise.

A more convenient spectral flatness measure γ2
x with

0 ≤ γ2
x ≤ 1 (6.37)

is obtained from (6.35), e.g., [Makhoul, Wolf 1972], [Markel, Gray 1976] by

γ2
x = exp (sfx) (6.38)

= exp


 1

2π

π∫

−π

ln
(
Φxx(ejΩ)

)
dΩ − ln

(
σ2

x

)

 . (6.39)

Taking (6.36) into account, the widely used form of the spectral flatness measure
results:

γ2
x =

exp

(
1
2π

π∫
−π

ln
(
Φxx(ejΩ)

)
dΩ

)

1
2π

π∫
−π

Φxx(ejΩ) dΩ

. (6.40)

In the case of Φxx(ejΩ) = const. = σ2
x we obtain γ2

x = 1.
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The expression (6.40) is the ratio of the geometric and the arithmetic mean of the
power spectral density Φxx(ejΩ). This becomes more obvious when the integrals
in (6.40) are approximated by summations and when the power spectral density is
replaced by the periodogram, i.e., the squared magnitude of the discrete Fourier
transform of a segment of x(k) of length M :

γ2
x ≃

exp

(
1
M

M−1∑
µ=0

ln |X(ejΩµ)|2
)

1
M

M−1∑
µ=0

|X(ejΩµ)|2
(6.41-a)

=

[
M−1∏
µ=0

|X(ejΩµ)|2
] 1

M

1
M

M−1∑
µ=0

|X(ejΩµ)|2
, Ωµ =

2π

M
µ , µ = 0, 1, . . . , M − 1 . (6.41-b)

The spectral flatness measure is related to the achievable prediction gain as shown
below.

We consider the LP-analysis filter with input x(k) and output d(k) as shown in
Fig. 6.7. If x(k) is a random process with power spectral density Φxx(ejΩ), the
following relations are valid:

Φdd

(
ejΩ

)
= |A0

(
ejΩ

)
|2 · Φxx

(
ejΩ

)
(6.42)

1

2π

π∫

−π

ln
(
Φdd

(
ejΩ

))
dΩ =

1

2π

π∫

−π

ln |A0

(
ejΩ

)
|2 dΩ (6.43)

+
1

2π

π∫

−π

ln
(
Φxx

(
ejΩ

))
dΩ . (6.44)

Figure 6.7: LP-analysis filter with A0(z) = 1 − A(z) = 1 −
n∑

i=1

ai · z
−i = 1

zn

n∏
i=1

(z − zi)
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It can be shown that the average value of the logarithm of |A0(z)| is zero if A0(z)
has all its zeros within the unit circle, e.g., [Markel, Gray 1976], [Itakura, Saito
1970]

1

2π

π∫

−π

ln |A0

(
ejΩ

)
|2 dΩ = 0 . (6.45)

Therefore, the ratio of the spectral flatness measures of x(k) and d(k) can be
written as

γ2
x

γ2
d

=

exp

(
1
2π

π∫
−π

ln
(
Φxx

(
ejΩ

))
dΩ

)

σ2
x

· σ2
d

exp

(
1
2π

π∫
−π

ln (Φdd (ejΩ)) dΩ

)

=
σ2

d

σ2
x

=
1

Gp
.

For perfect prediction (requiring infinite predictor degree) the residual signal d(k)
has a perfectly flat spectrum with γ2

d = 1. Thus the following relation is valid

lim
n→∞

{
1

Gp

}
= γ2

x . (6.46)

The spectral flatness measure γ2
x is identical to the inverse of the theoretically

maximum prediction gain.

6.3 Predictor Adaptation

Speech signals can be considered as stationary only for relatively short time in-
tervals between 20 and 400 ms; thus, the coefficients of the model filter change
quickly. Therefore, it is advisable to optimize the predictor coefficients frequently.
Here, we distinguish between block-oriented and sequential methods.

6.3.1 Block-Oriented Adaptation

The optimization of the coefficients ai is performed for short signal segments (also
called blocks or frames) which consist of N samples each. Considering the vocal
tract variations, the block length is usually set to TB = 10 – 30 ms. With a sampling
frequency of fs = 8 kHz, this corresponds to a block size of N = 80 – 240 signal
samples.
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Figure 6.8: Block-oriented adaptation
a) Auto-correlation method (stationary method)
b) Covariance method (non-stationary method)

Basically, the solution (6.31) for stationary signals can be used for the block-
oriented adaptation. At time instant k0 the coefficient vector

a(k0) = (a1(k0), a2(k0), . . . , an(k0))
T

is determined. As x(k) is not limited to N samples, we can, for the optimization,
limit either the input signal x(k) or the prediction error signal d(k) to a finite
time interval. These two cases are often referred to in the literature as the auto-
correlation method and covariance method [Makhoul 1975]. The terms stationary
approach and non-stationary approach or auto- and cross-correlation method ,
however, are more appropriate.

The distinction between the two methods is illustrated in Fig. 6.8. For the basic
version of the auto-correlation method (Fig. 6.8-a) a frame x̃(k) which includes the
last N samples up to the time instant k0 is extracted from the sequence x(k) using
a window w(k) of length N

x̃(k) = x(k) w(k0 − k) , (6.47)

while for the covariance method (Fig. 6.8-b) the finite segment is extracted from
the prediction error signal

d̃(k) = d(k) w(k0 − k) . (6.48)

These two different definitions of the time-limited segment lead to the two above-
mentioned alternative approaches, which will be discussed in the next two sections.
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6.3.1.1 Auto-correlation Method

The signal x̃(k) attains non-zero values only within the time interval

k1 = k0 − N + 1 ≤ k ≤ k0 . (6.49)

Thus, x̃(k) has finite energy. Due to the finite order n of the non-recursive predictor,
the prediction error signal ď(k) is limited to the finite interval

k1 = k0 − N + 1 ≤ k ≤ k0 + n = k2 (6.50)

and also has finite energy. Therefore, the optimization procedure can be simplified
by minimizing the energy of the signal ď(k)

k2∑

k=k1

ď2(k)
!
= min . (6.51)

In analogy to the derivation for stationary signals, the solution (6.31) is valid by
replacing the auto-correlation function

ϕxx(λ) = E{x(k) x(k + λ)}

by the short-term auto-correlation which may be defined for signals with finite
energy as

rλ =

k0∑

k=k1

x̃(k) x̃(k + λ) (6.52-a)

=

k0−λ∑

k=k1

x(k) x(k + λ) ∀ λ = 0, 1, . . . , n , (6.52-b)

Due to the symmetry

rλ = r−λ (6.53)

the normal equations (6.30-c) can be rewritten as




r1

r2

r3

r4

...
rn




=




r0 r1 r2 r3 . . . rn−1

r1 r0 r1 r2 . . . rn−2

r2 r1 r0 r1 . . . rn−3

r3 r2 r1 r0 . . . rn−4

...
...

...
...

. . .
...

rn−1 rn−2 rn−3 rn−4 . . . r0







a1

a2

a3

a4

...
an




(6.54-a)
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or according to (6.30-d)

r = R a (6.54-b)

respectively, where ϕxx is replaced by r and Rxx by R. Like the correlation matrix
Rxx, the short-term correlation matrix R has a symmetric Toeplitz structure.
This facilitates the use of very efficient algorithms such as the Levinson–Durbin
algorithm (see Section 6.3.1.3) for the solution of the set of equations.

Because of the formal analogy with the solution (6.31) for stationary signals,
the term stationary approach is used. For the calculation of the short-term auto-
correlation values rλ, often non-rectangular windows w(k) are used, e.g., the Ham-
ming window or asymmetric windows, e.g., [Barnwell III 1981], which gives more
weight to the most recent samples than to the older ones.

6.3.1.2 Covariance Method

For the so-called covariance method, the energy of the error signal d̃(k) in Fig. 6.8-b
is minimized over the finite interval of length N

k0∑

k=k1

d̃2(k) =

k0∑

k=k1

d2(k)
!
= min . (6.55)

Compared to (6.51), the upper limit of the sum changes. Note that, in addition to
this, the signal x(k) is now applied to the filter which is not restricted to the time
interval k1 ≤ k ≤ k0 .

With

d(k) = x(k) −
n∑

i=1

ai x(k − i) , (6.56)

the partial derivative of (6.55) with respect to a specific coefficient aλ yields

∂

∂aλ

k0∑

k=k1

d2(k) = 2

k0∑

k=k1

d(k)
∂d(k)

∂aλ
; λ = 1, 2, . . . , n (6.57-a)

= −2

k0∑

k=k1

d(k) x(k − λ) (6.57-b)

= −2

k0∑

k=k1

(
x(k) −

n∑

i=1

ai x(k − i)

)
x(k − λ)

!
= 0 . (6.57-c)



6.3 Predictor Adaptation 181

For λ = 1, 2, . . . , n this results in

k0∑

k=k1

x(k) x(k − λ) =
n∑

i=1

ai

k0∑

k=k1

x(k − i) x(k − λ) . (6.58)

With the abbreviation

r̂i,λ =

k0∑

k=k1

x(k − i) x(k − λ) (6.59)

and the symmetry

r̂i,λ = r̂λ,i , (6.60)

we obtain the set of equations




r̂0,1

r̂0,2

r̂0,3

...
r̂0,n




=




r̂1,1 r̂1,2 r̂1,3 . . . r̂1,n

r̂1,2 r̂2,2 r̂2,3 . . . r̂2,n

r̂1,3 r̂2,3 r̂3,3 . . . r̂3,n

...
...

...
. . .

...
r̂1,n r̂2,n r̂3,n . . . r̂n,n







a1

a2

a3

...
an




, (6.61-a)

or, in compact notation,

r̂ = R̂ a . (6.61-b)

In contrast to the stationary approach (6.54-a), the calculation of the short-term
correlation values r̂i,λ is not shift invariant

r̂i,λ �= r̂i+i0,λ+i0 . (6.62)

Therefore, this method of calculating the predictor coefficients is also called the
non-stationary approach.

While for the auto-correlation method the number of product terms x(i) x(i + λ)
used in (6.52-b) decreases for increasing λ, the computation of r̂λ,i is always based
on N product terms. Consequently, in addition to the N samples from k = k1

to k = k0, n preceding values x(k) are needed for this approach. The covariance
method thus provides more precise estimates of the short-term correlation than
the auto-correlation method. The resulting matrix R̂ is still symmetric, but the
Toeplitz form of R is lost. Thus, the matrix inversion requires more complex meth-
ods, such as the Cholesky decomposition. It should be noted that stability of the
resulting synthesis filter cannot be guaranteed. However simple stabilizing methods
exist, such as adding a small constant in the diagonal of R̂.



182 6 Linear Prediction

Various recursion algorithms are available to solve the set of equations for both the
auto-correlation method and the covariance method. Here, the Levinson–Durbin
algorithm for the autocorrelation method will be developed as one possible so-
lution. Comparable results are provided by similar algorithms, such as those of
Schur, Burg, Le Roux, and Gueguen ([Kay 1988], [Marple Jr. 1987]).

6.3.1.3 Levinson–Durbin Algorithm

In this section we will derive the Levinson–Durbin algorithm for the auto-correla-
tion method [Levinson 1947], [Durbin 1960]. This algorithm starts from a known
solution a(p−1) of the set of equations (6.54-a) for the predictor order (p−1) leading
to the solution a(p) for the order p. Beginning with the (trivial) solution for p = 0
we can find the solution for the actually desired predictor order n iteratively with
low computational effort. As an example, we will now examine the step from
p − 1 = 2 to p = 3.

In order to simplify the notation, we replace the predictor coefficients by

α
(p)
i

.
= − a

(p)
i ; i ∈ {1, 2, . . . , p} . (6.63)

For p = 2, the normal equations

(
r1

r2

)
+

(
r0 r1

r1 r0

)
·
(

α
(2)
1

α
(2)
2

)
=

(
0
0

)
(6.64-a)

can be written equivalently as

(
r1 r0 r1

r2 r1 r0

)
·




1

α
(2)
1

α
(2)
2


 =

(
0
0

)
. (6.64-b)

In analogy to (6.32-e), the following expression holds for the short-term energy of
the prediction error:

E(2) = r0 +
2∑

i=1

α
(2)
i ri . (6.65)

Thus, (6.64-b) can be extended to




r0 r1 r2

r1 r0 r1

r2 r1 r0


 ·




1

α
(2)
1

α
(2)
2


 =




E(2)

0
0


 . (6.66-a)
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or in vector matrix notation

R(3) · α(2) = e(2) . (6.66-b)

Because of the symmetry property of the correlation matrix of dimension
(p + 1) × (p + 1), the following representation is valid, too:




r0 r1 r2

r1 r0 r1

r2 r1 r0


 ·




α
(2)
2

α
(2)
1

1


 =




0
0

E(2)


 . (6.67)

For p = 3, we now try the following solution approach:

α(3) .
=




1

α
(3)
1

α
(3)
2

α
(3)
3


 =




1

α
(2)
1

α
(2)
2

0


 + k3




0

α
(2)
2

α
(2)
1

1


 (6.68)

with the unknown constant k3. Obviously, the coefficients α
(3)
1 , α

(3)
2 , and α

(3)
3 are

only a function of the respective coefficients for p = 2 and k3.

Extending (6.66-b) from p = 2 to 3 results in

R(4) α(3) = e(3) (6.69-a)

and with (6.68) we get




r0 r1 r2 r3

r1 r0 r1 r2

r2 r1 r0 r1

r3 r2 r1 r0


 ·







1

α
(2)
1

α
(2)
2

0


 + k3




0

α
(2)
2

α
(2)
1

1







=




E(2)

0
0
q


 + k3




q
0
0

E(2)




!
=




E(3)

0
0
0


 (6.69-b)

with the known quantity q = r3 + r2 α
(2)
1 + r1 α

(2)
2 .

For the determination of k3 and E(3) we exploit (6.69-b) and find the conditions

E(2) + k3 q = E(3)

q + k3 E(2) = 0
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or

k3 = − q

E(2)
(6.70-a)

E(3) = E(2)
(
1 + k3

q

E(2)

)

= E(2)
(
1 − k3

2
)

(6.70-b)

respectively. Using k3 as expressed in (6.70-a), α(3) can be calculated by (6.68).

In the next step, the solution for p = 4 can be evaluated. The coefficient k4 and the
energy of the prediction error E(4) are determined in analogy to (6.68)–(6.70-b).

The complete algorithm is summarized in general form. Starting from the solution
for p = 0, i.e., no prediction, the solution for p=n is computed in n steps.

1. Computation of n+1 values ri of the short-term auto-correlation.

2. p = 0, i.e., no prediction or

d(k) = x(k)

E(0) = r0

α
(0)
0

.
= 1 .

3. For p ≥ 1, computation of

(a) q =

p−1∑

i=0

α
(p−1)
i rp−i

kp = − q

E(p−1)

(b) α
(p)
0 = 1

α
(p)
i = α

(p−1)
i + kp α

(p−1)
p−i ∀ 1 ≤ i ≤ p − 1

α
(p)
p = kp

(c) E(p) = E(p−1) (1 − kp
2)

(d) p = p + 1 .

4. Repetition of step 3, if p ≤ n .

5. ai = − α
(n)
i ∀ 1 ≤ i ≤ n .
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The parameters kp are called reflection coefficients. Besides an index decrement by
one (ki−1 = ri), they are identical to those reflection coefficients which characterize
the tube model of the vocal tract developed in Chapter 2. The first reflection
coefficient of the tube model corresponds to k0 = 1.

Reflection coefficients have a number of interesting properties:

• They are limited by one in magnitude, i.e., |kp| ≤ 1. This is a consequence
of using proper auto-correlation sequences as input to the Levinson–Durbin
algorithm. Therefore, it can be concluded that the short-term energy E(p) is
reduced from iteration to iteration, i.e.,

E(p) = E(p−1) (1 − kp
2) ≤ E(p−1) . (6.71)

• The transfer function

1 − A(z) = 1 −
n∑

i=1

ai z−i

of the LP-analysis filter has all of its roots inside the unit circle, if and only
if |kp| < 1 ∀ p [Hayes 1996]. The reflection coefficients are therefore key
for checking the stability of the inverse LP filter and for the development
of inherently stable filter structures. In fact, the well-known Schur–Cohn
stability test [Haykin 1996] employs the Levinson–Durbin recursion.

• Given the reflection coefficients kp (p = 1 . . . n), the AR model coefficients

ai = −α
(n)
i (i = 1 . . . n, a0 = 1) can be calculated by the Levinson–Durbin

algorithm.

• Given the AR model coefficients ai = −α
(n)
i , the reflections coefficients kp

can be computed by the following recursion:

1. Initialization with α
(n)
i = −ai for 1 ≤ i ≤ n .

2. For p = n, n − 1, . . . , 1, computation of

(a) kp = α
(p)
p

(b) α
(p−1)
i =

α
(p)
i − kp α

(p)
p−i

1 − k2
p

; 1 ≤ i ≤ p − 1 .
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Figure 6.9: Block diagram of the linear predictor
a) Direct structure
b) Lattice structure

Since the Levinson–Durbin algorithm provides the predictor coefficients, as well
as the reflection coefficients, the predictor can be realized alternatively in direct
form (Fig. 6.9-a) or e.g., in the so-called lattice structure (Fig. 6.9-b).

The effect of the prediction is illustrated for one example in Fig. 6.10. It de-
picts the speech signal x(k) and the prediction error signal d(k) in the time and
frequency domain, as well as the corresponding magnitude responses of the LP-
analysis and synthesis filter. In this example, the n = 8 predictor coefficients were
calculated every 20 ms using the auto-correlation method and a rectangular win-
dow of length N = 160. The LP-analysis filter performs a reduction of the dynamic
range (Fig. 6.10-b) in the time domain and spectral flattening (Fig. 6.10-d, whiten-
ing effect) in the frequency domain. The corresponding frequency responses of the
analysis and synthesis filter are shown in Fig. 6.10-e and 6.10-f. Obviously, the LP-
synthesis filter describes the spectral envelope of x(k), i.e., the frequency response
of the vocal tract filter. The LP-analysis filter produces an error signal d(k), which
still has a quasi-periodic structure. Furthermore the spectral envelope of the error
signal is almost flat (see Fig. 6.10-d).
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Figure 6.10: Example of the effect of linear prediction with block adaptation
a) Speech signal x(k)
b) Prediction error signal d(k)
c) Short-term spectral analysis of the speech signal
d) Short-term spectral analysis of the prediction error signal
e) Magnitude response of the LP-analysis filter
f) Magnitude response of the LP-synthesis filter

Figure 6.11 shows the achievable prediction gain as a function of the predictor
order n for two sample speech signals. The predictors were adapted by the auto-
correlation method. In comparison to the results obtained for a time-invariant
predictor as in Fig. 6.6, a distinctly higher prediction gain results due to the block
adaptation. Furthermore, it can be observed that with an adaptive adjustment the
prediction gain saturates at a filter order of n = 8–10. An additional increase of
the prediction order provides no appreciable further gain. This confirms the vocal
tract model of Section 2.3.
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Figure 6.11: Logarithmic prediction gain for block adaptation with
auto-correlation based predictors for two speakers (solid)
and for a time-invariant prediction filter (dashed, Fig. 6.6);
(signal length 30 s, N = 160, fs = 8 kHz)

6.3.2 Sequential Adaptation

With the block-oriented adaptation the predictor coefficients ai (i = 1, 2, . . . , n)
are recalculated for blocks of N samples. In this section an alternative method,
the least-mean-square (LMS) algorithm, will be derived, in which the coefficients
are sequentially adapted in each sample interval.

In a first step we consider a predictor with a single fixed coefficient a. The power
of the prediction error signal d(k) = x(k) − a x(k − 1) can be expressed as

σ2
d = σ2

x − 2 a ϕxx(1) + a2 σ2
x

according to (6.32-c). The power σ2
d is a second-order function of the coefficient a,

which is depicted in Fig. 6.12.

With (6.31), the minimum mean square error is reached in point C for

aopt =
ϕxx(1)

ϕxx(0)
=

ϕxx(1)

σ2
x

.

Starting from points A or B, the minimum (point C) can be approached iteratively
by taking the gradient

∇ =
∂σ2

d

∂a
= − 2 ϕxx(1) + 2 a ϕxx(0)

into consideration. After inserting aopt in the above equation, we obtain

∇ = 2 ϕxx(0) · (a − aopt) .
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σ

σ

 σ

Figure 6.12: Error performance surface of the adaptive filter

The gradient is proportional to the difference of the instantaneous, i.e., time-
variant coefficient a from the optimum aopt. To reduce the mean square error
σ2

d, the instantaneous coefficient a(k) must thus be corrected in the direction of
the negative gradient according to

a(k + 1) = a(k) − ϑ · ∇ . (6.72)

Here, the constant ϑ denotes the stepsize, which controls the size of the incremental
correction.

This procedure, which is known in the literature as the steepest descent algorithm,
can be generalized and applied to the n-th order prediction as follows. With the
signal vector

x(k − 1) =
(
x(k−1), x(k−2), . . . , x(k−n)

)T

(6.73)

and an arbitrary but fixed coefficient vector

a(k) = a =
(
a1, a2, . . . , an

)T

, (6.74)

the prediction x̂(k) can be described as

x̂(k) =

n∑

i=1

x(k − i)ai (6.75-a)

= aTx(k − 1) , (6.75-b)

and the following expression results for the power of the prediction error:

σ2
d = E

{(
x(k) − aT x(k − 1)

)2
}

. (6.76)
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The gradient with respect to the coefficient vector a becomes

∇ = −2 E
{(

x(k) − aT x(k − 1)
)
x(k − 1)

}
(6.77-a)

= −2 ϕxx + 2Rxx a . (6.77-b)

The gradient indicates the direction of the steepest ascent of the mean square error.
For an iterative minimization of the mean square error, the instantaneous coeffi-
cient vector a(k) must consequently be corrected in the direction of the negative
gradient. In analogy to (6.72) this results in

a(k + 1) = a(k) + 2 ϑ
(
ϕxx − Rxx a(k)

)
. (6.78)

The steepest descent algorithm requires knowledge of the auto-correlation values
ϕxx(λ) for λ = 0, 1, . . . , n, in the form of the correlation vector ϕxx and the
auto-correlation matrix Rxx.

One member of the family of stochastic gradient algorithms is the so-called least-
mean-square (LMS) algorithm. This algorithm is particularly interesting for prac-
tical applications, as the auto-correlation values are not explicitly required.

For the LMS algorithm, a simple estimator for the mean square error σ2
d is used,

i.e., the instantaneous squared error

σ̂2
d(k) = d2(k) (6.79-a)

=
(
x(k) − aT (k)x(k − 1)

)2

. (6.79-b)

In analogy to (6.77-b), the instantaneous gradient results in

∇̂ = −2
(
x(k) − aT (k)x(k − 1)

)

︸ ︷︷ ︸
d(k)

x(k − 1) (6.80-a)

= −2 d(k)x(k − 1) , (6.80-b)

where instead of Rxx and ϕxx the prediction error d(k) and the state variables
x(k − 1) are needed (Fig. 6.13).

Consequently, the LMS algorithm for the coefficient vector reads

a(k + 1) = a(k) + 2 ϑ d(k) x(k − 1) (6.81-a)

or for the individual coefficient

ai(k + 1) = ai(k) + 2 ϑ d(k) x(k − i) ∀ 1 ≤ i ≤ n (6.81-b)
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Figure 6.13: Predictor with sequential adaptation

respectively, with the effective stepsize parameter 2 ϑ.

For stability reasons the stepsize parameter must be limited to the range

0 < ϑ <
1

‖x(k − 1)‖2

(e.g., [Haykin 1996]).

Assuming a stationary AR process x(k), the coefficient vector a converges with a
sufficiently small stepsize towards the optimal solution according to (6.31)

a → aopt = R−1
xx ϕxx .

Due to its low complexity the LMS algorithm is of great practical significance (see
also Section 8.3.4 and Chapter 13). A time-variant stepsize is often used to improve
the convergence behavior.

Numerous further adaptation algorithms are discussed in the literature, which
differ regarding their convergence characteristics and their complexity. Here, the
recursive least-square (RLS) algorithm is mentioned as an example. It can be de-
rived from the steepest descent algorithm as well. In this case, instead of the auto-
correlation values ϕxx(λ), estimated values ϕ̂xx(λ) are used, which are determined
by recursive computation with exponential windowing. This method is character-
ized by a high convergence speed. The improvement in performance, however, is
achieved at the expense of a large increase in computational complexity, i.e., the
number of operations per iteration grows with the square of the filter order n. In
comparison, for the LMS algorithm, there is only a linear increase in complexity
(e.g., Chapter 13, [Haykin 1996]).
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6.4 Long-Term Prediction

As shown in Section 6.3 by example of Fig. 6.10, we can extract the spectral
envelope of x(k) by short-term prediction using n = 8–10 coefficients. According to
the speech production model (Fig. 6.1) the resulting LP-synthesis filter represents
the vocal tract, and the prediction error signal d(k) the excitation. Thus, the
remaining quasi-periodic spectral fine structure as in Fig. 6.10-d is determined by
the excitation generator of the speech production model. This periodic structure
is associated with the long-term correlation of the speech signal x(k) or of the
prediction error signal d(k) respectively, as illustrated in Fig. 6.14.

The short-term prediction discussed in Section 6.3 exploits the short-term corre-
lation ϕxx(κ) (κ = 0 . . . n, with n = 8–10). Obviously, the prediction error signal
d(k) (Fig. 6.10-b) still exhibits long-term correlation, which is due to the pitch pe-
riod T0 = 1/f0 of voiced segments. With fundamental frequencies in the range of
50 Hz ≤ f0 ≤ 250 Hz and a sampling rate of fs = 8 kHz the periods T0 have
lengths of N0 = 32–160 samples. As T0 is large in comparison to n · T (memory of
the short-term predictor), the prediction over the time span T0 is called long-term
prediction (LTP).

The high correlation of subsequent signal periods can be used for a further im-
provement of the prediction gain by estimating the most recent signal period from
the preceding one. If the instantaneous period length N0 is known, the long-term
prediction error signal can be calculated as follows:

d
′

(k) = d(k) − b · d(k − N0) = d(k) − d̂(k) (6.82)

with a weighting factor b.
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Figure 6.14: Auto-correlation function of the
a) Speech signal x(k)
b) Error signal d(k)
for the example signals depicted in Fig. 6.10
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1- =0

1+ =2

0
1- =0.2

1+ =1.8

Figure 6.15: Long-term prediction (LTP)
a) Block diagram of the LTP-analysis filter
b) Magnitude response |1 − P (ejΩ)| for b = 1
c) Magnitude response |1−P (ejΩ)| for b = 0.8

Figure 6.15-a depicts the block diagram of the corresponding LTP-analysis filter.
The frequency response can be computed as follows:

1 − P (ejΩ) = 1 − b · e−jN0Ω (6.83-a)

=

√
(1 − b · cos (N0Ω))

2
+ b2 · sin2 (N0Ω) · e−jϕP (Ω) (6.83-b)

with

ϕP = − arctan

(
b · sin (N0Ω)

1 − b · cos (N0Ω)

)
. (6.83-c)
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The magnitude response is of particular interest. In the special case b = 1, with

|1 − P (ejΩ)| = 2 ·
∣∣∣∣sin

(
N0Ω

2

)∣∣∣∣ (6.83-d)

the plot outlined in Fig. 6.15-b results in equidistant zeros at

Ωi =
2 π

N0
i , i ∈ ZZ . (6.84)

Accordingly, the LTP-analysis filter is a comb filter with equally spaced notches
at Ωi. As the length of the instantaneous pitch period T0 = 1/f0 is, in general,
not an exact integer multiple of the sampling interval T , the notches are not
necessarily exactly at the normalized fundamental frequency Ω0 = 2π/N0 and its
harmonics Ωi.

The two parameters N0 and b are chosen in such a way as to minimize the energy

∑

k

d
′2(k) =

∑

k

(
d(k) − b · d(k − N0)

)2

(6.85)

of the error signal d
′

(k) for short blocks.

In analogy to short-term prediction, the summation limits in (6.85) can be chosen
according to either the auto-correlation method or the covariance method (see
Section 6.3.1).

In what follows, the covariance method is applied. The energy of the error signal
d

′

(k) is minimized over an interval of length L. Most frequently, the length of the
interval is L · T = 5 ms or L = 40 for fs = 8 kHz respectively.

For each fixed but arbitrary value N0, the optimal coefficient b can be determined
by minimizing the energy of the error signal

∂

∂b

k0∑

k=k0−L+1

d
′2(k) =

k0∑

k=k0−L+1

−2d(k − N0)
(
d(k) − b · d (k − N0)

)
!
= 0 .

(6.86-a)

With the abbreviation k1 = k0 − L + 1 we finally get

b =

k0∑
k=k1

d(k) d(k − N0)

k0∑
k=k1

d2(k − N0)

=
R(N0)

S(N0)
, (6.86-b)

where R(N0) is the short-term auto-correlation function for λ = N0 according to
the covariance method (cf. Section 6.3.1.2) and S(N0) is the energy of the current
frame of the error signal d(k).
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Inserting the optimal coefficient b into (6.85), the resulting error energy can be
computed as a function of the parameter N0

k0∑

k=k0−L+1

d
′2(k) = S(0) − R2(N0)

S(N0)
. (6.87)

This expression can be utilized to determine the optimal delay N0. In (6.87), only
the second term depends on N0. Thus, in a first step this term is maximized
through variation of N0 in the relevant range of, for example, 32 ≤ N0 < 160. In
this range N0 can take, e.g., 27 = 128 different values, which allows coding with
7 bits only. Subsequently, the weighting coefficient b can be determined for the
delay N0 according to (6.86-b). This coefficient can be quantized quite coarsely
(see also Appendix A).

A signal example is depicted in Fig. 6.16, showing the input signal x(k), the first
error signal d(k) after short-term prediction, and the second error signal d

′

(k)
after long-term prediction. By the use of the second predictor, a further significant
dynamic reduction is achieved. Chapter 8 will reveal how this additional prediction
gain can be exploited for bit rate reductions in the sense of model-based and
psychoacoustically motivated source coding. The effect of the two-stage prediction
is illustrated once more in the frequency domain by Fig. 6.17.

Essentially, the formant structure is removed by means of block adaptive short-
term prediction or through filtering with the transfer function 1−A(z), leaving a
spectrally flattened version of the input signal with an almost periodic respectively
harmonic structure over a wide range of frequencies. The subsequent processing
with the LTP-analysis filter with the transfer function 1 − P (z) causes a further
power reduction and an almost complete elimination of the harmonic structure,
finally resulting in a spectrally flat noise like a residual signal. In this example,
the short-term predictor of the order n = 8 was adapted every 20 ms (N = 160
samples), while the parameters of the long-term predictor were computed every 5
ms (L = 40 samples).

Recall that the delay N0 represents in principle the pitch period, which is approx-
imated by an integer multiple of the sampling interval. For this reason, general
approaches for pitch detection may be used [Hess 1983].

In fact, however, the minimization according to (6.87) is based on a criterion which
does not aim at approximating the true pitch period, but at minimizing the energy
of the prediction error.

As a consequence, the lowest error energy might in some circumstances be achieved
with a delay N0, which does not correspond to the true, but to, for instance, half
of the actual pitch period (or to twice the fundamental frequency).
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Figure 6.16: Example of short-term and long-term prediction
a) Block diagram
b) Time signals

Just as for the short-term prediction, the prediction gain can be improved by
increasing the filter order. Often a long-term predictor with three coefficients ac-
cording to

P (z) = b−1 · z−(N0−1) + b0 · z−N0 + b+1 · z−(N0+1) (6.88)

is used. With its interpolating effect this predictor generally provides an improved
prediction, as the true pitch period in most cases is not an integer multiple of the
sampling interval or the fundamental frequency f0 is not an integer fraction of the
sampling frequency, respectively. In this case, however, three coefficients must be
transmitted, which requires a correspondingly higher bit rate.
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Figure 6.17: Example: spectral impact of short-term and
long-term prediction for the vowel “a”
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A similar improvement of the prediction gain can also be achieved with a predictor
with one coefficient as in Fig. 6.15, if the sampling frequency of the first residual
signal d(k) is increased by interpolation. In this way, the time resolution is im-
proved accordingly. In the literature, this technique is called high-resolution LTP
analysis (see [Marques et al. 1990] and [Marques et al. 1989]). Interpolating by a
factor of 4, the word length for the representation of the parameter N0 grows only
by 2 bits. Regarding the bit rate, the high-resolution LTP analysis must therefore
be preferred to the multiple-tap long-term prediction according to (6.88).

In analogy to the short-term predictor structures, which will be discussed in Sec-
tion 8.3, the long-term prediction can alternatively be implemented as a forward
predictor (open-loop) or backward predictor (closed-loop). When quantizing the
error signal, these two alternatives differ regarding the quantization error on the
receiver side (cf. Section 8.3.3).
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7

Quantization

7.1 Analog Samples and Digital Representation

In the context of quantization we first of all have to deal with a sequence of samples
s(k) = sa(t = kT ) of the analog signal sa(t) which is a function of the continuous
time variable t. The samples sa(kT ) at the discrete time instants kT = k/fs

are continuous quantities, where T is the sampling period , i.e., the time between
successive samples and fs = 1/T is the sampling frequency. By quantization we
convert each sample sa(kT ) into a quantized version s(k) which can take only one
out of K0 = 2w0 different discrete values.

The sequence of samples s(k) is now discrete with respect to time and amplitude.

The complete process of analog-to-digital conversion (A/D conversion) which is
shown in Fig. 7.1-a consists of the three steps:

• lowpass filtering according to the sampling theorem with cutoff frequency
fc ≤ fs,

• sampling at frequency fs,

• quantization with word length w0, i.e., K0 = 2w0 different quantization levels
si, with i = 0, . . . , K0 − 1.

Digital Speech Transmission: Enhancement, Coding and Error Concealment

Peter Vary and Rainer Martin
c© 2006 John Wiley & Sons, Ltd
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Figure 7.1: A/D conversion and parameter extraction
a) A/D conversion of an analog signal:

lowpass filtering, sampling at fs, and
quantization with K0 = 2w0 levels

b) Parameter extraction:
block processing at time instances k′ and
quantization with K = 2w levels

Quantization is not only needed for A/D conversion, but also whenever any pa-
rameter x(k′) which has been extracted from the signal samples s(k) has to be
represented at a reduced word length w ≤ w0, e.g., for the purpose of source en-
coding (compression). It is assumed that the parameter x(k′) is calculated by
processing blocks of samples s(k), where k′ is denoting the block time index (see
Fig. 7.1-b).

Various quantization techniques are available whose basic principles will be dis-
cussed in this chapter. To simplify the representation, no distinction will be made
between signal samples s(k) and parameters x(k′). We will consider either values x
which are applied to a scalar quantizer with K = 2w quantizer reproduction levels
or vectors x = (x1, x2, . . . , xL)

T
consisting of L values xλ(λ = 1, 2, . . . , L) which

are applied to a vector quantizer with K = 2w quantizer reproduction vectors.
The quantity x might represent, for instance, a signal sample which is provided
by an A/D converter with w0 = 13 bit resolution and must be represented with
a word length of w = 8 bits. The parameter x might be, for example, a predictor
coefficient, which has been calculated with a digital signal processor using 16 bit
fixed point arithmetic. For the purpose of transmission, this parameter has to be
represented, e.g, with a word length of w = 5.
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7.2 Uniform Quantization

First, we consider a symmetric quantizer which maps the input range

xmin ≤ x ≤ + xmax with xmin = −xmax , (7.1)

to the output range

x̂min ≤ x̂ ≤ + x̂max with x̂min = −x̂max (7.2)

where the quantized value is denoted by x̂, it can take one out of K = 2w

quantizer reproduction levels (in short quantization levels) x̂i. The amplitude range
is subdivided into K = 2w uniform intervals of width

∆x =
2 xmax

K
=

xmax

2w−1
, (7.3)

where ∆x is called the quantizer stepsize. The quantization operation can be de-
scribed, as depicted in Fig. 7.2-a, by a staircase function

x̂ = f(x) ∈
{

x̂i = ±(2i − 1) · ∆x

2

}
(7.4)

representing the quantizer characteristic. The quantized value x̂ differs from x by
the quantization error or quantization noise

e = x̂ − x = f(x) − x , (7.5)

according to

x̂ = e + x . (7.6)

The quantization operation can be modeled by the quantization noise e(k) which
is added to x(k) (see Fig. 7.2-b). In Fig. 7.2-c, x(k), x̂(k), and e(k) are plotted
for a sinusoidal signal. In this example, the sampling rate is much higher than the
frequency of the sinusoidal signal which results in a smooth shape of x(k). Due to
the coarse quantization with K = 8 levels and the relatively high sampling rate,
each step of the staircase-shaped signal x̂(k) consists of several identical quantizer
reproduction levels.

The quantizer of Fig. 7.2 is not able to represent x = 0 exactly, as the smallest
magnitude of x̂ is ∆x

2
. With a slight modification of f(x) the value x̂ = 0 can be

allowed. However, in this case the symmetry is lost if the number K of quantization
stepsizes is even.

Three different quantizer characteristics are depicted in Fig. 7.3 for w = 4
or K = 16, respectively. Figure 7.3-a represents the symmetric case of a midrise
quantizer with eight quantization levels in the positive and negative range. In
contrast to this, the midtread quantizer of Fig. 7.3-b allows the accurate repre-
sentation of x = 0, but takes seven levels in the positive and eight levels in the
negative range. The magnitude truncation characteristic of Fig. 7.3-c is symmetric
and allows the accurate representation of x = 0.
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Figure 7.2: Description of a uniform quantization operation
a) Quantizer characteristic for w = 3, i.e., K = 8
b) Quantizer model with additive quantization noise
c) Example: sinusoidal signal

For the graphs in Fig. 7.3-a and 7.3-b the quantization is performed by a rounding
operation, whereas the quantizer characteristic in Fig. 7.3-c corresponds to mag-
nitude truncation. The parameters of these quantization operations are compiled
in Fig. 7.3.

For both characteristics of Fig. 7.3-a and 7.3-b the quantization error is limited to

| e | ≤ ∆x

2
. (7.7)

In contrast, for the characteristic in Fig. 7.3-c, the maximum quantization error is
twice as large, i.e.,

max |e| = ∆x . (7.8)
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Figure 7.3: Uniform quantizer characteristics with w = 4
a) Uniform midrise quantizer: x̂i = (2i − 1)∆x

2
; i = 0,±1,±2, . . .

b) Uniform midtread quantizer: x̂i = i ∆x; i = 0,±1,±2, . . .
c) Uniform quantizer with magnitude truncation
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The quantization characteristics depicted in Fig. 7.3 can be represented in the
range xmin ≤ x ≤ xmax analytically as follows:

x̂ = fa(x) = sign(x) · ∆x ·
[
int

( |x|
∆x

)
+ 0.5

]
, (7.9-a)

x̂ = fb(x) = sign(x) · ∆x · int

( |x|
∆x

+ 0.5

)
, (7.9-b)

x̂ = fc(x) = sign(x) · ∆x · int

( |x|
∆x

)
, (7.9-c)

where int(x) the integer part of x.

Although there is a deterministic relation between the actual sample x(k) and the
resulting quantization error e(k), the quantization error is usually modeled as a
statistical quantity. We assume that the mean value of the sequence x(k) is zero
and that x(k) has a symmetric probability density function

px(+u) = px(−u) . (7.10)

We are interested in quantifying the performance of the quantizer in terms of the
resulting signal-to-noise ratio.

With the probability density function px(u) of signal x(k), we obtain the power S
of the signal as

S = E
{
x2

}
=

+∞∫

−∞

u2 px(u) du (7.11)

and due to the quantization characteristic x̂ = f(x) for the quantization noise
power N

N = E
{
e2(x)

}
=

+∞∫

−∞

(
f(u) − u

)2

px(u) du . (7.12)

We assume a symmetric quantization characteristic as shown, for example, in Fig.
7.3-a. The overload amplitude for this type of quantizer characteristic is

± xmax = ±
(

x̂max +
∆x

2

)
. (7.13)
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Exploiting the symmetry, the following equation is valid for the quantization noise
power:

N = 2

xmax∫

0

(
f(u) − u

)2

px(u) du + 2

∞∫

xmax

(
x̂max − u

)2

px(u) du (7.14-a)

= NQ + NO . (7.14-b)

As x(k) is not necessarily limited to the dynamic range ±xmax, the noise power
can be divided into two components NQ and NO, which are caused by quantization
(Q) or by overload and clipping (O), respectively. In the following, we will assume
that no overload errors occur or that this effect can be neglected, i.e., NO = 0
applies.

In the positive range the given uniform midrise quantizer has K
2 = 2w−1 quanti-

zation levels

x̂i = f(x) = i · ∆x − ∆x

2
, i = 1, 2, . . . ,

K

2
, (7.15)

which are assigned to the i-th interval

(i − 1) · ∆x ≤ x < i · ∆x (7.16-a)

or,

x̂i − ∆x

2
≤ x < x̂i +

∆x

2
. (7.16-b)

The contributions of the individual quantization intervals to the total quantization
noise power NQ according to (7.14-a) result from integration over each interval.
We obtain

NQ = 2

K
2∑

i=1

i·∆x∫

(i−1)·∆x

(
x̂i − u

)2

px(u) du . (7.17)

With the substitution z = u − x̂i this expression can be simplified to

NQ = 2

K
2∑

i=1

+∆x
2∫

−∆x
2

z2 px(z + x̂i) dz . (7.18)
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The quantization noise power depends on the probability density function px(u)
of the sequence x(k). For the special case of uniform distribution it can be easily
computed. With

max |x| = xmax (7.19)

px(u) =
1

2 xmax
, −xmax ≤ u ≤ + xmax (7.20)

∆x =
2 xmax

K
(7.21)

the total quantization noise power results in

NQ = 2

K
2∑

i=1

2

+∆x
2∫

0

z2 1

2 xmax
dz (7.22-a)

= K
1

xmax

1

3
z3

∣∣∣
∆x
2

0
(7.22-b)

=
∆x2

12
(7.22-c)

and the signal power is

S =

+xmax∫

−xmax

x2 1

2 xmax
dx (7.22-d)

=
1

3
x2

max . (7.22-e)

With K = 2w and (7.21), we obtain the signal-to-noise ratio

SNR

dB
= 10 lg

(
S

NQ

)
(7.23-a)

= w 20 lg (2) (7.23-b)

≈ 6 w . (7.23-c)

This is the so-called 6-dB-per-bit rule, which, however, is only accurate for this
special case.

For the general case, an approximation can be provided. If the quantizer stepsize is
sufficiently small (∆x ≪ xmax) and if px(u) is sufficiently smooth, the probability
density function can be approximated by its value in the middle of the interval as
in

px(z + x̂i) ≈ px(x̂i) for − ∆x

2
≤ z < +

∆x

2
. (7.24)
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Then, we find that

NQ ≈ ∆x2

12
(7.25)

approximately holds too, independently of the probability density function px(u).
This approximation corresponds to the assumption that within the quantization
intervals the signal is uniformly distributed. Thus, the quantization noise e(k)
arises with uniform distribution pe(u) in the interval

−∆x

2
< e ≤ +

∆x

2
(7.26)

and its power

NQ = E
{
e2

}
=

+∞∫

−∞

u2 pe(u) du (7.27)

is also given by (7.25). In conclusion, (7.25) can be applied even in the case of a
non-uniform probability density function px(u), if the quantization is sufficiently
small, i.e., the word length w is sufficiently large, px(u) is sufficiently smooth, and
overload effects are negligibly small.

If, furthermore, the signal power S is normalized to the squared overload amplitude
x2

max of the quantizer input by the use of the form factor F

S = F x2
max , (7.28)

the signal-to-noise ratio is approximately described by

SNR

dB
= 10 lg

(
S

NQ

)
≈ w 20 lg (2) + 10 lg (3F ) (7.29)

= w 6.02 + 10 lg(3) + 10 lg(F ) . (7.30)

The form factor F , which can be considered as normalized power, is depending on
the shape of the probability density function.

Figure 7.4 depicts the general behavior of the signal-to-noise ratio as a function of
the form factor F (normalized power). The signal-to-noise ratio is a linear function
of the signal level, i.e., of the logarithmic signal power

10 lg

(
S

x2
max

)
= 10 lg (F ) . (7.31)

In case of overload, the signal-to-noise ratio drops rapidly with increasing signal
power as indicated in Fig. 7.4. By scaling the amplitude of x(k) or the overload
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Figure 7.4: Signal-to-noise ratio for uniform quantization as a function
of form factor F

amplitude ±xmax of the quantizer, the overload effects can be kept small. In prin-
ciple the quantizer may be derived in such a way that in (7.14-a) the contributions
caused by quantization and overload are balanced

NQ = NO . (7.32)

This case will not be discussed further here; for more details see, e.g., [Jayant, Noll
1984].

The impact of form factor F is shown in Table 7.1 for different full range signals (no
quantizer overload, a), b), c)), as well as for signals with small overload probability
(P = 0.001, d), e)).

Finally, it should be noted that for uniform quantization the 6-dB-per-bit
rule (7.23-c) is generally a good approximation. However, a constant penalty in
the signal-to-noise ratio can be experienced, due to the shape of the probability
density function. If small signal values occur much more often than large ones,
or if the signal amplitude is so low that only a part of the dynamic range of the
quantizer is exploited, the penalty can be substantial.
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Table 7.1: Influence of the form factor F on the signal-to-noise ratio
for uniform quantization (see also (7.29))
Overload of the quantizer with probability P = 0.001

Probability distribution pu(x) F 10 lg (3F )

a) Uniform distribution 1/3 0

b) Distribution of a sinusoidal signal 1/2 +1.76

c) Triangular probability density function 1/6 −3.01

d) Laplace probability density function ≈ 1/24 ≈ −9

e) Measurement of speech signals 1/300 to 1/20 −20 to −8

7.3 Non-uniform Quantization

For uniform quantization, the signal-to-noise ratio according to (7.29) is propor-
tional to the signal level, hence it becomes smaller with decreasing signal power.
However, especially in speech signals, small sample values are particularly frequent,
corresponding to a probability density function (PDF), which can be approxi-
mated, for instance, by a Laplacian PDF, a gamma PDF, or by spherically invari-
ant models, e.g., [Brehm, Stammler 1987], [Jayant, Noll 1984] (see Section 5.10).
In this case, the resulting low signal-to-noise ratios can be improved by using a
quantizer with a non-uniform amplitude resolution, which reduces the width of the
quantization intervals in the low-amplitude region and allows larger intervals oth-
erwise. A corresponding approach using signal compression is depicted in Fig. 7.5.

) =

∆ =∆∆ =∆

∆
∆

Figure 7.5: Principle of quantization with companding (xmax =ymax =1)
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Prior to the actual quantization, the values x(k) are non-linearly transformed with
a compressor characteristic

y = g(x) (7.33)

in such a way that for an unchanged amplitude range (±ymax = ± xmax) small
signal values are amplified more than large ones. Subsequently, uniform quantiza-
tion with K = 2w quantization levels ŷi, i = 1, 2, . . . , K, is applied as in Section
7.2, which is modeled by adding a uniformly distributed, spectrally white noise
signal e(k) of power

NQ =
∆y2

12
; ∆y =

2 ymax

K
(7.34)

to the compressed signal y. Without loss of generality, we will in the following
assume a normalized signal representation with

xmax = ymax = 1 . (7.35)

The non-linear distortion caused by the compressor characteristic should be re-
moved by the inverse characteristic of the expander

x̂ = g−1(ŷ) , (7.36)

before the quantized values ŷ(k) are applied to any signal processing algorithm
such as digital filtering.

The compressor characteristics with its instantaneous amplification is reversed as
can be seen in Fig. 7.5. Thus the lower quantization levels ŷi are attenuated more
than the higher ones. This yields a non-uniform amplitude resolution of the values
x̂(k), where the effective quantization levels are given by

x̂i = g−1(ŷi) . (7.37)

As a result the magnitude of the effective quantization noise e(k) depends strongly
on the amplitude of the input signal x(k). The combination of compressor and
expander is commonly called compander .

The relation between the different signals is illustrated in Fig. 7.6. The values y(k)
are quantized uniformly using a midrise quantizer

ŷ = f(y) (7.38)

according to Fig. 7.3-b with word length of w = 5 and w = 8. The relatively fine
amplitude resolution near the origin and the coarser resolution for larger signal
values can clearly be seen.
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Figure 7.6: Companding quantization with piecewise linear approximation
of the compressor and the expander characteristic
(A-law characteristic, see also Fig. 7.9)
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For the quantized values ŷ and x̂, we have

ŷ = ŷi ∀ ŷi −
∆y

2
≤ y < ŷi +

∆y

2
(7.39-a)

or, respectively,

x̂ = g−1(ŷi) = x̂i ∀ g−1

(
ŷi −

∆y

2

)
≤ x < g−1

(
ŷi +

∆y

2

)
. (7.39-b)

The quantization stepsizes ∆xi of the effective quantization intervals now depend
on the magnitude of x. By simple geometrical considerations it can be shown
that the different quantization stepsizes ∆xi are approximately determined by the
gradient

d
(
g−1(ŷ)

)

d ŷ
=

(
g−1(ŷ)

)′
(7.40)

of the inverse characteristic g−1(ŷ) or, respectively, by the reciprocal 1/g′(x̂) of
the gradient g′(x̂) and the constant quantizer stepsize ∆y:

∆xi ≈ ∆y

g′(x̂i)
. (7.41)

A suitable criterion for the development of a compressor characteristic is the re-
quirement for a constant relative quantization error. The quantization stepsize
should therefore be proportional to the signal magnitude,

∆x(x) ≈ ∆y

g′(x)
∼ |x| , (7.42)

as far as this is achievable with K quantization intervals. For simplicity, we first
consider only positive values of x and extend the resulting characteristic g(x)
later on to the negative range, such that a symmetric characteristic is obtained as
illustrated in Fig. 7.5.

According to (7.42) the gradient g′(x) should obey

1

g′(x)

!
= c x ; c = const ; x > 0 . (7.43-a)

Thus, we get

g(x) =

∫
1

c x
dx = c1 + c2 ln(x) (7.43-b)

with appropriate constants c1 and c2. The desired compressor characteristic g(x)
is a logarithmic function, the expander characteristic an exponential function.
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However, the function ln(x) is only defined for positive values and diverges for
x → 0. Consequently, the purely logarithmic compressor characteristic (7.43-b)
is not practical. For this reason, the characterstic defined by (7.43-b) needs some
pragmatic modifications. Two approximations to logarithmic quantization have
found wide use as international standards providing almost a constant relative
quantization error.

For the fixed (wire-line) digital telephone networks in Europe, the so-called A-law
characteristic was defined as

gA(x) =





sign(x) · 1 + ln (A |x|)
1 + ln (A)

1
A < |x| ≤ +1

A x
1 + ln (A)

− 1
A ≤ x ≤ + 1

A .

(7.44)

Near the origin, in the range

− 1

A
≤ x ≤ +

1

A
, (7.45)

the A-law compressor characteristic is based on a linear characteristic and is log-
arithmic beyond that. At x = 1/A both characteristics meet smoothly without
discontinuity. In the negative range the characteristic is mirrored.

For the linear part of the quantization characteristic a gradient of

g′
A(0) = 16 (7.46)

is chosen, resulting in a parameter value A = 87.56. In accordance with (7.41), the
effective quantization stepsizes ∆xi in the linear region

− 1

A
≤ x ≤ +

1

A
, (7.47)

i.e., for small signals, are thus reduced by the factor 2−4. This corresponds to an
increase of the signal-to-noise ratio in the linear region by

∆SNR = 20 lg (24) = 24.082 dB . (7.48)

According to the 6-dB-per-bit rule a uniform quantizer would need ∆w = 4 addi-
tional bits for the same signal-to-noise ratio for small signals.

In the digital telephone systems of North America and Japan, the so-called µ-law
characteristic is utilized to approximate (7.43-b) in a slightly different way. This
compressor characteristic is described by a single continuous function as

gµ(x) = sign(x)
ln(1 + µ |x|)
ln(1 + µ)

with µ = 255 . (7.49)
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Figure 7.7: Comparison of A-law and µ-law compressor characteristics

For relatively small signals x(k) or low values µ the compressor characteristic
evolves as a linear function according to ln(1+µ|x|) ≈ µ|x|. For µ|x| ≫ 1, it is log-
arithmic since ln(1+µ|x|) ≈ ln(µ|x|). The gradient of the compressor characteristic
at the origin is

g′
µ(x = 0) =

µ

ln(1 + µ)
= 45.99 . (7.50)

For the relatively small signals, the effective signal-to-noise ratio increases by

∆SNR = 20 lg (45.99) = 33.25 dB . (7.51)

The A-law characteristic and the µ-law characteristic are very similar. They are
illustrated in Fig. 7.7.

The logarithmic companding results in a signal-to-noise ratio which is to a large
extent independent of the signal level or the power of the sequence x(k), respec-
tively.

We now calculate the achievable signal-to-noise ratio. Presuming a uniform dis-
tribution of x within each quantization interval, the individual quantization noise
power is ∆x2

i /12. The contribution of the i-th quantization interval to the total
power of the quantization noise is

NQi =
∆x2

i

12
Pi , (7.52)
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where x(k) takes a value in the i-th quantization interval with a probability Pi. Un-
der the assumption of a symmetric PDF px(+u) = px(−u), the total quantization
noise power NQ can be calculated with (7.41) and (7.43-a):

NQ = 2

K
2∑

i=1

NQi (7.53-a)

= 2

K
2∑

i=1

∆y2

12
c2 x̂2

i Pi (7.53-b)

≈ ∆y2

12
c2 S . (7.53-c)

Hence, the noise power is proportional to the signal power. With

∆y =
2 ymax

2w
= 2−(w−1) , ymax = 1 , (7.54)

the signal-to-noise-ratio

SNR

dB
= 10 lg

(
S

NQ

)
≈ w 20 lg(2) + 10 lg(3) − 20 lg(c) (7.55)

= w 6.02 + 10 lg 3 − 20 lg c (7.56)

becomes independent of the signal power. It now contains the constant c instead
of the form factor F in (7.29). Applying (7.43-a), constant c amounts to

cA = (1 + lnA) ≈ 5.47 (7.57)

for the A-law characteristic in the range 1/A ≤ |x| ≤ 1, and to

cµ ≈ ln(1 + µ) ≈ 5.55 (7.58)

for the µ-law characteristic for µ x ≫ 1. With both characteristics a similar signal-
to-noise ratio is thus obtained using (7.55):

SNRA ≈ 6 · w − 9.99 dB , (7.59-a)

SNRµ ≈ 6 · w − 10.11 dB . (7.59-b)

The signal-to-noise ratio again satisfies a 6-dB-per-bit rule which is almost indepen-
dent of the signal level. This independence “costs” approximately 10 dB compared
to (7.23-c) obtained for uniform quantization, i.e., for signals with uniform distri-
bution and matching the peak-to-peak range of the quantizer. However, for uniform
quantization the signal-to-noise ratio depends on the signal level. With uniform
quantization substantial reductions must be expected in practice, according to
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(    )S

Figure 7.8: Signal-to-noise ratio for companding with the A-law characteristic
A = 87.56 and a word length of w = 8

level variations corresponding to the form factor F . With the same peak-to-peak
range, the logarithmic compander therefore proves indeed to be superior to the
uniform quantizer over a wide range of amplitudes (see Fig. 7.8).

The approximations (7.59-a,b) do not apply to very small values of |x|. Close to
the origin, we have a uniform quantization with an effective quantization stepsize
of

∆x =
∆y

g′(x = 0)
(7.60)

and with the gradients given in (7.46) and (7.50). For the A-law characteristic,
Fig. 7.8 shows the signal-to-noise ratio as a function of the signal power S for a
word length of w = 8, which is common in the digital telecommunication network.
In range I, the signal-to-noise ratio amounts to approximately 38 dB as derived
in (7.59-a). In range II with |x| ≤ 1/A ≈ 0.011, i.e., for a range of approximately
1% of the maximum amplitude, the following expression applies in analogy to
(7.29) with consideration of (7.48):

10 lg

(
S

NQ

)
≈ w 20 lg(2) + 10 lg(3F ) + 24 dB . (7.61)

In this range, the signal-to-noise ratio is comparable to that of a uniform quantizer,
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Figure 7.9: The 13-segment A-law characteristic

which, however, has a word length of w = 12. The corresponding improvement by
24 dB is also termed compander gain.

In practice, the A-law characteristic as well as the µ-law characteristic are each
realized by a piecewise linear approximation, which for the A-law characteristic is
depicted in Fig. 7.9.

The range −1 ≤ g ≤ +1 is divided into 16 equally spaced intervals, in which
the A-law characteristic is approximated by straight lines. In the four innermost
intervals (0 < |x| < 1/64) the A-law characteristic is almost linear (7.44). Thus in
these four intervals the compressor characteristic can be approximated by one line.
As a result the overall characteristic is approximated by 16− 3 = 13 segments of
distinct slope. Due to the increasing length by a factor of 2 for each successive
segment, the slopes of adjacent segments differ by a factor of 2.

For quantization with a word length of w = 8 bits, the first bit denotes the algebraic
sign, the next 3 bits encode the respective segment, and the last 4 bits indicate
the quantization level within the segment.

The effective quantization stepsize in the lowest segment amounts to

∆xmin =
1/128

2−4
= 2−11 (7.62)

and in the highest segment to

∆xmax =
1/2

2−4
= 2−5 . (7.63)

The resulting non-uniform quantization characteristic has already been depicted in
Fig. 7.6-b.
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Table 7.2: Coding law of the 13-segment A-law characteristic
a: number of leading zeros following the sign bit
b: binary-code of 7 − a
c: the last four digits, if a = 7

the first four digits behind the leading 1, if a < 7
d: neglected digits

≤ 0000000.... 000....

≤ 0000001.... 001....

≤ 000001....- 010....

≤ 00001....-- 011....

≤ 0001....--- 100....

≤ 001....---- 101....

≤ 01....----- 110....

≤ 1....------ 111....

ˆ

Quantization according to the 13-segment characteristic can also be achieved by
uniform pre-quantization with w0 ≥ w + 4 and subsequent code conversion to the
word length w. This coding law is summarized in Table 7.2 for w0 = 12 and w = 8.

The 13-segment A-law coding rule can be derived on a bit level if we start with a
12 bit sign–magnitude representation

x = sign{x} · |x| . (7.64)

We denote by 0 ≤ a ≤ 7 the number of leading zeros of the binary representation
of |x| and by c the next 4 bits as indicated in Table 7.2. The remaining d bits are
neglected. Finally, the binary representation of ŷ for w = 8 is obtained as shown
in Table 7.3.

Table 7.3: Bit allocation of 13-segment A-law quantization

1 bit 3 bits 4 bits

ŷ : sign{x} 7 − a c
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This form of signal quantization which fulfills the international standard ITU
G.711 [ITU-T Rec. G.711 1972] is the basis for digital speech transmission
in the European digitized telecommunication networks with a bit rate of
B = w · fs = 64 kbit/s per voice channel (ISDN, Integrated Services Digital Net-
work).

7.4 Optimal Quantization

The quantizers discussed so far work with uniform or non-uniform stepsizes. The
quantizer levels x̂i are in the middle or at the edge of the intervals (see Fig. 7.3). In
principle, the interval limits or decision levels xi and the quantizer representation
levels x̂i for i ∈ {1, 2, . . . , 2w} can be chosen arbitrarily as indicated in Fig. 7.10.
In particular, they can be determined such that for a given signal PDF px(u) the
maximal SNR is obtained. In other words, the (scalar) optimal quantizer minimizes
the power NQ of the quantization error.

For non-uniformly distributed signals, a non-uniform resolution of the amplitude
is to be expected; for signals like speech finer quantization of small amplitudes
and coarser quantization of large amplitudes is desired. The characteristic should
thus indeed show similarities to that of logarithmic companding. However, it might
differ, as it is generated from a different minimization criterion and does not aim for
PDF-independent SNR. The underlying optimization problem was solved in [Lloyd
1982] and [Max 1960]. This solution is called the Lloyd–Max quantizer .

In analogy to (7.17), the power of the quantization noise amounts to

N =
2w∑

i=1

xi∫

xi−1

(x̂i − u)2 px(u) du . (7.65)

Figure 7.10: Relation between decision levels xk and quantizer representation levels x̂k
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Necessary conditions for determining the interval limits xi and the representation
levels x̂i (i = 0, 1, . . . , 2w − 1) are provided by partial derivatives. Taking into
account that the outer limits x0 and xK (K = 2w) have to be treated separately,
we obtain for k = 1, 2, . . . , 2w − 1

∂N

∂xk
= (x̂k − xk)2 px(xk) − (x̂k+1 − xk)2 px(xk)

!
= 0 . (7.66-a)

This yields

xk =
x̂k + x̂k+1

2
, (7.66-b)

and secondly for k = 1, 2, . . . , 2w − 1,

∂N

∂x̂k
= 2

xk∫

xk−1

(x̂k − u) px(u) du
!
= 0 (7.66-c)

results in

x̂k =

xk∫
xk−1

u px(u) du

xk∫
xk−1

px(u) du

. (7.66-d)

Hence, the optimal interval representatives x̂i correspond to the centers of gravity
of the quantization intervals. The optimal interval limits xk are located midway
between two adjacent representation levels with the two outer interval limits x0

and xK being exceptions. The latter are given by the range of x, for example,
x0 = −∞ and xK = +∞. The conditions (7.66-b) and (7.66-d) can be numerically
solved for arbitrary PDFs px(u). The achievable improvement of the SNR (see also
examples from Table 7.5) depends on the shape of the PDF px(u) (e.g., [Jayant,
Noll 1984]).

7.5 Adaptive Quantization

An alternative for reducing the dependency of the SNR on the (instantaneous)
quantizer load is to use a uniform quantizer with K quantizer representation levels
but with dynamical adaptation of the quantizer stepsize ∆x.

Two basic solutions exist, which are designated in Fig. 7.11 as quantization with
forward adaptation (AQF: adaptive quantization forward) or with backward adap-
tation (AQB: adaptive quantization backward) [Jayant, Noll 1984]. In both cases

x̂(k) = sign
(
x(k)

)
Z(k)

∆x(k)

2
, Z(k) ∈ {1, 3, 5, . . .} (7.67)
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Figure 7.11: Adaptive quantization
a) Adaptive quantization with forward estimation (AQF)
b) Adaptive quantization with backward estimation (AQB)

applies to the quantized values, if a symmetric quantization characteristic accord-
ing to Fig. 7.3-a is assumed.

With the AQF method, ∆x(k) is adjusted blockwise and transmitted (or, respec-
tively, stored) as additional side information. Because of the extra required bit rate
a relatively large block length of, for instance, N = 128 at fs = 8 kHz is chosen.
With the AQB method, there is no side information, as the quantizer stepsize is
derived from Z(k − 1), which for undisturbed transmission is also available at the
receiving side.

With both methods, the instantaneous power of x(k) or x̂(k) is estimated and the
stepsize is adjusted proportionally to the estimated standard deviation σ̂x(k):

∆x(k) = c σ̂x(k) , c = const . (7.68)

With the AQF method, the variance estimation is performed on blocks of N sam-
ples according to

σ̂2
x(k) =

1

N

N−1∑

i=0

x2(k0 + i) ∀ k = k0, k0 + 1, . . . , k0 + N − 1 . (7.69)

In the AQB method, however, σ2
x is estimated recursively using the already avail-

able quantized value x̂(k − 1)

σ̂2
x(k) = α σ̂2

x(k − 1) + (1 − α) x̂2(k − 1) , 0 < α < 1 . (7.70)
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Figure 7.12: Example of the adaptation of the stepsize ∆x(k)
a) Speech signal “das” (German)
b) Stepsize with forward adaptation (AQF)
c) Stepsize with backward adaptation (AQB)

The stepsize ∆x can be adjusted more frequently than with the AQF method.
This is illustrated by the example in Fig. 7.12.

For the AQB method an algorithm has been proposed in [Jayant 1973] which can
be realized very efficiently. Due to (7.68), the following expression holds:

∆x(k)

∆x(k − 1)
=

σ̂x(k)

σ̂x(k − 1)

.
= M(k − 1) . (7.71)
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The term M(k − 1) will be called the stepsize multiplier from now on. Equa-
tion (7.71) in combination with (7.70), (7.68), and (7.67) yields

M2(k − 1) =
σ̂2

x(k)

σ̂2
x(k − 1)

(7.72-a)

= α + (1 − α) Z2(k − 1)
c2

4
(7.72-b)

or,

M(k − 1) =

√
α + (1 − α) Z2(k − 1)

c2

4
. (7.72-c)

Hence, the stepsize multiplier depends only on Z. As Z takes only 2w−1 different
values, M(k − 1) can be computed according to (7.72-c) in advance and stored in
a table.

The computational steps required at time instant k at the transmit and receive
sides are summarized below:

1. Computation of the new stepsize

∆x(k) = M(k − 1) · ∆x(k − 1) . (7.73-a)

2. Quantization of x(k) or, respectively, determination of Z according to

x̂(k) = sign
(
x(k)

)
· Z(k) · ∆x(k)

2
, Z(k) ∈ {1, 3, 5, . . .} (7.73-b)

with

Z(k) = 2 · int

(
x(k)

∆x(k)

)
+ 1 (7.73-c)

(see also (7.9-a)).

3. Determination of the stepsize multiplier for k+1 by selecting the correspond-
ing value

M(k) = f
(
Z(k)

)
(7.73-d)

from a table.
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Table 7.4: Stepsize multipliers M = f(Z(k)) for adaptive quantization
of speech signals [Jayant 1973], [Jayant, Noll 1984]

Z = 1 3 5 7 9 11 13 15

w = 2 M = 0.60 2.20
PCM

3 0.85 1.00 1.00 1.50

4 0.80 0.80 0.80 0.80 1.20 1.60 2.00 2.40

2 0.80 1.60
DPCM

3 0.90 0.90 1.25 1.75

4 0.90 0.90 0.90 0.90 1.20 1.60 2.00 2.40

Stepsize multipliers optimized for the adaptive quantization of speech signals are
listed in Table 7.4 for speech (PCM). It should be noted that the optimization for
prediction error signals (DPCM) gives somewhat different values [Jayant 1973].

In conclusion, the different quantization methods are represented comparatively
for a short speech signal in Table 7.5 which shows the mean SNR and the segmental
SNR1 values obtained for the example from Fig. 7.13. The form factor according
to (7.28) is F = 0.0177 in this case (see also Table 7.1).

With SNR values of 13.5 dB or 13.3 dB, respectively, the quantizer for companding
with the A-law or µ-law characteristic provides distinctively better results in
comparison to uniform quantization. Compared to the quantization process

Table 7.5: SNRs for quantization with w = 4
for the example given in Fig. 7.13

Quantization SNR/dB SNRseg/dB

Uniform 11.34 2.42

A-law characteristic 13.52 11.53

µ-law characteristic 13.34 12.02

Optimal quantizer 18.34 7.64

AQF 19.49 18.26

AQB 20.15 19.41

1The segmental signal-to-noise ratio SNRseg is defined as the average of the short-term SNR

SNR(k′) = 10 lg

(
σ̂2

x(k′)

σ̂2
e(k′)

)
,

where σ̂2
x(k′) and σ̂2

e(k′) are determined as short-term powers of the signal x(k) and the quanti-
zation noise e(k) for blocks of length N , while k′ denotes the block index.
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Figure 7.13: Short-term power and SNR for various quantizers with w = 4
a) Short-term power of the signal (Eq. (7.69), N = 128, |x(k)|max = 8)
b) Blockwise computed SNR for uniform quantization and for

companding with the A-law or µ-law characteristic
c) Blockwise computed SNR for AQF
d) Blockwise computed SNR for AQB

with companding, the fixed optimal quantizer adjusted to the PDF of this signal
segment achieves a mean SNR which is further improved by approximately 5 dB.
The best result is obtained by adaptive quantization with backward estimation
(AQB) with an SNR value of approximately 20 dB.
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7.6 Vector Quantization

7.6.1 Principle

So far we have discussed scalar quantization. For the individual distributions of
signal or parameter values x the suitable quantization intervals and quantizer
reproduction levels x̂i were identified. This procedure can be generalized: L values
are combined to an L-dimensional vector

x = (x1, x2, . . . , xL)T , (7.74)

are allocated to one of K possible L-dimensional quantization cells, and are re-
placed by a corresponding quantizer representation vector

x̂i = (x̂i,1, x̂i,2, . . . , x̂i,L)T . (7.75)

This procedure is called vector quantization (VQ) [Gersho, Gray 1992]. With
L = 1 the scalar quantization is included as a special case. The allocation of
x to a suitable quantization cell, the Voronoi cell , is addressed by the cell index i.
The corresponding representation vector is indexed by i in the code book consisting
of K code vectors x̂i (quantizer reproduction vector, i = 1, 2, . . . , K = 2w).

In analogy to scalar quantization, vector quantization can be realized in the L-
dimensional vector space with uniform as well as with non-uniform resolution. For
the two-dimensional case, two vector quantizers with uniform and non-uniform
resolution and K = 25 are depicted in Fig. 7.14.

Figure 7.14: Vector quantization: example with K = 25 vectors of dimension L = 2
a) Uniform resolution (D2-lattice)
b) Non-uniform resolution
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Figure 7.15: Principle of vector quantization

With a given code book, the vector quantization task is to replace an input vector
x by the most similar vector x̂ = x̂iopt

. The choice is based on a distance or error
measure d(x, x̂) such that the condition

d(x, x̂iopt
) = min

i
d(x, x̂i) (7.76)

is fulfilled. Thus, the boundaries of the Voronoi cells are implicitly determined.

Since the code book is known at the receiver, only the code book index iopt, not
the quantized vector x̂iopt

, is transmitted. The basic procedure is illustrated in
Fig. 7.15.

If the code book includes K = 2w vectors x̂i of dimension L, the selected index
iopt and hence, indirectly, the chosen vector can be coded with

w = ld (K) bits . (7.77)

With respect to a single component xλ of vector x, an effective word length of

w =
ld (K)

L
[bits per component xλ] (7.78)

results. With K = 210 = 1024 and L = 40, which are typical dimensions in
prediction error signal coding (see Section 8.5.3), only 1/4 bit per value xλ has to
be transmitted.

Regarding the choice of the distance measure d(x, x̂i), different possibilities exist.
Note that the vector x may contain, e.g., either speech samples or some model-
based codec parameters. If the speech signal is reconstructed from the quantized
vectors x̂, the error vectors

e = x̂ − x (7.79)

affect the subjective speech quality in both cases differently. Therefore, different
distance measures should be applied which should preferably correspond to the
psychoacoustic perception.
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For quantizing signal vectors, frequently the squared error distortion measure (Eu-
clidian norm)

d(x, x̂i) =
1

L
(x − x̂i)

T (x− x̂i) (7.80-a)

=
1

L

L∑

µ=1

(xµ − x̂iµ)2 , i = 1, 2, . . . , K (7.80-b)

is minimized. This corresponds to selecting the nearest neighbor x̂i of x in the
L-dimensional vector space.

Alternatively, the weighted mean square error

d(x, x̂i) =
1

L
(x − x̂i)

T · W · (x− x̂i) (7.81)

is applied, with W representing a symmetric, positive-definite matrix of dimension
L×L. The errors of the individual vector components can, for instance, be weighted
differently by a diagonal matrix W.

For quantizing coefficient sets of linear predictors, usually different distance mea-
sures are utilized, e.g., the Itakura–Saito distance [Itakura, Saito 1968], which is
defined as

d(x, x̂i) =
(x− x̂i)

T R(n+1) (x− x̂i)

xT R(n+1) x
. (7.82)

Here, vector x of dimension L = n + 1 includes the non-quantized predictor coef-
ficients aλ and vector x̂i the quantized representatives âiλ according to

x = (1,−a1,−a2, . . . ,−an)T (7.83-a)

x̂i = (1,−âi1,−âi2, . . . ,−âin)T . (7.83-b)

R(n+1) denotes the squared auto-correlation matrix of dimension (n+1)× (n+1)
of the signal segment for which the optimal predictor coefficients aλ have been
computed.

7.6.2 The Complexity Problem

Vector quantization might be computationally very intensive, as the input vector
x must be compared to all K code vectors x̂i in order to minimize a distance
measure according to (7.76). This case is called full search.

The required computational effort shall be estimated for the squared error distor-
tion measure. In the search of the nearest neighbor x̂i to input vector x in (7.80-a)
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the division by L can be omitted since it is constant for every code book entry. Per
distance computation, L differences, L squares, and (L − 1) additions must then
be computed. This results in 3 L − 1 operations per vector x̂i, i.e., in total

Op = (3 L − 1) K (7.84-a)

= (3 L − 1) 2Lw . (7.84-b)

The computational complexity increases exponentially with the effective word
length w according to (7.78). For real-time implementations of VQ encoders with
the sampling rate fs = 1

T , these operations must be performed in the time period

τ = L T =
L

fs
. (7.85)

This leads to the computational complexity

CC =
Op

τ
=

3 L − 1

L
K fs ≈ 3 K fs . (7.86)

For the typical dimensions K = 1024 and fs = 8 kHz, this results in

CC ≈ 24.6 MOPS (Mega Operations Per Second) . (7.87)

Taking the computational capacity of state-of-the-art signal processors into ac-
count, this value is already a substantial load. This restricts the application of
vector quantizers with complete search. For example, K = 1024 and L = 40 (i.e.,
τ = 5 ms at fs = 8 kHz) yields w = 0.25 bits per sample x(k). The signal-to-noise
ratio which can be achieved with such low bit rates depends, as will be shown
below, on the statistical properties of the sequence x(k).

Because of the complexity problem, the implementation of larger vector code books
requires modifications which allow a reduction of the computational complexity.
For this, fast search algorithms, e.g., with tree topology, structured code books,
or cascaded vector quantizers, have been proposed (e.g., [Gray 1984], [Makhoul et
al. 1985]), which, however, in general only provide suboptimal results. Theoretical
bounds of hierarchical, i.e., cascaded, vector quantizers are discussed in [Erdmann
2004], [Erdmann, Vary 2004].

7.6.3 Lattice Quantization

With respect to complexity, lattice quantizers – a special class of structured vector
quantization encoders – are of particular interest. Their code vectors are given by
regular grid or lattice points in the L-dimensional vector space.

The simple example of the D2-lattice has already been depicted in Fig. 7.14-a.
The positions of the code vectors can be analytically described so that there is no
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need to store a code book. Furthermore, fast algorithms which render a full search
superfluous can be developed. As an example, the DL-lattice will be discussed here.
The points of this type of lattice fulfill the two conditions (see also Fig. 7.14-a)
that all vector components are integer multiples of a smallest unit ∆ and that
additionally the sum of the components is an even multiple of ∆:

x̂µ = i ∆ ; i ∈ ZZ (7.88-a)

L∑

µ=1

x̂µ = 2 m∆ ; m ∈ ZZ . (7.88-b)

Because of these conditions, the vector quantization can be reduced to simple-
component, scalar rounding operations.

First, all components of the signal vector x are mathematically rounded to integer
multiples of ∆. If the resulting component sum is even, the quantized vector x̂ has
already been found. If the component sum is odd, the component which shows the
biggest rounding error is rounded in the “wrong direction”. Thus the condition of
the even component sum is fulfilled.

The advantage of easy realization, however, is offset by the disadvantage that
lattice quantizers are only optimal for uniformly distributed vectors x. Lattice
quantizers can be considered as vector generalizations of uniform scalar quantizers
and can analogously be combined with companding.

A detailed presentation of the theory of lattice vector quantization can be found,
for example, in [Conway, Sloane 1988].

7.6.4 Design of Optimal Vector Code Books

Optimal vector quantization is the L-dimensional generalization of the Lloyd–Max
quantizer discussed in Section 7.4.

The scalar series x(k) is replaced by the vector series x(k), which is described by
the L-dimensional joint probability density px(u) = px(u1, u2, . . . , uL). In analogy
to (7.65) the K code vectors x̂i must be chosen such that the expected error value

E
{
d(x, x̂)

}
=

K∑

i=1

∫

Vi

d(u, x̂i) px(u) du (7.89)

becomes minimal.

The partial differentiation with respect to the representation vector x̂k provides
a necessary condition in analogy to Section 7.4. When choosing the squared error
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distortion measure according to (7.80-a), the optimal representation vectors x̂k

correspond to the centers of gravity (centroids) of the Voronoi cells.

In general, a mathematical relation between the K code vectors x̂i and the
L-dimensional PDF cannot be formulated. But there is an elegant iterative de-
sign procedure, the Linde–Buzo–Gray (LBG) algorithm [Linde et al. 1980], which
exists in two alternative versions (A) and (B).

Algorithm (A)

Code book optimization (A) begins with a random start code book and improves
this iteratively by means of training vectors x, until the decrease of the average dis-
tortion is below a certain limit or has reached a minimum. The algorithm consists
of the following steps:

Step 0: a) Choose a start code book consisting of K random vectors x̂i (or
“uniform” lattice vectors) of dimension L .

b) Set m = 1.

Step 1: a) Quantize the training sequence x(k), k = 1, 2, . . . , KT , with
KT ≫ K and compute the average distortion

Dm =
1

KT

KT∑

k=1

d
(
x(k), x̂iopt

)
. (7.90)

b) Terminate the iteration if the relative difference between Dm and
its previous value Dm−1 is sufficiently small

|Dm−1 − Dm|
Dm

< ǫ . (7.91)

Step 2: a) Replace the old code vectors x̂i by the centroids of those training
vectors x(k) which have been allocated to the old vectors x̂i (in
generalization of (7.66-d)).

b) m = m + 1. Go to step 1.

The algorithm (A) will generally not deliver the best code book but find the
local minimum of the quantization noise power. The choice of the start code book
determines which local minimum will be achieved. This is why an alternative
procedure has been proposed.
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Algorithm (B)

The second design algorithm (B) starts with a single representation vector x̂1

which is the centroid of KT training vectors x. Within each iteration the code
book is splitted and applied to algorithm (A) as start code book. The aim of the
special “splitting”procedure is to obtain a better start code book for algorithm (A)
in the last iteration. However, it will still not guarantee that the global minimum
of the quantization noise power is achieved.

Step 1: Set κ = 1 and determine the center of gravity of all KT training
vectors x.

→ {x̂i | i = 1}

Step 2: Split {x̂i | i = 1, . . . , κ} using a small difference vector ∆ which is
chosen arbitrarily.

→ {x̂i − ∆ ; x̂i + ∆ | i = 1, . . . , κ}

Step 3: a) Run algorithm (A) with {x̂i − ∆ ; x̂i + ∆ | i = 1, . . . , κ} as start
code book resulting in 2κ optimized representation vectors.
→ {x̂i | i = 1, . . . , 2κ}

b) Set κ = 2κ.

Step 4: a) If κ < K return to step 2,

b) otherwise the optimized vector code book is obtained.
→ {x̂i | i = 1, . . . , κ}

However, the split algorithm (B) has a distinct advantage if the code book in-
dices have to be transmitted over a channel with bit errors [Goertz 1999]. For the
transmission of any selected index a bit pattern of length w has to be assigned
(K = 2w). A single bit error on the transmission link might produce the index of a
different code book entry x̂j , which might have a very large distance to the desired
entry x̂i. Therefore, robust index assignment is needed. We get this robustness if
we combine the index assignment with the splitting procedure. The distinction be-
tween the first code book which has only two entries x̂1 and x̂2 is made by one bit.
As soon as we split one vector we add another address bit. Thus we can guarantee
that a single bit error will produce an index corresponding to the neighborhood
relations.

Examples of code book optimization with the LBG algorithm are presented in
Fig. 7.16. For a vector length of L = 2, code books with K = 256 vectors, respec-
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→

↑↑

→

Figure 7.16: Example of a code book design with the LBG algorithm
(L = 2, K = 256 or, respectively, w = 4)
a) Gaussian source
b) First-order Gauss–Markov source (a = 0.9)

tively Voronoi cells, were designed. The first case (Fig. 7.16-a) is based on a non-
correlated sequence x(k) with Gaussian distribution, the second on a first-order
Gauss–Markov source, i.e., an AR process (see also Section 6.1) with a first-order
recursive filter. The feedback coefficient was a = 0.9. The code books were trained
with 100000 vectors each, with the termination criterion set to a value of 10−6 for
the difference for D from one iteration to the next according to step 1 b).

It can clearly be seen in Fig. 7.16-a that the cell sizes are adjusted to the probability
density function and that in Fig. 7.16-b the correlation leeds to a higher cell density
in the neighborhood of the diagonal of the (x1, x2)-plane. This is also underlined
by the SNR, which results in 20.87dB for the Gaussian source and in 24.05dB
for the correlated Gauss–Markov source. Evidently, the vector quantizer is able to
exploit the correlation for an improvement of the SNR.

For L w = 10, Table 7.6 shows the SNRs obtained with LBG code books, with
variations of the effective word length in the range of

0.25 ≤ w ≤ 5 . (7.92)

Again, the uncorrelated Gaussian source and the correlated first-order Gauss–
Markov source (a = 0.9) are compared.

The table shows that the vector quantizer exploits the correlation for an improve-
ment of the SNR. Overall, however, for the given dimensions, relatively low SNR
values are obtained.
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Table 7.6: SNRs for vector quantization with LBG code books,
uncorrelated and first-order correlated Gaussian source (a = 0.9),
100000 training vectors, w = L w = 10

Vector dimension L 2 5 10 20 40

Effective word length w 5 2 1 0.5 0.25

Gaussian source 25.93 dB 10.18 dB 4.94 dB 2.41 dB 1.17 dB

Gauss–Markov source 29.56 dB 15.99 dB 11.54 dB 8.68 dB 6.34 dB

For this reason, vector quantizers are generally not used for the direct signal quan-
tization. Rather, they are utilized within model-based codec algorithms, in order
to quantize prediction error signals (see Section 8.5.1) or other sets of parameters.

7.6.5 Gain–Shape Vector Quantization

For the vector quantization discussed so far, we assumed that the code book con-
sists of quantizer representation vectors which are representative signal wave forms
or representative sets of parameters. In signal quantization it may happen that the
same signal shapes can occur with different amplitudes, e.g., if the volume of the
speech signal is changed. Hence, the code book would have to contain vectors x̂i

with the same shape and a different gain. This might possibly lead to a considerable
increase in the size and complexity of the code book.

One possible solution consists of normalizing each input vector by means of a
scaling factor derived from x (e.g., the biggest vector component xµ). Per input
vector, one additional scaling factor must then be transmitted.

Better results can be obtained if each code book vector x̂i is adjusted to each
respective input vector x with an individually optimized gain factor gi derived
from x and x̂i. This method is termed gain–shape vector quantization.

Utilizing the squared error distortion measure, the gain factor gi for each arbitrary
but fixed vector x̂i can be computed by minimizing the mean square error

di = d(x, gix̂i) =
1

L
‖x − gi x̂i‖2 (7.93-a)

=
1

L

L∑

µ=1

(xµ − gi x̂iµ)2
!
= min , i = 1, 2, . . . , K . (7.93-b)
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After setting the partial derivative with respect to the unknown gi to zero

∂ di

∂ gi
= − 2

L

L∑

µ=1

(xµ − gi x̂iµ) x̂iµ
!
= 0 , (7.94)

the solution

gi,opt =

L∑
µ=1

xµ x̂iµ

L∑
µ=1

x̂2
iµ

=
xT x̂i

‖x̂i‖2
(7.95)

results. If we insert the optimum gain factor (7.95) in (7.93-a), the minimum mean
square error can be calculated explicitly for each code book vector x̂i:

di =
1

L
‖x − gi,opt x̂i‖2 (7.96-a)

=
1

L

∥∥∥∥x − xT x̂i

‖x̂i‖2
x̂i

∥∥∥∥
2

(7.96-b)

=
1

L

[
‖x‖2 − (xT x̂i)

2

‖x̂i‖2

]
. (7.96-c)

Hence, we could in a first step evaluate (7.96-c) for each index i and identify the
best code book vector x̂i which minimizes this expression. As the squared norm
of x is constant, (7.96-c) can be minimized by maximizing the second term:

(xT x̂i)
2

‖x̂i‖2

!
= max . (7.97)

Then, in a second step, the corresponding optimum gain factor gi,opt has to be
calculated according to (7.95) only for the selected best code book vector. Prior
to transmission, this gain factor must be quantized.
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8

Speech Coding

In telephone networks, speech signals are generally limited to the frequency band
of 0.3 to 3.4 kHz. This specification of telephone bandwidth dates back to the
analog age when frequency division multiplexing by single side band modulation
and sub-audio signaling was used to realize, e.g., 10800 telephone channels on
coaxial cables in the frequency band 4–60MHz [ITU-T Rec. G.333 1988]. Even in
ISDN networks the upper frequency limit is still 3.4 kHz, whereas the lower limit
might be below 300Hz. The speech signal is sampled at a rate of fs = 8kHz and
quantized non-uniformly at 64 kbit/s (A-law characteristic, w = 8 bit/sample, see
Section 7.3).

For economical reasons, this bit rate is not available for wireless communication
systems such as cordless telephones and cellular radio networks, which allow on
average only w = 0.5–2 bit/sample. Moreover, there is an increasing demand for
transmitting wideband speech (0.05 to 7 kHz, fs = 16kHz) in fixed and mobile
networks without increasing the bit rates. Thus, the target bit rates for narrowband
and wideband speech coding are in the range of B = w · fs = 4–32 kbit/s. The
majority of coding algorithms for these requirements is based on a model of speech
production (see Chapter 2) and relies on masking properties of the auditory system
only to a limited extent.

In contrast to this, algorithms for the coding of music signals are based mainly
on models of the human auditory system, since appropriate source models do not
exist. High audio quality with a bandwidth of about 16 kHz (i.e., fs = 32 kHz) can
be obtained with effectively w = 2–4bit/sample or B = w · fs = 64–192 kbit/s.

Digital Speech Transmission: Enhancement, Coding and Error Concealment

Peter Vary and Rainer Martin
c© 2006 John Wiley & Sons, Ltd
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In this chapter, we will develop a comprehensive and unified description of the most
important speech coding algorithms. The basic concepts, such as LPC vocoder,
differential pulse code modulation (DPCM), and code excited linear prediction
(CELP), as well as the relevant advanced coding techniques, will be discussed
in detail. Selected codec standards are presented in Appendix A.

8.1 Classification of Speech Coding Algorithms

In public telephone networks, the audio bandwidth is mostly limited according to
the IRS or the MIRS narrowband characteristic ((modified) intermediate reference
system, [ITU-T Rec. P.48 1993], [ITU-T Rec. P.830 1996]) as shown in Fig. 8.1-a.

The fundamental frequency of adult speakers, which is below 200Hz, is actually not
transmitted. The average intelligibility of meaningless syllables is only about 91%,
but the comprehensibility of words and sentences is considered to be sufficient.
Nevertheless, everyone knows from experience that we sometimes need to spell
words or names on the phone. This problem no longer exists if wideband speech is
transmitted with a frequency range of 0.05 kHz ≤ f ≤ 7.0 kHz as shown in Fig. 8.1-
b [ITU-T Rec. P.341 1998]. In this case, we have to increase the sampling rate to
fs = 16kHz and we need source coding to reduce the bit rate in fixed as well as in
wireless systems. Appropriate standards for wideband speech coding are available
for ISDN [ITU-T Rec. G.722 1988], as well as for digital cellular networks [3GPP
TS 26.190 2001], [ITU-T Rec. G.722.2 2002].
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Figure 8.1: a) Magnitude response of the intermediate reference systems (IRS, MIRS)
fs = 8 kHz [ITU-T Rec. P.48 1993], [ITU-T Rec. P.830 1996]

b) Magnitude response for wideband handsfree telephony terminals
fs = 16 kHz [ITU-T Rec. P.341 1998]
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Speech coding algorithms have to be optimized with regard to the following re-
quirements:

• high speech quality

• low bit rate

• low complexity

• limited signal delay.

These criteria, some of which contradict each other, must be weighted differently
according to the application. They are highly interrelated, as, for example, a con-
stant speech quality may be obtained at a reduced data rate at the expense of
increased complexity of the coding algorithms and/or an increased signal delay.

Speech coding algorithms can be subdivided, as depicted in Fig. 8.2, into three
categories:

• waveform coding

• parametric coding

• hybrid coding.

In waveform coding [Jayant, Noll 1984], bit rate reduction is achieved through
(fixed or adaptive) quantization of samples of the speech signal itself or some
intermediate signal(s) such as a prediction error signal or subband signals. In com-
parison to plain quantization of speech samples, better results are achieved by
applying a (fixed or adaptive) linear predictive filter (LP filter), which is adjusted
according to the correlation properties of the signal. The LP filter can be consid-
ered to be a whitening filter (see Section 6.3). The resulting reduction of the signal
dynamics in the time and the frequency domain can be quantified by the predic-
tion gain. In time domain coding algorithms, quantization and predictive filtering
are generally adaptive processes. At the receiver, the signal is reconstructed by
applying the (quantized) residual signal to the synthesis filter. Both the synthesis
filter as well as the inverse quantizer can be adjusted by backward or closed-loop
adaptation. No side information about the quantizer and the synthesis filter needs
to be transmitted. Only the quantized residual signal is transferred via the sig-
nal channel (Fig. 8.2-a). The effective quantization error can be spectrally shaped
within certain limits in order to maximize the subjective speech quality, exploiting
the psychoacoustic masking effect (see Section 8.3.3).

For fs = 8 kHz and a target bit rate of B = 32 kbit/s, the predominant waveform
coding scheme is adaptive differential pulse code modulation (ADPCM), which
allows a reconstruction of the signal waveform with a signal-to-noise ratio of
SNR = 30–35 dB. ADPCM (see Section 8.3.4) is used in digital cordless phones
and in circuit multiplication equipment (two voice channels within 64 kbit/s).
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Figure 8.2: A classification of speech coding algorithms
a) Waveform coding
b) Parametric coding
c) Hybrid coding

In contrast to waveform coding, parametric coders (vocoders) (Fig. 8.2-b) do not
encode the waveform, but a set of model parameters. This implies the realization
of a speech production model as discussed in Section 6.1. The time-variant syn-
thesis filter in the receiver can be interpreted as a model of the vocal tract. Its
excitation signal (glottis signal) is delivered from a controlled generator. On the
transmission side, the parameters of this model, i.e., the coefficients of the filter
and the control parameters of the generator, are extracted from the speech samples
by analysis procedures and transmitted in quantized form. At a typical bit rate
of B = 2.4 kbit/s parametric coders produce a clearly intelligible but somewhat
synthetic speech.

An interesting compromise between these two concepts is the hybrid coding ap-
proach (Fig. 8.2-c). As in the vocoder, the parameters of a time-variant synthesis
filter are transmitted as side information, whereas the excitation signal is gener-
ated similarly to waveform coding by the quantized prediction error signal (residual
signal). In consideration of the auditory system, it is possible to quantize the resid-
ual signal quite coarsely with respect to amplitude and time resolution. However,
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large quantization errors do not permit a derivation of the synthesis filter coeffi-
cients from the quantized residual signal at the receiver. Subjectively, telephone
quality can almost be achieved with 0.75–1.5bit/sample, whereas the measurable
signal-to-noise ratio might only be 10 dB. The hybrid approach is widely used in
digital mobile radio systems, e.g., [Kondoz 2004], [Hanzo et al. 2001], [Chu 2003],
[Goldberg, Riek 2000], [Sluijter 2005] (see Section 8.5 and Appendix A).

A common feature of the three coding schemes is the time-varying synthesis filter
which more or less approximates the vocal tract transfer function. The necessary
processing at the transmitter is based on linear prediction (LP). Therefore, the
generic term linear predictive coding (LPC) is widely used for any codecs of the
three classes. The attribute LP is often used to characterize special variants of
the hybrid approach such as CELP codecs (code excited linear prediction, see
Section 8.5.3).

An alternative classification distinguishes between time domain algorithms using
linear prediction and frequency domain algorithms based on short-term spectral
analysis. The frequency domain algorithms, which rely more on auditory models,
require at least 2 bit/sample and are especially suitable for music signals (e.g., [Rao,
Hwang 1996], [Vary et al. 1998], [Brandenburg, Bosi 1997], [MPEG-2 1997]). Due
to the underlying model of speech production, the predictive time domain algo-
rithms are especially suitable for speech coding with effective bit rates of less than
2 bit/sample.

8.2 Model-Based Predictive Coding

For speech coding with medium to low bit rates, i.e., with effective word lengths of

w =
B

fs
≤ 2 bit/sample ,

model-based time domain methods are widely used [Atal 1982]. The international
codec standards for telecommunications almost exclusively rely on the simplifying
model of speech production derived in Section 2.3. Some properties of the auditory
system are exploited as well, especially spectral masking of quantization errors (see
Section 2.4).

According to the classification given in Section 8.1, a common feature is an LP-
analysis filter at the transmitter and a synthesis filter at the receiver. For public
telephone applications the most interesting classes are waveform coding and hybrid
coding. Both concepts are based on the model of speech production as illustrated
in Fig. 8.3.

The transmitter processes speech samples x(k), which are considered to be pro-
duced by an autoregressive process (AR process). It is assumed that these samples
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Figure 8.3: Basic principle of model-based predictive coding

have been generated from an excitation sequence v(k) by a purely recursive time-
variant filtering process (vocal tract filter).

In Chapter 6, it was shown that, if the model is strictly valid, optimal linear pre-
diction in terms of the minimum mean square prediction error implicitly performs
a system identification of the vocal tract filter. Hence, according to Fig. 8.3 the
z-transform D(z) of the residual signal d(k) is described by

D(z) =
1 − A(z)

1 − C(z)
V (z) . (8.1)

For perfect system identification, i.e., for A(z) = C(z), the residual signal d(k) is
identical to the excitation signal v(k) of the model filter. The analysis filter on the
transmission side with the transfer function

G(z) = 1 − A(z) (8.2)

is the inverse of the vocal tract filter.

The residual signal d(k) is transmitted to the receiver in quantized form and is
then used as the excitation signal for the synthesis filter

H(z) =
1

1 − A(z)
, (8.3)

which corresponds to the vocal tract filter. Thus, the speech signal is resynthesized
at the receiving side (decoding) according to the speech production model.

However, we must assume that

1. the utilized model of speech production is only approximately valid;

2. the estimated filter parameters are not accurate (A(z) ≈ C(z)).
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Nevertheless, with this approach the bit rate can be efficiently reduced. Even for
inaccurate estimates of the filter parameters the frequency responses of the filters
on the transmitting and receiving sides are exactly inverse to each other:

G(z) · H(z) = 1 . (8.4)

If we do not quantize the residual signal d(k), the output signal and the input
signal are identical:

y(k) = x(k) . (8.5)

There is no signal delay. The key to bit rate reduction is that rather coarse quan-
tization can be applied to the residual signal d(k). If the quantized residual signal

d̃(k) = d(k) + ∆(k) (8.6)

is used to resynthesize the speech signal, the output signal y(k) consists of the
original x(k) and a filtered version of the quantization noise:

y(k) = x(k) + r(k) . (8.7)

The effective quantization noise r(k) has (almost) the same spectral shape as
the signal x(k). Therefore, subjective perception is significantly improved by the
psychoacoustic effect of masking.

The approach illustrated in Fig. 8.3 covers most of the predictive time domain con-
cepts for speech coding. However, essential differences exist regarding the quanti-
zation of the residual signal (fixed or adaptive, scalar or vector quantization, error
criterion) and the prediction type (sequential or block adaptation, with or without
long-term prediction).

8.3 Differential Waveform Coding

8.3.1 First-Order DPCM

According to the classification given in Section 8.1, the adaptive differential pulse
code modulation(ADPCM) can be attributed to the class of waveform coders.

The objective of linear prediction is bit rate reduction. The analog signal xa(t)
will be digitized with the sampling rate fs and a sufficient word length w0 ≥ 12.
Thus, the initial bit rate is B0 = w0 · fs. With linear prediction we generate the
residual signal d(k). The subsequent quantization of d(k) with shorter word length
w < w0 will lead to the reduced bit rate of B = w · fs.
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Figure 8.4: Differential pulse code modulation (DPCM) of first order
a) Block diagram
b) Equivalent filters
c) Magnitude response of the analysis filter (fs = 1/T )

The simplest version is a differential PCM system (DPCM system) with a first-
order predictor as depicted in Fig. 8.4. The current sample x(k) is predicted by
weighting the preceding x(k − 1) with coefficient a:

x̂(k) = a · x(k − 1) . (8.8)

The predictor coefficient a can be optimized as described in Chapter 6 by means
of block adaptation (Section 6.3.1) or sequential adaptation using, for example,
the LMS algorithm (Section 6.3.2). Here, we will first look at the block adaptive
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Figure 8.5: Example of block adaptive DPCM
(N = 160, fs = 8 kHz, a = 0.9545)

approach, which is also referred to as adaptive predictive coding (APC). The coef-
ficient a, which is optimal in terms of the minimum mean square prediction error
(see Eq. (6.31)), is

aopt =
ϕxx(1)

ϕxx(0)
. (8.9)

In practice, the auto-correlation values ϕxx(i) are replaced by short-term esti-
mates. The effect of a DPCM system with a first-order predictor which is optimal
for a voiced signal segment of block length N = 160 (N · T = 20ms) is depicted
in Fig. 8.5. Compared to the input signal x(k) the dynamic range of the residual
signal d(k) is distinctively reduced. The corresponding prediction gain (see Sec-
tion 6.2)

Gp =
ϕxx(0)

ϕdd(0)
=

ϕ2
xx(0)

ϕ2
xx(0) − ϕ2

xx(1)
≥ 1 (8.10)

can be exploited for shortening the word length to w < w0 under certain circum-
stances as shown in Section 8.3.3.
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First, we will analyze the system performance in the frequency domain for the
special case when no additional quantization is applied, i.e., w = w0.

For a constant coefficient a (constant for the duration of the signal block), impulse
responses can be determined for the transmitter and the receiver as suggested in
Fig. 8.4:

g(k) =





1 k = 0
−a k = 1

0 otherwise
(8.11-a)

h(k) =

{
ak k ≥ 0
0 k < 0 .

(8.11-b)

Through z-transformation of these impulse responses, we obtain the frequency
responses

G(ejΩ) = 1 − a · e−jΩ (8.12-a)

or

|G(ejΩ)| =
√

1 + a2 − 2 a cos Ω , (8.12-b)

and for |a| < 1

H(ejΩ) =

∞∑

k=0

ak · e−jkΩ (8.13-a)

=
1

1 − a · e−jΩ
=

1

G(ejΩ)
. (8.13-b)

Since the filter at the receiving side is inverse to the filter on the transmitting
side, the output signal y(k) and the input signal x(k) are identical if d(k) is not
quantized, i.e., if d̃(k) = d(k).

The magnitude response of the transmission filter for a = 1 is of special interest:

|G(ejΩ)| =
√

2 · (1 − cos Ω) (8.14-a)

= 2 ·
∣∣∣∣sin

(
Ω

2

)∣∣∣∣ . (8.14-b)

The magnitude response outlined in Fig. 8.4-c for a = 1 is almost linear at low fre-
quencies. This behavior approximates the magnitude response of the differentiator.
The extreme values of the magnitude response are |1 − a| and |1 + a|.
The logarithmic prediction gain of the example in Fig. 8.5 is

10 lg(Gp) = −10 lg(1 − a2
opt) ≈ 10.5 dB .

If the achievable bit rate reduction increases with the prediction gain according
to the 6-dB-per-bit rule, about 1.5 bit/sample could be saved for a gain of 10.5 dB
compared to PCM. This interdependency will be studied in Section 8.3.3.
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8.3.2 Open-Loop and Closed-Loop Prediction

So far we have discussed the simple DPCM system with a single coefficient a. In
Chapter 6 it was shown that the prediction gain can be improved by increasing the
filter order n and by adaptation of the predictor coefficients ai(k) (i = 1, . . . , n)
to the time-varying characteristics of speech.

The structure of the DPCM system with an n-th order prediction filter is shown
in Fig. 8.6. As the prediction signal

x̂(k) =
n∑

i=1

ai(k) · x(k − i) (8.15)

is produced from preceding input samples x(k− i), this structure is called forward
prediction or open-loop prediction.

The time-variant coefficients of the transmitter must be known at the receiver.
However, the transmission of the prediction coefficients requires a considerable
part of the bit rate saved by quantization of d(k).

Therefore, it would be attractive if the vector a(k) =
(
a1(k), a2(k), . . . , an(k)

)T
of

the predictor coefficients could be recalculated at the receiver without transmitting
any side information. This can be achieved with the modified predictor structure
of Fig. 8.7 (see Section 8.3.4), if the residual signal d(k) is quantized with sufficient
accuracy. The modification compared to Fig. 8.6 is that the estimated signal x̂(k)
at the transmitter is derived in the same way as at the receiver. This variation
is called backward prediction or closed-loop prediction, as the predictor and the
quantizers are located within a loop.

Figure 8.6: DPCM system with n-th order adaptive forward predictor
(open-loop prediction)
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Figure 8.7: DPCM system with adaptive backward predictor (closed-loop prediction)

If the residual signal d(k) is not quantized, then the open- and closed-loop struc-
tures produce exactly the same estimated signal x̂(k). In this case, we get

d̃(k) = d(k) = x(k) − x̂(k) (8.16-a)

and

x̃(k) = d̃(k) + x̂(k) = x(k) . (8.16-b)

Hence, the estimated signal for closed-loop prediction

x̂(k) =

n∑

i=1

ai(k) · x̃(k − i) =

n∑

i=1

ai(k) · x(k − i) (8.16-c)

is identical to the result produced by open-loop prediction (8.15) (see Fig. 8.6).
Furthermore, with closed-loop prediction the decoder output signal y(k) is iden-
tical to the intermediate signal x̃(k) even if the residual signal d̃(k) is quantized.
However, if the residual signal d(k) is quantized, open- and closed-loop prediction
produce different signals x̂(k). Thus, in both cases quantization affects the output
signal y(k) differently. This will be discussed in the next section.

8.3.3 Quantization of the Residual Signal

In this section, we will show how the quantization of the residual signal affects
the output signal y(k) and how the prediction gain can be exploited for bit rate
reduction. For reasons of simplicity, we assume error-free transmission.

8.3.3.1 Quantization with Open-Loop Prediction

The quantization of the residual signal d(k) will be described by additive quan-
tization noise ∆(k). Assuming uniform quantization with mathematical rounding,
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the quantization error can be expressed (see Section 7.2) as uniformly distributed
noise in the range

−∆d

2
< ∆(k) ≤ +

∆d

2
, (8.17-a)

with the power

σ2
∆ =

(∆d)2

12
, (8.17-b)

and a constant noise power spectral density

Φ∆∆(ejΩ) =
(∆d)2

12
. (8.17-c)

Here, ∆d denotes the quantizer’s stepsize.

According to Fig. 8.8-a, the quantized residual signal d̃(k) consists of the two
components d(k) and ∆(k). Due to the linearity of the receiving filter, the output
signal y(k) consists of the sum of the filtered versions of these two components.
Since the transmitting and the receiving filters are inverse to each other, we get
the original signal x(k) and a filtered version r(k) of the noise ∆(k) according to

y(k) = x(k) + r(k) . (8.18)

The reconstruction error r(k) is thus a spectrally shaped version of the white quan-
tization noise ∆(k). As shown in Section 6.1, the optimization of the analysis filter

Figure 8.8: DPCM with quantization of the residual signal
a) Open-loop prediction (forward prediction)
b) Closed-loop prediction (backward prediction)
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implies a system identification of the vocal tract. With adaptive linear prediction,
the frequency response of the synthesis filter therefore approximates the instanta-
neous frequency response of the vocal tract filter. For this reason, the spectrum of
the reconstruction error follows the spectral envelope of the speech signal. From
a psychoacoustic point of view, this is advantageous as the quantization error is
masked to a certain extent by the speech signal itself.

In this context, the significance of the prediction gain for the achievable signal-to-
noise ratio and the required bit rate is of particular interest. In order to clarify
this issue, we will look at the system in the frequency domain. We assume that
the prediction is perfect in such a way that a spectrally flat residual signal d(k)
with constant power spectral density

Φdd(e
jΩ) = const. = ϕdd(0) (8.19)

results. This assumption holds, as shown in Section 6.1, for unvoiced segments.
With respect to the spectral envelope, and especially when utilizing a long-term
predictor (see Section 6.4, Fig. 6.17), this assumption applies to voiced segments
as well.

Furthermore, the relation between the power spectral densities of the residual
signal and the input signal is given by

Φdd(e
jΩ) = Φxx(ejΩ) · |1 − A(ejΩ)|2 . (8.20-a)

With (8.19) we get

ϕdd(0)

|1 − A(ejΩ)|2 = Φxx(ejΩ) . (8.20-b)

The integration over the frequency interval −π ≤ Ω ≤ +π with

ϕdd(0)
1

2π

π∫

−π

1

|1 − A(ejΩ)|2 dΩ =
1

2π

π∫

−π

Φxx(ejΩ) dΩ = ϕxx(0) (8.20-c)

yields the power ϕxx(0) of signal x(k). Dividing by ϕdd(0) leads to the prediction
gain

ϕxx(0)

ϕdd(0)
=

1

2π

π∫

−π

1

|1 − A(ejΩ)|2 dΩ = Gp . (8.21)
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Equation (8.21) integrates the squared magnitude response

|H(ejΩ)|2 =
1

|1 − A(ejΩ)|2 (8.22)

of the synthesis filter.

The signal-to-noise ratio of the uniform quantizer is given by
(

S

N

)

d̃

=
ϕdd(0)
(∆d)2

12

. (8.23)

The noise power ϕrr(0) at the receiver output results from integration over the
respective noise power spectral density using (8.17-c), (8.21), and (8.22)

ϕrr(0) =
1

2π

π∫

−π

Φ∆∆(ejΩ) · |H(ejΩ)|2 dΩ =
(∆d)2

12
· Gp . (8.24)

Hence, with (8.21) and (8.23), the signal-to-noise ratio
(

S
N

)
y

of the output signal

is given by
(

S

N

)

y

=
ϕxx(0)

ϕrr(0)
(8.25-a)

=
ϕxx(0)

(∆d)2

12
· Gp

=
Gp · ϕdd(0)
(∆d)2

12
· Gp

(8.25-b)

=
ϕdd(0)
(∆d)2

12

=

(
S

N

)

d̃

. (8.25-c)

As a result, the signal-to-noise ratio is not improved by open-loop prediction. The
prediction gain cannot be used to improve the objective signal-to-noise ratio. Due
to the psychoacoustic masking effect, however, the subjective speech quality is
significantly improved by spectral shaping of the quantization error, which can
also be exploited for bit rate reduction.

8.3.3.2 Quantization with Closed-Loop Prediction

The analysis of the structure in Fig. 8.8-b is carried out in the time domain.
Assuming an error-free transmission, we get

y(k) = x̃(k) = x̂(k) + d̃(k) (8.26-a)

= x̂(k) + d(k) + ∆(k) (8.26-b)

= x(k) + ∆(k) . (8.26-c)
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In contrast to open-loop prediction, the reconstruction error r(k) equals the spec-
trally white quantization noise ∆(k). Consequently, r(k) appears as a spectrally
white noise signal at the output of the receiver.

In this case, the prediction gain can be used to improve the signal-to-noise ratio

(
S

N

)

y

=
ϕxx(0)

ϕ∆∆(0)
(8.27-a)

=
ϕxx(0)

ϕdd(0)
· ϕdd(0)

ϕ∆∆(0)
(8.27-b)

= Gp ·
(

S

N

)

d̃

. (8.27-c)

Compared to the quantizer output, the signal-to-noise ratio SNRy of the receiver
output is increased by the prediction gain Gp (see (8.21))

SNRy = 10 lg

(
S

N

)

y

= 10 lg

(
S

N

)

d̃

+ 10 lg Gp . (8.27-d)

This fact can be exploited for objective quality improvement, but also for bit rate
reduction. In view of the 6-dB-per-bit rule (see Section 7.2), this implies that
closed-loop prediction provides a 10 lgGp/6 bit advantage over PCM. Two views
of the word length gain are equivalent:

1. SNR improvement for w = w0:
If we compare plain PCM and closed-loop DPCM both using the same word
length w, the quantizer of the DPCM system has a lower peak-to-peak load
by the residual signal (σd < σx). Therefore, we can adapt the quantization
stepsize (∆d < ∆x) and achieve a quantization noise power which is reduced
according to the prediction gain.

2. Constant SNR but w < w0:
In practice, a certain target performance of SNRy is required. Because of the
relation

SNRy = SNRd̃ + 10 lg Gp (8.27-e)

we design the quantizer for a target signal-to-noise ratio SNRd̃, which can
be reduced by ∆SNR = 10 lgGp compared to open-loop prediction. In ac-
cordance with (7.23-b) this implies a possible word length reduction by

∆wp =
∆SNR

20 lg 2
=

10 lg Gp

20 lg 2
=

1

2
ld Gp . (8.27-f)
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Finally, it should be noted that white quantization noise is in principle less pleasant
than the spectrally shaped noise. However, as the power of the white noise in closed-
loop prediction may be significantly lower than that of the colored noise in open-
loop prediction, a comparable subjective performance is achieved. Nevertheless,
the objective performance of closed-loop prediction is better.

8.3.3.3 Spectral Shaping of the Quantization Error

As for the psychoacoustic aspects, open-loop and closed-loop prediction represent
two extreme cases with respect to the reconstruction error. In the first case, the
noise spectrum follows the spectral envelope of the speech signal, while the signal-
to-noise ratio is not improved. The logarithmic distance between the power spectral
densities of the speech signal and the reconstruction error is independent of the
frequency. In the second case, a white quantization noise remains; however, the
signal-to-noise power ratio is increased by the prediction gain. In order to exploit
to some extent both the psychoacoustic masking effect and the prediction gain,
a compromise between these two extremes is desirable. The signal-to-noise ratio
should be improved to a certain extent. At the same time, the noise spectrum
should be matched to the spectrum of the desired signal in such a way that, com-
pared to the open-loop prediction, an increased distance results in the range of the
formant frequencies, whereas a smaller distance is permissible in the “spectral val-
leys”. This objective can be achieved by the technique of noise shaping [Schroeder
et al. 1979].

The starting point for the derivation of such a structure is the closed-loop DPCM
system according to Fig. 8.9-a. To highlight the functional relations between the
input, the output and the quantization noise of the DPCM system, we prefer to use
z-transform representations instead of power spectral densities. The z-transform
of a finite segment of the quantization noise ∆(k) is denoted by ∆(z).

For the z-transform D̃(z) according to Fig. 8.9-a we obtain

D̃(z) = X(z)
(
1 − A(z)

)
+ ∆(z)

(
1 − A(z)

)
. (8.28-a)

Figure 8.9-b shows an alternative but equivalent structure, which is also described
by (8.28-a).

The two noise components ∆(z) and −∆(z) ·A(z) are added to the signal compo-
nent

D0(z) = X(z)
(
1 − A(z)

)
.

The first part results from quantizing d(k), while the second one is obtained by
filtering the difference between the input and the output of the quantizer. The be-
havior of closed-loop prediction (Fig. 8.9-a) can therefore be achieved by open-loop
prediction and feedback of the filtered quantization error (Fig. 8.9-b). However,
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Figure 8.9: Spectral shaping of the quantization noise (noise shaping)
a) Closed-loop DPCM with quantization in the loop
b) Alternative but equivalent structure
c) Generalization of b)

this alternative structure has the advantage that the reconstruction error can be
explicitly influenced to a certain extent. As shown in Fig. 8.9-c, a filter function
F (z) can be utilized for the noise feedback:

D̃(z) = X(z)
(
1 − A(z)

)
+ ∆(z)

(
1 − F (z)

)
. (8.28-b)

Finally, we get for the receiver output

Y (z) = X(z) + ∆(z)
1 − F (z)

1 − A(z)
. (8.29)
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For the choice of F (z) it has to be considered that delay-less loops cannot be
implemented.

A suitable function F (z) can be derived from A(z). According to [Schroeder et al.
1979], we choose

F (z) = A(z/γ) with 0 ≤ γ ≤ 1 . (8.30)

With the parameter γ the adaptation of the noise spectrum to the spectrum of
the speech signal can be performed with respect to the desired compromise. The
effect of this choice can be explained by the zeros z0i of the LP-analysis filter. The
product form

1 − A(z) =
1

zn

n∏

i=1

(z − z0i) (8.31-a)

leads to

1 − F (z) = 1 − A(z/γ) =
1

zn

n∏

i=1

(z − γ · z0i) . (8.31-b)

If a positive factor γ < 1 is chosen, the magnitude |z0i| of each zero is reduced,
while the angles ϕ0i are maintained:

z̃0i = γ · z0i = γ · |z0i| · ejϕ0i . (8.32)

The extrema of the resulting frequency response are less distinct, since the zeros
which are inside the unit circle (see Chapter 6) are moved towards the origin of
the z-plane. The special case of closed-loop prediction is covered with γ = 1,
i.e., F (z) = A(z), as shown in (8.31-b). The second extreme case of open-loop
prediction is obtained for γ = 0, i.e., 1 − F (z) = 1

zn · zn = 1 .

The effective noise shaping is illustrated by an example in Fig. 8.10. Represented
are the squared magnitude response of the synthesis filter for a finite signal segment

|H(ejΩ)|2 =
1

|1 − A(ejΩ)|2 (8.33)

and the power spectral density of the reconstruction error

Φrr(e
jΩ) = Φ∆∆(ejΩ) ·

∣∣∣∣∣∣

1 − A
(

1
γ

ejΩ
)

1 − A(ejΩ)

∣∣∣∣∣∣

2

(8.34)

for three values of γ. According to (8.17-c) with

Φ∆∆(ejΩ) =
(∆d)2

12
, (8.35)
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Figure 8.10: Noise shaping for the example of a vowel
a) Closed-loop prediction, γ = 1
b) Open-loop prediction, γ = 0
c) Noise shaping, γ = 0.7

we assumed a constant noise power spectral density due to uniform quantization,
and for the purpose of illustration we exemplarily assume a quantizer with a signal-
to-noise ratio of the quantized residual signal d̃(k) of

SNRd̃ = 10 lg

(
ϕdd(0)
(∆d)2

12

)
= 9 dB and ϕdd(0) = 1 . (8.36)

For γ = 0 (open-loop prediction, Fig. 8.10-b), we obtain SNRy = SNRd̃ and the
noise spectrum follows the magnitude response with a constant distance given by
the uniform quantization (in this case 9 dB).

For γ = 1 (closed-loop prediction, Fig. 8.10-a), and the same quantizer stepsize
∆d, a constant white noise spectrum results. Compared to the open-loop prediction
the signal-to-noise ratio is increased by the logarithmic prediction gain 10 lg Gp

(see (8.21)).

The DPCM system with noise shaping (Fig. 8.10-c) shows that in the lower for-
mant frequency range the spectral signal-to-noise ratio has markedly increased in
comparison to open-loop prediction. Due to the psychoacoustic masking effect the
noise shaping provides the best subjective speech quality. Compared to closed-loop
prediction, however, the objectively measured signal-to-noise ratio deteriorates.

The effect on the speech signal is depicted for a second example in Fig. 8.11. A fixed,
n = 8-th order predictor was utilized in the structure according to Fig. 8.9-c. The
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Figure 8.11: Example of differential coding according to Fig. 8.9-c
(predictor: n = 8, quantizer: w = 5, voiced speech)
a) Closed-loop prediction, γ = 1
b) Open-loop prediction, γ = 0
c) Noise shaping, γ = 0.7

quantizer with a word length of w = 5 was adjusted to the reduced dynamic range
of the residual signal d(k).

From Fig. 8.11 we can infer that the best objective match between the origi-
nal signal x(k) and output signal y(k) is achieved with closed-loop prediction.
The difference x(k) − y(k) is the same as d(k) − d̃(k) (see also (8.26-c)). The

largest reconstruction error energy
∑

k

(
x(k) − y(k)

)2
, i.e., the lowest SNRy, re-

sults from open-loop prediction. However, the best auditory impression is obtained
by quantization with noise shaping. Here, the energy of the reconstruction error
is higher than with closed-loop prediction but smaller than with open-loop pre-
diction. The parameter γ controls the noise shaping intensity and ranges typically
in 0.6 ≤ γ ≤ 0.9.
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8.3.4 Adaptive Differential Pulse Code Modulation

Discussions in this section will refer to a system called adaptive differential pulse
code modulation (ADPCM) with adaptive prediction and adaptive quantization.
When applying the least-mean-square (LMS) algorithm (see Section 6.3.2) and
adaptive quantization backwards (AQB, see Section 7.5), the adaptation of the
predictor and the quantizer can be carried out recursively. Apart from the quan-
tized residual signal d̃(k), no additional information must be transmitted to the
receiver. Furthermore, better results in terms of bit rate reduction and speech
quality compared to DPCM are obtained.

We will look at the ADPCM structure according to Fig. 8.12 with closed-loop
prediction and quantization within the loop.

For the derivation of the LMS algorithm we will in a first step assume that d(k)
is not quantized:

d̃(k) = d(k) . (8.37)

We consider the instantaneous power

σ̂2
d(k) = d2(k) (8.38-a)

=
(
x(k) − aT (k) x̃(k − 1)

)2
(8.38-b)

and calculate the instantaneous gradient ∇̂(k) with respect to the coefficient vector
a(k) in analogy to Section 6.3.2, (6.79-b), and (6.80-b):

∇̂ =
∂d2(k)

∂a(k)
= −2

(
x(k) − aT (k) x̃(k − 1)

)
︸ ︷︷ ︸

d(k)

x̃(k − 1) (8.39-a)

= −2 d(k) x̃(k − 1) , (8.39-b)

with the vector notation

x̃(k − 1) = (x̃(k − 1), x̃(k − 2), . . . , x̃(k − n))
T

(8.39-c)

a(k) = (a1(k), a2(k), . . . , an(k))
T

. (8.39-d)

The new set of prediction coefficients a(k+1) is computed by updating the present
vector a(k) in a direction opposite to that of the instantaneous gradient ∇̂. The
corresponding simple recursive algorithm

a(k + 1) = a(k) + 2 ϑ d(k) x̃(k − 1) (8.40-a)

or, accordingly for the individual coefficient with index i = 1, . . . , n,

ai(k + 1) = ai(k) + 2 ϑ d(k) x̃(k − i) (8.40-b)
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Figure 8.12: ADPCM with sequential adaptation

represents the LMS algorithm (see Section 6.3.2). The effective stepsize 2 ϑ controls
the rate of adaptation and the stability (see (6.81-b)).

In the case of error-free transmission, the required information for the adaptation
is also available at the receiver. Due to the structural correspondence,

x̃(k) = y(k) (8.41)

is also valid if the residual signal d(k) is quantized, i.e., we replace d(k) by d̃(k)
at the transmitting side in (8.40-a). The predictor at the receiving side can be
adjusted synchronously to the filter on the transmitting side, if in (8.40-a) we
replace d(k) by d̃(k) and x̃(k) by y(k).

ADPCM with a word length of w = 4 provides almost the same speech quality as
scalar logarithmic quantization of x(k) with w = 8 (A-law PCM).

The speech codec used in digital cordless phones according to the DECT standard
(see Appendix A.2, ITU-T/G.726) is based on the ADPCM system illustrated
in Fig. 8.12. In this concept a prediction filter with poles and zeros is applied.
The adaptation of the filter is carried out using the so-called algebraic sign–LMS
algorithm for implementational simplicity. Each adjustment is proportional to the
negative of an estimate of the gradient according to

ai(k + 1) = ai(k) + 2 ϑ sign{d(k)} sign{x̃(k − i)} . (8.42)

The adaptation does not require multiplications, which is advantageous for imple-
mentation in application-specific integrated circuits (ASICs).
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8.4 Parametric Coding

8.4.1 Vocoder Structures

The second class of speech coding algorithms comprises the parametric coders,
generally called vocoders (voice coders). Vocoders provide the greatest reduction of
bit rate: effectively 0.1–0.5 bit/sample can be achieved. Although the speech sounds
mostly synthetic, a sufficient intelligibility is obtained. “Speaker transparency” is
only given to a limited degree. In contrast to waveform coding, an exact signal
reproduction is not the main objective; in particular, phase information is not
considered. Therefore, the perceived quality of the synthesized speech signal cannot
be quantified by objective distortion measures such as the signal-to-noise ratio.

A common characteristic of the different time domain vocoders is a signal ana-
lysis procedure for extracting perceptually significant parameters from the speech
signal. Using these parameters, which contain information about

• the instantaneous frequency response of the vocal tract filter with impulse
response h0(k) and

• the excitation signal v(k) ,

an output signal is synthesized in the decoder. In the synthesis procedure the ex-
citation signal is built frame by frame, either by a noise signal or by a periodic
impulse sequence, depending on whether the speech frame is classified as voiced
or unvoiced. Some more advanced schemes provide also mixed voiced/unvoiced
excitation modes. The fundamental differences of the vocoder variants lie in the
structure of the synthesis filter and in the analysis of the filter parameters. Fig-
ure 8.13 shows a generic description of the synthesis procedure of a vocoder, i.e.,
the decoder at the receiving side.

The basic structure corresponds to the discrete time model of speech production
according to Section 6.1. The time-variant synthesis filter is excited by v(k) with
either a noise-like or a periodic structure.

Figure 8.13: Parametric decoding of a vocoder
S : voiced/unvoiced switch
N0: pitch period
g : gain
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Figure 8.14: Principle of the channel vocoder
a) Transmitter
b) Receiver

The development of the different vocoders is closely linked to the technology avail-
able at the respective time. In what follows, we will first briefly discuss two early
variants of the vocoder approaches. More detailed descriptions can be found in,
for example, [Rabiner, Schafer 1978], [Sluijter 2005].

The oldest vocoder is the so-called channel vocoder , which was originally realized in
analog technology with n = 10 channels [Dudley 1939], in order to transmit speech
signals in analog form with a markedly reduced bandwidth. The basic principle is
depicted in Fig. 8.14.
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Figure 8.15: Principle of the formant vocoder

The synthesis filter consists of a parallel arrangement of bandpasses (Fig. 8.14-b).
The corresponding output signals are added up to form signal x̂(k). All bandpasses
are excited with the same signal u(k), which is individually scaled by quantized
time-variant factors g̃i (i = 1, . . . , n). The gain factors gi are determined on the
transmitting side by measuring the envelope of the short-term power in each fre-
quency band (Fig. 8.14-a), while using the same bandpasses on the transmitting
and receiving sides. Due to the relatively slow changes of the envelope, the scaling
factors are transmitted with a highly reduced sampling frequency (subsampling by
the factor r). If, at the receiving side, the quantized gain factors g̃i are combined
with the bandpasses, the overall filter can be interpreted as an approximation
of the vocal tract filter. Consequently, the desired frequency response is approxi-
mated by a parallel arrangement of n bandpasses with fixed center frequencies and
bandwidths but different and variable gain factors g̃i.

Another vocoder variant is the formant vocoder (e.g., [Rosenberg et al. 1971],
[Rabiner, Schafer 1978]). In contrast to the channel vocoder, the spectral envelope
does not result from measuring the energy in fixed frequency bands, but from an
explicit determination of the formant frequencies Fi and formant bandwidths Bi.
The synthesis filter can be realized as a cascade or, as depicted in Fig. 8.15, as a
parallel connection of second-order filters.

With this concept bit rates of B < 1 kbit/s can be realized. However, this entails
fundamental limitations on the naturalness of speech. With a correct analysis
of the formant frequencies a better speech quality is achieved compared to the
channel vocoder. The formant analysis is especially problematic if two formants
lie close together. Linear prediction or cepstral analysis is suitable to determine
the formants.
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Apart from these time domain vocoders, related approaches exist, which represent
frequency domain methods, such as the phase vocoder [Flanagan, Golden 1966]
and the cepstrum vocoder (e.g., [O’Shaughnessy 2000], [Rabiner, Schafer 1978]),
which will not be discussed here.

8.4.2 LPC Vocoder

Linear predictive coding is based on the all-pole model of speech production. The
simplest variant is the LPC vocoder , which corresponds to the model of speech
production derived in Section 2.3 and simplified in Section 6.1 (Fig. 6.1). The
essential properties of this model are:

• the nasal tract is not considered, and the vocal tract is approximated by
lossless tube segments or by a minimum-phase all-pole filter accordingly;

• based on a voiced/unvoiced classification of short signal frames of 20–30ms
duration, the excitation or the glottis signal is approximated by a periodic
impulse sequence or a noise signal.

In contrast to the waveform coding of Section 8.3, the coding strategy depends on
a dynamic signal classification. Often, a predictor or a synthesis filter of reduced
filter order is utilized in unvoiced frames so that the mean bit rate can be reduced.
The basic structure of the LPC vocoder is illustrated in Fig. 8.16.

A typical dimensioning will be explained by means of the so-called LPC-10 algo-
rithm according to [Campbell et al. 1989] and [Tremain 1982].

The speech signal is sampled with a frequency of fs = 8kHz and segmented into
frames of 22.5ms duration (N = 180 samples). Using the covariance method (see
Section 6.3) 10 reflection coefficients in the case of voiced frames and 4 reflection
coefficients for unvoiced frames are computed.

The coefficients are quantized in the form of the log area ratios (see Section 8.4.3),
where the first two coefficients are non-uniformly quantized with 5 bits each, while
the remaining coefficients are represented with uniform resolution and word lengths
of w = 2, . . . , 5. The complete set of coefficients is coded with 41 bits or 20 bits in
the case of voiced or unvoiced frames, respectively. For the pitch period and the
voiced/unvoiced decision 7 bits are used, 5 bits for the logarithmic quantization
of the gain factor and 1 bit for the synchronization. Thus, the bit rates for both
voicing modes result in

54 bits

22.5 ms
= 2.4 kbit/s (voiced) and

33 bits

22.5 ms
= 1.47 kbit/s (unvoiced).

The basic delay of this codec amounts to approximately 90 ms. Despite the reduced
naturalness of the resynthesized speech, a relatively high intelligibility is achieved.
The LPC-10 algorithm was primarily developed for encrypted transmission using
modems in non-public analog telephone networks.
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Figure 8.16: Principle of the LPC vocoder
(The parameter quantizers are omitted here for simplicity)

8.4.3 Quantization of the Predictor Coefficients

The speech quality of LPC vocoders also depends on how precisely the spectral
envelope of the speech signal is matched by the frequency response of the synthesis
filter, especially in the neighborhood of the formant frequencies.

This accuracy is determined by three factors: the LP-analysis algorithm (Chap-
ter 6), the filter order, and finally the quantization of the coefficients. Generally,
the predictor coefficients are computed with relatively high precision, e.g., in fixed
point arithmetic with a word length of 16 bits. If the coefficients were directly
transmitted as 16 bit numbers with a filter order of n = 10 and a block length
of 20ms, a bit rate of 160 bits/20 ms = 8 kbit/s would be needed. Such a high
accuracy is not required for the representation of the LP coefficients. They can be
quantized at a significantly reduced bit rate. The effect of the quantization error on
the frequency response and possibly on the stability of the synthesis filter strongly
depends on the filter structure which is used. We can use various equivalent types,
such as the direct structure, the lattice structure, the ladder structure, or the cas-
cade of second-order filters. For the quantization of the filter coefficients, the scalar
and vector methods discussed in Chapter 7 can in principle be used. As regards
the bit rate reduction, a variety of specific solutions can be found in the literature,
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which differ in terms of complexity and consider the statistical properties of the
coefficients of the underlying filter type in different ways.

A detailed overview, from which the following numerical examples are taken, can
be found in [Kleijn, Paliwal 1995].

In order to evaluate the quality of an LPC quantizer, an objective measure or a
distance measure, which is preferably independent of the chosen filter structure,
is required. A common measure is the mean spectral distortion of the logarithmic
frequency response of the synthesis filter. If the frequency responses of the synthesis
filter for non-quantized and quantized coefficients are termed H(ejΩ) and Ĥ(ejΩ),
a spectral distance measure SD can be determined for each single speech frame as
follows:

SD =

√√√√√ 1

2π

π∫

−π

[
10 lg

∣∣∣H(ejΩ)
∣∣∣
2

− 10 lg
∣∣∣Ĥ(ejΩ)

∣∣∣
2
]2

dΩ . (8.43)

Evaluating the spectral distortion SD for all frames in the test data and com-
puting its average value over many frames gives the mean spectral distance SD.
Transparency is given for SD ≤ 1 dB (e.g., [Sugamura, Farvardin 1988], [Atal et
al. 1989], [Kleijn, Paliwal 1995]).

The quantization methods to be discussed are of interest not only for the LPC
vocoder, but also especially for the hybrid coding methods of Section 8.5.

8.4.3.1 Scalar Quantization of the LPC Coefficients

The coefficients ai of a predictor in direct form must be represented very pre-
cisely in order to guarantee the stability of the synthesis filter. Besides this, each
coefficient has to be quantized with the same precision, because each coefficient
shows a similar impact on the frequency response. Using individual scalar optimal
quantizers (see Section 7.4) with 6 bits per coefficient ai, i.e., 60 bits per frame cor-
responding to a bit rate of B = 3 kbit/s, a mean spectral distortion SD of 1.83 dB
has been determined in [Kleijn, Paliwal 1995] for a representative speech database.
For 25% of the frames, an unstable synthesis filter resulted. Consequently, this type
of quantization is not used in practice.

8.4.3.2 Scalar Quantization of the Reflection Coefficients

The reflection coefficients ki of the acoustic tube model of speech production or
of the corresponding digital lattice and ladder filters result from solving the nor-
mal equations (6.54-a), e.g., by means of the Levinson–Durbin algorithm (Sec-
tion 6.3.1.3). An advantage of these structures is a guaranteed stability if the
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quantized parameters k̃i fulfill the condition

−1 < k̃i < 1 .

In addition, not all the coefficients have to be represented with the same precision.
A non-uniform bit allocation is allowed, where, for instance, the first reflection
coefficient k1 is quantized with 6 bits and the last coefficient k10 with only 2 bits.
If individual optimal quantizers are adjusted to the probability density function
of the respective reflection coefficient, the contribution of each single quantiza-
tion interval to the mean square quantization error is the same. The effects of
the quantization errors on the spectral distortion according to (8.43), however,
strongly depend on the actual value of the reflection coefficient. This effect can
be described by a U-shaped spectral sensitivity curve with its maximal values at
ki = ±1 (e.g., [Makhoul, Viswanathan 1975]). For this reason, large values of |ki|
should be quantized more accurately. This aim is achieved by means of a non-linear
transformation of each coefficient.

Two appropriate transformations are the inverse sine

Si =
2

π
arcsin(ki) (8.44)

and the inverse hyperbolic tangent

Li = arctanh (ki) (8.45-a)

=
1

2
ln

(
1 + ki

1 − ki

)
; |ki| < 1 . (8.45-b)

Both transformation characteristics are depicted in Fig. 8.17.

Figure 8.17: Non-linear transformation of the reflection coefficients
a) Si = 2

π arcsin(ki)

b) Li = 1
2 ln

(
1 + ki
1 − ki

)
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There is a direct relation between the reflection coefficient ki and the cross-sectional
areas Ai and Ai+1 of two successive tube segments as discussed in Section 2.3:

ki =
Ai − Ai+1

Ai + Ai+1
. (8.45-c)

Note, that in comparison to Section 2.3, there is an index decrement by
one (ki−1 = ri).

Inserting (8.45-c) in (8.45-b) yields

Li =
1

2
ln

(
Ai

Ai+1

)
. (8.45-d)

The transformed coefficient Li is proportional to the logarithm of the quotient of
the cross-sectional areas. Therefore, the coefficients Li are named log area ratios
(LARs). On the other hand, the inverse-sine transformation offers with Si the
arcsine reflection coefficients (ASRCs).

By means of uniform quantization of the transformed values Si or Li, the desired
better resolution for large values of ki is obtained. This represents a near-optimal
but low-complexity alternative to optimal quantization. The second solution can
be found in the full-rate codec of the GSM mobile radio communication system
(see Appendix A). Here, the logarithm is approximated by linear segments. The
n = 8 coefficients Li are uniformly quantized with different word lengths of w = 3–
6 (e.g., [Vary et al. 1988]). In total, the set of coefficients is coded with 36 bits per
20ms referring to a bit rate of 1.8 kbit/s.

Table 8.1 shows the number of bits which is required to achieve a mean spectral
distortion of SD ≈ 1 dB with optimal quantization of n = 10 reflection coeffi-
cients or transformed coefficients, respectively. Obviously, the use of the LAR or
ASRC representation provides a gain of 2 bit/frame in comparison to the reflection
coefficients.

Table 8.1: Scalar quantization of the reflection coefficients
(according to [Kleijn, Paliwal 1995])

Coefficient Mean spectral distortion [dB] Bits/frame

SD (10 coefficients)

ki 1.02 34

Si 1.04 32

Li 1.04 32
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8.4.3.3 Scalar Quantization of the LSF Coefficients

The line spectral frequencies (LSFs) ([Itakura 1975], [Soong, Juang 1984], [Suga-
mura, Itakura 1986], [Kabal, Ramachandran 1986]) represent another method to
ensure stability of the all-pole synthesis filter after LPC quantization. Further-
more, the LSF-coefficients have some favorable properties which can be exploited
for quantization at low bit rates.

The basis of the LSF representation is a stability theorem for recursive digital
filters and the decomposition of the function

G(z) = 1 −
n∑

i=1

ai z−i (8.46)

=
n∑

i=0

αi z−i (8.47)

with

α0 = 1, (8.48)

αi = −ai ; i = 1, 2, . . . , n (8.49)

into a mirror polynomial

P (z) = G(z) + z−(n+1) G(z−1) (8.50-a)

and an anti-mirror polynomial

Q(z) = G(z) − z−(n+1) G(z−1) . (8.50-b)

The mirror and the anti-mirror properties are characterized by

P (z) = z−(n+1) P (z−1) and (8.51)

Q(z) = −z−(n+1) Q(z−1) , respectively. (8.52)

The polynomial G(z) can be reconstructed as follows:

G(z) =
1

2
[P (z) + Q(z)] . (8.53)
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Figure 8.18: LSF parameters of an eighth order predictor

Thus, G(z) can also be described by the zeros of P (z) and Q(z). It can be shown
that G(z) is minimum phase and thus the stability of the synthesis filter

H(z) =
1

G(z)
(8.54)

is guaranteed ([Itakura 1975], [Schüssler 1994]), if the following hold:

• the zeros zpi
and zqi

of the polynomials P (z) and Q(z) are located on the
unit circle of the z-plane

zpi
= ejωpi zqi

= ejωqi ; i ∈ {0, 1, . . . , n};

• the zero positions ωpi
and ωqi

of P (z) and Q(z), respectively, are interleaved
on the unit circle as shown in Fig. 8.18 (see also (8.56)).

These two properties can be exploited to represent the zero positions ωpi
and ωqi

(i ∈ {0, 1, . . . , n}) of the LSF parameters with a relatively low bit rate.

First, we assume an even filter order n. P (z) has a zero at z = ejπ = −1 and Q(z)
one at z = ej0 = +1, which are denoted by ωp n

2
+1

= π and ωq0
= 0. The locations

of the remaining zeros depend on G(z). These zeros occur in n
2 interleaved, complex

conjugate pairs. The 2n + 2 zeros of P (z) and Q(z) fulfill the following condition:

P (z) : 0 < ωp1
< ωp2

< · · · < ωp n
2

< ωp n
2

+1
= π (8.55-a)

Q(z) : 0 = ωq0
< ωq1

< · · · < ωq n
2

< π . (8.55-b)
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The complex conjugate zeros in the lower z-plane are not considered here, as they
can be reconstructed from the others at the receiver. According to the relation

0 = ωq0
< ωp1

< ωq1
< ωp2

< ωq2
< · · · < ωq n

2
< ωp n

2
+1

= π (8.56)

the following notation is introduced:

0 = ω0 < ω1 < ω2 < · · · < ωn < ωn+1 = π . (8.57)

Since the first value ωq0
= ω0 = 0 and the last value ωp n

2
+1

= ωn+1 = π are fixed, n

LSF parameters ω1, . . . , ωn must be quantized. Instead of a straightforward scalar
quantization of the LSF parameters, their sequential ordering can be exploited by
scalar quantization of the differences of successive LSFs.

A more advanced vector quantization scheme which achieves a spectral distortion
of only 1.04 dB for n = 10 and 28 bit/frame was proposed in [Xie, Adoul 1995].
The vector consisting of 10 LSF parameters ω1 . . . ω10 is split into four groups:

ωA = (ω3, ω7)

ωB =

(
ω1

ω̂3
,

ω̂3 − ω2

ω̂3

)

ωC =

(
ω4 − ω̂3

ω̂7 − ω̂3
,

ω5 − ω̂4

ω̂7 − ω̂3
,

ω̂7 − ω6

ω̂7 − ω̂3

)

ωD =

(
ω8 − ω̂7

π − ω̂7
,

ω9 − ω̂8

π − ω̂7
,

π − ω10

π − ω̂7

)
.

Four different quantizers are used. For the reference vector ωA, an LBG-trained
vector quantizer with a code book of size 64 (6 bits) is used which delivers ω̂3 and
ω̂7. The normalized vectors ωB , ωC , and ωD are quantized with dedicated lattice
quantizers with 5, 9, and 8 bits respectively, where the quantities ω̂4 and ω̂8 are
obtained through a constraint of the lattice quantizer. For the details, the reader
is referred to [Xie, Adoul 1995]. This quantizer is of practical significance as this
concept has been adopted in various speech coding standards (see Appendix A).

A further reduction of the bit rate for the LSF coefficients can be achieved by
exploiting the interframe correlation of sets of coefficients. In [Kataoka et al. 1996],
with a spectral distortion of approx. 1.2 dB, this approach needs 18 bit/frame, i.e.,
an average of only 1.8 bit/coefficient.
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8.5 Hybrid Coding

8.5.1 Basic Codec Concepts

The main application areas for source coding of speech signals with bit rates be-
low the 32 kbit/s of standard ADPCM are digital mobile radio communication,
speech storage, and “line multiplication”, i.e., channel sharing by speech signal
compression. Of particular interest are coders with 0.5–1.5 bits per sample, i.e.,
for telephone speech with a bit rate of B = 4–12 kbit/s.

In these applications, hybrid speech codecs are used almost exclusively. As was
shown in Fig. 8.2, these codecs take a position between waveform coding and
parametric coding. As a common feature, the coefficients of a synthesis filter are
transmitted as side information (parameter channel in Fig. 8.2), and the residual
signal is approximated quite roughly with respect to the amplitude and/or time
resolution. The literature shows a wide range of concepts, and a vast variety of
different codec variants.

In this section, we will develop a uniform conceptual description of these ap-
proaches. The following sections will deal with typical variants, while some selected
codec standards are outlined in Appendix A.

In hybrid codecs, short-term as well as long-term prediction are common; the
decoder structure is shown in Fig. 8.19. The decoder consists of a cascade of a
long-term prediction (LTP) and a linear prediction (LP) synthesis filter, which is
excited by the quantized residual signal d̃

′

(k). The predictors A(z) and P (z) are
time variant and, as described in Chapter 6, adjusted blockwise. The coefficients
are quantized as explained in Section 8.4.3. Since the filters are generally held
constant for the length of a signal frame or subframe, respectively, their time
variation will not be considered here for simplicity of the presentation. The typical
frame duration is 20ms. Frames may be divided into subframes of, e.g., 5 ms each.

Figure 8.19: Structure of the hybrid decoder
A(z): Short-term predictor (LP)
P (z): Long-term predictor (LTP)
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Figure 8.20: Functionality of the hybrid decoder
a) Short-term spectral analysis |X(ejΩ)| for a voiced segment (20ms)
b) Magnitude response of the LP-synthesis filter |1/(1 − A(ejΩ))|
c) Magnitude response of the LTP-synthesis filter |1/(1 − P (ejΩ))|
d) Magnitude response of the cascade of both filters

|Hs(e
jΩ)| = |1/(1 − P (ejΩ))| · |1/(1 − A(ejΩ))|

The basic functionality of the decoder will be illustrated by the following exam-
ple: Fig. 8.20 shows the short-term spectral analysis of a (synthetic) voiced speech
segment (20ms), the magnitude responses of the LTP-synthesis filter, the LP-
synthesis filter, and the overall filter. The first filter stage (LTP), which is adapted
every subframe, shows a distinctive comb filter characteristic in voiced segments.
Starting from a flat spectrum D̃

′

(z) of the excitation signal, all spectral compo-
nents located at multiples of the estimated fundamental frequency, i.e., at

Ωi =
2π

N0
i ; i = (0), 1, 2, . . . , (8.58)

are amplified, and the components in between are attenuated. The result is sig-
nal d̃(k) with an approximately spectrally flat envelope and a discrete, harmonic
structure. Finally, with the second filter stage (LP) the spectral envelope of the
speech segment is formed on d̃(k) by the LP-synthesis filter.

The codec concepts to be discussed here basically differ in the predictor structures
at the transmitter and in the representation of the residual signal by scalar or
vector quantization.
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8.5.1.1 Scalar Quantization of the Residual Signal

Basic schemes using scalar quantization are shown in Fig. 8.21. The effect of the
quantizer will be described in the time domain by additive quantization noise ∆(k)
according to

d̃
′

(k) = d
′

(k) + ∆(k) . (8.59)

Scalar quantization is applied to the residual signal d
′

(k) either after two-stage
open-loop prediction (Fig. 8.21-a) or inside a closed prediction loop (Fig. 8.21-b to
Fig. 8.21-d). In all the cases, the quantized residual signal is termed d̃

′

(k) and the
same decoder of Fig. 8.19 is utilized.

Figure 8.21: Hybrid coding with scalar quantization of the residual signal
a) LP and LTP open loop
b) LP open loop and LTP closed loop
c) LP and LTP closed loop
d) LP and LTP with noise shaping
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If the quantizer is switched off, i.e., d̃
′

(k) = d
′

(k), the three structures in
Fig. 8.21-a to Fig. 8.21-c provide the same residual signal. Moreover, for iden-
tical LP and LTP coefficients on the transmitting and receiving side, the output
signal y(k) equals the input signal x(k), since the filter operations are inverse to
each other.

In contrast to this, with quantization of the residual signal d
′

(k), marked dif-
ferences in the reconstruction error occur due to the different positions of the
quantizer.

As the predictors are adapted to signal frames of finite length, the following
analysis can be performed for a signal x(k) of limited duration, for which the
z-transform X(z) exists.

Without committing to a certain type of quantizer, the quantization error ∆(k)
can thus be described by

∆(z) = D̃
′

(z) − D
′

(z) (8.60)

in the z-domain. In analogy to the concept of noise shaping derived in Section 8.3.3,
it can be shown that the performance of the block diagrams of Fig. 8.21-a to
Fig. 8.21-c can be described exactly by the structure of Fig. 8.21-d with an ade-
quate choice of the noise shaping filter F (z). Of particular interest is the resulting
reconstruction error in the decoder according to Fig. 8.19.

Open-Loop Short-Term and Long-Term Prediction

This case corresponds to the choice

F (z) = 0

resulting in

D̃
′

(z) = X(z)
(
1 − A(z)

) (
1 − P (z)

)
+ ∆(z)

Y (z) = X(z) +
∆(z)(

1 − P (z)
) (

1 − A(z)
) .

The spectrum of the quantization error is weighted with the frequency response of
the cascaded synthesis filters. Applying psychoacoustic criteria, this noise shaping
is advantageous, especially when the spectral envelope of the quantization error
is flat. However, the prediction gain cannot be exploited to improve the signal-
to-noise ratio, since both predictors are applied in the open-loop mode (see Sec-
tion 8.3.3.1).
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Open-Loop Short-Term and Closed-Loop Long-Term Prediction

This case corresponds to the choice

F (z) = P (z)

resulting in

D̃
′

(z) = X(z)
(
1 − A(z)

) (
1 − P (z)

)
+ ∆(z)

(
1 − P (z)

)

Y (z) = X(z) +
∆(z)(

1 − A(z)
) .

The spectrum of the quantization error is weighted with the spectral envelope of
the input signal. Since the long-term predictor is inside a closed loop, only its
corresponding part of the prediction gain can be used to improve the signal-to-
noise ratio.

Closed-Loop Short-Term and Long-Term Prediction

This case corresponds to the choice

F (z) = A(z) + P (z) − A(z) P (z)

resulting in

D̃
′

(z) = X(z)
(
1 − A(z)

) (
1 − P (z)

)

+ ∆(z)
(
1 − A(z) − P (z) + A(z) P (z)

)

= X(z)
(
1 − A(z)

) (
1 − P (z)

)
+ ∆(z)

(
1 − A(z)

) (
1 − P (z)

)

Y (z) = X(z) + ∆(z) .

Reconstruction and quantization error are identical. Due to the two-step closed-
loop prediction, the total prediction gain can be used entirely to improve the
signal-to-noise ratio. (see Section 8.3.3.2)

Short-Term and Long-Term Prediction with Noise Shaping

This is the most general case with

D̃
′

(z) = X(z)
(
1 − A(z)

) (
1 − P (z)

)
+ ∆(z)

(
1 − F (z)

)

Y (z) = X(z) + ∆(z)
1 − F (z)(

1 − P (z)
) (

1 − A(z)
) .
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Table 8.2: Effect of the noise shaping filter F (z); 0 ≤ (γ1, γ2) ≤ 1

F (z) Reconstruction error

A(z/γ1) ∆(z) 1
1 − P (z)

1 − A(z/γ1)
1 − A(z)

P (z/γ2) ∆(z)
1 − P (z/γ2)

1 − P (z)
1

1 − A(z)

A(z/γ1) + P (z/γ2) − A(z/γ1) P (z/γ2) ∆(z)
1 − P (z/γ2)

1 − P (z)
1 − A(z/γ1)

1 − A(z)

In correspondence with spectral noise shaping according to Section 8.3.3.3, an
auditory improvement can be achieved exploiting the masking effect of the human
ear (see Section 2.5) by only partly using the prediction gain for the objective
improvement. Different options for F (z) and its effect on the reconstruction error
are shown in Table 8.2.

With respect to psychoacoustic aspects, the choice of γ1 < 1 and γ2 = 1 is fa-
vorable. In this case, the spectral weighting corresponds to the conventional noise
shaping (see Section 8.3.3.3), while additionally the prediction gain of the LTP
loop is used for an objective improvement of the signal-to-noise ratio.

8.5.1.2 Vector Quantization of the Residual Signal

A target bit rate of effectively only 0.5–1.5 bits per sample suggests vector quanti-
zation of the residual signal. Note that due to prediction the residual signal is more
or less decorrelated. For complexity reasons, only gain–shape vector quantization
(Section 7.6.5) is applicable. Basically, code books for normalized residual signal
vectors must be designed. The statistical analysis of speech material shows that
the normalized residual signal vectors follow a multivariate Gaussian distribution
to a good approximation. This does almost not depend on the speaker. Due to the
non-uniform distribution, we can thus obtain better results by vector quantiza-
tion than by scalar quantization despite decorrelation, as shown in Section 7.6.4.
With the available low bit rates, however, only relatively low signal-to-noise ratios
can be achieved. Therefore, the error criterion or the effective distance measure,
respectively, is of great importance.

The introduction of noise shaping techniques (see Section 8.5.1.1) offers a con-
siderable quality improvement with respect to psychoacoustic criteria. Here, the
masking effect in speech perception is implicitly exploited. This approach can also
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Figure 8.22: Vector quantization with spectral noise shaping
a) Scalar quantization of samples d(k)
b) Vector quantization of vector d

c) Vector quantization with noise shaping
(Note: For reasons of simplicity, without long-term prediction)

be applied to vector quantization, resulting in what is called analysis-by-synthesis
coding in the literature. It is the basis of most codec standards (see also Ap-
pendix A). In what follows, we will develop the approach, starting from scalar
quantization with noise shaping according to Fig. 8.21-d.

In order to simplify the representation, we will disregard the long-term predic-
tion in a first step and use plain vector quantization instead of gain–shape vector
quantization. The starting point is Fig. 8.22-a. It shows the relation between the
non-quantized scalar residual signal d(k), the quantized value d̃(k), and the result-
ing error

∆(k) = d̃(k) − d(k) . (8.61)
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For the vector approach, L samples of d(k) are combined to a vector d, which can
be vector-quantized as described in Fig. 8.22-b. In simplified notation, we start
with a segment of the sequence x(k), which for k = 0, 1, 2, . . . , L − 1 corresponds
to the respective vector elements and append outside this interval only zero values.
Due to the linearity of the filters, the performance of the complete structure can
be described correctly by segmenting the input sequence x(k), separately filtering
these segments, and superposing the partial reactions. The superposition results
automatically if the filter states are maintained when going from one segment to
the next.

The code book contains K vectors ci (i = 1, 2, . . . , K) of dimension L. The best
vector with respect to the smallest mean square error will be called

d̃ = ciopt
. (8.62)

For each code book vector ci an individual error vector

∆i = ci − d (8.63)

can be calculated. This procedure applies to the case of open-loop prediction with-
out noise shaping.

If we want to use noise shaping in combination with vector quantization of the
residual, we have to apply the vector quantizer in analogy to Fig. 8.9 within the
loop as shown in Fig. 8.22-c.

However, the vector d is not completely available in advance. Each element d(k)
of vector d depends on the preceding elements

∆i(k − κ) = ci(k − κ) − d(k − κ) , κ = 1, 2, . . . (8.64)

of the error vector ∆i. For this reason, the vector d develops sample by sample
for each ci in the process of vector quantization. For each code book vector ci a
different vector di might ensue. For this reason the L input samples d0(k) must
be buffered so that the filter loop can be processed for each code book vector ci,
where the filter states of F (z) have to be set to the original start values. Within the
search procedure, the optimal excitation vector ciopt

can be found among K entries
by minimizing the mean square error. Obviously, the same mechanism is effective
for the spectral shaping of the quantization error as for scalar quantization.

However, the practical realization of this principle is based on a different structure,
which can be derived from Fig. 8.22-c by means of the following considerations.
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Figure 8.23: Principle of an analysis-by-synthesis coder

It is sufficient to look at only one segment to find the relations between x(k), d0(k),
ci(k), and ∆i(k). According to Fig. 8.22-c with the z-transforms of the respective
sequences, we have

∆i(z) = −X(z)
1 − A(z)

1 − F (z)
+ Ci(z)

1

1 − F (z)
(8.65-a)

= −X(z)
1 − A(z)

1 − F (z)
+ Ci(z)

1

1 − A(z)

1 − A(z)

1 − F (z)
(8.65-b)

=
[
Yi(z) − X(z)

] 1 − A(z)

1 − F (z)
(8.65-c)

with

Yi(z) = Ci(z)
1

1 − A(z)
. (8.66)

The result of (8.65-c) is depicted in Fig. 8.23.

With respect to a perceptually weighted spectral error criterion, the optimal vector
quantization of the residual signal can be found within a search process. As a result
we obtain an “optimal” replica yiopt

(k), which matches the speech signal x(k) with
minimum error. Note that the z-transform of the weighting filter refers to the
inverse of the corresponding noise shaping filter.

This procedure, which is equivalent to Fig. 8.22-c, is defined in the literature by the
generic term analysis-by-synthesis coding, and in this special form as CELP coding
(code excited linear prediction coding , see also Section8.5.3) [Schroeder, Atal 1985].

This coding approach is computationally intensive since K different replicas yi(k)
must be synthesized for each signal segment x(k). In order to encode the resid-
ual signal with effectively 0.5 bits per sample corresponding to a bit rate of
B = 0.5 bits · 8 kHz = 4 kbit/s, a code book with

ld(K)

L
= 0.5 (8.67)

is required. For example, for L = 20 (=̂ 2.5ms), the size of the code book already
amounts to K = 210 = 1024.
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Based on these concepts of scalar and vector quantization of the residual signal,
the next sections will introduce different codec structures which provide compa-
rable speech quality, and which differ considerably in terms of the bit rate and
complexity. The concrete variants of the important codec standards are outlined
in Appendix A.

8.5.2 Residual Signal Coding: RELP

The first concept to be dealt with follows the adaptive predictive coding (APC)
scheme with block adaptation (see Section 8.3.1). The residual signal produced
by short-term and long-term prediction is applied to a scalar quantizer (see
Fig. 8.21-a). The core problem of this approach becomes evident in the follow-
ing consideration. If the target bit rate is, for instance, B = 15 kbit/s, only a bit
rate of about 12 kbit/s is available for the coding of the residual signal, since the
quantization of the LP and LTP filter parameters requires a bit rate of about
3 kbit/s (see Section 8.4.3 and 6.4). Thus, with a sampling frequency of fs = 8kHz
only 1.5 bits per sample can be utilized. However, the power of the resulting quan-
tization error ∆(k) would be so high that, even with noise shaping, no acceptable
speech quality could be obtained.

A comparison with the LPC vocoder (see Section 8.4.2) reveals that it is not
necessary to exactly reconstruct the residual signal at the receiver, as perception
is insensitive to certain changes in this signal. Extracting and coding perceptually
relevant aspects of the residual signal such as

• the correct temporal volume contour,

• the correct (quasi-)periodicity in voiced segments, and

• the noise-like character in unvoiced segments

provides communications-quality speech coders for the 2.4–8kbit/s range.

Assuming that the lowest speech frequencies carry the highest perceptually impor-
tant information, the relevant characteristics can mostly be reconstructed from a
baseband of the residual signal extracted by a lowpass filter as shown in Fig. 8.24.
This coding scheme is called the baseband–RELP codec [Un, Magill 1975]. For
reasons of simplicity, the long-term predictor is not considered here.

The lowpass signal dLP (k) is decimated and transmitted in quantized form. In
the receiver, the missing high frequencies are reconstructed by spectrally shifted
versions of the baseband.

The prediction coefficients ai(k) (i = 1, 2, . . . , n) depend on time index k and are
adapted blockwise every N samples, e.g., N = 160 (=̂ 20 ms) (see Section 6.3.1).
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Figure 8.24: Principle of the baseband–RELP codec
(RELP: Residual Excited Linear Prediction)

The segmentation into frames is needed to buffer the speech samples for LP co-
efficient calculation and subsequent filtering. As a result, the codec introduces an
algorithmic delay of at least one frame, i.e., N sampling intervals. This delay is
increased by the time needed for the computation of the coefficients, the filter
operations, and the signal delay caused by the lowpass. In a practical realization,
such a codec will cause a total delay of 1.25 N to 2 N cycles (here 25–40ms). To
simplify the representation, we will assume that the coefficients ai(k) already exist
in quantized form (see Section 8.4.3), i.e., the allocation of the quantized values to
the bit patterns and the corresponding decoding at the receiver are not explicitly
described here.

A generic feature of the baseband–RELP codec is that the prediction error sig-
nal d(k) is applied to a lowpass filter with subsequent decimation by a factor r.
The lowpass has a cutoff frequency of Ωc = π/r. Thus, the sampling frequency
at the output can be reduced by factor r without spectral aliasing. The factor
r is generally set to r = 3 or r = 4. At fs = 8kHz, the baseband signal d

′

(k)
has a bandwidth of 4/3 kHz or 1 kHz, respectively, and a sampling frequency of
f

′

s = 8/3 kHz or f
′

s = 2 kHz, respectively. If, for example, a bit rate of 12 kbit/s is
available for coding the residual signal, each sample d

′

(k) can be encoded quite
accurately with 12/8 · r = 12/8 · 3 = 4.5 bits or 12/2 = 6bits, respectively. The
operation of lowpass filtering, downsampling and scalar quantization can be inter-
preted as joint time and amplitude quantization.
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Figure 8.25: Generation of the excitation signal in the baseband–RELP decoder

At the receiving side, the sampling frequency is increased back to the original
rate by replacing the missing samples with zeros. Thus, the baseband spectrum
is mirrored (r−1) times and overlapped. Disregarding the quantization (i.e., for
d̃(k) = d

′

(k)) this process can be described exactly by introducing the decimation
sequence p(k) as follows:

d̃(k) = d
′

(k) = dLP (k) · p(k) =

{
dLP (k) k = λ · r

0 k �= λ · r λ ∈ IN0 (8.68)

with

p(k) =
1

r

r−1∑

i=0

e+j 2π
r ik =

{
1 k = λ · r
0 k �= λ · r .

(8.69)

It is obviously not necessary to transmit the zero samples of d̃(k). Because
of the periodicity of the complex exponential function, p(k) can be written as
the superposition of r complex carrier signals with the frequencies Ωi = 2π

r i

(i = 0, 1, . . . , r−1). According to the modulation theorem, the spectrum of d
′

(k)
results as a superposition of spectrally shifted versions of the baseband spectrum
DLP (ejΩ)

D
′

(ejΩ) =
1

r

r−1∑

i=0

DLP (ej(Ω− 2π
r i)) . (8.70)

The spectral interrelation is shown schematically in Fig. 8.25.

The result is a spectrally more or less flat broadband excitation signal d̃(k), which
is applied to the synthesis filter. This excitation signal essentially shows the per-
ceptually relevant properties obtained if the predictor produces a spectrally flat
residual signal d(k). For unvoiced sounds, a broadband, noise-like residual signal
emerges, while for periodic segments d̃(k) shows a discrete line spectrum. Further-
more, in the baseband, i.e., for

0 ≤ Ω ≤ π

r
, (8.71)
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Figure 8.26: Spectral mirroring in the RELP concept

the codec provides transparent transmission except for the quantization
noise ∆(k) = d̃(k) − d

′

(k).

Compared to the LPC vocoder, the RELP concept improves the speech quality
considerably. The perceptually relevant aspects, which are essential for the natural-
ness of the speech signal, are, at least in the baseband, transmitted transparently.
For the transition between different types of sounds, a mixed voiced/unvoiced ex-
citation is also possible. However, especially for high-pitched voices of women and
children, a disturbing metallic or vocoder-like sound becomes noticeable in voiced
segments due to the lack of preserving the harmonic structure. In voiced segments,
discrete line spectra are generated by the spectral mirroring, as shown in Fig. 8.26.
As a result, the spectral components outside the baseband generally do not occur
at multiples of the fundamental frequency Ω0. This effect is less interfering with
male voices, since most of the harmonics which hold the biggest part of the energy
fall into the baseband. Due to the lowpass filtering, this codec principle is not
suited for voiceband data and music signals.

The speech quality can be considerably improved if a long-term predictor is added.
During the signal synthesis in voiced segments, the comb filter characteristic of the
LTP-synthesis filter amplifies spectral components at multiples of the fundamental
frequency and attenuates components lying in between.
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Example: GSM Full-Rate Codec

The RELP concept has gained great significance for digital mobile radio commu-
nications [Sluijter 2005]. The full-rate codec of the European GSM (Global System
for Mobile communications) standard is based on this principle as shown in Fig.
8.27.

The basic structure corresponds to the concept given in Fig. 8.21-b. Short-term
prediction is implemented as an open-loop filter with order n = 8, while the long-
term predictor (LTP) works in a closed loop. The baseband lowpass filter, the
decimator, and the scalar quantizer are located within the LTP loop.

Thus, the prediction gain of the long-term prediction contributes to reducing the
effective quantization noise power. Furthermore, the following details must be con-
sidered.

The second residual signal designated by e(k) is processed blockwise. The lowpass
filter is a linear-phase FIR filter with m = 11 coefficients. The filtering process is
implemented as a block filter , where each L = 40 samples e(k) are supplemented
by m − 1 zeros and the filtered version eLP (k), consisting of L + m − 1 = 50
values, is calculated. In the block named RPE (Regular Pulse Excitation), an

Figure 8.27: Block diagram of the GSM full-rate codec
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Figure 8.28: Adaptive decimation according to the RPE principle

adaptive downsampling by a factor r = 3 is applied.1 As depicted in Fig. 8.28,
the downsampling is adaptive in the sense that four different possibilities exist
in principle, which vary in the decimation grid starting at k = 0, k = 1, k = 2,
or k = 3. The sequence eLP (k) is divided into four subsequences ei(k), with the
sequences e0(k) and e3(k) differing only in the first and in the last sample.

From the L = 40 central samples of eLP (k), (k = 5, . . . , 44), 13 samples are selected
with regard to the best subsequence according to the energy criterion

EM = max
i

12∑

λ=0

e2
LP (i + λ · 3 + 5) ; i = 0, 1, 2, 3 . (8.72)

Besides the subsequence eM = eiopt
, the grid position M = iopt is determined

every 5ms as well. This quasi-random variation helps to avoid the tonal–metallic
sound of the baseband–RELP codec. However, especially for high-pitched voices,

1 This particular variation of the RELP structure with block filtering and adaptive down-
sampling results as a special case of the so-called RPE method [Kroon et al. 1986]. It is an
analysis-by-synthesis coding process, where pulse-shaped excitation sequences are optimized on
a regular grid (see Section 8.5.4).



288 8 Speech Coding

a slight roughness of the reconstructed speech signal is produced [Sluyter et al.
1988].

The 13 selected samples are quantized with AQF (see Section 7.5) by normalizing
and uniformly quantizing them with eight levels (3 bits). For the block maximum,
a logarithmic quantizer with 26 levels is used, while the grid position is represented
by 2 bits (see also Appendix A). For the residual signal, this leads to a bit rate of

B
′

= (13 · 3 + 6 + 2) bit/5 ms (8.73)

= 9.4 kbit/s . (8.74)

The LP coefficients are coded as LARs with 36 bits/20ms = 1.8 kbit/s (see Sec-
tion 8.4.3) and the LTP parameters N0 and b with (7 + 2) bits/5ms = 1.8 kbit/s.
This results in a total bit rate of B = 13.0 kbit/s.

The example of Fig. 8.29 provides an insight into the mechanism of the codec.
For the different intermediate signals of Fig. 8.27, a short-term spectral analy-
sis was performed. A polyphase filter bank with a 3 dB channel bandwidth of
4 kHz/128 = 31.25Hz and a 40 dB bandwidth of 62.5Hz was utilized. The same
linear scale was used for all magnitude responses.

Starting from the spectrum of the input signal x, we can clearly observe in the
residual signal d the spectral whitening effect of the LP-analysis filter in Fig. 8.29-b.
Regarding the spectrum of the LTP residual signal e (Fig. 8.29-c), the closed-loop
structure containing a lowpass filter with a cutoff frequency of 4/3 kHz must be
considered. Hence, a further prediction gain is noticeable only in the range up
to ≈ 1.33 kHz. The LTP excitation signal eM essentially contains the baseband
of the residual signal e, which is transmitted to the receiver and broadened by
time-varying spectral folding (Fig. 8.29-d).

The harmonic structure is regained in the residual d̃ by means of the LTP-synthesis
filter (Fig. 8.29-e), and the spectral envelope is reconstructed through the LP-
synthesis filtering (Fig. 8.29-f).

The comparison of Fig. 8.29-a and Fig. 8.29-f shows a transparent transmission in
the range up to approx. 1.33kHz, whereas the spectral amplitude characteristic
of the higher-frequency components is only approximately reproduced. Due to the
properties of human hearing, a relatively high quality of speech can be obtained,
while the computational complexity is relatively small in comparison to the class
of CELP codecs, which is the subject of the next section.
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Figure 8.29: Example of the GSM full-rate codec;
short-term spectral analysis for the syllable “De”
(female voice, according to [Vary, Hofmann 1988])
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8.5.3 Analysis by Synthesis: CELP

Code excited linear prediction (CELP) is the most important concept for medium
to low bit rate speech codecs. Based on the original proposal [Schroeder, Atal 1985],
many variations exist, e.g., [Atal et al. 1991], [Furui, Sondhi 1992], [Goldberg, Riek
2000], [Hanzo et al. 2001], [Chu 2003], and [Kondoz 2004], which can be found in
most of the speech codec standards used today in telecommunications, e.g., the
GSM half-rate codec (GSM-HR), the GSM enhanced full-rate codec (GSM-EFR),
or the GSM/UMTS adaptive multi-rate codec (AMR).

8.5.3.1 Principle

The principle of analysis-by-synthesis coding was derived in Section 8.5.1 from the
concept of predictive coding with noise shaping by replacing the scalar quantization
of the residual signal d(k) with vector quantization.

From these considerations the structure outlined in Fig. 8.23 resulted, which is
depicted once more in detail in Fig. 8.30-a. For reasons of simplicity, we will again
neglect the long-term prediction in the beginning.

The encoder on the transmission side contains a complete decoder. For each of the
K code book vectors

ci =
(
ci(0), ci(1), . . . , ci(L − 1)

)T
; i = 1, 2, . . . , K (8.75)

L values yi(λ), λ = 0, 1, . . . , L− 1, are provisionally synthesized. The reconstruc-
tion error

e(λ) = x
′

(λ) − yi(λ) ; λ = 0, 1, . . . , L− 1 (8.76)

is spectrally weighted so that the masking effect of human hearing is implicitly
exploited (see also Section 8.5.1). The computationally intensive search of the best
vector ciopt

is based on minimizing the mean square spectrally weighted recon-
struction error ew(λ).

8.5.3.2 Fixed Code Book

Since the vector code book according to Fig. 8.30 was originally obtained from a
stochastic sequence with Gaussian distribution [Schroeder, Atal 1985], the terms
stochastic code book or fixed code book are commonly used. The following explana-
tions show how the computational complexity of the stochastic code book search
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Figure 8.30: Principle of the CELP codec
a) Basic structure of the CELP concept
b) Blockwise processing (λ = 0, 1, . . . , L−1) with ringing

of the synthesis filter
c) Structure equivalent to b) with reduced complexity

and the respective gain factor gi can be considerably reduced by modifying the
structure of Fig. 8.30-a.

In CELP coders with the stochastic code book, short sequences of the residual
waveform, i.e., blocks of L samples, are coded. At the output of the (time-variant)
recursive synthesis filter with the transfer function

H(z) =
1

1 − A(z)
, (8.77)
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each selected optimal excitation vector ciopt
contributes to the reconstructed signal

yi. Due to the ringing of the synthesis filter, this contribution is not limited to the
time interval of length L. Therefore, when coding the l-th signal segment

x
′

(λ) = x(l · L + λ), λ = 0, 1, . . . , L− 1, (8.78)

the ringing of the preceding block must be taken into account. In Fig. 8.30-b, this
contribution is denoted x̂0(λ). It is generated by means of a second synthesis filter,
which is excited by a zero sequence c0(λ). At the beginning of the l-th block its
state variables are set to those which the synthesis filter achieved at the end of
the (l − 1)-th block for the best excitation vector. For the l-th block, the ringing
contribution x̂0(λ) can be precalculated. Then the modified sequence x

′

(λ) − x̂0(λ)
is the target for the search of the new excitation vector ci.

Due to the linearity of the filter operations, the contribution of each excitation
sequence ci(λ) to the weighted error sequence ew(λ) can be described by filtering
with a cascade of two filters, i.e., the synthesis and the weighting filter. This yields
the effective transmission function

H̃(z) =
1

1 − A(z)
· 1 − A(z)

1 − A(z/γ)
(8.79-a)

=
1

1 − A(z/γ)
=

1

1 − F (z)
. (8.79-b)

The result is a marked reduction in computational complexity since now each
excitation vector only needs to be filtered once.

With the same linearity argument, the contributions of the signal samples x
′

(λ)
and the ringing contribution x̂0(λ) included in ew(λ) can be determined. The result
is depicted in Fig. 8.30-c. In principle, the weighting filter is shifted to the three
signal branches via the two summation points.

The new target signal v(λ), which is only computed once for each interval, must
be approximated by the sequence v̂i(λ) (λ = 0, 1, . . . , L − 1) with respect to the
minimal mean square error by choosing the best excitation vector ci and the
optimal scaling factor gi.

Part of the problem can be solved in closed form. If according to (8.79-b) the
impulse response of the weighted synthesis filter 1/(1 − A(z/γ)) is denoted by
h̃(k), we have

v̂i(λ) =
L−1∑

κ=0

h̃(λ − κ) · gi · ci(κ); λ = 0, 1, . . . , L− 1 . (8.80)
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For simplification the following vector/matrix notation is introduced:

v̂i = (v̂i(0), v̂i(1), . . . , v̂i(L − 1))T , (8.81-a)

v = (v(0), v(1), . . . , v(L − 1))T , (8.81-b)

H =




h̃(0) 0 0 . . . 0

h̃(1) h̃(0) 0 . . . 0

h̃(2) h̃(1) h̃(0) . . . 0
...

...
...

. . .
...

h̃(L − 1) h̃(L − 2) h̃(L − 3) . . . h̃(0)




. (8.81-c)

Now the optimization criterion can be formulated as the squared norm of the
reconstruction error vector:

min
i=1,... ,K

L−1∑

λ=0

(
v(λ) − v̂i(λ)

)2
= min

i=1,... ,K
‖v − v̂i‖2 . (8.82-a)

Hence, the term

Ei = ‖v − v̂i‖2 (8.82-b)

= ‖v − giHci‖2 (8.82-c)

must be minimized.

By partial differentiation of Ei with respect to gi, the optimal gain factor is deter-
mined for each excitation vector ci:

gi =
vT Hci

‖Hci‖2
. (8.83)

Inserting the optimal gain factor gi in (8.82-c) leads to an expression for the mi-
nimal error energy which can be achieved with each excitation vector ci

Ei = ‖v‖2 − (vT Hci)
2

‖Hci‖2
. (8.84)

In view of the optimization, the term ‖v‖2 is constant so that the criterion reduces
to the maximization of the fraction

(vTHci)
2

‖Hci‖2

!
= max . (8.85)

The search for the maximum through variation of i leads to the best excitation
vector ciopt

. Then the respective optimal gain factor giopt
is explicitly calculated

according to (8.83).
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Table 8.3: Number of arithmetic operations for the code book search

a) Numerator (8.85) L2 + K(1 + L)

b) Denominator (8.85) K · L2

c) Division (8.85) K · 16

d) Division (8.83) 1 · 16

Sum: K(17 + L + L2) + L2 + 16

The computational complexity of the code book search can easily be estimated
if, in view of a realization with programmable signal processors, a multiplica-
tion with subsequent addition is counted as one operation per instruction cycle
(multiply–accumulate operation, MAC). For the division we assume a complexity
of 16 instruction cycles.

Listed in Table 8.3 are the different numbers of arithmetic operations for the code
book search according to (8.83) and (8.85).

For the estimation we assumed that the term vT H is only calculated once with
L2 operations, and that the numerator and denominator of (8.83), which occur as
intermediate results when utilizing (8.85), are not recomputed.

Under these assumptions the required mean computational effort results in

CE =
K(17 + L + L2) + L2 + 16

L
fs (8.86)

operations per second. Hence, a typical dimensioning with fs = 8 kHz, K = 256
and L = 40 requires a high computational effort of approx. 85.2 · 106 operations
per second.

Numerous approaches to reduce this computational complexity have been proposed
in the literature. One successful approach is the choice of code vectors with only a
few non-zero components. If, for example, each vector ci contains only four non-
zero pulses, the number of arithmetic operations for the denominator in (8.85) (see
Table 8.3 b)) decreases from K · L2 to K · 4 · L. Thus, for L = 40 the dominating
part of the computational complexity for the code book search is reduced by a
factor of 10 (e.g. [Adoul et al. 1987]).

A widely used approach is the choice of a structured code book, which is called
the algebraic code book (ACELP) [Laflamme et al. 1990]. A typical version can be
found in the ITU codec G.729 ([ITU-T Rec. G.729 1996], [Salami et al. 1997]).
The excitation sequence ci(λ) of length L = 40 contains only four non-zero pulses
in the positions λ0, λ1, λ2, and λ3

ci(λ) ∈ {+1, 0,−1} ; λ = 0, 1, . . . , 39 . (8.87)
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Table 8.4: ACELP code book: positions for non-zero pulses

Pulse Sign Tracks Number
positions of bits

λ0 s0 0, 5, 10, 15, 20, 25, 30, 35 3+1
λ1 s1 1, 6, 11, 16, 21, 26, 31, 36 3+1
λ2 s2 2, 7, 12, 17, 22, 27, 32, 37 3+1

λ3 s3
3, 8, 13, 18, 23, 28, 33, 38
4, 9, 14, 19, 24, 29, 34, 39

}
4+1

The 40 possible positions for non-zero pulses are divided into four tracks with 8
or 16 positions as indicated in Table 8.4.

With the signs s0, . . . , s3 of the four selected pulses we construct the excitation
sequence

ci(λ) = s0 δ(λ − λ0) + s1 δ(λ − λ1) + s2 δ(λ − λ2) + s3 δ(λ − λ3) (8.88)

δ(λ) =

{
1 λ = 0
0 else .

This sparse ternary code book allows an efficient search procedure with signifi-
cantly reduced complexity.

8.5.3.3 Long-Term Prediction, Adaptive Code Book

So far, the principle of CELP coding has been discussed without consideration
of long-term prediction. To exploit the highly periodic nature of speech signals,
occurring especially during voiced speech segments, the introduction of a long-term
predictor is essential. Figure 8.31-a shows the CELP codec of Fig. 8.30-a extended
by an LTP-synthesis filter. For the excitation sequence of the LP-synthesis filter
we have

u
′

(λ) = u(l · L + λ) = gi · ci(λ) + b · u′

(λ − N0) . (8.89-a)

As shown in Fig. 8.32, we combine L consecutive samples of u(k) according to

u
′

(λ − j) = u(l·L + λ − j)
.
= uj(λ) ; j = const. , λ = 0, 1, . . . , L−1 (8.89-b)

to a vector

uj = (uj(0), uj(1), . . . , uj(L − 1))T (8.89-c)

so that (8.89-a) yields

u
′ ≡ u0 = gi ci + b uN0

. (8.89-d)
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Figure 8.31: CELP codec with short-term and long-term prediction
a) Conventional realization of the LTP-synthesis filter
b) Realization of the LTP loop by means of an adaptive code book

This vector superposition is illustrated in Fig. 8.31-b. A generalization that still
needs to be justified is made by substituting the pitch parameter N0 with an index j
(j = 1, 2, . . . , Ka). In this concept, the LTP-synthesis filter is replaced by a pseudo
code book containing vectors uj of length L, which are overlapping segments of
the recent past of the LP excitation signal. In order to distinguish the two partial
contributions gi ci and buj according to (8.89-d), double indexing is introduced

according to u
′

ij , indicating the two contributions ci and uj . Furthermore, the
weighting factors are replaced by ga = b and gf = gi. With the vector components

u0(λ), ci(λ), and uj(λ) from (8.89-d), the excitation sequence u
′

ij(λ) of Fig. 8.31
is generated:

u
′

ij(λ) ≡ u0(λ) = gi ci(λ) + b uj(λ) (8.89-e)

= gf ci(λ) + ga uj(λ) (8.89-f)

with λ = 0, 1, . . . , L− 1 .
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Figure 8.32: Definition of the vectors uj of the adaptive code book
(L = 14, j = 0, and j = 4)

For j = N0 the terms (8.89-a) and (8.89-e) obviously coincide. The advantage of
the modified structure is that the contribution of the LTP loop can be treated
in the same way as that of the fixed code book. In particular, in an analysis-by-
synthesis procedure, the LTP parameters b and N0 or ga and jopt, respectively, can
be determined just like the parameters gf = gi and iopt. This procedure is called
closed-loop LTP. Since the content of the second code book changes depending on
the signal, it is called the adaptive code book . Due to the closed-loop search of the
LTP parameters ga and jopt, considerably better speech quality and a higher SNR
of the synthesized speech signal y(k) by 2–5 dB are achieved [Singhal, Atal 1984].

Note:

• In order to reach the optimal result, a complete search of all combinations of
the two excitation vectors uj and ci with the respective optimal weighting
factors ga and gf would have to be performed. Since this procedure has
an extremely high computational complexity for the common code book
dimensions, a suboptimal solution is chosen by a sequential search. First,
in analogy to the criterion given in (8.85) and (8.83), the optimal adaptive
code book entry and gain are determined. For the search we can make use
of the fact that two successive vectors uj and uj+1 consist of the same
elements except for the first and last element of uj and uj+1, respectively.
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The selected code book entry is scaled and filtered by the LP-synthesis filter
and subtracted from the speech signal. The resulting modified target vector
is used for the stochastic code book search by applying (8.85) and (8.83).

• While searching for the best contribution uj , the adaptive code book is not
altered for the current subframe of length L. Only after completing the search
for the best vector ci from the fixed code book is the adaptive codebook
updated.

• Strictly speaking, the equivalence between Fig. 8.31-a and 8.31-b is only
given for jopt = N0 ≥ L. Due to the block processing with subframe length
L and the sequential search in the adaptive and fixed code book, depending
on the constellation of j and λ no definite samples u(k) are available for
N0 < L when searching the adaptive code book, since the contribution from
the fixed code book is not yet known. In this case, the missing entries of the
adaptive code book are generated, for example, from the periodic repetition
of the last N0 samples of the excitation sequence u(k) of the preceding frame
(subframe index l − 1).

Examples: EFR and AMR Codecs

Most of the recent standards in speech coding are based on the concept of CELP.
Two representative examples are the GSM-enhanced full-rate codec (EFR) and
the GSM-adaptive multi-rate codec (AMR). In comparison to the first GSM full-
rate codec as described in Section 8.5.2, the EFR codec ([ETSI Rec. GSM 06.60
1996], [Järvinen et al. 1997]) gives a substantially better quality which is almost
equivalent to the speech quality of ADPCM at 32 kbit/s [ITU-T Rec. G.726 1990].

A simplified block diagram of the EFR codec is given in Fig. 8.33. The codec
structure contains the basic CELP elements of a fixed and an adaptive code book
with individual gain factors gf and ga. In addition, the decoded output signal ŝ(k)
is processed by an adaptive postfilter to improve the subjectively perceived speech
quality (see Section 8.6). The frame length is 20ms, and twice per frame 10 LP
coefficients are calculated, which are transformed for quantization into the LSF
representation. A dedicated vector matrix quantization scheme is applied for each
set of 20 LSF coefficients [ETSI Rec. GSM 06.60 1996].

The EFR codec is based on a fixed algebraic code book (ACELP) [Salami et al.
1997b] with a subframe length of L = 40 consisting of effectively K = 235 vectors
of dimension 40 with 10 non-zero values sµ ∈ {+1, − 1} each:

ci(λ) =

9∑

µ=0

sµ · δ(λ − λµ) ; sµ ∈ {+1, − 1} . (8.90)
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Figure 8.33: Simplified block diagram of the enhanced full-rate codec (GSM-EFR)

The code vectors are constructed, as shown in Table 8.5, from five tracks of eight
interleaved positions, with two pulses per track. The signs of the two pulses are
encoded with only one bit. This bit indicates the sign of the first pulse whereas
the sign of the second pulse is depending on its position relative to the first pulse.

The bit allocation is summarized in Table 8.6.

The second example is the adaptive multi-rate (AMR) codec ([ETSI Rec. GSM
06.90 1998], [Bruhn et al. 1999], [Ekudden et al. 1999], [Järvinen 2000]), which
was designed for GSM and UMTS. It can be considered as an extension of the
EFR codec. The AMR codec has eight different bit rates from 4.75 kbit/s to 12.2
kbit/s. The mode of the highest bit rate is identical to the EFR codec. The overall
structure is very similar to the block diagram of Fig. 8.33. The different bit rates are
primarily achieved by using different ACELP code books (see also Appendix A).
The objective of the AMR codec is to increase error robustness for better speech
quality in adverse channel conditions. In GSM, the codec can be used in the half-
rate and the full-rate channel. In the latter case, the gross bit rate including channel
coding is 22.8 kbit/s. The bit rate allocation between speech coding and channel
coding is controlled dynamically by the network. The codec mode can be switched

Table 8.5: ACELP code book of the EFR codec

Pulse position Sign Positions Bits

λ0 , λ5 s0, s5 0, 5, 10, 15, 20, 25, 30, 35 2 × 3 + 1

λ1 , λ6 s1, s6 1, 6, 11, 16, 21, 26, 31, 36 2 × 3 + 1

λ2 , λ7 s2, s7 2, 7, 12, 17, 22, 27, 32, 37 2 × 3 + 1

λ3 , λ8 s3, s8 3, 8, 13, 18, 23, 28, 33, 38 2 × 3 + 1

λ4 , λ9 s4, s9 4, 9, 14, 19, 24, 29, 34, 39 2 × 3 + 1
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Table 8.6: Bit allocation of the EFR codec

Subframes Subframes Bits per
Parameter 1&2 3&4 frame

(5ms each) (5ms each) 20ms

2 × 10 LPC coefficients 38
(line spectral frequencies)

Adaptive code book
• delay N0 9 6 30
• gain ga 4 4 16

Fixed code book (ACELP)
• pulse positions and signs 35 35 140
• gain gs 5 5 20

Bits every 20 ms 244

every 20ms. If the channel gets worse, the bit rate for channel coding is increased
at the expense of the bit rate for speech coding. In the GSM full-rate channel, the
AMR codec extends the lower C/I limit (Carrier-to-Interference limit) of the EFR
codec of C/I = 9dB down to about C/I ≥ 4–7 dB. The introduction of this
codec into existing GSM networks improves significantly the coverage, especially
in buildings.

A simulation example is shown in Fig. 8.34.

The AMR codec was adopted by the 3GPP (3rd Generation Partnership Project)
as the default speech codec for 3G wideband CDMA systems (UMTS, CDMA2000)
[3GPP TS 26.090 2001].

A further development of the AMR concept is the adaptive multi-rate wideband
speech codec (AMR-WB) ([Bessette et al. 2002], [3GPP TS 26.190 2001]) which
extends the audio bandwidth to 7 kHz (see also Appendix A). The AMR-WB codec
is also based on the ACELP code book and uses artificial wideband extension to
synthesize the signal beyond 6.4 kHz as proposed in [Paulus 1996]. The codec has
nine different bit rates from 23.85 kbit/s down to 6.6 kbit/s. In the case of clean
speech without background noise and without transmission errors, the six highest
modes (23.85–14.25 kbit/s) offer a speech quality which is equal to or better than
that of the wire-line wideband codec G.722 ([ITU-T Rec. G.722 1988], split band
ADPCM, 48, 56, and 64 kbit/s). The speech quality of the 12.65 kbit/s mode is at
least equal to G.722 at 56 kbit/s, while the 8.85 kbit/s mode is still comparable
to G.722 at 48 kbit/s. The two lowest modes (8.85 kbit/s and 6.6 kbit/s) are used
only for adverse channel conditions or during network congestion. The AMR-WB
codec has also been adopted as an ITU-T standard for multimedia applications
[ITU-T Rec. G.722.2 2002].
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Figure 8.34: Speech quality improvement in adverse radio channel conditions
by using the AMR codec; GSM channel TU50, average PESQ values
for 70 seconds of speech
PESQ: Perceptual Evaluation of Speech Quality (see also Appendix B)
C/I: Carrier-to-Interference ratio

8.5.4 Analysis by Synthesis: MPE, RPE

In this section, two special variations of predictive analysis-by-synthesis coding are
introduced, which can be considered to be intermediate solutions in the evolution
of the CELP concept in retrospect. The methods in question are the MPE (Multi-
Pulse Excitation) coding [Atal, Remde 1982], which has only gained a limited
practical significance, and, derived from it, the general form of the RPE (Regular
Pulse Excitation) coding [Kroon et al. 1986], which, in highly simplified form, is
the basis for the GSM full-rate codec (see also Section 8.5.2).

8.5.4.1 MPE

For the description of this method, we reconsider the block diagram in Fig. 8.30,
again disregarding the LTP filter in order to simplify the presentation of the general
relations.

In contrast to CELP, no given vector code book is available for the excitation of
the synthesis filter in the MPE approach (Fig. 8.30-a). Instead of the excitation
vectors gi ci, i = 1, 2, . . . , K, K ≫ L, used in a CELP codec, only one single
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excitation vector c exists in the MPE codec, which is constructed for each subframe
of length L. This excitation vector contains elements other than zero only in M < L
positions λi, i = 1, 2, . . . , M . This structure can be obtained through weighted
superposition of M elementary vectors eµ, which only show one unit pulse differing
from zero. The multi-pulse excitation is given by

c =
M∑

µ=1

pµ · eµ (8.91)

with

eµ(λ) =

{
1 λ = λµ

0 λ �= λµ
λ = 0, 1, . . . , L − 1 . (8.92)

The optimization problem is to determine the optimal M pulse positions λµ and
the optimal pulse amplitudes pµ with respect to the smallest energy of the spec-
trally weighted error signal ew(λ) (λ = 0, 1, . . . , L − 1). There is no closed-form
analytic solution to the problem and a complete analysis of the countable, finite
possibilities for quantization of the amplitudes pµ must be discarded because of the
computational effort. Therefore, a suboptimal, iterative solution is chosen, which
searches the optimal pulses and amplitudes sequentially one pulse at a time in M
steps.

In the first step we set

c = p1 e1 , (8.93)

with p1 and λ1 still being undetermined. Thus, in analogy to the search in the
CELP codec (Eqs. (8.81-c) to (8.85)), the optimal amplitude p1 can be written in
its general form according to

p1 =
vT He1

‖He1‖2
(8.94)

(see also Fig. 8.30).

For this amplitude, depending on the L possible pulse positions λ1, the error energy
can be determined (see (8.84)) so that, according to (8.85), the criterion reduces
to

(vTHe1)
2

‖He1‖2

!
= max . (8.95)

The respective computational effort is very small, since vector e1 has only one
single non-zero component.

As in the CELP approach, first vector e1 or pulse position λ1 is determined ac-
cording to (8.95). The pulse amplitude p1 is calculated with (8.94).
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In the second iteration step, the contribution of the first pulse v̂1 = p1He1 is
subtracted from the original target vector v (see Fig. 8.30-c)

v2 = v − v̂1 (8.96)

before the next pulse is determined. The pulse positions λ2 and the pulse amplitude
p2 are then determined with an altered target vector in analogy to λ1 and p1.

The remaining parameters λµ and pµ are treated accordingly, leading to the com-
plete vector according to (8.91) after M iteration steps.

Depending on the required speech quality, M = 3 − 8 pulses per 4 ms (L = 32)
are needed. Logarithmic quantization of the amplitudes pµ with (only) 5 bits each,
and coding of the pulse positions λµ with 5 bits each, yield a data rate of 7.5 to
20 kbit/s. The bit rate for the LP filter and, if applicable, for the LTP filter has
to be added. Hence, the minimal bit rate ranges in the region of 10 kbit/s.

8.5.4.2 RPE

One disadvantage of the MPE method is that a significant part of the available
bit rate is used for coding the pulse positions, thus strongly limiting the number
M of pulses. An alternative solution was proposed in [Kroon et al. 1986] which
allows only a few, regular spaced pulse positions but increases the number of pulses
significantly (see also [Sluijter 2005]). For the pulse positions K uniform grids are
given as outlined in Fig. 8.35. K different excitation vectors ci (i = 1, 2, . . . , K)
must be optimized which have only non-zero values on the grid positions.

Only the excitation vector ciopt
, leading to the minimal perceptually weighted

error between the original and reconstructed signal, is transmitted. For a typical

Figure 8.35: Definition of the RPE grids (K = 4)
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dimension of K = 4, only 2 bits are required for coding the grid positions. Thus,
the bit rate available for the stochastic excitation can be used to a large extent for
scalar or vector quantization of the pulse amplitudes pi(λ).

The search for the optimal excitation vector

ciopt
∈ {c1, c2, . . . , cK} (8.97)

consists of computing for each possible grid position i (see Fig. 8.35) with

ci(λ) =

{
pi(λ) λ = ρ · K + i − 1
0 λ �= ρ · K + i − 1

i = 1, 2, . . . , K , ρ ∈ ZZ (8.98)

the amplitudes pi(λ) and the reconstruction error. In contrast to the MPE method,
here the optimization can in principle be performed by a closed-form analytical
solution.

The m = L/K non-zero amplitudes pi(λ) of the vectors ci are combined to vectors
gi and the condition (8.98) is described with a matrix Bi which has m columns,
L rows, and its elements only take the values 0 or 1:

ci = Bi · gi . (8.99)

The error energy Ei caused by vector ci is, in analogy to (8.82-c) and Fig. 8.30,

Ei = ‖v − Hci‖2 (8.100-a)

= ‖v − HBigi‖2 . (8.100-b)

Partial differentiation with respect to the unknown vector gi yields

∂Ei

∂gi
= −2 (HBi)

T
(
v − HBigi

)
!
= 0 (8.101)

or, accordingly, the general solution

gi =
(
BT

i HTHBi

)−1

(HBi)
Tv . (8.102)

Inserting (8.102) in (8.100-b) leads to a term for the error energy as a function of
the grid positions i = 1, 2, . . . , K.

Therefore, in the practical application, the best grid position i is determined first
by minimizing the energy, and then the optimal excitation vector is established
with (8.102) and (8.99).

Since the amplitudes pi(λ) are computed in non-quantized form, the subsequently
performed amplitude quantization, and thus the quantization error, is not part of
the optimization process.

The structure of the GSM full-rate codec (see Section 8.5.2) can be derived from
this approach as a special case.
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8.6 Adaptive Postfiltering

Predictive speech coding with effectively 0.5 to 2 bits per sample is the key ele-
ment of many commercial applications such as mobile communication. This can
be largely attributed to the technique of noise shaping or spectral error weighting,
respectively, where at the speech encoder the reconstruction error is shaped. This
spectral masking improves the perceptual speech quality significantly. However,
admitting larger reconstruction errors in the region of the formants leads to an
increased error power. The signal-to-noise ratio over frequency takes its highest
values in the intervals with spectral peaks, while it is significantly worse in the
spectral valleys (see also Fig. 8.10). Typically, the noise around the spectral peaks
is below the masking threshold, while in valley regions it is not. Consequently, at
low bit rates spectral error weighting alone is not sufficient to completely mask
the noise so that an audible speech-dependent noise remains.

At the output of the speech decoder the effect of the non-masked quantization noise
can be reduced to a certain extent through an adaptive postfilter (see Fig. 8.36).
Since most of the perceived noise components come from spectral valleys, the
postfilter attenuates the frequency components between pitch harmonics, as well
as the components between formants. In speech perception, the formants and local
spectral peaks are much more important than spectral valley regions. Therefore,
by attenuating the components in spectral valleys, the postfilter only introduces
minimal distortion in the speech signal, while a substantial noise reduction can be
achieved.

In the literature, various postfilters which exploit this effect have been proposed.
A unifying presentation, on which the following considerations are based, can be
found in [Chen, Gersho 1995]. Different variants of this general approach are con-
tained in various codec standards (see Appendix A).

The desired characteristics of the instantaneous frequency response of an adaptive
postfilter are depicted for a voiced signal segment in Fig. 8.37.

The frequency response of the postfilter follows the spectral envelope and the
spectral fine structure in such a way that the formants and the local maxima are
preferably not altered, whereas the spectral valleys between the formants and pitch

Figure 8.36: Adaptive postfiltering of the decoded speech signal
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Figure 8.37: Signal spectrum |Y (ejΩ)| and magnitude response |HPF(ejΩ)|
of an adaptive postfilter

harmonic peaks are attenuated. The filter parameters can generally be derived from
the coefficients of the speech decoder’s LTP- and LP-synthesis filters, or it can be
determined by signal y(k).

The required attenuation of the spectral valleys can be performed separately for
the spectral envelope and for the spectral fine structure. Consequently, a short-
term and a long-term postfilter with the transfer functions HA(z) and HP (z) are
cascaded to achieve the desired characteristics:

HPF(z) = HA(z) · HP (z) . (8.103)

For the construction of HA(z), the pole radii of the LP-synthesis filter are scaled
with a factor α according to

H̃LP(z) =
1

1 − A(z/α)
; 0 ≤ α ≤ 1 . (8.104)

As a result, the poles are moved radially towards the origin of the z-plane. The
effect on the magnitude response is shown in Fig. 8.38.

With decreasing α the resonances become less pronounced as well. However, the
magnitude responses also show a tilt towards higher frequencies, i.e., the relative
intensity of the formants will change due to the postfilter, which is not desired.

This tilt can be largely avoided by means of the following transfer function:

HA(z) = gA · 1 − A(z/β)

1 − A(z/α)
· (1 − γ · z−1) ; 0 ≤ α, β, γ ≤ 1 . (8.105)
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Figure 8.38: Magnitude response of H̃LP(ejΩ) for different α;
adjacent curves are raised by 20 dB each

Here gA denotes a (time-variant) scaling factor which ensures that the power of
the signal remains unchanged by the filtering process.

On a logarithmic scale, the relation between the terms (1 − A(z/β)) and
(1 − A(z/α)) appears as the difference between two curves of Fig. 8.38. Thus, the
spectral tilt is already partly compensated. With a fixed (or adaptive) coefficient
γ, the last product term (1 − γ · z−1) performs the remaining tilt compensation.

Figure 8.39-a,b exemplarily depicts the speech spectrum and the resulting magni-
tude response |HA(ejΩ)| of the short-term postfilter.

The long-term postfilter HP (z) is either derived from the long-term predictor P (z)
or obtained by means of a renewed LTP analysis of the decoded signal y(k). The lat-
ter approach is preferable if the LTP parameters (gain factor b or ga, respectively,
and delay N0) on the transmission side are determined by an analysis-by-synthesis
procedure. Due to the error criterion, the delay N0 does not necessarily match the
instantaneous pitch period of the signal in this case.

The periodic fine structure of Fig. 8.37 can be realized using the following approach:

HP (z) = gP · 1 + ε · z−N0

1 − η · z−N0
; 0 ≤ ε, η ≤ 1 , (8.106)

with the scaling factor gP . The transfer function HP (z) of the pole–zero postfilter
has its poles at

z∞i = ρ · ejΩ∞i with ρ =
1

N0
√

η
; Ω∞i

=
2π

N0
i (8.107)

and its zeros at

z0i = ζ · ejΩ0i with ζ =
1

N0
√

ε
; Ω0i

=
π

N0
(2i + 1) (8.108)

for i = 0, 1, . . . , N0 − 1.
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Figure 8.39: a) Magnitude spectrum of speech |Y (ejΩ)|
b) Magnitude response of the short-term postfilter |HA(ejΩ)|
c) Magnitude response of the long-term postfilter |HP (ejΩ)|
d) Magnitude response of the complete postfilter |HPF(ejΩ)|

(α = 0.8, β = 0.5, γ = 0.2, ε = 0.4, η = 0.05)

[Chen, Gersho 1995] propose to adjust the coefficients ε and η depending on the
LTP parameter b (see e.g. (6.83-a)) as follows:

ε = c1 · f(b) , η = c2 · f(b) ; 0 ≤ c1, c2 < 1 ; c1 + c2 = 0.5 (8.109)

with

f(b) =





0 b < c3

b c3 ≤ b ≤ 1 0 < c3 < 1 .
1 1 < b

(8.110)
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Figure 8.40: Speech decoder with adaptive postfilter

In unvoiced segments, in which b or ga takes very small values, the long-term
postfilter is turned off. The parameters α, β, γ, ε, η, c1, c2, and c3 must be experi-
mentally adjusted to the respective codec. In general, c2 is set very small or even
zero so that the recursive part in (8.106) is canceled. A typical choice is: α = 0.8,
β = 0.5, c1 = 0.5, c2 = 0.0, and c3 = 0.6.

The scaling factor gP in (8.106) is adjusted in such a way that the short-term
power of y(k) is approximately not altered by the filtering with HP (z). The factor
gP is determined within relatively small time intervals, e.g., according to [Chen,
Gersho 1995],

gP =
1 − η/b

1 + ε/b
. (8.111)

The second scaling factor gA (see also Fig. 8.40) ensures that the powers of y(k)
and ỹ(k) match with a time resolution that lies in the range of the duration of the
syllable.

All in all, this concept of adaptive postfiltering provides a further, in some circum-
stances significant, reduction of the audible quantization distortions. However, this
postfiltering can cause considerable signal distortions if the signal runs through a
chain of two or more codecs (tandem operation). In this case, it is better to switch
off the postfilter.
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9

Error Concealment and Soft
Decision Source Decoding

Digital speech, audio, and video communication over noisy channels usually com-
prises source and channel coding. The source encoder delivers source parameters
such as A-law or µ-law coded speech samples, filter coefficients of the digital vocal
tract model, or gain factors of subband signals. The achievable speech, audio, or
video quality is determined by the quantizers and the resulting net bit rate of
the coding algorithm. For error protection, channel coding is applied to the corre-
sponding bit patterns of these parameters to preserve the quality level over a wide
range of channel characteristics. Nevertheless, even channel coding cannot prevent
the occurrence of residual bit errors in the case of (temporarily) adverse channel
conditions that may lead to a severe degradation of the signal quality. These an-
noying effects can be reduced or even eliminated by means of error concealment
(e.g., [Gerlach 1993], [Feldes 1993], [Feldes 1994], [Skoglund, Hedelin 1994], [Ger-
lach 1996], [Fingscheidt et al. 1998], [Fingscheidt 1998], [Fingscheidt, Vary 2001]).

A similar situation occurs in packet voice transmission via the Internet. Within
the real-time constraints frames or packets of bits may arrive too late and have
to be declared lost or erased (e.g., [Jayant, Christensen 1981], [Goodman et al.
1986], [Valenzuela, Animalu 1989], [Sereno 1991], [Erdöl et al. 1993], [Stenger et
al. 1996], [Clüver 1996], [Martin et al. 2001]).

In either application, erased bits, lost packets of bits, or disturbed codec parameters
have to be substituted to reduce the subjectively annoying effects. The reasoning

Digital Speech Transmission: Enhancement, Coding and Error Concealment

Peter Vary and Rainer Martin
c© 2006 John Wiley & Sons, Ltd
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behind error concealment is that most source codecs for speech, audio, and video
transmission are not perfect. Due to practical reasons such as delay and complexity
constraints, residual redundancy can be observed within the codec parameters in
most cases. As Shannon has pointed out, this source coding suboptimality should
be exploited at the receiver “to combat noise” [Shannon 1948].

In this chapter, we will first discuss by way of examples some standard error con-
cealment techniques as they are applied in the GSM (Global System for Mobile
communications) and the UMTS (Universal Mobile Telecommunications System)
mobile radio systems. Then, a generic approach will be presented which is called
soft decision source decoding [Fingscheidt 1998], [Fingscheidt, Vary 2001]. It can
be applied to any parametric source decoder as it relies on residual source redun-
dancy, reliability information from the channel (or channel decoder), and optimum
parameter estimation (e.g., [Gerlach 1993], [Feldes 1993], [Feldes 1994], [Gerlach
1996]).

The subjective speech (audio or video) quality can be significantly enhanced with
a muting mechanism or graceful degradation behavior in the case of a degrading
channel.

Finally, the concepts of joint and iterative source–channel decoding will be in-
troduced, which allow further improvements at the expense of an increased com-
plexity. Iterative source–channel decoding is a derivative of the so-called turbo
principle known from channel decoding.

9.1 Hard Decision Source Decoding

In speech, audio, and video source coding at medium and low bit rates, the signals
are usually processed block by block or frame by frame. In speech and audio
processing, frames may overlap in time. In speech coding a frame or block consists
of typically N = 160 samples s(λ), and covers a duration of 20ms at a sample rate
of fs = 8 kHz. In video coding a block typically consists of N ×N (e.g., N = 8 or
N = 16) pixels s(λ), while a frame denotes a complete picture.

In this chapter we will deal with one-dimensional signals such as speech and audio.
However, the results can easily be extended to two-dimensional processing.

The signal s is segmented into blocks of N samples sk(λ) (λ = 1, . . . , N), where
k is denoting the time or block index. For each block of samples sk(λ), a set of
codec parameters such as predictor coefficients, gain factors, pitch lags, etc., is
calculated by means of parameter analysis. For simplicity, we will consider one
scalar parameter ṽk ∈ IR from this set here, as indicated in Fig. 9.1. The pa-
rameter ṽk is applied to the quantizer Q with 2w quantizer reproduction lev-
els. The 2w levels can be addressed by w bits. Therefore, the quantized ver-
sion vk ∈ {v(i) ∈ IR, i = 0, 1, . . . , 2w − 1} of each parameter sample ṽk is mapped
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λλ
...

...
...

...

Figure 9.1: Conventional hard decision (HD) speech decoding
k : block or frame index (time)
sk(λ): speech sample at time k · N + λ
ṽk : real valued source codec parameter in frame k

vk : quantized parameter vk ∈ {v(i), i = 0, 1, . . . 2w − 1}
xk : bit pattern (vector) of length w
x̂k : received bit vector of length w
Q : quantization
BM : bit mapping

to a corresponding bit pattern xk ∈ {x(i), i = 0, 1, . . . , 2w − 1} of length w (bit
mapping), which is transmitted over the noisy channel.

For reasons of simplicity, we consider scalar parameters and scalar quantizers. All
the concepts to be discussed below can easily be extended to vector quantization.
The transmission of any quantized codec parameter vk over the noisy channel will
be described here by the equivalent binary symmetric channel with input vectors
xk and output vectors x̂k. The w bits xk(κ) (bit index κ = 1, . . . , w) of each vector
xk are transmitted sequentially.

The equivalent channel might consist of any combination of the noisy analog chan-
nel with channel (de)coding, (de)modulation, and equalization. Due to the channel
noise, the received bit combination x̂k is possibly not identical to the transmitted
one. In the conventional decoding scheme of Fig. 9.1 the received bit combination
x̂k is applied to table decoding (inverse bit mapping (BM−1) scheme). Thus, in the
case of residual bit error(s) a wrong table entry is selected. The decoded parameter
v̂k is finally used within the synthesis algorithm to reconstruct signal samples ŝ(λ).
In what follows, this conventional solution will be called hard decision (HD) source
decoding.

9.2 Conventional Error Concealment

Conventional error concealment is based on hard decision source decoding. Signal
frames are converted by source encoding into bit frames, as shown in Fig. 9.2. In
contrast to Fig. 9.1, the bit frame does not consist of one single parameter, but of
the complete set of the quantized parameters of frame number k. If necessary, the
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Figure 9.2: Transmission with conventional error concealment
DRI: Decoder Reliability Indicator (inner channel decoder)
BFI: Bad Frame Indicator (outer channel decoder)

bit frame may be subdivided into groups or vectors x of single bits x. For reasons
of simplicity, we are omitting the frame, parameter, and bit indices here.

The bit frames are applied to two stages of channel coding: the outer channel
encoder and the inner channel encoder. The inner channel code is used for error
correction, while the outer code helps to control the error concealment at the
receiving end by detecting residual errors after inner channel decoding.

In mobile radio systems such as GSM and UMTS the inner channel codec consists
of a convolutional encoder and a trellis decoder (Viterbi algorithm and its deriva-
tives). The outer channel encoder is a systematic block code, which adds cyclic
redundancy check (CRC) bits c to groups of the subjectively most important bits.

As convolutional error protection by the inner channel coder is not of interest
here, we will consider the equivalent channel for convenience, which can consist
of any combination of inner channel encoding, modulation, noisy transmission,
equalization, demodulation, and inner channel decoding.

A soft decision inner channel decoder which delivers decoder reliability informa-
tion (DRI) is assumed: a binary flag, an integer number, or a real-valued quality
measure per frame of samples s, per group x of bits, or even per individual bit
x or c. At the receiver, a binary bad frame indicator (BFI) is produced by the
outer channel decoder, which takes into account the reliability information from
the inner decoder, e.g., the metric of the Viterbi decoder, the CRC check, and
possibly other quality parameters such as the received field strength. The BFI,
which is valid for the duration of a complete speech frame, is exploited within the
error concealment and source decoding process to reduce the subjectively annoying
effects of residual bit errors.

The GSM standards on substitution and muting of lost frames [Rec. GSM 06.11
1992], [Rec. GSM 06.21 1995], and [Rec. GSM 06.61 1996] propose simple mecha-
nisms such as parameter repetition and step-by-step muting. They are driven by
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Figure 9.3: Standard error concealment of the GSM full-rate speech codec GSM 06.10
a) Block diagram of the encoder
b) Bit classes and error protection
c) Block diagram of the decoder

the binary BFI that marks the current received frame as good or bad. It can be
seen as very coarse reliability information that may initiate the substitution of a
complete frame, even if only a few bits have been disturbed. Conversely, the BFI
may declare a frame reliable although some bits are incorrect.

As an example of conventional error concealment, we will briefly discuss this stan-
dard solution [Rec. GSM 06.11 1992]. In GSM the source and the channel encoding
process of the so-called full-rate channel (22.8 kbit/s) is organized at the trans-
mitter as shown in the block diagram of Fig. 9.3-a.

The standard full-rate speech encoder (see also Chapter 8 and Appendix A on
codec standards) produces frames of 260 bits x every 20 ms. These bits are grouped,
as illustrated in Fig. 9.3-b, according to their auditive sensitivity with respect to
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bit errors into 50 + 132 = 182 class I bits and 78 class II bits. The 50 subjectively
most important (class Ia) bits are protected by three CRC bits. The class Ia bits
usually belong to the most important bits of various speech codec parameters. A
systematic cyclic block code with the generator polynomial

GCRC(D) = 1 + D + D3 (9.1)

is used, where D denotes the delay operator. Thus, the CRC and the resulting BFI
give a measure of frame reliability rather than parameter or bit reliability. Class II
comprises mostly the numerically least significant bits (LSBs).

The inner encoder performs feed-forward convolutional encoding of the 50 class Ia
bits, the three parity check bits, and the remaining 132 class Ib bits; and no
coding of the remaining 78 class II bits, which are not protected at all. The gener-
ator polynomials of the convolutional encoder of rate r = 1/2 and memory 4 are
given by

G1(D) = 1 + D3 + D4

G2(D) = 1 + D + D3 + D4 .
(9.2)

According to the degree of the polynomials (9.2) and to the length of the encoder
memory, four 0 bits are appended to the 182 class I bits and the three CRC bits to
drive the encoder into the zero state. In total, 189 bits are applied to the convolu-
tional encoder, which delivers 2 · 189 = 378 bits. Thus, the inner encoder produces
378+78 = 456 bits every 20ms. The gross bit rate is 456 bits/20ms = 22.8 kbit/s.

Following the original standard [Rec. GSM 06.11 1992], error concealment is con-
trolled by the binary BFI, as indicated in Fig. 9.3-c, while the BFI is produced by
the outer channel decoder. The parity check bits are recalculated from the received
50 class Ia bits x̂ which possibly have residual bit errors. Then they are compared
to the received parity bits ĉ. If these do not coincide, residual bit errors are as-
sumed within the class Ia bits, and the error concealment procedure is activated
via the BFI flag. If one single frame is marked bad, the complete frame of 260 bits
x̂ is replaced by the previous bit frame. If several consecutive bad frames occur, the
last good frame is repeated while the following speech frames are gradually atten-
uated and muted after 320ms (16 frames). In practice it is not sufficient to derive
the BFI flag just from the CRC check, as multiple bit errors might occur which
cannot be detected by this simple mechanism. It is up to the manufacturer of the
mobile phone to use additional information for generating the BFI information,
such as the metric of the inner channel decoder (DRI), the received field strength,
etc. There are some proposals to enhance the reliability information (e.g., [Sereno
1991], [Su, Mermelstein 1992], [Heikkila et al. 1993], [Järvinen, Vainio 1994]). Al-
ternatively, BFIs are not generated explicitly. In [Minde et al. 1993] weighting
factors are computed to perform parameter substitution by weighted summation
over previous frames.
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More sophisticated concealment techniques have been designed for the GSM en-
hanced full-rate codec [Rec. GSM 06.61 1996], and the GSM adaptive multi-rate
speech codec (AMR) [ETSI Rec. GSM 06.90 1998], which will also be used in the
UMTS cellular system. In both cases the BFI flags of the present and the previous
frame are considered. They control the concealment process, which is based on a
state machine with seven states. Depending on the state, certain parameters of
the codec are replaced by attenuated counterparts from the previous frame or by
averaged values.

All these empirical algorithms improve the perceived speech quality significantly in
adverse channel conditions and they are a major part of the whole error protection
concept. If the error concealment were switched off, the speech quality would not
be acceptable in many everyday-life transmission conditions.

This is the motivation to derive a theoretical framework leading to optimal error
concealment techniques in terms of parameter estimation or soft decision source
decoding. The optimum estimators should systematically exploit the residual re-
dundancy of the source encoder and all kinds of quality information which can be
made available at the receiver.

9.3 Softbits and L-values

The key to enhanced error concealment is to exploit reliability information within
the source decoding process. This information may be available for groups x̂ of
received bits or even for each individual bit x̂. For reasons of simplicity, we omit
in this section the frame index k and we consider the sequential transmission of
bits x(κ), where κ denotes the bit index which is in this case identical to the time
index.

9.3.1 Binary Symmetric Channel (BSC)

For the representation of softbits and L-values, it is convenient to introduce a
bipolar bit representation, i.e., the logical “0” is replaced by the real value +1.0
and the logical “1” by the real value −1.0.

A side effect of the bipolar bit representation is that the non-linear modulo-2
addition is replaced by the multiplication. Thus, we can describe the equivalent
binary symmetric channel (BSC) by means of the two representations of Fig. 9.4.

For the time being, we assume that the equivalent channel is characterized by its
constant bit error probability p0 and by the error sequence e(κ) ∈ {+1, −1}. The
channel output is given by

x̂(κ) = x(κ) · e(κ) (9.3)
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Figure 9.4: Binary symmetric channel for bipolar bit representation
p0 : bit error probability of the channel
a) Transition diagram
b) Transmission model: multiplication of bits x(κ) with the bit error

sequence e(κ)

and a transmission error occurs if e(κ) = −1. The bit error probability p0 is the
same as the probability that e(κ) takes the value −1.

A reliability measure would be the conditional probability that the received value
x̂(κ) = +1 or x̂(κ) = −1 at time κ is correct. Alternatively, the unreliability could
be expressed by the conditional probability that the observation is not correct.

Therefore, we may consider as a measure of unreliability the instantaneous condi-
tional error probabilities

P (x(κ) �= x̂(κ) | x̂(κ)) ; x̂(κ) ∈ {+1,−1} (9.4-a)

and as a measure of reliability

P (x(κ) = x̂(κ) | x̂(κ)) ; x̂(κ) ∈ {+1,−1} . (9.4-b)

The same quality information about the observed x̂(κ) at the channel output can
obviously be quantified on different scales (reliability or unreliability).

Note A: The conditional error probabilities as defined in (9.4-a) must not
necessarily be the same as the bit error probability p0 of the channel. Only
if x(κ) = +1 and x(κ) = −1 have the same probability of occurence, i.e.,
P (x(κ) = +1) = P (x(κ) = −1) = 1/2, the conditional error probabilities are the
same as the bit error probability p0 of the channel.

Note B: In data transmission it is usually assumed that both polarities
of the bits x(κ) have the same probability P (x = +1) = P (x = −1) = 1/2.
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However, in speech, audio, and video coding the quantized parame-
ters v ∈ {v(i), i = 0, 1, . . . , 2w − 1} and thus the corresponding bit patterns
x ∈ {x(i), i = 0, 1, . . . , 2w − 1} (see Fig. 9.2) exhibit residual redundancy as a re-
sult of, e.g., non-symmetric parameter distributions or specific bit mapping rules
(see block BM Fig. 9.1). Thus, the events x = +1 and x = −1 may not necessarily
be equiprobable. This fact can be exploited within the error concealment process.
If this information is not available or if it cannot be taken into consideration due
to complexity constraints, then the assumption P (x = +1) = P (x = −1) = 1/2
will be used, too. It should be noted that if the parameter distribution and the bit
mapping are symmetric, all bits x have the same probabilities for ±1. However, in
this case there is still redundancy on the parameter level due to non-uniform pa-
rameter distributions and parameter correlation, which can also be used for error
concealment.

As basic soft information about the BSC from which any specific measure can be
derived, we consider the joint information of a received hardbit and its instanta-
neous conditional error probability

BSC soft information = {x̂(κ), P (x(κ) �= x̂(κ)|x̂(κ))} . (9.5)

In the literature, there are equivalent measures for different purposes, such as
the softbit and the L-value which are derived from the same soft information
[Skoglund, Hedelin 1994], [Hagenauer 1995], [Hagenauer 1997], [Vary, Fingscheidt
1998], [Huber 2002].

The common root of softbits and L-values is the Bayes theorem:

P (x, x̂) = P (x | x̂) · P (x̂) = P (x̂ | x) · P (x) . (9.6)

For notational convenience, the index κ will be omitted insofar as it is not nec-
essary to distinguish between different indices. With (9.6) the conditional error
probabilities (9.4-a) and their complements (9.4-b) are given by

P (x �= x̂ | x̂) =
P (x̂ | x �= x̂) · P (x �= x̂)

P (x̂)
; x̂ ∈ {+1,−1}

P (x = x̂ | x̂) =
P (x̂ | x = x̂) · P (x = x̂)

P (x̂)
; x̂ ∈ {+1,−1} .

(9.7)

The expressions (9.7) are also called the a posteriori probabilities. A posteriori
means we have received a bit x̂ (with index κ), i.e., the receiver has already taken
the decision +1 or −1 and we are interested in the probability that this decision
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was right or wrong. For calculating these a posteriori probabilities (9.7), we need
access to the following quantities:

• P (x = ±1) : the a priori probabilities

• P (x̂ = ±1 | x = ±1) : the transition probabilities

• P (x̂ = ±1) : the observation probabilities.

The a priori probabilities P (x = +1) and P (x = −1) or the a priori knowledge
on bit level can be measured in advance if representative coded signals and/or bit
sequences x are available.

With regard to the transition probabilities, we have to distinguish between the
different ±1 cases and find easily the dependency on the bit error probability p0

of the equivalent BSC channel:

P (x̂ = +1 | x = +1) = P (x̂ = −1 | x = −1) = 1 − p0 (9.8-a)

P (x̂ = +1 | x = −1) = P (x̂ = −1 | x = +1) = p0 . (9.8-b)

Finally, the observation probabilities P (x̂ = +1) and P (x̂ = −1) can be calculated
from the quantities already known:

P (x̂ = +1) = P (x = +1) · (1 − p0) + P (x = −1) · p0 (9.9-a)

P (x̂ = −1) = P (x = −1) · (1 − p0) + P (x = +1) · p0 . (9.9-b)

Softbits and Binary Channel

The BSC receiver takes a preliminary hard decision x̂(κ) = +1 or x̂(κ) = −1.
Based on this decision, i.e., for a fixed x̂(κ), the two conditional probabilities
P (x = +1 | x̂) and P (x = −1 | x̂) can be computed according to (9.7), (9.8), and
(9.9). They can be interpreted as the probabilities that either of the alternative
decisions x = +1 or x = −1 is correct. Therefore, we are able to replace the
first hard decision x̂(κ) by a second soft estimate or softbit x̃(κ), which makes a
compromise between +1 and −1 according to the two conditional probabilities.
An optimal solution consists of minimizing the mean square estimation error. It
can be shown (see Chapter 5) that the mean square error is minimized by the
conditional expectation:

x̃ = E{x | x̂} (9.10)

= +1 · P (x = +1 | x̂) − 1 · P (x = −1 | x̂) (9.11)

= x̂ (1 − 2 · P (x �= x̂|x̂)) . (9.12)
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With the abbreviations

p+ = P (x = +1) and p− = P (x = −1)

we find with (9.7), the transition probabilities (9.8), and the observation probabil-
ities (9.9) the explicit solutions for the two polarities of x̂:

a) x̂ = +1 :

x̃ =
p+ · (1 − p0) − p− · p0

p+ · (1 − p0) + p− · p0
=

p+ − p0

p+ − 2 p+p0 + p0
(9.13-a)

b) x̂ = −1 :

x̃ =
p+ · p0 − p− · (1 − p0)

p+ · p0 + p− · (1 − p0)
= − p− − p0

p− − 2 p−p0 + p0
. (9.13-b)

In the general case of (9.13-a) and (9.13-b), the softbit is determined by the chan-
nel quality associated with p0 and the a priori knowledge p+ or p− = 1 − p+.
There is no strict separation of the channel-related and the source-related contri-
butions. Nevertheless, the sign of the softbit corresponds to the best hard decision
x̂opt = sign(x̃) and the magnitude is a measure of reliability

0 ≤ |x̃| ≤ 1 . (9.14)

Two extreme cases are of special interest:

Case I p+ = p− = 1/2; no a priori knowledge about x(κ)
(no redundancy on bit level)

Case II: p0 = 1/2; total disturbance of the channel (no transinformation,
i.e., the channel output is independent from the input)

Case I: If x = +1 and x = −1 have the same probabilities p+ = p− = 1/2, then
the two levels of x̂ also occur with the same probability and the denominators
in (9.7), (9.13-a), and (9.13-b) take the value P (x̂ = ±1) = 1/2. Thus, the two
equations (9.13-a) and (9.13-b) can be combined to the single formula

x̃ = x̂ · (1 − 2 · p0) . (9.15)

The softbit x̃ has the same sign as the hardbit x̂, while the magnitude is determined
by the transmission error probability p0. If the transmission is free of error (p0 = 0),
then the softbit is the same as the hardbit x̂. If the transmission error probability
increases, the magnitude of the softbit decreases. For total disturbance (p0 = 1/2)
the softbit is muted to x̃ = 0. There is no transinformation or mutual information
in terms of information theory.
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A useful feature of the softbit (9.15) is the preservation of the modulo-2 opera-
tion and/or the equivalent multiplication. Let us consider the transmission of two
sequences of bits x1 and x2 which are received as hardbits x̂1 and x̂2 over two
independent channels with corresponding error probabilities p1 and p2. The two
hardbits x̂1 and x̂2 are combined by a modulo-2 operation, i.e., multiplication, to
obtain

x̂3 = x̂1 · x̂2 . (9.16)

A bit error in x̂3 occurs only if we have a bit error either in x̂1 or in x̂2, i.e.,

p3 = (1 − p1) · p2 + (1 − p2) · p1 . (9.17)

If both bits are disturbed, the errors compensate each other and x̂3 is free of error.

If we define the corresponding softbit

x̃3 = x̂3 · (1 − 2 · p3) , (9.18)

it can easily be shown that the following relation is valid:

x̃3 = x̃1 · x̃2 = x̂1 · (1 − 2 · p1) · x̂2 · (1 − 2 · p2) (9.19)

= x̂3 · (1 − 2 · p3) . (9.20)

As the magnitudes of the softbits x̃1 and x̃2 are not larger than +1, the magnitude
of the combined softbit x̃3, and thus its reliability |x̃3|, cannot be larger than the
smallest magnitude of either x̃1 or x̃2. In general, the combined bit will be less
reliable.

Case II: The a priori probabilities are different, i.e., p+ �= p−, but we have total
disturbance (p0 = 1/2). Then we get with (9.13-a) and (9.13-b)

x̃ = p+ − p− . (9.21)

The softbit is determined only by the a priori knowledge. If, for example, x = +1
occurs more often than x = −1, x̃ will be positive. If both polarities have the same
probability p+ = p−, we get x̃ = 0 as we do not have any a priori knowledge.

L-values and Binary Channel

The conditional L-value is an alternative logarithmic reliability measure which is
widely used in soft-input, soft-output channel decoding [Hagenauer et al. 1996],
[Hagenauer 1995], [Hagenauer 1980]. Instead of the conditional error probabilities
(9.4-a) or their complements (9.4-a), we consider

L(x | x̂) = ln

(
P (x = +1 | x̂)

P (x = −1 | x̂)

)
. (9.22-a)



9.3 Softbits and L-values 327

According to the logarithmic function, the range of values is

−∞ < L(x | x̂) < +∞ . (9.22-b)

The extreme points are:

• P (x = +1 | x̂) = 1, P (x = −1 | x̂) = 0 ⇒ L(x | x̂) → +∞

• P (x = +1 | x̂) = P (x = −1 | x̂) = 1/2 ⇒ L(x | x̂) = 0

• P (x = +1 | x̂) = 0, P (x = −1 | x̂) = 1 ⇒ L(x | x̂) → −∞ .

The sign of the L-value is the optimum decision x̂opt taking the bit error probability
p0 as well as the a priori knowledge p+ and p− into account. The larger the
magnitude of L(x | x̂), the larger is the reliability.

Equation (9.22-a) can be evaluated explicitly as a function of p0, p+, and p−. By
inserting (9.7) and (9.8) into (9.22-a) and by considering the two cases x̂ = ±1,
we find

L(x | x̂) = x̂ · ln
(

1 − p0

p0

)
+ ln

(
p+

p−

)
(9.22-c)

= x̂ · Le + Lx . (9.22-d)

Here, we have a clear separation of the channel-related contribution x̂ ·Le and the
source-related contribution Lx (a priori knowledge). The term Lx is also called
the L-value of the sequence x(κ):

Lx = ln

(
p+

p−

)
= ln

(
1 − p−

p−

)
. (9.23)

The channel quality is quantified by Le, which is also called the L-value of the bit
error sequence e(κ)

Le = ln

(
1 − p0

p0

)
. (9.24)

It can easily be shown that p0 can be recalculated from Le

p0 =
1

1 + e+Le
. (9.25)

Generally speaking, the L-value of any binary sequence is the logarithm of the
quotient of the probabilities that the sequence takes the values +1 and −1, whereas
in the conditional L-value, conditional probabilities have to be inserted, which
depend on the a priori knowledge p+, p− and the bit error probability p0.
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The conditional L-value L(x|x̂) and the softbit x̃ = x̂ · (1 − 2 · P (x �= x̂|x̂)) are
different representations of the same information.

The relation between the softbit x̃ and the conditional L-value L(x|x̂) can also be
derived by considering the different cases with x = ±1 and x̂ = ±1. Using (9.22-a)
we obtain a closed expression for the conditional error probabilities

P (x �= x̂|x̂) =
1

1 + ex̂·L(x|x̂)
x̂ ∈ {+1,−1} , (9.26)

and the softbit

x̃ = x̂ · (1 − 2 · P (x �= x̂|x̂)) = x̂
ex̂·L(x|x̂) − 1

ex̂·L(x|x̂) + 1
(9.27-a)

= x̂
e

1
2 x̂·L(x|x̂) − e−

1
2 x̂·L(x|x̂)

e
1
2 x̂·L(x|x̂) + e−

1
2 x̂·L(x|x̂)

(9.27-b)

= x̂ tanh

(
x̂

L(x|x̂)

2

)
(9.27-c)

= tanh

(
L(x|x̂)

2

)
(9.27-d)

The optimal decision is given by

x̂opt = sign {x̃} = sign {L (x|x̂)} (9.28)

and the bitwise decoder reliability can be expressed with different scaling either as

DRIx̃ = |x̃| (9.29)

or

DRIL = |L (x|x̂)| . (9.30)

Note that the sign of x̂opt may be different from the sign of x̂ if we have a bias in
(9.22) due to non-zero a priori knowledge p+ �= p− .

Finally it should be mentioned that the two reliability measures (9.29), (9.30) can
easily be extended to groups of bits.

With respect to the modulo-2 addition, we can derive a combination rule for
L-values as well. Let us consider two independent sequences with bits x1 and
x2 with L-values

Lx1 = ln

(
1 − p1

p1

)
; Lx2 = ln

(
1 − p2

p2

)
. (9.31)
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For calculating the L-value of the combined sequence

x3 = x1 · x2 (9.32)

we need to compute the probabilities 1 − p3 and p3 that x3 takes the values +1
and −1, respectively. By using the relation (9.25) for pi, i = 1, . . . , 3 we find the
combination rule which is called the box-plus operation [Hagenauer et al. 1996]:

Lx3 = ln

(
1 + eLx1 · eLx2

eLx1 + eLx2

)
(9.33-a)

= 2 · arctanh

(
2∏

i=1

tanh

(
Lxi

2

))
(9.33-b)

= Lx1 ⊞ Lx2 (9.33-c)

≈ sign (Lx1) · sign (Lx2) · min (|Lx1|, |Lx2|) . (9.33-d)

Note: The approximation (9.33-d) is based on the assumption that the magnitude
of one of the two L-values is very high [Hagenauer et al. 1996]. If Lx1 and Lx2

denote conditional L-values, this would mean that one of the bits is very realiable.

9.3.2 Fading–AWGN Channel

We consider the transmission over a fading channel with additive white Gaussian
noise (AWGN) using binary phase shift keying (BPSK) and coherent demodu-
lation, but without (inner) channel coding. The option of inner channel coding
will be discussed in the next section. The continuous-time baseband model of this
transmission scheme is illustrated in Fig. 9.5-a. The main difference to the binary
channel (BSC) is that we have access not only to the received hardbit

x̂ = sign(z) (9.34)

but also to the real-valued output samples z(κ) of the matched filter receiver.
Furthermore, we assume that the fading/attenuation factor a and the power
σ2

n = N0/2 of the white noise are known. Therefore, an instantaneous bit error
rate p0(κ) can be calculated (see Fig. 9.5-b).

The bit duration is Tb, and the continuous transmitter signal xT (t) consists of the
concatenated stream of bits x(κ). The transmitter signal xT (t) can be described
by applying a train of weighted Dirac impulses to a transmit filter with rectangular
impulse response g(t):

xT (t) =

[
∑

κ

x(κ) · δ(t − κ · Tb)

]
∗ g(t) (9.35-a)

= x(k) , if k · Tb ≤ t < (k + 1) · Tb (9.35-b)
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Figure 9.5: Fading–AWGN channel model for coherent BPSK
a) Continuous time baseband model

n0(t): white noise with power spectral density N0/2
a : fading/attenuation factor

b) Discrete time models for AWGN and BSC
p0(κ): instantaneous bit error rate
σ2

n : power of the noise samples n(κ)

with

g(t) =

{
1 0 ≤ t < Tb

0 else .
(9.36)

The transmitter signal xT (t) is attenuated by a constant or slowly time-varying
fading factor

0 < a(κ) . (9.37)

The fading/attenuation factor a is considered to be a constant during a bit interval

κ · Tb ≤ t < (κ + 1) · Tb .

On the transmission link AWGN n0(t) with constant power spectral density N0/2
is added to xT (t), and the coherent matched filter receiver averages the received
baseband signal

r(t) = xT (t) + n0(t)

= ±a + n0(t) (9.38)
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by integration over the κ-th bit interval. The real-valued sample

z(κ) =
1

Tb

(κ+1)Tb∫

κTb

r(t) dt = ±a + n(κ) (9.39)

taken at the end of the bit interval consists of the signal component ±a and
a sample n(κ) of the averaged (filtered) noise n0(t). Finally, the hard decision
x̂ ∈ {+1, −1} is taken. Bit errors occur in the case of x(κ) ·a = −a and n(κ) > +a
or in the case of x(κ) · a = +a and n(κ) < −a. Thus, we can use the equivalent
discrete-time block diagram of Fig. 9.5-b.

For the following considerations we need the energy Eb per transmitted bit x(κ)
and the power σ2

n of the noise samples n(κ). If the amplitude of the transmitter
signal xT (t) is considered dimensionless, the energy per bit x(κ) is given by

Eb =

(k+1)Tb∫

kTb

x2
T (t) dt = x2(κ) · Tb = Tb . (9.40)

The receiving matched filter (averaging integrator) has the rectangular impulse
response

h(t) =

{
1/Tb 0 ≤ t < Tb

0 else
(9.41)

and a frequency response H(ω). As the noise signal n0(t) has a Gaussian proba-
bility density function (PDF), the PDF of the samples n(κ) has the same shape
but a different power. The power of the noise samples n(κ) is that of the noise
component nc(t) at the filter output as indicated in Fig. 9.6 and can be calculated
by means of Parseval’s theorem (e.g., [Papoulis 1968]):

σ2
n =

1

2π

+∞∫

−∞

N0

2
· |H(ω)|2 dω

=
N0

2
·

+∞∫

−∞

h2(t) dt

=
N0

2
· 1

Tb
. (9.42)
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Figure 9.6: Processing of the white noise n0(t): matched filtering and sampling
a) Impulse response of the matched filter
b) Time domain and frequency domain relations

The PDF of the noise samples n(κ) is therefore given by

pn(u) =
1√

2πσn

· exp

(
− u2

2σ2
n

)
(9.43)

=
1√

2πσn

· exp

(
−Eb

N0
u2

)
. (9.44)

The definition of the conditional L-value is basically the same as for the binary
channel, apart from the fact that we replace in (9.22-a) the binary variable x̂ by
the real-valued sample z

L(x | z) = ln

(
P (x = +1 | z)

P (x = −1 | z)

)
. (9.45)

In contrast to x̂, which is bipolar, i.e., discrete, the samples z take real values.
Therefore, we use Bayes’ theorem in mixed form here, e.g., [Proakis 1995];

P (x | z) · p(z) = p(z | x) · P (x) , (9.46)

where P (·) denotes a discrete probability and p(·) a PDF. The conditional PDF
p(z | x) can easily be derived because of the deterministic relations

z(κ) = a · x(κ) + n(κ) ,

n(κ) = z(κ) − a · x(κ)
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and thus

pn(u = z − a · x) =
1√

2πσn

· exp

(
−Eb

N0
(z − a · x)2

)
. (9.47)

With (9.45), (9.46), and (9.47) we find the conditional L-value for the fading-
AWGN channel

L(x | z) = ln

(
P (x = +1 | z)

P (x = −1 | z)

)
(9.48-a)

= ln

(
p(z | x = +1) · P (x = +1)

p(z | x = −1) · P (x = −1)

)
(9.48-b)

= ln

(
p(z | x = +1)

p(z | x = −1)

)
+ ln

(
P (x = +1)

P (x = −1)

)
(9.48-c)

= z · 4a
Eb

N0
+ Lx (9.48-d)

= z · 2a
S

N
+ Lx (9.48-e)

= z · Lc + Lx (9.48-f)

with

Lc = 4a
Eb

N0
= 2a

S

N
(9.49)

S = Eb · Tb ; N = σ2
n =

N0

2 Tb

S

N
=

Eb

N0/2
.

The result is similar to the L-value (9.22-d) obtained for the binary channel. How-
ever, the product x̂ · Le has been replaced by z · Lc .

The optimal decision, taking both the knowledge about the channel and the a
priori knowledge into consideration, is given by:

x̂opt = sign (L(x | z)) = sign (z · Lc + Lx) , (9.50)

and the reliability measure is

DRI = |L(x | z)| = |z · Lc + Lx| . (9.51)

A comparison of the two channel models discussed so far is shown in Fig. 9.7.



334 9 Error Concealment and Soft Decision Source Decoding
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Figure 9.7: Conditional L-values and optimal decisions x̂opt

a) Binary channel
b) Fading-AWGN channel without inner channel coding

The main difference between the two models is that in (9.22-d) the magnitude
|x̂·Le| in (9.22-d), and thus the reliability information about the binary channel, is a
constant, whereas the corresponding quantity |z(κ)·Lc| in (9.48-f) may change from
sample to sample. Thus, we obtain a measure of the instantaneous channel quality.
In analogy to (9.25) and (9.27), we can derive expressions for the instantaneous
bit error rate [Hagenauer 1980], [Hagenauer 1995] (9.48)

p0(κ) =
1

1 + e+|z(κ)·Lc|
. (9.52)

The softbit x̃ corresponding to (9.15) can be represented as a function of the
conditional L-value

x̃(κ) = tanh

(
L(x(κ)|z(κ))

2

)
(9.53)

= tanh

( |z(κ) · Lc + Lx|
2

)
. (9.54)

The channel state information (CSI) Lc comprises the fading factor a as well as
the signal-to-noise ratio S/N at the output of the matched filter. Both values
have to be estimated at the receiver as indicated in Fig. 9.5-b. From (9.52) it is
obvious how an individual instantaneous bit error probability can be assigned to
each received value z(κ) and each optimal decision x̂opt(κ).
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9.3.3 Channel with Inner SISO Decoding

If the equivalent fading–AWGN channel includes inner channel coding, the required
reliability information can be provided by a soft-input, soft-output (SISO) channel
decoder. The corresponding block diagram is given in Fig. 9.8, where we have re-
introduced the time or frame index k.

Note: A block usually consists of several parameters, e.g., LP-coefficients, gain
factors, etc. For simplicity, we consider here only a single parameter vk or the
corresponding bit pattern xk as illustrated in Fig. 9.9. Each parameter value vk is
transmitted as bit vector xk = (xk(1), xk(2), . . . , xk(w)) of length w. The stream of
bit vectors xk is applied to the inner convolutional channel encoder which delivers a
bit sequence y(κ). The best choice for a convolutional SISO decoder is the channel
decoder of Bahl et al. [Bahl et al. 1974] because it is able to yield conditional
log-likelihood values (L-values)

L(xk(κ) | z) = ln

(
P (xk(κ) = +1 | z)

P (xk(κ) = −1 | z)

)
(9.55)

where z may denote the complete received sequence of real-valued samples z(κ),
a vector zk consisting of w samples, or even a single sample z(κ). The hardbit is
given by

x̂k(κ) = sign {L(xk(κ) | z)} . (9.56)

The conditional L-value L(xk(κ) | z) may or may not comprise a priori infor-
mation, given by Lx according to (9.23). Note that in practice the less complex
soft-output Viterbi algorithm (SOVA) [Hagenauer, Hoeher 1989] or a comparable
solution, e.g., [Huber, Rüppel 1990], is often used, which yields approximations to
the L-values of Eq. (9.55).

(κ) n(κ)

(κ)(κ)

Figure 9.8: Equivalent channel with inner SISO decoding
SISO : Soft-Input, Soft-Output
xk, x̂k: binary (bipolar) vectors of length w at time or frame index k
y(κ) : output sequence of the convolutional inner channel encoder
z(k) : sequence of the real-valued received samples
pk : vector of w instantaneous bit error rates (decoder reliabilities)
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κ

Figure 9.9: Block structure and sequential transmission of bit patterns xk

k = block or time index

xk= (xk(1), . . . , xk(κ), . . . , xk(w))T

Some of these SISO decoder algorithms include in the calculation of pk a pri-
ori knowledge Lx or p+ and p−. For clarity of presentation it is assumed here
that L(xk(κ)|z) comprises only the channel related quality. Thus, the conditional
L-value can be translated into the instantaneous bit error probabilities pk(κ) ac-
cording to (9.52) (Note: The instantaneous bit error probabilities may now also
depend on the frame index k).

Then the SISO decoder transforms the received sequence of real-valued samples
z(κ) into hardbit vectors x̂k and bit error probability vectors pk, both with di-
mension w.

9.4 Soft Decision (SD) Source Decoding

In this section we will derive a concept for exploiting soft information within the
source decoding process. The softbit source decoding (SBSD) approach, in short
soft decision (SD) source decoding (e.g., [Fingscheidt, Vary 2001], [Fingscheidt,
Vary 1997a]), should be compatible with existing transmission systems so that
we do not have to modify the transmitter. In the literature, there are various
proposals for error concealment exploiting reliability and/or a priori information
(e.g., [Gerlach 1993], [Gerlach 1996], [Feldes 1993], [Feldes 1994], [Wong et al. 1984],
[Sundberg 1978]). The presentation given here follows [Fingscheidt, Vary 2001]. As
a reference we consider the conventional solution of Fig. 9.1 with hardbit or hard
decision (HD) decoding at the receiver by table lookup.

In the soft decision approach, we replace the table lookup module by a parame-
ter estimator as illustrated in Fig. 9.10. The soft information on the bit level in
terms of softbits x̃k(κ), conditional L-values L(xk(κ) | z), or hardbits x̂k(κ) plus
(instantaneous) bit error rate pk(κ) and a priori knowledge is transformed to the
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ˆ ∈ R~

Figure 9.10: Soft decision (SD) source decoding
ṽk : real-valued source codec parameter at time (frame or subframe) k

vk : quantized parameter vk ∈ {v(i), i = 0, 1, . . . , 2w − 1}

xk : bit pattern, xk ∈ {x(i), i = 0, 1, . . . , 2w − 1}, vector of length w
x̂k : received bit vector of length w
pk : vector of instantaneous bit error rates at time k
Q : quantization
BM: bit mapping

parameter level in such way that the codec parameters vk can be estimated ac-
cording to some optimization criterion, while the following information is taken
into consideration:

• received hardbits x̂k

• channel quality on bit level pk = (pk(1), . . . , pk(w))

• a priori knowledge on parameter level: P (vk), P (vk | vk−1), . . .
(probability distribution, correlation, . . . ).

The codec parameter ṽk at time instant k is quantized according to Q[ṽk] = vk

with vk ∈ {v(i), i = 0, 1, . . . , 2w − 1} (Quantization Table) and can be represented
by the quantization table index i. At the time instant k, a bit combination

xk = (xk(1), xk(2), . . . , xk(κ), . . . , xk(w)) (9.57)

consisting of w bits is assigned via bit mapping (BM) to each quantized param-
eter vk (or quantization table index i). The bits are assumed to be bipolar, i.e.,
xk(κ) ∈ {−1, +1}. Due to the channel noise the received bit combination x̂k is
possibly not identical to the transmitted one. In the conventional hard decision
(HD) decoding scheme of Fig. 9.1, the received bit combination x̂k is applied to
table decoding (inverse bit mapping (BM−1) scheme). Thereafter, the decoded
parameter v̂k is used within the specific source decoder algorithm to reconstruct
samples ŝ(k · N + λ) = ŝk(λ) of the speech signal.
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The concept of error concealment by soft decision (SD) source decoding as depicted
in Fig. 9.10 requires reliability information in terms of estimated instantaneous bit
error probabilities

pk = (pk(1), pk(2), . . . , pk(κ), . . . , pk(w)) (9.58)

of the hardbit combination x̂k.

The kernel of the soft decision (SD) decoding algorithm consists of

• step 1: calculation of 2w a posteriori probabilities

P (x(i) | x̂k) with i ∈ {0, 1, . . . , 2w − 1}

• step 2: estimation of a real-valued parameter v̂k.

These steps will be described below. We start with the description of the second
step.

9.4.1 Parameter Estimation

Let us assume that the a posteriori terms P (x(i) | x̂k) can be computed from the
information on the bit level, which is available at the soft output of the equivalent
channel which might or might not include inner channel decoding. If we have
received a certain bit pattern x̂k, then the probability P (x(i) | x̂k) quantifies the
reliability of the decision that the pattern x(i), and thus the quantized parameter
value v(i), was transmitted at time k.

The a posteriori probabilities can be extended as shown below to take into consid-
eration previous and/or future bit patterns x̂n with n = k, k−1, . . . , k−N and/or
with n = k+1, . . . , k+K which are received later. The latter solution requires the
introduction of some delay into the decoding process. The corresponding general
a posteriori probability reads

P (xk = x(i) | x̂k, . . . ) =

P
(
xk = x(i) | x̂k+K , x̂k+K−1, . . . , x̂k+1, x̂k, x̂k−1, x̂k−2, . . . , x̂k−N

)
. (9.59)

Due to its computational complexity and the achievable quality improvements, the
most relevant cases are N = 0 and N = 1, both with K = 0.

Once all 2w (or in the general case 2w·(N+1+K)) a posteriori terms have been
computed for the present received pattern x̂k, we can estimate the transmitted
parameter value using different optimization criteria. The estimation error criterion



9.4 Soft Decision (SD) Source Decoding 339

should reflect the impact of parameter errors on the subjective quality of the soft-
decoded signal.

For most of the speech, audio, and video codec parameters the minimum mean
square (MS) error criterion is appropriate. In the case of speech these parameters
may be PCM samples, spectral coefficients, gain factors, etc. However, for some
parameters, such as the pitch period, the maximum a posteriori (MAP) estimator
should be applied.

9.4.1.1 MAP Estimation

The MAP estimator follows the criterion

v̂k = v(ν) with ν = arg max
i

P
(
x(i) | x̂k, . . .

)
. (9.60)

MAP estimation minimizes the probability of an erroneously decoded param-
eter [Melsa, Cohn 1978]. The decoded parameter v̂k equals one of the code
book/quantization table entries. In the case of error-free transmission, only one
of the 2w a priori probabilities takes the value 1, all the others are zero. In this
situation the MAP decoder selects the same table entry as the hard decision de-
coder.

9.4.1.2 MS Estimation

The optimum decoded parameter in a minimum mean square error sense (see also
Chapter 5) equals

v̂k =
2w−1∑

i=0

v(i) · P
(
x

(i)
k | x̂k, . . .

)
. (9.61)

According to the orthogonality principle of linear mean square estimation (see,
e.g., [Melsa, Cohn 1978]), the variance of the estimation error e0 = v̂k − vk is
σ2

e = σ2
v − σ2

v̂ with σ2
v being the variance of the undisturbed parameter vk and σ2

v̂

denoting the variance of the estimated parameter v̂k. Because σ2
e ≥ 0 we can state

that the variance of the estimated parameter is smaller than or equals the variance
of the error-free parameter.

For the worst-case channel with p0 = 0.5, the a posteriori probabilities simplify to
P (x(i) | x̂k, . . . ) = P (x(i)). If in this case the unquantized parameter ṽk as well as

the quantization table entries v
(i)
k are distributed symmetrically around zero, the

MS estimated parameter according to Eq. (9.61) is attenuated to zero (by weighted
averaging, i.e., conditional expectation of v). Such symmetries are often found for
gain factors in speech and audio encoders. Thus, the MS estimation of gain factors
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results in an inherent muting mechanism providing a graceful degradation of the
signal quality with decreasing channel quality. This is one of the main advantages
of soft decision source decoding.

On the other hand, if the channel is free of errors (pe = 0) and x(κ) has
been transmitted, then all the parameter transition probabilities are zero except
P (x̂k | x(κ)) = 1. This yields P (x(κ) | x̂k, . . . ) = 1 while all other a posteriori prob-
abilities become zero. As a consequence, the MS estimator also yields the correct
parameter value v̂k = vk. This is equivalent to bit exactness in clear channel situ-
ations.

Finally, it should be mentioned that all of the algorithms discussed above can be
used in the case of vector quantization. The only difference to scalar quantization
lies in the estimation step. Let us consider a P -tuple of codec parameters ṽk ∈ IRP

which is coded by w bits. The quantized parameter vector is then Q[ṽk] = vk with
vk ∈ CB (code book). MAP estimation simply yields the most probable parameter
vector v̂k ∈ {v(i), i = 0, 1, . . . , 2w − 1} instead of a scalar, whereas MS estimation
can be formulated as

v̂k =

2w−1∑

i=0

v(i) · P
(
x(i) | x̂k, . . .

)
. (9.62)

The MS estimator is to be considered as a weighted sum of the code book entries.

9.4.2 The A Posteriori Probabilities

For the estimation of a source codec parameter at the receiver, a posteriori prob-
abilities providing information about any possibly transmitted bit combination
xk ∈ {x(i), i = 0, . . . , 2w − 1} are required (step 1 of the SD algorithm).

In the calculation described here we will only consider the most recent bit vector
x̂k within the estimation process. Any earlier or later bit patterns will be neglected,
i.e., N = 0 and K = 0 in (9.59),

We have to apply Bayes’ theorem in order to obtain the a posteriori probabilities
P (xk = x(i) | x̂k) for i ∈ {0, 1, . . . , 2w − 1} :

P (xk, x̂k) = P (xk | x̂k) · P (x̂k) = P (x̂k | xk) · P (xk) . (9.63)
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The probabilities P (x̂k) are not known. They depend on the a priori probabilities
P (xk = x(k)) and on the transition probabilities P (x̂k |xk = x(k)). Thus, these
probabilities can be computed via the marginal distribution as follows:

P (x̂k) =

2w−1∑

κ=0

P
(
x̂k | xk = x(κ)

)
· P

(
xk = x(κ)

)
. (9.64)

Finally, we find the solution for the a posteriori probabilities

P
(
xk = x(i) | x̂k

)
=

P
(
x̂k | xk = x(i)

)
· P

(
xk = x(i)

)

2w−1∑
κ=0

P
(
x̂k | xk = x(κ)

)
· P

(
xk = x(κ)

) . (9.65)

For the calculation of (9.64) and (9.65) we need the following probabilities:

• a priori probabilities P
(
xk = x(κ)

)

• transition probabilities P
(
x̂k | xk = x(κ)

)
, κ = 0, 1, . . . , 2w − 1

which will be discussed below.

9.4.2.1 The A Priori Knowledge

As regards the specification of the required a priori knowledge, there is a certain
degree of freedom.

For the computation of (9.65), we need a priori knowledge about the quantized
parameter in terms of the 2w probabilities P (x(i)) = P (v(i)), i = 0, 1, . . . , 2w − 1,
i.e., the histogram of the quantized parameter.

In the general case, we model the quantized parameter as a Markov process of
(N + K)-th order (N past values and K future values). For reasons of simplicity
we will restrict our considerations to the case K = 0 here according to

P (xk | xk+K , . . . , xk+1, xk−1, . . . , xk−N ) =

P (xk | xk−1, . . . , xk−N ) . (9.66)

To find an appropriate Markov order, it is convenient to measure terms for different
N such as P (xk), P (xk | xk−1), and P (xk, xk−1) or even higher-order conditional
and joint probabilities. This can be achieved by applying a large signal database
to the source encoder and by counting the occurrences of the different quantizer
output symbols, or different pairs of output symbols. We call P (xk) zeroth-order
a priori knowledge (N = 0, AK0) because it gives a statistical description of a zero-
order Markov process, i.e., a memoryless process. Accordingly, we call P (xk | xk−1)
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Figure 9.11: A priori parameter knowledge
a) AK0: zeroth order (N=0), 1D parameter/bit pattern histogram
b) AK1: first order (N=1), 2D parameter/bit pattern histogram

or P (xk, xk−1) first-order a priori knowledge (N = 1, AK1) because it refers to
a first-order Markov process. The decision on which model should be taken is a
matter of the

• observed redundancy

• allowed complexity of the soft decision source decoder

• trade-off between performance and complexity.

The two cases AK0 and AK1 are illustrated by the histograms of Fig. 9.11.

If we model a parameter as a zeroth-order Markov process, 2w probabilities
P (xk = x(i)) with i ∈ {0, 1, . . . , 2w − 1} have to be stored in the decoder. With
the entropy defined as

H(xk) = −
2w−1∑

i=0

P
(
x(i)

)
log2 P

(
x(i)

)
, (9.67)

the redundancy of ∆R = M − H(xk) can be used for error concealment.

If a parameter is modeled as a first order Markov process, the 22w probabilities
P (xk = x(i) | xk−1 = x(j)) with i, j ∈ {0, . . . , 2w − 1} have to be stored in the de-
coder. Then, a redundancy of ∆R = M − H(xk | xk−1) can be used for error con-
cealment, with the conditional entropy H(xk | xk−1) (see, e.g., [Cover, Thomas
1991]). This concept can be extended to even higher Markov orders N , while the
storage requirements are 2w(N+1) words.
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9.4.2.2 The Parameter Transition Probabilities

Knowing the (instantaneous) bit error probabilities pk(κ), κ = 1, . . . , w, of the
known received bit x̂k(κ), we get the bit transition probabilities for any transmitted
bit xk(κ) as

P
(
x̂k(κ) | xk(κ) = x(i)(κ)

)
=

{
1 − pk(κ) if x̂k(κ) = x(i)(κ)

pk(κ) if x̂k(κ) �= x(i)(κ) .
(9.68)

If we consider an equivalent channel with independent bit errors (memoryless), the
parameter transition probability reads

P
(
x̂k | xk = x(i)

)
=

w−1∏

κ=0

P
(
x̂k(κ) | x(i)(κ)

)
. (9.69)

This term includes the channel characteristics and provides the prob-
ability of a transition from any possibly transmitted bit combination
x(i), i ∈ {0, 1, . . . , 2w − 1}, at time k, to the known received bit combination x̂k.

In real-life applications, the assumption of a memoryless equivalent channel can be
a coarse approximation, even if an interleaving scheme is employed within inner
channel coding. However, the achievable error concealment based on Eq. (9.69)
might still be very effective.

For the clarification of (9.69), we consider the calculation of the parameter transi-
tion probability by way of example.

Example:

w = 3,

pk = (p0, p0, p0),

x̂k = (+1, +1, −1) and

i = 2, i.e., xk = x(2) = (+1, −1, +1)

P
(
x̂k | xk = x(2)

)
= (1 − p0) · p2

0 .

The bit error rate is assumed to be constant during the transmission of the
3 bits. We are interested in the probability that at time instant k the bit pat-

tern x
(2)
k = x(2) = (+1, −1, +1), i.e., i = 2, is transmitted and that we receive

the bit pattern x̂k = (+1, +1, −1). In this case, we would obviously receive one
bit without error and two erroneous bits. The corresponding parameter transition
probability for the quantization table entry i = 2 is therefore given by

P
(
x̂k | xk = x(2)

)
= (1 − p0) · p2

0 . (9.70)
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In case of p+ = p− = 1/2, i.e., Lx = 0, the parameter transition probabilities can
be derived from the softbits (9.15) by considering the different cases x(i)(κ) = ±1
and x̂(κ) = sign{x̃(κ)} = ±1 as follows:

P
(
x̂|x(i)

)
=

w−1∏

κ=0

∣∣x(i)(κ) + x̃(κ)
∣∣

2
. (9.71)

9.4.2.3 Approaches with Different Degrees of A Priori Knowledge

No A Priori Knowledge (NAK)
If there is no a priori knowledge available about the regarded parameter, we have
to assume that the quantizer output symbols are uncorrelated and equally likely
with

P (v(i)) = P (x(i)) =
1

2w
. (9.72)

In this case only the channel-dependent soft information can be exploited. The
required probabilities (9.65) are

P
(
xk = x(i) | x̂k

)
=

P
(
x̂k | xk = x(i)

)

2w−1∑
m=0

P
(
x̂k|xk = x(m)

) . (9.73)

Zeroth-Order A Priori Knowledge (AK0)
It should be noted that in practical coding schemes the assumption of equally
likely quantizer outputs is usually not met. The widely used Lloyd–Max quan-
tizers [Max 1960] (see also Section 7.4) yield, for instance, identical quantization
error variance contributions of each quantization interval i, but no identical prob-
abilities P (xk = x(i)) .

If there is zeroth-order a priori knowledge available (N = 0), the Bayes rule yields
according to (9.65) a posteriori probabilities

P
(
xk = x(i) | x̂k

)
=

P
(
x̂k | xk = x(i)

)
·P

(
xk = x(i)

)

2w−1∑
m=0

P
(
x̂k | xk = x(m)

)
·P

(
xk = x(m)

) , (9.74)

which take the parameter distribution, i.e., P
(
vk = v(i)

)
= P

(
xk = x(i)

)
, into ac-

count.

First-Order A Priori Knowledge (AK1)
The a posteriori term in Eq. (9.74) assumes successive bit combinations
to be independent. If there is a residual correlation of first order, i.e., if
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H(xk) > H(xk | xk−1), the a posteriori probabilities can be extended to take this
correlation into account as well. The maximum information that is available at the
decoder consists of the complete sequence of the bit combinations already received

x̂k, x̂k−1, x̂k−2, . . . , x̂k−N = x̂k, X̂−1 ,

where X̂−1 includes the complete history of the received bit combinations un-
til the previous time instant k − 1. Given the first-order a priori knowledge
P (xk = x(i) | xk−1 = x(j)), the a posteriori probabilities P (xk = x(i) | x̂k, X̂−1)
exploiting this complete history can be computed by means of a recursion. The
MS estimation can be carried out as given in (9.61). The derivation of the calcula-
tion of the AK1, . . . , AKN a posteriori probabilities can be found in [Fingscheidt
1998], [Fingscheidt, Vary 2001].

9.5 Application to Model Parameters

In this section, we will demonstrate the capabilities of soft decision source decoding
by applying it to artificial Gaussian parameters. We will focus on a single codec
parameter rather than on signal reconstruction. The parameter ṽk, which is taken
from a first-order autoregressive process with correlation factor of ρṽṽ = 0.9, for
example, is quantized by a scalar Lloyd–Max quantizer (LMQ) [Max 1960] using
w bits. Correlation values of this magnitude can be found, for instance, in gain
factors of speech and audio codecs. As we are not interested in the optimization of
the bit mapping scheme here, we choose the natural binary code (NBC) [Jayant,
Noll 1984]. We employ BPSK modulation over an AWGN channel and coherent
demodulation, i.e., Fig. 9.5 with a = 1 (no fading). The reliability information in
terms of instantaneous bit error probabilities pk(κ) or |z(κ) · Lc| in Eq. (9.48) is
assumed to be ideally known, and thus the results presented in Figs. 9.12–9.16 can
be interpreted as upper bounds for implementations with estimated reliability.

As a measure of quality we choose the global signal-to-noise ratio on the parameter
level

SNR = 10 log10

E
{
ṽ2

}

E {(v̂ − ṽ)2} (9.75)

which is henceforth called the parameter SNR.

For typical speech, audio, and video coding schemes the SNR of the most sensi-
tive parameters seems to be a reasonable measure of parameter quality even for
sporadic but extreme parameter errors.
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9.5.1 Soft Decision Decoding without Channel Coding

In the first simulation, we do not use any channel coding. Thus, the input bit
xk(κ) and the output bit x̂k(κ) of the channel belong to the bit combinations of
the quantized codec parameters vk and v̂k, respectively. The soft decision (SD)
decoding techniques use softbits or instantaneous bit error probabilities and a
priori probabilities. In the example of Fig. 9.12, we choose a quantizer with w = 3,
i.e., 2w = 8, quantizer reproduction levels. Under clear channel conditions (no
channel noise), the SNR due to quantization is about 15 dB.

While the parameter SNR of hard decision (HD) decoding decreases rapidly with
decreasing channel quality (Eb/N0 ratio), soft decision decoding allows gains de-
pending on the amount of parameter a priori knowledge which is used. By exploit-
ing only the soft information at the channel output (i.e., no a priori knowledge,
NAK, only the instantaneous bit error rates pk(κ)), the SNR performance is slightly
improved in comparison to hard decision decoding. A further improvement can be
gained by using the zeroth-order a priori knowledge (AK0) which corresponds to
the best case if the correlation is not taken into consideration or if the parameter
is uncorrelated (i.e., ρṽṽ = 0). However, if we exploit the correlation of the model
parameter according to ρṽṽ = 0.9, then the first order a priori knowledge (AK1)
allows significant additional gains.

The conclusion from the experiment is that in the case of a highly correlated
parameter, soft decision decoding by mean-sqare estimation (MS) exploiting first

Figure 9.12: SNR performance of soft decision (SD) decoding without channel coding
(Gaussian source s, Lloyd–Max quantizer (LMQ) with w = 3 bits,
ρṽṽ = 0.9, MS estimation)
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order a priori knowledge (AK1) allows improvements of the parameter SNR of up
to 6–10 dB or corresponding Eb/N0 gains of up to 3–6 dB in comparison to hard
decision decoding.

The PCM standard G.711 [ITU-T Rec. G.711 1972] provides a single parameter –
the speech sample itself – quantized by w = 8 bits. Soft decision demodulation for
PCM speech, where the PDF of speech samples is exploited as a priori knowledge
was also investigated by Sundberg et al. ([Wong et al. 1984], [Sundberg 1978]).

The A-law PCM transmission over an AWGN channel was simulated as de-
scribed before. The channel quality in terms of Eb/N0 is again assumed
to be ideally known. We measured entropy values of H(xk) = 7.83 bits and
H(xk|xk−1) = 6.5 bits if pause segments were removed from the speech database.
Including speech pauses, both values are much lower, depending on the percentage
of speaker activity. This indicates that the usage of at least zeroth-order a priori
knowledge is recommendable. The difference between entropy and conditional en-
tropy reflects the amount of redundancy due to correlation that can be used by
first-order a priori knowledge.

Figure 9.13 shows four different cases in terms of speech SNR (here: equal to
parameter SNR) as a function of the Eb/N0 ratio. If a priori knowledge is ex-

Figure 9.13: SNR performance of soft decision (SD) decoding without channel coding
(A-law PCM, 64 kbit/s, MS estimation) [Fingscheidt, Vary 2001];
c© 2001 IEEE
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ploited, the quality of the MS estimated speech degrades asymptotically to 0 dB
with decreasing Eb/N0, i.e., the inherent muting mechanism of MS estimation. As
in Fig. 9.12, the shape of the curves strongly depends on the order of exploited
a priori knowledge. In comparison to hard decision (HD) decoding, soft decision
(SD) decoding by MS estimation without a priori knowledge (SD, NAK) leads
to a small speech SNR gain of about 1–2 dB, while the exploitation of a priori
knowledge allows speech SNR gains of up to 10 dB (zero order) and up to about
15 dB (first order), respectively. This corresponds to a significant enhancement of
the perceived speech quality although the model of the speech as a Markov pro-
cess of first order is actually too simple. Further improvements can be gained by
increasing the model order [Fingscheidt, Vary 1997a], [Fingscheidt, Vary 1997b],
[Fingscheidt et al. 1998].

9.5.2 Soft Decision Decoding with Channel Coding

In this section, soft decision decoding in connection with channel coding will be
investigated. In a first step, we apply an outer parity check code to each param-
eter individually and exploit the added redundancy in the soft decision decoding
process. We do not explicitly implement an outer channel decoder, as indicated
in Fig. 9.14, but we use the additional artificial redundancy to support parameter
estimation by improved a priori knowledge.

As a consequence of the even (or odd) parity check bit, transmit vectors
yk ∈ {y(i), i = 0, . . . , 2w − 1} with an odd (or even) number of bits do not exist.
If such bit patterns ŷk occur at the receiver due to bit errors, the corresponding
a posteriori probabilities P (xk = x(i) | ŷk) or conditional L-values L(xk | yk)
can easily be calculated with slight modifications of the approach described in
Section 9.4.2 [Fingscheidt et al. 1999]. The code has the rate r = w/(w + 1).

The equivalent channel of Fig. 9.14 may include inner channel coding and decoding.
In any case, the availability of reliability information in terms of the instantaneous
bit error probabilities is assumed at the channel output.

Figure 9.14: Support of soft decision decoding by an outer channel block code
(e.g., parity check per parameter)
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Figure 9.15: SNR performance of soft decision source decoding with outer parity check
code (sequence of Gaussian parameters ṽk, LMQ, bit patterns xk with w = 3
bits, ρṽṽ = 0.9, one parity check bit per bit pattern xk, MS estimation)

An example is shown in Fig. 9.15. A sequence of Gaussian parameters ṽk with
unit variance is applied to a w = 3 bit scalar Lloyd–Max quantizer. The bit
mapping is natural binary coding (NBC), and the equivalent channel is AWGN
with BPSK modulation and coherent demodulation. The soft output of the channel
is computed as given in (9.48) and (9.52). The Gaussian source is a first-order
Markov process with correlation ρ = 0.9. Within the soft decoding process we
can exploit this correlation (first-order a priori knowledge) or we can disregard it
(zeroth-order a priori knowledge).

The comparison of the achievable parameter SNR as a function of the Eb/N0

ratio of the channel shows the worst performance for conventional hard decision
decoding via table lookup (dashed line). In this case, no outer channel coding
is applied, and the total transmission power is spent on the transmission of the
uncoded bits xk. The term Eb quantifies in any case the energy which is spent
to transmit one information bit xk(κ). However, if a parity check bit is added
to each group xk while keeping the same total transmit power per parameter as
before, the parameter quality can be enhanced significantly by soft decision source
decoding (solid lines), especially if we exploit the parameter correlation (solid line
with stars). The assumed correlation of ρ = 0.9 is comparable to the measured
correlation of parameters of various codec standards for speech and audio, such as
gain factors in CELP speech codecs and subband audio codecs.
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In a second step, we take inner channel coding into consideration and realize the
equivalent channel of Fig. 9.10 as a combination of a convolutional channel encoder,
an AWGN channel, and a channel decoder with soft-decision output.

We choose w = 2 and a convolutional encoder with a coding rate of r = 1/2 and
constraint length L = 5. A sequential realization of the channel decoder according
to Bahl et al. [Bahl et al. 1974] is used. In the clear channel condition the parameter
SNR provided by a 2 bit Lloyd–Max quantization (LMQ) is 9.3 dB. We consider
the transmission model of Fig. 9.8 with the options

• hard decision source decoding, using only x̂k

(no a priori knowledge)

• soft decision source decoding, using x̂k, pk, and P (vk = v(i)) = P (x(i))
(a priori knowledge of zero order)

• soft decision source decoding, using x̂k, pk, P (v(i)), and
P (vk = v(i) | vk−1 = v(j)) (a priori knowledge of first order).

Figure 9.16 shows that soft decision source decoding is able to reduce the gradient
of quality loss beyond the typical threshold of soft input channel decoding with

Figure 9.16: SNR performance of soft decision decoding in connection with rate r = 1/2
convolutional channel coding using a sequential channel decoder;
LMQ, w = 2, ρṽṽ = 0.9, MS estimation, Es = rEb = 1

2
Eb

[Fingscheidt, Vary 2001]; c© 2001 IEEE
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Table 9.1: Number of bits w, entropy H(xk), conditional entropy H(xk | xk−1) of
the parameters of the GSM full-rate codec [Fingscheidt, Scheufen 1997a],
[Rec. GSM 06.10 1992], [Fingscheidt, Scheufen 1997b]

LAR no.
[

bit
parameter

]
1 2 3 4 5 6 7 8

w 6 6 5 5 4 4 3 3
H(xk) 5.43 4.88 4.75 4.53 3.73 3.76 2.84 2.88
H(xk | xk−1) 4.46 4.29 4.18 4.09 3.37 3.39 2.49 2.46

LTP RPE
[

bit
parameter

]
Lag Gain Grid Max. Pulse

w 7 2 2 6 3
H(xk) 6.31 1.88 1.96 5.39 2.86
H(xk | xk−1) 5.75 1.74 1.96 4.29 2.86

hard decision source decoding. However, if the soft output of the channel decoder in
terms of L-values or instantaneous bit error rates pk is exploited within the source
decoder, the soft decision source decoding scheme based on the first-order model
allows Es/N0 (Es: energy per coded bit) or Eb/N0 (Eb: energy per information
bit) gains of 1 dB or more.

In a final example the concept of soft decision speech decoding is applied to
the GSM full-rate speech decoder [Rec. GSM 06.10 1992], [Fingscheidt, Scheufen
1997a], [Fingscheidt, Scheufen 1997b]. In Table 9.1 some codec parameters and
their corresponding entropy values are listed. It is obvious that for most of the
parameters first-order a priori knowledge will be helpful. Exceptions are the RPE
grid and the RPE pulses (see also Chapter 8 and Appendix A). For reasons of
simplicity, each codec parameter is modeled as a first-order Markov process.

For example, LAR no. 1 (Log Area Ratio, see Chapter 8), which is one of the
subjectively most important parameters, provides a redundancy of 1.54 bits. This
is more than 25%. Even speech codecs with lower bit rates than the GSM full-
rate codec provide a very high amount of residual redundancy within the spectral
parameters: e.g., [Alajaji et al. 1996] found about 29% of redundancy for the line
spectral frequencies (LSFs) of the FS 1016 CELP [FS 1016 CELP 1992] due to
non-uniform distribution (zeroth-order a priori knowledge concerning time) and
due to intraframe correlation (first-order a priori knowledge concerning correlation
to LSFs of the same frame).

It turns out that the non-integer GSM codec parameters can be well estimated
using an MS estimator. In contrast to this, the estimation of a pitch period (LTP
lag) or the RPE grid position should be performed by an MAP estimator.
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Figure 9.17: SNR performance of GSM full-rate soft decision speech decoding, TU50
(MS estimation) [Fingscheidt, Vary 2001]; c© 2001 IEEE

Depicted in Fig. 9.17 are the results of a complete GSM simulation using the
COSSAP GSM library [COSSAP 1995] with speech and channel (de)coding,
(de)interleaving, (de)modulation, a channel model, and equalization. The chan-
nel model represents a typical case of an urban area (TU) with six characteristic
propagation paths [Rec. GSM 05.05 1992] and a user speed of 50 km/h (TU50).
Soft-output channel decoding is carried out by the algorithm of Bahl et al. [Bahl
et al. 1974]. The conventional reference GSM decoder performs error concealment
by a frame repetition (FR) algorithm as proposed in [Rec. GSM 06.11 1992]. The
bad frame indicator (BFI) is simply set by the evaluation of the CRC (Cyclic
Redundancy Check).

The SNR is surely not the optimum measure for speech quality. However, informal
listening tests reveal the superiority of the soft decision speech decoder in compar-
ison to the conventional decoding scheme in all situations of vehicle speeds and
C/I ratios. Error concealment by soft decision speech decoding provides quite a
good subjective speech quality down to C/I = 6dB, whereas conventional frame
repetition produces severe distortions at C/I = 7dB. Even long error bursts caused
by a low vehicle speed can be decoded sufficiently. In the soft decision decoding
simulation, the annoying clicks of hard decision decoding in the case of CRC fail-
ures and the synthetic sounds of the frame repetition disappear completely and
turn into slightly noisy or modulated speech. This enhances the perceived speech
quality significantly.
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A very attractive feature of this soft decision source decoding technique is the fact
that it can be applied to any source coding algorithm without modifications at the
transmitter side. In clear channel conditions, bit exactness is always preserved.

9.6 Further Improvements

Further improvements are obtained if we replace the outer parity check code in
Fig. 9.14 by a more powerful block code [Fingscheidt et al. 1999] or even by a
non-linear block code, e.g., [Heinen, Vary 2000], [Hindelang et al. 2000], [Heinen
2001], [Heinen, Vary 2005], which is not intended for explicit channel decoding
at the receiver but for increasing the a priori knowledge in support of the soft
decision parameter estimation process.

This combination of soft decision source and channel decoding is actually an attrac-
tive alternative to conventional error concealment based on parity check coding.
Furthermore, if the residual correlation of the codec parameters exceeds a certain
value, soft decision source decoding with support by outer channel block coding
can outperform conventional channel coding [Hindelang et al. 2000].

In any case, this concept is also advantageous in combination with conventional
inner channel coding, even if the residual parameter correlation is low.

Finally, it should be mentioned that the concept of soft decision source decoding
opens up possibilities for iterative source–channel decoding, e.g., [Görtz 2000], [Far-
vardin 1990], [Adrat et al. 2002], [Perkert et al. 2001]. This approach of joint and
iterative source-channel decoding is called turbo error–concealment [Adrat 2003].
The decoding process is based on the turbo principle [Berrou, Glavieux 1996], as
illustrated in Fig. 9.18. One of the two component decoders is a channel decoder,
the other is a soft decision source decoder. The inner SISO channel decoder pro-
vides extrinsic information to the soft decision source decoder which itself extracts
extrinsic information on the bit level from the parameter a posteriori probabilities

Figure 9.18: The concept of iterative source–channel decoding
(“Turbo error-concealment” [Adrat 2003])
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and feeds it back to the channel decoder. After terminating the iterations, the final
step consists of estimating the codec parameter as described in Section 9.4.1 using
the resulting reliability information (bit error probabilities) on the parameter level.

The improved capabilities of the iterative source–channel decoding are demon-
strated by the example of Fig. 9.19. Gauss–Markov source parameters ṽk with
unit variance and correlation ρ = 0.95 are applied to an optimum Lloyd–Max
quantizer (LMQ) with w = 3 bit/parameter. This degree of correlation can be
found in certain parameters of some standardized speech and audio codecs. The
bit mapping rule is natural binary coding. No outer channel encoding is used here.
The inner channel decoder is a rate r = 1/2 recursive non-systematic convolutional
channel code (RNSC) with constraint length L = 7 and generator polynomials

G1(D) =
1 + D2 + D3 + D5 + D6

1 + D + D2 + D3 + D4 + D6
(9.76-a)

G2(D) =
1 + D + D4 + D6

1 + D + D2 + D3 + D4 + D6
. (9.76-b)

A target parameter SNR of 13.5 dB is assumed.

In comparison to non-iterative decoding schemes, further significant improvements
of the error robustness can obviously be achieved. For further details, the reader
is referred to, for example, [Adrat 2003], [Adrat, Vary 2004], [Adrat et al. 2005],
[Adrat, Vary 2005].

Figure 9.19: Example of iterative source–channel decoding (ISCD):
Gauss–Markov parameter with ρ = 0.95, LMQ with w = 3bit/parameter
RNSC: Recursive Non-Systematic Convolutional code, r = 1/2, L = 7
Soft decision source decoding with a priori knowledge of first order
(“Turbo error concealment” [Adrat 2003])
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Gerlach, C. G. (1996). Beiträge zur Optimalität in der codierten Sprachüber-
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Bandwidth Extension
(BWE) of Speech Signals

The characteristic sound of telephone speech with its restricted audio quality is
mainly caused by the limitation of the transmitted bandwidth to the frequency
range of the old analog telephone. In the conversion process from analog to digital
transmission technology, the frequency bandwidth from 300Hz to 3.4 kHz [ITU-T
Rec. G.712 1988] has been retained for reasons of compatibility.

In the long run, true wideband transmission with a bandwidth of 7 kHz will be
introduced into the telephone networks. However, this will require a very long
transition period in which many or, in the beginning, even most terminals and
parts of the network have not yet been equipped with the wideband capability. In
this situation, the speech quality may be improved at the receiving end by means
of artificial bandwidth extension (BWE).

Bandwidth extension of telephone speech or audio signals is a very recent and
attractive research topic. The objective is to increase the frequency bandwidth
and to improve the perceived speech or audio quality by artificially adding some
spectral components. These components are generated within the decoding process
using information which is completely extracted from the transmitted narrowband
signal in the extreme case. Alternatively, the network or the encoder may allow
the transmission of a small amount of side information to support the process of
bandwidth extension.

Digital Speech Transmission: Enhancement, Coding and Error Concealment

Peter Vary and Rainer Martin
c© 2006 John Wiley & Sons, Ltd
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In this chapter, it will be shown how some specialized versions of BWE with side
information have already been used in the context of speech coding and how the
purely receiver-based extension may work.

10.1 Narrowband versus Wideband Telephony

The minimum demands on the telephone bandwidth were specified in the CCITT
Red Book from 1961: at the lower and the upper cutoff frequencies of fL = 300Hz
and fU = 3.4 kHz, the analog filters in the transmission path may attenuate the
signal by no more than 10 dB with regard to the level at the frequency of 800Hz
([ITU-T Rec. G.132 1988], [ITU-T Rec. G.151 1988]). At that time, the reasons
for the bandwidth limitation were the use of analog frequency division multiplex
(FDM) transmission with a frequency grid of 4 kHz and the optional use of sub-
audio telegraphy for out-of-band signaling. The specification of the cutoff frequen-
cies of 300Hz and 3.4 kHz and of the filter characteristics was based on subjective
listening tests. According to this specification, the intelligibility of (meaningless)
syllables is about 91% and the comprehension of sentences is about 99% [Terhardt
1998], [Brosze et al. 1992], [Schmidt, Brosze 1967]. However, listening experiments
have shown that a certain increase of the acoustic bandwidth significantly improves
not only the perceived speech quality ([Krebber 1995], [Voran 1997]) but also the
intelligibility of, for example, unvoiced and fricative speech sounds.

Since then, the public telephone networks have been converted almost com-
pletely to digital transmission techniques. According to the international standards
[ITU-T Rec. G.711 1972] and [ITU-T Rec. G.712 1988], the speech signals are sam-
pled at a sampling rate of fs = 8kHz and the samples are quantized using non-
linear companding according to the A-law or µ-law characteristic (see Section 7.3)
with 8 bits per sample, resulting in the bit rate of 64 kbit/s. A minimum stopband
attenuation of at least 25 dB has to be achieved above 4.6 kHz. The attenuation
tolerance scheme for PCM transmission is given in Fig. 10.1-a.

For cellular phone systems, a further limitation of the frequency range is specified
in order to reduce the amount of disturbing low-frequency background noise. In
the GSM system, for instance, the sensitivity of both the sending and the receiving
terminal should provide an attenuation of at least 12 dB below 100Hz [ETSI Rec.
GSM 03.50 1998].

As we know from everyday life, speech intelligibility on the phone seems to be
sufficient, at least for a normal conversation, although the fundamental frequency
of speech is not transmitted in most cases. We become aware of the limited intel-
ligibility of syllables if we are forced to understand unknown words or names. In
these cases we often need to spell a word, especially to distinguish between certain
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Figure 10.1: Tolerance scheme for the magnitude frequency response
of the PCM anti-aliasing filter according to:
a) ITU-T G.712: narrowband speech
b) ITU-T G.722: wideband speech

unvoiced or plosive utterances, such as /f/ and /s/ or /p/ and /t/. A second re-
striction of the subjectively perceived speech quality is that some speaker-specific
features are not retained on the phone. Speaker transparency is frequently limited.

These restrictions can be overcome with the introduction of wideband speech trans-
mission, which is characterized by the extended frequency band from 50Hz to
7.0 kHz, as indicated in Fig. 10.1-b by the magnitude tolerance scheme of the cor-
responding anti-aliasing input filter according to [ITU-T Rec. G.722 1988]. The
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sampling frequency has to be increased from fs = 8kHz to f
′

s = 16kHz, and the
required resolution for A/D conversion has to be improved from w = 8 bits (non-
uniform A-law or µ-law) to w′ = 14 bits (uniform) per sample. In what follows,
conventional telephone speech will be called narrowband speech (as opposed to
wideband speech).

An example of unvoiced speech with significant frequency content beyond 3.4 kHz
is given in Fig. 10.2, which shows a spectral comparison of the original speech with
the corresponding narrowband and wideband versions. A closer look at Fig. 10.2
reveals that narrowband speech may lack significant parts of the spectrum and
that the difference between wideband speech and original speech is still clearly
noticeable. The frequency range of wideband telephone speech is comparable to
the bandwidth of AM radio broadcasting, which provides excellent speech quality
and intelligibility of syllables but is nowadays no longer considered to be adequate
for music.

Here, we will only discuss transmission of speech. The introduction of wideband
transmission in a telephone network requires at least new terminals with better
electro-acoustic front-ends, improved A/D converters, and new speech codecs. In
addition, signaling procedures are needed for detection and activation of the wide-
band capability. In cellular radio networks, expensive modifications are necessary,
since speech-codec-specific error protection (channel coding) is implemented in the
base stations and not in the centralized switching centers.

Several wideband speech codecs have been standardized in the past. In 1985, a first
wideband speech codec for ISDN and teleconferencing with bit rates of 64, 56 and
48 kbit/s was specified by CCITT ([ITU-T Rec. G.722 1988], see also Appendix A
on codec standards). For the sake of compatibility with the existing terminals, this
standard comprises a dedicated signaling procedure for the automatic detection of
the capabilities of the far-end terminal and a fall-back mode to narrowband ISDN
(A-law, µ-law), if necessary. However, this codec has not yet been introduced in
public telephone networks. It is mainly used in the context of radio broadcast
stations by external reporters using special terminals and ISDN connections from
outside to the studio.

In 1999, a second wideband codec [ITU-T Rec. G.722.1 1999] was introduced which
produces almost comparable speech quality at reduced bit rates of 32 and 24 kbit/s.

The breakthrough will probably be the recently standardized adaptive multi-rate
wideband (AMR-WB) speech codec, specified by the 3GPP initiative (3rd Gen-
eration Partnership Project) and by ETSI for CDMA cellular networks such as
UMTS. This 7 kHz codec has eight different modes with bit rates from 6.6 kbit/s
up to 23.85 kbit/s with increasing quality [3GPP TS 26.190 2001], [Salami et al.
1997]. This codec has been adopted by ITU [ITU-T Rec. G.722.2 2002]. A further
extension has been specified by 3GPP recently with the AMR-WB+ codec, which
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Figure 10.2: Example of a short-term spectrum of an unvoiced utterance
a) S: original speech
b) Snb: narrowband telephone speech
c) Swb: wideband telephone speech

is an extension of the AMR-WB codec in terms of the frequency range up to 16 kHz
and bit rates up to 32 kbit/s. The aforementioned AMR-WB codec is part of the
AMR-WB+ standard [3GPP TS 26.290 2005] (see also Appendix A).

Although cellular phones are replaced by new models much more often than fixed
line telephones, there will be a long transitional period with both narrowband and
wideband terminals in use in both cellular and fixed networks. During this period,
artificial bandwidth extension will be a very attractive feature to increase the ac-
ceptance of the new wideband terminals. As indicated in Fig. 10.3, there may be a
narrowband terminal at the far end and narrowband transmission over the network,
while the near-end terminal already has the wideband capabilities. For reasons of
compatibility, the narrowband codec has to be used for bidirectional transmission.
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Figure 10.3: Artificial bandwidth extension (BWE) at the receiving end

However, due to the increased audio bandwidth of the near-end terminal (sampling
rate 16 kHz), artificial bandwidth extension (BWE) can be applied to improve the
received speech signal. This approach does not require any modification of the
sending terminal and the network.

10.2 Speech Coding with Integrated BWE

Artificial BWE is closely related to speech coding. In fact, some very special and
effective variants of BWE techniques have been used as an integral part of various
speech codecs for many years. A very prominent example in this respect is the
GSM full-rate codec [Rec. GSM 06.10 1992] (see also Chapter 8).

Most of the BWE algorithms proposed in the literature are based on the source–
filter model of speech production. The extension of the source signal (excitation)
and of the frequency response of the synthesis filter (spectral envelope) can be
treated separately [Carl 1994], [Carl, Heute 1994]. The latter is much more chal-
lenging because the ear is rather insensitive with respect to coarse quantization
or approximation of the excitation signal. Therefore, BWE can be implemented
with great success if the information on the complete spectral envelope is trans-
mitted, while the extension of the excitation is performed at the receiver without
additional side information.

This idea has been used for coding narrowband telephone speech for quite a long
time to achieve bit rates below 16 kbit/s with moderate computational complexity.
The excitation signal d(k) is transmitted with a bandwidth even smaller than the
standard telephone bandwidth by applying lowpass filtering and sample rate deci-
mation. In this way, more bits can be assigned to each of the residual samples which
are transmitted. The basic concept, which was originally proposed by [Makhoul,
Berouti 1979], is called baseband RELP (Residual Excited Linear Prediction). It
is illustrated in Fig. 10.4 (see also Section 8.5.2).
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Figure 10.4: Basic principle of the RELP codec, example r = 4

The prediction error signal d(k) or residual signal is obtained by linear prediction
using the analysis filter

1 − A(z) = 1 −
n∑

ν=1

a(ν) · z−ν

to produce the residual signal

d(k) = x(k) −
n∑

ν=1

a(ν) · x(k − ν) .

Due to the limited bit rate, the bandwidth is reduced by applying a lowpass filter
with a normalized cutoff frequency of Ωc = π/r to d(k). The decimation fac-
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tor r ∈ {2, 3, . . .} is fixed and used for the sample rate decimation of the lowpass
filtered residual d̄(k) according to

d̃(k
′

) = d̄(k = k
′ · r) .

The number of samples which have to be quantized and coded is therefore reduced
by r (see also Section 8.5.2) and more bits are available for the scalar quantization
of the remaining residual samples d̃(k

′

). At the receiving end, the missing samples
are replaced by zeros

d̂(k) =

{
d̃(k

′

) k = k
′ · r

0 else

and thus the baseband of the residual signal, which occupies the frequency range
−π/r ≤ Ω ≤ π/r, is repeated r times and scaled by 1/r with center frequencies

Ωi =
2π

r
· i ; i = 0, 1, 2, . . . , r − 1 . (10.1)

The bandwidth extended excitation signal is given by

D̂(ejΩ) =
1

r
·

r−1∑

i=0

D
(
ej(Ω−Ωi)

)
. (10.2)

This method yields reasonable results due to the insensitivity of the human ear
at higher frequencies, especially for unvoiced sounds. In this case, the regenerated
excitation signal d̂(k) is a noise signal with a flat spectral envelope. If the input
signal is voiced, the spectral repetitions according to (10.2) will deliver a spectrum
with discrete components and a flat envelope. However, the discrete components
are not necessarily harmonics of the fundamental frequency. Therefore, this type
of speech codec produces a slightly metallic sound, especially for female voices.

The extension of the excitation signal by spectral repetition or spectral folding as
given by (10.2) is called high-frequency regeneration [Makhoul, Berouti 1979] which
may be considered as artificial BWE of the excitation signal. The overall spectral
envelope of the speech segment is reconstructed from the spectrally flat excitation
by applying the synthesis filter 1/(1 − A(z)) which covers the whole frequency
range 0 ≤ Ω ≤ π. In contrast to true artificial BWE, there is no need to estimate
the spectral envelope in the extension band π

r ≤ Ω ≤ π. The transmission of the
coefficients of a(ν) with ν = 1, 2, . . . , n may be considered as the transmission of
auxiliary information for the construction of the decoded signal in the extension
band.

This concept of the baseband RELP was later refined for different standardized
speech codecs. A prominent example is the basic full-rate speech codec of the GSM
system, e.g., [Rec. GSM 06.10 1992], [Vary et al. 1988], [Sluijter 2005].
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More recently, BWE has been applied in the context of wideband speech coding,
e.g., [Paulus, Schnitzler 1996], [Paulus 1996], [Taori et al. 2000], [Schnitzler 1999],
[Erdmann et al. 2001], [3GPP TS 26.171 2001]. In these approaches, CELP cod-
ing (see also Section 8.5.3) is applied to the speech components of up to about
6 kHz, and artificial BWE is used to synthesize a supplementary signal for the
narrow frequency range from 6 to 7 kHz. The extension is supported by transmit-
ting different amounts of side information which controls the spectral envelope and
the level of noise excitation in the extension band (see also Appendix A). Similar
approaches have also been introduced in the context of MPEG audio coding as
spectral band replication (SBR) [Dietz et al. 2002], [Gröschel et al. 2003]. SBR has
been used to enhance the coding efficiency of MP3 (MP3pro) and advanced audio
coding (AACPlus), e.g., [Dietz et al. 2002], [Ehret et al. 2003], [Gröschel et al.
2003], [Homm et al. 2003].

10.3 BWE without Auxiliary Transmission

The most challenging application of BWE is the improvement of narrowband tele-
phone speech at the receiving end without transmitting any auxiliary information,
as shown in Fig. 10.3. This configuration will be required for a long time before
the conversion of the telephone networks from narrowband transmission to true
wideband transmission will be completed.

10.3.1 Basic Approaches and Classification

The early proposals for BWE used simple (analog or digital) signal processing tech-
niques without taking the model of speech production into account. Probably the
first proposal for BWE was made as early as 1933 by [Schmidt 1933], who tried to
extend the speech bandwidth by non-linear processing. In 1972, a first application
was conducted by the BBC [Croll 1972], aiming at the improvement of telephone
speech contributions to broadcast programs. Two different signal processing tech-
niques were used for the regeneration of the lower frequencies (80–300Hz) and the
higher frequencies (3.4–7.6kHz). Artificial low-frequency components were pro-
duced by rectification of the narrowband signal and by applying a lowpass filter
with a cutoff frequency of fc = 300Hz. The high-frequency components were in-
serted as bandpass noise, which was modulated by the spectral speech components
in the range 2.4–3.4kHz. However, these methods were too simple to produce con-
sistently improved speech as the level of the low-frequency content is often too
high or too low and the high-frequency extension introduces noise disturbance.
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A crucial signal processing approach was made in 1983 by P. J. Patrick [Patrick
1983]. He made a distinction between unvoiced and voiced sounds in several of his
experiments. During voiced segments a synthetic component at the fundamental
frequency was added and a copied and scaled version of the spectrum between
300 Hz and 3.4 kHz was inserted by FFT techniques beyond 3.4 kHz. These pure
signal processing concepts also produce artifacts due to a level and frequency
mismatch of the synthetic components, and they are not able to deliver consistently
natural sounding speech.

In the context of audio transmission using ADPCM coding with a sample rate
of 16 kHz and 4 bits per sample, [Dietrich 1984] has found that the subjective
quality can be improved by allowing the output filter following the D/A conversion
to deliberately leave some aliasing, due to a wide transition region of the output
lowpass filter from 8 to 12 kHz. Advanced implementations based on this idea have
also been proposed in the context of audio coding [Larsen et al. 2002], [Larsen,
Aarts 2004]. It should be noted that these simple techniques work quite well at
frequencies above 8 kHz but that they fail in the interesting 3.4–7.0kHz gap of the
telephone frequencies.

A breakthrough was made in 1994 by the proposals of H. Carl and U. Heute [Carl
1994], [Carl, Heute 1994], Y.M. Cheng, D. O’Shaughnessy, and P. Mermelstein
[Cheng et al. 1994], and Y. Yoshida and M. Abe [Yoshida, Abe 1994]. They ex-
plicitly took the model of speech production into consideration.

These approaches exploit the redundancy of the speech production mechanism, as
well as specific properties of auditory perception. This pioneering work should be
regarded as the starting point of a series of further investigations, e.g., [Iyengar
et al. 1995], [Epps, Holmes 1999], [Enbom, Kleijn 1999], [Avendano et al. 1995],
[Park, Kim 2000], [Fuemmeler et al. 2001], [Kornagel 2001], [Jax, Vary 2000], [Jax,
Vary 2002], [Jax 2002], [Jax, Vary 2003], [Jax 2004].

The common concept of the artificial BWE algorithms for speech is to exploit the
redundancy of the linear source–filter model. This model consists of an autore-
gressive (AR) filter (corresponding to the vocal tract) and a source producing a
spectrally flat excitation. According to this model, BWE can be separated into
two separate tasks [Carl 1994]:

• extension of the spectral envelope of the speech signal and

• extension of the excitation signal.

The crucial point is the estimation of the spectral envelope in the extension bands
(subscript eb, frequency range below 300Hz and beyond 3.4 kHz), while the exten-
sion of the excitation signal is far less critical, as shown, for example, by Carl [Carl
1994], [Carl, Heute 1994]. This is also known from speech coding with integrated
BWE (see also Section 10.2).
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↑

↑

Figure 10.5: Classification of BWE algorithms
a) Parallel extension: explicit superposition of an extension signal seb(k)
b) Serial extension: filtering and modification of the

narrowband signal snb(k)

The model-based algorithms for BWE proposed in the literature so far can be clas-
sified as illustrated in Fig. 10.5. The two classes, both of which extend the spectral
envelope and the excitation separately, may be denoted as parallel extension and
serial extension. In the first case, an artificial signal seb(k) consisting of the (high-
pass and lowpass) extension components is added to the telephone speech signal,
which has been interpolated to fs = 16kHz. In the serial approach, the interpo-
lated telephone speech signal is passed through a cascade of a wideband analysis
filter and the corresponding inverse synthesis filter, while the excitation signal is
extended in between. As the analysis and the synthesis filter are exactly inverse to
each other, the output signal ŝwb(k) contains the narrowband input signal snb(k)
(in the case of a “narrowband transparent” excitation extension).

Most of the algorithms proposed in the literature derive the spectral envelope of
the wideband speech signal in a first step.

In a second step, the baseband of the excitation signal (0.3–3.4 kHz) is obtained
from the narrowband speech signal by means of linear prediction (LP).

Finally, in a third step, the artificial wideband speech signal is produced by applying
the extended excitation signal (see next section) to the extended AR filter in the
context of either the parallel or the serial BWE approach of Fig. 10.5.

Before describing specific solutions, a general estimation framework [Vary 2004]
will be discussed in the next section, which covers most of the BWE algorithms as
proposed in the literature.
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10.3.2 Spectral Envelope Estimation

In this section, the procedure of conditional estimation is described in general
terms using vector notation (see also Chapter 5 for the scalar case). The speech
enhancement algorithms are based on the conditional estimation of the spectral
envelope of speech, which may be described by the AR coefficients of the AR
model of speech production, the corresponding reflection coefficients, the cepstral
coefficients, or any other related representation, see also Chapter 2 and Chapter 6.

The generic set-up is illustrated in Fig. 10.6. According to this model, a vector a
of parameters, e.g., AR coefficients, is obtained by an analysis procedure A from
the original (wideband) speech signal s. In the real application, the parameters
a are not accessible; instead, we have some disturbed/degraded observations b,
which are gained by a second analysis procedure B of a signal y, which has been
disturbed or degraded (e.g., by the telephone channel). The analysis algorithms A
and B must not necessarily be identical. Analysis is carried out by block or frame
processing. The two procedures A and B might include quantization so that the
vectors a and b only take a finite number of different values.

It is, then, the task of the conditional estimator to form an estimate â for the pa-
rameter vector a of the present frame by using the present disturbed observation b
and a priori knowledge in terms of the statistics of a. These statistics are ei-
ther discrete probabilities P (a) if a is quantized, or probability density functions
(PDFs) p(a) if a is not quantized. In addition, statistical knowledge about the dis-
turbance/degradation in terms of transition probabilities P (b | a) or conditional
PDFs p(b | a) may be taken into consideration. If information about a has been
lost due to the disturbance, the original values cannot be reconstructed without
errors. Thus, the estimation relies on finding the best possible estimate â in a
statistical sense, e.g., by minimizing the average estimation error. For this purpose

Figure 10.6: Conditional estimation in a parameter domain using a priori knowledge
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the a posteriori PDF p(a |b) of the original vector a conditioned on the instan-
taneous observation b is exploited. A cost function C(a, â) is introduced [Melsa,
Cohn 1978], which assigns a cost value or weight to each combination of undis-
turbed a and estimated â and thus weights the estimation error for each given pair
(a, â).

An estimation rule â = f(b) which minimizes the expectation of the cost function
is required. Let n = dima and m = dimb. Then the average costs, i.e., expectation
of C(a, â), can be formulated by integration over the joint PDF1 of the undisturbed
and disturbed value

ρ0 = E{C(a, â)} =

∫

IR
m

∫

IR
n

C(a, â) · p(a,b) da db . (10.3)

The estimation rule â = f(b) can be found by minimizing ρ0. After applying
Bayes’ theorem, equation (10.3) can be converted as follows:

ρ0 =

∫

IR
m




∫

IR
n

C(a, â) · p(a|b) da


p(b) db . (10.4)

As p(b) is non-negative, the minimum of ρ0 can be found by minimizing the inner
integral for every possible observation b [Melsa, Cohn 1978]

ρ1 = E{C(a, â)|b} =

∫

IRn

C(a, â) · p(a|b) da . (10.5)

Conditional Minimum Mean Square Error Estimation
Choosing the Euclidean error norm as cost function, i.e., C(a, â) = (a− â)T (a− â),
the minimization of ρ1 with respect to â

∇â




∫

IR
n

(a − â)T (a− â) · p(a|b) da


 = −

∫

IR
n

2(a− â) · p(a|b) da
!
= 0 (10.6)

and
∫

p(a|b) da = 1 lead to the minimum mean square error (MMSE) or condi-
tional mean estimator:

â = E{a|b} =

∫

IR
n

a · p(a|b) da . (10.7)

1For notational convenience, the following compact definition is introduced:

Let x = (x1, x2, . . . , xp)T ∈ IR
p

, then

∫

IR
p

f(x) dx
.
=

∞∫

−∞

· · ·

∞∫

−∞

f(x) dx1 · · · dxp .
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The a posteriori probability density p(a |b) is unknown, but by using Bayes’ the-
orem once more, (10.7) can be rewritten as

â =

∫
IR

n

a · p(b|a) · p(a) da

p(b)
=

∫
IR

n

a · p(b|a) · p(a) da

∫
IR

n

p(b|a) · p(a) da
. (10.8)

If a and b take discrete values (e.g., due to quantization), corresponding discrete
formulations of (10.7) and (10.8) can be derived. The integrals have to be replaced
by summations and the PDFs by discrete probabilities. Even a mixed form is
possible where the statistics of only one quantity are discrete. In this case, we
need the “mixed form” of Bayes’ theorem.

Conditional Maximum A Posteriori Estimation
Another useful function to weight the estimation error for (10.4) is the uniform
cost

C(a, â) =

{
0 |a− â| < ǫ
1 else .

(10.9)

To minimize the integral of (10.5) with this cost function, the maximum of p(a,b)
must be in the area where C = 0. Thus, the estimate â is obtained by searching
the maximum of the a posteriori PDF

â = arg max
a

p(a,b) , (10.10)

which can also be reformulated with Bayes’ rule:

â = arg max
a

p(b|a) · p(a)

p(b)
. (10.11)

If the a posteriori probability density is symmetric and unimodal, the MMSE
estimate equals the maximum a posteriori (MAP) estimate (see Chapter 5 or,
e.g., [Van Trees 1968]).

Applications
In the literature, different proposals of estimating the wideband spectral envelope
have been made which may be considered as applications and specializations of
the described estimation framework.

In [Carl 1994], the wideband LP coefficients are obtained by code book mapping
between the coefficient set of the narrowband speech (observation b) and a pre-
trained wideband code book (quantized target vectors a). The selection of the most
probable entry of the code book, i.e., the most probable wideband coefficient, is
to be considered as a special case of conditional MAP estimation.

In [Park, Kim 2000], the required PDFs are approximated by Gaussian mixture
models (GMMs) [Reynolds, Rose 1995], [Vaseghi 1996].
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The solution proposed in [Jax, Vary 2000] is also based on GMMs but in addition
a statistical hidden Markov state model (HMM) [Rabiner 1989], [Papoulis 1991] is
used to identify typical speech sounds. The disturbed observation b is represented
by a feature vector X, which is derived from the interpolated narrowband speech
signal, while a pre-trained code book (vectors a) contains the cepstral coefficients
of wideband speech. The conditional estimate is calculated according to the MMSE
criterion (see also Section 10.3.4).

10.3.3 Extension of the Excitation Signal

According to the simplifying linear model of speech production, the excitation
signal d(k) is spectrally flat: for voiced sounds, it contains sinusoids at multiples
of the fundamental (pitch) frequency of the speech segment where all harmonics
have almost the same amplitude; during unvoiced sounds, the excitation is more
or less white noise.

The frequencies of the narrowband signal are limited to the telephone frequency
band 300 Hz ≤ f ≤ 3.4 kHz. If the narrowband signal is interpolated to 16 kHz
and the wideband analysis filter 1− Â(z) is applied as indicated in Fig. 10.7-a, b,

the residual signal d̂nb(k) is almost flat within the telephone band and zero outside.

Due to these properties the missing high-frequency components of the excitation
signal can be produced by modulation, i.e., a frequency shift of ΩM [Carl 1994],
[Fuemmeler et al. 2001], [Kornagel 2001]

d̃(k) = d̂nb(k) 2 cos(ΩMk) , (10.12)

where the choice of ΩM is discussed subsequently. The real-valued modulation
produces two shifted components

D̃(ejΩ) = D̂nb(e
j(Ω−ΩM)) + D̂nb(e

j(Ω+ΩM)) , (10.13)

and a highpass filter with impulse response hHP (k) may be applied (see Fig. 10.7-c)
to produce the excitation in the extension band:

d̂eb(k) = d̃(k) ∗ hHP (k) . (10.14)

The estimated wideband excitation signal is finally obtained by the superposition
of the narrowband excitation d̂nb(k) and the excitation d̂eb(k) of the extension
band. The algorithmic delay k0 of the highpass filter has to be compensated for in
the path of the baseband signal:

d̂wb(k) = d̂nb(k − k0) + d̂eb(k) . (10.15)
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Figure 10.7: Narrowband and wideband excitation signals
a) Interpolation and analysis filtering of the narrowband signal
b) Spectral shape of the narrowband residual signal d̂nb(k)
c) Extension of the excitation signal by modulation according

to (10.14) and (10.15)
d) Spectral shape of an extended residual signal d̂wb(k) for

Ωc − ∆Ω ≤ ΩM ≤ π − Ωc

By selecting the modulation frequency ΩM, several modulation schemes can be
chosen:

• Modulation with the Nyquist frequency, i.e., ΩM = π and cos(ΩMk) = (−1)k,
corresponds to the method of spectral mirroring as proposed in [Makhoul,
Berouti 1979]. In this special case the two shifted copies of the baseband
spectrum coincide, so that the highpass filter from Fig. 10.7-c is not needed.

However, due to the cutoff frequency of the narrowband input signal, there
is a spectral gap in d̃wb(k) between 3.4 and 4.6 kHz with a width of 1.2 kHz
(π − 2 · Ωc, see Fig 10.7). Furthermore, the discrete spectral components of
the extended frequency band are in general not harmonics of the fundamental
frequency.
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• To prevent this spectral gap, the modulation frequency can be chosen in such
a way that the shifted spectrum is a seamless continuation of the baseband
spectrum

ΩM = Ω3.4 with Ω3.4 = 2π
3.4 kHz

fs
, (10.16)

where fs denotes the sampling rate. In general there is a misalignment of
discrete spectral components in the extension band during voiced sounds.

• A further possibility to control ΩM takes the pitch frequency Ωp of the current
speech frame into account: the modulation frequency is adapted in such a
way that it is always an integer multiple of the estimated pitch frequency Ω̃p

[Fuemmeler et al. 2001], e.g.,2

ΩM =

⌈
Ω3.4

Ω̃p

⌉
Ω̃p . (10.17)

This method guarantees that the harmonics in the extended frequency
band will always match the harmonic structure of the baseband. The pitch-
adaptive modulation reacts quite sensitively to small errors of the estimate
of the pitch frequency, because these are significantly enlarged by the fac-
tor ⌈Ω3.4/Ω̃p⌉. Therefore, a reliable pitch estimator is needed if the pitch-
adaptive method is to give rise to improvements in comparison to the two
fixed modulation schemes.

Informal listening tests have shown that – assuming that the BWE of the spectral
envelope works well – the human ear is surprisingly insensitive to distortions of
the excitation signal at frequencies above 3.4 kHz. For example, spectral gaps of
moderate width as produced by bandstop filters are almost inaudible. Furthermore,
a misalignment of the harmonic structure of speech at frequencies beyond 3.4 kHz
does not significantly degrade the subjective quality of the enhanced speech signal.
A good compromise between subjective quality and computational complexity is
the modulation with the fixed frequency of ΩM = Ω3.4.

It should be noted that a couple of different other proposals for the extension
of the excitation signal can be found in the literature. These techniques include,
for example, non-linearities [Valin, Lefebvre 2000], [Kornagel 2003] or synthetic
multiband excitation (MBE vocoder) [Chan, Hui 1996].

10.3.4 Example BWE Algorithm

The task of artificial BWE is decribed in Fig. 10.8 in the context of conditional
estimation of Fig. 10.6-a, with two different specific analysis procedures A and B.

2⌈x⌉ denotes the smallest integer larger than x.
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Figure 10.8: Model of BWE by conditional estimation
Correspondence with respect to Fig. 10.6-a: cwb = a,
X = b, ĉwb = â (vectors); wb=wideband; nb=narrowband

In analysis A, a vector of cepstral coefficients cccwb of the wideband speech signal
swb(k) is calculated, whereas analysis B delivers a feature vector X.

As a representative example, the serial BWE approach, illustrated in Fig. 10.9,
[Jax 2002], [Jax, Vary 2003], will be described here. For the representation of
the wideband spectral envelope the cepstral coefficients ĉwb are used, since the
corresponding logarithmic magnitude frequency response shows strong correlation
with human perception.

The estimation of the cepstral coefficients is based on a feature vector X and an
underlying state model of speech production. Each speech frame of 20ms with
time or frame index k′ can be characterized by a state Si (i = 1, . . . , Ns), the
typical vector of cepstral coefficients ĉi, and the “measured” feature vector X.

The estimated cepstral coefficients ĉwb are converted to the wideband LP coeffi-
cients (see Section 3.7.2) of the analysis filter 1 − Â(z) and of the corresponding
all-pole (vocal tract) filter 1/(1 − Â(z)) (Section 6.1).

By applying the FIR analysis filter 1− Â(z) to the narrowband input signal snb(k)
which has been interpolated previously to a sample rate of fs = 16kHz, an estimate
d̂nb(k) of the narrowband excitation signal (prediction residual) is derived. The

extension of the excitation signal converts the narrowband excitation signal d̂nb(k)

to an extended version d̂wb(k) by modulation, exploiting the spectral flatness.

The extended wideband excitation signal d̂wb(k) is fed into the wideband all-pole
synthesis filter 1/(1 − Â(z)) to synthesize the enhanced output speech ŝwb(k).

A comparison of the original spectrum, the narrowband spectrum, and the artifi-
cially extended spectrum is shown in Fig. 10.10.
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Figure 10.9: Block diagram of a serial BWE algorithm

Figure 10.10: Example of BWE: /s/ sound
Modulation with fixed frequency fM = 3.4 kHz
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In the BWE algorithm described here [Jax 2002], [Jax, Vary 2003], the method of
the conditional estimation of the extended spectral envelope is applied in a more
sophisticated version than explained in Section 10.3.2, since the a priori knowledge
is based on a state model of speech production. Each state Si, i = 1, 2, . . . , NS, of
the model is assigned to a typical speech sound (frame of 20ms) which is associated
with a representative envelope ĉi. The cepstral vectors ĉi are entries of a vector
quantizer (VQ) code book of the spectral envelope representation cwb (vector
of cepstral coefficients of the true wideband speech signal). Each centroid ĉi of
the vector quantizer represents the spectral envelope of a typical speech sound.
However, wideband speech swb is only available in the training phase, whereas in
the application phase of the BWE algorithm the states Si have to be identified by
classification of the narrowband speech signal snb.

For each signal frame, a vector X of features, which is chosen to deliver maximum
information about the state Si, is extracted from the narrowband signal. The
vector X contains features like the normalized auto-correlation function (or LP
coefficients of the narrowband signal), zero crossing rate, normalized frame energy,
gradient index, local kurtosis, and spectral centroid. For a detailed description refer
to [Jax 2002], [Jax, Vary 2003], [Jax 2004].

The connection between the observations X and the states Si (and thus the corre-
sponding code book entries ĉi) is established by a state-specific statistical model.
For each state Si the features X, as well as the unknown spectral envelope cwb, ex-
hibit characteristic statistical relations. The following statistical quantities can be
measured during an offline training process with representative wideband speech
signals swb(k) and corresponding narrowband signals snb(k):

• the code book entries ĉi of the vector quantizer (e.g., by using the standard
LBG training algorithm [Linde et al. 1980]),

• the state probabilities P (Si),

• the conditional feature PDFs p(X|Si) (observation probabilities).

The wideband speech is needed to calculate the true state sequence, and the nar-
rowband speech is used to determine the conditional observation PDFs of the
feature vectors X.

As the observation PDF is conditioned on the state Si, a separate PDF p(X|Si)
exists for each state. A common way to model measured high-dimensional PDFs
is the approximation with Gaussian mixture models (GMMs; see, e.g., [Reynolds,
Rose 1995], [Vaseghi 1996]). According to the definition of the state model, it is
assumed that the observation X for each frame only depends on this particular
frame.
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By the MMSE estimation rule (10.7), a continuous estimation of the param-
eter vector cwb of dimension n can be performed with the a posteriori PDF
p(a|b) = p(c|X).

Thus, the minimum mean square error (MMSE) estimator for the cepstral coeffi-
cient vector is given by3

ĉMMSE = E{c|X} =

∫

IR
n

c · p(c|X) dc . (10.18)

As a model of the conditional PDF p(c|X) does not exist in closed form, this
quantity has to be expressed indirectly via the states of the model

p(c|X) =

NS∑

i=1

p(c, Si|X) . (10.19)

Insertion of p(c, Si|X) = p(c|Si,X) · P (Si|X) into (10.19) and (10.18) yields

ĉMMSE =

NS∑

i=1

P (Si|X) ·
∫

IR
n

c p(c|Si,X) dc , (10.20)

which can be written as

ĉMMSE =

NS∑

i=1

ĉi P (Si|X) . (10.21)

Hence, the estimated coefficient vector ĉMMSE is calculated by a weighted sum of
the individual code book entries ĉi. The weights are the respective a posteriori
probabilities of the states. The described MMSE estimator can be seen as as a soft
classification which is comparable to the error concealment algorithm described
in Section 9.4.1.2. A block diagram of this estimation procedure is given in Fig.
10.11.

The a posteriori probability P (Si|X) can be formulated in terms of the measured
state probabilities P (Si) and the measured conditional feature PDFs p(X|Si) as
follows:

P (Si|X) =
p(Si,X)

p(X)
=

p(X|Si) · P (Si)∑NS

j=1 p(X|Sj) · P (Sj)
. (10.22)

In the denominator of (10.22) the hardly tractable PDF p(X) of the observation
sequence has been replaced by a summation over the joint PDF
p(Sj,X) = p(X|Sj) · P (Sj).

3See footnote 1 on page 373
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Figure 10.11: Conditional estimation of the extended spectral envelope
(cepstral coefficients) taking a state model into account

Note: A more elaborate hidden Markov state model (HMM) can be used as pro-
posed in [Jax 2002] and [Jax, Vary 2003], where the state transition probabilities
P (Si|Sj) (i, j = 1, 2, . . . , Ns) are also taken into consideration. For more details
the reader is referred to [Jax 2004].

In informal listening tests, it was found that the enhanced speech exhibits a sig-
nificantly improved quality. By additionally exploiting the transition probabilities
P (Si|Sj) of the HMM, the occurrence of artifacts is reduced considerably. The
quality of the enhanced speech may even further be increased by using speaker-
dependent instead of speaker-independent modeling [Jax 2002].
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11

Single and Dual Channel
Noise Reduction

This chapter is concerned with algorithms for reducing additive noise. We will
primarily focus on methods which use a single microphone, but also present sys-
tems with two microphones. More general multi-microphone beamforming tech-
niques will be discussed in Chapter 12. The first part of this chapter gives an
introduction to the basic principles and implementation aspects. We will intro-
duce the Wiener filter and the “spectral subtraction” technique, as well as noise
power spectral density estimation techniques. The second part is more advanced
and dedicated to non-linear optimal estimators. These estimators explicitly use the
probability density function of short time spectral coefficients and are thus better
able to utilize information available a priori. We will derive maximum likelihood,
maximum a posteriori, and minimum mean square estimators for the estimation
of the complex DFT coefficients, as well as for functions of the spectral amplitude.
We will conclude this chapter with a discussion of the spatial correlation proper-
ties of sound fields, two-microphone noise cancellation, and speech enhancement
approaches.
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11.1 Introduction

When a speech communication device is used in environments with high levels of
ambient noise, the noise picked up by the microphone will significantly impair the
quality and the intelligibility of the transmitted speech signal. The quality degra-
dations can be very annoying, especially in mobile communications where hands
free devices are frequently used in noisy environments such as cars. Compared to
a close talking microphone, the use of a hands free device can lower the SNR of
the microphone signal by more than 20 dB. Thus, even when the noise levels are
moderate, the SNR of a hands free microphone signal is rarely better than 25 dB.
Single microphone speech enhancement systems can improve the quality of speech
signals and help to reduce listener fatigue. When the signal is transmitted via a low
bit rate speech coder, such as the mixed excitation linear prediction (MELP) coder,
or is used in conjunction with a cochlear implant, a noise reduction pre-processor
can improve not only the quality [Kang, Fransen 1989] but also the intelligibility of
the transmitted signal [Collura 1999], [Dörbecker 1998]. Furthermore, dual channel
systems typically outperform single channel approaches [Greenberg, Zurek 1992],
[Van Hoesel, Clark 1995], [Wouters, Vanden Berghe 2001].

To illustrate the performance of single channel systems, Fig. 11.1 plots the time
domain waveforms of a clean speech signal, a noisy signal, and an enhanced signal
vs. the sampling index k. The noise is non-stationary car noise. The single channel
noise reduction algorithm which was used in this example, significantly reduces the
level of the disturbing noise on average. However, due to the difficulty of tracking
fast variations of the background noise, the short noise bursts around k = 40000
and k = 10000 are not removed.

Given the large diversity of acoustic environments and noise reduction applica-
tions and the resulting, sometimes conflicting performance requirements for noise
reduction algorithms, it is apparent that there cannot be only one single “optimal”
algorithm. Hence, a large variety of algorithms have been developed which have
proved to be beneficial in certain noise environments or certain applications. Most
of these more successful algorithms use statistical considerations for the compu-
tation of the enhanced signal. Most of them work in the frequency or some other
transformation domain, and some of them also include models of human hear-
ing [Tsoukalas et al. 1993], [Virag 1999], [Gustafsson et al. 1998]. So far there
are no international (ITU or ETSI) standards for noise reduction algorithms, al-
though noise reduction algorithms have become part of speech coding systems
recently. In fact, a noise reduction pre-processor [Ramabadran et al. 1997] is part
of the Enhanced Variable Rate Codec (EVRC, TIA/EIA IS-127) standard. A set
of minimum requirements for noise reduction pre-processors has been defined in
conjunction with the ETSI/3GPP adaptive multi-rate (AMR) codec [3GPP TS
122.076 V5.0.0 2002], [3GPP TR 126.978, V4.0.0 2001].
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Figure 11.1: Time domain waveforms of a clean (top), a noisy (middle), and an enhanced
(bottom) speech signal

In this chapter, we will give a general introduction to noise reduction algorithms
and then discuss some of the more important topics in detail. We will look espe-
cially at statistical models for the estimation of speech signals and their spectral
coefficients and at methods for the estimation of the noise power spectral den-
sity. Throughout this chapter, we will focus exclusively on additive noise, i.e.,
consider disturbed signals y(k) which are a sum of the speech signal s(k) and
the noise signal n(k), y(k) = s(k) + n(k), as shown in Fig. 11.2. Furthermore,
s(k) and n(k) are assumed to be statistically independent, which also implies
E {s(k)n(i)} = 0 ∀ k, i. The enhanced signal will be denoted by ŝ(k).
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Figure 11.2: The noise reduction filter

11.2 Linear MMSE Estimators

Linearly constrained minimum mean square error (MMSE) estimators play an
important role in signal estimation theory as they are relatively easy to develop
and to implement. Furthermore, they are optimal for jointly Gaussian signals (see
Section 5.12.3) in the unconstrained case.

11.2.1 Non-causal IIR Wiener filter

Our discussion is based on the signal model depicted in Fig. 11.3. Adding the noise
signal n(k) to the undisturbed desired signal s(k) yields a noisy signal y(k). The
enhanced signal ŝ(k) is compared to a reference signal d(k). The resulting error
signal e(k) is used to compute the filter coefficients h(k). For the time being, we
assume that all signals are wide sense stationary and zero mean random processes.

The optimal linear filter is, then, time invariant and can be characterized by its
impulse response h(k). In the general case, the filter with impulse response h(k)
is neither a causal nor an FIR filter. Thus, the output signal ŝ(k) of the linear
time-invariant IIR filter is given by

ŝ(k) =

∞∑

κ=−∞

h(κ) y(k − κ) . (11.1)

Figure 11.3: The linear filter problem for reducing additive noise
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For computing the impulse response of the optimal filter, we define a target signal
d(k) = s(k) and minimize the mean square error

E
{
e2(k)

}
= E

{(
ŝ(k) − d(k)

)2
}

= E
{(

ŝ(k) − s(k)
)2

}
. (11.2)

The partial derivative of the mean square error E
{
e2(k)

}
with respect to a coef-

ficient h(i) leads to the condition

∂E
{
e2(k)

}

∂h(i)
=

∂E

{(
∞∑

κ=−∞
h(κ) y(k − κ) − s(k)

)2
}

∂h(i)
= 0 (11.3)

for all i ∈ ZZ which may be written as

∞∑

κ=−∞

h(κ) ϕyy(i − κ) = ϕys(i) , ∀i ∈ ZZ . (11.4)

ϕyy(λ) = E {y(k)y(k + λ)} and ϕys(λ) = E {y(k)s(k + λ)} are the auto-correlation
function of the noisy signal y(k) and the cross-correlation function of the noisy
signal y(k) and the clean speech signal s(k), respectively.

Equation (11.4) is recognized as a convolution in the correlation function domain
and can therefore be easily solved in the Fourier domain using power spectral

densities ϕyy(λ)
F
◦−• Φyy(e

jΩ) and ϕys(λ)
F
◦−• Φys(e

jΩ). For Φyy(ejΩ) �= 0 we
obtain

H(ejΩ) =
Φys(e

jΩ)

Φyy(ejΩ)
and h(k) =

1

2π

π∫

−π

H(ejΩ)ejΩk dΩ . (11.5)

For the above additive noise model with Φyy(ejΩ) = Φss(e
jΩ)+Φnn(ejΩ), it follows

that

H(ejΩ) =
Φss(e

jΩ)

Φss(ejΩ) + Φnn(ejΩ)
=

Φss(e
jΩ)/Φnn(ejΩ)

1 + Φss(ejΩ)/Φnn(ejΩ)
(11.6)

where Φss(e
jΩ) and Φnn(ejΩ) are the power spectral densities of the clean speech

and the noise signal, respectively. The estimated signal spectrum may then be
written as

Ŝ(ejΩ) = H(ejΩ)Y (ejΩ) . (11.7)
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Figure 11.4: Wiener filter: principle of operation
a) Power spectral densities of the target signal and of the noise signal
b) Resulting frequency response and the power spectral density of the

output signal

The non-causal IIR Wiener filter (11.6) evaluates the signal-to-noise ratio
Φss(e

jΩ)/Φnn(ejΩ) at a given frequency Ω. This is illustrated in Fig. 11.4 where
the power spectral densities of the clean speech and the noise are shown in the
upper plot and the resulting frequency response of the Wiener filter in the lower
plot. When the SNR is large at a given frequency Ω, H(ejΩ) approaches unity and
the corresponding frequency component will be passed on without being attenu-
ated. For low SNR conditions, we have Φss(e

jΩ) ≪ Φnn(ejΩ) and H(ejΩ) ≈ 0. The
corresponding frequency component of the input signal will be attenuated. There-
fore, the noise reduction task will be most effectively accomplished if the speech
signal and the noise do not occupy the same frequency bands. In the case of over-
lapping frequency bands, the noise reduction will also result in an attenuation of
the desired speech signal.

For the additive noise model the power spectral densities in (11.6) are real valued
and even symmetric. Therefore, the frequency response and the impulse response
are also real valued and even symmetric. Since the convolution with an even sym-
metric impulse response does not alter the phase spectrum of the input signal, the
non-causal IIR Wiener filter is a “zero-phase” filter.

In a practical implementation, the non-causal Wiener solution (11.6) requires fur-
ther modifications. Spectral factorization techniques allow us in principle to derive
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causal optimal IIR filters [Kailath 1981]. However, also in this case, a truncation
of the impulse response may be necessary. It is therefore important to derive the
optimal FIR Wiener filter as well.

11.2.2 The FIR Wiener Filter

We now restrict the impulse response h(k) of the optimal filter to be of finite and
even order N , and to be causal, i.e.,

h(k) =

{
arbitrary 0 ≤ k ≤ N

0 otherwise .
(11.8)

To obtain a linear-phase solution for the additive noise model, we use a delayed
reference signal d(k) = s(k−N/2) in the derivation of the optimal filter in Fig. 11.3.
From (11.4) we find immediately a set of N + 1 equations

N∑

κ=0

h(κ) ϕyy(i − κ) = ϕss(i − N/2) , i = 0 . . .N , (11.9)

which can be stacked in vector/matrix notation as




ϕyy(0) ϕyy(1) · · · ϕyy(N)
ϕyy(1) ϕyy(0) · · · ϕyy(N − 1)

...
...

. . .
...

ϕyy(N) ϕyy(N − 1) · · · ϕyy(0)







h(0)
h(1)

...
h(N)


 =




ϕss(−N/2)
ϕss(−N/2 + 1)

...
ϕss(N/2)




(11.10)

where we used ϕyy(λ) = ϕyy(−λ). Equation (11.10) may be written as

Ryy h = ϕss (11.11)

where

Ryy =




ϕyy(0) ϕyy(1) · · · ϕyy(N)
ϕyy(1) ϕyy(0) · · · ϕyy(N − 1)

...
...

. . .
...

ϕyy(N) ϕyy(N − 1) · · · ϕyy(0)


 (11.12)

is the auto-correlation matrix and

h =




h(0)
h(1)

...
h(N)


 and ϕss =




ϕss(−N/2)
ϕss(−N/2 + 1)

...
ϕss(N/2)


 (11.13)
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are the coefficient vector and the auto-correlation vector, respectively. If Ryy is
invertible, the coefficient vector is given by

h = R−1
yy ϕss . (11.14)

Since Ryy is a symmetric Toeplitz matrix, the system of equations in (11.11) can
be efficiently solved using the Levinson–Durbin recursion. Also, we note that the
correlation vector ϕss is symmetric, and therefore the vector of filter coefficients,

h(N/2 − i) = h(N/2 + i) , i ∈ {−N/2, . . . , N/2} , (11.15)

is symmetric as well with respect to i = N/2. When the reference signal is delayed
by N/2 samples, the solution to the optimal filter problem is a linear-phase FIR
filter. Of course, the filter can also be optimized without a delay in the reference
signal. In general, the resulting filter is still causal but does not have the linear-
phase property in this case.

To account for the time-varying statistics of speech and noise signals the applica-
tion of the Wiener filter to speech processing requires the use of short-term corre-
lation functions. This can be done either by using a block processing approach or
by approximating the Wiener filter with, for instance, a stochastic gradient algo-
rithm such as the normalized least-mean-square (NLMS) algorithm [Haykin 1996].
In both cases the resulting filter will be time variant.

11.3 Speech Enhancement in the DFT Domain

The IIR and the FIR Wiener filters discussed so far are based on time domain linear
filtering of stationary signals. However, the IIR solution to the optimization prob-
lem has led us quite naturally into the frequency domain. For stationary signals,
approximations to the IIR Wiener filter may easily be realized in the frequency
domain by using either Fourier transform or filter bank techniques. When the in-
put signal is non-stationary, however, the filter coefficients must be continuously
adapted. The filter will then be linear only on short, quasi-stationary segments of
the signal.

Before we investigate these implementation aspects in detail, we would like to
approach the noise reduction problem from a different point of view and treat
it directly as an estimation problem of short, quasi-stationary speech segments
(or speech frames) in the discrete Fourier transform (DFT) domain. We compute
DFT frames using a perfect reconstruction analysis–synthesis system as shown in
Fig. 11.5. The frame-based processing approach segments the incoming noisy signal
into short frames of typically 5–30ms duration. Each of these frames is transformed
into the DFT domain, enhanced, inverse DFT transformed, and added to the
previously processed signal with some overlap to smooth out discontinuities at the
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Figure 11.5: DFT domain implementation of the noise reduction filter

frame boundaries. If we assume that our analysis–synthesis system is sufficiently
benign when the modified frames are overlap-added to construct the enhanced
signal [Griffin, Lim 1984], we can focus on the enhancement of a single quasi-
stationary frame of speech.

To this end, we define signal vectors of size M for the noisy speech y(k), the clean
speech s(k), and the noise n(k),

y(k) = (y(k − M + 1), y(k − M + 2), . . . , y(k))T (11.16)

s(k) = (s(k − M + 1), s(k − M + 2), . . . , s(k))T (11.17)

n(k) = (n(k − M + 1), n(k − M + 2), . . . , n(k))T . (11.18)

When k is the index of the current sample, each of these vectors holds a frame of
the M most recent signal samples. Prior to computing the DFT, these vectors are
weighted with an analysis window w = (w(0), w(1), . . . , w(M − 1))T ,

Y(k) = DFT{w ⊗ y(k)} (11.19)

S(k) = DFT{w ⊗ s(k)} (11.20)

N(k) = DFT{w ⊗ n(k)} , (11.21)

where ⊗ denotes an element-by-element multiplication of two vectors or matrices.
The DFT domain vectors at sample index k are written in terms of their frequency
components as

Y(k) = (Y0(k), . . . , Yµ(k), . . . , YM−1(k))T (11.22)

S(k) = (S0(k), . . . , Sµ(k), . . . , SM−1(k))T (11.23)

N(k) = (N0(k), . . . , Nµ(k), . . . , NM−1(k))T . (11.24)
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11.3.1 The Wiener Filter Revisited

The correspondence between time domain convolution and Fourier domain multi-
plication suggests the definition of the DFT Ŝ(k) = (Ŝ0(k), Ŝ1(k), . . . , ŜM−1(k))T

of the enhanced signal frame as the result of an elementwise multiplication

Ŝ(k) = H(k) ⊗ Y(k) (11.25)

of a weight vector

H(k) = (H0(k), H1(k), . . . , HM−1(k))T (11.26)

and the DFT vector Y(k). Assuming that the DFT coefficients are (asymptoti-
cally) independent, we may minimize the mean square error

E

{∣∣∣Sµ(k) − Ŝµ(k)
∣∣∣
2
}

(11.27)

independently for each frequency bin µ. The partial derivative of

E
{
|Sµ(k) − Ŝµ(k)|2

}
= E

{
(Sµ(k) − Hµ(k)Yµ(k)) (Sµ(k) − Hµ(k)Yµ(k))

∗}

with respect to the real part of Hµ(k) yields the condition

∂E

{∣∣∣Sµ(k) − Ŝµ(k)
∣∣∣
2
}

∂Re {Hµ(k)} = 0 (11.28)

and hence

Re {Hµ(k)} =
E
{
|Sµ(k)|2

}

E {|Yµ(k)|2} =
E
{
|Sµ(k)|2

}

E {|Sµ(k)|2} + E {|Nµ(k)|2} . (11.29)

For the imaginary part we obtain from

∂E
{
|Sµ(k) − Ŝµ(k)|2

}

∂Im {Hµ(k)} = 0 (11.30)

the result

Im {Hµ(k)} = 0 . (11.31)
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Therefore,

Hµ(k) =
E
{
|Sµ(k)|2

}

E {|Sµ(k)|2} + E {|Nµ(k)|2} (11.32)

is a real valued weight which does not modify the phase of the noisy coefficients.
Hµ(k) is defined in terms of statistical expectations as a function of time and is
therefore in general time varying. There are numerous ways (non-parametric or
model based) to compute approximations to these expectations. In general, some
averaging (over time or frequency) is necessary. For a single microphone system,
the most prominent estimation procedure is based on time-averaged modified peri-
odograms [Welch 1967]. In multi-microphone systems, we might also smooth over
microphone channels and thus reduce the amount of smoothing over time.

It is quite instructive to juxtapose this result to the Wiener filter in (11.6). For sta-
tionary signals, E

{
|Sµ(k)|2

}
and E

{
|Nµ(k)|2

}
are estimates of the power spectra

Φss(e
jΩµ) and Φnn(ejΩµ). For a properly normalized window w, these estimates

are asymptotically (M → ∞) unbiased. On the one hand, (11.32) is therefore
closely related to the Wiener filter. On the other hand, it is conceptually quite
different from the Wiener filter as we did not start from a time domain linear
filtering problem. While a frequency domain approximation of (11.6) implies the
implementation of a linear filter, e.g., by means of a fast convolution, the estima-
tion of DFT coefficients as in (11.25) and (11.32) leads to a cyclic convolution in
the time domain. However, there is no principal reason why the latter should not
work and the cyclic effects known from linear theory must not be interpreted as a
disturbance in case of optimal frequency domain estimators. However, we should
use a perfect reconstruction overlap-add scheme, tapered analysis and synthesis
windows, and sufficient overlap between frames to control estimation errors at the
frame edges.

In Fig. 11.6 we illustrate the principle of the DFT-based noise reduction algorithm.
The magnitude squared DFT coefficients of a noisy, voiced speech sound and the
estimated noise floor are shown in the left hand plot. The right hand plot depicts
the magnitude squared DFT coefficients of the enhanced speech sound, as well as
the estimated noise power spectral density (PSD) of the noisy speech. We observe
that the harmonic (high SNR) peaks of the speech sound are well reproduced,
while the valleys in between these sounds, where the noise is predominant, are
attenuated. As a result the global SNR of the speech sound is improved.

Despite the apparently straightforward solution to the estimation problem, one
critical question remains: (11.6) as well as (11.32) require knowledge of the PSD of
the clean speech or of the SNR of the noisy signal at a given frequency Ωµ. However,
neither the clean speech PSD nor the SNR are readily available. To arrive at more
practical solutions, we discuss another (however closely related) approach to noise
reduction which is known as spectral subtraction.
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Figure 11.6: Principle of DFT-based noise reduction
a) Short-time spectrum of noisy signal and the estimated noise PSD
b) Short-time spectrum of the enhanced signal and the estimated noise PSD

11.3.2 Spectral Subtraction

The basic idea of spectral subtraction [Boll 1979] and related proposals [Preuss
1979], [Berouti et al. 1979] is to subtract an estimate of the noise floor from an esti-
mate of the spectrum of the noisy signal. Since the speech signal is non-stationary,
this has to be done on a short-time basis, preferably using a DFT-based analysis–
synthesis system.

Using the frame-wise processing approach of Section 11.3 and an appropriately
normalized analysis window w, the power of the clean speech signal at the discrete
frequencies Ωµ = µ2π

M
is given by

E
{
|Sµ(k)|2

}
= E

{
|Yµ(k)|2

}
− E

{
|Nµ(k)|2

}

= E
{
|Yµ(k)|2

}
[
1 − E

{
|Nµ(k)|2

}

E {|Yµ(k)|2}

]

= E
{
|Yµ(k)|2

}
|H̃µ(k)|2 . (11.33)

Since a sliding window DFT may be interpreted as an analysis filter bank (see
Section 4.1.6), E

{
|Sµ(k)|2

}
represents the power of a complex-valued subband

signal Sµ(k) for any fixed µ.

In analogy to the relation of input and output power in linear systems [Papoulis,
Unnikrishna Pillai 2001], the spectral subtraction method may be interpreted as
a time-variant filter with magnitude frequency response

H̃µ(k) =

√
1 − E {|Nµ(k)|2}

E {|Yµ(k)|2} =

√
E {|Sµ(k)|2}
E {|Yµ(k)|2} =

√
Hµ(k) , (11.34)
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which is the square root of (11.32). Since we are subtracting in the PSD domain,
this approach is called power subtraction.

When the spectral subtraction in (11.33) is used in conjunction with the Wiener
filter (11.32), we obtain

Hµ(k) =
E
{
|Yµ(k)|2

}
− E

{
|Nµ(k)|2

}

E {|Yµ(k)|2} = 1 − E
{
|Nµ(k)|2

}

E {|Yµ(k)|2} . (11.35)

This and other variations of the spectral gain function, such as magnitude subtrac-
tion

√
E {|Yµ(k)|2} −

√
E {|Nµ(k)|2} =

√
E {|Yµ(k)|2}

[
1 −

√
E {|Nµ(k)|2}√
E {|Yµ(k)|2}

]
(11.36)

are subsumed in a generalized, magnitude squared spectral gain function

|H̃µ(k)|2 =


1 −

(
E
{
|Nµ(k)|2

}

E {|Yµ(k)|2}

)β



α

. (11.37)

Using magnitude squared DFT spectra and short-time estimates ̂|Nµ(k)|2 and
̂|Yµ(k)|2, the above spectral subtraction rule may then be cast into a more practical

heuristic form

̂|Sµ(k)|2 = |Yµ(k)|2

1 −

(
̂|Nµ(k)|2
̂|Yµ(k)|2

)β



α

(11.38)

where we have to make sure that the result is real valued and not negative. The
parameters α and β can be either kept fixed or adapted to the characteristics of the
speech and the noise signals [Hansen 1991]. The gain function of the generalized
subtraction filter (11.37) is shown in Fig. 11.7 for three different parameter settings
as a function of the ratio γµ(k) = E

{
|Yµ(k)|2

}
/E

{
|Nµ(k)|2

}
.

Thus, the formulation of the subtraction approach in terms of a multiplicative
spectral gain function not only unifies the various noise reduction approaches, but
is also helpful for implementing these algorithms since 0 ≤ |H̃(ejΩ)| ≤ 1 is a
normalized quantity.

The noise PSD, which is a necessary ingredient of all of these spectral weighting
rules, can be estimated using the minimum statistics [Martin 1994], [Martin 2001a]
approach, soft-decision estimators [Sohn, Sung 1998], or using a voice activity
detector (VAD) [McAulay, Malpass 1980].

The “pure” spectral subtraction approach is not very robust with respect to esti-
mation errors in the spectral gain function. As a result, practical implementations
suffer from speech distortions and a fluctuating residual noise, which is commonly
known as “musical noise”.
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Figure 11.7: Spectral gain functions H̃(ejΩ) as a function of
γµ(k) = E

{
|Yµ(k)|2

}
/E

{
|Nµ(k)|2

}
: power subtraction (α = β = 1),

Wiener filter (α = 2, β = 1), and magnitude subtraction (α = 2, β = 0.5)

11.3.3 Estimation of the A Priori SNR

In the previous section, we have seen that the spectral subtraction technique can
be used on its own or in conjunction with the Wiener filter. In the latter case, it
supplies an estimate for the unknown PSD of the clean speech. Another approach
to the realization of the Wiener filter [Scalart, Vieira Filho 1996] is to express it
in terms of the a priori SNR

η(ejΩ) =
Φss(e

jΩ)

Φnn(ejΩ)
or ηµ(k) =

E
{
|Sµ(k)|2

}

E {|Nµ(k)|2} (11.39)

and to estimate the a priori SNR instead of the clean speech PSD. Since for most
noise reduction applications the a priori SNR ranges over an interval of −20–
30 dB and is invariant with respect to the signal scaling, it is easier to deal with
the SNR in (e.g., fixed point) implementations than using PSDs. Another reason
for using the a priori SNR lies in the availability of a simple yet powerful estimation
algorithm, which will be discussed below.

The estimation of the a priori SNR is based on the a posteriori SNR γµ(k), which
is defined as the ratio of the periodogram of the noisy signal and the noise power

γ(ejΩ) =
|Y (ejΩ)|2
Φnn(ejΩ)

or γµ(k) =
|Yµ(k)|2

E {|Nµ(k)|2} . (11.40)

If an estimate of the noise PSD is available, the a posteriori SNR is easily mea-
surable.
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The a priori SNR can now be expressed as

ηµ(k) =
E
{
|Sµ(k)|2

}

E {|Nµ(k)|2} = E {γµ(k) − 1} (11.41)

where the “decision-directed” approach [Ephraim, Malah 1984] may be used to
estimate ηµ(k). To apply this approach to the estimation of the a priori SNR at

time k + r, an estimate ̂|Sµ(k)| of the clean speech amplitudes |Sµ(k)| at time k
must be available. Furthermore, we assume that |Sµ(k+r)| ≈ |Sµ(k)|, which holds
for quasi-stationary speech sounds, but is less valid for transient sounds. Then, the
a priori SNR η̂µ(k+r) of the frame at k+r is computed as a linear combination of
an estimate based on the signal frame at time k and of an instantaneous realization
of (11.41),

η̂µ(k + r) = αη

̂|Sµ(k)|2
E {|Nµ(k)|2} + (1 − αη)max(γµ(k + r) − 1, 0) , (11.42)

where αη is typically in the range 0.9 ≤ αη ≤ 0.99.

It has frequently been argued [Cappé 1994], [Scalart, Vieira Filho 1996] that this
estimation procedure contributes considerably to the subjective quality of the en-
hanced speech, especially to the reduction of “musical noise”. Therefore, it is rather
useful in combination with almost any of the above noise reduction methods.

Since η̂µ(k + r) as defined above does not fully account for speech absence, the a

priori SNR may also be computed with a speech power estimate ̂|Sµ(k)|2 which
is conditioned on the presence of speech [Cohen, Berdugo 2001], i.e.,

η̂µ(k + r) = αη

̂|Sµ(k)|2|speech is present

E {|Nµ(k)|2} + (1 − αη) max(γµ(k + r) − 1, 0) .

(11.43)

Now, η̂µ(k+r) is implicitly scaled with the a priori probability of speech presence.
Various estimators may be used to compute the conditional speech power estimate
̂|Sµ(k)|2|speech is present (see Section 11.4). To conclude we note that there are other

ways to exploit the idea of recursive estimation, e.g., [Linhard, Haulick 1999],
[Beaugeant, Scalart 2001], which generally lead to smoother estimates than the
standard methods.

11.3.4 Musical Noise and Countermeasures

The “musical noise” phenomenon is as easy to explain as it is difficult to avoid.
The term “musical noise” describes the randomly fluctuating noise floor which
is frequently observed in noise-reduced signals. It is especially noticeable for the
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Figure 11.8: Short-term magnitude spectra vs. time and frequency
a) of a clean speech signal,
b) of the clean signal with additive white noise and harmonic tones,
c) of the enhanced signal using magnitude subtraction
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simple spectral weighting methods as outlined in the previous sections. The musical
noise phenomenon can be explained by estimation errors in the frequency domain
which lead to spurious peaks in the spectral representation of the enhanced signal.
When the enhanced signal is reconstructed via the IFFT and overlap-add, these
peaks correspond to a sinusoidal excitation whose frequency varies randomly from
frame to frame.

Figure 11.8 depicts the time evolution of the short-term magnitude spectrum of a
clean (a), a noisy (b), and the corresponding enhanced signal (c) [Vary 1985]. The
speech signal is disturbed by white Gaussian noise and three stationary harmonic
tones at 1, 2, and 3 kHz. The enhanced spectrum is computed using the magnitude
subtraction rule (11.36). Clearly, the stationary tones can be completely removed.
Also, the level of the white noise is significantly reduced. However, some of the low-
power speech components are lost and random spectral peaks, especially during
the speech pause, remain.

A statistical evaluation of these estimation errors is given in [Vary 1985]. Quite
a substantial effort in speech enhancement research has been spent on techniques
which avoid the “musical noise” phenomenon. We will briefly describe two com-
monly used countermeasures.

11.3.4.1 Noise Oversubtraction and Spectral Floor

The subtraction of the average noise PSD from the time-varying magnitude
squared DFT coefficients of the noisy signal leads to residual spectral peaks, which
in turn result in the “musical noise” phenomenon. The musical noise is especially
disturbing during speech pauses. The noise power overestimation increases the es-
timated noise PSD in order to reduce the amplitude of these random spectral peaks
after subtraction [Berouti et al. 1979]. Furthermore, a “spectral floor” is applied
to the resultant spectral coefficients, preventing them from falling below a preset
minimum level. Hence, we obtain spectral components which fluctuate less during
speech pauses.

In practice, the estimated noise level is increased by a factor of OS = 1 . . . 2,

̂E {|Nµ(k)|2} = OS · E
{
|Nµ(k)|2

}
. (11.44)

The spectral floor imposes a lower limit β E
{
|Nµ(k)|2

}
on the magnitude squared

DFT coefficients. For the spectral gain functions discussed so far, β cannot be much
smaller than 0.1 without giving rise to noticeable “musical noise”. On the other
hand, it cannot be much larger without rendering the noise reduction algorithm
useless.

During speech pauses or low SNR conditions, the overestimated noise PSD es-
timate helps to cover up the fluctuations in the DFT coefficients. During speech
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activity, however, it may lead to distortions of the speech signal. With a large over-
subtraction factor the enhanced speech may sound muffled or even clipped. It is
therefore not completely obvious how large the overestimation factor should be. In
fact, one single constant overestimation factor does not improve the speech quality
for all SNR conditions. Some authors have studied more general noise “oversub-
traction” models [Hansen 1991], [Lockwood, Boudy 1991], [Lockwood et al. 1991],
[Lockwood, Boudy 1992] and also explored the benefits of underestimating the
(unbiased) noise PSD estimate for speech recognition [Kushner et al. 1989] and
speech transmission [Händel 1995] purposes. We will investigate this issue in some
more detail below.

Figure 11.9 plots the measured quality of the enhanced speech versus the over-
subtraction factor for a frame SNR ranging between 0 dB and 30 dB. The quality
criterion is the mean square distance between the enhanced and the clean speech
in the line spectral frequency (LSF, see Chapter 8) domain [Paliwal, Atal 1991]

∆2
LSF =

1

10L

L∑

λ=1

10∑

i=1

ci(f̃i,λ − fi,λ)2 (11.45)

where fi,λ and f̃i,λ denote the i-th LSF parameter of the λ-th signal frame of the
clean and the enhanced noisy speech signal, respectively. A total of 10 spectral
parameters is used. L denotes the total number of speech signal frames, and ci is

Figure 11.9: Error ∆2
LSF for 0 ≤ OS ≤ 3 and several SNR classes
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Table 11.1: Weights for the LSF distortion measure [Paliwal, Atal 1991]

LSF index 1–8 9 10

ci 1.0 0.64 0.16

given in Table 11.1. According to this table, errors at higher LSFs do not contribute
as much to the total error as errors at lower frequencies [Paliwal, Atal 1991]. The
evaluation was performed using 60 seconds of phonetically balanced female and 60
seconds of phonetically balanced male speech which were recorded at a sampling
rate of 8 kHz. White Gaussian noise was added at six different levels to the clean
speech and the noisy speech was processed with the soft-decision MMSE-LSA
noise reduction (see Section 11.4.4.3) algorithm. The processing was repeated for
a number of oversubtraction factors OS , while all other parameters were kept
constant. The SNR of every single input frame was computed and assigned to
one of six SNR classes, each of them corresponding to SNR intervals of 6 dB (see
Table 11.2).

For each SNR class the average distance between the clean and the enhanced LSF
parameters was computed. Finally, the distance data was interpolated by means
of cubic splines. The optimal value of the examined parameter was found as the
minimum of the interpolated data.

We find that for low SNR conditions an oversubtraction factor between 1.3 and 2
should be employed. For high SNR conditions underestimating the noise PSD is
preferable. Similar findings were reported in [Kushner et al. 1989] for spectral and
cepstral subtraction in the context of speech recognition. Nevertheless, a constant
oversubtraction factor between 1.3 and 2 appears to be a good choice, as in this
case, and for the high SNR cases the distortions are not greater than those obtained
for the noisy original (oversubtraction of zero).

Table 11.2: Upper and lower SNR limits of SNR classes
used for the evaluation of spectral parameters

SNR class Lower class limit Upper class limit

0 dB −3 dB 3 dB
6 dB 3 dB 9 dB

12 dB 9 dB 15 dB
18 dB 15 dB 21 dB
24 dB 21 dB 27 dB
30 dB 27 dB 33 dB
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11.3.4.2 Limitation of the A Priori SNR

[Cappé 1994], [Malah et al. 1999] proposed to apply a lower limit to the estimated
a priori SNR in order to reduce the annoying musical tones. The lower limit has
the greatest effect on frequency bins which do not contain speech. Thus, it is of
great importance for the perceived quality during speech pauses but also for the
overall shape of the speech spectrum during speech activity. The limit on the a
priori SNR limits the maximum attenuation. This can be easily seen when using
the Wiener filter but also holds for the more complicated non-linear estimators
[Martin et al. 2000]. For the Wiener filter in (11.6) and low SNR conditions, we
obtain

H(ejΩ) =
Φss(e

jΩ)/Φnn(ejΩ)

1 + Φss(ejΩ)/Φnn(ejΩ)
≈ Φss(e

jΩ)

Φnn(ejΩ)
. (11.46)

Thus, by applying a lower bound to the a priori SNR, the maximum attenuation
of the filter is limited.

11.3.5 Aspects of Spectral Analysis/Synthesis

The noise reduction methods presented so far were developed for spectral domain
processing. Besides the DFT, other spectral transforms as well as filter banks
are in principle suited for this task. Since spectral transforms and filter banks
are discussed in detail in Chapter 3 and 4, we summarize here issues which are
specifically related to noise reduction.

One of the most important questions to be answered concerns the spectral res-
olution which should be provided by the spectral transform. The design can be
guided by the characteristics of the source signal and/or the properties of the re-
ceiver, the human ear, or a speech recognizer. While the former approach suggests
a high resolution in order to separate the distinct peaks of the pitch harmonics
and to attenuate the noise in between the peaks, the latter allows for less resolu-
tion, especially at higher frequencies. Both approaches have been advocated in the
literature. We will briefly discuss two typical implementations, the first based on
DFT processing and overlap-add, the second based on filter banks.

11.3.5.1 DFT-Based Analysis/Synthesis

Since perfect reconstruction is an important issue for high SNR conditions only,
we must design our analysis–synthesis system such that it is optimal also in the
presence of spectral modifications. This problem has been treated, for example, in
[Allen 1977], [Griffin, Lim 1984], and [Cappé 1995]. In what follows, we will outline
a widely used approach based on the sliding window DFT.
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Assuming an additive, independent noise model, the noisy signal y(k) is given by
s(k) + n(k), where s(k) denotes the clean speech signal and n(k) the noise. All
signals are sampled at a sampling rate of fs. We apply a short-time Fourier analysis
to the input signal by computing the DFT of each overlapping windowed frame,

Yµ(λ) =

M−1∑

ℓ=0

y(λr + ℓ) w(ℓ) e−j 2πµℓ
M . (11.47)

Here, r denotes the frame shift, λ ∈ Z is the frame index, µ ∈ {0, 1, . . . , M − 1}
is the frequency bin index, which is related to the normalized center frequency
Ωµ = µ2π/M , and w(ℓ) denotes the window function.

The analysis–synthesis system must balance conflicting requirements of suffi-
cient spectral resolution, little spectral leakage, smooth transitions between signal
frames, low delay, and low complexity. Delay and complexity constraints limit the
overlap of the signal frames. However, the frame shift must not be too large so
as not to degrade the quality of the enhanced signal. Typical implementations of
DFT-based noise reduction algorithms use a Hann window with a 50% overlap
(r/M = 0.5) or a Hamming window with a 75% overlap (r/M = 0.25) for spectral
analysis, and a rectangular window for synthesis.

Frequently, the speech enhancement algorithm is used in conjunction with a speech
coder. The segmentation of the input signal into frames and the selection of an
analysis window is therefore closely linked to the frame alignment of the speech
coder and the admissible algorithmic delay [Martin, Cox 1999], [Martin et al.
1999]. The total algorithmic delay of a joint enhancement and coding system is
minimized when the frame shift of the noise reduction pre-processor is adjusted in
such a way that l(M −MO) = lr = MC with l ∈ N and where MC and MO denote
the frame length of the speech coder and the length of the overlapping portions of
the pre-processor frames, respectively. This situation is depicted in Fig. 11.10.

Figure 11.10: Frame alignment of enhancement pre-processor and
speech coder (r = MC) [Martin et al. 1999]
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The additional delay ∆E is equal to MO due to the enhancement pre-processor.
For example, for the MELP coder and its frame length of MC = 180, we use an
FFT length of M = 256 and have MO = 76 overlapping samples between adjacent
signal frames. This requires the use of a flat-top (Tukey) window.

Reducing the number of overlapping samples MO, and thus the delay of the joint
system, has several effects. First, with a flat-top analysis window, the side-lobe
attenuation (or spectral leakage) during spectral analysis is decreased, which leads
to increased crosstalk between frequency bins. This might complicate the speech
enhancement task as most enhancement algorithms assume independent frequency
bins and do not exploit correlation between bins. Secondly, as the overlap between
frames is reduced, transitions between adjacent frames of the enhanced signal
become less smooth. Discontinuities arise because the analysis window attenuates
the input signal mostly at the edges of a frame, while estimation errors which
occur during the processing of the frame in the spectral domain tend to spread
evenly over the whole frame. This leads to larger relative estimation errors at the
frame edges. The resulting discontinuities, which are most notable in low SNR
conditions, may lead to pitch estimation errors and other speech coder artifacts.

These discontinuities are greatly reduced if we use not only a tapered analysis
window but also a tapered window for spectral synthesis. A tapered synthesis
window is beneficial when the overlap MO is less than 40% of the DFT length M .
In this case, the square root of the Tukey window

h(k) =





√
0.5

(
1 − cos

(
πk
MO

))
1 ≤ k ≤ MO

1 MO + 1 ≤ k ≤ M − MO − 1
√

0.5
(
1 − cos

(
π(M−k)

MO

))
M − MO ≤ k ≤ M

(11.48)

can be used as an analysis and synthesis window. It results in a perfect recon-
struction system if the signal is not modified between analysis and synthesis. Note
that the use of a tapered synthesis window is also in line with the results of Griffin
and Lim [Griffin, Lim 1984] for the MMSE reconstruction of modified short-time
spectra. As outlined in Chapter 4, this may be considered as an analysis–synthesis
filter bank.

Filter bank implementations are especially attractive as they can be adapted to the
spectral and the temporal resolution of the human ear. Also, there are many ap-
plications, such as hearing aids, where the computational complexity is of utmost
importance. Filter banks with non-uniform spectral resolution allow a reduction
in the number of channels without sacrificing the quality of the enhanced signal.
In principle, the filter bank can be realized by discrete filters or by polyphase
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filter banks with uniform or non-uniform spectral resolution [Doblinger 1991],
[Doblinger, Zeitlhofer 1996], [Kappelan et al. 1996], [Gülzow, Engelsberg 1998],
[Gülzow et al. 2003], [Vary 2005]. Chapter 4 dicusses typical realizations in detail.

11.4 Optimal Non-linear Estimators

We return to the issue of how to estimate the clean speech DFT coefficients given
the noisy coefficients. In contrast to earlier sections, we now aim at developing op-
timal non-linear estimators. Unlike the optimal linear estimators, these estimators
require knowledge of the probability density functions of the speech and noise DFT
coefficients. Similar to the exposition in Section 11.3, we do not assume stationary
signals but develop estimators for a single, quasi-stationary frame of speech. To
enhance the readability of the derivations, we will drop the frame index λ and
denote all quantities as functions of the frequency bin index µ only. Thus, for the
signal frame under consideration, the DFT coefficients of the clean speech and the
noisy signal will be denoted by

Sµ = Aµejαµ and

Yµ = Rµejθµ ,
(11.49)

respectively. Since we assume zero mean and mutually independent real and imag-
inary parts of equal variance, the power of the µ-th spectral component may be
written as

σ2
S,µ = E

{
Re{Sµ}2

}
+ E

{
Im{Sµ}2

}
= E

{
|Sµ|2

}
= E

{
A2

µ

}
,

σ2
N,µ = E

{
Re{Nµ}2

}
+ E

{
Im{Nµ}2

}
= E

{
|Nµ|2

}
, (11.50)

and

E
{
Re{Yµ}2

}
+ E

{
Im{Yµ}2

}
= E

{
|Yµ|2

}
= E

{
R2

µ

}

= σ2
S,µ + σ2

N,µ . (11.51)

Most of the derivations employ the complex Gaussian model for the PDF of the
DFT coefficients of speech and noise signals, as outlined in Section 5.11. This model
is valid when the DFT length is significantly larger than the span of correlation in
the signal.

The resulting estimators are frequently written as a multiplication of a spectral
gain function and the DFT coefficients of the noisy signal, and we will follow this
convention to a certain degree. However, this notation is not always appropriate,
since the estimators are highly non-linear. In most cases the spectral gain function
itself is a function of the DFT coefficients of the noisy signal.
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Although we will primarily discuss estimators which are optimal with respect to
the MMSE, we will begin with maximum likelihood (ML) estimation. We show
that for the Gaussian model the maximum likelihood estimate is closely related to
the spectral subtraction technique.

11.4.1 Maximum Likelihood Estimation

The maximum likelihood (ML) estimate of the speech power σ2
S,µ in the µ-th DFT

bin maximizes the joint probability density of the observed spectral coefficient Yµ

with respect to σ2
S,µ. The joint probability function conditioned on the unknown

parameter σ2
S,µ is given by (5.113), i.e.,

p(Re{Yµ}, Im{Yµ} | σ2
S,µ) =

1

π(σ2
S,µ + σ2

N,µ)
exp

(
− |Yµ|2

σ2
S,µ + σ2

N,µ

)
. (11.52)

If we set the first derivative of (11.52) with respect to σ2
S,µ to zero, we obtain the

estimated speech power [McAulay, Malpass 1980],

σ̂2
S,µ = |Yµ|2 − σ2

N,µ = R2
µ − σ2

N,µ . (11.53)

Since the second derivative is negative this is indeed a maximum. The ML es-
timator is an unbiased estimator of σ2

S,µ since the expected value of σ̂2
S,µ is

E
{
σ̂2

S,µ

}
= σ2

Y,µ − σ2
N,µ = σ2

S,µ. In a practical application of this estimator, we
must ensure, however, that the estimate of the variance is always non-negative.
Using the phase of the noisy input, an estimate of the spectral coefficient of clean
speech is given by

Ŝµ =

√

1 −
σ2

N,µ

|Yµ|2
|Yµ|ejθµ =

√

1 −
σ2

N,µ

|Yµ|2
Yµ = GMLYµ (11.54)

where, again, we must make sure that the argument of the square root is non-
negative. Note that although we have written the result as a product of the noisy
coefficient and a gain function, the estimator is non-linear. The gain function de-
pends on the DFT coefficient. |Yµ|2 in the denominator may be smoothed over
frequency or, if the signal is short-time stationary, over time. Using (11.50), equa-
tion (11.54) is recognized as an approximation to the power subtraction rule.

Similarly, (11.53) may be used in conjunction with the MMSE filter (11.32). Re-
placing the unkown speech power by its ML estimate, we obtain

Ŝµ =
|Yµ|2 − σ2

N,µ

E {|Yµ|2}
Yµ = GWMLYµ (11.55)
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where the gain function in (11.55) is, after smoothing the numerator, an approxi-
mation to (11.32).

An alternative solution to the ML signal estimation problem can be based on the
conditional joint density (5.119) of noisy spectral coefficients, given the spectral
amplitude Aµ [McAulay, Malpass 1980]. In this case, the clean speech spectral
amplitude Aµ is the unknown parameter and the clean speech phase αµ is assumed
to be uniformly distributed between 0 and 2π. The ML estimate of the spectral
amplitude is obtained from (5.119) by averaging over the phase. More specifically,
we maximize

p(Yµ | Aµ) =

2π∫

0

p(Yµ | Aµ, αµ)p(αµ) dαµ

=
1

πσ2
N,µ

exp

(
−
|Yµ|2 + A2

µ

σ2
N,µ

)
1

2π

2π∫

0

exp

(
2AµRe{Yµe−jαµ}

σ2
N,µ

)
dαµ

with respect to Aµ. The integral in the above equation is known as the modified

Bessel function of the first kind. For
2Aµ|Yµ|

σ2
N,µ

≥ 3 it can be approximated by

1

2π

2π∫

0

exp

(
2AµRe{Yµe−jαµ}

σ2
N,µ

)
dαµ ≈ 1√

2π
2Aµ|Yµ|

σ2
N,µ

exp

(
2Aµ|Yµ|

σ2
N,µ

)
.

Differentiation of

p(Yµ|Aµ) ≈ 1

2πσN,µ

√
πAµ|Yµ|

exp

(
−(Aµ − |Yµ|)2

σ2
N,µ

)
(11.56)

with respect to Aµ leads to the approximate ML estimate of the spectral magnitude

Âµ =
|Yµ|
2

(
1 ±

√
1 −

σ2
N,µ

R2
µ

)
. (11.57)

Retaining the phase of the noisy signal, we obtain for the complex enhanced coef-
ficient

Ŝµ =

(
0.5 + 0.5

√
1 −

σ2
N,µ

R2
µ

)
Yµ = GMMLYµ (11.58)

where, again, we have to make sure that the argument of the square root is non-
negative. Note that this spectral gain function provides for a maximum of 6dB of
noise reduction.
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11.4.2 Maximum A Posteriori Estimation

The maximum a posteriori estimator finds the clean speech coefficients which
maximize p(Sµ | Yµ). It allows explict modeling of the a priori density of the speech
coefficients and noise, since, using Bayes’ theorem, we might as well maximize

p(Sµ | Yµ) p(Yµ) = p(Yµ | Sµ) p(Sµ) . (11.59)

For the Gaussian signal model, it is easily verified that the MAP estimator is
identical to the Wiener filter (11.32).

More interesting solutions arise when we estimate the magnitude and phase, i.e.,
solve

p(Aµ, αµ | Yµ) p(Yµ) = p(Yµ | Aµ, αµ) p(Aµ, αµ)

=
2Aµ

2π2σ2
N,µσ2

S,µ

exp

(
−|Yµ − Aµejαµ |2

σ2
N,µ

)
exp

(
−

A2
µ

σ2
S,µ

)
.

The MAP estimate of the clean speech phase αµ is simply the noisy phase θµ

[Wolfe, Godsill 2001], whereas the MAP estimate of the amplitude Aµ yields

Âµ =
ηµ +

√
η2

µ + 2(1 + ηµ)
ηµ

γµ

2(1 + ηµ)
Rµ . (11.60)

MAP estimation procedures have also been developed in the context of supergaus-
sian speech models [Lotter, Vary 2003], [Lotter, Vary 2005], [Dat et al. 2005].

11.4.3 MMSE Estimation

We will now turn to the MMSE estimation of the DFT coefficients under the
Gaussian assumption. When the real and the imaginary parts of the DFT coef-
ficients are statistically independent, the general non-linear solution is identical
to the Wiener filter. In this case, the MMSE estimate of the complex coefficients
separates into two independent estimators for the real and the imaginary parts,
i.e.,

Ŝµ = E {Sµ | Yµ}

=

∞∫

−∞

Re {Sµ} p (Re {Sµ} | Re {Yµ}) dRe {Sµ}

+ j

∞∫

−∞

Im {Sµ} p (Im {Sµ} | Im {Yµ}) dIm {Sµ}

= E {Re{Sµ} | Re{Yµ}} + j E {Im{Sµ} | Im{Yµ}} . (11.61)



11.4 Optimal Non-linear Estimators 415

Using the result of Section 5.12.3 with Gaussian densities for the noisy coefficients
and for the speech coefficients as defined in (5.111),

pRe{Yµ}(u) =
1√

π(σ2
S,µ + σ2

N,µ)
exp

(
− u2

σ2
S,µ + σ2

N,µ

)
, (11.62)

the estimate of the real part evaluates to

E {Re{Sµ} | Re{Yµ}} =
1

σ2
Y,µσ2

S,µπp (Re{Yµ})
exp

(
−Re{Yµ}2

σ2
N,µ

)

·
∞∫

−∞

u exp

(
−

σ2
S,µ + σ2

N,µ

σ2
S,µσ2

N,µ

u2 +
2Re{Yµ}

σ2
N,µ

u

)
du

=
σ2

S,µ

σ2
S,µ + σ2

N,µ

Re{Yµ} . (11.63)

For the imaginary part we obtain with

pIm{Yµ}(u) =
1√

πσ2
Y,µ

exp

(
− u2

σ2
Y,µ

)
(11.64)

the result

E {Im{Sµ} | Im{Yµ}} =
1

σ2
Y,µσ2

S,µπp (Im{Yµ})
exp

(
− Im{Yµ}2

σ2
N,µ

)

·
∞∫

−∞

u exp

(
−

σ2
S,µ + σ2

N,µ

σ2
S,µσ2

N,µ

u2 +
2Im{Yµ}

σ2
N,µ

u

)
du

=
σ2

S,µ

σ2
S,µ + σ2

N,µ

Im{Yµ}

which, combined with the solution for the real part, yields

E {Sµ | Yµ} =
σ2

S,µ

σ2
S,µ + σ2

N,µ

Yµ . (11.65)

For the Gaussian signal model the optimal filter is therefore a zero-phase filter.
The phase of the noisy signal is (except for a possible overall delay of the signal due
to spectral analysis) not modified. For supergaussian speech models, estimators for
the real and the imaginary parts can be developed as well [Martin 2002], [Martin,
Breithaupt 2003], [Martin 2005b], [Martin 2005c]. In contrast to the estimators
based on Gaussian speech models, they also lead to a modification of the short-
time phase.
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11.4.4 MMSE Estimation of Functions of the Spectral
Magnitude

In speech enhancement, the estimation of the magnitude of the short-time Fourier
coefficients of clean speech is much easier to achieve than the estimation of the
short-time phase. When the short-time spectral amplitudes can be accurately es-
timated, additional (and independently derived) information on the phase is of
little use [Wang, Lim 1982]. An important class of MMSE estimators [Porter, Boll
1984], [Ephraim, Malah 1984] therefore estimates the spectral magnitudes and
uses the short-time phase of the noisy input signal for reconstruction. It turns out
that these estimators deliver a fairly natural sounding residual noise without the
unnatural fluctuations which are known as “musical noise”.

The MMSE amplitude estimator minimizes the quadratic error in the spectral

amplitudes E
{
(Aµ − Âµ)2

}
. As before, the conditional expectation

Âµ = E {Aµ|Yµ} =

∞∫

0

Aµ p(Aµ|Yµ) dAµ

=

∞∫

0

2π∫

0

Aµ p(Aµ, αµ|Yµ) dαµ dAµ (11.66)

is the solution to this problem. With the help of Bayes’ theorem

p(Aµ, αµ|Yµ) =
p(Yµ | Aµ, αµ) p(Aµ, αµ)

∞∫
0

2π∫
0

p(Yµ | Aµ, αµ) p(Aµ, αµ) dαµ dAµ

(11.67)

the optimal estimate can be written as

Âµ =

∞∫
0

2π∫
0

Aµ p(Yµ|Aµ, αµ) p(Aµ, αµ) dαµ dAµ

∞∫
0

2π∫
0

p(Yµ|Aµ, αµ) p(Aµ, αµ) dαµ dAµ

. (11.68)

This result can obviously be generalized to arbitrary deterministic and invertible
functions of Aµ [Porter, Boll 1984]. We denote this function by c{·} and its inverse
by c−1{·}. In the general case, the optimal estimator is then given by

Âµ = c−1





∞∫
0

2π∫
0

c{Aµ} p(Yµ|Aµ, αµ) p(Aµ, αµ) dαµ dAµ

∞∫
0

2π∫
0

p(Yµ|Aµ, αµ) p(Aµ, αµ) dαµ dAµ





. (11.69)
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Assuming a Gaussian noise model, the conditional probability (5.119) can be sub-
stituted into (11.68). Furthermore, with the assumptions of a uniform distribution
for the clean speech phase and the independence of the clean speech magnitude
and phase, the phase can be integrated to yield

Âµ = c−1





∞∫

0

c{Aµ} p(Aµ)

2π∫

0

exp

(
−|Yµ − Aµejαµ |2

σ2
N,µ

)
dαµ dAµ

∞∫

0

p(Aµ)

2π∫

0

exp

(
−|Yµ − Aµejαµ |2

σ2
N,µ

)
dαµ dAµ





(11.70)

= c−1





∞∫

0

c[Aµ] p(Aµ) exp

(
−

(R2
µ + A2

µ)

σ2
N,µ

)
I0

(
2RµAµ

σ2
N,µ

)
dAµ

∞∫

0

p(Aµ) exp

(
−

(R2
µ + A2

µ)

σ2
N,µ

)
I0

(
2RµAµ

σ2
N,µ

)
dAµ





where we used

1

2π

2π∫

0

exp

(
−|Yµ − Aµeju|2

σ2
N,µ

)
du = exp

(
−

R2
µ + A2

µ

σ2
N,µ

)
I0

(
2RµAµ

σ2
N,µ

)
.

By averaging over a large speech database, the above estimator can be evaluated
numerically and tabulated as a function of the a posteriori SNR γµ and the a
priori SNR ηµ [Porter, Boll 1984]. For the Gaussian speech model,

p(Aµ, αµ) =
Aµ

πσ2
S,µ

exp

(
−

A2
µ

σ2
S,µ

)
, (11.71)

it can be evaluated analytically. While the numeric approach allows us to take the
actual distribution of the clean speech magnitudes into account, it may also lead
to large lookup tables and is not very practical without further simplifications.
The parametric (Gaussian) approach leads to parametric closed form solutions. In
what follows, three cases will be considered.

11.4.4.1 MMSE Magnitude Estimation

In the case of MMSE amplitude estimation (also known as the MMSE short-time
spectral amplitude or MMSE-STSA estimator) we have c{Aµ} = Aµ. The optimal
estimator can be expressed in terms of the complete Γ-function and the confluent
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hypergeometric function F1(·, ·, ·) [Ephraim, Malah 1984], [Gradshteyn, Ryzhik
1994]. After some (tedious) computations, we obtain from (11.70)

Âµ =
Rµ

γµ

√
vµ Γ(1.5) F1(−0.5, 1,−vµ) (11.72)

where vµ is defined as

vµ =
ηµ

1 + ηµ
γµ . (11.73)

Therefore, using the phase of the noisy coefficient, we have

Sµ =

√
vµ

γµ
Γ(1.5) F1(−0.5, 1,−vµ)Yµ = GSTSAYµ . (11.74)

11.4.4.2 MMSE Magnitude Squared Estimation

As a second example we consider c{Aµ} = A2
µ. The MMSE magnitude squared

estimator then minimizes E
{
(A2

µ − Â2
µ)2

}
. Again, the optimal estimator is the

conditional expectation which factors in the real and the imaginary parts,

Â2
µ = E

{
A2

µ|Yµ

}
=

∞∫

0

2π∫

0

A2
µ p(Aµ, αµ|Yµ) dαµ dAµ

=

∞∫

−∞

∞∫

−∞

(Re {Sµ}2
+ Im {Sµ}2

)

· p (Re {Sµ} , Im {Sµ} | Re {Yµ} , Im {Yµ}) dRe {Sµ} dIm {Sµ}

=

∞∫

−∞

Re {Sµ}2
p (Re {Sµ} | Re {Yµ}) dRe {Sµ}

+

∞∫

−∞

Im {Sµ}2
p (Im {Sµ} | Im {Yµ}) dIm {Sµ} . (11.75)

In this case, the estimator is much easier to compute. It is related to the Wiener
filter [Accardi, Cox 1999],

Â2
µ =

(
σ2

S,µ

σ2
S,µ + σ2

N,µ

)2

|Yµ|2 +
σ2

S,µσ2
N,µ

σ2
S,µ + σ2

N,µ

. (11.76)

For supergaussian speech models the corresponding estimator is developed in
[Breithaupt, Martin 2003].
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11.4.4.3 MMSE Log Amplitude Estimation

Small speech signal amplitudes are very important for speech intelligibility. It is
therefore sensible to use an error measure which places more emphasis on small
signal amplitudes, e.g., a compressive type of function c{Aµ} = log(Aµ).

The MMSE log spectral amplitude (MMSE-LSA) estimator minimizes the mean

square error of the logarithmically weighted amplitudes E
{
(log(Aµ) − log(Âµ))2

}

and thus improves the estimation of small amplitudes.

The MMSE-LSA estimate is given by [Ephraim, Malah 1985]

Âµ = exp (E {ln(Aµ)|Yµ}) , (11.77)

provided that DFT bins are uncorrelated. The solution can be expressed as

Âµ =
ξµ

1 + ξµ
exp




1

2

∞∫

vµ

exp{−t}
t

dt


 |Yµ| (11.78)

where for a practical implementation, the exponential integral function in (11.78)
can be tabulated as a function of vµ. Therefore,

Sµ =
ξµ

1 + ξµ
exp




1

2

∞∫

vµ

exp{−t}
t

dt


 Yµ = GLSAYµ . (11.79)

11.5 Joint Optimum Detection and Estimation

of Speech

The optimal estimators of the previous sections implicitly assume that speech is
present in the noisy signal. This is, of course, not always the case and the estimator
for clean speech conditioned on the presence of speech is not optimal when speech
is absent. Also, to improve the subjective listening quality, it can be advantageous
to explicitly distinguish the two cases “speech present” and “speech absent”. For
example, the listening quality can be improved when the speech enhancement
algorithm applies a constant, frequency-independent attenuation Gmin to the noisy
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signal during speech pauses [Yang 1993], [Malah et al. 1999]. The MMSE estimator
can be extended to account for speech presence or absence. Below, the resulting
joint optimum detection and estimation problem [Middleton, Esposito 1968], as
outlined in Section 5.12.4, is solved in the context of amplitude estimation.

To this end, we introduce the two hypotheses of “speech is present in DFT bin

µ” and “speech is absent in DFT bin µ” and denote these two hypotheses by H
(1)
µ

and H
(0)
µ , respectively. All statistical quantities will now be conditioned on these

hypotheses. The two hypotheses H
(1)
µ and H

(0)
µ can be stated in terms of the DFT

coefficients as

H(0)
µ : Yµ = Nµ and (11.80)

H(1)
µ : Yµ = Sµ + Nµ . (11.81)

We denote the a priori probability that speech is present and the a priori proba-

bility that speech is absent in bin µ with pµ = P (H
(1)
µ ) and qµ = P (H

(0)
µ ) = 1−pµ,

respectively.

In the case of quadratic cost functions, the joint optimal detector and estimator
is a linear combination of two terms as in (5.157). For example, the estimator for
the spectral magnitudes may be decomposed into

Âµ = G(1) E
{
Aµ | Yµ, H(1)

µ

}
+ G(0) E

{
Aµ|Yµ, H(0)

µ

}
, (11.82)

where E
{
Aµ|Yµ, H

(1)
µ

}
and E

{
Aµ|Yµ, H

(0)
µ

}
are the optimal estimators under the

hypotheses H
(1)
µ and H

(0)
µ , respectively, and the multiplicative weighting factors

are given by

G(1) =
Λµ(Yµ)

1 + Λµ(Yµ)
=

pµp(Yµ | H
(1)
µ )

qµp(Yµ | H
(0)
µ ) + pµp(Yµ | H

(1)
µ )

(11.83)

G(0) =
1

1 + Λµ(Yµ)
=

qµp(Yµ(λ) | H
(0)
µ (λ))

qµp(Yµ | H
(0)
µ ) + pµp(Yµ | H

(1)
µ )

. (11.84)

These soft-decision weights are functions of the generalized likelihood ratio

Λµ(Yµ) =
p(Yµ | H

(1)
µ ) pµ

p(Yµ | H
(0)
µ ) qµ

. (11.85)
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In the case of speech absence, we strive for a frequency-independent attenuation

E
{
Aµ|Yµ, H

(0)
µ

}
= GminRµ of the noisy input magnitude. Thus, we may simplify

the above estimator, i.e.,

Âµ =
Λµ(Yµ)

1 + Λµ(Yµ)
E
{
Aµ | Yµ, H(1)

µ

}
+

1

1 + Λµ(Yµ)
GminRµ . (11.86)

Another solution may be obtained when the conditional density p(Yµ | Aµ, αµ) is
replaced by the conditional density of the magnitude p(Rµ | Aµ, αµ). A completely
analogous derivation leads to the soft-decision estimation as proposed in [McAulay,
Malpass 1980],

Âµ = E
{
Aµ | Rµ, H(1)

µ

}
P (H(1)

µ | Rµ) + E
{
Aµ | Rµ, H(0)

µ

}
P (H(0)

µ | Rµ) .

In [McAulay, Malpass 1980], E
{
Aµ | Rµ, H

(1)
µ

}
is replaced by the ML estimate

(11.58) and E
{
Aµ | Rµ, H

(0)
µ

}
is set to zero. In this case, the likelihood ratio Λk

is based on the conditional PDF (5.122)

Λµ(Rµ) =
p(Rµ | H

(1)
µ ) pµ

p(Rµ | H
(0)
µ ) qµ

. (11.87)

We note that the soft-decision approach can be used in conjunction with other
estimators, e.g., the MMSE-LSA estimator, and other cost functions as well. In
general, however, the factoring property of (11.82) will be lost.

As a final example, we consider the estimation of ln(Aµ) and obtain

Âµ = exp
(
E
{
ln(Aµ) | Yµ, H(1)

µ

}) Λµ(Yµ)
1+Λµ(Yµ)

(GminRµ)
1

1+Λµ(Yµ) (11.88)

where we make use of the MMSE-LSA estimator as outlined in Section 11.4.4.3 and
the fixed attenuation Gmin during speech pause. This estimator [Cohen, Berdugo
2001] results in larger improvements in the segmental SNR than the estimator
in (11.86) but also in more speech distortions. This less desirable behavior (see
[Ephraim, Malah 1985]) is improved when the soft-decision modifier is multiplica-
tively combined with the MMSE-LSA estimator [Malah et al. 1999],

Âµ =
Λµ(Yµ)

1 + Λµ(Yµ)
exp

(
E
{
ln(Aµ) | Yµ, H(1)

µ

})
. (11.89)

This estimator achieves less noise reduction than the estimator in (11.88).
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11.6 Computation of Likelihood Ratios

For the Gaussian model, the PDFs of Yµ conditioned on the hypotheses H
(0)
µ or

H
(1)
µ follow from (5.113),

p(Yµ | H(0)
µ ) =

1

πσ2
N,µ

exp

(
−

R2
µ

σ2
N,µ

)
(11.90)

and

p(Yµ | H(1)
µ ) =

1

π
(
σ2

N,µ + E
{
A2

µ | H
(1)
µ

}) exp


−

R2
µ

σ2
N,µ + E

{
A2

µ | H
(1)
µ

}


 .

The PDF of complex Gaussians depends only on the magnitude Rµ and not on the

phase. The expectation of the speech power, E
{
A2

µ | H
(1)
µ

}
, is now explicitly con-

ditioned on the presence of speech and thus excludes speech pauses. The likelihood
ratio is then given by

Λµ =
1 − qµ

qµ

σ2
N,µ

π
(
σ2

N,µ + E
{
A2

µ | H
(1)
µ

})

· exp


−

R2
µ

σ2
N,µ + E

{
A2

µ | H
(1)
µ

} +
R2

µ

σ2
N,µ


 (11.91)

=
1 − qµ

qµ

1

1 + ξµ
exp

(
γµ

ξµ

1 + ξµ

)

where ξµ is the a priori SNR conditioned on the presence of speech

ξµ =
E
{
A2

µ | H
(1)
µ

}

σ2
N,µ

. (11.92)

According to [Ephraim, Malah 1984], ξµ can be expressed as a function of the
unconditional expectation E

{
A2

µ

}
= E

{
|Sµ|2

}

E
{
A2

µ | H
(1)
µ

}

σ2
N,µ

=
E
{
A2

µ

}

σ2
N,µ

1

1 − qµ
= ηµ

1

1 − qµ
(11.93)

with

ηµ =
E
{
A2

µ

}

σ2
N,µ

. (11.94)

Other solutions are discussed in [Cohen, Berdugo 2001].
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11.7 Estimation of the A Priori Probability
of Speech Presence

The computation of the likelihood ratio requires knowledge of the a priori prob-
ability pµ of speech presence in each frequency bin µ. These probabilities do not
just reflect the proportion of speech spurs to speech pauses. They should also take
into account that, during voiced speech, most of the speech energy is concentrated
in the frequency bins which correspond to the speech harmonics. The frequency
bins in between the speech harmonics contain mostly noise. Consequently, there
has been some debate as to which value would be most appropriate for pµ. In
the literature a priori probabilities for speech presence range between 0.5 and 0.8
[McAulay, Malpass 1980], [Ephraim, Malah 1984].

However, a fixed a priori probability pµ can only be a compromise since the
location of the speech harmonics varies with the fundamental frequency of the
speaker. Tracking the probability of speech presence individually in all frequency
bins should therefore result in an improved performance. This requires an estima-
tion procedure for the a priori probabilities which we outline below [Soon et al.
1999], [Malah et al. 1999].

11.7.1 A Hard-Decision Estimator Based on Conditional
Probabilities

A hard-decision approach can be developed using the likelihood ratio

Λ̃µ(Rµ) =
p(Rµ | H

(1)
µ )

p(Rµ | H
(0)
µ )

=
exp(−(R2

µ + A2
µ)/σ2

N,µ) I0(2RµAµ/σ2
N,µ)

exp(−R2
µ/σ2

N,µ)

= exp(−ξµ) I0(2
√

ξµγµ) (11.95)

where we assumed equal a priori probabilities pµ = qµ = 0.5 and used the con-
ditional densities in (5.119) and (5.114). We introduce an index function Iµ(λ)
which denotes the result of the test for the λ signal frame

Iµ(λ) =

{
1 Λ̃µ(Rµ(λ)) > 1

0 Λ̃µ(Rµ(λ)) ≤ 1 .
(11.96)

An estimate p̂µ(λ) for the probability of speech presence for the λ-th signal frame
and the µ-th frequency bin can then be obtained by computing a recursive average
of the index function

p̂µ(λ) = (1 − βp) p̂µ(λ − 1) + βp Iµ(λ) (11.97)

where βp is typically set to 0.1.
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11.7.2 Soft-Decision Estimation

The probability of speech presence can also be obtained from Bayes’ theorem as

P (H(1)
µ | Rµ) =

p(Rµ | H
(1)
µ ) pµ

p(Rµ | H
(1)
µ ) pµ + p(Rµ | H

(0)
µ ) qµ

=
Λµ(Rµ)

1 + Λµ(Rµ)

=
p(Rµ | H

(1)
µ )

p(Rµ | H
(1)
µ ) + p(Rµ | H

(0)
µ )

(11.98)

where the last identity again assumes equal a priori probabilities, pµ = qµ = 0.5.
Substituting the conditional densities, we obtain

P (H(1)
µ |Rµ) =

exp(−ξµ) I0(2
√

ξµγµ)

1 + exp(−ξµ) I0(2
√

ξµγµ)
(11.99)

which is recursively smoothed to yield an estimate of the probability of speech
presence

p̂µ(λ) = (1 − βp) p̂µ(λ − 1) + βp P (H(1)
µ | Rµ) . (11.100)

A similar estimator [Malah et al. 1999] can be devised by substituting the condi-
tional densities of the complex coefficients Yµ into the likelihood ratio

P (H(1)
µ |Yµ) =

Λ̂µ(Yµ)

1 + Λ̂µ(Yµ)
(11.101)

with

Λ̃µ(Yµ) =
exp(γµξµ/(1 + ξµ))

1 + ξµ
. (11.102)

11.7.3 Estimation Based on the A Posteriori SNR

The probability for speech presence can also be obtained from a test on the a
priori SNR ηµ where the a priori SNR is compared to a preset threshold ηmin.
Since the a priori SNR parameterizes the statistics of the a posteriori SNR in terms
of the exponential density, a test can be devised which relies exclusively on the a
posteriori SNR [Malah et al. 1999]. In this test we compare the a posteriori SNR
to a threshold γq. When speech is present, the decisions are smoothed over time
for each frequency bin using a first-order recursive system

p̂µ(λ) = αp p̂µ(λ − 1) + (1 − αp) Iµ(λ) (11.103)
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where Iµ(λ) again denotes an index function with

Iµ(λ) =

{
1 γµ(λ) > γq

0 γµ(λ) ≤ γq .
(11.104)

During speech pauses, the probability pµ is set to a fixed value pµ � 0. Good
results are obtained using γq = 0.8 and αq = 0.95 [Malah et al. 1999].

11.8 VAD and Noise Estimation Techniques

All noise suppression methods discussed in the previous sections require knowledge
of the PSD of the disturbing noise. Noise power estimation is therefore an impor-
tant (and sometimes neglected) component of speech enhancement algorithms.
The noise PSD is in general time varying and not known a priori. It must be esti-
mated and updated during the execution of the noise reduction algorithm. When
the noise is non-stationary, it is not sufficient to sample the noise in a speech pause
prior to a speech phrase and to keep this estimate fixed during speech activity. On
the contrary, we must frequently update the noise estimate in order to track the
noise PSD with sufficient accuracy. Unlike methods built upon microphone arrays,
where averaging over the various microphone signals is possible, single microphone
algorithms can obtain the noise PSD only by smoothing the noisy signal over time
or frequency. However, since the noise is non-stationary, we cannot smooth over
arbitrarily large amounts of noisy data. We must balance the error variance of the
noise PSD estimate and the ability to track changes in the noise PSD.

Among the many approaches to noise PSD estimation, the most prominent are
certainly based on voice activity detectors (VAD). Voice activity detection works
well for moderate to high SNRs. Besides, for noise estimation, VADs are also used
for controlling discontinuous transmission (DTX) in mobile voice communication
systems [Freeman et al. 1989], [Srinivasan, Gersho 1993], [3GPP TS 126.094, V4.0.0
2001] and for detecting speech spurs in speech recognition applications. As we will
see, a single algorithm will not be perfect for all applications. The VAD algorithm
needs to be optimized for the specific task.

In high levels of possibly non-stationary noise, however, most VADs do not perform
well. Furthermore, for noise reduction applications, we need an estimate of the
noise floor rather than binary voice activity decisions. Methods based on “soft”
estimation criteria are therefore preferable since they provide for an update of the
noise power during speech activity. Besides VAD-based methods, we therefore also
consider techniques which are based on energy histograms, on the probability of
speech presence and soft-decision updates, and on minimum power tracking, also
known as minimum statistics [Martin 1994], [Martin 2001a].
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11.8.1 Voice Activity Detection

Over the years, many algorithms for voice activity detection have been proposed,
e.g., [McAulay, Malpass 1980], [Van Compernolle 1989]. A VAD can be described
by means of a finite state machine with at least two states, “speech is present” and
“speech is absent”. Sometimes, additional states are used to cope with transitions
between these two basic states.

When speech is absent, the noise PSD can be estimated using a first-order recursive
system with 0 < α < 1,

σ̂2
Y,µ(λ) = α σ̂2

Y,µ(λ − 1) + (1 − α)|Yµ(λ)|2 . (11.105)

The key to the successful design of a VAD is to use features of the speech signal
which either are – at least in principle – independent of the noise power level or can
be normalized on the noise power. Much ingenuity is required to find the “right”
set of features. Once these features have been selected, the problem can be treated
with classical detection theory.

A comparison of standard VAD algorithms is presented, for example, in [Beritelli
et al. 2001]. A simple approach is to use an estimated SNR [Martin 1993] and to
compare the estimated SNR to one or several fixed thresholds. This might work
well for high SNR conditions, but for low SNR conditions we will encounter a sub-
stantial amount of erroneous detections. Typical VAD implementations therefore
use several features. Some of the more common methods are discussed below.

11.8.1.1 Detectors Based on the Subband SNR

An SNR-based VAD may be made more robust by computing the instantaneous
SNR in frequency subbands and by averaging the SNR over all of these bands.
The spectral analysis may be realized as a filter bank with uniform or non-uniform
resolution or by a sliding window DFT. We will now examine this concept in
greater detail and consider a detection algorithm based on the a posteriori SNR of
DFT coefficients. To develop the detection algorithm, we introduce two hypotheses

H(0)(λ) : speech is absent in signal frame λ, and

H(1)(λ) : speech is present in signal frame λ .

Assuming Gaussian PDFs of equal variance for the real and the imaginary parts
of the complex M -point DFT coefficients and mutual statistical independence of
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all DFT bins, we may write the joint PDF for a vector Y(λ) of M/2− 1 complex
noisy DFT coefficients when speech is present as

pY(λ)|H(1)(λ)

(
Y1(λ), . . . , YM/2−1(λ) | H(1)(λ)

)

=

M/2−1∏

µ=1

1

π (σ2
N,µ + σ2

S,µ)
exp

(
− |Yµ(λ)|2

σ2
N,µ + σ2

S,µ

)
. (11.106)

The DC and Nyquist frequency bins are not included in the product. σ2
S,µ and σ2

N,µ

denote the power of the speech and the noise coefficients in the µ-th frequency bin,
respectively. When speech is absent, we have

pY(λ)|H(0)(λ)

(
Y1(λ), . . . , YM/2−1(λ) | H(0)(λ)

)

=

M/2−1∏

µ=1

1

π σ2
N,µ

exp

(
−|Yµ(λ)|2

σ2
N,µ

)
. (11.107)

Speech can now be detected by comparing the log-likelihood ratio [Van Trees 1968],
[Sohn et al. 1999]

Λ (Y(λ)) =
1

M/2 − 1
log

(
pY(λ)|H(1)(λ)(Y1(λ), . . . , YM/2−1(λ) | H(1)(λ))

pY(λ)|H(0)(λ)(Y1(λ), . . . , YM/2−1(λ) | H(0)(λ))

)

=
1

M/2 − 1




M/2−1∑

µ=1

(
|Yµ(λ)|2

σ2
N,µ

− |Yµ(λ)|2
σ2

N,µ + σ2
S,µ

− log
σ2

N,µ + σ2
S,µ

σ2
N,µ

)


to a threshold Lthr

Λ (Y(λ))
H(0)(λ)

≶
H(1)(λ)

Lthr . (11.108)

The test can be further simplified if the unknown speech variances σ2
S,µ are replaced

by their ML estimates (11.53)

σ̂2
S,µ = |Yµ(λ)|2 − σ2

N,µ . (11.109)
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In this case we obtain

Λ (Y(λ)) =
1

M/2 − 1




M/2−1∑

µ=1

(
|Yµ(λ)|2

σ2
N,µ

− log
|Yµ(λ)|2

σ2
N,µ

− 1

)
 (11.110)

Λ (Y(λ))
H(0)(λ)

≶
H(1)(λ)

Lthr , (11.111)

which is recognized as a discrete approximation of the Itakura–Saito distortion
measure between the magnitude squared signal spectrum |Yµ(λ)|2 and the noise
power spectrum σ2

N,µ [Markel, Gray 1976, chapter 6].

If we retain only the first term in the summation, the detection test simplifies to
a test on the average a posteriori SNR (11.40). In fact, as observed by several
authors [Häkkinen, Väänänen 1993], [Malah et al. 1999], the a posteriori SNR γµ

can be used to build reliable VADs. Since γµ is normalized on the noise PSD, its
expectation is equal to unity during speech pause. A VAD is therefore obtained
by comparing the average a posteriori SNR γ(λ) to a fixed threshold γthr,

γ(λ) =
1

M/2 − 1

M/2−1∑

µ=1

γµ(λ)
H(0)(λ)

≶
H(1)(λ)

γthr . (11.112)

For the Gaussian model, the variance of γµ(λ) is equal to one during speech pause.
If we assume that all frequency bins are mutually independent, the variance of the
average a posteriori SNR is, during speech pause, given by

var{γ} =
1

M/2 − 1
. (11.113)

As a consequence, the speech detection threshold can be set to γthr = 1+a
√

var{γ}
where a is in the range 2 ≤ a ≤ 4. The examples in Fig. 11.11 show the typical
performance of this detector for a high SNR and a low SNR signal. The noise
in this experiment is computer-generated white Gaussian noise. As we can see,
this detector works almost perfectly for high SNR conditions. When the SNR is
low, speech activity is not always properly flagged. For low SNR conditions, a
more advanced algorithm is required. We note that this approach may be varied
in several ways. For example, [Yang 1993] employs a test

1

M/2 − 1

M/2−1∑

k=1

max

(
R2

µ − σ2
N,µ

R2
µ

, 0

)
H(0)(λ)

≶
H(1)(λ)

Tthr . (11.114)

Also, the input signal may be decomposed by means of a filter bank as outlined
below.
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Figure 11.11: Speech signals and VAD decision for the algorithm
based on the a posteriori SNR (11.112)
a) 30 dB segmental SNR
b) 0 dB segmental SNR

11.8.1.2 VAD (Option 1) of the Adaptive Multi-rate Coder

A state-of-the-art implementation of a VAD for speech transmission (DTX) pur-
poses is shown in Fig. 11.12. This VAD is standardized as one of two different
VAD algorithms for the ETSI adaptive multi-rate speech coder [3GPP TS 126.094,
V4.0.0 2001], [Vähätalo, Johansson 1999]. It is typical in its use of several speech
features, a background noise estimator, a detection unit, and a hangover generator.
An intermediate VAD decision is based on the instantaneous SNR obtained from
the outputs of a nine-channel filter bank as outlined in the previous section. The
detection threshold, to which the sum of the channel SNRs is compared, is adapted
to the level of the noise power. When the noise power is large, the threshold is
lowered to allow for reliable detection of speech at the expense of “false alarms”
when no speech is present. The purpose of the hangover generator is to prevent
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Figure 11.12: Block diagram of VAD algorithm of the adaptive multi-rate speech codec
(VAD option 1 [Vähätalo, Johansson 1999]); c© 1999 IEEE

Figure 11.13: Speech signals and VAD decision for the AMR VAD 1
a) 30 dB segmental SNR
b) 0 dB segmental SNR
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early returns from a “speech is present” state to a “speech is absent” state. This
is especially useful for protecting low-energy speech sounds at the end of words.
However, the hangover generator evaluates other criteria as well and modifies the
final VAD decision accordingly [3GPP TS 126.094, V4.0.0 2001].

The performance of the AMR VAD is shown in Fig. 11.13 for the same two speech
samples as in Fig. 11.11. For both SNR cases, the hangover can be clearly observed.
For the low SNR condition, the speech onsets are not always properly detected.
Because of the large amount of hangover the AMR VAD is not an ideal candi-
date for noise reduction applications. In a noise reduction application, we want to
sample the noise also in the brief periods between words or syllables.

11.8.1.3 Noise Estimation Based on Frame Energy Histograms

The PDF of the short-term energy or the logarithmic short-term energy of clean
speech has a distinct bimodal structure [McAulay, Malpass 1980], [Van Comper-
nolle 1989]. One mode is located at zero and corresponds to speech pauses. The
other represents speech. When noise is added to the speech signal, the mode which
corresponds to speech pause reflects the energy of the noise.

This bimodal structure can be exploited for voice activity detection and noise
power estimation. Using the histogram and the cumulative histogram of frame en-
ergies, an adaptive energy threshold parameter Hthr can be determined [McAulay,
Malpass 1980]. The energy of a given frame of noisy speech is compared to this
threshold and the frames which are classified to contain only noise are averaged
to obtain a noise power estimate. In a slightly modified implementation of this
procedure [Van Compernolle 1989], Gaussian densities are fitted to the histogram
of the logarithmic frame energies and the threshold is set in such a way that the
a posteriori probabilities of speech absence and speech presence are equal. Thus,
the probability of error is minimized [Melsa, Cohn 1978].

The histogram method may be used to estimate the noise power adaptively in
frequency bands. By picking the most frequent histogram bin in each frequency
band an estimate of the noise power is obtained [Hirsch, Ehrlicher 1995]. This works
well when speech pauses are predominant. However, if the histogram is computed
for M/2 + 1 bins of an M -point DFT and each frequency bin is resolved into HM

histogram bins, the memory requirements for this histogram-based noise power
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Figure 11.14: Speech signals and VAD decision for the histogram-based VAD
a) 30 dB segmental SNR
b) 0 dB segmental SNR

estimator are (M/2 + 1)HM memory words. The advantage of this procedure
is that no explicit VAD is necessary. For the speech files used, for example, in
Fig. 11.13 the resulting VAD decisions are shown in Fig. 11.14.

11.8.2 Noise Estimation Using a Soft-Decision Detector

Using a Gaussian model as outlined in Section 11.8.1.1, the probability of speech
presence or absence can be determined. These probabilities can also be used to
estimate and/or update the background noise power. A noise estimation algorithm
based on these probabilities was proposed in [Sohn, Sung 1998] for the purpose of
robust voice activity detection. This noise estimate can also be used directly for
speech enhancement purposes without employing a VAD [Beaugeant 1999]. We
will briefly outline the method.
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Under the assumption that DFT coefficients are mutually independent, the MMSE
estimate σ̂2

N,µ(λ) = E
{
σ2

N,µ(λ) | Yµ(λ)
}

of the background noise power can be
written as

σ̂2
N,µ(λ) = E

{
σ2

N,µ(λ) | Yµ(λ), H(0)
µ (λ)

}
P

(
H(0)

µ (λ) | Yµ(λ)
)

+ E
{
σ2

N,µ(λ) | Yµ(λ), H(1)
µ (λ)

}
P

(
H(1)

µ (λ) | Yµ(λ)
)

(11.115)

where we now define the hypotheses H
(0)
µ (λ) and H

(1)
µ (λ) for speech absence and

presence, respectively, individually for each frequency bin. In analogy to Sec-

tion 11.5, the probabilities P (H
(0)
µ (λ) | Yµ(λ)) and P (H

(1)
µ (λ) | Yµ(λ)) can be

written as a function of the generalized likelihood ratio

Λµ(λ) =
p(Yµ(λ) | H

(1)
µ (λ))P (H

(1)
µ (λ))

p(Yµ(λ) | H
(0)
µ (λ))P (H

(0)
µ (λ))

, (11.116)

i.e.,

P (H(0)
µ (λ) | Yµ(λ)) =

1

1 + Λµ(λ)
(11.117)

and

P (H(1)
µ (λ) | Yµ(λ)) =

Λµ(λ)

1 + Λµ(λ)
. (11.118)

The evaluation of the expectations in (11.115) is in general difficult. Therefore,
simplified estimators are used. During speech activity the noise power estimate is
not updated and the estimate is replaced by the estimate of the previous frame

E
{
σ2

N,µ(λ) | H(1)
µ (λ)

}
≈ σ̂2

N,µ(λ − 1) . (11.119)

During speech pause the squared magnitude |Yµ(k)|2 of the current frame is used

as an estimate of the noise power, i.e., E
{
σ2

N,µ(k) | H
(0)
µ (λ)

}
≈ |Yµ(k)|2. The

estimator based on the probabilities of speech presence and absence can therefore
be written as [Sohn, Sung 1998]

σ̂2
N,µ(λ) =

1

1 + Λµ(λ)
|Yµ(λ)|2 +

Λµ(λ)

1 + Λµ(λ)
σ̂2

N,µ(λ − 1) (11.120)

which is recognized as a first-order recursive (smoothing) filter with a time-varying
and frequency-dependent smoothing parameter. The likelihood ratio can be es-
timated as outlined in Section 11.5 or be replaced by a frequency-independent
average.
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11.8.3 Noise Power Estimation Based on Minimum
Statistics

In contrast to noise estimation based on voice activity detection, the minimum
statistics algorithm does not use any explicit threshold to distinguish between
speech activity and speech pause and is therefore more closely related to soft-
decision methods than to traditional voice activity detection. Similar to soft-
decision methods, it can also update the estimated noise PSD during speech ac-
tivity. Speech enhancement based on minimum statistics was proposed in [Martin
1994] and improved in [Martin 2001a]. In [Meyer et al. 1997] it was shown that
the minimum statistics algorithm [Martin 1994] performs relatively well in non-
stationary noise. Our discussion of the minimum statistics approach follows closely
[Martin 2001a], [Martin 2005a].

The minimum statistics method rests on two conditions, namely that the speech
and the disturbing noise are statistically independent and that the power of a
noisy speech signal frequently decays to the power level of the disturbing noise.
It is therefore possible to derive an accurate noise PSD estimate by tracking the
minimum of the noisy signal PSD. Since the minimum is smaller than or equal to
the mean, the minimum tracking method requires a bias correction. It turns out
that the bias is a function of the variance of the smoothed signal PSD and as such
depends on the smoothing parameter of the PSD estimator.

To highlight some of the obstacles which are encountered when implementing a
minimum tracking approach, we consider a simplified algorithm based on recur-
sively smoothed magnitude squared DFT coefficients

σ̂2
Y,µ(λ) = α σ̂2

Y,µ(λ − 1) + (1 − α) |Yµ(λ)|2 (11.121)

where µ is the frequency bin index and λ is the frame index. Successive frames of
the input signal are shifted by r samples in the time domain. Figure 11.15 plots the
magnitude squared DFT coefficients |Yµ(λ)|2, the smoothed signal power σ̂2

Y,µ(λ),
and the minimum of the smoothed power within a window of 96 consecutive power
values as a function of the frame index λ and for a single frequency bin µ = 25.
The speech signal is degraded by a non-stationary vehicular noise with an overall
SNR of approximately 10 dB. The window size is M = 2r = 256. The DFT coeffi-
cients are recursively smoothed with an equivalent (rectangular) window length of
TSM = 0.2 seconds which represents a good compromise between smoothing the
noise and tracking the speech signal. By assuming independent DFT coefficients
and equating the variance of σ̂2

Y,µ(λ) to the variance of a moving-average esti-
mator with window length TSM , the smoothing parameter α in (11.121) can be
computed as α = (TSMfs/r− 1)/(TSMfs/r +1) ≈ 0.85. The noise power estimate
is obtained by picking the minimum value within a sliding window of D = 96
consecutive values of σ̂2

Y,µ(λ), regardless of whether speech is present or not.
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Figure 11.15: |Yµ(λ)|2, smoothed power σ̂2
Y,µ(λ) (11.121), and short-time minimum

of the smoothed power for a noisy speech signal and a single fre-
quency bin µ = 25 [Martin 2001a]; c© 2001 IEEE

Apparently, the minimum tracking provides a rough estimate of the noise power.
However, further improvements are possible if the following issues are resolved:

• Smoothing with a fixed smoothing parameter α widens the peaks of speech
activity of the smoothed PSD estimate σ̂2

Y,µ(λ). This will lead to inaccurate
noise estimates, as the sliding window for the minimum search might slip
into broad peaks. Thus, we cannot use fixed smoothing parameters close to
one and, as a consequence, the noise estimate will have a relatively large
variance. This undesirable behavior can be circumvented with a time- and
frequency-dependent smoothing parameter.

• The noise estimate as shown in Fig. 11.15 is biased towards lower values.
Using results from extremal statistics theory, the bias can be computed and
compensated.

• In the case of increasing noise power, the minimum tracking lags behind. A
faster update of the noise power is possible if the variance of the smoothed
power is taken into account.

In the following sections we will address these issues.
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11.8.3.1 Derivation of the Smoothing Parameter

The key to a successful application of the minimum statistics principle is to use
a time- and frequency-dependent smoothing parameter in (11.121). To derive an
optimal smoothing parameter αµ(λ), we assume speech absence (σ2

S,µ(λ) = 0) and

consider again the first-order smoothing equation for σ̂2
Y,µ(λ),

σ̂2
Y,µ(λ) = αµ(λ) · σ̂2

Y,µ(λ − 1) + (1 − αµ(λ)) · |Yµ(λ)|2 . (11.122)

For speech pause, we want σ̂2
Y,µ(λ) to be as close as possible to the noise PSD

σ2
N,µ(λ). Therefore, our objective is to minimize the conditional mean square error

E
{
(σ̂2

Y,µ(λ) − σ2
N,µ(λ))2 | σ̂2

Y,µ(λ − 1)
}

(11.123)

from one iteration step to the next. After substituting σ̂2
Y,µ(λ) in (11.123) and using

E
{
|Yµ(λ)|2

}
= σ2

N,µ(λ) and E
{
|Yµ(λ)|4

}
= 2σ4

N,µ(λ), the mean square error is
given by

E
{
(σ̂2

Y,µ(λ) − σ2
N,µ(λ))2 | σ̂2

Y,µ(λ − 1)
}

= E
{(

αµ(λ) · σ̂2
Y,µ(λ − 1) − σ2

N,µ(λ)
)2

∣∣∣ σ̂2
Y,µ(λ − 1)

}

+ E
{
(1 − αµ(λ))2 · |Yµ(λ)|4

∣∣∣ σ̂2
Y,µ(λ − 1)

}

+ 2 E
{(

αµ(λ) · σ̂2
Y,µ(λ − 1) − σ2

N,µ(λ)
)
·(1 − αµ(λ))·|Yµ(λ)|2

∣∣∣ σ̂2
Y,µ(λ − 1)

}

= α2
µ(λ)

[
σ̂2

Y,µ(λ − 1) − σ2
N,µ(λ)

]2
+ σ4

N,µ(λ) · (1 − αµ(λ))2 (11.124)

where we have also assumed that successive signal frames are independent. Setting
the first derivative with respect to αµ(λ) to zero yields

αµ(λ)〈opt〉 =
1

1 +

(
σ̂2

Y,µ(λ − 1)

σ2
N,µ(λ)

− 1

)2 . (11.125)

Since the second derivative is non-negative, a minimum is achieved. The term
γ̃µ(λ) = σ̂2

Y,µ(λ − 1)/σ2
N,µ(λ) in the denominator of (11.125) is recognized as a

smoothed version of the a posteriori SNR.

Figure 11.16 plots the optimal smoothing parameter αµ(λ)〈opt〉 for
0 ≤ γ̃µ(λ) ≤ 10. Since the optimal smoothing parameter αµ(λ)〈opt〉 is be-
tween zero and one, a stable and non-negative power estimate σ̂2

Y,µ(λ) is
guaranteed.

Having assumed a speech pause in the above derivation does not pose any prin-
cipal problems. The optimal smoothing procedure reacts to speech activity in the
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Figure 11.16: Optimal smoothing parameter αµ(λ)〈opt〉 [Martin 2001a]; c© 2001 IEEE

same way as to highly non-stationary noise. In the case of speech activity, the
smoothing parameter is reduced to small values, which enables the PSD estimate
σ̂2

Y,µ(λ) to closely follow the time-varying PSD of the noisy speech signal. How-

ever, since in any implementation the true (and unknown) noise power σ2
N,µ(λ)

must be replaced by an estimate, additional measures are necessary to stabilize
the smoothing procedure [Martin 2001a]. Finally, we note that for other methods
of frequency analysis, e.g., a filter bank with non-uniform frequency bands, the
optimal smoothing parameter must be adapted to the statistics of the subband
signals [Martin, Lotter 2001].

11.8.3.2 Statistics of Minimum Power Estimates

The minimum tracking PSD estimation approach determines the minimum of the
short-time PSD estimate within a finite window of length D. Since for non-trivial
densities the minimum value of a set of random variables is smaller than their
mean, the minimum noise estimate is necessarily biased.

The bias depends on the signal statistics and the smoothing method [Martin
2005a]. It can be computed analytically only if successive values of σ̂2

Y,µ(ℓ),
ℓ ∈ {λ, . . . , λ − i, . . . , λ − D + 1} are independent, identically distributed (i.i.d.)
random variables. Unless the sequence of successive σ̂2

Y,µ(λ) values is subsampled,
this is clearly not given. In this section we therefore consider the case of correlated
short-term PSD estimates and discuss an approximate solution. To simplify nota-
tions, we restrict ourselves to the case of speech pause. All results carry over to
the case of speech activity by replacing the noise variance by the variance of the
noisy speech signal.
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11.8.3.3 Mean of the Minimum of Correlated PSD Estimates

We consider the minimum σ2
min,µ(λ) of D successive short-term PSD estimates

σ̂2
Y,µ(ℓ), ℓ ∈ {λ, . . . , λ− i, . . . , λ−D +1}. For an infinite sequence of signal frames

and a fixed smoothing parameter 0 ≤ α < 1, the short-term PSD estimate σ̂2
Y,µ(λ)

can be written as

σ̂2
Y,µ(λ) = (1 − α)

∞∑

i=0

αi|Yµ(λ − i)|2 . (11.126)

For independent, exponentially, and identically distributed magnitude squared
DFT coefficients |Yµ(λ)|2, the characteristic function of the PDF of σ̂2

Y,µ(λ) is
then given by (see, e.g., [Johnson et al. 1994, chapter 18])

Φσ,Y (ω) =

∞∏

i=0

1

1 − jωσ2
N,µ(λ) (1 − α) αi

. (11.127)

Since the PDF of σ̂2
Y,µ(λ) is scaled by σ2

N,µ(λ), the minimum statistics of the short-

term PSD estimate are also scaled by σ2
N,µ(λ) [David 1980, section 6.2]. Therefore,

the mean E
{
σ2

min,µ(λ)
}

of the minimum power is proportional to σ2
N,µ(λ) and the

variance is proportional to σ4
N,µ(λ). Without loss of generality, it is thus sufficient

to compute the mean and the variance for σ2
N,µ(λ) = 1. We introduce the bias

1 − E
{
σ2

min,µ(λ)
}
|σ2

N,µ(λ)=1
and determine the mean

B−1
min,µ(λ) = E

{
σ2

min,µ(λ)
}
|σ2

N,µ(λ)=1
(11.128)

of the minimum of correlated variates σ2
Y,µ(λ) as a function of the inverse normal-

ized variance

Qeq,µ(λ) =
2σ4

N,µ(λ)

var{σ2
Y,µ(λ)} (11.129)

by generating exponentially distributed data with variance σ2
N,µ(λ) = 1 and by

averaging minimum values for various values of D. B−1
min,µ(λ) is the factor by which

the minimum is smaller than the mean. The inverse normalized variance Qeq,µ(λ)
is also called “equivalent degrees of freedom”, since non-recursive (moving-average)
smoothing of Qeq,µ(λ) independent squared Gaussian variates will yield an esti-
mate with the same variance. Qeq,µ(λ) thus quantifies the amount of smoothing:
when αµ(λ) is close to one, the estimated signal power σ̂2

Y,µ(λ) is significantly

smoother than |Yµ(λ)|2. In this case, the variance of σ̂2
Y,µ(λ) is small and Qeq,µ(λ)

large. The minimum of D such samples is, then, close to the mean.

The result of this evaluation is shown in Fig. 11.17. It depicts B−1
min as a function

of the length D of the minimum search window and as a function of the equivalent
degrees of freedom Qeq,µ.
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Figure 11.17: Mean of minimum of 1 ≤ D ≤ 320 correlated and recursively averaged
periodogram values for σ2

Y = 1 and Qeq equivalent degrees of freedom. A
Hann window with 50% overlap is used [Martin 2005a]

For software implementations it is practical to have a closed form approximation of
the inverse mean Bmin,µ, i.e., the bias correction factor. We note that Bmin,µ = D
for Qeq,µ(λ) = 2 and Bmin,µ = 1 for D = 1. While the latter is obvious, we must
prove the former. For Qeq,µ(λ) = 2 the smoothed power exhibits only two degrees
of freedom, which is true when no smoothing is in effect, i.e., for αµ(λ) = 0. The
probability density of the minimum σ2

min,µ(λ) of D i.i.d. random variables σ2
Y,µ(ℓ),

ℓ ∈ {λ, . . . , λ − D + 1}, is given by

pσ2
min,µ(λ)(y) = D (1 − Pσ2

Y,µ
(y))D−1 pσ2

Y,µ
(y) (11.130)

where Pσ2
Y,µ

(y) denotes the probability distribution function of σ2
Y,µ. For

Qeq,µ(λ) = 2 and the Gaussian assumption, σ2
Y,µ is exponentially distributed and

E
{
σ2

min,µ(λ)
}
|σ2

N,µ(λ)=1
=

1

Bmin,µ
=

∞∫

0

(1 − Pσ2
Y,µ

(y))D dy

=
2

Qeq,µ(λ)

∞∫

0

e−yD dy . (11.131)

Therefore, for Qeq,µ(λ) = 2 we obtain Bmin,µ = D.
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Using an asymptotic result in [Gumbel 1958, section 7.2], we may approximate the
inverse mean of the minimum by

Bmin,µ(λ) ≈ 1 + (D − 1)
2

Q̃eq,µ(λ)
Γ

(
1 +

2

Qeq,µ(λ)

)f2(D)

(11.132)

where Q̃eq,µ(λ) is a scaled version of Qeq,µ(λ)

Q̃eq,µ(λ) =
Qeq,µ(λ) − 2f1(D)

1 − f1(D)
(11.133)

and f1(D) and f2(D) are functions of D. In most cases, the simplified approxima-
tion

Bmin,µ(λ) ≈ 1 + (D − 1)
2

Q̃eq,µ(λ)
(11.134)

works equally well, since the additional term in (11.132) reduces the approximation
error for small values of Qeq,µ(λ) only. Small values occur predominantly when a
significant amount of speech power is present. During speech activity, however, it
is highly unlikely that σ̂2

Y,µ(λ) attains a minimum.

Table 11.3 lists values for f1(D) and f2(D) as a function of D. Values in between
can be obtained by linear interpolation. Γ(·) denotes the complete gamma function
[Gradshteyn, Ryzhik 1994]. The approximation using (11.134) has a relative mean
square error of less than 0.07 and a maximum relative error of less than 67%.
The largest errors are obtained for small values of Qeq. The approximation using
(11.132) results in a relative mean square error of less than 0.001 and maximum
relative error of less than 6%. In a real-time application with fixed window length
D, f1(D) and f2(D) are determined from Table 11.3 and (11.133) and (11.134)
are evaluated during runtime.

Table 11.3: Parameters for the approximation of the mean of the
minimum (11.132) and (11.134) [Martin 2005a]

D f1(D) f2(D) D f1(D) f2(D)

1 0 0 60 0.841 3.1
2 0.26 0.15 80 0.865 3.38
5 0.48 0.48 120 0.89 4.15
8 0.58 0.78 140 0.9 4.35

10 0.61 0.98 160 0.91 4.25
15 0.668 1.55 180 0.92 3.9
20 0.705 2.0 220 0.93 4.1
30 0.762 2.3 260 0.935 4.7
40 0.8 2.52 300 0.94 5



11.8 VAD and Noise Estimation Techniques 441

11.8.3.4 An Unbiased Noise Estimator Based on Minimum Statistics

As a result of the previous sections, we can now provide an unbiased estimator of
the noise PSD σ2

N,µ(λ),

σ̂2
N,µ(λ) =

σ2
min,µ(λ)

E
{
σ2

min,µ(λ)
}
|σ2

N,µ(λ)=1

= Bmin,µ (D, Qeq,µ(λ))σ2
min,µ(λ) ,

where we now emphasize the dependency of Bmin,µ on D and Qeq,µ(λ). The unbi-
ased estimator requires knowledge of the normalized variance

1

Qeq,µ(λ)
=

var{σ̂2
Y,µ(λ)}

2 σ4
N,µ(λ)

(11.135)

of the smoothed PSD estimate σ̂2
Y,µ(λ) at any given time and frequency index.

To estimate the variance of the smoothed PSD estimate σ̂2
Y,µ(λ) , we use a first-

order smoothing recursion for the approximation of the first moment, E
{
σ̂2

Y,µ(λ)
}
,

and the second moment, E
{(

σ̂2
Y,µ(λ)

)2
}

, of σ̂2
Y,µ(λ),

Pµ(λ) = βµ(λ) Pµ(λ − 1) + (1 − βµ(λ)) Pµ(λ)

P 2
µ(λ) = βµ(λ) P 2

µ(λ − 1) + (1 − βµ(λ)) P 2
µ(λ) (11.136)

v̂ar{σ̂2
Y,µ(λ)} = P 2

µ(λ) − P
2

µ(λ)

where Pµ(λ) and P 2
µ(λ) denote the estimated first and second moments, re-

spectively. Good results are obtained by choosing the smoothing parameter
βµ(λ) = α2

µ(λ) and by limiting βµ(λ) to values less than or equal to 0.8 [Mar-
tin 2001a]. Finally, 1/Qeq,µ(λ) is estimated by

1

Qeq,µ(λ)
≈

v̂ar{σ̂2
Y,µ(λ)}

2 σ̂4
N,µ(λ − 1)

, (11.137)

and this estimate is limited to a maximum of 0.5 corresponding to Qeq,µ(λ) = 2.
Since an increasing noise power can be tracked only with some delay, the minimum
statistics estimator has a tendency to underestimate highly non-stationary noise.
Furthermore, since the bias compensation (11.132) (or (11.134)) depends on the
estimated normalized variance, the bias compensation factor is a random variable
with a variance depending on the variance of σ2

Y,µ(λ). It is therefore advantageous
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to increase the inverse bias Bmin,µ(λ) by a factor Bc(λ) = 1+av

√
Q−1(λ) propor-

tional to the normalized standard deviation of the short-term estimate σ̂2
Y,µ(λ).

We compute the average normalized variance as

Q−1(λ) =
1

M

M−1∑

µ=0

1

Qeq,µ(λ)
(11.138)

and choose av typically as av = 2.12. This bias correction has an impact only
when the short-term PSD estimate, and thus the estimated variance, has a large
variance. Without the bias correction, the variations in Bmin,µ(D, Qeq,µ(λ)) would
push the minimum to values which are too low. For stationary noise this factor is
close to one.

Although the minimum statistics approach was originally developed for a sam-
pling rate of fs = 8000Hz and a frame advance of 128 samples, it can easily be
adapted to other sampling rates and frame advance schemes. The length D of the
minimum search window must be set proportional to the frame rate. For a given
sampling rate fs and a frame advance r, the duration of the time window for
minimum search, D · r/fs, should be equal to approximately 1.5 seconds. When a
constant smoothing parameter [Martin 1994] is used in (11.122), the length D of
the window for minimum search must be at least 50% larger than that for the adap-
tive smoothing algorithm. The minimum search itself is efficiently implemented by
subdividing the search window of length D into subwindows. This, as well as a
method to improve tracking of non-stationary noise, is explained in greater detail
in [Martin 2001a].

11.8.3.5 The Initial Example Revisited

We demonstrate the performance of the adaptive smoothing and the bias compen-
sation with a second look at the noisy speech file of Fig. 11.15. Figure 11.18 plots
|Yµ(λ)|2, the smoothed power σ̂2

Y,µ(λ), the noise estimate σ̂2
N,µ(λ), and the time-

varying smoothing parameter αµ(λ) for the same noisy speech file and the same
frequency bin as in Fig. 11.15. We see that the time varying smoothing parameter
allows the estimated signal power to closely follow the variations of the speech sig-
nal. During speech pause the noise is well smoothed. Also, the bias compensation
works very well, as the smoothed power and the estimated noise power follow each
other closely during speech pause. We also note that the noise PSD estimate is up-
dated during speech activity. This is a major advantage of the minimum statistics
approach.
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( )

Figure 11.18: |Yµ(λ)|2, smoothed power σ̂2
Y,µ(λ) (11.122), and noise estimate

σ̂2
N,µ(λ) for a noisy speech signal and a single frequency bin µ = 25.

The time-varying smoothing parameter αµ(λ) is shown in the lower
inset graph [Martin 2001a]; c© 2001 IEEE.

11.9 Dual Channel Systems

Single microphone speech enhancement algorithms are favored in many applica-
tions because they are relatively easy to apply. Their performance, however, is
limited, especially when the noise is non-stationary. The performance of noise re-
duction algorithms can be expected to improve, when more than one microphone is
available. In this case, the spatial characteristics of the sound field can be exploited,
e.g. for the estimation of a priori unknown statistical quantities.

Fig. 11.19 depicts the basic scenario with two microphones and a single, possibly
adaptive filter with impulse response h(k). This system differs from Fig 11.3 in
that a second microphone is added and this second signal is taken as the target
signal d(k) in Fig 11.3. Furthermore, we also provide the error signal e(k) as an
additional output.

The computation of the impulse response h(k) of the non-causal IIR Wiener filter
for the dual channel case is analogous to the derivation in Section 11.2.1. For wide
sense stationary signals, the minimization of

E
{
e2(k)

}
= E

{
(y2(k) − ŷ(k))2

}
(11.139)
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Figure 11.19: Dual channel noise reduction system

in the mean-square sense with

ŷ(k) =
∞∑

i=−∞

h(i)y1(k − i) (11.140)

results in the necessary condition

E {(y2(k) − ŷ(k))ŷ(k)} = 0 (11.141)

and in the frequency response

H(ejΩ) =
Φy1y2

(ejΩ)

Φy1y1
(ejΩ)

(11.142)

of the optimal filter. In the general case of additive speech and noise signals,

y1(k) = s1(k) + n1(k)

y2(k) = s2(k) + n2(k) , (11.143)

and when the speech and the noise signals are statistically independent, the MMSE
IIR filter is given by

H(ejΩ) =
Φy1y2

(ejΩ)

Φy1y1
(ejΩ)

=
Φs1s2

(ejΩ) + Φn1n2
(ejΩ)

Φs1s1
(ejΩ) + Φn1n1

(ejΩ)
. (11.144)

The frequency response of the optimal filter may be decomposed into two indepen-
dent optimal filters Hs(e

jΩ) and Hn(ejΩ) for the estimation of the speech signal
s2(k) and the noise signal n2(k), respectively,

H(ejΩ) =
Φs1s2

(ejΩ)

Φy1y1
(ejΩ)

+
Φn1n2

(ejΩ)

Φy1y1
(ejΩ)

= Hs(e
jΩ) + Hn(ejΩ) . (11.145)
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At the output of the optimal filter, we obtain the components of y1(k) which
are correlated with the second channel y2(k), regardless whether they are speech
or noise. Uncorrelated components are suppressed. Depending on the correlation
properties of the speech and the noise signals, the optimal filter will act primarily
as either a noise or a speech estimator.

For the optimal estimate ŷopt(k), the minimum error E
{
e2(k)

}
|min

is given with

(11.141) by

E
{
e2(k)

}
|min

= E {(y2(k) − ŷopt(k))y2(k)}

= ϕy2y2
(0) −

∞∑

i=−∞

hopt(i)ϕy1y2
(i) (11.146)

=
1

2π

∫ π

−π

Φy2y2
(ejΩ)dΩ − 1

2π

∫ π

−π

H(ejΩ)Φ∗
y1y2

(ejΩ)dΩ ,

where Parseval’s theorem (Table 3.2) was used in the last equality. The cross-
PSD Φy1y2

(ejΩ) is the FTDS of ϕy1y2
(ℓ) = E {(y1(k)y2(k + ℓ))}. Using (11.142) in

(11.146) and merging both integrals, we obtain

E
{
e2(k)

}
|min

=
1

2π

∫ π

−π

Φy2y2
(ejΩ)

(
1 −

Φy1y2
(ejΩ)Φ∗

y1y2
(ejΩ)

Φy1y1
(ejΩ)Φy2y2

(ejΩ)

)
dΩ

=
1

2π

∫ π

−π

Φy2y2
(ejΩ)

(
1 −

∣∣γy1y2
(ejΩ)

∣∣2
)

dΩ (11.147)

where
∣∣γy1y2

(ejΩ)
∣∣2 denotes the magnitude squared coherence (MSC) function

[Bendat, Piersol 1966], [Carter 1987] of the two microphone signals, i.e.,

∣∣γy1y2
(ejΩ)

∣∣2 =
|Φy1y2

(ejΩ)|2
Φy1y1

(ejΩ)Φy2y2
(ejΩ)

. (11.148)

The MSC constitutes a normalized, frequency-dependent measure of correlation
with

0 ≤
∣∣γy1y2

(ejΩ)
∣∣2 ≤ 1 . (11.149)

It indicates the linear relation between the two signals and, according to (11.147),
gives an indication of how effective the Wiener filter is. Obviously, the effectiveness
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Figure 11.20: Single source signal model

of the Wiener filter depends on the signal model which the two microphone signals
obey. In what follows, we consider three special cases:

• When the two microphone signals are uncorrelated, i.e.
E {y1(k)y2(ℓ)} = 0 , ∀k, ℓ, the MSC is equal to zero and the error
power is equal to the power of the signal y2(k). The impulse response of the
optimal filter is identical to zero.

• When the two microphone signals are linearly related, the MSC is equal to
one. In Fig. 11.20, the two microphone signals originate from a single source
signal s(k), i.e. y1(k) = as1(k)∗s(k) and y2(k) = as2(k)∗s(k). For this signal
model we obtain with

Φy1y2
(ejΩ) = A∗

s1(e
jΩ)As2(e

jΩ)Φss(e
jΩ)

Φy1y1
(ejΩ) =

∣∣As1(e
jΩ)

∣∣2 Φss(e
jΩ) (11.150)

Φy2y2
(ejΩ) =

∣∣As2(e
jΩ)

∣∣2 Φss(e
jΩ)

the MSC
∣∣γy1y2

(ejΩ)
∣∣2 = 1. In general, it can be shown that the MSC is

invariant with respect to linear transforms [Bendat, Piersol 1966].

• In many practical cases the correlation and thus the coherence varies with
frequency. This situation occurs, when linearly related signals are disturbed
by uncorrelated noise, or, when spatially distributed, mutually uncorrelated
sources contribute to the microphone signals. An interesting special case is
the ideal diffuse sound field. In such a sound field, the MSC of two microphone
signals y1(k) and y2(k) obeys [Kuttruff 1990]

|γy1y2
(Ω)|2 =

sin2(Ω fs d c−1)

(Ω fs d c−1)2
, (11.151)
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Figure 11.21: MSC of two microphone signals in an isotropic sound field for omnidirec-
tional microphones and a distance d = 0.1m, 0.2m, 0.4m, and 0.6m

where d, c, and fs denote the distance between the omnidirectional micro-
phones, the speed of sound, and the sampling rate, respectively. Figure 11.21
plots the MSC (11.151) as a function of frequency f = Ω fs

2 π for several inter-
microphone distances d. The MSC of the ideal diffuse sound field attains
its first zero at fc = c

2d . Hence, for frequencies above fc = c
2d , very little

correlation is observed.

As an example, Fig. 11.22 shows the estimated MSC for stationary office noise and
two omnidirectional microphones. Especially for low frequencies, the estimated co-
herence matches the MSC of the ideal diffuse sound field quite well. By contrast, for
signals which originate from a single source a high degree of coherence is observed.
Fig. 11.23 depicts the PSD (top) and the estimated coherence (bottom) of two
signals which originate from a speaker in a car environment. For most frequencies
an MSC above 0.9 is observed.

It is common practice to estimate the coherence on the basis of magnitude squared
Fourier coefficients or the periodogram. The estimation of the coherence function
necessarily requires averaging [Carter et al. 1973]. If we use the (cross-)periodogram
without averaging as an approximation to the (cross-)PSD, we have

|γy1y2,µ(k)|2 =
|Y1,µ(k)Y ∗

2,µ(k)|2
|Y1,µ(k)|2 |Y2,µ(k)|2 = 1 (11.152)
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Figure 11.22: MSC of the ideal diffuse sound field and estimated MSC of
office noise for omnidirectional microphones and a distance
d = 0.1 m, 0.2 m, 0.4 m and 0.6 m [Martin 1995]

for frequency bin µ independent of the actual correlation properties. When rever-
beration comes into play, the estimation of the MSC using the DFT is not trivial,
even when the signals are stationary and when sufficient averaging is applied. Long
reverberation tails combined with DFT-based block processing might introduce a
severe bias in the estimated MSC [Martin 1995].

As the effectiveness of the dual channel Wiener filter depends much on the corre-
lation between the microphone signals, we will now consider several applications
and the corresponding signal models. We distinguish two basic methods: noise
cancellation based on a noise-only reference signal and noise reduction based on a
symmetric dual channel signal model. In both cases the MSC of speech and noise
is the key to analyzing and understanding the performance of these algorithms.
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Figure 11.23: Average PSD (top) and measured MSC (bottom) of a speech signal in a
reverberant room. The distance between the hypercardioid microphones is
0.2 m [Martin 1995]

11.9.1 Noise Cancellation

The noise cancellation technique can be applied when the noise is coherently re-
ceived by the two microphones. This is the case, when the noise signals are lin-
ear transforms of a single noise source as shown in Fig. 11.24. We assume that
the desired speech signal s(k) is disturbed by additive noise which originates
from a noise source n(k) via the impulse response an2(k) of a linear system. The
noise and the speech signals are picked up by the second microphone. Therefore,
y2(k) = as2(k) ∗ s(k) + an2(k) ∗ n(k). Furthermore, a noise reference is available,
which originates from the same noise signal n(k) and is picked up at the first mi-
crophone as y1(k) = an1 ∗ n(k). This noise reference signal is free of the speech
signal. The Wiener filter is then used to estimate the noise which disturbs the
desired signal s(k).
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Figure 11.24: Signal model for noise cancellation

For this signal model we find that

Φy1y2
(ejΩ) = A∗

n1(e
jΩ)An2(e

jΩ)Φnn(ejΩ) (11.153)

and therefore

|γy1y2
(ejΩ)|2 = (11.154)

∣∣A∗
n1(e

jΩ)An2(e
jΩ)Φnn(ejΩ)

∣∣2

|An1(ejΩ)|2 Φnn(ejΩ)
(
|As2(ejΩ)|2 Φss(ejΩ) + |An2(ejΩ)|2 Φnn(ejΩ)

)

and

H(ejΩ) =
A∗

n1(e
jΩ)An2(e

jΩ)

|An1(ejΩ)|2
=

An2(e
jΩ)

An1(ejΩ)
. (11.155)

As the output of the Wiener filter is a noise estimate, the error signal e(k) is the
desired output which contains the speech signal

e(k) = y2(k) − h(k) ∗ y1(k)

= as2(k) ∗ s(k) + (an2(k) − an1(k) ∗ h(k)) ∗ n(k) . (11.156)

Thus, using the non-causal IIR Wiener filter, perfect noise cancellation is possible
if An1(e

jΩ) �= 0. In a practical implementation using an FIR filter, an approxima-
tion to (11.155) must be used, which will in general reduce the amount of noise
reduction. Furthermore, we notice from (11.154) that the speech signal reduces
the coherence of the microphone signals and therefore increases the error. Thus,
in the noise cancellation application, the speech signal acts as a disturbance! In
an adaptive implementation of the noise canceller using, e.g., the LMS algorithm
[Widrow et al. 1975], it is therefore advisable to adapt the noise estimation filter
only, when little or no speech is present.
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For the noise cancellation application, we define with (11.147) the normalized error
power

R = −10 log10

∫ π

−π
Φy2y2

(ejΩ)
(
1 −

∣∣γy1y2
(ejΩ)

∣∣2
)

dΩ
∫ π

−π
Φy2y2

(ejΩ)dΩ
(11.157)

as a measure of performance. For example, a frequency-independent MSC of the
noise signals of 0.9 provides a noise power reduction of 10 dB.

A successful application of the noise cancellation technique is acoustic echo can-
cellation (see Chapter 13). In acoustic echo cancellation the disturbing echo is
available as a digital signal and can be fed directly into the canceller. A high de-
gree of coherence is achieved. In the context of reducing additive acoustic noise,
however, the requirements of the signal model in Fig. 11.24 are hard to fulfill.
In the interior of a car, for example, we frequently encounter distributed noise
sources and diffuse noise fields. Then, the microphones must be sufficiently close
to achieve correlation over a large range of frequencies. This, however, leads in-
evitably to leakage of the speech signal into the reference channel [Armbrüster
et al. 1986], [Degan, Prati 1988]. Therefore, it is difficult to obtain a noise-only
reference which is free of the desired speech signal s(k). In the diffuse noise field
the noise cancellation approach can work only for low frequencies (and when very
little speech leaks into the reference microphone!).

A decoupling of the two microphones with respect to the speech signal can be
achieved by additional means, e.g. by using a facemask in an aircraft cockpit
[Harrison et al. 1986], or by using a vibration sensor which is immune to air-borne
sounds. In the former application, the information bearing signal y2(k) is picked
up inside the mask while the noise reference, i.e. the input to the Wiener filter, is
picked up outside.

11.9.1.1 Implementation of the Adaptive Noise Canceller

In practice, the filter h(k) must be causal and also adaptive, since an1(k) and an2(k)
are in general not fixed but time varying. A standard solution to the adaptation
problem is to use an FIR filter h(k) of order N and either a block adaptation of
the coefficient vector according to

Ry2y2
h = ϕy1y2

(11.158)

or the NLMS algorithm for an iterative coefficient update [Widrow et al. 1975],

h(k + 1) = h(k) + β(k) e(k)y2(k) . (11.159)

Here, β(k) denotes a possibly time-varying stepsize parameter. Since the speech
signal of the primary channel disturbs the adaptation of the noise cancellation
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filter, the adaptation must be slowed down or completely stopped whenever the
speaker becomes active. This is quite analogous to the echo cancellation problem
which will be discussed in depth in Chapter 13. In the presence of speech, too large
a stepsize will lead to distortions of the estimated noise. Since these distortions are
correlated with the speech signal s(k) they will be perceived as distortions of the
speech signal. Too small a stepsize will slow down the adaptation of the adaptive
filter. Thus, a good balance between averaging and tracking is desirable.

Furthermore, adaptive noise cancellers have been devised which exploit the short-
term periodic structure of voiced speech [Sambur 1978]. Other approaches employ
a cascade of cancellers to remove the speech in the reference signal and to remove
the noise in the output signal [Faucon et al. 1989], or combine the two-microphone
canceller with single channel approaches [Kroschel, Linhard 1988], [Gustafsson et
al. 1999].

11.9.2 Noise Reduction

In many speech communication scenarios, it will not be possible to prevent the
speech signal from leaking into the microphone signal y1(k). Thus, the speech signal
will also be estimated by the adaptive filter and canceled to some extent. Also, the
noise source is, in general, not a single acoustic point source but has some spatial
distribution. Then, the correlation between the noise signals in both channels will
be reduced. A typical example where this kind of problem prevails is speech pickup
with two microphones in the ideal diffuse noise field. Diffuse noise fields arise in
reverberant environments and are thus quite common in speech communication
applications.

We therefore consider a scenario where both ambient noise and speech are picked
up by the reference microphone as shown in Fig. 11.25. We assume that the speech
signal originates from a point source and that the noise components in the two
microphone signals exhibit a low degree of correlation. These requirements can be
fulfilled in a ideal diffuse noise field, where above a cutoff frequency fc = c/(2d)
the noise signals are mostly uncorrelated. The microphone signals can be therefore
written as

y1(k) = as1(k) ∗ s(k) + n1(k) (11.160)

and

y2(k) = as2(k) ∗ s(k) + n2(k) . (11.161)

As before, we assume that the speech signals are not correlated with the noise
signals. Thus, the linearly constrained MMSE IIR filter is given by

H(ejΩ) =
Φy1y2

(ejΩ)

Φy1y1
(ejΩ)

=
A∗

s1(e
jΩ)As2(e

jΩ)Φss(e
jΩ) + Φn1n2

(ejΩ)

|As1(ejΩ)|2 Φss(ejΩ) + Φn1n1
(ejΩ)

. (11.162)
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Figure 11.25: Signal model for noise reduction

The output signal of the dual channel noise reduction system is the signal ŷ(k).
When the noise is uncorrelated above a cutoff frequency fc = c

2d
and

As1(e
jΩ)A∗

s2(e
jΩ) ≈

∣∣As1(e
jΩ)

∣∣2 ≈ 1 , (11.163)

the frequency response of the optimal filter

H(ejΩ) =
Φy1y2

(ejΩ)

Φy1y1
(ejΩ)

=
A∗

s1(e
jΩ)As2(e

jΩ)Φss(e
jΩ)

|As1(ejΩ)|2 Φss(ejΩ) + Φn1n1
(ejΩ)

(11.164)

approaches the frequency response of the single channel Wiener filter. However,
in contrast to the single channel Wiener filter, no a priori knowledge about the
clean speech PSD is required. The filter is computed using the microphone signals
only. However, for the above assumption to hold, we must place the microphones
within the critical distance of the speech source. Within the critical distance the
direct sound energy is larger than the energy of the reverberant sounds and thus
a high degree of coherence is achieved.

11.9.3 Implementations of Dual Channel
Noise Reduction Systems

In a practical realization of the two-channel speech enhancement system, we im-
plement the adaptive filter either by means of block processing in the frequency
domain or by means of the NLMS algorithm in the time domain [Martin, Vary
1992], [Martin 2001b]. Since the input signals y1(k) and y2(k) of the speech en-
hancement system in Fig. 11.25 may be interchanged, the algorithm itself may be
symmetrised by using a second adaptive filter which uses the second channel y2(k)
as its input and the first channel y1(k) as the reference signal. The resulting sys-
tem, including further enhancements such as preemphasis and deemphasis filters,
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Figure 11.26: Symmetric dual microphone speech enhancement system. ∆T denotes the
estimated time delay of arrival. The window coefficients in vector w are
multiplied with the adaptive filter taps and thus smooth the frequency
response

is shown in Fig. 11.26. This system requires a time delay compensation [Knapp,
Carter 1976] to align the two input signals with respect to the speech signal. The
adaptive filters may be implemented using a linear-phase version of the NLMS
algorithm [Martin 2001b].

Other implementations of this principle use frequency domain methods and/or
more than two microphones [Zelinski 1988], [Zelinski 1990]. In the context of mi-
crophone arrays, the filtering of the summed signal as in Fig. 11.26 has become
known as the postfilter approach [Marro et al. 1998]. Also, the MSC function which
gives an indication of which frequency bands contain correlated (i.e., useful) signal
components has been used to dereverberate [Allen et al. 1977], [Marro et al. 1996]
and to denoise speech [Ehrmann et al. 1995], [Le Bouquin-Jeannès et al. 1997].

11.9.4 Combined Single and Dual Channel Noise
Reduction

To conclude this chapter we note that the single and dual channel approaches may
be advantageously combined. An example of such a system is given in [Dörbecker,
Ernst 1995]. Here, the Wiener filter as well as the noise PSD estimation algorithm
uses the cross-correlation information of the two microphone channels. The result-
ing system is depicted in Fig. 11.27. Since this system delivers two output channels
it can be used, for example, for a binaural hearing aid.
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Figure 11.27: Two-channel spectral subtraction and Wiener filtering
(PPN = Poly-Phase Network) [Dörbecker, Ernst 1995]

For the derivation of the two-channel noise PSD estimation we again define the
two input signals of the algorithm as

y1(k) = as1(k) ∗ s(k) + n1(k)

y2(k) = as2(k) ∗ s(k) + n2(k)
(11.165)

and assume that the magnitudes of the frequency responses As1(e
jΩ) and As2(e

jΩ)
of filter as1(k) and as2(k), respectively, are equal,

|As1(e
jΩ)| ≈ |As2(e

jΩ)| = |As(e
jΩ)| . (11.166)

Furthermore, the two noise signals are assumed to be uncorrelated with each other
and with the speech signal. We then have

Φy1y1
(ejΩ) = |As(e

jΩ)|2 Φss(e
jΩ) + Φn1n1

(ejΩ) , (11.167)

Φy2y2
(ejΩ) = |As(e

jΩ)|2 Φss(e
jΩ) + Φn2n2

(ejΩ) (11.168)

and

|Φy1y2
(ejΩ)| = |As(e

jΩ)|2 Φss(e
jΩ) . (11.169)
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If the two noise PSDs Φn1n1
(ejΩ) and Φn2n2

(ejΩ) are assumed to be equal,
Φn1n1

(ejΩ) = Φn2n2
(ejΩ) = Φnn(ejΩ), the geometric mean

√
Φy1y1

(ejΩ)Φy2y2
(ejΩ) = |As(e

jΩ)|2 Φss(e
jΩ) + Φnn(ejΩ) (11.170)

leads to

Φnn(ejΩ) =
√

Φy1y1
(ejΩ)Φy2y2

(ejΩ) − |Φy1y2
(ejΩ)| . (11.171)

This estimate may then be used in conjunction with a single channel noise re-
duction algorithm in each of the two microphone channels. In the second stage,
a frequency-domain adaptive postfilter is employed which implements the dual
channel noise reduction principle as outlined in Section 11.9.2. Thus, this method
is suited, for example, for binaural hearing aids.
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12

Multi-channel Noise
Reduction

In this chapter we will study the question of how sound pickup in a noisy and
reverberant environment can be improved by adding spatial diversity to the signal
acquisition front-end. Spatially distributed receivers, i.e., microphone arrays, and
multi-channel signal processing techniques allow the exploitation of spatial and
statistical features of signals and the achievement of a performance which surpasses
that of single channel systems.

12.1 Introduction

When more than one microphone is available for sound pickup the signal en-
hancement task may be facilitated by exploiting the multivariate deterministic
and stochastic properties of the signals. From a deterministic viewpoint, the sig-
nals at the various microphones differ in that they arrive via different acoustic
paths at the microphones and thus, also differ in their short-term amplitude and
phase. From a stochastic perspective, multi-channel methods allow the evalu-
ation of the second-order and higher-order statistics of the spatial sound field.
Sources which are close to the array will generate mostly coherent microphone
signals while distant and distributed sources lead to uncorrelated signals. Thus,

Digital Speech Transmission: Enhancement, Coding and Error Concealment

Peter Vary and Rainer Martin
c© 2006 John Wiley & Sons, Ltd
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short-term amplitude, short-term phase, and the statistics of the signals may be
used to differentiate between sources and to perform source separation.

Array technology was developed for and has been used in radar and sonar systems
for quite some time [Monzingo, Miller 1980], [Haykin 1985], [Gabriel 1992]. Very
frequently, these systems are designed for narrowband signals. The application of
array technology to speech signals can be challenging as speech is a wideband signal
spanning several octaves. Furthermore, in many speech processing applications the
environment is highly reverberant. As a consequence, the desired signal will arrive
not only from one primary direction but also via reflections from the enclosing
walls.

In this chapter we first develop the basic scenario and define signal models and
performance measures. We will then consider microphone arrays and their proper-
ties for stationary environments, i.e., with fixed beam patterns. We explain typical
design procedures for beamformers where we assume that the direction of inci-
dence of the source signal is given and that the sound field is stationary. Finally,
in Section 12.8, we briefly discuss postfilter techniques and adaptive beamforming
approaches.

12.2 Sound Waves

Sound is a mechanical vibration that propagates through matter in the form of
waves. Sound waves may be described in terms of a sound pressure field p(r, t) and
a sound velocity vector field u(r, t) which are both functions of a spatial vector
r and time t. While the sound pressure characterizes the density variations (we
do not consider the DC component), the sound velocity describes the velocity of
dislocation of the physical particles which carry the waves.

In the context of our applications, the relation between the quantities of the sound
field may be linearized. Then, for a wave propagating in just one spatial dimen-
sion x, these two quantities are related as (see also Section 2.3.1)

∂p

∂x
= −ρ0

∂u

∂t
and

∂u

∂x
= − 1

ρ0c2

∂p

∂t
(12.1)

where c and ρ0 are the speed of sound and the density at rest, respectively. Both
equations may be combined into a wave equation

∆p =
∂2p

∂x2
=

1

c2

∂2p

∂t2
(12.2)

which, when using the appropriate definition of the Laplace operator ∆p, is also
valid for three-dimensional wave propagation. For example, in Cartesian coordi-
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nates x, y, and z we have

∆p =
∂2p

∂x2
+

∂2p

∂y2
+

∂2p

∂z2
. (12.3)

For plane waves, the surfaces of constant sound pressure are planes which propa-
gate in a given spatial direction. A harmonic plane wave which propagates in the x

direction may be written as

p(x, t) = p̂ej(ωt−β̃x) (12.4)

where β̃ = 2π/λ, λ and p̂ are the wave number, the wave length and the amplitude,
respectively. Using (12.1), the x component of the sound velocity is then given by

ux(x, t) =
1

ρ0c
p(x, t) . (12.5)

Thus, for a plane wave, the sound velocity is proportional to the sound pressure.

Waves which have a constant sound pressure on concentrical spheres are also of
interest. The wave equation (12.2) delivers the solution for such a spherical wave
which propagates in radial direction r as

p(r, t) =
1

r
f(r − ct) , (12.6)

where f is the propagating waveform. The amplitude of the sound wave diminishes
with increasing distance from the center of the spheres. We may use the abstraction
of a point source to explain the generation of such spherical waves.

An ideal point source may be represented by its acoustic volume velocity v(t)
[Kuttruff 2004]. Furthermore, with (12.1) we have

∂ur(r, t)

∂t
= − 1

ρ0

∂p(r, t)

∂r
=

1

ρ0

(
f(r − ct)

r2
− df(r − ct)/dr

r

)
. (12.7)

For an infinitesimally small sphere of radius r, the velocity vector may be integrated
to yield v(t) ≈ 4πr2ur(r, t). For r → 0, the second term on the right hand side of
(12.7) is smaller than the first. Therefore, with (12.7) we find

dv(t)

dt
≈ 4π

ρ0
f(r − ct)|r→0 (12.8)

and, with (12.6),

p(r, t) =
ρ0

4πr

dv(t − r/c)

dt
(12.9)
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which characterizes, again, a spherical wave. The sound pressure is inversely pro-
portional to the radial distance r from the point source. For a harmonic excitation

v(t) = v̂ejωt (12.10)

we find the sound pressure

p(r, t) =
jωρ0v̂ejω(t−r/c)

4πr
=

jωρ0v̂ej(ωt−β̃r)

4πr
(12.11)

and hence, with (12.7) and an integration with respect to time, the sound velocity

ur(r, t) =
p(r, t)

ρ0c

(
1 +

1

jβ̃r

)
. (12.12)

Clearly, (12.11) and (12.12) satisfy (12.7). Because of the second term in the paren-
theses in (12.12), sound pressure and sound velocity are not in phase. Depending
on the distance of the observation point to the point source, the behaviour of the
wave is distinctly different. When the second term cannot be neglected the obser-
vation point is in the nearfield of the source. For β̃r ≫ 1 the observation point
is in the farfield. The transition from the nearfield to the farfield depends on the
wave number β̃ and, as such, on the wave length or the frequency of the harmonic
excitation.

12.3 Spatial Sampling of Sound Fields

For our purposes, microphones may be modeled as discrete points in space at whose
location the spatial sound pressure field is sampled. Unless explicitly stated, we
assume that the microphones are omnidirectional (sound pressure) receivers, i.e.,
they have the same sensitivity regardless of the direction of the impinging sound.

Figure 12.1 illustrates the general scenario of a single sound source and a dis-
tributed microphone array. The position of the source and the positions of the NM

microphones with respect to a reference coordinate system are denoted by vectors
rs and rℓ, ℓ = 1 . . .NM , respectively. ex, ey, and ez denote orthogonal unit vectors
spanning a Cartesian coordinate system.

In an anechoic environment (no reverberation or noise), the microphone signals
yℓ(t), ℓ = 1, . . .NM , are delayed and attenuated versions of the source signal s0(t),

yℓ(t) =
1

||rℓ − rs||
s0(t − τℓ) (12.13)



12.3 Spatial Sampling of Sound Fields 471

Source

-

Figure 12.1: Microphone array in the nearfield of a single source. ex, ey, and ez

are orthogonal unit vectors spanning a Cartesian coordinate system

where s0(t) originates from a point source at rs and ||rs|| denotes the norm of
vector rs. The absolute signal delay τℓ of the ℓ-th microphone signal is given by

τℓ =
||rℓ − rs||

c
. (12.14)

We denote the signal which is received at the origin of the coordinate system by
s(t). τ0 is the signal delay from the source to the origin. The origin of the coordinate
system is henceforth referred to as the reference point . Then,

s(t) =
1

||rs||
s0(t − τ0) (12.15)

where the reference point may not coincide with the source location.

The reference point could be the geometric center of the array or, for convenience,
the location of one of the microphones. Frequently, we are not interested in the
absolute delay of the signal from the source to the microphones but rather in the
delay of the signals relative to the signal which is received at the reference point.
The relative signal delay ∆τℓ, i.e., the time delay difference between the received
signal at the reference point and at the ℓ-th microphone, is then given by

∆τℓ = τ0 − τℓ =
1

c
(||rs|| − ||rℓ − rs||) . (12.16)

Thus, in an anechoic environment the ℓ-th microphone signal yℓ(t) may now be
written as a function of the signal at the reference point,

yℓ(t) =
||rs||

||rℓ − rs||
s (t + ∆τℓ) . (12.17)



472 12 Multi-channel Noise Reduction

If the Fourier transform S(jω) of s(t) exists, the Fourier transform Yℓ(jω) of the
microphone signals yℓ(t) may be written as

Yℓ(jω) =
||rs||

||rℓ − rs||
S(jω) exp (j2πf∆τℓ)

=
||rs||

||rℓ − rs||
S(jω) exp

(
jβ̃ (||rs|| − ||rℓ − rs||)

)
(12.18)

where β̃ = 2π
λ = 2πf

c is the wave number as before. In the above model no assump-
tions about the distance between the source and the array were made. The source
may be arbitrarily close to the microphones. Therefore, this model is denoted as
the nearfield model.

12.3.1 The Farfield Model

We now assume that the distance between the sound source and the microphone
array is much larger than the largest dimension (the aperture) of the array and

much larger than the wavelength, i.e., β̃r ≫ 1. In this case the sound waves which
are picked up by the microphones may be modeled as plane waves. This farfield
scenario is illustrated in Fig. 12.2. When the source is far from the array then

||rs||
||r1 − rs||

≈ ||rs||
||r2 − rs||

≈ · · · ≈ ||rs||
||rNM

− rs||
. (12.19)

The absolute and the relative attenuation of the source signal at the microphones
are approximately the same for all microphones. The phase differences between the

Figure 12.2: Microphone array in the farfield of a single source
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microphone signals, however, depend on the distance between the microphones and
the wavelength of the impinging wave.

For the single source farfield scenario, when the reference point is close to the
microphones, ||rℓ|| ≪ ||rs||, we may write

yℓ(t) ≈ s(t + ∆τℓ) ≈ s

(
t +

〈rℓ,us〉
c

)
(12.20)

where us is a unit vector which points from the reference point towards the source,
i.e., us = rs/||rs||, and 〈rℓ,us〉 denotes the inner product of vectors rℓ and us.
When the reference point is closer to the source than the microphones, as shown
in Fig. 12.2, this inner product is negative. In Cartesian coordinates we have

yℓ(t) ≈ s

(
t +

rT
ℓ us

c

)
. (12.21)

The relative delays depend on the array geometry and the components of rℓ in the
direction of us.

In the frequency domain, and for the farfield model, the microphone signals can
then be expressed as

Yℓ(jω) = S(jω) exp(j2πf∆τℓ) , (12.22)

where we assume that the Fourier transform of signal S(jω) exists. When the
microphone signals are sampled with sampling rate fS , we may write the signal
spectra of the sampled microphone signals yℓ(k) as a function of the normalized
frequency Ω as

Yℓ(e
jΩ) = S(ejΩ) exp (jΩfS∆τℓ) , (12.23)

or, in vector notation,

Y(ejΩ) = S(ejΩ)a . (12.24)

with a vector of signal spectra

Y(ejΩ) =
(
Y1(e

jΩ), . . . , YNM
(ejΩ)

)T
(12.25)

and the propagation vector

a = (exp (jΩfs∆τ1) , exp (jΩfs∆τ2) , . . . , exp (jΩfs∆τNM
))

T
. (12.26)

In the farfield scenario, aHY(ejΩ) will yield the sum of perfectly phase aligned
microphone signals.
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12.3.2 The Uniform Linear Array

Figure 12.3 depicts an important special case, the linear array with NM uniformly
spaced microphones in the farfield of the acoustic source. The microphones are
symmetrically aligned with an inter-microphone distance d along the z-axis. The
reference point is in the geometric center of the array. In this case it is convenient
to introduce polar coordinates. We define an azimuth ϕs and an elevation θs which
characterize the direction of the desired sound source. Due to the symmetry of the
array, the relative signal delays and thus, the array response, do not depend on
the azimuth ϕs.

In Cartesian coordinates, the relative delays are given by ∆τℓ = ±eT
z us||rℓ||/c, or,

using the source elevation θs, by

∆τℓ =
d

c

(
NM + 1

2
− ℓ

)
cos(θs) , ℓ = 1, 2, . . . , NM . (12.27)

When the elevation θs is zero or π we have an endfire orientation of the array with
respect to the source. Then, the look direction of the array coincides with the pos-
itive z-axis and ∆τℓ attains its maximum absolute value. In broadside orientation
the look direction is perpendicular to the z-axis, i.e., θs = π/2 and ∆τℓ = 0 for

all ℓ.

Figure 12.3: Uniform linear microphone array with NM = 4
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12.3.3 Phase Ambiguity and Coherence

The sound pressure field p(r, t) is a function of space and time. The microphone
array samples this wave field at discrete points in space. In analogy to the sampling
theorem of discrete time signals, the spatial sampling of the sound field must obey
a spatial sampling relation if spatial aliasing is to be avoided. The analysis of a
sound field by means of a microphone array can lead to ambiguous results if the
spatial and temporal sampling constraints are not properly taken into account.

Since the complex exponential in (12.22) is periodic, integer increments in f∆τℓ

lead to the same value of exp (j2πf∆τℓ). Therefore, for a fixed relative delay ∆τℓ,
the signal phase may vary quite significantly as a function of frequency.

For a harmonic plane wave and two closely spaced microphones located along the
z-axis at

r1 =
d

2
ez and r2 = −d

2
ez (12.28)

where ez is the unit vector in z-direction, the sampling condition can be de-
rived from the phase term exp (j2πf∆τℓ). If we denote the phase of the har-

monic wave at the first and the second microphone by φ1 = φ + β̃ 〈ez,us〉 d/2 and

φ2 = φ − β̃ 〈ez,us〉 d/2 respectively, the phase difference is given by

∆φ = φ1 − φ2 = β̃d 〈ez,us〉 = β̃d cos (θs) (12.29)

where θs denotes the angle between the positive z-axis and the direction of the
sound source. The phase difference is zero when the wave impinges from the broad-
side direction (us ⊥ ez). The phase difference is largest when the microphones are
in endfire orientation (us ‖ ez or us ‖ −ez). Obviously, ambiguous phase values

are avoided when, for θs ∈ [0, π], the phase difference ∆φ = β̃d cos (θs) is in the
range −π < ∆φ ≤ π. Thus, a one-to-one mapping of θs ∈ [0, π] and ∆φ is achieved
for

d ≤ λ

2
or f ≤ c

2d
. (12.30)

Figure 12.4 plots the phase difference between two microphones as a function of the
angle of incidence θs and frequency. Clearly, for θs = ±π/2, the phase difference
is zero. Additionally it can be seen that for a fixed frequency f ≥ c/(2d) there is
no one-to-one mapping of θs ∈ [0, π] and ∆φ.
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Figure 12.4: Phase difference ∆φ/π for −π ≤ θs ≤ π of two microphone signals
recorded at distance d = 0.1m as a function of frequency f (c = 340 m/s)

12.3.4 Spatial Correlation Properties of Acoustic Signals

Besides the deterministic phase differences, multi-channel signal processing tech-
niques allow the exploitation of the statistical properties of the microphone signals,
especially the spatial correlation of sound fields. In the context of speech enhance-
ment, three cases are of special interest:

1. The microphone signals yℓ are uncorrelated.
Fully uncorrelated signals originate from the microphones themselves as ther-
mal self-noise. Although we may assume that microphones are selected such
that this noise does not degrade the perceived quality of the microphone
signals, we must be aware that self-noise might be amplified by the multi-
channel signal processing algorithm.

2. The microphone signals exhibit a frequency-dependent correlation.
A typical example of frequency-dependent correlation is the ideal diffuse
sound field, see Section 11.9. In this sound field, sound energy impinges with
equal power from all spatial directions onto the microphone array. For omni-
directional receivers, the magnitude squared coherence can then be written
as a squared sinc function (11.151). This type of correlation is encountered
in reverberant spaces with multiple, distributed noise sources such as in car
compartments or in noisy offices.



12.4 Beamforming 477

3. The microphone signals are highly correlated.
Highly correlated signals occur when the sound source is close to the mi-
crophones and the microphone signals contain little noise and reverbera-
tion. Then, the direct sound dominates and leads to high and frequency-
independent correlation of the microphone signals.

12.4 Beamforming

The task of the beamforming algorithm is to combine the sampled microphone sig-
nals such that a desired (and possibly time-varying) spatial selectivity is achieved.
In single source scenarios, this comprises the formation of a beam of high gain in
the direction of the source.

12.4.1 Delay-and-Sum Beamforming

The simplest method to solve the signal combination problem is to combine the
microphone signals such that the desired signals add up constructively. In an acous-
tic environment where direct sound is predominant and reverberation plays only
a minor role, this phase alignment can be achieved by appropriately delaying the
microphone signals. Then, the resulting phase-aligned signals are added to form a
single output signal. This is known as the delay-and-sum beamformer.

The delay-and-sum beamformer as shown in Fig. 12.5 is simple in its implementa-
tion and provides for easy steering of the beam towards the desired source. When

Figure 12.5: Delay-and-sum beamformer
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written as a function of a continuous time argument t, the signals picked up by
the individual microphones are

yℓ(t) = sℓ(t) + nℓ(t) = s(t + ∆τℓ) + nℓ(t) , (12.31)

where s(t) is the desired source signal at the reference position and nℓ(t) is the
noise signal at the ℓ-th microphone. Again, we assume that the desired source is in
the farfield and any signal attenuation is absorbed in s(t). We denote the delayed
signals by

ỹℓ(t) = s̃ℓ(t) + ñℓ(t) = s(t + ∆τℓ − Tℓ) + nℓ(t − Tℓ) (12.32)

where the delay Tℓ is applied to the ℓ-th signal. Besides a relative delay which
depends on ℓ, Tℓ includes a channel-independent delay TB such that Tℓ ≥ 0 for
all ℓ. For a digital implementation and since Tℓ is, in general, not equal to an
integer multiple of the sampling period, the accurate compensation of signal delays
requires some form of signal interpolation. The interpolation may be implemented
by fractional delay filters in the time or the frequency domain [Crochiere, Rabiner
1981], [Crochiere, Rabiner 1983], [Laakso et al. 1996]. In what follows, we will
consider only sampled signals and digital beamformer implementations. Therefore,
the channel-independent constant delay TB is chosen to be equal to an integer
multiple of the sampling period 1/fs.

The sampled output signal of the delay-and-sum beamformer may then be written
as

ŝ(kT ) =
1

NM

NM∑

ℓ=1

ỹℓ(kT ) =
1

NM

NM∑

ℓ=1

s̃ℓ(kT ) +
1

NM

NM∑

ℓ=1

ñℓ(kT ). (12.33)

For a broadside orientation of the array with respect to the source, Tℓ for all
ℓ = 1 . . .NM , and hence TB , are set to zero. Then, the delay-and-sum beamformer
comprises a scaled sum of the microphone signals only. For ease of notation, we
omit the sampling period T in the sequel.

For the farfield scenario and when the delay from the source to the microphones
is perfectly equalized, we have Tℓ = TB + ∆τℓ and with (12.33)

ŝ(k) = s(k − TBfs) +
1

NM

NM∑

ℓ=1

ñℓ(k) . (12.34)

12.4.2 Filter-and-Sum Beamforming

A more general processing model is the filter-and-sum beamformer as shown in
Fig. 12.6 where, before summation, each microphone signal is filtered,

ỹℓ(k) =
M∑

m=0

hℓ(m)yℓ(k − m) . (12.35)
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Figure 12.6: Filter-and-sum beamformer

We assume that FIR filters of order M are used. To simplify notations, we define
a vector of signal samples

yℓ(k) = (yℓ(k), yℓ(k − 1), . . . , yℓ(k − M))T (12.36)

and a vector of real-valued filter coefficients

hℓ = (hℓ(0), hℓ(1), . . . , hℓ(M))T . (12.37)

Then, the output signal of the filter-and-sum beamformer may be written as

ŝ(k) =

NM∑

ℓ=1

hℓ
T yℓ(k) . (12.38)

For the signal s(k) of a single (desired) source and the farfield scenario, we obtain
in the frequency domain (provided all Fourier transforms exist)

Ŝ(ejΩ) =

NM∑

ℓ=1

Hℓ(e
jΩ)Yℓ(e

jΩ)

= S(ejΩ)

NM∑

ℓ=1

Hℓ(e
jΩ) exp (jΩfs∆τℓ)

= S(ejΩ)H(ejΩ,us) . (12.39)

Hℓ(e
jΩ) denotes the frequency response of the ℓ-th FIR filter. Thus, for a fixed

source position and fixed microphone positions rℓ the array response

H(ejΩ,us) =

NM∑

ℓ=1

Hℓ(e
jΩ) exp(jΩfs∆τℓ) = HT (ejΩ)a (12.40)
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of the filter-and-sum beamformer depends on the propagation vector a (12.26) of
the point source in the farfield and the vector of filter responses

H(ejΩ) =
(
H1(e

jΩ), H2(e
jΩ), . . . , HNM

(ejΩ)
)T

. (12.41)

When a delay-and-sum beamformer is steered towards the source in the farfield,
we obtain a special case of the filter-and-sum beamformer with the filter coefficient
vector

H(ejΩ) =
exp(−jΩfsTB)

NM
a∗ =

1

NM
e (12.42)

where

e = (exp (−jΩfsT1) , exp (−jΩfsT2) , . . . , exp (−jΩfsTNM
))

T
. (12.43)

is the steering vector.

In the case of random source signals, we obtain the power spectrum of the output
signal as the Fourier transform of the autocorrelation function

E {ŝ(k)ŝ(k + k′)}

= E

{
NM∑

ℓ=1

NM∑

ℓ′=1

M∑

m=0

M∑

m′=0

hℓ(m)yℓ(k − m)yℓ′(k − m′ + k′)hℓ′(m
′)

}

=

NM∑

ℓ=1

NM∑

ℓ′=1

M∑

m=0

M∑

m′=0

hℓ(m)ϕyℓyℓ′
(k′ − m′ + m)hℓ′(m

′) . (12.44)

Hence,

Φŝŝ(e
jΩ) = HH(ejΩ)Φyy(ejΩ)H(ejΩ) (12.45)

where

Φyy(ejΩ) =




Φy1y1
(ejΩ) Φy1y2

(ejΩ) · · · Φy1yNM
(ejΩ)

Φy2y1
(ejΩ) Φy2y2

(ejΩ) · · · Φy2yNM
(ejΩ)

...
...

. . .
...

ΦyNM
y1

(ejΩ) ΦyNM
y2

(ejΩ) · · · ΦyNM
yNM

(ejΩ)


 (12.46)

is a matrix of cross-power spectra.
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When the microphone signals originate from a single point source, we obtain the
Fourier transform of the cross-correlation function of the microphone signals

Φyℓyℓ′
(ejΩ) = Φss(e

jΩ)ejΩfs(∆τℓ−∆τℓ′ ) (12.47)

and hence

Φŝŝ(e
jΩ) = Φss(e

jΩ)HH(ejΩ)aaHH(ejΩ) = Φss(e
jΩ)|H(ejΩ,us)|2 . (12.48)

For mutually uncorrelated microphone signals we have

Φŝŝ(e
jΩ) =

NM∑

ℓ=1

|Hℓ(e
jΩ)|2Φyℓyℓ

(ejΩ) . (12.49)

The design of the filter-and-sum beamformer reduces to computing filter coefficient
vectors hℓ(m) such that a performance measure is optimized. Before we investigate
these methods we introduce such measures.

12.5 Performance Measures and Spatial Aliasing

12.5.1 Array Gain and Array Sensitivity

Microphone arrays are designed to improve the SNR of a desired source sig-
nal. The array gain characterizes the performance of a microphone array as
the ratio of the SNR at the output of the array with respect to the aver-
age SNR of the microphone signals. Using the matrix notation of the previous
section and the trace operator Tr(), the average powers of the desired signals
and of the noise signals at the microphones are given by Tr(Φss(e

jΩ))/NM and
Tr(Φnn(ejΩ))/NM , respectively, whereas the corresponding powers at the output
are given by HH(ejΩ)Φss(e

jΩ)H(ejΩ) and HH(ejΩ)Φnn(ejΩ)H(ejΩ), respectively.
Therefore, the frequency-dependent array gain may be defined as [Herbordt 2005]

G(ejΩ) =
Tr(Φnn(ejΩ))

Tr(Φss(ejΩ))

HH(ejΩ)Φss(e
jΩ)H(ejΩ)

HH(ejΩ)Φnn(ejΩ)H(ejΩ)
. (12.50)

Assuming a farfield scenario with identical speech and identical noise power spec-
tral densities at all microphones and mutually uncorrelated noise signals, we obtain
for the delay-and-sum beamformer with (12.48) and (12.49),

G(ejΩ) =
NMΦnn(ejΩ)

NMΦss(ejΩ)

1
N2

M
N2

MΦss(e
jΩ)

1
N2

M
NMΦnn(ejΩ)

= NM . (12.51)
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Under the above assumptions, the gain of the delay-and-sum beamformer does not
depend on frequency. For partially correlated noise signals ñℓ(k) the improvement
can be significantly lower. For example, in the diffuse noise field, the gain is close
to zero for frequencies f < c

2d
or λ > 2d where d is the inter-microphone distance.

Furthermore, we introduce a performance measure which characterizes the sen-
sitivity of the array with respect to spatially and temporally white noise. For
instance, this noise can be thermal noise originating from the microphones or the
amplifiers. It can also serve as a model for random phase or position errors due to
the physical implementation of the array. For mutually uncorrelated noise signals
we find

Φnℓnℓ′
(ejΩ) =

{
Φnℓnℓ

(ejΩ) ℓ = ℓ′

0 ℓ �= ℓ′
. (12.52)

Thus, when the noise signals are temporally white, the array gain is given by

GW (ejΩ) =
|HH(ejΩ)a|2

HH(ejΩ)H(ejΩ)
. (12.53)

The inverse of the white noise gain GW (ejΩ) is called the susceptibility of the array.
It characterizes the sensitivity of the array with respect to uncorrelated noise.

12.5.2 Directivity Pattern

The spatial selectivity of the array in the farfield of a source is characterized by
its directivity pattern

Ψ(ejΩ,us) = |H(ejΩ,us)|2 = HH(ejΩ)aaHH(ejΩ) = |HH(ejΩ)a|2 (12.54)

where the vectors us and a denote a unit vector in the direction of the source and
the propagation vector (12.26) of the impinging sound respectively. The directivity
pattern depicts the attenuation of the sound energy from a given direction. It is a
useful tool for array performance analysis especially when sounds propagate coher-
ently and there is no or only little reverberation. Besides frequency and direction
of arrival, Ψ(ejΩ,us) in (12.54) depends also on the inter-microphone distances
and the filter coefficients.

As an example we consider the delay-and-sum beamformer and the farfield sce-
nario. With (12.40) and (12.42), we obtain the directivity pattern of the uniform
linear array

Ψ(ejΩ,us)=





sin2 (π(cos(θ) − cos(θs))NMd/λ)

N2
M sin2 (π(cos(θ) − cos(θs))d/λ)

cos(θ) �=cos(θs)

1 cos(θ)=cos(θs) .

(12.55)
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Figure 12.7: Directivity pattern of the delay-and-sum beamformer with NM = 4 micro-
phones and d = 4 cm for the broadside (left) and endfire (right) orientation

θs denotes the direction of arrival and θ the look direction of the beamformer. The
corresponding pattern is shown in Fig. 12.7 for the broadside (left) and the endfire
(right) orientation. In this example, we use a uniform linear array with d = 4 cm.
Then, λ/d = 1 corresponds to f = 8500Hz. The beams in the respective look
directions can be clearly recognized. Furthermore, we note that the directivity
at low frequencies is not very pronounced and that for high frequencies spatial
aliasing in the form of side lobes is visible.

The directivity pattern (12.55) is a periodic function of the difference ϑ = (cos(θ)−
cos(θs)) with period λ/d. For a broadside array (cos(θ) = 0), ϑ attains values
between −1 and 1 when θs sweeps from 0 to π. Thus, spatial aliasing is avoided
when λ

d ≥ 1. For an endfire array the same sweep will result in values 0 ≤ ϑ ≤ 2

and therefore in this case λ
d ≥ 2 will avoid spatial aliasing.

In general, | cos(θ) − cos(θs)| ≤ 1 + | cos(θ)| holds and the above relations can be
cast into the more general form [Kummer 1992]:

d

λ
≤ 1

1 + | cos(θ)| . (12.56)

Directivity patterns may also be represented in two- or three-dimensional polar
directivity plots. Figure 12.8 depicts two- and three-dimensional polar plots for
a filter-and-sum beamformer (see Section 12.6) and a uniform linear array with
four microphones. These plots are computed for a frequency of 1000Hz and for
broadside and endfire orientations.
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Figure 12.8: Directivity pattern in dB of a filter-and-sum beamformer with four omni-
directional microphones with d = 4.25 cm and broadside (left) and endfire
(right) orientations (f = 1000 Hz)

12.5.3 Directivity and Directivity Index

The directivity pattern characterizes the performance of the array when direc-
tional sources are present. When noise impinges from many different directions,
an integral measure is better suited. The directivity is defined as the ratio of the
directivity pattern in look direction and the directivity pattern averaged over all
directions,

D(ejΩ) =
Ψ(ejΩ,u)

1
4π

∫
A1

Ψ(ejΩ,us) da
, (12.57)

where A1 denotes the surface of a unit sphere with the array at its center. In polar
coordinates, we have da = sin(θ)dθdϕ and therefore

D(ejΩ) =
Ψ(ejΩ,u)

1
4π

∫ π

0

∫ 2π

0
Ψ(ejΩ,us(θ, ϕ)) sin(θ) dθdϕ

. (12.58)
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Figure 12.9: Directivity index of the delay-and-sum beamformer with NM = 4 micro-
phones and d = 4 cm for the broadside (left) and endfire (right) orientation

The directivity thus characterizes the array performance for a single desired source
and an ideal diffuse noise field. For the farfield scenario, the directivity can be
expressed in terms of the array filters

D(ejΩ) =
|HH(ejΩ)a|2

∑NM

ℓ=1

∑NM

ℓ′=1 Hℓ(ejΩ)H∗
ℓ′(e

jΩ)γnℓnℓ′
(ejΩ)

(12.59)

where γnℓnℓ′
(ejΩ) is the spatial coherence function of the noise signals nℓ and nℓ′

in the ideal diffuse sound field with,

γnℓnℓ′
(ejΩ) =

1

4π

∫

A1

exp(jβ̃ 〈(rℓ − rℓ′),us〉) da (12.60)

=





sin(β̃dℓ,ℓ′)
β̃dℓ,ℓ′

ℓ �= ℓ′

1 ℓ = ℓ′
=





sin(Ωfsdℓ,ℓ′c
−1)

(Ωfsdℓ,ℓ′c
−1)

ℓ �= ℓ′

1 ℓ = ℓ′

where dℓ,ℓ′ represents the distance between the ℓ-th and the ℓ′-th microphone.

Figure 12.9 plots the directivity index DI(ejΩ) = 10 log10

(
D(ejΩ)

)
of the same

delay-and-sum beamformer as in Fig. 12.7 for the ideal diffuse noise field. For low
frequencies, the directivity index of the beamformer in endfire orientation is sig-
nificantly higher than for the broadside orientation. For the broadside orientation,
the gain does not exceed 3 dB below 2000Hz.

12.5.4 Example: Differential Microphones

Before we discuss more advanced beamformer designs we start out with the simple
case of two closely spaced microphones (d < λ/2). The two microphone signals
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Figure 12.10: Differential microphones

y1(t) and y2(t) are combined in a simple delay-and-subtract operation as shown
in Fig. 12.10. The delay T is sometimes termed internal delay as opposed to the
external delay of the acoustic path between the two microphones. The array de-
sign and the resulting beam patterns are reminiscent of directional microphones,
where the delay-and-subtract operation is achieved by means of the acoustic de-
sign. Typically, the differential microphone array is combined with an equalizer to
compensate for undesirable effects of the subtraction on the frequency response.

We now compute the frequency response of the differential microphone array
under the farfield assumption. When the reference point is selected to be the mid-
point of the line joining the two microphones, the two microphone signals may be
written as

y1(t) = s

(
t +

d

2c
cos (θ)

)
and (12.61)

y2(t) = s

(
t − d

2c
cos (θ)

)
. (12.62)

Thus, after summation and before equalization we obtain

s̃(t) = s

(
t +

d

2c
cos (θ)

)
− s

(
t − d

2c
cos (θ) − T

)
(12.63)

and in the Fourier transform domain

S̃(jω) = S(jω) ·
(
ejω( d

2c cos(θ)) − e−jω( d
2c cos(θ)+T)

)
(12.64)

= S(jω) · ejω( d
2c cos(θ)) ·

[
1 − e−jω d

c (cos(θ)+ cT
d )

]
. (12.65)

The magnitude of the frequency response can be written as

|H(jω)| =
∣∣∣∣∣
S̃(jω)

S(jω)

∣∣∣∣∣ = 2 ·
∣∣∣∣∣sin

(
ωd

2c

(
cos(θ) +

cT

d

))∣∣∣∣∣ . (12.66)
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Figure 12.11: Polar directivity pattern of the differential arrays for
d = 0.015m, f = 1kHz various values of β

With the assumption that ωd
2c ≪ π

2 , which is equivalent to 2 d ≪ λ = c
f , and with

cT
d � 1 we may use the approximation sin(θ) ≈ θ and therefore,

∣∣∣∣∣
S̃(jω)

S(jω)

∣∣∣∣∣ ≈ 2 ·
∣∣∣∣
ωd

2c

(
cos(θ) +

cT

d

)∣∣∣∣ =

∣∣∣∣
ωd

c

(
cos(θ) +

cT

d

)∣∣∣∣ . (12.67)

With the substitution

T =
d

c

β

1 − β
or β =

T

T + d
c

=
Tc

Tc + d
< 1 (12.68)
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Table 12.1: Parameters and average directivity index DIav of the
differential microphones for d = 0.015m

Characteristic T c
d

β DIav / dB

Dipole 0 0 4.7
Cardioid 1 0.5 4.8
Super-cardioid 0.57 0.3631 5.7
Hyper-cardioid 0.34 0.2537 6.0

we may write the magnitude response as
∣∣∣∣∣
S̃(jω)

S(jω)

∣∣∣∣∣ =

∣∣∣∣
ωd

c

(
cos(θ) +

β

1 − β

)∣∣∣∣ (12.69)

=
1

1 − β

d

c
· |ω · ((1 − β) · cos(θ) + β)| . (12.70)

Since the magnitude of the approximate frequency response increases linearly with
ω, the frequency response of the array corresponds to a first-order differentiator.
Therefore, a first-order lowpass filter may be used for equalization. This, however,
might amplify low frequency noise. Table 12.1 lists the parameter β for several
directional characteristics and the resulting average directivity index.

The differential microphone array can easily be extended into an adaptive null-
steering array. Assuming a look direction θ ∈ [−π/2, π/2] and combining two
directional patterns, a null of the combined beampattern can be steered towards
a disturbing signal source in the range θ ∈ [π/2, 3π/2] [Elko, Nguyen Pong 1997].

12.6 Design of Fixed Beamformers

If the wavelength is much larger than the array aperture, the delay-and-sum beam-
former delivers only little directivity. By optimizing the coefficients of a filter-and-
sum beamformer, the directivity of a beamformer at low frequencies can be sig-
nificantly improved. In this section we will examine a frequently used beamformer
design, the minimum variance distortionless response beamformer, in greater de-
tail.

12.6.1 Minimum Variance Distortionless Response
Beamformer

The minimum variance distortionless response (MVDR) beamformer minimizes
the output noise variance while constraining the array to have unit gain in look
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direction. To derive the optimal beamformer coefficients, we write the noise power
spectral density at the output of the filter-and-sum beamformer as

Φn̂n̂(ejΩ) = HH(ejΩ)Φnn(ejΩ)H(ejΩ) (12.71)

where Φnn(ejΩ) denotes the power spectral density matrix of the noise signals
nℓ(k), ℓ = 1, . . . , NM . The distortionless response constraint is written as

HH(ejΩ)a = 1 , (12.72)

where a is the propagation vector as before. Here, we use the Hermitian trans-
pose H for notational convenience. Furthermore, to improve the readability of the
following derivations, we will drop the dependency on frequency Ω.

Since the source signal is not distorted, the MVDR beamformer also maximizes

D̃ =
|HHa|2

HHΦnnH
(12.73)

for a source in the farfield of the array and thus the directivity in an ideal diffuse
noise field.

To solve the constraint optimization problem, we use Lagrange’s method and min-
imize

L(H, q) = HHΦnnH + q(HHa − 1) . (12.74)

Computing the gradient with respect to H and q results in the necessary conditions

2ΦnnH + qa = 0 and HHa = 1 . (12.75)

Solving the first condition for H and using the result in the second condition we
obtain

H = −1

2
qΦ−1

nna and q =
−2

aHΦ−1
nna

, (12.76)

and finally

HMVDR =
Φ−1

nna

aHΦ−1
nna

. (12.77)

Besides the dependency on frequency, the optimal solution is a function of the
spectral correlation matrix of the noise and of the propagation vector (12.26).
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Figure 12.12: Directivity pattern and directivity index of the MVDR beamformer with
NM = 4 microphones and d = 4cm for the broadside (left) and endfire
(right) orientation optimized for the ideal diffuse noise field

Figure 12.12 shows the directivity pattern and the gain of an MVDR beamformer
for the broadside (left plot) and endfire (right plot) orientation. The array geometry
is the same as in Fig. 12.7. The array is optimized for the ideal diffuse noise
field. We observe a significantly increased directivity for low frequencies. For high
frequencies, the performance of the MVDR beamformer is close to the performance
of the delay-and-sum beamformer.

As a special case, we consider mutually uncorrelated noise signals with identical
PSDs. Then, the noise power spectral density matrix is a diagonal matrix and the
optimal filter vector (12.77) evaluates to

H =
a

NM
, (12.78)

which is the delay-and-sum beamforming solution for the design condition (12.72)
and when channel-independent delay TB is neglected.

The high directivity of the MVDR beamformer at low frequencies also results in a
high susceptibility to uncorrelated noise. In order to minimize the noise power in
each frequency bin, the MVDR beamformer cancels out correlated noise compo-
nents. The distortionless response, however, can be only maintained if the response
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of individual filters Hℓ(e
jΩ) is much larger than unity for low frequencies. The high

gain of the individual filters at low frequencies leads then to an amplification of
uncorrelated noise in the microphone signals. For high frequencies and in an ideal
diffuse noise field, the MVDR beamformer approaches the delay-and-sum solution.
For the delay-and-sum beamformer we obtain

1

GW
= HHH =

1

NM
. (12.79)

This is the smallest value that the susceptibility can attain under the distortionless
response constraint [Dörbecker 1998].

Furthermore, the propagation vector a can be modified to suit the actual trans-
mission conditions. For example, head-related transfer functions can be used to
model head-related effects which is of importance in hearing aid applications [Lot-
ter, Vary 2006].

12.6.2 MVDR Beamformer with Limited Susceptibility

The susceptibility of the MVDR beamformer can be controlled by including an
additional constraint in the design procedure [Cox et al. 1986]. We require that
the susceptibility attains a fixed value K0,

1

GW
= HHH = K0 . (12.80)

Using Lagrange’s method again we now have

L(H, q, q′) = HHΦnnH + q(HHa − 1) + q′(HHH − K0) . (12.81)

Computing the gradient, we obtain the necessary conditions

2ΦnnH + qa + 2q′H = 0 , (12.82)

HHa = 1 , and (12.83)

HHH = K0 . (12.84)

The solution to these equations is given by

H = −1

2
q(Φnn + q′I)−1a and (12.85)

q =
−2

aH(Φnn + q′I)−1a
(12.86)
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with q′ as an implicit parameter. With these equations, the vector of optimal filters
can be written as

HMVDR,K0 =
(Φnn + q′I)−1a

aH(Φnn + q′I)−1a
. (12.87)

The constraint on the susceptibility leads to a diagonal loading term and thus
improves the condition of the noise power spectral density matrix. The relation
between the Lagrange multiplier q′ and the desired susceptibility K0, however, is
implicit

K0 =
aH(Φnn + q′I)−H(Φnn + q′I)−1a

[aH(Φnn + q′I)−1a]
2 (12.88)

with no closed form solution for q′. For a given K0 the corresponding Lagrange
multiplier can be found by using an iterative procedure [Dörbecker 1997]. Using
the optimal q′, the coefficient vector H can then be computed.

The results of the beamformer optimization with the susceptibility limited to
K0 = 1 are shown in Fig. 12.13 for the same conditions as in the previous figures.

Figure 12.13: Directivity pattern and directivity index of the MVDR beamformer with
susceptibility limited to K0 = 1, NM = 4 microphones, and d = 4cm for
the broadside (left) and endfire (right) orientation optimized for the ideal
diffuse noise field
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As a consequence of the limited susceptibility, the directivity at low frequencies
is lower than the directivity without this constraint.

Besides the MVDR design, there are several other design methods for beamformers
such as the design for nearfield conditions and constant beamwidth [Goodwin, Elko
1993], [Brandstein, Ward 2001]. Furthermore, the design of such arrays may be
made robust against amplitude, phase, and microphone position errors by including
suitable error distribution functions into a least-square design criterion [Doclo,
Moonen 2003].

12.7 Multi-channel Wiener Filter and Postfilter

We now extend the well-known single channel Wiener filter to the multi-channel
case. In the optimization of the minimum mean-square error, the source signal s(k)
is explicitly used and no constraint with respect to the look direction is imposed.
However, as shall be seen below, the optimal filter may be decomposed into a
distortionless response beamformer and a single channel Wiener-type postfilter
[Edelblute et al. 1966], [Simmer et al. 2001].

The minimum mean square error of the filtered array output with respect to the
reference signal s(k) is given by

J = E
{
(s(k) − ŝ(k))

2
}

= E





(
s(k) −

NM∑

ℓ=1

M∑

m=0

hℓ(m)yℓ(k − m)

)2


 . (12.89)

With E {s(k)yℓ′(k − i)} = ϕyℓ′s(i) and E {yℓ(k − m)yℓ′(k − i)} = ϕyℓ′yℓ
(i − m),

the differentiation with respect to the i-th coefficent of the ℓ′-th filter leads to

NM∑

ℓ=1

M∑

m=0

hℓ(m)ϕyℓ′yℓ
(i − m) = ϕyℓ′s(i) . (12.90)

The Fourier transform of (12.90) yields

NM∑

ℓ=1

Hℓ(e
jΩ)Φyℓ′yℓ

= Φyℓ′s for ℓ′ = 1, . . .NM . (12.91)

Therefore, using vector matrix notation, these equations may be stacked to yield

ΦyyH = Φys , (12.92)
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and, for invertible Φyy , the optimal solution

H = Φ−1
yy Φys . (12.93)

In the case of additive noise which is not correlated with the source signal s, and
identical noise and source power spectral densities at all microphones, we find, for
farfield conditions,

Φys = Φssa (12.94)

and

Φyy = Φss + Φnn = Φssaa
H + Φnn . (12.95)

Hence,

H =
(
Φssaa

H + Φnn

)−1
Φssa . (12.96)

Using the matrix inversion lemma [Haykin 1996],

A = B−1 + CD−1CH ⇔ A−1 = B− BC(D + CHBC)−1CHB (12.97)

with B = Φ−1
nn , C =

√
Φssa, and D = 1 we obtain

H =

[
Φ−1

nn − ΦssΦ
−1
nnaaHΦ−1

nn

1 + ΦssaHΦ−1
nna

]
Φssa

=

[
Φ−1

nna − ΦssΦ
−1
nna

(aHΦ−1
nna)−1 + Φss

]
Φss (12.98)

and the final result

H =
Φ−1

nna

aHΦ−1
nna

Φss(
Φss +

(
aHΦ−1

nna
)−1

)

= HMVDR
Φss

Φss +
(
aHΦ−1

nna
)−1 . (12.99)

The optimal Wiener solution thus comprises a distortionless MVDR beamformer
and a single channel Wiener postfilter. Since

HH
MVDRΦnnHMVDR =

(
aHΦ−1

nna
)−1

(12.100)

it can be seen that
(
aHΦ−1

nna
)−1

represents the noise power at the output of the
beamformer. Therefore, to compute the single channel postfilter, the speech power
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spectral density at the microphones and the noise power spectral density at the
output of the beamformer are required. There are several proposals (for a survey,
see [Simmer et al. 2001]) for computing these quantities using the available micro-
phone signals. For example, [Zelinski 1988] uses cross-periodograms averaged over
all microphone pairs to estimate the power spectral densities of the speech signal
and of the noisy signal. This approach rests on the assumption that noise sig-
nals are mutally uncorrelated. Due to the large variance of the cross-periodograms
and the residual correlation of noise components, additional post-processing of
the estimates is necessary to suppress undesired fluctuations in the output of the
postfilter. Zelinski [Zelinski 1988] then combines a delay-and-sum beamformer
with this postfilter. This work is extended in [Marro et al. 1998] to account for
the frequency response of a filter-and-sum beamformer. Proposals based on the
coherence function are detailed in [Allen et al. 1977] and [Le Bouquin, Faucon
1990].

12.8 Adaptive Beamformers

When the spatial properties of the acoustic noise field are a priori unknown and
possibly time varying, the beamformer coefficients cannot be precomputed but
must be adapted on-line. While in [Frost 1972] the coefficients of a filter-and-sum
beamformer are adapted using a constrained version of the LMS algorithm, most
practical implementations are based on the generalized side-lobe canceller (GSC)
or Griffiths-Jim beamformer [Griffiths, Jim 1982]. In this section, we discuss both
the Frost and the GSC designs.

12.8.1 The Frost Beamformer

Figure 12.14 depicts the block diagram of an adaptive filter-and-sum beamformer
as proposed in [Frost 1972], where the filter coefficients are now functions of time.
The adaptation rule minimizes the noise power at the output while maintaining
a constraint on the filter response in look direction. For the development of the
Frost beamformer, we stack the coefficients of the NM FIR filters into a single
coefficient vector

h̃ = (h1(0), h2(0), . . . , hNM
(0), h1(1), . . . , h1(M), . . . , hNM

(M))T (12.101)

and the corresponding microphone signal samples into the vector

ỹ(k) =
(
y1(k), y2(k), . . . , yNM

(k), y1(k − 1), . . . ,

. . . , y1(k − M), . . . , yNM
(k − M)

)T
. (12.102)



496 12 Multi-channel Noise Reduction

Figure 12.14: Frost beamformer

For each time lag, a constraint on the sum of the beamformer coefficients is applied.
These constraints may be written as

C̃T h̃ = F̃ (12.103)

where the constraint matrix of dimensions (M + 1)NM × (M + 1) is given by

C̃ =




1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


 (12.104)

and

0 = (0, 0, . . . , 0)T and 1 = (1, 1, . . . , 1)T (12.105)

are vectors of dimension NM .

For example, the undistorted and delay-free array response in the broadside look
direction implies a constraint

NM∑

ℓ=1

M∑

i=0

hℓ(i)δ(k − i) = δ(k − k′) for k′ = k − M, . . . k (12.106)

on the array response of the filter-and-sum beamformer, which can be also cast
into the matrix equation (12.103) with (12.104) and the M +1-dimensional vector

F̃ = (1, 0, . . . , 0)T . (12.107)
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An optimal stationary solution is again achieved by minimizing the output power
h̃TRỹỹh̃ while maintaining the constraint (12.103). Using the method of the La-
grange multiplier, we obtain

L(h̃, q) = h̃T Rỹỹh̃ + q
(
C̃T h̃ − F̃

)
. (12.108)

Differentiating with respect to h̃ and q results in the necessary conditions

2Rỹỹh̃ + qC̃ = 0 and C̃T h̃ = F̃ . (12.109)

Solving the first condition for h̃, and, using the result in the second condition, we
obtain

h̃ = −1

2
qR−1

ỹỹ C̃ and q =
−2

C̃T R−1
ỹỹ C̃

F̃ . (12.110)

Thus, the optimal linearly constrained solution is given by

h̃LC = R̃−1
ỹỹ C̃

(
C̃T R̃−1

ỹỹ C̃
)−1

F̃ . (12.111)

Based on the time domain solution in (12.111), deterministic and stochastic adap-
tive solutions may be developed [Frost 1972]. From the gradient of (12.108), a
deterministic update rule for the coefficient vector may be derived as

h̃(k + 1) = h̃(k) − µ
(
Rỹỹh̃ + qC̃

)
(12.112)

where µ is a positive stepsize parameter. Applying the constraint (12.103) to
(12.112) leads to

F̃ = C̃T h̃(k + 1) = C̃T h̃(k) − µ
(
C̃T Rỹỹh̃ + qC̃T C̃

)
. (12.113)

Solving for q and using the result in (12.112) yields the deterministic update rule

h̃(k + 1) = h̃(k) − µ
(
I − C̃(C̃T C̃)−1C̃T

)
Rỹỹh̃

+ C̃(C̃T C̃)−1
(
F̃ − C̃T h̃(k)

)
. (12.114)

Using the sample covariance ỹ(k)ỹT (k) as an approximation to Rỹỹ, and with

P = I− C̃(C̃T C̃)−1C̃T (12.115)

f̃ = C̃(C̃T C̃)−1F̃ (12.116)

ŝ(k) = h̃T (k)ỹ(k) , (12.117)
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the stochastic constrained least-mean-square (CLMS) algorithm can be written as

h̃(k + 1) = h̃(k) + P
(
h̃(k) − µŝ(k)ỹ(k)

)
+ f̃ (12.118)

with the initial condition h̃(0) = f̃ . In each iteration, the algorithm updates the
coefficient vector such that the constraint is met [Frost 1972].

12.8.2 Generalized Side-Lobe Canceller

An improved solution to the constrained adaptive beamforming problem decom-
poses the adaptive filter-and-sum beamformer into a fixed beamformer and an
adaptive multi-channel noise canceller. The resulting system is termed the gener-
alized side-lobe canceller [Griffiths, Jim 1982], a block diagram of which is shown
in Fig. 12.15. Here, the constraint of a distortionless response in look direction
is established by the fixed beamformer. The noise canceller can then be adapted
without a constraint. The implementation of an adaptive, distortionless response
beamformer is therefore much facilated.

The fixed beamformer can be implemented via one of the previously discussed
methods, for example, as a delay-and-sum beamformer. To avoid distortions of
the desired signal, the input to the adaptive noise canceller must not contain

Figure 12.15: Generalized side-lobe canceller
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the desired signal. Therefore, a blocking matrix B is employed such that the noise
signals




ŷ1(k)
ŷ2(k)

...
ŷNM−1(k)


 = B




y1(k)
y2(k)

...
yNM

(k)


 (12.119)

are free of the desired signal. It is generally assumed that the colums of B are
linearly independent. In our scenario, the blocking of a single desired signal by
means of a linear operation on the microphone signals reduces the number of
independent signal components by one. Therefore, B is a NM × (NM − 1) matrix.

When the desired signal originates from a point source under farfield conditions,
and is received from the broadside look direction, blocking of the desired source
can be achieved by a pairwise subtraction of the microphone signals. In this case,
the blocking matrix may be written as

B =




1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 −1


 . (12.120)

The adaptive noise canceller then estimates the noise components at the output of
the fixed beamformer and subtracts the estimate. Since both the fixed beamformer
and the multi-channel noise canceller might delay their respective input signals,
a delay in the signal path is required.

In reverberant environments, it is in general difficult to prevent the desired speech
signal from leaking into the noise cancellation branch. A number of countermea-
sures have been proposed [Hoshuyama, Sugiyama 2001], such as

• the use of an adaptive blocking matrix

• improved target tracking

• adaptation-mode control

• coefficient and coefficient-norm constraint adaptive filters.

One of these designs is explained in the next section. Furthermore, for hands-free,
full-duplex speech communication, it is desirable to combine beamforming micro-
phone arrays with echo cancellation. The GSC and extensions towards combined
beamforming and acoustic echo cancellation are discussed in detail in [Herbordt
2005].
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12.8.3 Generalized Side-lobe Canceller with Adaptive
Blocking Matrix

In reverberant environments the blocking matrix in (12.120) does not deliver suf-
ficient attenuation of the desired signal since it does not account for multipath
propagation effects. An improved implementation of the GSC principle is proposed
in [Hoshuyama et al. 1999] where adaptive filters block the desired signal.

The resulting algorithm is shown in Fig. 12.16. The output of the fixed beam-
former is fed into adaptive filters which minimize the error with respect to the
microphone signals. Thus, any coherent signal originating from the look direction
of the fixed beamformer can be reduced by the adaptive blocking method. For the
adaptive blocking filters, a coefficient constrained adaptive filter (CCAF) is used.
The coefficients of the adaptive filter are constrained to produce the dominant
peak for those taps which correspond to the look direction with some tolerance
interval (typically ±20 taps).

The blocked microphone signals are then fed into a multi-channel noise canceller
which is implemented as a norm-constrained adaptive filter (NCAF). The norm
constraint on the coefficient vector prevents excessive growth of the filter coeffi-

Figure 12.16: GSC with adaptive blocking matrix [Hoshuyama et al. 1999]; c© 1999 IEEE
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cients and thus leakage of the desired signal into the output of the multi-channel
noise canceller. For adapting both the blocking and the noise cancellation filters,
the NLMS algorithm with the above modifications is used.

12.9 Optimal Non-linear Multi-channel Noise
Reduction

In analogy to the single channel case, non-linear optimal estimators may be derived
which account for the probability distribution of the acoustic signals. For instance,
in the short-term spectral domain the short-term spectral amplitude of the desired
signal can be estimated using information about the spectral coefficients of all
microphone signals.

Thus, as discussed in Chapter 11, MMSE and MAP estimators may be developed
for the short-term spectral amplitude in the µ-th frequency bin of the desired
signal. The MMSE solution is again given by the conditional expectation

Âµ = E {Aµ | Yµ,1, . . . , Yµ,NM
} (12.121)

which is now conditioned on the complex spectral amplitudes Yµ,ℓ of the noisy
signal. This expectation yields a closed form solution for Gaussian distributed
signals [Balan, Rosca 2002].

MAP solutions are easier to compute and are known for Gaussian and super-
Gaussian distributed spectral coefficients. Furthermore, since the condition on the
complex spectral coefficients Yµ,1, . . . , Yµ,NM

introduces a phase dependency, it is
advantageous to condition on the spectral amplitudes Rµ,ℓ = |Yµ,ℓ| only [Lotter et
al. 2003a] and, hence, to solve

Âµ = arg max
Aµ

p(Aµ | Rµ,1, . . . , Rµ,NM
) (12.122)

= arg max
Aµ

p(Rµ,1, . . . , Rµ,NM
|Aµ) p(Aµ) . (12.123)

The solution to this optimization problem is detailed in [Lotter et al. 2003b], [Lot-
ter 2004] and [Lotter 2005] for Gaussian and super-Gaussian distributed spectral
coefficients.
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13

Acoustic Echo Control

In this chapter we introduce algorithms for feedback control in handsfree voice
communication systems. At the center of our discussion are adaptive algorithms
for acoustic echo cancellation. In principle, the acoustic echo canceller can remove
the annoying echo without distorting the near-end speech. Acoustic echo cancel-
lation is therefore an essential component of high-quality full-duplex handsfree
communication devices. As it turns out, it is a quite challenging application of
adaptive filters and other signal processing techniques. We present and discuss
several algorithms for the adaptation of acoustic echo cancellers in the time and
frequency domain as well as additional measures for echo control.

13.1 The Echo Control Problem

With the advent of mobile communications many speech communication systems
are equipped with so-called handsfree devices. For this, a loudspeaker and a mi-
crophone are used instead of a hand-held telephone receiver, in order to increase
user comfort or for safety reasons, e.g., in a car. Applications of handsfree systems
comprise not only car phones and comfort telephones, but also multimedia systems
with speech input, human–machine interfaces, or teleconferencing facilities.

The basic set-up of a handsfree communication system is illustrated in Fig. 13.1.
The echo control problem arises as a consequence of the acoustic coupling between

Digital Speech Transmission: Enhancement, Coding and Error Concealment

Peter Vary and Rainer Martin
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Figure 13.1: Loudspeaker–enclosure–microphone (LEM) system of a handsfree telephone
with digital input and output signals

the loudspeaker and the microphone. The microphone picks up not only the desired
signal s of the near-end speaker but also undesirable background noise n, and
in particular the signal of the far-end speaker, denoted x̃, which is received via
the electro-acoustic transmission path from the loudspeaker to the microphone.
The signal x̃ results from multiple acoustic reflections. It is commonly called the
acoustic echo signal (in distinction from the electric line echoes of the telephone
network).

To simplify the discussion, we will assume that the far-end speaker’s signal x(k)
and the transmission signal y(k) are digitized with sampling rate fs. These dig-
ital signals are available within ISDN or digital mobile radio systems (GSM or
UMTS). In analog transmission systems they are generated by using directional
filters (4-wire/2-wire hybrids) and analog-to-digital converters. In the following we
do not differentiate between the acoustic or analog signals and their digital coun-
terparts. Only the discrete time signals x(k), s(k), n(k), etc., i.e., digital versions
of band-limited analog signals will be used.

The microphone signal y(k) of the handsfree device in Fig. 13.1 is thus given by

y(k) = s(k) + n(k) + x̃(k) . (13.1)

The task of acoustic echo cancellation is to prevent the echo signal x̃(k) from
being fed back to the far-end user. Thus, the stability of the electro-acoustic loop
is ensured, even if the far-end user uses a handsfree telephone as well.

However, acoustic echo cancellation is also compulsory for another reason, even if
the far-end participant uses a telephone handset or a headset. Most of the wire-
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Figure 13.2: Loudspeaking telephone with voice-controlled echo suppressor

less digital telephone networks cause a relatively long signal delay, e.g., approx.
90 ms in GSM mobile radio networks or approx. 200 − 240 ms for transmission
via geostationary satellites. Consequently, without echo cancellation, the far-end
user receives an echo of his or her own voice. As the round-trip echo delay (which
equals twice the transmission delay) might be large, the echo is not masked by the
far-end user’s own speech and thus interferes with the user’s speech.

Simple solutions to the echo control problem employ voice-controlled echo suppres-
sors which consist of one variable attenuator in the transmit branch and in the
receive branch, respectively. Depending on the speech activity of the two speakers
the transmit and the receive branch are differently attenuated such that the total
attenuation in the echo path is not below a minimum of, for instance, 40 dB. This
principle can be easily realized in analog or digital technology. A digital solution
is shown in Fig. 13.2. When only one of the two speakers is active (single talk)
the echo suppressor can achieve a high level of echo suppression. However, as the
variable attenuation factors should fulfill the condition

−
(
20 lg ax(k) + 20 lg ay(k)

)
= 40 dB , (13.2)

simultaneous communication of the two users (double talk) is possible only in a very
limited way. This limitation can be circumvented by using a handsfree telephone
with echo cancellation as depicted in Fig. 13.3.

The basic idea of acoustic echo cancellation is to model the electro-acoustic echo
path (loudspeaker–enclosure–microphone system) as a linear system and to iden-
tify the impulse response of this system by means of an adaptive digital filter. Due
to the band limitation of the microphone signal, the electro-acoustic transmission of
the far-end speaker’s signal x(k) via the loudspeaker–enclosure–microphone system
(LEM system) can be described by a discrete time, linear system with the causal
impulse response g. As a result of the physical characteristics of the LEM system,
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Figure 13.3: Discrete time model of a handsfree telephone with echo cancellation

this impulse response is in principle infinite (IIR). Two typical impulse responses
of LEM systems are shown in Fig. 13.4. While the initial part of the LEM impulse
response is dominated by the direct path from the loudspeaker to the microphone
and by distinct peaks of early reflections, the reverberation manifests itself in a
large number of decaying impulses which are best described by statistical models.
The exponential decay of the late reverberation is usually characterized by a time
constant, the reverberation time TH . It describes the time span in which, according
to an exponential law, the sound pressure drops to 10−6 of its initial value after
turning off the sound source. Using Sabine’s reverberation formula (e.g., [Kuttruff
1990]), the reverberation time as a function of the room volume V , the wall ar-
eas Ai with absorption factors αi, and the sound velocity c can be approximately
determined as

TH =
24 ln(10) V

c
∑
i

Ai αi
.

Figure 13.4: Measured impulse responses of LEM systems at fs = 8kHz
a) Car
b) Office room
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The reverberation time in a car for an estimated acoustically relevant volume of,
say, V = 1.3 m3 amounts to TH = 0.065 s; in an office room with V = 100 m3 it
can be as large as TH = 0.7 s [Martin 1995]. The large number of quasi-random
reflections in a reverberant enclosure also implies that any accurate model of the
LEM system requires many degrees of freedom. Since IIR filters of low order cannot
provide this flexibility, the LEM is usually modeled by high-order FIR filters.

Because of the exponential decay of a typical LEM response and because of ampli-
fier and quantization noise in the microphone signal, the impulse response can be
limited for all practical purposes to a finite number of coefficients m′, provided that
m′ is chosen sufficiently large. The LEM system is thus modeled as a transversal
(FIR) filter of order m′ − 1 with impulse response

g(k) =
(
g0(k), g1(k), . . . , gm′−1(k)

)T
(13.3)

and with excitation signal x(k). The impulse response is in general time variant
as it is influenced by movements of the near-end speaker and by other changes of
the acoustic environment.

In order to compensate the undesirable echo signal x̃(k), it may therefore be repro-
duced by using a transversal filter (FIR) with the time-variant coefficient vector
of length m

h(k) =
(
h0(k), h1(k), . . . , hm−1(k)

)T
. (13.4)

The estimated echo, x̂(k), is then subtracted from the microphone signal y(k). If
the impulse responses g and h match exactly and m = m′ is sufficiently large, the
echo signal will be eliminated from the transmit branch.

The underlying signal processing problem therefore consists in identifying the time-
varying system impulse response g(k). In practice, the impulse response h(k) of
the cancellation filter is adapted with an iterative algorithm. One of the most
prominent adaptation algorithms is the normalized least-mean-square (NLMS) al-
gorithm, which has gained widespread acceptance due to its simple adaptation rule
and stability. Tracking of fast-changing impulse responses is, however, not easily
accomplished [van de Kerkhof, Kitzen 1992]. Fast-converging algorithms, such as
the affine projection (AP) algorithm and its fast variants, as well as frequency
domain implementations of adaptive filtering concepts, are therefore also of sig-
nificant interest. A vast amount of literature deals with these adaptive algorithms
and their application to echo cancellation. Excellent surveys are given in, for ex-
ample, [Hänsler 1992], [Hänsler 1994], [Breining et al. 1999], [Gay, Benesty 2000],
[Benesty et al. 2001], [Hänsler, Schmidt 2004].

To fully appreciate the difficulties of the echo cancellation problem a first estimate
of the required order of the cancellation filter will be derived. In Fig. 13.5 an LEM
system with two sound propagation paths is depicted: one direct path leads from
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Figure 13.5: Sound propagation paths in the LEM system

the loudspeaker to the microphone via the distance d, and one indirect path with
two reflections via the total distance of d1 + d2 + d3. The length of the impulse
response h of the cancellation filter should cover the corresponding propagation
delay τ of the acoustic signal.

With a sampling rate of fs = 8 kHz (corresponding to a sampling interval of
T = 125 µs) and the sound velocity c ≈ 343 m/s, the minimal required filter order
amounts to

m − 1 ≥

∑
i

di

c
· fs ≈ TH · fs . (13.5)

For a distance of, for example, d = 20 cm between loudspeaker and microphone,
only m = 6 coefficients are needed to cancel the direct sound path. For the indi-
rect sound, however, due to multiple reflections, total distances of some tens to
hundreds of meters, depending on the size and the acoustic characteristics of the
room (reverberation time), must be assumed. The average total distance can be
obtained from the mean free paths [Kuttruff 1990] between reflections.

For a cumulative mean free path of d = c · TH = 343 m/s · 0.065 s ≈ 22.3 m, for
example, which might be obtained in a car, a filter order of m ≈ 500 is needed,
while the application in reverberating office rooms (0.2 s ≤ TH ≤ 0.5 s) requires a
canceller with 2000–4000 coefficients. At a sampling rate of fs the computational
complexity of this filter is about

m · fs = 16–32 MOPS (Mega Operations Per Second). (13.6)

To this, the computational complexity for the adaptation algorithm, when the
convolution is implemented in the time domain, must be added, which increases
(13.6) by a factor of at least 2–3. The high complexity of a full-size canceller
combined with the difficulty of adapting a canceller in the presence of acoustic noise
and double talk usually leads to implementations with significantly fewer canceller
coefficients. Thus, the echo cannot be fully cancelled and additional measures as
discussed in Section 13.10 become necessary.
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13.2 Evaluation Criteria

Since the echo problem has a profound effect on the communication quality, numer-
ous international recommendations and standards have been established to guide
the development of handsfree devices. The required echo suppression depends on
the signal delay of the transmission path and on the double talk condition. The
actual requirements are frequently specified in terms of the talker echo loudness
rating (TELR), i.e., the level difference between the original far-end voice and the
resulting echo. The TELR which is deemed acceptable during single talk is given
by 35 dB and 52 dB for transmission delays of 30ms and 200ms, respectively. For
transmission delays of more than 200 ms, even more echo attenuation is necessary.
During double talk some of the echo is masked by the near-end signal [Gilloire
1994]. In this case good listening quality is achieved when the single talk TELR
requirement is lowered by no more than 4 dB [ITU-T G.131 2003].

The required high level of echo suppression, particularly needed for long transmis-
sion delays, can in practice only be achieved with an echo canceller in conjunction
with additional measures such as an echo suppressor or echo reduction postfil-
ter. However, the contribution of an echo suppressor to the required TELR has
a profound effect on the double talk capability of the handsfree terminal. Thus,
handsfree terminals are further categorized based on the attenuation range which
is applied to the near-end signal by the echo suppressor [ITU-T P.340 2000]. Full
duplex capability, for instance, is achieved when the contribution of the echo sup-
pressor to the required TELR entails less than 3 dB of near-end signal attenuation.

Since the TELR measure comprises the entire electro-acoustic echo loop – including
the telephone network and the handsfree terminal – it is often not practical for
the fair comparison of echo control devices. For an instrumental evaluation of echo
cancellation and echo suppression algorithms, two instrumental criteria, which
characterize the system identification error and the level of echo reduction, are
commonly used.

a) System Distance

For m = m′ the distance vector

d(k) = g(k) − h(k) (13.7)

of the impulse responses allows us to define the relative system distance

D(k) =
||d(k)||2
||g(k)||2 (13.8)

as a performance measure for system identification. ||d(k)||2 = dT (k) d(k) denotes
the squared vector norm. Generally, the logarithmic distance 10 lg (D(k)) (in dB)
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is used. If the coefficient vectors g(k) and h(k) differ in length, the shorter vector
is padded with zero values. According to definition (13.8), the system distance
D(k) does not depend directly on the signal x(k). However, since the cancellation
filter is adapted using the signal x(k), the system distance obtained at time instant
k depends in fact on the particular excitation x(k). Since the impulse responses
of real LEM systems are generally not known, the system distance as defined in
(13.8) is primarily an important evaluation criterion for off-line simulations with
a given impulse response g(k).

b) Echo Return Loss Enhancement

One criterion which is more closely related to the subjectively perceived perfor-
mance is the achievable reduction of the power of the echo signal x̃(k). The corre-
sponding measure is called echo return loss enhancement (ERLE) and is defined
as

ERLE(k)

dB
= 10 lg

(
E{x̃2(k)}

E{
(
x̃(k) − x̂(k)

)2}

)
. (13.9)

This criterion depends on the echo signal x̃(k) and its estimate x̂(k). The ensem-
ble average E{·} provides a measure of echo reduction for every time instant k.
In practice, the expected values in (13.9) are replaced by short-term smoothed
estimates. Due to the length of the smoothing window, the short-term estimate of
the echo return loss enhancement then has a limited time resolution.

A small system distance D(k) implies a high level of echo return loss enhancement
ERLE(k). The inverse conclusion does not hold, which is easily demonstrated with
a narrowband excitation signal x(k). To achieve a high level of echo return loss
enhancement, the frequency response of the cancellation filter must match the
frequency response of the LEM system only for the frequencies which are actually
excited by x(k). Deviations at other frequencies do not have an impact on the
measured ERLE(k).

In a real system, the residual echo

e(k) = x̃(k) − x̂(k) (13.10)

is only accessible for s(k) = 0 (cf. Fig. 13.3), i.e., during speech pauses of the
near-end speaker (single talk), and only if there is no background noise, i.e., for
n(k) = 0. In simulation experiments, however, e(k) can be calculated before the
signals s(k) and n(k) are added so that an observation of the echo return loss
enhancement over time is possible for double talk and additive background noise
as well.

Besides ERLE(k) and the system distance, measures for near-end speech quality
and for double talk capability are used to characterize a handsfree device. Since
modern handsfree devices are neither time invariant nor linear, special measure-
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ment procedures are required. An example based on composite source signals is
given in [Gierlich 1992]. The most relevant standard procedures are summarized
in [Carini 2001], [Gierlich, Kettler 2005].

13.3 The Wiener Solution

To lay the ground for the development of adaptive algorithms we briefly review
the minimum mean square error solution (Wiener filter) to the echo cancellation
problem.

The starting point is the minimization of the mean square error of the residual
echo

E{e2(k)} = E{
(
x̃(k) − hT (k) x(k)

)2} (13.11)

with the excitation vector

x(k) =
(
x(k), x(k − 1), . . . , x(k − m + 1)

)T
(13.12)

and the coefficient vector (tap weight vector)

h(k) =
(
h0(k), h1(k), . . . , hm−1(k)

)T
. (13.13)

For wide sense stationary input signals and a time invariant LEM system response
g, the general solution to the FIR Wiener filter is given by (cf. Section 5.12.1)

h0 = E
{
x(k)xT (k)

}−1 · E {x̃(k)x(k)} = R−1
xx (k) · E {x̃(k)x(k)} (13.14)

provided that the m × m auto-correlation matrix Rxx(k) = E
{
x(k)xT (k)

}
is

invertible.

In the echo cancellation context with m ≤ m′ and x̃(k) =
∑m′−1

i=0 gi x(k − i), the
cross-correlation vector E {x̃(k)x(k)} may be written as

E {x̃(k)x(k)} =




m′−1∑
i=0

gi ϕxx(i)

m′−1∑
i=0

gi ϕxx(i − 1)

...
m′−1∑
i=0

gi ϕxx(i − m + 1)




(13.15)

=




ϕxx(0) ϕxx(1) · · · ϕxx(m′ − 1)
ϕxx(1) ϕxx(0) · · · ϕxx(m′ − 2)

...
...

...
ϕxx(m − 1) ϕxx(m − 2) · · · ϕxx(m′ − m)







g0

g1

...
gm′−1




with ϕxx(i) = E {x(k)x(k + i)} .
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Combining (13.14) and (13.15) we conclude that for m = m′ perfect identification
h0 = g is in principle possible. For m < m′ the FIR Wiener filter identifies the
first m coefficients without error if the auto-correlation ϕxx(i) is equal to zero for
1 ≤ i ≤ m′, i.e., for a white noise excitation signal x(k). If the auto-correlation
does not vanish for 1 ≤ i ≤ m′ and m < m′ the estimate h0 is biased.

The Wiener filter provides a solution for stationary signals. In general, the statistics
of the excitation signal as well as the target impulse response g(k) are time varying.
Therefore, adaptive algorithms are of great importance and will be studied in
greater detail below.

13.4 The LMS and NLMS Algorithms

13.4.1 Derivation and Basic Properties

In analogy to the iterative adaptation of a linear predictor by means of the least-
mean-square (LMS) algorithm (see Section 6.3.2) we derive a rule for adjusting
the cancellation filter. The gradient of the mean square error (13.11) results in the
vector

∇(k) =
∂E{e2(k)}

∂h(k)
(13.16-a)

= 2 E

{
e(k)

∂e(k)

∂h(k)

}
(13.16-b)

= −2 E{e(k)x(k)} . (13.16-c)

In order to decrease the error, the tap weights hi(k) must be adapted in the
direction of the negative gradient. The fundamental idea of the LMS algorithm is
to replace the gradient by the instantaneous gradient

∇̂(k) = −2 e(k)x(k). (13.17)

The adaptation algorithm may be written as

h(k + 1) = h(k) + β(k) e(k)x(k) (13.18)

with the effective (and in general time-variant) stepsize parameter β(k) (cf.
(6.81-b), β = 2 ϑ).

It can be shown that the LMS algorithm converges in the mean square sense if
and only if the stepsize parameter β(k) satisfies

0 < β(k) <
2

λmax
(13.19)
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where λmax is the largest eigenvalue of the input correlation matrix Rxx [Haykin
1996].

Viewed as a dynamic system, the speed of convergence of the LMS depends on the
stepsize as well as on the characteristic modes as described by the eigenvalues of the
correlation matrix. For a small stepsize parameter β we might describe the mean
trajectory of the squared error e2(k) (“learning curve”) by a single exponential
with time constant [Haykin 1996]

τav ≈ 1

2 β 1
m

m∑
i=1

λi

. (13.20)

Since the stepsize must take the largest eigenvalue into account it follows that a
large eigenvalue spread leads to a slow convergence. It is also obvious that for non-
stationary signals the stepsize must be adapted to the time-varying eigenstructure
of the input signal.

Since
m∑

i=1

λi = trace(Rxx), a conservative upper bound for the stepsize is given by

0 < β(k) <
2

trace(Rxx)
=

2

mσ2
x

. (13.21)

If β(k) is chosen proportional to trace(Rxx)−1, β(k) = α · trace(Rxx)−1, the mean
time constant is given by

τav ≈ m

2α
(13.22)

which is a first indication that long adaptive filters converge less rapidly than short
filters.

Since in a real system the residual echo signal e(k) cannot be isolated, the micro-
phone signal

ŝ(k) = s(k) + n(k) + e(k) (13.23)

is used instead of e(k), leading to the practical LMS adaptation

h(k + 1) = h(k) + β(k) ŝ(k)x(k)

= h(k) + β(k) e(k)x(k) + β(k) (s(k) + n(k))x(k) . (13.24)

The near-end speaker’s signal s(k) and the background noise n(k) must be con-
sidered as interfering signals for the adaptation process. Because of short-time
correlations between s(k) + n(k) and x(k) the minimization of the power of e(k)
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might be severely disturbed by the near signals. Consequently, to avoid misalign-
ment of the canceller the adaptation must be frozen (or at least slowed down) as
soon as the near-end speaker becomes active. This can be achieved by an adaptive
stepsize control mechanism which will be discussed in more detail in Section 13.5.4.

The normalized least-mean-square (NLMS) algorithm may be developed as a mod-
ification of the LMS algorithm using the normalized time-varying stepsize

β(k) =
α(k)

||x(k)||2 =
α(k)

xT (k)x(k)
. (13.25)

It can be shown that the NLMS converges in the mean square for [Haykin 1996]

0 < α(k) < 2 . (13.26)

Moreover, the specific properties of the normalized coefficient update

h(k + 1) − h(k) =
α(k)

xT (k)x(k)
e(k)x(k) (13.27)

allow an interpretation of the NLMS algorithm and its adaptation in terms of
geometric projections. In contrast to the LMS algorithm, the NLMS algorithm
with (13.26) is stable not only in the mean but also deterministically in each
iteration [Rupp 1993], [Slock 1993]. This will be analyzed in more detail in Section
13.6. In the next section we will first consider the performance of the LMS and
NLMS algorithms in the context of the echo cancellation application.

13.5 Convergence Analysis and Control of the

LMS Algorithm

We now return to the LMS algorithm for an in-depth analysis of its convergence
behavior. To guarantee stability for stationary signals we will use a normalized
stepsize

β(k) =
α

mσ2
x

(13.28)

with 0 < α < 2 and

σ2
x = E{x2(k)} . (13.29)

For wide sense stationary signals and large m the results of this analysis will
approximately hold also for the NLMS algorithm since

||x(k)||2 ≈ mσ2
x . (13.30)

In the simulation examples below, we will therefore use the NLMS algorithm. We
will also show how the convergence analysis leads to the design of optimal stepsize
parameters.
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13.5.1 Convergence in the Absence of Interference

In this section we analyze the convergence behavior for stationary noise-like exci-
tation signals x(k) in the absence of interference, i.e., for s(k) = 0 and n(k) = 0.
The impulse response of the LEM system is assumed to be time invariant, i.e.,
g(k) = g, and of same length as the response of the echo canceller, i.e., m = m′.

When the adaptive filter is excited with zero mean, white noise of variance σ2
x and

when the vectors d(k) and x(k) are assumed to be statistically independent we
have

E{e2(k)} = E{
(
dT (k)x(k)

)2} (13.31-a)

= σ2
x E{||d(k)||2} (13.31-b)

where

d(k) = g − h(k) (13.31-c)

denotes the distance vector as before. With these assumptions, the adaptation rule
for the LMS algorithm (13.18) with (13.28) and (13.31-b) yields

E{||d(k + 1)||2} ≈ E{||d(k)||2} − E{e2(k)} α

m σ2
x

(2 − α) (13.32-a)

= E{||d(k)||2}
(
1 − α

m
(2 − α)

)
. (13.32-b)

For 0 < α < 2 the ensemble average of the system distance decreases in each
iteration. Choosing the initial vector h(k = 0) = 0, the average system distance
at the beginning of the recursion equals

E{||d(0)||2} = ||g||2 ,

and (13.32-b) can also be expressed as

E{||d(k)||2} = ||g||2
(
1 − α

m
(2 − α)

)k

. (13.33)

This relation is illustrated in Fig. 13.6 for different values of α. With the definition
of the relative system distance according to (13.8), we obtain

E{||d(k)||2}
||g||2 = E{D(k)} .

As shown below, the best mean convergence is attained for α = 1 (cf. Sec-
tion 13.5.4).
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Figure 13.6: Convergence behavior of the LMS algorithm
excited with white noise (m = m′ = 500)

Next, the system excited with a colored noise signal x(k) will be examined. We
determine to what extent the convergence is influenced by a correlation of adjacent
excitation samples. This investigation produces first qualitative statements on the
efficiency of an NLMS-driven echo cancellation filter excited with speech signals.

The excitation signal will be derived from a white noise process u(k) of power σ2
u,

by filtering with a first-order, recursive filter (first-order Markov process):

x(k) = b · x(k − 1) + u(k) ; 0 ≤ b < 1 . (13.34)

In analogy to (13.33) we find for α = 1

E{||d(k)||2} = ||g||2
(

1 − 1 − b2

m

)k

. (13.35)

Figure 13.7 shows the corresponding convergence behavior for different values of
the parameter b. The curve for b = 0 is identical to the one in Fig. 13.6 for α = 1.

With increasing correlation, the convergence speed of the algorithm obviously de-
creases. This leads to the conclusion that LMS- or NLMS-based echo cancellers will
show poor adaptation performance when excited with speech signals. As outlined
in Section 13.4 the eigenvalue spread of the correlation matrix of the excitation
vector x(k) has a profound effect on the speed of adaptation [Haykin 1996].

The above analysis yields the mean convergence as a function of the discrete time
index k in the sense of an ensemble average. The result of a simulation using
the NLMS algorithm with colored noise is depicted in Fig. 13.8. It shows the
logarithmic system distance D(k) versus time for different values of the stepsize α.
In general, the time evolution is in line with (13.35). However, deviations from the
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Figure 13.7: Convergence behavior of the LMS algorithm excited
with colored noise (m = m′ = 500, α = 1)

analytical result (13.35) can be observed for the range k < m. This is primarily
caused by the approximations of the equations (13.28) and (13.31-b), which are
affected by the initialization of the coefficient and the excitation vectors.

The result of simulations with speech, colored, and white noise is presented in
Fig. 13.9. The general conclusions from (13.35) for colored noise can be confirmed.
The relatively poor convergence behavior for correlated noise and for speech signals
can be clearly observed.

Figure 13.8: System distance with different stepsizes α in absence of interference
(i.e., s(k) = 0, n(k) = 0); m = m′ = 500, x(k) = colored noise (b = 0.8)
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Figure 13.9: System distance with different input signals x(k) in absence of interference
(i.e., s(k) = 0, n(k) = 0); m = m′ = 500, α = 1

13.5.2 Convergence in the Presence of Interference

It was stated earlier that in a real system, the true instantaneous residual echo
e(k) = x̃(k) − x̂(k) is not accessible and therefore the NLMS algorithm must use
the signal

ŝ(k) = s(k) + n(k) + e(k) , (13.36)

which comprises the speech signal of the near-end speaker and the background
noise.

As a result, the steady-state echo reduction

ERLE∞ = lim
k→∞

E{ERLE(k)} (13.37)

turns out to be lower, while the attainable system distance

D∞ = lim
k→∞

E{D(k)} (13.38)

proves to be greater.

A universally valid analysis of the interfering factors is difficult to perform and
cannot be done in an analytically closed form. The principal effects, however, can
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be demonstrated for the special case of a system excited with a stationary white
noise signal x(k) of power σ2

x.

For the analysis below the signal of the near-end speaker is set to zero (s(k) = 0,
i.e., speech pause). Furthermore, the existence of an interference n(k) which is
statistically independent of the signal x(k) is assumed, leading to

E{x(k) n(ℓ)} = 0 and E{e(k) n(ℓ)} = 0 . (13.39)

With these assumptions the LMS algorithm with normalized stepsize can be writ-
ten as

h(k + 1) = h(k) +
α

mσ2
x

(
e(k) + n(k)

)
x(k) . (13.40)

In analogy to (13.32-a), the mean system distance is given by

E{||d(k + 1)||2} = E{||d(k)||2} − E{e2(k)} α

mσ2
x

(2 − α) +
α2

mσ2
x

E{n2(k)} .

(13.41-a)

Using (13.31-b) this equation can be modified to

E{||d(k + 1)||2} = E{||d(k)||2}
(
1 − α

m
(2 − α)

)
+

α2

mσ2
x

E{n2(k)} .

(13.41-b)

In comparison to the case without interference (13.32-b), an additional constant
term has been added. This implies that with increasing k and for constant α the
system distance cannot become arbitrarily small.

The steady-state solution of (13.41-b) is obtained for

lim
k→∞

E{||d(k + 1)||2} = lim
k→∞

E{||d(k)||2} = ||d∞||2 (13.42)

and is given by

||d∞||2 =
α

2 − α

E{n2(k)}
σ2

x

. (13.43)

With the stated assumptions the power of the echo signal x̃(k) can be expressed
as

σ2
x̃ = ||g||2 σ2

x . (13.44)
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Figure 13.10: System distance for different stepsizes α in the presence of background
noise with 10 lg

(
E{n2(k)}/E{x̃2(k)}

)
= −20 dB; x(k), n(k) = white noise,

s(k) = 0, m = m′ = 500; [Antweiler 1995]

Therefore, the mean steady-state system distance results in

lim
k→∞

E{D(k)} = D∞ =
||d∞||2
||g||2 (13.45)

=
α

2 − α

E{n2(k)}
σ2

x̃

. (13.46)

In the special case α = 1, the achievable system distance is equivalent to the
power ratio between the noise signal n(k) and the echo signal x̃(k). For α < 1,
the system distance can be improved at the expense of a slower convergence.
Figure 13.10 shows the result of a simulation of the NLMS algorithm for different
stepsize parameters α. The theoretical limit according to (13.46) is indicated by
dashed lines.

Note that in the above derivation of the steady-state performance only the sta-
tistical independence of the echo signal x̃(k) with respect to the noise n(k) was
assumed. In the case of a white excitation signal x(k), the logarithmic echo re-
turn loss enhancement (ERLE) matches the negative logarithmic relative system
distance in dB. If a speech signal is used for the adaptation process, the attain-
able system distance becomes even worse. The results of simulation examples are
depicted in Fig. 13.11 and Fig. 13.12. Figure 13.12 shows that for a colored, sta-
tionary excitation signal x(k) similar system distances as for white noise x(k) in
combination with α < 1 (cf. Fig. 13.10) are obtained.
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Figure 13.11: System distance for different excitation signals x(k) in the presence of
background noise with 10 lg

(
E{n2(k)}/E{x̃2(k)}

)
= −15 dB or −20 dB,

respectively; n(k) = white noise, s(k) = 0, m = m′ = 500, α = 1.0

Figure 13.12: System distance for different excitation signals x(k) in the presence
of background noise with 10 lg

(
E{n2(k)}/E{x̃2(k)}

)
= −20 dB;

n(k) = white noise, s(k) = 0, m = m′ = 500, α = 1.0

13.5.3 Filter Order of the Echo Canceller

Neglecting the computation of the stepsize parameter, the LMS algorithm requires
2m multiply–accumulate operations per sample, m operations for the adaptation
of the coefficients, and m for the filtering, respectively. The order of the cancella-
tion filter should therefore be kept as small as possible. This requirement is also
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Figure 13.13: System distance for different filter lengths m in absence of interference
(i.e., s(k) = 0, n(k) = 0); x(k) = white noise, m′ = 500, α = 1.0

sustained by the speed of convergence, which slows down with increasing filter
order as seen in (13.33).

A restriction in the length of the impulse response of the cancellation filter in-
evitably leads to a limitation of the attainable system distance. This limitation
can easily be estimated as follows. With an ideal match of the impulse response of
the compensation filter and the first m values of the LEM impulse response, the
best possible system distance is given by

Dopt =
||h− g||2
||g||2 =

∞∑
i=m

g2
i

∞∑
i=0

g2
i

. (13.47)

By measuring an impulse response typical of the acoustic environment, the required
minimum order of the cancellation filter can thus be determined in advance. For
the LEM impulse response measured in a car (see Fig. 13.4-a), Fig. 13.13 clearly
shows the limitation of the system distance caused by a limited filter order.

13.5.4 Stepsize Parameter

So far, the normalized stepsize parameter α was assumed to be constant. Below, an
optimal and possibly adaptive adjustment of this parameter will be investigated.
The optimization is based on the maximum improvement of the mean system
distance from one time instant to the next.
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First, a system excited with a white noise signal x(k) is considered in the absence
of interference. The insertion of a now time-variant (but deterministic) stepsize
parameter α(k) into (13.32-a) results for every arbitrary but fixed time index k in

E{||d(k + 1)||2} ≈ E{||d(k)||2} − E{e2(k)} α(k)

m σ2
x

(
2 − α(k)

)
. (13.48)

Thus, the difference of the mean system distances at time instant k and time
instant k + 1 is given by

∆2
E(k) = E{||d(k)||2} − E{||d(k + 1)||2}

≈ E{e2(k)} α(k)

m σ2
x

(
2 − α(k)

)
. (13.49)

In the admissible range of the stepsize parameter

0 < α(k) < 2 , (13.50)

the quantity ∆2
E(k) only attains positive values. It is a quadratic function of α(k).

From the condition

∂∆2
E(k)

∂α(k)

!
= 0 , (13.51)

the optimal stepsize for each time index k results in a constant stepsize parameter

α(k) = α = 1 , (13.52)

which confirms the previous results. In the presence of interference (double talk,
background noise), the residual echo e(k) is not directly accessible. When e(k) is
replaced by ŝ(k) = e(k)+s(k)+n(k) in the adaptation rule for the LMS algorithm
the difference of the mean system distances at time instants k and k +1 follows in
analogy to (13.41-a)

∆2
E(k) = E{e2(k)} α(k)

mσ2
x

(
2−α(k)

)
− α2(k)

mσ2
x

(
E{s2(k)} + E{n2(k)}

)
. (13.53)

In order to obtain the best possible stepsize, the condition

∂∆2
E(k)

∂α(k)
= 2

E{e2(k)}
mσ2

x

− 2 α(k)
E{ŝ2(k)}

mσ2
x

!
= 0 (13.54)

with

E{ŝ2(k)} = E{e2(k)} + E{s2(k)} + E{n2(k)}
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must be fulfilled. The general solution is [Schultheiß 1988], [Mader et al. 2000]

αopt(k) =
E{e2(k)}
E{ŝ2(k)} . (13.55)

In this, the interference-free case with e(k) = ŝ(k) is included as the special case
α(k) = 1.

The optimal stepsize can also be written as

αopt(k) =
E{e2(k)}
E{ŝ2(k)} =

E{e2(k)}
E{s2(k)} + E{n2(k)} + E{e2(k)} (13.56-a)

=
1

1 +
E{s2(k)} + E{n2(k)}

E{e2(k)}

≤ 1 . (13.56-b)

We see from (13.56-b) that during double talk phases the stepsize is reduced. For
example, E{s2(k)} = E{e2(k)} and n(k) = 0 yield

α = 0.5 (13.57)

and for E{s2(k)} = 4 E{e2(k)} we obtain

α = 0.2 . (13.58)

By reducing the stepsize, the signal-dependent bias of the echo canceller is min-
imized and thus distortions of the transmitted signal are avoided. During double
talk, the adaptation need not be explicitly stopped so that slow improvements of
the state of convergence are still possible. When the echo canceller has converged,
the power of the residual echo e(k) is in general significantly smaller than the power
of the near-end speech signal s(k) or the near-end noise signal n(k). In this case
the stepsize parameter is much smaller than unity, which in turn is a prerequisite
to maintain a small system distance (see (13.46)).

Since the residual echo e(k) does not exist as an isolated signal, the stepsize param-
eter αopt(k) can only be approximated. In [Yamamoto, Kitayama 1982], [Schultheiß
1988] a solution which is based on an estimation of the instantaneous system dis-
tance is proposed. A delay of m0 samples is applied to the microphone signal. This
delays the effective LEM impulse response by m0 samples as well, i.e., it introduces
m0 leading zero values. The m0 leading taps of the echo canceller can now be used
to estimate the system distance and hence the residual echo power.

This procedure is outlined in [Schultheiß 1988] where m0 = 20 delay coefficients
are used. Additional measures, however, are necessary to detect a change in the
LEM response, otherwise the adaptation will freeze [Mader et al. 2000], [Hänsler,
Schmidt 2004].
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13.6 Geometric Projection Interpretation of the
NLMS Algorithm

The operation of the NLMS algorithm can be interpreted in terms of a vector
space representation of the individual adaptation step [Claasen, Mecklenbräuker
1981], [Sommen, van Valburg 1989]. However, before we develop this “geometric”
approach to the echo cancellation problem we introduce the concept of orthogonal
vectors and spaces in IRm (see, e.g., [Debnath, Mikusinski 1999]).

Two vectors d1(k) and d2(k) are said to be orthogonal if their inner product
equals zero, i.e., dT

1 (k)d2(k) = 0. By the same token, a vector d(k) is said to be
orthogonal to a subspace Sx if dT (k)x(k) = 0 for every x(k) ∈ Sx. The set of
all vectors orthogonal to Sx are called the orthogonal complement of Sx and is
denoted by S⊥.

Every element d(k) ∈ IRm thus has a unique decomposition in the form

d(k) = d‖(k) + d⊥(k) (13.59)

where d‖(k) is an element of a subspace Sx of IRm and d⊥(k) an element of the
orthogonal complement S⊥ of Sx. d‖(k) is then called the projection of d(k) onto
Sx and Px, with Px d(k) = d‖(k) being the associated projection operator.

Projection operators satisfy two necessary conditions, namely

Px Px = Px (idempotent) (13.60)

and

(Px d1(k))
T

d2(k) = dT
1 Px d2(k) (self-adjoint) (13.61)

for any d1(k),d2(k) ∈ IRm.

If Sx is a subspace of dimension 1 and x(k) ∈ Sx, then the projection of d(k) onto
Sx is given by

d||(k) = Px(k)d(k) =
x(k)xT (k)

||x(k)|| ||x(k)|| d(k) (13.62)

since xT (k)d(k)/||x(k)|| is the component of d(k) in the direction of unit vector
x(k)/||x(k)||. In this case, the projection operator evaluates to an m × m matrix.

If we return to the NLMS-adapted echo canceller and consider the distance vector

d(k) = g − h(k) (13.63)
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Figure 13.14: Geometric interpretation of the NLMS algorithm [Antweiler 1995]

the following equation holds for the NLMS update in an environment with no
interference, i.e., s(k) + n(k) = 0,

d(k + 1) = d(k) − α
dT (k) x(k)

||x(k)||2 x(k) (13.64-a)

= d(k) − α
x(k)xT (k)

||x(k)|| ||x(k)|| d(k) (13.64-b)

= d(k) − α d||(k) (13.64-c)

= (I− αPx(k))d(k) . (13.64-d)

The correction vector d||(k) can therefore be interpreted as an orthogonal projec-
tion of the distance vector d(k) onto the signal vector x(k) and

Px(k) =
x(k)xT (k)

||x(k)||2 (13.65)

is the corresponding projection operator. It is easily verified that both necessary
conditions (13.60) and (13.61) are satisfied. This concept is illustrated in Fig. 13.14
for m = 2.

The length of the distance vector d(k) is reduced by subtracting the component
αd||(k), which is parallel to the signal vector x(k). Provided that the stepsize
parameter is within the range

0 < α < 2 , (13.66)

the length of the distance vector d(k) always decreases. The convergence condition
(13.26) is thus confirmed. For α < 1 the projection does not fully eliminate the
components in the space spanned by x(k) but amounts to a relaxed projection.
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For α = 1, we find d(k + 1) = (I − Px(k))d(k) where I − Px(k) is the operator
for projecting d(k) onto the orthogonal complement of x(k), since

Px(k)(I− Px(k)) = Px(k) − Px(k)Px(k) = 0 . (13.67)

A system distance D(k) = 0 can only be obtained if, during the adaptation phase,
the excitation signal vector points towards all directions in the m-dimensional
vector space. This interpretation explains the fact that the best convergence is
achieved for a perfect sequence excitation signal ([Antweiler, Dörbecker 1994],
[Antweiler, Antweiler 1995]; see Section 13.10.5).

13.7 The Affine Projection Algorithm

The geometric interpretation leads to an interesting generalization of the NLMS
algorithm, namely the affine projection (AP) algorithm [Ozeki, Umeda 1984].

For s(k) = n(k) = 0 and m = m′ the NLMS filter coefficient update can be written
in terms of the projection operator Px(k) as

h(k + 1) = h(k) + αPx(k)d(k) (13.68)

= [I− αPx(k)] h(k) + αPx(k) g . (13.69)

For α = 1 we now have an affine projection of the form

h(k + 1) = P⊥
x (k)h(k) + g||(k) . (13.70)

The updated filter coefficient vector equals the current vector projected onto the
orthogonal complement of x(k) plus the projection of the true impulse response g
onto the vector x(k).

The AP algorithm generalizes this idea. In each iteration, the AP algorithm reduces
the system distance not just in one but in several dimensions. Hence, we now use
the projection onto the space spanned by p < m vectors of the input signal

Xp(k) = (x(k),x(k − 1), . . . ,x(k − p + 1)) . (13.71)

If we consider Xp(k) to be a set of p non-orthogonal basis vectors for a subspace

of IRm, the inner product vector XT
p (k)d(k), in conjunction with an appropriate

normalization, yields the components of d(k) with respect to this subspace basis.
Therefore, the projection operator onto this subspace, PXp

(k), may be written as

PXp
(k) = Xp(k)AXT

p (k) where the normalization matrix A is to be determined.
Also, we note that the projection operator has to satisfy

PXp
(k)Xp(k) = Xp(k) . (13.72)
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With the above observations the operator can be constructed such that

Xp(k)AXT
p (k)Xp(k) = Xp(k) (13.73)

where A is now identified as

A = [XT
p (k)Xp(k)]−1 . (13.74)

We obtain

PXp
(k) = Xp(k) [XT

p (k)Xp(k)]−1 XT
p (k) . (13.75)

It is easily verified that PXp
(k) is indeed a projection operator, i.e.,

PXp
(k)PXp

(k) = PXp
(k) and (13.76)

(PXp
(k)d1(k))T d2(k) = dT

1 (k)PXp
(k)d2(k) (13.77)

since XT
p (k)Xp(k) and its inverse are symmetric matrices.

In the noise-free case the AP algorithm is given by

h(k + 1) = h(k) + αXp(k) [XT
p (k)Xp(k)]−1 XT

p (k)d(k) (13.78)

and in its general form with ŝp(k) = (ŝ(k), ŝ(k − 1), . . . , ŝ(k − p + 1))T by

h(k + 1) = h(k) + α(k)Xp(k) [XT
p (k)Xp(k) + δ I]−1 ŝp(k) (13.79)

with

ŝp(k) = yp(k) − XT
p (k)h(k) (13.80)

= sp(k) + np(k) + x̃p(k) −XT
p (k)h(k) . (13.81)

In (13.79) a regularization parameter δ has been added to decrease the condition
number of the matrix before inversion. This is necessary since XT

p (k)Xp(k) is a
rank deficient matrix for p → m. Optimal regularization parameters are considered
in [Myllylä, Schmidt 2002]. In the noise-free case fastest convergence is achieved
for α = 1. However, in the presence of near-end speech and noise α ≪ 1 results in
better convergence. Figure 13.15 depicts the system distance for various far-end
signals and p = 10. Also, in the case of a first-order Markov process (AR 1 in
Fig. 13.15) convergence does not depend on the signal correlation. In the case of
speech signals the AP algorithm leads to much faster convergence than the NLMS
algorithm.

Figure 13.16 shows the impact of the projection order p on the convergence for
speech signals and α = 1. It is seen that a larger projection order is beneficial.
Most of the gains are achieved, however, for a projection order of p = 10–20.
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k

k

Figure 13.15: Convergence behavior of the AP algorithm with p = 10 and α = 1 excited
with colored noise (AR 1; b = 0, 0.8, 0.9, 0.95) and speech (m = m′ = 500)

k

k

Figure 13.16: Convergence behavior of the AP algorithm with α = 1 and
p = 1, 5, 10, 15, 20 excited with speech (m = m′ = 500)

Furthermore, fast implementations of the AP algorithm exist [Gay, Tavathia 1995],
[Tanaka et al. 1995] which make the AP algorithm attractive for real-time applica-
tions. For a robust implementations of this algorithms see, for example, [Myllylä
2001]. A variation of the AP algorithm with exponentially weighted stepsize pa-
rameters is outlined in [Makino, Kaneda 1992]. In this algorithm a different stepsize
parameter is assigned to each canceller coefficient.

13.8 Least-Squares and Recursive Least-Squares
Algorithms

The Wiener solution requires knowledge about the first- and second-order statistics
such as auto- and cross-correlation functions. These quantities must be estimated
from the available data. In this section we will discuss a family of algorithms which



532 13 Acoustic Echo Control

relies directly on the minimization of the observed error on a block of data. We
begin our presentation with the weighted least-squares algorithm which is, in the
context of acoustic echo cancellation, more of theoretical than of practical interest
since it requires the inversion of a possibly large matrix.

However, a recursive approximation, the RLS|seeRecursive least-squares algo-
rithmrecursive least-squares (RLS) algorithm, avoids this inversion and is in prin-
ciple better suited for practical implementations. In contrast to the AP algorithm
where p < m the RLS solves the overdetermined case where the number of data
vectors is larger than m.

13.8.1 The Weighted Least-Squares Algorithm

The weighted least-squares approach combines the actually measured adaptation
error (including errors due to near-end speech and noise) on a block of data into
a vector of dimensions M ≥ m and minimizes the weighted norm of this vector.
With the m × M data matrix constructed from m-dimensional vectors x(k − i)

XM (k) = (x(k),x(k − 1), . . . ,x(k − M + 1)) (13.82)

the error vector

ŝM (k) = (ŝ(k), ŝ(k − 1), . . . , ŝ(k − M + 1))T (13.83)

is given by

ŝM (k) = yM (k) −XT
M h(k) (13.84)

where yM (k) denotes a vector of M samples of the microphone signal

yM (k) = (y(k), y(k − 1), . . . , y(k − M + 1))T . (13.85)

The weighted least-squares algorithm minimizes the weighted error norm

JLS = ŝT
M (k)WŝM (k) (13.86)

where W = diag{(w11, w22, . . . , wMM )T } is a positive-definite diagonal weighting
matrix. The minimization of the error norm JLS with respect to the unknown
coefficient vector h(k) requires the solution of

∂JLS

∂h(k)
= −2XM (k)WyM (k) + 2 (XM (k)WXT

M )h(k)
!
= 0 . (13.87)

If XM (k)WXT
M (k) is invertible (for which M ≥ m is a necessary and

rank(XM (k)) = m a sufficient condition), the solution is given by

hLS(k) =
(
XM (k)WXT

M (k)
)−1

XM (k)WyM (k) . (13.88)
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XM (k)WXT
M (k) and XM (k)WyM (k) are recognized as estimates of a weighted

data auto-correlation matrix and weighted cross-correlation vector, respectively.
For stationary signals and M → ∞ the least-squares solution hLS approaches the
FIR Wiener solution.

It can be shown that if the near-end signal s(k)+n(k) is zero mean and if s(k)+n(k)
and x(k) are statistically independent hLS is an unbiased estimator of g, provided
m = m′ holds.

Also, for W = I the estimated echo vector

x̃M (k) = XT
M (k)hLS(k) = XT

M (k) [XM (k)XT
M (k)]−1XM (k)yM (k) (13.89)

is the orthogonal projection of yM (k) onto the space spanned by XM (k).

With W = I the least-squares solution is suited for stationary signals. However,
in the context of acoustic echo cancellation where the excitation is speech an
exponential weighting wii = λ1−i is much better suited. For large m or M the
computational complexity of O(M3) associated with the matrix inversion prohibits
the direct implementation of the weighted least-squares algorithm.

13.8.2 The RLS Algorithm

The computational effort for the least-squares algorithm can be significantly re-
duced when the inverse auto-correlation matrix is estimated in a recursive way.
This leads to the recursive least-squares algorithm [Haykin 1996]. We note that

Rxx(k) = XM (k)WXT
M (k) (13.90)

can also be written as

Rxx(k) =
(
w11x(k), . . . , wMMx(k − M + 1)

)
·




xT (k)
xT (k − 1)

...
xT (k − M + 1)




=
M−1∑

i=0

wi+1,i+1 x(k − i)xT (k − i) . (13.91)
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The estimated auto-correlation matrix is a sum over M rank 1 matrices. With
wi+1,i+1 = λ−i we obtain

Rxx(k) =
M−1∑

i=0

λ−i x(k − i)xT (k − i)

= x(k)xT (k) +

M−1∑

i=1

λ−i x(k − i)xT (k − i) (13.92)

= x(k)xT (k) + λ
M−2∑

i=0

λ−i x(k − i − 1)xT (k − i − 1) .

If λ < 1 and M is sufficiently large we may therefore write

Rxx(k) ≈ λRxx(k − 1) + x(k)xT (k) (13.93)

and in the same way for the weighted cross-correlation vector

ϕxy(k) = XM (k)WyM (k)

=
M−1∑

i=0

λ−i x(k − i) y(k − i)

≈ λ ϕxy(k − 1) + x(k) y(k) .

(13.94)

The inversion of Rxx(k) can be avoided if we make use of the matrix inversion
lemma [Haykin 1996]

A = B−1 + CD−1CT ⇔ A−1 = B− BC(D + CT BC)−1CT B (13.95)

with

A = Rxx(k),B−1 = λRxx(k − 1),C = x(k),D = 1 . (13.96)

We obtain

R−1
xx (k) = λ−1R−1

xx (k − 1) − λ−1Rxx
−1(k − 1)x(k)

· (1 + xT (k) λ−1R−1
xx (k − 1)x(k))−1 · xT (k) λ−1R−1

xx (k − 1)

= λ−1R−1
xx (k − 1) − λ−2R−1

xx (k − 1)x(k)xT (k)R−1
xx (k − 1)

1 + λ−1xT (k)R−1
xx (k − 1)x(k)

or

R−1
xx (k) = λ−1 R−1

xx (k − 1) − λ−1 k(k)xT (k)R−1
xx (k − 1) (13.97)
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where

k(k) =
λ−1 R−1

xx (k − 1)x(k)

1 + λ−1 xT (k)R−1
xx (k − 1)x(k)

= R−1
xx (k)x(k) (13.98)

is also known as the Kalman gain vector. The last equality can be verified by
rearranging the first equality in (13.98)

k(k) = λ−1 R−1
xx (k − 1)x(k) − λ−1 k(k)xT (k)R−1

xx (k − 1)x(k) (13.99)

and by substituting the right hand side of (13.97).

These equations can now be used to develop a recursive update equation for the
filter coefficients. Using the least-squares solution (13.88) and (13.94) we find

hRLS(k) = λR−1
xx (k) ϕxy(k − 1) + R−1

xx (k)x(k) y(k) (13.100)

and with (13.97)

hRLS(k) = R−1
xx (k − 1) ϕxy(k − 1) − k(k)xT (k)R−1

xx (k − 1) ϕxy(k − 1)

+ R−1
xx (k)x(k) y(k)

= hRLS(k − 1) − k(k)xT (k)hRLS(k − 1) + k(k) y(k)

= hRLS(k − 1) + k(k) (y(k)− xT (k)hRLS(k − 1)) . (13.101)

As an example, Fig. 13.17 depicts the system distance for several values of the
forgetting parameter λ, for a speech excitation, and no noise. For λ ≈ 1 the RLS
converges much faster than the NLMS algorithm.

Figure 13.17: Convergence behavior of the RLS algorithm
excited with speech (m = m′ = 200, α = 1)
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Numerical stability is a critical issue for the RLS, especially for the fast O(M)
versions of the algorithm. A numerically stable version of the RLS is proposed in
[Slock, Kailath 1991]. Some guidelines and initialization procedures are outlined
in [Breining et al. 1999].

To conclude, we note that the convergence of the RLS algorithm is independent of
the correlation properties of the input signal. Also, a number of other algorithms
with convergence properties similar to the RLS algorithm have been developed
(see, e.g., [Petillon et al. 1994]).

13.9 Block Processing and Frequency Domain
Adaptive Filters

Depending on the acoustic environment, filters with some hundreds to thousands
of coefficients are required for acoustic echo cancellation. When using the NLMS
algorithm, a large filter order leads to a slow convergence (see Fig. 13.13). Fur-
thermore, the computational effort increases linearly with the filter length m. Both
problems can be alleviated to a certain degree by frequency domain processing.

The frequency domain approach reduces the computational complexity of the
adaptive filter by using the FFT for fast convolution and correlation (see Sec-
tion 3.6) or by using filter banks and multi-rate signal processing techniques. The
improved convergence results from the inherent decorrelation of the signal and the
associated reduction of eigenvalue spread. Among the many frequency domain ap-
proaches we will discuss the FFT-based frequency domain adaptive filter (FDAF)
in greater detail as it allows for a reduction in complexity and a speeding up of
convergence.

As a starting point for the FDAF, we consider the coefficient vector update

h(k + 1) = h(k) + β e(k) x(k) (13.102)

of the LMS algorithm with

e(k) = x̃(k) − x̂(k) = x̃(k) − hT (k)x(k) (13.103)

and a constant stepsize parameter β. In each time step, m MAC (multiply–
accumulate) operations are required for the filtering hT (k)x(k) and m MAC op-
erations for the coefficient vector update. The product β · e(k) and the residual
error e(k) = x̃(k)− x̂(k) only have to be computed once per sample. Since m ≫ 1,
this part of the total computational effort can be neglected in further complex-
ity estimations. Thus, the computational effort is split evenly between adaptation
and filtering. Obviously, using of the fast convolution the computational effort for
the filtering can be markedly reduced. As a first step towards frequency domain
methods we consider the block LMS and the exact block NLMS algorithms.
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13.9.1 Block LMS Algorithm

The block LMS algorithm [Clark et al. 1981] adjusts the filter coefficients not in
each iteration, but only every L samples. Hence, the signal x(k) is convolved with
an impulse response that is constant over a time interval of L ·T . Also, L residual
error samples e(k), e(k+1), . . . , e(k+L−1) are used to compute the new coefficient
vector which is valid from time instant k + L on,

h(k + L) = h(k) + β
L−1∑

λ=0

e(k + λ) x(k + λ) . (13.104-a)

In analogy to equation (13.102) the coefficient vector update is now composed
of the sum of the increments β e(k + λ) x(k + λ). The output signal therefore
differs from the original LMS algorithm, where each residual error sample e(k) is
generated with a different set of filter coefficients.

On the other hand (13.104-a) can also be written as

h(k + L) = h(k) + L β
1

L

L−1∑

λ=0

e(k + λ) x(k + λ) (13.104-b)

= h(k) + β̃ ∇̂L(k + L − 1) , (13.104-c)

which indicates that the original instantaneous gradient is replaced by a temporally
smoothed gradient

∇̂L(k + L − 1) =
1

L

L−1∑

λ=0

e(k + λ) x(k + λ) (13.105)

and β̃ = Lβ. Thus, for a stationary excitation the gradient is estimated more
accurately. However, a slower convergence results, because, compared to the con-
ventional LMS algorithm, the maximal stepsize parameter must be reduced by the
factor 1/L, in order to guarantee convergence (e.g., [Clark et al. 1981]). For a white
noise signal x(k), the conventional LMS algorithm and the block LMS algorithm
converge towards the Wiener solution. When using a frequency domain implemen-
tation (see below), the speed of convergence can be significantly improved by the
use of frequency- and time-dependent stepsize parameters.

13.9.2 The Exact Block NLMS Algorithm

As was pointed out earlier, the block LMS is not exactly equivalent to the LMS al-
gorithm. It is, however, possible to develop mathematically exact block realizations
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of the adaptive algorithms presented so far. We demonstrate this for the NLMS
algorithm [Nitsch 1997], thus also taking the time-varying stepsize normalization
of the NLMS into account.

In analogy to (13.104-a) a block version of the NLMS algorithm may be written
as

h(k + L) = h(k) +

L−1∑

λ=0

α(k + λ)
e(k + λ)x(k + λ)

||x(k + λ)||2 (13.106)

where e(k + λ), λ = 0, . . . , L− 1, is computed with a fixed coefficient vector h(k),

e(k + λ) = y(k + λ) − xT (k + λ)h(k) , λ = 0, . . . , L− 1 . (13.107)

The difference between (13.106) and L iterations of the NLMS algorithm lies in
the computation of the error signal.

We may write the exact NLMS error e(NLMS)(k + λ) = e(k + λ) + ec(k + λ) as a
sum of the block NLMS error e(k + λ) and a correction term

ec(k + λ) =





0 λ = 0

−
λ∑

i=1

α(k + i − 1)

||x(k + i − 1)||2 e(NLMS)(k + i − 1)

·xT (k + λ)x(k + i − 1) λ = 1, . . . , L− 1

which accounts for the intermediate coefficient vector updates. Thus, for
λ = 1, . . . , L− 1 the exact normalized stepsize–error product is given by

ě(NLMS)(k + λ) =
α(k + λ)

||x(k + λ)||2 e(NLMS)(k + λ)

=
α(k + λ)

||x(k + λ)||2
(
e(k + λ) + ec(k + λ)

)
(13.108)

with

ec(k + λ) =





0 λ = 0

−
λ∑

i=1

ěNLMS(k + i − 1)xT (k + λ)x(k + i − 1) else .
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For λ = 0, . . . , L−1, (13.108) represents a set of simultaneous linear equations for
the exact normalized stepsize–error product ě(NLMS). These equations are stacked
into a set of implicit equations for ě(NLMS)(k),

ě(NLMS)(k) + diag{β(k)}R(k) ě(NLMS)(k) = diag{β(k)}e(k) (13.109)

where

e(k) = (e(k), e(k + 1), . . . , e(k + L − 1))T

R(k) =




0 0 · · · 0 0
xT (k + 1)x(k) 0 · · · 0 0

xT (k + 2)x(k) xT (k + 2)x(k + 1)
...

...
...

...
. . . 0 0

xT (k+L−1)x(k) xT (k+L−1)x(k+1) · · · xT (k+L−1)x(k+L−1) 0




ě(NLMS)(k) = (ě(NLMS)(k), ě(NLMS)(k + 1), . . . , ě(NLMS)(k + L − 1))T

and

diag{β(k)} =




α(k)
||x(k)||2

0 · · · 0

0 α(k+1)
||x(k+1)||2 · · · 0

...
...

. . .
...

0 0 · · · α(k+L−1)
||x(k+L−1)||2




,

the solution of which is given by

ě(NLMS)(k) =
[
diag{β(k)}−1 + R(k)

]−1
e(k). (13.110)

The correct normalized stepsize–error product can now be used in (13.106) to yield
a mathematically exact block version of the NLMS algorithm. Due to the diagonal
structure of R(k), the set of equations can be solved efficiently. Also, the elements
of R(k) can be computed recursively. Furthermore, the coefficient vector might
be partitioned to reduce the block delay [Nitsch 1997] and the algorithm can be
performed in a transform domain to reduce the complexity as outlined below.

13.9.3 Frequency Domain Adaptive Filter (FDAF)

The frequency domain implementation of block adaptive algorithms comprises two
steps. First, the convolution of the far-end signal with the filter impulse response
is implemented as a fast convolution using the overlap-save scheme (see Section
3.6.3). Secondly, the coefficient vector is adapted in the frequency domain. For
large m, both steps result in significant computational savings.
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13.9.3.1 Fast Convolution and Overlap-Save

To develop the frequency domain adaptive filter (FDAF) the time index k is re-
placed by

k = κ L + λ ; λ = 0, 1, . . . , L− 1 , (13.111)

where κ is the block index and λ is the index of samples within a block. The
convolution is performed in the frequency domain using the FFT and the overlap-
save algorithm. In each block, L new output samples x̂(k) are computed, while
the coefficients of the filter are constant for at least L time steps.

Figure 13.18 illustrates the basic structure. For an impulse response of order m,
the length M of the FFT must be chosen to accommodate L valid output samples,
therefore

M = m − 1 + L . (13.112)

Hence, the coefficient vector is padded with zeros to a vector h
′

(κ) of length M
with elements

h′
i(κ) =

{
hi(κ · L) i = 0, 1, . . . , m − 1
0 i = m, m+1, . . . , M−1 .

(13.113)

κ λ

κ

κ

' κ
κ

κ

κ

Figure 13.18: Echo cancellation with fast convolution
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The input vector x′(κ) consists of the M elements

x′(κ) = (x′
0(κ), x′

1(κ), . . . , x′
M−1(κ))T (13.114)

=
(
x(κL − m + 1), . . . , x(κL), x(κL + 1), . . . , x(κL + L − 1)

)T

and is also fed into an FFT of length M . In contrast to the definition (13.12) of
the state vector of the time domain echo canceller, the input vector x′(κ) contains
the samples in the order of increasing sampling indices.

The transformation of the coefficient vector

h′(κ) =
(
h′

0(κ), h′
1(κ), . . . , h′

M−1(κ)
)T

is written as

H′(κ) = FFT{h′(κ)} ,

with

H′(κ) =
(
H ′

0(κ), H ′
1(κ), . . . , H ′

M−1(κ)
)T

.

The transformed vectors H′(κ) and X′(κ) are multiplied element by element, i.e.,

X̂ ′
µ(κ) = H ′

µ(κ)X ′
µ(κ) . (13.115)

The resulting vector X̂′(κ), after inverse transformation, yields the vector x̂′(κ) of
length M ,

x̂′(κ) = (x̂′
0(κ), x̂′

1(κ), . . . , x̂′
M−1(κ))T (13.116)

which is equivalent to a cyclic convolution (see Fig. 13.19) of the vectors x′(k) and
h′(k). Consequently, the first m − 1 values x̂′

i(κ), i = 0, 1, . . . , m − 2, are affected
by cyclic effects. The selection of L valid output samples may be described by an
elementwise multiplication with window w, where

wi =

{
0 i = 0, 1, . . . , m − 2
1 i =m− 1, m, . . . , M−1

(13.117)

are the components of w. The L valid output values,

x̂(κ · L + λ) = x̂′
m−1+λ(κ) , λ = 0, 1, . . . , L− 1 , (13.118)

correspond to the result of the linear convolution. Finally, the undisturbed com-
pensation error is obtained from

e(κ · L + λ) = x̃(κ · L + λ) − x̂(κ · L + λ) (13.119)
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κ

κ

κ κ

κ

κ

κ

⊗ κ

Figure 13.19: Illustration of the cyclic convolution
a) Input vector x′(κ) with periodic extension
b) Coefficient vector h′(κ)
c) Cyclic convolution
d) Result of cyclic convolution
e) Selection of L valid samples
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whereas in practical applications only the disturbed error

ŝ(κ · L + λ) = y(κ · L + λ) − x̂(κ · L + λ) (13.120)

is available. The serial-to-parallel operation comprises the buffering of L successive
signal samples. L samples must be collected before the next block of the transmit
signal can be computed. The block processing therefore introduces a delay of L−1
samples. However, at the expense of increased computational complexity, L can
be chosen to be much smaller than the transform length M . The FDAF therefore
provides a flexible framework for balancing algorithmic delay and computational
complexity.

However, when m is large and when a small algorithmic delay L is required, the
computational complexity might not be acceptable. In [Sommen 1989], [Soo, Pang
1990] a partitioning of the coefficient vector, i.e., a distribution of the long impulse
response onto several partial filters with shorter impulse responses, is proposed to
deal with this problem. For Q partitions the partitioned block frequency domain
adaptive filter (PBFDAF) is illustrated in Fig. 13.20. Instead of FFTs of length
m + L − 1 this scheme uses FFTs of length m/Q + L − 1.

Figure 13.20: Partitioned block frequency domain adaptive filter.
TB denotes a unit delay of frequency domain vectors
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13.9.3.2 FLMS Algorithm

In the next step, the adaptation of the coefficients is transformed in the frequency
domain, as well. This leads to the fast LMS (FLMS) algorithm [Ferrara 1980],
[Clark et al. 1983]. The benefits of an adaptation in the frequency domain are
an additional reduction of the computational effort and an improvement of the
convergence behavior using a time- and frequency-dependent stepsize control.

For this purpose, the adaptation rule of the block LMS algorithm according to
(13.104-c) is inspected again. As before, we develop this algorithm on the basis
of the undisturbed error signal. The coefficient update equation (13.104-b) is now
written in terms of the block index κ,

h′(κ + 1) = h′(κ) + β ∇̂
′(κ) , (13.121)

or more generally as

h′(κ + 1) = h′(κ) + ∆h′(κ) (13.122)

where in the case of a constant stepsize β the coefficient update vector ∆h′(κ)
is computed as ∆h′(κ) = β ∇̂

′
(κ). The components ∇̂

′
i(κ) of the gradient vector

∇̂
′(κ) are given by

∇̂
′
i(κ) =





L−1∑

λ=0

e(κ · L + λ) x(κ · L + λ − i) i = 0, 1, . . . , m − 1

0 i = m, m+1, . . . , M−1 .

(13.123)

When the discrete Fourier transform is applied to both sides of (13.122), we obtain

H′(κ + 1) = H′(κ) + ∆H′(κ) . (13.124)

Thus, the update loop can be implemented in the frequency domain as shown in

Fig. 13.21-a. In the simple case of a constant stepsize β we have ∆H′(κ) = β ∇̂
′
(κ)

where in principle the frequency domain gradient vector ∇̂
′
(κ) could be obtained

via the FFT of ∇̂
′(κ).

However, the computational complexity can be further reduced when the update
vector ∆H′(κ) is computed in the frequency domain as well. As a function of
i, the individual component ∇̂

′
i(κ) for fixed κ can be interpreted as a correlation

between a segment of the residual error signal e(k) of length L and the signal x(k).
In analogy to the fast convolution this correlation can be implemented as a fast
correlation using the FFT. This is illustrated in Fig. 13.22.

In order to employ the FFT, the signal vectors must be constructed such that
the cyclic convolution yields the components of the gradient vector ∇̂

′
i(κ) as in
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κ
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Figure 13.21: Derivation of the adaptation rule of the FLMS algorithm
a) Adaptation of the coefficient vector in the frequency domain
b) Fast computation of the gradient vector

(13.123). This can be achieved by padding e(κ) = (e(κL), . . . , e(κL + L − 1))T

with m − 1 leading zeros

e′i(κ) =

{
0 i = 0, 1, . . . , m − 2

e(κ · L + i − m + 1) i = m − 1, m, . . . , M−1 ,
(13.125)

and by using the vectors x′(κ) and e′(κ) as inputs to the fast correlation. If we
compute the DFT E′(κ) and X′(κ) of vectors e′(κ) and x′(κ), respectively, the
componentwise multiplication of the vectors E′(κ) and X′∗(κ),

∇̂′
µ(κ) = E′

µ(κ)X ′∗
µ (κ) , µ = 0, . . . , M − 1 , (13.126)

and a subsequent inverse transform produce the desired values ∇̂
′
i(κ) in the first

m elements of the inverse of ∇̂′
µ(κ).

The desired gradient vector ∇̂
′
is thus generated by applying a (gradient) constraint

w̃ to IDFT{∇̂′
(κ)} which sets the last L−1 samples to zero. The constraint window

w̃ is given by

w̃i =

{
1 i = 0, 1, . . . , m − 1
0 i = m, m + 1, . . . , M − 1

(13.127)

and the resulting FLMS algorithm is illustrated in Fig. 13.21-b. Including the two
transformations for fast convolution (Fig. 13.18), a total of five transformations
of length M are performed in order to determine L values of the estimated echo
signal x̂(k). For M = m + L − 1 ≈ m + L the computational complexity of the
constraint FLMS can then be estimated as follows.
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∇

∇

κ κ

Figure 13.22: Illustration of fast linear correlation
a) Input vector x′(κ) with periodic extension
b) Error vector e′(κ)
c) Cyclic correlation
d) Result of cyclic correlation
e) Selection of m valid samples
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c

L

Figure 13.23: Computational complexity of the FLMS vs. block length L

The FFT of a real-valued sequence of length M requires about (M/4) ld(M/2)
complex arithmetic operations. A total of five transformations are needed. For
real-valued signals the symmetry of the DFT vectors can be exploited. Therefore,
approximately 4 · M/2 = 2M complex operations are performed to multiply the
components of E′(κ) and X

′∗(κ), to multiply the components of X′(κ) and H′(κ),
and to adapt the coefficient vector. If we equate one complex operation with four
real operations, the computational complexity for one block of L samples is given
by 5(m + L) ld((m + L)/2) + 8(m + L). Per output sample, we thus obtain a
computational complexity of

c =
5 (m + L) ld((m + L)/2) + 8 (m + L)

L
.

For m = 500, Fig. 13.23 plots c as a function of 0 ≤ L ≤ m/2. Clearly, c attains its
minimum for the maximum value of L. Fortunately, the computational complexity
exhibits a sharp decline for increasing L. For example, for m = 500, we already
achieve a significant complexity reduction for L > 40.

Furthermore, the complexity of the FLMS may be related to the complexity 2m
of the time domain LMS algorithm. The relative complexity is given by

ρ =
5 ((m + L)/2) ld((m + L)/2) + 4 (m + L)

mL
. (13.128)

For m = L, Table 13.1 gives typical values. For increasing L, and a corresponding
increase of the block delay, ρ decreases significantly.

In comparison to the LMS algorithm, the computational complexity can be signif-
icantly reduced for large L. In contrast, the required memory capacity increases,
because even with a skillful organization of the processes needed for an in-place
FFT computation several vectors of the dimension M must be stored.
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Table 13.1: Relative computational complexity of the FLMS algorithm in comparison
to the LMS algorithm (M = 2 L; m = L), according to [Ferrara 1985]

L 16 32 64 256 1024

ρ 1.75 1.03 0.59 0.19 0.057

The computational complexity can be reduced if the gradient constraint is ne-
glected. Compared to the constrained FLMS, the unconstrained FLMS [Mansour,
Gray 1982] saves two FFT/IFFT operations. However, in this case, the coeffi-
cient update must rely on a circular convolution. Therefore, the algorithm does
not approach the Wiener solution in steady state. A biased filter coefficient vec-
tor results and convergence deteriorates for L ≈ m [Haykin 1996]. Furthermore,
the partitioned FDAF does not converge well without the gradient constraint. The
soft-partitioned FDAF [Enzner, Vary 2003a] provides a good compromise between
computational complexity, speed of convergence, and roundoff noise in fix-point
implementations.

13.9.3.3 Improved Stepsize Control

In addition to computational advantages, the frequency domain approach provides
the possibility to control the stepsize parameter β as a function of frequency and
time, in order to positively influence the convergence behavior during double talk
phases (s(k) �= 0), for additive interference (n(k) �= 0), and for time variance of
the LEM impulse response. It can be shown [Nitsch 2000] that by minimizing the
average convergence state the optimal stepsize is given as a function of frequency
by

βµ(κ) =
αµ(κ)

E {|Xµ(κ)|2} =
E
{
|Eµ(κ)|2

}

E
{
|Ŝµ(κ)|2

} 1

E {|Xµ(κ)|2} . (13.129)

The PSDs E
{
|Ŝµ(κ)|2

}
and E{|Xµ(κ)|2} are determined from the signals ŝ(k) and

x(k), respectively. The residual echo PSD E
{
|Eµ(κ)|2

}
or, with E

{
|Eµ(κ)|2

}
=

|Dµ(κ)|2E
{
|Xµ(κ)|2

}
, the convergence state |Dµ(κ)|2 of the adaptive filter must

be estimated as outlined, for example, in [Mader et al. 2000], [Enzner et al. 2002],
[Hänsler, Schmidt 2004]. A simple and robust method for the continuous estimation
of the convergence state, which does not need double talk detection mechanisms,
is proposed in [Enzner, Vary 2003b].
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13.9.4 Subband Acoustic Echo Cancellation

Besides the FDAF approach, subband acoustic echo cancellation is another widely
used frequency domain method. In subband acoustic echo cancellation we use a
digital filter bank (e.g., QMF or PPN, see Chapter 4) instead of the DFT or FFT
[Kellermann 1985], [Kellermann 1988]. The far-end speaker’s signal x(k) and the
microphone signal y(k) are separated by a filter bank into M subband signals with a
reduced sampling rate (Fig. 13.24). In each subband an individual echo canceller is
utilized, which due to the downsampling has a correspondingly shortened impulse
response in comparison to the full-band echo canceller. The individual cancellation
filters are adapted with, for instance, the NLMS algorithm. By means of a synthesis
filter bank, the compensated subband signals are interpolated and superimposed.
As the spectrum of each individual subband signal is relatively flat within the
respective frequency band, a favorable convergence behavior results.

In practical applications, oversampled filter banks are preferred [Kellermann 1985].
Due to the inevitable spectral overlaps of adjacent channels of the critically sam-
pled filter bank, the sampling rate reduction must be selected to be smaller than
M , e.g., r0 = M/2. Compared to the critically sampled filter bank, this increases
the effort for the subband cancellers, whose impulse responses then contain approx-
imately m′ = m/r0 = 2m/M coefficients. We refer to the literature [Kellermann
1985], [Kellermann 1989], [Shynk 1992] for further details. Critically sampled filter
banks and IIR filter banks are possible as well but then additional cross-channel
filters [Gilloire, Vetterli 1992] or notch filters [Naylor et al. 1998] must be employed
to cancel aliasing components.

ˆ

( )

Figure 13.24: Subband acoustic echo cancellation
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13.10 Additional Measures for Echo Control

It must be assumed that in practice the cancellation filter does not always deliver
a sufficient amount of echo suppression. This is the case, for example, if a sudden
change of the LEM impulse response occurs after the canceller has converged and
a small system distance D(k) and a small stepsize parameter has been achieved.
For this reason, additional measures are needed to further reduce the residual
echo. Such measures are also advisable if, due to the limited realization effort, the
impulse response of the cancellation filter is much shorter than the actual impulse
response of the LEM system.

The required echo suppression depends on the signal delay of the transmission
path. Quality standards for handsfree devices have been established in interna-
tional recommendations as discussed in Section 13.2.

13.10.1 Echo Canceller with Center Clipper

A low-level residual echo signal e(k) might be audible during speech pauses of the
near-end speaker, especially if a long transmission delay exists.

In such a situation the residual echo signal can be effectively suppressed with a non-
linear center clipping device. The non-linear function of the center clipper, which,
as depicted in Fig. 13.25, processes the output signal ŝ(k) of the echo canceller, is

Figure 13.25: Echo canceller with center clipper according to (13.130)
for the suppression of the residual echo
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given by

s̃(k) =





ŝ(k) − A ŝ(k) > +A
0 |ŝ(k)| ≤ +A

ŝ(k) + A ŝ(k) < −A
(13.130)

or by

s̃(k) =





ŝ(k) ŝ(k) > +A
0 |ŝ(k)| ≤ +A

ŝ(k) ŝ(k) < −A .
(13.131)

Both variants provide similarly good results. The threshold value A, which can
also be adapted, should be as small as possible.

13.10.2 Echo Canceller with Voice-Controlled Switching

With the center clipper, residual echoes can only be effectively suppressed without
any perceptible distortion of the actual desired signal s(k) if the echoes are already
at a relatively low level. During the initialization phase of the cancellation filter,
and after sudden changes of the LEM impulse response, this is not ensured. In
[Armbrüster 1988] a system with an additional voice-activated soft switching as
outlined in Fig. 13.26 was proposed in order to solve this problem.

The total attenuation of the far-end signal in the transmission loop with input x(k)
and output s̃(k) consists of the two contributions of the voice-controlled switching
(ax, ay) and the contribution of the echo canceller (ac, see Fig. 13.27).

Figure 13.26: Echo canceller with voice-controlled soft switching supporting
the initialization phase and suppressing the residual echo
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Figure 13.27: Example of a combination of echo cancellation and voice-
controlled soft switching [Armbrüster 1988]

In the example of Fig. 13.27, a minimal suppression of 40 dB is required. At the
beginning, as

20 lg(ac) = 10 lg
Ê{ŝ2(k)}
Ê{y2(k)}

≈ 0 ,

the echo canceller does not contribute, and the two attenuation factors are set to
20 lg(ax) = 20 lg(ay) = 20 dB. Then, the far-end speaker begins to talk. In this
early stage of adaptation, the attenuation of the receive branch is switched to 0 dB
(ax = 1) by the voice-controlled switching and that of the transmit branch to 40 dB
(ay = 0.01). Full-duplex double talk is not yet possible. While the cancellation filter
is adapted in each iteration using the signal x(k) it can increasingly contribute to
the total attenuation.

The attenuation ay of the transmit branch can be reduced accordingly, until the
cancellation filter finally reaches the desired attenuation of 40 dB, and the weight-
ing factor assumes the value ay = 1. Now the system is fully double talk capable.

After a change in the impulse response of the LEM, the echo canceller typically
achieves a reduction of less than 40 dB. When this condition is detected, the voice-
controlled switching becomes active again, with the required additional reduction
of (40 − 20 lg(ac)) dB half in the transmit and half in the receive branch.
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13.10.3 Echo Canceller with Adaptive Postfilter in the
Time Domain

An alternative to the additional echo suppressor was proposed in [Martin, Al-
tenhöner 1995], [Martin, Gustafsson 1996], [Gustafsson et al. 1998]. An additional
adaptive postfilter to reduce the residual echo is used in the transmit branch, as
shown in Fig. 13.28. This filter is a transversal filter which, in contrast to the voice-
activated soft switching, works in a frequency selective fashion. The spectrum of
the signal ŝ(k) is weighted as a function of frequency and time, depending on the
instantaneous, spectral shape of the residual echo e(k), the desired signal s(k),
and the background noise n(k). In this, the psychoacoustic effect of masking is
exploited. The echo is suppressed when it has significantly more power in a given
frequency band than the near-end signals, i.e., when it is audible and not masked
by the near-end signals. In the speech pauses of the far-end speaker, the signal ŝ(k)
is not influenced by the postfilter. The filter with the time-variant impulse response
c(k) of the order mc = 20 can be adjusted, for example, with the NLMS algorithm.
It achieves a significant additional reduction of the residual echo. Therefore, the
order of the echo canceller can be significantly reduced, thus leading to very ef-
ficient implementations. In fact, the combined echo cancellation and postfiltering
approach opens up a twofold perspective on the design of echo control systems:
a relatively short canceller can be used to guarantee stability of the transmission
loop while the audibility of echoes can be tackled by the less expensive postfilter.
During double talk the latter device can be operated without significant amounts
of echo reduction since much of the echo is masked by the near-end speech and
stability is provided by the echo canceller.

Figure 13.28: Combination of an echo canceller with an adaptive
filter for a frequency selective attenuation of the echo
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13.10.4 Echo Canceller with Adaptive Postfilter in the
Frequency Domain

The adaptive postfilter can be realized in the frequency domain, as well, and can
then be combined with measures for noise reduction [Faucon, Le Bouquin-Jeannès
1995], [Martin, Vary 1996], [Ayad et al. 1996], [Le Bouquin-Jeannès et al. 2001],
[Hänsler, Schmidt 2004]. Also, the frequency domain implementation allows us to
compute psychoacoustic masking thresholds and thus provides means for a more
accurate computation of filter weights. A psychoacoustically motivated approach
along these lines has been proposed in [Gustafsson et al. 2002].

In principle, any of the well-known noise reduction methods can also be employed
for combined acoustic echo and noise reduction. For instance, the Wiener filter
solution to the postfilter problem minimizes in our context the mean square error

E{(s̃(k) − s(k))2}

under a linear filtering constraint and also provides an interesting perspective on
the relation of echo cancellation and residual echo suppression [Hänsler, Schmidt
2000], [Enzner et al. 2002], [Hänsler, Schmidt 2004].

In the frequency domain the Wiener filter results in a frequency response for the
residual echo suppression filter

Cµ(κ) =
E
{
|Sµ(κ)|2

}

E
{
|Ŝµ(κ)|2

} =
E
{
|Sµ(κ)|2

}

E {|Sµ(κ)|2} + E {|Nµ(κ)|2} + E {|Eµ(κ)|2}

Cµ(κ) =

E
{
|Sµ(κ)|2

}

E {|Nµ(κ)|2} + E {|Eµ(κ)|2}

1 +
E
{
|Sµ(κ)|2

}

E {|Nµ(κ)|2} + E {|Eµ(κ)|2}

(13.132)

provided that s(k), n(k), and e(k) are statistically independent. Compared to the
standard noise reduction case we now have to account for the disturbing residual
echo whose PSD E

{
|Eµ(κ)|2

}
must be estimated from the available signals. In

analogy to the Wiener filter for noise reduction, the filter Cµ(κ) can be controlled
by the a priori SNR

E
{
|Sµ(κ)|2

}

E {|Nµ(κ)|2} + E {|Eµ(κ)|2} .
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In [Gustafsson et al. 2002] it is proposed to estimate the a priori SNR separately
with respect to E

{
|Nµ(κ)|2

}
and E

{
|Eµ(κ)|2

}
and to combine it as

E
{
|Sµ(κ)|2

}

E {|Nµ(κ)|2} + E {|Eµ(κ)|2} =
1

[
E{|Sµ(κ)|2}
E{|Nµ(κ)|2}

]−1

+
[

E{|Sµ(κ)|2}
E{|Eµ(κ)|2}

]−1 (13.133)

where for each term in the denominator on the right hand side of (13.133) a
decision-directed [Ephraim, Malah 1984] estimator can be used.

When the ambient near-end noise is negligible, i.e., E
{
|Nµ(κ)|2

}
= 0, we may

write the Wiener filter for residual echo suppression as

Cµ(κ) =
E
{
|Ŝµ(κ)|2

}
− E

{
|Eµ(κ)|2

}

E
{
|Ŝµ(κ)|2

} . (13.134)

In conjunction with the optimal stepsize parameter of the FDAF (13.129), it is
now straightforward to show that

αµ(κ) + Cµ(κ) = 1 . (13.135)

Thus, it turns out that the control of the FDAF-based echo canceller and of the
Wiener postfilter are closely coupled. In both cases the PSD of the residual echo is
the most critical control parameter. The residual echo power, however, depends on
the frequency response |Dµ(κ)|2 of the distance vector |d(k)|2 which is not directly
measurable. However, an efficient statistical approach for the estimation of this
quantity is outlined in [Enzner, Vary 2003b], [Enzner, Vary 2005]. In this work,
a synergy of FDAF, optimal stepsize control, Wiener postfilter, and convergence
state estimation is established on the basis of Kalman filter theory.

13.10.5 Initialization with Perfect Sequences

The convergence behavior, in the sense of a fast system equalization, can be im-
proved if a suitable auxiliary signal is applied in the initialization phase of the
canceller.

In [Antweiler 1995] so-called perfect sequences [Lüke 1988], [Lüke, Schotten 1995],
[Ipatov 1979] are proposed for this purpose. It is shown that, for an undisturbed
adaptation, i.e., for s(k) = 0 and n(k) = 0, the NLMS algorithm converges in only
m steps, and thus exactly identifies the impulse response of the LEM system.

Access to this solution is given by the geometric interpretation of the NLMS al-
gorithm according to Fig. 13.14. The adaptation algorithm (13.64-d) shortens the
system distance vector d(k) by subtracting the parallel component α d||(k). With
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an undisturbed adaptation, the normalized stepsize parameter can be set to α = 1.
As a result, the component of the distance vector d(k) which is parallel to the vec-
tor x(k) is completely eliminated.

With the assumption that all m successive state vectors x(k), x(k − 1), . . . ,
x(k + m − 1) are orthogonal in the m-dimensional vector space, the complete
identification of the unknown LEM system can be achieved in m steps. Periodi-
cally applied perfect sequences p(κ) (κ = 0, 1, . . . , m − 1) fulfill the requirements
of an optimal excitation signal with

x(λ · m + κ) = p(κ) ; λ ∈ ZZ , (13.136)

since they are characterized by their periodic auto-correlation function ϕ̃pp(i),
which vanishes for all out-of-phase values

ϕ̃pp(i) = ϕxp(i) =

m−1∑

κ=0

p(κ) x(k + i) (13.137-a)

=

m−1∑

κ=0

p(κ) x(λ · m + κ + i) (13.137-b)

=

{
ϕ̃pp(0) i mod m = 0
0 otherwise .

(13.137-c)

All m phases of the perfect sequences are thus ideally orthogonal in the m-
dimensional vector space.

The state vector x(k) meets the orthogonality requirement for k ≥ m, as it only
contains a complete period of the sequence p(κ) from this time instant on (λ ≥ 1
in (13.136)).

The convergence behavior for a perfect sequence excitation is illustrated as an
example in Fig. 13.29, and compared to the adaptation using a speech or a white
noise signal.

The simulation confirms the behavior to be expected from the geometric interpre-
tation. In the initialization phase the complete identification of the LEM system
(within computational precision) takes 2m iterations. After the initialization, dur-
ing the runtime of the simulation, m iterations are already sufficient for a new
equalization; for example, after a sudden change of the time-variant room (see
Fig. 13.29 at k = 4000).

Since white noise only approximately fulfills the orthogonality requirement, the
algorithm converges more slowly under excitation with a white noise signal than
with a perfect sequence.

The most frequently used, so-called odd–perfect sequences [Lüke, Schotten 1995]
are symmetrical, quasi-binary sequences, which, except for a (leading) zero, only
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Figure 13.29: System distance for different excitation signals x(k);
undisturbed adaptation, change of the LEM system at k = 4000
(α = 1; s(k) = 0; n(k) = 0; x(k) = p(k|mod m)); m = m′ = 500,
[Antweiler 1995], odd–perfect sequence p(κ) [Lüke, Schotten 1995]

take two values p(κ)∈{+a,−a}, κ = 1, 2, . . . , m−1. As the period length must be
adapted to the length of the cancellation filter, it is a particular advantage that
odd–perfect sequences can be generated for every length m = pK +1 with a prime
number p > 2, K ∈ IN.

In practice, it is sufficient to apply a few periods of the perfect sequence to the
system, only in the initialization phase or following strong changes of the room
impulse response. In any case the power of the perfect sequence must be carefully
controlled in order not to disturb the near-end listeners.

13.11 Stereophonic Acoustic Echo Control

Multi-channel sound transmission provides spatial realism and is of importance for
many applications such as teleconferencing and multimedia systems. When many
different talkers are involved, a realistic rendering of the acoustic scene provides
valuable cues about the activity of the various talkers and thus contributes to the
naturalness of the presentation. The simplest case of multi-channel reproduction,
i.e., stereophonic reproduction, will be discussed in greater detail below. While
early work focused on pseudo-stereo systems [Minami 1987] we will consider here
sound rendering with two arbitrary loudspeaking signals. In particular we will
discuss the relation between the cross-correlation of the two loudspeaker signals
and the performance of the echo canceller. The more general case of a larger
number of reproduction and recording channels is treated for example in [Benesty,
Morgan 2000b], [Buchner, Kellermann 2001].
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Figure 13.30: Basic block diagram of stereo acoustic echo cancellation (near-end side)

In the stereophonic transmission set-up the basic echo cancellation model in Fig.
13.3 must be extended since each microphone picks up sound from two loudspeak-
ers. Hence, we have to identify two acoustic paths per microphone and will in
general need two cancellers per microphone. This is shown in Fig. 13.30, where
two acoustic paths g11(k) and g12(k) contribute to the microphone signal y1(k)
and two cancellers with impulse responses h11(k) and h12(k) are used.

Typically, the two loudspeaker signals which are recorded at the far-end side and
are transmitted to the near-end side originate from the same sources such as far-
end speakers or far-end loudspeakers. In this case the received loudspeaker signals
x1(k) and x2(k) in Fig. 13.30 can be written as a sum of the convolution of S
far-end source signals sℓ(k), ℓ = 1, . . . , S, with the impulse responses f1ℓ(k) and
f2ℓ(k) of the acoustic system at the far-end,

x1(k) =

S∑

ℓ=1

m′
f−1∑

i=0

f1ℓ(k) sℓ(k − i) =

S∑

ℓ=1

f1ℓ(k) ∗ sℓ(k) (13.138)

x2(k) =
S∑

ℓ=1

m′
f−1∑

i=0

f2ℓ,i(k) sℓ(k − i) =
S∑

ℓ=1

f2ℓ,i(k) ∗ sℓ(k) (13.139)

where ∗ denotes the linear convolution.

When only a single source sℓ(k) is active we may convolve (13.138) by f2ℓ(k) and
(13.139) by f1ℓ(k) and obtain

f2ℓ(k) ∗ x1(k) = f2ℓ(k) ∗ f1ℓ(k) ∗ sℓ(k) (13.140)

f1ℓ(k) ∗ x2(k) = f1ℓ(k) ∗ f2ℓ(k) ∗ sℓ(k) . (13.141)
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For time-invariant far-end responses it follows that

f2ℓ(k) ∗ x1(k) = f1ℓ(k) ∗ x2(k) . (13.142)

Hence, x1(k) and x2(k) are linearly related. However, as shown below, a large
amount of correlation of the loudspeaker signals is detrimental to the fast conver-
gence of a stereophonic echo canceller [Sondhi et al. 1995], [Benesty et al. 1998],
[Gänsler, Benesty 2000].

13.11.1 The Non-uniqueness Problem

As a consequence of the linear relation of the two loudspeaker signals x1(k) and
x2(k) the minimization of the power of the cancellation error signals does not lead
to an unambiguous identification of the near-end acoustic system. For the first
microphone in Fig. 13.30 we obtain the error signal

e1(k) = y1(k) − x1(k) ∗ h11(k) − x2(k) ∗ h12(k) . (13.143)

However, since f21(k) ∗x1(k)−f11(k) ∗x2(k) = 0 we also have for arbitrary b ∈ IR

e1(k) = y1(k) − x1(k) ∗ (h11(k) − bf21(k)) − x2(k) ∗ (h12(k) + bf11(k)) .

Therefore, the minimization of E{e2
1(k)} cannot result in a unique solution for

h11(k) and h12(k). Moreover, the cancellation error depends on the impulse re-
sponses f1ℓ(k) and f2ℓ(k) of the far-end side. Any change of the far-end source
position or alternating far-end speakers will have an immediate effect on the error
signal and thus on the convergence of the coefficient vectors. Even for fairly sta-
tionary conditions and wideband excitation signals the error signal might be small
without proper identification of the near-end acoustic paths. A small error signal,
however, does not help in the adaptation of the coefficient vectors.

13.11.2 Solutions to the Non-uniqueness Problem

The non-uniqueness can be resolved if the linear relation between the loudspeaker
signals is weakened. In the simplest case this might be achieved by adding inde-
pendent white noise to the loudspeaker signals on the near-end side. Improved
solutions use spectrally shaped noise to hide the noise below the masked threshold
of the audio signal [Gilloire, Turbin 1998].

Another possibility to reduce the correlation of the loudspeaker signals is to use
time-varying allpass filters [Ali 1998] or a non-linear processor [Benesty et al. 1998]
such as

x̃1(k) = x1(k) +
α

2
(x1(k)+ | x1(k) |)

x̃2(k) = x2(k) +
α

2
(x2(k)− | x2(k) |) .

(13.144)
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Ω Ω

Figure 13.31: Magnitude squared coherence of two linearly related loudspeaker
signals before and after the application of the nonlinear processor
(13.144) with α = 0.5

Adding a half-wave rectified version of the signal to itself will result in distortions
of the signal. Because of the harmonic structure of voiced speech and simulta-
neous masking effects, these distortions are hardly noticeable for small values of
α < 0.5. This method has proven to be very effective without disturbing stereo
perception [Gänsler, Benesty 2000].

To illustrate the effect of this non-linear processor on the correlation we depict the
magnitude squared coherence function

C(Ω) =
|Φx1x2(Ω)|2

Φx1x1(Ω) Φx2x2(Ω)
(13.145)

of the loudspeaker signals in Fig. 13.31 before and after applying the non-linear
processor to a monophonic speech signal. For the processed signals we clearly
observe a reduction of the coherence.

Algorithms for the adaptation of the stereophonic echo canceller may be designed
by extending the single channel techniques to the multiple channel case [Benesty
et al. 1995], [Shimauchi, Makino 1995]. When the loudspeaker signals are inde-
pendent, any of the extended single channel echo cancellation algorithms can be
successfully applied. As pointed out above, difficulties arise when the two loud-
speaker signals are linearly related. Fast convergence is only achieved when the
loudspeaker signals are not fully correlated and when the adaptive algorithms take
the correlation of these signals into account. Therefore, multi-channel RLS-type
algorithms converge much faster as they mutually decorrelate the input signals.
Standard NLMS-type algorithms converge much slower in general since in most
practical situations the signal covariance matrix is not well conditioned and the
amount of additive independent noise or non-linear distortions that can be applied



Bibliography 561

is limited. For the derivation of a multi-channel NLMS algorithm, the gradient
computation can be modified to exploit the cross-channel correlation [Benesty et
al. 1996]. The multi-channel RLS and FDAF algorithms are especially useful in
this context [Benesty, Morgan 2000a]. Efficient implementations of such algorithms
have been considered in [Buchner, Kellermann 2001].
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Breining, C.; Dreiseitel, P.; Hänsler, E.; Mader, A.; Nitsch, B.; Puder, H.;
Schertler, T.; Schmidt, G.; Tilp, J. (1999). Acoustic Echo Control, IEEE
Signal Processing Magazine, vol. 16, no. 4, pp. 42–69.

Buchner, H.; Kellermann, W. (2001). Acoustic Echo Cancellation for Two and
More Reproduction Channels, Proceedings of the International Workshop on
Acoustic Echo and Noise Control (IWAENC), pp. 99–102.

Carini, A. (2001). The Road of an Acoustic Echo Controller for Mobile Tele-
phony from Product Definition till Production, Proceedings of the Interna-
tional Workshop on Acoustic Echo and Noise Control (IWAENC), pp. 5–9.
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Hänsler, E. (1992). The Hands-Free Telephone Problem – An Annotated Biblio-
graphy, Signal Processing, vol. 27, pp. 259–271.
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Appendix A

Codec Standards
For various application areas a great number of codecs exist, which differ with
respect to speech quality, bit rate B, complexity, and signal delay.

In this appendix, some of the most common codecs are presented with their dis-
tinctive features. Table A.1 provides an overview.

Table A.1: Overview of the most common codec standards
ITU : International Telecommunication Union
ETSI: European Telecommunications Standards Institute
TIA : Telecommunications Industry Association

Standard Name B/(kbit/s)

ITU-T/G.726 Adaptive Differential Pulse 32
Code Modulation (ADPCM) (16, 24, 40)

ITU-T/G.728 Low-Delay CELP Speech Coder (LD-CELP) 16

ITU-T/G.729 Conjugate-Structure Algebraic 8
CELP Codec (CS-ACELP)

ITU-T/G.722 7 kHz Audio Coding within 64 kbit/s 64 (48, 56)

ETSI-GSM 06.10 Full Rate Speech Transcoding 12.2 + 0.8

ETSI-GSM 06.20 Half Rate Speech Transcoding 5.6

ETSI-GSM 06.60 Enhanced Full Rate Speech Transcoding 13

ETSI-GSM 06.90 Adaptive Multi-Rate Speech Transcoding 4.75–12.2

ITU-T/G.722.2 Adaptive Multi-Rate Wideband 6.6–23.85

Speech Transcoding

ETSI/3GPP 26.290 Extended Adaptive Multi-Rate 12.8–38.4
Wideband Codec (AMR-WB+)

TIA IS-96 Speech Service Option Standard for Wideband 1–8
Spread-Spectrum Systems

INMARSAT/IMBE Improved Multi-Band Excitation Codec 4.15
(IMBE)

Digital Speech Transmission: Enhancement, Coding and Error Concealment

Peter Vary and Rainer Martin
c© 2006 John Wiley & Sons, Ltd
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A.1 Evaluation Criteria

This section will deal with the four fundamental codec evaluation criteria of speech
quality, bit rate, complexity, and signal delay .

a) Speech Quality

Speech codecs for telephone systems are specified by international standardization
groups. Usually a decision has to be taken between different competing codec can-
didates. In the evaluation and selection process, the speech quality at the given bit
rates is the most important criterion. The main problem in speech quality assess-
ment of different codecs is that so far no universally valid, “objective” instrumental
measures exist (see also Appendix B.2). As already noted, the signal-to-noise ratio
is in general not suitable for a comparative evaluation of hybrid coding algorithms.

Therefore, all speech codec standards have been selected on the basis of very
expensive large-scale formal listening tests (see Appendix B.1).

However, this does not solve the problem of quality and conformity tests within the
type approval of devices produced by the manufacturers. For this reason, the codec
algorithms are generally specified bit-precisely and test sequences, i.e., speech sam-
ple sequences and their corresponding coded bit sequences, are established as part
of each codec standard for instrumental verification. This allows separate testing
of the encoder and the decoder.

b) Bit Rate

The allowed bit rate of a speech codec is determined by the application. The
specification of the target bit rate may depend on several factors. Besides the
interrelation between bit rate on the one hand and speech quality, signal delay,
and computational complexity on the other hand, the allowed bit rate depends on
other system constraints. In a cellular phone system, the bit rate needed for speech
coding has a strong impact on the economy of frequency and on the design of the
error protection scheme, i.e., ultimately the error robustness.

The bit rate may be constant (e.g., GSM full-rate codec, see Appendix A.6), it
may be adjusted dynamically in discrete steps by network control (e.g., GSM
adaptive multi-rate codec, see Appendix A.9), or it may be source controlled
(e.g., IS-95/QCELP, see Appendix A.12).
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c) Complexity

The complexity is generally given in terms of the required computational power
and memory capacity. The computing power is often specified by the number of
arithmetic operations per time unit (MOPS: Mega Operations Per Second) which
are necessary for real-time operation. For codec realization with programmable
signal processors this number can only be a coarse measure of the actual resources
needed due to the architectural differences of specific programmable digital signal
processors.

Since speech codecs are mainly implemented on programmable signal processors,
the required computational complexity depends within certain limits on how well
the architecture and instruction set of the processor satisfy the demands of the
bit-accurate specification of the algorithm.

For this reason the European Telecommunications Standards Institute (ETSI) has
specified the instruction set of a hypothetical 16 bit fixed point arithmetic DSP,
which has been used for prototype implementation and for complexity evaluation
of coding algorithms. The instructions are available as a set of macros in the pro-
gramming language C (see also ITU Recommendation G.191, Chapter 12, ITU-T
Basic Operators). Thus, the computational complexity of competing codec pro-
posals can be compared easily if these macros are used for the codec simulation.
Overheads for data moves, address calculations, initialization of program loops,
subroutine groups, etc., are not counted. Therefore, the final implementation on
any specific DSP usually has a somewhat higher computational load. However, this
approach allows quite a realistic and fair comparison in terms of the weighted mega
operations per second (wMOPS) as different instructions of the hypothetical DSP
have different complexity weights between 1 and 30. For example, the addition of
two fixed point variables has a complexity weight of 1, whereas the 16 bit division
of two variables has a complexity weight of 18. All instructions are specified bit-
precisely. In the case of a division both variables must be positive, and the second
variable must be larger than or equal to the first.

d) Signal Delay

The last criterion to be discussed is the signal delay, which is primarily caused by
block processing in the transmitter. A delay by two to three blocks of length 20 ms
each is permissible for fixed telephone networks, whereas in radio-based systems,
the allowed total delay should be utilized preferably for error protection as far as
possible, especially to break up burst errors by time interleaving.
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A.2 ITU-T/G.726: Adaptive Differential Pulse
Code Modulation (ADPCM)

Block diagram: coding and decoding

Sampling: fs = 8kHz

Bit rates: B = 16, 24, 32, 40 kbit/s

Quality: – signal form coding, nearly the same quality as PCM with
64 kbit/s

– modem signals (fax) up to 4.8 kbit/s (with B = 40 kbit/s)

Applications: – cordless digital phones according to the DECT (Digital En-
hanced Cordless Telecommunications) standard

– “digital circuit multiplier” (transatlantic cables)

Algorithm: – backward-adaptive predictor (see Section 8.3.4) with poles and
zeros

– adaptation of the predictor by means of the sign-LMS-algo-
rithm (see Section 8.3.4)

– adaptive quantization of the prediction error signal according
to the AQB method with w = 2, 3, 4, or 5 (see Section 7.5)

– quantization with fixed step size ∆d for coding of modem sig-
nals

Special feature: sign-LMS-algorithm without multiplication
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ai(k + 1) = (1 − 2−8) ai(k) + 2−7 sign {d̃(k)} · sign {d̃(k − i)}

b1(k + 1) =
255

256
b1(k) +

3

256
sign {y′

(k)} · sign {y′

(k − 1)}

y
′
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sign {y′

(k)} · sign {y′
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128
f [b1(k)] sign {y′
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f [b1(k)] =

{
4 · b1(k) | b1(k) | ≤ 0.5

2 sign {b1(k)} | b1(k) | > 0.5

References:

Bonnet, M.; Macchi, O.; Jaidane-Saidane, M. (1990). Theoretical Analysis of the ADPCM
CCITT Algorithm, IEEE Transactions on Communications, 38(6), pp. 847–858.

ITU-T Rec. G.726 (1992). 40, 32, 24, 16 kbit/s Adaptive Differential Pulse Code Modu-
lation (ADPCM).

Jayant, N. S.; Noll, P. (1984). Digital Coding of Waveforms, Section 6.5.3, Prentice Hall,
Englewood Cliffs, New Jersey.
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Sampling: fs = 8kHz

Bit rate: B = 16 kbit/s

Quality: – for speech comparable to (or partly better than) 32 kbit/s
ADPCM (ITU-T/G.726)

– modem signals (fax) up to 4.8 kbit/s

Applications: – video telephony, voice over IP

– “digital circuit multiplication”

Algorithm: – backwards adaptation of an LPC predictor of order n = 50
(blockwise, Levinson–Durbin algorithm, see Section 6.3.1)

– no long-term predictor

– logarithmic–differential quantization of the gain factor g with
backwards-adaptive prediction of order 10

– block length L = 5 samples or τ = 0.625ms

– code book with K = 128 entries ci

– modified weighting filter of order 10

– adaptive postfilter (see Section 8.6)

– signal delay < 2ms

– complexity approx. 20 wMOPS (weighted Mega Operations
Per Second)

Bit allocation: 10 bits every 5 · 0.125 ms = 0.625 ms

Special features: – logarithmic–differential quantization of the gain factor:

| g(l) | = | ĝ(l) | · G(l) ; l = block index

v(l) = 20 lg | g(l) | = 20 lg | ĝ(l) | + 20 lg G(l)

= v̂(l) + ∆v(l)

• quantization of ∆v(l) = v(l) − v̂(l) with only four levels
(2 bits) according to the analysis-by-synthesis criterion
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• adaptive prediction of v̂(l)

v̂(l) =

10∑

j=1

bj · v(l − j)

with v(l − j) = 20 lg

√√√√
4∑

λ=0

c2
iopt(λ) · g2(l − j)

ciopt = optimal vector for block index l − j

– calculation of weighting filter

W (z) =
1 − Ã(z/γ1)

1 − Ã(z/γ2)
; γ1 = 0.9 , γ2 = 0.6

of order 10 from the unquantized input signal

– LPC analysis for synthesis filter (A(z), n = 50), weighting filter
(Ã(z), ñ = 10), and predictor for gain factor (B(z), n

′

= 10)
with “hybrid” window wm(k) with recursive exponential and
non-recursive sinusoidal part

wm(k) =





b · α−
(
k−(m−N−1)

)
k ≤ m − N − 1

− sin
(
c · (k − m)

)
m − N ≤ k ≤ m − 1

0 k ≥ m

“hybrid window” wm(k) for b = 0.9889, α = 0.9928, and
c = 0.0478:

– adaptive postfilter with LTP and LPC part (see Section 8.6)

References:

Chen, J. H. (1995). Low-delay Coding of Speech, Speech Coding and Synthesis, W. B.
Kleijn, K. K. Paliwal (eds.), Chapter 6, Elsevier, Amsterdam.
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Chen, J. H.; Cox, R. V.; Lin, Y.-C.; Jayant, N. S.; Melchner, M. J. (1992). A Low-delay
CELP-coder for the CCITT 16 kbit/s Speech Coding Standard, IEEE Journal of
Selected Areas in Communications, pp. 830–849.

ITU-T Rec. G.728 (1992). Coding of Speech at 16 kbit/s Using Low-delay Code Excited
Linear Prediction.

Murphy, M. T.; Cox, C. E. M. (1994). A Real Time Implementation of the ITU-T/G.728
LD-CELP Fixed Point Algorithm on the Motorola DSP56156, Signal Processing VII:
Theories and Applications, M. J. J. Holt, C. F. N. Cowan, P. M. Grant, W. A. Sand-
ham (eds.), Elsevier, Amsterdam, pp. 1617–1620.

A.4 ITU-T/G.729: Conjugate-Structure
Algebraic CELP Codec (CS-ACELP)

Block diagram: decoding

Sampling: fs = 8kHz

Bit rate: B = 8 kbit/s

Quality: – for speech comparable to (or for some instances slightly inferior
to) 32 kbit/s ADPCM

– modem signals (fax) up to 4.8 kbit/s

– not suitable for music

Applications: – video telephony, multimedia

Algorithm: – Code Excited Linear Prediction (CELP)

– LP synthesis filter of order n = 10

– frame length TN = 10 ms, subframe length 1
2TN = 5 ms

– vector quantization of the filter parameter in form of LSF co-
efficients with 18 bits (see also Section 8.4.3-f)

– long-term prediction (adaptive code book, Section 8.5.3) with
so-called open-loop pitch analysis and closed-loop pitch search
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of the delay N0 (or jopt) applying high-resolution pitch detec-
tion with interpolation by a factor of 3

– coding of the delay parameter N0 of the first subframe with 8
bits, differential coding of the corresponding parameter of the
second subframe with 5 bits

– fixed algebraic code book (ACELP) with effectively 217 vectors
of length 40; each with only four non-zero values (see below)

– adaptive weighting filter for the error signal

W (z) =
1 − A(z/γ1)

1 − A(z/γ2)
,

with γ1 and γ2 depending on the instantaneous spectral enve-
lope

– two-step vector quantization of the gain factors ga, gs with 7
bits

– adaptive postfilter (see Section 8.6)

– algorithmic signal delay 15 ms

– complexity approx. 18 wMOPS (weighted Mega Operations
Per Second)

Bit allocation:

Parameter Quantization Subframe 1 Subframe 2 Bits per
(5ms) (5ms) 10 ms

LP filter 4 vector
10 coefficients quantizers 18
(Line Spectral
Frequencies)

Adaptive code book scalar
• N0 (or j1, j2) j1 8

j1 − j2 5 13
• parity bit for j1 1 1

Fixed code book pulse positions
• ACELP indices 3 × 3 + 4 13 13 26
• sign 4 × 1 4 4 8

Gain factors 2 vector
ga, gs quantizers 7 7 14

3 + 4

Bits per 10ms 80
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Special feature: – advantageous algebraic ternary code book (see also Sec-
tion 8.5.3.2) with

ci(λ) ∈ {+1, 0,−1} ; λ = 0, 1, . . . , 39

and only four non-zero elements per code book vector ci

ci(λ) = s0 δ(λ − µ0) + s1 δ(λ − µ1)

+ s2 δ(λ − µ2) + s3 δ(λ − µ3)

– separate coding of the pulse positions µ0, µ1, µ2, µ3 and the
signs s0, s1, s2, s3 ∈ {+1,−1}

Pulse position Sign Positions Bits

µ0 s0 0, 5, 10, 15, 20, 25, 30, 35 3 + 1

µ1 s1 1, 6, 11, 16, 21, 26, 31, 36 3 + 1

µ2 s2 2, 7, 12, 17, 22, 27, 32, 37 3 + 1

µ3 s3 3, 8, 13, 18, 23, 28, 33, 38

4, 9, 14, 19, 24, 29, 34, 39

}
4 + 1

– efficient code book search exploiting the code vectors’ structure

– compatible variant G.729A with lower complexity (approx.
9 wMOPS, slightly reduced speech quality in case of codec
tandem and background noise)

References:

ITU-T Rec. G.729 (1995). Coding of Speech at 8 kbit/s Using Conjugate-structure Alge-
braic Code-excited Linear Prediction (CS-ACELP).

Salami, R.; Laflamme, C.; Kataoka, A.; Lamblin, C.; Kroon, P. (1995). Description of
the Proposed ITU-T 8 kbit/s Speech Coding Standard, IEEE Workshop on Speech
Coding for Telecommunications, Annapolis, USA pp. 3–4. (Additional contributions
regarding details of the standard appear in the same conference proceedings).

Salami, R.; Laflamme, C.; Bessette, B.; Adoul, J.-P. (1997). Description of ITU-T Recom-
mendation G.729 Annex A: Reduced Complexity 8 kbit/s CS-ACELP Codec, Proceed-
ings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Munich, Germany, pp. 775–778.
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A.5 ITU-T/G.722: 7 kHz Audio Coding
within 64 kbit/s

Block diagram: coding and decoding

Sampling: fs = 16 kHz

Bit rates: B = 48, 56, 64kbit/s

Quality: – high quality for speech and music

– increased bandwidth 0.05 kHz ≤ f ≤ 7.0 kHz

Applications: – video and audio conferences

– ISDN premium phones

Algorithm: – subband coding with two subbands (see Section 4.3)

– band division with QMF–lowpass–highpass (see Section 4.3,
n = 24)

– ADPCM (similar to G.726) in both subbands with
w = 4, 5, or 6 (or 32, 40, 48 kbit/s) in the lower subband and
w = 2 (or 16 kbit/s) in the upper subband

– algorithmic signal delay 1.5ms

– complexity approx. 10 wMOPS (weighted Mega Operations
Per Second)

Special features: – possibility of simultaneous speech and data transmission with
bit rate BD = 8 or 16 kbit/s, with B+BD = 64 kbit/s in total

– dimensioning of the quantizers for w = 4, 5 in such a way
that for the simultaneous data transmission the last bit or the
last two bits of the 6 bit quantizer are overwritten (embedded
coding).
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References:

ITU-T Rec. G.722 (1988). 7 kHz Audio Coding within 64 kbit/s, vol. Fascicle III.4, Blue
Book, pp. 269–341.

Taka, M.; Maitre, X. (1986). CCITT Standardization Activities on Speech Coding, Pro-
ceedings of the IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), Tokyo, pp. 817–820.

A.6 ETSI-GSM 06.10: Full Rate Speech
Transcoding

Block diagram: coding and decoding

Sampling: fs = 8kHz

Bit rate: B = 13.0 kbit/s

Quality: – limited telephone quality (speech)

– not suitable for modem and music signals

Applications: – mobile radio systems according to the GSM standard

– Internet telephony

Algorithm: – predictive residual signal coding (see Section 8.5.2)
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– algorithmic signal delay 20 ms

– complexity about 3 wMOPS (weighted Mega Operations Per
Second)

Bit allocation (see also Section 8.5.2):

Parameter Number of bits

8 reflection coefficients (LPC)
(2 × 6, 2 × 5, 2 × 4, 2 × 3 bits) 36

4 LTP gain factors b (4 × 2 bits) 8
4 LTP delay values N0 (4 × 7 bits) 28

4 RPE grid positions (4 × 2 bits) 8
4 RPE block maxima (4 × 6 bits) 24
4×13 normalized RPE values (52 × 3 bits) 156

Bits every 20 ms 260

Special features: – interpolation (extrapolation) of corrupted frames by frame rep-
etition

– marking of “bad” frames (260 bits) with residual errors in the
group of the most important bits with BFI = 1 and repetition
of the last “good” frame; muting after multiple repetition

– detection of speech pauses (SID: Silence Indication)

– when switching off the transmitter during the speech pauses
(option of the network provider), an artificial background noise
(Comfort Noise) is produced at the receiver by exciting the
LPC-synthesis filter with white noise; the level is adapted ac-
cording to the current background noise.
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References:

ETSI Rec. GSM 06.10 (1988). GSM Full Rate Speech Transcoding.

Sluijter, R. J. (2005). The Development of Speech Coding and the First Standard Coder
for Public Mobile Telephony, PhD thesis, Technical University Eindhoven.

Vary, P.; Hellwig, K.; Hofmann, R.; Sluijter, R. J.; Galand, C.; Rosso, M. (1988). Speech
Codec for the European Mobile Radio System, Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), New York, USA,
Contribution S6.1, April, pp. 227–230.

A.7 ETSI-GSM 06.20: Half Rate Speech
Transcoding

Block diagram: decoding

Sampling: fs = 8kHz

Bit rate: B = 5.6 kbit/s

Quality: – slightly lower speech quality than the full-rate codec
(GSM 06.10)

– not suitable for modem and music signals

Applications: – mobile radio systems according to the GSM standard (half-rate
channel with B

′

= 11.4 kbit/s for speech and channel coding)

– modified versions with B = 6.9 kbit/s in the Japanese mobile
radio system (JDC) and with B = 7.95 kbit/s in the American
mobile radio system (digital AMPS)

Algorithm: – code excited linear prediction (CELP) with special code books
which are constructed from a set of orthogonal basis vectors
(VSELP: Vector Sum Excited Linear Prediction, see below)
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– frame length TN = 20ms; subframe length 1
4TN = 5 ms

– LPC filter of order n = 10; quantization of the reflec-
tion coefficients k1, k2, . . . , k10 with three vector quantizers
of dimensions 211 × 3 (k1, k2, k3), 29 × 3 (k4, k5, k6), and
28 × 4 (k7, k8, k9, k10); reduction of complexity using pre-
quantization

– long-term prediction with combined open-loop/closed-loop
search

– vector quantization of the gain factors

– adaptive error weighting filter (see Section A.4)

– adaptive postfilter (see Section 8.6)

– algorithmic signal delay 20 ms

– complexity about 18.5 wMOPS (weighted Mega Operations
Per Second)

Bit allocation:

Unvoiced frames: Voiced frames:
– no adaptive code book – adaptive code book
– 2 fixed code books A & B – 1 fixed code book C

Parameters Bits per frame Bits per frame
(= 4 subframes) (= 4 subframes)

Mode 1 × 2 1 × 2
Energy 1 × 5 1 × 5
Soft interpolation 1 × 1 1 × 1
10 reflection coeff. 1 × 28 1 × 28
Gain factors 4 × 5 4 × 5

Code book index A 4 × 7
Code book index B 4 × 7
Code book index C 4 × 9
LTP delay N0 1 × 8 + 3 × 4

Bits per 20ms 112 112

Special features: – different coding of voiced and unvoiced segments based on a
signal classification

– construction of the code vectors by weighted superposition of
M = 7 (code book A, B) or M = 9 (code book C) orthogonal
basis vectors; example: code book A with the basis vectors

aµ =
(
aµ(0), . . . , aµ(λ), . . . , aµ(L−1)

)T
;

c1,i(λ) =

7∑

µ=1

αµ,i · aµ(λ) ; αµ,i ∈ {−1, +1} ;
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only the M = 7 basis vectors of dimension L = 40 must be
stored; instead of the code book indices, the weighting factors
αµ,i are transmitted.

References:

ETSI Rec. GSM 06.20 (1994). European Digital Cellular Telecommunications System;
Speech Codec for the Half Rate Speech Traffic Channel.

Gerson, J. A.; Jasiuk, M. A. (1990). Vector Sum Excited Linear Prediction (VSELP)
Speech Coding at 8 kbit/s, Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Albuquerque, USA pp. 461–464.

Gerson, J. A.; Jasiuk, M. A. (1991). Vector Sum Excited Linear Prediction (VSELP), Ad-
vances in speech coding, B. S. Atal, V. Cuperman, A. Gersho (eds.), Kluwer Academic,
Dordrecht, pp. 69–79.

A.8 ETSI-GSM 06.60: Enhanced Full Rate
Speech Transcoding

Block Diagram: decoding

Sampling: fs = 8kHz

Bit rate: B = 13.0 kbit/s (including 0.78 kbit/s for parity bits)

Quality: – significantly higher speech quality than the full-rate codec ac-
cording to GSM 06.10, comparable to 32 kbit/s ADPCM

– not suitable for modem and music signals

Applications: – mobile radio systems according to the GSM standard

Algorithm: – CELP codec with algebraic code book similar to the codec
standard G.729 (see Section A.4)
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– frame length TN = 20ms; four subframes

– determination of 10 LP coefficients twice per frame; differential
vector matrix quantization of 20 LSF coefficients

– adaptive code book with combined open-loop/closed-loop
search and applying fractional pitch detection with interpo-
lation by a factor of 6

– fixed algebraic code book (ACELP) with effectively 235 vectors
of dimension 40 with 10 non-zero values each

– predictive quantization of the gain factors

– adaptive error weighting filter

– adaptive postfilter (see Section 8.6)

– algorithmic signal delay 20 ms

– complexity about 15.2 wMOPS (weighted Mega Operations
Per Second)

Bit allocation:

Subframes Subframes Bits per
Parameter 1 & 2 3 & 4 frame

(5ms each) (5ms each) 20 ms

2 × 10 LP coefficients 38
(line spectral frequencies)

Adaptive code book
• delay N0 9 6 30
• gain ga 4 4 16

Fixed code book (ACELP)
• pulse positions and signs 35 35 140
• gain gs 5 5 20

Bits per 20ms 244

Special features: – advantageous algebraic ternary code book according to the
ACELP approach

ci(λ) =

9∑

µ=0

sµ · δ(λ − iµ) ; sµ ∈ {+1,−1}

– for five tracks, selection of two pulses out of eight potential
pulse positions iµ (see Section 8.5.3)

– sign of first pulse encoded by 1 bit, sign of second pulse depends
on the relative position of both pulses
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Pulse position Sign Positions Bits

i0, i5 s0, s5 0, 5, 10, 15, 20, 25, 30, 35 2 × 3 + 1

i1, i6 s1, s6 1, 6, 11, 16, 21, 26, 31, 36 2 × 3 + 1

i2, i7 s2, s7 2, 7, 12, 17, 22, 27, 32, 37 2 × 3 + 1

i3, i8 s3, s8 3, 8, 13, 18, 23, 28, 33, 38 2 × 3 + 1

i4, i9 s4, s9 4, 9, 14, 19, 24, 29, 34, 39 2 × 3 + 1

– efficient, incomplete code book search exploiting the structure
of the code vectors

References:

ETSI Rec. GSM 06.60 (1996). Digital Cellular Telecommunications System; Enhanced
Full Rate (EFR) Speech Transcoding.

Järvinen, K.; Vainio, J.; Kapanen, P.; Salami, R.; Laflamme, C.; Adoul, J.-P. (1997). GSM
Enhanced Full Rate Speech Codec, Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), Munich, Germany, pp. 771–
774.

A.9 ETSI-GSM 06.90: Adaptive Multi-Rate
(AMR) Speech Transcoding (AMR
narrowband codec, AMR-NB)

Block diagram: decoding

→

λ
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Sampling: fs = 8kHz

Bit rates: B = 4.75 / 5.15 / 5.90 / 6.70 (PDC-Japan) /

(kbit/s) 7.40 (DAMPS-IS136) / 7.95 / 10.2 / 12.2 (GSM-EFR)

network-controlled dynamic split of bit allocation between
speech codec and channel codec depending on the instanta-
neous quality of the channel, codec mode can be changed every
20 ms

Quality: – same as GSM-EFR at 12.2 kbit/s

– higher error robustness than GSM-EFR codec and better qual-
ity in adverse GSM channel conditions, extended quality op-
eration region down to C/I ≥ 4–7 dB (3–6 dB advantage com-
pared to GSM-EFR codec)

Applications: – mobile radio systems, according to GSM and UMTS standards

– packet-based voice over Internet Protocol (VoIP)

Algorithm: – CELP codec with different algebraic code books similar to the
standard ETSI-GSM 06.60 (EFR codec), which is part of the
AMR codec (B = 12.2 kbit/s)

– one or two sets of 10 LSP coefficients depending on the bit rate
(mode), interpolation of LSPs between subframes

– predictive split-matrix quantization of LSPs

– frame length TN = 20ms, four subframes of 22.8 kbit/s

– constant gross bit rate including mode-specific channel coding

– inband signaling for rate switching

– closed-loop pitch search confined to a small number of lags
around the open-loop pre-search

– fractional pitch lags by interpolation

– prediction of the fixed code book gains

– joint vector quantization of fixed and adaptive gains

– complexity around 16.8 wMOPS (weighted Mega Operations
Per Second)

Special feature: – ternary ACELP code books

ci(λ) =

p−1∑

µ=0

sµ · δ(λ − iµ) ; vµ ∈ {+1,−1}
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Mode Number p of Bits per
kbit/s pulses frame

12.2 10 35

10.2 8 31

7.95/7.4 4 17

6.7 3 14

5.9 2 11

5.15/4.75 2 9

Bit allocation:

Mode Parameter 1st 2nd 3rd 4th Total
subframe subframe subframe subframe per frame

2 LSP sets 38
12.2 kbit/s Pitch delay 9 6 9 6 30

(GSM-EFR) Pitch gain 4 4 4 4 16
Algebraic code 35 35 35 35 140
Code book gain 5 5 5 5 20

Total 244

LSP set 26
10.2 kbit/s Pitch delay 8 5 8 5 26

Algebraic code 31 31 31 31 124
Gain 7 7 7 7 28
Total 204

LSP set 27
7.95 kbit/s Pitch delay 8 6 8 6 28

Pitch gain 4 4 4 4 16
Algebraic code 17 17 17 17 68
Code book gain 5 5 5 5 20

Total 159

LSP set 26
7.40 kbit/s Pitch delay 8 5 8 5 26

(DAMPS-EFR) Algebraic code 17 17 17 17 68
Gain 7 7 7 7 28
Total 148

LSP set 26
6.70 kbit/s Pitch delay 8 4 8 4 24

Algebraic code 14 14 14 14 56
Gain 7 7 7 7 28
Total 134

LSP set 26
5.90 kbit/s Pitch delay 8 4 8 4 24

Algebraic code 11 11 11 11 44
Gain 6 6 6 6 24
Total 118
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Mode Parameter 1st 2nd 3rd 4th Total
subframe subframe subframe subframe per frame

LSP set 23
5.15 kbit/s Pitch delay 8 4 4 4 20

Algebraic code 9 9 9 9 36
Gain 6 6 6 6 24
Total 103

LSP set 23
4.75 kbit/s Pitch delay 8 4 4 4 20

Algebraic code 9 9 9 9 36
Gain 8 8 16
Total 95

References:

Bruhn, S.; Blöcher, P.; Hellwig, K.; Sjöberg, J. (1999). Concepts and Solutions for Link
Adaptation and Inband Signaling for the GSM AMR Speech Coding Standard, IEEE
Vehicular Technology Conference, pp. 2451–2455.

Ekudden, E.; Hagen, R.; Johansson, I.; Svedberg, J. (1999). Relaxing Model-imposed
Constraints Based on Decoder Analysis, Proceedings of the IEEE Workshop on Speech
Coding, Porvoo, Finland, pp. 117–119.

ETSI Rec. GSM 06.90 (1998). Digital Cellular Telecommunications System; Adaptive
Multi-Rate (AMR) Speech Transcoding.

Download GSM-AMR-NB codec from the 3GPP website/FTP server

• 26090-500.zip: description of the standard

• 26073-530.zip: ANSI C Software
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A.10 ETSI/3GPP 26.190/ITU G.722.2: Adaptive
Multi-Rate Wideband Speech Transcoding
(AMR wideband codec, AMR-WB)

Block diagram: encoding

_A
D

ˆ

Block diagram: decoding

ˆ )

~
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Sampling: fs = 16kHz, audio bandwidth from 50Hz to 7 kHz

Bit rates: B = 23.85 / 23.05 / 19.58 / 18.25 / 15.85 / 14.25 /
(kbit/s) 12.65 / 8.85 / 6.60

network-controlled dynamic bit rate allocation between speech
and channel coding similar to AMR-NB codec

Quality: – clean speech quality for the six highest AMR-WB modes
(23.85–14.25 kbit/s) equal to or better than ITU-T wideband
codec G.722 at 64 kbit/s

– the 12.65 kbit/s mode is at least equal to G.722 at 56 kbit/s

– the 8.85 kbit/s mode gives equal quality as G.722 at 48 kbit/s

– the two lowest modes are used only during adverse radio chan-
nel conditions or during UMTS network congestion

Applications: – GSM full-rate channel

– GSM EDGE Radio Access Network (GERAN, 8-PSK)

– 3G UMTS Terrestrial Radio Access Network (UTRAN,
CDMA)

– packet-based voice over Internet Protocol (VoIP)

Algorithm: – ACELP encoding of the frequency range 50Hz to 6.4 kHz sim-
ilar to AMR-NB codec

– 16 LP filter coefficients per 20ms frame

– artificial wideband extension with or without side information
in the range 6.4–7.0kHz

– asymmetric analysis window of length 30ms

– conversion of LP coefficients to ISP representation for quanti-
zation and interpolation (immittance spectral frequencies, in-
stead of LSP)

– subframe size 64 samples

– ACELP code book with four tracks with 16 positions

– special weighting filter

– joint vector quantization of adaptive and fixed vector code
book gains

– complexity 38.9 wMOPS (weighted Mega Operations Per Sec-
ond)
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Bit allocation:

Codec mode (kbit/s)
Parameter 6.60 8.85 12.65 14.25 15.85 18.25 19.85 23.05 23.85

VAD flag 1 1 1 1 1 1 1 1 1
LTP filtering flag 0 0 4 4 4 4 4 4 4
ISP 36 46 46 46 46 46 46 46 46
Pitch delay 23 36 30 30 30 30 30 30 30
Algebraic code 48 80 144 176 208 256 288 352 352
Gains 24 24 28 28 28 28 28 28 28
High-band energy 0 0 0 0 0 0 0 0 16

Total per frame 132 177 253 285 317 365 397 461 477

References:

3GPP TS 26.190 (2001). AMR Wideband Speech Codec; Transcoding Functions.

Bessette, B.; Salami, R.; Lefebvre, R.; Jelinek, M.; Rotola-Pukkila, J.; Vainio, J.; Mikkola,
H.; Järvinen, K. (2002). The Adaptive Multirate Wideband Speech Codec (AMR-
WB). IEEE Transactions on Speech and Audio Processing, vol. 10, no. 8, Nov.,
pp. 620–636.

Download GSM-AMR-WB codec from the 3GPP website/FTP server

• 26190-510.zip: description of the standard

• 26173-580.zip: ANSI C Software

A.11 ETSI/3GPP 26.290: Extended Adaptive
Multi-Rate Wideband Codec (AMR-WB+)

Block diagram: encoding

Sampling: fs = 12.8–38.4kHz, audio bandwidth up to 16 kHz

Bit rates: a) all modes of the AMR-WB codec (ETSI/3GPP 26.190):
6.6–23.85kbit/s
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b) mono AMR-WB+: 10.4–24.0kbit/s

c) stereo AMR-WB+: 18.0–32kbit/s

Quality: – the AMR-WB+ speech codec includes all functions of the
AMR-WB coding schemes as well as extended functionality for
encoding general audio signals such as music, speech, mixed,
and other signals

– for music performance better than or equal to AAC Plus in
most tests, and at low bit rate (less than 18 kbps) audio per-
formance better than AAC Plus

Applications: – GSM full-rate channel

– GSM EDGE Radio Access Network (GERAN, 8-PSK)

– 3G UMTS Terrestrial Radio Access Network (UTRAN,
CDMA)

Algorithm: – separation of the input signal into two bands, the low-
frequency (LF) and the high-frequency (HF) bands

– critical downsampling of LF and HF signals at fs/2

– encoding of LF signal using the core encoder/decoder which
switches between ACELP and transform-codec excitation
(TCX) mode

– in ACELP mode, the standard AMR-WB codec is used

– the HF signal is encoded with relatively few bits using a band-
width extension (BWE method)

– complexity 38.9 wMOPS (AMR-WB) . . . 72 wMOPS (stereo
streaming)

References:

3GPP TS 26.290 (2005). Extended Adaptive Multi-Rate Wideband (AMR-WB+) Codec;
Transcoding Functions, Release 6, March.

3GPP TS 26.304. ANSI-C Code for the Floating Point Extended AMR Wideband Codec.

3GPP TS 26.273. ANSI-C Code for the Fixed Point Extended AMR Wideband Codec.

http://www.voiceage.com: AMR-WB+: Hi-Fi Audio Compression.
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A.12 TIA IS-96: Speech Service Option Standard
for Wideband Spread-Spectrum Systems
(QCELP: Variable Rate Speech Coder for

CDMA Digital Cellular)

Block diagram: decoding

Sampling: fs = 8kHz

Bit rates: dynamic selection of one out of four data rates every 20ms de-
pending on speech activity: B = 8.0, 4.0, 2.0, approx. 1 kbit/s

Quality: – near toll quality speech at an average data rate of under
4 kbit/s

Applications: – CDMA Digital Cellular Standard IS-54

Algorithm: – conventional CELP structure

– division of 20ms frame into subframes of different lengths, de-
pending on the selected bit rate
B = 8kbit/s: 8 CB subframes of length 20, 4 pitch subframes
B = 4kbit/s: 4 CB subframes of length 40, 2 pitch subframes
B = 2kbit/s: 2 CB subframes of length 80, 1 pitch subframe
B ≈ 1 kbit/s: 1 CB subframe of length 160, no pitch subframe

– predictive quantization of 10 LSF coefficients

– integer pitch lags N0 = 17–143 (7 bits)

– adaptive postfilter
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References:

Gardner, W.; Jacobs, P.; Lee, C. (1993). QCELP: A Variable Rate Speech Coder for
CDMA Digital Cellular, Speech and Audio Coding for Wireless and Network Appli-
cations, Atal, B. S.; Cuperman, V.; Gersho, A. (eds.), Kluwer Academic, Dordrecht,
pp. 85–92.

TIA IS-96 (1998). Speech Service Option Standard for Wideband Spread-Spectrum Sys-
tems - TIA/EIA-96C, August.

A.13 INMARSAT: Improved Multi-Band
Excitation Codec (IMBE)

Block diagram: decoding

Al: spectral amplitudes
vk: voiced/unvoiced classification in frequency bands
N0: pitch period

Sampling: fs = 8kHz

Bit rate: B = 4.15 kbit/s

Quality: – limited telephone quality (lower than with the GSM full-rate
codec)

– further quality loss in case of background noise or background
music

– not suitable for modem and music signals

Applications: – mobile telephony via the INMARSAT satellite system

– radio systems of police and official authorities (USA)

Algorithm: – classification of frequency bands as voiced or unvoiced based
on a spectral analysis (FFT)
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– block length 20ms

– determination and quantization of the spectral envelope

– analysis of the instantaneous pitch period

– synthesis of voiced segments at the receiver in the time domain
by summing the outputs of a band of sinusoidal oscillators
running at the harmonics of the fundamental frequency

– synthesis of unvoiced segments at the receiver in the frequency
domain by summing weighted bandpass filtered white noise
and transformation into the time domain via inverse FFT

– final synthesized signal by summing the voiced and the un-
voiced synthesized segments

– algorithmic signal delay 20 ms

– complexity approx. 7 wMOPS (weighted Mega Operations Per
Second)

References:

DVS (1991). Methods for Speech Quantization and Error Correction, incl. INMARSAT-M
Codec, Digital Voice Systems Inc., Patent PCT/US91/09135, June.

Griffin, D. W.; Lim, J. S. (1988). Multiband Excitation Vocoder, IEEE Transactions on
Acoustics, Speech and Signal Processing, 36, pp. 1223–1235.

Hardwick, J. C.; Lim, J. S. (1991). The Application of the IMBE Speech Coder to Mobile
Communications, Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Toronto, pp. 249–252.
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Speech Quality Assessment

The assessment of the speech quality and more generally the analysis of the quality
of service (QoS) is a fundamental issue in the process of designing, standardizing,
implementing, and operating components, application protocols, or even complete
speech transmission networks.

Human perception of sound is a very complex process involving auditory and cog-
nitive aspects. So far no universal model or theoretical framework exists which
reflects all aspects of auditive perception. Speech quality assessment is a multidis-
ciplinary research area of its own, which is based on psychoacoustics, e.g., [Zwicker
1982], [Zwicker, Fastl 1999], [Blauert 1997], [Blauert 2005].

There is a vast amount of literature on speech quality assessment and there are
several ITU and ETSI standards dealing with specific quality aspects, such as
evaluating the impairments introduced by speech coding, noise suppression, echo
cancellation, bit error, and packet-loss concealment. An extensive literature review
is beyond the scope of this book. In this appendix, only a few key definitions and
procedures are described, which have been established in the area of telecommu-
nications for the evaluation of speech quality under specific constraints.

B.1 Auditive Speech Quality Measures

The perceived subjective quality of speech signals can to a certain extent be ex-
plained by psychoacoustic effects such as masking, non-linear loudness transfor-

Digital Speech Transmission: Enhancement, Coding and Error Concealment

Peter Vary and Rainer Martin
c© 2005 John Wiley & Sons, Ltd
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mation, and non-uniform frequency grouping. The influence of these effects on
the subjectively perceived quality was discussed, for instance, in the context of
open- and closed-loop prediction and noise shaping (see Chapter 8). Although the
signal-to-quantization-noise ratio cannot be improved by open-loop prediction, the
speech quality is much better than plain PCM quantization. This is due to the fact
that the spectrally shaped quantization noise is (partly) masked by the speech sig-
nal. This example illustrates that the signal-to-noise ratio (SNR) is not generally
appropriate as a measure of speech quality.

Speech coding standards are specified on the bit level, which allows type approval
of speech transmission devices by using specified test sequences and by comparing
the resulting bit patterns and samples.

Especially in the context of standardization, formal listening tests are the basis
for selecting the best candidate proposal. The rules for these tests have been stan-
dardized by the ITU [ITU-T Rec. P.800 1996], [ITU-T Rec. P.830 1996]. Many
test persons judge the quality of speech samples which have been processed by the
device under test, either in an absolute category (absolute category rating, ACR)
or with reference to some other speech samples (comparison category rating, CCR,
or degradation category rating, DCR).

In ACR listening tests, a five-point scale is used, ranging from “excellent”
(score = 5) to “bad” (score = 1). The resulting quality of each speech sample
is expressed as the average of the scores given by many test listeners, the so-called
mean opinion score (MOS).

The MOS results of a listening test may still be biased by the particular laboratory
conditions. Therefore, speech samples with a reference disturbance are included in
the listening test. The reference disturbance is imposed by the Modulated Noise
Reference Unit (MNRU) [ITU-T Rec. P.810 1996] (see Fig. B.1, Fig. B.2), which
produces additive proportional disturbance according to

x̃(k) = x(k) · [1 + g · w(k)]

where x(k) denotes the clean speech signal, w(k) white noise and g the gain factor
which is usually expressed as

g = 10−Q/20 .
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Figure B.1: Calibration of ACR listening tests using MNRU (Modulated
Noise Reference Unit) references

Thus, the signal-to-noise ratio is

SNR = 10 log

(
E{x2}

E{[g · w(k) · x(k)]2}

)

= Q ,

with E{w2(k)} = 1 and

E{[g · w(k) · x(k)]2} = g2 · E{w2(k)} · E{x2(k)}

= 10−Q/10 · E{x2(k)} .

The additive MNRU noise has the same characteristics as the noise produced by A-
law and µ-law quantizers. The MOS of the MNRU samples allows for a calibration
of all MOS results and facilitates a comparison between MOS scores of different
listening tests, as indicated in Fig. B.3.

Figure B.2: Digital Modulated Noise Reference Unit (MNRU) for
narrowband speech signals (ITU-T P.810)
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Figure B.3: MOS and MNRU Q-values

ABSOLUTE CATEGORY RATING (ACR) TEST
INSTRUCTIONS TO SUBJECTS:

In this experiment you will be listening to short groups of sentences via the tele-
phone handset, and giving your opinion of the speech you hear. On the table in

front of you is a box with five illuminated press buttons. When all the lamps go
on, you will hear . . . sentences. Listen to these, and when the lamps go out, press
the appropriate button to indicate your opinion on the following scale.

Effort required to understand the meanings of sentences

5: Complete relaxation possible, no effort required.

4: Attention necessary; no appreciable effort required.

3: Moderate effort required.

2: Considerable effort required.

1: No meaning understood with any feasible effort.

The button you have pressed will light up for a short time. Then the lamp will go
out, and there will be a brief pause before all the lamps go on again for the next
group of . . . sentences.
There will be a longer pause after every . . . groups (each calling for an opinion).
There will be a total of . . . groups in this visit and a similar number in your
subsequent visit(s).
Thank you for your help in this experiment.
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COMPARISON CATEGORY RATING (CCR) TEST
INSTRUCTIONS TO SUBJECTS:

“Evaluation of the influence of various environmental noises on the quality of
different telephone systems”

In this experiment you will hear pairs of speech samples that have been recorded
through various experimental telephone equipment. You will listen to these sam-
ples through the telephone handset in front of you.

What you will hear is one pair of sentences, a short period of silence, and another
pair of sentences. You will evaluate the quality of the second pair of sentences
compared to the quality of the first pair of sentences.

You should listen carefully to each pair of samples. Then, when the green light is
on, please record your opinion about the quality of the second sample relative to
the quality of the first sample using the following scale:

The Quality of the Second Compared to the Quality of the First is:

3: Much Better

2: Better

1: Slightly Better

0: About the Same

-1: Slightly Worse

-2: Worse

-3: Much Worse

You will have five seconds to record your answer by pushing the button corre-
sponding to your choice. There will be a short pause before the presentation of
the next pair of sentences.

We will begin with a short practice session to familiarize you with the test pro-
cedure. The actual tests will take place during sessions of 10 to 15 minutes.
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DEGRADATION CATEGORY RATING (DCR) TEST
INSTRUCTIONS TO SUBJECTS:

“Evaluation of the influence of various environmental noises on the quality of
different telephone systems”

In this experiment you will hear pairs of speech samples that have been recorded
in different noise environments. You will listen to these samples through the
telephone handset in front of you.

You will hear one pair of sentences, a short period of silence, and another pair of
sentences. The first pair is the reference sample. You will evaluate the quality of
the second pair of sentences compared to the quality of the first pair of sentences.

Please listen carefully to each pair of samples. Then, when the green light is on,
please record your opinion about the quality of the second sample compared to the
quality of the first sample using the following scale:

5: Degradation is inaudible

4: Degradation is audible but not annoying

3: Degradation is slightly annoying

2: Degradation is annoying

1: Degradation is very annoying

You will have five seconds to record your answer by pushing the button corre-
sponding to your choice. There will be a short pause before the presentation of
the next pair of sentences.

We will begin with a short practice session to familiarize you with the test pro-
cedure. The actual tests will take place during sessions of 10 to 15 minutes.

B.2 Instrumental Speech Quality Measures

Listening tests are time consuming and expensive. During the development phase
of a speech processing algorithm, it is necessary to obtain estimates of the speech
quality without expensive auditive tests. Therefore, objective speech quality mea-
sures or instrumental speech quality measures have been developed, which try
to predict the outcome of a subjective listening test as accurately as possible,
e.g., [Quackenbush et al. 1988], [Vary et al. 1998].

These measures are often based on a comparison of the original and distorted
speech signals in an auditory domain. The transformation to the auditory do-
main is based on models of psychoacoustic mechanisms. Objective speech quality
measures are often limited to specific situations, e.g., speech codec assessment or
transmission distortions in mobile radio networks. If both original and degraded
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speech signals are needed, an objective speech quality measure is called intrusive,
as it does not allow an automated, purely receiver-based quality measurement.

Intrusive Speech Quality Measures

Within ITU-T several proposals for objective quality measures have been inves-
tigated in the last 20 years. In 1996, the PSQM algorithm (Perceptual Speech
Quality Measure, [ITU-T Rec. P.861 1996]) was standardized. In the meantime,
this recommendation has been withdrawn and replaced by the PESQ algorithm
(Perceptual Evaluation of Speech Quality, [ITU-T Rec. P.862 2001]). An extension
of PESQ has been proposed to cover wideband speech as well [ITU-T Int. Doc.
2004].1

A simplified diagram of the structure of the PESQ algorithm is given in Fig. B.4
[Rix et al. 2001], [Voran 1999a], [Voran 1999b]. PESQ contains an adjustment
of the power levels of the original and the degraded speech, a frame-wise time
alignment, and models for the description of the following psychoacoustic effects:

• non-linear transformation of sound pressure level to perceived loudness (in-
tensity warping)

• non-linear transformation of frequency to perceived pitch (frequency warp-
ing)

• masking in the frequency and time domains

• asymmetrical weighting of additive and subtractive disturbance

• effects of unbalanced memorization of disturbances, depending on the posi-
tion within the speech sample.

Figure B.4: Perceptual Evaluation of Speech Quality (ITU-T P.862) [Rix et al. 2001]
c© 2001 IEEE

1For wideband audio applications, other quality assessment methods have been proposed,
which are based on the same principles as objective speech quality measurement algorithms
[ITU-R Rec. BS.1387 1998].
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When applied to correct measurement situations, PESQ offers a normalized cor-
relation of |ρ| > 0.9 with MOS scores from subjective listening tests.

Non-intrusive Speech Quality Measures

In contrast to intrusive speech quality measures, non-intrusive speech quality mea-
sures allow an estimation of the perceived speech quality by analyzing only infor-
mation that is available at the receiving end of a speech transmission system.

For example, the received speech material itself can be analyzed by using a
database of statistical characteristics of typical speech segments. Alternatively,
a speech production model may be used to identify natural speech components.
These components can thereby be separated from artificial distortions [Kim, Tar-
raf 2004], [Picovici, Mahdi 2004]. This method is rather complex, but a first ITU
standard has been developed [ITU-T Rec. P.563 2004].

Another possibility is the evaluation of link parameters of transmission networks
which are normally used for other purposes (e.g., the frame error rate and bit
error rate estimations in mobile radio systems such as GSM or UMTS). These
parameters correlate well with the resulting speech quality if they are averaged in
a suitable way (e.g., by LP norms). Optimized functions of transmission parame-
ter combinations have been shown to exhibit excellent correlations with reference
speech quality scores [Karlsson et al. 1999], [Karlsson et al. 2002], [Werner et al.
2003], [Werner et al. 2004]. Although slightly less accurate than psychoacoustically
motivated objective speech quality measures, these methods are well suited for an
automated quality monitoring in speech transmission networks.
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χ2-density, 132
χ2-distribution, 137
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3GPP, see 3rd generation partnership

project
3GPP 26.190 (ETSI), 569, 590
3GPP 26.290 (ETSI), 569, 592
3rd generation partnership project, 300
6-dB-per-bit-rule, 208, 217

A
A-law characteristic, 213, 215, 216, 218

13-segment, 219, 220
A posteriori

probability, 323, 338, 340
SNR, 402, 417, 424, 426, 428, 436

A priori
density, 155
distribution, 155
information, 121
knowledge, 327, 341

first-order, 342
on bit level, 324
zeroth-order, 341

probability, 158, 324, 420, 423
signal-to-noise ratio, 157
SNR, 402, 408, 417, 424, 554, 555

Absolute
category rating, 598, 600
frequency, 129
signal delay, 471

ACELP code book, 295, 298–300
Acoustic

echo cancellation, 499, 505
subband, 549

echo canceller, 505
echo control, 505

stereophonic, 557
impedance, 14
tube model, 11

ACR, see Absolute category rating
A/D conversion, 202
Adaptation

block-oriented, 177
predictor, 177
sequential, 188

Adaptive
code book, 295–297
decimation, 287
differential pulse code modulation,

241, 245, 260
filter, 505

coefficient constrained, 500
frequency domain, 536, 539
multi-channel frequency domain,

561
norm-constrained, 500
partitioned block frequency

domain, 543
partitioned frequency domain, 548
soft-partitioned frequency domain,

548
multi-rate codec, 298, 299, 390, 429
multi-rate wideband speech codec,

300, 590
noise canceller, 498, 499
postfilter, 298, 305, 553
postfiltering, 305
predictive coding, 282
quantization, 222

backward, 222–224, 227, 260
forward, 222–224, 227, 288

Additive white Gaussian noise, 330
Addressing

bit-reversal, 60
ADPCM, see Adaptive differential pulse

code modulation
Affine projection algorithm, 529
Algebraic

code book, 294, 298
sign–least-mean-square algorithm,

261
Algorithm

affine projection, 529
algebraic sign–LMS, 261
block LMS, 537
constrained fast LMS, 548
constrained LMS, 498
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fast LMS, 544
least-mean-square, 495, 514, 547
Levinson–Durbin, 180, 182
Linde–Buzo–Gray, 233
LPC-10, 265
normalized least-mean-square, 396,

451, 453, 509, 516, 553, 555, 560
recursive least-squares, 532, 533, 560
split, 234
steepest descent, 189
stochastic gradient, 190
unconstrained fast LMS, 548
weighted least-squares, 532

Algorithmic delay, 283, 543
Aliasing, 76

spatial, 475
All-pass

sequence, 67
transfer function, 168

All-pole
filter, 24
model, 5, 66, 166

All-zero model, 165
Amplitude

estimation, 417
estimator, 416
spectrum, 38

AMR, see Adaptive multi-rate codec
AMR-WB, see Adaptive multi-rate

wideband speech codec
AMR-WB+, see Extended adaptive

multi-rate wideband codec
Analog sample, 201
Analog-to-digital converter, 506
Analysis

filter
LP-, 170

linear predictive, 163
short-term spectral, 86

Analysis–synthesis
perfect reconstruction system, 396
system, 408

Analysis-by-synthesis, 281, 301
coding, 279, 290

Analyzer
short-term spectral, 78

Anatomy of hearing, 25
Anechoic, 470
Anti-mirror polynomial, 270
AP, see Affine projection algorithm
APC, see Adaptive predictive coding
Aperiodic convolution, 50
Aperture, 472
Approach

decision-directed, 403

non-stationary, 178, 181
stationary, 178, 180

Approximant, 8
Approximation

modified Fourier, 83, 89
AQB, see Adaptive quantization backward
AQF, see Adaptive quantization forward
AR filter, 163
AR model, see Autoregressive model
AR process, see Autoregressive process
Arcsine reflection coefficient, 269
ARMA model, see Autoregressive

moving-average model
Array

gain, 481
sensitivity, 482

Articulators, 8
Artificial bandwidth extension, 361
ASRC, see Arcsine reflection coefficient
Auditive speech quality measures, 597
Auto-correlation, 393

function, 139
method, 178, 182, 194

Auto-covariance
function, 139

Auto-power spectral density, 144
Autoregressive

model, 166
moving-average model, 166
process, 166

Average values, 130
AWGN, see Additive white Gaussian noise
Azimuth, 474

B
Backward prediction, 249, 251
Bad frame indicator (BFI), 318
Bandwidth

extension
artificial, 361

extension (BWE), 361
telephone, 239, 362

Bark scale, 31
Baseband, 282

RELP, 366
spectrum, 284

Baseband–RELP
codec, 282, 283
decoder, 284

Basilar membrane, 27
Bayes cost, 159
Bayes’ theorem, 121, 123, 323

density version of, 123
mixed form, 123, 332

Beamformer
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delay-and-sum, 477, 481, 482, 485,
490, 495, 498

distortionless response, 493, 498
filter-and-sum, 489, 495
Griffiths-Jim, 495
minimum variance distortionless

response, 488
Beamforming, 477
Bernoulli effect, 7
Bessel function, 413
BFI, see Bad frame indicator
Bias, 143
Bin, 129

discrete, 129
Binary symmetric channel, 321

equivalent, 317
Binaural hearing aid, 454, 456
Bit, 135

error probability, 322
Bit-reversal addressing, 60
Bivariate, 121

density factor, 133
density function, 132
Gaussian density, 131, 133
probability density function, 132
probability distribution function, 130
statistic, 130
vector, 121

Block, 177
filter, 286
length, 177
LMS algorithm, 537
time index, 202

Block-oriented adaptation, 177
Blocking matrix, 499
Boxcar window, 54
Branch

receive, 507
transmit, 507

Broadside orientation, 474, 485
BWE, see Bandwidth extension

C
Cardioid directional characteristics, 488
Cauchy integral theorem, 44
CCAF, see Coefficient constrained

adaptive filter
CCR, see Comparison category rating
CDMA, 300
Cell

quantization, 228
Voronoi, 228

CELP, see Code excited linear prediction
Center clipper, 550
Central

limit theorem, 149
moment, 124

Cepstral coefficient, 69
Cepstrum, 65

complex, 65
real, 66
vocoder, 265

Chain rule, 123
Channel

binary symmetric, 321
decoder

soft-input, soft-output (SISO), 335
encoder

inner, 318
outer, 318

equivalent, 318
equivalent binary symmetric, 317
vocoder, 263

Characteristic
13-segment A-law, 219, 220
A-law, 213, 215, 216, 218
compressor, 212
magnitude truncation, 203
µ-law, 215, 216
quantizer, 203

χ2-density, 132
χ2-distribution, 137
Classification of speech coding algorithms,

240
Clipper

center, 550
CLMS, see Constrained least-mean-square

algorithm
Closed-loop, 198

DPCM, 255
LTP, 297
prediction, 249–251, 253, 258, 259

quantization with, 253
Cochlea, 27
Cochlear implant, 390
Code

book, 228
ACELP, 295, 298, 299
adaptive, 295–297
algebraic, 294, 298
fixed, 290, 297
index, 229
LBG, 236
search, 294
sparse ternary, 295
stochastic, 290

excited linear prediction, 281, 290,
295, 296

vector, 228
Codec
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adaptive multi-rate (AMR), 298, 299,
390, 429

adaptive multi-rate wideband, 300,
590

baseband–RELP, 282, 283
enhanced variable rate, 390
extended adaptive multi-rate

wideband, 592
GSM enhanced full-rate (EFR), 298
GSM full-rate, 286
hybrid speech, 273
improved multi-band excitation, 595
standards, 569

Coding
adaptive predictive, 282
analysis-by-synthesis, 279, 290
differential waveform, 245
hybrid, 241, 242, 273
law of the 13-segment A-law

characteristic, 220
model-based predictive, 244
parametric, 241, 242, 262
speech, 239
waveform, 241, 242

Coefficient
cepstral, 69
constrained adaptive filter, 500
reflection, 185, 267

Coherence, 485, 495
function, 485, 495
magnitude squared, 476

Comb filter, 274
Comfort

user, 505
Communication

handsfree voice, 505
Compander, 212

gain, 219
Companding, 211
Comparison category rating, 598, 601
Compensation

tilt, 307
Complement, 120
Complex

cepstrum, 65
phasor, 58
variable, 126

Complexity
computational, 294, 543, 547
problem, 230

Component
polyphase, 112

Compression
signal, 211

Compressor, 211

characteristic, 212
Computational complexity, 294, 543, 547
Condition

Dirichlet, 36
Conditional

density, 123
entropy, 342
error probability, 322
estimator, 372
expectation, 125, 324
L-value, 326
maximum a posteriori estimation,

374
minimum mean-square error

estimation, 373
PDF, 123
probability, 121
probability density function, 123

Confluent hypergeometric function, 417
Consonant, 8

affricative, 8
aspirate, 8
fricative, 8
nasal, 8
stop, 8

Constrained
fast LMS algorithm, 548
least-mean-square algorithm, 498
LMS algorithm, 498

Constraint
gradient, 545, 548

Contribution
ringing, 292

Control
echo, 505
feedback, 505

Convergence
fast, 559

Conversion
A/D, 202

Converter
analog-to-digital, 506

Convolution, 40
aperiodic, 50
cyclic, 50, 541, 542
fast, 61, 539

Convolutive noise, 68
Correlation

auto-, 139, 393
cross-, 130, 140, 393
matrix, 137

Corti
organ of, 27

Cost function, 155
Covariance
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auto-, 139
cross-, 131, 140
matrix, 137
method, 178, 180, 194

CRC, see Cyclic redundancy check
Critical

band, 31
decimation, 76, 80, 91, 97
distance, 453

Critical-band rate, 31
Critically sampled filter bank, 549
Cross-correlation, 130, 393

function, 140
method, 178

Cross-covariance, 131
function, 140
normalized, 131

Cross-power spectral density, 144
Cutoff frequency, 362
Cyclic

convolution, 50, 541, 542
redundancy check (CRC), 318

D
D2-lattice, 228, 231
DCR, see Degradation category rating
Decimation

adaptive, 287
critical, 76, 80, 91, 97
factor r, 76
grid, 91
half-critical, 80, 92, 97

Decimation-in-time, 57
Decision level, 221
Decision-directed, 555

approach, 403
Decoder

baseband–RELP, 284
reliability information (DRI), 318

Deconvolution, 69
Degradation category rating, 598, 602
Delay

algorithmic, 283, 543
external, 486
internal, 486
signal, 511
transmission, 507

Delay-and-sum beamformer, 477, 481, 482,
485, 490, 495, 498

Density, 123
a priori, 155
bivariate Gaussian, 131
χ2-, 132
conditional, 123
exponential, 127, 132

factor
bivariate, 133

function, 132
gamma, 128
Gaussian, 126, 129, 132
general gamma, 128
generalized gamma, 154
Laplace, 127
marginal, 122, 130, 131, 133
monovariate, 130
multivariate Gaussian, 131
one-sided exponential, 127
two-sided exponential, 127
uniform, 125, 132

Design of optimal vector code books, 232
Detection

double talk, 548
voice activity, 426

Detector
voice activity, 401, 425

Deterministic function, 128
DFT, see Discrete Fourier transform
Difference equation, 40
Differential

entropy, 135
microphone array, 486
PCM system, 246
pulse code modulation, 246

closed-loop, 255
waveform coding, 245

Digital
all-pole model, 19
ladder filter, 267
lattice filter, 267
representation, 201
signal processor, 60
vocal tract filter, 11

Diphtong, 8
Dipole directional characteristics, 488
Dirac impulse, 37
Direct form, 186
Directional characteristics, 488

cardioid, 488
dipole, 488
hyper-cardioid, 488
super-cardioid, 488

Directivity, 489
index, 485
pattern, 482

Dirichlet condition, 36
Discontinuous transmission, 425
Discrete Fourier transform, 47, 90
Discrete unit impulse, 39
Distance

critical, 453
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measure, 229
spectral, 267

system, 511, 517, 522, 526
total log spectral, 69

Distortion
mean spectral, 267
measure

Itakura–Saito, 428
Distortionless response beamformer, 493,

498
Distribution

K0, 148
a priori, 155
function, 122

cumulative, 122
gamma, 148, 152
Gaussian, 152
joint Gaussian, 126
Laplace, 148, 152
multivariate Gaussian , 137
Rayleigh, 151
supergaussian, 148
uniform, 125, 211

Double talk, 507, 511, 526, 552
detection, 548

DPCM, see Differential pulse code
modulation

DRI, see Decoder reliability information
DSP, see Digital signal processor

E
Ear

canal, 25
drum, 25
inner, 27
middle, 26
outer, 25

Early reflection, 508
Echo

cancellation
acoustic, 499, 505

canceller
acoustic, 505
stereophonic, 559

control, 505
reduction

steady-state, 520
residual, 520, 550, 553
return loss enhancement, 512
suppression, 511
suppressor, 507

Effect
Bernoulli, 7
masking, 5, 28, 32, 278, 290
spectral whitening, 288

whitening, 186
EFR, see Enhanced full-rate codec (GSM)
Eigenfunction, 41
Electro-acoustic transmission path, 506
Elementary events, 121
Elevation, 474
Endfire orientation, 474, 475, 485
Enhanced

full-rate codec (GSM), 298
variable rate codec, 390

Entropy, 135, 342
conditional, 342
differential, 135
of the GSM full-rate codec, 351

Equalization, 486
Equation

difference, 40
normal, 173, 179
wave, 13

Equivalent
binary symmetric channel, 317
channel, 318

Ergodic
process, 142
strict sense, 143

ERLE, see Echo return loss enhancement
Error

concealment, 315
turbo, 353

instantaneous squared, 190
minimum mean-square, 392, 493
probability

bit, 322
conditional, 322

quantization, 203
signal

long-term prediction, 192
prediction, 169

weighted mean square, 230
Estimate

maximum likelihood, 412, 413
Estimation, 158

amplitude, 417
conditional MMSE, 373
minimum mean-square error, 414
optimal, 154
spectral envelope, 372
theory, 119

Estimator, 154, 555
amplitude, 416
conditional, 372
linearly constrained, 157
log spectral amplitude, 419
maximum a posteriori, 154, 339, 501
maximum likelihood, 154
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minimum mean square error, 155
minimum mean-square error, 501
non-linear, 411
non-linear minimum mean square

error, 157
optimal, 158
optimal linear, 156
short-time spectral amplitude, 417

ETSI, see European telecommunications
standards institute

ETSI/3GPP 26.190, 569, 590
ETSI/3GPP 26.290, 569, 592
ETSI/GSM 06.10, 569, 580
ETSI/GSM 06.20, 569, 582
ETSI/GSM 06.60, 569, 584
ETSI/GSM 06.90, 569, 586
Euclidian norm, 230
European telecommunications standards

institute, 569
Eustachian tube, 26
Event, 119, 123, 129

elementary, 121
individual, 120
joint, 120
random, 120

EVRC, see Enhanced variable rate codec
Excitation

signal, 164
extension, 375

source, 10, 11
vector, 293

Expander, 211, 212
Expectation, 124, 130

conditional, 125, 324
Expected value, 124
Experiment, 129, 138
Exponential

density, 127, 132
probability density function, 126

Extended adaptive multi-rate wideband
codec (AMR-WB+), 592

Extension of the excitation signal, 375
External delay, 486
Extrinsic information, 353

F
Factor

gain, 291
overestimation, 406

Fading factor, 330
Fading–AWGN channel, 329
Far-end, 559
Farfield, 470, 472, 478, 479, 481
Fast

convergence, 559

convolution, 61, 539
Fourier transform, 56, 93, 540
LMS algorithm, 544

FDAF, see Frequency domain adaptive
filter

Feedback control, 505
FFT, see Fast Fourier transform
Filter

adaptive, 505
all-pole, 24
AR, 163
bank, 73, 410, 549

critically sampled, 549
oversampled, 549
polyphase network (PPN), 78, 93
PPN analysis, 93
PPN synthesis, 101
quadrature mirror, 105

block, 286
comb, 274
digital ladder, 267
digital lattice, 267
digital vocal tract, 11
frequency domain adaptive, 536, 539
half-band, 105
Kalman, 555
LP-analysis, 170
LP-synthesis, 288
LTP-synthesis, 288
M-th band, 83, 89
multi-channel frequency domain

adaptive, 561
noise shaping, 276
non-causal IIR Wiener, 443
partitioned block frequency domain

adaptive, 543
partitioned frequency domain

adaptive, 548
quadrature mirror (QMF), 105
soft-partitioned frequency domain

adaptive, 548
vocal tract, 10
Wiener, 394, 402, 408, 445, 450, 453,

513, 554
zero-phase, 415

Filter-and-sum beamformer, 489, 495
Filtering

polyphase, 98, 99
Finite impulse response, 82
FIR, see Finite impulse response
First-order Markov process, 518, 530
Fixed code book, 290, 297
Flat-top window, 410
Flatness

spectral, 174
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FLMS, see Fast LMS algorithm
Form

direct, 186
factor F , 209, 211

Formant
frequency, 264
vocoder, 264

Forward prediction, 249, 251
Fourier

approximation
modified, 83, 89

transform, 35
transform of continuous signals, 35
transform of discrete signals, 37

Frame, 177
Frequency

absolute, 129
cutoff, 362
domain adaptive filter, 536, 539

multi-channel, 561
partitioned block, 543

formant, 264
normalized radian, 37
relative, 129, 130
response, 41

FT, see Fourier transform
FTDS, see Fourier transform of discrete

signals
Full search, 230
Full-duplex, 505
Full-rate codec

GSM, 286
GSM enhanced (EFR), 298

Function
Bessel, 413
confluent hypergeometric, 417
density, 132
deterministic, 128
index, 423, 425
window, 52

G
G.711 (ITU), 221
G.722 (ITU), 569, 579
G.722.2 (ITU), 569, 590
G.726 (ITU), 569, 572
G.728 (ITU), 569, 573
G.729 (ITU), 569, 576
Gain

compander, 219
factor, 291

optimal, 293
Kalman, 535
prediction, 174, 252, 254

Gain–shape vector quantization, 236, 278

Gamma
density, 128
probability density function, 127

Gaussian
density, 126, 129, 132
mixture model, 380
model, 150
noise, 129
probability density function, 126
random variable, 129

General gamma density function, 128
Generalized

likelihood ratio, 160, 420, 433
side-lobe canceller, 495, 498

Global system for mobile communications
(GSM), 286, 299, 316, 506, 507

adaptive multi-rate codec, 298, 299
enhanced full-rate codec, 298
entropy of, 351

Glottis, 7
GMM, see Gaussian mixture model
Graceful degradation, 316, 340
Gradient, 514

constraint, 545, 548
instantaneous, 190, 514, 537

Graph
signal-flow, 21

Grid
decimation, 91

Griffiths-Jim beamformer, 495
GSC, see Generalized side-lobe canceller
GSM, see Global system for mobile

communications
GSM 06.10 (ETSI), 569, 580
GSM 06.20 (ETSI), 569, 582
GSM 06.60 (ETSI), 569, 584
GSM 06.90 (ETSI), 569, 586
GSM full-rate codec, 286

H
Half-band filter, 105
Half-critical decimation, 80, 92, 97
Hamming window, 54
Handsfree voice communication, 505
Hangover, 429
Hann window, 54
Hard decision (HD) source decoding, 316
Head-related transfer function, 491
Hearing

aid
binaural, 454, 456

anatomy of, 25
area, 28
threshold of, 28

Helicotrema, 28
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Hidden Markov state model, 375
High-frequency regeneration, 368
High-resolution LTP analysis, 198
Histogram, 129

long-term, 148
HMM, see Hidden Markov state model
Hybrid

coding, 241, 242, 273
speech codec, 273

Hyper-cardioid directional characteristics,
488

Hypergeometric function
confluent, 417

I
Ideal diffuse

noise field, 452, 485, 490
sound field, 446, 476

IIR, see Infinite impulse response
IMBE, see Improved multi-band excitation

codec
Impedance

acoustic, 14
Improved multi-band excitation codec

(IMBE), 569, 595
Impulse

Dirac, 37
discrete unit, 39
response, 40, 509

prototype, 81
Index

assignment
robust, 234

block time, 202
code book, 229
function, 423, 425

Individual event, 120
Infinite impulse response, 82, 165
Information, 135

a priori, 121
mutual, 136

INMARSAT/IMBE, 569
Inner channel encoder, 318
Innovation, 169
Instantaneous

bit error rate, 329
channel quality, 334
gradient, 190, 514, 537
power, 260
squared error, 190

Instrumental speech quality measure, 602
Integer-band sampling, 80
Integral theorem

Cauchy, 44

Integrated services digital network (ISDN),
239, 506

Intensity
sound, 28

Intermediate reference system, 240
Internal delay, 486
International telecommunication union,

569
Interpolation, 87
Intrusive speech quality measure, 603
Inverse

bit mapping, 317
normalized variance, 438
of the vocal tract model, 172

IRS, see Intermediate reference system
IS-96 (TIA), 569, 594
ISDN, see Integrated services digital

network
Itakura–Saito distortion measure, 428
Iterative source–channel decoding, 353
ITU, see International telecommunication

union
ITU-T/G.711, 221
ITU-T/G.722, 569, 579
ITU-T/G.722.2, 569, 590
ITU-T/G.726, 569, 572
ITU-T/G.728, 569, 573
ITU-T/G.729, 569, 576

J
Joint

density, 133
density function, 133
detection, 158
event, 120
Gaussian distribution, 126
Gaussian random variable, 131
PDF, 122
probability, 120, 121
probability density, 123, 131, 132
probability density function, 130

K
Kalman

filter, 555
gain, 535

Kullback–Leibler
distance, 136
divergence, 135

L
L-value, 321, 323

conditional, 326
of the sequence x(κ), 327

Ladder
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filter
digital, 267

structure, 21
Laplace

density, 127
operator, 468
probability density function, 127, 211
transform, 42

LAR, see Log area ratio
Larynx, 7
Lattice

D2, 228, 231
filter

digital, 267
quantization, 231
structure, 21, 186

LBG, see Linde–Buzo–Gray algorithm
Learning curve, 515
Least-mean-square, 188, 190, 260

algorithm, 495, 514, 547
algebraic sign–, 261
block, 537
normalized, 396

Least-squares algorithm
recursive, 532, 533, 560
weighted, 532

LEM, see Loudspeaker–enclosure–
microphone
system

Lemma
matrix inversion, 534

Level
decision, 221
loudness, 29
quantization, 203
quantizer representation, 221

Levinson–Durbin
algorithm, 180, 182
recursion, 396

Likelihood ratio
generalized, 420, 433

Limited susceptibility, 493
Linde–Buzo–Gray algorithm, 233

code book, 236
example, 235

Line spectral frequency, 270, 406
Linear

prediction, 163, 169
analysis filter, 170
code excited, 281, 290, 295, 296
mixed excitation, 390
residual excited, 282
synthesis filter, 288

predictive analysis, 163
shift invariant system, 40

Linear-phase, 395
Lloyd–Max quantizer, 221
LMQ, see Lloyd–Max quantizer
LMS, see Least-mean-square
Log

area ratio, 265, 269
spectral amplitude estimator, 419

Log-likelihood ratio, 427
Long-term

postfilter, 306
prediction, 192, 273, 277, 295

analysis high-resolution, 198
closed-loop, 297
error signal, 192
loop, 296
noise shaping, 277
synthesis filter, 288

Look direction, 474, 483
Loop

closed, 198
LTP, 296
open, 198

Lossless tube, 13
Loudness

level, 29
rating

talker echo, 511
Loudspeaker–enclosure–microphone

system, 507, 555
LP, see Linear prediction
LPC vocoder, 266
LPC-10 algorithm, 265
LSF, see Line spectral frequency
LSI, see Linear shift invariant
LTP, see Long-term prediction

M
M-th band filter, 83, 89
MA model, see Moving-average model
MAC, see Multiply–accumulate operation
Magnitude

squared coherence, 445, 446, 454,
476, 560

subtraction, 401
truncation, 204, 205

characteristic, 203
MAP estimator, see Maximum a posteriori

estimator
Marginal density, 122, 130, 131, 133
Markov process, 342

first-order, 518, 530
Masker, 32
Masking, 32, 553

effect, 5, 28, 32, 278, 290
post-, 33



Index 617

pre-, 33
simultaneous, 33, 560
threshold, 305

Matrix
correlation, 137
covariance, 137
inversion lemma, 494, 534
Jacobian, 134
symmetric Toeplitz, 142
Toeplitz, 142, 173, 396

Maximum
a posteriori estimation

conditional, 374
a posteriori estimator, 154, 339, 501
likelihood, 412

estimate, 412, 413
estimator, 154

Mean, 124–128
free path, 510
opinion score (MOS), 598
short-time, 143
spectral distortion, 267
square error

weighted, 230
Measure

distance, 229
spectral distortion, 70
spectral flatness, 174

Mega operations per second, 571
MELP, see Mixed excitation linear

prediction
Memory requirement, 431
Method

auto-correlation, 178, 182, 194
covariance, 178, 180, 194
cross-correlation, 178

Microphone array, 467
differential, 486

Middle ear, 26
Midrise quantizer, 203, 205
Midtread quantizer, 203, 205
Minimum

mean-square error, 392, 412, 493
conditional estimation, 373
estimate, 433
estimation, 414
estimator, 155, 392, 501
log spectral amplitude estimator,

419, 421
short-time spectral amplitude

estimator, 417
search, 442
statistics, 401, 434
variance distortionless response

beamformer, 488

Minimum-phase
sequence, 66, 67
system, 47, 168

Mirror polynomial, 270
Mirroring

spectral, 285
MIRS, see Modified Intermediate reference

system
Mixed excitation linear prediction, 390
ML, see Maximum likelihood
ML estimator, see Maximum likelihood

estimator
MMSE, see Minimum mean-square error

estimation, 414
estimator, 392

MMSE estimator, see Minimum mean
square error estimator

MMSE-LSA, see Minimum mean-square
error log spectral amplitude

MMSE-STSA, see Minimum mean-square
error short-time spectral
amplitude estimator

MNRU, see Modulated noise reference unit
Model, 119

acoustic tube, 11
all-pole, 5, 66, 166
all-zero, 165
AR, see Autoregressive model
ARMA, see Autoregressive

moving-average model
autoregressive, 166
autoregressive moving-average, 166
digital all-pole, 19
Gaussian, 150
Gaussian mixture, 380
hidden Markov, 375
MA, see Moving-average model
moving-average, 165
pole-zero, 166
signal-plus-noise, 150
source–filter, 10
speech production, 10, 163
vocal tract, 164

Model-based predictive coding, 244
Modified

Fourier approximation, 83, 89
intermediate reference system, 240

Modulated noise reference unit (MNRU),
598

Modulation
pitch-adaptive, 377
theorem, 284

Moment, 124, 130
central, 124
conditional central, 125
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Monovariable
Gaussian density, 133

Monovariate
density, 130
process, 141

MOPS, see Mega operations per second
MOS, see Mean opinion score
Moving-average model, 165
MPE, see Multi-pulse excitation
MSC, see Magnitude squared coherence
µ-law characteristic, 215, 216
Multi-channel

frequency domain adaptive filter, 561
noise canceller, 499
sound transmission, 557

Multi-pulse excitation, 301
Multi-rate codec

adaptive (AMR), 298, 299, 390
Multiplier

stepsize, 225, 226
Multiply–accumulate operation, 523, 536
Multivariate, 121

Gaussian density, 131
Gaussian distribution, 137
PDF, 130
statistic, 136
stochastic process, 140

Music signal, 285
Musical noise, 403, 405, 416
Muting mechanism, 340
Mutual information, 136
MVDR, see Minimum variance

distortionless response
beamformer

N
Narrowband

speech, 363
telephone speech, 365

Nat, 135
NCAF, see Norm-constrained adaptive

filter
Near-end, 505
Nearfield, 470, 472
NLMS, see Normalized least-mean-square

algorithm
Noise

cancellation, 449
canceller

adaptive, 498, 499
multi-channel, 499

convolutive, 68
field

ideal diffuse, 452, 485, 490
floor, 399, 400

Gaussian, 129
musical, 403, 405, 416
power

quantization, 207
quantization, 203
residual, 416
shaping, 255, 258, 259, 277, 278

filter, 276
white, 145

Non-causal IIR Wiener filter, 443
Non-intrusive speech quality measure, 604
Non-linear

estimator, 411
processor, 559

Non-stationary approach, 178, 181
Non-uniform

quantization, 211
spectral resolution, 410

Norm
Euclidian, 230

Norm-constrained adaptive filter, 500
Normal equations, 173, 179
Normalized

cross-covariance, 131
least-mean-square algorithm, 396,

451, 453, 509, 516, 553, 555, 560
radian frequency, 37
stepsize parameter, 524

O
Observation probability, 324
Odd–perfect sequence, 556
One-sided z-transform, 44
Open-loop, 198

prediction, 249–251, 253, 258, 259,
276

quantization with, 250
Operation

multiply–accumulate, 523, 536
rounding, 204
tandem, 309

Operator
projection, 527, 528, 530

Optimal
estimator, 158
gain factor, 293
linear estimator, 156
quantization, 221

Optimum prediction, 171
Order of the system, 41
Organ of Corti, 27
Organs of speech production, 6
Orientation

broadside, 474, 485
endfire, 474, 475, 485
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Orthogonal, 527
projection, 528

Ossicle, 27
Outer

channel encoder, 318
ear, 25

Oval window, 26
Overestimation, 405

factor, 406
Overlap-add, 61
Overlap-save, 61, 540
Oversampled filter bank, 549

P
Pain

threshold of, 28
Parameter

estimation, 338
estimator, 336
extraction, 202
regularization, 530
smoothing, 436
SNR, 345
stepsize, 451

Parametric coding, 241, 242, 262
Parseval’s theorem, 36, 38, 48, 70, 445
Particle velocity, 13
Partitioned

block frequency domain adaptive
filter, 543

frequency domain adaptive filter, 548
Path

mean free, 510
PBFDAF, see Partitioned block frequency

domain adaptive filter
PCM system

differential, 246
PDF, see Probability density function
Perceptual

evaluation of speech quality, 301, 603
speech quality measure, 603

Perfect
reconstruction, 408

analysis–synthesis system, 396
sequence, 529, 555

Periodogram, 145, 399, 447
modified, 146
non-recursively smoothed, 147
recursively smoothed, 147
smoothed, 147
Welch, 147

PESQ, see Perceptual evaluation of speech
quality, see Perceptual
evaluation of speech quality

Phase

spectrum, 38
vocoder, 265

Phasor
complex, 58

Phon, 29
Phone, 8
Phoneme, 8
Pitch, 9

period, 7, 9
Pitch-adaptive modulation, 377
Pitch-pulse, 11
Plosive sound, 7, 9
Point source, 469
Pole-zero model, 166
Polynomial

anti-mirror, 270
mirror, 270

Polyphase
component, 112
filtering, 98, 99
network

analysis filter bank, 93
filter bank, 78, 93
synthesis filter bank, 101

Post-masking, 33
Postfilter, 454, 456, 493, 494, 511

adaptive, 298, 305, 553
long-term, 306
short-term, 306

Postfiltering
adaptive, 305

Power, 124, 125, 127
instantaneous, 260
quantization noise, 207
spectral density, 144, 399
spectrum, 119
subtraction, 401

PPN, see Polyphase network
Pre-masking, 33
Prediction

backward, 249, 251
closed-loop, 249–251, 253, 258, 259
code excited linear, 281, 290, 295, 296
error signal, 169
forward, 249, 251
gain, 174, 252, 254
linear, 163, 169
long-term, 192, 273, 277, 295
mixed excitation linear, 390
open-loop, 249–251, 253, 258, 259,

276
optimum, 171
residual excited linear, 282
short-term, 164, 273

Predictive coding
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adaptive, 282
model-based, 244

Predictor
adaptation, 177
coefficients

quantization of, 266
short-term, 170

Pressure
sound, 28

Probability, 119, 120, 135
a posteriori, 323, 338, 340
a priori, 158, 324, 420, 423
bit error, 322
conditional, 121
conditional error, 322
density, 125

joint, 131
density function, 122, 124, 128, 206

exponential, 126
gamma, 127
Gaussian, 126
joint, 130
Laplace, 127, 211
Rician, 151
triangular, 211

distribution, 122
distribution function

bivariate, 130
joint, 120, 121
measure, 120
observation, 324
space, 120
total, 121
transition, 324, 343

Problem
complexity, 230

Process
AR, see Autoregressive process
autoregressive, 166
ergodic, 142
Markov, 342
monovariate, 141
multivariate stochastic, 140
short-time stationary, 143
stationary, 138
stochastic, 138

Processor
non-linear, 559

Product
space, 120

Projection, 527
operator, 527, 528, 530
orthogonal, 528

Propagation vector, 473, 480, 482, 489
Property

symmetry, 48
Prototype impulse response, 81
PSD, see Power spectral density
PSQM, see Perceptual speech quality

measure
Pulse code modulation

adaptive differential, 241, 245, 260
differential, 246

Pulse excitation
regular, 286

Q
QMF, see Quadrature mirror filter
Quadrature

mirror filter, 105
mirror filter bank, 105

Quantization, 201
adaptive, 222
cell, 228
closed-loop prediction, 253
error, 203

spectral shaping of, 255
gain–shape vector, 236, 278
lattice, 231
level, 203
noise, 203

white, 254
noise power, 207
non-uniform, 211
open-loop prediction, 250
optimal, 221
predictor coefficients, 266
residual signal, 250
uniform, 203
vector, 228, 229, 278
white noise, 254

Quantized representation, 129
Quantizer

characteristic, 203
Lloyd–Max, 221
midrise, 203, 205
midtread, 203, 205
representation level, 221
representation vector, 228
reproduction level, 203
reproduction vector, 228
stepsize, 203
symmetric, 203

R
Radian frequency

normalized, 37
Random

event, 119, 120
experiment, 138
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phenomenon, 119, 121, 129
process, 119
variable, 119, 121–123, 129, 130

complex Gaussian, 126
complex-valued, 121
continuous, 123, 124
discrete, 124
expected value of, 125
exponentially distributed, 127
Gaussian, 129
jointly Gaussian, 131
mean of, 124
real-valued, 121, 126
real-valued Gaussian, 126
vector of, 121

Rate
Critical-band, 31

Ratio
log area, 265
log-likelihood, 427
signal-to-noise, 206

Real cepstrum, 66
Realism

spatial, 557
Receive branch, 507
Reconstruction

perfect, 408
Rectangular window, 54
Recursion

Levinson–Durbin, 396
Recursive least-squares, 191

algorithm, 532, 533, 560
Reduction

sampling rate, 76
Redundancy, 342
Reference

point, 471
signal, 392

Reflection coefficient, 185, 267
arcsine, 269

Regeneration
high-frequency, 368

Region of convergence, 42
Regular pulse excitation, 286, 301, 303
Regularization parameter, 530
Relative frequency, 129, 130
Reliability measure, 322
RELP, see Residual excited linear

prediction
Representation

digital, 201
level

quantizer, 221
Reproduction

level quantizer, 203

vector quantizer, 228
Residual

echo, 520, 550, 553
excited linear prediction, 282, 367

baseband, 366
baseband codec, 282, 283

noise, 416
signal

quantization of, 250
scalar quantization of, 275

Resolution
spectral, 55

Response
frequency, 41

Reverberation time, 508
Ringing

contribution, 292
synthesis filter, 292

RLS, see Recursive least-squares
Robust index assignment, 234
ROC, see Region of convergence
Round window, 26
Rounding operation, 204
RPE, see Regular pulse excitation

S
Sample

analog, 201
Sampling

frequency, 201
integer-band, 80
period, 201
rate reduction, 76
spatial, 475
theorem, 201

SBR, see Spectral band replication
Scala

tympani, 27
vestibuli, 27

Scalar quantization of the residual signal,
275

Scale
Bark, 31

SD, see Spectral distance measure
Search

code book, 294
minimum, 442
sequential, 297

Segmental signal-to-noise ratio, 226
Self-noise, 476
Semivowel, 9
Sequence

all-pass, 67
minimum-phase, 66, 67
odd–perfect, 556
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perfect, 529, 555
Sequential

adaptation, 188
search, 297

Set, 120
Short-term

postfilter, 306
prediction, 164, 273
predictor, 170
spectral amplitude, 501
spectral analysis, 86
spectral analysis and synthesis, 86
spectral analyzer, 78
spectral synthesis, 86
spectrum, 75

Short-time
mean, 143
spectral amplitude estimator, 417
stationary, 143
stationary process, 143
variance, 143

Signal
compression, 211
delay, 471, 511

absolute, 471
relative, 471

prediction error, 169
stochastic, 119
subband, 73
target, 292

Signal-flow graph, 21
Signal-plus-noise model, 150
Signal-to-noise ratio, 157, 206

a posteriori, 402, 417, 424, 426, 428,
436

a priori, 157, 402, 408, 417, 424, 554,
555

segmental, 226
Simultaneous masking, 33, 560
Single talk, 507
SISO channel decoder, see Soft-input,

soft-output channel decoder
Sliding window, 75
Smoothing, 147

in time
non-recursive, 147
recursive, 147

parameter, 436
SNR, see Signal-to-noise ratio
SNRseg, see Segmental signal-to-noise

ratio
Soft

decision source decoding, 315, 336,
337

decision weighting, 160

estimate, 324
information, 323
switching, 551

Soft-input, soft-output (SISO) channel
decoder, 335

Soft-partitioned frequency domain
adaptive filter, 548

Softbit, 321, 323, 324
source decoding, 336

Solution
steady-state, 521
Wiener, 548

Sone, 29
Sound

field
ideal diffuse, 446, 476

ideal diffuse field, 446, 476
intensity, 28
plosive, 7, 9
pressure, 28, 468
transmission

multi-channel, 557
unvoiced, 7
velocity, 468
voiced, 7

Source decoding
hard decision (HD), 316
soft decision (SD), 315, 336, 337
softbit, 336

Source–filter model, 10
Space

vector, 527
Sparse ternary code book, 295
Spatial

aliasing, 475
realism, 557
sampling, 475

Spectral
amplitude

short-term, 501
amplitude, 413
analysis

short-term, 86
analyzer

short-term, 78
band replication, 369
distance

total log, 69
distance measure, 267
distortion

mean, 267
distortion measure, 70
envelope estimation, 372
envelope of speech, 163, 170
flatness, 174
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flatness measure, 174
floor, 405
gain, 401
gap, 377
leakage, 52, 55, 410
magnitude, 413
mirroring, 285
resolution, 55

non-uniform, 410
shaping of the quantization error, 255
subtraction, 400
synthesis

short-term, 86
tilt, 307
whitening effect, 288

Spectrum
amplitude, 38
baseband, 284
phase, 38
short-term, 75

Speech
codec

adaptive multi-rate wideband, 300
hybrid, 273

coding, 239
coding algorithm

classification of, 240
narrowband, 363
production

model of, 10, 163
organs of, 6

quality, 597
auditive measure, 597
instrumental measure, 602
intrusive measure, 603
non-intrusive measure, 604
perceptual evaluation, 301, 603
perceptual measure, 603

spectral envelope of, 163, 170
transmission

wideband, 363
wideband, 239, 363
wideband transmission, 363

Spherical wave, 469
Split algorithm, 234
Squared error

instantaneous, 190
Stability, 267
Standards

ETSI/3GPP 26.190, 569, 590
ETSI/3GPP 26.290, 569, 592
ETSI/GSM 06.10, 569, 580
ETSI/GSM 06.20, 569, 582
ETSI/GSM 06.60, 569, 584
ETSI/GSM 06.90, 569, 586

INMARSAT/IMBE, 569, 595
ITU-T/G.711, 221
ITU-T/G.722, 569, 579
ITU-T/G.722.2, 569, 590
ITU-T/G.726, 569, 572
ITU-T/G.728, 569, 573
ITU-T/G.729, 569, 576
TIA IS-96, 569, 594

Stationary
approach, 178, 180
process, 138
short-term wide sense, 139
short-time, 143
strict sense, 138
wide sense, 138

Statistic
bivariate, 130
first-order, 136
multivariate, 136
second-order, 136, 140

Statistical
independence, 131, 132
properties, 147, 148

asymptotic, 149
Steady-state

echo reduction, 520
solution, 521

Steepest descent algorithm, 189
Steering vector, 480
Stepsize, 514, 516, 528, 537, 548

multiplier, 225, 226
parameter, 451

normalized, 524
quantizer, 203

Stereophonic
acoustic echo control, 557
echo canceller, 559
transmission, 558

Stochastic
code book, 290
gradient algorithm, 190
process, 119, 138
signal, 119

Structure
ladder, 21
lattice, 21, 186
symmetric Toeplitz, 180
vocoder, 262

Subband
acoustic echo cancellation, 549
signal, 73

Subset, 120
Subtraction

magnitude, 401
power, 401
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spectral, 400
Super-cardioid directional characteristics,

488
Suppression

echo, 511
Suppressor

echo, 507
Susceptibility, 482, 490, 491

limited, 493
Switching

soft, 551
Symmetric

quantizer, 203
Toeplitz matrix, 142
Toeplitz structure, 180

Symmetry property, 48
Synthesis

filter
ringing of, 292

short-term spectral, 86
System, 39

analysis–synthesis, 408
distance, 511, 517, 522, 526
identification, 170
loudspeaker–enclosure–microphone,

507, 555
minimum-phase, 47, 168
response, 46

T
Talker echo loudness rating, 511
Tandem operation, 309
Target signal, 292
Telecommunications industry association,

569
Telephone

bandwidth, 239, 362
speech

narrowband, 365
wideband, 365

TELR, see Talker echo loudness rating
Ternary code book

sparse, 295
Test tone, 32
Theorem

Bayes, 323
Bayes in mixed form, 332
modulation, 284
Parseval, 36, 38, 48, 70, 445

Threshold
hearing, 28
masking, 305
pain, 28

TIA, see Telecommunications industry
association

TIA IS-96, 569, 594
Tilt, 306

compensation, 307
spectral, 307

Time averages, 142
Toeplitz

matrix, 142, 173, 396
structure

symmetric, 180
Total

log spectral distance, 69
probability, 121

Training vector, 233
Transfer function, 46

all-pass, 168
head-related, 491

Transform
discrete Fourier, 47
discrete Fourier (DFT), 90
fast Fourier (FFT), 56, 93, 540
Fourier, 35
Laplace, 42
z, 41

Transition probability, 324, 343
Transmission

delay, 507
discontinuous, 425
multi-channel sound, 557
path

electro-acoustic, 506
stereophonic, 558

Transmit branch, 507
Triangular probability density function,

211
Truncation

magnitude, 204
Tube

Eustachian, 26
lossless, 13
model

acoustic, 11
Tukey window, 410
Turbo error–concealment, 353
Two-sided z-transform, 42

U
UMTS, see Universal mobile

telecommunications system
Uncertainty, 135
Unconstrained fast LMS algorithm, 548
Uncorrelatedness, 131
Uniform

density, 125, 132
distribution, 125, 211
quantization, 203



Index 625

Unit
step, 41
variance, 129

Universal mobile telecommunications
system (UMTS), 299, 316, 506

Unvoiced sound, 7
User comfort, 505

V
VAD, see Voice activity detector
Variance, 124–128

inverse normalized, 438
short-time, 143
unit, 129

Vector
excitation, 293
quantization, 228, 229, 278

gain–shape, 236, 278
quantizer representation, 228
quantizer reproduction, 228
space, 527
training, 233

Velocity
particle, 13
volume, 14

Velum, 8
Vocal

chords, 7
tract, 7

inverse of model, 172
tract filter, 10
tract model, 164

Vocoder, 242, 262
cepstrum, 265
channel, 263
formant, 264
LPC, 266
phase, 265
structure, 262

Voice
activity detection, 426
activity detector, 401, 425
coder, 262
communication

handsfree, 505
Voiceband data, 285
Voiced sound, 7
Volume velocity, 14, 469
Voronoi cell, 228
Vowel, 8

W
Wave

equation, 13
length, 469

number, 469, 472
Waveform coding, 241, 242

differential, 245
Weighted

least-squares algorithm, 532
mean square error, 230
mega operations per second

(wMOPS), 571
White

noise, 145
quantization noise, 254

Whitening effect, 186
spectral, 288

Wideband
speech, 239, 363
speech codec

adaptive multi-rate, 300
speech transmission, 363
telephone speech, 365

Wiener
filter, 394, 402, 408, 445, 450, 453,

513, 554
non-causal IIR, 443

solution, 548
Window

boxcar, 54
flat-top, 410
function, 52
Hamming, 54
Hann, 54
oval, 26
rectangular, 54
round, 26
sliding, 75
Tukey, 410

wMOPS, see Weighted mega operations
per second

Z
z-transform, 41

one-sided, 44
two-sided, 42

Zero
mean, 129
padding, 56, 62

Zero-phase filter, 415
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