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Preface to the Second Edition 

Four years have p a s 4  since the first edition of this book. These years were 
"fast time" in the development of new approaches in statistical inference 
inspired by learning theory. 

During this time, new function estimation methods have been created 
where a high dimensionality of the unknown function does not always re- 
quire a large number of observations in order to obtain a good estimate, 
The new methods control generalization using capacity factors that  do not 
necessarily depend on dimensionality of the space. 

These factors were known in the  VC theory for many years. However, 
the practical significance of capacity control has become clear only recently 
after the appear- of support =tar machines (SVkl). In contrast t o  
classical methods of statistics where in order to  control performance one 
d e c r e a s ~  the dimensionality of a feature space, the SVM dramatically in- 
creases dimensionality and relies on the wcalled large margin factor. 

In the first edition of this book general learning theory including SVM 
met hods was introduced. At that  time SVM met hods of learning were brand 
new, some of them were introduced for a first time. Nuw SVM margin 
control methods represents one of the most important directions both in 
theory and application of learning, 

In the second edition of the book three new chapters devoted t o  the 
SVM methods were added. They include generalization of SVM method 
for estimating real-valued functions, direct methods of learning based on 
solving (using SVM) multidimensional i n t ~ a l  equations, and extension of 
the empirical risk minimization principle and itrs application to  SVM. 

The years since the first edition of the book have also changed the general 



philosophy in our understanding the of nature of the induction problem. 
After many successful experiments with SVM, researchers becarne more 
determined in criticism of the classical philowphy of generalization based 
on the principle of &am's razor. 

This intellectual determination alw is a very important part of scientific 
achievement. Note that the creation of the new methods of inference muld 
have happened in the early 1970: All the necessary elements of the theory 
and the SVM algorithm were known. It took twenty-five years to reach this 
intelledual determination. 

Now the analysis of generalization from the pure theoretical issues be- 
come a very practical subjwt, and this fact adds important details t o  a 
general picture of the developing computer learning problem described in 
the first edition of the book. 

Red Bank, New Jersey 
August 1999 

Vladimir N. Vapnik 



Preface to the First Edition 

Between 1960 and 1980 a revolution in statistics occurred; Fisher's 
paradigm, introduced in the 1920s and 1930s was r e p l d  by a new one. 
This paradigm reflects a new answer to the fundamental question: 

What must one know a priord about an u n h o m  fiLnctimaE dependency 
in order to estimate it on the basis of ubservations? 

In Fisher's paradigm the anwer was very res t r ic t ivmne rrlust know 
almost everything. Namely, ope must know the desired dependency up to 
the values of a finite number d parameters. Estimating the values of these 
parameters was considered to be the problem of dependency estimation. 

The new paradigm overcame the restriction of the old one. It was shown 
that in order t o  estimate dependency from the data, I t  is sufficient t o  hiow 
some general properties d the set of functions to which the unknown de- 
pendency belongs. 

Determining general conditions under which estimating the unknown 
dependency is possible, describing the (inductive) principles that allow one 
to find the best approximation to the unknown dependency, and finally 
developing effective algorithms for implementing these principles are the 
subjects of the new theory. 

Four discoveries made in the 1960s led the revolution: 

(i) Discovery of regularization principles for solving ill-posed problems 
by Tikhonov, Ivanov, and Phillip. 

(ii) Discovery of nonparametric statistics by Parzen, Rosenblatt, and 
Chentwv. 



(iii) Discovery of the law of large numbers in functional sgw~ and its 
relation to the learning processe by Vapnik and Chmnenkis .  

(iv) D k w e r y  of algorithmic complexity and its relation t o  inductive in- 
ference by K o l q r o v ,  Solomonoff, and Chaitin. 

These four discoveries also form a basis for any progress in studies of learn- 
ing process=. 

The problem of learning is so general that almost any question that 
has been discussed in statistical science has its analog in learning theory. 
Furthermore, some very important general results were first found in the 
framework of learning theory and then reformulated in the terms of statis- 
tics. 

In particular, learning theory for the h t  time stressed the problem 
of m a l l  sample statistics. It  was shown that by taking into account the 
size of the sample one can obtain better solutions to many problems of 
function estimation than by using the methods b a e d  on classical statkkical 
techniques . 

Small sample statistics in the framework of the new paradigm constitutes 
an advanced subject of research both in statistical learning theory and in 
theoretical and apphed statistics. The rules of statistical inference d m l -  
oped in the framework of the new paradigm should not only satisfy the 
existing asymptotic requirements but also guarantee that one does om's 
best in using the available restricted infomation. The result of this theory 
is new methods of inference for various statistical probkms. 
To develop these metbods (which often contradict intuition), a compre- 

hensive theory was built that includes: 

(i) Concepts describing the necessary and sufficient conditions for con- 
sistency of inference. 

[ii) Bounds describing the generalization ability of learning machines 
bwd  on the% concepts. 

(iii) Inductive inference for small sample sizes, based on these bounds. 

(iv) Methods for implementing this new type of inference. 

TWO difficulties arise when one tries to study statistical learning theory: 
a technical one and a conceptual o n e t o  understand the proofs and to 
understand the nature of the problem, i t s  philowphy. 

To omrcome the techical difficulties one has to be patient and persistent 
in f o l h i n g  the details of the formal inferences. 

To understand the nature of the problem, its spirit, 'and its p h i h p h y ,  
one has to see tbe theory as a wbole, not only as a colledion of its different 
parts. Understanding the nature of the problem is extremely important 



because it leads to searching in the right direction .for .results and prevetlts 
s arching in wrong direct ions. 

The goal of this book is to describe the nature af statistical learning 
theory. I would l k  to show h m  abstract reasoning irnplies new algorithms, 
Ta make the reasoning easier to follow, I made the book short. 

I tried to describe things as simply as possible but without conceptual 
simplifications. Therefore, the book contains neither details of the theory 
nor proofs of the t heorems (both details of the theory and proofs of the t h e  
orems can be found (partly) in my 1982 book Estimation of Dependencies 
Based on Empirdml Data (Springer) and (in full) in my book Statistical 
Learning Theory ( J .  Wiley, 1998)). However, t o  dwcribe the ideas with- 
aut simplifications I nseded to introduce new concepts (new mathematical 
constructions) some of which are nontrivial. 

The book contains an introduction, five chapters, informal reasoning and 
comments an the chapters, and a canclqsion. 

The introduction describes the history of the study of the learning prob 
lem which is not as straightforward as one might think from reading the 
main chapters. 

Chapter 1 is devoted to the setting of the learning problem. Here the 
general model of minimizing the risk functional from empiricd data is in- 
troduced. 

Chapter 2 is probably bath the mast important ane for understanding 
the new philosophy and the most difficult one for reading. In this cbapter, 
the conceptual theory of learning processes is described. This includes the 
concepts that a l lm construction of the necessary and sufficient conditions 
for consistency of the learning processes. 

Chapter 3 describes the nonasymptotic theory of bounds on the conmr- 
g e n e  rate of the learning processes. The theory of bounds is b a r d  on the 
concepts ab tained from the conceptual model of learning. 

Chapter 4 is devoted to a theory of smdl sample sixes. Here we introduce 
inductive principles for small sample sizes that can control the generaliza- 
tion ability. 

Chapter 5 describes, along with ~ l t ~ - ~ i c a l  neural networks, a new type of 
universal learning machine that is constructed on the basis af small sample 
sizes theow. 

Comments on the chapters are devoted to  describing the relations b e  
tween cla~sical research in mathematical statistics and r w c h  in learmng 
t heory. 

In the conclusion some open problems of learning theory are discussed. 

The book is intended for a wide range of readers: students, engineers, and 
scientists of different backgrounds (statisticians, mathematicians, physi- 
cists, computer scientists). Its understanding does not require knowledge 
of special branches of mathematics. Nemrthehs, it is not easy reading, 
since the book does describe a (conceptual) forest even if it does not con- 



sider the  (mathematical) tr-. 

In writing this book I had one more goal inmind: I wanted t o  stress the 
practical power of abstract reasoning. The point is that during the last few 
years at different computer science conferences, I heard reiteration of the 
following claim: 

Complex theo7.des do nut work, simple algorithm 60. 

One of the goals of ths book is to  show that, at least in the problems 
of statistical inference, this is not true. I would like to demonstrate that in 
this area of science a good old principle is valid: 

Nothing %s mum practical than ta good tkorg. 

The book is not a survey of the standard theory. It is an attempt to 
promote a certain point of view not only on the problem of learning and 
generalization but on theoretical and applied statistics as a whole. 

It is my hope that the reader will find the book interesting and useful. 
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Introduction: 
Four Periods in the Research of the 
Learning Problem 

In the history of research of the learning problem one can extract four 
periods that  can be characterized by four bright events: 

(i) Constructing the first learning mackies,  

(ii) constructing the fundamentals of the theory, 

(iii) constructing neural nehvorks, 

(iv) constructing the alternatives to neural networks. 

In different periods, differerlt subjects of research were considered to be im- 
portant. Altoget her this research forms a complicated (and contradictory) 
picture of the exploration of the learning problem. 

ROSENBLATT'S PERCEPTRON (THE 1960s) 

More than thirty five years ago F. Rosenblat t suggested the first mndcl of 
a learning machine, called the perceptron; this is when the mathematical 
analysis of learning processes truly began.' From tlie concept~lal point of 

' ~ n t e  that discriminant atralysis as proposmi in tlre 1930s by Fisher actualIy 
did not consider the problem of inductive inference (the problcm of estimating the 
discriminant ruIes using the examples). This happened later, after Fbsenblatt's 
work. In the 1930s discriminant analysis was consi&red a problem of construct- 
ing a decision ruk separating two categories of vectors 1x3jng given probability 
distribution functions far t h e  cetegmics of v ~ t o r s .  



2 lntroductbn: Four Periods in the Research of the Learning P r o b h  

t y = sign [(w * x) - bI 

FlGURE 0.1. (a) Model of a neuron. (b) Gmmetrically, a neuron defines two 
regions in input space where it takes the d u e s  -1 and 1 .  These regions are 
separated by the hyperplane (w - z) - b = 0. 

view, the idea of the perceptron was not new. It had been discussed h 
the neurophysiobgic literature for many p a r s .  Rosenblatt, however, did 
something unusual* He described the model as a program for computers and 
d m m t r a t e d  with simple experiments that this model can he generalized. 
T h e  percept ron was constructed to  solve pattern recognition problems; in 
the simplest case this is the problem of constructing a rule for separating 
data of two different categories using given examples. 

The Perceptron Model 
T o  construct such a rule the  perceptmn uses adaptive properties of the 
s impls t  n e u m  model (Rosenblatt, 1962). E d  neuron is described by 
the McCullocbPitts model, according to  which the neuron has n inputs 
r .- ( X I ,  - . . ,xn) f X c Rn and one output y E { -1 , l )  (Fig. 0.1). The 
output is connected with the inputs by the functional dependence 



Rmenblatt's Perceptron (The 1960s) 3 

where [u + v )  is the inner product of two vectors, b is a threshold value, and 
sign(u) = 1 if u > 0 and sign(u) = -1 if u 5 0. 

Geometrically speaking, the neurons divide the space X into two regions: 
a region where the output y takes the value 1 and a region where the output 
y takes the value -1. These two regions are separated by the hyperplane 

The vector w and the scalar b d e t e r a e  the p w i t h  of the separating 
hyperplane. During the learning process the perceptron c h o w s  appropriate 
coefficients of the neurm. 

Rosenblatt considered a model that is a composition of several neurons: 
He considered several levels of ~eurons ,  where outputs of neurons of the 
previous level are inputs for neurons of the next level [the output of m e  
neuron can be input to several neurons). The last level contains only m e  
neuron. Therebre, the (elementary) perceptron has pz inputs and m e  out- 
put. 

Geometrically speaking, the pe rcep tm divides the space X into two 
parts separated by a piecewise linear surface (Fig. 0.2). Choosing appro- 
priate coefficients for all neurons of the  net, the p e r c e p t m  specifies two 
regions in X space. These regions are separated by piecewise linear sur- 
faces (not necessarily connected). Learning in this model means finding 
appropriate coefficients for all neurons using given training data. 

In the 1960s it was not clear how to choose the coefficients simultaneously 
for all neurons of the perceptron (the solution came twenty five years later). 
Therefore, Rosenblatt suggwted the following scheme: t o  fix the coefficients 
of all neurons, except for the last one, and during the training process to  
try to find the co&cients of the last neuran. Geometrically speaking, he 
suggested transforming the input space X into a new space Z (by choosing 
appropriate coefficients of all neurons except for the last) and to  use the 
training data to  construct a separating hyperplane in the space Z .  

Folbwing the traditional physiological concepts of learning with reward 
and punishment stimulus, bsenb la t t  propused a simple algorithm for it- 
eratively finding the coefficients. 

Let 

be the training data given in input space and kt 

be the corresponding training data  in Z (the vector ri is the transformed 
xi). At each time step k, let m e  element of the training data  be fed into 
the perceptron. Denote by w(k) the coefficient vector of the last neuron at 
this time. The algorithm consists of the following: 
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FlGURE 0.2. (a) The perceptton is a composition of several neurons. (b) Get 
metrically, the perceptron defines two regions in input space where it takes tk 
values -1 and 1. These regiom are separated by a piecewise linear surface. 



(i) If the next example of the training data  r k + l ,  yk+l is classified cor- 
rectly, i.e., 

Yk+l ( ~ ( k j  4 ~ k + l  j > 0, 

then the cmffiue~lt vector of the hyperplane is not changed, 

(ii) If, however, the next element is classified incorrectly, i.e., 

~ k + l  (wi(k) % + I )  0, 

then the %tor of cwffickl~ts is changed according t o  the rule 

~ ( k  + 1) = ~ ( k )  + Yk+lfk+l 

(iii) The initial vector w is zero: 

w(1) = 0. 

Using this rule the perceptmn demonstrated generalization ability on sim- 
ple examples. 

Beginning the A nalpsis of Learning Processes 

In 1962 Novibff proved the first theorem about the perceptron (Novikoff, 
1962). This theorem actually started learning theory. It asserts that if 

(i) the norm of the training vectors 2 is bounded by some constant 
R ( l f l  I R); 

(ii) the training data can be separated with margin p: 

(iii) the training sequence is presented to  the perceptron a sufficient num- 
ber of times, 

then after at most 

corrections the hyperplane that separates the training data  will be con- 
structed. 

This theorem played an cxtre~ilely Important role in creating learning 
theory. It somehow connected the cause of generalization ability with the 
principle of minimizing the number of errors on the training set. As we 
will see in the last chapter, t he  expression [ R 2 / a ]  describes an impor- 
tant concept that for a wide class d learning machines allows control of 
generalization ability. 
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Applied and Theoretical Analysis of h m i n g  Processes 

N&koff proved that the perceptron can separate training data, Using ex- 
actly the same technique, one can prove that if the data are separable, then 
after a finite number of corrections, the Perceptron separates any infinite 
sequence of data (after the last correction the infinite tail of data will be 
separated without error). Moreover, if one supplies the perceptron with the 
following sbpping rule: 

percept ran stops - . the learning process if after the correction 
number k ( k  = 1,2, .  . .), the next 

elements of the training data do not change the decision rule 
(they are recognized correctly), 

then 

(i) the perceptron will stop the learning process during the first 

steps, 

(ii) by the stopping moment it will have constructed a decision rule that 
with probability 1 - q has a probability of error' on the test set k..ss 
than E (Aizerrnan, Braverman, and h o n o e r ,  1964). 

Because of these results many researchers thought that minimizing the 
error on the training set is the only cause of generalization (small proba- 
bility of teat errors). Therefore, the analysis of learning processes was split 
hb two branches, call them applied analysis of learning processes and 
theoretical analysis of Iearn~ng processes. 

The philosophy of applied analysis of the learning proem can be d+ 
scribed as follows; 

'Ib get a good generalization it is sufficient to choose the coeffi- 
cients of the neuron that pmvide the minimal nrrmber of train- 
ing errors. The principle of minimizing the number of triri~ing 
errors is a self-evident inductive principle, and from t11~ pmsti- 
cal point of view does not n d  justification. Thc main goal d 
applied analysis is t o  find methods for constructing the coeffi- 
cients simultaneously for all neurons such that the sepilratilrg 
surface prwWides the minimal number of errors on the t ra in i~~g  
data. 
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The ptilomphy of theoretical analysis of learning processes is different. 

The principle of minimizing the number of training errors is not 
self-evident and n e d s  to be justified. It is pmsible that there 
&ta another iuductive principle that provides a better level 
of generalization ability. The m a h  god of theoretical analy- 
sis of learning processes is to find the inductive principle with 
the highest level of generalization ability and to construct alg* 
rithms that realize this inductive principle. 

This book shows that indeed the principle of minimizing the number 
of training errors is not self-evident and that there exists another more 
intelligent inductive principle that provides a better level d generalization 
ability. 

CONSTRUCTION O F  THE FUNDAMENTALS OF THE 
LEARNING THEORY (THE 1960-19708) 

As soon as the experiments with the perceptron became widely known, 
other types of learning machines were suggested (such as the Mabalhe, 
constructed by B. Widrow, or the learning matrices constructd by K. 
Steinbuch; in fact, they started construction of special learning hardware), 
However, in contrast to the perceptron, these machines were considered 
from the very beginning as tools for solving real-life problems rat her than 
a general model of the learning phenomenon. 

For solving real-life problems, many computer programs were also de- 
veloped, including programs for constructing logical functions of different 
types (e.g., decision trees, originally intended for expert systems ), or hid- 
den Markov models (for speech recognition problems). These programs also 
did not affect the study of the general learning phenomena. 

The next step in constructing a general type of learning machine was 
done in 1986 when the s*called back-propagation technique for finding the 
weights simultanmusly for many neurons was ueed. This method actually 
inaugurated a new era 'in the history of learning machines. We will discuss 
it in the next sectio~r. h this section we concentrate on the history of 
developing the fundamentals of learning theory. 

In contrast to applied analysis, where during the time between construct- 
ing the perceptron (1960) and Implementing back-propagation technique 
(1986) nothing extraordinary h a p p e d ,  these years were extremely fruit- 
ful for d d o p i n g  statistical learning theory. 
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Theory of the Empirical Risk Minimization Principle 

As early as 1968, a philosopw of statistical learning theory had been de- 
veloped. The essential concepts of the emerging theory, VC entropy and 
VC dimension, had been discovered and introduced for the ;set of indicator 
functions (i.e., for the pattern recognition problem). Using these concepts, 
the law d large numbers in functional space (necessary and sufficient con- 
dit ions for uniform convergence of the  frequencies to their probabilities) 
was found, its relation to learning p m c e m  was described, and the main 
nonasymptotlc bounds for the rate of convergence were obtained (Vapnik 
and Chervoncnkis, 1968) ; completd proofs were published by 1971 (Vapnik 
and Chervonenkis, 1971). The obtained bounds made the introduction of 
a novei ind uctive principle possible (structural risk rninimiza t b n  inductive 
principle, 1974), completing the dwdopment. of pattern recognition learn- 
ing theory- The new paradigm for pattern recognitinn theory wss summa- 
rized in a monograph.2 

Between 1976 and 1981, the results, originally obtained for the set of 
indicator functions, were generalized for the set of real functions: the law 
of large numbers (n~cessary and sufficient conditions for uniform cmver- 
gence of means to their expectations), the bounds on the rate of uniform 
convergence both for the set of tatally bounded functions and for the set 
of i~nbounded functions, and the structural risk minimization principje. In 
1979 these results were summarized in a monograph3 describing the new 
paradigm for the general problem of dependencies estimation. 

Finally, in 1989 necessary and sufficient conditions for consismcy4 of the 
empirical risk minimization inductive principle and maximum likdihood 
method were found, completing the analysis of empirical risk minimization 
inductive inference (Vapnik and Chervonenkis, 1989). 

Building on thirty years of analysis of learning processes, in the 1990s 
the synthesis of novel learning machines controlling generalization ability 
began. 

These results were inspired by the study of learning procems. They are 
the main subject of the book. 

a V+ Vspnik and A. Chemnenkis, Theory 01 P a t k m  Recag~aition (in R-), 
Nauka, M m ,  1974- 

German translation: W .N. Wapnik, A. Ja. Tscherwonenkis, Thmrie der Zez- 
denerkennung, Akadernia-Verlag, Berlin, 1979. 

3 V.N. Vapnik, Estamation of Dependencaes B m d  0n Empiriuad Data (in Rus- 
sian), Nauka, M m m ,  1979. 

English translation: Vladirnir Vapnik, Estimaiaon of Dependencies Based on 
fi~npl~cab Data, Springer, New York, 1982. 

4 Convergence in probability to the best possible result. An exact definition of 
comistency is given in Section 2.1. 
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Theory of Solving 111-Posed Pmblems 

In the 1960s and 19709, in various branches d mathematics, several ground- 
breaking theories werc developed that became very important for creating 
a new philosophy, Below we list some of these theories. They 4x1 will be 
discussed in the Comments on the chapters. 

Let us start with the regularization theory for,the solution of swcalled 
ill- p o d  problems. 

In the early 1900s H a d m a r d  observed that under some (very general) 
circumstances the problem of solving ( h e a r )  operator equatiolls 

(finding f E 3 that satisfies the equality), is ilLpcsed; even if there exists 
a unique solution to  this squat.ion, a small deviation on the right-hand side 
of this equation (Fs  instead of F ,  where I IF - Fs I t  < d is arbitrarily small) 
can cause large deviations in the solutions (it can happen that 1 Ifs - f 1 1  is 
large) . 

In this cme if the right-hand side F of the equation is not exact (e-g., it 
equals &, where Fg differs from F by some level 6 af noise), the functions 
fa that minimize the fundonal  

do not guarmltee a good approximation to the desired solution even if d 
tends to  zero. 

Hadamard thought that i l l - p e d  problems are a pure mathematical p h e  
nomenon and that all real-life problems are "well-pod." However, in the 
second half of the century a number of very important real-life problems 
were found to  be ill-posed, In particular, ill-posed problems arise when 
one tries to  reverse the causeeffect relations; to  find urlknown causes from 
known consequences. Even if the cause-effect relationship forms a o n e t w  
one mapping, the problem of inverting it can be ill-posed. 

For our discussion it is import ant that one of nrain problems of statistics, 
estimating the density function from the  data, is ill-posed. 

In the middle of the  1960s it was discovered that if instead of tl re func- 
tional R( f )  one minimizes another s c a l e d  regularized functional 

where fi(f) is some functional (that belongs to  a special type of function- 
a l ~ )  and y(d) is an appropriately chosen constant (depending on the level 
of noise), then one obtains a sequence of solutions that converges to  the de- 
sired one as d tends to zero (Tikhonov, 1963), (Imnov,1962), and (Phillips, 
1962). 

Regularization theory was one of the first signs of the existence of intd- 
ligent inference. It demonstrated that w hcreas the "self-evident" met hod 
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d minimizing the functional R( f )  does not work, the not "self-evident" 
method of minimizing the functional RL( f )  does. 

The influence of the phhmphy created by the theory of solving i l l -pod  
problems is very deep. Both the regularization philosophy and the regu- 
larization technique became widely disseminated in many areas of science, 
including statist lcs, 

Nonpmmetric Methods of Densit3 Estimation 

In particular, the probjem of density estimation f r m  a rather wide set of 
densities is ill-possd. Estimating densities from some narrow set of densi- 
ties (say from a set of densi tk  dehrmined by a finite number of param- 
eters, i.e., from a so-called parametric set of densities) was the subject of 
the classical paradigm, where a c'self-evident" type of inference (the max- 
imum likelihood method) was used. An extension of the set of densitia 
from which one has to a i m a t e  the desired one makes it impossible to 
use the "self-evident" type of inference. To estimate a density from the 
wide (nonparametric) set requires a new type of inference that contains 
regdarization techniques. In the 1960s several such types of (nonparamet- 
ric) algorithms were suggested (M. Rosenblatt, 1956), (Parzen, 1962), and 
(Chentsov, 1963); in the middle of the 1970s the general way for creating 
these kinds of algorithms on the basis of standard procedures for solving 
ill-posed problems was found (Vspnik and '%efaayuk, 1978). 

Nonparametric methods of density estimation gave rise to  statistical al- 
gorithms that overcame the shortcomings of the classical paradigm. Nav 
one codd estimate functions from a wide set of functions. 

One has to note, howewr, that these methods are intended for estimating 
a function using large sample sizes. 

The Idea of Algorithmic Complmty 

Finally, in the 2960s one of the greatest idem of statistics and informa- 
tion theory was suggested: the idea of algorithmic complexity (Solomonoff, 
1960), (Kolmogorov, 19%). and (Chaitin, 1966). TWO fundamental qu* 
tlons that a t  first glance took different inspired this idea: 

(i) What i s  the  nature of inductive iPtferenee (Solommc#,l? 

Oi) What is the nature of mdumness (Kolmcrgomv), (Chaitin)? 

The answers to these quMions proposed by Solomonoff, Kolmogorov, 
and Chaitin started the information theory approach to the problem of 
inference. 

The idea of the randomess concept can be roughly described as fdlows: 
A rather large strlng of data forms a random string if there are no a l p  
rithms whose complexity is.mu& less than t ,  the length of the string, that 
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can generate this string. The complexity of an algorithm is described by the 
length of the smallest program that e m b o d b  that algorithm. It was proved 
that the concept of algorithmic complexity is universal (it is determined 
up to an additive constant reflecting the type of computer). Moreova, it 
was proved that if the description of the string cannot be c o m p r d  using 
computers, then the string possesses all properties of a random sequence. 

This implim the idea that if one can significmtky compress the dewrip 
tion of the given string, then the algorithm wed dmcribes intrinsic prop 
erties of the data. 

In the 1970s, on the basis of these ideas, Rissanen suggested the mini- 
mum description length (MDL) inductive inference for learning problems 
(Rissanen, 1978). 

In Chapter 4 we consider this principle. 

All these new ideas are still being developed. However, they have shifted 
the main understanding as to what can be done in the problem of depen- 
dency estimation on the basis of a limited m o u n t  of empirical data. 

NEURAL NETWORKS (THE 1980~)  

Idea of NeplmE Networks 

In 1986 several authors independendy proposed a method for slmultme 
ously constructing the vector coefficients for d l  neurons of the Perceptmn 
using the -called back-propagation met hod (LeCun, I 9861, (Rumelhart, 
Hinton, and Williams, 1986). The idea of this method is extremely sim- 
ple- If instead of the McCulloch-Pitts model of the neuron one considers a 
slightly modified model, where the discontinuous function sign ((u . x) - b)  
is replaced by the continuous *called sigmoid approximation (Fig. 0.3) 

(here S(u) is a monotonic function with the properties 

e.g., S(u) = tanh u), then the composition of the new neuroas is a Con- 
tinuous function that for m y  fixed z has a gradient'with respect to all 
mefficients of - d l  neurons. In 1986 the method for evaluating this g rd i -  
ent was found .5 Using the evaluated gradient one can apply any gradient- 
based technique for constructing a function that approximates the desired 

5 The W-propagation method was actually found in 1963 for solving -me 
control problems (Brison, Denham, and Drqf-uss, 1963) and was rediscovered for 
PEXwphns. 
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FIGURE 0.3. The djscontinuaus function sign(u) = f 1 is approximated by the 
smooth function S(u). 

function. Of course, gradient-based techniques only guarantee finding local 
minima. Nevertheless, it looked as if the main idea of applied analysis of 
learning processes has been found and that the problem was in its imple- 
mentation. 

Simplification of the Goals of Theoretical Analysis 
  he discovery d the back-propagation technique can be considered as the 
second birth of the Perwptron. This birth, however, happened in a can-  
pletely differe~lt situation. Since 1960 powerful compu ters had appeared, 
moreover, new branches of science had became involved in research on the 
learning problem. This essentially changed the scale and the style of re- 
search. 

In spite of the fact that o m  cannot assert for sure that the generalization 
properties of the Perceptron with many adjustable neurons is better than 
the generalization propert k d the Percept ron with only one adjustable 
neuron and approximately the same number of free parameters, the scien- 
tific community was much more enthusiastic about this new method due 
to the x d e  of experiments. 

k n b l a t t ' s  first experiments were conducted for the problem of digit 
recognition. TO demonstrate the generalization ability of the perceptron, 
Rosenblatt used training data consisting of several hundreds of vectors, 
containing =veral dozen coordinates. In the 1980s snd even now in the 
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1990s the problem of digit recognition learning continues to be important. 
Today, in order to obtain g a d  decision rules one uses tens (even hundreds) 
of thousands of observations over vectors with several hundreds of coordi- 
nates. This required special organization of the computational processes. 
Therefore, in the 1980s researchers in artificial intelligence became the main 
players in the computational learning game. Among artificial intelligence 
researchers the hardliners had considerable influence. (It is precisely they 
who declared that "Complex theories do not work; simple algorithms do.") 

Artificial intelligence hardliners ap proxhed the learning problem with 
great experience in constructing "simple algorithms" for the problems where 
theory is very complicated. At the end of the 1960s computer natural lan- 
guage translators were promised within a couple of years (even now this 
extremely complicated problem is far from being solved); the next project 
was constructing a general problem solver; after this came the project of 
constructing an automatic controller of large systems, and so on. All $ 
these projects had little success. The next problem to be Investigated was 
creating a computational learning technology. 

First the hardliners changed the terminology, In particular, the percep 
tron was renamed a neural network. Then it was declared a joint research 
program with physiologist, and the study of the learning problem became 
less general, more subject oriented. In the 1960s and 1970s the main p a l  of 
research was finding the best way for inductive inference from small sample 
sizes. In the 1980s the goal became constructing a model of generdzation 
that uses the brain.' 

The attempt to introduce theory to the artificial intelligence community 
was made in 1984 when the probably approximately correct (PAC) model 
was suggested.' This model is defined by a particular case of the consis 
tency concept c m m d y  used in statistics in which some requirements on 
computational complexity were incorporated8 

In spite of the fact that almost all results in the PAC model were adopted 
from statistical learning theory and constitute particular cases of one of its 
four parts (namely, the theory of bounds), this model undoubtedly had the 

6 Of course it is very interesting to know how humans can learn. However, this 
is not necessarily the best way for creating an artificial learning machine, It has 
been noted that the study of birds flying war, not very useful b r  constructing the 
airplane, 

7 L.G. Valiant, 1984, "A theory of karn&ility," Cornrnun. A CM 27(11), 1134- 
1142. 

8'9f the computatlonal requirement is removed from the definition then we 
are left, with the notion of nonparametric inference in the sense of statistics, as 
discussed in particular by Vapnik." (L. Valiant, 1991, "A view of computatlonal 
learning theory," in the book Computation and Cognition", Society for Industrial 
and Applied Mathematics, Philadelphia, p. 36.) 
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merit of bringing the importance of statistical analysis to the at.tention of 
the artificial intelligence conlrnuriity. This, however, was not sufficient to 
influence the development of rlew learning t d n o l o g i a .  

Almost ten years have passed since the percgstron was born a second 
time. h m  the conceptual point of view, its m n d  birth was less impor- 
tant than the first one. In spite of important achievements in some specific 
applications using neural networks, the theoretical results obtained did not 
contribute much to general learning theory- Also, no new interesting learn- 
ing phenomena were found in experiments with neural nets. The m c d e d  
averfit ting phenomenon observed in experiments is actually a phenomenon 
of "Ealse structure" known in the thsory for solving ill-posed problems. 
from the theory of sdving ill-posed problems, t d s  were adopted that 
prevent overfitting - using regularization techniques in the algorithms. 

Therefore, almost ten years of reseatch in neural nets did not substan- 
tially advance the understanding of the essence of learning processes. 

In the .last couple of years something has changed in relation to neural 
networks. 

More attention is now focused on the alternatives to neural nets, for ex- 
ample, a great deal of effort has been devoted to the study of the radial basis 
functions method (see the review in (Powell, 1992)). As in the 1960s, neu- 
ral networks are called again mdtilayer perceptrons. The advanced parts 
of statistical learnmg theory now attract more mearchers. In particular 
in the last few years both the structural risk minimization principle and 
the minimum description .length principle have become popular subjects d 
analysis. The discussions on small sample size theory, in contrast t o  the 
asymptotic one, became widespread. 

It looks as if everything is returning to its fundamentals. 
In addition, statistical learning t hsory now plays a more active rde: After 

the completion of the general analysis of learning processes, the research in 
the area of the synthesis of optimal algorit hrns (which possess the highest 
level of generalization ability for any number of observations) was started. 
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~ h e s e  studies, however, do not belong to history yet + They are a subject 
$ today's research activities.' 

 his remark w ~ q  was made in 1995. However, after the appearance of the 
first ditiorl of this book important changm took place in the development of 
new methods of computer learning. 

Jn the last five years new ideas have ayycaretl in learning metl~odnlo~y inspired 
by statistical learning tllmry. In contrust to dd ideas of cnnstructjrlg learning al- 
mrithms that were inspired by a biological analogy to the learning process, the 
new ideas were inspired by attempts to minimize theoretical hounds on the error 
rate obtained as a reu l t  of formal analysis of the learning procews. T h e  ideas 
(which often imply methods that contradict the old paradigm) result in algo- 
rjthms that have not only nice mathematical propertis (such r+s uniqueness of 
the solution, simple method of treating a large number of exmplm, and indepen- 
dence of di rnens id i ty  of the input space) but dm exibit excellent performance: 
They outperform the stateof-the-art solutions obtained by the old methods. 

Now a new me tho do log^ situation in the learning problem has developed 
where practical methods are thc result of a deep theoretical analysis d the sta- 
tistical bounds rather than the rejilt  of inventing new smart heuristics. 

This fact has in many r ~ ~ p e c t s  clianged the character of the learning problem. 





Chapter 1 
Setting of the Learning Problem 

In this book we consider the learning problem as a problem of finding a 
desired dependence using a limzted number of o b t i o n s .  

1.1 FUNCTION ESTIMATION MODEL 

We d m i k  the general model of learning from examples thmugh three 
components (Fig.1.l): 

(i) A generator (G) of random vectors x E R", drawn iudependently 
from a fixed but unknown probability distribution function FIX). 

(ii) A supervisor ( S )  who returns an output value y to every input vector 
x, according to  a conditional distribution functionL F(vlx), also fixed 
but unknown. 

(iii) A learning machine (LM) capable of implementing a set of functions 
fix,,), a E A, where A is a. set of parameters? 

problem of learning is that of choosing from the given mt of functions 
f (s, a ) ,  a E A, the one that best approximates the supervisor's response. 

1 This iS the general case, which includes the case where the supervisor uses a 
function y = j { ~ ) -  

2 Note that the elements a E A are not necessarily vectors. Tkey can be any 
abstract parameters. Therefore, we in fact consider any set of functions. 



FIGURE 1.1.  A model of learning from examples, During the learning procm, 
the learning m ~ c h n e  observes the pairs (x, y) (the training set). After training, 
the machine must on any given x return a value g. The goal is to return a value 

that is close to the supervisor's response y. 

The selection of the desired function is based 011 a training set. of t inde- 
pendent and identically distributed (i.i.d.1 observations drawn according to 
F(s, y) = F ( W ( y I 4 :  

I ~ ~ , Y I ) ~ .  .+ , { ~ r , ~ t ) .  (1.1) 

1.2 THE PROBLEM O F  RISK MINIMIZATION 

In order to  ch- the best available approximation to the supervisor's 
response, one measures the loss, or discrepancy, L{ y , f (x , a ) )  between the 
response y of the supervisor to  a given input z and the response f (s, a )  
provided by the  learning machine. Consider the expected value of the loss, 
given by the ~ 5 s k  finctionak 

The goal is to find the fulrction j ( z ,  ao) that minimizes the risk functional 
R(u)  {over the class of functions f (x , a ) ,  a E A) in the situation where 
the joint probability distribution function F ( z ,  y) is unknow~l and the only 
available idor  mation is contained in the training set (1.1). 

1.3 THREE MAIN LEARNING PROBLEMS 

This formulation of the learning problem is rather broad. It cmmpasses  
many specific problem. Consider the main ones: the problems of pattern 
recognition, regression estimation, and density mtimation. 
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1.3.1 Pattern Recognition 

k t  the supervisor's output y take only two values y = (0'1) and let 
f ( x ,  a) ,  a E A, be a set of indicator functions (functions which take only 
ma values: zero and one). Consider the following loss function: 

For this loss function, the functional (1.2) determines the probability of 
different answers given by the supervisor and by the indicator function 
f (z, a). We call the case of different answers a classification e m T .  . 

The problem, therefarc, is to  find a function that minimizes the probabil- 
ity of classification error when the probability measure F(x, y) is unknown, 
but the data  ( 1.1) are givcn. 

1.3.2 Regression Est i m  tion 

Let the supervisor's answer g be a real value, and let f (z,  a ) ,  a E A, be a 
set of real functions that  contains the regressdon function 

It  is known that the regression function is the one that minimizes the 
functional (1.2) with the following loss f u n ~ t i o n : ~  

Thus the problem of regression estimation is the problem of minimizing the 
risk functional (1.2) with the loss function (1.4) in the situation where the 
probability measure F j z ,  y) is unknown but the data (1.1) are given. 

1.3.3 Densitg Estimation (Fisher - Wald Setting) 

finally, consider t.he problem of density estinlstiolr from the set of densities 
P(X, a ) ,  a E A. For this problem we consider the following loss function: 

L@k,  a ) )  = - logp(z, a). (1.5) 

3 If the regrwion function f(x) does not belong to f(x,ct).ct E A, then the 
function f (x, CEO) minimizing the functional (1.2) with loss function (1.4) is the 
closest to the regression in the metric L2(F): 
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It is known that the desired density minimizes the risk functional (1.2) 
with the loas function (1.5). Thus, again, to estimate the density from the 
data one has to minimize the risk functional under the condition that the 
corresponding probability measure F(z) is unbow n, but i.i .d. data 

are given. 

1.4 THE GENERAL SETTING OF THE LEARNING 
PROBLEM 

The general setting of the learning problem can be described as follows. 
Let the probability measure F(a) be defined on the space 2. Consider the 
set af functions Q(a, a ) ,  a E A . The goal is to minimize the risk functional 

where the probability measure F ( t )  is unknown, but an i.i.d. sample 

is given. 
 he learning problems considered abave are particular cases af this gen- 

eral problem of naznimizing ithe 7.iskfinctiunak (1.6) on the h i i s  of empiriaxi 
data (I.?), where 2 describes a pair (x, y) and Q(z, a )  is the specific loss 
function (e.g., one of (1.31, (1.4), or (1.5)). In the following we will de- 
scribe the results obtained for the general statement of the problem. TCI 

apply them to specific problems, one has to substitute the corresponding 
Josx functions In the formulas obtained. 

1.5 THE EMPIRICAL RISK MINIMIZATION (ERM) 
I N D U C T I V E  P R I N C I P L E  

In order to minimize the risk functional (1.6) with an unknown distribution 
function F(z) ,  the fdlowing inductive principle can be applied: 

(i)  he risk functional R(a)  is replaced by the  called empirical risk 
finctiz'onak 

constructed on the basis of the training set (1.7). 
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(ii) One approximates the function Q ( z ,  ao) that minimizes risk (1.6) by 
the function Q(z, at) minimizing the empirical risk (1.8). 

This principle is called the  ernpirial risk minimization inductive principle 
(ERM principle). 

We say that an inductive principle defines a ieaming pmcess if for any 
given set of observations the learning machine chooses the approximation 
using this inductive principle. In learning theory the E N  principle plays 
a crucial role. 

The ERM principle is quite general. The clasical methods for the d u -  
tion of a specific Jearning problem, such as the 'least-squares method in the 
problem d regression estimation or the maximum likelihood (ML) method 
in the problem of density estimation, are realizations of the ERA4 principle 
for the specific loss functions considered above. 

Indeed, by substitut,ing the specific loss function (1.4) in (1.8) one obtains 
the functional to  be minimized 

which forms the leastrsquares method, while by substituting the specific 
loss function (1.5) in ( 1.8) one obtains the functional to be  minimlzed 

Minimizing this functional is equivalent to  the ML method (the latter uses 
a plus sign on the right-hand side). 

Learning theory has  to  address the following four questions: 

(i) What are (necessary and suficimt) conditions for comdteney of a 
learning process h e d  on the ERM principle? 

(ii) How fast is the rote of cmveqence of the learning process? 

(Ei) How ccln one mhol the mte of convergence (the genemlizatp'on abiG 
i&) of the learning pmess? 

(iv) How con one oonstmct aborilhms that con control the generalization 
ability? 

The answers to  these questions form the four parts of learning theory: 
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( i )  Theory of consistency of learning processes. 

(ii) Nonasymptotic theory of the rate of convergence of learning pru- 
cesses. 

(iii) Theory of controlling the generalization ability of learning procwseu. 

(iv) Theory of constructing learning algorithms. 

E d  of these four parts will be discussed in the foliowing chapters. 



Informal Reasoning and 
Comments - 1 

The setting of learning problems given in Chapter 1 reflects two major 
requirements: 

(i) To estimat,e the desired function from a wide set of fumc tbns. 

(ii) To estimat,e the desired function on the basis of a limited number of 
examples. 

The niethods devdoped in the framework of tlle classical paradigm ( e r e  
ated in the 1920s and 1930s) did not take into account tllese requirements. 
Therefore, in the 1960s considerable effort was put into both the general- 
izatbn of classical results for wider sets of functions sud the improvement 
of existing techniques of statistical inference for small sample sizes. In the 
fallanring we will describe some of bhese efforts. 

1.7 THE CLASSICAL PARADIGM OF SOLVING 
LEARNING PROBLEMS 

In the framework of the classical paradigm all models of function estimation 
am based on the maximum li kelihood method. It forms an inductive engine 
in the classical paradigm. 
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7 Density Estimation Problem (ML Method) 

Let p(x, a), a E A, be a set of density functions wbere (in contrast to the 
setting of the prohlem described in this chapter) the set A is necessarily 
contained in Rn (a is an n-dimensional vector). Let the unknown density 
p(x, ao) belongs t o  this class. The problem is to  estimate this density using 
i.i.d. data 

x 1 , * * * , x t  

(distributed according t o  this unknown density). 
In the 1920s Fisher developed the ML method for estimating the un- 

known parameters of the density (hsher, 1952). He suggested approximat- 
ing the  unknown parameters by the values that maximize the functional 

Under some conditions the ML method is consistent. In the next chapter 
we use results on tbe law of large numbers in functional space to describe 
the necessary and sufficient conditions br consistency of the ML method. 
In  the following we show how by using the ML method one can estimate a 
desired function. 

1.7.2 Pattern Recognition (Dzsmiminant Analysis) Problem 

Using the ML technique, Fisher considered a problem of pattern recognition 
(he called i t  discriminant analysis). He proposed the following model: 

There exist two categories of data distributed according to  two dif- 
ferent statistical laws pl (x, a*) and pz (x, 4*) (densities, belonging to  
parametric classes). Let the probability of occurrence of the first cat- 
egory of data be ql and the probability of the second category be 
1 - ql . The problem is to  find a decision ruls that  minimi zes the 
probability of error. 

C 

Knowing these two statistical laws and the value 41, one can immediately 
construct such a rub;  The smallest probability of error is achieved by the 
decision rub  that considers vector x as belonging t o  the first category if the 
probability that  this vector belongs to  the first category is not less than the 
probability that this vector belongs to  the second category. This happens 
if the following inequality holds: 

One considers this r u b  in the equivalent form 

in pl(x,  a*) - lnp2(x,'fi*) + ln 
(1 - 4 d  
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called the discriminant function (rule), which assigns the value I for rep- 
resentatives of the first category and the value -1 for representatives of 
the s m n d  category, To find the discriminant rule one has ta estimate two 
densities: pl (x, a) and pz ( x, 8). In the classical parad igm one uses the ML 
method t o  estimate the parameters a* and /3* of these densities. 

1.7.3 Regression Estimation Model 
Regression estimation in the classical paradigm is based on another mo&l, 
the sucallsd model of measuring a function with additive noise; 

Suppose that an unknown function has the parametric form 

where a 0  E A is an utlknmn vector of parmeters,  Suppose also 
that at any point x, one can measure the value of this function with 
additive noise: 

Y* = f(xi? -t. ti, 
where the ndse  ti does not depend on xi and is distributed according 
to  a known density function p(<). The problem is to  estimate the 
function f (a, ao) from the set f (x, a), a E A, using the data obtained 
by measurements of the function f ( x , a o )  cormpted with additive 
noise. 

In this model, using the observations of pairs 

one can estimate the parameters a o  of thc? unknown function f (x, ao) by 
the ML method, namely by maximizing the functional 

(Recall tha t  p(<) is a known function and that C, = y - f (x, OQ).) Taking 
the normal law 

with zero mean and same fixed variance as a model of noise, one obtains 
the leastcsquares met hod: 
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Maximizing L*(a) over parameters a is equivalent to minimizing the func- 
t ional 

4 

(the so-called least-squares functional). 
Choosing other laws p(<), one can obtain other methods for parameter 

e s t i rna t i~n .~  

1.7.4 Narrowness of the ML Method 
Thus, in the classical paradigm the solutions to all problems of dependency 
estimation described in this chapter are based on the ML method. This 
method, however, can fail in the simplest cases. Below we demonstrate 
that  using the b L  met,hod i t  is impossible to  estimate t,he parameters of a 
density that  is a mixture of normal densities. To show this i t  is wfficient 
to analyze the simplest case described in the following example. 

Example.  Using the ML method i t  is irnpcmible to estimate a density 
that is the simplest mixture of two normal densities 

where the parameters (a, 0) of only one density are unknown. 
Indeed for any data xl , . . . , xe and for ally given constant A, there exists 

such a small u = 00 that  h r  a = xl the likeli hood will exceed A: 

4 In 1964 P. Huber extended the cimical modei of regression mtimation by 
Introducing the secdieci robust regression estimation model. According to this 
modei, instead of an exact modei of the noise p ( 0 ,  one Is given a set of density 
functions (satisfying quite general cundltions) to which this functbn belongs. 
The problem is to construct, for the given parametric set of functions and for the 
given set of density functions, an estimator that possesses the minimax properties 
(provides the best approximation for the womt density from the set). Themiution 
to this probiem actually hm the following form: Ch- an appropriate density 
function and then estimate the parameters using the ML method (Huber, 1964). 
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From this inequality one concludes tha t  the  maximum of the lk l ihood  
does not exist, and therefore the ML method does not provide a solution 
t o  estimating the  parameters a and a. 

Thus, the  ML method can b e  applied only t o  a very restrict,ive set of 
d e l s i t h .  

1.8 NONPARAMETRIC METHODS OF DENSITY 
ESTIMATION 

In the beginning of the 1960s several authors suggested various new meth- 
ods, =called nonparametric methods, for density estimation. The goal of 
these methods was t o  estimate a density from a rather wide set of functions 
that  is ilot restricted t o  b e  a parametric set of functions (M. Rosenblatt, 
19571, (Parzen, 1962), and (Chentsov, 1963). 

I I Parzen's Windows 

Among these methods the Parzen windows method probably is the most 
popular. According t o  this method, one first has to determine the =called 
kernel function. For simplicity we consider a simple kernel function: 

where K(u)  is a symmetric rlnimodal density function. 
Using this function one determines t h e  estimator 

In the 1970s a comprehensive asyniptotic tlleory for Parzen-type nollpara- 
metric density estimation was developed (Devroye, 1985). I t  includes: the 
bllowing two important assertions: 

(i) Parzen's estimator is coasistent (in the  various met rics) for est inzating 
a density from a very wide class of densities. 

(ii) T h e  asymptotic rate of convergence for Parzen's estimator is optimal 
for "smooth" densit ics. 

The same results were obtained for other type? of estimators. 
Therefore, for both classical models (discriminant analysis and regression 

estimation) using nonparametric methods instead of parametric methods, 
one can obtain a good apprcxjmation t o  the desired dependency zj the 
nzamber o j  obscwatwns i s  suficiently brge. 
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Experiments with nonparametric estimators, however, did not demon- 
strate g r w t  advantages over old techniques. This indicates that  nonpare  
metric methods, when applied t o  a limited numbers of observations, do not 
possess their remarkable asymptotic properties. 

1.8.2 The Problem of Delzsity Estimation Is Ill-Posed 

Nonparametric statistics was d m b p e d  as a number of recipes for density 
estimation and regression estimation, To make the theory comprehensive 
it was necessary to find a general principle for constructing and analyz- 
ing various nonparametric algorithms. In  1978 such a principle was found 
(Vapnik and Stefanyuk, 1978). 

By definition a density p(x) (if it exists) is the solution of the integral 
q u a t  ion 

where F(x) is a probability distribution function. (Recall that  in the theory 
of  roba ability one first determmes the probability distribution function, and 
then only if the dist ribution function is absolutely continuous can one define 
t h e  density function.) 

The  general formulation of the density estimation problem can be d* 
scribed as follows: In the  given set of functions {p(i)}, find one that  is a 
solution t o  the integral equation (1 . lo)  for the  c a ~ ~  where the probabil- 
ity distribution function F ( x )  is unknown, but we a re  given the i.i.d. da ta  
XI , .  . . , xg, . . . obtained according t o  the unknown distribution fu~lction. 

Using these da ta  one can construct a function that  is very i m p ~ n t  in 
statistics, the  so-called empirical distribution function (Fig. 1.2) 

where B(u) is the step function that  takes tbe value 1 if u 2 0 and O 
otherwise. 

The uniform convergence 

Y 
sup IF (x) - F g  (x) 1 t+ 0 

X Am 

of the empirical distribution function Ft(x) to the desired function F(x) 
constitutes one of the  most fundamental facts of theoretical statistics- We 
will discuss this fact several times, in the  comments on Chapter 2 and in 
the comments on Chapter 3. 

Thus, the general setting of the density estimation problsm (coming from 
tbe definition of a density) is the following: 



FiGURlE 1.2. The empirical distribution function Ft(z) constructed from the 
data sl, . . . ,st q q l ~ ~ i " & e S  the probability hstribution function ~ ( x ) .  

Solve the integral equation (1.10) in the case where the proba- 
bility distribution function is unknown, but i.i.d. xl ,  . . . , xg,. . . 
data in accordance to this function are given. 

Using these data one can construct the empirical distribution function 
F', (x). Therefore, one has t o  solve the integral equation (1.10) for the case 
where instead of the exact right-hand side, one knows an approximatim 
that converges uniformly to the u&mn function as the number of obser- 
vations increases. 

Note that the problem of solving this integral equation in a wide class of 
functions { p ( t ) ]  is ill-posed. This brings us to two conclusions: 

(i) Generally speaking, the estimation of a density is a hard (ill-pmed) 
computational pmblsm. 

(ii) To solve this problem well one has to use regularization (i.e-, not 
"self-evident") techniques. 

It has been shown that all proposed uonparametric algorithms canbe  
tained using standard regularization techniques (with different typas of 
regularizers) and using the empirical distribution function instead of the 
unknown one (Kapnik, 1979,1988). 
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1 .g MAIN 'PRINCIPLE FOR SOLVING PROBLEMS 
USING .A RESTRICTED AMOUNT OF INFORMATION 

We now formulate the main principle for solving problems using a restricted 
amount of inhnnation: 

W"hen sodwing a given pmblem, try I% avoid solving a mom genemi pvb- 
dem as an zntemdiute step. 

Although this principle is obvious, it is not easy t o  follow. For our prob- 
lems of dependency estimation this principb means that  to solve the p r o b  
lem of pattern recognition or regression estimation, one must try to find 
the desired function "directly" (in the next sectioll we will specify what 
this mesns) rather than first estimating the densities and then using the 
estimated densities to  construct the desired function. 

Note that estimation of densities is a universal problem of statistics 
(knowing the densities one can solve various problems). Estimation of den- 
sities in general is an ill-posed problem; therefore, it requires many of ob- 
servations in order to be solved well. In contrast, the problems that we 
really need to solve (decision rule estimation or regression estimation) are 
quite particular ones; often they can be solved on the basis of a reasonable 
number of observations. 

To illustrate this ides let us consider the following situation. Suppow m e  
wants to  construct a decision rule separating ma sets of vectors described 
by two normal laws: N(pI, c ~ )  aud N(p2,  C2) I11 order to construct the d i s  
criminant rule (1.9), one h w  to estimate from the data  two n-dimensiond 
vectors, the means p1 and p ~ ,  and two n x n covariance matrices C1 and 
&- A s  a result one obtains a separating polynomial of degree two: 

containing n(n + 3)/2 cmfficients, TO construct a good discriminant rule 
from the parmeters  o f t  he unknown normal densities, one needs to estimate 
the parameters of tbe covariance matrices with high accuracy, since the 
discriminant function urns inverw covariance matrices (in general, the esti- 
mation of a density is an ill-posed problem; for our parametric case i t  can 
give ill-condi tioned covariance matrices). To estimate the high-dimensional 
covariance matrices well olle needs an unpredictably large (depending on 
the properties of the actual covariance matrices) number of observations. 
Therefore, in high-dimensional spaces the general normal discriminant func- 
tion (construckd from two different normal densities) seldom succeeds in 
practice. In practice, the linear discriminant function that occurs when the 
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two covariance matrices coincide is used, El = Cz = C: 

(in ths case one has t o  estimate only n parameters of the discriminant 
function). 

I t  is remarkable that  Fisher suggested to use the dinear discriminant 
function m n  if the two covariance matrices were different and proposed a 
heuristic method for constructing such functions (Fisher, 1 9 5 2 ) ~ ~  

In Chapter 5 we solve a specific pattern recognition problem by con- 
structing separating polynomials (up to degree 7) i n  high-dimensional (256) 
space. This is accomplished only by avoidng the solution of unnecessarily 
general problems. 

1.10 MODEL M I N I M I Z A T I O N  OF THE RISK BASED 
O N  EMPIRICAL DATA 

In what follows we argue that the setting of learning problems @ven in this 
chapter allows us not only to  consider estimating problems in any given 
set of functions, but also t o  implement the main principle for using s m d  
samples: avoiding t l ~ c  sdution of uunecessarily general problems* 

1.10.1 Pattern Recognit ion 

Rr the pattern recognition problem, the functional (1,2) evaluates the 
probability oE error for any function of the admissible set of functions. The 
problem is to  use the sample to  find the function from the set of admissible 
functions that minimizes the probability of error. This is exactly what we 
want to obtain. 

1. 10.2 Regression Estzmation 
In regression estimation we nlinimizo functional (1 -2) with loss function 
(1.4). This functional can be rewritten in the equivalent brm 

5 ~ n  the 1960s the problem of constructing the best linear discriminant function 
(h the case where a quadratic function is optunal) was solved (Andasen and 
Bahadur, 1966). For solving rd-life problems the linear discdminant functions 
usualiy me used even if it is known that the'optlmal dutfon belongs to quadratic 
discriminant functions. 
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where fo(x) is the regression function. Note that the second term in (1.1 1) 
does not depend m the chosen function. Therefore, minimizing this func- 
tional is equivalent to minimizing the functional 

R* ( a )  = / (  f (x, 0) - fo ( x ) ) ~ ~ F  (r). 

The last functional equals the squared La(F)  distance between a function 
of the set of admissible functions and the regression. Therebre, we con- 
sider the following problem: Using the sample, find in the admissible set of 
functions the  dosest one to the regression (in metrics &(F)) .  

If one accepts the L2(F)  metrics, then the formulation of the regression 
estimation problem (minimizing R(a))  i s  direct. (It does not require solving 
a more general problem, for example, finding F ( x ,  y)).) 

1.10.3 Density Estimation 

Hnally, consider the functional 

Let us add t o  this functional a constant (a functional that  does not depend 
on the approximating functions) 

where po(t) and F(t)  are the desired density and its probability distribution 
function. We obtain 

The  expression on the right-hand side is the ~ c d e d  Kullback-Leibler 
distance that  is used in statistics for measuring the distance between an 
approximation of a density and the actual density. Therefore, we consider 
the following problem: In the set of admissible densities find the closest 
t o  the desired one in the Kullback-Leibler distance using a given sample. 
If one accepts the Kuilback-Leibler distance, then tbe formulation of the 
problem is direct. 

The short form of the setting d d these problems is the  general model 
of minimizing the risk functional on the basis of empirical data. 
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1.1 1 STOCHASTIC APPROXIMATION I N F E R E N C E  

To minimize the risk functional on the basis of empirical data, we con- 
sidered in Chapter 1 the  empirical risk minimization inductive principle. 
Here we discuss another general inductive principle, the sc+called stochas- 
tic approximation method sug.gt3std in the 1950s by Robbins and Monroe 
(Robbins and Monroe, 1951). 

According to this principle, to minimize the functional 

with rapect  t o  tbe parameters a using i.i.d. data 

one uses the following iterative procedure: 

where the number of steps is equal t o  the number of o b s e m t b n s .  It was 
proven that this method is consistent under very general conditions on the 
gradient grad, Q(z,Q) and the values ~ k .  

Inspired by Nouhff 's  theorem, Ya. 2. Tsypkin and M . A. Aizerman started 
discussions on consistency of learning processes in 1963 at the seminars of 
the Moscow Institute of Control Science. Two general inductive principles 
that ensure consistency of learning processes were under investigation: 

(i) principle of stochastic approximation, and 

(ii) principle d empirical risk minimization. 

Both inductive principles were applied t o  the general problem of mini- 
mizing the risk functional (1.6) using empirical data. As a result, by 1971 
two different types of general learning theories had been created: 

(i) The general asymptotic learning theory for stochastic appmn'mation 
inductive infaence6 ( Aizerman, Braverman, and RDzOnoer, 19651, (Tsyp- 
kin, 1971, 1973). 

(ii) The general nonasymptotic theory of pattern recognition for E N  in- 
ductive inference (Vapnik and Chervonen kis, 1968, 1971, 1974). (By 
1979 this theory had been g e n e r a l 4  for any ~roblern of minimiza- 
tion of the risk on the basis of empirical data (Vapnik, 1979)-) 

'In 1967 this theory was &o suggested by S. Amari (Amari, ~967). 
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The stochastic approximation principle is, however, too wasteful: It uses 
one element of the training data per step (see (1.12))+ To make i t  more 
economical, one uses the training data many t imes (using many epochs). 
In this case the following question arises immediately: 

When does one have to  stup tke m i n i n g  process? 

Two answers are possible: 

(i) When for any element of tlre training data the gradient is so s m d  
that the barning process cannot be continued. 

(8) When the barning proces is not saturated but satisfies some stopping 
criterion. 

It is easy to  see that in the first case the stochastic approximation method is 

just a special way of mininrkhrg the empirical risk. Tlre second case consti- 
tutes a regularization method of minimizing the risk functional.' Therefore, 
in the ''nanwasteful regimes" the stochastic approximation method can be 
explained as either inductive properties of the E&ti metlrod or inductive 
properties of the regularizatiorr met hod. 

To complete the discussion on classical inductive inferences it i s  neces- 
sary to consider Bayesian inference. In order ta use this inference one must 
possess additional a prior$ inforrnatim complementczry to  the  set of para- 
metric functions mntainzng the d e s i d  one. Namely, one must know the 
distribution function that  describes the probability for a~ry  function from 
the admhible  set of functions to be the desired fine. Therefore, Bayesian 
inference is based on using strong a priori informatiorr (it requires that  the 
desired function belong t o  the set of functions of the learnkg machine). In 
this sense it does not define a general method for inhence.  We will discuss 
this inference later in the comments on Chapter 4. 

Thus, along with the ERM inductive principle orre can use other inductive 
principles. However, the ERM principle (compared ta other oms) looks 
more robust (it uses empirical data better, i t  does not depend on a p r i o r i  
information, and there are clear ways to  implement it). 

Therefore, iu the analysis of learning proceses, the key problem became 
that of exploring the Em principle. 

7 The reguiaridng property of the stopping criterion in iterative procedures of 
sdvkg i i i - w d  proMems was observed in the 1950s even before the regulariza- 
tion t h a y  for solving ili-posed probiems was developed. 



Chapter 2 
Consistency of Learning Pmcesses 

The goal of this part of the theory is to describe the conceptual model 
for learning processes that  are based on tbe empir'd risk minimization 
inductive principle. This part of the theory has to explain when a learning 
machine that minimizes empirical risk can achieve a small value of d u a l  
risk (can generdize) and when it cannot. In other words, the goal of this 
pmt is to  describe necessary and sufficient conditions for the consistency 
of learning processes that  minimize the empirical risk. 

The following question arises: . 

W%y do we nee$ an asympbotac theory (consistency is an mympbotic con- 
cept) if the gml i s  t o  construct a lgor i thm for beaming frmm a limited num- 
ber of obsewations? 

The answer is as follows: 
To construct any theory one has to use wme concepts in terms of which 

the theory is  developed. It is extremely important to use concepts that 
describe necessary and sufficient conditions tor consistency. This guarantees 
that the constructed theory is general and cannot be improved from the 
conceptual point of'view . 

The most important issue in this chapter i s  the concept of the VC entropy 
of a set of functions in terms of which the necessary and sufficient conditions 
for consistency of learning processes are described. 

Using this concept we will obtain in the next chapter the quantitative 
characteristics on the rate of the learning process that  we will use later for 
~ t r u c t i n g  'learning algorithms. 
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FIGURIE 2.1. The learning procem is consistent if both the expected risks R(ar) 
and the empirjcd risk8 Remp(a1) converge to the minimal possibie d u e  of the 
risk, infmEn R(a). 

2.1 THE CLASSICAL DEFINITION OF CONSISTENCY 
AND THE CONCEPT OF NONTRIVIAL CONSISTENCY 

Let Q(z, ag) be a function that minimizes t h e  empirical risk functional 

for a given set of i.i.d. observations 21, .  . . , zg. 

Definition. We say tha t  the principle (method) of ERM is consistent 
for the  set of functions Q(z, a ) ,  a E A, and for the  probability distribution 
function F(r)  if the  following two sequences converge in probability to the 
same limit (see the schematic Fig.2.1): 

&,p(af) 5 inf R(a) .  
t-cm a E A  

In other words, the ERM method is consistent if it  provides a sequence of 
functions Q(z, u g  ), t? = 1,2 ,  . . . , for which both expected risk and empirical 
risk converge to the minimal possible value of risk. Equation (2.1) asserts 
tha t  the  values of achieved risks converge to the best pmible ,  while (2+2) 
asserts tha t  one can estimate on the bat& of the  values of empirical risk 
the  m i h i d  possible value of the  risk. 

The  goal of this chapter i s  to describe conditions of consistency for the  
ERM met hod. We would like t o  obtain these conditions i n  terms of general 
characteristics of t he  set of functions and the probability measure- 



FIGUFLE 2.2. A m e  of trivial consistency- The E M  method is inconsistent 
on the set of functions Q(z,a),a f A, and consistent on the set of functions 
Id(.)) UQ(z,4 ,  a f A* 

Unfortunately, for the classical definition of consistency given above, o b  
taining such conditions is impossible, since this definition includes cases of 
triviul consistency. 

What i~ a triviud case uf consistency? 

Suppose we have established that for mme set of functions Q(r,  a), a 
A, the E m  method is not consistent. Consider an extended set of func- 
tions that  includes this set of functions and one additional function, 4(z). 
Suppose that the additional function satisfies the inequality 

It is clear (Fig. 2.2) that for the extended set of functions (containing # ( r ) )  
the ERM method will be consistent. Indeed, for any distribution function 
and for any number of observations, the minimum of the empirical risk 
will be attained on the function #(r) that slso gives the minimum of the 
expected risk. 

This example shows that  there exist trivial cases of consistency tha t  
depend on whether the given set of functions contains a minorjzing function. 

Therefore, any theory of consistency that uses the classical definition 
must determine whet her a case o f t  rivid consistency is That means 
that the theory should tabe into aecount the specific functions in the given 
set. 

In order t o  creak a theory of consistency of the ERM method that 
would not depend on the properties of the elements of the set of functions, 
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hut would depend only on the g m e r d  properties (capacity) of this set of 
functions, we need to  adjust the definition of consistency to  exclude tlre 
trivial consistency cases. 

Definition. We say that  the ERM method is nonh-iuially conszstent 
for the set of functions Q(z, a ) .  n E A, and the probability distribution 
function F (2) if for m y  nonempty subset A (c), c E ( -oo? m) , of this set of 
functions defined as 

the oonver price 

P - inf R(a) inf Emp(a' a ~ A ( c )  a ~ r i ( c )  

is valid. 

In other words, the ER.M is nontrivially consistent if i t  provides conwr- 
p n c e  (2.3) for the subset of functions that remain after the functions with 
the smallest. values of the risks are excluded from t l r i s  set. 

Note that irr the classical definition of consistency described in the pre- 
vious section one uses two conditions, (2.1) and (2.2). In the definition of 
nontrivial consistency one uses only one condition, (2.3). I t  can be shown 
that condition (2.1) will be satisfied automatically under the condition d 
nont rivhl consistency. 

In this chapter we will study conditions for nontrivial consistency, which 
for simplicity we will call consistency. 

2.2 THE KEY THEOREM OF LEARNING THEORY 

The key theorem of learning theory is the following (Vapnik and Chew* 
nen kis, 1989): 

Theorem 2.1.  Let Q(2, a ) ,  a f A, be a set o f  findions that satisfy the 
con&tion 

Then for the ERM principle to be consistent, it is  necessary and sumient 
that the empin'cal risk &,,(ct) converge unzfomly to ihe actual risk R ( a )  
over the set Q (2, a), a E A, in the following sense: 
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We call this type of uniform convergence uniform one-sided convergence.' 
In other words, according to the key theorem, consistency of the ERM 

principle is equivalent to existelrce of uniform one-sided convergence (2.4). 

Frorn the ~ o n c a t u a l  point of view this theorem is extremely important 
bwause i t  asserts that the conditions for consiskncy of the ERM principle 
are necessarily (and sufficiently) determined by the "worst" (in sense (2.4)) 
functton of the set  of functions Q ( x ,  a ) ,  a G A. In other words, according 
to this theorem any analysis of the  ERbi principle must be a "worst case 
analysis." * 

As has been shown in Chapter 1, the ERM principle encompasses the h1L 
method. However, for the method we define another concept of norr- 
trivial r:r,nsistency. 

Definition. We say that the hlL method is nonhiviuiiy co;.csSsteni if 
for any density p(x,ao), from the given set of densities p(x,a)  E A, the 
convergence in probability 

1 b! 

P inf - (- log p(xi, 0)) - inf (- logp(x, a ) )  p(x, ao)dz 
a€" f - I edm O, A 

7 J 
is valid, where XI, ..., xe is an i.i.d. sample obtained according to  the density 
m ( 4  - 

In otlrer words, we define the ML metbod to  be nontrivially consistent 
if it is co~lsistent for estimating any density from the admissible set of 
densities. 

For the ML method the following key theorem is true (Vapuik and Cher- 
v~nenkis, 1989): 

Theorem 2.2. fir the ML r n e M  to be nontniviaiiy consistent on the 
set of densities 

O < u I p ( x , a ) < A < m ,  a ~ h ,  

E In contrast to the sc+calied uniform twesided mnvergenm defined by the 
qwt ion  

iim Pjsup IR(0) - Remp(a)l > E) = 0, VE > 0. 
f+m a €A 

2 The following f x t  confirms the importance of this theorem. Toward the end 
of the 1980s and ther beginning of the 1991)s several a h a t i v e  approaches to 
learning theory were attempted b a d  on the idea that statistical iearning theory 
is a theory of '%orst-case analysis.". In these approaches authors expressed a 
hope to develop a learning theory for bbreatcase analysis+" According to the key 
theorem, this type of theory for h e  E W  principie is impmihie. 
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it is  necessary and s u m e n t  that uniform one-sided conweryenee tuke place 
for the set of risk fi~zctions 

with respect to some (any) probabzlity d m i t y  p(x,ao),  a0 E A. 

2.3 NECESSARY AND SUFFICIENT CONDITIONS 
FOR UNIFORM TWO-SIDED CONVERGENCE 

The key theorem of learning theory replaced the problem of consistency 
of the ERM method with the problem of uniform convergence (2,4). To 
investigate the necessary and sufficient conditions for uniform convergence, 
one ~ n s ~ d e r s  two stochastic processes that are called empirical pmcesses, 

CoGder  the sequence of random variables 

We cell this sequence of random variables that  depend both on the proba- 
bility measure F(z) and on the set of functions Q(z, a ) ,  a E A, a two-sided 
empirical process. The problem is to  describe conditions under which this 
empirical process converges in probability to  zero. The convergence in p rob  
ability af the process (2.5) means that the equality 

holds true. 
Along with the empirical process te, we consider the one-sided e m p ~ c a l  

pmcess given by the  sequence of random variables 

where we set 
21 if21.0, 

+ = { 0 otherwise. 

The problem is to describe conditions under which the sequence of random 
variables 5: converges in probability to  zero. Convergence in probability of 
the process (2.7) means that  the qual i ty  
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holds true. According to the key theorem, the uniform one-sided conver- , 

gence (2.8) is a necessary and sufficient condition for consistency of the 
E M  method. 

We will see that conditions for uniform two-sided convergence play an 
important role in constructing conditions of uniform one-sided convergence. 

2.3.1 Remark on the Law of Large Numbers and its 
Genemlizatiun 

Note that if the set of functions Q(z, a ) ,  a E A, contains only one element, 
then the sequence of random variables <' defined in (2.5) always converges 
in probability to zero. This fact constitutes tbe main law of statistics, tbe 
law of large numbers: 

The sequence of the means of landom variables <' converges to zero 
rn the (namber of rrbsemations) I increases, 

It is easy to generalize the law of large numbers for the case where a set of 
functions has a finite number of elemenb: 

The sequence of random variables td converges i n  probability to zero 
if the set offunctions Q(z,a), a E A,  contains af ini te number N of 
elements. 

This case can be interpreted as the law of large numbers in an N-ddmemionaE 
vector space (to each function in the set corresponds cine coordinate; the 
law of large numbers in a vector space asserts convergence in probability 
simultaneously for all coordinates). 

The problem arises when the set of functions Q(z, a ) ,  a G A, has an 
infinite number of elements. In contrast to the cases with a finite number 
of elements the sequence of random variables <' for a set with an infinite 
numkr  of elements does not necessarily converge to zem. The problem is 
this: 

To describe the properties of the set of functions Q(2, a), a E A, 
and pmbdility measure F(z)  under whzch the sequence of mndom 
variables tL converges in probability to zero. 

In this case one says that the law of large numbers in  the functional space 
(space of functions Q ( x ,  a ) ,  a E A) takes place or that there exists uniform 
(tw*sided) convergence of the means to their expectation over a given set 
of functions. 

Thus, the problem of the existence of the law of large numbers in func- 
tional space (uniform two-sided convergence of the means to  their prob* 
bilities) can be considered ss a generalization of the classical law of large 
numbers. 
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Note that in classical statistics the problem of the existence of uniform 
one-sided convergence was not considered; it became important due to the 
key theorem pointing the way for analysis of the problenl of consistency of 
the ERM inductive principle. 

Necessary a d  sufficient conditions for both uniform one-sided conver- 
@nee a d  uniform two-sided convergence are obtained on the basis of a 
concept that is called the entropy of the set offundions Q(z, a ) ,  a E A? OW 

a sample of size !+ 

For simplicity we will introduce this concept in two steps: first for the set 
of indicator functions (which take only the two values O and 1) and then 
for the set of real bounded functions. 

23.2 Entropy of the Set of Indicator Fzlnctiom 

Let Q(z,Q), Q E A, be a set of indicator functions. Consider a sample 

Let u s  characterize the diversity of the set of functions Q(Z, a),& E A, on 
the given set of data by the quantity IVA(al,. . . , zc) that evaluates how 
many different separations of the given sample can be clone using functions 
from the set of indicator functions. 

Let us write this in a Inore formal way. Consider the set of !-dimensional 
binary vectors 

q(a) = (Q(z1. a), . . . , Q(zc, a)), a E A) 

that oire obtains when a takes various values from A. T'hen geometri- 
cally speaking, ( z ,  . . , is the number of different vertices of the f- 
dimensional cube that can be obtained on the basis of the sample rl , - - . , zt 

and the set of functions Q ( x ,  a) E A (Fig. 2.3). 
Let us call the value 

the  mndorn enlmpy- The random entropy describes the diversity of the set 
of functions on the given data. HA(tl, . . . , zc) is a random variable, sillce 
it was constructed using the i.i.d. data. Now we consider the expectation 
of the r&om entropy over the joint distribution function F(z l , .  . . , zc): 

We call this quantity the entropy of the set of indicator functions Q(z, a) ,  
a E A, on samples of size f. It depends on the set of functions Q(z,a),  
a f A, the probability measure, md the number of obsemtioirs !, and it 
describes the expected diversity of the given set of in&cator functions on 
a sample of size L. 
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FIGURE 2.3. The set of &dimensional binary vectors q(a), a E A, is a subet  of 
the set of vertices of the  l-dimensional unit cube+ 

2- 3.3 Entropy of the Set of Real h c t i o n s  

Now we generalize the definition of the entropy of the set of indicator 
functions on samples of size !. 

Definition. Let A < Q ( r , a )  5 3 ,  a t A, be a set of bounded loss 
functions. Using this set of functions and the training set 2.1, . . . , ze one can 
construct the following set of !-dimensional vectors: 

This set of vectors belongs to the !-dimensional cube (Fig. 2.4) and has 
a finite minimal r-net in the metric C (or in the metric L,).3 kt N = 
NA(a; zl, . . . , zt) be the number of elements of the minimal €-net of this set 

3 The set of vectors q{a), CM E A, has a mirlinlal €-net q(a 1 ) , - . . Q ( ~ N )  if: 

(i) There exist N = N'(E; 21,. . . , z ~ )  vectors q (a l  ) , - .  . ,q{aN) such that for 
any vector q(a*), a* E A, one can find among these N vectors one q{a,.) 
that is E - C ~ S ~  to g{a*) (in a given metric). For the metric C that means 

(ii) N is the minimum number of vectors that p m s s  this property. 
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FlGURJ3 2+4+ Tbe set of t-dimensional vectors q(a), a E A, Mong to an 
&dimensional cube, 

of vectors g(a),  CY E A. 

Note that N'(E; 21 , .  . . , zC) iS a random miable, since it was constructed 
using random vectors 21, . . . , zc. The logarithm of the random value 
N ~ ( E ;  21,. * .+o, 

is called the m n d m  VC entmpp of the set of functions A 5 Q(z, a) 5 B 
on the sample z l ,  . . . , zg. The expectation of the random VC entropy 

is called the VC entmpg! of the set of functions A 5 Q(z,Q) 5 B, CY E A, 
on samples of size !. Here the expectation is taken with respect to the 
product measure F(z l ,  + . . , 3)- 

Note that the given definition of the entropy of a set of real functions is 
a generalization of the definition of the entropy given for a set of indicator 

4 The VC entropy differs from classical metrical E-entropy 

in the blbving mpmt: N'(E) is the cardinality of the minimal €-net of the set of 
functiom Q(z , a), a E A ,  while the VC entropy is the expectation of the diversity 
of the set of functions on samples of size 4?. 
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functions, Indeed, for a set of indicator functions the minimal &-net for 
E < 1 does not depend on E and is a sub& of the vertices of the unit cube. 
Therefore, for E < 1, 

Belw we will formulate the theory b r  the set of bounded real functions. 
The obtained general results axe, of course, valid for the set of indicator 
funckions. 

2.9.4 Condit ionrr for Un i form Two-Sided Convergence 

Under some (technical) conditions of measurability on the set of functions 
Q(z, a), a E A, the following theorem is true. 

Theorem 2.3. For uniform two-sided comeqence (2. G) i t  as necessary 
and suficieni ikot the epvniity 

In other words, the ratio of the VC entropy to the number of observations 
should decrwe to 7 ~ r o  with increasing numbers of observations. 

Corollary. Under some conditions of measurability on the set of indica- 
tor functions Q(z, a ) ,  a E A, necessary and suficient condition for unifom 
two-sided convergence is 

lim 
P-M ! 

which is a particular case of equality (2.10). 
T h  condition for uniform tws ided  corlvergence was obtained in 1968 

(Vapnik and C hervonenkis 1968, 1971) + The generalization of this result for 
bounded sets of functions (Theorem 2.3) was found in 1981 (Vapnik and 
Chervonenkis 1981). 

2.4 NECESSARY AND SUFFICIENT CONDITIONS 
buR UNIFORM ONE-SIDED CONVERGENCE 

Uniform two-sided convergence can be described ar foll~ws 
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The condition (2.1 1) includes uniform onesided convergence and therefore 
forms a suficient condition for consistency of the ERM method. Note, 
however, that when solving learning problems wc face an asymmetrical 
situation: We require consistency in minimizing the empirical risk, but we 
do not care about consistency with respect t o  muximizing the empirical 
risk. So for consistency of the EflM method the second conditiorl on the 
left-hand side of (2.11) can be violated. 

The next theorem describes a condition under which there exists consis 
tency in minimizing the empirical risk but not necessarily in maximizing 
the empirical risk (Vapnik and Chervonenkis, 1989)- 

Consider the set of bounded real functions Q(z, a),  a E A, together with 
a new set of functions Q*(z, a*), a* E A*, satisfying some conditions of 
measurabihty as well as the following conditions: For any function from 
Q(z,a), CY E A, there exists a function in Qr(z,a*), a* E A*, such that 
(Fig. 2.5) 

Q( r , a ) -Q*(z ,0*)10 ,  Vz, 

MGURE 2.5. For any function Q(z, a), a E A ,  one considers a function 
Q*(z,a*), a* E A m ,  such that Q*(z,a3) does not exceed Q(z,a) and is close 
to it. 



Theorem 2.4. I n  order for vnifonn ow-sided convergence of empirical 
means to their apectatzons ta hold fur the set of totally handed fhnctions 
Q ( r ,  a ) ,  a t A (2.8), it is necessary and mficient that for any posdtiw 6 ,  q, 
and E there exist a set of functions Q* (z ,  a*) ,  a* t A*, satisfying (2- 12) 
such that the following hl& fir the €-entropy of the set Q* (2, a), a * t A *, 
on samples of size f: 

In other words, for uniform oneaided convergence on the set of bounded 
functions Q (2, a ) ,  a t A, it is necessary and s a c i e n t  that  there exist 
another set of functions Q*(z, a * ) ,  a* E A*, that is close (in the sense of 
(2.12)) to Q(z,  a ) ,  a t A, such that  for this'new set of functions, condition 
(2.13) is valid Note that condition (2.13) is weaker than  condition (2.10) 
in Theorem 2.3. 

According to the key theorem, this is necessary and sufficient for consis 
tency of the ERLM met hod. 

2.5 THEORY OF NONFALSIFI ABILITY 

FFom the formal point of view, Theorems 2.1,2.3, and 2.4 give a conceptual 
model of learning bared on the ERM inductive principle. However, both 
to  prove Theorem 2.4 and to  understand the  nature of the EftM principle 
more deeply wc have to  answer the folkowing questions: 

What happens i;f the co~~dztzon of Thmmm 2.4 is not vdid? 
Why i s  the ERM method nut consistent in  t h s  mse? 

Below, we show that if there exists an EO such that 

lim 
Z 4 X . l  

then the learning machine with functions Q(z,a),  a E A, is faced with 
a situatim that in the ph i lmphy  of science corresponds to  a so-called 
lronfalsifiable theory. 

Before we describe the formal part of the theory, let us remind the reader 
"hat the idea of nonfalsifiability is. 

2- 5.1 Kant 's Problem of D e m a m  tion and Popper 's Theory o f  
J ~ O  nf alsifi a b ili ty  
Since the era of ancient philosophy, two models of reasoning have been 
awepted; 

. . . 

(i) deductiw, which means moving from general to particular, 
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(ii) 2n&dhe, which means moving from particular to general. 

A mode1 in which a system of axioms and inference rules is defined by 
means of which various corollaries (mnsepuences) are obtained is ideal for 
the deductive approach. The deductive approach should guarantee that we 
obtain true consequenm from true premises. 

The inductive approach to reasoning consists in the formation of gen- 
eral judgments from particular assertions. However, the general judgments 
obtained from true particular assertions are not a h a y s  true. Nevehelm, ;  
i t  is assumed that  there exist such cases of inductive inferenm for which- 
generalization assertions are justified. 

The demarcation problem, originally propmed by Kant, is a central q w -  
tion of inductive theory: 

Whd b the d;=tremrace between the cases with a $~stified i n d d i u o  step 
m d  h s e  f i r  which h e  induetiwe step is not jestijied? 

The demarcation problem is usually discu&sed in terms of the philoso- 
phy of natural science. All theories in the natural sciences are the result 
of generalizations of observed real facts, and therefore theories are built 
using inductive inference. In the history af the natural sciences, there have 
been both true theories that reflect reality (say chemidry) and false ones 
(say alchemy) that do not reflect reality. Sometimes i t  takes many years of 
experiments to  prove that a theory is false. 

The question is the following: 

Is them a formid way to distznguish h e  iheort'es from fQIse theories? 

Let us assume that meteorolou is a true theory and &rolagy a fahe 
one. What is the formal difference between them? 

(i) Is it in the complexity of their models? 

(ii) Is it in the predictive ability of their models? 

(iii) Is it in their we of mathematics? 

(iv) Is it in the level of formality of inference? 

None of the above gives a clear advantage to either of these two theories. 

(i) The complexity of astrological models is no less than the complexity 
of the meteorological models. 

(ii) Both theories fail in some of their predictions. 

(iii) Astrologers solve differential equations for restoration of the posi- 
tions of the planets that are no simpler than the basic equations in 
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(iv) Finally, in both theories, inference has the same level of formaliza- 
tion. I t  contains two parts: the formal description of reality and the 
informal interpretation d it. 

In the 1930s, K. Popper suggest.ed his famous criterion for demarcation 
between true and false theories (Popper, 196B). According to Popper, a 
necessary condition for justifiability of a theory is the feasibility d its fal- 
sification. By the falsification of a theory, Popper means the existence of 
a collection of particular assertions that cannot be explained by the given 
theory although they fall into its domain. If the given t hmry can be falsified 
it satisfies the necessary conditions of a scientific theory. 

Let us  come back to  our example. Both meteorology a ~ r d  as t rology make 
weather forecasts. Consider the f o l l ~ i n g  assertion: 

Once, in N ~ J  Jersey, in Judy, there was a tmpzml miwtom and &en 
snowfall- 

Suppose that according to the theory of meteorology+ this is impossible. 
Then this assertion falsifies the theory because if such a situation really 
should b p p e n  (note that nobody can guarantee with probability one that 
this is impossible5), the theory will not be able to  explain it. In this case 
the theory of metmrdogy satisfies the necessary conditions to  be viewed 
as a scientific theory. 

Sup- tkat tkis assertion can be explained by the t.heory of astml~gy. 
(There are many elements in the starry sky, and they can be used to create 
an explanation.) In this case, this assertion does not falsify the theory. If 
there is no example that can falsify the theory of astrology, then astrology, 
according to  Popper, should be considered a nonscientific t hmry. 

In the next section we describe the theorem of nonfalsrfiability. We show 
that if for some set of functions conditions of uniform convergence do not 
lltdd, the situation of nonf alsifiability will arise. 

the following, we skow that if uniform twwsided convergence does not 
place, then the method of minimizing the empirical risk is nonfalsifi- 

3 1)le. 

''Recall Laplace's calculations of conditional probability that the sun has risen 
'""~rrow given that it has risen every dw up to this day. It will rise for sure 
" '~f~ding to the that we me and in which we believe. However t d h  
W ~ b ~ b i l i t ~  one we can assert only that the sun has risen every day up to now 
'lhlrillg the t h o ~ ~ s d s  of years of recorded history- 
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2.6.1 Case of Complete (Papper's) N~nfalsifiability 

To give a clear explanation of why this happens, let us start with the 
simplest case. Recall that according to the definition of VC entropy the 
following expressions are valid for a set of indicator functions: 

~ " ( 1 )  = E I ~ N " ( Z ~ , .  . .,q) and N " ( z ~ , - .  . ,tc) 5 2'- 

Suppose nav that for the VC entropy of the set of indicator functions 
Q(t, a), a E A, the folbwing equality is true: 

It can be shown that the ratio of the entropy to the number of obscr- 
vations HA(l)/ l  monotonically decreases as the number of observations l' 
incre~ses.' Therefore, if the limit of the ratio of the entropy to the number 
of absemtions tends to ln2, then for any finite number ! the equality 

holds true. 
This means that for almost all samples 21, .  . . , z' (i.e., all but a set of 

measure zero) the equality 

is valid. 
In other words, the set of functions of the learr~ing machine is such that 

almost any sample 21,. . . , zf (of arbitrary size 8) can be separated in all 
possible ways by functions of this set. This implies that the mini~num d the 
empirical risk for this machine equals zero. We call this learning machine 
nonfahifiable because it can give a getieral explanation (function) for almost 
any data (Fig. 2,6). 

Note that the minimum value of the empirical risk is equal to zero inde 
pendent of the value of the expected risk. 

2.6.2 Theorem on  Partial Nonfalsifiability 

In the case where the entropy of the set of indicator functions over the 
number of observations tends to A m z e r o  limit, the following theorem 
shows that there exists some subspace of the original space Z* E Z where 
the learning machine is mnfalsifiable (Vapnik and Chwvonenkis, 1989). 

"his asertion is analogous to the assertion that a d u e  of relative (with 
mpect to the number of observations) information cannot increase ,with the 
number of observations. 



2.6. Theorems on Nonfakfiability 51 

FlGUFtE 2.6. A learning m d n e  with the set of functions Q(z,a), ar f A, 
is nonjuisifiaBle if for almost all samplm zl, + + . , zt given by the generator of 
examples, and for m y  possible labels hl,. . . ,61 for these z, the machine contains 
a function Q(zl a') that provides equalities h* = Q(xi, a), d = 1, . . . , 8.  

Theurem 2.5. For the set of indicator junctions Q(z, a ) ,  a E A, let the 
mnueqence - 

lim 
l o = c > o  

t-cm l 
be valid. 

Then there exis& ists subset Z* of the set Z for which the.pmBabz'litg mea- 
sum id5 

P(Z') = a(c)  # o 
mch that for the znterseckion of h o s t  any training set 

with the set Z*, 
* z ~ , .  . -,z; = ( z I , + .  . , z r )  n Z*, 

and for an3 pven sequence of Binary values 

them exists ists findzon Q(z,  a*) for which the equalities 

6i = Q(rl, a*), d = 1,2 , .  . . , k,  

Thus, if the conditions for uniform twwsided convergmce fail, then there 
mists some subspace of the input space where the learning machine is 
nonfalsifiable (Fig. 2.7). 
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FIGURE 2.7. A learning machine with the set of functions Q(z,  a), a A, is 
p~dzl~l l3 nonjahifiabde if there exists a regton 2' c 2 with nonzero measure such 
that for almost all samples zl , . . . , ze given by the generator of examples and for 
any labels . . ,5t for these z, the machine contains a function Q(z, a') tha t  
provides equalities 6, = Q ( z ~ ,  a) for all z, belonging to the region 2'. 

26.3  Theol-ern on Potential Nonfalsifiability 

Nav let us consider the set of uniformly bounded real functions 

Fbr this set of functions a more sophisticated model of nonfalsifiability is 
valid. So we give the hlluwing definition of nmfalsdiability: 

Definition. We say that a learning machine t h a t  has an admissible set 
of real functions Q(r, a), a E A, is putentially nonfaklfiable for a generator 
of inputs with a distribution F ( x )  if there exist two functions7 

such that: 

(i) There exists a positive constant c for which the equality 

holds true (this equality shows that two functions $o(z) end ibl(z) 
are essentially &rent). 

'~herpe two functions do not necesstdy belong to the set Q(r, a) ,  u E A. 



(ii) For almost any sample 
Zy,--. ,Zt,  

any sequence of binary values 

and any c > 0, one can find a function Q( z, a " )  in the set of functions 
Q(z, a ) ,  a 6 A, for which the inequalities 

hold true. 

In this definition of noufalsifiability we we two essentially different func- 
t ions (2) and qO (2) to generate the values yi of the function for the given 
vectors r;. To make these values arbitrary, one can switch these two func- 
tions using the arbitrary rule b(i). The set of functions Q(z, a ) ,  a 6 A, 
forms a potentially nonblsifiable machine for input vectors generated x- 
cording to the distribution function F(z )  if for dm& any sequence of pairs 
($sci) (zi), ti) obtained on the basis of random vectors zi and this switching 
rule b(i), one can find in this set a fundion Q(a, a') that describes these 
pairs with high accuracy (Fig. 2.8). 

Note that this definition of nonfalsifiability generalizes Popper's concept; 

(i) In the simplest example considered in Sect ion 2.6.1, for the set of in

di

- 
cator functions Q (2, a ) ,  a E A, we use this concept of nonm6ability 
where $ * ( z )  = 1 and $o(z) -- 0, 

(ii) in Theorem 2.5 we can use the functions 

where Q(z) is some indicator function. 

On the h i s  of this concept of potential nonfalsifiability, we formulate 
the following general thmrem, which holds for an arbitrary set of uniformly 
bounded functions (including the sets of indicator functions) (Vapnik and 
Chervonenkis, 1989). 

Theorem 2.6. Suppose that for the set of unijurmly bounded reo[ func- 
tions Q(z, a ) ,  a 6 A, thew exists an €0 such that the convergence 
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FIGURE 2.8, A learnlng machine with the set of functions Q[z ,  a), a € A, is 
poten#alb nclnfdsz&ble if for any r > O there exist two e n t i d y  different fun* 
tiom (2) and (2) such that for almost all sample zl , . . . , ZJ given by the 
generator of examples, and for any valuw, ~ 1 , .  . + ,ut constructed on the basis 
of these curves using the rule ui = +dizi)(ti), where b[z)  c {O,1) is an arbi- 
trary binary function, the m&ne contains a function Q(r,a*) that satides the 
inqualities i+6(,l(~i) - Q(~r,a*) l  < E, i = 1, .. . , L .  
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Then the learning n a d z n e  d t h  this sef offvnctioras b potentidly non- 
ja,?,iijfidle. 

Thus, if the conditions of Theorem 2.4 fail (in this case, of course, the 
conditions of Theorem 2.3 will also fail), then the learning w h i n e  is noa- 
f&ifiable. This is the main reason why the ERM principle may be incon- 
sistent. 

Before continuing with the description of statistical learning theory, let 
me remark how amazing Popper's idea was. In the 1930s Popper suggestd 
a general concept determining the generalization ability (in a very wide 

sense) that in the 1990s turned out to be one of the most 
crucial concepts for the analysis of consistency of the ERM inductive prin- 
ciple. 

2.7 THREE MILESTONES IN LEARNING THEORY 

Below we again consider the set of indicator functions Q(z, a ) ,  a E A (i.e., 
we consider the problem of pattern recognition). As mentioned above, in 
the case of indicator functions Q(z, a), a 6 A,  the minimal €-net of the 
vwtors p(a), a A (see Section 2.3.31, d m  not depend on E if E < 1. The 
number of elements in the minimal &-net 

is equal ~JJ the number of different separations of the data 21,. . . , zp by 
functions of the set Q(z, a ) , a  E A. 

For this set of functions the VC entropy also does not depend on E: 

u711ere expectation is taken over (21,. . - , z t ] .  
Consider two new concepts that are constructed on the basis of the values 

of NA(zl, . .  . ,st):  

(i) The annealed VC mtropy . 

(ii) The gmwth fvnction 

GA(l) = ln sup ~ ~ ( 2 1 ,  
+ 3 ~ € 1 -  

21 ,.-.,4 

Tllese concepts are defined in such a way that for any 1 the inequalities 
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are d i d .  
On the basis of these functions the main milestones of learning t heory 

are constructed. 
In Section 2.3.4 we introduced the equation 

li m HA ( 4  
= 0 

e-m e 
describing a suficient condition for consistency of the ERM principle (the 
necessary and sufficient conditions are given by a sllghtly different con- 
struction (2.13)). This equatlon is the first milestone in learning theory: 
We require that any machine minimizing the empirical risk should satisfy 
it. 

H o w m ,  this equatlan says nothing about the rate of convergence of the 
obtained risks R(u@) to  the minimal one R(aa). I t  is possible to  construct 
examples where the E W  principle Is consistent, but where the risks have 
an arbitrarily slow asymptotic rate of con\rergence. 

The question is this: 

Under what condi#ons i s  h e  asymptotic rate o j  convergence fast? 

We say that the asymptotic rate of convergence is f a t  if for any l > lo, 
the exponential bound 

holds true, where c > 0 is some constant. 
As i t  turns out, the equation 

is a suficient condition for a f a t  rate of ~onvergence.~ This equation is the 
second milestone of learning theory: It guarantees a fast asymptotic rate of 
convergence. 

Thus far, we have considered two equations: m e  that dewribes a neces- 
sary and sufficient condition for the consiskncy of the EKM method, and 
one that describes a sufhient condition for a fast rate of convergence of 
the E W  method. Both equatlom are valid for a given probability measure 
F ( z )  on the obsenations (both the VC entropy HA (e) and the VC annealed 
entropy Hk,(f) are constructed uslng this measure). Hmerrer, our goal is 
to construct a learning machine capable of solving many different problems 
(for many different probability measures). 

The question is this: 

8 The n m s i t y  of this condition for a fast rate of convergence is an open 
question. 
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Under what conditiom i s  the ERM p~racipk consistent and simultane- 
ously pmPri&s a fat rate of convergm,  independent of the probability 
m e a r n ~ ?  

The  following equation describes necessary and suficient conditions for 
consistency of EftM for any probability measure: 

I t  is  also the case tha t  if this condition hdds  true, then the rate of conver- 
gence is fast. 

This equation is the third milestone in learning theory. It describes a 
necessary and sufficient condition undw which a learning machine tha t  
implements the ERM principle has a high asymptotic rate of convergence 
independent of the  probability measure (i.e., independent of the problem 
that has t o  be solved). 

These milestones form the foundation for constructing both distribution- 
independent bounds for the  rate of convergence of learning machines and 
rigorous distribut ion-dependent bounds, which we will consider in Chapter 
3. 





Informal Reasoning and 
Comments --- 2 

In the Introduction as well as in Chapter 1 we discussed the empirical 
risk minimization method and the methods of density estimation; however, 
we will not use them for constructing learning algorithms. In Chapter 4 
we introduce another inductive inference, which we use in Chapter 5 for 
constructing learning algorithms. On the other hand, in Section 1.11 we 
introduced the stochastic approximation inductive principle, which we did 
not consider as very important in spite of the fact that some learning 
procedures (e.g., in neural networks) are based on this principle. 

The following questions arise: 

Why am the ERA4 principle and the metho& o j  density estimation so 
important ? 

Why did we spend so much time describing the necessary and saficient 
~nbi t iuns  for  consistency oj the ERM principle? 

In these comments we will try to show that in  some sense these two 
approaches to  the problem of function estimation, one based on density 
estimation methods and the other based on the ERM method, reflect two 
quite general ideas of statistical inference. 

To show this we formulate the general problem of statistics as a problem 
of estimating the unknown probability measure using the data. We will 
distinguish between two modes of estimation of probability measures, the 
s*called strong mode estimation and the -called weak mode estimation. 
We show that  methods providing strong mode estimations are based on 
the density estimation approach, while the methods providing wcak mode 
estimation are based on the E m  approach. 
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The weak mode estimation of probability measures forms one of the most 
important problems in the foundations of statistics, the so-called general 
G l i v c n H a n t e l l i  problem. The results described in Chapter 2 provide a 
complete solution to  this problem. 

2.8 THE BASIC PROBLEMS O F  PROBABILITY 

THEORY A N D  STATISTICS 

In the 1930s Kolmogorou introduced an axiomatization of probability the- 
ory (Kolmogorov, 1933), and since this time probability theory has become 
a purely mathematical (i-e., deductive) discipline; Any analysis in this the- 
ory can be done on the basis of form1 inference from the given axhms. 
This h s  allowed the developmeut of a deep analysis of both probability 
theory and statistics. 

8.8.1 Axioms of Probability Theory 

According to  Kolmogorov's axiomatization of probability theory, to  every 
random experiment there corresponds a set Z of elementary events z that  
defines all possible outcomes of the experiment (the elementary ewnts). 
On the set Z of elementary events, a system {A) of subsets A c Z, which 
are called events, is defined. Considered as an event, the set Z determines 
a situation corresponding t o  a sure event (an event that always occurs). It 
is a s sumd that  the set A contains the empty set 0, the event that never 
occurs. 

For the elements of {A) the operations union, complement, and inter- 
seetion are defined. On the set, Z a g-algebm F of m n t s  (A) is definedAg 
The set F of subsets of Z is called a g-algebra of evenh A E F if 

(i) Z E F; 

(ii) if A E F ,  then A t F; 
(iii) if Ai E F ,  then UF, A$ c F. 

Example.  Let us describe a model of the random experiments that 
are relevant tu the following situation: Somebody throws two dice, say 
red and black, and observes the result of the experiment. The space 
of elementary events Z of this experiment can be described by pairs 
of integers, where the first number describes the points on the red 

can read about cr-algebras In any advanced textbook on probability 
thory.  (See, for example, A.N. Schhyaev, Pmbabdfty, Springer, New York, p. 
577.) This concept m a k e  it possible ta use the formal tools developed in measure 
theory for constructhg t be foundations of probability theory. 
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1 2 3 4 5 6  black 

FIGURE: 2.9. The space of elementary eventa for a twrrdice throw. Tbe events 
A,, and A,>b are Indicated. 

die and the second number describes the points on the black one. An 
went in this experiment can be any subset of this set of elementary 
events. Fbr example, it can be the subset Ale of elementary events for 
which the sum of points on the two dice is equal to 10, or it can be 
the subset of elementary events Ar>* where the red die has a larger 
number af points than the black one, etc. (Fig. 2.9 ). 

The pair (Z ,F )  consisting of t h  set Z and the -algebra F of events 
A E 3 is an idealization of the qualitative aspect of random experiments. 

The guantitave aspect of experiments is determined by a probability 
mmuw P(A) defined on the elements A of the set 3. The function P(A) 
defined on the elements A E 7 is called a countably odditiwe probatvi,Iity 
measurn on F or, for simplicity, a probability meusurn, provided that 

i )  P(U&Ai) = Cza_, P(Ai) if A$, A j  E 3 ,  andA, n A j  = 0, Qi, j. 

We say that a probabilistic model of an experiinent is determined if the 
~robabllity space defined by the triple (2, F ,  P )  is determined- 

Example, In our experiment let us consider a symmetrical die, where 
all elementary events are equally probable (have probability 1/36). 
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Then the probabilities of all events are defined. (The event Alo has 
probability 3/36, the  event Ar>b has probability 15/36.) 

In probability theory and in the theory of statistics the  concept of inde- 
pendent t rials1' plays a crucial role. 

Consider an  experiment containing e distinct trials with probability space 
( Z , 3 ,  F'j and let 

ZI ,+-  *,a! (2.14) 

be t h e  results of these trials, For an experiment with P trials the  model 
(Z', 3', P) can be considered where ZC is a space of all possible outcomes 
(2.14), F' is a D-algebra on Z' that  contains the  sets Ak, x + . x Ak, , and 
P is a probability measure defined o n  the elements of the  D-algebra F'. 

We say tha t  the  sequence (2.14) is a sequence of P independent trials if 
for any Ak, , . . . , Ak, E 3 ,  the  equality 

is valid. 
Let (2.14) be the result of P independent trials with the  model ( 2 ,  3 ,  P). 

Consider the  random variable v{z1, . . . , y; A) defined for s fixed event A E 
F by the value 

n A  we(A) = u(r1,. .. ,ze;A) = -, e 
where 7 a ~  is the number of elements of the  eet a l ,  - . . , re belonging t o  event 
A. The  random variable uf(A) is called the frequency of occurrence of an 
event A in a series of e independent, random trials. 

In terms of these concepts we can formulate the basic problems of p r o b  
ability theory and t h e  theory of statistics. 

The basic p r o b l e m  of probabi l i ty  theory 

Given a model ( Z , 3 ,  P) and an event A*, estimate the distribution 
(or some of its characteristics) of the  frequency of occurrence of the  
event A* in a series of l independent random trials. Formally, this 
m o u n t s  t o  finding the distribution function 

F(<; A*, P) = f'{~t{A*) < <I (2.15) 

(or some functionals depending on this function). 

11) The concept of independent trials actually is the one that makes probability 
thmry different from measure thmry. Wlthout the conmpt of independent trials 
the axioms of probability theory define a model f m . m e a s m  theory. 
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Example. In our example with two dice it can be the following prob- 
lem. What is the probability that the frequency of event Alo (sum of 
points equals 10) will be less than 5 if one throws the dice l times? 

In the theory of statistics one faces the i7aver.w problem. 

The basic problem of the theory of statistics 

Given a qualitative model of random experiments ( Z , F )  and given 
the i.i.d. data 

Zy, - . . , zp, . . . , 
which occurred according to an unknown probability measure P, es- 
timate the probability measure P defined on all subsets A E F (or 
some f u n c t i o d s  depending on this function). 

Example. Let our two dice now be asymmetrical and somehow con- 
nected to each other (say connected by a thread). The problem is. 
given the results of l trials (l pairs), to estimate the probability mea- 
sure for all events (subsets) A E F. 

In this book we consider a set of elementary events Z C R" where the 
g-algebra .F is defined to contain all Bore1 sets" on Z. 

2.9 TWO MODES OF ESTIMATING A PROBABILITY 
MEASURE 

One can define two modes of estimating a probability measure: A strong 
mde and A weuk made. 

Definition: 

(i) We say that the estimator 

estimates probability measure P in the strong mode if 

(ii) We say that the estimator &(A) estimates the probability measure 
P in the weak mode determined by solnc subset F* C 7 if 

P 
sup JP(A) - Ee(A) J - 0, 

@ 4 c v  
(2.17) 

A€F- 

"we consider the minimal o-algebra that contains all open parallelepipeds. 
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FIGUFCE 2.10. The Lebesgue integral defmed in (2.18) is the limit of a sum of 
products, where the factor P {&(z,a) > fB/m) is the {probability) measure of 
the set { z  : Q(z, a )  > iB/m), and the factor B/m is the height of a slice. 

where the subset F+ (of the set F) does not necessarily form a u- 
algebra. 

For our reasoning it is important that if one can estimate the probability 
measure in one of t h e  modes (with respect t o  a special set 3* described 
below for the weak mode), then one can minimize the risk functional in a 
given set of functions. 

Indeed, consider the case of bounded risk functions 0 5 Q(z, a) _< B. Let 
us rewrite the risk functional in an equivalent form, using the definition of 
the Lebesgue integral (Fig. 2.10): 

If the estimator Ef(A) approximates P(A)  well in the strong mode, i.e., 
approximates uniformly well the probability of any event A (including the 
events A:,$ = (Q(z, a) > iB/rn)), then the functional 
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constructed on the basis of the probability measure &(A) estimated from 
the data approximates uniformly well (for any a )  the risk functional R(cr). 
Therefore, it can be used for choosing the function that minimizes risk The 
empirical risk functional &(a) mnsidered in Chapters 1 and 2 corresponds 
to the case where estimator £&{A) in (2.19) evaluates the frequency of event 
A from the given data. 

Note, however, that to approximate (2.18) by (2.19) on the given set of 
junctions Q(z,  a) ,  a E A, one does not need uniform approximation of P 
on all even& A of the a-algebra, one.needs uniform approximation only on 
the events 

(only these events enter in the evaluation of the risk (2.1 8)). Therefore, to 
find the function providing the minimum of the risk functional, the weak 
mode approximation of the probability measure with respect to the set of 
events 

is sufficient. 
Thus, in order to find the function that minimizes risk (2.18) with un- 

known probability measure P{A) one can minimize the functional (2.19), 
where in~tead of P{A} an approximation &{A} that converges ta P(A) in 
any mode (with respect to  events N &,,, a t A, i = 1,.  . . , m, for the weak 
mode) is used. 

2.10 STRUNG MODE ESTIMATION OF 
PROBABILITY MEASURES AND THE DENSITY 
ESTIMATION PROBLEM 

Unfortunately, there h no estimator that can estimate an arbi~mry proba- 
biljty measure in the strong mode. One can estimate a probability measure 
if for this measure there exists s density f undion (Radon-Nikodym d e r i v ~  
tive). Let us assume that a density function p(z) exists, and  PI(^) be an 
approximat ion to this density function. Consider an estimator 

According to Sche&L theorem, for th i s  estimator the bound 
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is valid, i.e., the strong mode distance between the approximation of the 
probability measure and the actual measure is bounded by the L1 distance 
between the approximation of the density and the actual density. 

Thus, to estimate the probability masure in the strong mode, it is suffi- 
cient to  estimate a density function. In Section 1.8 we stressed that estimat- 
ing a density function from thc data forms an ill-posed problem. Therefore, 
generally speaking, one cannot guarantee a good approximation using a 
$xed number of obsematiom. 

Fortunately, as we saw above, to  estimate the function that minimizes the 
rlsk functional one does not necessarily need to  approximate the density. 
It is sufficient to approxinlate the probability measure in the weak mode, 
where the set of events F depends on the admissible set of functions 
Q(z? a ) ,  cr E A: It must contain the events 

The "smaller" the set of admissible went.s considered, the "smaller" the set 
of evmts F* that must be taken into account for the weak approximation, 
and therefore (as we will see) minimizing the risk on a snraller set of func- 
tions requires fewer observations. In Chapter 3 we will describe bounds on 
the rate of uniform convergence that depend on the capacity of the ~t of 
admissible events+ 

2. I I THE GLIVENKO-CANTELLI THEOREM AND 
ITS GENERALIZATION 

In the 1930s Glivenko and Cantelli p r o d  a theorem that can be considered 
as the most important result in the foundation of statistics. They proved 
that any probability distribution function of one random variable <, 

can be approximated arbitrarily well by the empirical distribution function 

where 21, .  . . , ze are i.i.d. data obtained according to an unknown density" 
(Fig. 1.2). hlore precisely, the GllvenkAantelli theorem asserts that for 
any E > O the equality 

lim Pisup IF(.) - Ff(r)(  > E} = 0 
f-03 Z 

1 2 ~ h e  generalization for a > 1 variables was obtained later- 



(convergence in probabilityt3) holds true. 

Let us formulate the Glivenko-Cantelli theorem in a different form. Con- 
sider the set of events 

(the set of rays on the line pointing to -m). For any e m t  A, of this set 
of events one can evaluate its probability 

Using an i.i.d. sample of size l one can also estimate the frequency of 
occurrence of the event AZ in independent trials: 

In these terms, the GlivenbCantelli theorem w e r t s  weak mode conver- 
gence of estimator (2.22) ta probabihty measure (2.21) with respect to the 
set of of events (2.20) (weak, because only a subset of all events is consid- 
ered). 
To justify the ERM inductive principle for various sets of indicator func- 

tions (for the pattern recognition probiem) , we mnst ructed in this chapter a 
general theory of uniform convergence of frequencies to probabilitim on w- 
bitrary sets of events. This theory completed the analysis of the weak mode 
approximation of probability measures that was started by the G b v e n b  
Cate1l.i theory for a particular set of events (2.20). 

The generalization of these results to the uniform convergence of means 
to their mat hematical expectations over sets of functiolks that was obt a i n d  
in 1981 actually started research on the general type of empirical processes. 

2.12 MATHEMATICAL THEORY OF INDUCTION 

In spite of significant results obtained in the foundatiort of theoretical statis- 
tics, the main conceptual problem of learning theory remained unsolved for 
more than twenty years (from 1968 to 1989): 

Does the uni jom convergence o/ means to t h e i ~  expectations fom a nec- 
essary and suficient condition for cunsistencp of the ERM inductiue p ~ n -  
triple, or is this condotion only suficient? I n  the latter case, might them 
c ~ t  another less restrictive suficient condition? 

' 3 ~ c t u a ~ y ,  s stranger mode of convergence holds true, the so-called convergence 
''4moEt surely." 
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The answer was not obvious. Indeed, uniform convergence constitutes a 
global property of the  set of functions, while one codd have expected that 
consistency of the ERM principle is determined by local properties of a 
subset of the set of functions cbse to the desired one. 

Using the concept of nontrivial consistency we showed in 1989 that con- 
sistency is a global property of the admissible wt of functions, determined 
by one-sided uniform convergence (Vapnik and Chemnenkis,  1989). We 
found necessary and sufficient conditions for one sided convergence. 

The proof of these conditions is based on a new circle of ideas - ideas 
on nonwsifiability that appear in philosophical discussions on inductive 
inference. In these discussions, however, induction was not considered as a 
part of statistical inference. Induction was considered as a tool for inkrenee 
in more general frameworks than the framework of statistical models, 



Chapter 3 
Bounds on the Rate of 
Convergence of Learning Processes 

In this chapter we consider bounds on the rate of uniform convergence. 
We consider upper hounds (there adst bwer bounds as well (Vapnik and 
Chervonenkis, 1974); however, they are not as important for controlling 
the Learning processes as the upper bounds). 

Using two different capacity concepts described in Chapter 2 (the an- 
nealed entropy function and the growth function) we describe two types of 
hounds on the rate of convergence: 

(i) Distribution-dependent bounds (based on the annealed entropy func- 
tian), and 

(fi) distribution-independent bounds (based on the growth function). 

These bounds, however, are nonconstructive, since theory does not give 
explicit methods to evaluate the  annealed entropy function or the growth 
frmction. 

Therdore, we introduce a new characteristic of the capacity af a set 
of functions (the VC dimension of a set of functions), which is a scalar 
d u e  that can be evaluated for any set of functions accessible to a h i n g  
mmhine. 

On the basis of the VC dimension concept we obtain 

(iii), Constructive distribution-independent bounds. 

Writing these bounds in equivalent form, we find the bourlds on the risk 
achieved by a learning machine (i.e., we estimate the generalisat ion ability 
of a learning machine). In  Chapter 4 we will use these bounds t o  control 
the generalization ability of learning machines. 
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We start the description of the results of the theory of bounds with the  case 
where Q(z,a),  a E A, is a set of indicator functions and then generalize 
the results for sets of real functions. 

Let Q ( z , a ) , a  E A, be a set of indicator functions, HA(!) the co r re  
sponding VC entropy, ~ ; ~ , , ( e )  the annealed entropy and ~ ~ { e )  the growth 
function (see Section 2.7). 

The G l h i n g  two hounds on the rate of uniform convergence form the 
basic inequalities in the theory of bounds (Vapnik and Chervonenkis, 1968, 
1971), (Vapnrk, 1979, 1996). 

Theorem 3.1. T h e  folbwing inequdlty holds tme: 

T hearem 3.2. The  folluwing inequality holds tme: 

The bounds are nontrivial (i.e., for any E > 0 the rjght-hand side tends 
to  zero when the  number of observations l goes to infinity) if 

(Recall that in Section 2.7 we called thjs condition the second milestone of 
learning theory. ) 

To discuss the diffkrence hetween these two bounds let us recall tbat for 
any indicator functjon Q(z, a)  t h  risk functional 

describes the probability of event {z  ; Q(z, 0) = I), while the  empirical 
functional l&,,(ct) describes the  frequency of this event. 
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Theorem 3.1 estimates the rate of uniform convergence with respect ta 
the norm of the deviation hetween probability and frequency It is char 
that maximal difference more &ely occurs for the events with maximal 
variance. For this Bernoulli case the variance is equal to  

alrd therefore the maximum of the variance is achieved for the events with 
probahihty Rja*) sz $. In other words, the largest deviations are zsociated 
with functions that  possess h g e  risk. 

In Section 3,3, using the hound on the rate of convergence, we will obtain 
a bound on the risk where the wnfidence intern\  is determined by the rate 
o f  uniform convergence, i.e., by the  function with risk flja*) f (the 
'"worst" function in the set). 

To obtain a smaller confidence interval one can try to construct the 
bound on the risk using a bound for another type of uniform convergence, 
namely, the uniform relative convergence 

where t h ~  deviation is norma.lized by the variance. The  supremum on the 
uniform relative convergence can be achieved on any function Q(r,a)  in- 
cludtrg m e  tha t  has a small risk. 

Technically, however, it is difficult t o  estimate well the right-hand side 
for this hound. One can ohtain a good bound for simpler c m ,  where 
instead of nonnalizatian by the variance one considers norma.lizatian by 
the function v/w. This function is clme t o  the variance w h w  R(a) is 
reasortabiy smal\ (this is exactly the case that we are interested in). To 
obtain hetter coefficients for the bound one considers the difference rather 
than the modulus of t h  difkrence in the nunrerator. This caw of relative 
unifor~n convergence is considered in Theorem 3.2. 

In Swtiorl 3.4 we will demonstrate that the upper bound on the risk 
obtained using Theorem 3.2 is inuch better than thc upper bound on the 
risk obtained on the basis of Thmrem 3. I. 

'l%e bounds obtained in Theorens 3.1 and 3.2 are distribution-dependent: 
They are valid for a given distribution function F ( z )  on the observatiolrs 
(the distribution was used in constructing the annealed elrtropy function 
*Ah ). 

To construct distribution independent bourtds it is sufficient to  note that 
for any distribution function F j t )  the growth function is not less than thc 
a n t ~ & d  entropy 

*k,(l) l 
Therefore, for any distribution function ~ ( z ) ,  the folbwing inequalities hold 
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true: 

These inequalities are nontrivial if 

A L G ( ) - * .  lim - - 
l L 

(Recall that in Section 2.7 we called this equation the third milestone in 
learning t hwry). 

It is important to  note that  conditions (3.5) are necessary and sufficient 
for distr ibution-free uniform convergence (3.3). In part i c u l r  , 

if condition (3.5) is violated, then there exist probability measurns F (2) 

on Z for which unifuwn convergence 

does not hke  place. 

3.2 GENERALIZATION FOR THE SET OF REAL 
FUNCTIONS 

There are several ways to generalize the results obtained for the set of 
indicator functions to  the  set of real functions. Below we consider the  sim- 
plest and most e k t i v e  (it gives better bounds and is d i d  for the set of 
~ n h u n d e d  real functions) (Vapni k 1979, 19%). 

Let Q(z, a), a E A, n m  he a set of real functions, with 

A = inf Q(z, a) 5 Q(+, a) 5 sup Q(z7 0) = B 
0 3 2 :  

(here A can he -oo and/or B can be +m). We denote the open intern1 
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F T G W J  3.1. The indicator of bvel j3 for the function Q(z ,  a) shows for which z 
the function Q(z, a) exceeds p and for which it does not. The function Q{z, a) 
can be dacribecl by the set of aU its indicators. 

(A, B) by B. Let us construct a set of indimtors (Fig. 3.1) of the  set of real 
functions Q(z,a),  a E A: 

For a given fundion Q(x,a') and for a given p* the  indicator 1(z,a*, p) 
indicates by 1 the  region z E Z where Q(z, a * )  > 0' and indicates by 0 the 
region z E Z where Q(z,a*) < IS*. 

In the o m  where Q(E, a),  a E A, are indicator functions, the set of 
iltdicaton I(z, a, B ) ,  a E A, 0 E (0, I), coincides with this set Q(z ,  a), a E 
A. 

For any given set of real functions Q(z,a),  cr E A, we will extend tho 
resdts of the previous section by considering the corresponding set of in- 
dicatars i(z,a,O), a E A, b E 8. 

Let EIAJ(l) the VC entropy for the set of indicators, EI:;,B(l) the an- 
nealed entropy for the set, and GAy"(l) the growth function. 

Using these concepts we obtain the basic inequalities Eor the set of real 
functions as generalizations of inequalities (3.1) and (3.2). In our general- 
ization we distinguish three cases: 

(i) Totally bounded functions Q(r , a ) ,  a E A. 

(ii) Totally bounded nonnegative functions Q(2, a),  a E A- 

(iii) Nonnegative (not necessarily bounded) functions Q(z,a), a E A. 

Below we consider the bounds for all three cases. 



(i) Let A < Q(z,a)  < B, n E A, be a set of totally bounded functioas. 
Then the following inequality holds true: 

(ii) Let 0 5 Q(z,a) 5 B, a E A, be a set of totally bounded nonnegative 
functioirs. Then the following inequality holds true: 

These inequalities are direct generalizations of the ineqrralities obtained 
in meorenrs 3.1 and 3.2 6 r  t he  set of indicator functions. They coincide 
with inequalities (3.1) and (3.2) w h n  Q(r,cr) E {O, 1). 

(iii) Let 0 < Q(z, a ) ,  cr f A be  a set of fundions such that for some 
p > 2 the pth normalized moments' of the random variables E, = Q(z7 a )  
exist: 

t 

Then the following bound holds true; 

where 

The bounds (3.6), (3.71, and (3.8) are nontrivial if 

We mnsider p > 2 only simplify the formulas. Andagous results hold true 
for p > 1 (Vapnik, 1979, 1996). 
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3.3 THE MAIN DISTRIBUTION-INDEPENDENT 
BOUNDS 

The bounds (3 -61, (3 -71, and (3.8) were distribut ion-dependent: The righb 
hand sides of the bounds use the  annealed entropy Hs:(t') that is can- 
structed on the basis of the distribution fundion ~ ( z ) .  To obtain distribution- 
independent bounds one replaces the annealed entropy H$;f(l) on the 
right-hand sides of bounds (3.61, (3.71, (3.8) with the growth function 
GAlB(t). Since for any distribution function the growth function GA"(l) 
is not smaller than the annealed entropy H t P ( l ) ,  the new bound will be 
truly independent of the distribution function F(x ) .  

Therefore, m e  can obtain the f o l h i n g  distribution-independent bounds 
on the rate of various types of uniform convergence: 

(i) For the set of totally bounded functions -m < A Q(E, 0) 5 B < 
m, 

(ii) For the set of nonnegative totally bounded functions O 5 Q(t ,  a) 5 
B <Pa, 

J Q(z,n)dF(z) - : E:=, Q(ri, 0) 
P sup 1 > E I 

(iii) Far the set of nonnegative real functions O 5 Q(z, (1)  hose f lh  nor- 
malized moment exists for some p > 2, 

< 4 exp - {(GA7fi(2m)-f)e}.  e 4 (3.12j 

These inequalities are ltvntrivial if 

Using these inequalities one can establish bounds on the generalization 
abibty of different learning machines. 
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3.4 BOUNDS ON THE GENERALIZATION ABILITY 
OF LEARNING MACHINES 

'In describe the generalization ability of learning machines that implement 
the ERM principle one has t o  answer two questions: 

( A )  What actual riPk R(ae) i s  provided by the function Q(z,ae) that 
achiwea minimal e m p i r i d  risk &,(rro)? 

(B) How dose is tlus risk to the minimal possible info R(a) ,  a E A, for 
the given set uffinctions? 

Answers to both questions can be obtained using the bounds described 
above. B l o w  we describe distribution-independent bounds on the generd- 
ization ability of learning machina that  implement sets of tatally bounded 
functions, totdly bounded nonnegative functions, and arbitrary sets of non- 
negative functions. These bounds are another fbrm of writing the bounds 
given in the previous swtbn .  

To d e s c d ~  these bounds we use the notation 

Note that  the bounds are nontrivial when E < 1. 

Case 1. The set of to ta l ly  b o u n d e d  funct ions 

Let A 5 Q(z,a)  5 8, o f A, be a set of totally bounded functions. 
Then: 

(A) The following inequalities hold with probability at least 1 - q simuC 
tanmusly fbr all functions of Q(z, a ) ,  a E A (including the function 
that minimizes the empirical risk): 

(These bounds are equivalent to  the bound on the rate of uniform 
convergence (3.10) .) 

(B) The following inequality holds with probability at least 1 - 21) for the  
function Q(r, at) that minimizes the empirical risk: 

R ( w )  - inf Rjo)  5 ( 8  - 
QE A A ) / 3 + ( B - A ) & .  2 (3.16) 
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Case 2. The set of totally bounded nonnegative functions 

h t  O 5 Q(t ,  a )  5 B, a E A, be a set of nonrregative bounded functions. 
Then: 

(A) The following inequality holds with pmbahility at least 1 - 17 slnulta- 
neously for all functions Q(z, a )  _< B, a: E A (including the function 
that minimizes the empirical risk): 

(This bound is equivalent to the  bound on the rate of uniform con- 
vergence (3.11) .) 

(B) The folbwing inequality holds with probability of at least 1 - 217 for 
the function Q(r, a o )  tha t  minimizes the empirical risk 

R{ar) - inf K(nj  5 + (1 + \/G) (3-18) 
&€A 

Case 3. The set of unbounded nonnegative functions 

Finally, consider the set of unbounded nonnegative functions 0 5 Q(z, a ) ,  
a E A. 

It is easy to show (by constructing examples) that without additional 
information about the set of unbounded functions and/or probability mea- 
sures it is impossible t o  obtain any inequalities describing the generalization 
ability of learning machines. Below we assume the  following information: 
We are given a pair (p, T )  such that  the inequaljty 

sup (J Qpk, Q ) ~ F ( z ) ) " ~  < T < W  
~ E A  J Q(z, a ) d ~ { t )  

- 

holds true: where p > 1. 
The main result of the theory of learning machines with unbounded sets 

of functions i s  the following assertion, which for simplicity we will describe 
for the case p > 2 (the results for the case p z 1 can be found in (Vapnik, 
1979, 1996)): 

2 This Inequality describes some general properties of the distribution functions 
of the random variables = Q(z, o) generated by F ( z ) .  It describes t k "tails of 
the distributions" (the probability of large values for the random variables <.). 
If the inequality (3.19) with p >_ 2 hIds, then the distributions have so-called 
d t  light tails" (lare values d <. do not occur m y  often). In this case a fast rate 
of convergence is possible. If, h e r ,  the inequality (3.19) holds only for p 4 2 
(large values <, occur rather often), then the rake of convergence will be dow (it 
will be arbitrafly dow if p is sufficiently cbse to one). 
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(A) With probability at least 1 - q the inequality 

where 

holds true simultaneously for all functions sat ifying (3.19), where 
(a)+ = max(u, 0). ( T h i  bound is a corollary of the  bound on the 
rate of uniform co~~vergence (3.12) and constraint (3.1 9) .) 

[B) With probability ~t least I - 2q the  inequality 

holds for the  function Q(z,ol)  that minimizes the empirical risk. 

The  inequalities (3.15), (3.17), and (3.20) bound the risks for all functions 
in t h e  set Q(z ,a ) ,  a E A, including the function Q( t ,oc)  that  minimizes 
the empirical risk. The inequalities (3.16) , (3.18), and (3.21) evaluate hav  
close the risk obtained using the ERM principle is to the smallest possible 
risk. 

Note that  if E < 1, then bound (3.17) obtained from the rate of uniform 
relative deviation is much better than bound (3.15) obtained from the rate 
of uniform convergence: For a small value of empirical risk the  bound (3.17) 
has a confidence interval whose order of magnitude is E, but not a, as in 
bound (3.15). 

3.5 THE STRUCTURE OF THE GROWTH FUNCTION 

The bounds on the generalization ability of learning machines p r e n t e d  
above are  to be thought of as conceptual rather than constructive. To make 
them constructive one has t o  find a way t o  evaluate the annealed entropy 
Hfii? (P) and/or the  growth function ~"(l) for the given set of functions 
Q(t,(*), a E A.  

We will find constructive bounds by using theconcept of VC dimension d 
the set of functions Q(z, a), a E A (abbreviation for Vapnik-Chervonenkis 
dimension). 

The remarkable connection betwee11 the concept of VC dimension and 
the growth function was discovered in 1968 [Vapnik and Chcmnenkk ,  
1968, 1971). 
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Theorem 3.3. Any growth finctiun either satisfies i h ~  equality 

or is bounded by the inequality 

where h is an integer such that when ! -- h, 

In other words, the growth function is either linear or  is bounded by a 
logarithmic fuaction. (The growth function cannot, for example, be  of t h e  
form GA(!) = c d  (Fig. 3.21.) 

Definit ion.  We will say that  t he  VC dimension of the  set of indicator 
funr:t,ions Q(z, a), a f A is infinite if the growth function for this set of 
functions i s  linear. 

IVe will say that  the VC dimension of t h e  set of indicator functions 
Q ( z , a ) , a  E A, is finite and equals h if the corresponding growth function 
is b o u ~ l d d  by a logarithmic function with coefficient h. 

Since the inequalities 

FIGURE 3.2. The growth function L either linear or bounded by a logarithmic 
f~unction. I t  cannot, for example, behave like the dashed line. 
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are valid, the finiteness of the VC dimension of the set of indicator functions 
implemented by a learning machine is a sufficient condition for consistency 
of the ERM method independent of the probability meaure. Moreover, a 
finite VC dimension implies a fast rate of convergence. 

Finiteness of the VC dimension is also a necessary and sufficient condition 
for distribution-independent consistency of ERM learning machines. The 
following assertion holds true (Vapnik and Chervonenkis, 1974): 

I f  u n i f u m  convergenee of the f iquendes to their pmbaklities over some 
set of events (set of indimtor funcfions) i s  valid for any distribution func- 
tion FIX), then the VC dimension of h sel offunctions 2s finite. 

3.6 THE VC DIMENSION OF A SET OF FUNCTIONS 

Below we give an equivalent ddni t ion of the VC dimension for sets of indi- 
cator functions and then generalize this definition for sets of real functions. 
These definitions stress the method of evaluating the VC dimension. 

The VC dimension of  a set of indicator functions (Vapnik and 
Cheruonenkk, 1988, 1971) 

The VC dimemion of u set of indicator functzom Q(z, a ) ,  a E A, is 
the maximum number h of vectors zl , . . . , zh  that can be separated into 
two classes in all zh possible ways using functions of the set3 (i.e., the 
maximum number of vectors that can be shuttered by the  set of functions). 
If h r  any n there exists a set of n vectors that can be shattered by the set 
Q(z, a ) ,  a E A, then the VC dimension is equal t o  infinity. 

The VC dimension o f  a set o f  real functions (Vapnik, 1979) 

Let A < Q(z, a) < B, cr E A, be a set of real functions bounded by 
constants A and B (A can be -m and B can be m). 

Let us consider along with the set of real fundions Q ( t ,  a), c* E A, the 
set of indicators (Fig. 3.1) 

where @(z) is the step function 

The VC dimension of a set o f  ma1 functions Q(z,a) ,  a E A, is defined 
t o  be the VC dimension of the  set of corresponding indicators (3.22) with 
parameters a E A and /3 E (A, B). 

3 ~ n y  indicator function separates a given set of vectors into two subsets: the 
subset of vectors for which this indicator function takes the value 0 and the subet  
of vectors for which this jndicator function tab the value E. 
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FIG URE 3.3. The VC dimension of the lines in the is equal b 3, since they 
can shatter three vectors, but not four: The vectors z2,zq cannot be separaksd 
by a line from the vectors zl ,  z3. 

Example 1. 

(i) The VC dimension of the  set of linear indrcatur functions 

in n-dimensional coordinate space Z = (31, . . . , 3,) is equal t o  h = 
n .+ 1, since by using functions of this set one can shatter at most 

n .+ 1 vectors [Fig. 3.3). 

[ii) The VC dimension of the set of linear functions 

in n-dimensional coordinate space Z = (21, . . . , x,) is equal to  h = 
n +  1, because the VC dimension of the corresponding linem indicator 
functions h equal to  n + I. (Note: Using a* - /3 instead of rro does 
not change the set of indicator functions.) 

Note that for the set of linear functions the VC dimension equals the num- 
ber of free parameters a*, al, . . . , a,. In the general case this is not true. 

Example 2. 
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(i) The VC dimension of the set of functions 

is jnfinite: The poj11t.s on the  line 

1 21 = 10- ,. . . , XP = 10- P 

can be shattered by functioils from this set, 

Indeed, to separate these data  into two classes determined by the 
sequence 

6 1 , -  Si E (O.J), 

it is sufficjent to  choose the value of the parameter a to  be 

This example reflects the fact that by choosing an appropriate c u  
efficient a one can for any number of appropriately chosen points 
approximate values of any function bounded by (- 1, +I)  (Fig. 3.4 ) 
using sin ax. 

In Chapter 5 we wit1 consider a set of functions for which the VC dimension 
is much less than the number of parameters. 

Thus, generally speaking, the VC dimension of a set of fi~nctions does 
not with the number of parmeters.  It can be either larger than 

FIGURE 3.4, Using a high-frequency function sia(az), one can approximate well 
the value of any functbn - 1 < f(r) _< 1 at l appropriately chosen points. 
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the number of parameters (as in Example 2) or smaller than the number 
of parameters (we will use sets of functiom of this type in  Chapter 5 for 
constructing a new type of learning machine). 

In the  next section we will see that  the VC dimension of the set of 
functions (rather than number of parameters) is responsible for the gener- 
alization ability of learning machines. This opens remarkable opportunities 
to overcome the "curse of dimensionality" : t o  generalize well on the basis of 
a set of functions containing a ]luge number of parameters but possessing 
a small VC dimension. 

3.7 CONSTRUCTIVE DISTRTBUTION- INDEPENDENT 
BOUNDS 

In this section we wdl present the bounds on the risk functional that in 
Chapter 4 we use for constructing the methods for controlling the general- 
ization ability of learning machines. 

Consider sets of functions that p w e s s  a finite VC dimension h. In  this 
case Theurem 3.3 states that  the bound 

holds. Therefore, in all inequalities of Section 3.3 the following constructive 
expression can be u d :  

We also will consider the case where the set of loss functions @(I, a), a f 
A, contains a finik number N of elements. For this case one can use the 
expression 

Thus, the following constructive bounds hold true, where in  the  case of 
the finite VC dimeusion one uses the expression for E given in (3-24), and 
in the case of a finite number of functions in the set one uses the e x p m i o n  
for given in (3.25). 

Case 1. The set of total ly  b o u n d e d  funct ions  

Let A 5 Q(z,a)  5 B, a E A, be a set of totally bounded functions. 
-rhen: 

(A) ,The following inequalities hold with probability at least 1-11 simulta 
neously for all functions Q(z,a),  a t A (including the function that 
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minimizes the empirical risk): 

(B) The following inequality h d d s  with probability at least 1 - 21) for the  
function Q(z, a t )  tha t  minimizes the empirical risk: 

Case 2. The set of  tota l ly  b o u n d e d  nonnegat ive  func t ions  

Let 0 < - Q(z ,a )  - i 3, a E A, be a set of nonnegative bounded functions. 
Then 

(A) The  following inequality holds with probability at least 1 -q simulta- 
neously for all functions Q(z, a) 5 3 ,  a E A (including the function 
that  minimizes the empirical risk): 

(B) The following inequality holds with probability at least 1 - 2q for the  
function Q(r ,  a t )  that  minimizes the  empirical risk: 

Case 3. The set o f  u n b o u n d e d  m n n e g a t i v e  func t ions  

Finally, consider the  set of unbounded nonnegative functions 0 5 Q(t ,  a ) ,  
a €  A.  

(A) With probability at leegt 1 - rt the  inequality 

h d d s  t rue simultaneoudy for d l  functions satisfying (3.191, where 
(.I+ = -(.'I 0). 
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(B) With probability at least 1 - 21) the inequality 

holds for the function Q (2, ol) that minimizes the empirical risk. 

These bounds cannot be significantly improvede4 

3.8 THE PROBLEM OF CONSTRUCTING RTGOROUS 
(DISTRIBUTION-DEPENDENT) BOUNDS 

To construct r i g m u s  bounds on the risk one has ta take into account infor- 
mation about the probability measure. Let Po be the set of all probability 
measures on 2' and let P c Po be a subset of the set Po. We say that  one 
has a priori information about the unknown probability measure F(a)  if 
one k n m  a set of measures P tha t  contains F(z) . 

Comsider the f o l h i n g  generalization of the growth function: 

~ k ( 4 )  = h sup +EjdVA(zl, . . . ,tl). 
FEP 

For the extreme case where P = Po, t he  generalized growth function 
!$ (P) coincides with the growth function G~ (4) because the measure that 
assigns probability one on , . . . , zg is contained in P. For another extreme 
c w  where P contains only one function F(z),  the generalized growth func- 
tion coincides with the annealed VC entropy. 

Rigorous bounds for the risk can be derived in terms of the  generalisad 
grtwth function* They have the same functional form as the distribution- 
independent bounds (3.151, (3.17), and (3.21) but a different expression for 
E. The new expression for E is 

H ~ e v e r ,  these bounds are nonconstructive because no general methods 
have yet been found t o  evaluate the generalized growth function (in contrast 
ta the original growth function, where constructive bounds were obtained 
0" the basis of the VC dimension of the set of functions). 

4 There exist lower bounds on the rate of uniform convergence where the mder 
of magnitude js close to the order of magnitude obtained b r  the upper bounds !a in the lower bounds instead of d(h/l) ln(l/h) in the upper boun& see 
(Vapnik and Qlervonenkis, 1974) for b m r  bounds). 
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To find rigorous constructive bounds one has t o  find a way of evaluating 
the Generalized Growth function for different sets P of probability mea- 
sums. The main problem here is to find a subset P different from Po for 
which the generalized growth function can be evaluated on the basis of 
some constructive concepts (much as the growth function was evaluated 
using the VC dimension of thc: set of functions). 



Informal Reasoning and 
Comments - 3 

A pwticlilar case of tho bounds obtained in this chapter was already under 
investigation in classical statistics. Thew bounds are known as Kolmogorov- 
Snlirnov distributiolls, widely ussd in both applied and thmrctical st atis- 
tics+ 

The bounds obtained in learning theory arc different from the classical 
oms in  two respects: 

(i) They arc more general (thay are valid for any set of indicator func- 
tions with finite VC dimension). 

(ii) They are valid for a finite number of obwmtions  (the cksical bounds 
are asymptotic . ) 

3.9 KOLMOGOROV-SMIRNOV DISTRIBUTIONS 

Boon as the GlivenkrrCantelli theorem became known, Kolmogorov ob- 
+Jbd asymptotically exaf t estimates on the rate of ul~iform convergenoe of 
the empirical distribution function to  the actual one (Kolmogorov, 1933). 
He provd  that if the distribution function for a scalar random variable 
F(2) is continuous and if P is sufficiently large, then for any E > 0 the 
following equality holds: 
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This equality describes one of the main statistical laws, according to which 
the distribution of the random variable 

does not depend on the distribution function F ( r )  and has the form of 
(3.32). 

Simultaneously, Smirnov found the distribution function for one-sided d e  
viat ions of the empirical distribution function from the actual one (Smirnov, 
1933). He proved tmhat for continuous F(z) and sufficiently large L the fol- 
lowing equalities hold asyrnptoticdy: 

The random variables 

are called the Kolmogorov-Smirnov statistics. 
When the GlTvenkwCantelli theorem was generalized for mult.idimen- 

sional distribution fu~~c t ions ,~  it was proved that for any E > O there exists 
a sufficiently large Lo mch that for l > to the inequality 

sup IF@) - F.(Z) 1 > E < 2 exp{-e2t) 

holds true, where a is any constant smaller than 2+ 
The results obtained in learning theory generalize the results of Kol- 

mcgorov and S m i m  in two di~ct ions:  

(i) The obtained bounds are valid for any set of events (not only for sets 
of rays, as in the Glivenko-Cantelli case). 

(ii) The obtained bounds are valid for any k' (not only asymptotically for 
sufficiently large 1). 

5 ~ o r  an mdimensional vector space Z the distribution function of the random 
vectors z = (zl,. . . , zn) is determined ss follows: 

The empirical distribution function fi(z-) estimates the frequency of (occurrence 
of) the event A, = {rl < z ' ,  . . . , zn < in). 
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3.10 RAC3NG FOR THE CONSTANT 

Note that the results obtained in learning theory have the form of ineguali- 
ties, rat her than qualities as obtained for a particular case by Kolmogorov 
and Smirnov. For this particular case it is possible to  evaluate how close 
to the exact values the obtained general bounds are. 

Let $(%,a), a: E A,  be the set of indicator functions with VC dimension 
h. Let us rewrite the bound (3.3) in the form 

where the coefficient u equals one. In the GliwnbCantel l i  case (for which 
the Kolmogom-Smirnov bounds are valid) we actually consider a sct of 
indicator functions Q(t ,  a )  = B(z - a). (For these indicator functions 

where 21,. . . , ze are i.i.d. data.) Note that for this set of indicator functions 
the VC dimension is equal to one: Using inhcators of rays (with one direc- 
tion) one can shatter only one point. Therefore, for a sufficiently large t, 
the second term in parentheses of the exponent on the right-hand side of 
(3.33) is arbitrarily small, and the bound is determined by the first t e rn  in 
the exponent. This term in the general formula coincides with the (main) 
term in the Kolmagr,mv-Smirnw formulas up to  a constant: Instead of 
Q = 1 Kolmogomv-Smirnov bounds have constantB a = 2. 

In 1988 Devroye found a way to  obtain a nonasymptotic bound with the 
const ant a = 2 (Devroye, 1988). However, in the exponent o f t  he right-hand 
side of this bound the second term is 

'ln the fist result obtained in 1968 the constant was a = 1/8 (Va~nik and 
Chemnenhs, 1968, 1971); then in 1979 it was improved to a = 1/4 (Vapik, 
1979). In 1991 L. Bottou showed me a proof with a = 1. This bound also was 
obtained by J.M. Parrondo and C, Van den Broeck (parrondo and Van den 
Broeck, 1993). 
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instead of 
h(ln 2f/h + 1) 

For the case that  is important in practice, namely, where 

the bound with coefficient a = 1 and term (3.34) described in this chapter 
is better. 

The bounds obtained for tlie w t  of real functions are generalizations of the 
bounds obtained for the set of indicator functions. These generalizations 
were obtained on the basis of a generalized concept of VC dimension that 
was constructed for the set of r e d  functions. 

There exist, however, several ways to  construct a generalization of the 
VC dimension concept for sets of real functions that  dlow us to derive the 
corresponding bounds. 

One of these genemlizatioiis is based on the concept of a VC subgraph 
introduced by Dudley (Dudley, 1978) (in the A1 literature, this concept 
was renanwd pseudwdimensiou). Using the VC subgraph concept Dudley 
obtained a bound on the metric €-entropy for the set of b o u n d d  real func- 
tions* On the basis of this bound, Pollard derived a bound for the rate 
of uniform convergence of the means to  their expectation (Pollard, 1984). 
This bound was used by Haussler for Learning machines.? 

Note that the VC dimension concept for the set of real fundions de- 
scribed in this chapter forms a slightly stronger requirement on the capac- 
ity of the set of functions than Dudley's VC subgraph. On the other hand, 
using the VC dimension concept one obtains more attractive bounds: 

(i) They have a form that  has a clear physical sense (they depaid on the 
ratio i / h > .  

(ii) More importantly, usirlg this concept one can obtain bounds on uni- 
form relative convergence for sets of bou n d ~ d  functions as well as for 
sets of zmbounded functions. The rate of uiliform convergence (or uni- 
form relative convergence) of the empirical risks to actual risks for 
the unbounded set of loss functions is the basis for ail analpis of the 
regression problem. 

7R. Haussler (1992), "Decision theoretic generalization of the PAC model for 
neural mt a d  0th- applkatloas," 1 n . m .  Comp. 100 (I) pp. 78-1 50. a % 
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The bounds for uniform relative convergence have no analow in claqsical 
s3atistics. They were derived for the first time in learning theory to obtain 
rigorous bounds on the risk. 





Chapter 4 
Controlling the Generalization 
Ability of Learning Processes 

Tlle theory for controlling the  generalization ability of learning machina 
is devo td  t o  constructing an inductive principle for minimizing the risk 
functional using a small sample of training instances, 

The sample size t i s  considered to be small if the mtdc, l , / h  (ratio of the 
number of training puttems to the VC dzmension offunctions of a learning 
machine) is small, say L,/h < 20. 

To construct sinall sample size metllods we use both the bounds for the 
g a i ~ r  alizatioii ability of learning machines with sets of totally bounded 
nonnegative functiorls, 

and the bounds for the generalization ability of learning macllines with sets 
of ~lnbouilded functions, 

, where 
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if the set of functions Q(z, a,), 1,. . . , N ,  contains N dements, and 

if the set of functions Q(r :a ) ,  a E A, contains an infinite number of e l e  
ments and has a finite VC dimension h. Each bound is valid with probability 
at least 1 - q. 

4.1 STRUCTURAL RISK MINIMIZATION (SRM) 
INDUCTIVE PMNCIPLE 

The ERM principle is intended for dealing with large sample sizes. It can 
be justified by considering the inequality (4.1) w the inequality (4.2). 

When l / h  is large, E is small. Therefore, the second summand on the 
right- hand side of inequality (4.1) (the second sunlrnand in the denominator 
of (4.2)) becomes small. The mtual risk is then dose to the value of the 
empirical risk. In this case, a small value of the empirical risk guarantees 
a small value of the (expected) risk. 

However, if e/h is small, a small G , ( a P )  does not guarantee a small 
value of the actual risk. In t b  case, to  minimize the actual risk R(a) one 
has to  minimize the rightrhend side of inequality (4.1) (or (4.2)) simultane 
ously over both terms. Note, however, that the first term in inequahty (4.1) 
depends on a specific function of the set of functions, while the second term 
depends on the VC dimension of the whole set of functions. To minimize 
the right-hand side of the bound of risk, (4.1) (or (4.211, simultaneously 
over both terms, one has to make the VC dimension a ant ro l l ing variable. 

The following general principle, which is called the stwctuml  r isk  mini- 
mizaPon (SRM) inductive principle, is intended to  minimize the risk func- 
tional with respect ta both terms, the empirical risk, and the confidence 
interval (Vapnik a d  Chervonenkis, 1974). 

Let the set S of functions Q(z,o),  o E A, be pravidd with a strvcture 
consisting of nested subsets of fund ions Sk = { Q (I, a ) ,  a E Ah), such that 
(Flg. 4.1) 

Sl CS, c - - -  C S , * - ,  (4.3) 

where the elements of the structure satisfy the following two properties: 

(i) The VC dimension hk of each set & of functions is finite. ' Therefore, 

'However, the VC dimension of the set S can be a n i t e .  
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FIGURE 4.1. A suucture on the set of functions is determined by the nested 
subseh of functions. 

(ii) Any element Sk of the structure contains either 

a set of totally bounded functions, 

or a set of functions satis&ing the inequahty 

for some pair ( p ,  T ~ ) .  

bVe c d l  this structure an admtssib/e stmctuw. 
For a given set of observations zl , . . . , zl the SRM principle chooses the 

function Q(z, a;) minimizing the empirical risk in the subset Sk for which 
tho guaranteed risk (determined by the right-hand side of inequality (4.1) or 
by the right-hand side of inequality (4.2) depending on the circumstances) 
is minirnal. 

Tllc SRM principle defines a trade-ofl  between the quality of the a p p ~ z i  
m a h n  of  the giwen data  and  the complexity of  the appmximat ing  hnct ion .  
As the subset index n increases, the minima of the empirical risks decrease. 
However, the term responsible for the confidence interval (the second sum- 
mand in inequality (4.1) or the multiplier in inequality (4.2) (Fig. 4.2)) 
increases. The SRM principle takes both factors into account by choosing 
the subset S, for which minimizing the empirical risk yields the best bound 
on the actual risk. 



96 4. Controlling the Generalization Abillty of Learning P m e s  

Bound on the risk /, Chfidence i n k w d  

FIGURE 4.2. The bound on the risk is the sum oE the empirical risk and the 
confidence interval. The empirical risk dme- with the index of the dement of 
the structure, while the confidence interval incr-. The smallest bound of the 
risk is achieved on some appropriate element oE the structure. 
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4.2  ASYMPTOTIC ANALYSIS OF THE W T E  OF 
CONVERGENCE 

Denote by S* the set of functions 

Suppose tlrat the set of functions S* is everywllerere dense2 in S (recall 
S = {Q(t,  a), a E A)) with respect to  the metric 

For asymptotic anal~rsis of the SRM principle one considers a law deter- 
mining, for any given l ,  the number 

of the element S, of the structure (4.3) in which we will minimize the 
empirical risk. The following theorem holds true, 

44)  Theorem 4.1. The SRM method provides appmxirnalions Q(z, at 

for which the sequence of risks ~(a;") converges to the smallest risk 

with asymptotic mte of convergence3 

2 The set d functions R{t,P), ,Ll E B, is everywhere dense in the set 
Q(z,e), a A, in the metric p(Q, R) if for any a > 0 and for any Q(r,a*) 
one can find a hctio11 R(z, P*) such that the inequality 

hlds true. 
3 ~ e  say that the random variables C, 8 = 1,2, - . - , cmlverge to the value 

with asymptotic rate V(b) H there exists a constant C such that 
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if the law n = n(P) i s  such that 

T,2(,) h,(t) In e 
lim e = 0, 

e + o  

where 

( i j  T, = 3, if one m s d e r s  a stmctuw with totally bounded functions 
Q(a ,  a) 5 3, in subsets S,, and 

( i i j  T, = 7, if one conszders a stmctuw ekmcnts satisfpng the 
equality (4.4 j ;  

~ ( J I  i s  the rate o f u p p m n t i o n  

r, = inf Q ( z ,  a ) d F ( z )  - inf Q(r,  a )dF (z ) .  
crEA, J &€A J 

To provide the best rate of convergence one has to  know the mte v j  
a ~ M m a t i o n  r, for the chosen stmctum. The problem of estimating r, 
.for different structures on sets of functions is the subject of classical function 
approximation theory. We will discuss this problem in the next section. If 
one knows the rate of approximation r, one can a priori find the law n = 
n(P) that provides the best asymptotic rate of convergence by minimizing 
the righehand side of equality (4+G). 

Example. Let Q(z ,  &),a E A, be a set of functioils satisfying the in- 
equality (4.4) for p > 2 with TA < T* < m. Consider a structure for which 
n = h,. Let the asymptotic rate of approximation be described by the law 

(This law describes the main classical results in approximation theory; 
see the next section.) Then the asymptotic rate of convergence reaches its 
maximum value if 

1 

where [a] is the integer part of a. The asymptotic rate of convergence is 



4.3. The Problem of Function Approximation in Learning T h r y  99 

4.3 THE PROBLEM OF FUNCTION APPROXIMATION 
IN LEARNING THEORY 

The attractive properties of the asymptotic theory of the rate of cmver- 
aence described in Theorem 4.1 are that one can a priori (before the l m a  
0 

ing process begins) find the law n = n ( l )  that provides the best 
totic) rate of convergence, and that  one can a priori' estimate the wlue of 
the asymptotic rate of c o n v e r g e n ~ . ~  The rate depends on the construction 
of the admissible structure (on the sequence of pain (h, T,), n = 1,2, ...) 

aLso depends on the rate of approximation r,, n = I ,  2, .. . . 
On the bash on this information one can evaluate the rate of conver- 

gence by minimizing (4.6). Note tha t  in equation (4.61, the second term, 
which is responsible for the stochsstic behavior of the learning p r o m s ,  
is determined by nonasympbtic bounds on the risk (see (4.1) and (4.2)). 
The first term (which describes the deterministic component of the learning 
processes) usually only has an asymptotic bouird, however. 

Classical approximation theory studies connections between the smooth- 
ness properties of functions and the rate of approximation of the function 
by the structure with elements S, containing polynomials (algebraic or 
trigonometric) $ degree n, or expansions in utbar series with TL terms. Usu- 
ally, smootlrness of an unknown function is characterized by the number s 
of existing dcrivativs. Typical results d the asymptotic rate of approxi- 
mation have the form 

B 

rn = n-E, (4.10) 

where N is the dimensionality of the input space (Lorentz, 1966). Note that 
this implies that  a high asymptotic rate of convergence5 in high-chmensional 
spaces can be guaranteed only for very smooth functions. 

4r Learning theory we would like to find the rate of approximation in the 
f~llowiirg case: 

(i) Q(t ,a) ,  a E A,  is a set of high-dimensional functions. 

(ii) The elements 4 of the structure are not n ~ e s s a r i l y  linear manifolds. 
(They can be any set of functiom with finite VC dimensiotr.) 

firtherrnore, we are interested in the caws where the rate of approxi- 
mation is high, 

Therefore, in learning theory we face the problem of describing the cases 
for which a high rate of approximation is possible. This requires &crib- 
i% different sets of "smooth" functions and structures for these sets that 
provide the bound 0(&) for m (i-e., fast rate of convergence). 

4 Note, however, that a high asymptotic rate of convergence does not neces- 
arily refied a high rate of convergence on a limited sample size. 

' ~ e t  the rate of convergence be considered high if r, j n-'I2. 
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In 1989 Cybenko praved that using a superposition of sigmoid functions 
(neuroils) one can approximate any smooth function (Cyben ko, 1989). 

In 199Z1993 Jonas, Barron, and Breiman described a structure on dif- 
ferent sets of functions that has a fast rate of approximation (Jones, 1992), 
(Barron, 1993), and (Breiman, 1993). 

They considered the following concept of smooth functions. Let { f (x) } 
be a set of functions and let (f(w)} be the set of their Fourier transforms. 

Let us characterize the smoothness of the function f (z) by the quantity 

In terms of this concept t hc: foflowirrg t hmrerrr for the rate of approximat iou 
r, holds true: 

Theorem 4.2. (Jones, Barron, and Breiman) Let the sc t  offunctions 
f (x) satisfy (4.1 I)< Then the rate of appmximation of the desired functions 
by  the best function of the elements of the structure is bounded by  O(&) 
if one of the following holds: 

(i) The set of functions { f (x)) is determind by (4.11) with d = 0, and 
the elements S, of the structuw mntaln the funchow 

f (x, a, W, V) = C EL, sin [(x . wi) + TI,] , (4.12) 

where EL, and V, are a ~ b i t m q  ualties and wi are a r h t m q  aecto~s 
(Jones, 1992). 

(ii) The set of functions { f (x)} is determined by equation (4.11) with 
d = 1, and the elements S, of the stmctum contain the fundions 

whew ai and u, a w  a r h t m q  aalues, w, are a r h h q  vectors, and 
f l u )  is a sigmoid function (Q monotonically incwasing finciion such 
that lim,,-,S(u) = -1, lim,,,S(u) = 1) 
( B a r m ,  1993). 

(iii) The set of functions { f (x)} is de temined by (4.1 1) with d = 2, and 
the elements S, o j  the structure contain the fitn&ions 

n 

f ( x ? ~ ~ , w , v )  = Cai ~ ( x - w i )  +*il+, lul+ = m ~ ( 0 ,  u), (4.14) 
i= 1 

w ~ W  EL, and 'Ui Mi? ~ P b ~ h q  valses and W, am ~ P b i h q  W~?C~OTS 

(Breirnan, 1993). 
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h~ spite d the fact that in this thmrem the concept of smoothness is dif- 
fercltt from the number of bounded derivatives, one c m  observe a similar 
pl~enomenon bare as in the classical case: To keep a high rate of colivergence 
for a space with increasing dimensionality, one has to increase the smooth- 
ness of the functions simultaneously as the di~nensionality of the space is 
increased. Using constraint (4.11) one attains i t  automatically. Girosi and 
AnzeIlotti (Girosi and Anzellotti, 1993) observed that the set of functions 

(4.11) with d = 1 and $ = 2 can be rewritten as 

whcre A(x) is any function w h w  Fourier transform is integral~le, arid * 
stands for the convolution operator. In these forms i t  l~ecomes more appar- 
ent that due to  more rapid fa1 1-off of the terms 1 /(zln-j functions satisf$ng 
(4.11) become more and mare const rained a5 the dimensionality increases. 

The same phenomenon is also clear in the results of Mhasker (Mhaskar, 
19921, who proved that the rate of convergence of approximation of func- 
tions with s contir~uous derivatives by the structure (4.13) is O(ra-sjN). 

Therefore, if the desired function is not very smooth, one cannot guaran- 
tee a hglr asymptotic rate of convergence of the functions t o  the unknown 
fundion. 

In Section 4.5 we describe a new model of learning that  is based on the 
idea of local approximation of the desired function (instead of globd, as 
colrsidered ahme). We consider the approximation of the desired function 
in some neighborhood of t h e  point d interest, where the radius of the 
neighborhood can decrease with increasing number of observatioirs. 

The rate of local approximation can be higher than the rate of gbbal 
approximation, and this effect provides a better generalization ability of 
the learning machne. 

4.4 EXAMPLES OF STRUCTURES FOR NEURAL 
N E T S  

The general principle of SRM can be implemented ill many difFernnt ways. 
Here we consider three different examples of ~t~ructures  built for the set of 
functions implemented by a neural ae tmrk.  

1. A s t r u c t u r e  given by the architecture of  the neural ne twork  

Consider an ensemble of fully cor~nected feed-forward neurd networks 
inwhich the number of units in one of the hidden layers is monotonically 
increased. The sets of implementable functions define a structure as the 
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FIGURE 4.3. A structure detemined by the number of hidden units. 

number of hidden units is increased (Fig. 4.3). 

2. A s t r u c t u r e  given by the learning procedure  

Consider the set offunctions S = {f(x, w), w E W), impIementable by a 
neural net of fixed architecture. The parameters {w) are the weights of the 
neural network- A structure is introduced through S, = (f (x, w), ( (w((  5 
C,) and CL i C2 < - + +  < C,. Under very general conditions on the set 
of loss functions, the minimization of the empirical risk within the element 
S, of the structure is achieved through the minimization of 

with appropriately chosen Lagrange multipliers yk > p > - . > r,. The 
well-known "weight decay" procedure refers to  the minimization rsf this 
functional. 

3. A s t r u c t u r e  given by preprocessing 

Consider a neural lret with fixed architecture. The input representation is 
modified by a transbrmatim 2 = K(z, P ) ,  where the parameter P controls 
the degree of degeneracy introduced by this transformation (0 could, for 
instance, be the  width of a smoothing kernel). 

A structure is introduced in the set of functions S = (f (K(x,B), w), w E 
W) through ,d 2 C,, and CJ > C2 > . . - > Cn- 

To implement the SRM principle using these structures, one has to h o w  
(estimate) the VC dimension of any element 4 of the structure, and has 
to be able for any Sk t o  find the function that  minimizes the empirical risk. 
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FICTIFLE 4.4. Examples of vicinity functions: (a) slrows a har&threshold vicinity 
function and (b) shows a soft-threshold vicinity function. 

4.5 THE PROBLEM O F  LOCAL FUNCTION 
ESTIMATION 

Let us consider a niodd of local risk minimization (in the neighborhood 
of a given point xD) on the basis of empirical data. Consider a nonnega- 
tive function K(x ,  z ~ ;  p )  that  embodies the concept of neighborhood.  his 
function depends on the point xo and a *locality" parameter /3 E (0, cm) 
and satisfies two conditions: 

K(xo, xo;P> = 1-  (4.15) 

For example, both the "hard threshold" vicinity function (Fi. 4.4(a)) 

K ~ ( x , ~ a ; i ? )  = { I if ( (x - zo(( < 9, 
0 otherwise, 

and the  "soft thresholdR vicinity function (Fig. 4.4(b)) 

meet these conditions. 
Let us define a value 

For the set of fundions f (x ,a ) ,  o E A, let u s  consider the set of loss 
functions Q(r,a) =L(y, f (x,a)) ,  a E A. Our goal is t o  minimize the local 
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over both the set of functions f ( x , a ) ,  a E A, and different vicinities of 
the point xo (defined by parameter 8) in situations where the probability 
measure FIX, y) is unknown, but we are given the independent identically 
dist r i b u d  examples 

(xlrlll), .  , (xl ,yi)-  

Note that the problem of local risk minimization on the basis of empirical 
data is a generalization of the problem of global risk tninimization. (In the 
last problem we have to  lllinindze the functional (4.19) with K(x, xa; 0) = 

1.1 
For the problem of local risk minimization one can generalize the bound 

obtained for the problem of global risk minimization: With probability 1 - v 
simultaneously for all bounded functions A 5 L(y, f (x, a) 5 B, a E A, and 
all functions D < K(x,xo, P) 5 I ,  8 E (O,oa), the inequality 

hdds  true, where h~ is the VC dimension of the s ~ t  of functions 

and hp is the VC dimension of the set of functions K(x ,  x l ,  8) (Vapnik and 
Botku,  1993). 

Now using tho SRM principle one can minimize the right-hand side of 
the inequality over three parameters: the value of Lmpiricsl risk, the VC 
dimension h ~ ,  and the value of the vicinity 8 (VC dimension ha). 

The local risk minimization approach has an advantage when on the basis 
of the given structure on the set of functions it is impossible to approximate 
well the desired function using a given number of observations. Hawever, it 
may be possible to provide a reasonable local u p ~ ~ a t i o n  to the desired 
function at ally point of interest (Fig. 4.5). 

4.6 THE M I N I M U M  D E S C R I P T I O N  L E N G T H  (MDL) 
A N D  SRM P R I N C I P L E S -.  

Along with the SRM inductive.principle, which is b& on the statisti- 
cal analysis of the rate of convergence of ' empirical- processes, there ex- 
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FTGIJRI? 4.5. Using linear functions one can estimate an  unknown smmth func- 
tbn in t.he vicinity of any p i n t  of interest, 

ists another principle of Inductive inference for small sample sizes, the sa- 
called minimum description length (MDL) principle, which is based on an 
information-theoretic analysis of the randomness concept. In this section 
we consider the MDL principle and point out the connections between the 
SRM and the MDL principles for the pattern recognition problem. 

In 1965 Kolmogorov defined a random string udng the concept of dgo- 
rithmic complexity. 

He defined the algorithmic cotnplexity of an object t o  be the length of 
the slrortest binary coniputer program that dscribes this object, and he 
p r o d  that the vdue of the a o r i t h m i c  complexity, up to  an additive con- 
stant, dues not depend on tlre type of comp~lter. Therefore, it is a universal 
characteristic of the object. 

The main idea of Kolmo~prov is this: 

Consider the string describing an object to be random if the algofithmic 
m p l e z i t y  of the object is high - that is, if the string that describes the 
object connot be compressed significantly. 

Ten years after the concept of algorithmic coinpladty was introduced, 
Itksanen suggested using Kolmogorov's concept as the main tool of in- 
clllctive inference of learning machines; he suggested ths  sc~called MDL 
l~rinciple"(~issanen, 19781). 

fi The use of the algorithmic complexity as a general inductive principle 
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4.6.1 The MDL Principle 

Suppose that  w e  are given a training set of pairs 

(pairs drawn randomly and independently according to  some unknown 
probability measure). Consider two strings: the binary string 

and the string of vectors 
21, ... ,Zed 

The question is, 

Given (4.21) is the string (4.20) a mndom object? 

To answer this question let us analyze the algorit.hmic cr~mplexity of 
the string (4.20) in the spirit of Sabmonoff-Kolmogorov's ideas. Since the 
w l ,  . . . , wl are binary valued, the string (4.20) is described by P bits. 

To determine the complexity of this string let us t ry  to compress its 
description. Since training pairs were drawn randomly and independently, 
the vdue wi may depend only on vector xi but not on vector y,  i # 3 (of 
course, only if the dependency exists). 

Consider the  following m d d :  Suppose that we are given some fixed 
codebook Cb with N c 2l diffemrlt tables T., i = 1 , .  . . , N .  Any table T, 
describes some function7 from 3; to w. 

Let us try t o  find the table T in the codebook that  describes the 
string (4.20) in the best possible way, namely, the table that  on the given 
string (4.21) returns the binary string 

for which the Hamming distance between string (4.20) and string (4.22) is 
minimal (i.e., the number of errors in decoding string (4.20) by this tablc 
T is minimal). 

Suppose we found a perfect table T, for which the Hamming distance 
between the generated string (4.22) and string (4.20) is zero. This table 
decodes the string (4.20). 

was considered by Solomonoff even before Kolmogorov suggested his model 
of randomness. Therefore, the principle d descriptive complexity is called the 
Solamonoff-Kohogomv prlnciple. However, only starting with Rissanm'a work 
was this principle considered as a tool for inference in learning theory. 

7 f imdly sspeakng, t.o get tables of finlte length in codebook, the lnput vector 
x has to be discrete, However, as we will see, the number of Levels in quantization 
wiU not affect the bounds on generalization ability. Therefore, one can consider 
any d e p e  of quantization, even giving tables with an lnfinite number of entries. 
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Since the codebook Cb is W, to describe the striiig (4.20) it is sufficient 
to give the number o of table T, in the codebook. The minimal number of 
bits to describe the number of any one of the N tables is [lgz N] , where [A] 
is the minimal integer that is not smaller than A. Therefore, in this case 
to describe string (4.20) we need rig, N] (rather than P) bits. Thus using 
a codebook with a perfect decoding table, we can compress the description 
length of string (4.20) by a factor 

Let u s  call K (T) the cmficient of compmssion for the st  ring (4,20). 
Consider now the general case: The codebook Cb does not contain the 

perfect table. Let the smallest H m i n g  distance between the strings (gen- 
erated string (4.22) and desired string (4.20)) be d > 0. Without loss of 
ger~erality we can m u m e  that d 5 P/2. (Otherwise, instead of the smallest 
distance one could look for the largest Hamming distance and during de- 
coding change one to zero and vice versa. This will cost one extra bit in the 
coding scheme). This means that to describe the string one has to make d 
corrections to the results given by the chosen table in the codeboak. 

For fixed d there are C$ different possible corrections to the string of 
length E.  To specify one of them (i-e., to specify one of the C$ variants) one 
needs [lg2 Cfl bits. 

Therefore, to  describe the string (460) we need [lg, N ]  bits to define 
the llumber of the t,able, and [lg,~,d] bits to  describe the corrections. We 
also need [lg, 4 + Ad bits to specify the number of corrections d, where 
Ad < 2 lgz 1g2 d, d > 2. Altogether, we need rig, N] + rig, Cfl+ rlg2 4 +Ad 
bits for describing the string (4.20). This number should be compared to  
!, the number of bits needed t o  describe the arbitrary binary string (4.20). 
Therefore, the coefficient of compression is 

If the coefficient of compression K(T)  is small, then according to  the 
Solomonoff-~olmogorov idea, the string is not random and somehow de- 
pends on the input vectors x. In this case, the decoding table T somehow 
approximates the unknown functional relation between x and w -  

4.6.2 Bounds for the ML)L Principle 

The important question is the following: 

Does the compression cmficient K(T)  determine the probability of test 
e r r o r  in classificetion (deoodzw) vectors x by the table T? 

The answer is yes. 
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TO prove this, let us compare the result obtained for the hlDL principle 
to that obtained for tbe ERM principle in the simplest model (the learning 
machine with s finite set of functions)+ 

In the beginning of this section we considered the bourtd (4.1) for the gen- 
eralization ability of a learning machine for the pattern recognition p m b .  
]em. For the particular case where the learning machine has a finite number 
N of functions, we obtained that with probabiliw at least 1 - q, the in- 
equality 

holds true simultanmusly for all N functions in the given set of functions 
(for all N tables in tlre given codebook). Let us transform thc right-hand 
side of this inequality using the concept of the conlpression coefficient, and 
the fact tha t  

Note that for d 5 C/2 and C > 6 the inequality 

is d i d  (one can easily check it). Now let us rewrite the right-hand side of 
inequality (4.26) in terms of the compressicm coefficient (4.24): 

Since inequality (4.25) holds true with probability at least 1 - 7 and in- 
equality (4.26) holds with probability 1,  the ilrequality 

liolds with probability at. least 1 - 7. 

4.6.3 The SRM and MDL Principles 

Now suppose that we are given M codeboob that have the following s t r u o  
ture: Codebook 1 con ta i~~s  a small number of tables, codcbook 2 contaiirs 
these tables and some more tables, and so on. 



In this case one can USE a more sophisticated decoding scheme to describe 
string (4.20): First, describe the number m of the c o d e b d  (this requires 
[lglml + A,, Am < 2pg21g2ml bits) and then, using this codebook, 
describe the string (which as shown above takes r1g2 N] + [Ig2 C$J + pg2 4 + 
Ad bits) - 

The total length of the description in this catre is not less than [ln2 N] + 
pn2 Ci] + [1g2 4 + Ad + [lg2 m ]  + A,, and the compression coefficient is 

For this case an inequality analogous to  inequality (4.27) holds. Therefore, 
t.he probability of error for the table that  was used for compressing the 
description of string (4.20) is bounded by inequality (4.27). 

Thus, for d < !/2 and ! > 6 we have proved the following theorem: 

Theorem 4.3. Ij on a *en stmcture o j  codebooks one mmpwsses by 
a factor K(T)  the description of string (4.20) using a table T, then with 
pbubabality cat least 1 - 31 one can asserf that the committing an 
error by the fable T i s  bounded by 

Note 11w powerful the concept d the compression coefficient is: To ob- 
tain a bound on the probability of error, we actually need only information 
about this We do not need such details as 

(i) How nlmy examples we used, 

(li) how the structure of the codebooks was organized, 

(iii) which codebook was used, 

(iv) how many tables were in the codebook, 

(v) how many. training errors wew made us'@ lthis table. 

Nevertheless, the bound (4.28) is not much worse than the bound on the 
risk (4.25) obtained on the basis of the theory of uniform convergence. 
The latter has a more sophisticated structure and ww information about 
the number of functions (tables) in the sets, the number of errors on the 
training set, and the number of elements of the training set. 

8 ~ h e  secolld term, - Inq/I, on the right-hand side is  actually foolproof: For 
rewonable q a d  f it is negligible compared to the first term, but it prevents one 
from considering too small q and/or too small I. 



Note also that  the  bound (4.28) cannot be improved more tllan by factor 
2: I t  is easy to  show that in the case where there exists a perfect table in 
the  codebook, the equality can be achieved with factor 1. 

This theorem justifies the MDL principle: To minimizethe probability 
of error one has to  minimize the coef6cient of compression. 

4.6.4 A Weak Point of the MDL Principle 
There exists, however, a weak point in the MDL principle. 

Recall that  the MDL principle uses a codebook with ta jnife number of 
tables. Therefore, to deal with a set of functions determined by a continuom 
range of parameters, one must make a finite nlt~nber of tables. 

This can be done in many ways. The problem is this; 

W a f  is a "snaadn mdebmk far the given set uffun~tiom? 

In other words, how, for a given set of functions, can one construct a 
cdebook with a small number of tables, but with good appr~ximatio~l  
ability? 

A "smartn quantization could significantly reduce the number of tables 
in the codebook. This d e c t s  the compression coefficient, Unfortunately, 
finding a i imart" quantization is an extremely hard problem. This is the 
weak point of the MDL principle. 

In the next chapter we will consider a normalized set of linear functions 
in a very high dimensional space (in our experiments we use linear fix nct ions 
in N = 1013 dimensional space). We will show that  the VC dimension h 
of the subset of functions with bounded norm depends on the value of the 
bound. I t  can be a small (in our experiments h 2 lo2 to lo3). One can 
guarantee that if a function from this set separates a training set of size ! 
without error, then the probability of t a t  error, is proportional t o  h In !/em 

The problem for the MDL approach to this set of indicator functions is 
how to construct a codebook with s-z I tables (but not with = tN tables) 
that approximates this set of linear functions well. 

The MDL principle works well when the problem of constructing rea- 
sonable codebooks has a n  obvious solution. But even in this case, it is rmt 
better than the SRM principle. &call that  the bound for the MDL princi- 
ple (which cannot be improved using only the concept of the compression 
coefficient) was obtained by roughening the bound for the SRM principle. 



Informal Reasoning and 
Comments - 4 

Attempts to  improve performance i 11 various areas of com put ational math- 
eruatics and statistics have essentially led ta the same idea that we call the 
structural risk minimization inductive principle. 

First this idea appeared in the  methods for solving ill-posed problems: 

(i) Methods of quasbsolutions (Ivanor, 19621, 

(ii) met hods of regularir ation (Tik honov, 1963)). 

It then appeared in the method for nonparametric dsnsity estimation: 

(i) Parze n windows (Parzen, 1 962), 

(ii) projection methods (Chmtsov, 1 963), 

(iii) conditional maximum l ih lhood method (the method of sieves (Grenan- 
der, 1981)), 

(iv) maximum penalized likelihood met hod (Tapia and Thompson, 1 978)), 
&c. 

The idea then appeared in m e t h d s  for regression estimation: 

(i) Ridge regression (Hoerl and Kennard, 1970), 

(ii) model selection (see review in (Miller, 1990)). 

Finally, it appeared in regularization techniques for both pattern recogni- 
tion and regression estimation algorithms (Poggio a d  Girosi, 19%). 
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Of course, there were a number of attempts to  justify the idea of searching 
for a solution using a structure on the admissible set of functions. However, 
in the framework of the classical approach justifications were obtained only 
for specific problems and only for the asymptotic case. 

In  the lnodel of risk minimization from empirical data, the SRM principle 
provides capacity (VC dimension) corltro1,and it can be justified for a fillits 
number of observations. 

4.7 METHODS FOR S O L V I N G  ILL-POSED PROBLEMS 

In 1962 Ivanov suggested a n  idea for finding a quasi-solution of the linear 
operator equation 

A f = F ,  f E M ,  (4.29) 

i11 order to solve ill-posed problems. (The linear operator A maps elernents 
of the metric space M c El with metric p E ,  t o  dements of the metric 
space N c Ez with metric p ~ ,  .) He suggested considering a set of nested 
convex compact subsets 

and for any subset Mi t o  find a fu nctiori f: t Mi minimizing the distance 

I w o v  p r d  that under some general conditions the sequence of d u t  ions 

canverges to the desired one. 

The quas-solution method was suggested at the same time as Tikhonov 
proposed his regularization technique; in fact, the two are equivalent. In 
the regularization technique, one introduces a nonnegative semicontinuous 
(from below) functional Q( f ) that possesses the following proper tie^: 

(i) The domain of tlre functional coincides with M (the domain to  which 
the solution of (4.29) belongs). 

(ii) The region for which the inequality 

holds forms a mmp&um in the metric of space El. 
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(iii) The solution of (4.29) b e l o w  to  sonle M:: 

Tikhonov suggested findbrg a sequence of functions f, minimizing the f u n c  
tionals 

%(f )  = P & ~ ( A ~ J ~ )  + 7 W f )  

for different y .  He proved that  f, converges to the desired solution as y 
converges to 0. 

Tikhonov also suggested using the regularization technique even in  the 
case where the right-hand side of the operator qua t ion  is giver1 only within 
some 6-accuracy: 

P E ~  (F, Fb)  5 6. 

In this case, in  minimizing the functional3 

one obtains a sequence fs of solutions converging (in the metric of El)  t o  
the desired one f~ as 6 + 0 if 

lim .y (6) = 0, 
6 - 4  

6* - lim - - 0. 
6 4  ~ ( 6 )  

In both met hods the fwmal wnvergence proofs do not explicitly contain 
"capacity control." Essential, however, was the fact that any subset Mi in 
Ivanov's scheme and any subset M = (f : Q( f )  5 c) in Tikhonov's scheme 
is compact. That means i t  has a bounded capacity (a metric E-entrow). 

Therefore, both schemes implement an SRM principle: f i r s t  dcfine a 
structure on the set of admissible functions such that any element of the 
structure has a finite capacity, increasing with the number of the element. 
Then, on any element of the structure, the functioli prwiding the best 
approximation of the right-hand side of the equation is found. The sequence 
d the obtained solutions converges t o  the desired one. 

4.8 STOCHASTIC ILL-POSED PROBLEMS AND THE 
PROBLEM OF DENSITY ESTIMATION 

In  1978 we generalized the theory of regularization t o  stochastic ill-posed 
problems (Vapnik and Stefanyuk, 1978). We cons idad a problem of solv- 
ing the operator equstio n (4.29) in the case wltere the righbhand side i s  
unknown, but we are given a sequence of approximatiom Fs possessing the 
following properties:. 
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(i) Each of these approximations fi is o random functionAg 

(ii) The sequence of approximations converges in probability (in the meb 
ric of the space E2)  to  the unknown fundion F as 6 converges to zero. 

In other words, the sequence of random functions Fs has the property 

Using Tikhonov's regularization technique one can obtain, on the bask of 
random functions Fs, a sequence of approximations fs to the solution of 
(4+29). 

We proved that for any E > O there exists yo  = T ~ ( E )  such that for any 
7(6) 5 70  the functions minimizing functional (4.32) satisfy the inequality 

In other words, we connectd the distribution of the random deviation 
of the approximations from the exact right-hand side (in the Ez metric) 
with the distribution of the deviations of the solutions obtained by the 
regularization method from the desired one (in the El metric). 

In  particular, this theorem gave us an opportunity to  find a general 
method for const ru ct ing various density est imation met hods. 

As mentioned in Section 1.8, density estimation requires us to  solve the 
integral equation 

P X  

where F(x)  is an unknown probability distribution function, using i.i.d. 
data  xl, . . . , xc, . . .. 

Let us construct the empirical distribution function 

which is a random approximation to FIX), since it was constructed using 
random data  X I ,  ---,sf. 

In Section 3 -9 we found that the differences sup, IF(x) - F'(x)I B T ~  de- 
scribed by the Kolmogorov-Smirnov bound. Using this bound we obtain 

'A random function is one that is defined by a realization of some random 
event. For a definition of random functions see any advanced textbook in p r ~ b  
bility thmry, for example, A.N. Schryav, Probabziitg, Springer, New York. 
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Therefore, if orw minimizes the regularized h c t i o n a l  

then according t o  inequality (4.33) one obtains the estimates p ( t ) ,  whose 
deviation from the desired solution can be described as follows: 

Therefore, the conditions for consistency of the obtained estimators are 

e7t t - m  m+ (4-35) 

Thus, minimizing functionals of type (4.34) under t h e  constraint (4.35) 
gives consistent estimators. Using various norms E2 and various function- 
als Q(p) one can obtain various types of density estimators (including all 
classical estimatorslO). For our reasoning it is important that  all nonparsr 
metric density estimators implement the SRM -principle. By choosing the 
functional Q@), one defines a structure on  the set d admissible solutions 
(the n e t 4  set of functions M, = Ip : Q(p) _< c] determined by constant e); 
using the law yl one determines the appropriate element of the structure. 

In Chapter 7 using this approach we will comtruct direct methad of the 
density, the conditional density, and the conditional probability estimation. 

4.9 THE PROBLEM OF P O L Y N O M I A L  

APPROXIMATION OF THE R E G R E S S I O N  

The problem of constructing a polynomial approximation of regression, 
which wm very popular in the 1970s, played an  important role in under- 
standing the problems that m s e  in small sample size statistics. 

' 'B~  the way, one can obtain $1 classical estimators if one approximates an  
unknwr~ distribution furiction F{x )  by the the empirid distribution function 
Ff(x). The elnpirical distribution function, however, is not the best approxima- 
tion to tnhe distribut-ion function, since, according to definition, t.he distribution 
function should be an absolutely continuous one, while the empirid distribu- 
tion function is discontinuous, Usiw absolutely continuous approximations {e.g., 
a polygon in the one-dimensional case) one can obtain estimators that in addi- 
tion to nice asymptotic properties (shared by the classical estimators) psess 
some useful properties from the point af view of limited numbers of observations 
(Vapnik, 1988). 
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Consider for simplicity the problem of estimating a one-dimensional r e  
gression by polynomials. Let the ~ w s s i o n  f ( x )  be a smooth function. 
Suppose that  we are given a finite number of measurements of this func- 
tion corrupted with additive noise 

(in different settings of the problem, different types of information about the 
uilknown noise are used; in this model of measuring with noise we suppose 
that the value of noise ti does not depend on xd, and that  the point of 
measurement xi is chosen raiidomly according to  an unknown probability 
distribution F(x)). 

The problem is to fiiid t.he polynomial that is the closest (say in the L2 ( F )  
~netric) to  the unknown regression function f ( x )  . In mntrast to the classical 
regression problem described in Section 1.7.3, the set of functions in which 
one has to  approximate the regression is now rat her wide (polynomial of 
any degree), and the number of observations is fixed. 

Solving this problem taught statisticians a lesson in understanding the 
nature of the small sample size problem. First the simplified version of this 
problem was considered: The case where the regression itself is a polynomial 
(but the degree of the polymlnial is unknmn) and the   nod el of noise is 
described by a normal density with zero mean. For this particular problem 
the classical asyrnptatic approach w~ used; On the basis of t  he technique of 
testing hypotheses, the degree of the regression polynomial was estimated 
and then the coefficients of the polynomial were estimated. Experiments, 
however, s h d  that for small sample sizes this idea was wrong: Even if 
one k n m s  the actual degree of the regression polynomial, one often has to  
choose a smaller degree for the approximation, depending o n  the available 
number of o b m a t  ions. 

Therefore, several ideas for estiniat ing the degree of the approximating 
polynomial were suggested, including ( Akaiie, 1970), and (Sc hwmz,  1978) 
(see (Miller, 1990)). These methods, however, were justified only in a symp 
totic cases. 

4.10 THE PROBLEM OF CAPACITY CONTROL 

-$. lO.l  Choosing the Degree of the Polynomial 

Chrxssiug the appropriate degree p of thc polynomial in the regression p r o b  
lem can be considered on the basis of the SRNI principle, where the set of 
polynomials is provided with the simplest structure: The first element of 
the structure contains polynomials of degree one: 
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the s m n d  element contains polynomials of degree two: 

and sc, on. 
To choose the polynomial of the best dejgee, one can minimize the fol- 

lowing functional [the righthand side of bound (3.30)): 

where h, is the VC dimemion of the set of the loss functions 

and c is a coristant determining the "tailrr of distributions1' (see Sections 
3.4 and 3.7). 

One can show that the VC dimeasion h of the set of real functions 

where F{u) is any fixed monotonic function, does not awed eh*, where 
e < 9.34 and h* is the VC dimension of the set of indicators 

Tlierefore, for our loss functions the VC dimension is bounded as follows: 

To find the best approximating polynomial, one has to choose both the 
degree .m of the polynomial and the coefficients a minimizing functional1 l 
(4.36)- 

4.10.2 Choosing the Best Sparse A l g e h i c  Polynomial 

Let us  now introduce another structtlre on the set of algebraic p o l w m i -  
als: Let the first element of the structure contain P1(x, 4 = 
a lxd ,  a E R1 (of arbitrary degree d), with o m  nonzero term; let the  sec- 
ond element contain polpiomials P2(x, 4) = Q xdl + apxdr , a E R ~ ,  with 

''we used this functional (with callstant c = 1, and &I = [m(lnf/m + 1) - 
In ql/t, where q = 0-I") in several benchmark studies far choosing the degree of 
the best approximating polynomial+ For small sample sizes the results obtained 
were oftm better than o n e  based on the classical suggestions. 



118 Informal Reasoning and Comments - 4 

two r m m r o  tm-ms; and so on. The problem is t o  choose the best sparse 
polynomial P, (x) t o  approximate a smooth regression function. 

To do this, one has to  estimate the VC dimension of the set of loss 
functions 

Q(z, 4 = (Y - C ~ X ,  a))2,  

where Pm(x,a) ,  a: E Rm, is a set of polynomials of arbitrary degree that 
contain rn terms. Consider the case of one variable X. 

The VC dimension h for this set of 10% functioil~ can be b u n d e d  by 
2h*, where h* is the VC dimension of the indicators 

Karpinski and 'Werther showed that the VC dimension h* of this set of 
indicaton is bounded as follows: 

(Karpinski and Werther, 1989). Therefore, our set of loss functions has VC 
dimension less than e(4m + 3). This estimate can be used for finding the 
sparse algebraic polyilomial that  minimizes the functional (4.36). 

4.10.3 Structures on the Set of Trigonometric Polynomials 
Consider now structures on the set of trigonometric polynomials. First we 
consider a structure that is determined by the degree of the  polynomials. l2  

The VC dimension of t.he set of our loss fundion with trigonometric poly- 
nomials of degree rn is less than h = 47-11 + 2. Therefore, to  choose the best 
trigonometric approximation one can minimize the fun dional (4 -36). For 
this structure there i s  no difference betweell algebraic and trigonometric 
polynomials. 

The difference appears when one constructs a structure of sparse trigono- 
metric polynomials. In  contrast to the sparse algebraic polynomials, where 
any element of the structure has finite VC dimension, the VC dimemion 
of any element of the structure on the sparse trigonometric polynomials is 
infinite. 

This follws from the fact that the VC dimension of the set of indicator 
functions 

f (x, a )  = B(sin ax) ,  a E R', x E (0, 11, 

is in finite (see Example 2, Section 3.6). 

12nigonometric polynomials of degree m have the form 
rn 

fp (e) = C {ah sin kx + b cos kx) + ao. 
k= 1 
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d.10.4 The Problem of Feature Selection 

The problem of choosing sparse polynomials plays an extremely important. 
role in learning theory, since the generalization of this problem is a problem 
of %at ure selection (feature construction) using empirical data. 

As was demonstrated in the examples, the a b m  problem of feature selec- 
tion (the terms in  the sparse polynomials can be considered as the features) 
is quite delicate. To avoid the effect encountered for sparse trigonometric 
polynomials, one needs to construct a. pr-iori a structure containing ele- 
ments with bounded VC dimension and then choose decision rules from the 
functions of this structure. 

Constructing a structure for learning algorithms that select (construct) 
features and control capacity is usually a hard combinatorial problem. 

In the 1980s in applied statistics, several attempts were made to  find 
reliable methods of selecting nolabinear functions that control capacity. In 
particular, statisticians started to  study the problem of function estimation 
in the follming sets of the functions: 

where K(x, w) is a symmetric function with resped to  vectors x and w, 
~ 1 ,  ..., w, are unknmn vectors, and al, .. . ,a, are unknmn scalars (Fried- 
marl and Stuetzle, 1981), (Breiman, Friedman, Olshen, and Stone, 1984) 
(in mntrast to  approaches developed in the 19708 for estimating linear in 
parameters functions (Miller, 1990)). I n  them classes of functiorls choosing 
the functions K ( x ,  wj), j = 1, ..., rn, can be interpreted as feature selection. 

As we will see in the next chapter, for the sets of functions of this type, it 
is possible to effectively control both factors responsible for generalization 
ability - the value of the empirical risk and the VC dimension. 

4.1 1 T H E  PROBLEM O F  C A P A C I T Y  C O N T R O L  A N D  

B A Y E S I A N  I N F E R E N C E  

4.11. 1 The Bagesian Approach in Learning Theory 

In  the classical paradigm of function estimation, an important place belongs 
to  the Bayesian approach (Berger, 1985). 

According to  Bayes's formula two events A and 3 are connected by the 

One uses this formula to  modify the ML models of function estimation 
discussed in the comments on Chapter 1.  
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Coiisider , for simplicity, t hc problem of regression estimation froni m e a  
surements corrupted by additive noise 

In order to estimate the regression by the ML mcthod, one has t o  know a 
parametric set of functions f (x, a ) ,  a t A c Rn, that contail1 the regression 
f (x, ao), and one has to know a model of noise P(t). 

In the Bayesian approach, one has to possess additional information: 
One has to  know the a priori  density function P(a) that for any function 
from the parametric set of functions f (x, 0). a E A, defines the probability 
for it t o  be the regmion.  If f (x, ao) is the regressiou function, then the 
probability of the training data 

equals 

i= 1 

Having seen the data, one can Q posteniori estimate the probability that  
parameter a dafines the rcgrwsitm: 

One can use this expression to choose a11 approximation to  the regression 
function. 

Let US consider the simplest way; We choose the approximation f (x, a*) 
such that i t  yields the maximum conditional probability.13 Finding a* that 
maximizes this probability Is equivalent to maximizing the following f unc- 

13~nother estimator constructed on the basis of the a posteriori probability 

pmseem the following remarkable property: I t  minimizm the average quadratic 
deviation from the admissible regresswn functions 

To find this estimator in explicit form one has to conduct integration andyticdy 
(numerical integration is impossible due to the high dimensionality of a). Unfor- 
tunately, analytic integration of this expression is mostly an unmlvable problem. 
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Lnt us for simplicity consider the case where the noise is distributed X- 
cording to the normal law 

Then froni (4.37) one obtains the functional 

which has to  be minimk~ed with respect to a in order t o  find the approxima-, 
tion function. The first terin of this functional is the value of the  empirical 
risk, and the second term can be interpreted m a regularization term !with 
the explicit form of the regularization parameter. 

Therefore, the Bayesian approach brings us t o  the same scheme that, is 
used in SRM or MDL inference. 

The p a l  of these comments is, however, to  describe a difference between 
the Bayesian approach and SRM or MDL+ 

4.1 12 Disczlssion of the Bugesian Approac h and Capacztg 
Control Methods 

The only (but significant) shortcoming of the Bayesian approach is that it 
is restricted to the case where the set of funct ior~  of the learning machine 
coincides with the set of pn~blems that the machine has ta  solve. Strictly 
speaking, it cannot be applied in a situation where the set of admissible 
problem differs fronr the set of admissible functions of the learning m a  
chine. For example, it cannot be applied to the problem of approximation 
of the regressiont function by polynomials if the regression function is not 
polynomial, since the a priori probability P(a)  for ally function from the 
admissible set of pcslynornials t o  be the regression is equa1:to zero. There- 
fore, the a posteriori probability (4.37) for any admissible function of the 
Learuing machine is zero. To use the Bayesian approach one,must possess 
the following strollg a priori information: 

(i) The given set of functions of the learning luachine coincides with thc 
set of problems to  be s o l d .  

(ii) The a priori distribution on the set of problems is described by the 
given expression P{a). l4 

.* 
' 4~h i s  part of the a priofi information is not as important as the first one. 

Ode can prove that with increasing numbers of okrwtioni3 the, influence of an 
inmurate description of P(a) is decreased. 



In contrast t o  the Bayesian method, the capacity (complexity) control 
methods SRM or MDL use weak (qualitative) a pr ior i  information about 
reality: They use a structure on the admissible set of functions (the set of 
functions is ordered according to an idea of usefulness of the functions); 
this a pnkri information does not include any quantitative description of 
reality. Therefore, using these approaches, one can approximate a set of 
functions that is different from the admisiblc set. of functions of the learn- 
ing machine. 

Thus, inductive inference in the Bayesian approach is based (along with 
training data) on given strong (quantitative) a pr ior i  information about 
reality, while inductive inference in the SRM or MDL approaches is b d  
(along with training data) on weak (qualit at ive) a prior i  information about 
reality, but uses capacity (complexity) mntrol. 

In discussions with advocates of the Bayesian formalism, who use this 
formalism ill the case where the set of problems to be solved and the set of 
admissible functions of the machine do not coincide, one hears the following 
claim: 

The Bayesian approach also works in general situations. 

The fact that the Bayesian formalism mmetimes works in general situa- 
tions (where the functions implemented by the machine do not necessarily 
coincide with those being approximated) has the following explanat ion. 
Bayesian iuference has an outward form of capacity control. It has two 
stages: an informal stage, where one chooses a function describing (quan- 
titative) a priori information P ( a )  for the problem at hand, and a formal 
st age, where one finds the solution by minimizing the functional (4.38). By 
choosing the distribution P ( a )  one controls capacity. 

Therefore, in the general situation the Bayesian formalism realizes a 
human-mac hine procedure for solving the problem st hand, where capacit~. 
control is implemented by a human choice of the regularizer in P ( a )  . 

In contrast to Bayesian inference, SRM and MDL inference arepure ma- 
chine methods for solving problems. For any ! they use the same structure 
on the set of admissible functions and the same formal mechanisms for 
capacity mntrol. 



Chapter 5 
Methods of Pattern Recognition 

To implement the SRM inductive principle in learning algorithms one has 
to minimize the risk in a given set of functions hy controlling t w ~  factors: 
the vale  of the empirical risk and the value of the confidence interval. 

Developing such met hods is the goal of the theory of constructing learn- 
iug algorithms. 

In this chapter we describe learning algorithms for pattern recognition 
and consider their generalizations for the regression estimation problem. 

The generalization ability of learning machines is based on the factors de- 
scribed in the tlimry for cnntrolling the generalization ability of learning 
processes. According ta this theory, t o  guarantee a high level of generaliza- 
tion ability af the learning process one has to construct a structure 

o n  the set of loss functions S = {&(I, rr), a E A) and then choose both all 

appropriate element Sk of the structure and a functioll Q(z ,  a:) E Sk in 
this element that minimizes the corresponding bounds, for example, boulld 
(P.1). The bound (4.1) can be rewritten in the simple form 
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where the first term is the empirical risk and the second term is the confi- 
dence interval. 

There are two mnstmctiue approaches to minimizing the right-harid side 
of inequality (5.1). 

I11 the first approach, during the design d the learning machine one 
determines a set of adniissible functions with some VC dimension h*, For 
a given amount l of training data, the value h* determines the confidence 
interval a{+) for the machine. Choosilig an appropriate element of the 
structure is therefore a ~ r o b l e m  of designing the machine for a specific 
m o u n t  of data. 

During the learning process this machine minimizes the first term of the 
bound (5.1) (the numher of errors on the training set). 

If for a given amount o f  training data one designs too complex a machine, 
the confidence interval @ ( & ) will he large. h this case even if one could 
minimize the empirical risk down to zero, the number of errors on the test 
set muld still be large. This phenomenon is called overfitting. 

% avoid overfitting (to get a small coi~fidence interval) one has ta a n -  
struct machines with srnall VC dimemion. On the other hand, if the set of 
functions has a small VC dimensifin, then it is difficult to  approximate the 
training data (to get a m a l l  value for the first term in inequality (5.1)). 
To obtain a small approximation error and simultanmusly keep a small 
confidence interval one has to & o o ~  the arcllitmture of the machine to  
r d e c t  a phuci  knowledge a b u t  the problem at hand. 

Thus, to solve the problem at hand by these types of machines, one first 
has to find the appropriate architecture of the learning machine (which is 
a result of the trade off between overfitting and p m r  approximation) and 
second, find in this machine the function that minimizes the number of 
errors on the training data. This approach to minimizing the right-hand 
side of inequality (5.1) can be described as follows: 

Keep t h e  confidence i n t e w d  f i e d  (by choosing an a p p m p k t e  c o n s h c -  
t i on  of machine] and mznzmise h e  em@p.ical risk. 

The seco~id approach to  the problem d minimizing the right-hand side 
of inequality (5.1) can be described as follows: 

K w p  the vahe  4 t h  empirical risk fied (say e p d  to zero] and minimize 
the confidence zntewal. 

Below are comider two different types of learning m z l ~ i n e s  that imple 
inent these two approaches: 

(i) neural networks (which implement the first approach), and 

(ii) support vector machines (which implement the second approach). 

Both types of learnmg machines are generalizations of the learning ma- 
chines with a set of linear ilrdicator functions constructed in the 1960s. 
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5.2 SIGMOID APPROXIMATION OF INDICATOR 
FUNCTIONS 

Consider the problem of minimizing the errlpirical risk 0x1 the set of heus.  
andz'mbr functions 

f (3, w) = sign {(w . s)) , U! E Rn, 

where (w . x )  denotes an inner product between vectors w and x. Let 

be a training set, wherexj is a vector, a n d y j  E {),-I), j = I , - . ,  , f .  
T l ~ e  goal is to find the vector of paramstera wo (weights) that minimize 

the errlpirical risk f imc t iod  

If the training set iis separable without error (i.e., the empirical risk can 
become zero), then there exists a finite-step procedure that  allows us to  
find such a vector wo, for example the procedure that RosenMatt propused 
fbr the perceptron (see the Introduction). 

The problem arises when the training set cannot be separated without 
errors. In  this case the problem of separating the training data with the 
smallest number of errors is NP-complete. Mormver, one cannot apply reg- 
ular gradient-based procedures to find a local minimum of functional (5+3), 
since for this functional the gradient is either equal to  zero or undefined. 

Therefore, the idea was proposed to approximate the indicator functions 
(5.2) by the so-called sigmoid functions (see Fig. 0.3 ) 

f (2, w) = s {(w .2)) , 
where S(a) is a smooth monotonic function such that 

for example, 

S(a) = tanh u = .. 
exp(u) - mp(- 4 
exp(u) + mp(-a) ' 

For the set of sigmoid functions, the empirical risk functional 
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is smooth in w. It has gradient 

and therefore it can be minimized using stmidard gadient-based met.hods, 
for example, the gradient descent method 

where r(.) = ~ ( n )  2 0 is a value that depends on the iteration number n. 
For convergence of the gradient descent method to  local minima it is suffi- 
cient that the values of the gradient be bounded and that  the coefficients 
y ( n) satisfy the following conditions: 

Thus, the idea is to  use the sigmoid approximation at the stage of esti- 
mating the coefficie~ts, and use the thrmhold functions (with the obtained 
coefficients) for the last neuron at the stage of recognition- 

5.3 NEURAL NETWORKS 

In this section we consider c h s i c a l  neural networks, which implement the 
first strategy: Keep the confidence interval fixed and minimize the empirical 
risk. 

This idea is used to  estimate the weights of all neurons of a multilayer 
perceptron (neural network). Instead of linear indicator functions (single 
neurons) in the networks one considers a set d sigmoid functions. 

The met hod for calculating the gradient of the empirical risk for the sig- 
moid approximation nf neural networks, called the bacbpmpagutzun method, 
waa proposed in 1986 (Rumelhart, Hinton, and Williams, 1986), (LeGun, 
1986). Using this gradient, one can iteratively modify the coefficients (weights) 
of a neural net on the basis of standard gradient-based procedures. 

5.3.1 The Back-Propagation Method 

TTo describe the back-propagation method we use the following notation 
(Fig. 5.1): 

(i) The neural net contains rn + 1 layers: the first layer x(0)  d e s c r i k  
the input vector x = (x l , .  . . , xR). We denote the input vector by 



FIGURF, 5.1. A neural network is a combination of sevmal levels of sigmoid 
elements. Tlle outputs of one layer form the inputs for the next layer. 
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and the image of the input vector xi(0) on the kth layer by 

where we denote by byk the  dimensionality of the  vectors x i (k )?  i = 

1 , .  , f , k = I , .  . . , m - 1 can be any number, but n, = 1). 

(ii) Layer k -1  is connected with layer k through the (nk x nk- l )  matrix 

w( k )  

where S(w(k)xi(k - 1 ) )  defines the  sigmoid function of the vector 

u i ( k )  - w(k)x i (k  - 1)  = (u:(k),  . . . ,a:* ( k ) )  

as the vector coordinates transformed by the sigmoid: 

S(ui ( k ) )  = ( ~ ( u : ( k ) ) ,  . . . , S ( u l k  (k)) ) .  

T h e  goal is to minimize the functional 

under cond it ions (5 -5). 
This optimization problem is solved by using the standard technique of 

Lagrange multipliers for equality type constraints. We will minimize the 
Lagrange function 

L(W,  x ,  B) 
1 - 

= - P C(yi - xi(m))' - C C (bi(k) [ x i ( k )  - S{w(k)x i (k  - I ) ) ] ) ,  

where b ( k )  2 O are Lagrange multipliers corresponding t o  the constraints 
(5.5) that  describe the connections between vectors xi (k  - I )  and vectors 
~ i ( k ) .  

It is known that  
V L ( W ,  X ,  B) = 0 

is a necessary condition for a local minimum of the performance function 
(5.6) under the  constraints (5.5) (the gradient with respect t o  all parame- 
ters from bi(k), x i ( k ) ,  w (k ) ,  i = 1 . . , , k = I ,  . . . , m ,  is equal t o  zero). 

This condition can be split into three subconditions: 



5.3. Neural Networks 129 

The  solution of these equa

t

ions determines a stationary point ( Wo , Xo, 3o) 
that  iucludes the  desired matrices of welghts Wo = (w0(l), . . . , wo(m)). Let 
us rewrite these three subconditions in explicit form 

(i) The first  subcond i t ion  

The first subcondition gives a set of equations: 

with iriit id conditions 
x,(O) = x,, 

the equation of the =called forward dynamics. 

(ii) The second subcond i t ion  

We consider the second s u b n d i t i o n s  for two cases: The case k = m, 
(for the last layer) and the case Ic # m (for hidden layers). 

For the  last layer we obtain 

For the  general case (hidden layers) we obtain 

where VS{?u(k + I)xi(k)] is a diagonal nk+l x nk+l matrix with 
diagonal elements S8(ur ) ,  where u, is tlre r th  coordinate of the 
(nk+l-dinrensional) vector w(k + l)xi(k). This equation describa the  
backward dynamics. 

(iii) The third subcond i t ion  

Unfortunately, the third subcondition does rrnt give a direct method 
for computing the matrices of weigllts w (k), k = 1,  . . . , nl. Therefore, 
to estilnato the weights, oiie uses steepest gradient descent: 

In  explicit form this equation is 

C 

w 9 )  -- ~ ( k )  - Y(*) C b i ( k ) v ~  {w(t)xi(k - I)] w(k)xY(k - I) ,  
i= 1 

k =  1 , 2 , . - -  *m. 

This equation describes the rule for weight update. 
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5 3.2 The Back-Propagation Algorithm 

Therefore, the back-propagation algorithm colitains three elements: 

(i) F o m d  p a s :  

with the boundary conditions 

.i = l , * . , , L ,  k =  1 , + . , ,  m-1, 

with t.he boundary conditions 

(iii) Weight vpdate for weight matrices w(k), k = 1,2, .  . . , rn: 

Using the back-propagation technique one can achieve a local minimum for 
the  empirical risk functional. 

5.3.3 Neural Networks for the Regression Estinkation Pmblem 

To adapt neural networks for solving the regression estirnatinn problem, i t  
is  sufficient t o  use in the k t  layer a linear fu~c t ion  instead of a sigmoid 
one. This implies o n b  the following changes in the  equations descril~ed 
above: 

xi(m) = w(rn)x,(~n - I) ,  

V S { W ( T ~ ) , X ~ ( T ~  - 1)) = 1, i = 1, ..., l. 

5.3.4 Remarks on the Back-Propagation Method 

The main problems with the mural  net approach are: 

(i) The empirical risk functional has many bca l  minima. Standard opti- 
mization procedarcs guarantee convergence t o  one of them. The  qual- 
ity of the obtained mlution depends on inany factors, in particular 
oil the  initialization of weight matrices w(k) , k = 1,  . . . , rn . 
The choice of initialization parameters t o  achieve a "small" bcal  min- 
imum is b m d  on heuristics. 
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(ii) The convergence of the gradient-based method is rather slow. There 
are several heuristics to  speedup the rate of convergence. 

(iii) The sig~noid function has a scaling factor that affects the quality 
of the approximation. The choice of the scaling factor is a trade-off 
between the quality of approximation and the rate of convergence. 
There are empirical recommendations for choosing the scaling factor. 

Therefore, neural networks are not well-controlled learning machines. Nev- 
crt heless, in many practical applications, neural networks demonstrate good 
results, 

5.4 THE OPTIMAL SEPARATING HYPERPLANE 

Below we consider a new type of universal learning m a h n e  that imple- 
ments the second strategy: Keep the value of the empirical risk fixed and 
minimize the confidence interval. 

As in the case of neural networks, we start by considering linear deci- 
sion rules (the separating hyperplanes). However, in contrast to previous 
c~nsiderat~ions, we use a spwial type of hyperplane, the smcalled optimal 
separating hyperplanes (Vapnik and Chervonenkis, 1974), (Vapnik, 1479). 
First we consider the optimal separating hyperplane for the case where the 
training data are linearly separable. Then, in Section 5.5.1 we generalize the 
idea of optimal separating hyperplanes to the case of nonseparable data. 
Using a technique for constructing optimal l~y-perplanes, we describe a new 
type of universal learning machine, the support vector machine. Finally, 
we construct the support vector machine for solving regression estimation 
problems. 

5-4.1 The Optimal Hyperplane 

Suppose t l ~ e  training data 

can be separated by a lgrperplane 

We say that this set d vectors is separated hy the optimal Ayprplanc (or 
the mmdmel margin hyperplane) if it is separated without error and the 
distance between the closest vector to tht: hyperplane is maximal (Fig. 
5.2). 
. To describe the separating hyperplane let us use the following form: 
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FIGURE 5.2. The optimal separating hyperplane is the one that separates the 
data with maximal margin. 

In the following we use a compact notation for these inequalities: 

It is essy to check that the optimal hyperplane is the one that satisfies the 
conditions (5.8) and minimizes 

(The minimization is taken witb respect to both the vector w and the scalar 

b.1 

5.4.2 A-Margin Sepmting Huperplanes 

We call a hyperplane 

a A-margin separating hyperplane if i t  classifies vectors x as follows: 

1 if (w* ax) - h  > A ,  
!I= { -1 if (w* . x) - b 5 -A. 

I t  is easy t o  check that the optimal hyperplane defuled in carronical 
form (5.8) is the A-margin separating hyperplane with A = l/[w*[. The 
following theorem is true. 

Theorem 5 .I. Let vectors x E X belong to o sphere of mdius R. Then 
the set of A-margin separating hyperplanes h a s  VC dimension h bounded 
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by the inequality 

h ( [ I  , )  + I *  

111 Section 3.5 we stated that the VC dimension of the set of separat- 
ing hyperplanes is equal to  n -t- 1, where n is the dimension of t he  space. 
However, the VC dimension of the A-margin separating hyperplanes can 
be ics3.l 

Corollary. With pmhbiditg 1 - r~ me mn awed h t  the pmhbilzty that 
a test example will not be sepumted comctly by the A-ma

rgi

n hywrplane 

where 

& = 4  
h ( ~ n  p 4- 1) -b9/4 

l 1 

rn is the number elf tminzng samples that am not sepmted mmetly by 
this A-mckrgzn hyperplane, and h i s  the hami of the VC d imedon  given 
in Theorem 5. I .  

O n  the basis of this theorem one can construct, the SRM method where 
in order to  obtain a g m d  generalization one chmses the appropriate value 
of A. 

5.5 CONSTRUCTING THE OPTIMAL HYPERPLANE 

TTo construct the optimai hyperpiane om has t o  separate the w r s  xi of 
the training set 

{ ~ l , ~ l ) ,  - - - 7  (y1,xt) 

belonging to two different c h s e s  y E {-1,l) using the hyperplane with 
the smdiest norm of coefficients. 

To find this hyperplane one has to  solve the following quadratic program- 
mirlg probiem; Mininiize the functional 

under the constraints of inequality type 

, 1 In Section 5.7 we dmribe a separating hyperplane in 1013-dirne~iond space 
with relatively a d i  estimate of the VC &mepsion (F=: lo3). 



134 5, Methods of Pattern Recogni tlon 

The solution to  this optimization problem is given by the saddle point of 
the Lagrange functional (Lagangian): 

where the ai are Lagrange multipliers. The Lagrangiau has to  bc minimized 
with respect t o  w and b and maximized with respect to ai > 0. 

At the saddle point, the solutions mu, b ,  aud rro should satisfy the 

Rewriting tJiese equations in explicit form, one obtains the following p r o p  
erties of the optimal hyperplane: 

(i) The coefficients a? for the optimal hyperplane should satisfy the con- 
straints 

t 
0 0 C a i y i = 0 ,  ai 2 0 ,  i= l , . . , , !  (5.13) 

i=l 

(first equation). 

(ii) The Optimal hyperplane (vector wo) is a linear combination of the 
vectors of the training set. 

( m n d  equation]. 

(iii) Moreover, only the -called suppart vectors c a l  have nonzero coeffi- 
cients a4 in the expansion of wo. The support vectors are the vectors 
for which in inequality (5.11) equality is achieved. Therefore, we ob- 
tain 

support vectors 

This fact follows from the classical Kuhn-Tucker theorem, according 
to  which m e s a r y  and sufficient conditions for the optimal hyper- 
plane are that the separating hyperplane satisfy the conditions 



Putting the expression for wo into the Lagangian and taking into account 
the Kiih-Tucker conditions, one obtains the furictioaal 

I t  remaias to maximize this functional in the nonnegative quadrant 

under the constrstiut 
t 

According to (5.15), the Lagrange multipliers and support vectors deter- 
mine the optimal hyperplane. Thus, to  construct the optimal hyperplane 
one has to  solve a simple quadratic prqrammjng problem: Maximize the 
quadratic form (5.17) under constraints2 (5.18) and (5.19). 

Let ao = (a:, . . . ,at)  be a solution to  this quadratic optimization prob- 
lem. Then the norm of the vector wo corresponding to the Optimal hyper- 
plane equals 

support v e t  ors 

The separating rule, based o n  the optimal hyperplane, is the following 
indicator function 

f{x) = sign I 5.20) 
support vectors 

where xi are the support vectors, a! are the corresponding L a g r q e  coef- 
ficients, and b,, is the co~lstant (threshold) 

where we denote by x*(l) some (any) support vector belonging t o  the first 
class and we denote by x*(-1) a support vector belonging to  the second 
class (Vapnik and Chervonenkis, 1974), (Vapnik, 1979). 

'This quadratic programming pmblem is simple because it hss simple con- 
straints. For the solution of this problem, one can use special methods that are 
b t  and applicable for the case with a large number of support vectors (X lo4 
support vectors] (Ma= and Torddo, 1991). Note that in the training data the 
support vectors constitute only a s d  part of the training vectors {in our ex- 
periments 3% ta 5%). 
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5.5.1 Generalization for the Nomeparable Case 

To c o ~ t r u a  the optimal-type hyperplane in the case when the data are 
linearly nowparable,  we introduce nonnegative variables & 2 0 and a 
function 

e 

with parameter 0 > 0. 

Let us minimize the functional F,{F) subject to  constraints 

and one more constraint, 
( W  + w) < 

For sufficiently small 0 > O the solution to  this optimization problem 
defines a hyperplane that  minimizes the number of training errors under 
the condition that  the parameters of this hyperplane belong to the subset 
(5.29) (to the element of the structure 

3, = {(w . z) - b : (w w) 5 

determined by the constant c, = l / ~ e l t a - ~ ) .  
For computational reasons, h m v e r ,  we consider the case 0 = 1. This 

case corresponds to the smallest 0 > 0 that is still computationally simple. 
We call this hyperplane the A-margin separating hyperplane. 

1. Cons t ruc t ing  A-margin separating hyperplanes.  One cau show 
(using the technique described above) that the A-margin hyperplane is 
determined by the vector 

where the parameters a*, i = 1, . . . , J?, and C* are the solutions to  the 
following convex optimization problem: 

Maximize the functional 

subject to constraints 



2. C o n s t r u c t i n g  soft-margin separating h y p e r p l w .  To simplify 
computations one can introduce the following (slightly modifid) concept 
of the soft-margin optimal hyperplane (Cortcs and Vapnik, 1995). The  
soft-margin hyperplane (also called the generalized optimal hyperplane) is 
determined by the vector w that  minimizes the functional 

(here C is a given value) subject to h s t r a i n t  (5.21). 
The technique of solution of this quadratic optimization problem is al- 

most equivalent to the technique used in the separable case: TTo find the 
coefficients of the germer- optimal hyperplane 

one has to find the parmeters  ai, i = 1,. . . ,t, tha t  maximize the same 
qliadratic form as in the separable case 

under slightly different constraints: 

As in the separable case, only some of the coefficients ai, a = I ,  . . . , f, differ 
from zero. They determine the support vectors. 

Note that  if the coefficient C in the functional Q(w, E) is equal to the 
optimal value of the parameter @; for rninirnizetion of the functional FI I t) ,  

C = C*, 

then the  solutions t o  both optimization problems (defined by the functional 
Fl (c) and by the functional Q(w , c)) coincide. 



138 5. Methods of Pattern Recognition 

t Optimal hyperplane in the feature space 

I. a I Input space 

FIGURE 5.3. The SV machine maps the input spwe into a hi~h-dimensional 
feature space and then constructs an Optimal hyperplane in the feature space. 

5.6 SUPPORT VECTOR (SV) MACHINES 

The support vector (SV) machino implements the following idea: I t  maps 
the input vectors x into a high-dimensional feature spwe Z through some 
nonlinear mapping, chosen a pr$ori. In this space, an optimal separating 
hyperplane is constructed (Fig. 5.3). 

Exarnple. To construct a decision surface corresponding to a po1 j .n~~  
m i d  of degree two, one can crate a feature space z that has N = 2 
coordinates of the form 

Ln+1,(x1)2 ) A  . - 'I zZn = ( x ~ ) ~ ,  n coordinates, 

where x = (xl,. . . , xn) .  The separating hyperplane constructed in this 
space is a second degree pdyII0mid in the input space. To construct poly- 
noirlials of degree d 9= 7il iu n-dimensional space one needs more than 
= (n/d)d features. 

Two problems arise in the above approach: one conceptual and one tech- 
nical, 

(i) How does one find a separating hyperplane that d l  genemlize wewell? 
(The conceptual problem). 
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The  dimensionality of the feature space will behnge, and a hyperplane 
that  separates the training data will not necessarily generalize well.3 

(ii) How does one treat wmputationdly such high-dimensional spaces? 
(The technical problem) 

To construct a polynomial of degree 4 or 5 in a 200-dimensional space 
i t  is necessary to construct hyperplanes in a billion-dimensional fe* 
ture space. How can  this "curse of dimensionality" be overcome? 

5.6.1 Genemlization in High-Dimensional Space 

The conceptual part of this problem can be solved by constructing both the 
A-margin separating hyperplane and soft margin separating hyperplane. 

According to Theorem 5,1 the VC dimension of the set of A-margin 
separating hyperplarles with large A is small. Therefore, according to the 
corollary to Theorem 5 .I the generalization ability of the constructed hy- 
perplane is high. 

For the niaximal margin hyperplane the following theorem h d &  true. 

T h e o r e m  5.2. If training sets containing ! examples a~ separated by 
the maximal margin tsypeqdanes, then the eqctatkon (over training sets) 
of the pmhbility of test C ~ T  is handed by the expectation ofthe minimum 
o f  three values: the ratio m/t, whem m as the number of support vectors, 
the ratio [R2[wI2] / t ,  whem R is the radios of the sphere wnlaking the 
data and 1 w is the value of the margin, and the ratio n / l ,  where n is the 
dimensio.nalzty of the input space: 

Eqiiation (5.23) gives three reasons why optimal hyperplanes can gener- 
alize: 

1. Because the expeetation of the data compression is large4. 

3~ma11 Figher's concern about the mall amount d data for constructing a 
quadratic discriminant function in clsssical discriminant analysis (Section 1.9). 

'one can compare the r d t  of this theorem to the result of analysis of the 
fallowing cam pression scheme, To mnstruct thc optimal separating hyperplane 
one nwds only ta specify among the training data the support vectors and their 
classification. This requires zi [lg, m] bits to spec* the number m of support 
vectors, [lga CFl bits to specify the support vectors, and [lg, cl] bits to spec* 
mi representatives of the first class among the support vwtars, Therefore, fbr 
m << f and mi zi mi2 the compression m f f i c i e ~  is 

According to Theorem 4.3 the probability of error for the general compresion 
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2. Because the expectation of the margin is large. 
3. Because the input space is small, 
Classical approaches ignore the first two reasons for generalization a i d  

rely on the third one. In support vector machines we ignore the dimension- 
ality factor and rely on the first two fa,ctors. 

5.6.8 Convolution of the Inner Product 

However, even if the optimal hyperplane generalizes well and can theoreti- 
cally be fbund, the technical problem of how t~ treat the high-dimensional 
feature space remains. 

In  1992 it was observed (Baser, Guyon, and Vapnik, 1992) that  for con- 
structing the optimal separating hyperplane in the feature space Z one 
does not n e d  to consider the feature space in mplzcit fom One has only 
to be able to calculate the inner products between support vectors and the 
vectors of the feature space ((5.17) and (530)). 

Consider a general expression for the inner product in Hilbert space5 

where z is the image in feature space of the vector x in input space. 
According to  Hilbert-Schmidt theory, K ( x + x ~ )  can be any symmetric 

function satisfying the following general conditions (Courant and Hilbert, 
1953) : 

Theorem 5.3. (Mercer) To guarantee that the symmetric function K(u, v )  
from L2 has an expamaon 

with positive coefieients at > 0 (i.e., K(u, v) describes an inner pmdvct 
in s o m  f m t u ~  space), it is necessaq m d  &cient that the condition 

scheme is prapodional to K. From Theorem 5.2 i t  folbws that EP',,, 5 Em/f. 
Therefore, the bound obtained for the SV machine is much better than the 

bound obtained for the general compression scheme even if the random value m 
in 5.23 is always the m a l l e t  one. 

'Thi? idea was used in 1964 by Aiserman, Braverman, and Rozonoer in their 
analysis of the convergence properties of the method of potential functions (Aiz- 
erman, Braverman, and Romnuer, 1964, 1970). I t  happenad at the same time 
(1965) as the method of the optimal hyperplane was developed (Vapnik m d  
Chervonmhs 1965). However, mmbining t h e  two ides,  which lead to the SV 
machines, was done only in 1992. 



be walzd for all g # 0 for which 

5.6.3 Constructing SV Machines 

 he convolution of the inner pruduct allows the construction of decision 
functions that  are riorilinear in the input space, 

f (x)  = sign yiaiK(xi, z) - (5 25) 
upport v&ors 

and that  are equivalent to linear decision functions in the hig h-dimensional 
feature space qbl(x), . . . , qbN(x) (K(xi,x) is a convolution of the inner prod- 
uct for this feature space). 

To find the coefficients a d  in the separable case (analogously in the non- 
separable case) it is sufficient to find the maximum of the functional 

sub j a t  to the constraints 

This functional coincides with the functional for finding the optimal hy- 
perplane, except for the form of the inner products: lnstead of inner prod- 
ucts (I, + x,) in 15-17], we now use the convolution of the inner products 
q x i  , x,). 

The learning machines tha t  construct deckion functions of the type 
(5 25)  are called suppart vector (SVJ Machines. (With this name we stress 
the idea of expanding the solution o n  support vectors, In  SV machines the  
complexity of the const.ruction depends on the number of support vectors 
rather than on the dimensionality of the feature space.) The  scheme of SV 
machines is shown in Figure 5.4. 

5.6.4 Examples of SV Machines 

Using different functions for convolution of the inner products K(x, xi), one 
can construct learning machines with different typm of nonlinear decision 
surfaces in input space. Below, we consider three types of learning machines: 

4 
(i) polynomial learning machines, 
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I)[:dsion rule 

y j m l ,  ... ! yN as 

Nonlinear t ransf[>rmatic>n 
based on slipport vectors 
X l  , , . .  , XN  

1 2 ; I  I1 
X X X X Input vtrctmr x = ( XI, ..., xl i  ) 

FIGURE 5.4. The two-layer S V machine is a compact realization of an opt 
hyperplane in the high-dimensio~lal feature space 2. 
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(ii) radial basis functions machines, and 

(iii) two layer neural networks. 

For simplicity we consider here the regime where the training vectors are 
separated without error + 

Note that the support vector machines inlplement the SR,M principle. 
Indeed, let 

*(x) = ($1(x), * - - , $N(x)? 

be a feature space and w = (wl, . . . , w )  be a vixti~r of w~igh t s  determining 
a hyperplane in this space. Consider a s t r u c t u r ~  on tlre set of hyperplanes 
with elements Sk containing the functions satisfying the conditions 

where R is the radius of the smallest sphere that contains the vectors * ( x ) ,  
and [wl is the rlorrn of the weights (we use canmical hyperplanes in feature 
space with respect to the vectors z = *(x i ) ,  where xi are the elements of 
the training data). 

According to  Theorem 5.1 (now applied in the feature space), k gives an 
estirnate of the VC dimension of the set of functions Sk. 

The SV rnachirlc separates without error the training data  

and has minimal norm I w l  
In other words, the SV machine separates the training data using func- 

tions from the element Sk with the srnallcst estimate of the VC dimension. 
&call that  in the feature space the equality 

holds true. To control the generalizatimi ability of the maclrine (to min- 
imize the probability of test errors) one has to  corlstruct the separating 
hyperplane that mininli~es the functional 

With probability 1 - q the hyperplane that  sepa ra te  data without error 
has the following bound on the test error 
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where h is the VC dimension of the set of hyperplanes. We approximate the 
VC dimension h of the maximal margin hyperplanes by hest = R21wo 1'. To 
estimate this functional it is sufticient to estimate (say by expression 
(5.28)) and estimate R~ by finding 

Polpornjal learning machine 
To construct p&momid decision rules of degree d, orre can use the fol- 

lowing function for convolution of the inner product: 

This symmetric function satisfies the conditions of Theorem 5.3, and there- 
fore it describes a convolution of the inner product in the feature space that 
contains all products . sj - xk up to degree d. Using the technique de- 
scribed, one constructs a decision function of the form 

fix, 0) = sign 
suppdrt vectors 

which is a factorization of d-dimensional polynomials in n-dimensional in- 
put space. 

In spite of the very high dimensionality o f t  he feature space (polynomials 
of degree d in n-dimensional input space have O(nd) free parameters) the 
estimate of the VC dimension of the subset of polynomials that sdve real- : 
life problems can be l w .  

As described above, to estimate the VC dimension of the element of 
the structure from which the decision function is chosen, one has only to 
estimate the radius R of the smallest sphere that contains the training data, 
and the norm of weights in feature space (Theorem 5.1). 

Note that both the radius R = R[d)  and the norm of weights in the 
feature space depend on the degree of the polynomial. 

This gives the opportunity to choose the best degree of the polynomial 
for the given data. 

'h make a EomE pEpomirsE approximation in the neighborhood d a point 
of interest xo, let us consider the hard-threshold neighborhood function 
(4.16). According to the theory of local algorithms, one chooses a ball with 
radius Ro around point. x0 in which lfi elements of the training set fall, and 
then using only these training data, one constructs the decision function 
that minimizes the probability of errors in the chosen neighborhood. The 
solution to this problem is a radius Rs that minimizes the func t iod  
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(the parameter lwol depends on the chosen radius as well). This functional 
describes a trade-off between the chosen radius Rp, the value of the mini- 
mum of the norm (wO(, and the number of training vectors [, that faLl into 
radius Rp. 

Radial basis funct ion machines 
Classical radial basis function (RBF) machine use the  following set of 

de~ision rules: 

where KT ( (x  - xi/)  depends on the distance ( x  - q 1 between two vectors. 
For the theory of RBF machines see (Micchelli, 1986), (Powell, 1992) - 

The function &(Ix - xi() is for any fixed y a nonnegative monotonic 
function; it tends to zero as z goes to  infinity. The most popular function 
of this type is 

- xil) = W ( - Y [ P  - xi12)+ (5.34) 

To construct the decision rule (5.33) one has t o  estimate 

(i) The value of the parameter y, 

(ii) the number N of the centers P i ,  

(iii) the vectors xi, describing the centers, 

(iv) the value of the parameters a,. 

In the classical RBF method the first three steps (determining the param- 
eters y, N ,  and vectors (centers) xi, i = 1, . . . , N )  are b d  on heuristics, 
and only the fourth step (after finding these parameters) is determined by 
minimizing the empirical risk funct iond. 

The radial function can be chosen as a function for the convolution of 
the inner product for an SV machine. In  this case, the  SV machine will 
construct a function from the set (5.33). One can show (Aizerman, Braver- 
man, and Rozonoer, 1964, 1970) that radial functions (5.34) satisfy the 
condition of Theorem 5.3. 

In contrast to  classical FE$F methods, in the SV technique all four types 
of parameters are chosen to minimize the bound on the probability of test 
error by controlling the parameters R, wo in the functional (5.29). By min- 
imizing the functional (5.29) one determines 

(i) N, the number of support vectors, 

.pi) xi, (the preimages of) support vectors; 

(iii) a, = a i y i ,  the coefficients of expansion, and 
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(iv) 7, the width parameter of the kernel function. 

Two-layer neural ne tworks  
Finally, one can define twelayer neural rletworks by choosing brrrek: 

where S(u) Is a sigmoid function. In  contrast to kernels for polynomial 
machines or for radial basis function machina that. always satisfy Mercer 
conditions, the sigmoid kernel tanh(uu + c) ,  (u(  5 1, satisfies Mercer con- 
ditions only for some values of the parameters v, c. For tile values of the 
parameters one can construct SV machines implementing the rules 

f (z, a) = sign 

Using the technique described above, the following are found ailtomatically: 

(i) the arcllitecture of the two layer machine, determining the number 
N of hidden units (the number of support vectors), 

(ii) the vectors of the weights W i  = X* in the neurons of the first (hidden) 
layer (the support vectors), and 

(iii) the vector of weights for the second layer (values of a). 

5.7 EXPERIMENTS WITH SV MACHINES 

In  thc following we will present two types of experiments constructing the 
decision rules in the pattern recognition problem:6 

(i) Experiments in the plane with artificial da ta  that can he v i s u a l i d ,  
and 

(ii) experiments with real-life data. 

5.7. I Example in the Rune 

To demonstrate the SV technique we first give an artificial example (Fig. 

6 The experiments were conducted m the Adaptive System hearch l l e p ~ ~ t -  
ment, AT&T Bell Laboratories. 



FIGURE 5,5. Two classes of vectors are represented in the picture by b k k  and 
white bids, The decision boundaries were constructed using an inner prduct  of 
pdynmial type with d = 2. In the pictures the examples cannot be separated 
without errors; the errors are Sndicated by crosses and the support vectors by 
double cirdes. 

5.5). 
The two classes of vectors are represented in the picture by black and 

white balls. The decision boundaries were constructed using an inner prod- 
uct of polynomial type with d = 2. In the pictures the examples cannot 
bc separated without errors; the errors are indicated by crosses and the 
support vectors by double circles. 

h'otice that  in both examples the number of support v e c b  is small 
relative to  the number of training data and that the nnmber of training 
errors is minimal for polynomials of degree two. 

5.7.2 Handwritten Digit Recognition 

Since the first experiments of bsenbla t t ,  the interest in the  problem of 
learning to recognize handwritten digits has remained strong. In the fol- 
h i n g  we describe results of experiments o11 learuing the recognitit111 of 
handwritten d g i t s  wing different SV machines. We also compare these re 
sults to  results obtained by other classifiers. In thew experiments, the U.S. 
Postal Service database {LeCun et al., 1990) was u L d .  It contains 7,300 
training patterns and 2,000 test patterns collected from real-life zip c o d e .  
The  resolution of the database is 16 x 16 pixels; therefore, the dimension- 

of the input space is 256. Figure 5.6 gives examples from this data 
b m .  
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FlGURE 5.6. Examples of patterns (with labels) from the U.S. Postal Servim 
databe .  
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TABLE 5.1. Human performance and performance of the various learning ma- 
chine in salving the problem of digit recognition on U.S. Postal Service datx. 

Table 5.1 describes the perfbrmanm of various classifiers, solving this 
problem7 

h 

u 

For constructing the decision rules three types of SV machines were 
used? 

Raw error% 
2.5 

16.2 
5.9 
5- 1 

(i) A polynomial machine with convolution function 

- 

Classifier 
Human performance 
Decision tree, C4.5 

Best two-layer neural network 
Five-layer network @Net 1) 

(ii) A radial basis function machine with convolution function 

- 

(iii) A twelayer neural network machine with convolution function 

K(x, xi) = tanh (b(X$l - c) 

All macbnes constructed ten classifiers, each one separating one class from 
the rwt.  The ten-clws classificatiou was done by choosing the class with 
the largest classifier output value. 

The results of these experiments are given in Table 5.2. For different types 
of SV macllines, Table 6.2 shows the best parameters for t h e  machines (col- 
umn Z), the average (over one classifier) of the number of support vectors, 
and the performance of the machine. 

' ~ h c  result of human perlornlance was reported by J. Brornley and E. 
Skkinger; the result of C4.5 wm obtained by C. Cortes; the r ~ u l t  fur the tw* 
layer neural net was obtained by B. Schdlkopf; the results for the special purpose 
neural net work architecture wlth five layers (LeNet I), was obtained by Y. LeCun 
et 4 

' ~ h o  results were obtalned by C. Burges, C. Cortes, and 13. Schiiibpf+ 
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TABLE 5.2. Results of digit recognition experiments with various SV machines 
using the U.S. Postal Service database. The number of support vectors means 
the average per classifier, 

- 

L 

TAI3l-X 5.3. Total number (in ten classifiers) of support vechrs for various SV 
machines and percentage of common support vectors. 

Note that  for this problem, all types of SV machines demonstrate ap- 
proximately the same performance, Tlris performance is better than the 
performance of any other type of learning machine solving the digit recog- 
nitiolr problem by constructing the entire decision rule on the basis of the 
U.S - Postal Service dat abase.g 

Raw 
error 
4.0 
4.1 
4.2 

f 

In these experiments one important singularity was observed: Different. 

Number of 
support vectors 

274 
291 
254 

Type of 
SV classifier 
Polynomials 

RBF clasifiem 
Neural network 

total # of sup.vec-t. 
% of common sup. vect. 

types of SV machines use apprhmate ly  the same set of support vectors. 
The percentage of common support vectors for three different classifiers 
exceeded 80%. 

Table 5.3 describes the ma1 rrumber of different support vectors for ten 
classifiers of different machines: polynomial machine (Poly), radial basis 
function machine (RBF), and Neural Pu'etwork machine (NN). It  shows also 
the number of common support vecbrs for all machines. 

Parameters 
of classifier 

d=3 
o2 = 0.3 

b = 2, c = 1 

" 

b 

P d y  
1677 
82 

' ~ o t e  that using the bcal approximation approach described In Section 4.5 
(whkh d o e  not cnnstruct the entire decision rub but approximates the decision 
ruk of any point of interest) one can obtain a better muit: 3.3% error rate (L, 
Bottou and V. Vapnik, 1992). 

The best result for this database, 2.7, was obtained by P. Simard, Y. LeCun. 
and J ,  Iknker without using any learning methods, Tbey suggested a special 
method of e h t i c  matching with 7200 tempkites using a smart concept of distance 
(so-called tangent distance) tha t  takes into account invariance with respect t o  
small transhtions, rotations, distortions, and so on (P. Simard, Y. LCun, and 
J. Denker, 1993). 

RBF 
1727 
80 

NN 
1611 

85 

Common 
1377 
100 
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TABLE 5+4+ Pacentage of common (total) support vectors for two SV machines. 

P d y  
RBF 
NN 

Table 5,4 describes thc percentage of support vectors of the classifier 
given in the colunms contained in the support vectors of the classifier given 
in the rows. 

This fact, if it holds true for a wide class of real-Ufe problems, is very 
important.. 

5.7.3 Some Important Details 

NN 
94 
88 
100 

Poly 
100 
87 
91 

In t,his subsection we give some important details un solving the digit remg- 
nition problem using a polynomial SV machine, 

The training data arc not linearly separable. The total number of m i s  
classifications on the training set for linear rules is equal to  340 (z 5Yo 
errors). For second degrec polynomial classifiers the total number of mis- 
classifications on t he training set is down to  four. These four mis-classified 
examples (with desired labels) are shown in Fig. 5.7. Starting with polylr* 
mials of degree three, the training data are separable. 

Table 5,5 describes the results of experiments using decision polynomials 
(ten polynomials, one per classifier in one experiment) of various degrees. 
The number d support v ~ t w s  shown in the table is a mean value per 
classifier+ 

Note that the number of suppod. vectors increases slowly with the degree 
nf the polynomials. T h e  seventh degree polynomial has orrly 50% more 
support vectors than t lre third degree polynomial.'0 

' RBF 
84 
100 
82 

'"he relatively high number of support vectors for the linear separator b due 
ta mnseparabihty: The number 282 incl~rdes both support vectors and m i s c b  

I 

F ~ R E  5.7. Labeled examples of training errors far the second degree palyno- 
mi als. 
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TABLE 5.5. Results of experinlents with polynomials of different degrees. 

The dimensionality of the feature space for a seventh degree polyn* 
mial is, however, loLo times larger than the dimensionality of the feature 
space for a third degree polynomial classifier. Note that the performance 
does not change sigyrificantly with increasing dimensionality of the space 
- indicating no cwerfitting problems. 

To choose the degree of the best polynomials for one specific classifier we 
estimate the VC dimension (using the estimate [ R ~ A ~ ] )  for all mnstructed 
polynomials (from degree two up to degree sewn) and choose the one with 
the smallest estimate of the VC dimension. In this way we found the ten 
best classifiers (with different d e g r w  of polynomials) for the ten tw*class 
problems. These estimates are shown in Figure 5.8, where for all ten tw* 
class decision rules the estimated VC dimension is pbtted versus the degree 
of the polynomials+ The question is this: 

; 

' 

Do the plynomi& wzth the . m d l e s t  est imate of the  VC dimensiora p9.o- 
vide the best c l m s i j e ~ ?  

To answer this guestion we constructed Table 5.6, which describes the 
performance of the  classifiers for each degree of polynomial. 

Each row describes one twuclms classifier separating one digit (stated in 
the first column) from all the other digits. 

The remaining columns contain: 

k g . :  the degree of the polynomial as chosen (from two up to seven) 
by the described procedure, 

raw 
error 
8+9 
4.7 
4.0 
4.2 
4.3 
4.5 
4 +5 

dim.: the dimensionality of the corresponding feature space, which is 
also the maximum possible VC dimension tor linear classifiers in that, 
space, 

support 
vectors 

282 
227 
274 
32 1 
374 
377 

, degree of 
polynomial 

1 
2 
3 
4 
5 
6 
7 

h,t. : the VC dimension estimate for the chosen polynomial (which is 
much smaller than the numher of free par meters),  

died data. 

i 

dimensionality of 
feature space 

256 
= 33000 
= 1 x 10" 
= 1 lo9 
c.5 1 x 1012 
= 1 x lo14 

+ 
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FIGURE 5.8. The estimate of the VC dimension of the best element of the struc 
ture (ddned on the set of canonical hyperplanes in the  corresponding feature 
sp&e) versus the degree of the polynomial for various two-class digit recognition 

. ~mblems (denoted digit versus the rest). 



154 5. Methods of Pattern Recognition 

Chosen classifier Number of test errors 
Digit deg. 1 dim. 1 ktegt .  l I 2 I  3 I I 1 6 1  

TABm 5.6. Experiments on choixing t h ~  best degree of poiynomial. 

Number o f  test  errors: the numher of test errors, using the constructed 
polynomial d corresponding degree; the hmes show the number of 
errors for the chosen polynomial. 

Thus, Table 5.5 shows that for the SV polynomial machine there are no 
overfitting problems with increasing degree of polynomials, while Table 5.6 
shows that even in situations where the difference between the best and 
the worst mlutions is small (for polynomials starting from degree two up 
to degree seven), the theory gives a method for approximating the best 
solutions (finding the best degree of the polynomial). 

Note alsr;, that  Table 5.6 demonstrates that the problem is essentially 
nonlinear. The difference in the number of errors between the hest polyno- 
mial classifier and the linear classifier can be as much as a factor of four 
(for digit 9). 

5.8 REMARKS O N  SV M A C H I N E S  

The q d i t y  of any learning machine is characterized by three main com- 
ponent s: 

(i) How universal is the learnzag machine? 
How rich is the set of functions that it can approximate? 

(ii) How weII cun the machine generalize? 
How close is the upper bound on the error rate that this machine 
achieves (implementing s given set of functions and a given structure 
on this set of functions) t o  the smallest possible? 
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{iii) How fast does the learning p m e s s  for &is machine converge? 
How many operations does it take t o  find t.he decision rule, usirlg a 
given number of observations? 

Wc address these in turn below, 

(i)  S V  machines implement the sets of functions 

where iV is any integer ( N  < C), ad, i = 1, .  . . , N, are any scalars, and 
wi, i = 1, . . . , N, are any vectors. The kernel K(x, u) can be any symmetric 
function satisfying the conditions of Theorem 5.3. 

As was demonstrated, the best g u a r a n t d  risk for these sets of functions 
is achieved when the vectors of weights wl ,  . . , , w~ are equal t o  some of 
the vectors x from the training data (support vectors). 

Using the set of functions 

support vectors 

with convolutions of polynomial, radial basis function, o r  neural network 
lype, one can approximate a continuous function t o  any d e g r e  of accuracy. 

Note that  for the SV machine one does not need t o  construct the archi- 
tecture of the machine by choosing u p.r%uri the number N (as is necessary 
in classical neural networks or in classical radial basis function machines). 

Furthermore, by changing only the function K(x ,  w) in the SV machine 
oue can change the type of learmng machine {the type of approximating 
functions). 

(ii) SV machines minimize the upper bound on the error rate for the  
structure given on a set of functions in a feature space. For the best solution 
it is necessary tha t  the vectors wi in (5.35) coincide with some vectors of 
the training data (support vectors.)" SV machines find the functions from 
the set (5.35) that  separate the  training data and belong t o  the subset with 
the smallest bound of the  VC dinlension. (In the more general case they 
minimlise the bound of the risk (5.1).) 

(iii). Finally, t o  find tlle desired functiou, the SV machine has to maxi- 
mize a nonpositive quadratic form in the nonnegative quadrant. This p r o b  
lcm is  a particular case of a special quadratic programming problem: t o  
maximize a nonpositive quadratic form Q(x) with bounded constraints 

11 This assertbn is a direct corollary of the necessity of the Kuhn-Tucker con- 
$4- for salving the quadratic optimization problem described in Sectlon 5.4- 
Tae Kuhn-Tucker conditions are necessary and sufficient for the solution of this 
problem. 
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where xi, i = 1,. . . , n, are the coordinates of the vector 2, a r d  fii, bt 
are given constants. For this specific quadratic programming probleur fast 
algorithms exist. 

5.9 SVM AND LOGISTIC REGRESSION 

5.9.1 Logis t i c  faegression 

Often i t  is important not only to construct a decision rule but also to 
find a function that for any given input vector x definm the probability 
P(y = Ilz) that the vector z belongs to  the first class. This problem is 
more general than the problem of constructing a decision rule with good 
performance. Knowirlg tlre conditinnal probability function one can con- 
st ruct the Bayesian (optimal) decision rule 

Below we consider the following (parametric) problem of estimating the 
conditional probability.'* Suppose that the logarithm of the ratio of the 
following two probabilities is a function f (x, wo) from a given parametric 
set f (a+), w.l f RT 

From this equation it follows that the conditional probability function 
P(y = Ilx) has the following form: 

The function (5.36) is called logistic regression. 
Our goal is given data 

to estimate the parameters wo of the logistic regress~on.'~ First we show 
that the minimum of the functional 

''The more general mnparametric setting of this problem we discus3 in 
Chapter7. 

1 3 ~ o t e  that (5.36) is a form of sigmoid function considered in Section 5.2. 
Therefore a oneiayer neural network with sigmoid function (5.36) is often mn- 
sidered as a n  estimate of the Wstic regression, 
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(Ey is expectation over y for a fured value of x )  defines the desired param- 
eters. 

Irrded, th necwary  condition for a rninimum is 

Taking the derivative over w and using expression (5.36) we obtain 

This expression is  equal to  zcxo when w = wo. That is, the minimum d 
the functional (5.37) defi~~es t Ire parameters of the logistic regression. 

Below we msunre that the desired lcgistic regress~on is a linear function 

whose parameters wo and b we will estimate by minimisi~lg the functional 

using observations 
( ~ 1  r XL}, . , (?It, ~ 1 ) -  

To minimize the functional (5.38) we use the structural risk minimization 
method with the structure defined follows: 

We consider tllis minimization problenr in tl~c following form: Minimbe the 
functional 

One can show that the miniluunl of (5.39) defines the following approxi- 
mation to  the logistic regression: 
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where the coefficients a4 and bo are the mlution of the equations 

Indeed, a necessary condition for the poiut (wo, bo) to minimize the func- 
tional (5.39) b 

Using the notation 

= 0, 
: 
' w o , ~  

W w ,  b? 
aeu 

we can rewrite expressions (5.41) as follows: 

P 

W O , ~  = w- c C yjxi 
-~{-~ i [ (w,x i )  + bl) 

i = I  1 + exp(-yi[(w xi) + b]) 

= 0. (5.41) m w ,  b) 
ab 

Putting expressions (5.43) and back into (5.37) we obtain the approxima- 
tion (5.40). 

Note that from (5.42) and (5.43) we have 

wo,bo  

e 

W O , ~  = -cC~i exP{-yi[(w? xi), + b]) 

+I 1 + -P{-Y~ [(w, xi) + bl) 

That is, this wlution is not sparse. 

To find the logistic regression one can rewrite the functional (5.39) (using 
expression (5.43)) in the equivalent form 

1 
P P P 

= - 2 C aiaj~i!I j(xi ,  x j )+c  = n  1 + e ~ p ( - ~ i [ E  Yjyj*j(T(Zi,Y) + b]) 
i,+l 2=1 j = 1  

Since this functional is convex with r e s p a  to the parameters a and b, one 
can w e  the gradient descent method to find its minimum. 
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5.9.2 The Risk Function for SVM 

Let us introduce the following notation 

Using this notation we can rewrite the rldc functional for the bgistic re- 
gression as follows 

Q(x) = In (1 + emuz)  . 
Consider the lms function 

where cl is some constant (in constructing the SVM we used cl = 1) and 
(a)+ = max(0, a) (the linear spline function with one node, for more about 
spline approximations see Section 6.3) . 

Figure 5.9 shows this loss function with cl = 0.8 j t he hold lines) and the 
logistic loss (dashed c u m ) .  

It is easy to see that the SVM minimize the following func tional: 

Indeed, denote by the ti the expression 

which is equivalent to the inequality 

1 4- 

4 3 -2 -1 0 1 2 3 4 

F"&URE 59.  The logistic loss foactjon (dashed line) and its approximation 
linear spline with one node (bold line). 
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Now we can rewrite our optimization problem (5.45) as follows: Minimize 
the fu~rctional 

1 

subject t o  constraints (5.46) and constraints 

This problem coincides with one that  was suggested in Section 5.5.1 for 
constructing the optimal separating byperplane for the lrorrseparable case. 

5.9.9 The SVM, Approximation of the Logistic Regression 

One can construct better SVM approximations t o  the logistic loss function 
using linear spline functions with n > 1 nodes. 

Suppose we are givell the following spline approximation t o  the logistic 
loss: 

where 

= ~ [ ( w  px) + b], 

a k :  k = 1 , .  . . , n are nod= of the spline and CA: 2 0, k = 1, ..., n. are coef- 
ficients of the spline. (Since the logistic loss function is convex monotonic 
function, one can approximate it  with any degree of accuracy using a linear 
spline with nonnegative coefficients ck.) 

Figure 5.10 shows an approximatiou of the logistic loss (dashed curve) 
by (a) spline function with two nodes and (b) by spline function with three 
nodes (bold lines). 

Let us minimize the functional 

which is our approxitnation to the functional (5.38). 
Set 

Using this notation we can r ~ w r i t e  our problem as follows: 
Minimize the f uncbional 
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FIGURE 5.10. The jogistic bss function (dashed Bne) and its approrimallons: 
(a) by a Enear spline with t m  nodes and (b) by a linear spline with three nodes 
(bold iine). 
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sub jwt to the constraints 

and constraints 
<! 2 0 ,  i = 1 , .  k = 1 , . . . ,  n. 

As before, t o  mlve this quadratic optimization problem in the dual space 
we construct the  Lagrangian 

W n g  the minimum o v e r  w, b, and t k  we obtain 

Substituting the expression for w back into the Lagrmgian and taking into 
account (5.49) we obtain the functional 

where a t ,  - . . , a, are nodes in our spline approximation t o  the bgistic loss 
function. 

To find the pafameters /3:, . . . , E ,  i = 1,  . . . , l that  specify the expansion 
(5.48) of the optimal vector w we have t o  maximize the functional (5.51) 
suhject to constraints (5.49) and (5.50). 

We also can find the parameter b from the Kuhn-Tucker conditions 

Using these parameters one can construct the  lineas function 

that defines the approximation 

exp {zzI Y; ( C : = t  Pf ) (y * x) + b) 
P(y  = 111) = , (5.53) 

( 1  + exp {c:=I yj ( C E ~  P:) ( x i  + b ) )  
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t o  the logistic regression (5 -36). As before, to define the vector w in the 
exponent of the logistic regression we need only calculate the inner prod- 
ucts between two vectors x. Therefore, using kernels K(x,xi)  satisfying 
the Mercer condition one can construct an approximation to the logistic 
regression of the form 

where the coefficients p: are the solution of the following quadratic opti- 
mization problem: Maximize the functional 

subject to constraints 
f f n  'i 

Note that  a larger n u m h r  of nodes is used in  the approximation of 
t lle logistic loss, a larger number of support vectors will he used for the 
constructing corresponding hyperplane. With increasing accuracy of a p  
p rdmat ion  (numher of nodes) the SVM, bses sparsity. 

However, with increasing n in the SVM, one cannot guarantee a bet- 
ter performance for the solution ohtained using a given sample size. T h e  
prohlem of estimating well the logistic regression is more general than the 
problem of estimating a good decision rule, and therefore, in  order to he 
solved well it requires more data for its solution. 

Our experiments did not s h m  an advantage of logistic regremion or 
SVMn compared to  SVMl. 

5.10 ENSEMBLE OF THE SVM 

In 1996 Y. F r e u d  and R. Schapire proposed the AdaBoost algorithm for 
combining several weak rules14 (features) in  one linear decision rule that  
can perform much better than any weak rule. 
Later it was shown that in  fact, AdaBomt minimizes {using a greedy o p  

timization procedure) some functional whose minimum defines the logistic 

 hat is, Lndicatnr functions that classify k t  data st least slightly better than 
random guess. 
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regression (Wedman, Hestie, and Tibshi ra~y (1998)). Also, it was shown 
that  the optimal hyperplaue constructed on  top of the weak (indicator) 
rubs chcmm by the AdaBoost often outperforms the AdaBoost solution. 

Therefore, in  the AdaBoost algori thnl we distinguish two parts: 

1. T h e  choice of N appropriate features from a given set of indicator 
features. 

2. The constmction of a separating hyperplane using the c h e l ~  fe* 
tures. 

In  this section we introduce a hc+stage method for constructing an cn- 
semhle of SWs .  In the first stage, using given training data, we find N 
indicator functions (features), which on the one hand are SVM solutions 
of the given pattern recognition problem, and on the another hand are 
the result of grocdy minimization of the same functional that minimizes 
AdaBoost algorithm. 

In the second stage using training data we construct on top of the features 
obtained the SVM decision rules. Therefore, we will construct N different 
SVM solutions of t.he same pattern recognition problen~ and then combine 
them iuto one decision rule. 

5 . 0  I The AdaBmst Method 

In Sectbn 5.9.1 we introduced the risk functional (5.37) whose minimum 
defirxed parameters of the logistic regression. Below wc consider another 
risk functional 

~ ( ~ 1  = E ~ - Y ~  ( x . ~ )  (5.55) 

defined on a set of functions f {x, n)  that contain the function 

I P ( y = I l s )  
f (x, aO) = - In 

2 P(y=-11x1' 

I t  is easy to  see that the function f (x, ao) provides the minimum to  f u n c  
tional (5.55). 

Indeed, equation (5.56) is equjvalerlt t o  the equations 

Since 



.rve have 

At the point 00 the derivative (5.58) is equal t o  zero as soon as (5.57) takes 
place. 

Let us instead of (5.55) use the empirical risk fulrctional 

which we minimize iteratively, using the following greedy opt~mization pro- 
cedure. 
Greedy op t imiza t ion  procedure: 

1. We mi~~imize  functional (5.59) iteratively constructing on the kth 
iteration a function of the form 

where 4,- (x), r = 1, . - . , N, belong to a given (maybe infinite) set of 
indicator functions, k is the number of iteratiotl, and Pk = ( d l , .  . . , dk) 
is a k-dlmensimal vector. 

On the first iteration we choose the feature (x) that  minimizes the 
number of training errors, 

2. Suppaaf: that at the k th  iteration we achieved the following d u e  
of the  empirical risk: 

A t  the  next (k + 1) iteration we continue to minimize the empirical 
risk functional in the  set of onepwameter functions 

For function (5.60) we obtain the following value of t h e  empirical risk 
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where we have set 
k + l  c = e - u i f k ( m * f l k l  

%.ppose that for the (k + 1)st iteration we have chosen the indicator 
function q5(k+,) (r) (later we will define how to choose this fundion). 
Then in order to minimize the  empirical risk (5.61) we have to choose 
the following value of the parameter: 

where we set 
c y  = C $+I P '  

{i: ~ i & k + i )  (xi)=l} 

This follows from the facts that yYiq5(k+I) (xi) E {I, - 1) and that at the 
optimal point d(k+,) the derivative over d of the empirical functional 
(5.61) must be equal to zero 

3. To choose the appropriate function q5(k+X)(z) for the (k + 1)st 
iteration, note that after the k th  iteration, according to (5.631, the 
equality 

holds true. 

Suppose that coefficients $ , ' b e  norrnaljzed to 1: 

This does not change the result. However, normalization allows us to 
propose a nice statistical interpretation of equation (5.63): Normal- 
ized coefficients cF+', i = 1, . . . ,! can be considered as a probability 
measure assigned an the given training data for the (k + 11th itera- 
tion and indicator function function q5k(s) as the worst solution for 
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our training da ta  assign with this probability measure (for this p r o b  
ability measure the rule 4k(x) has a 50% error rate). That is, after 
every iteration, the  algorithm assigns t o  a gven training set a new 
probability measure tha t  is the most difficult for the  last weak rule, 

Therefore, for the next, (k + l )st ,  iteration we choose the function 
q+ k+ ) (s)  that  minimizes the error rate for the  w i p e d  probability 
measure. That  is, we choose the fundion q!yw l)(x) tha t  minimizes 
the functional 

Q 

4. The indicator function 

obtained as result of the  g r d y  minimization procedure described, is 
the Ad&& decision rule. 

5.10.2 The Ensemble of SVMs 

Let us use the greedy optimization idea described above for constructing 
the  ensemble of SVMs, We start with the case where weak features are 
linear decision rules 

Our goal is t o  find N optimal hyperplanes that  in greedy fashion minimize 
the functional 

and then using these linear decision rules as the features construct the  
desired ensamble. 

Cons t ruc t ing  the features .  To construct N features we need to specify 
in the general scheme described in the previous section only the method 
br minimizing the functional (5.64) in the set of linear decision functions: 

(defined by the optimal hyperplane). 
As before, we replace thb problem with the following problem: Minimize 

the  functional 
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subject to constraints 

The only difference in the problem of constructing this hyperplane com- 
pared to  the problem of constructing the soft-margin hyperplane described 
in Section 5.5.1 is that in the case of the soft-margin hyperplane all coef- 
ficients c$ were equal to  1. Now the second term in (5.67) is a weighted 
sum. 

We d v e  this optin~ization problem using the same technique with Lib 
grange muftipliers. We obtain the foilowing soiution: 

where the coefficients ct! maximize the functional 

subject to  the constraints 
0 5 LLi < c c f  

and the constraint 
C 

The coefficient bk can be defined from Kuhn-Tucker conditions 

Therefore, the difference in decision rules is defined by t l s  coefficients 6. 
These coefficients are calculated iteratively as it was described in the g r d y  
optimization procedure (Section 5.1 0.1): 

Remark. Note that if the training data  are separable, then the denomi- 
nator of equation (5.73) is equal to zero, and therefore, according to (5.72). 



ck P = 0, i = 1,. . . f for all k > 1. That is, the set of features llas only one 
decision rule. To prevent this situation oiie can choose s sufficiently small 
value of C (large regularization parameter). If, however, for sufficiently 
small C the training data  are still separable, then the obtained hyperplane 
has a good generalization ability- 

The  choice of the constant C plays an important r d e  in constructing an 
ensemble of SVMs. 

Cons t ruc t ing  the decision rule. To obtain the rlecision rule one con- 
structs the optimal hyperplane in N-dimensional binary space 

Using the given set of trailling data One obtaines the new set of training 
data  

(~1721, 1 * - - (Yt? a) (5.74) 

( ~ i  = (4i(f i)? . . . , &N (xi)), b a d  on which one constructs the optimal hy- 
perplane. 

Ensemble  of SVMs As before we can use kernels to obtain features 
using general type of SVMs. We can use features of the form 

where the coefficiaits ai are solution of the follorving optimization problem; 
hIaximize the functional 

subject to the constraints 
o oi 5 CC! 

and the constraint 
4! 

Using obtained N features &(I), k = 1,  ..., N that  define a binary 
space Z one construes the training set (5.74). On the basis of this training 
set using a kernel K*{z, z,) d&md in Z space one constructs the SVM 





Informal Reasoning and 
Comments - 5 

5.11 THE ART OF E N G I N E E R I N G  VERSUS FORMAL 
I N F E R E N C E  

The  existence of neural networks can be considered a challenge for t h e  
retic bns.  

From the  formal point of view one cannot guarantee that  neural networks 
generalize well, since according to theory, in order to control generalization 
ability one should control two factors: the  value of the empirical risk and the 
value of the  confidence i n t e m l .  Neural networks, hawever, cannot control 
either of the  two. 

Indeed, t o  minimize the empirical risk, a neural network must minimize a 
functional tha t  has many local minima. Theory offers no constructive way 
to prevent ending up with unacceptable bcal  minima. In order t o  control 
the confidence i n t e m l  one has first to construct a structure on the  set of 
functions that  the neural network implements and then t o  control capacity 
using this structure. There are no m u r a t e  methods to do this for neural 
networks. 

Therefore, from the formal point of view it seems that there should be 
no question ss to what type of machine should be used for solving real-life 
problems. 

The  reality, however, is not so straightforward. The designers of neural 
networks compensate the mathematical shortcnmings with the high art  
'ck engineering. Namely, they incorporate various heuristic algorithms tha t  



172 Informal Reasoning and Commcnts - 5 

make it possible to attain reawnably local minhna using a reasonable small 
number of calculat ions. 

Moreover, for given  problem^ they create special network architectures 
that. both have an appropriate capacity and contain "useful" functions for 
solving the problem. Using these heuristics, neural networks demonstrate 
surpr

isi

ngly good results. 
In Chapter 5, describing tlie best r m l t s  for solving the digit recognition 

problem using the U.S, Postal Service database by constructing an entire 
(not local) decision rule, we gave two figures: 

5.1% error rate for the  neural network LeNet 1 (desgned by Y. Le- 
C u d ,  

4.0% error rate for a polynomial SV machine. 

We also mentiorled the trvo best results: 

3.3% error rate for the bcal  learning approach, and the record 

2.7% error rate for tangent distance niatcliing to template3 given by 
the training set. 

In  1993, responding to the community's need for benchmarking, the 
U.S. National Institute of Standards and Technology (NIST) provided a 
database of handwritten characters contdning 60,QOO training images and 
10,000 test data, where characters are described as vectors in 20 x 20 = 400 
pixel space. 

For this database a special neural network (LeNet 4) was designed. Tihe 
following is how the article reporting the benchmark studies ( L h n  Bottou 
e t  a/, 1994) describe the construction of LeNet 4: 

"For quite a long time. LeNet 1 was considered the state of 
the art. The  local learning classifier, the SV classifier, a i d  tan- 
gent distance classifier were developed to  improve upon LeNet 
1 - and they succeeded in that. However, they in turn mo- 
tivated a search for m improved neural network arcliikcture. 
This search was guided in part by estimates of the capacity of 
various learning machnes, derived from measurements of the 
training and test error (on the large NIST database) as a func- 
tion of the nuniber of training examples. l5 We: discovered that 
more capacity was needed. Through a series of experinients in 
architecture, combined with an analysis of the characteristics 
of recognition errors, LeNct 4 was crafted." 

15 V. Vepdk, E. Levin, snd Y. LeCun (1994) "Measuring the VC chmension of 
a learning machine," Neumf Comptttation, 8(5), pp. 851-876. 
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In thme benchmarks, two learning machines that construct entire deci- 
sion rules, 

{i) Leh'et 4, 

{ii) ~ofynomial SV machine {pobnomial of degree four), 

provided the same performance: 1.1% test error." 
The bcal  learning approach and tangent distance matching t o  60,000 

t e m p h t s  also gave the same performance: 2.1% test error. 
Recall that  for a smali (U.S. Pmtal Service) database the best result {by 

far) was obtained by the tangent distance matching method which uws Q 

pnort information about the problem {incorporated in the concept of tan- 
gent distance). As the iiumber of examples increases t o  60,000 the advan- 
tage of Q prio72 k~iowfedge d w r e ~ e d  The advantage of the local learning 
approach aha decreased with the increasing number of observations. 

LeNet 4, crafted for the NIST database denionstraked remarkable hrl- 
provement in performance comparing to LeNet 1 {which has 1.7% test 
errors for tlie NIST databasei7). 

The standard polynomial SV machine also did a good job. We continue 
the quotation ( L h n  h t t o u ,  et al, 1994): 

'The SV machine has excellent accuracy, which is most remark- 
able, because unlike the other high performance classifiers it 
does not include knowledge abuat the geometry o j  the problem. 
In fact this classifier would do just as welL if the image pixel 
were encrypted, e.g:, by a fixed raidom permutation." 

However, the performance achieved by these learning machines is not 
tlle rword for the NIST database. Using models of characters (the same 
that was used for coiutructing the tangent distaice) and 60,000 examples 
of training data, H. Drucker, R. Schapire, and P. Simard gemrated more 
than l,IPO0,00U examples, which they used to train three h N e t  4 neural 
networks, combined in the special "bmti l ig  scheme" {Drucker, Schapire, 
and Simard, 1993) which a c h e d  a 0.7% error rate. 

Now the SV machines have a challenge - t o  cover this gap {between 
1 .I% ta 0.7%). Probably the use of ollly brute force SV machines and 
60,000 training examples will n& be sufficient to  cover the gap. probably 
one has ta incorporate some a prton information about the problem at 
hand. 

16~nfortunately, one cannot compare these results to the results described in 
m a p k r  5. The digits from the NIST database are "easier" for recogdtion than 
the ones from the U.S. Postal Service database. 

1 7N ote that LeNet 4 has an advantage for a large GQ,OQQ training examples 
(NIST) database. For a small (U.S. Postal Service) databsse containing 7,WO 
#aining.examplw, the network with smaller capacity, LeNet 1, is better. 
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There are several mys t o  do this. The simplest one is use the same 
1 , 0 ~ , ~  e x a m p h  (constructed from the 60,000 NIST prototypes). How- 
ever, it is more interesting t o  find a way for directly incorporating the 
invariants that were used for generating the new examples. For example, 
for polynomial machines one can incorporate a priori information about in- 
variance by using the convolution of an inner product in the form ( z  jd, 
where z and z* are input vectors and A is a symmetric positive definite 
matrix reflecting the  invariants of the models. l8 

One can alw incorporate another (geometrical) type of a prim+ infor- 
mation using only features (monomial) rizjz* formed by pixels that are 
close each to other (this reflects our understanding of the geometry of the 
problem - important features are formed by pixels that are connected to 
each other, rather than pixels far from each other). This essentialy reduces 
(by a factor of millions) the dimensionality of feature space. 

Thus, although the thmretical foundations of support vector machines 
look more d i d  than those of neural networks, the practical advantages of 
the new type of learning machines still n d s  to be  proved.1g 

5.12 WISDOM O F  STATISTICAL MODELS 

In this chapter we introduced the support vector machines, which realize 
the structural risk minimization inductive principle by: 

(i) Mapping the input vector into a high-dimensional feature space using 
a nonlinear transformation. 

(ii) Constructing in this space a structure m the set of linear decision 
rules according to the increasing norm of weights of canonical hyper- 
planes. 

(iii) Choosing the best element of the structure and the best function 
within this element in order to minimize the bound on error probe  
bili tq. 

"B. Sch6Lkopf considered an intermediate way: He collstructed an SV mechine, 
generated new example by transforming the SV images (translating them in the 
four prindpal directions), and retrained on the support vectors and the new 
examples. ~ h l s  impraves the performance from 4,0% to 3,2% for the U.S. Pmtd 
Service database and from 1.1% to 0.8% for the NIST database. 

" ~ n  connection with heuristics incorporated in neurd networks let me recall 
the following remark by R. Feynman: 'We m m  make it clear from the beginning 
that if a thing is not a science, it. is not necessarily bad. For example, lwe is not 
science. So, if something is said not to be a science it d m  not mean that them 
is something wrong with it; it just means that i t  is not a science." T k  Fqnman 
L ~ E t ~ r e s  on Physks, Ad~Umn-Wdey, 3-1, 1975. 
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The implementation of this scheme in the algorithms described in this 
chapter, however, contained one violation of the SRM principle. To define 
the structure on the set of linear b c t i o n s  we use the set of canonical 
hyperplanes constructed with respect to vectors x from the training data. 
According to the SRM principle, the structure has to be d h e d  a pnic~r-i 
before the training data appear. 

The attempt to implement the SRM principle Sn toto brings us  to a new 
statement of the learning problem that forms a new type of inference. For 
simplicity we consider this model for the pattern recognition problem. 

Let the learning machine that implements a set of functions linear in 
feature space be grven l + k vectow 

drawn randomly and independently according to some distribution func- 
tion. 

Suppose now that the% l + k vectors are randomly divided into two 
subsets: the subset 

for which the string 

describing classification of these vectors is given (the training set), and the 
subset 

for which the dassification string should be found by the machine (test 
set). The goal of the machine is to find the rule that gives the string with 
the minimal number of errors on the given test set. 

In contrast to  the model of function estimation considered in this book, 
this model looks for the rule that minimizes the number of errors on the 
given test set rather than for the rule minimizing the probability of error 
on the admissible test set. We call this problem the estimation of the values 
o j  the junction a t  gzeren points. For the problem of estim ating the values of 
a function at given points the SV machines will reabze the SRM principle 
in toto if one d d n e s  the canonical hyperpi- with respect to  all 1 + k 
vectors (5.78). (One can consider the data (5.78) as a priori information. 
A posteriori information is any information about separating this set into 
two subsets.) 

Estimating the values of a function at given points has both a sohtion 
and a method of solution that W e r  from those based on estimating an 
pnknm function. 
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Consider, for example, the fiw-digit zipcode recognition problem.20 The 
existing technology based on estimating functions suggests recognizing the 
five digits XI ,  . . . , x5 of the zipcode independently: First one uses the rules 
constructed during the Iearning procedures to recognize digit XI, then one 
uses the same r u k s  tio recognize digit x2, and so on+ 

The t e c h o b g y  of estimating the d u e s  of a function suggests recognizing 
all five digits jointly: The recognition of one digit, say xl, depends not only 
an the training da ta  and vector XI,  but a h  on vectors x2, - . . , xg . In this 
technology one uses the rules that are in a special way adapted to solving a 
given specific task. One can prwe that this technology gives more accurate 

It  should be noted that for the first time this new view of the learning 
problem was found due to  attempts to justify a structure defined on the 
set of canonical hyperplanes for the SRM principle. 

5*-13 WHAT CAN ONE LEARN FROM DIGIT 
RECOGNITION EXPERIMENTS? 

Three observations should be discussed in conl~ection with the experiments 
described in this chapter: 

(i) The structure constructed in the feature space reflects real-lije pmb- 
[ems well. 

(ii) The quality of decision rules obtained does not strongly depend on 
the type of SV machine (polynomial machine, RBF machine, twe 
layer NN). It  does, however, strongly depend on the accuracy of the 
VC dimension (capaciw) control. 

(iii) Different types of machines use the same elements of training data as 
support vectors. 

20 For simpfldty we do not consider the segmentation problem. We suppm 
that d five digits of a zipcode are segmented. 

' ~ o t e  that the local learning approach described in Section 4.5 can he comid- 
ered as an intermediate mod4 between function estimation and estimation of the 
d u e s  of a function at pdnts of interest. Recall that for a small (Postd Service) 
database the locd learning approach gave significantly better results (33% error 
rate) than the best result based on the entire function estimation approach (5.1% 
obtained by LeNet 1, and 4.0% obtained by the p1ynomM SV machine). 
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5.13.1 InJluence of the fipe of Stmctw~s and Accuracy of 
Capacity Control 

The classical approwh to estimating multidimensional fullctional depen- 
dencies is based on the following belief: 

Real-life problems are such that there exists a small number of "strong 
fmtuws, " simple fine ti ons of which (my linear comhnit tions) upp&mitte 
well the unknown function* T'%eefuw, it is necessary to mwfuliy choose a 
bur-dimensional feature space and t h m  to use regular stdtistiml techniques 
to cunstmct an uppmximation. 

This approach stresses, that one should be careful at the stage of feature 
selection (this is an informal operation) and then use routine statistical 
techniques. 

The new technique is based on a different belief: 

Red-kfe pmbiems a m  such that there exist a laye number of 'he& fea- 
tures" whose "smart" linear combination appmximates t h ~  unknown depen- 
den@ well. Therefom, it is not very important &at kind of "weak feature" 
one uses, it is more important to f u m  "smart" linear mmbinadim.  

This approach stresses, that one should choose any reasonable 'Lweak 
feature space" (this is an informal operation), but be careful at the point of 
making "smart" linear combinations. From the perspective of SV machines, 
"smart" linear combinations c o r r ~ p o n d  to the capacity cont rol method. 

This belief in the structure a€ real- life pwblerns h* been expressed many 
times both by theoreticians and by experimenters. 

In 1940, Church made a claim that is known as the Turing-Church 
Thesis:22 

All (susciently complex) computers compute the same family of func- 
tkm. 

In o w  specific case we discuss the even strollger belief that linear func- 
tions in various feature spaces associated with different convolutions of the 
inner product approximate the same set of functions if they possess the 
game capacity. 

Church made his chin1 on the basis d pure theoretical analysis. H o m e r ,  
soon as computer experiments became widespread, researchers unex- 

pectedly faced a situation that a u l d  be described in the spirit of Church's 
claim. 
h the 1970s and 1980s a considerable amount of experimental research 

was conducted in soiving various operator equations that formed i l l - p d  

'%ate that the t h d s  does not reflect some proved fact. It reflects the Wief 
i n a e  existence of some law that is hard tto prow (or formulate in exact terms). 
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problems, in particular, in density estimation. A common observation was 
that the choice of the type of regularizers fl(f) in (4.32) (determining a 
type of structure) is not as important as choosing the correct regularization 
constant 7(b) (determining capacity control). 
In particular, in density estimation using the Parzen window 

a common ohe rn t ion  was the foilowing: If the number of observations 
is not ' k r y  small," the type of kernel function K(u) in the estimator is 
not as important as the value of the constant 7. (Recall that the kernel 
K(u) in Parzen's estimator is determined by the functional fl(f), and 7 is 
determined by the regularization constant.) 

The same was observed in the regression estimation problem, where one 
tries to use expansions in different series to estimate the regression function: 
If the number of observations is rmt Ltery small," the type of series used is 
not as important as the number of terms in the approximation. All these 
observations were done solving low-dimensional (mostly onedimensional) 
problems. 
h the experiments described we o b s e d  the same phenomena jn very 

hi&-d imensjonal space, 

5.13.2 SRM Principle and the Problem ojFecature 
Constmetion 

The "smart" linear combination of the Iarge number of features used in the 
SV machine has an important structure: The set of support vectors. We 
can describe this structure as follows; Along with the set of weak features 
(4 feature space) there exists a set of complex features associated with 
support vectors. Let us denote this 9pwe by 

where 
5 1 ,  + ., XN 

are the support vectors. In the space of complex features Cr, we constructed 
a linear decision rule. Note that In the bound obtained in Theorem 5.2 
the expectation of the mmber d o o m p h  features plays the r d e  d the 
dimensionality of the problem. Therefore, one can describe the difference 
between the support vechr approach and the classical approach in the 
following way: 

To perfurn the closswd u p p m h  well wpuims the human selection (cun- 
stmctiua) of a relaiiuedy mdl amber uf "smart features, " while the sup- 
port vector appmach selects (oomhucts) o smdl number of U ~ r t  features" 
autumati~ally . 
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Note that the SV machines construct the optimal hyperplane in the 
space Z (space of weak features) but not in the space of complex features. 
I t  is easy, however, t o  find the coefficients that provide optimaljty for the 
hyperplane in the space U (after the  complex features are chosen). More- 
aver, one can construct in the U space a new SV machine (using the same 
training data). Therefore, one can construct a two- (or several-) layer SV 
machine. In other words, one can suggest a multistage selection of %mart 
features." As we remarked in Section 4.10, the problem of feature selection 
is, however, quite delicate (recall the difference between constructing sparse 
algebraic polynomials and sparse trigonometric polynomi ah). 

5.13.3 i s  the Set of Support Vectors a Robust Characteristic of 
th.e Data? 

In our experiments up observed an important phenomenon: Different types 
of SV machines optimal in parameters use almost the same support vectors. 
There exists a small subset of the training data (in our experiments less 
than 3% to  5% of the data) that for the problem of constructing the best 
decision rule is equivalent to  the complete set of training data, and this 
subset of the training da ta  i s  a l m t  the same for different t y p  of optimal 
SV machines (~olynomial machine with the best degree of polynomials, 
RBF machine with the best parameter y, and NN machine with the best 
paramekr b). 

The important question is whether this is true for a wide set of real- 
life problems. There exists indirect thearetical evidence that  this is quite 
pwgble. One can show that  if a majority vote scheme, based o n  various 
support vector machines, d m  not improve performance, then the percent- 
age of common support vectors of these machines must be high. 

It is tcx, early to  discuss the properties of SV machines: The  analysis of 
these properties has now just started." Therefore, I would like to finish 

a 3 ~ f t e r  this book had been completed, C. Burges demonstrated that one can 
approximate tbe obtained dwis3on rule 

by the mu& simpler decision rules 

using the so-cdld gmwalized support vecto:m TI,. . . , TM (a specially am- 
, . # ~ ~ c t d  set of vectors). 
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these comments with the following remark. 
The SV machine is a very suitable object for theoretical analysis. It 

ullifies various conceptual models: 

(i) The SRhI model. (That is how the SV machine initially was obtained. 
Theorem 5.1.) 

(ii) The data compression model. (The bound in Tl~eorem 5.2 can be 
described i n  tams of the compression coefficient.) 

(iii) A universal model for constructing complex features. (The convolu- 
tion of the inner product in Hilbert space can be considered as a 
standard method for feature collstruc tion .) 

(iv) A model of real-life data* (A small set of support vectors might be mf- 
ficient t o  characterize the whole training set for different machines.) 

In a few years it will be c h r  whether such unscation of models reflects 
some intrinsic properties of learning mechanisms or whether it is the n m t  
cul-de-sac.24 

To obtain approximately the same performance for the digit recognition pmfk 
lem, dewxibed in Section 5.7, it was sufficient to use an approximation based un 
A f  = 11 generalizd support vectors per classifier instead of N = 270 (initially 
obtained) support vectors per classifier. 
niy means that for support vector machines there exists a regular way LO 

synthesize t k  decision rules possessing optimal compiexity. 
24 Fol~r years have pas& since tbis remark was made in 1995. Since tben we 

have had a lot of evidence, including experimental evidence (see, for example. 
Sectlon 5.7) tbat the SV method is a general approach to various problems of 
function =timation in higl~dimensiond spaces. 



Chapter 6 
Methods of Function Estimation 

In this chapter we generalize results obtained for est mating indicator fun* 
tion (for the pattern recognition problem) to the problem of estimating 
real-valrwd funct.ions (regrwions). We introduce a new type of loss func- 
tion (the so-c a k l  &-insensitive loss function) that makes our estimates not 
onIy robust but aIso sparse, As we will see, in this and in the next chapter, 
the sparsity of the solution is very important for estimating dependencies 
in high-dimensional spaces using a large. number of data, 

In Chapter 1, Section 1.7, t o  describe the problem of estimation of the 
supervisor rule F(y 1 x )  in the class of real-valued functions { f (3, a), 0 t A) 
we considered a quadratic loss function 

Under conditions where y is the result of measuring a regression hnctiorl 
with normal additive uoise [ the Em1 principle provides (for this loss 
function) an efficient (best unbiased) estimator of the regressioll f (z, 00) -  

I t  is known, however, that if additive noise is generated by other distri- 
butions, better approximations to the regression (for the ERM principle) 
give estimators based on other loss functions (associated with these distri- 
butions) 

L(Y7 f (x ,a) )  = L(IY - f (x,a)I) (6.2) 
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(L(<) = - lnp(<) for the symmetric density function PI<)). 
h 1964, Huber developed a theory that allows finding the best strategy 

for choosing the  loss function using only general information about the 
model of the noise. In particular, he showed that if one knows ouly that  the 
density describing the noise is a symmetric function, then the best minimax 
strategy for regression approximation (the best Lz approximation for the 
worst possible model of noise p(x)) provides the loss function 

Minimizing the empirical risk with mpec t  to  this loss function is called 
the leust m d d w  met hod. It belongs t o  the so-called rn bust  nqressioa farm 
ily. This, however, is an extreme case where one has minimal information 
about the unknown density. Huber a h  consider the model b a e d  on mix- 
ture of same fixed noise (below we consider the m m a l  noise) with an 
arbitrary noise that  is described by a symmetric continuous density func- 
tion. He s h o d  that the optimal (minimax strategy) for this type of noise 
is achieved when one uses the following loss function: 

The constant c is defined by the proportion of the mixture. 

To construct an SVM for real-valued functions we use a new type of k 
functions, the s ~ ~ a l l e d  E- insensitive h s  fun ct ions 

where we set 

Y j ( x ? a ) l r  = { '? 

if IY - f (x ,a) l  5 E, 
- f ) 1 - E, otherwise. (6-6) 

These loss functions describe the €-insensitive model: The lass is equal 
to  0 if the discrepancy between the predicted and the observed values is 
lpss than I. It coincides with Huber's kss functions when E = 0 and is c b r :  
to loss function (6.4) when c is small. 

Belw we consider three loss functions: 

1, The b e a r  &-insensitive loss function 

(it coincides with the robust loss function (6.3) if E = 0). 

2. The quadratic &-insensitive loss function 

(it coincides with the quadratic loss function (6.1) if E = 0). 
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FIGURE 6.1. E-insensitive linear loss function and Huber's loss functbn. 

3. The Huber loss function 

~ I P  - f (+, &)I - $ for ( y  - f ( x ,  a )  > c, 
- f {x ,a ) I2  for ( y -  f ( x , a ) l  $ c- 

( 6 - 9 )  

Using the same technique one can consider my convex loss function 
L(u)+ However, the above three are spec&: They lead to the same simple 
optimization task that we used for the pattern recognition problem. 

6.2 SVM FOR ESTIMATING REGRESSION 
FUNCTION 

The suppart vector approximation to regression taka place if; 

(i) One estimates the regression in the set of linear functions 

(ii) One defines the problem of regression estimation as the problem of 
risk minimization with respect to an E-insensitive (E 2 O) lm function 
(6.8). 

(iii) One minimizes the risk using the SR M principle, where dements of 
the structure S, are defined by the inequality 

1. Solution for a given element of the structure. Suppose we are 
given training data 

( x ~ , Y ~ ) , . - , ( x L ,  yt). 



Then the problem of finding the we and br that minimize the empirical risk 

under constraint (6.10) iy equivalent to  the probleni of finding the pair w, b 
that minimizes the quantity defined by slack variables ti, <;, i = 1,. . . ,l, 

under the constrai~lts 

and constraiiit (6.10). 

As before, to solve the optimization problem with constraints of inequal- 
ity type m e  has to find a saddle point of the Lagrange functional 

(minimum with respect to elements w, b, <;, and <: and maximum with 
* ) 0 , a n d  * > 0  a * > O ,  a d > _ O , y ,  respect to  Lagrange multipliersC - , - 

> O , i =  I ,,.., l ) .  Ti - 
Minimization with respect to  w ,  b, and (:, implies the  following three 

conditions: 
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Putting (6.14) aud (6.15) into (6.13) one obtains that for the solution of 
this optimization problem, one has to  find the nlaximum of the convex 
funct iond 

w(a, a*, c*) = -EC(~:  + ail + C Y i ( a f  - ail 

subject to constraints (6.15), (6.16), and the co~~straint  

As in pattern recognition, here only some of the parameters in expansion 
(6.141, 

differ from zero+ They define the support vectors of the problem. 

2. The basic solution. One can reduce the convex optimization prob- 
lem of finding the vector w t o  a quadratic optimization problem if instead d 
minimizing the functional (6.11), subject to  constraints (6.12) and (6.10), 
one llrinimizes 

(with given value C) sul~ject to  constrai~lts (6.12). In this case to find the 
desired vector 

C 

one has to find coeficientsaa, a,, P = 1,. . . ,!, that nlaximize the quadratic 
f o ~ m  

(6.18) 
subject to the corlstraints 
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As in the pat tern rmgnition case, the solutions t o  these two optimization 
problems coincide if C = C*. 

One can show that for any 6 = 1,. . . , l the equality 

holds true. Therefore, for the particular case where E = 1 - 5 (6 is small) 
and yi {-I, 1) these optimization problems coincide with those described 
for pattern recognition. 

To derive the  bound on the generalization of the SVM, suppose that 
the distribution F(x, y) = F(ylx)F(x) is such that for any fixed w, b the 
corresponding distribution of the random variable l y  - (w x) - bi, has a 
"light tail" (see Section 3.4): 

Then according to equation (3.30) one can assert that the solution wt, bt 
of the optimization pmblem provides a risk (with respect to the chosen br 
function) such that  with prohability at least 1 - v the bound 

holds true, where 

and 
h, (h $ -t- 1) - ln(77/4) 

E = 4  
i? 

Here h, is the VC dimension of the set of functions 

s n  = {ly - ( w . 2 )  - b : (w * w)  2 c,}. 

6.2.1 S V  Machine wzth Conuolwd Inner Product 

Using the same argument with mapping input vectors into high-dimensional 
space that was considered for the pattern recognition case in Chapter 5 
can construct the best approximation of the form 
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where a, 2 - I ,  ..,N, are scalars, va, z = I , .  . .,N, are vectors, and K(., -) 
is a given function satisfying Mercer's conditions. 

1. Solut ion fbr a given e lement  of the s t ruc ture .  Using the convex 
optimization approach one evaluates coefficients j?,, i = 1, . . . ? l? in (6.19) 

where a f ,  a i ,  C are parameters that  maximize the function 

subject to  the constraint 
d I 

and to  the constraints 

2. The basic solution. Using the quadratic optnimization approach one 
evaluates the vector w (5.48) with coordinates 

where a:, ai are parameters that maximize the function 

subject to  the constraint 
I t 

and to the constraints 



By controlling the two parameters C and E in the quadratic optimization 
approach one can control the generalization ability, even of the SVM in a 
high-dimensional space. 

6.2.2 S o l u f  o n  for Nonl inear  Loss f i n c l i o n s  

Along with linear loss functions one can obtain the solution for convex loss 
functions L(C), L(&). 

In general, when L(O is a concave function, one can find the solution 
using the corresponding optimization technique. However, for a quadratic 
loss function L(O = t2 or Huber's loss fuliction one can obtain a solution 
using a simple quadratic optimization tsc hnique. 

1 .Quadra t ic  loss function. To find the solutim (coefficients of expal- 
sion a:,aI Of the  hyperplane on support vectors) one has t o  maximize the 
quadratic form 

subject t o  the constraints 

a6 3 0' i == 1 , .  .. : l .  

When E = 0 and 

Mzi? xj) = COY{!(X.), f (q} 
is the covariance function of sbchastic processes with 

the obtained solution coincides with the smcalkd kreiging method devel- 
oped in geostatistics (see Matheron, 1987). 
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2. Solut ion f o r . t h e  H u b e r  loss function. Lastiy, consider the SVM 
for the Huber loss function 

- f for IEl 5 c, 
for > c. 

For this loss function, to  find the desired function 

one has to  find the coefficients ar,ai that  m d l n i x e  the quadratic form 

W(a, a*) = C yi(af - ai) 

subject to  the constraints 

When c = E < I ,  the solution obtained for the Huber bss fuliction is 
close to the solution obtained for the €-insensitive h i t i  function. Howeuer, 
the expansion d the solution for the e-insensitive bss function uses fewer 
support vectors. 

3. Spline approximation of t h e  loss functions. If F(O Is a concave 
function that is symmetric with respect t o  zero then one can approximate 
it to any degree of m u r a c y  using linear sl~lines 

In this case using the same technique that  was used in pattern recognition 
for SVM logistic regression approximation one can obtain the solution on 
@e basis of the quadratic optimization technique. 
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6.2.3 Linear Optimization Method 

As in the pattern recognit ion case one can simplify the optimization prob- 
b m  even more by reducing it t o  a linear optimization task. Suppose we are 
given data 

(yi, xi), - - t ( ~ $ 9  X L ) ~  

Let us approximate functions using functions from the set 

where is some real value, xi is a vector from a training set, and K (sf, x) is 
a kernel function. We call the  vectors from the training set that  correspond 
t o  nonzero Pi the support vectors. Let us rewrite Pi in the  form 

=a;  - a,, 

where a: > 0, ad > 0. 
One can use as an approximation the function tha t  minimizes the func- 

tional 
L L L L 

subject ta the  constraints 

The solution to this problem requires only linear optimization techniques. 

6.3 CONSTRUCTING KERNELS FOR ESTIMATING 
REAL-VALUED FUNCTIONS 

To construct different types of SVM one has t o  choose different kernels 
K (s, xi) satisfying Mercer's condition. 

In particular, one can use the rsame kernels that were used for a p p d -  
mation of indicator functions: 
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(i) kernels generating polynomials 

K(x, xi) = [(x * x*) + 1Id, 

(ii) kernels generating r d a l  basis functions 

£or example 
2 X(lx - xi/) = exp {-7/x - xi1 } , 

(iii) kernek generating twrslayer neural networks 

On the basis of these kernels one can obtah the approximation 

using the optimization techniqum described above. 
Them kernels imply approximating functions f (z, a) that were used in 

the pattern recognition problem under discrimination sign; namely, we con- 
sidered functions sign[ f (x, a)]. 

However, the problem of approximation of real-valued functions is more 
delicate than the approximation of indicator functions (the absence of 
sign{*} in front of function f (x, a )  significantly changes the pmblem of 
approximation). 

Various real-valued function estimation problems need various sets of 
approximating functions. Therefore, it is important to  construct specd 
kernels that reflect specid properties of approximating functions. 

To construct such kernels we wiU use two main techniques: 

(i) constructing kernels for approximating one-dimensional functions, 
and 

(u) composition of multidimensional kern& using onedimensionel ker- 
nels. 

6.3.1 Kernels Generating Expansion o n  
Orthogonal Polynomials 

%I construct kern& that generate expansion of ondimensional functions 
jh the first N terms of the o r t h o n o d  polynomials E ( x ) ,  i = -1, .. . , N 
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(Chebyshev, Legendre, Hermite polynomlalu, etc.), one can use the ChristoKel- 
Dar boux formula 

n 

Kn(z,x) = C P~Z(Z) = a,[P;+, (z)Pn(z) - P;(x)Pn+ i (41, (6.21 1 
k = 1  

where is a constant that depends on the type of polynomial and the 
number n of e1ement.s in the orthonormal basis. 

It is clear, however, that with iucreasing n the kernels K (z, y) approach 
the d-f~IICt1~n. However, we can modify the generating kernels to reproduce 
a regularized function. Consider the kernel 

where T@ converges t o  zero as i increases. This kernel defines a regularized 
expansion on polynomials. 

We can chnase vahles ri such that they improve the convergence prop 
erties of the series (6.22). For example, we can choose ri = $, 0 5 q 5 1. 

Example. Consider the (one-dimensional) Hermite polynomials 

where 

and fik are normalization constants. 
For these polynonials one can obtain the kernels 

(Mikhlin (1964)). Fkom (6.24) one can see that the closer q is to one, tht: 
cbser the kernel K(z ,  y) is to the 6-function. 

To construct our kernel4 we do not even need to use orthonormal bases- 
In t he next section, to construct kernels for spline approximations we will 
use linearly independent bass that are not orthogond 

Such generality (any hiearly independent system with any smooth i i~  
parameters) opens wide opportunities to construct kernels for SVMs. 
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6.3.2 Constmcting Multidimensional Kernels 

Our goal, however, is to  construct kernels for apprmimating multidimen- 
sional functions defined on the vector space X c Rn where al coordinates 
of the vector z = (XI,  . . . , xn) are defined on the same finite or infinite 
intervd 1. 

Suppose now that for any coordinate xk the complete orthonormal basis 
bi, (z", i = 1,2, . . ., is given. Consider tho set of basis functions 

in n-dimensional space. These functions are construct.ed from the coordi- 
natewise basis functions by direct multipUcatlion (tensor products) of the 
b&s functions, where all indices is, take a11 possible integer values from 0 
to w. It is known that the set of functions (6.25) is a complete orthouormal 
basis in X c !In. 

NQW let us consider the more general situation where s (finite or infi- 
nite) set of coordiuatewise basis functions is not necessarily orthonormal. 
Consider as a basis of n dimensional space the tensor products of the c c ~  
ordinakwix basis. 

For this structure of multidimensional spaccs the following theorem is 
true. 

Theorem 6.1. Let a multid~mensiunad set offunctions be defined by the 
basis fincbions that UR tensor p d u c h  o j  the cwdinatewise basis func- 
tioras. Then the kernel that defines the inner product in the n-dimensioned 
basis is the product o j  one-dimmionad kernels. 

Continuation of example. Now let us construct a kernel for the reg- 
iilarized expansion on n-dimensional Hermite polynomials. In the exmi- 
ple discussed above we constructed a kernel for one-dimensio~sal Hermite 
polynomials. According to Theorem 6.1 if we consider as a basis of n- 
dimensional space the tensor prodrict of o~ie-dimensional basis functions, 
then the kernel for generating the n-dimensio~lal expansion is the product 
of n onedimensioual kernels 

Thus, we have obtained a kernel for constructing semilocal approximations 

where the factor containing the inner product of two vectors defines a 
"globd" apprmtimation, since the Gaussian defines the vicinity of spprax- 
irnation. 
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6.4 KERNELS GENERATING SPLINES 

Below we introduce the kernels that can be used to  construct a spline a p  
proximat ion of high-dimensional functions. We will construct splines with 
both a fixed number of nodes and with an infinite number of nodes. In all 
cases the computational complexity of the solution depends on the num- 
ber of support vectors that one needs to  approximate the desired function 
with E-accuracy, rather than on the dimensionality of the space or on the 
nurnber of nodes. 

6.4.1 Spline of O d e r  d With o Finite Nzdmber of Nodes 

Let us atart with describing the kernel for the approximation of one-dimensional 
functions on the interval [O, a] by splines of order d 2 0 with m nodes, 

By definition, spline approximations have the form 

Consider the following mapping of the onedimensional variable z into 
an (m -t- d -t- I)-dimensional vector u: 

d d x u  ( I , x , * ,  t i )  ,,..., ( x -  t,)d+), 

FIGURE 6.2. Using an expansion on tho functions i , x,  ( x  - tr)+, . . . (x - tm)+ 
one caa construct a pi6cew-k I inm approximation of a function, Analogody an 
expansion on the functions I,+,  ..., xd, (5 - t l ) f ,  ...( 5 - tm)d+) prmides p i e o e w k  
piynomial approximation. 
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where we set 

Since spline approximation (6.28) can be considered as the h e r  product 
of two vectors, 

f ( 4  = (a * 4 
(where a = (ao,. . . , G + ~ ) ) ,  one can define the kernel that  generates the 
inner product in feature space as follaws: 

Using the generating kernel (6.29) the SVM constructs the function 

that is, a spline of order d d e h e d  on rn nodes. 

To construct kernels generating splines in n-dimensional spaces note that 
n-dimensional splines are defined as an expansion on the basis functions 
that are tensor products of onedimensional basis functions. Therefore, ac- 
cording to  Theorem 6.1, kernels generating n-dimensional spline$ are the 
product of n onedimensional kernels; 

where we have set r = (a', . . . , xk).  

6.4.2 Kernels Generating Splines With an Infinite Number of 
Nodes 

In applications of SVMs the number of nodes does nut play an important 
role (more important are the values of g i )  Therefore, to simplify the cd- 
culation, we use splines with an infinite number of nodm defined on the 
interval (O,a), 0 < a < oo, as the  expansion 

where ai, i = 0, . . . , d, are an unlmown values and a(t) is an unknown 
function that defines the expansion. One can consider this expansion as 
an iuner product,. Thedore ,  one can construct the following kernel for 
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generating splines of order d with an infinite number of nodes and then use 
the fobwing inner product ifl t b  space: 

where we yet rain(x, 2,) = (x A xi). In particular, for a linear spliae (d  = 1) 
we l1aw 

Again the kernel for n-dimensional splines with an  infinite number d nodes 
is the product of n kern& for onedimensional splines. 

On  the basis of this kernel one can construct a spline approximation 
(using the techniques described in the previous section) that  has the form 

6.5 KERNELS GENERATING FOURIER EXPANSIONS 

An important role in signal processing belongs t o  Fourirer expansirons. In 
this section we construct kernels for Fourier expansions in multidimensional 
spaces. As before, we start with the onedimensional case. 

Suppose we would like to analyze a onedimensional signal in terms of 
Fourier series expansions. 

Let us map the input variable x into the (2N + 1)-dimensional vector 

u = ( 1 / h , s h l x , .  . . ,sin N r ,  c o s x , .  . . ,cosNx).  

Then for any fixed x the Fourier expansion can be considered as the inner 
product in this (2N t- I)-dimensional feature space 
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Therefore, the inner product of two vectors in ths space has the form 

1 N 

KN(x,xi)  = - + x ( s i n  kzsin kxi + c o s k x ~ I F j C i ) .  
2 

k m l  

After ohvious transformations and taking into account the Dirichlet funo  
tion we obtain 

1 hr s i n v ( x  2 ~ + i  - xi)  
KN (x, +;) = - + C ~ 0 s  k(x - xi) = 

2 ts-2,) 
k= 1 sin 7 

To define the signal in terms d the Fourier expansion, the SVM uses the 
represent ation 

e 

Again, t o  construct the SVM for the d-dimensional vector space x = 

(x l , .  . . , z n ) ,  it is sufficient to use the generating kernel that is the product 
of one-dimensional kernels 

6.5.1 Kernels for Regularized Fourier Ewns ions 

It is known, hawever, that Fourier expansions do not pmsess good apprmi- 
matian properties. Therefore, below we introduce two regularizing kernels, 
which we use for approximation of multidimensional functions with SVMs. 

Consider the following regularized Fourier expansion: 

where ak, bk arc codc ien t s  of the Fourier e x p a i o n ,  This expansion dif- 
b r s  from expansion (6.31) by factors qL that provide regularization. The 
corresponding kernel for this regularizing expansion is 

(For the last qual i ty  see Gradshtein and Ryzhik (1980).) Another type of 
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regularization was ohtained using the following regularization of the Fourier 
expansion: 

where ak, bk are coefficients of the  Fourier expansion. For this type of reg- 
ularized Fourier expansion we have the follawing kernel: 

I + ?  
ww h i - k Z j  +sin kxi 'in k x j  

K ( x ~ , x , )  = - 
2 

k= 1 1 + 72k2 

(For last equality see Gradshtein and Ryzhik (1980).) 

Again the kernel for a multidimensional Fourier expansion is the product 
of the kernels for ondimensional  Fourier expansions. 

6,6 THE SUPPORT VECTOR ANOVA 
DECOMPOSITION (SVAD) FOR FUNCTION 
APPROXIMATION AND REGRESSION ESTIMATION 

The kernels defined in the previous sections can be used both for approx- 
imating multidimensional functions and for estimating multidimensional 
regression. However, they can define too rich a set of functions. Therefore, 
to control generalization one needs to make a. structure on this set of func- 
tions, in order to choose the function from an appropriate element of the  
structure. Note also that  when the dimensionality of the input space is large 
(say 1001, the values of an n-dimensional kernel (which is the product of n 

q= 1/2 q=m 9 = 3 4  

FIGURE 6.3. Kernels for a strong mode of regularization with various q. 
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onedimensional kernels) can have order of magnitude qn. These values are 
inappropriate for both cases q > 1 and q < 1. 

Classical statistics considered the following structure on the set of multi- 
dimensional functions fmm L2, the secalled ANOVA decomposition (acmnym 
for "anal ysis of variances" ) . 

Suppose that an n-dimensional function f (z)  = f (z l , .  . . , xn) is defined 
on the set I x 1 x + - x I, where 1 is a finite or h f in ib  i n t e n d .  

The ANOVA decomposition of the function f (x) is an expansion 

where 
Fo = C, 

The classical approach to the ANOVA decompositions has a problem 
with exponential explosion of the number of summands with increasing 
order of approximation. In support vecbr  techniques we do not have this 
problem. To construct the kernel for the ANOVA decomposition of order p 
using a sum of products of one-dimension al kernels K (xi, s f ) ,  i = 1, . - . , TI, 

FIGURE 6.4. Kernels for a weak mode of regularization with varlous y. 
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one can introduce a recurrent procedure for computirrg K,(x, x,), p = 
I ,  ..., n. 

Let us define 
n 

One can easily check that the following recurrent promlure defines the 
kernels K,(x, x,), p = I , .  . . ,n: 

In the general case we havei 

Using such kernels and the SVM with La loss functions one can obtain 
an approximation d any order. 

6.7 SVM FOR SOLVING LINEAR OPERATOR 
EQUATIONS 

h this section we use the SVM for sdving linear operator equations 

where the operator A realizes a oneto-one mapping from a Hilbert space 
El into a Hilbert space E2- 

"A new method for constructing artificial neural networks" Interim Technical 
Report ONR Contract N00014-9M-0186 Data Item A002. May 1,1%5, Prepared 
by C. Burges arrd V. Vapn&+ 
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We will solve equations iu the situation where instead of a function F ( x )  
on the right-hand side of (6.34) we are given measurements of this function 
(generally with errors) 

It is necessary to estimate the solution of equation (6.34) from the data 
(6.35). 

Below we will show that  the support vector technique realizes the c l w  
sical ideas of solving ill-posed problems where the choice of the kernel is 
equimlent to the choice of the  regularization functional, Using this tech- 
nique one can solve operator equations in hgh-dimensional spaces. 

6.7.1 The Support Vector Method 

In  the next chapter we discuss the regularization method of solving operator 
equations, where in order ta solve operator equation (6.34) one minimizm 
the functional 

where the solution belongs t o  some compact Wi f )  5 C (C is an unknown 
constant). When one solves operator equation (6.34) using data (6.35) one 
considers the functional 

with sollie loss function L(Af - F )  and regularizer of the form 

defined by some nongenerating operator P. Let 

Al,. . . , An,. . . , 
be egenfunctions and e i g e d u e s  of the self-conjugate operator P* P: 

Consider th solution of equation (6.34) as the expansion 

Putting this expensioll into the fundiond %( f ,  F ) ,  we obtain 
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Writting 

we can rewrite our problem in a familiar form: Minimize the functional 

in the set of functions 

where we have set 
W = (w,, . . . , WN, . . .), 
= ( 4 l ( t ) , . - - , 4 ~ ( t ) , . - . ) .  (6.37) 

The operator A maps the set of functions (6.36) into the set of functions 

linear in another feature space 

where 
+Ax) = A4r(t)- 

To find the solution of equation (6.34) in a set of functions f (t,w) (ta 
find the vector coefficients W) one can minimize the functional 

in the space of functions F(x ,w)  (that is, in the image space) and then 
use the parameters w to  define the solution (6.36) (in preimage space). To 
realize this idea we use along with the kernel function the txwalled cross- 
kernel functbn. Let us define the generating kernel in the image space 

(here we suppose that the right-hand side converges for any  h e d  xi and 
xi) and the cross-kernel function 
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(here we also suppose that the operator A is such that the rightihand side 
converges for any k e d  a: and t). 

Note that in the case considered the problem of finding the solution to  
the operator equation (finding the corresponbg vector of coefficients w) 
is equivalent to the problem of finding the vector w for t h e  linear. regression 
function (6.38) in the image space using measurements (6.35). 

Let us solve this regression problem using the quadratic optimization 
support vector technique. That  is, using the kernel (6.39) one finds both the 
support vectors a:,, i = 1, .  . . , N ,  and the corresponding coefficients a; - ai 
that define the vector w for t he  support vector regression approximation 

(to do this i t  is sufficient to use the standard quadratic optimization support 
vector technique). Since the same codc ien t s  w & h e  the approximation 
to  the solution of the operator equation, one can put these coefficients in 
expression (6.361, obtaining 

That is, we find the solution to  our 'prohlem of solving the operator equation 
using the cross-kernel function as an expansion on support vectors. 

Thus, in order to  sdve a linear operator equation using the support 
vector method one must: 

I+ Define the corresponding regression prohlm In image space. 

2. Construct the kernel function K(xi, x j )  far solving the regression 
problem using the support vector method. 

3. Construct the corresponding crass-kernel functiin IC(xi, t). 

4. Using the kernel function K(xi, xj)  solve the regression prohlem by 
the support vector method (i-e., find the support vectors a:;, d = 

1, . . . , N, and the corresponding coefficients fli = =;-ai, i = 1, . . . , N). 

5. Using these support vectors and the corresponding coefficients define 
the solution 

N 

In these five steps the first three steps (constructing the regression, the 
constructing the kernel in image space, and constructing the corresponding 
cross-kernel function) refiect the singularity of the problem at hand (they 
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depend on the operator A). The last two steps (solving the regression prob- 
lem by an SVM and constructing the solution to the desired problem) are 
routine, 

The main problem with solving an operator equation using the support 
vector technique is for a @ e n  operator equation to obtain both the explicit 
expression for the  kernel function in image space and an explicit expression 
for the corresponding cmsskernel function. For many prohlems such as the 
density estimation prohlem or the problem of solving W o n  equation such 
hnctions are easy to  find. 

6.8 FUNCTION APPROXIMATION USING THE SVM 

Consider m a m p l ~ s  of solving the function approximation prohlem using 
the SVM. With the required level of accuracy E we approximato one and 
t-dimensional functions defined on a uniform lattice xi = ia/!  hy its 
values 

(Yl 3x11, - - - 7  (Y t ,~ t ) -  

Our goal is to demonstrate that  the number of support vectors that are used 
to construct the SV approximation depends on the required accuracy E: The 
less accurate the approximation, the fewer support vectors are needed. 

In  this section, to approximate real-valued functio~ls we use linear splines 
with the infinite number of nodes. 

First we describe experiments for approximating the medimensional 
sinc bnction 

defined on 1IPO uniform lattice points on the interval 0 5 x 5 200. 
Then we approximate the two-dimensional sinc function 

sin \/(x - 10j2 + (9 - 10j2 
f(.,Y) = 

x - 1012 + (y - 10j2 

defmed on the uniform lattice points on 0 5 x < 20, O -< 9 _< 20. 

To construct the onedimensional linear spline approximation we use the 
kernel defined in Section 6.3: 

We obtain an approximation of the form 
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where the coefficients at, ai are the m u l t  of solving a quadratic opt imiza 
tion problem. 

Figure 6.5 shows the approximation of the function (6.42) with different 
levels of accuracy* The black dots on the figures indicate the support vec- 
tors; the circles are nonsupport vectors. One can see that with s decrease in 
the required accuracy of the approximation, the number of support vectors 
decreases. 

To approximate the twwdimensional sfnc ful~ction (6.43) we used the 
kernel 

K(z1 y;x,, Y,) = K(x,xJWgr , ~ i )  

which is defined by multiplication of the two one-dimensional kernels. 
We obtain an approximation in the form 

where the coefficients a*,a are defined by d v i n g  the same quadratic o p  
timizatbn problem as in the onedimensional case. 

Figure 6.6 shows the apprmimations to  the hmdirnelaional sinc func- 
tion with the required accuracy E = 0.03 conducted using lattices with 
different numbers of grid p i n t s :  400 in figure a, 2025 in figure b, and 7921 
in figure c. One can see that changing the number of grid points by a factor 
of 20 increases the number of support vectors by less than a factor of 2: 
153 SV in appravimation a, 234 SV in approximation b, and 285 SV in 
approximation e. 

6.8.1 Why Does the Value of s Control the Number of Support 
Vectors ? 
The following model describes a mechanism for choosing the support vec- 
tors for function approximaticul using the SV machine with an &-insensitive 
loss function. This mechanism explains why the choice of E controls the 
number of support vectors. 

Suppose one would like to approximate a function f (x) with accuracy E ,  

that is, to describe the function f (x) by another function f '(z) such that 
the function f(x) is situated in the &-tube of f (z). To construct such a 
function let us take an elastic €-tube (a tube that tends to  be flat) and put 
the function j(x) into the &-tube. Since the elastic tube tends to become 
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suppartveclors . 
Estimated functw~ .-.-. 

- Nonsuppart wtctoa + 

Original function -- -  

FIGURE 6.5. Approximations with different I d s  of accuracy require different 
numbers of support vectors: 39 SV for a = 0.01 (figure a) ,  14 SV for E -- 0.05 
( f i r e  b), 10 SV for E = 0.1 (figure c) and 6 SV for E -- 0.2 (figure 4. 
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FIGURE 6.6. Approximations to the two-dimensional sine function defined on 
lattices containing different numbers of grid points with the same accuracy 
c = 0.03 do not require large differences in the number of suppart vectors: 153 
SV (grey squares) fof the approximation constructed using 400 grid paints (figure 
a), 234 SV for the approximation constructed using 2025 grid points, and 285 SV 
for the approximation constructed using 7921 grid points (figure c).  
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flat, it will touch sonle points of the  function f(x).  Let us fasten the tube 
a t  these points. Then the axis of the  tube defines an &-approximation f * (x) 
of the function f (x) , m d  tLc coordinates of the points where thc €-tube 
touches the function f (x) define tlie support vectors. The kernel K{xi, xj) 
describes the law of elasticity- 

Indeed, since the function f (x) is in the €-tube, there are no poirits of the 
function with distauce of inore than E t o  axis. Therefore, the  axis describes 
t lie required approximation. 

To prove tha t  touching points define t h e  support vectors i t  is sufficient 
t o  note that  we obtained our approximation by solvirig a n  optimization 
problein defined in Sectiori 6.2  for which the Kuhn-Tuckor conditions liold. 
By definition. the  support vectors are those for which in the Kuhne-Tucker 
condition the L a g r a n g  multipliers are different from zero, and hence the 
second multiplier must be zero. This multiplier defines the border points 
in an optimization problem of inequality type, i.e., coordinates where the 
function f (x) touches the E-tube. The wider the  €-tube, the fewer touching 
points there are. 

This model is valid for the  function approximation problein in a space 
of arbitrary dimension. It explams why with increasing E-insensitivity the 
number of support vectors d e c r e e s .  

Figure 6.7 shows the E-tube approximation tha t  corresponds to the case 
of approximating the one-dimensional sdnc function with accuracy E = 0.2.  
Compare this figure t o  Figure 6.56- 

6.9 SVM FOR REGRESSION ESTIMATION 

We start this section with simple examples of regression estimation tasks 
where regressions are defined by one- and two-dimensional sinc functions. 
Then we consider estimating multidimensional linear regression functions 

FIGURE 6-7. Tbe €-tube model of function approximation 
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tising the SVM. We construct a linear regression task tha t  is extremely 
favorable for a feature selwtion method and compare results obtained for 
the forward feature selection method with results obtained by the SVM. 
Then we compare the support vector r e g r a i o a  inethod with new nonlin- 
ear techniques for three multidimensional artificial problems suggested by 
J .  Friedman and one multidimensional real-life (Boston housing) problem 
(these problems are usually wed in benchmark studies of different regre+ 
sion est inlation met horis). 

6.9.1 Problem of Data Smoothing 

Let the set of data 

( ~ 1 , x l L .  * , (yt ,xt)  

be defiiied by the one-dimensional sine function on the interval [-lo, 101; 
the values y, are corrupted by noise with normal distribution 

sin x 2 
Ya =I - +Fi, E F i = 0 ,  E [ ~ = u .  

x 

The problem is to  estimate tlie regression function 

sin x 
y=-  

x 

from 100 such observations on a uniform lattice on the ilrterval [-lo, 101. 
Figurm 6.8 and 6.9 show the results of SV regression estimation exper- 

iments from data corrupted by different levels of 11oir;e. The rectangles in 
the figure indicate th suppo i  vectors. The approximations were obiained 
using linear splii~es with an infinite number of nodes. 

Figures 6+10, 6.11, and 6.12 show approxinrations of the two-dimensional 
regression function 

sin Jm 
Y =  

J 5 Z 7  

defimd on a uniform lattice on the square [-5,5] x [-5,5]+ The approxima- 
tions where obtained using two dimensional linear splines with an infinite 
number of notes. 

6.9.2 Es t z~a t ion  of Linear Regression Functions 
Below we describe experiments with SvMs in estimating linear regression 
functions (Drucker et al. (1997)). 

We compare the SVM t o  two different methods for estimating the linear 
regression function, namely the ordinary 1easLsquarw method (QLS) and 
the forward stepwise feature selection (FSFS) met hod. 
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FIGURE 6.8. The regression function and its approximations obtained from the 
data with different levels of noise and different values E (u = 0+05 and E = 0.075 
in part (a); u = 0.2 and E = 0.3 in part (b)). Note that the approximations were 
constructed wing approximately the same number of s u p p h  vectors (15 in part 
(a) and 14 in part (b)). 

o = 0.2, E = 02, c = 1.14 $V/l00 total 
1.4 1 r I 1 1 1 r 4 

1.2 

I 

T. - - 
t 
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FIGURE 6.9. The regrwion function and its approximations obtained from the 
data with the same level d noise o = 0.5 and different values of E (E = 0.25 in 
part (a) and E = 0.15 in part (b)). Note that different values of E imply a different 
number of support vectors in the approximating function (14 in part (a) and 81 

P m  (b)). 

2 
cr= 0.5. E = 0.75, c =  l , 1 4  SVil00 total 

1.5 

I r" r t I I I I 

support vectorti Q 

Estimated functlon - --- - 
Q Nonsuppw ~ e m i r s  2 

- - : +  + Original fundm 

6 :  
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FIGURE 6.10. The approximation to the regrmion (part (a)) and 107 support 
vectors (part (b)) obtained from a data set of size 400 with noise a = 0.1 snd 
E = 0.15. 
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0 = 0.1, E = 0.25159 SVB969 M A  

Support vectors 6 

FIGURE 6.11. The approxiniation to the regression (part (a)) and 159 support 
vectors ( p r t  (b)) obtained from a data set of size 3969 with the same noise 
0 = 0.1 and E = 0.25. 
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u = 0.1, E = 0.1 5, 649 SVK3969 total 

Estimated function ---- 

Support vecbrs c 

FIGURE 6.12. The approximation to the regression (part (a)) and 649 suppart 
vectors (part (b}) obtained from a data set of size 3969 with the same noise 
0 = O , l  and E = O,15. 
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Recall that  the OLS method is a met hod that estimates the coefficients 
of a linear r e g r k o n  function by minimizing the functional 

The FSFS m t h o d  is a method that first chooses one coordinate of the 
vector that gives the best approximation t o  the data. Then it fixes this 
coordinate and ad& a second coordinate such that these two define the 
best approximation to the data, and so on. One uses some technique to 
choose the appropriate number of coordinates. 

We consider the problem of linear regression estimation from the data  

in the 30-dimensional vector space x = (I('), . . . , x ( ~ ) ) ,  where the regres- 
sion function depends only on three coordinates, 

and the data  are obtained as measurements d this function at randomly 
chosen points z. The measurements are taken with additive noise 

that is independent of xi. 
Table 6.1 describes the results of experiments of estimating this regres- 

sion function by the above three met hods for different signal-to-noise ratios, 
different models of noise, and 60 observations. The data in the table are an 
average of 100 experiments. The  table shows that for large noise (small 
SNR) the support vector regression gives results that are close to (favorable 
for this model) the FSFS method that are significantly better than the OLS 
m t h o d .  

TABLE 6 , l .  Comparimn raults for ordinary lead-squares (OLS), forward step 
feature selection (FSFS), and support v&r (SV) methods. 

' 
SNR 11 Normal I 

( OLS I FSFS I SV 
Lap lacian I: 

OLS I FSFS I SV . 
Uniform 

OLS I FSFS I SV - 
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The experiments with the model 

demonstrated the xlvantage of the SV technique for all levels of signal-to- 
noise ratio defined in Table 6.1. 

6.9.3 Estimation Nonlinear Regression Functions 

For these regression estimation experiments we chose regression fi~nctions 
suggested by J. Friedman that  were ussd in many ba~chmark  studies: 

1. Friedman's target function #1 is a functiou of 10 nominal varial~les 

However, it depends on only 5 variables, In this model the 10 vari- 
ables are uniformly distributed in [O,l], and the noise is normal with 
parameters N(0, l ) .  

2. Friedman's target function #2, 

has four independent variables uniformly distributed in the following 
region 

a - ~ ( ~ 1  5 lao. 

The noise is adjusted for a 3:l signal-to-noise ratio. 

3. Friedman's target function # 3 also has four independent variables 

y = tan-' 

that are uniformly distributed in the same region (6.45). The 11oise 
was adjusted for a 3:l signal-bnoise ratio. 

Below we compare the advanced regression techniques called bagging (L. 
Brieman, 1996) and ~ d a B o o s t ~  that construct different types of committee 

2 ~ h e  AdaBoost algorithm w a  p r o p a d  for the pattern recognition problem 
see Section 5.10). It was adapted for regreasion estimation by H. Drucbr (1997). 
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TABLE 6.2, Comparison of Bagging and Boosted regression trees with SVhI 

. 

regression for thee artificial data sets. 

machiile by combining given in the comments to  Chapter 13) with the 
support vector regr~ssiol~ machine+ 

The experiments were conducted using the same format as in (Drucker, 
1997, Drucker et al. 1997). 

Table 6.2 shows results of experiments for estimating Friedmarl's func- 
tioia using bagging, homting, and polynomial ( d  = 2) SVMs. Tlie exper- 
illrcnts were col~dncted using 240 training examples. Table 6.2 shows an 
average (ovcr 10 runs) of t11c model error (mean squared deviation between 
the true target function and obtained approximat ion). 

- 

' 

Table 6.3 shows performance obtained for the Boston housillg data set 
where 506 examples of 13-dimeusional real-life data where um-d as follows; 
401 random chosen examples as the training set, 80 a the validation set, 
and 25 as test set. Table 6.3 shows results of averaging over 1UO runs, The 
SV machine constructed polynonlials (mostly of degree 4 and 5) chosen oil 
the basis of the validation sct.  For the Boston housing data  the performance 
index i s  the mean squared error between the predicted and actual values y 
on the test set, 

Friedman #1 
Fkisdman #2 
F'riedlrian #3 

TABLE 6.3, Perbrmance of different methods for the 3oston busing data. 

Bagging 
12.4 

' SV 
0,67 
5,402 
0.026 

Bagging 
2.2 

11,463 
0.0312 

Boosting 
10,7 

Boosting 
1.65 

11,684 
0.0218 

SV 
7 3  





Informal Reasoning and 
Comments - 6 

6 LOSS FUNCTIONS FOR THE REGRESSION 
ESTIMATION PROBLEM 

The methods for estimating functional dependencies bwed on empirical 
data have a long history. They were begun by great mathematicians: Gauss 
(1 777-1855) and L a p k  (1749-18271, who suggested two different methods 
for estimating depend&= from results of measurements in astronomy and 
physics. 

Gauss proposed the least -wuares method (LSM) , while Laplace p r o p m d  
the least modulo method (LMM). Since that  time the question has raisen 
as to  which method is better, In the nineteenth century and beginning of 
the twentieth century preferenrx was given to the least-square method: 
The solution with this metbod for linear functions has a c b d  form. A b ,  
it was proven that among linear and unbiased estimates t h e  LSM is the 
best. 

Later, in the second part of the twentieth century, i t  was noted that in 
many situations the set of linear and unbiase estimates is too narrow to be 
sure that the best m i m a t e  in this set is really good (it is quite possible 
that the whole set contains only "bad" estimators). 

In the 1920s R, Fisher discovered the maximum Likelihood (ML) method 
and introduced the model of measurements with additive noise. According 
to  this model the measurement of a function f(z ,ao)  at any point x* is 
corrupted by the additive noise (described by the known symmetric density 
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po(5); 5 is uncorrelated with x*) 

Since 
5 = Y - f ( r , a o ) ,  

t o  estimate the parameter a0 of densitym(5) (the unknown function f (x, no)) 
fmm the data 

using maximum likelihood one has t o  maximize the functional 

In 1953 L. Lc Cam defined conditions under which the ML method is con- 
sistent. He found some sufficient conditions on uniform convergence (over 
the  set of a E A) under which the empirical functional Rc(a)  converges t o  
the  fuilctional p 

(they are a particular case of the necessary and sufficient conditions con- 
sidered in Chapter 2); this immediately implies tha t  the  following assertion 
holds true; 

- In 

That  is, the  ML solutions are consistent in the  Kulbac-Leibler distance. It 
is a h  in the set of unbiased estimators (not necessary linear) that  the LM 
method has the smallest variance (the unbiased estimate with the smallest 
variance is called eflectiue). 

This implies tha t  if the  noise is described by Gaussian (normal) law, then 
the LSM gives the  best solution, If, however, the  noise is defined by the 
Laplacian law 

then the best solution defines the 1 s t  modulo estimate. From these results 
it  also follows t h a t  the  loss function for the  best (effmtive) estimate is 
defined by the distribution of noise. 

In practice (even if the additive inodel of measurements is valid), the 
form of noise is usually unknown. In the 1960s Tukey demonstrated that  
in real-life situations the form of n d s e  is far from b t  h the Gaussian and 
the L a p k i a n  laws. 

Therefore, it  became important t o  create the best strategy for estimating 
functions in real-life situations (when the form of noise is unknown). Such 
a strategy was suggested by P. Huber, who created the concept of robust 
estimators. 
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6.11 LOSS F U N C T I O N S  FOR ROBUST ESTIMATORS 

Consider the following situation. Suppose our god is to estimate the ex- 
pectation rn of the random variable 5 using i.i.d, data 

Suppose also that the corresponding unknown density po(< - mo) is a 
smooth function, is symmetric with respect to the position mo, and pos- 
sesses a second moment. 

It is known that in this situation the maximum likelihood estimator 

that maximizes 

is an e&ctive mtimator. This means that among all possible anbiased 
estimators3 this estimator achieves the smallest variance, or in other words, 
estimator M(tl,. . . , tr(&) minimizes the functional 

S u p p m  now that although the density po(5 -m) is unknown, it is b w n  
that it belongs to some abmissible set of densitiw po(< - rn) E P. How 
do we choose an estimator in this situation? Let the unknown density be . 

po(E - rn). However, we mnstruct an estimator that is optimal for density 
pl (5-m) E P, i.e., we define the estimator M(51, . . . , te lp l )  that maximizes 
the functional 

e 

The quality of this estimat'or now depends on two densit i s ,  the actual one 
po(< - rn) and the one used for constructing estimator (11.8): 

Huber proved that for a wide set of admissible densities P there exists a 
saddle point of the functional V(m, pl ). That is, for any admissible set of 

3 ~ h e  estimator M(6,.  . . , &) is called unbiased if 
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densities there exists such a density p,(( - rn) that the inequalities 

hold true for any function p ( t  - m )  'P. 
Inequalities (11.9) assert that for any admissible set of densities there 

exists the minimax density, the sc+called mbust density, which in t.he worst 
scenario guarantees the smallest loss. 

Using the robust density one constructs the so-called mbust Tegmssion es- 
timator. Namely, t be robust regression estimator is the one that minimizes 
tbe functional 

e 

Below we formulate t he Hu ber theorem t hat is a foun datiolr of the theory 
of robust estimation. 

Consider the class H of densities formed by mixtures 

of a certain fixed density g(() and an arbitrary density h(<) ,  where both 
densities are symmetric with respect to  the origin. The  weights in the mix- 
t ure are 1 - E and +E respectively. For the class of these densities the following 
t heorem is d i d ,  

'Theorem, (Huber) Let -lng(<) be a twice coniinuously dflerentiabk 
function. Then the class H possesses the following mbwt density: 

whew Q and <l are endpoints ofthe interval [b, tl] on which the monotone 
(due £0 mw&ty of - ln g(()) finction 

is bounded in absolute value by a constant c determined by the norm~~zatz'un 

This theorem allows us to construct various robust densities. In particu- 
lar, if we choose for g( t )  the normal density 
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and consider the class H of densities 

then according to the theorem, the density 

will be robust in the class, where c is determined from the normalization 
condition 

The loss function derived from this robust density is 

L ( < ) = - l n P ( O =  
for 5 c. 

I t  smoothly combines two functions: quadratic and linear. In one extreme 
case (when c tends to infinity) it ddines the least-square8 method; in the 
other &reme case (when c tends to zero), i t  defines the least ~rlodulo 
method. In tho general case, the l m  functions for robtrst regression are 
conlbinations of two functions onc of which is f(u) = lul and the other is 
much leis sensitive to deviations of u (the derivative of the nonlinear part 
of the function f (u) is less than the derivative of the linear part). 

Our construction of SVMs for the regression problem is bssed on the E- 

insensitive loss function, This loss fullction has the same structure as robust 
loss functions: I t  combines two functions one of which is f (u) = lu 1 and the 
constant function4: f fo = const (we considered case const = 0). 

The €-insensitivity implies sonle new properties of the SVM solutions, 
r lmely the sparsity of solutions. By changing (increasing) the value of e 
one controls (increases) the sparsity d the SVM solutions. 

However, the difference between the robust approach and SVM approach 
reflects also the fact that the loss function for the SVM regression is Inore 

4 Formally it does not belong to the farnjly of Huhr's robust estimators, dace 
the uniform djstrjbution function does not possess a mlooth derivative. 
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complicated than the bss  function for robust regression. For linear func- 
tions it has the form5 

where (w , w) is the regularization functional and 1 /C is the regularizs 
tion parameter (we will discuss the regularization techniques in the next 
chapter) . 

The addition of the regularization term into the functional dramatically 
changes the situation: On one hand i t  connected SVM regression to regu- 
larization techniques introduced for solving i l l - p d  problems, and on the 
other hand it increases the number of free parameters. 

Now, in order to estimate the regression function we have to  specify three 
free parameters: the value of E-imnsitivity, the regularization parameter 
C, and the kernel parameter (the order of the po1pomial for polynomial 
kernels, the width parameter for radial basis kernels, the order of the spline 
for spline generating kernels, and so on). 
In the next chapter we shew that using some general ideas developed 

in classical statistics and general principles for solving ill-posed problems 
developed in the thmry of i l l - p d  problems we will be able not only to  
specify how these parameters should be connected, in order to  provide op- 
timal estimates, but also t , ~  describe effective algorithms for evaluating the 
best possible parameters for solving the main problem of statistical lemming 
theury: mtimating density functions, conditional probability (this is more 
general solution to the pattern recognition problem than was described 
before), and regression functions. The &-insensitive estimators will play a 
crucial part in these algorithms. 

61n the main part of this chapter we wed m equivalent hrm of this functional. 



Chapter 7 
Direct Methods in Statistical 
Learning Theory 

In  this chapter we introduce a new approach to  the rnain problems of 
statistical learning theory: pattern recognition, regression estimation, and 
density estimation. 

We introduce the -called dired approach, which requires solving op- 
erator equations that define the desired functions. The solutions of these 
equations are based on solving stochastic ill-posed problems. To solve them 
effectively we combine ideas that were originated within t h r e  di&rent 
branches of mathematics: the t hmry of ill-pcwed problems, classical non- 
parametric statistics, and statistical learning t hmry. The results obtained 
in the fir& two branches were not considered in the main part of the book 
(they were only briefly discussed in the informal reasoning and comments 
to the chapters). 

In  this chapter we introduce the necessary results from these branches 
and combine oormponding techniques to  obtain a new type of algorithms, 
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7* 1 PROBLEM OF ESTIMATING DENSITIES, 
CONDITIONAL PROBABILITIES, AND CONDITIONAL 
DENSITIES 

7.1.1 Problem of Density Estzmation: Dilre~t Setting 
We start this chapter with the problem of density estimation. Let [ be a 
random variable. The probability of a random event 

we call a pmhbzlzty distribution f i n c t i m  of the random variable [. A ran- 
dom vector f is a generalization of the notion of a random variable. The 
function 

F(x )  = P(f < x), 

where the inequality is interpreted coordinatewise, is called a pmbabiiity 
distributzon f ine t ion  o j  the random vector f. We say that the random vari- 
able ,$ (random vector 0 has a density if there exists a nonnegative function 
p(z) such that for all x the qua l i ty  

is valid. 
The  function p(x) is called a prubability density of the random variable 

(random =tor). So, by definition, to  estimate a probability density from 
the data we need to  obtain a solution of the integral equation1 

on a given set of densities p(x,a), a E A, under the condition that the 
distribution function F(z )  is u n k n m i  and a random independent sample 

obtained in accordance with F ( x )  is given. 

'when x = (sl,. . . , x") is a vector, this notation defines coordnatewise inte- 
gration 
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Oue can construct approximations to t h e  distribution function F(x)  us- 
ing data (7.2), for example, the so-called empi- distribution functwn 

where we define for the vector u the step function 

1 all coordinates of the vector u me positive, 
0 otherwise. 

In the next section we will show that  the empirical distribution function 
Ft(x) is a good approximation to the actual distribution function F(x). 

Thus, the problem of density estimation is to  find an approximation to 
the solution of the integral equation (7.1) if the probability distribution 
function is unknown; however, an approximation to this function can be 
defined, 

We call this setting of the density estimation problem the  direct setting 
because it js b e d  on the definition of a density. In the following sections we 
shall discuss the problem of solving integral equations with an approximate 
right-hand side and approximate operatar, but m we turn t o  the direct 
setting o f t  he problem of estimating the mndit jonal probability P(w 1 z )  that 
defines t l ~  probability of class w given the vectar x. 

7. I. 2 Problem of Conditional Probability Estimation 

Consider pairs (w, x), where x is a vector and w is a scalar that takes on 
only k values (0,1, . . . , k - 1). According t o  the defmition, the conditional 
probability P(wlz) is the solution of the integral equation 

where F(x)  is a distribution function of random vectors z, and F(w,x) is 
the joint distribution function of pairs (w, x). Indeed, since dF(x) = p ( z ) h  
(we suppose that the density d m  exist) and 

the solution of (7.4) defines the conditional probability. 
The problem of estimating the conditional probability in the set of func- 

tions P,(w(x), cr f A, is to obtain an approximation to  the solution of the 

'lnduding scalars as one-dimensional vectors. 
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integral equation (7.4) when both distribution functions F ( x )  and F(w, x) 
are unknown but the data 

are given. As in the case of density estimation, we can approximate the 
unknown distribution functions F(x) and F(w, x) by the empiricsl distri- 
bution function (7.3) and the  function 

where 

1 if the vector x belongs to  the class w, 
b(w, 2) - 0 otherwise. 

Thus, the problem is to  obtain an approximation to  the solution of the 
integral quat ion  (7.4) in the set of functions P,(wlx), a 6 A, when 
the probability distribution functions F(x) and F(w,x) are unknown, but 
approximations Fg (x) and F. (w, x )  are given. 

Note that  estimation of the conditional probability function P ( w x )  is 
a stronger d u t i o n  to  the pattern recognition problem than the one c o n  
s i d e d  in Chapter 1. In Chapter 1, the goal w a  t o  find the bmt decision 
r u k  from the given set of decision rudes; it did not matter whether this set 
did or did not contain a good approximation to the supervisor's decision 
rule. In this statement the goal is to find the best approximation ta the 
supervimr 's decision r ule (which is the conditional probability fumt' ion ac- 
cording to the statement of the problem. See Chapter 1). Of course, if the 
approximation of the supervisor's operator P(w 1x1 is known, then one can 
easily construct the optimal decision rule. For the case where w f (0 , l )  
and the u priiwi probabilities of the classes are equal it has the form 

This is the w c a l l d  B a w  rule; it assigns the vector x to  the  class 1 if the 
probability that this vector belongs to the first class is larger than f and 
assigns 0 ot herwise. H m v e r ,  the howledge of the conditional probability 
not only gives the best solution to the pattern recognition problem but also 
provides an estimate of the error probability for any specific vector x. 

7.1.3 Problem of Conditional De~lsity Estimation 
Finally, consider the problem of conditional density estimation. In the pair 
(y, x), let the variable y be scalar and let x be a vector. Consider the 
wu&Y- 
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where F(x) is a distribution function that has a density and 
F(y, x )  is the joint probability distribution function3 defined on the pairs 
(Y? 4. 
ib before, we are Iooking for an approximation to  the conditional density 

p(ylx) by solving the integral equation (7.5) on the given set of functions 
when both distribution functions F(x) and F(y, z) are unknown and the 
random i.i.d. pairs , 

( ~ 1 ,  XI), +.*? (ye, xd (7.6) 

are given. As before, we can approximate F(x) by the empirical distribu- 
tion function (7.3) and the distribution function F(y, x) by the empirical 
distribution function 

Thus, our problem is to  obtain an approximation to the solution of the 
integral equation (7.5) in the set d functions p,(ylx), a E A, when the 
probability distribution functions are unknrrwn but we car1 construct the 
approximations F&) and &(y, x) using data (7.6). 

Note that the conditional density p(grlx) contains much more information 
about the behavior of the  random value y for a given x than the regression 
function. The regression function can be easily obtained from the condi- 
tional density. According to its definition the regmsion function is 

7*2 T H E  PROBLEM OF SOLVING AN 
APPROXIMATELY D E T E R M I N E D  I N T E G R A L  

E Q U A T I O N  

All t h e e  p r o b h m  of estimating stochastic dependencies can be described 
in the follming general way. It is necessary to solve a Iiuear operator equa- 
t ion 

A f = F ,  f € F ,  (7- 7)  

where some functions that form the equation are unknown, but data are 
given. Using these data the approximations t o  the unknmn functions can 
be obtained. 

3Actually, the solution of this equation is the definition of conditional den- 
sity. Suppose that p(x) and p(y,z) are the densities corresponding to  roba ability 
distribution functions F(x)  and F(y ,  x). Then equality (7.5) is equivalent the 
quality P(YIX)P(Z) = P(Y, x). 
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A di&rence exists between the problem of density estimation and the 
problems of conditional probability and conditional density estimation. In 
the problem of density estimation, instead of the right-hand side of the 
equation we are given its approximation. We m u M  like t o  obtain an ap- 
proximation t o  the solution of equation (7.7) from the rebationship 

In the problems of c o ~ ~ d i t b n a l  probability and conditional density estima- 
tion, not only is the right-hand side d the equation (7.7) known approi- 
mately, but also the operator A known approximately (on the left-hand side 
of integral equations (7.4) and (7.5), instead of the distribution functions 
we use their approximations), So our problem is to obtain EUI approximation 
to the solutiou of equation (7.7) from the relationship 

where As is an approximation d the operator A. 

There is g o d  news and bad news about solving these problems. The good 
news is that the empirical distribution function forms a good approximation 
to the unknown distribution function. In the next section we show that as 
the number d observations tends to  infinity, the empirical distribution 
function converges to the desired one at the fast rate 1 /d. In the one- 
dimensional case, there is k n m n  an asymptotically exact description of the 
rate of mnvergence for different. metrics determining different definitions of 
a distance between empirical and true distribution functions, 

In particular, for the one-dimensional case the Kolmogorov-Smirnov dis- 
tribution of distances (in the uniform metric C )  between approximations 
and the desired function is known. In the multidimensional case one can 
calculate any quantile of this distribution [Paramasmy, 1992). 

The bad news is that the problem d solving operator equation (7.7) 
b e l o w  to the so-called ibkpsed problems. In Section 7.4 we shall define the 
concept of " il l-pod" problems and describe the difficulties that  arise when 
one needs to solve i l l - p o d  problems. We will describe the main results of 
the classical theory for solving ill-posed problems and its generalizations to  
the case of stochastic ill-posed problems. The theory of solving stochastic 
ill-posed problems will be used for solving our integral equations. 

7*3 GLIVENKO- CANTELLI THEOREM 

As we mentwn in the 1930s Glivenko and Cantelli proved one of the most 
important theorems in statistie. They proved that  when the number of 
observations tends to infinity, the empirical distribution function Ft(3) 



converges to the actuaI distribution function F(x). This theorem plays an 
important part in the foundations of theuetical statistics. 

Theorem. (GIivenko-Cantelli). The convergence 

In this formulation, the GlivmbCanteIIi  thcorem asserts the conver- 
gence in probability4 (in the uniform metric) of the empirical distribution 
function Ft ( r )  t o  the actual distribution function F(x). 

One can formulate this theorem in t e r m  of uniform convergence de- 
scribed in Chapter 2. Indeed, consider the following set of events: 

For any fixed 0 it defines the  set of x tha t  are less than a. Now, let a 
probability measure be defined on the set of x .  Then the expectation 

as a function of a defines a probability distribution function, while the 
empirical functbnal 

calculated from i.i.d. data X I , .  . . , xt defines an empirical distribution func- 
tion. Therefore, in fact, the Gliwnko-CanteIIi theory is the t heory of uni- 
form convergence for a specific set of events (7.8 ) defined in R1. 

In the n-dimensional case where a = (a1, .  . . ,an) and r = ( s l , .  . -,xn) 
the Glivenko-Cantdli theorem describes the uniform convergence of the 
frequencies t.o their probabilities over the following sets of events: 

In  Chapter 3 we analyzed the conditions for uniform convergence over any 
given set of events (not necessarily defined by (7.9)). Therefore, the theory 
of uniform convergence developed in statistical learning theory includes the 
Glivenko-Cantelli thmry as a particular case. 

'  he convergence almost surely takes place as well, 
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7.3.1 Kolmogorov-Smirnov Distribution 

As soon as the GllvenbCantetIi theorem had been proved, the problem of 
the rate of convergence of FJ (z)  to  F ( r )  emerged. 

Investigations of the rate of convergence of fi(z) t o  F (x )  for the one- 
dimensional cont h o w  functions F ( z )  resuIted in the establis hment d the 
following important statistical law: 

Kolmogorov-Snrirnov distr ibut ion.  The random variable 

has the following limiting probability distribution (KoImogorov): 

lim P(& sup I F(x) - F t ( ~ ) 1  2 E )  = 2 C(--l) k-1,-2€'k2 . (7.10) 
1-0O Z 

k= l 

The random variables 

have the following limiting probability distrihut ions (Smirnov): 

- 2c 2 lim P(& sup ( F(x)  - Fr(x)) 2 E )  = e , e + ~  x 

Lim ~ ( f i  sup ( Ft(x) - F(x)) 2 = -Ze2 (7- 11) 
t+w x 

As we mentioned in the previous section, the GlivenbCanteIIi theory 
(originally developed for the one-dimensional case) is a particular case of 
the statistical learning theory, In  Chapter 3 we described bounds on uniform 
convergence that are valid for any specific l and set of events in a space of 
arbitrary dimension. 

In particular, this theory can be applied ta the set of events (7.9). Since 
the VC dimension of this set defined in Rn is equal to n (the dimensionality 
of the space), we can obtain a hound for uniform convergence over the set 
of events (7.9) as well. Therefore, using results from statistical learning 
thmry one can obtain nonasymptatic bounds of inequality type* 

There exists, however, something in the d y s i s  of uniform convergence 
of events (7.9) that was not obtained' in statistical learning theory for gen- 
eral types of events. For the set of events (7.9) there exists an exact de- 
scription of the rate of uniform convergence that  does not ,depend on the 
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probability measure (univemal distribution). This exact distribution was 
obtained by Kolmogorov and Smirnov (for sufficiently large l )  for the o n e  
dimensional case. For the multidimensional case this type of distribution is 
unknown. However, it is known that  such a distribution does exist.5. 

In  Section 7.5 we will see how important i t  is for our estimation problem 
to have universal equality-type characteristics of this distribution. In spite 
of the  fact tha t  for the  multidimensional case and/or for a finite number of 
observations the analytical expression for t hisdistribution is unknown, one 
can easily create a table that  for any number of observations l and for any 
reasonable dimension n (say n < 100) defines any quantile of this distribu- 
tion. In sections 7.8, 7.9, and 7.10 we will estimate optimal parameters of 
our algorithms using such a table. 

7.4 ILL-POSED PROBLEMS 

Let the  operator equation 

be d e h d  by the continuous operator A that  maps in a o n e t e a m  manner 
the elements f of the metric space El into elements F of the metric space 
E2. 

We say t h a t  the  solution of the  operator equation (7.12) is stable if a 
small variation in the right-hand side F ( z )  f F ( x , a )  results in a small 
change in the solution; i-e., if for any E > 0 there exists S(e) such that  the 
inequality 

~ ~ ~ ( f ( t ? a l ) ?  f ( t ~ a 2 ) )  5 E 

is valid as long as the inequality 

holds. 
We say tha t  the  problem of solving the operator equation (7.12) is welC 

posed in the Hudamard semc if the  solution of the equation 

+ exists, 

5 I t  is interesting to describe sets of events that p m  a undwer~paliy (indepen- 
dent of pmbabiljty measure) exact distribution of the rate of unifarm convergence. 
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The  problem of solving an operator equation is considered dl-posed if the  
solution of this equation violates at least one of the abovementioned re- 
quirements. Belaw we consider ilkposed problems for which the solution 
of the operator equation exists, is unique, but is not stable. We consider 
i l l - p o d  problems defined by the Frdholm integral equation d type 1: 

However, all the results obtained will also be valid for equations defined by 
any other linear continuous operator. 

Thus, consider FredhoIm's integral equation of type 1, 

defined by the kernel K(t ,  x), which is continuous almost everywhere on 
a 5 t 5 b, a 5 r 5 b. This kernel maps the  set of functions (f(t))  
continuous on [a, b] onto the  set of functions (F(z)} also continuous on 
[a, 61- 

It is easy t o  show that  the problem d solving equation (7.13) an ill- 
posed one. For this purpose we note that the  continuous function G, ( r )  
that  is formed by means of the kernel K(t ,  x), 

p m s m  the property 
Iim G,(r) 5 0. 

v--t m 

Gonsider the integral equation 

Since the FredhoIm equatim is linear, the  solution of this equation has the 
form 

f*(t)  = f(t) +sin&, 

where f (i) is the solution of equation (7.13)+ For sufficiently large v, the  
right hand side of this equation differs froni the right hand side d (7.13) 
only by the small amount G,(s), while its solution differs by the amount 
sin vt+ 

Note that  our equations (7.1), (7.4), and (7.5) also belong t o  the Fred- 
holm equation d type 1. One can rewrite them as follows: 
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Recd that for simplicity we suppose that z (pairs (z, y)) b e l o w  to the 
unit cube I. 

7.5 THREE METHODS OF SOLVING ILLPOSED 
PROBLEMS 

In the 1960s three m e t h d s  d mlving i l l - p o d  problems were proposed. 
All of them are based on introducing the so-called regularization functional 
QCfb 

The regularization functional f l ( f )  is a semicontinuous, positive func- 
tional for which Q(J) 5 c, c 5 0, is a compacturn (in the space of functios 
f).  It is defined on the set of functions f E F, the domain of solution of 
the equations. 

Below, t o  impose uniqueness of t h e  sdution we consider rgul&ation 
func tionds pmsming the following properties: 

I .  Q(f) is a nonnegative convex functional. That  is, for any 0 < I 1 
the inequality 

is valid. 

2. The  following equality holds: 

3. For each fixed f the function 

is a strictly increasing function of y. 

On the basis of the reularization functional the following three methods 
were proposed: 

1- Tikhonov's Variation Method (Method T) [Tikhonov, 19631. 

Minimize the functionaI 

where y > O is some predefined constant. 
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2. Phillips Residual Method (hiethod P)  [Phillips, 19621, 

Minimize the functional 

subject to  the  constraint 

IIAf- F((E~ 5 /-h 

whew p > 0 is  some predefined constant. 

3. Ivonou 's Quasi-Solution Method (Method I) [Ivanov, 1962). 

Minimize the functional 

subject t o  the constraint 

where C > 0 is some predefined constant. 

It was shown (V&, (1970)) that these methods are equivalent in the 
sense that if one of the methods (say Method T) for a given value of the 
parameter (say y*) produces a solution f *, then there exist corresponding 
values of parametem of the othw two methods that produce the same 
solution. 

7.5.1 The Residual Principle 

All three methods for solving ill-posed problem contain one free parameter 
(parameter y for Method T, parameter u for Method P a d  parmeter  C 
for Method I), The choice of the appropriate value of the parmeter  is 
crucial for obtaining a g m d  solution of an i l l - p d  problem. 

In the theory of solving ill-posed problem there exists a general principle 
for choosing such a parameter, the so-cdld reszdaal pt-inciple [Mommv, 
19831. 

Suppose that we know t he  accuracy of approximation of the right-hand 
side F of equation (7.12) by a function F,, that  is we know the d u e  0 for 
which the following q u a l i t y  holds: 

Then the rmidual principle suggests that we choose a parameter (yt for 
Method T or C' for Method I) that produces the aalution fs satisfying the 
q u a l i t y  

llAfa - Fsllw = 0 (7.14) 



7.6. Main Assertions of the Theory of Ill-Posed Problems 237 

(for Method P one chases the solution that exactly satisfies the constraint 
(7.14) with o). 

Usudly, it is not easy to obtain an accurate estimate of the discrepancy 
between the exact right-hand side and a given approximation. 

FDrt unately, it is mt the case for our problems of atimating the density, 
conditional probability, and wnditional density. For t h m  problems there 
exist accurate estimates of the value a = at, which depends on the nnmbm 
d examples L and the dimensiondity d the space n. 

Note that common to d l  our t h  problems is the fact that the right- 
hand sides of the  equations are probability distribution functions. In our 
mlution, instead of actual distribution functions w e  use empirical distri- 
bution functions. As we discuss in Section 7.3, for any fixed number of 
observations L and any fixed d i m m i m d i t y  n of the space there exists a 
universal distribution d discrepancy 

Let us take an appropriate quantih q* of this distribution (say 50% quan- 
tile) and choose 

In the following we will choose mlutions that satisfy the residual principle 
with constant (7.15). 

7.6 M A I N  A S S E R T I O N S  OF THE THEORY OF 
ILL-POSED PROBLEMS 

In this section we will describe the main theorem for the Tikhonov method. 
Since aIl methods are equivalent, andogous assertions are vdid for the two 
other methods. 

7.6.1 Deterministic Idd- Posed P r o b l e m  

Sup- that instead of the exact right hand side d the operator equation 

A f = F  

we are given approximations F' such that 

Our god is to specify the  elations ship between the d u e  S > 0 and the 
regularization parameter y& > 0 in such a way that the solution of our 
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regularization method oonwrgas to the desired one as soon as S converges 
to  zero. 

The following thmrem establishm these relations [Tikhonov and Arsenin 
19771. 

Theorem 7.1 Let El and E2 be metric spaces, and suppose for  F E Ez 
there exists a 5019t2071 f E of e ~ a t i o n  (7.12). Let instead of an exact 
righghand side F of equation (7.12), approdmotions fi E E2 be pwen such 
that p ~ .  (F, Fa) 5 6. Svppse  the values of the p a m e t e r  y(6)  are chosen 
in sa& a m.anner that 

y(S) - 0 for S -4 0, 

U 

lim - < r < c a .  
a - o r ( & )  . 

Then the elements f ~ ' "  minimixing the jhnctionals WT( f )  on El converge 
to the exact so l~~tzon f as 6 4 0 .  

In a Hilbert space the following thmrem is valid. 

Theorem 7.2. Let El be a Hz'lbert space and f l ( f )  = I ( f  ( I 2 .  Then for 
y(6)  satisfpng the relotions 

the f inet ions minimizing the f inc t iond  

conuerge as S - 0 to  the exact so lu t im f in the rne&ic of the space El .  

7.6.2 Stochastic Ill- Posed Problem 

Consider now the situation where instead $ the right-hand side of the 
equation 

A f = F  (7.20) 

we are given a sequence of random functions fi that  converge in probability 
to F .  That  is, we are given a sequence Fl, . . . , Fl, . . . for wtuch the fallawing 
equation holds true: 

. > 
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Our goal is t o  use the sequence Fi,. . . , Fe, . . . t o  find a sequence of solutions 
of equation (7.20) that converge in probability t o  the true solution. We 
call this pmblem the stochastic ilkposed pmblem, since we are solving our 
equation using random functions Fe(x). 

To solve these stochastic ill-possd problems we use Method T. For any 
Fl we dn imize  the functional 

finding the q u e n e  f i ,  . . . , fg, . . . . Below we consider the where 

Under these conditions the follming theorems describing the relation- 
ship between the distributions of two random variables, the random vari- 
able P E ~  (F, F.) and the random variable p ~ ,  (f, fe) hold true [Vapnik and 
Stefiiyu k, 19781 + 

.Theorem 7.3. For any positive numbers E and p there exists a positive 
namber n ( ~ ,  p) such that for all L > n(E, p} the inequality 

i s  satisfied. 

For the caae wbere El is a Hubert space the  following theorem holds 
true. 

Theorem 7.4. Let El be a Hzlhrt spce,  A in (7.20) be a Linear upemtor, 
and 

W(f) = lifi12 = (f,f)* 
Then for any positive E there exists a num iw n ( ~ )  such t h ~ t  for dl l > n(~) 
the inquality 

i s  satisfied, 

These t heorerm are generalizations of Theorem T* 1 and Theorem 7.2 for 
the stochastic case. 

Corollary. From Theorems 7.3 and 7.4 it follows that  if approxim* 
tions fi of the right-hand side of the operator equation (7.20) converge in 
probability to  the true function ~ ( x )  in the metric of space E2 witli t he  
rate 

Pe, (F(x), Fc(x)) . ~ ( f ) ?  
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then t h e  sequence of t h e  solutions to equation (7.20) converges in probb 
bility to  the  d&red one if 

f ( 4  lim - = 0 
4-a3 ,hi 

and 7. converges ta zero with P -+ m. 

7.7 NONPARAMETRIC METHODS OF DENSITY 
ESTIMATION 

7.7.1 Consistency of the Solution of the Density Estimation 
Pm b lem 

Consider now our integral equation 

Let us solve this equation using empirical distribution functions A, . . . , F. ,  . . . 
instead of the  actual distribution b c t i o n .  For different 1 we minimized the 
functional 

W d f )  = P;,(A~?F.) + %fi(f), 

where we chaw the metric pE,(A f,  F.) such that 

Suppose that  
f l ? . * * ? f . , . . .  

is a sequence of the  d u t i o n s  obta ipd .  
Then according t o  Theorem 7.3;for any E and any p the i n q u a h t y  

holds true for sufficiently Iarge P. 
Since the VC dimension of t h e  set of events (7.9) is bounded (equal to 

t h e  dimensionality of the space) for sufficiently large P, t h e  inequality 

holds true (see bounds (3.3) and (3.23)). Therefore, there exists an P ( E , ~ }  
such that  for P > P(E, p )  the inequality 
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is satisfied, 
If f ( r )  E L2, it then follows from Theorem 7.4 and from the VC hound 

that for sufficiently large l, the  inequality 

hdds. 
Inequalities (7.23) and (7.24) imply that the  solution fc converges in 

probability to the  degired one (in the metric p~~ (fc, f ) )  if 

(In this case the right-hand sides of equations (7.23) and (7.24) converge 
to  zero.) 

One can dso show (using the  Borel-Cantelll lemma) that solutions con- 
verge with probability one if 

Note that this assertion is true for any regularization functional i2( f )  and 
for any metric p~~ (f, fr) satkfyjng (7.22). Choosing specific funct ionah 
fl(f)  and a specific metric pE,(F, fi) satisfying the condition 

one constructs a specific estimator of the density. 

7.7.2 The Parzea's Estimators 

Let us specify the metric p ~ ,  (F, Fr) and such functionals Sl( f )  for which 
Method T minimizing the function$ 

produces Parzen's estimators. 
Consider L2 metrics in the set of functions F, 
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and the regularization functional. 

Here R ( r  - x) is the  kernel that  defined the  linear operator 

In particular, if R( r  - x )  = SP(r - x), the  operatar 

defines the pth derivative of t h e  function f (x). 

For these elements we ha* the functional 

Below we show tha t  the  estimator fT that  minimizes this functional 
t he  Parzen's est imator 

where t h e  kernel function G,(u) is defined by the kernel function R(u). 

Indeed, let us denote by j(w) the Fourier transform of the function f (t) 
and by R(w) t h e  Fourier transform of the function R(x). Then one can 
evaluate the  Fourier transform for the function F(x) ,  

and for the function F,(x) ,  



7.7. Noaparamstric Methods of Density .Estimation 243 

Note that the Fourier transform for the convoIutbn of two functions is 
equal to t'he product of the  Fourier transform of these two functions. In 
our case this means that 

Lastly, recall that according to Parseval's equality the L2 norm of any 
function f ( r )  is equal {within the constant 1/2x) t o  the Lz norm of its 
Forlrier transform f {w) (here f {w) is the Fourier transform of the function 
f (x)) . Therefore, one can rewrite (7.27) in the  form 

This functional is quadratic with respect to f(u). 
Therefore, the condition for its minimum is 

Solving this equation with respect t o  fc(u), one obtains 

Let us introduce the ~mtation 
1 

g"(w) = 1 + ylw2R{w)R(-w) 

and c%l 

7 = 9% (w)pWXdy.. 
-00 

To obtain an approximation to the density one has to evaluate the inverse 
Fourier transform 

The last expression is the Parzen's estimator with kernel function G,,(u). 
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7.8 SVM SO~UTION OF THE DENSITY 
ESTIMATION PROBLEM 

Now we consider another solu tion d the operator equation (the density 
estimation problem) 

p(x')dx' = F(x) 

with approximation Fc(x) on the right-hand side instead of F(x). 
We will solve this problem using Method P, where we consider the dis- 

tance between F(x) and Ft(x) defined by the uniform metric 

and the regularization fundion al 

defined by a norm of some reproducing kernel Hilbert space (XtKHS). 

To define the RKHS one h a  to d d m  a symmetric positive definite kernel 
K(x, y) and an inner product (f, glH in Hilbert space H such that 

(the reproducing property). Note that any symmetric positive definite  fun^ 
tion K(x, y) has an expansion 

where Ai and &(LC) are eigenvalues and eigenfunctions of the operator 

Consider the set of functions 

for which we.introduce the inner product 

The kernel (7,321, inner product (7.34), and set (7.33) ddne  an RKHS. 
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f i r  functions from an RKHS the functional (7.30) has the form 

where Ai is the ith eigenvalue of the kernel K(z, y). Therefore, the choice 
of the kernel defines smoothnms requirements to the solution. 

To solve the b i t y  estimation problem we use Method P with the func- 
tional defined by (7.30) and uniform metric (7.29). We choose the value of 
the parameter u = in the constraint to satisfy residual principle (7.14). 
Therefore, we minimize the functional 

subject to the constraints 

However, for computational reasons we consider the constraints defined 
only at the points xi of the training set 

We look for a solution of our equation in the form 

wh&re K(x,,x) is the same kmel that d e h m  the RKHS. Taking into 
account (7.31) and (7.36) we rewrite functional (7.30) as follows: 
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To obtain the last equation we used the reproducing property (7.31). 
Therefore, to solve our equation we minimize the functional 

subject to the constraints 

where the largest diviation defines the equality (the residual principle). 
This optimization problem is closely related to  the SV regression problem 

with an ol-insensitive zone. It can be solved using the SVM technique (see 
Chapter 6). 

To obtain the ~ I u t i o n  in the form of a mixture of densities we choose a 
nonnegative kernel K(x, xi) satisfying the folbwing conditions, which we 
call the condition K; 

1. The kernel has the form 

K,(x, xi) = a ( y j ~  (' i X i ) ,  

where a(y) is the normalization constant. 

2. The value of the parameter y affects the eigendues A ~ (y ) .  . . . , Ak (7) . . . 
d&ncd by the kernel. We consider such kernels for which t l ~ e  ratios 

(rl)/Ak (7). k = 1,2,  . . . , decrease when y increases. ~ x a m p h s  of 
such functions are 

Also, to obtain the solution in the form of a mixture of densities we rsdd 
. two more constraiuts: 

e 
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Note that our target functional a h  depends on the parameter 7: 

We call the value of the parameter y admissible if for this value there 
exists solution of our optimization problem (the solution satisfies residual 
principle (7.14)). 

The admissible set 

Tmin 5 7f 5 ymax 

is not empty, since for Parzen's method (which also has form (7.36)) such 
a value does exist. h c a l l  that  the d u e  7e in the kernel determines the 
smoothness requirements on the solution: The larger the y, the smaller the 
ratio Xk+l /Ak,  and therefore functional (7.35) imposes stronger smoothness 
requirements. 

For any admissible the SVM technique provides the unique solution 
with some number of elements in the mixture. We choose the solution 
cor r~pond ing  to  an admissible re that minimizes the functional (7.44) over 
both coefficients Pi and parameter y. This choice of parmeter  controls the 
accuracy of the solution. By choosing a large admissible yg we achieve 
another g a l :  We increase the smoothness requirements to  the  solution 
satisfying (7.14) and we select the solution with a s m d  number of mixture 
elements6 (a small number of support vedors; see Section 6.7). One can 
coutinue to  increase sparsity (by increasing ae In (7.14)), trading sparsity 
for the accuracy of the solution. 

7.8,1 The SVM Density Estimate: Summary 

Tlte SVM solution of the density estimation equation using Method P im- 
plements the follawing ideas: 

1. The target functional in the optimization problcm is defined by the 
nonn of RKHS with kernel (depending an one parameter) that  allows 
effective contrd of the smoothness properties of the solution. 

6 ~ o t e  that we have two different descriptions of the same functional: d m r i p  
tion (7.35) in a space of functions g5k(z) d description (7.44) in kernels K(s, xi). 
From (7.35) i t  follows that in increasing y we require more, strong filtration of 
the 'high-hq uency componentsn of the expansion in the space g5k. It Is known 
that one can estimate densities tn a high-dimensional space using a small number 
of observations only if the target density is smooth (can be describd by "bw- 
frequency functionsn). Therefom, in high-dimensional space the most accurate 
m l u t h  often corresponds to the largest admissibIe y. Also, in our experiments 
we obsewd that within the admissible set the difference in accuracy obtained 
for solutions with different 7 is not significant. 
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2. The solution of the equation is chosen in the form of an expansion 
(with nonnegative weights) on the same kernel function that  defines 
the RKHS. 

3. The dist mce  p ~ ,  (Af,, ,  FE) defining the optimization constraints is 
given by the uniform metric (which allows effective nse of the residual 
principle). 

4. The solution satisfies the residual principle with the value of residual 
(depending only on the dimensionality and the number of observa- 
tlons) obtained from a Kolmogorov-Smirnov type distribution. 

5. The admissible parameter y of the kernel is chosen to  control accuracy 
of the solution and/or sparsity of the solution. 

7.8.2 Comparison of the Parzen's and the SVM methods 

Note that two estimators, the Parzen's estimator 

and the S VM estimator 

have the same structure. In the case where 

the SVM estimator coincides with the Parzen's estimator. The solution 
(7.451, however, is not n m s a r i l y  the solution of our optimization p r o b  
lem. Nevertheless, one can show that tke less smooth the SVM admissible 
solution is, the closer it is to  Parzen's solution. Indeed, the smaller is y in 

the kernel function a(7) K (M) , the better the  functional 
7' 

approximates our target functional (7.38). 
Parzen's type estimator is the solution for the smallest admissible y of 

the following optimization problem: Minimize (over P) functional (7.46) 
(instead of functional (7.38)) subject to  constraints (7.39) and (7.43)- 



Thwefore, Parzen's estimator is the l m  sparse admissible SVM solution 
of this (modified) optimization problem, 

Below we compare solutions obtained by Parzen's method to the solu- 
tion obtained by the SVM method for different admiseible values of the 
parameter y. We estimated a density in the twc+dimensional case defined 
by a mixture of two Laplacians; 

In both metbode we wed the same Gauseian kernels 

and defined the best parameter y using the residual principle pith 01 = 
q/f i  and 4 = 1.2. 

In both cases the density was estimated from 200 observations. The ac- 
curacy of approximation was measured in the L1 metric 

We conducted 100 such trials and constructed a distribution m r  the ohr 
tained values q for these trials. This distribution is presented by boxplots. 
The horizontal lines of the baxplot indicate 5%, 25%, 50%, 75%, and 95% 
quantils of the error distribution. 

Figures 7.1 and 7.2 demonstrate the trade-off between accuracy and spar- 
sity. Figure 7,la displays the distribution of the L1 error, and Figure 7.lb 
displays the distribution of the number of terms for the Parzen's method, 
and fOr the SVM method with 9 = 0.9, ya = 1.1, for the largest adrnis 
sible .ye. Figure 7.2a &plays the distribution of the L 1 error, and Figure 
7.2b displays the distribution of the number of terms, where instead of the 
optimal 01 = q/& in (9) we use UJ = mq/& with m = 1, 1.5, 21. 

7.9 C O N D I T I O N A L  P R O B A B I L I T Y  ESTIMATION 

In this section to estimate conditional probability, we generalize the SVM 
denshy estimation method described in the previous section. Using the 
same ideas we solve the equation 

when the probability distribution functions F(x) and F(x ,  y) are unknown, 
but data 

( ~ 1 ,  ~ l ) ?  - - . I  ( w ,  Y) 
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4 9  
SVM SVM SV M 
m=) (1 .I 1 (a91 

0.0251 y I . .  A 1 i 
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(max) (1.1) (0.9) 

FlGURE 7.1. (a) A boxplot of the L1 error for the SVhf method with ye = y,,,, 
ye = 1.1, ye = 0.9, and Parzen's method (the same m u l t  as SVM with ye = xin). 
(b) A bmplot of the distribution on the number of terns for the corresponding 
cases. 

FIGURE 7.2. (a) A boxplot of the Lr; error for the SVM method with ye = y,, 
where we uw = r n q / f i  with rn = 1,1.5,2.3+ (b) A boxplot of tlre distribution 
of the number of terms for the corresponding cases, 
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are given. 
Below we first describe cclnditions under which one can obtain solutions 

of equations with both the right-hand side and the operator approximately 
defined, and then we describe the SVM metlmd for conditional probability 
estimation. 

7.9.1 Approximately Defined Opemtor 

Consider the problem of solving the operator equation 

under the condition tha t  (random) approximations are given not o d y  for 
the function on the right-hand side of the equation but for the operator 
as well. We assume that  instead of the exact operator A we are given 
a sequence of approximations Ad, l = 1 , 2 ,  + . . defined by a sequence of 
random continuous operators that converge in probability (below we will 
specify the definition of closeness of two operators) to the operator A. 

A s  before, we consider the problem of solving the operator equation by 
Method T, that is, by minimking the functional 

We measure the closeness of operator A and operator & by the distance 

IjAd - All = sup 
p ~ , ( & f , A f )  

n1/2(f) f 

The following theorem is true [Stefanyuk, 19861. 

Theorem 7.5. For any E > 0 and any constants Cl, Cz > 0 there 
a .ualue yo > 0 such that  for any yd _< yg the inequality 

5 P { p ~ ~ ( ~ d , f ' )  r C l e )  +PillAd - A l l  C 2 f i )  (7.49) 

holds true. 

Corollary. Ron1 this theorem it follows that if the approximations Ff(z) 
of the right-hand side of the operator equation converge in probability 
to the true function FIX) in the metric of the space E2 with the rate of 
convergence r(l), and the approximations Ad converge in probability to  the 
true operator A in the metric defined in (7.48) with the rate of convergence 
r ~ ( P j ,  then there exists a function 
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properties: For any E > 0, C1 0, Cz > 0 there exists yo such that for 
any TP < 70 the inequality 

holds true. Therefore, taking into account the bounds for uniform con- 
vergence over the set of events (7.9) with VC dimension n, we obtain for 
suflciciently hrge t the inequality (EW hounde (3.3) and (3.23)) 

R o m  this inequality we find that conditions (7.50) and (7.51) imply c o n  
vergence in probability a r ~ d  convergence d m &  surely to the desired one. 

7.9.2 SVM Method for Conditional Probability Estimation 

Now we generalize the method obtained fm solving density estimation equa- 
tion to solving the conditional ptohability equation 

where we use the empirical distribution functions F'(x) and fi (xlw) instead 
of the actual distribution functions F(x) and F(x1w). 

In our solution we follow the steps described in Section 7.8. 

1. We use Method P with the target functional as a norm in M H S  
defined by a kernel K, (x, z') satisfying conditions K. (See Section 7.8): 

2. We are l m h g  for the solution in the form 

with nonnegative coefficients /3. 
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Therefore, we have to minimize the functional 

(see Section 7.8). 
3. We define optimization constraints from the equality 

sup I(& f ) x -  f i (w ,+) l=  o*p(w), 
x 

which for our equations hm the form 

After obvious calculations we obtain the optimization cclnstraints 

For computational reasons we check this equality only at the points of the 
training set. In other words, we replace this equality with the equdity 

Note that the fobwing equality is valid 

Substituting our e x p m i o n  (7.55) for p(wlx) into the integral we obtain 

Putting F2(x) into the integral instead of F(x), we obtain one more con- 
straint: 
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4. Let the number of vectors belonging to class u, be [(w). Then for the 
reidual principle we use 

where q is the appropriate quantile for the KolmogorovSmirnov type dis- 
tribution. We also estimate 

the probability of the appearance of vectors of class W. 

5. We choose a y froin the admissible set 

to  control the accuracy of our solution (by minimizing Wy(P)) m / m d  the 
sparsity of the solution (by choosing a large ?). 

7.9.3 The SVM Conditional Probability Estimate: Summary 

The S V M  conditional probability estimate is 

where coeEcients pi minimize the functional 

subject to  the constraints 

and t hc constraillts 
PI 2 0 ,  

We choose y from the admissible set 

to  contml the  properties of our solution (accuracy and/or sparsity) mini- 
mizing WT(p) and/or choosing a large admissible ?. 
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7.10 ESTIMATION OF CONDITIONAL DENSITY AND 
REGRESSION 

To a t ima te  the conditional density function using Method P we solve the 
integral equation 

in the situation where the probability distribution functions F(y ,  x )  and 
F ( x )  are unknown but data 

are given. 
To sdve this equation wing the approximations 

we follow exactly the same steps that we used for solving the equations for 
density estimation and conditional probability estimation. (See SET tions 
7.8, 7.9,) 

1. We c h m  as a regularization functional the norm of the function in 
RKHS 

W f )  = ( f  (3, y) ,  f (5,  Y ) ) H  

defined by the kemd 

satisfying the conditions EC. 
2. We look for a solution in the form 

Therefore, our target func tional is 

(see Section 7.8). 
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3. We obtain our optimization constraints using the  uniform metric 

For our equahty we have 

After simple calculations we obtain the  constraint 

For computational reasons we check this constraint only a t  the  training 
m t o r s  

p =  I,...,!. 

Note t ha t  that  the  following equality holds true: 

Putting expression (7.57) for dglx) into the  integral we obtain 

Ugng Ft ( x )  instead of F ( x )  we obtain 

4. We use the  residual principle with 
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ob ta ind  from a Kolmoprcw-Smirntw type distribution and choose an ad- 
misshle y. 

5. To control the of the solution (accuracy and/or sparsity) 
we choose an admissible parameter y that  minimizes the target functional 
and/or that is large. 

Therefore, we approximate the conditional density function in the form 
(7.571, where the coeficients Pi are obt a i n d  from the solution of tlie f d l m -  
ing optimization problem: Minimize functional (5.58) subject to  constraints 
(7.59) atld constraint (5.60). Choose y from the admissible set to  control 
the desired properties ~f the s d u  tion. 

To estimate the regression function 

recall that the kernel K,(y, yj) Is  a symmetric (density) function the inte- 
gral of which is equal to  1. Fbr such a function we have 

Therefore, from (7.571, (7.611, and (7.62) we obtain the h l lming  r e g d o n  
function : 

e 

It is interesting to  compare this expressioll with Nadaraya-Watson re- 
gression 

wliere the expression in thc parentheses is defined by the Parzen's estimate 
of density (it is the ratio of the ith term of the Parzen's density estimate 
to  the estimate of density). 

The SVM regression is smooth and has sparse representation. 

7.11 REMARKS 

7.1 1.1 Remark 1. One can use a good estimate of the unknown 
density. 

In constructiag our algorithms for estimating densities. conditioilal proba- 
bilities, and conditional densities we use the i~$ i r i ca l  distribution function 



F[(x) as an app toximation of the actual distribution function F(x) .  n o r n  
&(x) we obtained an approximation of the density function 

as a sum of &-functions. In fact, this approximation of the density was used 
to  obtain the corresponding constraints, 

One can use, however, better approximations of the density, based on the 
(sparse) SVM estimate described in S ~ t i o n  7.8. Using this approximation 
of the density function one cm obtain constraints different (perhaps more 
accurate) from those used. In Chapter 8 we will introduce a new principle 
of risk minimization that  reflects this idea. 

7.11.2 Remark 2. One can use both labeled (training) and 
unlabeled (test) data. 

To estimate the conditional  roba ability function and the conditions density 
function one can use both elements of training data 

and elements of unlabeled ( t a t )  data  

x*,  . . . ,xi. 

Since according to  our learning model, vmtors x from the training and the 
test sets have the same distribution F ( x )  generated by generator G (see 
Chapter I) ,  one can use the joint set 

XI, - . - , St, x;, . . . ,x;  

to  estimate the distribution F(x )  (or density function p(x)). To estimate 
the distribution function F(xlw) one uses the subset of vectors x from 
(7.64) corresponding to w = w*+ 

7.11.3 Remark 3. Method for obtaining sparse soEutio7~~ of the  
ill-posed pro b k m s .  

'r 
The method used for density, conditional probability, and conditional dm-  
sity estimation is quite general. It can be applied for obtaining sparse SO- 

lutions of atller operator equations. 
To obtain the sparse solution one has: 

Choose the  r egularizer as a norm in MI%. 

Choose L,  metric in E2. 
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+ Use the residual principle. 

+ Choose the appropriate value y from the admissible set. 



Informal Reasoning and 
Comments - 7 

7.12 THREE ELEMENTS OF A SCIENTIFIC THEORY 

According t o  Kant any theory should contain three elements; 

1. Setting the problem, 

2. Rewlutbn of the problem, and 

At first glance, this remark looks obviom, However, it has a deep meaning. 
The crux of this remark is the idea that these three elements of theory in 
some sense are independent and +dig zrnprlunt. 

1. The precise Wtiw of the problem provides a general p d n t  of view 
on the problem and its relation t o  other problems. 

2. The m l u t i o n  of the  problem comes not from deep theoretical anal- 
'+ 

p i s  of tbe setting of the problem but rather precedes this analysis. 

3. Proofs are constructed not for searching for the solution of the p r o b  
lem but for justification of the solution that  h a  already been sng- 
gestsd . 

The first two elements of the theory reflect the understanding of the Bsence 
of the problem of intereet, its philosophy. The proofs make the general 
(philosophical) model a scientific theory. 
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7.12.1 Pmblem of Demity Estimation 

In analyzing the development d the theory of density estimation one can see 
how profound Kantys remark is. Classical density estimation theories, both 
parametric and nonparametric, contained only two elements: resolution of 
the problem and proofs. They did not contain the setting of the problem. 

I n  the parametric case Fisher suggested the maximum likelihood method 
(resolution of the problem), and later it was proved by Le Cam (19531, 
Ibragimov and Haaminski (1981) and others that under some (not very 
wide, see the example in Section 1.7.4) conditions the maximum likeliliood 
method is consistent. 

The same happened with nonparametric resolutions of the problem. First 
the methods were proposed: TIE histogram n~ethod (Rosenblatt 19561, 
Parzen's method (Parzen 1962), projection method (Chentsov 1963) and 
so on followed by proofs of their consistency. In  contrast t o  parametric 
methods the nonpwmetric methods are consistent under very wide con- 
di tions. 

The absence of the general setting of the problem in& the density es- 
timation methods look like a list of recipes. It also seenis t o  have made 
heuristic efforts look like the only possible approach to  iinprove the W h -  
ods. These created a huge collection of heuristic corrections to  nonpar* 
metric methods for practical applications. 

The attempt to suggest the general setting of the density estimation 
problem was made in 1978 (Vapnik and Stsfanyu k (1978)), where the den- 
sity estimation problem was derived directly from the definition of the 
density, considered as a problem of solving an integral equation with un- 
known right-hand side but given data. This general (since it follows from 
the definition of the density) setting immediately connected density esti- 
m a t b n  theory with the fundamental theory: the theory of solving i l l -pwd 
problem. 

7.12.2 Theory of ill- Posed Pmblems 

The theory of ill-posed problems was originally developed for solving in- 
verse mathematical physics problems. Later, however, the general nature 
of this theory was discovered. It was demonstrated that one has t o  take 
inta account the statements of this theory every time one faces an inverse 
problem, i-e., when one tries to derive the unknown causes from known 
consequences. In  particular, the results of the theory of ill-p& problems 
are important for statistical inverse problems, which include the problems 
of density estimation, collditional probability estimation, and conditional 
density estimation. 

The  existence of ill-posed problems was discovered by Hadamard (1902). 
Hadamard thought that ill-posed problems ,,age pure mathematical phe- 
nomeira and that real-life problems axe well-posed. Soon, however, i t  was 
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discovered tha t  there exist important real-life problems tha t  are ill-posed. 
In 1943 A.N. Tikhonov in proving a lemma about an inverse operator, 

described the nature of well-posed problems and therefore discwered met h- 
ods for the  regularization of ill-posed problems. It took twenty years more 
before Phillips (19621, Ivanov (19621, a n d  Tikhonm (1963) came to the 
same constructive regularization idea, described, however, in a slightly dif- 
ferent form. The  important message of regularization t heory was the  fact 
that  in the  problem of solving operator equations 

that  define an, ill-posed problem, the obvious resolution t o  the problem, 
minimizing the  functional 

does mt lead t o  good solutions. Instead, one should use t l~e  nonobvious 
resolution that  suggests that  one minimize the  "corrupted" (regularized) 
functional 

Wf) = llAf - F1I2 + 7w1.  
At the beginning of the 1960s this idea was not obvious. The  fact tha t  now 
every body accepts this idea as natural is evidence of the  deep influence of 
regularization theory on the different branches of mat hematical science and 
in particular on statistics. 

7.13 STOCHASTIC ILLPOSED PROBLEMS 

To construct a general t hmry of density estimation i t  was necessary t o  
generalize the theory of solving ill-posed problem for the  stochastic case. 

The generalization of the theory of solving ill-posed problems introduced 
for the  deterministic case t o  stochastic ill-posed problems is very straighb 
forward. Using tbe same regularization techniques tha t  were suggested for 
solving deterministic ill-posed problems and the same key arguments b& 
on the lemma about inverse operators we generalized the main theorem 
on the regularization rr~et~hod (V. Vapnik and A. Stefanyuk, 1978) to a 
stochastic model. Later, A. Stefanyuk (1986) generalized this result for the 
[ V e  of an approxiniately defined operator, 

The fact tha t  the main problem of statistics - estimating functions from 
a more or less wide set of functions - is ill-posed was known t o  every- 
body. Nevertheless, the  analysis of methods of solving the main statistical 
problems, in particular density estimation, was never considered from the 
formal point of view of regularization theory.7 

?0ne Pmsible explsnation is that the theory of nonparametric methods for 
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Instead, in the  tradition of statistics there was first the suggestion of 
some method for solving the problem, proving its nice properties, and then 
introducing some heuristic corrections to make this met hod useful for prac- 
tical tasks (especially for multidimensional problems). 

Attempts k derive new estimators from the p d n t  of view of solving 
stochastic ill-posed problems was started with the analysis of the vari- 
ous known algorithms for the  density d m a t i o n  problem (Aidu and V a p  
nik,1989). B was observed that  almost all classical algorithms (such as 
Parzen's m&hod and the projection met hod) can be obtained on the ba- 
sis of t h e  standard regularization method of solving stochastic ill-& 
problems under the condition tba t  one chooses the empirical distribution 
function as an approximation t o  the unknown distribution function. 

The  attempt k construct a new algorithm af, tha t  time was inspired by 
t h e  idea of constructing, a better approximation t o  the unknown distribu- 
tion function based on the available data, Using this idea we constructed a 
new estimators that  justify many heuristic suggestions for estimating one 
dimensional density functions. 

In the 1980s the problem of nonparametric method density estimation 
was very popular among both theoretists and practitioners in statistics. 
The main problem WEIS t o  find the law for choice of the  optimal width 
parameter for P a r e n ' s  method. Asymptotic principles that connected the 
value of the width with information about smootbness proper t i s  of the 
actual density, properties of the kernel, and the number of observations 
were found. 

However, for practitioners these results were insuficient for two reamns, 
first because they are valid only for suficiently large data wtx and s m n d  
because the estimate of one free parameter was b d  on some unknown 
parameter (the smootbness parameter, say, by the number of derivatives 
prxssessed by the unknown density). 

Therefore, practitioners developed their own methods for estimatjng the 
width parameter. Among these methods the leaveone-out estimate became' 
one of the m m t  used. There is a vast literature devoted t o  experimental 
analysis width of the  parameter. 

At the  end of the  1980s the residual method for estimating the regular- 
ization parameter (width parameter) was prop& (Vapnik 1988)+ It was 
shown tha t  t h b  method is d m m t  optimal (Vapnik et al., 1992). Also, in 
experiments with a wide set of onedimensional densities it  wm shown tha t  
this method of choice of the  width parameter outperforms many theoretical 
and heuristic approaches (Markovich, 1989). 

density estimation had begun (in the 195Ds) befo~e the regularization methods 
for solving ill-posed problems were discovered. In the late 1960s and in the 19709 
when the theory of i l L p a d  problems attracted the attention of many researchers 
in  dfierent branches of mathematics, the pmdigm in the analysis of the density 
estimation problem had alredy been developed. 
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Unfortunately, most of the results in density estimation are devoted to 
the one-dimensional case, while the main applied inkrest  in the dengty 
estimation problem is in the multidimensional case. For this case special 
methods were developed. 

The most popular of these, the Gaussian mixture model method, turned 
out to  be inconsistent (see Section 1.7.4). Nevertheless, this method is used 
for most high-dimensional (say S@dimensional) problems of density =ti- 
mation ( h r  example in speech recognition). 

It is known, however, that  even to construct good twedimemiond den- 
sity estimators one has to use new ideas. 

The real challenge, however, is to  find a p d  estimator for multidimen- 
sional densitim defined on bounded support,. 

In t h  chapter we proposed a new method for multidimensional density 
e ima t ion .  It combines ideas from three different branches of mathemat- 
ics: the theory of solving integral equations using the residual principle, the 
universal Kolmogorov-Smirnm distribution, which allows one t o  estimate 
the pa rmete r  for the residual principle, and the SVM technique from st+ 
tistical learning theory, which was dewloped to approximate functions in 
high-dimensional spaces. 

Two out of three of these ideas have been checked for solving one- 
dimensional density estimation problems (Vapnik 1988, Aidu and Vapnik, 
1989, Vapnik et al. 1992, MarMch 1989). 

The third idea, to me as the regularized functional a norm in RKHS 
and measure discrepancy in the Lm norm, is the direct r au l t  of the SVM 
method for function approximation using  insensitive lo&s function, de- 
scribed for the first time in the first edition of this book. It WBS partly 
c h e w  for estim&ing one dimensional density functions. 

The density estimation method described in this chapter was analyzed 
by Sayan Mukherjee. His experiments with estimating a density in o n e ,  
h w ,  and six-dimensional spaces demonstrated high accuracy and good 
sparsity of solutions obtained. Two of these experiments are pre~ented in 
this book. 

Direct solutions of the conditional probability and the conditional density 
estimation p ~ b l e m s  described in this chapter are a straightforward p m -  
ahat ion of the direct density estimation method. These methods haw not 
been checked experimentally. 





Chapter 8 
The Vicinal Risk Minimization 
Principle and the SVMs 

In this chapter we introduce a new principle for minimizing the expected 
risk called the vicinal risk minimizatioli (VRM) principle.' We use this 
principle for solving our main problems: pattern recognition, regression 
estimation, and density estimation. 

We minimize the vicinal risk functional using the SVM technique and 
obtain solutions in the form of expansions OM kernels that are different for 
different training points. 

8.1 THE VICINAL RISK MINIMIZATION PRI NCIPLE 

Consider again our standard setting of the function estimation problem: In 
a set of functions f (e, a ) ,  a E A, minimize the functional 

where E(u) is a given lass function if the probability measure P(x, y) is 
uiikmwn but data  

(m, el), + • , l~f.2t) Is 12) 

l ~ i t h  this name we would like to s t res  that our gosl is to minimize the risk in 
vicinities z E v(xi) of the training vectors x2, i = 1,. . . , f, where (as we believe) 
most of points x E v(xq) keep the s e e  (or almost the same) value as the 
training vector xi, rather than ta minimize the empirical risk functional defined 
only by the t rdnhg vectors. 
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are given. 
In the first chapters of the book in order t o  solve khis problem we consid- 

ered the empirical risk minimization principle, which s u g a t e d  minimizing 
the functional 

f 

instead of the functional (8.1). 
Later we mtroduced the structural risk minimization principle, where we 

defined a structure on a set of functions f (x, a), a E A, 

and then we minimized functional (8.3) on the appropriately chosen element 
Sk of this structure. 

Now we consider a new basic functional instead of the empirical risk 
functional (8.3) and use this functional in the structural risk minimization 
scheme. 

Note that introduction of the  empirical risk functional reflects the fol- 
lowing reasoning: Our goal is t o  minimize the expected risk (8.1) when the 
probability measure is unknown. Let us estimate the density function from 
the data and then use this estimate $(x, y) in functional (8.1) t o  obtain the 
target functional 

When we estimate the unknown density by the  sum of 6-functions 

we obtaln the empirical risk functional. 
If we believe t h t  both the density function and the target function 

are smooth, then the empirical risk functional probably is not the  b& 
approximation of t h e  expected risk functional. The  question arises as t o  
whether there exists a better approximation of the risk functional that  
r d & a  the following two assumptions: 

1. The unknown density function b smooth in a vicinity of any point 
xi * 

2. The  functlon minimizing the risk functional is also smooth and 33711- 
metric in vicinity ariy point 26. 

Belaw we introduce a new target functional which we will use instead of the 
empirical risk functional. To introduce this functional we construct (using 
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data) viciniQ functions v(xi) of the vectors xi b r  all training vectors and 
then using these vicinity functions we construct the target functional. As in 
Section 4.5 we distinguish between two concepts of vicinity functions, hard 
vicinity and soft vicinity functions. Below we first introduce the concept 
of hard vicinity function and then consider soft vicinity function. One can 
also use other concepts of vicinity functions which are more appropriate 
b r  problems at hand. 

1. For any xb, i = 1, .. . , l' we define a measurable subset v(xi) of the set 
X g Rn (the vicinity of point xi) with volume h. 

We define t b  vicinity oft his point as the set of paints that are ri-close 
to xi = (zf , . . . , zl)  (ri depends on the point xi) 

where I la: - xil l E  is a metric in space E.  For example, it can be the 
11, the 12, or the 6, metric: I1 metric defines the vicinity i~ a set 

l2 metric defines the vicinity as the ball of radius ri with center at 
point xi 

fa 

2 2 z ) ( x ~ ) = { x : C ~ X - X ~ ~  I T = } ,  

while I, metric defines a cube of size 2ri with a center at the point 
~ - 

1 xi = (xi, -.., xf) 

2. The vicinities of different training vectors have no common points. 

3. We approximate the unknown density function p(x) in the vicinities 
of vector x, as follows. All l vicinities of the training data have an 
equal probability measure 

The distribution of the vrxtors within the vicinity is uniform, 

where v, is the volume of vicinity v(xi). 
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FIGURE 8.1. Vicinity of points in different metrics: (a) in the b l  metric, (b) in 
the la metric, and (c) in the b, metric. 

Figure 8.1 shows the vicinity of points in different metrics: (a) in the I I  
metric, (b) in the I2 metric, and (c) in the I, metric. 

Consider the  foIIowing functional, which we caII the  vicind risk functional 

In  order t o  find an approximation t o  the function that minimizes risk 
functional (8.1) we are Iooking for the function that  minimizes functional 
(8.5). Minimizing functional (8.5) instead of funetiona1 (8.1) wo call the  
vdcinad risk minimi~uiion (VRM) principIe (method). Note tha t  when y, + 
0 the  vicinal risk functional converges t o  the empirical risk functional. 

Since the voIumes of vicinities can be different for different t rahing 
points, by introducing this functional we expect that the function mini- 
mizing i t  have different smoothness properties in t,he vicinities of different 
points. 

In a sense the VRM method combines two different estimating methods: 
the empirical risk minimization met fmd and 1-nearest neighbor met hod. 

8.1.2 Soft Vicinity Function 
In our definition of the vicinal method we used pararnetcrs xi  and T, ob- 
tained from the  training da ta  t o  construct a anifom distribution function 
that  is used in equations for YRM. 

However, one can use these parameters to construct other distribut.ion 
functions ~ ( x I x ~ ,  ri) wbere they define the parameters of positio~r and width 
(for example, one can use the normal distribution function P ( T ~ x ~ , T ~ )  = 

N(+i,  di) ) . For soft vicinity functions all points of the space can beIong to 
a vicinity of the vector xi. Hawever, they have different measures. 
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A soft vicinity function defines the following (general) form of VRM 

In Section 8.3.1 we define a VRM method based on hard vicinity func- 
tions and based on soft vicinity functions. 

8.2 VRM METHOD FOR THE PATTERN 
RECOGNITION PROBLEM 

In this section we appIy the VRM method to  the twO c 1 m  {-l,l} pattern 
recognition problem. Consider the  set of indicator func tions 

where f (x7 a), a E A, is a set of real-vaIued functions. In previous chapters 
we did not pay attention on the structure (8.6) of the indicator function. In 
order t o  find the function from f jz, a) ,  or E A, tha t  minimizes the risk func- 
tionaI, we minimized the empirical functional (8.3) with the Im function 
Iv - f (z9or)l. 

Now taking into account the structure (8.6) of indicator functions we 
consider m o t  her loss function 

which defina the risk functional 

where B(P1) is a step function. 
To minimize this functional the VRM method suggests minimizing the 

functional 

For the hard vicinity function we obtain 
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As in Chapter 5 we reduee this problem to the following optimization 
problem: Minimize the functional 

subject ta the constraints 

where In( f) is some reguIarization functional tha t  we specify below. 
Suppose that our set of functions is defined as follows: We map input 

vectors z into feature vectors z and in the feature space construct a hyper- 
pl ane 

( w , z ) + b = O  

tha t  separates da ta  
( Y I , ~ L ) ~ * *  + (~frb), 

which are images in the feature space of our training da ta  (8.2). (Let a 
kernel X(x, st) defines the inner product in the feature space.) 

Our goal is to find the function f (x, a )  satisfying the constraints 

whose image in the feature space is a linear function 

that minimizes the functional 

We will solve this problem using the SVM technique and call the solution 
the vicillal SVM solution (VSV). Note that for linear functions in the input 
SP- 

f @ , a )  = (w, Z) -k b, a E A, 

and for vicinities where xi is the  centw of mass, 

the VSV solution coincides wit b the SVM solution. Indeed, since the target 
functional in the  both cases is the  same and 
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the problems coincide. 
The difference between ERM and VRM can appear in twc, cases, if the 

point xi is not the center of mass of the vicinity t(xi) or if we consider 
nonlinear functions. 

Let us (using the kernel K(x,  x')) introduce two new kernels: the one- 
vicinal kernel 

and the hwvicinal kernel 

The following t hmrem is true. 

Theorem 8.1. The vicinal support vector soiution (VSV) has the f u m  

whew to define coeficients /3'* one h s  to maximize the fwcthnal 

subject to the comtmints 
t 

PROOF. Let us map input v&or;s z into feature vectors z. Consider 
samples of IV points 

taken from t be vicinities of points xi, i = 1, . . . , P. Let the images of these 
points in feature space be 
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Consider the problem of constri~cting the following vicinal optilnal hy- 
perplane in a feature space: Minimize the functional 

subject h the constraints 

Note that the equivalent expression for (8.21) in the input space is 

As N w, exprosviol~ ($22) converges to  (8.12). Therefore, the solution 
of the optimization problem defined by (8.20) and (8.21) converges to  the 
solution of the optimization problem defined by (8.13) and (8.12). 

To minimize (8.20) under constraints (8.21) we introduce the Lagrangian 

The solution of our optimization problem is defined by the saddle point 
of the Lagrangian that minimizes the functional over b, &, and w and 
maximizes i t  over P and q. A s  the result of minimization we obtain 

Putting (8.26) in the expression for the hyperplane we obtain 

Putting expression (8.26) back i n h  the Lagrangian we obtain 
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Sir~cc (z,~ ' )  = K(x, x'), we can rewrite expressio~ls (8 27)  and (8.28) in the 
form 

e , N  

where the coeficients fi maximize the functional 

subject to  constraints (8.24) and (8.25). Increasing N ,  we obtain 

Therefore, the VSV solution is 

where to  define the coeficients P, m e  has to  maximize the functional 

subject to the constraints 

8.3 EXAMPLES OF VICINAL KERNELS 

In this sectiou we give example of pairs of vicinity and kernel K(x ,  y) 
that allow us t o  construct in the analytic form both the one-vicinal kernel 
C(x, xi) and the two-vicinal kernel M ( z l ,  x j  ). In Section 8.3.1 we introduce 
these kernels for hard vicinity functions and in Section 8.3.2 for soft vicinity 
functions. 
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8.3.1 Hard Vicinity h n c  tions 

We define the vicinities of points xi, 2 = I ,  . . . , B, using the 1, metric: 

where z = (xl,. . . , sn) is a 'vector in Rn. 
We define size of the vicinity of the vectors zi , .i = 1, . . . , P from t be 

training data 
( ~ 1 , x l ) r ~ ~  r (Y&,x~) 

using the following algorithm: 

1. Define the triangle matrix 

of the pairwise distances (in the metric I,) of the vectors from the 
training set. 

2 Define the smallest element of the matrix A (say ~ j ) .  

3. A s s ~ n  the value 
d* = w j  

to element xi and the value 

to element xj . 

Hers rc 5 112 is the parameter that controls the size of vicinities 
(usually it is reasonable to chow the maximal possible size rc = 1/2). 

4 Ghom the next smallest dement a,,of the matrix A. If one of the 
vectors (say 2,) was aiready assigned some value &, then assign the 
value 

da = KUms 

to another vector x,, otherwise assgn this value to both vectors. 

5 Continue this process until values d have been assigned to all vectors. 

Using the value 4 we define both the vicinity of the point xi, 

and the volume 
u,- = (24)" 

of the vicinity. 
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Let us introduce the notation 

k ~ ( x ,  ) = (xk : xf - di 5 xk < x,k + 4). 

Now we calculate both the one and twwvicinal kernels for the Laplaciaa- 
type kernel 

We obtain the onevicinal kernel 

n 
k k k  d(xf)* = n L (x ,q)- 

k=  1 

After elmen tary calculations we obtain 

The n-dimensional twcwicinal kernel is the product of onedimensional 
kernels 

k k k  M ( x ~ ,  zj) = n M (xi , xj)+ 

k k k  To calculste M (xi, xi) we distinguish two cases: the case where i # j 
(say i > j) and the case where i = j. For the case i # j we obtain (taking 
into account that different vicinities have no common points) 

k k k  j j exP { &dx M (xi,xj) = - 
4di4 v(x~) v(x:) A 
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For the case i = j we obtain 

k k k  1 
M (x, ,xi)  = - 1 ex"- I x k  -(d'k'} dXf& 

46: Y[Z> u(c : )  A 

--  
A 

Therefore, we have 
k k k  M (2, , x* )  

Note tfmt when 

we obtain the classical SVhI solution 

Figure 8.2 shows the one-vicinal kernel obtained from the Laplacian with 
parameter A = 0.25 for different values of vicinities: (a) d = 0.02, (b) 
d = 0.5, and (c) d = 1. Note that  th larger the  vicinity of the point x i ,  
the smoother the  kernel approximatet function in t h s  vicinity. 

F1GUR.E 8.2. One-uiclnal kernel obtained from Laplacian with A = 0.25 for 
different values of vicinities (a) d = 0.02, (b) d = 0.5, and ( c )  d = 1. 
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8.3.2 Soft Vicinity Functions 

To construct o n e  and two-vicinal kernels for the Gaussian-type kernel 

one has make the following: 

1. To define the distance betwen two points in the 12-metric. 

2. To define the values d* for all points x, of the training data  using 
the same algorithm that we used in the previous section. 

3. To define soft vicinity functions by the normal law with p a m e t e r s  
q- and di . 

4. To calculate the o n e  and to vicinal functions 

8.4 N U N S Y M M E T R I C  V I C I N I T I E S  

In the previous section, in order to obtain analytic expressions for vicinsl 
kernels, we considered symmetric vicinities. This type of vicinities reflects 
the most simple information about problem at hand. Now our goal is to 
define vicinities that allow us to construct vicinal kernels reflecting some 
local invariants. 

Below we consider the example of constructing such kernels for the digit 
recowtion problem. However the main idea introduced in this example 
can be used for various function estimation problem. 

It is known that m y  small continuous Enear transformation of two di- 
mensional images can be described by six functions (Lie derivatives) 
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* xi,k,  k = 1, . . . , 6  such that transformed image is 

where t k  , L = 1, . . . , 6  are reasonable small values. Therefore different small 
Linear transformations of image xi are defined by six Lie derivatives of X i  

and different small vectors t = ( t l , .  . . , ts), say it1 5 c. 
Let us introduce the following vicinity of xi 

This vicinity is not necessarily symmetric. Note that if we will be able t o  
construct o n e  and t w c w i c h l  kernds 

then the VSV solution 

will take into account invariants with respect to  small Lie transformations. 
Of course it is not easy to  obtain vicinal kernels in analytic form. However 

one can approximate these kernels by the sum 

1 1 
C L ( X ,  x i )  = C ~ v ( z ~ ( i ; , , ~ ( x ,  x') = ij C C ( x ,  x t ( ~ i ) )  

k= 1 k = l  

where s t ( x i ) ,  k = 1, . . . , N are virtual examples obtained from xi using 
small Lie transformation and w(xk(x i ) )  is symmetric vicinity for b t h  virtual 
example z k ( x i )  obtained from x i .  

In other words, one can use the union of symmetric vicinities of vir- 
tual examples (obtained from example xi) to approximate a non-symmetric 
vicinity of example xi.  
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Note that in order t o  obtain the state of the ar t  performance in the digit 
recognition problem several authors (Y. LeCun e t  al. (1998), P. Simmard et 
al. ( 1998), and B. Scholkopf e t  al. ( 1996)) used virtual examples to  increase 
the number of training examples. 

In the SVM approach B+ Scholkapf et al. considered the solutiun as ex- 
pansion on the extended set of the training data 

where extended set included both the training data and the virtual exam- 
ples obtained from the training data using Lie transformatian, 

In the simplified vicinal approach, wbere the coeficient K: that controls 
the vicinities u(z,) is so small that  

L(z, xi) = K(x, a,), we obtain another expansion 

1 
f' (x, a )  = x ~iai C ~ ( z ,  xk (xi)) ? 

i= 1 k = l  

where xk(zf) is the the kth virtual example obtained from the vector xi d 
the training data. 

The difference between solutions f (z ,  a )  and f'(z, a )  can be described 
as f o l l m :  

In f (z ,  a )  one uses the following information: new (virtual) examples 
belong to  the same class as example Xi. 

In f'(x, a )  one uses the following information: new (virtual) examples 

* are the same example as xi. 

The idea of constructing nonsymmetric vicinities as a union of symmetric 
vicinities can be used even in the case when one can not construct virtual 
examples. One can consider as examples from the same union a (small) 
cluster of examples belongmg to  the same class. 

8.5 G E N E R A L I Z A T I O N  FOR E S T I M A T I O N  

REAL- VALUED F U N C T I O N S  

In Chapter 6 to  estimate a real-valued function from a given set of functions 
we used E-insensitiw loss functions 
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For this functional we constructed the empirical risk functional 

Now instead of functional (8.34) we will use the  vicinal risk functional 

We can rewrite the problem of minimizing (8.34) in the following form: 
Minimize the functional 

subject to  the constraints 

However, we would like to  minintize the reglarized functional 

instead of (8.35), where we specify the functional Q( f )  below. 
Suppose (as in Section 8.2) that our set of fundionsis defined as follows: 

We map input vectors 3: into feature vectors 2,  and in feature space we 
construct a linear function 

that  approximates the data 

which are the image of our training data (8.2) in feature space. Let the 
kernel K(x? x') defines the inner product in feature space. 

We would like to define the function that satisfies constraints (8.36) and 
minimizes the functional 
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Consider the case where L(u) = 1 ~ 1 , .  
The following theorem holds true. 

Theorem 8.2. The vicanul s ~ p p r t  .vector solution has the form 

whew to define coeflcients pi and p* one has to muxim.dze the functiund 

sdject  tu the constmints 

whew the widnab kernels L ( x ,  x i )  and M ( x i ,  x j  j am defined bg equations 
(8.14) and (8.15). 

The proof of this theorem is identical to the proof of Theorem 8.1. 

One can prove analogous theorems for different loss functions L(u) = 
~ ( l y  - f ( x , a ) J , ) .  In particular, for the case where L = ( y  - f ( x , a ) l 2  one 
obtains the solution in c l o d  form. 

Theorem 8.3 The VSV solation for the boss function 

is an f x l matnx whose ebemenb am defined bg the two-vicrlnal kernels, 

is an f x 1 matrix whose elements are defined bg the one-vic%.nal kernel3 
L(x ,  x i ) ,  i = 1, . . . , &, and I is the & x t identi@ matrix- 
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8.6 ESTIMATING DENSITY AND CONDITIONAL 
DENSITY 

In Chapter 7 when we used Method P for solving the density estimation 
problem we reduced it to the following optimization problem: Minimize the 
functional 

fl(f) = If ,  f ) ~  (8.40) 

subject ta the constraints 

H m v e r ,  far computational reasons we checked this constraint only for 
the l points defined by the data of observations 

= Of, i = 1 ,..., L. 
t 

(8.42) 
e= xi 

Uk also considered the solution as an expansion on the kernel (that defines 
RKHS) 

t 

Now let us look for a solution in the form 

For such solution we obtain (taking into account the  reproducing prop- 
ertias of the kernel K(x,  x')) the following optimization problem: 

Minimize the functional 

subject to constraints (8.41) and the constrsints 
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where &(xj, x') and M7(xi,  ~ j )  am functions defined by equations (8.14) 
and {8.15), and y is a parameter of the width of the kernel 

As in Chapter 7 we choose y from the admimible set to obtain the minimum 
(8 -43) orland sparse solution. 

This a t i m a h  of the density function has an expansion on d ia ren t  
kernels depending on u(z,). 

8.6.2 Es tima ting a Conditional Pmhbilzty Fvne tion 

To use the VSV solution for conditional probability estimation we consider 
t.he andogous form of expansion as for the density estimation problem 

Repeating the same reasoning as before, one shows that to find the me& 
cients 0% one n d s  to  minimize the functional 

L 

W,(P) = C P~&M,(x~,  Xi) 
j=l  

subject to  the constraints 

1  * 1 5 p S f  
P 

i= 1 f=1 

(8.49) 
and the constraints 

We choose y from the admissible set 

to control properties of the solution (accuracy and/or sparsity) minimhing 
WT(B) and/or choosing large admissible y. 
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8.6.3 Es tima tzng a Condi tional Density h n c  tion 

Tb estimate the conditional density function we repeat tbe same reasoning. 
We use the expansion 

To find the coefficients we minimize the functional 

subject ta the constraints 

and the constraints 

To control the properties of the solution (accuracy and/or sparsity) we 
choose an admissible parameter y that minimizes the target functional 
and/or that is large. 

Remark. When estimating density, conditional probability, and the COG 

ditional density function we looked for a solution 

that bas the following singularities: 

where 
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with a normalization parameter a(y) (me Section 7 .8 ) .  
Since parameters Di are nonnegative it is reasonable to construct solw 

tions based on kernels K(x, x') that  have light tails or have finite support. 
In particular, one can use the kernel defined by the normal law 

Fur this kernels we have 

As a kernel K, (x, xi) defined on finite support one can consider B,-spline 

I t  is known that starting with n = 2 a &-spline can be approximated by 
a Gaussian function 

B, (x , x') zs JTexp xy2(n + 1)  {-;{;::; } . (8.60) 

Therefore, for one- and twevicind kernels constructed on the basis d kernel 
function defined by a B,-spline one has either to calculate them directly 
or use the approximation (8.60) and expressions (5.58) and (5.59) .  

8.6.4 Estimating a Regression Function 

To estimate the regression function 

recall that the kernel K,(y, yj) is a symmetric (density) function the i n k  
gral of which is equal to  1. For such a function we have 

J y ~ i y ,  P@P = 3,. (8.62) 

Therefore, from (8.511, (8.56) ,  and (7.57) we obtain the following regression 
function: 





Informal Reasoning and 
Comments - 8 

The inductive principle introduced in this chapter is brand new. There 
remains work to properly analyze it, but the first results are good. 

Sayan Mukherjee wed this principle far solving the density estimation 
problem based on the VSV solution (so far in low-dimensional spaces). 
He demonstrated its advantages by comparing it fa existing approaches, 
especially in the case where the sample size is small. 

Ideas that are close to this one have appeared in the nonparametric 
density estimation literature. In particular, many discussions have taken 
place in order to modernize the Parzen's methods of density estimation. 
Researchers have created methods that use different values of the width at 
different points. It appeared that the width uf the kernel at a given point 
should be somehow connected to the size of the vicinity of this point. 

However, the realizations of this idea were too straightforward: It was 
proposed to choose the width of the kernel proportional to the value d, of 
the vicinity of the corresponding point xi. In other words, it was proposed 

to use the kernel a(-y)K (x~:'). This suggestion, however, created the foL 
lowing problem: When the value of the vicinity decreases, the new kernel 
converges fa the &function 

In the 1980s, in constructing denpi@ estimators from various solutbns of 
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an integral equation we observed that classical methods such as Parzen's 
method or the projection method are defined by different conditions for 
mlving this integral equation with the same approximation on the right- 
hand side - the empirical distribution function. The idea of using a dis- 
continuous function to approximate a continuous function in the problem 
of solving the integral  quat ti on that  defines the derivative of the (given) 
right-hand side is probably not the best. 

Using in the same equations the continuous approximation to  the distri- 
bution function, we obtain nonclassical estimators. In particular, using a 
continuous piecewise linear (polygonal) approximation we obtained (in the 
one-dimensional case) a Panen's-type estimator with a new kernel defined 
as f o l k  (Vapnik, 1988): 

where xi, xi+l are elements of the variation series of the sample and KT (u) 
is the Parzen kernel. 

This kernel converges to  Parzen's kernels when (xi+l - xi) -, 0, 

After the introduction of SVM methods, the (sparse) kernel approxima- 
tion began to play an important r d e  in solving various function estimation 
problems. As in Parzen's density estimation method, the SVM methods 
use the same kernel (with difFemt values of coefficients of expansions and 
different support vectors). Of course, the question arises as to whether it is 
possible to construct different kernels for different support vectors. Using 
the VRM principle we obtain kernels of a new type in all the problems 
considered in this book. 

T h e  VRM principle was actually introduced as an attempt to  understand 
the nature of the mlutions that use different widths of kernel. 



Chapter 9 
Conclusion: What Is Important in 
Learning Theory? 

9.1 WHAT IS IMPORTANT IN THE SETTING OF THE 
PROBLEM? 

In the beginning of this book we postulated (without any discussion) that  
learning Is a problem of function estzrnatzon on the basis of empirical data. 
To solve this problem we wed a classical inductive principle - the ERM 
principle. Later, however, we introduced a new principle - the SRM princi- 
ple. Nevertheless, the general understanding of the problem remains based 
on the statistics of large samples: The g o d  is to derive the rule t b t  p o s  
sezm the lowat  risk, T h e  goal of obtaining the "bwest risk" reflects the 
philosophy of large sample size statistics: T h e  r u b  with low risk is good 
because if we use this rule for a large test set, with high probability the 
meam of bms will be small. 

Mostly, however, we face mother situation. We are simultaneously given 
training data  (pairs (xi, yi)) and test data  (vectors x;), and the goal is to  
use the learning machine with a set of functions f (x, a), a E A, to find the 
y," for the given test data. In other words, we face the problem of estimating 
the wa!ues of the unknown function at gzven points. 

Why should the problem of estimating the values of an unknown function 
at given points of interest be w l w d  in two stages: First estimating the func- 
tion and second estimating the values of the function using the estimated 
function? In thii twestage scheme one actually tries to solve a relatively 
simple problem (estimating the values of a function at given points of in- 
terest) by first solving (as an intermdiate problem) a much more difficult 
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one (estimating the function). Recall that estimating a function requires 
estimating the values of the function a t  all (infinite) points of Ihe domain 
where the function Is defined including the points of i n t ~ s t .  Why should 
one first estimate the values of the function at all points of the domain  t o  
estimate the values of the function at the points of interest? 

I t  can happen that one d m  not have enough information (training data) 
to estimate the function well, but one does have enough data  to estimate 
the values of the function at a gven f ini te number of p i n t s  o f h t e ~ s t .  

Moreover, in human life, decision-making problems play an important 
role. For learning machines these can be formulated as follows: Given the 
training data  

( ~ 1 7 3 1 ) , * . . , ( ~ t ? y 8 ? ) ?  

the machine with functions f (x, a), u G A, has to find among the k t  data  

the one xz that  belongs t o  the first class with l r g h a t  probability (decision 
making problem in the pattern recognition form.)' To solve this problem 
one does not even need to  estimate the r d u s s  of the function a t  d l  given 
points; therefore it can be solved in situations where one does not have 
enough information (not enough training data) to  estimate the value of a 
function at given points. 

The key to  the solution of these problems is the following observation, 
which for simplicity we will describe for the pattern recognition prohlem, 

The learning machine (with a e t  of indicator functions Q(z, a), u E A) 
Is simultaneously given two strings: the string of l + k vectors x from the 
training and the test sets, and the string of l values y from the training 
set. In pattern c l ~ s i f i c d i o n  the g o d  af the machine is to d&ne the string 
containing Ic values y for the test data. 

For the problem of estimating the values of a function at the giwn points 
the set of functions implemented by the learning machine cam be facto'F%Zed 
into a finite set of equivalence c h e s .  (Two indicator functions fall in the 
same equivalence class if they coincide on the string XI,. . . , x # + ~ ) +  These 
equivalence clases can be characterized by their cardinality (how many 
functions they contain). 

The  cardinality of equivalence classes is a concept that makes the theory 
of estimating the  function at the given points d d e r  from the theory of 
estimating the function. This concept (as well as the theory of estimating 
the function at giwn points) was considered in the 1970s (Vapnik, 1979). 
For the set of linear functions it was found that  the bound on generalization 
ability, in the sense of minimizing the number of errors only on the given 

1 Or to find one that with the most probability possesses the largest value of 
y. [decision-making in regression form). 
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function at points 

FlGURE 9,l. Different types of inference. Induction, deriving the function from 
the given data. Deduction, deriving the values of the given function for points 
of interest. Runsductian, deriving the values of the unknown function for point8 
of interest from the given data. The classic J scheme suggests deriving S the 
values of the unknown function for points of inter-t in two steps: first using 
the inductive step, and then using the deduction step, rather than obtaining the 
direct solution in one step. 

test data  (along with the factors considered in this book), depends also 
on a new factor, the cardinality of equivalence classes. Therefore, since to  
minimize a risk one can minimize the obtained bound over a larger number 
of factors, one can find a lower minimum. Now the problem is t o  construct 
a general theory for estimating a function at the given points. This brings 
us to  a new concept of learning. 

Classical philosophy usually considers two types of inference: deduction, 
describing the movement from general to  particular, and induction, dacrib- 
ing the movement from particular to  general. 

The modd of estimating the d u e  of a function at a given point of 
interest describes a new concept of inference: mwing from padzcular to  
particular. We call this type of inference lmnsductive i n f e ~ n c e .  (Fig. 9.1) 

Note that this concept of inference appears when one would like to  get 
the best result from a restricted amount of information. The main idea in 
this case was described in Section 1.9 as follows: 

Tf YOU QR limited to a restricted amount of information, do not solve the 
pa7-licuda.r pmblern YOU need by solving a m0w g e n e d  pmblern. 

We used this idea for constructing a direct method of estimating the 
functions. Now we would like to  continue developing this idea; Do not 
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solve the problem of estimating the values of a function a t  given points by 
estimating the entire function, and do not sdve  a decision-making probkm 
by estimating the d u e s  of a function a t  a given points, etc. 

The problem of estimating the values of a function at a given point 
addresses a question that has been discussed in philosophy for more than 
2000 years: 

What is the h i s  of human intelligence: knowledge of lows (rules) o r  the 
culture of direct access to the truth (intuitzon, adhm inference)? 

There are several different models embracing the statements of the barn- 
ing problem, but from the conceptual point of view none can compare t o  
the problem of estimating the values of the function at giwn points. This 
model can provide the strongest contribution to the 2000 years of discus 
sions about. t he  essence of human reason. 

9.2 WHAT IS IMPORTANT IN THE THEORY OF 
CONSISTENCY OF LEARNING PROCESSES? 

The  t heory d consistency of learning processes is we11 devaloped. It answers 
almost all questions toward understanding the conceptual model of learning 
processes realizing the ERM principle. The only remaining open question is 
that of necessary and sufficient conditions for a fast rate of convergence. In 
Chapter 2 we considered the sufficient condition described using annealed 
entropy 

lim (0 = 0 
e-oo P 

for the pattern recognition case. It also can be shown that  the conditions 

lim G i n  ( E ;  4 
4? 

= 0, V& > 0, 
e+00 

in terms of the annealed entropy H&, (E; P) = In EN"(E; 21, . . . , ze) define 
sufficient conditions for fast convergence in the case of regression estim* 
tion. 

The  following question remains: 

Do these equalities form the necmary conditions as well? If not, what 
are necessary and sufficient conditions? 

Why is it important to  find a concept that describes necessary and suf- 
ficient conditions for a fast rate of convergence? 

As was demonstrated, this concept plays a key role in the theory of 
bounds. In our constructions we used the annealed entropy fbr finding both 
(nonconstrue tive j dist ribution-independent bounds and (nonconstructive) 
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distribution-dependent bounds. On the basis of annealed entropy, we con- 
structed both the growth function and the generalized growth function. 
Pmving necessity of annealed entmpy for a f k t  rate d convergence would 
amount to showing that this is the best possible construction for deriving 
bounds on the generalization ability of learning machines. If necessary and 
sufficient conditions are described by another function, the constructions 
can be reconsidered. 

9.3 WHAT IS IMPORTANT IN THE THEORY OF 
BOUNDS? 

The theory of bounds contains two parts: the theory of nonconstructive 
bounds, which are obtained on the basis of the concepts of the growth 
function and the generabzed growth function, and the theory of construc- 
tive bounds, where the main p r o b h  is estimating these functions using 
some constructive concept. 

The main problem in the theory of bounds is in the second part. One 
has to introduce some constructive concept by means of which one can 
estimate the growth function or the generalized growth function. In 1968 
we introduced the concept of the VC dimension and found the bound for 
the growth function (Vapnik and Chervonenkis, 1968, 1971). We proved 
that the value NA(!) is either P or polynomial b o ~ n d e d , ~  

Note that the polynomial on the right-hand side depends on one free p& 
rameter h. This bound (which depends on one capacity parameter) cannot 
be impmved (there exist examples where equality is achieved). 

The challenge is to find rdned concepts containing more than one p* 
ramder (say two that describe some properties of capacity 
(and the set of distribution functions F(z) E P) , by means of which one 
can obtain better  bound^.^ 

This is a very important question, and the answer would have immediate 
impact on the bounds of the generalization ability of learning machines. 

'1n 1972 this bound was also published by Sauer [Sauer, 1972). 
'Recall the MDL hund:  Even such a refined concept as the coefficient of 

compression provides a worse bound t h  one based on three [actually rough) 
concepts such as the value of the empirical risk, the number of observations, and 
the number of functions in a set. 
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9.4 WHAT IS IMPOELTANT IN THE THEORY FOR 
CONTROLLING THE GENERALIZATION ABILITY OF 
LEARNING MACHINES? 

The most important problem in the theory for controlling the generaliza- 
tion ability of learning machines i s  finding a new inductive principle for 
small sample sizes. In the mid-1970s, several techniques were suggested 
improve the classical methods of function estimation. Among these are  the 
various rules for choosing the degree of a polynomial in the  polynomial 
regression problem, various regularization techniques for multidimensional 
regression estimation, and the regularization met hod for solving ill- p o d  
problems. All these techniques are b d  on the same idea: t o  provide the 
set of functions with a structure anh then t o  minimize the risk on the el- 
ements of thc  structure. In the 1970s the crucial role of capacity control 
was discovered. We c d l  this general idea SRM to stress the  import.ance of 
minimizing the risk in the element of the  structures. 

In SRM, one tries t o  control simultaneously two parameters: the value 
of the  empirical risk and the capacity of t h e  element of the  structure, 

In the 1970s the MDL principle was prop&. Using this principle, one 
can control the  coefficient of compression, 

The most important quet ion is this: 

Dms there exist a new inductive principle for estzmating dependency fmm 
m a l  l smpie sizes? 

In studies of inductive principles it is crucial t o  fir~d new concepts that  
affect the  bounds of the risk, and which therefore can be u d  in mini- 
mizing these bounds. To use an additional concept, we introduced a new 
statement of t h e  learning problem: the local risk minimization pmblem. 
In this statement, in the framework of the SRM principle, one can cor~tml 
three parameters: empirical risk, capacity, and bcality. 

In the problem of estimating the d u e s  of a func th l~  at the given points 
one can use an additional concept: the cardinality of equivalence classes. 
This aids in controlling the generalization ability: I3y minimizing the b o d  
over four parameters, one can get smaller minima than by minimizing the 
bound over fewer parameters. The  problem is t o  find a new coiicept t l ~ a t  
can affect the  upper bound of the  risk, This will immediately lead to a new 
learning procedure, and even t o  a new type of reasoning (as in the  case of 
transductive inference). 

Finally, it is important t o  find new structures on the set of functions. It  
is interesting to find structures with elements containing functions that  are 
described by large numbers of parameters, but  nevertheless have low VC 
dinlension. We have found only one such structure, and this brought us to 
S V  machines. New structures of this kind will probably result in new types 
of learning machines. 
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9.5 WHAT IS IMPORTANT IN THE THEORY FOR 
CONSTRUCTING LEARNING ALGORITHMS? 

The algorithms for learning should be d l  controlled. This means that one 
has to control two main parameters responsible for generalization ability: 
the value of the empirical risk and the VC dimension o f t  he smallest element 
of the structure that contains the chosen function. 

The SV technique can be considered as an effective tool for contrd- 
ling them two parameters if structures are defined on the sets of linear 
functions in some high-dimensional feature space. This technique is not 
restricted only to the sets of indicator functions (for solving pattern recog- 
nition problems). At the end of Chapter 5 we described the generalization 
of the SV m e t h d  for solving regression problems. In the framework of 
this generalization, using a special convolution function one can construct 
high-dimensional spline functions belonging to the subset of splines with 
a chosen VC dimension. Using different convolution functions for the in- 
ner product one can also construct different types of functions nodinear in 
input spacem4 

Moreover, the SV technique goes beyond the framework of learning t h e  
ory. It admits a getlerd point of view as a new type d parameterization of 
sets of functions. 

The matter is that in solving the function estimation probhms in both 
computational statistics (say pattern recognition, regression, dmsi ty esti- 
mation) and in computational mathematics (say, obtaining approximations 
to the solution to multidimensional (operator) equations of difFerent types) 
the first step is describing (parameterizing) a set of functions in which one 
is looking far a solution. 

In the first half of this century the main idea of parameterization (after 
the Weierstrass theorem) was polynomial series expansion. However, even 
in the onedimensional case sometimes one needs a few dozen terms for 
accurate function approximation. To treat such a series for solving many 
problems the accuracy of existing computers can be insufficient. 

Therefore, in the middle of the 1950s a new type of function parameter- 
ization w a  suggested, tho sxa l led  spline functions (piecewise polynomial 
functions). This type of parameterization allowed us to get an accurate 

4 ~ o t e  once more that advanced estimation techniques in statistics developed 
in the 1980s such as projection pursuit regression, MARS, hinging hyperplanes, 
etc in fact consider some special approximations in the sets of functions 

where al, . - . , GIN a m  scalars and WZ , . . . , WJV are vechrs, 
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solu tion for most one-dimensional {sometimes tw+dimensional) pro bbms. 
However, i t  often faiis in, say, the four-dimensional case. 

The SV parameterization of functions can be  used in high-dimensional 
space (recall that  for this parameterization the complexity of approximation 
depends on the number of support vectors rather than on the dimensional- 
ity of the space). By controlling the "capacityn of the set of functions one 
can control the "smoothnm" properties of the approximation. 

Tbis type of parameterization sbould be taken into account whenever 
one considers multidimensional problems d function mti mation (function 
approximation). 

Currently we have experience only in wing the SV technique for solving 
pattern recognition problems. However, theoretically there is no obstack to  
obtain using this technique the same high level of accuracy in  solving depen- 
dency estimation problem that  arise in different areas of statistics (such as 
regression stirnation, density estimation, conditional density estimation) 
and computational mathematics (such as solving some multidimensional 
linear operator equations). 

One can consider the SV technique as a new type of parameterization of 
multidimensional functions that  in many cases a l h  us to m r c o m e  the 
curse of dimensionalitym5 

9.6 WHAT IS THE MOST IMPORTANT? 

The learning problem be1ons to  the problems of natural science: There ex- 
ists a pbenomnon for which one has t o  comtruct a model. In the attempts 
to construct this model, theoreticians can choose one of two different p e  
sitions depending on which part of Hegel's formula (describing the general 
p hilcmphy of nature) they prefer: 

The  interpretation of the first part of this formula can be as follows. 
Somebody (say an experimenter) knows a model that describes reality, 
and the problem of tbe tbwretician is to prove that  this mode1 is rational 
(he should define as well what it means t o  be rational). For example, if 
somebody believes and can convince the theoretician tha t  mural networks 

'see footnote on page 170. 
"In Hegel's original assertion, the meaning of the  words "real" and "rational" 

does not coincide with the common meaning of these words. Nevertheless, at- 
cording to a remark of B. Russell, the identification of the real and the rational 
in a common sense l e d  to t h e  belief that "whatever is, is right." Russell did not 
accept this idea (see B. Russell, A Hisiory of Western Phziasaphg). However, we 
do interpret Hegel's formula as: ''Whatever exists is right, and whatever right is 
exists." 
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are good models of real brains, then the goal of the theoretician is to  prove 
that  this model is rational. 

Suppow that the theoretician considers the model to be urational" if it 
poswsses some remarkable asymptotic properties. In this case, the t h e  
retician succeeds if he or she proves (89 has been done) that  the learning 
process in neural networks asymptotically converges to  local extrema and 
that a sufficiently large neural network can approximate well any smooth 
function. The  conceptual part of such a theory will be wrnplde  if one can 
prove that the achieved local extremum is close to the global one. 

The econd position is a heavier burden for the theoretician: The  t h e  
retician has to  define what a rational model is, then has ta find thie model, 
and finally, the must convince the experimenters t o  prove that this model 
is real (describes reality). 

Probably, a rational model is one that  not o d y  has remarkable asymp 
totic properties but also possesses some remarkable properties in dealing 
with a given finite number of o h r v a t i ~ n s . ~  In this case, the small sample 
size philosophy is a useft11 tool for constructing rational models. 

The rational models can be so unusual that one needs to o v e r m e  prej- 
udices of common sense in  order to  find them. For example, we saw that 
the generalization ability of learning machines depends on the VC dimen- 
sion of the set of functions, rather than on the number of parameters that 
d d n e  the functions within a given set. Therefore, one can construct high- 
degree polynomials in  high-dimensional input space with good genmaliza 
tion ability. Without the theory far controlling the generalization ahility 
this opportunity would not be clear. Now the experimenters have to an- 
swer the question: Does generalization, as performed by real brains, include 
mechanisms similar to the  technology of support 

That is why the role of theory in studies of learning proc- can be 
more cunstructive than in many other branches of natural scieace. 

This, however, depends on the choice of the general position in studies 
of learning phenomeua. The choice uf the position r e f k t s  the belief of 
which in this specific area uf natural science is the main discoverer of truth: 
experiment or t heory. 

7 ~ a y b e  it has ta possess additional properties. Which? 
'The idea that the generalization, the definition of the importance of the 

observed facts, and starage of the impartant facts, are differmt w ~ t s  of the 
same hrain mechanism is very attractive. 
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