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Preface to the Second Edition

Four years have passed sincethefirst edition o thisbook. These yearswere
"fast time" in the development of new approachesin statistical inference
inspired by learning theory.

During this time, new function estimation methods have been created
where a high dimensionality of the unknown function does not always re-
quire alarge number of observations in order to obtain a geod estimate,
The new methods control generalization using capacity factorsthat do not
necessarily depend on dimensionality of the space.

These factors were known in the VC theory for many years. However,
the practical significance of capacity control has become clear only recently
after the appearance of support vector machines (SVM). In contrast to
classical methods of statistics where in order to control performance one
decreases the dimensionality of a feature space, the SVM dramatically in-
creases dimensionality and relies on the so-called large margin factor.

In the first edition of this book general learning theory including SVM
methodswas introduced. At that time SVM methodsof |earning were brand
new, some of them were introduced for a first time. Now SVM margin
control methods represents one of the most important directions both in
theory and application of learning,

In the second edition of the book three new chapters devoted to the
SVM methods were added. They include generalization of SVM method
for estimating real-valued functions, direct methods of learning hased on
solving (using SVM) multidimensional integral equations, and extension of
theempirical risk minimization principle and its application to SVM.

Theyearssincethefirst edition of the book have also changed the general



philosophy in our understanding the of nature of the induction problem.
After many successful experiments with SVM, researchers became more
determined in criticism of the classical philosophy of generalization based
on the principle of Occam’s razor.

Thisintellectual determination alse isavery important part of scientific
achievement. Note that the creation of the new methods of inference could
have happened in the early 1970: All the necessary elements of the theory
and the VM algorithm were known. It took twenty-five yearsto reach this
intellectual determination.

Now the analysis of generalization from the pure theoretical issues be-
come a very practical subject, and this fact adds important detailsto a
general picture of the developing computer learning problem described in
thefirst edition of the book.

Red Bank, New Jersey Vladimir N. Vapnik
August 1999



Preface to the First Edition

Between 1960 and 1980 a revolution in statistics occurred; Fisher's
paradigm, introduced in the 1920s and 1930s was replaced by a new one.
This paradigm refiects a new answer to the fundamental question:

What must one know a priori about an unknown functional dependency
IN order to estimate it on the basis of observations?

In Fisher's paradigm the answer was very restrictive—one must know
amost everything. Namely, one must know the desired dependency up to
thevauesd afinite number of parameters. Estimating the values of these
parameters was considered to be the problem of dependency estimation.

The new paradigm overcame therestriction of theold one. It was shown
that in order toestimate dependency from the data, It issufficient t o know
some general properties of the set of functions to which the unknown de-
pendency belongs.

Determining general conditions under which estimating the unknown
dependency is possible, describing the (inductive) principles that allow one
to find the best approximation to the unknown dependency, and finally
developing effective algorithms for implementing these principles are the
subjects of the new theory.

Four discoveries made in the 1960sled to the revolution:

(i} Discovery of regularization principles for solving ill-posed problems
by Tikhonov, Ivanov, and Phillips.

(i) Discovery of nonparametric statistics by Parzen, Rosenblatt, and
Chentsov.



(ii1) Discovery of the |aw of large numbers in functional space and its
relation to the learning processes by Vapnik and Chervonenkis.

(iv) Discovery of algorithmic complexity and its relation to inductive in-
ference by Kolmogorov, Solomonoff, and Chaitin.

These four discoveriesalso form a basis for any progressin studiesdf learn-
INg processes.

The problem of learning is so general that almost any question that
has been discussed in statistical science hasits analog in learning theory.
Furthermore, some very important general results were first found in the
framework Of learning theory and then reformulated in the terms of statis-
tics.

In particular, learning theory for the first time stressed the problem
of small sample statistics. It was shown that by taking into account the
size o the sample one can obtain better solutions to many problems of
function estimation than by using the methods based on classical statistical
techniques.

Small samplestatisticsin theframework of the new paradigm constitutes
an advanced subject of research both in statistical learning theory and in
theoretical and applied statistics. The rules of statistical inference devel-
oped in the framework of the new paradigm should not only satisfy the
existing asymptotic requirements but also guarantee that one does one's
best in using the available restricted information. The result of thistheory
is new methods of inference for various statistical problems.

Te develop these metbods (which often contradict intuition), a compre-
hensivetheory was built that includes:

(i) Concepts describing the necessary and sufficient conditions for con-
sistency d inference.

(i) Bounds describing the generalization ability of learning machines
based on these concepts.

(iii) Inductive inference for small sample 9zes, based on these bounds.

(iv) Methodsfor implementing this new type of inference.

Two difficulties arise when one tries to study statistical learning theory:
a technical one and a conceptual one—to understand the proofs and to
understand the nature of the problem, its philosophy.

To overcome the technical difficultiesone hasto be patient and persistent
in following the details of the formal inferences. _

To understand the nature of the problem, itsspirit, and its philosophy,
one hasto seetbe theory as awbole, not only as acollection of its different
parts. Understanding the nature of the problem is extremely important



because it leads to searching in the right direction for results and prevents
searching in wrong directions.

The god of this book is to describe the nature & statistical learning
theory. | would like to show how abstract reasoning implies new algorithms,
To make the reasoning easier to follow, | made the book short.

| tried to describe things as simply as possible but without conceptual
simplifications. Therefore, the book contains neither details of the theory
nar proofs of the theorems (both details of the theory and proofs of the the-
orems can befound (partly) in my 1982 book Estimation Of Dependencies
Based on Empirical Data (Springer) and (in full} in my book Statistical
Learning Theory (J. Wiley, 1998)). However, to describe the ideas with-
out simplifications | nseded to introduce new concepts (new mathematical
constructions) some of which are nontrivial.

The book contains an introduction, five chapters, informal reasoning and
comments an the chapters, and a conclysion.

The introduction describes the history of the study of the learning prob-
lem which is not as straightforward as one might think from reading the
main chapters.

Chapter 1 is devoted to the setting of the learning problem. Hre the
general model of minimizing the risk functional from empirical dataisin-
troduced.

Chapter 2 is probably bath the most important one for understanding
the new philosophy and the most difficult one for reading. In this cbapter,
the conceptual theory of learning processesis described. Thisincludes the
conceptsthat allow construction of the necessary and sufficient conditions
for consistency of the learning processes.

Chapter 3 describes the nonasymptotic theory of bounds on the conver-
gence rate of the learning processes. The theory of bounds is based on the
concepts abtained from the conceptual model of learning.

Chapter 4 isdevoted to atheory of small samplesixes. Here we introduce
inductive principles for small sample sizes that can control the generaliza-
tion ability.

Chapter 5 describes, along with classical neural networks, a new type of
universal learning machinethat isconstructed on the basis af small sample
sizes theory.

Comments on the chapters are devoted to describing the relations be-
tween classical research in mathematical statisticsand research in learming
theory.

In the conclusion seme open problems of learning theory are discussed.

Thebook isintended for awide ranged readers: students, engineers, and
scientists of different backgrounds (statisticians, mathematicians, physi-
cists, computer scientists). Its understanding does not require knowledge
of special branches of mathematics. Nevertheless, it is not easy reading,
since the book does describe a (conceptual) forest even if it does not con-



sider the (mathematical) trees.

In writing this book | had one more goal in mind: | wanted to stress the
practical power of abstract reasoning. The point is that during thelast few
years at different computer science conferences, | heard reiteration of the
following claim:

Complex theories do not work, simple algorithms do.

One o the goals of this book isto show that, at least in the problems
of statistical inference, thisisnot true. | would like to demonstrate that in
this areaof science agood old principle is valid:

Nothing is more practical than a good theory.

The book is not a survey of the standard theory. It is an attempt to
promote a certain point o view not only on the problem of learning and
generalization but on theoretical and applied statistics as a whole.

It is my hope that the reader will find the book interesting and useful.
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ntroduction:
—our Periods in the Research of the
_earning Problem

In the history of research of the learning problem one can extract four
periods that can be characterized by four bright events:

(i) Constructing the first learning machines,
(ii) constructing the fundamentals of the theory,
(iit) constructing neural networks,

(iv) constructing the alternatives to neural networks.

In different periods, different subjectsof research were considered to be im-
portant. Altogether this research forms a complicated (and contradictory)
picture of the exploration of the learning problem.

ROSENBLATT’S PERCEPTRON (THE 19608)

More than thirty five years ago F. Rosenblatt suggested the first model of
alearning machine, called the perceptron; this is when the mathematical
analysis Of learning processes truly began." From the conceptual point of

INote that discriminant analysis as proposed in the 1930= by Fisher actually
did not consider the problem of inductive inference (the problem of estimating the
discriminant rules using the examples). This happened later, after Rosenblatt’s
work. In the 1930s discrimirant anayss was considered a pmblem of construct-
ing a decision rule separating two categories of vectors using given probability
distribution functionsfar these categories of vectors.
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y = sign {(w *x) - b]

s o o M NI

(b)

(w*xj—b =0

FIGURE 0.1. (a) Model of a neuron.(b) Geometrically, a neuron defines two
regions in input space where it takes the dues —1 and 1. These regions are
separated Dy the hyperplane (w-z) - =0

view, the idea of the perceptron was not new. It had been discussed in
the neurophysiologic literature for many years. Rosenblatt, however, did
something unusual. Hedescribed the model as a program for computers and
demonstrated with simple experiments that this model can he generalized.
The perceptron was constructed t0 solve pattern recognition problems; in
thesimplest case this is the problem of constructing a rule for separating
data of t wo different categories using given examples.

The Perceptron Modd

To construct such a rule the perceptron uses adaptive properties of the
simplest neuron model (Rosenblatt, 1962). Each neuron is deseribed by
the McCulloch-Pitts model, according to which the neuron has n inputs
@ = (z',...,a") € X < R" and one output y € {—1,1} (Fig.0.1).The
output is connected with the inputs by the functional dependence

- y=sign{(w-x) -8},
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where (% - v) isthe inner product of t wo vectors, & is athreshold value, and
sign{u) = 1if « > 0 and sign{u} = —1if © < 0.

Geometrically speaking, the neuronsdividethespace X intotwo regions:
aregion where the output y takesthe value 1 and aregion where the output
y takes the value —1. These two regions are separated by the hyperplane

(w-x)—b=0,

The vector w and the scalar ¢ determine the position of the separating
hyperplane. During the learning processthe perceptron chooses appropriate
coefficients of the neuron.

Rosenblatt considered a model that is a composition of several neurons:
He considered several levels of neurons, where outputs of neurons of the
previous level are inputs for neurons of the next level [the output of one
neuron can be input to several neurons). The last level contains only one
neuron. Therefore, the (elementary) perceptron hasn inputs and one out-
put.

Geometrically speaking, the perceptron divides the space X into two
parts separated by a piecewise linear surface (Fig. 0.2). Choosing appro-
priate coefficients for all neurons of the net, the perceptron specifies two
regions in X space. These regions are separated by piecewise linear sur-
faces (not necessarily connected). Learning in this model means finding
appropriate coefficients for all neurons using given training data.

In the 1960s it was not clear how to choose the coefficients simultaneously
for all neurons of the perceptron (thesolution came twenty five yearslater).
Therefore, Rosenblatt suggested thefollowing scheme: to fix the coefficients
of all neurons, except for the last one, and during the training process to
try to find the coefficients of the last neuron. Geometrically speaking, he
suggested transforming the input space X into anew space Z (by choosing
appropriate coefficients of all neurons except for the last) and to use the
training datato construct aseparating hyperplane in the space Z.

Following the traditional physiological concepts of learning with reward
and pumishment stimulus, Rosenblatt propased a simple algorithm for it-
eratively finding the coefficients.

Let

(El, yl)& trey (‘Tfsyf)

be the training data given in input space and let

(zl! yl)s ey (zfs yﬂ)

be the corresponding training datain Z (the vector z; isthe transformed
x;). At each time step k, let m e element of the training data befed into
the perceptron. Denote by w(k) the coefficient vector of the last neuron at
thistime. The algorithm consists of the following:
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(b)

FIGURE 0.2.(a) The perceptron is a composition of several neurons. (b) Gex
metrically, the perceptron definestwo regionsin input space where it takes tk
values —1 and L. These regions are separated by a piecewise linear surface.
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(i) If the next example of thetraining data zy41, ¥x4; is classified cor-
rectly, i.e.,
yept (wK) ... 2pq1) > 0,

then the coefficient vector of the hyperplane is not changed,
w(k + 1) = wik).
(ii) If, however, the next element is classified incorrectly, i.e.,

Ye+1 (wi(k} - 2x41) <0,
then the vector of coeflicients is changed according to the rule
wik 1) = wik) + yeprzeer.
(iit) The initial vector w is zero:
w(1) =0.

Using this rule the perceptron demonstrated generalization ability on sim-
ple examples.

Beginning the Analysis of Learning Processes

I n 1962 Novikoft proved the first theorem about the perceptron (Novikoff,
1962). This theorem actually started learning theory. It asserts that if

(i) the norm of the training vectors z is bounded by some constant
R (|z| < R);

(if) thetraining data can be separated with margin g:

supminy;(z; -w) > p;
w 1

(iii) the training sequenceis presented to the perceptron asufficient num-
ber of times,

then after at most
R2
vl ]
corrections the hyperplane that separates the training data will be con-
structed.

This theorem played an extremely Important role in creating learning
theory. It somehow connected the cause of generalization ability with the
principle of minimizing the number of errors on the training set. As we
will s in the last chapter, the expression [R*/g?] describes an impor-
tant concept that for a wide class of learning machines allows control of
generalization ability.
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Applied and Theoretical Analysis of Learning Processes

Novikoff proved that the perceptron can separate training data. Using ex-
actly the same technique, one can provethat if the data are separable, then
after a finite number of corrections, the Perceptron separatesany infinite
sequence of data (after the last correction the infinite tail of data will be
separated without error). Moreover, if onesupplies the perceptron with the

following stopping rule:

perceptron steps the learning process if after the correction
number k£ (k=1,2,...), the next

e = 1+2Ink—Inn
o ~In{l — &)

elements of the training data do not change the decision rule
(they are recognized correctly),

then

(1) the perceptron will stop the learning process during the first

1+4InZ —In 2
i< L " R_]
— =In(l—-&) |o?

steps,

(ii) by the stopping moment it will have constructed a decision rule that
with probability 1 — 5 has a probability of error' on the test set less
than ¢ (Aizerman, Braverman, and Rozonoer, 1964).

Because of these results many researchers thought that miniinizing the
error on the training st is the only cause of generalization (small proba-
bility of teat errors). Therefore, the analysis of learning processes was split
into two branches, call them applied analysis d learning processes and
theoretical analysis d learning processes,

The philosophy of applied analysis of the learning process can be de-
scribed as follows,

To get agood generalization it is sufficient to choose the coeffi-
cientsof the neuron that provide the minimal number of train-
ing errors. The principle of minimizing the number of training
errorsisaself-evident inductive prineiple, and from the practi-
cal point of view does not need justification. The main goal of
applied analysis is to find methods for constructing the coeffi-
cients simultaneously for | neurons such that the separating
surface provides the minimal number of errors on the training
data.
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The philosophy Of theoretical analysis of learning processesis different.

The principle o minimizing the number of training errors isnot
self-evident and needs to be justified. It iS possible that there
exists another iuductive principle that provides a better level
of generalization ability. The main goal of theoretical analy-
dsd learning processes is to find the inductive principle with
the highest level d generalization ability and to construct algo-
rithms that realize this inductive principle.

This book shows that indeed the principle of minimizing the number
d training errors is not self-evident and that there exists another more
intelligent inductive principle that provides a better | evel of generalization
ability.

CONSTRUCTION OF THE FUNDAMENTALS OF THE
LEARNING THEORY (THE 1960—19705)

As soon as the experiments with the perceptron became widely known,
other types d learning machines were suggested (such as the Madaline,
constructed by B. Widrow, or the learning matrices constructed by K.
Steinbuch; in fact, they started construction of special learning hardware),
However, in contrast to the perceptron, these machines were considered
from the very beginning as tools for solving rea-life problems rather than
a general model of thelearning phenomenon.

For solving real-life problems, many computer programs were also de-
veloped, including programs for constructing logical functions of different
types (e.g., decision trees, originally intended for expert systems ), or hid-
den Markov models(for speech recognition problems). These programs also
did not affect the study 0f the general learning phenomena.

The next step in constructing a general type of learning machine was
donein 1986 when the so-called back-propagation technique for finding the
weights simultaneously for many neurons was ueed. This method actually
inaugurated a new erain the history of learning machines. We will discuss
it in the next section. In this section we concentrate on the history of
developing the fundamentals of learning theory.

In contrast to applied analysis, where during the time between construct-
ing the perceptron (1960) and Implementing back-propagation technique
(1986) nothing extraordinary happened, these years were extremely fruit-
ful for developing statistical learning theory.
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Theory o the Empirical RSK Minimization Principle

As early as 1968, a philesophy of statistical |earning theory had been de-
veloped. The essential concepts of the emerging theory, VC entropy and
VC dimension, had been discovered and introduced for the set of indicator
functions (i.e., for the pattern recognition problem). Using these concepts,
the law of large numbers in functional space (necessary and sufficient con-
ditions for uniform convergence of the frequencies to their probabilities)
was found, its relation to learning processes was described, and the nai n
nonasymptotic bounds for the rate of convergence were obtained (Vapnik
and Chervonenkis, 1968); complete proofs were published by 1971 (Vapnik
and Chervonenkis, 1971). The obtained bounds made the introduction of
a novel inductive principle possible (structural risk minimization inductive
principle, 1974), completing the development of pattern recognition learn-
ing theory- The new paradigm for pattern recognition theory was summa-
rized in a monograph.?

Between 1976 and 1981, the results, originally obtained for the set of
indicator functions, were generalized for the set of real functions. the law
of large numbers (necessary and sufficient conditions for uniform conver-
gence of means to their expectations), the bounds on the rate d uniform
convergence botli for the set of totally bounded functions and for the set
of unbounded functions, and the structural risk minimization principle. In
1979 these results were summarized in a monograph® describing the new
paradigm for the general problem df dependencies estimation.

Finally, in 1989 necessary and sufficient conditions for consistency? of the
empirical risk minimization inductive principle and maximum likelihood
method were found, completing theanalysis of empirical risk minimization
inductive inference (Vapnik and Chervonenkis, 1989).

Building on thirty years of analysis of learning processes, in the 1990s
the synthesis of novel learning machines controlling generalization ability
began.

These results were inspired by the study o learning processes. They are
the main subject of the book.

4y, Vapnik and A. Chervonenkis, Theory of Pattern Recognition (in Russian),
Nauka, Moscow, 1974-

German trandation: W.N. Wapnik, A.Ja. Tscherwonenkis, Theorie der Zei-
denerkennung, Akademia—Verlag, Berlin, 1979.

SV.N. Vapnik, Estimation of Dependencies Based on Empirical Data (in RUS-
sian), Nauka, Moscow, 1979.

English trandation: Vladimir Vapnik, Estimation o Dependencies Based on
Iimpirical Data, Springer, New York, 1982

*Convergencein probability to the best possible result. An exact definition of
consistency Isgiven in Section 2.1.
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Theory of Solving 111-Posed Problems

Inthe 1960s and 1970s, in various branches of mathematics, several ground-
breaking theories were developed that became very important for creating
a new philosophy. Below we list some of these theories. They also will be
discussed in the Comments on the chapters.

Let us start with the regularization theory for the solution of so-called
ill-p o d problems.

In the early 1900s Hadamard observed that under some (very general)
circumstancesthe problem of solving (linear) operator equations

Af=F, feF

(finding f € 3that satisfies the equality), is ill-posed; even if there exists
a uniquesolution to thisequation, asmall deviation on theright-hand side
of thisequation (Fy instead o F, where ||F — Fsif < § isarbitrarily small)
can cause large deviationsin the solutions (it can happen that |{fs — f|| is
large).

I n thiscase if the right-hand side F of the equation is not exact (e.g., it
equals Fs, where £ differsfrom F by somelevel é of noise), the functions
fs that minimize the functional

R(f) = [|Af — Fs||*

do not guarautee a good approximation to the desired solution even if &
tends to zero.

Hadamard thought that ili-posed problems are a pure mathematical phe-
nomenon and that al real-life problems are "well-pod." However, in the
second half of the century a number of very important rea-life problems
were found to be ill-posed, In particular, ill-posed problems arise when
onetriesto reverse the cause—effect relations: to find unknown causes from
known consequences. Even if the cause—effect relationship forms a one-to-
one mapping, the problem of inverting it can be ill-posed.

For our discussion it isimportant that oned nrain problemsd statistics,
estimating the density function from the data, is ill-posed.

In the middle of the 1960s it was discovered that if instead of tlie func-
tional R(f) oneminimizes another so-called regularized functional

R*(f) = [|Af — F|* + ¥(0): ),

where Q(f) is some functional (that belongs to a special type of function-
al ~and (&) is an appropriately chosen constant (depending on the level
of noise), then one obtains asequence of soluticns that convergesto the de-
sired one as & tends to zero (Tikhonov, 1963), (Ivanov,1962}), and (Phillips,
1962).

Regularization theory was oneof the first signs of the existence of intel-
ligent inference. It demonstrated that whereas the "self-evident" method
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of minimizing the functional R{f) does not work, the not "self-evident"
method of minimizing the functional R&*{ f} does.

The influenced the philosophy created by the theory of solving ill-pod
problems is very deep. Both the regularization philosophy and the regu-
larization technique became widely disseminated in many areas of science,
including stati stics.

Nonparametric Methods of Density Estimation

In particular, the probiem of density estimation from arather wide set of
densities is ill-pased. Estimating densities from some narrow set of densi-
ties (say from aset of densities determined by afinite number of param-
eters, i.e., from a so-caled parametric set of densities) vias the subject o
the classical paradigm, Were a “self-evident” type of inference (the max-
imum likelihood method) was used. An extension of the set of densities
from which one has to estimate the desired one makes it impossible to
use the "sdf-evident" type of inference. To estimate a density from the
wide (nonparametric) Set requires a new type of inference that contains
regularization techniques. In the 1960s several such typesd (nonparamet-
ric) algorithms were suggested (M. Rosenblatt, 1956), (Parzen, 1962}, and
(Chentsov, 1963); in the middle of the 1970s the general way for creating
these kinds of algorithms on the basis of standard procedures for solving
ill-posed problems was found {Vapnik and Stefanyuk, 1978).

Nonparametric methods d density estimation gaverise to statistical a-
gorithms that overcame the shortecomings of the classica paradigm. Now
one could estimate functions from a wide set of functions.

One hasto note, however, that these methods ar e intended for estimating
afunction using large sampl e sizes.

The Idea of Algorithmic @R

Finally, in the 1960s one of the greatest ideas of statistics and informa-
tion theory was suggested: theideadf algorithmic complexity (Solomonoff,
1960), (Kolmogorov, 1965), and (Chaitin, 1966). Two fundamental ques-
tions that at first glance look different inspired this idea:

(i) What is the nature of inductive inference (Solomonoff)?
(i} What isthe nature of randomness (Kolmogorov), (Chaztin)?

The answers to these questions proposed by Solomonoff, Kolmogorov,
and Chaitin started the information theory approach to the problem d
inference.

Theideadof the randomness concept can be roughly described as follows:
A rather large string o data forms a random string if there are no algo-
rithms whose complexity is much less than £, thelength d thestring, that
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can generatethisstring. The complexity of an algorithm isdescribed by the
length of thesmallest program that embodies that algorithm. It was proved
that the concept of algorithmic complexity is universa (it is determined
up to an additive constant reflecting the type of computer). Moreover, it
was proved that if thedescription of the string cannot be compressed using
computers, then the string possesses all properties of a random sequence.

This implies the idea that if one can significantly compress the descrip-
tion of the given string, then the algorithm used describes intrinsic prop-
erties O the data.

In the 1970s, on the basis of these ideas, Rissanen suggested the mini-
mum description length (MDL) inductive inference for learning problems
(Rissanen, 1978).

In Chapter 4 we consider this principle.

All these new ideas are still being developed. However, they have shifted
the main understanding as to what can be done in the problem of depen-
dency estimation on the basisdf alimited amount of empirical data.

NEURAL NETWORKS (THE 1980s)

Idea of MNewral Networks

In 1986 several authors independently proposed a method for simultane-
ously constructing the vector coeflicients for all neurons of the Perceptron
using the so-called back-propagation method {LeCun, 1986), (Rumelhart,
Hinton, and Williams, 1986). The idea of this method is extremely sim-
ple If instead of the McCulloch—Pitts model o the neuron one considers a
slightly modified model, where the discontinuous function sign {(w . x) — &}
is replaced by the continuous so-called sigmoid approximation (Fig. 0.3)

y=5{(w-x)—b}
(here 5{u) is a monotonic function with the properties
S{~—x)=-1, S(+x}) =1

e.g., S(u) = tanhu), then the composition of the new neurons is a Con-
tinuous function that for any fixed z has a gradient with respect to all
coefficients d -all neurons. In 1986 the method for evaluating this gradi-
ent was found.® Using the evaluated gradient one can apply any gradient-
based teclinique for constructing a function that approximates the desired

—

°>The back-propagation method was actually f ound in 1963fa solving some
control problems {Brison, Denham, and Dreyfuss, 1963) and was rediscovered for
perceptrons.
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S {(u}

FIGURE 0.3. The discontinuous function sign{x) = +1 is approximated by the
smooth function S(u}).

function. Of course, gradient-based techniquesonly guarantee finding local
minima. Nevertheless, it looked as if the main idea of applied analysis of
learning processes has been found and that the problem was in itsimple-
mentation.

Simplification of the Goals of Theoretical Analysis

The discovery of the back-propagation technique can be considered as the
second birth of the Perceptron. This birth, however, happened in a can-
pletely different situation. Since 1860 powerful computers had appeared,
moreover, Nnew branches of science had became involved in research on the
learning problem. This essentially changed the scale and the style of re-
search.

I n spite of the fact that o m cannot assert for surethat the generalization
properties of the Perceptron with many adjustable neurons is better than
the generalization properties of the Perceptron with only one adjustable
neuron and approximately the same number of free parameters, the scien-
tific community was much more enthusiastic about this new method due
to the scale df experiments.

Rosenblatt’s first experiments were conducted for the problem of digit
recognition. To demonstrate the generalization ability of the perceptron,
Rosenblatt used training data consisting of several hundreds o vectors,
containing several dozen coordinates. In the 1980s and even now in the
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1990s the problem d digit recognition learning continues to be important.
Today, in order to obtain good decision rules one uses tens (even hundreds)
of thousands d observations over vectors with several hundreds d coordi-
nates. This required special organization of the computational processes.
Therefore, in the1980sresearchers in artificia intelligence becamethe main
players in the computational learning game. Among artificial intelligence
researchers the hardliners had considerable influence. (It is precisdy they
who declared that "Complex theories do not work; simple algorithms do.")

Artificial intelligence hardliners approached the learning problem with
great experience in constructing “simple algorithms” for the problemswhere
theory is very complicated. At theend df the 1960s computer natural lan-
guage translators were promised within a couple of years (even now this
extremely complicated problem is far from being solved); the next project
was constructing a general problem solver; after this came the project of
constructing an automatic controller of large systems, and so on. All of
these projects had little success. The next problem to be Investigated was
creating a computational |earning technology.

First the hardliners changed the terminology. In particular, the percep-
tron was renamed a neural network. Then it was declared a joint research
program with physiologist, and the study d the learning problem became
less general, more subject oriented. In the 1960s and 1970s the main goal of
research was finding the best way for inductive inferencefrom small sample
sizes. In the1980s the goal became constructing a model of generalization
that uses the brain.'

The attempt to introduce theory to the artificial intelligence community
vas made in 1984 when the probably approximately correct (PAC) model
was suggested." This model isdefined by a particular case of the consis-
tency concept commenly used in statistics in which some requirements on
computational complexity were incorporated®

Inspited thefact that almost all results in the PAC model were adopted
from statistical learning theory and constitute particular casesd oned its
four parts {(namely, the theory d bounds), this model undoubtedly had the

°COF courseit isvery interesting to know how humanscan learn. However, this
is not necessarily the best way for creating an artificia learning machine. 1¢ has
been noted that the study of birdsflying war, not very useful for constructing the
airplane,

"L.G. Vdiant,1984, "A theory of learnability,” Commun. ACM 27(11), 1134~
1142.

®“¥f the computatlonal requirement is removed from the definition then we
are left with the notion o nonparametric inference in the sense of statistics, as
discussed in particular by Vapnik.” (L. Vdiant, 1991, “A view of computatlonal
learning theory," in the book Computationand Cognition™, Society for Industrial
and Applied Mathematics, Philadel phia, p. 36.)
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merit d bringing the importance of statistical analysis to the attention of
the artificial intelligence conumunity. This, however, was not sufficient to
influence the development o new learning technologies.

Almost ten years have passed since the perceptron was born a second
time. From the conceptual point of view, its second birth was less impor-
tant than thefirst one. In spite d important achievements in some specific
applications using neural networks, the theoretical results obtained did not
contribute much to general learning theory. Also, N0 new interesting learn-
ing phenomena were found in experiments with neural nets. The sc-called
overfit ting phenomenon observed in experiments is actually a phenomenon
of “false structure” known in the theory for solving ill-posed problems.
From the theory of sclving ill-posed problems, tools were adopted that
prevent overfitting — using regularization techniques in the algorithms.

Therefore, almost ten years of research in neural mets did not substan-
tially advance the understanding o the essence of learning processes.

RETURNING TO THE ORIGIN (THE 19908)

In tke last couple of years something has changed in relation to neural
networks.

More attention is now focused on the alternatives to neural nets, for ex-
ample, agreat deal of effort has been devoted to thestudy of theradial basis
functions method (see the review in (Powell, 1992})). Asin the 1960s, neu-
ral networks are called again multilayer perceptrons. The advanced parts
d statistical learning theory now attract more researchers. In particular
in the last few years both the structural risk minimization principle and
the minimum description length principle have become popular subjects of
analysis. The discussions on small sample sze theory, in contrast to the
asymptotic one, became widespread.

It looks asif everything is returning to its fundamentals.

In addition, statistical learning theory now plays a more activerole: After
the completion of the general analysisdf learning processes, the research in
the area of the synthesis of optimal algorithms (which possess the highest
level Of generalization ability for any number of abservations) was started.
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These studies, however, do not belong to history yet. They are asubject
of today's research activities.'

*This remark was Was made in 1995. However, after the appearance of the
first edition o this book important changes took place in the development of
new methods of computer learning.

In thelast five years new ideashave appeared in learning methodology inspired
by statistical learning tleory. In contrust to old ideas of constructing learning d-
gorithms that were inspired by a biologica analogy to the learning process, the
new ideas were inspired by attempts to minimize theoretical houndson theerror
rate obtained as a result of formal analysis of the learning processes. These ideas
(which often imply methods that contradict the old paradigm} result in algo-
rithms that have not only nice mathematical properties (such as unigqueness of
the solution, simple method of treating alarge number of examples, and indepen-
denceof dimensianality of the input space) but also exibit excellent performance:
They outperform the state-of-the-art solutions obtained by the old methods.

Now a new methodological situation in the learning problem has developed
where practical methods are the result of a deep theoretical analysis of the sta-
tistical boundsrather than the resilt of inventing new smart heuristics.

This fact hasin many respects changed the character of the learning problem.






Chapter 1
Setting of the Learning Problem

In this book we consider the learning problem as a problem of finding a
desired dependence using a fimited number of observations.

1.1 FUNCTION ESTIMATION MODEL

We describe the general model of learning from examples through three
components (Fig.1.1):

(i) A generator {G) of random vectors X € R™, drawn independently
from a fixed but unknown probability distribution function F(z).

(ii) A supervisor {§) who returnsan output value  to every input vector
X, according to aconditional distrihution function* F{y|z), also fixed
but unknown.

(ili) A learning machine (LM) capable of implementing a st of functions
flz,a), e A, where A isa set of parameters?

The problem d learning is that of choosing from the given set of functions
f('.t,cr),' ac< A, theonethat best approximates the supervisor's response.
-___—'—-—-—

“This is the generd case, which i ncl udes the case WEre the supervisor uses a
function y = f{(x).

“Note that the elements a € A are not necessarily vectors. They can be any
abstract paraneters. Therefore, we in fact consider any S&t d functions.
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FIGURE 1.1. A modd of learning from examples, During the learning process,
the learning machine observesthe pairs (z,%) (the training set). After training,
the machine must on any given x return avaue g. Thegod is te return a value
g that is close to the supervisor's response y.

The selection of the desired function is based on atraining set. of ¢ inde-
pendent and identically distributed (i.i.d.) observations drawn according to
F(z,y) = F(z)F(ylx):

(1) -, (Ze, ¥e)- (1.1)

1.2 THE PROBLEM OF R K MINIMIZATION

In order to choose the best available approximation to the supervisor's
response, one measures the loss, or discrepancy, L{y, f(X,a)) between the
response y of the supervisor to a given input z and the response f(s.a)
provided by thelearning machine. Consider the expected value of the loss,
given by the risk functional

R(a) = f Ly, f (&, 0))dF (2, 1) (1.2)

Thegoal istofind the function f{xz,ap) that minimizes the risk functional
R{(a) (over the class of functions f{x,«), @ € A) in the situation where
the joint probability distribution function F(z,¥) is unknown and the only
available information is contained in the training set (1.1).

1.3 THREE MAIN LEARNING PROBLEMS

This formulation of the learning problem israther broad. It encompasses
many specific problems. Consider the main ones: the problems of pattern
recognition, regression estimation, and density estimation.
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1.8.1 Pattern Recognition

Let the supervisor's output y take only two values ¥y = {0,1} and let
f(x,a), a € A, be aset of indicator functions (functions which take only
two values: zero and one). Consider the following loss function:

Li, {(z,0)) = { AP Ao (1.3)

For thisloss function, the functional (1.2) determines the probability o
different answers given by the supervisor and by the indicator function
flx, o). We cdll the case o different answers a classification error.

The problem, therefore, isto find afunction that minimizes the probabil-
ity of classification error when the probability measure F(x, %) is unknown,
but thedata (1.1) are given.

1.3.2 Regression Estimation

Let the supervisor's answer ¥ be areal value, and let f{z,a),ac A, bea
set of real functions that contains the regression function

f(z,a0) = f y dF(ylz).

It is known that the regression function is the one that minimizes the
functional (1.2) with the following loss function:®

Liy f(z,0)) = (y ~ f(z, a))". (1.4)

Thusthe problem of regression estimation is the problem of minimizingthe
risk functional {1.2) with theloss function (1.4) in the situation where the
probability measure F{z,y) is unknown but the data (1.1) are given.

1.3.3 Density Estimation (Fisher-Wald Setting)

Finally, consider the problem of density estimation from theset of densities
p(z,a),a € A. Fr this problem we consider the following loss function:

Lip(z,a)) = _logp(z, a). (1.5)

°H the regression function f(x) does not belong to f(z,).c € A, then the
function f(x, @) minimizing the functional (1.2) with loss function (1.4) is the
closest to the regression in the metric La(F):

p(f(z), f(z,a0}) = »‘/ (fx) - f(z: a0))?dF (z).
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It is known that the desired density minimizes the risk functional (1.2)
with theloas function (1.5).Thus, again, to estimate the density from the
data one has to minimize the risk functional under the condition that the
corresponding probability measure F(z) isunknown, but i.i.d. data

I].,....,.Tﬂ

are given.

1.4 THE GENERAL SETTING OF THE LEARNING
PROBLEM

The general setting d the learning problem can be described as follows.
L et the probability measure F(z) be defined on the space Z. Consider the
set of functions @(z,a), a € A . Thegoeal isto minimizethe risk functional

R{a) = fQ(z,a)dF(z), @€ A, {1.6)

where the probability measure F{z}) isunknown, but an i.i.d. sample
S PRI, (1?)

isgiven.

The |earning problems considered above are particular cases of this gen-
eral problem of ménimizing the risk functional (1.6) on the basis Of empirical
data {1.7), where z describes a pair {z,%) and Q(z,a) is the specific loss
function {e.g., one d {1.3), (1.4), or (1.5)). In the following we will de-
scribe the results obtained for the general statement o the problem. To
apply them to specific problems, one has to substitute the corresponding
loss functions in the formulas obtained.

1.5 THE EMPIRICAL RISK MINIMIZATION (ERM)
INDUCTIVE PRINCIPLE

I n order to minimize therisk functional (1.6) with an unknown distribution
function F(z}, the foliowing inductive principle can be applied:

{i) The risk functional R{«) isreplaced by the so-called empirical risk
functional

£
. Remp(a) = % Z Q(zh Cl’) (]"8)

constructed on the basis of the training set (1.7).
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(ii) One approximatesthe function Q(z,ag) that minimizes risk {1.6) by
the function Q{z, a¢) minimizing the empirical risk {1.8).

This principle iscalled the empirical risk minimization inductive principle
(ERM principle).

We say that an inductive principle defines a learning process if for any
given set d observations the learning machine chooses the approximation
using this inductive principle. In learning theory the ERM principle plays
a crucial role.

The ERM principle is quite general. The classical methods for the solu-
tion of aspecific learning problem, such as the 'least-squares method in the
problem of regression estimation or the maximum likelihood (ML) method
in the problem of density estimation, are realizations of the ERM principle
for the specific loss functions considered above.

Indeed, by substituting thespecific lossfunction (1.4) in (1.8) oneobtains
the functional to be minimized

£
Bamp(0) = 5 (05— (i, 0,
i=1

which forms the least-squares method, while by substituting the specific
loss function (1.5)in (1.8) one obtains thefunctional to be minimized

Rempla) = —= Zlnp(:ch&)

Minimizing thisfunctional isequivalent to the ML method (thelatter uses
aplussign on the right-hand side).

1.6 THE FOUR PARTS OF LEARNING THEORY

Learning theory has to address the following four questions:

(i) What are (necessary and sufficient) conditions for consistency of o
learning process based on the ERM principle?

(i) How fast isthe rate of convergence of the learning process?

(i) HOW can one control the rate of convergence (the generalization abil-
ity) of the learning process?

(iv) HOW can one construct algorithms that can control the generalization
ability?

The answers to these questions form the four parts of learning theory:
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(i) Theory of consistency of learning processes.

(ii) Nonasymptotic theory of the rate d convergence of learning pro-
cesses.

(ili) Theory of contrallingthe generalization ability of learning processes.
{iv) Theory of constructing learning algorithms.
Each of these four parts will be discussed in the following chapters.
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The setting of learning problems given in Chapter 1 reflects two major
requirements:

(i) To estimate the desired function from a wide set of functions.

(i) To estimate the desired function on the basisof alimited number of
examples.

The miethods developed in the framework of the classical paradigm {cre-
ated in the 1920s and 1930s) did not take into account these requirements.
Therefore, in the 1960s considerable effort was put into both the general-
lzation of classical results for wider sets of functions aud the iniprovement
of existing techniques of statistical inference for small sample sizes. In the
following we will describe some of these efforts.

1.7 THE CLASSICAL PARADIGM OF SOLVING
LEARNING PROBLEMS

In theframework of the classical paradigm &l models of function estimation
are based on the maximum likelihood method. It forms an inductiveengine
In the classical paradigm.
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1.7.1 Density Estimation Problem (ML Method)

Let p(z,a),a € A, be aset of density functions where (in contrast to the
setting of the prohlem described in this chapter) the set A is necessarily
contained in R™ (ais an n-dimensional vector). Let the unknown density
plz, ag) belongstothisclass. The problem isto estimate thisdensity using
iid. data

b7} P of

(distributed according to this unknown density).

In the 1920s Fisher developed the ML method for estimating the un-
known parameters of the density (Fisher, 1952). He suggested approximat-
ing the unknown parameters by the values that maximize the functional

¢
L(a) = Zlnp(:.ct-,a}.

Under some conditions the ML method is consistent. In the next chapter
we use results on the law of large numbers in functional space to describe
the necessary and sufficient conditions for consistency of the ML method.
I n the following we show how by using the ML method one can estimate a
desired function.

1.7.2 Pattern Recognition (Discriminant Analysis) Problem

Using the ML technique, Fisher considered a problem of pattern recognition
(hecalled it discriminant analysis). He proposed the following model:

There exist two categories of data distributed according to two dif-
ferent statistical laws p; (X, a* )and po(x, 8*) (densities, belonging to
parametric classes). Let the probability of occurrence of thefirst cat-
egory of data be ¢; and the probability of the second category be
1—¢,. The problem is to find a decision ruis that minimizes the
probability of error.

Knowing these two statistical laws and the value g;, one can immediately
construct such arub; The smallest probability of error is achieved by the
decision rub that considers vector x as belonging to thefirst category if the
probability that this vector belongsto the firgt category isnot lessthan the
probability that this vector belongs to the second category. This happens
if the following inequality holds:

ap(z,a”) > (1—q1)pa(z,5%).

One considers this ruis in the equivalent form

f(z) = sign {lnpl{x, a* ) lmpy(z,8*) +In a qu) } ' (1.9)
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caled the diseriminant function (rule), which assigns the value 1 for rep-
resentatives of the first category and the value —1 for representatives of
the second category, To find the discriminant rule one has to estimate t wo
densities: py(x,a) and p=(X, 3).In the classical paradigm one uses the ML
method to estimatethe parameters a* and 3* of these densities.

1.7.83 Regression Estinati on Mod

Regression estimation in the classical paradigm isbased on another modsi,
the so-callsd model of measuring a function with additive noiseg;

Suppose that an unknown function has the parametric form

fo(z) = f(z,20),

where ap € A is an unknown vector of parameters. Suppose also
that at any point ; one can measure the value of thisfunction with
additive noise:

yi = flzi,a0) + &,

where the noise §; does not depend on z; and is distributed according
to a known density function p(€). The problem is to estimate the
function f(z, ap) from the set f(x,a),a € A, using the dataobtained
by measurements of the function f{z,eq) corrupted with additive
noi se.

In this model, using the observations of pairs

(mls yl)s 10y (:UE, yf)

one can estimate the parameters e of the unknown function f(x,aq) by
the ML method, namely by maximizing the functional

£
Lie) =Y lnply: — f{z:,a).
i=1

(Recall that p(£) isa known function and that £ = ¥ — f(z,ap).) Taking

the normal law
©=- e {-&
P& = e 2-:rexP 202

with zero mean and some fixed variance as a model d noise, one obtains
the least-squares method:

e
L*(a) = —2;2 Z(y,- — flzi,0))? — £In{+/270).
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Maximizing L* (o) over parameters a is equivalent tO minimizing the fune-

tional
£

M(a) =D (3 — f(z:,0))°
i=]
(the so-called least-squares functional).
Choosing other laws p{£), one can obtain other methods for parameter
estimation.

1.74 Narrowness of the ML Method

Thus, in the classical paradigm thesolutions to all problemsd dependency
estimation described in this chapter are based on the ML method. This
method, however, can fal in the simplest cases. Blow we demonstrate
that using the ML method it isimpossible to estimate the parametersof a
density that is a mixture of normal densities. To show thisit is sufficient
to analyze the simplest case described in the following example.

Example. Using the ML method it is impossible tO estimate a density
that isthe simplest mixture of two normal densities

plz,a,0) = 1 ex {—M}+ 1 ex {_m_z}
T eEr P 202 wor Pl 2

where the parameters (a, ) d only one density are unknown.
Indeed for any data z;, ..., xe and for auy given constant A, thereexists
such asmall o = g¢ that for a =z, thelikelihood will exceed A:

¢
Lia = x,00) = Zlnp(xi;a::cl,ao)

i=1

> (20.:/2?) " g‘“ (2;25 P {_%2 })

£ .2
= —Inag—Z%—fln2v‘2:rr> A.

i=2

“In 1964 P. Huber extended the classical modei of regression estimation by
Introducing the so-calied robust regresson estimation model. According to this
modei, instead of an exact modei of the noise p{¢), one is given a set of density
functions (satisfying quite general conditions) to which this funetion belongs.
The problem is to construct, for the given parametric set of functlons and for the
given set of density functions, an estimator that possesses the minimax properties
(providesthe best approximationfor the worst density from the set). The solution
to this problem actually has the following form: Choose an appropriate density
function and then estimate the parameters using the ML method (Huber, 1964).
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From this inequality one concludes that the maximum of the likelihood
does not exist, and therefore the ML method does not provide a solution
to estimating the parameters aand a.

Thus, the ML method can be applied only to a very restrictive set of
densities.

1.8 NONPARAMETRIC METHODS OF DENSITY
ESTIMATION

In the beginning of the 1960s several authors suggested various new meth-
ods, so-called nonparametric methods, for density estimation. The goal of
these methods wasto estimate adensity from arather wideset d functions
that is not restricted to be a parametric set of functions (M. Rosenblatt,
1957), (Parzen, 1962), and {Chentsov, 1963).

1.8.1 Parzen’s Windows

Among these methods the Parzen windows method probably is the most
popular. According to this method, onefirst hasto determine the so-cailed
kerne] function. For simplicity we consider a simple kernel function:

1 T - Tj
Kiz,z;v)= =K , TE€R",
@ %7) = 2 ( 5 )

where K{u) is asymmetric unimodal density function.
Using this function one determinesthe estimator

tun |

¢
p(a) =3y K(z,z:47).
i=]
in the 1970s a comprehensive asymptotic theory for Parzen—type noupara-

metric density estimation was developed (Devroye, 1985). It includes: the
following two important assertions:

(i) Parzen’s estimator is consistent (in the various metrics) for estimating
adensity from a very wide class of densities.

(ii) Theasymptoticrate of convergence for Parzen's estimator isoptimal
for "smooth" densities.

The same results were obtained for other types of estimators.

Therefore, for both classical models (discriminant analysis and regression
estimation) using nonparametric methods instead of parametric methods,
one can obtain a good approximation to the desired dependency if the
number of observations is sufficiently large.
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Experiments with nonparametric estimators, however, did not demon-
strate great advantages over old techniques. This indicates that nonpara-
metric methods, when applied to alimited numbers of observations, do not
possess their remarkabie asymptotic properties.

1.8.2 The Problem o Density Estimation IS |l|-Posed

Nonparametric statistics was developed as a number of recipes for density
estimation and regression estimation, To make the theory comprehensive
it was necessary to find a general principle for constructing and analyz-
Ing various nonparametric algorithms. 1n 1978 sucl a principle was found
(Vapnik and Stefanyuk, 1978).

By definition a density p{z) (if it exists) is the solution of the integral

equation

[ vty = F), (1.10)
where F{z) isaprobability distribution function. (Recall that in thetheory
d probability onefirst determimes the probability distribution function, and
then only if the distributien function is absolutely continuous can one define
thedensity function.)

The general formulation of the density estimation problem can be de-
scribed as follows: In the given set o functions {p(t}}, find one that is a
solution to the integral equation (1.10) for the case where the probabil-
ity distribution function F{z) is unknown, but we aregiven theii.d. data
X1,...,Tg,... Obtained aceording to the unknown distribution function.

Using these data one can construct a function that is very important in
statistics, the so-called empirical distribution function (Fig. 1.2)

L L
Fe(z) = 3 Zﬂ(ﬂ’ — i),

where #{u) is the step function that takes tbe value 1 if © > 0 and 0
otherwise.
The uniform convergence

suplF() - Fu(z)] 22 0
X =80

of the empirical distribution function Fi{z) to the desired function F(zx)
constitutes one of the most fundamental facts o theoretical statistics We
will discuss this fact several times, in the comments on Chapter 2 and in
the commentson Chapter 3.

Thus, the general setting of the density estimation problsm (comingfrom
tbe definition of a density) is the following:
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FIGURE 1.2. The empirical distribution function Fe{z) constructed from the
dataz,...,z; approximates the probability distribution function F{x).

Solve the integral equation (1.10) in the case where the proba-
bility distribution function is unknown, but i.i.d. &1,...,Z¢,...
datain accordance to thisfunction are given.

Using these data one can construct the empirical distribution function
Fy¢(x). Therefore, one has to solve the integral equation (1.10) for thecase
where instead d the exact right-hand side, one knows an approximation
that converges uniformly to the unknown function asthe number of obser-
vations increases.

Note that the problem of solving thisintegral equation in a wide class of
functions {p(¢)} isill-posed. This brings us to two conclusions:

(1) Generally speaking, the estimation o a density isa hard {ill-posed)
computational problsm.

(i) To solve this problem well one has to use regularization (i.e., not
"self-evident™) techniques.

It has been shown that all proposed nonparametric algorithms can be ob-
tained using standard regularization techniques (with different types of
regularizers) and using the empirical distribution function instead of the
usknown one (Vapnik, 1979, 1988).
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1.9 MAIN'PRINCIPLE FOR SOLVING PROBLEMS
USING .A RESTRICTED AMOUNT OF INFORMATION

We now formulate the main principlefor solving problemsusing arestricted
amount of inforination:

When solving a given problem, try to avoid solving a more generul prob-
lem as en intermediate step.

Although this principle is obvious, it is not easy to follow. For our prob-
lems of dependency estimation this principle means that to solve the prob-
lem of pattern recognition or regression estimation, one must try to find
the desired function "directly™ (in the next section we will specify what
this means) rather than first estimating the densities and then using the
estimated densities to construct the desired function.

Note that estimation of densities is a universal problem of statistics
(knowing the densitiesone can solve various problems). Estimation o den-
dgtiesin general is an ill-posed problem; therefore, it requires many of ob-
servations in order to be solved well. In contrast, the problems that we
really need to solve (decision rule estimation or regression estimation) are
quite particular ones; often they can be solved on the basisof a reasonable
number of observations.

Toillustrate thisideslet usconsider thefollowingsituation. Suppose oue
wants to construct adecision rule separating two setsd vectors described
by two normal laws: N {1, £1) and N(ua, 53). In order to construct the dis-
criminant rule (1.9}, one has to estimate from the data two n-dimensionai
vectors, the means g and g2, and two n x n covariance matrices ¥, and
¥.5. As aresult one obtains a separating polynomial o degree two:

f(x) = sign {%(a:  m)TE (e = ) = 5 (2= o) E7 ) - C},

[ 4] 01
¢=n |32 nl“th’
containing (7 + 3)/2 coefficients. To construct a good discriminant rule
from theparameters of the unknown normal densities, one needs to estimate
the parameters d tbe covariance matrices with high accuracy, since the
discriminant function uses inverse covariance matrices (in general, the esti-
mation of adensity isan ill-posed problem; for our parametric caseit can
giveill-conditioned covariance matrices). To estimate the high-dimensional
covariance matrices well one needs an unpredictably large (depending on
the properties of the actual covariance matrices) number of observations.
Therefore, in high-dimensional spacesthegeneral normal discriminant func-
tion (constructed from two different normal densities) seldom succeedsin
practice. In practice, the linear discriminant function that occurswhen the
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two covariance matrices coincide isused, &, = 3g = X

f(z) = sign {(m —p) T %(#TE“IM) - %(#52“‘#2) +lns f{l{h }
(in this case one has to estimate only n parameters d the discriminant
function).

It is remarkable that Fisher suggested tO use the linear discriminant
function even if the two covariance matrices were different and proposed a
heuristic method for constructing such functions (Fisher, 1952).5

In Chapter 5 we solve a specific pattern recognition problem by con-
structing separating polynomials (up to degree 7) i n high-dimensional (256)
space. Thisisaccomplished only by aveiding the solution of unnecessarily
general problems.

1.10 MODEL MINIMIZATION OF THE RISK BASED
ON EMPIRICAL DATA

| n what follows we argue that the setting of learning problems given in this
chapter alows us not only to consider estimating problems in any given
set o functions, but a so to implement the main principle for using small
samples: avoiding the solution of uunecessarily general problems*

1.10.1 Pattern Recognition

For the pattern recognition problem, the functional {1.2) evaluates the
probability of error for any function d the admissible set of functions. The
problem isto usethe sampletofind the function from theset of admissible
functions that minimizes the probability of error. This is exactly what we
want to obtain.

1.10.2 Regression Estumation

In regression estimation we minimize functional (12) with loss function
(1.4). Thisfunctional can be rewritten in the equivalent {orm

Rla) = f (y — §(z.0))2dF(z,y)

*In t he 1960s the problemof constructing the best linear discriminant function
(In the case where a quadratic function is optimal) was solved {Andersen and
Bahadur, 1966). For solvi n?( real-life problems the linear discriminant functions
usually are usad even if it is known that the optimal sclution belongs te quadratic
discriminant functions.
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= f(f(x,) fol(®))2dF(z j<y fol@))?dF(z,y)(1.11)

where fo{x) is the regression function. Note that the second term in (1.11)
does not depend on the chosen function. Therefore, minimizing this func-
tional is equivalent to minimizing the functional

R'{a) = f(f(m,a) — fg(x}}zdF(mr).

The last functional equals the squared Ly(F} distance between a function
d the set of admissible functions and the regression. Therefore, we con-
sider the following problem: Using the sample, find in the admissible set o
functions the closest one to the regression (in metrics Lo F)).

If one accepts the La(F) metrics, then the formulation of the regression
estimation problem (minimizing R{«})} is direct. (It doesnot requiresolving
a more general problem, for example, finding F(z,y)}}.)

1.10.3 Density Estination
Finally, consider the functional

—_— f In p(t, @)}dF (L) = — f po(t) In p(t, a)dt

L et usadd to this funectional a constant (afunctional that does not depend
on the approximating functions)

= / In po (DYdF (L),

wherepq(t} and F(t) arethedesired density and its probability distribution
function. We obtain

R'a) = _ f In p(t, )dF(t) + f In po(£)dF(t)
P, a)
R f in 25 S ooty

The expression on the right-hand side is the so-called Kullback—Leibler
distance that is used in statistics for measuring the distance between an
approximation of a density and the actual density. Therefore, we consider
the following problem: In the set of admissible densities find the closest
to the desired one in the Kullback—Leibler distance using a given sample.
If one accepts the Kuilback-Leibler distance, then tbhe formulation of the
problem is direct.

Theshort form of the setting of all these problems isthe general model
of minimizing therisk functional on the basis of empirical data.
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1.11 STOCHASTIC APPROXIMATION INFERENCE

To minimize the risk functional on the basis of empirical data, we con-
sidered in Chapter 1 the empirical risk minimization inductive principle.
Here we discuss another general inductive principle, the so-cailed stochas-
tic approximation method suggested in the 1950s by Robbins and Monroe
(Robbins and Monroe, 1951}.

According to this principle, t0 minimize the functional

R(a) = j Q(2,0)dF(2)

with respect to the parameters e using i.i.d. data
2)y0..,28
one uses the following iterative procedure:
aolk + 1) = a(k) — v grad, Xz, a(k)), k=1,2...,¢ (1.12)

where the number of steps is equal to the number of observations. It was
proven that this method is consistent under very general conditionson the
gradient grad, ¢Xz,a) and the values .

Inspired by Novikoff’s theorem, Ya.Z. Tsypkin and M.A. Aizerman started
discussions on consistency of learning processesin 1963 at the seminars o
the Moscow Institute d Control Science. Two general inductive principles
that ensure consistency of learning processes were under investigation:

(i) principled stochastic approximation, and
(it} principle of empirical risk minimization.

Both inductive principles were applied to the general problem of mini-
mizing the risk functional {I1.6} using empirical data. As aresult, by 1971
two different types of general learning theories had been created:

(i) The general asymptotic learning theory for stochastic approzimation
inductiveinference®( Aizerman, Braverman, and Rozonoer, 1965), (Tsyp-
kin, 1971, 1973).

(it} Thegenera nonasymptotic theory of pattern recognition for ERM in-
ductive inference (Vapnik and Chervonenkis, 1968, 1971, 1974). (By
1979 this theory had been generalized for any problem of minimiza-
tion of therisk on the basis of empirical data (Vapnik, 1979}.}

®In 1967 thistheory vies also suggested by S. Amari (Amari, 1967).
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The stochastic approximation principleis, however, too wasteful: It uses
one element of the training data per step (see(1.12}}. To make it wore
economical, one uses the training data many #imes (using many epochs).
In this case the following question arises immediately:

When does one have to stap the training process?

Two answers are possible:

(i} When for any element of the training data the gradient is so small
that the learning process cannot be continued.

(8) When thelearning process is not saturated but satisfiessome stopping
criterion.

It iseasy tosee that inthefirst case the stochastic approxiniation method is
just aspecial way d minimizing the empirical risk. The second case consti-
tutes aregularization method of minimizingtherisk functional.” Therefore,
in the “nonwasteful regimes" the stochastic approximation method can be
explained as either inductive properties of the ERM method or inductive
properties of the regularizationr method.

To complete the discussion on classical inductive inferences it is neces-
sary to consider Bayesian inference. I n order ta use thisinference one must
possess additional a priors informnation complementary to the st of para-
metric functions containing the desired one. Namely, one must know the
distribution function that describes the probability for any function from
the admissible st o functions tO be the desired one. Therefore, Bayesian
inference is based on using strong & prier information (it requiresthat the
desired function belongto the set of functions of the learnitig machine). In
thissense it does not define a general method for inference. Wewill discuss
thisinference later in the comments on Chapter 4.

Thus, alongwith the ERM inductive principle one can useother inductive
principles. However, the ERM principle (compared to other ones) looks
more robust (it uses empirical data better, it does not depend on a prior:
information, and there are clear ways to implement it).

Therefore, iz the analysis of learning processes, the key problem became
that of exploring the ERM principle.

'The reguiarizing property of the stopping criterion in iterative procedures o
solving ill-posed prohlems was observed in the 1950s even before theregul ari za
tion theory for solving ill-posed problems was developed.



Chapter 2

Consistency of Learning Processes

The goa of this part of the theory is to describe the conceptual model
for learning processes that are based on tbe empirical risk minimization
inductive principle. This part of the theory hasto explain when alearning
machine that minimizes empirical risk can achteve a small value of actual
risk (can generalize) and when it cannot. In other words, the goal of this
part is to describe necessary and sufficient conditions for the consistency
d learning processes that minimize the empirical risk.
Thefollowing question arises. .

Why do we need an asymptotic theory {consistency is an asymptotic con-
cept) if the goal is L0 consiruct algorithms for learning from a limited num-
be of observations?

The answer is asfollows:

To construct any theory one has to use some concepts in terms of which
the theory is developed. It is extremely important to use concepts that
describe necessary and sufficient conditions tor consistency. Thisguarantees
that the constructed theory is general and cannot be improved from the
conceptual point of view.

Themost important issuein thischapter is the concept of the VC entropy
of a set of functionsin terms of which the necessary and sufficient conditions
for consistency of learning processes are described.

Using this concept we will obtain in the next chapter the quantitative
characteristics on the rate of the learning process that we will use later for
constructing 'learning algorithms.



36 2. Consistency of Learning Processes
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FIGURE 2.1. The learning process is consistent if both the expected risks R{eer)
and the empirical risks Remp{as) converge to the minimal possibie value of the
risk, infaea R{c).

2.1 THE CLASSICAL DEFINITION OF CONSISTENCY
AND THE CONCEPT OF NONTRIVIAL CONSISTENCY

Let Q(z,¢) beafunction that minimizes theempirical risk functional

£
Remp = }E ZQ(;‘:{-:&)
t=1

for agiven set of i.i.d. observations 2, ..., 2.

Definition. We say that the principle (method) of ERM is consistent
for the set of functions }{z,a),a« A, and for the probability distribution
function F(z} if thefollowing two sequences converge in probability to the
same limit (Seethe schematic Fig.2.1}:

R(ay) ~ inf R(a), (2.1)
Remp(0te) . inf R(a). (22)

In other words, the ERM method isconsistent if it provides asequence of
functions Q(z,as), ¢£=1,2,..., for which both expected risk and empirical
risk converge to the minimal possible vaiue of risk. Equation (2.1) asserts
that the values of achieved risks converge tO the best possible, while (2.2}
asserts that one can estimate on the basis of the values of empirical risk
the minimal possible value of the risk.

The god of thischapter is to describe conditions of consistency for the
ERM method. Wewould liketo obtain these conditionsi ntermsof general
characteristics of the set of functions and the probability measure-
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0 z

FIGURE 2.2. A case of trivial consistency- The ERM method is inconsistent
on the set of functions Q(z,a),a € A, and consistent on the set of functions

{#(2)} U Q(z,0), @ € A.

Unfortunately, for the classical definition of consistency given above, ob-
taining such conditions isimpossible, since this definition includes cases of
trivial consistency.

What is a triviel case of consistency?

Suppose we have established that for some St of functions X{2,38), a €
A, the ERM method is not consistent. Constder an extended set of func-
tions that includesthis set of functions and one additional function, ¢{z).
Suppose that the additional function satisfiesthe inequality

inf Q(z,a) > ¢(z}, Vz.
ach

It is clear (Fig. 2.2) that for the extended set of functions (containing ¢(z))
the ERM method will be consistent. Indeed, for any distribution function
and for any number of observations, the minimum of the empirical risk
will be attained on the function ¢(z} that also gives the minimum of the
expected risk.

This example shows that there exist trivial cases of consistency that
depend on whether thegiven set of functionscontainsaminorizing function.

Therefore, any theory of consistency that uses the classical definition
must determinewhether acaseof trivial consistency ispossible. That means
that the theory should take into account the specific functionsin the given
set.

In order to create a theory of consistency of the ERM method that
would not depend on the propertiesof the elementsof the set of functions,
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hut would depend only on the general properties (capacity) of this st of
functions, we need to adjust the definition of consistency to exclude the
trivial consistency cases.

Definition. We say that the ERM method is nontrivially consistent
for the st of functions §}{z,a). o € A, and the probability distribution
function F(z} if for any nonempty subset A(e)}, ¢ € (—o0, o0}, of thisset of
functions defined as

Ale) = {a: fQ(z,a]dF(z} >, a€ A}

the convergence

. P |
oinf ) Bempla) 2 oLy B 23)

isvalid.

In other words, the ERM is nontrivially consistent if it provides conver-
gence (2.3) for the subset of functionsthat remain after the functions with
the smallest. values of the risks are excluded from this set.

Note that in the classical definition of consistency described in the pre-
vious section one uses two conditions, (2.1) and (2.2). In the definition of
nontrivial consistency one usesonly one condition, (2.3). It can be shown
that condition (2.1) will he satisfied automatically under the condition of
nontrivial consistency.

In this chapter we will study conditions for nontrivial consistency, which
for simplicity we will call consistency.

2.2 THE KEY THEOREM OF LEARNING THEORY

The key theorein d learning theory is the following (Vapnik and Chervo-
nenkis, 1989):

Theorem 2.1. Let Q(z,a), a< A, be a set of functions that satisfy the
condition

A< j Q(z,0)dF(z) <B (A< R(0) <B)

Then fOr the ERM principle to be consistent, it is necessary and sufficient
that the empirical 11k Remp(a) converge uniformly to the actual risk R(a)
over the set Q(z,8) , a€ A, in the following sense:

lim P{sup (R(a) — Rempl(a)} > e} =0, Ve>0. (2.4)

£—o0 A
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We call thistype of uniform convergence uniform one-sided convergence.’
In other words, according to the key theorem, consistency of the ERM
principle is equivalent to existence of uniform one-sided convergence (2.4).

Fromn the conceptual point of view thistheorem is extremely important
because it asserts that the conditionsfor consistency o the ERM principle
are necessarily (and sufficiently) determined by the "worst" (in sense (2.4))
function o theset of functions ?(z,a), a€ A. In other words, according
to this theorem any analysis of the ERM principle must be a "worst case
analysis.”?

291 Remark on the ML Method

As has been shown in Chapter 1, the ERM principle encompasses the ML
method. However, for the ML: method we define another concept of nou-
trivial consistency.

Definition. We say that the ML method is nonirivially co:sistent if
for any density p(z,og), from the given s&t d densities p{z,a} € A, the
convergence in probability

4
o1 -
nf 2 (- loEp(@0) 2 inf f (~logp(,)) pls, a0)d

isvalid, where z,, ..., ¢ is an i.i.d. sampleabtained according to the density
po(x}.

In otlier words, we define the ML method to be nontrivially consistent
if it is consistent for estimating any density from the admissible set of
densities.

For the ML method the following key theorem istrue (Vapuiik and Cher-
vonenkis, 1989):

Theorem 2.2. For the ML method to be nontrivially consistent on the
sel of densities
0<a<plz,a) <A<oo, a€A,

In contrast to the so-called uUniform two-sided convergence defined by the
equatjon
Jim P{sup |R(a} — Remp(cr)] > ¢} =0, Ve >0,

The following fact confirms the importance of this theorem. Toward the end
of the 1980s and ther beginning o the 199s several alternative approaches to
learning theory were attempted based On theideathat statistical learning theory
is a theory d '%orst-case analysis.”". In these approaches authors expressed a
hope to develop a learning theory for “real-case analysis+"According to the key
theorem, thistype of theory for the ERM principle is impossible.
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it 48 necessary and sufficient that uniform one-sided convergence take place
forthe set of risk functions

Q(z,a} = —Inp(x,a), ac A,

with respect to some(any) probability density p(z,00), ap € A.

2.3 NECESSARY AND SUFFICIENT CONDITIONS
FOR UNIFORM TWO-SIDED CONVERGENCE

The key theorem o learning theory replaced the problem of consistency

of the ERM method with the problem o uniform convergence (2.4}. To

investigate the necessary and sufficient conditions for uniform convergence,

one considers two stochastic processes that are called empirical processes.
Coensider the sequence of random variables

= sup £=1,2,... (2.5)

-/Q z,0)dF(z) — — ZQ (z:,0)|,

We call thissequence o random variables that depend both on the proba-
bility measure F(z} and on the set of functions @{z,a), a € A, atwo-si ded
empi ri cal process. The problem is to describe conditions under which this
empirical process converges in probability tozero. The convergence in prob-
ability of the process (2.5) means that the equality

]1m P
£—o0 aEA

holds true.
Along with the empirical process ¢, we consider the one-si ded emgirical
process i ven by thesequence of random variables

sup | [ Q(z, a)ar(: ZQ(zﬂa}

> E} =0, V>0, (2.6}

£
& = sup (fQ (z,}dF(z} - ZQ(zﬂa}) , £=12,... (2.7}
i=1l

+
where we set
2 fu>0,
(u} = { 0 otherwise.
The problem isto describe conditions under which the sequence of random

variables £ convergesin probability to zero. Convergence in probability of
the process (2.7) means that the equality

hm P{sup (fQ aydF(z) — EZQ(zﬂa}) >5} =0, Ve >0, (2.8}

=1
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holds true. According to the key theorem, the uniform one-sided conver-
gence (2.8) is a necessary and sufficient condition for consistency o the
ERM method.

We will sse that conditions for uniform two-sded convergence play an
Important role in constructing conditions of uniform one-sided convergence.

2.3.1 Remark on the Law d Large Numbers and Its
Generalization

Notethat if theset of functions}{z,a), a & A, contains only one element,
then the sequence o random variables ¢ defined in (2.5) aways converges
in probability to zero. This fact constitutes the main law of statistics, the
law of large numbers:

The sequence of the means of random variables £¢ converges to zero
a5 the {number of ohservations} £ increases,

It is easy to generalizethe law of large numbers for the case whereasat o
functions has afinite number of elements:

The segquence o random variables & converges in probability to zere
if the set of functions (}(z,a), a € A, contains a finite number N of
elements.

Thiscasecan beinterpreted as thelaw of large numbersin an N-dimensional
veetor space (to each function in the set corresponds one coordinate; the
lav of large numbersin a vector space assats convergencein probability
simultaneously for all coordinates).

The problem arises when the set of functions(z,a), a € A, has an
infinite NnUMber o elements. IN contrast to the cases with a finite number
of elements the sequence of random variables £¢ for a set with an infinite

number of elements does not necessarily converge to zero. The problem is
this:

To describe the properties of the set of functions Q{2,a), a € A,
and probability measure F(z) under which the sequence of Tandom
variables &€ converges in probability to zero.

In this case one says that the law of large numbers in the functional space
(spaceof functions Q(z,a),a E A) takesplace or that there exists uniform
(two-sided) convergence of the means to their expectation over a given set
of functions.

Thus, the problem of the existence of the law of large numbers in func-
tional space (uniform two-sided convergence of the meansto their proba-
bilities) can be considered as a generalization o the classical law of large
numbers,
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Note that in classical statistics the problem of the existence of uniform
one-sided convergence was not considered; it became important due to the
key theorem pointing the way for andyssd the problem of consistency of
the ERM inductive principle.

Necessary and sufficient conditions for both uniform one-sided conver-
gence and uniform two-sided convergence are obtained on the basis o a
concept that iscdled the entropy d the set of functions Q{z,a),a € A, ow
a sample o size £.

For simplicity wewill introducethis concept in two steps: first for the set
of indicator functions (which take enly the two vaues 0 and 1) and then
for the set of real bounded functions.

2.3.2 Entropy o the Set o Indicator Functions
Let Q(z,a), @ € A, beaset d indicator functions. Consider a sample

b P N

Let us characterize the diversity of the set o functions @{z,a),a € A, on
the given set of data by the quantity N*{zy,...,z) that evaluates how
many different separationsd the given sample can be done using functions
from the set o indicator functions.

Let us writethisin a more forma way. Consider the set ofl-dimensond
binary vectors

gla) = (Qz1.a),...,A2e0)), a €A,

that oue obtains when a takes various values from A. Then geometri-
cally speaking, N4(z;,.., isthe number of different vertices of the #-
dimensional cube that can be obtained on the basisd thesample z1, ..., z
and the st of functions @{z,a) € A (Fig. 2.3).

Let uscall the vaue

HA(zl,...,zg) =In Nz, ... \ Z¢)

the random entropy. The random entropy describes the diversity o the set
o functions on the given data. H*(z4, ..., z¢) is a random variable, since
it was constructed using the i.i.d. data. Now we consder the expectation
of the random entropy over the joint distribution function F{zy, ..., 2¢):

HM&) = EmN*z1,...,2).

We call this quantity the entropy of the set of indicator functions&{z,a),
a € A, on samples of size f. It depends on the set of functions Xz, ),
a € A, the probability measure, and the number d observatious £, and it
describes the expected diversity o the given set of indicator functionson
asample d size?.
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FIGURE 2.3. The set of é-dimensional binary vectors ¢{ee}, a € A, is a subset of
the set of vertices of the #-dimensional unit cube.

2.3.3 Entropy o the Set of Real Functions

Now we generalize the definition d the entropy of the set d indicator
functions on samples of size ?.

Definition. Let A < @Q(z,0) < B, a € A, be a set of bounded loss

functions. Using thisset of functions and thetraining st z,..., ¢ onecan
construct the following set df!-dimensional  vectors:
g(0) = (Q(z1,0),...,Qze, @), a €A (2.9)

This set of vectors belongs to the ¢-dimensional cube (Fig. 2.4) and has
a finite minimal r-net in the metric C (or in the metric L,)3 Let N =
NXe;zy,...,2¢) bethenumber of elements of the minimal e-net of thisset

SThe set o vectorsg{a), « € A, has a minimal z-net g(a:},.. ., glan) if
{i) There exist N = Nﬁ(&?; 21,...,2¢) vectors glon ), - . .,g{an} such that for

any Vector g{a”), a* € A, one can find among these N vectors one g{a)
that isé-close to g{a") (in agiven metric). For the metric € that means

pclg(a’), glar)) = max, |@{zs, &) — Q(zi, 00)| < €,

(i}) N isthe minimum number of vectorsthat possess this property.
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FIGURE 2.4. The set of édimensional vectors ¢g{a), a € A, belong to an
/-dimensional cube.
o vectors g{a), « € A.

Notethat N (€; 21, ..., 2¢) is arandom variable, Snce it was constructed
usng random vectors zj,...,z.. The logarithm d the random vaue
NMe 20, .., 20),

H"‘(s;zl,...,z,g) = h]N‘“‘(s;zh---,Zz),

iscdled the random VO entropy of theset of functionsA < @{z,a) < B
on the sample zy,...,z:. The expectation o the random VC entropy

HMe; 0) = EHMe 21,000, 22)

is called the VC entropy? of the set d functions A < Q(z,a) < B, a € A,
on samples o size £. Here the expectation is taken with respect to the
product measure F(zy,..., z¢)-

Note that the given definition of the entropy of a set of real functionsis
a generdization of the definitiond the entropy given for a set o indicator

*The VC entropy differs from classical metrical e-entropy
H(e) =In N (¢)
in the following respect: N%(¢) is thecardinality of the minimal e-net of the set of

functions @(2,a) & € A, while the VC entropy isthe expectation of the diversity
of the set of functionson samples of size £.
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functions. Indeed, for a set of indicator functions the minimal z-net for
£ < 1 does not depend on ¢ and is asubset of the vertices d the unit cube.
Therefore, for £ < 1,

NA(E;zl,...,zg) = Nz, -, ze),

HMe 21,0, 20) = HMzy, -, 22),
HMe,8) = HMP).
Below we will formulatethetheory for the set of bounded real functions.

The obtained general results are, of course, vaid for the set of indicator
functions.

2.3.4 Conditionsfor Uniform Two-Sided Convergence

Under some (technical) conditions of measurability on the set of functions
Q(z,a),ac A, thefollowing thecrem is true.

Theorem 2.3. For uniform two-sided convergence (2.6} it & necessary
and sufficient that the equality

A
tim &0 o veso, (2.10)
f-—00 f

be valid.

In other words, the ratio d the VC entropy to the number d observations
should decrease to zero with increasing numbers of observations.

Corollary. Under some conditions d measurability on the set of indica-
tor functionsQ{z,a), a € A, necessary and sufficient condition for uniform
two-sided convergence is

: (£
eILT.o ¢ =0,

which is a particular case o equality (2.10).

This condition for uniform two-sided convergence was obtained in 1968
(Vapnik and Chervonenkis 1968, 1971). The generalization of this result for
bounded sets of functions (Theorem 2.3) was found in 1981 (Vapnik and
Chervonenkis 1981).

2.4 NECESSARY AND SUFFICIENT CONDITIONS
FOR UNIFORM ONE-SIDED CONVERGENCE

Uniform two-sided convergence can be described as follows

Jis P {500 (R(@) — Remp(@)) > ¢ o [sup (Remnler) = R} > ]} .
(2.11)
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The condition (2.11) includes uniform one-sided convergence and therefore
forms a sufficient condition for consistency o the ERM method. Note,
however, that when solving learning problems we face an asymmetrical
situation: We require consistency in minimizing the empirical risk, but we
do not care about consistency with respect to maxrimizing the empirical
risk. So for consistency of the ERM method the second condition on the
left-hand side d (2.11) can be violated.

The next theorem describes a condition under which there exists consis-
tency in minimizing the empirical risk but not necessarily in maximizing
the empirical risk (Vapnik and Chervonenkis, 1989).

Consider the set of bounded red functions (z,a),a € A, together with
a new set of functions @*(z,a* )a* € A*,satisfying some conditions of
measurability as well as the following conditions: For any function from
Q(z,a), @ € A, thereexists a function in Q*(z,o*), a* € A*, such that
(Fig. 25)
Qz,a} - Q*(z,0*) 20, Vz,

](Q(Z,&} "-Q*(Z,O!*}) dF(.Z) < b (2.12)

Q (2, 0)

»\/\_/\/\/_—Q* (2, @%)

oy

FIGURE 2.5. For any function @{z,a), a € A, one considers a function
Q*(z,0%), a* € A", such that @*(z,a*) does not exceed ((z,) and is close
toit.
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Theorem 2.4. |n order for uniform ow-sided convergence of empirical
means to their ezpectations to holdfur the set Of totally bounded functions
Q(z,a), a€ A (2.8}, it isnecessary and sufficient thatfor any positive 6, n,
and £ there exist a set of functions Q*(z,a*),a* € A*, satisfying (2.12)
such that the following holds for the e-entropy of the set Q*(z,a) a* € A¥,
on semples of size & o

lim —H—EE’—E) <n

2,1
dim — (2.13)

I n other words, for uniform one-sided convergence on the set of bounded
functions @(z,a), a € A, it is necessary and sufficient that there exist
another set of functions @*{z,a*), a* ¢ A*, that isclose (in the sense of
(2.12}) to Q(z,a), a€ A, such that for this new set d functions, condition
(2.13) isvalid Note that condition (2.13) is weaker than condition (2.10)
in Theorem 2.3.

According to the key theorem, this is necessary and sufficient for consis-
tency of the ERM method.

2.5 THEORY OF NONFALSIFIABILITY

Trom theformal point o view, Theerems 2.1, 2.3, and 2.4 giveaconceptual
model o learning bared on the ERM inductive principle. However, both
to prove Theorem 2.4 and to understand the nature of the ERM principle
more deeply we haveto answer the following questions:

What happens if the condition of Theerem 2.4 is not valid?
Why is the ERM method nut consistent in this case?

Bdow, we show that if there exists an g¢ such that

_ HMeo, £)
T 7

then the learning machine with functions @(z,a), a € A, is faced with

a situation that in the philosophy 0f science corresponds to & so-called
honfalsifiable theory.

Before we describe the formal part of the theory, let us remind the reader
what theidea d nonfalsifiability is.

2.51 Kant’s Problem o Demarcation and Popper’s Theory of
Nonfalsifiability

Since the era Of ancient philosophy, two models of reasoning have been
aﬂ()ept,ed;

(1) deductive, which means moving from general to particular, ang
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(i1) inductive, which means movingfrom particular to general.

A model in Wi ch a system o axioms and inference rules is defined by
means of which various corollaries {consequences} are obtained is ideal for
the deductive approach. Thedeductive approach should guarantee that we
obtain #rue consequences from #rue premises.

The inductive approach to reasoning consists in the formation d gen-
eral judgmentsfrom particular assertions. However, the general judgments
obtained from true particular assertionsare not always true. Nevertheless,.
it is assumed that there exist such cases d inductive inference for which
generalization assertions are justified.

Thedemarcation problem, originally proposed by Kant, isacentral ques-
tion of inductive theory:

What is the difference between the cases With a justified inductive step
and those for which the inductive step is not justified?

The demarcation problem is usually discussed in terms of the philoso-
phy of natural science. All theories in the natural sciences are the result
of generalizations of observed real facts, and therefore theories are built
using inductive inference. I n the history & the natural sciences, there have
been both true theories that reflect reality (say chemistry} and false ones
(say alchemy) that do not reflect reality. Sometimes it takes many years of
experimentsto prove that a theory isfase.

The question isthe following:

| there a formal vay 10 distinguish true theories from false theories?

Let us assume that meteorology is a true theory and astrology a false
one. What isthe formal difference between them?

(i} Isit in the complexity of their models?
(ii) Is it in the predictive ability d their models?
(iii) Isit intheir use of mathematics?
(iv) Isitin the levd of formality of inference?
None d the above gives a clear advantage to either d these two theories.

(i) The complexity of astrological models is no less than the complexity
of the meteorological modeis.

(ii) Both theoriesfail in somed their predictions.
(iii) Astrologers solve differential equations for restoration of the pos-

tionsof the planets that are no simpler than the basic equations in
meteorology. S : S "
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(iv) Findly, in both theories, inference has the same level d formaliza-
tion. It contains two parts. the formal description of reality and the
informal interpretation of it.

In the 1930s, K. Popper suggested his famouscriterion for demarcation
between true and false theories (Popper, 1968). According to Popper, a
necessary condition for justifiability of atheory isthe feasibility of its fal-
sification. By the falsification of a theory, Popper means the existence of
a collection o particular assertionsthat cannot be explained by the given
theory although they fall inte itsdomain. If the given theory can befalsified
it satisfies the necessary conditions of a scientific theory.

Let us come back toour example. Both meteorology and astrology make
weather forecasts. Consider the following assertion:

Once, i New Jersey, #n July, there was a tropical rainstorm and then
snowfall.

Suppose that according to the theory of meteorology, thisis impossible.
Then this assertion falsifies the theory because if such asituation realy
should happen (note that nobody can guaranteewith probability one that
this is impossible®), the theory will not be able to explain it. In this case
the theory of meteorology satisfies the necessary conditions to be viewed
as ascientific theory.

Suppose that this assertion can be explained by the theory o astrology.
(There are many elements in thestarry sky, and they can be used to create
an explanation.) In this case, this assertion does not falsify the theory. If
there isno example that can falsify the theory d astrology, then astrology,
according to Popper, should be considered a nonscientific theory.

I n the next section we describe the theorems of nonfalsifiability. We show
that if for some set of functions conditions of uniform convergencedo not
Lold, the situation of nonfalsifiability will arise.

2.6 THEOREMS ON NONFALSIFIABILITY

In the following, we show that if uniform two-sided convergence does not

take place, then the method of minimizing the empirical risk is nonfalsifi-
able,

e

“Recall Laplace’s calculations of conditional probabiliéy that thesun hasrisen
Lomorrow given that it has risen every day up to thisday. It will rise for sure
aceording 1O the models that we use anayin which we believe. However with
Probability one we can assert only that the sun hasrisen every day up to now
tnring the thousands of years o recorded history-
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2.6.1 Case of Complete (Popper’s) Nonfalsifiability

To give a clear explanation o why this happens, let us start with the
simplest case. Recall that according to the definition of VC entropy the
following expressions are vdid for a set of indicator functions:

HA8) = EInN™z,,...,2) and N‘\(za,...,zf)i-f_?f-

Suppose now that for the VC entropy of the set o indicator functions
Q(z,0), a€ A, the following equality is true:

A
lim 278 = In2.
Faoo f

It can be shown that the ratio of the entropy to the number of obser-
vations H*(£)/¢ monotonically decreases as the number of observations ¢
increases.% Therefore, if thelimit of theratio o the entropy to the number
of observations tends to In2, then for any finite number ¢ the equality

HAE)

7 In2

holds true.
This means that for zlmost al samples z,,...,2; (i.e., al but aset d
measure zero) the equality

Nz, o ze) =28

is valid.

In other words, the set d functionsd the learning machineis such that
amost any sample z,,...,z (Of arbitrary size ¢) can be separated in all
possibleways by functionsaof thisset. Thisimplies that the minimum of the
empirical rik for this machine equals zero. We call thislearning machine
nonfalsifiable because it can give ageneral explanation (function)for almost
any data (Fig. 2.6).

Note that the minimum vaue of the empirical risk isequal to zero inde-
pendent o the value d the expected risk.

2.6.2 Theorem on Partial Nonfalsifiability

In the case where the entropy of the set of indicator functions over the
number of observations tends to a nonzero limit, the following theorem
shows that there exists some subspace of the original space Z* € £ where
the learning machine is nonfalsifiable {Vapnik and Chervonenkis, 1989).

®This assertion is analogous to the assertion that a value of reative {with
respect to the numhber Of observations) information cannot increase with the
number o observations.
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FIGURE 26. A learning machine with the set o funetions Q{z,a), « € A,
is nonfalsifiable if for amost all samples z,...,2s given by the generator of
examples, and for any possible labels é,. .., §; for these z, the machine containg
afunction @(z,a*) that provides equalities §; = Q(x;,a) , 2 =1,...,¢L

Theorem 2.5. For the set of indicator functions Q(z,a), a€ A, let the
CONvergence
_HMB
lim

=0 F4 =e>0

be valid.
Then there exists a subset Z* of the set Z for which the probability mea-
um is
P(Z"Y=alc)#0

such that for the intersection of h 0 St any tratning set
Ely---2 28

with the set Z*,
2y, 4 =(20,...,22) N 27,

and for eny grven sequence of binary values
d1,...,0k, 6; € {0,1},
there erists is function Q{z,a* ) for which the equalities
6; = Q(z},a*), =12 ... K,
hold true.

Thus, if the conditionsfor uniform two-sided convergence fail, then there
eXists 0mMe subspace d the input space where the learning machine is
nonfalsifiable (Fig.2.7).
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e e dw am =

FIGURE 2.7. A learning machine with the set of functions @{z,a), a € A, is
partielly nonfaisifiable if thereexistsaregion Z* ¢ Z with nonzero measuresuch
that for dmost al samples z1,. .., z¢ given by the generator of examples and for
any labels &;,....8; for these z, the machine contains a function ¢(z,a) that

providesequalities é; = @(z:, a) for all z; belonging to the region 2.

2.6.3 Theorem on Potential Nonfelsifiability

Now let us consider the set of uniformly bounded real functions
Q(z,a)l <C, a€A.

For this sat of functions a nar e sophisticated model of nonfalsifisbility is
valid. So we give the following definition of nonfalsifiability:

Definition. We say that alearning machinethat has an admissible set
o real functionsQ(z,a) ,a € A, is potentially nonfalsifiable for agenerator
of inputs with a distribution F(z) if thereexist two functions’

P1(z) = Po(z)

such that:
(i) Thereexists a positive constant ¢ for wi ch the equality

j (1 (z) — Po(2))dF(2) =c >0

holds true (this equality shows that two functions #p(z) and #:(z)
areessentially different).

"These t wo functions do NOt necessarily belong to the st Q(z,a), o € A.
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(ii) For amost any sample

zIﬂ"'jz£1

any sequence of binary values
8(1),...,8(8), 6@) € {0,1},

and any ¢ > 0, one can find afunction @(z,a") in the set of functions
2(z,a), ae A, for which theinequalities

\hsiay(2:) — Qz, ") < €
hold true.

In this definition of noufalsifiability we use two essentially different func-
tions;(z) and ¥e(z) to generate thevalues y; d thefunction for the given
vectors z;. To make these values arbitrary, one can switch these two func-
tions using the arbitrary rule 4(z). The set of functions @(z,a), a € A,
forms a potentially nonfalsifiable machine for input vectors generated ac-
cording to the distribution function F{z) if for almost any sequencedf pairs
(#5¢:)(2:), 2i) obtained on the basis of random vectors z; and this switching
rule é(z), one can find in this set a function Q(z,&) that describes these
pairs witl high accuracy (Fig. 2.8).

Notethat thisdefinition o nonfalsifiability generalizes Popper's concept;

(i) Inthesimplest example considered in Section 2.6.1, for theset of in -
cator functionsQ(z,a), a€ A, we usethisconcept of nonfalsifiability
where #;{z) =1 and ¥o(2) = 0,

(ii) in Theorem 2.5 wecan use the functions

1 if A 0 if zeZ2?,
T,Ul(?..) ﬂ{ Q(Z) if 2?15 Z*, Tubﬁ(z) = { Q(Z} if =z ¢ Z*

where @(z) issome indicator function.

On the basis of this concept of potential nonfalsifiability, we formulate
the following general theorem, which holdsfor an arbitrary st of uniformly
bounded functions (including the sets of indicator functions) (Vapnik and
Chervonenkis, 1989).

Theorem 2.6. Suppose that for the set of uniformly bounded real func-
tions @Q(z,a), a€ A, there exists an g such that the convergence

A di
elirn w =c* >0

s valid
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FIGURE 2.8, A learnlng machine with the sst of functions @(z,a) , a € A, is
potentially nonfalsifiable if for any £ > 0 thereexist two essentially different fune-
tions y¥n(z) and wo(z) such that for almost all samples 21,...,2; given by the
generator of examples, and for any values w;,...,us consructed on the basis
of these curves using the rule u; = ¥5¢z,3{z:), where é(z} ¢ {0,1} is an arbi-
trary binary function,the machine containsa function @{z,«") that satisfies the
inequalities [¢5.)(a) — Q(zi,0*)| < e, i=1,... L
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Then the learning machine with this set of functions is potentially non-
falsifiable.

Thus, if the conditions of Theorem 24 fail (in this case, of course, the
conditions o Theorem 2.3 will also fail), then the learning machine isnon-
falsifiable. This is the main reason why the ERM principle may be incon-
sistent.

Refore continuing with the description of statistical learning theory, let
me remark how amazing Popper's idea was. | n the 1930s Popper suggested
a general concept determining the generalization ability (in a very wide
philosophical sense) that in the 1890s turned out to be one d the most
crucial concepts for the analysis 0f consistency of the ERM inductive prin-
ciple.

2./ THREE MILESTONES IN LEARNING THEORY

Below we again consider the set of indicator functions Q(z,a),a€ A (i.e.,
we consider the problem of pattern recognition). As mentioned above, in
the case of indicator functions @Q(z,a), a € A, the minimal e-net of the
vectors g(a),a€ A (seeSection 2.3.3), does not depend on ¢ if € < 1. The
number of elements in the minimal e-net

NM:z,. .., z) = NMesz, ..., 20)

is equal to the number of different separations of the data z1,-..,2¢ by
functionsof the set @{z, ), € A.

For this set d functions the VC entropy also does not depend on €:
H*#) = EmN*z,...,2),

wliere expectation is taken over (z1,.. . ,2q).

Consider two new concepts that are constructed on the basisd thevalues
of N Mz, .. 73k

(i) The annealed VC entropy.
HA () =W ENMz,. .., z);
(i1) The growth function

GAey=1In sup Nﬁ(zls...;ZE)-

FARTIT-J
These concepts are defined in such away that for any £ the inequalities

HME) < HAL(6) < GM#)
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are valid.

On the basis of these functions the main milestones of learning theory
are constructed.

In Section 2.3.4 we introduced the equation

lim H? (8) =

e ! 0

descrlbing a sufficient condition for consistency of the ERM principle (the
necessary and sufficient conditions are given by a slightly different con-
struction (2.13)). This equatlon is thefirst milestone in learning theory:
We require that any machine minimizing the empirlcal risk should satisfy
it.

However, thisequatlon says nothing about the rate of convergenceof the
obtained risks R(ay) to the minimal one R{ayq). It is possible to construct
examples where the ERM principle Is conslstent, but where the risks have
an arbitrarlly slow asymptotic rateof convergence.

The question isthis:

Under what conditions is the asymptotic rate of convergence fast?

We say that the asymptotic rate of convergenceis fast if for any £ > £,
the exponential bound

P{R(as) — Rlag) > e} < et

holds true, where ¢ > () is some constant.
Asit turns out, the equation

A
llm Hatm(g) 2mm U
F el £
is a sufficient condition for a fast rateof convergence.® Thisequation isthe
second milestone of learning theory: It guarantees afast asymptotic rate of
convergence.

Thus far, we have considered two equations: one that describes a neces-
sary and sufficient condition for the consistency of the ERM method, and
one that describes a sufficient condition for a fast rate of convergence of
the ERM method. Both equatlons are valid for a given probability measure
F(z) on theobservations (boththe VC entropy H4(#) and the VC annealed
entropy H2 (#) are constructed uslng this measure). However, our goal is
to construct alearning machine capable of solving many different problems
(for many different probability measures).

The question isthis:

®The necessity of this condition for a fast rate of convergence is an open
question.
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Under what conditions is the ERM principle consistent and simultane-
ously provides a fast rate of convergence, independent of the probability
measure?

Thefollowing equation describes necessary and sufficient conditions for
consistency of ERM for any probability measure:

A
lim &)

QS = 0.

It is also the case that if thiscondition holds true, then the rate of conver-
gence is fast.

This equation is the third milesione in learning theory. It describes a
necessary and sufficient condition undw which a learning machine that
Implements the ERM principle has a high asymptotic rate of convergence
independent of the probability measure (i.e., independent d the problem
that has to be solved).

These milestonesform the foundation for constructing both distribution-
independent bounds for the rate of convergence of learning machines and
rigorous distribution-dependent bounds, which we will consider in Chapter
3






Informal Reasoning and
Comments ——- 2

In the Introduction as wdl as in Chapter 1 we discussed the emplrical
risk minimization method and the methods of density estimation; however,
we will not use them for constructing learning algorithms. In Chapter 4
we introduce another inductive inference, which we use in Chapter 5 for
constructing learning algorithms. On the other hand, in Section 1.11 we
introduced the stochastic approximation inductive principle, which we did
not consider as very important in spite of the fact that some learning
procedures {e.g., in neural networks) are based on this principle.
The following questions arise:

Why are the ERM principle and the methods of density estimation so
tmportant ¢

Why did we spend so much time describing the necessary and sufficient
conditions for comsistency of the ERM principle?

In these comments we will try to show that in some sense these two
approaches to the problem of function estimation, one based on density
estimation methods and the other based on the ERM method, reflect two
quite general ideas of statistical inference.

Toshow thisweformulate thegeneral problem of statistics asa problem
of estimating the unknown probability measure using the data. We will
distinguish between two modes d estimation of probability measures, the
so-called strong mode estimation and the so-called weak mode estimation.
We show that methods providing strong mode estimations are based on
the density estimation approach, while the methods providing weak mode
estimation are based on the ERM approach.
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The weak mode estimationadf probability measures forms one of the most
important problems in the foundations of statistics, the so-caled general
Glivenko—Cantelli problem. The results described in Chapter 2 provide a
complete solution to this problem.

2.8 THE BASIC PROBLEMS OF PROBABILITY
THEORY AND STATISTICS

Inthe 1930s Kolmogorov introduced an axiomatization of probability the-
ory (Kolmogorov, 1933), and since thistime probability theory has become
a purely mathematical (i.e., deductive) discipline; Any analysisin this the-
ory can be done on the basis of formal inference from the given axioms.
This has allowed the development of a deep analysis of both probability
theory and statistics.

2.8.1 Azioms of Probability Theory

According to Kolmogorov's axiomatization d probability theory, to every
random experiment there corresponds a set Z of elementary events z that
defines all possible outcomes of the experiment (the elementary events).
On the set Z of elementary events, asystem {A) of subsets A ¢ Z, which
are called events, is defined. Considered as an event, the St Z determines
a situation corresponding to asure event (an event that always occurs). It
is assumed that the set A contains the empty set @, the event that never
OCCULS.

For the elements of {A) the operations union, complement, and infer-
section are defined. On the set Z a o-algebra F o events (A) is defined.®
The sat F of subsets of Z iscalled a g-algebra of events A € F if

(i) Z e F
(i) if A e F, then A € F;
(iii) if A; € F,then o, A; € F.

Example. Let us describe a model of the random experiments that
arerelevant to thefollowingsituation: Somebody throwst wo dice, say
red and black, and observes the result of the experiment. The space
of elementary events Z of this experiment can be described by pairs
of integers, where the first number describes the points on the red

?One can read about g-algebras In any advanced textbook on probability
theory. (See, for example, A.N. Schirvaev, Probability, Springer, New York, p.
577.) Thisconcept makes it possible to usethe formal toolsdeveloped in measure
theory fOr constructing tbe foundationsd probability theory.
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black

FIGURE: 2.9. The space of elementary events for a two-dice throw. Tbe events
Ao and A.-s ae Indicated.

die and the second number describes the pointson the black one. An
event N this experiment can be any subset of thisset d elementary
events. For example, it can bethesubset A g of elementary eventsfor
which the sum of points on the two dice is equal to 10, or it can be
the subset of elementary events A, where the red die has a larger
number of points than the black one, etc. (Fig. 2.9 }.

The pair (Z,F) consisting of the set Z and the o-algebra F of events
A £ Bisan idealization of the qualitative aspect of random experiments.

The guaentitative aspect of experiments is determined by a probability
measure P{A) defined on theelements A of the set 3. The function P{A})
defined on the elements A € F is caled a countably additive probability
measure on F or, for simplicity, a probability measure, provided that

(i} P(A)=0;
(it) P(Z) =1,
(i) PUS, A) =0, P(A) if A, A; €3, andA;nA; =0, Vi, 4.

We say that a probabilistic model of an experiment, is determined if the
Probability space defined by thetriple (Z,F, P) is determined-

Example. | nour experiment let usconsider asymmetrical die, where
all elementary events are equally probable (have probability 1/36).
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Then the probabilities of all events are defined. (The event A, has
probability 3/36, theevent A, has probability 15/36.)

In probability theory and in the theory of statisticsthe concept of inde-
pendent trials'® playsacrucial rde.

Consider an experiment containing £ distinct trialswith probability space
(Z,F,P) and let

21,0, 2 (2.14)

be the results of these trials, For an experiment with € trials the model
(Z*¢, F¢, P*) can be considered where Z¢ isaspaceof all possible outcomes
(2.14), F¢ is ap-algebraon Z¢ that contains the sets Ay, x .- x Ag,, and
P* is aprobability measure defined on the elements of the o-algebra F¢.

We say that the sequence {2.14} is a sequence of £ independent trials if
for any Ag,,...,Ag, € 3, theequality

e
Pz € Agp.. jze € Ay} = HP{z,; € Ag.}

T=x]

isvalid.
Let (2.14) betheresult of £ independent trialswith themodel {Z,3 , P).
Consider the random variable v{zy, ..., z¢; A) defined for a fixed event A &

F by thevalue

'UE(A) = U(zla S 135;‘4-) = HTAv
wheren 4 isthe number of elementsof theed z,, ...,z belonging to event
A. Therandom variable »¢{A) is called the frequency d occurrence of an

event A in a series of £ independent, random trials.

In terms of these concepts we can formulate the basic problems of prob-
ability theory and the theory of statistics.

The basi ¢ problem of probability theory

Given amodel {Z,F, P) and an event A*, estimate the distribution
(or some of its characteristics) of the frequency of occurrence of the
event A* in a series of ¢ independent random trials. Formally, this
mounts to finding the distribution function

F(& A%, 8) = P{up{A™) < &} (2.15)

(or some functionals depending on this function).

'The concept of independent trials actually is the one that makes probability
theory different from measure theory. Without the concept of independent trials
the axtoms o probability theory define a model from. measure theory.
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Example. In our examplewith two diceit can be thefollowing prob-
lem. What isthe probability that the frequency of event A4,y (sum of
pointsequals 10) will belessthan £ if one throws the dice ¢ times?

In the theory d statistics one faces the inverse problem.
The basi ¢ problem of the theory of Statistics

Given a qualitative modd of random experiments {Z,F) and given
the i.i.d. data

Zyeaiy 2o e

which occurred according to an unknown probability measure P, es-
timate the probability measure P defined on all subsets A € F (or
some functionals depending on thisfunction).

Example. Let our two dice now be asymmetrical and somehow con-
nected to each other (say connected by a thread). The problem is.
given theresults of ¢ trials (£ pairs), to estimatethe probability mea-
surefor all events (subsets) A € F.

In this book we consider a set o elementary events Z ¢ R" where the
g-algebra F is defined to contain all Borel sets!! on Z.

2.9 TWO MODES OF ESTIMATING A PROBABILITY
MEASURE

One can define two modes d estimating a probability measure: A strong
mode and A weak mode,

Definition:
(i) We say that the estimator
Eg(A) = f:g(zl, e 28 A}, Ac .7:,

estimates probability measure P in the strong mode if

sup |P(A) — £,(A)| = 0. (2.16)
AcF f—o0

(ii) We say that the estimator £g{A) estitnates the probability measure
P intheweak mode determined by soine subset F* C F if

sup |P(A) — £(A)] 0, (2.17)
AEF*~ £—0o

“'We consider the minimal o-algebra that contains all open parallelepipeds.
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FIGURE 2.10. The Lebesgue integral defined in (2.18)isthe limit of asum of
products, where the factor P {Q(z,a) > iB/m} is the {probability) measure of
thesat {z: Q(z,a) » iB/m}, and the factor B/m isthe height of adice.

where the subset F* (of the set F) does not necessarily form a o-
algebra.

For our reasoning it isimportant that if one can estimate the probability
measure in one of these modes (with respect to a special set F* described
below for the weak mode), then one can minimize the risk functional in a
given X of functions.

Indeed, consider the case of bounded risk functions < Q{z,a) < B. Let
usrewrite the risk functional in an equivalent form, using the definition of
the Lebesgue integral (Fig. 2.10):

Rla) = /Q(z, a)dP(z) = ??}EanEP {Q(z,a) p %} (2.18)

te=l

If the estimator £{A) approximates P{A) well in the strong mode, i.e.,
approximates uniformly well the probability of any event A (including the
events A; ; = {Q(z,a) > iB/m}), then the functional

R{a)= ﬂ!gnwi g& {Q{z,a} p %} (2.19)

) |
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constructed on the basis of the probability measure £¢{A) estimated from
the data approximates uniformly wel (for any a) therisk functional R{«).
Therefore, it can be used for choosing thefunction that minimizesrisk. The
empirical risk functional Re{ex} considered inChapters1 and 2 corresponds
to the case whereestimator £¢{A} in (2.19) evaluates thefrequency of event
A from the given data.

Note, however, that to approximate (2.18) by (2.19) on the given set of
functions J(z,a), a € A, one does not need uniform approximation d P
on ali events A of the a-algebra, one needs uniform approximation only on
the events

Ay = {Q{z, o) > %}

(only these events enter in the evaluation d therisk {2.18)). Therefore, to
find the function providing the minimum of the risk functional, the weak
mode approximation of the probability measure with respect to the set o
events

{Q(z,a} > z—j—}, o € A,

Is sufficient.

Thus, in order to find the function that minimizes risk (2.18) with un-
known probability measure P{A} one can minimize the functional {2.19},
whereinstead d P{A} an approximation £:{ A} that convergesto P{A} in
any mode (with respect to events 47, ;,a€ A, i =1,...,m, for the weak
mode) is used.

2.10 STRUNG MODE ESTIMATION OF
PROBABILITY MEASURES AND THE DENSITY
ESTIMATION PROBLEM

Unfortunately, there is no estimator that can estimatean arbitrary proba-
bility measurein the strong mode. One can estimate a probability measure
if for this measure there exists a density function (Radon-Nikodym deriva-

tive). Let usassumethat adensity function p(z) exists, and let pg(z} be an
approximation to this density function. Consider an estimator

£g[A)=/;p¢(z}dz_

According to Scheffe’s theorem, for this estimator the bound

sup | P(A) = £(A)] < [ 1p(a) - pete)le
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IS valid, i.e., the strong mode distance between the approximation of the
probability measure and the actual measure is bounded by the £, distance
between the approximation of the density and the actual density.

Thus, to estiinate the probability measure in thestrong mode, it is suffi-
cient toestimateadensity function. In Section1.8 we stressed that estimat-
ing a density function from the dataformsan ill-posed problem. Therefore,
generally speaking, one cannot guarantee a good approximation using a
fixed number o observations.

Fortunately, aswe saw above, t 0 estimate thefunctionthat minimizesthe
risk functional one does not necessarily need to approximate the density.
It is sufficient to approxiniate the probability measure in the weak mode,
where the set of events F* depends on the admissible set of functions
Q(z,a), « € A: It must contain the events

B
{Q(z,a)> %} aeA, i=1,...,m.

The"smaler" thesst d admissible events considered, the "smaller” the st
of events F* that must be taken into account for the weak approximation,
and therefore(as we will see) minimizing the risk on a smaller set of func-
tions requires fewer observations. In Chapter 3 we will describe bounds on
the rate d uniform convergence that depend on the capacity d the set of
admissible events+

2.11 THE GLIVENKO-CANTELLI THEOREM AND
ITS GENERALIZATION

Inthe 1930 Glivenko and Cantelli proved a theorem that can be considered
as the most important result in the foundation o statistics. They proved
that any probability distribution function of one random variable &,

F(z)— P{g <2},

can be approximated arbitrarily well by the empirical distribution function
1<
Fy(z)= 3D _0(z - ),
=1

where z, ..., s are t.i.d. dataobtained according to an unknown density**
(Fig. 1.2). More precisely, the Glivenko—Cantelli theorem asserts that for
any ¢ > 0 theequality

JE‘I_i’rg]o P{sgplF(z) - Fp(z})| > <} =0

12The generalization for nn > 1 variables was Obtained later.
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(convergencein probability*3) holdstrue.

Let us formulate the Glivenko~Cantelli theorem in a different form. Con-
sider the set d events

A, ={z:2< 2}, z€ {—o0,00) (2.20)

{the set of rays on the line pointing to —oc}. For any event A, of this set
of events one can evaluate its probability

P(A,) = _[ ] dF(z) = F(z). (2.21)

Using an ii.d. sample of size £ one can dso estimate the frequency o
occurrence o the event A, inindependent trials:

v(A,) = “?‘ = Fe(2). (2.22)
In these terms, the Glivenko—Cantelli theorem asserts weak mode conver-
gence of estimator (2.22) to probability measure (2.21) with respect to the
set of of events (2.20) (weak, because only asubset of all events isconsid-
ered).

To justify the ERM inductive principle for varioussetsdf indicator func-
tions {for the pattern recognition preblem), we constructed in thischapter a
general theory o uniform convergenceof frequenciesto probabilities on ar-
bitrary sets of events. Thistheory completed theanalysis of the weak mode
approximation of probability measures that was started by the Glivenko—
Cantelli theory for a particular st of events (2.20).

The generalization of these results to the uniform convergenced means
totheir mathematical expectations over setsof functions that was obtained
in 1981 actually started research on the general t ype of empirical processes.

2.12 MATHEMATICAL THEORY OF INDUCTION

In spite of significant resultsobtained in thefoundation of theoretical statis-
tics, the 1nain conceptual problem o learning theory remained unsolved for
More than twenty years (from 1968 to 1989):

Does the uniform convergence of means to their expectations form a nec-
essary and sufficient condition for consistency of the ERM inductive prin-
ciple, or is this condition only sufficient? In the latter case, might them
e2ist another less restrictive sufficient condition?

L IaAct.uauy, a stranger moded convergence holdstrue, the so-cailed conver gence
almost surely.”
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The answer was not obvious. Indeed, uniform convergence constitutes a
global property of theset of functions, while one could have expected that
consistency of the ERM principle is determined by local properties of a
subset of the set of functions close to the desired one.

Using the concept of nontrivial consistency we showed in 1989 that con-
sistency isaglobal property ¢f the admissible set of functions, determined
by one-sided uniform convergence {Vapnik and Chervonenkis, 1989). We
found necessary and sufficient. conditions for one sided convergence.

The proof of these conditionsisbased on a new circle of ideas — ideas
on nonfalsifiability that appear in philosophical discussions on inductive
inference. In these discussions, however, induction was not considered as a
part of statistical inference. Induction wasconsidered aSa tool for inference
in more general frameworks than the framework of statistical madels.



Chapter 3

Bounds on the Rate of
Convergence of Learning Processes

In this chapter we consider bounds on the rate of uniform convergence.
We consider upper hounds (there exist lower bounds as well (Vapnik and
Chervonenkis, 1974); however, they are not as important for controlling
the Learning processes asthe upper bounds).

Using two different capacity concepts described in Chapter 2 (the an-
neal ed entropy function and the growth function) we describetwo typesd
hounds on therated convergence:

(i) Distribution-dependent bounds {based on theannealed entropy func-
tion}, and

(ii) distribution-independent bounds (based on the growth function).

These bounds, however, are nonconstructive, since theocry does not give
explicit methods to evaluate the annealed entropy function or the growth
function.

Therefore, We introduce a new characteristic of the capacity of a set
of functions (the VC dimension of a st d functions), which is a scalar
value that can beevaluated for any set of functions accessible to a learning
machine,

On the basisd the VC dimension concept we obtain

(iif) Constructive distribution-independent bounds.

Writing these bounds in equivalent form, we find the bounds on the risk
achieved by alearning machine {i.e., we estimate the generalization ability
of alearning machine). In Chapter 4 we will use these bounds to control
the generalization ability of |earning machines.
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3.1 THE BASIC INEQUALITIES

We start the description d the resultsof thetheory of bounds with thecase
where @{z,a), a< A, isaset of indicator functions and then generalize
the resultsfor setsd real functions.

Let Q{z,a),a € A, be a st o indicator functions, HA(£) the corre-
sponding VC entropy, HA (£) the annealed entropy and G*{¢) the growth
function(see Section 2.7).

The follewing two hounds on the rate of uniform convergence form the
basic inequalitiesin thetheory of bounds (Vapnik and Chervonenkis, 1968,
1971}, (Vapnik, 1979, 1996).

Theorem 3.1. The folliowing inequality holds true.

{sup > E}
< dexp {(%(2& 52) :E’}. (3.1)

Theorem 3.2. The following inequality holds true:

£
[ @z exrz) -3 3 Qa)
i=I

P{ QU a)dF () - $ 5L, Qo) }
wch VI Qz,00aF (2)

< 4exp{( a“;(zf) %2) f} : (3.2)

The bounds are nentrivial {i.e., for any £ > 0 the right-hand side tends
to zerowhen the number of observations £ gees to infinity) if

A
tim ennld) _ g
£—oo f

(Recall that in Section 2.7 we called this condition the second milestone of
learning theory.)

To discuss the difference hetween these two bounds let usrecall tbat for
any indicator function Q{z,a) the risk functional

R{a)= / Q{z,a)dF (2}

describes the probability of event {z : @Q{z,a) = ), while the empirical
functional Remp{ca) describes the frequency of this event.
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Theorem 31 estimates the rate of uniform coirvergence with respect to
the norm of the deviation hetween probability and frequency. It is clear
that maximal difference more likely occurs for the events with maximal
variance. For this Bernoulli casethevariance isequal to

o = /R(a)(1 - R(a)),

and therefore the maximum of the variance is achieved for the eventswith
probahility R{a*) = -;— Inother words, the largest deviations are associated
with functionsthat possess large risk.

In Section 3.3, usingthe hound on therateaof convergence, wewill obtain
abound on the risk where the confidence interval isdetermined by therate
of uniform convergence, i.e., by the function with risk R{a*) = £ (the
"worg" functionin theset).

To obtain a smaller confidence interval one can try to construct the
bound on the risk using a bound for another type of uniform convergence,
namely, the uniform relative convergence

R(@) = Rampla) |
d {Eléﬁ VR0 = RBla) - E} <®eb),

where the deviation is normalized by the variance. The supremum on the
uniform relative convergence can be achieved on any function ¢(z, a) in-
cluding one that hasasmall risk.

Technically, however, it is difficult to estimate well the right-hand side
for this hound. One can ghtain a geod bound for simpler cases, where
instead Of normalization by the variance one considers normalization by
the function /R{a). Thisfunction is close to the variance when R{a) is
reasottably small (this is exactly the case that we are interested in). To
obtain hetter coefficientsfor the bound one considers the difference rather
than the modulus of the difference in the nunrerator. This case of relative
uniform convergence is considered in Theorem 3.2.

In Section 3.4 we will demonstrate that the upper bound on the risk
obtained using Theorem 3.2 is inuch better than the upper bound on the
risk obtained on the basis of Theorem 3.1.

The bounds obtained i n Theorems 3.1and 3.2 aredistribution-dependent:
They are valid for a given distribution function F(z) on the observations
(the distribution was used in constructing the annealed entropy function
HA o (0)).

To construct distribution independent bounds it issufficient to note that
for any distribution function F{z) the growth function is not lessthan the
auntealed entropy

H(6) < GM9).
Therefore, for any distributionfunction F{z), the following inequalities hold
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¢
{iléﬁ /Q z,0)dF(z) — ;Q(zi,a) > e}

< dexp { (G?E) = 52) e} : (3.3)

true:

IQ a)dF ) Q(zi:a)
> E
C‘E“ \/fQ (z,0) dF(z) '
GA(2¢ 2
5._4exp{( E )—%)E}. (3.4)
These inequalities are nontrivial if
A
EIEEQ GE(E) =0. (3.5)

(Recall that in Section 2.7 we called this equation the third milestone in
learning theory).

It isimportant to note that conditions (3.5) are necessary and sufficient
for distribution—free uniform convergence(3.3). I n particular,

if condition (3.5) is wiolated, then there exist probability measures F(2)
on Z for which aniform convergence
> s} =0

lim P{sup
£ a€A
does not take place.

3.2 GENERALIZATION FOR THE SET OF REAL
FUNCTIONS

£
J L COILEErS SRS
i=1

There are several ways to generalize the results obtained for the set of
indicator functions to theset of real functions. Below we consider thesim-
plet and most effective (it gives better bounds and is valid for the set of
unbounded real functions) {Vapnik 1979, 1996).

Let Q(z,a) a € A, now he aset of real functions, with

|nf Q(z,a) < Q(z,a) <supQ(z,a) =

kg

(here A can he —oo and/or B can be +cc). We denote the open interval
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1{Q (z,0) - B)

Q(z,oiacA

—j--
Z

FIGURE 3.1. Theindicator of level 3 for the function Q(z, a) shows for which =
the function Q(z, &) exceeds # and for which it does not. The function Q{z,a)
can be described by the set of all itsindicators.

(A,B) by B. Let usconstruct a set Of indicators (Fig. 3.1) of theset d real
functionsQ{z,a), a € A

Hz,0,8) =0{Q{z,0) - 8}, ac€A, B&B

For agiven function Q(z,a*) and for agiven 3* theindicator I(z,a*, 3*)
indicates by 1 theregion z € Z where@(z,a* ) > 8* and indicatesby 0 the
region z € Z where Q(z,a*) < g*.

In the case where @{z,a), a € A, are indicator functions, the set of
indicators I(z,a,3), a € A, g € {0,1), coincideswith thissat {z,a) ,a€
A

For any given st of real functions @(z,a), a € A, we will extend tho
results of the previous section by considering the corresponding set of in-
dicators I{z,a, ), a€ A, g € B.

Let HAB(€) the VC entropy for the set of indicators, H2:5(£) the an-

ann

nealed entropy for the set, and G*5(£) the growth function.

Using these concepts we obtain the basic inequalities for the set of real
functions as generalizations of inequalities (3.1) and (3.2). In our general-
ization we distinguish three cases:

() Totally bounded functions @{z,a)}, a € A.
(ii) Tetally bounded nonnegative functions Q(z,a), @ € A

(ili) Nonnegative (not necessarily bounded) functions @{z, a), a€ A.

Belaw we consider the bounds for all three cases.
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(i) Let A < Q(z,00) < B, a € A, beasa of totally bounded functions.
Then the following inequality holds true:

P {sup
ach
Py & ,
S4exp{( / ‘(B—-A)Q)e}' (3.6)

(ilLetd < Q(z,a) < B, a< A, beaset of totally bounded nonnegative
functions. Then the following inequality holds true:

IQ 2,0)dF(z) - 1 328 Q)
P
‘3“5“ \/fQ{z a)dF(z)

AB 2
< 4exp{(Ha"'é{2€) - iﬂ) e}. (3.7)

These inequalities are direct generalizations of the inequalities obtained
in Theorents 3.1 and 3.2 for theset of indicator functions. They coincide
withinequalities {3-1) and (3.2) when Q(z,a) € {0,1}.

(iit} Let 0 € @{z,a), a € A be a set of functions such that for some
p > 2 the pth normalized moments' of the random variables &, = Q{z,a)

exist: '
mp(a) = {// QP(z,a)dF(z).

Tlen the fellowing bound holds true;

¢ -
P IQ(Z C!)dF(Z) - Zz-] Q{‘{"-?a) = a(p)a
ach (/T @iz, )dF ()

cton {(FHEED_ Y1y

_ T p—1 p-1 .

The bounds (3.6), {3.7), and (3.8)are nontrivial if

£
[ @zare -3 30

where

AB
i HEEO)
£ f

'We consider p > 2 only to Simplify the formulas. Analogous results hold true
for p > 1 (Vapnik, 1979, 1996).
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3.3 THE MAIN DISTRIBUTION-INDEPENDENT
BOUNDS

The bounds {3.6), {3.7}, and (3.8} were distribution-dependent: The right-
hand sides d the bounds use the annealed entropy HAZ(#) that is can-
structed on thebasisof thedistribution function £{z}. Toobtain distribution-
independent bounds one replaces the annealed entropy H2A:8(¢} on the
right-hand sides of bounds (3.6}, (3.7}, (3.8) with the growth function
GAEB (). Since for any distribution function the growth function G3(#)
is not smaller than the annealed entropy H2:#(£), the new bound will be
truly independent of the distribution functlon F{z).

Therefore, one can obtain the following distribution-independent bounds
on the rate of various typesof uniform convergence:

(i) For the set of totally bounded functions ~ < A £ Q(z,a) < B <
oo

|
fQ{z a)dF{z) —~ _ZQ(Zha)i p E}

{bup
AB 2
_‘§4exp{(G f{%) ~ B iA)Q)e}' (3.10)

(i) For the set of nonnegative totally bounded functions 0 < Q(z,a) <
B <,

P{ |Q(z,a)dF(z) — ¢ Zf_] Q(z;,a) S
weh /S Qlz, )dF(z) J

< dexp { (Gh’j(zf} _ f;) e} ERE)

(iii) Far thesat of nonnegative real functions 0 < @{z, «) whose pth nor-
malized moment exists for some p > 2,

plaplQeedE@ - i 8, Q)
“EA {/IQP (2, a)dF(z)

A B 2
549Xp{(0—5@~%)£}. (3.12)
These inequalities are nontrivial if
AEB

Using these inequalities one can establish bounds on the generalization
ability of different learning machines.
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3.4 BOUNDS ON THE GENERALIZATION ABILITY
OF LEARNING MACHINES

To describe the generalization ability of learning machines that implement
the ERM principle one hasto answer two questions:

(A) What actual risk R{ce) is provided by the function Q(z, e} that
achieves minimal empirical risk Remp(o)?

(B) How elose is this risk to the minimal pessible inf, R{a}, a € A, for
the given set of functions?

Answers to both questions can be obtained using the bounds described
above. Below we describe distribution-independent bounds on the general-
ization ability of learning machines that implement sets of totaily bounded
functions, totally bounded nonnegativefunctions, and arbitrary sets of non-
negative functions. These bounds are another form of writing the bounds
given in the previous section.

To describe these bounds we use the notation

GNP (26) ~ In (n/4)
=4 7

Notethat the bounds are nontrivial when £ < 1.
Case 1l The set of totally bounded functions

Lat A < Q{z,a) £ 8, a € A, beast o totally bounded functions.
Then:

£ (3.14)

(A) The following inequalities hold with probability at least 1 — n simul-
taneously for dl functions of @{z,a), a € A (including the function
that minimizes the empirical risk):

R{a) £ Remp(a) + B ; A VE, (3.15)

(B ~
2

(These bounds are equivalent to the bound on the rate of uniform
convergence (3.10).)

A) JF < Ria).

Remp(a) -

(B} Thefollowing inequality holdswith probability at least 1— 27 for the
function @{z, a¢) that minimizesthe empirical risk:

R(ar) - inf Rla) < (B -

A) ';2”4_{3;‘4)\/3 (3.16)
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Case 2. Thess of totally bounded nonnegative functions

Let 0 < Q(z,a) £ B, a€ A, beaset d nontegative bounded functions.
Then:

(A) The following inequality holds with probahility at least 1—7 simulta-
neously for al functions @{z,a) < B, a ¢ A (including the function
that minimizes the empirical risk):

N

4Rmp(a)) |

(3.17)

BE

R{a) € Remp{e} + {32;5'_ (1 + ‘/1 +

(This bound is equivalent to the bound on the rate of uniform con-
vergence (3.11).)

(B) The following inequality holds with probability d at least 1 — 2I7 for
the function Q{z, ¢} that minimizesthe empirical risk

: —1 B¢ 4
R{ae) — cltg]lR(a) <B 2;}” + 3 (1 +4/1+ 7l (3.18)

Case 3. The set of unbounded nonnegative functions

Finally, consider theset of unbounded nonnegative functions0 < Q{z, a},
acA.

It is easy tO show (by constructing examples) that without additional
information about the set of unbounded functions and/or probability mea-
suresit isimpossibleto obtain any inequalities describing the generalization
ability of learning machines. Below we assume the following information:
We are given a pair (p, 7) such that the inequality

(2, aYdF(z))P 19
S A M o

holds true,® where p > 1.

The main result of the theory of learning machines with unbounded sets
of functionsis the following assertion, which for simplicity we will describe
for the case p > 2 (theresults for the case p > 1 can be found in {Vapnik,
1979, 1996)):

’This inequality describessome general propertiesd thedistribution functions
of the random variables £, = Q(z, a) generated by F(z). It describesthe "tails of
the distributions” (the probability of large values for the random variables &.).
If the tnequality (3.19) wWith p = 2 lolds, then the distributions have so-called
“light tails” (large values of £x dO NOt Occur very often). In this case afast rate
of convergenceis possible. |f, however, the inequality (3.19) holds only for p < 2
{large values &, occur rather often), then the rate o convergence will be slow (it
will be arbitrarily slow if p issufficiently close to one).
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(A) With probability at least 1 — n the inequality

Remp(a)
i),

- (TG

holds true simultaneously for all functions satisfying (3.19), where
{u), = max(x,0). (This bound is a corollary of the bound on the
rate of uniform convergence (3.12) and constraint (3.19).)

R(a) < (3.20)

where

(B) With probability at least | — 25 the inequality

R{a) — infaca R(a) Ta{p}vE ofl o1
nfaca R(@) (1 wTa(P)\/E)+ } (f ) &2

holds for the function @Q(z, ) that minimizesthe empirical risk.

The inequalities (3.15), {3.17), and (3.20) bound the risks for all functions
intheset Q(z,a}, a< A, including the function Q(z,ag) that minimizes
the empirical risk. Theinequalities (3.16), (3.18), and (3.21) evaluate how
close therisk obtained using the ERM principle isto the smallest possible
risk.

Notethat if £ < 1, then bound (3.17) obtained from the rate of uniform
relativedeviation is much better than bound (3.15) obtained from the rate
of uniform convergence: For asmall value of empirical risk the bound (3.17)
has aconfidence interval whose order of magnitudeis £, but not VvE, asin
bound (3.15).

3.5 THE STRUCTURE OF THE GROWTH FUNCTION

The bounds on the generalization ability of learning machines presented
aboveareto bethought of as conceptual rather than constructive. To make
them constructive one has to find a way to evaluate the annealed entropy
HLI(8) and/or the growth function G*(¢) for the given set of functions
QJ(z,a}, a € A.

Wewill find constructive bounds by using the concept of VC dimension of
the set of functions g{z,a) ,a< A (abbreviation for Vapnik—-Chervonenkis
dimension).

The remarkable connection between the concept of VC dimension and
the growth function was discovered in 1968 [Vapnik and Chervonenkis,
1968, 1971).
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Theorem 3.3. Any growth function either satisfies the equality
GA () =¢In2
or s bounded by the tneguality
GMOY < h (m% + 1) ,
where h is an integer such that when ¢ = h,
GMh) = hln2,
G*h+1) < (h+1}In2.

In other words, the growth function is either linear or is bounded by a

logarithmic function. (The growth function cannot, for example, be of the
form GM¢) = ev/2 (Fig. 3.2).)

Definition. We will say that the VC dimension of the st of indicator
functions Q(z,«),a € A isinfinite if the growth function for this s&t of
functionsis linear.

We will say that the VC dimension of the set of indicator functions
Q(z,a),a € A, is finite and equals A if the corresponding growth function
is bounded by alogarithmic function with coefficient h.

Since the inequalities

HMNO) _ Hialf) _ GO < h(ln § +1)

7 < ¢ ~ 4 ¢ (¢>h)
G e & £in 2
. NE
f,f”' b (In (£/h) + 1)
: -
0 h ¢

FIGURE 3.2. The growth function is either linear or bounded by a logarithmic
function. It cannot, for example, behave like thedashed line.
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arevalid, thefiniteness of the VC dimension of theset d indicator functions
implemented by alearning machineis a sufficient condition for consistency
of the ERM method independent of the probability measure. Moreover, a
finite VC dimension implies a fast rate d convergence.

Finitenessof the VCdimension is also anecessary and sufficient condition
for distribution-independent consistency of ERM learning machines. The
following assertion holds true (Vapnik and Chervonenkis, 1974):

If uniform convergence of the frequencies 10 their probabilities over some
set of events (set of indicator functions) is valid for any distribution func-
tion F(z), then the MCdimension of N set of functions s finite.

3.6 THE VC DIMENSION OF A SET OF FUNCTIONS

Below we give an equivalent definition df the VCdimension for sets of indi-
cator functions and then generalize this definition for sets of real functions.
These definitions stress the method d evaluating the VC dimension.

The VC dimension of a set of indicator functions (Vapnik and
Chervonenkis, 1968, 1971)

The VC dimension of a set of indicator functions Q(z,a), a € A, is
the maximum number h of vectors z),...,zs that can be separated into
two classes in all 2" possible ways using functions of the set3 (i.e., the
maximum number of vectors that can be shuttered by theset o functions).
| f for any n there exists aset of n vectors that can be shattered by the set
Q(z,a), a€ A, then the VC dimension isequal to infinity.

The VC dimension of aset of real functions (Vapnik, 1979)

Let A < Q(z,0) < B, o € A, be asat o rea functions bounded by
constants A and B (A can be —~c and B can be o).

Let us consider along with the set of real functions @Q(z, @}, a € A, the
set of indicators (Fig. 3.1}

I(z,a, 8) = 8{Q(z,0) ~ 8}, @ € A, B € (4,B), (3.22)
where 6(z)} is the step function

0 ifz<0
6(2) :{ 1 ifz>0.
The MCdimension of a set of real functions Q{z,a), a € A, is defined
to bethe VC dimension of the st of corresponding indicators (3.22) with
parametersae A and 8 € (A, B).

®Any indicator function separates agi ven set of vectors into two subsets: the
subset of vectorsfor which thisindicator function takesthe value 0 and thesubset
of vectorsfor which thisindicator function takes the value 1.
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H GURE 3.3. The VC dimension of the linesin the plane isequal to 3, sincethey
can shatter three vectors, but not four: The vectors zz, z4 cannot be separated
by aline from the vectors 21, z3.

Example 1

(i) TheVC dimension of theset of linear indicator functions

Qz,a) =8 {2 epZp + ag}
p=)

in n-dimensional coordinate space Z = (z,...,2,) isequal to h =
n + 1, since by using functions of this set one can shatter at most

n + 1 vectors [Fig. 3.3).

(i) The VC dimension o the s&t of linear functions
Q(Z,(I) = Zﬂpzp"l‘ﬂfﬂ-: ;. .oy liy € ('_00100):
p=1

in n-dimensional coordinate space Z = (2z1,...,2,) isequal to h =
n+1, because the VC dimension d the corresponding linear indicator
functions is equal to n+ 1. (Note: Using ap — 4 instead of g does
not change the st of indicator functions.)

Note that for the set d linear functions the VC dimension equals the num-
ber of free parameters o, 1, ..., ay,. In the general case thisis not true.

Example 2.
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(i) The VC dimension of theset of functions
f(z,0) =8(sinaz), a€ R,
IS infinite: The poits on the line
2 =10-%...,2 =107*

can be shattered by functions from this set.

Indeed, to separate these data into two classes determined by the

sequeince
&yy...40e, & € {0,1},

it issufficient to choose the value of the parameter ato be

.
=7 (2(1 — 8;)10° + 1) .
i=1

This example reflects the fact that by choosing an appropriate co-
efficient a one can for any number of appropriately chosen points
approximate values of any function bounded by (-1,+1)(Fi g. 34 )
using sin .

In Chapter 5 we will consider aset of functions for whichthe VC dimension
Is much less than the number of parameters.

Thus, generally speaking, the VC dimension of a set of functions does
not coincide with the number of parameters. It can be either larger than

A

-

I 1

FIGURE 3.4. Using a high-frequency function sin{ez), onecan approximate well
the value of any function — 1< f{z) < 1 at £ appropriately chosen points.

o1
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the number of parameters(as in Example 2) or smaller than the number
of parameters (we will use sets of functions of this type in Chapter 5 for
constructing a new type of learning machine).

In the next section we will see that the VC dimension of the s&t of
functions (rather than number of parameters) is responsible for the gener-
alization ability of learning machines. Thisopens remarkable opportunities
toovercome the " curse of dimensionality": to generalize well on the basis of
a set of functions containing a huge number of parameters but possessing
asmall V C dimension.

3.7 CONSTRUCTIVE DISTRIBUTION-INDEPENDENT
BOUNDS

In this section we will present the bounds on the risk functional that in
Chapter 4 we use for constructing the methods for controlling the general-
ization ability of |earning machines.

Consider sets of functions that possess afinite VC dimension 4. In this
case Theorem 3.3 states that the bound

GMOH<h (ln % + 1) . £>h, (3.23)

holds. Therefore, in al inequalitiesof Section 3.3 the following constructive
expression can be used:

£ 4h(1n —Z,f + 13 ~ In(n/4) (3.24)

We also will consider the case wheretheset of less functions@{z, &), o €
A, contains a finite number N of elements. For this case one can use the
expression

InN —In

Thus, the following constructive bounds hold true, where in the case of
the finite VC dimension one uses the expression for £ given in (3.24), and
in the case o afinite number of functions in the set one uses the expression
for £ given in (3.25).

£ (3.25)

Case 1, The set of totally bounded functions

ThLet A = Qz,a) € B, a € A beaset of totally bounded functions.
€I

(A) The following inequalitieshold with probability at least 1 -7 simulta-
neously for all functions @(z,a), a e A (including the function that
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minimizes the empirical risk):

R(@) < Rump(a) + C- A VE, (3.26

R({I) 2 Remp(a') — (B -2_ A) '\/E

(B) The followinginequality holds with probability at least 1 —21) for the
function Q{z, a;¢) that minimizes the empirical risk:

R(ag) ~ inf R(a) < (B~ A) ";‘;” LB ;: A VE. (3.27)

Gee 2 The set of totally bounded nonnegative functions
Let 0 < Q(z,@) £ B, a€ A, beasat of nonnegative bounded functions.

Then

(A) Thefollowing inequality holds with probability at least 1~ 1 simulta-
neously for all functions @{z,a) < B,a< A (including the function
that minimizesthe empirical risk):

R(a) € Rempla) + %E (1 + \/1 + %@) : (3.28)

(B) Thefollowinginequality holds with probability & least 1— 27 for the
function Q(z, ag) that minimizesthe empirical risk:

. —Ilnnp BE 4
R(ag)ﬁégf\R(a)SBﬂ T, + 3 (1+ 1+—S- . (3.29)

Case 3. The set of unbounded nonnegative functions

Finally, consider theset of unbounded nonnegative functions0 < @Q(z,a),
a <A,

(A) With probability at least 1~ n the inequality

Remp(a)
R(a) < , (3.30)
¢ (1 — a(p)T\/f)+

1 /p—1Y""!
holds true simultaneously for all functionssatisfying (3.19), where
(u}+ = mx(u': 0)
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(B) With probability at least 1— 21) the inequality

R(ag) — infaea R{0) Ta(pWE of]
of oo x R(o) < (I—Ta(p)\/g)+ + ( g) (3.31)

holds for the function Q{z, ;) that minimizes the empirical risk.

These bounds cannot be significantly improved.?

3.8 THE PROBLEM OF CONSTRUCTING RIGOROUS
(DISTRIBUTION—DEPENDENT) BOUNDS

To construct rigorous boundson therisk one has to take into account infor-
mation about the probability measure. Let P, be the set of all probability
measures on Z¢ and let P C Py bea subset of theset Py. Wesay that one
has a priori information about the unknown probability measure F{z) if
one knows aset of measures P that contains F(z).

Consider the following generalization of the growth function:

GA(£) =In sup EpNM(z, ..., 2).
Fep

For the extreme case where P = Py, the generalized growth function
GA(?) coincides with the growth function G2 (4) because the measure that
assigns probability one on 2, ..., z¢ is contained in P. For another extreme
case where P containsonly one function F(z), the generalized growth func-
tion coincides with the annealed VC entropy.

Rigorous bounds for the risk can be derived in terms of the generalised
growth function* They have the same functional form as the distribution-
independent bounds(3.15), (3. 17}, and (3.21) but a different expression for
€. The new expression for £ is

R LU

However, these bounds are nonconstructive because no general methods
have yet beenfound toevaluate the generalized growth function (incontrast
to the original growth function, where constructive bounds were obtained
on the basisof the VC dimension of the set of functions).

*Thereexist lower bounds on the rate of uniform convergence Wherethe order
of magnltude is close t0 the order o magnitude obtained for the upper bounds

(v/1/€ in the lower bounds instead of +/(R/€) In eghj in the upper bounds; see
(Vapnik and Chervonenkis, 1974) for lower bounds
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To find rigorous constructive bounds one has to find a way of evaluating
the Generalized Growth function for different sets P of probability mea-
sums. The main problem here isto find a subset P different from Py for
which the generalized growth function can be evaluated on the basis of
some constructive concepts (much as the growth function was evaluated
using the VC dimension of the set of functions).
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Comments — 3

A particular case of tho bounds obtained in this chapter was already under
Investigation in classical statistics. These bounds are known as Kolmogorov-
Smirnov distributions, widely used in both applied and theoretical statis-
tics.

The bounds obtained in learning theory arc different from the classical
ofes 1N two respects:

(i) They arc more general (thay are valid for any set of indicator func-
tions with finite V C dimension).

(ii) They arevalid for afinite number d observations (theclassical bounds
are asymptotic.)

3.9 KOLMOGOROV—SMIRNOV DISTRIBUTIONS

As Boon as the Glivenko-Cantetli theorem became known, Kolmogorov ob-
tained asymptotically exact estimates on therateof uniform convergence of
the empirical distribution function to the actual one (Kolmogorov, 1933).
He proved that if the distribution function for a scalar random variable
F(2) is continuous and if ¢ is sufficiently large, then for any ¢ > 0 the
following equality holds:

P {sgp {F(z) — Fp(z)| > E} = 2§(~1)kf1 exp{—2¢2k2%¢}. (3.32)
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Thisequality describesone of the main statistical laws, according to which
thedistribution d the random variable

& = sup {F(z) — Fe(2)]

does not depend on the distribution function F(z) and has the form of
(3.32).

Simultaneously, Smirnov found thedistribution function for one-sided de-
viationsof theempirical distribution function from theactual one (Smirnov,
1933). He proved that for continuous F(z) and sufficiently large ¢ the fol-
lowing equalities hold asymptotically:

P {sup(F(z) —~ Fp(2)} > E} = exp{—?sgf},

P {SI:p(Fg(z) —- F(2)) > s} = exp{ ~2c£}.
The random variables
& = VEF(z) - Fe(z)),
& = VE(F(z) — Fa(x))

are called the Kolmogorov—Smirnov statistics.

When the Glivenko—Cantelli theorem was generalized for multidimen-
sional distribution functions,® it was proved that for any ¢ > 0 there exists
asufficiently large £y such that for £ > £y the inequality

P {Sgp!F(z“) - F(3)] > E} < 2exp{—a&e*f}

holds true, where a is any constant smaller than 2.
The results obtained in | earning theory generalize the results of Kol-
mogorov and Smirnov in two directions:

(i) The obtained bounds are valid for any set of events (not only for sets
of rays, as in the Glivenko—Cantelli case).

(i1) The obtained bounds are valid for any £ (not only asymptotically for
sufficiently large £}.

For an n-dimensional vector space Z the distribution function of the random
vectors 2 = (2!,...,2") is determined as follows

F(E]=P{zl{£1_,.-.,z"{2u}.

Theempirica distribution function F¢(z) estimates the frequency Of (occurrence
of) theevent 4, = {&' < 2',...,2" <z}
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3.10 RACING FOR THE CONSTANT

Notethat the results obtained in learning theory havethe form of inequali-
ties, rather than qualitiesas obtained for a particular case by Kolmogorov
and Smirnov. For this particular case it is possibleto evaluate how close
to the exact valuesthe obtained general bounds are.

Let Q(z,a), a € A, betheset of indicator functions with VC dimension
. Let usrewritethe bound (3.3) inthe form

12
P {m;p /Q(z, a)dP{z) - EZQ(z,;,a)
< 4exp {-—‘(aez - A{ln 26/ + 1)) -‘3} , (3.33)

i=]

/

wherethe coefficient @ equalsone. In the Glivenko—Cantelii case (for which
the Kolmogorov—-Smirnov boundsare valid) we actually consider a set of
indicator functions Q(z,a) = #(z — ). (For these indicator functions

mezfﬂu—aMFuL

£
Fia) = 3300z —a),
=1

wherez,,. .., z¢ arel.i.d. data.) Notethat for thisset of indicator functions
the VC dimension isequal to one: Using indicators of rays (with onedirec-
tion) one can shatter only one point. Therefore, for a sufficiently larget,
the second term in parentheses o the exponent on the right-hand side of
(3.33) isarbitrarily small, and the bound is determined by thefirst term in
the exponent. This term in the general formula coincides with the (main)
term in the Kolmogorov—Smirnov formulas up to a constant: Instead of
a = t Kolmogorov—Smirnov bounds have constant® a = 2.

In 1988 Devroye found away to obtain anonasymptotic bound with the
constant a = 2 {Devroye, 1988). However, in the exponent of the right-hand
side of this bound the second term is

h{In£2/h + 1)
¢

e e ——

®In the first result obtained in 1968 the constant was @ = 1/8 {Vapnik and
Chervonenkis, 1968, 1971); then in 1979 it was improved to a = 1/4 (Vapnik,
1979). In 1991 L. Bottou showed me a proof with a = 1. This bound also was
obtained by JM. Parronde and C, Van den Broeck (Parrondo and Van den
Broeck, 1993).
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instead of
h(ln2¢/h + 1)

{
For the case that is important in practice, namely, where

(3.34)

~Inn < h(lnh —1),

the bound with coefficient a= 1 and term (3.34) described in this chapter
IS better.

3.11 BOUNDS ON EMPIRICAL PROCESSES

The bounds obtained for the set of real functions are generalizations of the
bounds obtained for the set of indicator functions. These generalizations
were Obtained on the basisof ageneralized concept of VC dimension that
was constructed for the set of real functions.

There exist, however, several ways to construct a generalization of the
VC dimension concept for setsof real functionsthat allow usto derive the
corresponding bounds.

One d these generalizations is based on the concept o a VC subgraph
introduced by Dudley (Dudley, 1978) (in the Al literature, this concept
was renanied pseudo-dimension). Using the V C subgraph concept Dudley
obtained a bound on the metric ¢-entropy for the set of bounded real func-
tions. On the basis of this bound, Pollard derived a bound for the rate
of uniform convergence of the means to their expectation (Pollard, 1984).
This bound was used by Haussler for Learning machines.”

Note that the VC dimension concept for the set of real functions de-
scribed in this chapter forms a slightly stronger requirement on the capac-
ity of theset d functionsthan Dudley's V C subgraph. On the other hand,
using the VC dimension concept one obtains more attractive bounds:

(i) They have aform that hasaclear physical sense (they depend on the
ratio£/h).

(i) More importantly, using this concept one can obtain bounds on uni-
form relative convergence for setsof beunded functionsaswell asfor
setsof unbounded functions. The rated umiform convergence (or uni-
form relative convergence) of the empirical risks to actual risks for
the unbounded set of loss functions isthe basis for an analysis of the
regression problem.

"D. Haussler (1992}, “Decision theoretic generalization of the PAC model for
neural net and other applications,” Inform. Comp. 100 (1) pp. 78-150.
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The bounds for uniform relative convergence have no analogy in classical
statistics. They were derived for thefirst time in learning theory to obtain
rigorous bounds on the risk.






Chapter 4

Controlling the Generalization
Ability o Learning Processes

The theory for controlling the generalization ability of |earning machines
is devoted to constructing an inductive principle for minimizing the risk
functional using a smal! sanple of training instances.

The samplesize ¢ is considered to be small if the ratio £/h (vatio of the
number o troining patterns to the VU dimension of functions d a learning
machine) is small, say £/h < 20.

To construct small sample size methods we use both the bounds for the
generalization ability of learning machines with sets of totally bounded
nonnegative functions,

R{x) < Remplae) + o (1 " J 1y M) RS

Bg

and the boundsfor the generalization ability of learning machines with sets
of unbounded functions,

Remp (‘D"E} (4.2)
(1 - G(P)T\/f) .

1 /p-1\""
-3 (23)"
InN —lnp

f

Riay) <

. where
£ =2
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if the set of functions Q{z,¢;), 1,...,N, contains & elements, and

h (In 2f + 1) — In(n/4)

£=4 7

if the set of functions Q{z,a), a € A, eontains an infinite number of ele-
mentsand has afinite VC dimension . Each bound isvalid with probability
at least 1 - #.

4.1 STRUCTURAL RISK MINIMIZATION (SRM)
INDUCTIVE PRINCIPLE

The ERM principle isintended for dealing with large sample sizes. It can
be justified by considering the inequality (4.1) or the inequality (4.2).

When £/k is large, € is small. Therefore, the second summand on the
right-hand sided inequality (4.1) (thesecond sununand in the denominator
o (4.2)) becomessmall. The actual risk is then close to the value of the
empirical risk. In this case, asmall value of the empirical risk guarantees
asmall value of the (expected) risk.

However, if £/h issmall, a small Rey,(a¢) does not guarantee a small
value of the actual risk. In this case, to minimize the actual risk £(«) one
hasto minimizethe right-hand side of inequality (4.1) (or (4.2)) simultane-
ously over both terms. Note, however, that thefirst termin inequality (4.1)
depends on a specific function of the sat of functions, whilethe second term
depends on the VC dimension of the whole set o functions. To minimize
the right-hand side of the bound of risk, (4.1) (or (4.2)), simultaneously
over both terms, one has to make the VC dimension a controlling variable.

The following general principle, which is called the structurael risk menz-
mization (SRM) inductive principle, isintended to minimize the risk func-
tional with respect to both terms, the empirical risk, and the confidence
interval (Vapnik and Chervonenkis, 1974).

Let the set S of functions Q{z,a), a € A, be provided with a séructure
consisting of nested subsetsof fundions .S, = {@Q(1,a), a € Ag}, such that
(Fig. 4.1)

Sy CSyC---C 8y, (4.3)

where the elements of the structure satisfy the following two properties:
(i) The VC dimension ky of each set S; of functions is finite.! Therefore,

hi<ha...<hn....

'However, the VC dimension of the set & can be infinite.
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FI GURE 4.1. A structure on the sat o functionsis determined by the nest ed
subsets of functions.

(i) Any element Si of the structure containseither

aset of totally bounded functions,
0 <Q(z,a) < Bg, a < Ay,

or as=t of functions satisfying the inequality

p ¢ [ QP(z,0)dF(2))? e

achy J Qz,@)dF(z) — 7 p>2 (4.4)

for some pair (p,7x)-

We call this structure an admissible structure.

For agiven set of observations zi, ...,z the SRM principle chooses the
function @(z, af) minimizing the empirical risk in the subset Sx for which
tho guaranteed risk {determined by the right-hand sided inequality (4.1) or
by the right-hand side of inequality (4.2) depending on the circumstances)
Is minimal.

The SRM principle defines a trade-off between the quality of t he approxi-
mation Of the given data and the complexity Of the approrimating function.
As the subset index r increases, the minimad the empirical risks decrease.
However, the term responsible for the confidenceinterval (thesecond sum-
mand in inequality (4.1) or the multiplier in inequality (4.2) (Fig. 4.2))
increases. The SRM principle takes both factors into account by choosing
thesubset S,, for which minimizing the empirical risk yields the best bound
on the actual risk.
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Bound on the risk

Confidence interval

Empiricai risk

-
h

FIGURE 4.2. The bound on therisk is the sum of the empirical risk and the
confidenceinterval. The empirical risk decreases with the index of the element of
the structure, while the confidence interval increases. The smallest bound of t he
risk is achieved on some appropriate element of the structure.
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4.2 ASYMPTOTIC ANALYSIS OF THE RATE OF
CONVERGENCE

Denote by S* the set of functions
O
S* = U Sk'
k=1

Suppose that the set of functions S* is everywlere dense? in S (recall
S ={Q(z,a) ,ac A)) with respect to the metric

p(Qlz ), Qz,02)) = f Q(z ) — Q(z, a2)ldF (2).

For asymptotic analysis of the SRM principle one considers alaw deter-
mining, for any given £, the number

r = n(f) (4.5)

of the element 5,, of the structure (4.3) in which we will minimize the
empirical risk. The following theorem holds true,

Theorem 4.1. The SRM method provides approzimations Q(Z,a?m )

for which the sequence of risks R(a?m ) converges to the smallest risk
Rioo) = inf, [ Q(z@)dF(2)

with asymptotic rate o convergence®

finiey In €
V() =rny + Trioy (i;. (4.6)

“The set of functions R(z,8), § € B, is everywhere dense in the set
Q(z,a), a @ A, in the metric p(@, R) if for any ¢ > 0 and for any @(z, ")
one can find a function R(z, 3"} such that the inequality

p(Qz,a"), Rz, 57 )y < e

holds true.
*We say that the random variables ¢;, £= 1,2,..., converge to the value &
with asymptotic rate V{£) If there exists a constant {’ such that

V73Ol — &l = C.
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if the law n = n(¥) &s such that

f—o0 £ o

(4.7)

where

(i) Tn = B, if one considers a structure with totally bounded functions
(z,a) < B, in subsets S,, and

(ii) T, = 7, if one considers a structure with elements satisfining the
equality (4.4);

Tn(e) IS the rate of approzimation

r, = inf fQ(z a)dF(z) — |nf /Q(z a)dF(z). (4.8)

oM,

To provide the best rate of convergence one has to know the rate of
approrimation ry for the chosen structure. The problem of estimating
for different structureson setsof functions isthesubject of classical function
approximation theory. We will discuss this problem in the next section. If
one knows the rate of approximation r,, one can a prior: find the law n =
n(¢) that provides the best asymptotic rate of convergence by minimizing
the right-hand side of equality (4.6).

Example. Let Q(z,a),a € A, be a set of functions satisfying the in-
equality (4.4) for p > 2 with 7, < 7* < . Consider astructure for which
n = h,. L the asymptotic rate Of approximation be described by the law

Y

(This law describes the main classical results in approximation theory;
see the next section.) Then the asymptotic rate of convergence reachesits

maximum value if
1
f 41

where [a@]is theinteger part of a. The asymptotic rate of convergence is

vio- (55 as)
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4.3 THE PROBLEM OF FUNCTION APPROXIMATION
IN LEARNING THEORY

The attractive properties of the asymptotic theory of the rate of conver-
gence described in Theorem 4.1 are that one can a priori (beforethe learn.
ing process begins) find the law n = n(£) that provides the best (asymp-
totic) rate of convergence, and that one can a prieri estimate the value of
the asymptotic rateof convergence.? The rate dependson the construction
of the admissible structure (on the sequenceof pairs (h, Tn), N=1,2,...)
and also dependson the rate d approximation r,, n=1,2,....

On the basis on this information one can evaluate the rate o conver-
gence by minimizing {4.6). Note that in equation {4.6), the second term,
which is responsible for the stochastic behavior o the learning processes,
is determined by nonasymptotic bounds on the risk (see (4.1) and {4.2)).
The first term (which describes the deterministic component of thelearning
processes) usually only has an asymptotic bouud, however.

Classical approximation theory studies connections between the smooth-
ness properties of functions and the rate of approximation of the function
by the structure with elements 5, containing polynomials (algebraic or
trigonometric) of degree », or expansions in othar serieswith n terms. Usu-
aly, smoothiness of an unknown function is characterized by the number s
o existing derivatives. Typical results of the asymptotic rate o approxi-
mation have the form

&

Th = n N (410)

where N isthedimensionality of the input space{Lorentz, 1966). Notethat
thisimplies that a high asymptotic rateof convergence®in high-dimensional
spaces can be guaranteed only for very smooth functions.

Iii Learning theory we would liketofind the rate of approximation inthe
followig case

H)

() Q(z,a), ac A, isaset d high-dimensional functions.

(i) Theelements S, o the structure are not necessarily linear manifolds.
(They can beany set d functions with finite VO dimension.)

Furthermore, we are interested in the cases where the rate of approxi-
mation is high,

Therefore, in learning theory we face the problein o describing the cases
for which a high rate of approximation is possible. This requires describ-
ing different sets o "smooth" functions and structures for these sets that
Provide the bound O(:};) for v, (i.e., fast rated convergence).

“Note, however, that a high asymptotic rae of convergence does not neces-
sarily refiect @ high rate of convergence on alimited sanpl e size.

*Let the rate of convergence be considered high if ra < n*/2,
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In 1989 Cybenko proved that using a superposition of sigmeid functions
(neurons) one can approximate any smooth function (Cybenko, 1989).

In 1992-1993 Jones, Barron, and Breiman described a structure on dif-
ferent sets of functions that has afast rated approximation (Jones, 1992},
(Barron, 1993), and (Breiman, 1993).

They considered the following concept of smooth functions. Let {f(x)}
beasat d functions and let {f(w)} betheset d their Fourier transforms,

Let us characterize the smoothness of the function f(x} by the quantity

[ledlf(w)ldw = Ca(f) <00, d20. (4.11)

| nterms of thisconcept the following theorent for the rated approximation
Ty, holds true:

Theorem 4.2. (Jones, Barron, and Breiman) Let the set of functions
F(X) satisfy (4.11). Then the rate of approzimation of the desired functions
by the best function of the elements of the structure s bounded by O(%}
if one of the following holds:

(i} The set of functions { f (X)) is determined by (4.11) withd =0, and
the elements S,, of the structure contain the functions

f(X,a,w,U)=Za,-sin[(x.w,-}+v.-], (4.12)
t=q

where ee; and u; are arbitrary values and w; are arbitrary vectors
(Jones, 1992).

(ii) The set of functions {f(X)} is determined by equation (4.11) with
d =1, and the elements S, of the structure contain the functions

n
f@,aw,v) =Y aiS[(z - wi) +ul, (4.13)
t=]
where o; and v; are arbitrary values, w, are aerbitrary vectors, and
S(u) is a sigmeid function (e monotonically increasing function such
(Barron, 1993).

(iii) The set of functions {f(x)} iS determined by {{.11) with d = 2, and
the elements S,, of the structure contain the functions

flz,o0, w,v) = Zai [{z-wi} +vil,  |u|¢ = max(0, u), (4.14)

i=1

where o, and v; are arbitrary values and w, are arbifrary vectors
(Breirnan, 1993).
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In spite of the fact that in this theorem the concept of smoothness is dif-
ferent from the number of bounded derivatives, one can abserve a similar
plienomenon bare as in the classical case: To keep a high rate of convergence
for aspace with inereasing dirnensionality, one has to increase the smooth-
ness d the functions simultaneously as the dimnensionality d the spaceis
increased. Wi ng constraint (4.11) one attains it automatically. Girosi and
Anzellotti (Girosi and Anzellotti, 1993) observed that the set o functions
satisfying (4.11) with 4 = 1 and d = 2 can be rewritten as

1 1

]$|n—1 * ;\(3}'), f(m} = El—,;_—g * ’\(I)a

fla}=

where A(z) is any function whose Fourier transform is integrable, and *
stands for the convolution operator. In theseformsit hecomes more appar-
ent that dueto more rapid fall-off of theterms1/|z|®*~1, functions satisfying
{4-11) become more and more constrained as the dimensionality increases.
The same phenomenon is dso clear in the results of Mhasker {Mhaskar,
1992), who proved that the rate of convergence of approximation of func-
tions with s contintuous derivatives by the structure (4.13) is O(n=%/¥).

Therefore, if the desired function is not »ery smooth, one cannot guaran-
tee a higly asymptotic rate o convergence of the functionsto the unknown
functjon.

In Section 4.5 we describe a new model of learning that is based on the
idea of local approximation of the desired function (instead of global, as
considered ahove). We consider the approximation of the desired function
in some neighborhood of the point of interest, where the radius of the
neighborhood can decrease with increasing number of observations.

The rate of local approximation can be higher than the rate of global
approximation, and this effect provides a better generalization ability of
thelearning machine.

4.4 EXAMPLES OF STRUCTURES FOR NEURAL
NETS

Thegeneral principle of SRM can be implemented iii many different ways.
Here we consider three different examples of structures built for the set of
functions implemented by a neural uetwork.

1. A structure given by the architecture of the neural network

Consider an ensemble of fully connected feed-forward neural networks
in which the number of unitsin oneof the hidden layersis monotonically
increased. The sets of implementable functions define a structure as the
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FIGURE 4.3. A structure determined by t he number d hidden units.

number Of hidden units is increased (Fig. 4.3).
2. A structure given by thelearning procedure

Consider the st of functions 5 = { f(x,w), w € W}, implementable by a
neural net of fixed architecture. The parameters{w) arethe weightsd the
neural network- A structure is introduced through S, = {f(x,w), (&[] <
Cp} and Cy < €3 < --+- < C,. Under very general conditions on the set
of lossfunctions, the minimization of the empirical risk within the element
Sy of the structure is achieved through the minimization of

£
Bluw, ) = 3 3 Ly Flar, ) +rpllull

=1

with appropriately chosen Lagrange multipliers 4, > 42 > .+ > 7,. The
well-known "weight decay" procedure refers to the minimization of this
functional.

3. A structure given by preprocessing

Consider aneural uet with fixed architecture. Theinput representation is
modified by atransformation z = K(z, 8), where the parameter 8 controls
the degree of degeneracy introduced by this transformation {8 could, for
instance, be the width of a smoothing kernel).

A structure isintroduced in theset of functions S = { f( K(z, 8}, w), w €
W) through 8 = Cp, and € > €2 >... > Cy.

To implement the SRM principle using these structures, one has to khow
(estimate) the VC dimension of any element S of the structure, and has
to beablefor any .5, tofind thefunction that minimizes the empirical risk.
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[

e = = — — -

0 x 0]
(a) B % * )

FIGURE 4.4. Exanpl es d vicinity functions:(a) drowsa hard-threshold vicinity
function and (b) shows a soft-threshold vicinity function.

4.5 THE PROBLEM OF LOCAL FUNCTION
ESTIMATION

Let us consider a model of local risk minimization {in the neighborhood
of a given point ) on the basis of empirical data. Consider a nonnega-
tive function K{z, zp; 3) that embodies the concept d neighborhood. This
function depends on the point xy and a “locality” parameter 5 € (0, 00)
and satisfies two conditions:

0< K(ﬁﬂ,.’lﬁn;ﬁ) S 1:

K(zo,0; 8) = 1. (4.15)
For example, both the "hard threshold" vicinity function (Fig. 4.4(a))
a4 it (% zoli < &, 4
Ky(w, 20; ) “{ 0 otherwise, (4.16)

and the "soft threshold® vicinity function (Fig. 4.4(b))

Kz{(z, xo; B) :exp{_(.’r—Txg)z_} {4.17)

meet these conditions.
Let us define avalue

K(zp, ) = /K(m,mg;,@)dF(a:J. {4.18)

For the sst d functions f(x,a), o € A, let us consider the set d loss
functions Q(z, ar) = I{y, f(x,a)), ac A. Our goal isto minimize the local
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risk functional
K(x,x0;5)
Ric, : = Ly, , AR
(@ iz0) = [ Lo fm,) T

over both the set of functions f{z,a), a € A, and different vicinities of
the point x¢ (defined by parameter 3) in situations where the probability
measure F{x,y) is unknown, but we are given the independent identically
distributed examples

dF(z,y) (4.19)

(T1,t0)s -+ (e, e)-
Note that the problem of local risk minimization on the basis of empirical
dataisageneralization of the problem of global risk tninimization. (In the
last problem we have to minirmze the functional (4.19) with K{z, zg; 3) =
1)

For the problem of local risk minimization one can generalize the bound
obtained for the problem of global risk minimization: With probability 1 -7
simultaneously for al bounded functionsA < L{y,f{z,a) < B, a € A, and
al functions 0 < K{z, e, 5) <1, 8 € (0,00), the inequality

E .
R(@, ;o) < L2mima L San @) K, 70i5) + (B ~ AVE(L h)
(% oy K(xs,70; 8) - E(L, hﬁ))Jr

-1
£ = \/h(ln(?é’,’h -:? 1) nn/2’
holds true, where Az is the VC diinension d the set of functions

L{y, f(z,a))K(z,20; B), a € A, B € (0, 00)

and hg isthe VC dimension of the set of functions K (z, zp, 5) (Vapnik and
Bottou, 1993).

Now using tho SRM principle one can minimize the right-hand side of
the inequality over three parameters: the value of empirical risk, the VC
dimension kx, and the value o thevicinity 8 (VC dimension kg).

7

Thelocal risk minimization approach hasan advantage whenon the basis
of thegiven structureon theset of functionsit isimpossible to approximate
well the desired function using agiven number of observations. However, it
may be possible to provide a reasonable {ocal approzimation to the desired
function at any point of interest (Fig. 4.5).

4.6 THE MINIMUM DESCRIPTION LENGTH {MDL)
AND SRM PRINCIPLES.

Along with the SRM inductive principle, which is based on the statisti-
cal analysis of the rate of convergence of "empirical- processes, there ex-
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FIGURE 4.5. Using linear functions one can estimate an unknown smooth fune-
tion in the Vicinity of any point of interest.

ists another principle of Inductive inference for small sample sizes, the so-
called minimum description length (MDL) principle, which is based on an
information-theoretic analysis o the randomness concept. In this section
we consider the M DL principleand point out the connections between the
SRM and the MDL principles for the pattern recognition problem.

I n 1965 Kolmogorov defined a random string using the concept of algo-
rithmic complexity.

He defined the algorithmic complexity of an object to be the length of
the shortest binary computer program that describes this object, and he
proved that the value of the algorithmic complexity, up to an additive con-
stant, dues not depend on the type of computer. Therefore, it is a universal
characteristic  the object.

The main idea of Kolmogorov is this:

Consider the string describing an object 2o be random if the elgorithmic
comnplexity of the object ishigh — that 45, if the string that deserthes the
object cannot be compressed significantly.

Ten years after the concept of algorithmic complexity was introduced,
Rissanen suggested using Kolmogorov's concept as the main tool of in-
ductive inference of learning machines; he suggested the so-called MDL
bPrinciple® (Rissanen, 1978)).

*The use of the algorithmic complexity as a generd inductive principle
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4.6.1 The MDL Principle

Supposethat we aregiven atraining set of pairs

(wi,21);..., (we, Te)

(pairs drawn randomly and independently according to some unknown
probability measure). Consider two strings: the binary string

Wiy es., Wy (4.20)

and thestring of vectors
ST .73 (4.21)

The question is,
Given (4.21) is the string (420) a random object?

To answer this question let us analyze the algorithmic complexity of
the string (4.20) in the spirit o Solomonoff-Kolmogorov’s ideas. Since the
wy,...,we are binary valued, the string (4.20) is described by ¢ bits.

To determine the complexity of this string let us try to compress its
description. Since training pairs were drawn randomly and independently,
the value w; may depend only 0N vector x; but not on vector z,, ¢ # j (of
course, only if thie dependency exists).

Consider the following model: Suppose that we are given some fixed
codebook Cy, with N < 2¢ different tables T3, ¢ = 1,...,N. Any table T,
describes some function’ from z tow.

Let us try to find the table T in the codebook C} that describes the
string (4.20) in the best possible way, namely, the table that on the given
string (4.21) returns the binary string

Wis-eo g (4.22)

for which the Hamming distance between string (4.20) and string (4.22) is
winimal {i.e., the number of errorsin decoding string (4.20) by this table
T is minimal).

Suppose we found a perfect table T, for which the Hamming distance
between the generated string (4.22) and string (4.20) is zero. This table
decodes the string (4.20).

was consdered by Solomonoff even before Kolmogorov suggested his model
of randomness. Therefore, the principle of descriptive complexity is called the
Solomonoffi-Kolmogorov principle. However, only starting with Rissanen’s work
was this principle considered as atool for inference in learning theory.

" Formally speakng, to get tables  finlte length in codebaok, the Input vector
= has to be discrete. Hawever, as we will see, the mimber d Levels in quantization
will not affectthe bounds on generalization ability. Therefore, one can consider
any degree d quantization, even giving tables with an Infinite number of entries.
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Since the codebook C; is fixed, to describe thestring (4.20) it issufficient
to give the number ¢ of table T, in the codebook. The minimal number of
bits to describethe number of any oned the N tablesis[lgs N, where[A]
is the minimal integer that is not smaller than A. Therefore, in this case
to describe string (4.20) we need [lg, N] (rather than £) bits. Thus using
a codebook with a perfect decoding table, we can compress the description
length d string (4.20) by afactor

K(T,) = [lg;;jN1 {4.23)
Let uscal K(T) the coefficient of compression for the string (4.20).

Consider now the general case: The codebook Cp does not contain the
perfect table. L et the smallest Hamming distance between the strings {gen-
erated string (4.22) and desired string (4.20)) be d > 0. Without loss of
geuerality we can assume that d < £/2. (Otherwise, instead of the smallest
distance one could look for the largest Hamming distance and during de-
coding change one to zero and vice versa. This will cost one extra bit in the
coding scheme). This means that to describe the string one has to make d
corrections to the results given by the chosen table in the codebook.

Far fixed d there are C¢ different possible corrections to the string of
length €. To specify oned them (i.e., to specify one of the C¢ variants) one
needs [lg, C§1 bits.

Therefore, to describe the string (460) we need [lg, M| bits to define
the mumber of the table, and [lg, C§] bits to describe the corrections. We
also need {lg,d] T A4 bits to specify the number of corrections d, where
Ag < 2lg,lg,d, d > 2. Altogether, we need [Ig, N]+[1g, C§1+[1gy d]+A4
bits for describing the string (4.20). This number should be compared to
¢, the number of bits needed to describe the arbitrary binary string (4.20).
Therefore, the coefficient of compression is

If the coefficient of compression K{T) is small, then according to the
Solomonoff-Kolmogorov idea, the string is not random and somehow de-
pends on the input vectors z. In this case, the decoding table T somehow
approximates the unknown functional relation between X and w.

4.6.2 Bounds for the MDL Principle
The important question is the following:

Does the compression coefficient K(T) determine the probability o test
ervor in classification (decoding) vectors x by the table T'?

The answer isyes.



To prove this, iet us compare the result obtained for the MDI principle
to that obtained for the ERM principlein the simplest model (thelearning
machinewith a finite set & functions).

I nthe beginning d thissection we considered the bound (4.1) for thegen-
eralization ability o alearning machine for the pattern recognition prob-
lem. For the particular case where the learning machine has a finite number
N of functions, we obtained that with probability at least 1 — 5, the in-

equality
R(T}) € Remp(Te) + ——5—— (1 +1 /1 LY lnn) (4.25)

holds true simultaneously for all & functions in the given set of functions
(for all N tablesin tle given codebook). Let us transform the right-hand
side o thisinequality using the concept of the conipression coefficient, and
thefact that

d
Remp(Ti) = A

Note that for d < £/2 and £ > 6 the inequality

d InN-Ing 24
e, 2170 14 =€
A, ( +\/ +111Nh1'r})

<3 (UnN] + [ln CE‘; + [lgod] +Ay ll;n) (4.26)

is valid (one can easily check it). Now let us rewrite the right-hand side of
inequality (4.26) in terms d the compression coeflicient {4.24):

(ol D1 sl ) < (1 127).

Since inequality (4.25) holds true with probability at least 1 —  and in-
equality (4.26) holds with probability 1, the inequality

R(T)) < 2 (K(T,,.-,) In2 - 1_:1;) (4.27)

hiolds with probability at.least 1 = #.

4.6.3 The SRM and MDL Principles

Now suppose that weare given M codebooks that have the following struc-
ture: Codebook 1 contaius a small number of tables, codcbook 2 contains
these tablesand some more tables, and so on.



I n this case one can use a more sophisticated decoding scheme to describe
string (4.20): First, describe the number m of the codebook (this requires
Mg, m] + A,  Am < 2flgzlgam] bits) and then, using this codebook,
describethestring (which as shown above takes fig, N+(lgy C¢ 1 ga dit
Ay bits).

The total length of thedescription in thiscase isnot less than [Ing N +
[y C41 + Ngad] + Ayt (lg,m] T A, and the compression coefficient is

Mg N+ [lgy CF1 + Mgad] + Ag +lga m] + Ay
f

K(T) =

For this case an inequality analogousto inequality (4.27) holds. Therefore,
the probability of error for the table that was used for compressing the
description d string (4.20) is bounded by inequality (4.27).

Thus, for d < ¢/2 and £ > 6 we have proved the following theorem:

Theorem 4.3. If on a given structure of codebooks one compresses by
a factor K(T) the description of string (4.20) using a table T, then with
probability af least 1 — n one can assert that the probability committing an
evror by the fableT is bounded by

R(T) < 2 (K(T} In2 lif—’l) , £>6. (4.28)

Note Liow powerful the concept of the compression coefficient is To ob-
tain a bound on the probability of error, we actually need only information
about this coeflicient.® We do not need such details as

(1) How niany examples we used,
(i) how thestructure of the codebooks was organized,
(iii) which codebook was used,
{iv) how many tables were in the codebook,
(v) how many.training errors were made using'this taple,

Nevertheless, the bound (4.28) is not much worse than the bound on the
risk (4.25) obtained on the basis of the theory of uniform convergence.
Thelatter has a more sophisticated structure and uses information abgcut
the number of functions (tables) in the sets, the number of errors on the
training set, and the number d elements of the training set.

®The second term, = Inn/¢, on the right-hand sideis actually foolproof: For
reasonable 1 and £ it isnegligiblecompared to thefirst term, but it prevents one
from considering t00 small 7 and/or too small 1.



Note alsothat the bound (4.28) cannot be improved more than by factor
2: It iseasy to show that in the case where there exists a perfect table in
the codebook, the equality can be achieved with factor 1.

This theorem justifies the MDL principle: To minimize the probability
o error one has to minimize the coefficient of compression.

4.6.4 A Weak Point of the MDL Principle

There exists, however, a weak point in the MDL principle.

Recall that the MDL principle uses a codebook with a finife number o
tables. Therefore, to deal with aset of functionsdetermined by acontinuous
range of parameters, one must make a finite number of tables.

This can be done in many ways. The problem is this:

What is a “smast” codebook far the given set of functions?

In other words, how, for a given set of functions, can one construct a
cedebook with a small number of tables, but with good approximation
ability?

A "smart" guantization could significantly reduce the number of tables
in the codebook. This affects the compression coefficient. Unfortunately,
finding a “smart” quantization is an extremely hard problem. Thisis the
weak point of the MDL principle.

In the next chapter we will consider a normalized set o linear functions
inavery high dimensional space (in our experimentswe use linear functions
in N == 10!3 dimensional space). We will show that the VC dimension h
o thesubset of functions with bounded norm depends on the valueof the
bound. It can be a small (in our experiments h = 10? to 10*). One can
guarantee that if afunction from this set separates atraining set of size ¢
without error, then the probability of test error, is proportional to /1n£/¢.

The problem for the MDL approach to this set o indicator functions is
how to construct a codebook with =2 £* tables (but not with ~ ¢V tables)
that approximates thisset of linear functions well.

The MDL principle works well when the problem of constructing rea-
sonable codebooks has an obvious solution. But even in this case, it IS not
better than the SRM principle. Recall that the bound for the MDL princi-
ple (which cannot be improved using only the concept of the compression
coefficient) was obtained by roughening the bound for the SRM principle.
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Attempts to improve performance in various areas of computational math-
ematics and statistics have essentially led to the sameideathat we call the
structural risk minimization inductive principle.

First thisidea appeared inthe methods for solving ill-posed problems:

(i) Methods of quasi-solutions {Ivanov, 1962),
(ii) methodsof regularization (Tikhonov, 1963)).
It then appeared in the method for nonparametric dsnsity estimation:
(i) Parzen windows (Parzen, 1962),
(ii) projection methods (Chentsov, 1963),

{iii) conditional maximum likelihood method (the methed of sieves (Grenan-
der, 1981)),

(iv) maximum penalized likelihood method (Tapia and Thompson, 1978)),
etc.

The ideathen appeared in methods for regression estimation:
(i) Ridge regression (Hoerl and Kennard, 1970),
(if) model selection (see review in (Miller, 1990}).

Finally, it appeared in regularization techniques for both pattern recogni-
tion and regression estimation algorithms {Poggio and Girosi, 1990).
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O course, therewereanumber of attemptstojustify theidead searching
for asolution using astructure on theadmissible set of functions. However,
intheframework of theclassical approach justifications were obtained only
for specific problems and only for the asymptotic case.

Inthewmnodel of risk minimijzation from empirical data, the SRM principle
provides capacity (VC dimension) control, and it can bejustified for afinite
number of observations.

4.7 METHODS FOR SOLVING ILL-POSED PROBLEMS

In 1962 Ivanov suggested an idea for finding a quasi-solution of thelinear

operator equation
Af=F, feM, (4.29)

in order to solve ill-posed problems. (The linear operator A maps eleinents
of the metric space M C E; with metric pg, to dements o the metric
space N C Ej; with metric pg,.) He suggested considering a set of nested
convex compact subsets

MICM2C"'CMks"'5 (430)
| M= M, - (4.31)

and for any subset M; tofind afunction f; € M; minimizing the distance

= pE:(Afa F)

Ivanov proved that under some general conditions the sequence of solutions

Siaeeos S

converges to the desired one.

The guasi-solution method was suggested at the same time as Tikhonov
proposed his regularization technique; in fact, the two are equivalent. In
the regularization technique, oneintroduces a nonnegative semicontinuous
(from below) functional Q2(f) that possessesthe following properties:

(i) Thedomain of the functional coincides with A (the domaintowhich
the solution of (4.29) belongs).

(ii) Theregionfor which the inequality
M; = {f:Q(f) <d;}, d; >0,

holds forms a compactum in the metric of space Ej.
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(i) Thesolution d (4.29) belongs to sonie M

Qf)y <d < oo

Tikhonov suggested finding asequence of functions f, minimizing the func-
tionals

O\(f) = PE,(Af, F) +YUf)

for different +. He proved that f, converges to the desired solution as y
converges to 0.

Tikhonov alse suggested using the regularization technique even in the
case Where the right-hand side of the operator equation is given only within
some 6-accuracy:.

pe, (F, Fs) < 6.

| nthiscase, i n minimizing the functionals
*(f) = o, (Af, F5) +1(6)2(f) (4.32)

one obtains a sequence fs of solutions converging (in the metric of Ey) to
the desired one fp as 6 — 0 if

lim 7(6) = 0
. 52
imiE =

In both methods the fwmal convergence proofs do not explicitly contain
"capacity control." Essential, however, was the fact that any subset M; in
Ivanov’s scheme and any subset M = {f : €(f) < ¢} inTikhonov’s scheme
is compact. That meansit has a bounded capacity (a metric z-entropy).

Therefore, both schemes imnplement an SRM principle: First define a
structure on the set of admissible functions such that any element of the
structure has afinite capacity, increasing with the number of the element.
Then, on any element of the structure, the function prwiding the best
approximation of theright-hand sided theequation isfound. The sequence
of the obtained solutions converges to the desired one.

4.8 STOCHASTIC ILL-POSEDPROBLEMS AND THE
PROBLEM OF DENSITY ESTIMATION

I n 1978 we generalized the theory of regularization to stochastic ill-posed
problems (Vapnik and Stefanyuk, 1978). We considered a problem of soly-
ing the operator equation (4.29) in the case wlere the right-hand side is
unknown, but we are given asequence of approximations £5 possessing the
following properties:..
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(i) Each of these approximations Fs is a random function.”

(if) The sequence of approximations convergesin probability (in the met-
ric of thespace £3) tothe unknown function F' as 6 convergesto zero.

In other words, the sequence o random functions Fs hasthe property

P{pg,(F, Fs) > &} 3-:30, Ve > 0.

Using Tikhonov's regularization technique one can obtain, on the basis o
random functions Fg, a sequence of approximations f; to the solution d
(4.29).

We proved that for any € > 0 there exists vo = 7o(g) such that for any
¥(8) < 4o the functions minimizing functional (4.32) satisfy the inequality

Ploz,(f fs) > €} < 2P {p},(F, Fs) > v(6)e}.  (4.33)

In other words, we connected the distribution o the random deviation
o the approximations from the exact right-hand side (in the E5 metric)
with the distribution of the deviations of the solutions obtained by the
regularization method from the desired one (in the E; metric).

In particular, this theorem gave us an opportunity to find a general
method for construeting various density estimation methods.

As mentioned in Section 1.8, density estimation requires usto solvethe
integral equation

r

/_ pl(t)dt = F(z),

where F(x}) is an unknown probability distribution function, using i.i.d.
dataxy,...,Teye.
Let usconstruct theempirical distribution function

£

Fi(e) =5 30 ~=.)

i=1

which is a random approximation to F(x), since it was constructed using
random data zy, . .., T¢.

In Section 3.9 we found that the differences sup, |F(z) — Fy(z)| are de-
scribed by the Kolmogorov—Smirnov bound. Using this bound we obtain

P {Sllp |F(z)— Fe(z)| > 5} < 2e %,

°A random function is one that is defined by a realization of some random
event. For adefinition of random functionsseeany advanced textbook in proba-
bility theory, for example, A.N. Schiryaev, Probability, Springer, New York.
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Therefore, if one minimizes the regularized functional

Rip) = o, ( / oty Fe(-"‘?)) +1Q(p), (4.34)

.9

then according to inequality {4.33) one obtains the estimates p¢(t), whose
deviation from the desired solution can be described as follows:

P{pg,(p, pe) > €} < 2exp{—2eby}.

Therefore, the conditions for consistency of the obtained estimators are
Ripnd 0,

f’}’z - XD, {435)
£— oo

Thus, minimizing functionals d type (4.34) under the constraint (4.35)
gives consistent estimators. Using various norms £; and various function-
als Q(p) one can obtain various types of density estimators (including dl
classical estimators®). For our reasoning it is important that all nonpara-
nietric density estimators implement the SRM principle. By choosing the
functional €(p), one defines a structure on the set of admissible solutions
(thenested set of functions M, = {p : ((p) < ¢} determined by constant ¢);
using the law +; one determines the appropriate element d the structure.
In Chapter 7 using this approach we will construct direct method o the
density, the conditional density, and the conditional probability estimation.

49 THE PROBLEM OF POLYNOMIAL
APPROXIMATION OF THE REGRESSION

The problem d constructing a polynomial approximation o regression,
which was very popular in the 1970s, played an important role in under-
standing the problems that arcse in small sample Size statistics.

1°By the way, one can obtain all classical estimators if one approximates an
unknowit distribution function F{x) by the the empirical distribution function
Fy¢(x). The empirical distribution function, however, is not the best approxima-
tion to the distribution function, since, according t0 definition, the distribution
function should be an absolutely continuous one, while t he empirical distribu-
tion function is discontinuous, Using absolutely continuous approximations{e.g.,
a polygon in the one-dimensiona case) one can obtain estimators that in addi-
tion to nice asymptotic properties (shared by the classical estimators) possess
sone useful properties from the point of view o limited NnUMbersof observations
{Vapnik, 1988).
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Consider for simplicity the problem of estimating a one-dimensional re-
gression by polynomials. Let the regression f (z) be a smooth function.
Suppose that we are given a finite number of measurements o this func-
tion corrupted with additive noise

w=flz)+&, i=1,...,¢

(in different settingsof theproblem, different typesd information about the
unknown notse are used; in thismodel d measuring with noise we suppose
that the value of noise & does not depend on z;, and that the point of
measurement z; is chosen randomly according to an unknown probability
distribution F{zx}}.

Theproblem istofind the polynomial that isthe closest (say inthe Ly (F)
metric) tothe unknown regression function f(x). I n contrast to the classical
regression problem described in Section 1.7.3, the st of functions in which
one has to approximate the regression is now rather wide {polynomial of
any degree), and the number of observations is fixed.

Solving this problem taught statisticians alesson in understanding the
nature of the small sample size problem. First thesimplified version of this
problem was considered: Thecase wherethe regression itself isapolynomial
(but the degree of the polynonial is unknown) and the model 0f noise is
described by a normal density with zero mean. For this particular problem
the classical asymptotic approach was used; On the basisofthe technique of
testing hypotheses, the degree of the regression polynomial was estimated
and then the coefficients of the polynomial were estimated. Experiments,
however, showed that for small sample sizes thiis idea was wrong: Even if
one knows the actual degree of the regression polynomial, one often hasto
choose a smaller degree for the approximation, depending on the available
number of observations.

Therefore, several ideas for estimuating the degree of the approximating
polynomial weresuggested, including (Akaiie, 1970), and (Schwartz, 1978)
(see(Miller, 1990)). These methods, however, were justified only in asymp-
totic cases.

4.10 THE PROBLEM OF CAPACITY CONTROL

4.10.1 Choosing the Degree of the Polynomial

Choosing the appropriate degree p of the polynomial inthe regression prob-
lem can be considered on the basis of the SRM principle, where the set of
polynomials is provided with the simplest structure: The first element of
the structure contains polynomials of degree one:

fi{z,0) = a1z 3 a0, @ = (a1, 00) € R
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the second element contains polynomials of degree two:
f2(5':ra) = {12372 + XX+ o, &= (aﬁralraﬁ) S RE;

and so on.
To choose the polynomial of the best degree, one can minimize the fol-
lowing functional [the righthand side of bound (3.30)):

LS~ fml@s 0))?

== 1 4-36
hn(ln 2 +1) —1lngn/4
. 4 (In 2 . ) —lnn/ ,

where &, isthe VC dimension of the s&t of the loss functions
Q(z,a} = {y —fm(m,a})2, Q€ Aa

and ¢ is a constant determining the “tails of distributions” (see Sections
3.4 and 3.7).

One can show that the VC dimension h of the set of real functions
Qz,0) = F(lg(z,a)|), a€A,

where F{u) is any fixed monotonic function, does not exceed eh*, where
e < 9.34 and h* is the VC dimension of the st of indicators

I{(z,0, 8) = B(glz,0) — B), o €A, e R.
Therefore, for our lossfunctionsthe VC dimension is bounded asfollows:
hm <e(lm+1),

To find the best approximating polynomial, one has te choose both the

degree m of the polynomial and the coefficients a minimizing functional'l
(4.36).

4.10.2 Choosing the Best Sparse Algebraic Polynomial

L&t us now introduce another structure on the set of algebraic polynomi-

als: Let the first element of the structure contain polynomials P {z, o) =

cqz?, ac R! (of arbitrary degree 4), with one nonzero term; let the sec-

ond element contain polynomials Pa(z,4) = Q1z% + ana®, a€ R?, with

Uye used this functional (with constant ¢ = 1, and & = [m{ln&/m+ 1) -

Inn)/¢, wheren = f"_” %) in several benchmark studies far choosing the degree of
the best approximating polynomial+or small sample sizes the results obtained
were often Detter than ones based on the classical suggestions.
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two nonzero terms; and so on. The problem is to choose the best sparse
polynomial F,,{x} to approximate asmooth regression function.

To do this, one has to estimate the YV dimension d the set of loss
functions

Q(zs Ct} - (y — Pm(I:a))zs

where P, (z,&), o € R™, isasa of polynomialsof arbitrary degree that
contain m terms. Consider the case of one variable .

The VC dimension k for this set d loss functioiis can be bounded by
24", where k™ isthe YV dimension of theindicators

I(y,2) = 8(y — Pulz,c)—8), acR™ BecR.

Karpinski and Werther showed that the VC dimension &* of this set d
indicators i1s bounded asfollows:

Jm <k <4dm+3

(Karpinski and Werther, 1989). Therefore, our s&t of loss functions hasVC
dimension less than e(4m T 3). This estimate can be used for finding the
sparse algebraic polynomial that minimizes the functional (4.36).

4.10.3 Structures on the Set of Trigonometric Polynomials

Consider now structures on the set of trigonometric polynomials. First we
consider a structure that isdetermined by the degree of the polynomials.!?
The VC dimension of the Sat of our loss function with trigonometric poly-
nomials of degree m is lessthan & = 4m + 2. Therefore, to choose the best
trigonometric approximation one can minimize the functional (4.36). For
this structure thereis no difference between algebraic and trigonometric
polynomials,

The difference appearswhen one constructs astructure of sparse trigono-
metric polynomials. I ncontrast to the sparse algebraic polynomials, where
any element o the structure has finite VC dimension, the VC dimension
o any element o the structure on the sparse trigonometric polynomials is
infinite.

This follows from the fact that the VC dimension of the set d indicator
functions

f(z,a) =@(sinaz), acR', x €(01),

isinfinite (see Example 2, Section 3.6).

2 Trigonometric polynomials of degree m have the form

fol2) = Z{ﬂk dnkx T b coskx) + ao.
k=1
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4.10.4 The Problem of Feature Selection

The problem o choosing sparse polynomials plays an extremely important.
rolein learning theory, since the generalization d this problemisa problem
o feature selection (feature construction) using empirical data.

Aswasdemonstrated in theexamples, the ahove problem d feature selec-
tion (the termsin the sparse polynomials can be considered asthefeatures)
isquite delicate. To avoid the effect encountered for sparse trigonometric
polynomials, one needs to construct a prieri a structure containing ele-
ments with bounded VC dimension and then choose decision rulesfrom the
functions of thisstructure.

Constructing a structure for learning algorithms that select (construct)
features and control capacity is usually ahard combinatorial problem.

In the 1980s in applied statistics, several attempts were made to find
reliable methods of selecting nonlinear functions that control capacity. In
particular, statisticians started to study the problem o function estimation
in the following sets of the functions:

™
y =) o;K(x,w;) + oo,
j=1

where K{x,w) is a symmetric function with respect to vectors X and w,
wy, ..., Wy are unknmn vectors, and a1, ..., &y are unknmn scalars (Fried-
mar and Stuetzle, 1981}, (Breiman, Friedman, Olshen, and Stone, 1984)
(in contrast to approaches developed in the 1970s for estimating linear in
parameters functions (Miller, 1990)). I n them classesd functions choosing
thefunctions K(x,w;), j = 1,...,m, can beinterpreted as feature selection.

Aswe will seein the next chapter, for thesetsd functionsd thistype, it
is possible to effectively control both factors responsiblefor generalization
ability — the value d the empirical risk and the VC dimension.

4.11 THE PROBLEM OF CAPACITY CONTROL AND
BAYESIAN INFERENCE

4.11.1 The Bayesian Approachin Learning Theory

Intheclassical paradigmof function estimation, an important place belongs
to the Bayesian approach (Berger, 1985).

According to Bayes’s formula two events A and B are connected by the
equality
P(B|A)P(A)

£(B)

One uses this formula to modify the ML models d function estimation
discussed in the comments on Chapter 1.

P(A|B) =
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Consider, for simplicity, the problem of regression estimation from mea-
surements corrupted by additive noise

i = f(-ﬂ:, aﬂ) +§2'*

In order to estimate the regression by the ML method, one hasto know a
parametric set of functionsf (x,a),a€ A C R™, that contain the regression
f (x,@p), and one has to know a model d noise P{§).

In the Bayesian approach, one has to possess additional information:
One hasto know the g prieri density function P{e) that for any function
from the parametric set o functions f (x,a). a € A, defines the probability
for it to be the regression. If T (x,cq) isthe regression function, then the
probability of the training data

|Yv X] = (ylszl)a ey (yt»—’ﬂt)
equals

[YX |(}:U HP il'.',,,ﬂ!u))

Having seen the data, one can a pastemon estimate the probability that
parameter a defines the regression:

P(Y, X]|e) P(e)
P(|Y, X))

One can use this expression to choose an approximation to the regression
function.

Let. us consider the simplest way; We choose the approximation f(x,a*)
such that it yields the maximum conditional probability.!? Finding a* that
maxiwmizes this probability Is equivalent to maximizing the following func-
tional;

P(all¥, X1) = (4.37)

ZmP flz,,a)) +In Pla). (4.38)

12 Another estimator constructed on the basis of the a posteriori probability
so(allY, X)) = [ S, c)PLallY, X))o

possesses the following remarkable property: |t minimizes the average quadratic
deviation from the admissble regression functions

R(9) = [ ((z,0) - $(&I|Y, X)) P([Y, X|lo) P(e)dz d{|Y, X]) da.

To find thisestimator in explicit form one has to conduct integration analytically
(numerical integration is impossible due to the high dimensionality of &) . Unfor-
tunately, analytic integration Of this expression iS mostly an unsolvable problem.
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Let Us for simplicity consider the case where the noise is distributed ac-
cording to the normal law

1 2
P& = 2o =P {_'2555} '

Then from (4.37) one obtains the functional

®*(w) = ):(ye flas,0))® - —-mP(a), (4.39)

z—l

which hasto be minimized with respect toain order tofind the approxima-
tion function. Thefirst terin o thisfunctional isthe value of the empirical
risk, and the second term can beinterpreted as a regularization term:with
the explicit form of the regularization parameter.

Therefore, the Bayesian approach brings us to the same scheme that, is
used in SRM or MDL inference.

The goal d thesecommentsis, however, to describe a difference between
the Bayesian approach and SRM or MDL.

4.11.2 Discussion of the Bayesian Approach and Capacity
Control Methods

Theonly (but significant) shortcoming o the Bayesian approach isthat it
is restricted to the case where the set of functions 0f the learning machine
coincides with the set of problems that the machine has to solve. Strictly
speaking, it cannot be applied in a situation where the set of admissible
problems differs froms the set o admissible functions of the learning ma-
chine. For example, it cannot be applied to the problem o approximation
of the regression.function by polynomials if the regression function is not
polynomial, since the a priori probability P{«) for auy function from the
admissible sst o polynomials to be the regression isequal'to zero. There-
fore, the a posteriori probability (4.37) for any admissible function o the
learning machine is zero. To use the Bayesian approach one-must possess
the following strong a prieri information:

(i} Thegiven set o functionsof thetearning machine coincides with the
set of problemsto be solved.

(i) The a priori distribution on the st of problemsis described by the
given expression P{a).M

. : .

"“This part of the a priori information is not as important as the first one.
Qile can prove that with increasing numbersd observations the influence of an
inaccurate description of P(a) isdecreased.
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In contrast to the Bayesian method, the capacity (complexity) control
methods SRM or MDL use weak (qualitative) a priori information about
reality: They use astructure on the admissible set of functions (the set of
functions is ordered according to an ideaof usefulness of the functions);
this a priort information does not include any quantitative description o
reality. Therefore, using these approaches, one can approximate a set of
functions that is different from the admissible set. o functions of the learn-
ing machine.

Thus, inductive inference in the Bayesian approach is based (along with
training data) on given strong (quantitative) e prieri information about
reality, while inductive inference in the SRM or MDL approachesis based
(along with training data) on wesk {qualitative) a prioriinformation about
reality, but uses capacity (complexity) control,

In discussions with advocates d the Bayesian formalism, who use this
formalism in the case where the set d problems to be solved and the set d
admissible functions of the machine do not coincide, one hearsthefollowing
claim:

The Bayesian approach also works in general situations.

Thefact that the Bayesian formalism sometimes works in general situa-
tions (where the functions implemented by the machine do not necessarily
coincide with those being approximated) has the following explanation.
Bayesian inference has an outward form of capacity control. It has O
stages. an informal stage, where one chooses a function describing (quan-
titative) a priori information P(«) for the problem a hand, and a formal
stage, where one finds the solution by minimizing thefunctional (4.38).By
choosing the distribution P{«) one controls capacity.

Therefore, in the general situation the Bayesian formalism realizes a
human-machine procedure for solving the problem at hand, where capacity
control isimplemented by a human choice o the regularizer ln P(e).

In contrast to Bayesian inference, SRM and MDL inference are pure ma-
chine methods for solving problems. For any ¥ they usethe same structure
on the s&t of admissible functions and the same formal mechanisms for
capacity control.



Chapter 5
Methods d Pattern Recognition

To implement the SKM inductive principle in learning algorithms one has
tO minimize the risk in agiven set of functions by contrelling two factors:
the value d the empirical risk and the value d the confidence interval.
Developing such methods isthe goal  the theory of constructing learn-
ing algorithms.
In this chapter we describe learning algorithms for pattern recognition
and consider their generalizations for the regression estimation problem.

5.1 WHY CAN LEARNING MACHINES GENERALIZE?

The generalization ability o learning machines is based on the factors de-
scribed in the theory for controlling the generalization ability of learning
processes. According to thistheory, t o guarantee a high level d generaliza-
tion ability of the learning process one hasto construct a structure

SICcSc.--CS

onthesat o lossfunctions S = {¢(z,a),a € A} and then choose both an
appropriate element S of the structure and a function Q(z,of) € Sx in
thiselement that minimizes the corresponding bounds, for example, bound
(¢.1). The bound (4.1)can be rewritten in the simple form

R(a}) < Ramplof) + 9,2, (5.1)
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where the first term isthe empirical risk and the second terna is the confi-
dence interval.

There aretwo constructive approaches to ininimizing the right-harid side
of inequality (5.1).

m. the first approach, during the design of the learning machine one
determines aset o adniissible functions with some VC dimension %*. For
agiven amount ¢ o training data, the value h* determines the confidence
interval fI){,T{) for the machine. Choosing an appropriate element of the
structure is therefore a problem o designing the machine for a specific
amount of data.

During the learning process this machine minimizes thefirst term d the
bound (5.1) (the numher of errorson the training set).

If for agiven amount of training dataone designstoo complex a machine,
the confidence interval cp(fi_-) will he large. In this case even if one could
minimize the empirical risk down to zero, the number of errorson the test
set could still belarge. This phenomenon is called overfitting.

To avoid overfitting (to get asinall coufidence interval) one has to an -
struct machines with small VC dimension. On the other hand, if the set of
functions has asmall VC dimension, then it is difficult to approximate the
training data (to get asmall value for the first term in inequality (5.1)).
To obtain a small approximation error and simultanecusly keep a small
confidence interval one has to choose the architecture of the machine to
reflect a priori knowledge about the problem at hand.

Thus, to solve the problemn at hand by these types of machines, one first
has to find the appropriate architecture of the learning machine (which is
aresult of the trade off between overfitting and poor approximation) and
second, find in this macliine the function that minimizes the number of
errors on the training data. This approach to minimizing the right-hand
side of inequality (5.1) can be described as follows:

Keep the confidence interval fived (by choosing an appropriate construc-
tion Of machine] and minimize the empirical risk.

The second approach to the problem of minimizing the right-hand side
of inequality (5.1) can be described as follows:

Keep the value of the empiricel risk fized {say equal to zero) and minimize
the confidence interval.

Below we consider two different types of learning machines that imple-
inent these two approaches:

(i) neural networks (which implement the first approach), and
(if) support vector machines (which implement the second approach).

Both types of learning machines are generalizations of the learning ma-
chi nes with a set. of linear indicator functions constructed in the 1960s.
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5.2 SIGMOID APPROXIMATION OF INDICATOR
FUNCTIONS

Consider the problem of minimizing the empirical risk on theset d near
sndzcafor functions

flz,w) =sign{(w .x)}, w € R", (5.2
where (W . x) denotes an inner product between vectors w and X. Let

(371:?}1)1 iy (:rf?yf}

be atraining set, where z; is avector, and y; € {},—1}, j=1,...,¢
The goal is to find the vector of parameters « (weights) that minimize
the empirical risk functional

£
Remp(®) = % Z(la‘j — flz;, w)}z- (5.3)
=1

If the training set is separable without error (i.e., the empirical risk can
become zero), then there exists afinite-step procedure that allows us to
find such a vector wy, for example the procedure that Rosenblatt proposed
for the perceptron (see the Introduction).

The problem arises when the training set cannot be separated without
errors. In this case the problem of separating the training data with the
smallest number of errorsis NP-complete. Moreover, one cannot apply reg-
ular gradient-based procedures to find alocal minimum of functional (5.3},
since for this functional the gradient is either equal to zero or undefined.

Therefore, the idea was proposed to approximate the indicator functions
(5.2) by the so-called sigmoid functions (see Hg 0.3 )

f(z,w)=S{(w- 2)}, (5.4)
where S(u) is @ smooth monotonic function such that |
S(—00) = —1, §(+00) = 1,

for example,
exp(u) — exp(-u)

S(u) =tanhu= oxp(e) FexplCa)

For the set of sigmoid functions, the empirical risk functional

*
£

Remp(w) = 3 3 (5 — S{(w- 2:)})?

=1
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issmooth in w. It has gradient

fe ) B

¢
grady Ramp(w) = ~5 3 [y — S((w - 2,))] S {(w - z,)}=],

j=t

and therefore it can be minimized using standard gradient-based methods,
for example, the gradient descent method:

Whew = Wold — T(‘)gmdﬂemp(wo]d}!

where ¥(:) = y(n) > 0 is avalue that depends on the iteration number n.
For convergence of the gradient descent method to local minimait is suffi-
cient that the values of the gradient be bounded and that the coefficients
~(n) satisfy the following conditions:

Z ¥(n) = oo, ZqQ(n) < 0Q.
n=1 n=l

Thus, the idea is to use the sigmoid approximation at the stage of esti-
mating the coefficients, and use the threshold functions (with the obtained
coefficients) for the last neuron at the stage of recognition-

5.3 NEURAL NETWORKS

In this section we consider classical neural networks, which implement the
first strategy: Keepthe confidenceinterval fixedand minimizetheempirical
risk.

This idea is used to estimate the weights of all neurons of a multilayer
perceptron (neural network). Instead o linear indicator functions (single
neurons) in the networks one considers a set of sigmoid functions.

The method for calculating the gradient of theempirical risk for the sig-
moid approximation of neural networks, called the back- propagation method,
was proposed in 1986 (Rumelhart, Hinton, and Williams, 1986), (LeCun,
1986). Using thisgradient, onecan iteratively modify the coefficients (weights)
of a neural net on the basis of standard gradient-based procedures.

5.3.1 The Back-Propagation Method

To describe the back-propagation method we use the following notation
(Fig.5.1):

(i) The neural net contains m T 1 layers: the first layer =(0) describes
the input vector x = (z!, ..., z"). We denote the input vector by

z; = (2} (0),...,z7(0)), i=1,...,4
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FKGURE 5.1. A neural nework js a combination of several levels of sigmoid
elements. The outputsd one layer form the inputs for the next layer.
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and the image of the input vector z;(0} on the kth layer by

xk) = (zH (k). ., aRF(k)), i=1,...,¢

where we denote by nx the dimensionality of the vectors x;(k), i =
1,.., £, k=1I,...,m —1 can beany number, but n,, =1).

(ii) Layer £ —1 isconnected with layer & through the (nx x ng—3) matrix

w(k}
zi(k) = S{wlk)z:(k ~1}}, &=1,2,....m, i=1,...,¢ (55)
where S{w(k)x;{(k — 1)} defines the sigmoid function o the vector
(k) = wik)xi(k —1) = (uj (k),...,up* (k)
asthe vector coordinates transformed by the sigmoid:

S(ui(k)) = (S(u; (k). S(uf* (k}))-

Thegoal is to minimize the functional
I(w( Z(yi - xi(m (5“6)

under conditions (5.5).

This optimization problem issolved by using the standard technique of
Lagrange multipliers for equality type constraints. We will minimize the
Lagrange function

L(W,X,B)
£ £ m
} Z(% - -Tz(m} Z Z [Iz S{w(fc)ra(k - 1}}])1
Tl i=1 k=1

where b;(k) > 0 are Lagrange multipliers corresponding to the constraints
(5.5) that describe the connections between vectors z;{k — | ) and vectors
I-i(k).
It is known that
VLW, X,B)=0

is anecessary condition for a local minimum of the performance function

(5.6) under the constraints (5.5) (the gradient with respect to dl parame-

tersfrom b;(k}, z;(k), w(k), i=1 ..,, k=1,...,m, isequal tozero).
Thiscondition can besplit into three subconditions:

OL(W. X, B)

(4) o =0 Yk
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. OL(W,X,B) _
(32) Tz k) =0 Vi, k,
(i) SL%(E B) _ o vuw)

T hesolution of these equa ions determines astationary point (Wy, Xo, Bo)
that includes thedesired matricesd weights Wy = (w®(1),...,w%m)). L&t
us rewrite these three subconditionsin explicit form

(i) The first subcondition
The first subcondition gives a set of equations:

(k) = S{wk)zk—1)}, i=1,....¢ k=1,...,m,
with initial conditions
I'.'i(U) = X! )
the equation of the so-called forward dynamics.

(ii) The second subcondition

We consider the second subconditions for two cases. Thecase & =m-
(for the last layer) and the case & # m (for hidden layers).

For the last laver we obtain
bi{m) = 2y; —x,(m}), i=1,...,L
For the general case (hidden layers) we obtain
bi(k) = wT (k + 1)VS {w(k + Dx;(k)} bk + 1),
1=1,...,4 k=1,...,m—1,

where VS {w{k + 1)z,(k}} is a diagonal nigyy X ngqer matrix with
diagonal elements 5’(u,), where u, is the rth coordinate of the
(ng+1-dimensional) vector w(kt1)z,(k). Thisequation describes the
backward dynamics.

(iii) The third subcondition

Unfortunately, the third subcondition does not give a direct method

for computing the matrices of weights w(k), £=1,...,m. Therefore,

to estiimate the weights, one uses steepest gradient descent:

dL{W, X, B)
Fw(k)

w(k) «— w(k) — (-} , k=1,...,m.

In explicit form thisequation is

é
wik} — w(k} = 7() D bu(k)VS {w(k)zi(k — 1)} w(k)zT(k— 1),

) |

k=1,2....,m.
Thisequation describes the rule for weight update.
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&.3.2 The Back-Propagation Algorithm
Therefore, the back-propagation algorithm comtains three elements:
(i) Forward pass:
zi(k) = S{wk)z (k- 1)}, i=1,...,¢ k=1,...,m,
with the boundary conditions

50 =2, i=1,...,¢L

(II} Backward pass:
bi(k) = wT (k + 1)VS {aw(k + 1)z,(k)} bi(k + 1),
i1=1,...,¢ k=1...,m—1,
with the boundary conditions

bi(m) = 2(y; — zi(m)), i=1,...,¢L

(iii) Weight update for weight matrices wik), k= 1,2,...,m:
¢
w(k) — w(k) —v() Y b(k)VS {w(k)z:(k — 1)} wlk)z] (k —1).
izl

Using the back-propagation technique one can achieve alocal minimum for
the empirical risk functional.

5.3.3 Neural Networksfor the Regression Estimation Problem

To adapt neural networks for solving the regression estimation problem, it
is sufficient to use in the last layer alinear function instead of a sigmoid
one. This bmplies only the following changes in the equations described
above:

z;(m) = wim)z,(m — 1},

VS{w(m),z;(m - 1)) =1, i=1,..¢

5.3.4 Remarks on the Back-Propagation Method
The main problems with the neural net approach are:

(i) Theempirical risk functional has many local minima. Standard opti-
mi zation procedures guarantee convergence tooneof them. The qual-
ity of the obtained solution depends on many factors, in particular
on the initialization of weight matrices wi{k}, £=1,...,m.

Thechoiced initialization parameterst o achievea ' small" local min-
imum is based on heuristics.
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(i) The convergence of the gradient-based method is rather dow. There
are several heuristics to speedup the rate o convergence.

(iii) The sigmoid function has a scaling factor that affects the quality
of the approximation. The choice of the scaling factor is a trade-off
between the quality of approximation and the rate of convergence.
There areempirical recommendations for choosing the scaling factor.

Therefore, neural networks are not well-controlled learning machines. Nev-
crtheless, in many practical applications, neural networksdemonstrate good
results,

5.4 THE OPTIMAL SEPARATING HYPERPLANE

Beow we consider a new type d universal learning machine that imple-
ments the second strategy: Keep the value d the empirical risk fixed and
minimize the confidenceinterval.

As in the case o neural networks, we start by considering linear deci-
sion rules (the separating hyperplanes). However, in contrast to previous
considerations, we use a special type of hyperplane, the so-called optimal
separating hyperplanes (Vapnik and Chervonenkis, 1974}, (Vapnik, 1479).
First we consider the optimal separating hyperplane for the case wherethe
training data arelinearly separable. Then, in Section 5.5.1we generalizethe
idea of optimal separating hyperplanes to the case of nonseparable data.
Using a technique for constructing optimal hyperplanes, we describe a new
type of universal learning machine, the support vector machine. Finaly,
we construct the support vector machine for solving regression estimation
problems.

5.4.1 The Optimal Hyperplane
Suppose the training data
(Z1.tn )y (ze,ye), € R®, ye{+1, —1},
can be separated by a hyperplane
(w-z)~-b=0, (5.7)

We say that this set of vectors iSseparated hy the optimal hyperplane for
the maxmal margin hyperplane) if it is separated without error and the
distance between the closest vector to the hyperplane is maxinal (Fig.
5.2).

. To describe theseparating hyperplane let us use the following form:

(wez)—b21 ify=1,
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FI GURE 5. 2. The optimal separating hyperpiane is the one that separates the
data with maximal margin.

(w-r;)—b<—1 ify; =—
In the following we use a compact notation for these inequalities:
yg[(W*Jf.i)—b]:jl, 1= 1,...,5. (58}

It is easy tO check that the optimal hyperplane isthe one that satisfies the
conditions (5.8) and minimizes

B(w) = [|lw]*. (5.9)

(The minimization istaken witb respect to both the vector w and the scalar

b)

5.4.2 A-Margin Separating Hyperplanes
We call a hyperplane

(w*-z)—b=0, [w[=1
a A-margin separating hyperplane if it classifies vectors z as follows:

1 if V\Ik:t:-b}A
Y= —H< A,

-1 if{w*.zx

It is easy to check that the optimal hyperplane defined in canonical
form (5.8) is the A-margin separating hyperplane with A = 1/[w*|. The
following theorem is true.

Theorem 5.1. Let vectors X € X belong t0 & sphere of radius R. Then
the set Of A-margin separating hyperplanes has VC dimension h bounded
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by the inequality rgi
. R?
h < min ([Eﬁ'] ,n) +1.

In Section 3.5 we stated that the VC dimension of the set of separat-
ing hyperplanesis equal to n + 1, where » is the dimension of the space.
However, the VC dimension of the A-margin separating hyperplanes can
be iess.!

Corollary. With probability 1 — 1 one can assert that the probability that
a test example will not be separated correctly by the A-ma n hyperplane

has the bound
m £ 4dm
« 4 1/ it
Perrm__£+2(1+ 1+€ ),

h{ln ¥ +1) —Ingn/4

7 .
m is the number of training examples that am not separated correctly by
this A-margin hyperplane, and h is the bound of the VC dimension given
in Theorem 5.1.

where
£=4

On the basis of this theorem one can construct the SRM method where

in order to obtain a good generalization one chooses the appropriate value
d A.

9.9 CONSTRUCTING THE OPTIMAL HYPERPLANE

To construct the optimai hyperpiane one has to separate the vectors x; o
the training set

{yl!ml)! ] (?}2‘1336)
beionging to two different classes y € {—1,1} using the hyperplane with
the smaliest norm of coefficients.

Tofindthis hyperplane one has to solve the following quadratic program-
ming probiem: Minimize the functional

S(w) = %(w-w} (5.10}

under the constraints d inequality type

wl(ze-w)—b) 21, i=1,2,...,¢ (5.11)

'In Section 5.7 we describe a separating hyperplane in 10**-dimensional space
with relatively smali estimate of the VC dimension (= 10%).
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The solution to this optimization problem is given by the saddle point of
the Lagrange functional (Lagrangian):

K
L{w,b,a) = %(w cw) — Z a{[(: - w) —bjys — 1}, (5.12)

i=1

wherethe a; are Lagrange multipliers. TheLagrangian hasto bc minimized
with respect to w and & and maximized with respect to a; > 0.
At the saddle point, the solutions wuy, by, aud «? should satisfy the

conditions
OL(wo, bp, %) 0
b o
A L{1p, by, a®}
= ).
Jw

Rewriting these equations in explicit form, one obtains the following prop-
erties of the optimal hyperplane:

(1) Thecoefficientsa? for the optimal hyperplane should satisfy the con-
straints

£
Y alyi=0, al>0, i=1,...¢ (5.13)
=1

(first equation).

(i) The Optimal hyperplane {vector wux) is alinear combination of the
vectors of the training Set.

£
wy = Zy,;a?:r,-, ai:] >0, 1= 13---:‘? (514)

i=1
(second equation].

(iii) Moreover, only the so-called support vectors can have nonzero coeffi-
cientsa? in the expansion of wy. Thesupport vectors are the vectors
for which in inequality (5.11) equality is achieved. Therefore, we ob-
tain

g = Z valz, ol >o0. (5.15)

support vectors

Thisfact follows from the classical Kiihn-Tucker thecrem, according
to which necessary and sufficient conditions for the optimal hyper-
plane are that the separating hyperplane satisfy the conditions

oO{l(z: - wo) — bojys —1} =0, i=1,...,  {(5.16)
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Putting the expression for wg into the Lagrangian and taking into account
the Kiihn—Tucker conditions, one obtains the functional

£ £ '
1
Wia)=3 ai—3 3 mauyls o)), (5.17)
i

1=1
It remains 10 maximize this functional in the nonnegative quadrant

a; 20, i=1,.,¢ (5.18)

under the constraint .
Z oy = 0. (5.19)
i=1

According to (5.15), the Lagrange multipliers and support wvectors deter-
mine the optimal hyperplane. Thus, to construct the optimal hyperplane
one has to solve a simple quadratic programming problem: Maximize the
quadratic form (5.17) under constraints® ($.18) and (5.19).

Let ap = (a?,...,al) be asolution to this quadratic optimization prob-
lem. Then the norm of the vector wy corresponding to the Optimal hyper-
plane equals

[wo® = 2W (o) = Z ai"ag(:r‘: 25 )Y

support vectors

The separating rule, based on the optimal hyperplane, is the following
indicator function

flx}y =sign ( Z yial(x; - x) — bn) , (5.20)
support vectors

where z; are thesupport vectors, a? are the corresponding Lagrange coef-
ficients, and b, is the constant (threshold)

- % [(wo - =*(1}) + (wo - z(—1))}],

where we denote by z*(1} some (any) support vector belonging to the first
class and we denote by z*(—1) a support vector belonging to the second
class (Vapnik and Chervonenkis, 1974), (Vapnik, 1979).

?This quadratic programming problem is Simple because it has ssimple con-
straints. For the solution d this problem, one can use special methods that are
fast and applicable for the case with a large number of support vectors (= 10*
support vectors] {More and Toraldo, 1991). Note that in the training data the
support vectors constitute only a small part of the training vectors{in our ex-
periments 3% to 5%0).
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5.5.1 Generalizationfor the Nonseparable Case

To construct the optimal-type hyperplane in the case when the data are
linearly nonseparable, we introduce nonnegative variables & > 0 and a

function
Fa

F &) =) &
=1

with parameter ¢ > 0.

Let us minimize the functional F,{(¢) subject to constraints
’y.g((‘lﬂ . 3:-,,;} - b) 2 1- E—,‘,, = 1,21 . ,E, (521}

and one more constraint,
(w-w) <A™ (5.22)

For sufficiently small ¢ > 0 the solution to this optimization problem
defines a hyperplane that minimizes the number of training errors under
the condition that the parameters of this hyperplane belong to the subset
(5.22) (to the element of thestructure

Sn={w.x)—8&: (W-w) < A%}

determined by the constant ¢, = 1/Delta™?).

For computational reasons, however, we consider the case ¢ = 1. This
case corresponds to thesmallest ¢ > 0 that is still computationally simple.
We call this hyperplane the A-margin separating hyperplane.

1. Constructing A-margin separating hyperplanes. One can show
(using the technique described above) that the A-margin hyperplane is
determined by the vector

¢

1

W= O Zm%iﬁn
i=1

where the parameters a;, 4 = 1,...,£, and C* are the solutions to the

following convex optimization problem:

Maximize the functional

£ ¢
. 1 c*
W{a, C7) = Z“i‘ 20* Z oes0 iy (s - 35} — TAZ

i=1 1,5=1

subject to constraints

¢
Zyiai =0, C*2>0,
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0<; <1, i=1,..

-y

2. Constructing soft-margin separating hyperplanes. To simplify
computations one can introduce the following (slightly modified) concept
of the soft-margin optimal hyperplane {Cortes and Vapnik, 1995). The
soft-margin hyperplane (also called the generalized optimal hyperplane) is
determined by the vector w that minimizes the functional

£
P(w, &} = %(w-*w}+ C (Za)

i=1

(here € is a given value) subject to constraint (5.21).

The technique of solution of thi's quadratic optimization problem is al-
most equivalent to the technique used in the separable case: To find the
coefficients of the generalized optimal hyperplane

£
W = Z k;Yid;,

=1

one has to find the parameters a;, ¢t = 1,..., £, that maximize the same
gunadratic form asin the separable case

¢ ¢
1
Wia)=) o - 3 > yiyseaoy(zi - z5)

i=1 i,7=1
under slightly different constraints:

0<<C, i=1,...0¢

¢
Z a;y; = 0,

i=1

As in the separable case, only someof the coefficients a;, ¢ = 1,..., £, differ
from zero. They determine the support vectors.

Note that if the coefficient € in the functional ®(w,£) isequal to the
optimal value of the parameter ¢* for minimization of the functional F(£),

¢ = C*,

then thesolutionsto both optimization problems (defined by thefunctional
Fi(£) and by thefunctional ®{w,&)} coincide.



138 5. Methods of Pattern Recognition

Optimal hyperplane in the feature space

I. N W N .I]nputspa.ce

FIGURE 5.3. The SV machine nmaps the input space into a high-dimensional
feature space and then constructs an Optimal hyperplane in the feature space.

5.6 SUPPORT VECTOR (SV) MACHINES

The support vector (SV) machine implements the following idea: |t maps
theinput vectors X into ahigh-dimensional feature space £ through some
nonlinear mapping, chosen a priori. In this space, an optimal separating
hyperplaneis constructed (Fig. 5.3).

Example. To construct a decision surface corresponding to a polyno-

mid of degree two, one can create afeature space Z that has N = .'ﬂ_ﬂztﬁl
coordinates of the form

1 n

zl=z",...,2"=2"

1

1 coordinates,

= (xh)2e 23t =(2")?, n coordinates,

Zntlogly? N oanpn ) "{%l—) coordinates,
where x = {z!,...,z"). The separating hyperplane constructed in this
space is asecond degree polynomial in the input space. To construct poly-
nownials of degree d <« =n in n-dimensional space one needs more than
= (n/d) features.

Two problems arisein the above approach: one conceptual and one tech-
nical,

(i) How does one find a separating hyperplane that wil generalize well?
(The conceptual problem).
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Thedimensionality o thefeaturespace will be hnge, and ahyperplane
that separates the training data will not necessarily generalize well.?

(ii) How does one treat computationally such high-dimensional spaces?
(The technical problem)

Toconstruct a polynomial of degree 4 or 5 in a200-dimensional space
It is necessary 10O construct hyperplanesin a billion-dimensional fea-
ture space. How can this “curse of dimensionality” be overcome?

5.6.1 Generalization in High-Dimensional Space

Theconceptual part d this problem can besolved by constructing both the
A-margin separating hyperplane and soft margin separating hyperplane.
According to Theorem 5.1 the VC dimension o the set of A-margin
separating hyperplanes with large A issmall. Therefore, according to the
corollary to Theorem 5.1 the generalization ability o the constructed hy-
perplaneis high.
For the maximal margin hyperplane the following theorem holds true.

Theorem 5.2. If training sets containing £ examples are Separated by
the mazimal margin hyperplanes, then the expectation {over training sets)
of the probability of test error is bounded by the expectation of the minimum
of three values: the ratio m/¢, where m is the number of support vectors,
the ratio [R*|w|?|/¢, where R is the radius of the sphere containing the
data and |w|~2 is the value o the margin, and the ratio n/Z, where n is the
dimensionality of the input space:

_f{m [R?w[?]] n
EPerrur =< E min (?, 'T, -E . (5.23)

Eqiiation (5.23) gives three reasons why optimal hyperplanes can gener-
aize:
1. Because the expectation of the data compression is large®.

3Recal! Fisher’s concern about the small amount of data for constructing a
quadratic discriminant function in elassical discriminant analysis (Section 1.9).

‘One can compare the result of this theorem to the result of analysis of the
falowing campression scheme. To construct the optimal separating hyperplane
one needs only ta specify among thetraining data the support vectors and their
classification. This requires = [lg, m} bits to specify the number m of support
vectors, [lg, C7*T bitsto specify the support vectors, and [lg, 7' | bitsto specify
my representatives o the first class among the support vectors. Therefore, for
m <« £ and my = m/2 the compression coefficient. is

P m (lg, £/m + 1)
£

According to Theorem 4.3 the probability of error for the general compression
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2. Because the expectation of the margin is large.

3. Because the input space is small,

Classical approaches ignore the first two reasons for generalization and
rely on the third one. In support vector machines we ignore the dimension-
ality factor and rely on thefirst two factors.

5.6.2 Convolution of the Inner Product

However, even if the optimal hyperplane generalizes well and can theoreti-
caly be found, the technical problem of how to treat the high-dimensional
feature space remains.

In 1992 it was observed (Boser, Guyon, and Vapnik, 1992) that for con-
structing the optimal separating hyperplane in the feature space Z one
does not need to consider the feature spacein ezplicit form. One has only
to be able to calculate theinner products between support vectors and the
vectors of the feature space ((5.17) and (5.20)).

Consider ageneral expression for theinner product in Hilbert space®

(z,-_ . z) = K(m,mi),

where z is the image in feature space of the vector X in input space.

According to Hilbert—Schmidt theory, K(z,x;) can be any symmetric
function satisfying the following general conditions {Courant and Hilbert,
1963):

Theor em5.3. (Mercer) To guaranteethat the symmetric function K {u, v)
from L, has an expansion

K(u,v) = Y axte(u)dn(v) (5.24)

k=1

with positive coefficients ap > 0 (i.e., K(u,v) describes an inner product
in some feature space), itis necessary and sufficient that the condition

][ K{u,v)g(u)g(v)dudyv > 0

scheme is proportional to K. From Theorem 52 it follows that E Ferror < Em/E.

Therefore, the bound cbtained for the v machine is mucl better than the
bound obtained for the general compression scheme even if the random value m
In (5.23) is aways the smallest one.

This ideaves usad in 1964 by Aizerman, Braverman, and Rozoneer in their
analysis Of the convergence properties d the method of potential functions (Aiz-
erman, Braverman, and Rozoncer, 1964, 1970). |t happened at the same time
{1965} as the method of the optimal hyperplane was developed (Vapnik and
Chervonenkis 1965). However, combining these two ideas, which lead to the SV
machi nes, wasdoneonly in 1932.
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be valid for all g # 0 fOr which

]gz(u)du < 9.

5.6.3 Constructing SV Machines

The convolution o the inner produet allows the construction o decision
functionsthat are nounlinear in the input space,

flz) = sign E v K (xq, ) - b) . (525)

upport vectors

and that areequivalent to linear decision functions in the high-dimensional
featurespace ¢n1(z), ..., ¥~ {(z) {(K{zs ) ts aconvolution of theinner prod-
uct for thisfeature space).

Tofind the coefficients a; in the separable case (analogously in the non-
separable case) it is sufficient to find the maximum o the functional

i=1

¢ ¢
1
Wia) = E & - 5 5 . a0y Y, K(z4,24) (5.26)
4.3
subject tO the constraints

4
Zaiy'i-:O? 31201 "\‘::]'m?:!l{'J (527)

i=1

This functional coincides with the functional for finding the optimal hy-
perplane, except for the form o the inner products: Instead of inner prod-
ucts (z; . x;) in {5.17), we now use the convolution of the inner products
K(:I:t"Ij).

The learning machines that construct decision functions of the type
(5.25) arecalled suppart vector (SV) Machines. (With this name we stress
the idea of expanding the solution on support vectors. | n SV machines the
complexity of the construction depends on the number of support vectors
rather than on the dimensionality of the feature space.) The scheme of 5V
machines is shown in Figure5.4.

5.6.4 Examples & SV Machines

Using different functions for convolution d theinner products K{z, x;), one

can construct learning machines with different types of nonlinear decision

Sl;rfaces ininput space. Below, weconsider threetypes of learning machines:
i

(i) polynomial learning machines,
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Decision rule

N
.‘r'=5_lgn(.£1!r'iaiF(Ki o)
1=

Weights ¥ty o ¥y iy

Nonlinear transformation
based on support vectors

1 1""xN

Input vector x = ( x', ..., x"}

FIGURE 5.4. The two-layer SV machine is a compact realization of an opt
hyperplane in the high-dimensional feature space Z.
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(ii) radial basisfunctions machines, and
(iii) two layer neural networks.

For simplicity we consider here the regime where the training vectors are
separated without error.

Note that the support vector machines implement the SRM principle.
Indeed, &t

¥(r) = (a(z),.. ., ¥n ()

beafeaturespaceand w = (wy,. .., wy) beavector of weights determining
a hyperplane in this space. Consider a structure on tlte set of hyperplanes
with eleanents 55 containing the functions satisfying the conditions

Rziwig <k,

where R is the radius of the smallest sphere that contains the vectors ¥(z),
and |w| isthe norm of the weights (we use canonical hyperplanesin feature
space with respect tothe vectors z = ¥(z;), where z; are the elements of
the training data).

According to Theorem 5.1 (now applied in thefeature space}, k givesan
estimate of the VC dimension d the st of functions Sy.

The SV machine separates without error the training data

y%[(‘p(ml)w)'_b]?_’ I, yi:{+11 —1}1 ?;::1523---131

and has minimal norm |uw|.
In other words, the 8V machine separates the training data using func-
tionsfrom the element S5, with the smallest estimateof the VC dimension,
Recall that in thefeature space the equality

¢ ¢
{wol® = ZHEQ?K(SE:,Ij)ywj = Za? (5.28)

holds true. To control the generalization ability of the macltine {to min-
imize the probability of test errors) one has to construct the separating
hyperplane that minimizes the functional

R%wg)?
§

With prohability 1 — n the hyperplane that separates data without error
has the following bound on the test error

@(R,‘w‘),f) = (529)

4h(ln 2 +1)-Inn/4

£ = : :
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where & isthe VC dimension o theset of hyperplanes. We approximate the
VC dimension A o the maximal margin hyperplanes by Aess = R%wg|?. To
estimate thisfunctional it is sufficient to estimate jwe{? (say by expression
(5.28)) and estimate R? by finding

R’ = RY(K) = minmax [K (21,5:) + K(a,0) —2K(z;,0)].  (5.30)

Polynomial learning machine
To construct polynomial decision rules of degree d, one can use the fol-
lowing functien for convolution of the inner product:

K(z,z)=[(z-z) +1]% (5.31)

Thissymmetric function satisfiesthe conditionsof Theorem 5.3, and there-
foreit describes a convolution of theinner product in thefeaturespace that
contains all products x; . z; - z; up to degree d. Using the technique de-
scribed, one constructs a decision function of the form

f(z, @) =sign ( Y val(mo o+ 10 - b) :

support vectors

which is a factorization of d-dimensiona polynomials in n-dimensional in-
put space.

In spiteof the very high dimensionality of t he feature space (polynomials
of degree d in n-dimensional input space have O(n?) free parameters) the
estimate of the VC dimension of the subset d polynomialsthat solve real- :
life problems can be low.

As described above, to estimate the VC dimension of the element of
the structure from which the decision function is chosen, one has only to
estimate theradius R of thesmallest sphere that contains the training data,
and the norm of weightsin feature space (Theorem 5.1).

Note that both the radius R = R(d) and the norm of weights in the
feature space depend on the degree of the polynomial.

This gives the opportunity to choose the best degree of the polynomial
for the given data.

To make a local polynomial approximation in the neighborhood of a point
of interest zq, let us consider the hard-threshold neighborhood function
(4.16). According to thetheory of local algorithms, one chooses a ball with
radius Rg around point.zq in which £z elementsd thetraining set fall, and
then using only these training data, one constructs the decision function
that minimizes the probability of errorsin the chosen neighborhood. The
solution to this problem isaradius Rg that minimizesthe functional

ng]'wgl?
s

®(Rp,wo, {3) = (5.32)
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(the parameter |wo| dependson the chosen radius as well). Thisfunctional
describes a trade-off between the chosen radius Rz, the valfie of the mini-
mum of the norm {wa|, and the number o training vectors | §hat fall irnto
radius Rg.

Radial basis function machi nes
Classical radial basis function (RBF) machines use the following set of
deciston rules:

N
f(z) =sign (Z 6: K {)z — ) — b) , (5.33)

where K., {{z — x4{) depends on the distance {x — ;] between two vectors.
For the theory of RBF machines see {(Micchelli, 1986), (Powell, 1992).
The function K. {jz — z;{) is for any fixed ¥ a nonnegative monotonic
function; it tends tO zero as z goes to infinity. The most popular function
of thistypeis
K,(|z - z;])) = exp{~7lz — z:)*}. (5-34)

To construct the decision rule (5.33) one has to estimate
(i) Thevalue of the parameter vy,
(i) the number N of the centers z;,
(iii) the vectors x;, describing the centers,
(iv) the value of the parameters a;.

In the classical RBF method thefirst three steps (determining the param-
etersy, N, and vectors (centers) x;, 2 = 1,...,N) arebased on heuristics,
and only the fourth step (after finding these parameters) is determined by
minimizing the empirical risk functional.

The radial function can be chosen as a function for the convolution of
the inner product for an SV machine. In this case, the SV machine will
construct afunction from the set (5.33). One can show (Aizerman, Braver-
man, and Rozonoer, 1964, 1970) that radial functions (5.34) satisfy the
condition of Theorem 5.3.

I n contrast to classical RBF methods, in the $V technique all four types
of parameters are chosen to minimize the bound on the probability of test
error by controlling the parameters R, wyg in thefunctional (5.29). By min-
imizing the functional (5.29) one determines

(i) N, the number of support vectors,
A4ii) =z, (the pre-images of) support vectors;

(i) a; = ey, the coefficients of expansion, and
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(iv) 7, the width parameter of the kernel function.

Two-layer neural networks
Finally, one can define two-layer neural networks by choosing kernels:

K(z,x;) = Slu(z - z:) + ],

where S(u) is a sigmeid function. In contrast to kernels for polynomial
machines or for radial basis function machines that. aways satisfy Mercer
conditions, the sigmoid kernel tanh(vu +¢), luj < 1, satisfies Mercer con-
ditions only for some values of the parameters v, ¢. For these values of the
parameters one can construct SV machines implementing the rules

N
f(z,a) =sign {Z aiS(v(z-z) 4+ o)+ b} :
i=1

Using the technique described above, thefollowing arefound antomatically:

(i) the arclutecture of the two layer machine, determining the number
N of hidden units (the number of support vectors),

(ii) the vectorsof theweights w; = «; in the neurons of thefirst (hidden)
layer (the support vectors), and

(iii) the vector of weightsfor the second layer (valuesaof a) .

5.7 EXPERIMENTS WITH SV MACHINES

In the following we will present two types of experiments constructing the
decision rules in the pattern recognition problem:®

(i) Experimentsin the plane with artificial datathat can he visualized,
and

(i1) experiments with real-life data.

5.7.1 Example in the Plane

To demonstrate the SV technique we first give an artificial example (Fig.

%The experiments were conducted M the Adaptive System Research Depart-
ment, AT&T Bell Laboratories.
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FIGURE 5.5. Two classes d vectorsare represented in the picture by black and
white balls. The decision boundarieswere constructed using an inner preduct of
polynomial type with d = 2. In the pictures the examples cannot be separated
without errors; the errors are indicated by crosses and the support vectors by
double circles.

5.5).

The two classes of vectors are represented in the picture by black and
white balls. Thedecision boundarieswere constructed using an inner prod-
uct d polynomial type with € = 2. In the pictures the examples cannot
he separated without errors; the errors are indicated by crosses and the
support vectors by double circles.

Notice that in both examples the number of support vectors is small
relative to the number of training data and that the nnmber of training
errors is minimal for polynomialsof degreetwo.

5.7.2 Handwritten Digit Recognition

Since the first experiments of Rosenblatt, the interest in the problem of
learning to recognize handwritten digits has remained strong. In the fol-
lowing we describe results of experiments on learning the recognition of
handwritten digits nsing different SV machines. We also compare these re-
sults to results obtained by other classifiers. |n these experiments, the U.S.
Postal Service database {LeCun et al., 1990) was used. It contains 7,300
training patternsand 2,000 test patternscollected from real-life zip codes.
The resolution of the database is 16 x 16 pixels; therefore, the dimension-
ality of the input space is 256. Figure 5.6 gives examples from this data
base.



148 5. Methodsof Pattern Recognition
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FIGURE 5.6. Examples of patterns (with labels) from the U.8. Pogtal Service
database.
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Classifier Raw error%

Human performance 2.5
Decision tree, C4.5 16.2
Best twa-layer neural network 5.9
Five-layer network {(LeNet 1) 5.1

TABLE 5.1. Hunan performance and performance of the various learning ma
chines in salving the problem of digit recognition on U.S. Retd Servicedats.

Table 5.1 describes the performance of various classifiers, solving this
problem’

For comstructing the decision rules three types of SV machines were
used:®

(i) A polynomial machinewith convolution function

CIEDAY
K(x’m"}=(_é§33_) , d=1,...,7.

(i1) A radial basts function machine with convolution function

X — X; 2
K(x,x;) =exp {—(—Eﬁ—z}-—}.

(iii) A two-layer neural network machine with convolution function

K{z,z;) = tanh (@2‘5%) _ a)

All machines constructed ten classifiers, each one separating one classfrom
the rest. The ten-class classification was done by choosing the class with
the largest classifier output value.

Theresultsof these experimentsaregivenin Table5.2. For different types
of SV machines, Table 6.2 showsthe best parametersfor the nachi nes (col-

urm 2), the average (over one classifier) of the number of support vectors,
and the performance of the machine.

"The result of human perfermance Was reported by J. Bromley and E.
Sackinger; the result d C4.5 was obtained by C. Cortes; the result for the two-
layer neural net was obtained by B. Schéilkopf; the resultsfor the specid purpose
neural network architecturewlth five layers (LeNet 1), wasobtalned by Y. LeCun
et ch

3The results were obtained by C. Burges, C. Cortes, and B. Scholkopf.
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Type of Parameters Number of Raw
SV classifier o classifier | support vectors | error
Polynomials d=3 274 40

RBF classifiers a2 =0.3 201 4.1
Neura network |[ #=2 e=1 254 4.2

TABLE 5.2. Results o digit recognition experiments with various SV machines
using the U.S. Postal Service database. The number o support vectors means
the average per classifier,

Poly | RBF | NN | Common
total # o sup.vect. 1677 | 1727 | 1611 1377
% of common sup. vect. 82 80 85 100

TABLE 5.3. Tota number (in ten classfiers) d support vectors for various SV
machines and percentage of common support vectors.

Note that for this problem, al types of SV machines demonstrate ap-
proximately the same performarice. Tlhis performance is better than the
performanceof any other type of learning machine solving the digit recog-
nitiotr problem by constructing the entire decision rule on the basis of the
U.S. Postal Service database.?

In these experiments one important singularity was observed: Diflerent.
types of 5V machines use approximately the same set of support vectors.
The percentage d common support vectors for three different classifiers
exceeded 80%.

Table 5.3 describes the total mumber o different support vectors for ten
classifiers of different machines: polynomial machine (Poly}), radial basis
function machine (RBF'), and Neural Network machine (NN). It showsalso
the number of common support vectors for all machines.

*Note that using the local approximation approach described In Section 4.5
(which does not construct the entire decision rule but approximates the decision
rule of any point of interest) onecan obtain a better result: 3.3%oerror rate (L.
Bottou and V. Vapnik, 1992).

The best result for this database, 2.7, was obtained by P. Simard, Y. LeCun.
and J. Denker without using any learning methods, They suggested a specia
method o elastic matchingwith 7200 templates using asmart concept of distance
(so-called tangent distance) that takes into account invariance with respect to
small translations, rotations, distortions, and so on (P. Simard, Y. LeCun, and
J. Denker, 1993).
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Poly | RBF | NN
Poly || 100 84 94
RBF 87 100 | 88

NN 91 8 | 100

TABLE &.4. Percentage Of common(tatd) support vectorsfor two 3y machines.

Table 5.4 describes the percentage of support vectors o the classifier
given in the colunms contained in the support vectors of the classifier given
in the rows.

This fact, if it holds true for a wide class o rea-Ufe problems, is very
important..

5.7.3 Some Important Details

I n this subsection we givesome impertant details on solving the digit recog-
nition problem using a polynomial 5V machine,

The training data arc not linearly separable. The total number of mis-
classifications on the training set for linear rules is equal to 340 (= 5%
errors). For second degree polynomial classifiers the total number of mis-
classifications on the training set is down to four. These four mis-classified
examples (with desired labels) are shown in Fig. 5.7. Starting with peolyno-
mials o degreethree, the training data are separable.

Table 5.5 describes the results of experiments using decision polynomials
(ten polynomials, one per classifier in one experiment) of various degrees.
The number of support vectors shown in the table is a mean value per
classifier.

Notethat the number of support vectors increases slowly with the degree
of the polynomials. The seventh degree polynomial has ouly 50% more
support vectors than the third degree polynomial.1®

"*The relatively high number o support vectorsfor thelinear separator is due
to nonseparabilitv: The number 282 includes both support vectors and misclas-

4 4 8 5
F/GURE 57. Labeled examples of training errors far the second degree polyno-
mials,
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degree of || dimensionality o | support [ raw
polynomial feature space vectors | error
1 256 282 8.9
2 ~ 33000 227 4.7
3 ~ 1 x 108 274 4.0
4 ~ 1 x 10° 321 4.2
5 ~ 1x 101 374 4.3
6 ~1x 101 377 4.5
7 ~ 1 x 1016 422 4.5

TABLE 5.5. Results of experiments with polynomials of different degr ees.

The dimensionality of the feature space for a seventh degree polyno-
mial is, however, 10 times larger than the dimensionality of the feature
space for a third degree polynomial classifier. Note that the performance
does not change siguificantly with increasing dimensionality of the space
— indicating no overfitting problems.

To choose the degree of the best polynomialsfor one specific classifier we
estimate the VC dimension (using the estimate [R2A2]} for all constructed
polynomials (from degree two up to degree seven} and choose the one with
the smallest estimate of the VC dimension. In this way we found the ten
best classifiers (with different degrees of polynomials) for the ten two-class
problems. These estimates are shown in Figure 5.8, where for all ten two-
classdecision rulesthe estimated V C dimension is plotted versusthe degree
of the polynomials. The question is this:

Do the polynomials with the smallest estimate of the VC dimension pro-
vide the best classifier?

To answer this guestion we constructed Table 5.6, which describes the
performance of the classifiers for each degree of polynomial.

Each row describes one two-class classifier separating one digit(stated in
the first column} from all the other digits.

The remaining columns contain:

deg.: the degree of the polynomial as chosen (from two up to seven)
by the described procedure,

dim.: the dimensionality of the corresponding feature space, which is
also the maximum possible VC dimension for linear classifiersin that,
space,

hest.: the VO dimension estimate for the chosen polynomial (which is
much smaller than the numher of free parameters),

sified data.
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Chosen classifier Number of test errors
Digit || deg. | dim. | kese. | L1273 74 75 [0 7
0 3 ~10% | 530 | 36 |14 | |11 11 11 |12 | 17
1 7 | ~10% | 101 17|15| 14 | 11 | 10 [ 10| (10
2 3 | ~10° | 842 | 53 |32 (28|} 26 | 28 | 27| 32
3 3 | ~108 | 1157 || 57| 25 | [22|] 22 1 22 | 221 23
4 4 ~10° | 962 || 50 32| 32 [[|30|] 30 [ 29| 33
5 3 ~10% | 1090 || 37 {20 (|22|] 24 | 24 | 26 | 28
6 4 ~10% | 626 || 23 | 12| 12 |j15]|| 17 |17 | 19
7 5 | ~10% | 530 | 25|15 | 12 | 10 ||11|| 13| 14
8 4 ~10° | 1445 ) 71133 | 28 ||24|| 28 | 32| 34
9 5 | ~10"2 | 1226 |[ 51 ) 18| 15 | 11 ||11]| 12| 15

TABLE 5.6. Experiments on choosing the best degree d polynomial.

Number of test errors: the numher of test errors, using theconstructed
polynomial of corresponding degree; the hoxes show the number of
errorsfor the chosen polynomial.

Thus, Table 5.5shows that for the SV polynomial machine there are no
overfitting problemswith increasing degree of polynomials, while Table 5.6
shows that even in situations where the difference between the best and
the worst selutions is small (for polynomials starting from degree two up
to degree seven), the theory gives a method for approximating the best
solutions (finding the best degree of the polynomial).

Note also that Table 5.6 demonstrates that the problem is essentially
nonlinear. The difference in the number of errors between the hest polyno-
mial classifier and the linear classifier can be as much as a factor of four
(for digit 9).

5.8 REMARKS ON SV MACHINES

The quality of any learning machine is characterized by three main com-
ponents:

(i) How universal is the learning machine?
How rich isthe set of functions that it can approximate?

{ii} How well can the machine generalize?
How close is the upper bound on the error rate that this machine
achieves (implementing a given set of functions and a given structure
on this set of functions) to the smallest possible?
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{#1) How fast does the learning process for this machine converge?
How many operations does it take to find the decision rule, using a
given number o observations?

We address these in turn below.
{i) SV machines implement the sets of functions

N
flx, a,w) = sign (Zai-h’(:r,wi) - b) ) {5.35)
=1
where IV is any integer {N < (), a;, ¢+ = 1,..., N, are any scalars, and
wy, £ = 1,..., N, areany vectors. Thekernel K(x,w) can be any symmetric

function satisfying the conditions of Theorem 5.3.

As was demonstrated, the best guaranteed risk for these setsof functions
Is achieved when the vectors o weights w,..,,wy are equal to somne of
the vectors X from the training data (support vectors).

Using the st of functions

flaa,wy= Y peK(zw}—b
support vectors

with convolutions of polynomial, radial basis function, or neural network
Lype, one can approximate a continuousfunction to any degree of accuracy.

Note that for the SV machine one does not need to construct the archi-
tecture of the machine by choosing a prieri the number N {as is necessary
in classical neural networks or in classical radial basis function machines).

Furthermore, by changing only the function K{z,w) in the 8V machine
one can change the type of learning machine { the type of approximating
functions).

(i1} SV machines minimize the upper bound on the error rate for the
structuregiven on aset of functionsin afeaturespace. For the best solution
it is necessary that the vectors w; in (5.35) coincide with some vectors of
thetraining data (support vectors.)*® SV machines find the functionsfrom
the set (5.35) that separate the training data and belong t o the subset with
the smallest bound of the VC dimension. (In the more general case they
minimize the bound of the risk (5.1}.)

{113), Finally, to find the desired functiou, the SV machine has to maxi-
mize anonpositive quadratic form in the nonnegative quadrant. This prob-
lem is a particular case o a special quadratic programming problem: to
maximize a nonpositive quadratic form ¢{x) with bounded constraints

a,-g;rigbg, i=1....n

1 r o

YThis assertlon isadirect corollary o the necessity of the Kithn-Tucker con-
ditions for sal vi ng the quadratic optimization problem described in Sectlon 5.4.
Ttie Kithn-Tucker conditions are necessary and suffictent for the selution of this
problem.
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where X', i = 1,...,n, are the coordinates of the vector z, and a;, b
are given constants. For this specific quadratic programming problem fast
algorithms exist,

5.9 SVM AND LOGISTIC REGRESSION

5.9.1 Logistic Regression

Often it is important not only to construct a decision rule but also to
find a function that for any given input vector X defines the probability
P{y = 1|z} that the vector = belongs to the first class. This problem is
more general than the problem o constructing a decision rule with good
performance. Knowing the conditional probability function one can con-
Struct the Bayesian (optimal) decision rule

o) =sen {n (220 ) |

Below we consider the following (parametric) problem o estimating the
conditional probability.'? Suppose that the logarithm o the ratio of the
following two probabilities is afunction f(X,wq) from a given parametric
= flr,w), weW

Ply=1z} \ _
m@—sznﬂ)‘HLW)

From this equation it follows that the conditional probability function
P{y = 1|z} has the followingform:

eFzwo)

Ply =1z} = (5.36)

T+ el G

Thefunction (5.36) is called logistic regression.
Our goal is given data

(yl,xl); ...,(y,f,I,f)

to estimate the parameters wq of the logistic regression.'® First we show
that the minimum o the functional

Ro(w) = Eyln (1 + e/ @w)) (5.37)

**The more general nonparametric Setting of this problem we discuss in
Chapter?.

*Note that (5.36) is a form of sigmoid function considered in Section 5.2.
Therefore a one-iayer neural network with sigmeid function (5.36) isof tencon-
sidered as an estimate o the iogistic regression,
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(Ey isexpectation over y for a fixed value of x) defines the desired param-
eters.
Iudeed, the necessary conditionfor a mimimum is

BRI(U}) _ o —yfiz,w) :I o
w [&uEE’l“ (L+e ) LY

Taking the derivative over w and using expression (5.36) we obtain

AR(w) 0 o f )
v 3waln(1+e )
_ _f;u(xi w)e_ﬂm’w] _ f; (z,w} -
N ( 1+ e—J(zw) P{y - lhm} + 14 ef(zw) P{y = 1|33}

B _f:”($1 w}e"f(zsw} ef(xswﬂ} f:ﬂ(xj w}ef(zlw} 1
o 1+ e—f(I;w) 1 + ef(xawﬂ) + 1+ EI(I,‘U} 1+ ef(xrwﬂj
This expression is equal to zero when w = 1. That is, the minimum of
the functional (5.37) defines the parameters of the logistic regression.
Below we assume that the desired logistic regression is a linear function
flz,w) =(x-we)+b
whose parameters we and & we will estimate by minimizing the functional

R(w) = Eyzln (1+ e—ylfw‘w)“l) (5.38)

using observations
(y]s-rl}a vty (yE&Il’)-

To minimize thefunctional (5.38) we usethestructural risk minimization
method with the structure defined as follows:

(w-w) <

We consider this minimization problenr in the following form: Minimize the
functional

’ £
Remp(w, b) = %('w, w)+C)Y In (1 + e—viﬂwrmlﬂl) . (5.39)

i=1

One can show that the minimum of (5.39) defines the following approxi-
mation to the logistic regression:

exp { L0, lCal(@i,z) + bol }
1+ exp (T, %10z, ) + 0]}

Ply=llz} = (5.40)
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where the coefficientsa? and &, are the solution of the equations

exp{ -2 ;_; Cayy;(z;,2:) + ]}
05 = 7 y
1+ exp{—u:l2;_, Cojy;(x;, 7o) + b}

iy' BXD{-'%[E;=1 Coyy;(zj, ;) + b} — 0.
i=1 1 1+ EXP{—%[Z;:I Cajyj (zja xi) + b]}

Indeed, a necessary condition for the point {p, 8p) to minimize thefunc-
tional (5.39) is

¢
AR(w, b) o _expl-mlwz)rn} | _
_aw wu,b(] = C ; ytxi- 1 _+_ exp{_ys-[(w ' .’.E'i) + b‘]} lwt_},bu 01
OR(w, b) - exp{—y:[(w, z;) + b]} |
CLUCILIN BN ) —0. (541
o b ;y 1+ exp{—y;[(w, z;) T 8]} |w01b0 (5.41)

Using the notation

exp{—yil(wo,z:) +b0]} a?, (5.42)

1+ exp{—wi[(wo,2:) + bo]}
we can rewrite expressions (5.41) as follows:

f
0
we = Czyt'ai T4,

=1
£
Y el =0. (5.43)
i=I1
Putting expressions (5.43) and back into (5.37) we obtain the approxima-

tion (5.40).
Note that from (5.42) and (5.43) we have

0<al < 1.
That is, this selution is not sparse.

Tofind the logistic regression one can rewrite the functional (5.39) (using
expression (5.43)) in the equivaent form

Remp(@, b)

hi=I

¢ £ £
1
=3 ) aiegyyy(mnz)+C Y In (1 + exp{ %) _ yyyso(zi, z;) + b]))
=1 =1

Since thisfunctional is convex with respect to the parameters aand &, one
can use the gradient descent method to find its minimum.
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5.22 The RiK Functionfor SVM

Let usintroduce the following notation
z=(w-x)+b

Using this notation we can rewrite the rigsk functional for the logistic re-
gression asfollows

Qz) = ln(l + e‘yz).
Consider the loss function
Q(z)=c1(1— z}+ , (5.44)

where ¢; is some constant (in constructing the SVM we used ¢; = 1) and
(a)+ = max(0, &) (the linear spline function with one node, for more about
spline approximations see Section 6.3) .

Figure 5.9 shows thisloss function with ¢; = 0.8 (the hold lines) and the
logistic loss (dashed cum).
It is easy to see that the SVM minimize the following functional:

£
Romp,8) = 3 (- 0) + C Y (U= gil(w-z) +8), . (549)
=1

Indeed, denote by the £; the expression
&= (1— (w2} + b)), ,
which is equivalent to the inequality

yi[(w-2) + 6 >1-¢. (5.46)

0 4 ' ' " . '

4 3 -2 -1 0 1 2 3 4
FGURE 5.9. The iogistic | oss fanction (dashed line) and its approximation by a
linear spline with one node (bold line).
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Now we can rewrite our optimization problem (5.45) as follows. Minimize
the functional

¢
R(w,b) = %(w -w) + C Z& (5.47)

subject to constraints (5.46) and constraints
£&=>0

This problem coincides with one that was suggested in Section 5.5.1 for
constructing the optimal separating byperplane for the nonseparable case.

5.9.3 The SVM, Approzimation d the Logistic Regression

One can construct better SVM approximations to the logistic loss function
using linear spline functions with n > 1 nodes.

Suppose we are given the following spline approximation to the logistic
loss:

F(z) =) elag — 2)5,
k=1

where
z=yl(w. z)+yp),

ar, K= 1,...,n are nodes of thesplineand ¢; > 0, k = 1,...,n, are coef-
ficients of the spline. (Since the logistic loss function is convex monotonic
function, one can approximateit with any degree of accuracy using alinear
spline with nonnegative coefficients ¢y.}

Figure 5.10 shows an approximation of the logistic loss (dashed curve)
by (a) splinefunction with two nodesand (b) by splinefunction with three
nodes (bold lines).

Let us minimize the functional
1 LE
R(w, b) = E(w - w) + C;;,Ck({lk — Zi}y

which isour approximation to the functional (5.38).
Set

(a-"-‘ - z'i)+ = (a'k - y‘é[(w ’ :‘-r:z'} + b]}+ = §ikr 6-:: =20 k=1,..,n, 1= L. ¢

Using this notation we can rewrite our problem as follows:
Minimize the funectional

£ n
R(w,b) = olw -w) + 03D ¢k

=1 k=1
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-4 -3 —2 - 0 1 2 3 4

FIGURE 5.10. The fogistie ioss function (dashed line} and its approximations:
(a) by alinear spline with two nodes and (b) by alinear spline with three nodes
(bold tines}.
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subject to the constraints
yi[{w - ma’) + bl > Gy — Efs t = la -aey f! k= lr verg Ty

and constraints
"55201 i=1L...,6k=1...,n

As before, to solve this quadratic optimization problem in the dual space
weconstruct the Lagrangian

£ n

£ 0 £ n
L= w403 36303 Al (wz) +bl-anteh)- 3 3 ghr

i=1 k=1 i=I k=1 =1 k=1

Taking the minimum over w, b, and £¥ we obtain

w = Z iﬂf) Vs, (5.48)

i=1 =1

5 (Z ﬁ") w=0 (5.49

i=1
0< 3% <Cey, k=1,..,n (5.50)

Substituting the expression for w back into the Lagrangian and takinginto
account (5.49) we obtain the functional

w(d) = i (; ﬁ*ak) —= Z (E ﬁ") (kz: ﬁj-‘) yiys(zi-25), (5.51)

t=1 e J=1

where at,...,a are nodesin our spline approximation to the logistic loss
function.

Tofind the parameters 8},..., 8%, 1 = 1,...,£ that specify theexpansion
(5.48) of the optimal vector w we have to maximize the functional (5.51)
suhject to constraints (5.49) and (5.50).

We also can find the parameter & from the Kuhn-Tucker conditions

.ﬁzk{%[(wxi)"'b]_ak +'£::} =01 'i=1,...,f, k= 11"'1”

Using these parameters one can construct the linear function

{(z) Z Ys (Z ﬁ") (2 -2 (5.52)
J=I
that defines the approximation

exp {Zﬁ,; vy (e F7) (@3- 2} + b}

Py =1jz} = (1 Foxp {2 4 (2, A5 s - 2) +b})

(5.53)
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to the logistic regression (5.36). As before, to define the vector w in the
exponent of the logistic regression we need only calculate the inner prod-
ucts between two vectors x. Therefore, using kernels K{x,z;) satisfying
the Mercer condition one can construct an approximation to the logistic
regression of the form

exp {ijl s (o ﬁ;) K(z; z) + b}
1+ exp {E§=l Y5 (e ﬁf) K(zjz) + b}) |

where the coefficients ﬁf are the solution of the following quadratic opti-
mization problem: Maximize the functional

£ n £ R n
win - -3 (St ) -3 3 (>#) (5 o) K.
k=1

=1 \k=l §,3=1 k=1
{5.54)

P{y:“m}=(

suhject to constraints

Zf: (i ﬁf‘) yi =0,

i=1 k=1
0< 3 <Ce, k=1,...,n

Note that a larger number d nodes is used in the approximation of
the logistic loss, a larger number of support vectors will he used for the
constructing corresponding hyperplane. With increasing accuracy of ap
proximation (numher of nodes) the SVM,, loses sparsity.

However, with increasing » in the SYM, one cannot guarantee a bet-
ter performance for the solution ohtained using a given sample size. The
prohlem d estimating wdl the logistic regression is more genera than the
problem d estimating a good decision rule, and therefore, in order to he
solved wdl it requires more data for itssolution.

Our experiments did not show an advantage of logistic regression or
SVM, compared to SVM,.

5.10 ENSEMBLE OF THE SVM

In 1996 Y. Freund and R. Schapire proposed the AdaBooest algorithm for
comhining several weak rules'? (features) in one linear decision rule that
can perform much better than any weak rule.

Later it was shown that i nfact, AdaBoost minimizes{using a greedy op-
timization procedure) some functional whose minimum defines the logistic

"“That is, indicator functionsthat classify test data st least lightly better than
random guess.
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regression (Friedman, Hestie, and Tibshirany (1998)). Also, it was shown

that the optimal hyperplane constructed on top o the weak (indicator)

rules chosen by the AdaBoost often outperformsthe AdaBoost solution.
Therefore, inthe AdaBoost algorithm we distinguish two parts:

1. Thechoice d N appropriate features from agiven set of indicator
features.

2. The construction 0f aseparating hyperplane using the chosen fea-
tures.

In this section we introduce a two-stage method for constructing an en-
semhble of SVMs. In the first stage, using given training data, we find ¥
indicator functions (features), which on the one hand are SVM solutions
of the given pattern recognition problem, and on the another hand are
the result of greedy minimization of the same functional that minimizes
AdaBoost algorithm,

In thesecond stage using training datawe construct on top of thefeatures
obtained the SVM decision rules. Therefore, we will construct ¥V different
SVM solutions of the same pattern recognition problenr and then combine
them into one decision rule.

5.10.1 The AdaBoost Method

In Section 5.9.1we introduced the risk functional (5.37) whose minimum
defined parameters of the logistic regression. Below we consider another
risk functional

Ria) = Ee~v/@) (5.55)

defined on aset of functions f {x, @) that contain the function

(X ag)=+m LYW= 1|x)

210 By = —1jz) (5.56)

It iseasy to seethat thefunction f(x,«ap) provides the minimum to func-
tional {5.55).
Indeed, equation (5.56) is equivalent to the equations

Bzf(IraU) e.f(z'au}
P(y=1lz) = T e de s brupe (e
1 e_.f(a":aﬂ)
P(y = __1",'[:) - 1 + EZI(I:QQJ = e_.f{wiﬂll) -+ Bf{&:,ﬂu} ' (5.57)

Since

E (ehyﬂ"”"‘) lac) = P(y = 1jz)e~7=2) 4 P(y = —1|zr)el =),
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we have
dE (E_yf':“‘}tz)
= Py = Uz)e ! 1 Py = -1f@), (5.
97 (.a) (¥ = 1ljz)e + Py e (5.58)

At the point ag the derivative (5.58) isequal to zero as soon as (5.57) takes
place.

Let usinstead of (5.55) usethe empirical risk functional

£
Remp(a) = ) ™4 I (=), (5.59)

i=1

which we minimize iteratively, using the following greedy optimization pro-
cedure.
G eedy optimization procedure:

1. We minimize functional (5.59) iteratively constructing on the kth
iteration a function of the form

k
F(z, Be) = Y drgr(z), dy = 1,
r=1 ’
where ¢,(X), = 1,..., N, belong to a given (maybe infinite) set of

indicator functions, k isthe number o iteration, and gy = (d1, ... ,dk}
Is a k-dimensional vector.

On the firds iteration we choosethe feature ¢ (X) that minimizes the
nuniber of training errors,

2. Suppose that at the kth iteration we achieved the following value
of the empirical risk:

£

Remp(0k) = Z P PLICoNEIS

i=1

At the next (¥ + 1) iteration we continue to minimize the empirical
risk functional in the set of one-parameter functions

F(z, Bes 1) = flz, Bk) + diy ndesny(T)- (5.60)

For function {5.60) we obtain thefollowing value of theempirical risk

£ £

R‘BMP(;@(&H}) = Z e W i bet1) Z cf“ e—dun)%‘f’(kuumn,
=1 i=1

{5.61)
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where we have set
Ck+l —_ e_yifk(a:i)ﬂk)
: .

Suppose that for the (k + 1)st iteration we have chosen the indicator
function ¢x.+1)(x) (later we will define how to choose this function).
Then in order to minimizethe empirical risk (5.61) we have to choose
the following value of the parameter:

d{k-l—l} = E lTl (ﬁ, (5.62)

where we set
Ck+l _ 2

{# o+ (2i)=1}
crH = Z c?"'l.
{#: widr+1y{zi}==1}

Thisfollowsfrom thefactsthat ¢ x4 1){z:) € {1, —1) and that at the
optimal point d(;+1) the derivativeover d d the empirical functional
(5.61) must be equal to zero

cFth

£
6 Z | |
i e wlf @ B rdeay izl
dd —

£
= — Z Cf"'lyz.qb(k_l_”(xi)e'—d!o‘iﬂb{kﬂ)(f:'} = (. (5.63)

=1

3. To choose the appropriate function ¢4y (z) for the (& + 1)st
iteration, note that after the kth iteration, according to (5.63), the

equality

‘ ‘
- Z ciyipr(T;)e” BB E) — Z FHypr(z) = 0.
i=1

i=1

hoids true.
Suppose that coefficientsc® +* are normalized to 1:
gt G
: =1 cf+ '

This does not changethe result. However, normalization aliows US to
propose a nice statistical interpretation of equation (5.63): Normal-
ized coefficientsef*!, i=1,...)] can be considered as a probability
measure assigned an the given training data for the (k¥ + 1)th itera
tion and indicator function function ¢x(z) as the worst solution for



5.10. Ensembie of theSVM 167

our training data assign with this probability measure (for this prob-
ability measure the rule ¢x(z} has a50% error rate). That is, after
every iteration, the algorithm assigns to a given training set a new
probability measurethat is the most difficult for the last weak rule,

Therefore, for the next, (k¥ + 1)st, iteration we choose the function
b+ 132} that minimizes the error rate for the assigned probability
measure. That is, we choose the function @+13(z) that minimizes

the functional ;
R(®) = — ) M yad(xi). (5.64)
i=1
4. The indicator function
N
®(z) = sign (Z dm(:r}) , (5.65)
k=1

obtained as result of the greedy minimization procedure described, is
the AdaBoost decision rule.

5.10.2 The Ensemble o SVMs

Let us use the greedy optimization idea described above for constructing
the ensemble of SVMs. We start with the case where weak features are
linear decision rules

dr(z) = sign{(z - we) + br }.

Our goal istofind & optimal hyperplanes that in greedy fashion minimize
the functional

£ N
R(w,b) =Y exp{~y: Y _ disign|(z; - wy) + b} (5.66)
i=1 k=1
and then using these linear decision rules as the features construct the

desired ensamble.

Constructing thefeatures. To construct N featureswe need t0 specify
in the general scheme descrihed in the previous section only the method
for minimizing the functional (5.64) intheset o limear decision functions:

dr{x) = sign{{wy - ) + bi}

{defined by the optimal hyperplane).
As before, wereplace this problem with thefollowing problem: Minimize
the functional

£
Rio) = 3lwe-w) +CY ek, d=1,  (567)
i=]
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subject to constraints
yi((we - @) +be) 21— €5, & 20. (5.68)

The only difference in the problem of constructing this hyperplane com-
pared to the problem of constructing the soft-margin hyperplane described
in Section 5.5.1 isthat in the case of the soft-margin hyperplane all coef-
ficients ¢& were equal to 1. Now the second term in(5.67) is a weighted
sum.

We solve this optimization problem using the same technique with Lib
grange muitipliers. \We obtain the following solution:

£
§ : k
Wy = Yie; Ty,
i=1

where the coefficients o maximize the functional

£ [y
W(CI:‘) = Zﬂ,‘ -—_ % Z a,-ajyiy_,-(:rt- . $J} (569)

i,7=1

subject to the constraints

0<ay <CcF (5.70)
and the constraint ,

Z Yok = 0. (5.71)

t=1

The coefficient b, can be defined from Kuhn-Tucker conditions
ailyi(wy - 7)) + b — 1 - EF) = 0.

Therefore, the difference in decision rules is defined by the coefficients cf.
These coefficientsare calculated iteratively asit wasdescribed in thegreedy
optimization procedure {Section 5.10.1):

k
CE“’” = exp{—¥; Zd,-tb-,-(:l:z-)} = Cf ﬂp{‘yidkﬁbk{ﬁft‘)}} (5.72)
r=1

where .
e

dp =+ 205 yige ()= = (5.73)
2 Z{*f wdp{wi)=—1} ™4

Remar k. Notethat if the training dataareseparable, then the denomi-
nator of equation (5.73) isequal to zero, and therefore, according to (5.72).
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cF=0,41=1,...fforall £ > 1. That is, the set of features has only one
decision rule. To prevent this situation oe can choose a sufficiently small
value of C (large regularization parameter). If, however, for sufficiently
small C thetraining dataare still separable, then the obtained hyperplane
has a good generalization ability-

Thechoice of theconstant € plays an important role in constructing an
ensemble of SVMs.

Constructing the decision rule. To obtain the decision rule one con-
structs the optimal hyperplane in N-dimensional binary space

z={¢1(z),...,on(2)).

Using the given set of traiuing data one obtaines the new set of training
data

(ylazla ) K [yf? Zg) (574)

(zi = (p1{z:),...,én(z:)), based on which one constructs the optimal hy-
perplane.

Ensemble of SVMs As before we can use kernels to obtain features
nsing general type o SVMs. We can use features of the form

¢
¢r{x) = sign (Z yaﬂiK(ﬁf,ﬁ?z‘})
i=1

wherethe coefficients «; aresolution d the following optimization problem;
Maximize the functional

¢

¢

1

Wia)= ) -3 aiogyy; K(xi - 25)
i=1 1

ij=
subject to the constraints
0< o <CF

and the constraint ,
Zyia,—cf’ = (.
i=1

Using obtained N features ¢x(z), £ = 1,...,N that define a binary
space Z one construcs the training set {5.74). On the basis of thistraining
set using a kernel K*{z, z;) defined in Z space one constructs the SVM
solution

¢
r(z) = sign (Z y: K" (z(x), z(:c,-))) .

1=






Informal Reasoning and
Comments — 5

5.11 THE ART OF ENGINEERING VERSUS FORMAL
INFERENCE

The existence of neural networks can be considered a challenge for theo-
reticians.

Fromtheformal point of view onecannot guarantee that neural networks
generalize well, since according to theory, in order to control generalization
ability one should control twofactors: thevalueof the empirical risk and the
value of the confidence interval. Neural networks, however, cannot control
either of thetwo.

Indeed, to minimize the empirical risk, a neural network must minimizea
functional that has many local minima. Theory offers no constructive way
to prevent ending up with unacceptable local minima. In order to control
the confidence interval one has first to construct a structure on the set of
functions that the neural network implements and then t o control capacity
using thisstructure. There are no accurate methods to do thisfor neural
networks.

Therefore, from the formal point of view it ssemsthat there should be
no question as to what type of machine should be used for solving rea-life
problems.

The reality, however, isnot so straightforward. The designers of neural
networks compensate the mathematical shortcomings with the high art
‘of engineering. Namely, they incorporate various heuristic algorithmsthat
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make it possible to attain reasonably local miniina using a reasonable smait
number of caleutations.

Moreover, for given problems they create special network architectures
that. both have an appropriate capacity and contain "useful" functionsfor
solvihig the problem. Using these heuristics, neural networks demonstrate
surpr  ngly good results.

In Chapter 5, describing the best results for solving the digit recognition
problem using the U.S. Postal Service database by constructing an entire
(not local) decision rule, we gave two figures:

5.1% error rate for the neural network LeNet 1 (designed by Y. Le-
Cun),

4.0% error rate for a peiynomial SV machine.
We d0 mentioned the two best results:
3.3%error ratefor the local learning approach, and the record

2.7% error ratefor tangent distance matching to temptates given by
the training set.

In 1993, responding to the community's need for benchmarking, the
U.S. National Institute of Standards and Technotogy (NIST) provided a
database of handwritten characters containing 60,000 training images and
10,000 test data, where characters are described as vectorsin 20 x 20 = 400
pixet space.

For this database a special neural network (LeNet 4) was designed. The
following is how the article reporting the benchmark studies (Léon Bottou
et al, 1994) describe the construction of LeNet 4:

"For quite a long time. LeNet 1 was considered the state of
the art. Thelocal learning classifier, the SV classifier, and tan-
gent distance classifier were developed to improve upon LeNet
1 — and they succeeded in that. However, they in turn mo-
tivated a search for m improved neural network architecture.
This search was guided in part by estimates of the capacity of
various learning machines, derived from measurements d the
training and test error (on thelarge NIST database) as a func-
tion of the nuniber of training examples.!® We discovered that
more capacity was needed. Through a series of experinients in
architecture, combined with an analysis of the characteristics
d recognition errors, LeNet 4 was crafted.”

15V, Vapuik, E. Levin, and Y. LeCun (1994) “Measuring the V C dimension of
alearning machine,” Neural Computation, 6(5), pp. 851-876.
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In these benchmarks, two learning machines that construct entire deci-
sion rules,

{i) LeNet 4,
{ii) Polynomial SV machine {polynomialt of degreefour),

provided the same performance: 1.1% test error.""

The local learning approach and tangent distance matching to 60,000
templates also gave the same performance: 1.1% test error.

Recall that for asmali {U.S. Postal Service) database the best result { by
far) was obtained by the tangent distance matching method which uses «
prieri infformation about the problem {incorporated in the concept of tan-
gent distance). As themmumber of examples increases to 60,000 the advan-
tage d a priori knowledge decreased. The advantage of the local learning
approach aiso decreased with the increasing number of observations.

LeNet 4, crafted for the NIST database demonstrated remarkable iin-
provement in performance comparing to LeNet 1 {which has 1.7% test
errorsfor the NIST database'”).

The standard polynomial SV machine also did agood job. We continue
the quotation (Léon Bottou, et al, 1994):

'The SV machine has excellent accuracy, which is most remark-
able, because unlike the other high performance classifiers it
does not include knowl edge about the geometry of the problem.
In fact this classifier would do just as weli if the image pixel
were encrypted, e.g., by afixed random permutation.”

However, the performance achieved by these learning machines is not
the record for the NIST database. Using models of characters (the same
that was used for constructing the tangent distance) and 60,000 examples
of training data, H. Drucker, R. Schapire, and P. Simard generated more
than 1,000,000 examples, which they nsed to train three LeNet 4 neural
networks, combined in the special “boosting scheme" {Drucker, Schapire,
and Simard, 1993) which achieved a0.7% error rate.

Now the SV machines have a challenge — to cover this gap { between
L1% to 0.7%). Probably the use of ouly brute force SV machines and
60,000 training examples will not be sufficient to cover the gap. Probably
one has to incorporate some a priori information about the problem at
hand.

"*Unfortunately, one cannot compare these results to the results described in
Chapter 5. The digits from the NIST database are “easier” for recognition than
the ones from the U.S. Postal Service database.

1"Note that LeNet 4 has an advantage for a large 60,000 training examples
{NIST) database. For a smal (U.S. Postal Service) database containing 7,000
#raining examples, the network with smaller capacity, LeNet 1, is better.
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There are several ways to do this. The simplest one is use the same
1,000,000 exampies (constructed from the 60,000 NIST prototypes). How-
ever, it is more interesting to find a way for directly incorporating the
invariants that were uysed for generating the new exampies. For example,
for polynomial machines one can incorporate ¢ priori information about in-
variance by using theconvolution of an inner product intheform (:rTAJ:*)“,
where z and z* are input vectors and A is a symmetric positive definite
matrix reflecting the invariants of the models. '#

One can also incorporate another (geometrical) type of a priori infor-
mation using only features (monomial) z;z;xx formed by pixels that are
close each to other (this reflects our understanding of the geometry o the
problem — important features are formed by pixels that are connected to
each other, rather than pixels far from each other). This essentially reduces
(by afactor of millions) the dimensionality of feature space.

Thus, although the theoretical foundationsd support vector machines
look more solid than those of neural networks, the practical advantages of
the new type of learning machines still needs to be proved.!®

5.12 WISDOM OF STATISTICAL MODELS

In this chapter we introduced the support vector machines, which realize
the structural risk minimization inductive principle by:

(i) Mappingtheinput vector into a high-dimensional feature space using
anonlinear transformation,

(i) Constructing in this space a structure on the sat of linear decision
rutes according to the increasing norm of weightsof canonical hyper-
planes.

(iti) Choosing the best element of the structure and the best function
within this element in order to minimize the bound on error proba-
bility.

138, Scholkepf considered an intermediate way: He constructed an $V machine,
generated new examples by transforming the SV images (translating them in the
four prinelpal directions), and retrained on the support vectors and the new
examples. This Improves the performancefrom 4.0% to 3.2% for the U.S. Postal
Service database and from 1.1% to 0.8% for the NIST database.

¥In connection with heuristics incorporated in neural networks let me recall
the following remark by R. Feynman: “We must makeit clear from the beginning
that if athing is not ascience, it iS NOt necessarily bad. For example, love isnot
science. SO, if something is said Not to be a science it does NOt mean that there
issomething w ong withit;it just meansthat it is not ascience.” The Feynman
Leetures on Physics, Addison-Wesley, 3-1, 1975.



5.12. Wisdom of Statistical Models 175

The implementation of this scheme in the algorithms described in this
chapter, however, contained one violation of the SRM principle. To define
the structure on the set d linear fimctions we use the set of canonical
hyperplanes constructed with respect to vectors x from the training data.
According to the SRM principle, the structure has to be defined a priori
before the training data appear.

The attempt toimplement the SRM principle in tote brings us to a new
statement of the learning problem that formsa new type of inference. For
simplicity we consider this model for the pattern recognition problem.

Let the learning machine that implements a set of functions imear in
feature space be given ¢ + K vectors

Ly, ..., Lotk (5.75)

drawn randomly and independently according to some distribution func-
tion.

Suppose now that these £ + k vectors are randomly divided into two
subsets: the subset

T1,...,Te

for which the string

-0 We, Y E {“13+1}1‘

describing classification of these vectorsisgiven (the training set), and the
subset

Lo+l -y Tl+k

for which the elassification string should be found by the machine (test
set). The god of the machine is to find the rule that gives the string with
the minimal number of errorson the given test set.

In contrast to the model of function estimation considered in this book,
this model looks for the rule that minimizes the number of errors on the
given test set rather than for the rule minimizing the probability of error
ontheadmissibletest set. Wecall thisproblem the estimation d the values
of the junction at given points. For the problem of estimating the values of
afunction at given points the SV machines will realize the SRM principle
in toto if one defines the canonical hyperplanes with respect to al £ + &
vectors (5.78). (One can consider the data (5.78} as a prier: information.
A posteriori information is any information about separating this set into
t wo subsets.)

Estimating the values of a function at given points has both a solution
and a method of solution that differ from those based on estimating an
aunknown function.
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Consider, for example, the five-digit zipcode recognition problem.?” The
existing technology based on estimating functions suggests recognizing the
fivedigits ry, ..., x5 of the zipcode independently: First one usesthe rules
constructed during the learning procedures to recognize digit xy, then one
uses the same rules to recognize digit xg, and so on.

The technology of estimating the values of afunction suggests recognizing
dl fivedigitsjointly: Therecognition of onedigit, say xy, depends not only
an the training dataand vector xy, but also on vectors xs,...,%s. In this
technology one uses the rules that are in aspecial way adapted to solving a
given specific task. One can prove that this technology gives more accurate

It should be noted that for the first time this new view of the learning
problem was found due to attempts to justify a structure defined on the
set of canonical hyperplanes for the SRM principle.

9.13 WHAT CAN ONE LEARN FROM DIGIT
RECOGNITION EXPERIMENTS?

Three observations should be discussed in connection with the experiments
described in this chapter:

(i} The structure constructed in the feature space reflects real-life prob-
lems well.

{il} The quality of decision rules obtained does not strongly depend on
the type of SV machine {polynomial machine, RBF machine, two-
layer NN). It does however, strongly depend on the accuracy of the
VC dimension {capacity} control.

(iii) Different typesof machines use the same elements of training data as
support vectors.

or simplicity We do not consider the segmentation problem. We suppose
that all five digitsof azipcode are segmented.

?!Note that the local learning approach described in Section 4. 5can he consid-
ered as an intermediate model between function estimation and estimation of the
values d afunction at points of interest. Recall that for a small (Postal Service)
database the local learning approach gave significantly better results (3.3% error
rate) than the best result based on the entire function estimation approach (5.1%
cbtained by LeNet 1, and 4. 0%obtained by the polynomial SV machine}.
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5.13.1 Influence o the Type of Structures and Accuracy o
Capacity Control

The classical approach to estimating multidimensional functional depen-
dencies is based on the following belief:

Real-life problems are such that there exists a small number of “strong
features,” simple functions of which {say linear combinations) approxrimate
well the unknown function. Therefore, It is necessary to carefully choose a
low-dimensional feature space and then t0 USe regular statistical techniques
to construct an approremation,

This approach stresses, that one should be careful at thestage of feature
selection (this is an informal operation) and then use routine statistical
techniques.

The new technique is based on a different belief:

Real-life problems are such that there erist a large number of “weak fea-
tures' whose "smart" linear combination approximaies the unknown depen-
dency well. Therefore, it isnot very important what kind of “weak feature”
one uses, # IS more important to form "smart" linear combinations.

This approach stresses, that one should choose any reasonable “weak
featurespace” (thisisan informal operation), but be careful at the point of
making “smart” linear combinations. From the perspectived SV machines,
"smart" linear combinations correspond to the capacity control method.

This belief in thestructure of real-life problems has been expressed many
times both by theoreticians and by experimenters.

In 1940, Church made a clam that is known as the Turing-Church
Thesis: 22

All (sufficiently complex) computers compute the same family of func-
lions.

In our specific case we discuss the even stronger belief that linear func-
tions in various feature spaces associated with different convolutions d the
inner product approximate the same set o functions if they possess the
same capacity.

Church made his claima on the basis of pure theoretical analysis. However,
a8 soon 85 computer experiments became widespread, researchers unex-
pectedly faced asituation that could be described in the spirit of Church's
claim.

In the 1970s and 1980s a considerable amount o experimental research
was conducted in solving various operator equations that formed ill-posed

#Note that the thesis does not reflect some proved fact. |t refleets the Wief
in#ihe existence of some law that ishard to prow (or formulatein exact terms).
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problems, in particular, in density estimation. A common observation was
that the choice d the type o regularizers £{f) in (4.32) (determining a
type of structure) is not asimportant aschoosing the correct regularization
constant (&) (determining capacity control).

In particular, in density estimation using the Parzen W ndow

1 ¢ 1 Ir—x;
ple) = f;'r"K( v )
a common observation was the following: If the number of observations
isnot “very small,” the type of kernel function K (u) in the estimator is
not asimportant as the value of the constant v. (Recall that the kernel
K(u} in Parzen’s estimator isdetermined by the functional £2(f}, and v is
determined by the regularization constant.})

The same wasobserved in the regression estimation problem, where one
triesto use expansionsin different seriesto estimate the regression function:
If the number d observationsis not “very small," thetype of series used is
not asimportant as the number d termsin the approximation. All these
observations were done solving low-dimensional (mostly one-dimensional)
problems.

In the experiments described we observed the same phenomenain very
high-dimensional space.

5.13.2 SRM Principle and the Problem of Feature
Construction

The"smart" linear combination of thelarge number of features usedin the
SV machine has an important structure: The set d support vectors. We
can describe thisstructure as follows; Along with the set of weak features
(weak feature space) there exists aset d complex features associated with
support vectors. Let usdenote thisspace by

u = (K(z,z1),...,K(z,zn)) € U,

where
Ll TN

are thesupport vectors. In thespacedf complex featuresl/, we constructed
a linear decision rule. Note that in the bound obtained in Theorem 5.2
the expectation d the number of complex features plays the role of the
dimensionality d the problem. Therefore, one can describe the difference
between the support vector approach and the classical approach in the
following way:

To perform the classical approach well reguires the human selection {con-
struction) o a relatively small number of “smart features,” while the sup-
port vector approach selects {constructs) a small number of “smartfeatures”
automatically.
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Note that the SV machines construct the optimal hyperplane in the
space Z (space of weak features) but not in the space of complex features.
It is easy, however, to find the coefficients that provide optimality for the
hyperplane in the space U/ {(after the complex features are chosen). More-
over, one can construct in the IJ space a new SV machine (using the same
training data). Therefore, one can construct a two- (or several-) layer SV
machine. In other words, one can suggest a multistage selection of “smart
features." As we remarked in Section 4.10, the problem of feature selection
IS, however, quite delicate (recall the difference between constructing sparse
algebraic polynomials and sparse trigonometric polynomials}.

5.13.8 Is the Set of Support Vectors a Robust Characteristic of
the Data?

In our experiments we observed an important phenomenon: Different types
of SV machines optimal in parameters Use almost the same support vectors.
There exists a small subset of the training data {in our experiments less
than 3%to 5% of the data) that for the problem d constructing the best
decision rule is equivalent to the complete set o training data, and this
subset of thetrainingdatais almost the same for different types of optimal
SV machines {polynomial machine with the best degree of polynomials,
RBF machine with the best parameter v, and NN machine with the best
parameter D).

The important question is whether this is true for a wide set of real-
life problems. There exists indirect theoretical evidence that this is quite
possible. One can show that if a majority vote scheme, based on various
support vector machines, does not improve performance, then the percent-
age of common support vectors d these machines must be high.

It is too early to discussthe properties of SV machines: The analysis of
these properties has now just started.”™ Therefore, I would like to finish

*3 After this book had been completed, C. Burges demonstrated that one can
approximate tbe obtained decision rule

f(z) = sign {E o K{z,z:) + aa}

i=1l

by the much Smpler decision rules

M
f™(w) = sign {Zﬁm(x,m +,ao}, M <N,

=1

using the so-called generalized Support vectors Ti,...,Tar (a Specialy con-
. #ructed set of vectors).
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these comments with the following remark.
The SV machine is a very suitable object for theoretical analysis. It
uuifies various conceptual models:

(1) TheSRM model. (That ishow theSV machine initially was obtained.
Theorem 5.1.)

(ii) The data compression model. (The bound in Theorem 5.2 can be
described int ans of the compression coefficient.)

(iii) A universal model for constructing complex features. (The convolu-
tion of the inner product in Hilbert space can be considered as a
standard method for feature coustruction.)

(iv) A model of real-lifedata* (A small set of support vectors might besuf-
ficient to characterize the whole training set for different machines.)

In afew years it will be clear whether such unification of models reflects
some intrinsic properties of learning mechanismsor whether it is the next
cul-de-sac.24

To obtain approximately the same performancefor the digit recognition prob-
lem, described in Section 5.7, it was sufficient to use an approximation based on
M = 11 generalized support vectors per classfier instead of NV = 270 (initidly
obtained) support vectors per classifier.

This means that for support vector machines there exists a regular way to
synthesize the decision rules possessing optimal complexity.

**Four years have passed since this remark was made in 1895. Since tben we
have had a lot o evidence, including experimental evidence (see, for example.
Sectlon 57) that the 8V method is a generd approach to various problems of
function estimation in higli-dimensional spaces.



Chapter 6
Methods o Function Estimation

In this chapter we generalize results obtained for estimating indicator func-
tion (for the pattern recognition problem) to the problem of estimating
real-valued functions (regressions). We introduce a new type of loss func-
tion (theso-called c-insensitive loss function) that makesour estimates not
onfy robust but also sparse, As we will see, inthisand in the next chapter,
the sparsity of the solution is very important for estimating dependencies
in high-dimensional spaces using alarge. number of data,

6.1 £-INSENSITIVE LOSS FUNCTIONS

In Chapter 1, Section 1.7, to describe the problem of estimation of the
supervisor rule F(y{z) in the class of real-valued functions { f (z,d), o € A}
we considered a quadratic loss function

Ly, f(z, o)) = (y ~ f(z,0))*. (6.1)

Under conditions wherey is the result of measuring a regression function
with normal additive noise £ the ERM principle provides (for this loss
function) an efficient (best unbiased) estimator of the regression f(z, ).

It is known, however, that if additive noise is generated by other distri-
butions, better approximations to the regression (for the ERM principle)

give estimators based on other loss functions (associated with these distri-
butions)

Ly, f(z,0)) = L{ly~ f(z,0)) (6.2)
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(L(&) = — Inp(&) for the symmetric density function p(£}).

In 1964, Huber developed atheory that allows finding the best strategy
for choosing the loss function using only general information about the
model o the noise. In particular, he showed that if one knows ouly that the
density describing the noi se isasymmetric function, then the best minimax
strategy for regression approximation (the best L, approximation for the
worst possible model of noise p(x}} provides the foss function

L{y, f(z,a)) = [y - flz,a)|. (6.3)

Minimizing the empirical risk with respect to thisloss function is called
the least modulus method. 1t belongsto theso-called robust regression fam-
ily. This, however, is an extreme case where one has minimal information
about the unknown density. Huber also consider the model based on mix-
ture d some fixed noise (below we consider the normal noise) with an
arbitrary noise that is described by asymmetric continuous density func-
tion. Heshowed that the optiinal (minimax strategy) for this type d noise
Is achieved when one uses the following loss function:

| ey= flm, )~ S for [y~ flz,a)| > ¢
L””“f(z’“’)""{-;—iy—f(x,a)P " forly- fza) <. &Y

The constant « is defined by the proportion of the mixture.

To construct an SVM for real-valued functions we usea new type of loss
functions, the so-called z-insensitive loss functions

L{y, f(x,0)) = L{ly — f(z,2|c), (6.5)
where we set
0, if iy - f($,fx)‘ <e,
= f(z,0le = { [y — f{x,a)| - &, otherwise. (6.6)

These loss functions describe the ¢-insensitive model: The loss is equal
to 0 if the discrepancy between the predicted and the observed values is
less than <. It coincides with Huber’s foss functions when € = 0 and isclose
to loss function (6.4) when ¢ is small.

Below we consider three loss functions:

1. The linear s-insensitive loss function
Ly - f(z,a)) = ly — f(z, )l (6.7)
(it coincides with the robust loss function (6.3) if ¢ = 0).
2. The quadratic e-insensitive foss function
L{y ~ f(z,) = ly — f(z, 0)l; (6.8)
(it coi nci des with the quadratic loss function (6.1) if € = 0).
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NN

!
0 0

HGURE®G.1. e-insensitive | i near lossfuncti on and Huber’s | oss functlon.

3 The Huber loss function

_ _Jdy—flz.0) _ % for (y- fla,
U= sma={ - Ifol® forf-sme) e
(6.9)

Using the same technique cne can consder any convex loss function
L{u). However, the above three are special: They lead to the same ssmple
optimization task that we used for the pattern recognition problem.

0.2 SVM FOR ESTIMATING REGRESSION
FUNCTION

The support vector approximation 1O regression takes place if;

(i) One estimates the regression in the set d linear functions

flz,@) = (w-x)+0b

(i) One definesthe problem of regression estimation as the problem o
risk minimization with respect to an ¢-insensitive (¢ > 0) loss function
(6.8).

(ili) One minimizes the risk using the SEM principle, where elements of
the structure &,, are defined by the inequality

(w-w) < . (6.10)

1. Solution for agiven element of the structure. Suppose we are
given training data

(@1, m), .., (Tes ve)-
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Then the problem d finding the w¢ and b, that minimize the empirical risk

F)
Rempluw,8) = 5 3 Iy = (- 2.) —bl.

i=1

under constraint (6.10) is equivalent to the problen: of finding the pair w, b
that minimizes the quantity defined by sack variables¢;, &, i = 1,...,4,

¢ ¢
FE) =8+ &, (6.11)
=1 i=1
under the constraitits
vi— (w-a) -6 < e+g, i=1,...,¢
(wex))+b—y < e+&, i=1,...,4
g > o, i=1,...,4, (6.12)
& > 0, i=1,...,4

and constraint (6.10).

As before, to solve the optimization problem with constraints of inequal-
ity type one has to find asaddle point o the Lagrange functional

¢ ¢
Liw,§*,§0% 0,0, 7,7") = 2(534'&)*20& [yi - (w-2:) —b+ e+ &
i=1

=1

¢
o
=D afllw z) +b—pte+4] - S (on — (w-w))
i=1
¢
~ 2 (W& + 1) (6.13)
=1
(minimum with respect to elements w, &, £, and £ and maximum with
respect t0 Lagrange multipliers C* > 0, of 2 0, ; > 0, 7 > 0, and
¥ 20, 1= I,...,f).
Minimization with respect tow, &, and &}, &; impliesthefollowing three
conditions:

ol — i
we 30, (614)

i=1

é é
ZQ: :Zai, (615}

i=1 1=1
0<al <1, i=1,...,4
Oiaéﬁlf i:l,.,-,f, (6'16)
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Putting (6.14) aud (6.15) into (6.13) one obtains that for the solution of

this optimization problem, one has to find the maximum o the convex
functional

£ €
W(a,a*,C*) = - (af +a) T Y (o} - )
=1 i=1

subject to constraints (6.15), (6.16}), and the coustraint
c* > 0.

As in pattern recognition, here only some d the parameters in expansion
(6.14),

*

461 = C* '

differ from zero. They define the support vectors of the problem.

i=1,...,4,

2. The basic solution. One can reduce the convex optimization prob-
lem o findingthe vector w to aquadratic optimization problem if instead of
minimizing the functional {6.11), subject to constraints (6.12) and {6.10},
one iinimizes

£ £
P(w, £, £) = %(w ‘w)+C (sz:‘ +Ze,;)

i=1 =1

(with given value ') subject to constraiuts (6.12). In this case to find the
desired vector

¢
w = Z(a:‘ — O )Ty,
=1

one hastofind coefficients o}, &, i =1, ..., £, that maximize thequadratic
form

£ £ é
Wia,a') = —e 3 (af+a) + Y wlai—a) — 5 3 (af-a)aj—a;)(eva,)

=1 i=1 #j=1
(6.18)
subject to the constraints
¢ €
doai=) o
1=1 i=1
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0<e; <C, i=1,...,L

As in the pattern recognition case, the solutions to these two optimization
problems coincide if C = C*.

One can show that for any 6 = 1,..., £ the equality
a: X a; =0

holds true. Therefore, for the particular case where s =1.— 4§ {6 issmall)
and y; € {—1,1} these optimization problems coincide with those described
for pattern recognition.

To derive the bound on the generalization of the SVM, suppose that
the distribution F{z,y) = F(y|z)F(zx) issuch that for any fixed w, b the
corresponding distribution o the random variable |y — (w - X) — b}, has a
"light tail"" (seeSection 3.4):

— {w - x) - pPL/P
wop (Ely —(w-2) — )

, > 2.
w,d Eiy"’ (w 'x}"—bls N P

Then according to equation (3.30} one can assert that the solution e, be
of the optimization problem providesarisk (with respect to the chosen loss
function) such that with prohability at least 1 —  the bound

Remp(we, be) — €
(1-a)rvE)

- {3(25)

B (]n 2 1) — In{n/4)
4
Here h, isthe VC dimension of the set of functions

R(Wg,bg) <€+

holds true, where

£=4

Sn={ly —(w-2) —blc: (w-w)<c,).

6.2.1 SV Machine with Convolved Inner Product

Using thesame argument with mappinginput vectors into high-dimensional
space that was considered for the pattern recognition case in Chapter 5one
can construct the best approximation of the form

N
F@v,8) =) BiK (x,v) +b, (6.19)
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where B;; 1= |, .., N, arescalars, v;, 1 =1,..., N, are vectors, and K(-,-)
isagiven function satisfying Mercer's conditions.

1. Solution for agiven element of the structure. Using the convex
optimization approach one evaluates coefficients 3;, i = 1,..., ¢, in (6.19)

¥

ﬁi = C* b

where af, «;, C are parameters that maximize the function

i=1,...,f

¢ ¢
W = —sZ(a;‘ +os) + Zyi(ctif ~ 0y)
i—=1 =1

1 & cn C*
—5c 2 (@ —ed(e) - K (@ ) — =5

fj=1

subject to the constraint
£ £
DD W
=1 i=1

and to the constraints

and

2. The basic solution. Using the quadratic optimizatior approach one
evaluates the vector w (5.48) with coordinates

* .
ﬁi—-_—ﬂii""ﬂii} 3:1,...,2,

wher e of, a; are parameters that maximize the function

¢ L4 £
I *
We—e) (af+as) + ) mile —a) — 5 Y (of —a)(a] —0) K (a-;)
i=1 =1

t,j=1

subject to the constraint

=1 i=1

¢ ¢
Sei=3a
and to the constraints

0La/<C, i=1,...,%,



188 6. Methods of Function Estimation

05(11"7_:0, i:I,...,f.

By controlling the two parameters C and = in the quadratic optimization
approach one can control the generalization ability, even of the SVM in a
high-dimensional space.

6.2.2 Solution for Nonlinear Loss Functions

Along with linear loss functions one can obtain the solution for convex loss
functions L{£}), L(&;).

In general, when L(£) is a concave function, one can find the solution
using the corresponding optimization technique. However, for a quadratic
loss function L{¢) = £* or Huber’s loss function one can obtain asolution

using asimple quadratic optimization technique.

1.Quadratic loss function. To find the solution (coefficients of expan-
sion a},a; of the hyperplane on support vectors) one hasto maximizethe
quadratic form

£ £
Wia,a*) = —Y el +af) + ) uila] — o)
t=1

i=]

é

£ £
_% z (o — ai)(a; —a; ) K(x;, 2;) + é;(ag‘f + é;(aip

i, j=1

subject to the constraints

When £ = 0 and
K(zxi 25) = Cov{ f(zs), f(x;)}

is the covariance function of stochastic processes with

the obtained solution coincides with the so-called kreiging method devel -
oped in geostatistics (see Matheron, 1987).
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2. Solution for.-.the Huber loss function. Lastly, consider the SVM
for the Huber lossfunction

o2

— _.—% for || <q
Fe) {%«';”2 *for i > e

For thisloss function, to find the desired function

o) = 303 - o) K (o x ) +b

one hasto find the coefficients &}, ; that maxiinize the quadratic form
£
Wi, a*)= Y wlof — )
i—1

£ £ £
_% 3" (o} — a) (@] — ay)K (2, 2;) + é S+ é;(aff

g,3=1 i=1

subject to the constraints

When ¢ = 2 < |, the solution obtained for the Huber loss function is
close to the solution obtained for the e-insensitive loss function. However,
the expansion of the solution for the e-insensitive loss function uses fewer
support vectors.

3. Spline approximation of the loss functions. If F(£) is aconcave
function that is symmetric with respect to zero then one can approximate
it to any degreed accuracy using linear splines

F{f):zck(f_ﬂk}_F, O0<ay = <ag <+ < g
k=1

In this case using the same technique that was used in pattern recognition
for SVM logistic regression approximation one can obtain the solution on
ghe bassof the quadratic optimization technique.
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6.2.3 Linear Optimization Method

Asin the pattern recognition case one can simplify the optimization prob-
lem even more by reducing it to alinear optimization task. Suppose we are
given data

(%5 Ti)s- -, (Tey Ze)

Let us approximate functions using functions from the st

£
y(z) = 3 BiK (s, ) +b,

i=1

where ; issomereal value, z; i savector from atraining set, and K (z;,X) is
a kernel function. Wecall the vectorsfrom thetrainingset that correspond
to nonzero 8; the support vectors. L&t us rewrite 3; in the form

;61 :a: - a”

where af >0, ¢; > 0.
One can use as an approximation the function that minimizes the func-

tional
£ F ¢ ¢
W(a:é-i} - zag‘, +za: +CZE“. +Cz€:
i=1 i=1 i=1

t=1

subject to the constraints
a; >0, af >0, i=1,...,¥¢

fﬁzof E: "}._01

£
yi— Y (o] —a)K(,a;) - b<e— &,
J=1

¢
z(a; —ag) Kz, x;)+b-y <e— &

j=1
The solution to this problem requiresonly linear optimization techniques.

6.3 CONSTRUCTING KERNELS FOR ESTIMATING
REAL-VALUED FUNCTIONS

To construct different types d SVM one has to choose different kernels
K (x, x;) satisfying Mercer's condition.

In particular, one can use the same kernels that were used for approxi-
mation of indicator functions:
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(i) kernels generating polynomials

K(z,z) = [(x* z*) T 1%,

(ii) kernels generating radial basis functions
K(z,2:) = K(jx — 7)),

for example
K(jx — x:|) = exp {""Tix - zilz} ’

(iii} kernels generating two-layer neural networks

K(I, 331'} = S(‘U(:I‘ * I'Ef]- + C).

On the basis of these kernelsone can obtain the approximation

F
flz ooy =Y BiK{(x,z:) +b (6.20)

=1

using the optimization technigues described above.

These kernels imply approximating functions f{z, @) that were used in
the pattern recognition problem under discrimination sign; namely, we con-
sidered functions sign[f (x,a) ] .

However, the problem of approximation d rea-valued functions is more
delicate than the approximation o indicator functions (the absence of
sign{-} in front o function f(x,a) significantly changes the problem o
approximation).

Various real-valued function estimation problems need various sets of
approximating functions. Therefore, it is important to construct special
kernels that reflect special properties o approximating functions.

To construct such kernels we will use two main techniques:

(1) constructing kernels for approximating one-dimensional functions,
and

(i) composition d multidimensional kernels using one-dimensional ker-
nels.

6.3.1 Kernels Generating Expansion on
Orthogonal Polynomials

To construct kernels that generate expansion of one-dimensional functions
# the firg N terms of the orthonormal polynomials Fi(x),¢ = 1,...,N
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(Chebyshev, Legendre, Hermite polynomials, etc.), one can usethe Christoffel-
Dar boux fortnula

Kn(xmy) == ipk(I)Pk(y) = ay, Pﬂ—|—](m)Pn(y) - PR(I)_Pn_I_l(y)‘
k=1

LY

Kp(z,2) = i Pf(m) = aﬂ[Pri+1(x)Pn{m) — P,:(:L‘)Pn+1(.’€)], (6.21)
k=1

where a,, is a constant that depends on the type d polyromial and the
number n d elements in the orthonormal basis.

It is clear, however, that with increasing n the kernels K'(x, y) approach
theé-function. However, wecan inodify the generating kernelsto reproduce
a regularized function. Consider the kernel

K(Ia y) = Zriﬁ"i (I)wi(y)ﬁ (622}
=1

where r; convergesto zero as i increases. This kernel defines a regularized
expansion on polynotnials.

We can choose vahies r; such that they improve the convergence prop-
erties Of the series (6.22). For exainple, we can chooser; = ¢*, 0 < ¢ < 1

Example. Consider the (one-dimensional) Hermite polynomials

Hi(x) = pxPe(z)e™™, (6.23)
where X
Py(x) = (—1)ke* (d%) e

and i are normalization constants.
For these polynoniials one can obtain the kernels

K(x,¥) = z ' Hy(z)H,(y)
=0

242
- e)(p{?:ﬂyq _ y)gq } (6.24)
oy — 1+q 1-g¢

(Mikhlin (1964)). From (6.24) one can see that the closer ¢ is to one, the
closer the kernel K (z,y) isto the 6-function.

To comstruct our kernels we do not even need to use orthonormal bases
In the next section, to construct kernels for spline approximations we wikl
use linearly independent bases that are not orthogonal.

Such generality (any linearly independent system with any smoothiig
parameters) opens wide opportunitiesto construct kernels for SVMs.
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6.3.2 Constructing Multidimensiona Kernels

Our goal, however, isto construct kernels for approximating multidimen-
sional functions defined on the vector space X C £™ where all coordinates
of the vector z = (zl,...,z") are defined on the same finite or infinite
interval [.

Suppose now that for any coordinate xk the complete orthonormal basis
b; (x*), i=1,2,..., isgiven. Consider tho set of basis functions

bil,iz ..... i,l(mlt"'sxn) :bt'l (I ) 22( 2) n(xn) (62‘5)

in n-dimensional space. These functions are constructed from the coordi-
natewise basis functions by direct multiplication (tensor products) of the
basis functions, where all indicesiy take all possibleinteger valuesfrom 0
to oo. It is known that theset of functions (6.25) isa complete orthonormal
basis in X C K™,

Now let us consider the more general situation where a (finite or infi-
nite) set d coordinatewise basis functionsis not necessarily orthonormal.
Consider as a basis Of n dimensional space the tensor products of the co-
ordinatewise basis.

For this structure of multidimensiona spaces the following theorem is
true.

Theorem 6.1. Let a multidimensional set of functions te defined by the
basis functions that are tensor products of the coordinatewise basis func-
tions. Then the kernel that defines the inner product in the n-dimensioned
basis is the product of one-dimensional kernels.

Continuation of exanpl e. Now let usconstruct a kernel for the reg-
ularized expansion on n-dimensional Hermite polynomials. In the exam-
ple discussed above we constructed a kernel for one-dimensional Hermite
polynomials. According to Theorem 6.1 if we consider as a basis of n-
dimensional space the tensor product of one-dimensional basis functions,
then the kernel for generating the n-dimensional expansion isthe product
of n one-dimensional kernels

2x x 24%
Is y) = H { 24 ( l }
=1 V(l— l1+4¢ 1—¢
1 Ax+y)g e -yl
=—— - 6.2

(1—q2)“f2€xp{ 1+¢ 1—-¢? (6.26)

Thus, we have obtained a kernel for constructing semilocal approximations
K(z,y) = Cexp{2(x » y)6} exp { |z —y\gaﬂ} , &,0>0, {6.27)

where the factor containing the inner product of two vectors defines a
“Elobal” approximation, since the Gaussian defines the vicinity of approx-
Imation.
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6.4 KERNELS GENERATING SPLINES

Below we introduce the kernels that can be used to construct a spline ap
proximation of high-dimensional functions. We will construct splines with
both afixed number of nodes and with an infinite number of nodes. In all
cases the computational complexity of the solution depends on the num-
ber of support vectors that one needs to approximate the desired function
with ¢-accuracy, rather than on the dimensionality of the space or on the
number d nodes.

6.4.1 Spline of Order d With a Finite Number of Nodes

L et us start with describing the kernel for theapproximation d one-dimensional
functions on the interval [0, a] by splines of order 4 > 0 with m nodes,

a .
{th---:tm}v t = aa t= I:---am-

By definition, spline approximations have the form

d m
flz) = Za::r" + Zai{m —t)%. (6.28)
r=0

=1
Consider the following mapping of the one-dimensional variable x into
an {m +d -t I)-dimensional vector u:

T — = (1,3:,..,,:;‘1,(;5_tl)(i,’_,,(x— tm}i),

Yi

| 0 ] fz f3 tm

FIGURE 6.2. Using an expansion on the functions i, x,(x — £1)+4,-.{& — tm)+
ONe can construct a piecewise linear approximation of a function, Analogously an
expansion on the functions 1,2, ..,z%, (2 - £)%,...(5 — tm)3) provides piecew
polynomial approximation.
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where we set
0 if @ <,

_$,319 =
(= tk)—l_ { (x— tk)d if @ > 1.

Since spline approximation (6.28) can be considered asthe inner product
of two vectors,

fz)=(a™u)

(where a = (aqg,...,2m+q)), ONe can define the kernel that generates the
inner product in feature space as follows:

d m
K(z,z) = (uxw) =) a2+ (z— )3z —1,)5. (6.29)
i=]

r==0

Using the generating kernel (6.29) the SVM constructs the function

F
f(:z:,,@) - ZﬁiK(:‘c&xi) + b,
i=1

that is, aspline of order d defined on m nodes.

To construct kernels generating splinesin n-dimensional spacesnote that
n-dimensional splines are defined as an expansion on the basi S functions
that are tensor products of one-dimensional basis functions. Therefore, ac-
cording to Theorem 6.1, kernels generating n-dimensional splines are the
product of n cne-dimensional kernels:

1
K(z,2:) = [] K=" =),
k=1
where we have set = = (z!,...,z¥).

6.4.2 Kernels Generating Splines With an Infinite Number of
Nodes

In applications d SVMs the number d nodes does nut play an important
role (more important are the values 0 ¢;). Therefore, to simplify the cal-
culation, we use splines with an infinite number of nodes defined on the
mterval (0,a), 0<a <o, as theexpansion

d a
flzy =) az*+ / a(t)(z — t)4dt,

i=0

where a;, ¢ = 0,...,d, are an unknown values and a{t}) is an unknown
function that defines the expansion. One can consider this expansion as
an juner product, Therefore, one can construct the following kernel for
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generating splines of order € with an infinitenumber of nodes and then use
the following inner product in this space:

K(:cj,:rz-}:La( —t)+( t)_‘idt+z:c’" !

=0

(ZiAZi)

d
= (z; — £)%(x; — £)%dt + Z:c;:c;"

(333"'\11)
/ wl(u + |, —-.1:1|}ddu+z:c
CE

r=1
d d

—ng :rjz'\:r)z‘i TH g, — 2T +Z:r (6.30)

r=0
wherewe set min(x,2,) = (X Az;). In particular, for alinear spline (d = 1)
we have
(:I.‘j il 21'7'_)3
3

Again thekernel for n-dimensional splines with an infinite number of nodes
isthe product of n kernels for one-dimensional splines.

On the basis of this kernel one can construct a spline approximation
(using the techniques described in the previous section} that has the form

1
K]_(Ij, ) =1+ r;x; + §i:€j — :ri|(:z:;,- il .’L‘i)z +

¢
= Z GiK (x,z,).
=1

6.5 KERNELS GENERATING FOURIER EXPANSIONS

An important role in signal processing belongs to Fourier expansions. In
thissection we construct kernels for Fourier expansionsin multidimensional
spaces. As before, we start with the ene-dimensional case.

Suppose we would like to analyze a one-dimensional signal in terms of
Fourier series expansions.

L et us map the input variable x into the (2/¥ + 1)-dimensional vector

u = (1/v2,sinz,... sin Nz, cosz,...,cos Nx).

Then for any fixed x the Fourier expansion can be considered as the inner
product in this (2/V + |)-dimensional feature space

N

Fz) = (a*u) = % + 3" (ax sinkx + b} cos kx) . (6.31)
k=1
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Therefore, theinner product of two vectors in this space has the form

I\)ll—‘

N
Kn(z,z;) Z (sin kz sin kz; 4+ cos kx cos kz;).

After ohvious transformations and taking into account the Dirichlet fune-

tion we obtain
sin i%%ﬁ—p(x - z4)

{I—:r )

Kn(z,z;) 1+Zcosk(a:—:ct) =

[N}

sin *——=-

To define the signal in terms of the Fourier expansion, the SVM uses the
representation

£
f.8) =3 BKn(z,2.)
=1

Again, to construct the SVM for the d-dimensional vector space x =
(!,...,z™), it issufficient to use the generating kernel that is the product
of one-dimensional kernels

K(z,x;) = H K(z*, z¥).

6.5.1 Kernelsfor Regularized Fourier Ezpansions

It is known, however, that Fourier expansions do not possess good approxi-

mation properties. Therefore, below we introduce two regularizing kernels,

which we usefor approximation of multidimensional functions with SVMs.
Consider the following regularized Fourier expansion:

V2

where ay, b; arc coefficients of the Fourier expansion. This expansion dif-
fers from expansion (6.31) by factors ¢* that provide regularization. The
corresponding kernel for thisregularizing expansion is

flx) = ) + qu(ak coskz + by sinkz), 0<g<1,
k=1

K(r;,x;) = % 4+ qu(coskmi coskz; +sinkx;sin kx;)
k=1 .
3+Z cosk(z; — ;) = -’ (6.32)
2 ¢ T3 = 2{1—2qcos(:ri—a:j)+q2)' ;

(For thelast qual ity see Gradshtein and Ryzhik (1980).) Another type of
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regularization was ohtained using thefollowing regularization of the Fourier

expansion:

ay cos ki + by sinkzx
1 4 y2k2

1

=24

where ;. b, are coefficientsof the Fourier expansion. For this type of reg-
ularized Fourier expansion we have the following kernel:

1| kax; kx . i . .
Ko zy) = &+ S coskmscoske, + ks, ke,
k=1 1+72k2
i P <2 6.33
2 enz 0 0Slmi-z< 2 (6.33)

(For last equality see Gradshtein and Ryzhik (1980).)

Again the kernel for amultidimensional Fourier expansion isthe product
of the kernels for one-dimensional Fourier expansions.

6.6 THE SUPPORT VECTOR ANOVA
DECOMPOSITION (SVAD) FOR FUNCTION
APPROXIMATION AND REGRESSION ESTIMATION

The kernels defined in the previous sections can be used both for approx-
imating multidimensional functions and for estimating multidimensional
regression. However, they can define too rich a set of functions. Therefore,
to control generalization one needs t0 make a structure on thisset of func-
tions, in order to choose the function from an appropriate element of the
structure. Note also that when the dimensionality of theinput spaceislarge
(say 100), the values of an n-dimensional kernel (which isthe product of n

[ LS %
¥
|
[A
!
1

o
&
{

[ ] -

|

]

FIGURE 6.3. Kernels for astrong mode d regularization with various g.

g=1/2

—

=213
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one-dimensional kernels) can have order of magnitude ¢". These valuesare
inappropriate for both casesg>1andq < 1.

Classical statistics considered thefollowing structure on the st of multi-
dimensional functionsfrom Ly, the so-called ANOVA decomposition {acronym
for "analysis of variances”).

Suppose that an n-dimensional function f (z) = f (z?,...,X") isdefined
onthesst | X I x---x | ,where [ is afinite or infinite interval.

The ANOVA decomposition of the function f (x) is an expansion

flzt, ..., 2") = R+ Fi(z!, . CLZM) Pzt g .+ Fa(a?, .. 2T,

where

F2($Ia*-‘!$n) = Z ﬁbkl,k:(xklaxka)a

1<k <kg<n

1
Foz',... 2" = ) bka, i (T TR L T,
1€k <ka<..kcSn

Fn(zlu*--azn)=¢k1 ..... ka(xla'--amn)'

The classical approach to the ANOVA decompositions has a problem
with exponential explosion o the number of summands with increasing
order of approximation, In support vector techniques we do not have this
problem. To construct the kernel for the ANOVA decomposition of order p
using asum o products of one-dimensional kernels K X', i), i1=1,...,n,

Ky(z,z,) = > K(z",2) x ... x K(z',zir),

1<% {1’.-;;{---{1',,511

C=MNWAD~ D
| I I I I |
S NWh O~ O
T T T T T
| I I T |
CAapRhOO D

T ]

FIGURE 6.4. Kernels for a weak mode of regularization With varlous .
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one can introduce a recurrent procedure for computing Ky(z,X,), p =
l,...,n.

Let usdefine

Kz, z;) = Z K*(x*, zt).
i=1

Ome can easily check that the following recurrent procedure defines the
kernels Kp(x, X,), p=1,...,n

K{)(I,Ir) = 1,
Kizz)= Y K@) =K'(zz,),
1<i<n
Kaz.z,)= Y K@@",z)K(z?,z2)
I<ua<iz<n

- % [Kl(:r!:r?‘)Kl(m!Ir) - Kz(m’xr)} ’

Ky(z,z,)= ) Ki(z",22)Ky(z®,22)K (2%,25)

1<k <o <ka®n

3
In the general case we have'

— 1 [Kz(a:,m,.)Kl(;t:,:r,.) - K1($,$r)-K2($a z,) + K(z, x,.)] -

P
Ky(z,z,) = J—]::Z (—1)"'Jr1 Ky s(z,z,)K*(z,z,).

s=1

Using such kernels and the SVM with L, loss functions one ean obtain
an approximation of any order.

6.7 SVM FOR SOLVING LINEAR OPERATOR
EQUATIONS

In this section we use the SVM for selving linear operator equations
Af(t) = F(x), (6.34)

where the operator A realizes a oneto-one mapping from a Hilbert space
E, into a Hilbert space E».

1«A new method for constructingartificial neural networks' Interim Technical
Report ONR Contract N00014-94-C-0186 Dataltem A002. May 1, 1995, Prepared
by C. Burges and V. Vapnik.
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Wewill solve equations ia thesituation where instead of afunction F(x)
on the right-hand side of (6.34) we are given measurements of thisfunction
(generally with errors)

(irlgFl),-“,(J:{,Fg). (635)

It is necessary to estimate the solution of equation (6.34) from the data
(6.35).

Below we will show that the support vector technique realizes the clas-
sical ideas of solving ill-posed problems where the choice of the kernel is
equivalent to the choice of the regularization functional, Using this tech-
nique one can solve operator equationsin high-dimensional spaces.

6.7.1 The Support Vector Method

I n the next chapter we discuss the regularization method of solving operator
equations, where in order to solve operator equation (6.34) one minimizes
the functional

Ro(f,F) = o*(Af, F) + W (f),
where the solution belongsto some compact W( f) < C (C is an unknown

constant). When one solves operator equation (6.34) using data (6.35) one
considers the functional

4
Ry, F) = § 3 L(Af(Dles - F) +4(Pf x PJ)
i=1

with soine |0ss function L(Af - F') and regularizer of the form
W{f) =(Pf«Pf)
defined by some nongenerating operator F. Let

ﬁal(t)s Ty Wﬂ(t)s e
) PTRRN VR
be eigenfunctions and eigenvalues of the self-conjugate operator £* P.

P*Pyp; = A

Consider the solution of equation (6.34) as the expansion

Putting this expansion into the functional R, (f, F), we obtain

£
Ry(fF) = 5 3 I A{Zﬂ_m e — F +7Zwk
i=1]
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Writting
t
ox{t) = Sf;(x)‘

we can rewrite our problem in a familiar form: Minimize the functional

Ry(w, ZL(\A{ww(t Waea: — Fil) + ¥(w xw)

in the set d functions

waqbf (w* B(1)), (6.36)
where we have set
w= (Wy,...,WN,...),
B(t) = (1), ..., dn(t),-- ). (6.37)

Theoperator A maps the set of functions (6.36) into the set of functions

F(:c,w Af(t, w Zw Aﬁbr(t iwr‘!pr‘(x) = (w# lI’(m))u‘ (63'8)
r—1

linear in another feature space

‘I’(I) = (%(I)a T wN (;1:), )!
where
'i,b,.(ﬂ:) = Aqbf‘(t)‘

To find the solution of equation (6.34) in a set of functions f{t,w) {to
find the vector coefficients w) one can minimize the functional

£
=CY ([F(ziw) - Fil.)* + (wxw), k=12,

in the space of functions F{z,w) (that is, in the image space) and then
use the parameters u: to define the solution (6.36) (in preimage space). To
realize thisidea we use along with the kernel function the so-called cross-
kernel function. Let usdefine the generating kernel in the image space

K(z:,%;) = 3 ¢ (z.(z;) (6.39)

r=1

(here we suppose that the right-hand side converges for any fixed =, and
z;) and the cross-kernel function

K(zit) =Y v.(2:)or(t) (6.40)
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(here we aso suppose that the operator A issuch that the right-hand side
converges for any fixed a and ).

Note that in the case considered the problem of finding the solution to
the operator equation (finding the corresponding vector of coefficients w)
isequivalent tothe problem of finding the vector w for thelinear.regression
function (6.38) in the image space using measurements (6.35).

Let us solve this regression problem using the quadratic optimization
support vector technique. That is, using the kernel (6.39) onefinds both the
support vectorsz;, 1 =1,..., N, and the corresponding coefficients a} — «;
that define the vector w for thesupport vector regression approximation

w = ):(a a; ) B(z;)

(todothisit issufficient to usethestandard quadratic optimization support
vector technique). Since the same coefficients w define the approximation
to the solution of the operator equation, one can put these coefficients in
expression {6.36), obtaining

N N
flt,a,a®) =) (af —a:) (B(z:) x B(1) = ) (0] — a;)K(z,1).
=1 =1

That is, wefind thesolution to our prohlem of solving theoperator equation
using the cross-kernel function as an expansion on support vectors.

Thus, in order to solve a linear operator equation using the support
vector method one must:

1. Define the corresponding regression prohlem In image space.

2. Construct the kernel function K{z;z;) far solving the regression
problem using the support vector method.

3. Construct the corresponding crass-kernel functiin X{x,t).

4. Using the kernel function K{x;,z;) solve the regression prohlem by
the support vector method (i.e., find the support vectors &;, ¢ =
., ¥, and the corresponding coefficients 3; = ] —ay, i = 1,..., N).

5. Using these support vectors and the corresponding coefficients define
the solution

N
F@) = BeK{my,t). (6.41)
r=1

In these five steps the first three steps (constructing the regression, the
constructing the kernel in image space, and constructing the corresponding
cross-kernel function) refiect the singularity of the problem at hand (they
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depend on the operator A). Thelast t wo steps (solving the regression prob-
lem by an SVM and constructing the solution to the desired problem) are
routine,

The main problem with solving an operator equation using the support
vector technique isfor agiven operator equation to obtain both the explicit
expression for the kernel function in image space and an explicit expression
for the corresponding cross-kernel function. For many prohlems such as the
density estimation prohlem or the problem of solving Radon equation such
fonctions are easy to find.

6.8 FUNCTION APPROXIMATION USING THE SVM

Consider examples of solving the function approximation prohlem using
the SVM. With the required level of accuracy ¢ we approximatoone and
two-dimensional functions defined on a uniform lattice x; = #a/£ hy its
values

(yl axl)s -y (yf&:rf)-

Our goal istodemonstratethat the number of support vectorsthat are used
toconstruct the SV approximation dependson the required accuracy «: The
less accurate the approximation, the fewer support vectors are needed.

I n thissection, to approximate real-valued functions we use linear splines
with the infinite number of nodes.

First we describe experiments for approximating the one-dimensional

since fonction
__sin{z - 10)

2
fl@)= =5 (6.42)
defined on 100 uniform lattice pointson the interval ¢ < X < 200.
Then we approximate the two-dimensional sinc function
sin/{z — 10)2 T (y - 10)2
flz,y) = ( ) & ) (6.43)

v (x —10)% 4 (y - 10)?
defined on the uniform lattice pointson 0 <X €20, 0 <y < 20.

To construct the one-dimensional linear spline approximation we use the
kernel defined in Section 6 3

1 z Az
Ki(z,2:) = 1422+ Slz— AE)E + LTi

We obtain an approximation of the form

N
Y= Z(ﬁ; - a;)Ki(z, 2:) + b,
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wherethecoefficients a}, a; are theresult d solving aquadratic optimiza-
tion problem.

Figure 6.5 shows the approximation of the function (6. 42) with different
levels of accuracy. The black dotson the figures indicate the support vec-
tors; thecircles are nonsupport vectors. Onecan see that with a decrease in
the required accuracy of the approximation, the number of support vectors
decreases.

To approximate the two-dimensional sine function (6. 43) we used the
kernel

K(z,y:za,9) = K{z, ) K(y, )

1 T AT
= (1 4+ xx; + -jlﬂf - :1:1-|(A.:r1-}2 4 £_3-l)_) »

which is defined by multiplication of the two one-dimensional kernels.
We obtain an approximation in the form

1
X (1 + yy; + §|‘y - yi|(y Ay) +

N
y =Y (of - a)K(z.2:)K(y,p:) +b,
ima

where the coefficients a*, « are defined by solving the same quadratic op-
timization problem as in the one-dimensional case.

Figure 6.6 shows the approximations to the two-dimeusional sinc func-
tion with the required accuracy ¢ = 0.03 conducted using lattices with
different numbers of grid points: 400 in figurea, 2025 in figure &, and 7921
in figurec. Onecan see that changing the number of grid points by afactor
of 20 increases the number of support vectors by less than a factor of 2
153 SV in approximation a, 234 SV in approximation &, and 285 SV in
approximation ¢,

6.8.1 Why Does the Value of ¢ Control the Number d Support
Vectors?

The following model describes a mechanism for choosing the support vec-
torsfor function approximation using the 5V machine with an e-insensitive
loss function. This mechanism explains why the choice of ¢ controls the
number of support vectors.

Suppose onewould like to approximate afunction f{ x) with accuracy e,
that is, to describe the function f (z) by another function f *(z) such that
the function f{z) issituated in the e-tube d f*(z).To construct such a
function let ustake an elastic e-tube (atube that tendsto be flat) and put
the function f{z) into the e-tube. Since the elastic tube tends to become
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FIGURE 6.5. Approximations with different Ievels of accuracy require different
numbers of support vectors: 39 8V far a = 0.01 (figurea), 14 SV for £ = 0.05
(figure b), 108V for £ = 0.1 (figurec) and 6 8V for £ = 0.2 (figured).
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(a)

€ =003, 234 SV2072% ional

£= 0,03, 205 S\/7921 fotal

=)

FIGURE 6.6. Approximationsto the two-dimensional sine function defined on
lattices comtaining different numbers of grid points with the same accuracy
€ = 0.03do not require | arge differences in the number of support vectors. 153
SV (grey squar es) for the approximation constructed using 400grid paints(figure
a),234 SV for the approximation constructed using 2025 grid points, and 2855V
for the approximation constructed using 7921 grid points (figure ¢).
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flat, it will touch some points of thefunction f{z). Let usfasten thetube
at these points. Then the axisof the tube defines an ¢-approximation f *(x)
of the function f(x), and the coordinates of the points where the e-tube
touches the function f( X) define the support vectors. The kernel K{z,, z;)
describes the law of elasticity.

Indeed, since thefunction f (X) isin the e-tube, thereare no points of the
function with distance 0f more than ¢ to axis. Therefore, the axis describes
tlie required approximation.

To prove that touching points define the support vectors it is sufficient
to note that we obtained our approximation by solving an optimization
probleimn defined in Section 6.2 for which the Kuhn-Tucker conditions liold.
By definition. the support vectors arethose for which in the Kuhne-Tucker
condition the Lagrange multipliers are different from zero, and hence the
second multiplier must be zero. This multiplier defines the border points
in an optimization problem of inequality type, i.e., coordinates where the
function f (X) touchesthe s~tube. Thewider the e-tube, the fewer touching
points there are.

This model is valid for the function approximation problemn in a space
of arbitrary dimension. It explams why with increasing -insensitivity the
number of support vectors decrees.

Figure 6.7 shows the e-tube approximation that corresponds to the case
of approximating the one-dimensional sine function with accuracy ¢ = 0.2.
Compare thisfigure to Figure 6.5d.

6.9 SVM FOR REGRESSION ESTIMATION

We start this section with simple examples of regression estimation tasks
where regressions are defined by one- and two-dimensional sinc functions.
Then we consider estimating multidimensional linear regressiomn functions

FIGURE 6.7. The e-tube model of function approximation
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using the SVM. We construct a linear regression task that is extremely
favorable for a feature selection method and compare results obtained for
the forward feature selection method with results obtained by the SVM.
Then we compare the support vector regression inethod with new nonlin-
ear techniques for three multidimensional artificial problems suggested by
J. Friedman and one multidimensional real-life (Boston housing) problem
(these problems are usually used in benchmark studies of different regres-
sion estimation methods).

6.9.1 Problem o Data Smoothing

Let the set of data
(F,T1)y -, (Yo, Ze)

be defined by the one-dimensional sine function on the interval [-10,10);
the values y; are corrupted by noise with normal distribution

sinx
BT 4g,  BG=0, B =0t

The problem is to estimate the regression function

_sinX
¥ETO
from 100 such observations on a uniform lattice on the interval [—10, 10].
Figures 6.8 and 6.9 show the results of SV regression estimation exper-
iments from data corrupted by different levels of noise. The rectangles in
the figure indicate the support vectors. The approximations were obtained
using linear splines with an infinite number of nodes.
Figures 6.10, 6.11, and 6.12 show approximations of the two-dimensional

regression function
y = Sin y/x? + y?
,1'1:2 +y2
defined on a uniform lattice on the square (—8, 5] x -5, 5]. The approxima-

tions where obtained using two dimensional linear splines with an infinite
number of notes.

6.9.2 Estimation of Linear Regression Functions

Below we describe experiments with SvMs in estimating linear regression
functions (Drucker et al. (1997)).

We compare the SYM to two different methods for estimating the linear
regression function, namely the ordinary least-squares method (OLS) and
the forward stepwise feature selection (FSFS) method.
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FIGURE 6.8. The regression function and its approximations obtained from the
data with different levels of noise and different values ¢ (o = 0.05 and £ = 0.075
in part(d); o =0.2and € =0.3 in part (b)).Note that the approximations were
constructed wing approximately the same number of support vectors (15in part
(a) and 14 in part (b)).
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FIGURE 6.9. The regression function and its approximations obtained from the
data with the same level of noise ¢ = 0.5 and different val ues of £ (¢ = 0.25in
part(a) and £ =0.15in part {b}}). Not e that different val ues o £ imply a different
number of support vectors in the approximating function (14 in part(a) and 81
in part (b}).
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o =01, £ =0.15, 107 5V/400 total

Estimated function ----

(@)

Support vectors ¢

FI GURE 6.10. The approximation to the regression (part (a)) and 107 support
vectors(part (b)) obtained from a data set of size 400 with noise a = 0.1 and
e =40.15.
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a =0.1, £ = 0.25, 159 SV/3969 totai

Estimatad function ----

Support vectors ¢

{b)

FIGURE 6.11. The approximation to the regression (part (a)) and 159 support
vectors (part (b)) obtained from a data set of size 3969 with the same noise
g =0.1and ¢ = 0.25.
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o =0.1, £ =0.15, 649 SV/39869 total

Estimated function ----

Support vectors <
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FIGURE 6.12. The approximation to the regression (part(a)) and 649 support

vectors (part (b)) obtained from a data set d size 3969 with the same noise
og=01ande =015,
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Recall that the OL S method is a method that estimates the coefficients
of alinear regression function by minimizing the functional

£

R(@) = 3 (% — (@ z:))

i=]

The FSFS method is a method that first chooses one coordinate of the
vector that gives the best approximation to the data. Then it fixes this
coordinate and adds a second coordinate such that these two define the
best approximation to the data, and so on. One uses some technique to
choose the appropriate number of coordinates.

We consider the problem of linear regression estimation from the data

(ylsml)?' ’ *1(yfaxf)?

in the 30-dimensional vector space X = (z(1), ...,z where the regres-
sion function depends only on three coordinates,

30
¥zx) = 2:{:51) + 22 4 9:23) + OZ ztF
i=4

and the data are obtained as measurements of thisfunction at randomly
chosen points . The measurements are taken with additive noise

¥ = y(x:) + &

that isindependent of x;.

Table 6.1 describes the results of experiments o estimating this regres-
sion function by theabove three methods for different signal-to-noiseratios,
different models of noise, and 60 observations. Thedatain the table arean
average of 100 experiments. The table shows that for large noise (smail
SNR) thesupport vector regression givesresultsthat arecloseto (favorable
for thismodel) the FSFSmethod that are significantly better than the OLS
method.

SNR Normal | L aplacian | Uniform

| OLS | FSFS [SV | OLS| FSFS| SV | OLS | FSFS | SV

0.8 45.8 280 | 203 { 408 245 | 264 | 39.7 | 240 | 28.1

1.2 20.0 12.8 } 149 | 181 11.0 | 125 | 17.6 11.7 | 12.8
2.5 4.6 3.1139 4.2 25|32 4.1 28| 3.6

9.0 12 077113 10| 0.60 | 0.52 10| 0.62 1.0

TABLE 6.1. Comparison results for ordinary least-squares (OLS), forward step
feature selection (FSFS), and support vector (SV) methods.
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The experiments with the model

30

k
'Ha':Z-TE '+t

i=l

demonstrated the acdvantage o the SV technique for all levels of signal-to-
noise ratio defined in Table 6.1.

6.9.3 Estimation Nonlinear Regression Functions

For these regression estimation experiments we chose regression functions
suggested by J. Friedman that were used in many benchmark studies:

1. Friedman’s target function #1 is afunction of 10 nominal varialiles
y = 10sin(mzV ) + 200z - 0.5) 4 102 4 529 4 £ (6.44)

However, it depends on only 5 variables, In this model thie 10 vari-
ables are uniformly distributed in [0,1], and the noise is normal with
parameters N{0,1).

2. Friedman’s target function #2,

y = \/(3(1))2 b @@ — 1/(x@zE)2,

has four independent variables uniformly distributed in the following
region
a<z® <100,

407 < 22 < 560,
0< z3) <1,
1<z <11, (6.45)
The noise is adjusted for a 3:1 signal-to-noise ratio.
3. Friedman’s target function # 3 also has four independent variables

2@ 2(3) _ 1 722 z)
y = tan—' [ mu:{ ] +£, (6.46)

that are uniformly distributed in the same region (6.43). The noise
ves adjusted for a 3:1 signal-to-noise ratio.

Below we compare the advanced regression techniques called bagging (L.
Brieman, 1996) and AdaBoost? that construct different typesd committee

*The AdaBoost algorithm was propesed for the pattern recognition problem
see Section 5.10). It was adapted for regression estimation by H. Drucker (1997).



6.9, SVM for Regression Estimation

Bagging | Boosting [ SV
Friedman #1 2.2 1.65 0.67
Friedman #2 11,463 11,684 | 5,402
Friedinan #3 || 0.0312 0.0218 | 0.026

TABLE 6.2. Comparison of Baggi ng and Boosted regression trees with SVM
regression fOr three artificial data sets.

machinre by combining given in the comments to Chapter 13) with the
support vector regression machine+

The experiments were conducted using the sameformat a in (Drucker,
1997, Drucker et al. 1997).

Table 6.2 shows results of experiments for estimating Friedman’s func-
tions using bagging, hoosting, and polynomial (d = 2) SYMs. The exper-
iments were conducted using 240 training examples. Table 6.2 shows an
average (over 10 runs) of the model error (mean squared deviation between
the true target function and obtained approximation).

Table 6.3 shows performance obtained for the Boston housing data set
where 506 examples o 13-dimensional real-lifedata where used as follows:
401 random chosen examples as the training set, 80 as the validation set,
and 25 as test set. Table 6.3shows results d averaging over 100 runs, The
SV machine constructed polynemials (mostly d degree 4 and 5) chosen on
the basisof the validation set. For the Boston housingdata the performance
index is the mean squared error between the predicted and actual values y
on the test set.

Bagging

Boosting

SY

12.4

10,7

7,2

TABLE 6.3. Performance of different methods for the Boston housing data.
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6.10 LOSS FUNCTIONS FOR THE REGRESSION
ESTIMATION PROBLEM

The methods for estimating functional dependencies based on empirical
data have along history. They were begun by great mathematicians: Gauss
(1777-1855) and Laplace (1749-1827), who suggested two different methods
for estimating dependencies from results o measurementsin astronomy and
physics.

Gauss proposed the least-squares method (LSM), while Laplace proposed
the least modulo method (LMM). Since that time the question has raisen
as to which method is better, In the nineteenth century and beginning
the twentieth century preference was given to the least-square method:
Thesolution with thismetbod for linear functions has a closed form. Also,
it was proven that among linear and unbiased estimates the LSM is the
best.

Later, in the second part d the twentieth century, it was noted that in
many situationsthe st of linear and unbiase estimates istoo narrow to be
sure that the best estimate in this St is really good (it is quite possible
that the whole st contains only "bad" estimators).

In the1920s R. Fisher discovered the maximum Likelihood (ML) method
and introduced the model of measurementswith additive noise. According
to this model the measurement of a function f(z,oq) a any point x* is
corrupted by the additive noise (described by the known symmetric density
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pa(€); £ is uncorrelated with z*)
y* = f(:l-', Ck(}) + 6

Since
5 =Y _ f(xral])a

toestimatethe parameter ag of density po(£€) (the unknown function f(X, cxqa))
from the data
Lyy-enr T

using maximum likelihood one has to maximize the functional

F
Rel) = 3 3" Inply — f(ai, ).
i=1

In 19531. L.e Cam defined conditions under which the ML method iscon-
sistent. He found some sufficient conditions on uniform convergence (over
thesat of a& A) under which the empirical functional Re{«) converges to
the functional

R(a) = j Inply — f(z,))dP(y, 7)

(they are a particular case 0f the necessary and sufficient conditions con-
sidered in Chapter 2); thisimmediately impliesthat the following assertion

holds true;
In (P(y — f(ﬂf,ﬂe))) P 0
ply — flz, o)) ¢

That is, the ML solutions are consistent in the Kulbac-Leibler distance. It
Isalso in the set of unbiased estimators (not necessary linear) that the LM
method hasthe smallest variance (the unbiased estimate with the smallest
varianceiscalled effective).

Thisimpliesthat if the noise isdescribed by Gaussian (normal) law, then
the LSM gives the best solution, If, however, the noise is defined by the

Laplacian law
px,A) = L*exp Bl
' 2A AT

then the best solution definesthe least modulo estimate. From these results
it also follows that the loss function for the best {effective) estimate is
defined by the distribution of noise.

In practice (even if the additive inodel of measurements is valid), the
form d noise is usually unknown. In the 1960s Tukey demonstrated that
in real-life situations the form d noise is far from both the Gaussian and
the Laplacian laws.

Therefore, it becameimportant to create the best strategy for estimating
functionsin real-life situations (when the form of noise is unknown). Such
a strategy was suggested by P. Huber, who created the concept of robust
estimators.
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6.11 LOSS FUNCTIONS FOR ROBUST ESTIMATORS

Consider the following situation. Suppose our goal is to estimate the ex-
pectation m of the random variable £ using i.i.d. data

Ely---a’f‘f-

Suppose also that the corresponding unknown density po(€ — myp) is a
smooth function, is symmetric with respect to the position 7y, and pos
seses a second moment.

It isknown that in this situation the maximum likelihood estimator

m= M(&I? .- -3§flpﬂ)
that maximizes

£
Lim) = 3 Inpo(& — m)
i=1

is an effective estimator. This means that among all possible unbiased
estimators this estimator achievesthe smallest variance, or in other words,
estimator AM(£,,...,&|po) Minimizes the functional

V(M) = [ (Ms,- .. &) — m)*dpo(€y —m) - dpo(e —m).  (6.47)

Suppose now that although the density pa(& —m) isunknown, it is known
that it belongs to some admissible st o densities pp(€ — rn) € P. How
do we choose an estimator in this situation? Let the unknown density be .
po{¢ — m). However, we construct an estimator that is optimal for density
pL{(E—m) € P, ie., wedefinetheestimator M(£;,...,&¢p1) that maximizes
the functional

£
Ly(m) = Y _lapi(& ~ m). (6.48)
i=1

The quality of this estimator now depends on two densities, the actual one
Pol€ — m) and the one used for constructing estimator (11.8):

Vipo, ;) = f(M(‘Els---agflpl) — m)2dpy(&1 —m)- - - dpo(ée — m).

Huber proved that for a wide set of admissible densities 7 there exists a
saddle point o the functional V{(pg, p1). That is, for any admissible set of

®The estimator M(¢, .. .,&) iscalled unbiased if
EM(&, ..., &) =m.
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densities there exists such a density p- (£ — m) that the inequalities

Vip,pr) < Vip,, Pr) < Vi{pr, fp) (6.49)

hold true for any function p{é — m) € P.

Inequalities (11.9) assert that for any admissible set d densities there
exists the minimax density, the so-called robust density, which in the worst
scenario guarantees the smallest loss.

Using therobust density one constructs theso-called mbust regression es-
timator. Namely, tbe robust regression estimator isthe one that minimizes
tbe functional

£
Rp{w) = —Eln pr(y: — f(zi,@))
i—1

Below we formulate t he Huber theorem t hat isafoundation of the theory
d robust estimation.
Consider the class H of densities formed by mixtures

p{€) = (1 — €)g(€) + €h(£)

of acertain fixed density g(£) and an arbitrary density k(£), where both
densities aresymmetric with respect to theorigin. Theweightsin the mix-
tureare 1—e and € respectively. For the classof these densities the following
theorem is valid.

‘"Theorem. (Huber) Let —In g(£) be a twice continuously differentiable
funetion. Then the class H possesses the following robust density:

(1 — €)g(éo) exp{—clbo — £)}, for & <&,
pr€) = ¢ (1 —¢gglé), Jor €y < € < £y, (6.50)
(1 - e)g{tr)exp{—c(f — &)}, for& =&,

where & and &1 are endpoints of the interval [£,£1] on which the monotone
(due to converity o —Ing(€)) function

_ding(§) _g'®)
dg g(&)

is bounded in absolute value by a constantc determined by the normalization

condifion )
= (-0 ([E g@dﬁg(eo)tg(&l)).

\]

This theorem allows us to construct various robust densities. In particu-
lar, if we choose for g(£) the normal density

g(&) = —\/%exp{—z%}
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and consider the class H of densities

- 2
) = e {2 b ene)

then according to the theorem, the density

V2no P 20T 'Ifl} for I‘EI > o,
pri€) = { %expi ﬁ_?} for [€] < oo (6.51)

will be robust in the class, where ¢ is determined from the normalization

condition
g (ool e 2t

The loss function derived from this robust density is

L(e) = - Inp(e) = { Fa ek (6.52)

|t smoothly combines two functions: quadratic and linear. In one extreme
case (when ¢ tends to infinity) it defines the least-square8 method; in the
other extreme case (when ¢ tends to zero), it defines the least modulo
method. In tho general case, the loss functions for rebust regression are
combinations of two functions one o which is f{u) = |u| and the other is
much less sensitive to deviations of « (the derivative d the nonlinear part
of the function f () isless than the derivative o thelinear part).

6.12 SUPPORT VECTOR REGRESSION MACHINE

Our construction d SVMs for the regression problem is based on the «-
insensitive loss function, Thisloss function hasthesame structure asrobust
lossfunctions: |t combines two functionsoneof which isf (x) = |u| and the
constant function*: f () = const (we considered case const = ).

The e-insensitivity implies some new properties of the SVM solutions,
namely the sparsity of solutions. By changing (increasing) the value d ¢
one controls (increases) the sparsity of the SVM solutions.

However, the difference between the robust approach and SVM approach
reflects also the fact that the loss function for the SVM regression is meore

*Formally it doesnot belong to the family of Huber’s robust estimators, since
the uniform distribution functi on does not possess asmooth derivative.
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complicated than the loss function for robust regression. For linear func-
tionsit has the form®

£
L(@) = Gw,w) + 3y~ (w,9),
i=1

where (w,w) is the regularization functional and 1/C' is the regulariza-
tion parameter (we will discuss the regularization techniques in the next
chapter).

The addition of the regularization term into thefunctional dramatically
changes the situation: On one hand it connected SVM regression to regu-
larization techniques introduced for solving ill-posed problems, and on the
other hand it increases the number of free parameters.

Now, in order to estimatetheregression function we haveto specify three
free parameters: the value of e-insensitivity, the regularization parameter
C, and the kernel parameter (the order o the polynomial for polynornial
kernels, the width parameter for radial basskernels, the order of the spline
for spline generating kernels, and so on).

In the next chapter we show that using some general ideas developed
in classical statistics and general principles for solving ill-posed problems
developed in the theory of ill-posed problems we will be able not only to
specify how these parameters should be connected, in order to provide op-
timal estimates, but also t , -describe effective algorithms for evaluating the
best possible parametersfor solving the main problem d statistical learning
theory: estimating density functions, conditional probability (thisis more
general solution to the pattern recognition problem than was described
before), and regression functions. The es-insensitive estimators will play a
crucia part in these algorithms.

®In themain part of this chapter we used an equivalent form of thisfunctional.



Chapter 7/

Direct Methods in Statistical
Learning Theory

I n this chapter we introduce a new approach to the main problems of
statistical learning theory: pattern recognition, regression estimation, and
density estimation.

We introduce the so-called direct approach, which requires solving op-
erator equations that define the desired functions. The solutions of these
equations are based on solving stochastic ill-posed problems. To solvethem
effectively we combine ideas that were originated within three different
branches d mathematics: the theory d ill-posed problems, classical non-
parametric statistics, and statistical learning theory. The resultsobtained
in the first two branches were not considered in the main part o the book
(they were only briefly discussed in the informal reasoning and comments
to the chapters).

I n this chapter we introduce the necessary results from these branches
and combine corresponding techniques to obtain a new type of algorithms,
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7.1 PROBLEM OF ESTIMATING DENSITIES,
CONDITIONAL PROBABILITIES, AND CONDITIONAL
DENSITIES

7.1.1 Rodemof Dasity Estimation: Direct Stting

We start this chapter with the problern d density estimation. Let £ be a
random variable. The probability d arandom event

F{z)= P{{ < z}

we call a probability distribution functien of the random variable §. A ran-
dom wvector £ is a generalization of the notion of arandom variable. The
function

F(z) = P{£ < x),

where the inequality is interpreted coordinatewise, is called a probability
distribution function of the random vector £&. We say that the random vari-
able¢ (random vector £) hasadensity if thereexists anonnegative function
p{x) such that for all X the equality

A
F@) = [ pa)ds
IS valid.
The function p{x) is called a prebabelity density of the random variable
(random wvector). S0, by definition, to estimate a probability density from
the data we need to obtain asolution of the integral equation?®

/*x p{z’,a)dz’ = F(x) (7.1)

— 00

oll a given set of densities p{xz,a), a € A, under the condition that the
distribution function F(z) is unknown and arandom independent sample

LryeooyIg {72)

obtained in accordance with F(zx) is given.

"When x = (z',...,2") is a vector, this notation defines coordinatewise inte-
gration

T x? "
/ p(m,a)d:rﬁf f p(z',.. .,z a)de .. dz™
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Cne can construct approximations to thedistribution function F(z) us-
ing data (7.2), for example, the so-called empirical distribution function
(7.2):

Fe(x) =

tun ]

£
ZH(&: - x3), (7.3)

where we define for the vector 2 u the step function

O(u) = 1 all coordinates o the vector u are positive,
| 0 otherwise.

In the next section we will show that the empirical distribution function
Fe(z) isagood approximation to the actual distribution function F{zx).

Thus, the problem of density estimation isto find an approximation to
the solution d the integral equation (7.1) if the probability distribution
function is unknown; however, an approximation to this function can be
defined,

We call this setting of the density estimation problem the direct setting
because it is based on the definition of adensity. In thefollowing sections we
shall discussthe problem o solving integral equations with an approximate
right-hand side and approximate cperator, but now we turn to the direct
setting of t he problem of estimating the conditional probability P{w|z) that
defines the probability of class w given the vector z.

7.1.2 Rddemof Conditional Pobability Estination

Consider pairs (w, x), where x is a vector and w is ascalar that takes on
only k values {0,1,...,k = 1}. According t o the defirition, the conditional
probability P{w|z) is the solution of theintegral equation

f ’ P(w|zYaF{(z') = F(w,z), (7.4)

where F(z) is a distribution function o random vectors z, and F{w, ) is
the joint distribution function of pairs(w, x). Indeed, since dF(z) = p(x)dx
(we suppose that the density does exist) and

plw,z’)
p(z)

the solution o (7.4) defines the conditional probability.
The problem of estimating the conditional probability in the set of func-
tions Pa(w|z), « € A, is to obtain an approximation to the solution o the

Pw|z") =

*Including scalars as one-dimensional vectors.
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integral equation (7.4) when both distribution functions F(z) and F{w, x)
are unknown but the data

(wla & Ja RN (773 J:Jf)

are given. As in the case of density estimation, we can approximate the
unknown distribution functions F(x} and F{w,x) by the empirical distri-
bution function (7.3) and the function

£
1
Fplw,z) = 7 ;9(3: — x4)6(w, x3),
where

1 if thevector X belongs to the class w,
(w,2) = -
0 otherwise.

Thus, the problem js to obtain an approximation to the solution of the
integral equation (7.4) in the set of functions P(w|x), a € A, when
the probability distribution functions F{x) and F{w,z) are unknown, but
approximations Fy(z) and Fe(w,x) are given.

Note that estimation o the conditional probability function P(w|x) is
a stronger solution to the pattern recognition problem than the one con-
sidered in Chapter 1. In Chapter 1, the goal was to find the best decision
rule from the given set of decision rules; it did not matter whether this set
did or did not contain a good approximation to the supervisor's decision
rule. In this statement the goal is to find the best approximation to the
supervisor’s decision rule (which isthe conditional probability function ac-
cording to the statement of the problem. See Chapter 1). Of course, if the
approximation of thesupervisor's operator P{w|z)} is known, then onecan
easily construct the optimal decision rule. For the case wherew & {0,1}
and the a priort probabilities of the classes areequal it has the form

flz) =6 (P(w 1) — %) .

This isthe so-called Bayes rule; it assignsthe vector x totheclass1 if the
probability that this vector belongs to the first class is larger than 3 and
assigns ¢ otherwise. However, the knowledge f theconditional probability
not only givesthe best solution to the pattern recognition problern but also
provides an estimate d the error probability for any specific vector z.

7.1.3 Problem of Conditional Density Estimation

Finally, consider the problem o conditional density estimation. In the pair
(y,X), let the variable y be scalar and let x be a vector. Consider the

equality
/ f (f|2)dF( )y = Fly, ), (7.5)
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where F{z) is a probability distribution function that has a density and
F(y,x) isthe joint probability distribution function® defined on the pairs
(y, 2).

As before, we are looking for an approximation totheconditional density
p(ylz) by solving the integral equation (7.5) on the given set of functions
when both distribution functions F{z) and F{y,z) are unknown and the
random i.i.d. pairs

(ylsml)a *--a(yiamf) {76)

are given. As before, we can approximate F{x) by the empirical distribu-
tion function (7.3) and the distribution function F{y, =) by the empirical
distribution function

¢
1
Foly,z) = 7 E Ny — yi)8(z —~ ).
=1

Thus, our problem is to obtain an approximation to the solution o the
integral equation (7.5) in the st of functions pa{¥|z),a € A, when the
probability distribution functions are unknown but we can construct the
approximations Fg{x) and Fe(y,X) using data (7.6).

Note that the conditional density p{y|x) contains much more information
about the behavior d the random value y for agiven x than the regression
function. The regression function can be easily obtained from the condi-
tional density. According to its definition the regression function is

rz) = [ yply|z)dy.

7.2 THE PROBLEM OF SOLVING AN
APPROXIMATELY DETERMINED INTEGRAL
EQUATION

All three problems of estimating stochastic dependenciescan be described
in the following general way. It is necessary to solve alinear operator equa-
tion

Af=F, feF, (7.7)
where some functions that form the equation are unknown, but data are

given. Using these data the approximations to the unknown functions can
be obtained.

% Actually, the solution of this equation is the definition o conditional den-
Sty. Suppase that p(z) and p(y, z) are the densities corresponding to probability
distribution functions F{x) and F(y,x). Then equality (7.5) isequivalent to the

equality p(y|z)p(z) = p(y, z).
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A difference exists between the problem o density estimation and the
problems of conditional probability and conditional density estimation. In
the problem of density estimation, instead of the right-hand side of the
equation we are given its approximation. We would like to obtain an gp-
proximation to the solution of equation (7.7) from the relationship

Af = Fp, feF.

In the problems of conditional probability and conditional density estima-
tion, not only is the right-hand side of the equation (7.7) known approi-
mately, but alsotheoperator A known approximately (ontheleft-hand side
of integral equations (7.4) and (7.5), instead of the distribution functions
we usetheir approximations). Soour problem is to obtain an approximation
to the sohution of equation (7.7) from the relationship

Aef = Fe, felF,

where A, isan approximation of the operator A.

Thereisgood newsand bad news about solving these problems. The good
rews isthat theempirical distribution function formsagood approximation
to the unknown distribution function. In the next section we show that as
the number d observations tends to infinity, the empirical distribution
function converges to the desired one at the fagt rate 1/vZ2. In the one-
dimensional case, thereis known an asymptotically exact description of the
rate o convergence for different. metrics determining different definitions of
adistance between empirical and true distribution functions,

In particular, for the one-dimensional case the Kolmogorov-Smirnov dis-
tribution of distances (in the uniform metric ') between approximations
and the desired function is known. In the multidimensional case one can
calculate any quantile of this distribution [Paramasamy, 1992|.

The bad news is that the problem of solving operator equation (7.7)
belongs to the so-called i/i-posed problems. In Section 7.4 we shall definethe
concept of "ill-pod" problemsand describe the difficulties that arisewhen
one needs to solveill-pod problems. We will describe the main results of
the classical theory for solving ill-posed problems and its generalizations to
the case of stochastic ill-posed problems. The theory of solving stochastic
Ill-posed problemswill be used for solving our integral equations.

7.3 GLIVENKO-CANTELLI THEOREM

As we mention in the 1930s Glivenko and Cantelli proved one of the most
important theorems in statistics. They proved that when the number of
observations tends to infinity, the empirical distribution function Fe(z)
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converges to the actual distribution function F(x). Thistheorem plays an
important part in the foundations o theoretical statistics.

Theorem. (Glivenko-Cantelli). The convergence

sup |[F(z) — Fe(z)] —¢ 00 0

takes place.

In this formulation, the Glivenko-Cantelli theorem asserts the conver-
gence in probability? (in the uniform metric) of the empirical distribution
function F¢(x) to the actual distribution function F{x}).

One can formulate this theorem in terms of uniform convergence de-
scribed in Chapter 2. Indeed, consider the following set o events:

ela) =8Ha—~zx), acA (7.8)

For any fixed « it definesthe st d z that are less than «. Now, let a
probability measure be defined on thesat o x. Then the expectation

R(c) = Eb(a — )

as a function of a defines a probability distribution function, while the
empirical functional

¢
1
Rio) = 5 8(a—=z), aeR,
i=1

calculated fromi.i.d. datax,,...,x¢ defines an empirical distribution func-
tion. Therefore, in fact, the Glivenko-Cantelli theory is the theory of uni-
form convergence for aspecific set o events (7.8 ) defined in R'.

In the n-dimensional case where a= (al,..., a")and z = (z',..., ™)
the Glivenko-Cantelli theorem describes the uniform convergence of the
frequencies to their probabilities over the following Stsof events:

ef@) = [[8(z* — o*), acR” (7.9)

In Chapter 3 we analyzed the conditions for uniform convergence over any
given set of events (not necessarily defined by (7.9)). Therefore, the theory
of uniform convergence developed in statistical learning theory includes the
Glivenko-Cantelli theory as a particular case.

" *The convergence almodt surely takes place as well,
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7.3.1 Kolmogorov-Smirnov Distribution

As soon as the Glivenko-Cantelli theorem had been proved, the problem d
the rate of convergence of F¢(x) to F{x) emerged.

Investigations of the rate of convergence of Fe{z) to F(x) for the one-
dimensional continuous functions F(x) resulted in the establishment of the
following important statistical law:

Kolmogorov-Smirnov distribution. The random variable

& = VIsup | F(z) ~ Fu()|

hasthe following limiting probability distribution (Kolmogorov):

EIEI»EQ P{V? sup | F(a) - Felz)| 2 e} = 2;(“1)&:—16—25%2 . (7.10)
=1

The random variables

& = \/?Sgp ( F(z) - Fel(z)),

& = VEsup ( Fy(z) ~ F(z)),
have the following limiting probability distrihutions (Smirnov):

Jim P{VE sup ( F(@) - Fulx)) 2 ¢} = ¢

Jim P{VE sup (Felz) - F(x)) 2} = o2t (7.11)

As we mentioned in the previous section, the Glivenko-Cantelli theory
(originally developed for the one-dimensional case) is a particular case of
thestatistical learning theory. | n Chapter 3wedescribed bounds on uniform
convergence that are valid for any specific £ and set of events in aspace of
arbitrary dimension.

I n particular, thistheory can be applied to the set of events (7.9). Since
the VC dimension of thisset defined in R™ isequal ton (thedimensionality
of the space), we can obtain a hound for uniform convergenceover the st
of events (7.9) as well. Therefore, using results from statistical learning
theory one can obtain nonasymptotic bounds of inequality type.

There exists, however, something in the analysis of uniform convergence
d events (7.9) that was not obtained'in statistical learning theory for gen-
eral types of events. For the set of events (7.9) there exists an exact de-
scription of the rate d uniform convergence that does not depend on the
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prohability measure {universal distribution). This exact distribution was
obtained by Kolmogorov and Smirnov (for sufficiently large £) for the one-
dimensional case. For the multidimensional case thistyped distribution is
unknown. However, it is known that such adistribution does exist.®.

I n Section 7.5 we will see how important it isfor our estimation problem
to have universal equality-type characteristics of this distribution. In spite
of the fact that for the multidimensional case and/or for a finite number of
observationstheanalytical expression for this distribution isunknown, one
can easily create atable that for any number of observations £ and for any
reasonabledimension n (say n < 100) defines any quantile of this distribu-
tion. In sections 7.8, 7.9, and 7.10 we will estimate optimal parameters of
our algorithms using such atable.

7.4 |LL-POSED PROBLEMS
Let theoperator equation
Af(t) = F(x) (7.12)

be defined by the continuous operator A that mapsin aone-to-one manner
the elements f o the metric space E; into elements ¥ of the metric space
Fs.

We say that the solution of the operator equation (7.12) is stable if a
small variation in the right-hand side F(x) € F(z,«) results in a small
change in the solution; i.e., if for any ¢ > 0 there exists &(¢) such that the
inequality

pEl(f(t!al)’ f(trQZ)) <eE
isvalid as long as the inequality
pE(Flz,an), F(r,az)) < 6(¢)
holds.
Wesay that the problem of solving the operator equation (7.12) is weli-
posed in the Hadamard sense if the solution of the equation
® eTists,

e is unique, and

» i3 stable.

*Itisinteresting to describe sets of eventsthat possess a universally (indepen-
dent of probability measure) exact distribution of the rate of uniform convergence.
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The problem of solving an operator equation is considered dl-posed if the
solution o thisequation violates at least one of the above-mentioned re-
quirements. Below we consider ill-posed problems for which the solution
of the operator equation exists, is unique, but is not stable. We consider
ill-posed problems defined by the Fredholm integral equation of type 1:

f K(t,z)f(t)dt = F(z).

However, all the resultsobtained will a so be valid for equationsdefined by
any other linear continuous operator.
Thus, consider Fredholm’s integral equation of type 1,

/bK(t,a:)f(t)dt = F(x), (7.13)

defined by the kernel K(t,x), which is continuous almost everywhere on
a<t<hb a< zx =< b This kernel maps the set of functions {f(t)}
continuous on [ a,b] onto the set of functions {F{(x)} also continuous on
[a, &]-

It iseasy to show that the problem of solving equation (7.13) is an ill-
posed one. For this purpose we note that the continuous function G {x)
that isformed by means o the kernel K{t,x),

Go(x) = /b K1, x)sinvidt

possesses the property
l”IirQo Gy(x) = 0.

Consider the integral equation

b
/ K(t,z)f*(t)dt = F(z) + G, ().

Since the Fredholm equation islinear, the solution of thisequation hasthe
form
fr{t) = f{) + sinut,

where f (1) is the solution d equation (7.13). For sufficiently large v, the
right hand side o this equation differs from the right hand side of {7.13)
only by the small amount &, (x), while its solution differs by the amount
sinet.

Note that our equations (7.1), (7.4), and (7.5) ds0 belong to the Fred
holm equation of type 1. One can rewrite them as follows:

/;9(:1: —~ 2 )p(z"Ydz" = F(z")
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fﬂ(x — 2} P(w|zYdF (2') = F{w,x),
I

[]IB(.U— y"}ﬂ(x'_ ﬂ”)p(y’jx’)dF(x’}dy’ - F(y,:.\:)

Recall that for simplicity wesuppose that x (pairs (z, ¥)) belongsto the
unit cube I.

/.5 THREE METHODS OF SOLVING ILL-POSED
PROBLEMS

In the 1960s three methods of solving ill-pod problems were proposed.
All o them are based on introducing the so-called regularization functional

(/).

The regularization functional £X{f)} is a semicontinuous, positive func-
tional for which £2( f) < ¢, ¢ > 0, isa compactum (in the space of functios
f). It is defined on the set of functions f € F, the domain of solution of

the equations.
Below, t0 impose uniqueness of the solution we consider regularization

functionals possessing the following properties:

I. 2(f) is anonnegative convex functiona. That is, for any 0 < X < 1
the inequality

QAA+(T -2 f2) AN+ (T - f2), fr,fzE€F,
is valid.
2. Thefollowing equality holds:
(0} = 0.

3. For each fixed f thefunction
r(v) = Qv f)

Is astrictly increasing function of .

On the basis of the regularization functional thefollowing three methods
were proposed:

1. Tikhonov's Varation Method (Method T) [Tikhonov, 1963).
Minimize the functional
Wr(f) = |Af — FiiE, ++Qf),
wherey > 0 issome predefined constant.
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2. Phillips Residual Method (Method P} [Phillips, 1962].
Minimize the functional

We(f)=8(f),
subject to the constraint
|Af = Flig, £ 1,
where g > 0 is some predefined constant.

3. Ivanov’s Quasi-Solution Method (Method 1) [Ivanov, 1962].
Minimize the functional

Wi(f} = l|Af — Flle,
subject to the constraint
A =<C,
where C > 0 is some predefined constant.

It was shown (Vasin, (1970)) that these methods are equivalent in the
sense that if one o the methods (say Method T) for a given value d the
parameter (say y*) produces asolution f*, then there exist corresponding
values Of parameters of the other two methods that produce the same
solution.

7.5.1 The Residua Principle

All three methodsfor solving ill-posed problem contain onefree parameter
(parameter - for Method T, parameter ¢ for Method P, and parameter C
for Method |), The choice of the appropriate value o the parameter is
crucial for obtaining a good solution of an ill-posed problem.

In the theory of solvingill-posed problem thereexists ageneral principle
for choosing such a parameter, the so-called residual principle [Morozov,
1983).

Suppose that we know the accuracy of approximation of the right-hand
side F' of equation (7.12) by afunction Fs, that is we know the value o for
which the following quality holds:

||F— F'ISHEZ =da.

Then the residual principle suggests that we choose a parameter (-, for
Method T or C for Method 1) that produces the solution fs satisfying the
quality

iAfs _ Fsllg, =0 (7.14)
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(for Method P one chaoses the solution that exactly satisfies the constraint
(7.14) with o).

Usually, it is not easy to obtain an accurate estimate of the discrepancy
between the exact right-hand side and a given approximation.

Fortunately, it isnot thecasefor our problemsd estimating the density,
conditional probability, and conditional density. For these problems there
exist accurate estimatesof thevauea = ¢,, which dependson the number
d examples Z and the dimensionality of the space n.

Note that common to d | our three problemsisthe fact that the right-
hand sides o theequations are probability distribution functions. In our
solution, instead of actual distribution functions we use empirical distri-
bution functions. As we discuss in Section 7.3, for any fixed number o
observations £ and any fixed dimensionality n of the space there exists a
universal distribution of discrepancy

£= \/Esgp |F(z) — Fe(x)).

et ustake an appropriate quantile o of thisdistribution (say 50% quan-
tile) and choose

*

o= 0¢= %.

In the following we will choose solutions that satisfy the residual principle
with constant (7.15).

(7.15)

7.6 MAIN ASSERTIONS OF THE THEORY OF
ILL-POSED PROBLEMS

In thissection we will describe the main theorem for the Tikhonov method.
Since all methods are equivalent, analogous assertions are valid for the two
other methods.

7.6.1 Deterministic Ill-Posed Problems
Suppose that instead of the exact right hand side of the operator equation

Af=F
we are given approximations Fs such that
||Fs — Flig, <. (7.16)

Our goal is to specify the relationship between the value 4 > 0 and the
regularization parameter 45 > 0 in such a way that the solution of our
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regularization method converges to thedesired one as soon as & converges
to zero.

The following theorem establishes these relations [Tikhonov and Arsenin
1977).

Theorem 7.1 Let £y and £z be metric spaces, and suppose for F € Es
there exists a solution f € £, of equation (7.12). Let instead of an exact
right-hand side ' of equation (7.12), approzimations Fs € Ea be gwen such
that pe,(F, Fs) < 6. Suppose the values d the parameter y(8) are chosen
in such a manner that

~4(6) — 0 for § — O,
62
2 7.17
A e =TS (7.17)

Then the elements f"( ) minimizing the functionals Wp( f) on £y converge
to the exact selution f asé — 0.

In a Hilbert space the following theorem is valid.

Theorem 7.2. Let £, be a Hilbert space and 2{f) = ||f||*. Then for
¥(8) satisfying the relations

(@) — 0 for 6 — 0,

62

m —— — 7.1
0 5E) (7.18)

the functions f“ ) mintmizing the functional

WE(f) = 05, (Af, FsTFf) (7.19)

converge as & — (0 to the exact sotution f in the metric d the space Ej.

7.6.2 Stochastic Il1-Posed Problem

Consider now the situation where instead of the right-hand side of the
equation

Af=F (7.20)

we are given asequence of random functions F; that convergein probability
to F. That is, wearegiven asequence Fi,..., Fg,...for which thefollowing
equation holds true:

flim Plog,(Fe,F)>¢e} =0, Ve>0.
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Our goal isto uethesequence Fi,. .., F,... tofind asequence of solutions
of equation (7.20) that convergein probability to the true solution. We
call this problem the stochastic #i-posed problem, since we are solving our
equation using random functions Fy(zx).

To solve these stochastic il}-posed problems we use Method T. For any
F¢ we minimize the functional

Wr(f) = 0%, (Af, Fo) + % f),

finding the sequence fi,...,f¢r.... Beow we consider the case where
Yo — as £ — oo.

Under these conditions the following theorems describing the relation-
ship between the distributions of two random variables, the random vari-
able pg,(F, F¢) and the random variable pg,( f, f¢} hold true [Vapnik and
Stefuyuk, 1978].

Theorem 7.3, FOI any positive numbers ¢ and g there exists a positive
number n{e, p) such thatfor all £ > nle,u) the inequality

P{pEl(f£1 f) > E} = P{pEQ(FfrF) - V/'Y_EE’} (T'Z]-)
is satisfied.

For the case where £y is a Hilbert space the following theorem holds
true.

Theorem 7.4. Let £, be a Hilbert space, A in (7.20} e a linear operator,

and
W) = lifli?= (£, ).

Thenfor any positive € there ezists a number n(c} such thatfor all £ > n{e)
the tnequality

Plilfe— fII* > &} < 2P{o}, (Fe. F) > 570}

is satisfied,

These theorems are generalizations of Theorem 7.1 and Theorem 7.2 for
the stochastic case.

Corollary. From Theorems 7.3 and 7.4 it follows that if approxima-
tions F; of theright-hand side of the operator equation {7.20} convergein
probability to the truefunction F(z} in the metric of space E; with the
rate

pE,(F(z), Fe(x)) B r{{),
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then the sequence of the solutions to equation (7.20) converges in proba-
bility to the desired one if

lim ) =0
E—oc /e

and -y¢ converges to zero with £ — .

.7 NONPARAMETRIC METHODS OF DENSITY
ESTIMATION

7.7.1 Consistency of the Solution of the Density Estimation
Problem

Consider now our integral equation
/ f(2")dz' = F(z).
-0

L et ussolvethisequation using empirical distribution functions Fy, ..., Fe,...
instead of the actual distribution function. For differentf we minimized the
functional

Wr(f) = p%,(Af, Fe) + %0 f),
where we chose the metric pg,(Af, F¢) such that

pE(AS, Fe)l < Slipi(Af)ﬂf—Fz(m)i- (7.22)

Suppose that
fryoooy fe, e

is a sequence of the solutions obtained.
Then according to Theorem 7.3, for any ¢ and any g the inequality

Plog,(fe, f) > &} < P{sup|Fe(z} — F(z}l > vnp}

holds true for sufficiently large £.
Since the VC dimension of theset of events (7.9) is bounded (equal to
the dimensionality of the space} for sufficiently large £, theinequality

P{sup [Fe(z) — F(z)| > €} < Cexp{—€°f)

holds true (see bounds (3.3) and (3.23}}. Therefore, there exists an £(¢, p)
such that for £ > £(e, #} the inequality

P{pg, (fe, f) > €} < Cexp{—yepsf} (7.23)
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is satisfied.
If £(r) € Ly, it then followsfrom Theorem 7.4 and from the VC hound
that for sufficiently large £, the inequality

P (la) = f(2)2do > £} < Cexpl—ent) (7.24)

holds.
Inequalities (7.23) and (7.24) imply that the solution f; converges in
probability to the desired one (in the metric pg, { fe, f)) if

‘Tf _’f—rm D,

¢
B _ 7.25
In E’Tf F—r o OO ( )

(In this case the right-hand sides of equations (7.23) and (7.24) converge
to zero.)

One can also show (using the Borel-Cantelll lemma) that solutions con-
verge with probability one if

Yo —i—oo U,

byp — 0 0.

Notethat this assertion istrue for any regularization functional £ f) and
for any metric pg, (f, fe) satisfying (7.22). Choosing specific functionals
2(f) and a specific metric pg, (F, F¢) satisfying the condition

PE,(F, Fe) < sup |Fy(z) — Falzx)|,
T

one constructs aspecific estimator of the density.
7.7.2 The Parzen’s Estimators

Let usspecify the metric pg, (F, F¢) and such functionals { f) for which
Method T minimizing the function$

W(f) = p5(Af, Fo) + v f) (7.26)

produces Parzen’s estimators.
Consider L metrics in the set of functions F,

pE(F\ Fe) = ‘/ (F(z} — Fe(x))dz,

— oD
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and the regularization functional.

Q(f):Z(CR(;—x)f(m)dm)2dz.

Here R(z — x} isthe kernel that defined thelinear operator

Bf= F R(z — x) f(z)dx

In particular, if R(z — x} = 6*{z — z}, the operator

Bf = [ﬂ 82(z — z) f(z)dz = fP(z)

defines the pth derivative of thefunction f{x}.

For these elements we have the functional

Wr{f}

- [ Z ( ; F(t)dt— Fg(a:))de Fe /_Z ( f:; R(z - z) f(a:)dx) * da.

(7.27)
Below we show that the estimator f, that minimizes this functional is
the Parzen’s estimator

¢
1
fe(z) =5 ) Gylz— z3),
i=]
wherethe kernel function G.,(u) is defined by the kernel function R{u).
Indeed, let us denote by f(w) the Fourier transform of the function f(t)

and by R{w) the Fourier transform o the function R(z). Then one can
evaluate the Fourier transform for the function F{(x),

Fw) = ;ﬂ /m F(x)e~™%dy

o [ [ sa= £,

and for the function Fg(x},

1 - 1 .
Fg(w)_%/ Fe(z)e ™ dr = 5~ /QDEZH(:: z;)e~"%dx

-0
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gZ

Note that the Fourier transform for the convelution of two functions is
equal to the product o the Fourier transforms of these twg functions. In
our casethis neans that

1 [ .

5 | (Rl@)» f())e?da

2 —

—T.&.-'EJ

= '21? f— Z ( L Q; R{z—x) f(m)dz) e~“*dz = R{w) f(w).

Lastly, recall that according to Parseval’s equality the Lz norm of any
function f{x) is equal {within the constant 1/2x) to the £, norm of its
Fourier transform f(w) (here f{w) is theFourier transform of thefunction
f(z)}. Therefore, one can rewrite (7.27) in theform

— E —-. i
f(w} - % Ej:] € et
W

+ e || Rlw) felw)| 7, -
Ly

Thisfunctional is quadratic with respect to f{w).
Therefore, the condition for its minimuny is

fe(w)

w2

We(f) =

&.ﬁ Z €% + v Rw) R(—w) flw) = (7.28)

F=1

Solving this equation with respect to fy{w), one obtains

— 1 ._wxj
= (e 1 5

Let us introduce the notation

1
= 1 4 yw?R(w)R(—w)

g, (W)

and .
Gool) = [ g l)e

-0
To obtain an approximation to the density one has to evaluate the inverse
Fourier transform

£
fe(x) =[_ fe(w)e™ dw = / gw(w)( Z “WIJ) % di

=1

. 1
f Z/ G (w)esw{:r J)dw = .f_ ZG,W(m — _q:j)_
Bever

i=1
Thelast expression is the Parzen’s estimator with kernel function G, {u).
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7.8 SVM SOLUTION OF THE DENSITY
ESTIMATION PROBLEM

Now we consider another solution of the operator equation (the density
estimation problem)

/I p(z)dz’ = F(x)

—x

with approximation Fz{x) on the right-hand side instead o F'(zx).
We will solve this problem usng Method P, where we consider the dis-
tance between F{x) and F¢(x) defined by the uniform metric

PE.(F(z), Fe(x)) = sup |F(z) — Fe(z)| (7.29)

and the regularization functional

Qf) =/ )u (7.30)
defined by a norm of some reproducing kernel Hilbert space (RKHS).

To define the RKHS onehas t o define a symmetricpositive definite kernd
K(z,y) and an inner product {f, g)& in Hilbert space # such that

(flz), Kz, y))p = fly) VfeH (7.31)

(the reproducing property). Notethat any symmetric positivedefinitefunc-
tion K{z, y) has an expanson

K(z,y) = Z Adi(x)0: (1), (7.32)

i=1

where A; and ¢.(z) are eigenvalues and eigenfunctions d the operator

Df= ] K (z,9)f(v)dy

Congder the set o functions

f@e) =Y cti(), (7.33)
=1
for which we introduce the inner product
o0 * o**
Tt . 7'34
(£(z,07), f(z, ™0 = D=0 (7.34)

i=1

The kernd (7.32), inner product (7.34), and set (7.33) define an RKHS.
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Indeed,
(f(.’ﬂ}, K(-T'! y)}H = (Zci‘b'&(i'% K(:l.’:, y))
H

t=1

- (Z C@z‘(I),ZM@(ﬂ%@)) Z C%/\Idh(y) = fy)

1=1 =1 =1

For functions from an RKHS the functional ( 7. 30)has the form

Qf) = ): x (7.35)
i=1
where A; is the ith eigenvalue o the kernel K{x,y). Therefore, the choice
d the kernd defines smoothness requirements to the solution.

To solvethe density estimation problem we use Method P with thefunc-
tional defined by (7. 30) and uniform metric (7.29). We choose the value d
the parameter ¢ = g¢ in the constraint to satisfy resdual principle(7. 14).
Therefore, we minimize the functional

Qf) =, Nn

subject to the constraints

xr

Fe(x)— flx"de'| =

_—0

sup
r

However, for computational reasons we consider the constraints defined
only at the points x; of the training set

=g, 1Xi<¥,

=T

ax | Fo(x) — ] ’ F(x")dz'

We look for a solution d our equation in the form
¢
flz) = Zﬂz‘f{(xi,ﬂ?), (7.36)
=1

where K(x;,z) is the same kernel that defines the RKHS. Taking into
account (7. 31) and (7. 36) we rewrite functional (7. 30) as follows

U= Ny
£
(Z ﬁ,K(ﬂ: xt}!ZﬂtK(x mt )
=1 H
£ £

= ZﬂiEﬁj(K(I*mi)’K(I’%)}H

d=1  Juel
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£
= ) BiB:K (i, ). (7.37)

i,5=1

To obtain the last equation we used the reproducing property {7.31}.
Therefore, to solve our equation we minimize the functional

£
W(B) =QUf £y =) BB K (zi,x;) (7.38)

1,j=1
subject to the constraints

T

£
Fo(z)— Y B K(z;, z')dz’

—X}

max =gy 1<i1<4 (7.39)
T

i=1

T=x

where the largest diviation defines the equality (the residual principle).
Thisoptimization problem isclosely related tothe SV regression problem
with an g¢-insensitive zone. |t can besolved using the SVM technique (see
Chapter 6).
To obtain the solution in theform of a mixture of densities we choose a
nonnegative kernel K{z,z,;) satisfying the following conditions, which we
cal the condition X:

1. The kernel hasthe form

Ko (z.2) = )k  © j'r""*) , (7.40)

aﬁ%/K(I“%)dx=L K(0) = 1, (7.41)
¥
where a(7) is the normalization constant.

2. Thevaueof the parameter v affectstheeigenvalues A {(),. .., Az (¥) ...
defined by the kernel. We consider such kernels for which the ratios
Ae1(7)/Ax(7), K=1,2,..., decrease when « increases. Examples of
such functions are

xr —-xI;
o

K (2,2:) = a{v)exp (—

?
), 0<p<2. (7.42)

Also, to obtain the solution in the form d a mixture of densities we add

. two more constraints:

giz0, Y =L (7.43)
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Note that our target functional also depends on the parameter ~:

f 4
Wo(3) = Q(f) = Y BiB: K, (xi,x;). (7.44)

i,Jz=1

We call the value of the parameter ~ admissible if for this value there
existssolution of our optimization problem (the solution satisfies residual
principle {7.14})).

The admissible set

Ymin Sy = “Fmax

is not empty, since for Parzen’s method (which aso hasform (7.36)) such
a value does exist. Recall that the value =, in the kernel determines the
smoothness requirementson thesolution: The larger the -+, thesmaller the
ratio Axy1/ Ak, and thereforefunctional (7.35) imposesstronger smoothness
requirements.

For any admissible «+ the SVM technique provides the unique solution
with some number of elements in the mixture. We choose the solution
corresponding to an admissiblee that minimizes thefunctional (7.44) over
botl coefficients 3; and parameter «y. This choice of parameter controls the
accuracy of the solution. By choosing a large admissible -, we achieve
another goal: We increase the smoothness requirements to the solution
satisfying {7.14) and we select the solution with asmall number o mixture
elements® (a small number of support vectors; Sge Section 6.7). One can
coutinue to increase sparsity (by increasing ¢¢ in (7.14)), trading sparsity
for the accuracy of the solution.

7.8.1 The SVM Density Estimate: Summary

The SVM solution d the density estimation equation using Method Pim-
plements the following ideas:

1. The target functional in the optimization preblem is defined by the
nonn o RKHS with kernel (depending an one parameter) that allows
effective control of the smoothness properties d the solution.

®Note that we have two different descriptions of the same functional: descrip-
tion (7.35) in aspace o functions ¢x(x} and description (7.44) in kernels K (z, ;).
From (7.35) it follows that in increasing v we require more strong filtration of
the “high-frequency components” O the expansion in the space ¢x. It Is known
that one can estimate densitiesin a high-dimensiona space usng asmall number
d observations only if the target density is smooth (can be described by “low-
frequency functions”). Therefore, in high-dimensional space the most accurate
solution often correspondsto the largest admissible . AlS0, in our experiments
we observed that Within the admissible set the difference tn accuracy obtained
for solutionswith different~y is not significant.
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2. The solution o the equation is chosen in the form of an expansion
(with nonnegative weights) on the same kernel function that defines
the RKHS.

3. The distance pg,(Afe, F¢) defining the optimization constraints is
given by the uniform metric (which allows effective nse of the residual
principle).

4. Thesolution satisfiesthe residual principle with the value of residual
(depending only on the dimensionality and the number o observa-
tlons) obtained from a Kolmogorov-Smirnov type distribution.

5. Theadmissible parameter y of the kernel ischosen tocontrol accuracy
of the solution and/or sparsity of the solution.

7.8.2 Comparison of the Parzen’s and the SVM methods

Note that two estimators, the Parzen’s estimator
1
frlr) =5 Z;Gq(l”, ;) (7.45)
and the §VM estimator
¢
fevmiz) = Zﬂif{’y{zami):
=]

have the same structure. In the case where
G‘y(z:« x;) = KT(I, 5'3:')

and
Gi =

the SVM estimator coincides with the Parzen’s estimator. The solution
(7.45), however, is not necessarily the solution of our optimization prob-
lem. Nevertheless, one can show that the less smooth the SVM admissible
solution is, the closer it is to Parzen’s solution. Indeed, the smaller is+ in

the kerndl function a(+)K (EJ;‘—”), the better the functional

4]

e f

£
W(8) = aly) ) 82 (7.46)

fe=]

approximates our target functional (7.38).

Parzen’s type estimator is the solution for the smallest admissible y of
the following optimization problem: Minimize (over ) functional (7.46)
(instead of functional (7.38)) subject to constraints (7.39) and {7.43).
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Therefore, Parzen’s estimator isthe less sparse admissible SVM solution
of this (modified) optimization problem,

Below we compare solutions obtained by Parzen’s method to the solu-
tion obtained by the SVM method for different admiseible values of the
parameter ~. We estimated a density in the two-dimensional case defined
by amixture d two Laplacians;

plz,y) = %(exp{—(lz— U+ y— 12} + exp{=(lx + 1{2 +jy +1P)}) .

In both metbode we wed the same Gauseian kernels

exp{_ (x—2)2+(y -‘y’)g}

2y? 22

and defined the best parameter y using the residua principle with g =
g/vEand 4= 1.2,

In both cases the density was estimated from 200 observations. The ac-
curacy d approximation was measured inthe L; metric

Ay = /Ipf(xs y) - ;D(:I?, y)‘dfﬂdy

We conducted 100 such trials and constructed a distribution over the ob-
tained values g for these trials. This distribution is presented by boxplots.
The horizontal lines of the boxplot indicate 5%, 25%, 50%, 75%, and 95%
quantiles o the error distribution.

Figures 7.1 and 7.2 demonstrate the trade-off between accuracy and spar-
sity. Figure 7.1a displays the distribution o the L, error, and Figure 7.1b
displays the distribution of the number o termsfor the Parzen’s method,
and for the S¥VM method with ¢ = 0.9, ¢ = 1.1,for the largest admis-
sible . Figure 7.2a displays the distribution o the L, error, and Figure
7.2b displays the distribution of the number d terms, where instead of the
optimal a; = g/vZin (9) we use o¢ = mg/v¢ withm =1, 1.5, 2.1.

G,z 2", y) = Ky(z,y32".9) =

7.9 CONDITIONAL PROBABILITY ESTIMATION

In this section to estimate conditional probability, we generalize the SVM
denstty estimation method described in the previous section. Using the
same ideas we solve the equation

/w plw|z"dF(z') = F(w,z) (7.47)

=00

when the probability distribution functions F'{x) and #(z,y) are unknown,
but data

(w1, Z1)s oy {We, ZTg)



250 7. Estlmating Densities and Conditional Probabilities

T T T T T

0.055} - C 14k P
0.05f T | 1 E
: £ 12 - —
00450 - — 4 3 A
S ’ _ : 5 10} E— 1
- - ' - S gl . —— J
= 0035t ; : - E :
! i yed
c.03F Z F — -
0.025F — L , ar . .
SVYM SVM  SVM Parzen SVM SVM SVM
max) (1.1) (0.9) (max) (1.1) {0.9)

(a) (b)

FIGURE 7.1.(a) A baxplot of the L; error for the SVM method with s = “ymax,
ve¢ = 1.1,7¢ = 0.9,and Parzen’s method (thesameresult asSVM with v = Ymin).

(b} A boxplot of the distribution on the number d terms for the corresponding
cases.
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FIGURE 7.2.(a) A boxplot o the L; error for the SVM method with ye = ¥max
where we use g = mq/v'€ with m =1,1.5,2.3. (b) A boxplot of tlie distribution
d the number of terms for the corresponding cases.
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are given.

Below we first describe conditions under which one can obtain solutions
of equations with both the right-hand side and the operator approximately
defined, and then we describe the SVM metliod for conditional probability
estimation.

7.9.1 Approximatdy Defined Operator

Consider the problem of solving the operator equation
Af=F

under the condition that (random) approximations are given not only for
the function on the right-hand side of the equation but for the operator
as well. We assume that instead o the exact operator A we are given
a sequence of approximations Ag, £ = 1,2,... defined by a sequence of
random continuous operators that converge in probability (bel ow we will
specify the definition of closeness of two operators) to the operator A.

As before, we consider the problem o solving the operator equation by
Method T, that is, by minimizing the functional

W(f) = pg,(Aef, Fe) + e f)-
We measure the closeness o operator A and operator A¢ by the distance

1A '
[Ae — A = sup "Egﬁg{f) /) (7.48)

Thefollowing theorem istrue [Stefanyuk, 1988].

Theorem 7.5. For any = > 0 and any constants C, Cy > 0 there erists
a value v > 0 such that for any v¢ < o the inequality

P{pEl(ffu f) > 5}

< P{pg,(Fe, F) > Cryma} + PlllAe — All > Cov/u) (7.49)
holds true.

Corollary. From thistheorem it followsthat if the approximations Fe(x)
d the right-hand side d the operator equation converge in probability
to the true function F{x) in the metric of the space F; with the rate of
convergence r{£), and the approximations A convergein probability tothe
true operator A inthe metric defined in (7.48) with therate of convergence
ra(£), then there exists afunction

ro{€) = max{r(£), ra{f)} -4 0
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properties: For any ¢ > 0, € > 0, 5 > 0 thereexists +y such that for
any ¢ < -yo the inequality

P{PEl (ffi f] > E}

< Plpg,(Fi, F) > Cry/e} + P{l{Ae — Al| > Ca/e}
< P{sgp | Fy(x) — F(x)])) > Cry/re} + P{sup |Fe(x) — F(x)]) > Cav/e}

holds true. Therefore, taking into account the bounds for uniform con-
vergence over the st d events (7.9) with VC dimension »n, we obtain for
sufficiently large £ the inequality (see hounde (3.3) and (3.23))

Plpe, (ft. f) > e}
< P{S‘iDIFf(I) - Fx)]) > Crv/w} + P{Sgp |Fe(x) — F(z)]) > Cav/e}

< C (exp{—7£C1} +exp{—71:4C2}) .

From this inequality we find that conditions (7.50) and (7.51) imply con-
vergence in probability and convergence almost surely to the desired one.

7.9.2 SVM Met hod for Conditional Probability Estimation

Now we generalizethe method obtained for solving density estimation equa-
tion to solving the conditional prohability equation

/x p(w|xdF(x') = Fw, r) = plw)F{z|w), {7.54)

0

wherewe usetheempirical distribution functions F¢(x) and F;{z|w) instead
d the actual distribution functions F(z) and F(x|w).

In our solution we follow the steps described in Section7. 8.

1. We use Method P with the target functional as a norm in RKHS
defined by a kernel K., (X, 2’) satisfying conditions X (See Section7.8):

WH=(Dn

2. We are looking for the solution in the form

£
fo(x) = plwlz) = pw) Y _ 4: K, (x, 7,) (7.55)

2==]

with nonnegative coefficients 3.
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Therefore, we have to minimize the functional

£
W, (8)= Q) = ) BifKy(x;,x:)

i,je=1

(see Section 7.8).
3. We define optimization constraints from the equality

sup|(Aef)r— Fy(w,z)| = 0" p(w),

which for our equations has the form

sup
r

T £ i
[_ p(w) Zﬂdﬂ[m, r;)d [%Zﬂ(m— Ij)jl — p{w) Fy(x|w)

=1

g==1

= o p(w).

After obvious calculations we obtain the optimization constraints

sup =g,
x

£ £
Zﬁi% > Ky (s, x:)8(x — 35) — Fy(x|w)
F=1

ge=]

For computational reasons we check this equality only at the points of the
training set. In other words, we replace this equality with the equality

1
2%

Note that the following equality is valid

£

max Ko{zj,0:)8(zp — ;) — Fe(zplw)|= 0%, p=1,...,L
p
1

Fu=

/wpmmwﬂﬂ=pmm

=

Substituting our expression (7.55) for p(w|x) into the integral we obtain

oo £
/ Z GiK,(z,;)dF(x) = 1.
o0 £

Putting F;(x) into the integral instead of F(zx), we obtain one more con-

straint:
£ 1 £
Zﬁz’ 7 Z K’r(xjsi'«'i_)_ =1
gue=1 Fe=1
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4. Let the number of vectors belonging to class w be #(w). Then for the
residual principle we use

Ut — af(w} = *

VE(w)

where g is the appropriate quantilefor the Kolmogorov-Smirnov type dis-
tribution. We also estimate

p(w) = g-[%l,

the probability df the appearance of vectors of class .
5. We choose a -y froin the admissible set

“Yonin: < ¥ < “Ymax

to control the accuracy of our solution (by minimizing W.,(3)) or/and the
sparsity of the solution (by choosing alarge ).

7.9.3 The SVM Conditional Probability Estimate: Summary
The SVM conditional probability estimate is

fw) &
p(‘UJ|.B) = T ZK’T(:B! Ii}ﬁi! ,3 =0,

j=1

where coefficients 3; minimize the functional

£
Wy(8) =Y _5:3 Ky (x5, 20)

Fe=1
subject to the constraints
=g%, p=1,...,¢,

max
r

£ £
387 3 Kles, 208y = ) = Fulspho)
d=1 F==1

and the constraints
3 20,

¢ ,
> 6 ( ZKw(fFjﬁré)) = 1.
=1 F=1

We choose ~ from the admissible set

fep |

“¥min LY < Tmax

to control the properties of our solution (accuracy and/or sparsity) mini-
mizing W,(3) and/or choosing a large admissible 2.
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7.10 ESTIMATION OF CONDITIONAL DENSITY AND
REGRESSION

To estimate the conditional density function using Method P we solve the
integral equation

/_ ’ [ plylz)dF(z)dy = F(z,y) (7.56)

in the situation where the probability distribution functions F{y, X) and
F{(z) are unknown but data

(:Bl:yl]: R (Ih yf]

are given.
To solve this equation wing the approximations

F(z) = Z&(sz z;),

£
Fy(y,z) = }g ) 0y — v)(z — z.),
i=ml

we follow exactly the samesteps that we used for solving the equations for
density estimation and conditional probability estimation. (See Sections

7.8,79)
1. We choose as aregularization functional the norm o the function in
RKHS

) = (flz9), Az, 9))m
defined by the kernel
K[(I, y)!(xfry’)) = K’r{zrzz’)Kw(?Jr%)

satisfying the conditions X.
2. Welook for aselution in the form

¢
pylz) =) BiK(z,2)K\(y, ), B 20. {7.57)

t=1

Therefore, our target functional js

W.(8)=f) = Z Bifi Ko (25, 2: ) Ky (50 1) (7.58)

i, =1

(see Section 7.8).



7.10. Estimation of Conditional Density and Regression 257
3. We obtain our optimization constraints using the uniform metric

pEy (Adf, Fi) = sup [{Ae £}, y) — Felz,9)| = oe.

For our equality we have

/ / ZBI (=, 2 ) Ko (v, 3 )d [%Ze(z’-xj)] dyf
00 por

sup

OO!',_"

—Fe(z,y)| = o¢.
After simple calculations we obtain the constraint

v

Zﬂz ZK-,(::J, Wz —2;) | K (¥, v)dy — Fe(z,y)

O

Sup = dy.

For computational reasons we check this constraint only at the training
vectors

Yp
max Z K, (z;,2,)0(xp — z5) / KAy u:)dy — Fe(xp, yp)| = 0,
Jul o
{7.59)
p=1,...,¢
Note that that the following equality holds true:
| [ steiexr =

Putting expression {7.57) for p(y|z) into the integral we obtain

[.00/ Zﬁ‘ Kz, 2 ) Koy, i )dy' dF (z)

—i0 =1

£
_/ ZBinr(z’?zi)dF(z) = 1.

s S |

Usjng F(z) instead of F'(z) we obtain

Z( Zﬁj K (zi,z; ) = L. {7.60)

i==1

4. We use the residual principle with

or= 1
VE
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obtained from a Kolmogorov-Smirnov type distribution and choose an ad-
missible -y,

5. To control the properties o the solution (accuracy and/or sparsity)
we choose an admissible parameter < that minimizes the target functional
and/or that islarge.

Therefore, we approximate the conditional density function in the form
(7.57), where the coefficients 3; are obtained from the solution of the follow-
ing optimization problem: Minimizefunctional (5.58) subject to constraints
(7.59) and constraint (5.60). Choose y from the admissible set to control
the desired properties of the solution.

To estimate the regression function
) = [ lale)dy (7.61)

recall that the kernel K, (¥, %;) |sasymmetric (density) function theinte-
gral o which isequal to 1. For such afunction we have

/ YFC (y, vi)dy = ;. (7.62)

Therefore, from (7.57), (7.61), and (7.62) we obtain the following regression
function:

£
r(@) =Y yibiK,lz,x;).
t=1

It isinteresting to compare this expressioll with Nadaraya-Watson re-

gression
- K. (z;,) )
= ; RAL , 7.63
i (E;L, K. (z:,7) (%

wliere the expression in the parentheses isdefined by the Parzen’s estimate
of density (it is the ratio of the ith term of the Parzen’s density estimate
to the estimate of density).

The SVM regression is smooth and has sparse representation.

7.11 REMARKS

7.11.1 Remark I. One can use a good estimate of the unknown
density.

In construeting our algorithms for estimating densities. conditional proba-
bilities, and conditional densities we use the empirical distribution function
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F¢(x) as an approximation of the actual distribution function F(r). From
Fg(x) we obtained an approximation of the density function

4
pl) =336z — )
i1

as asum of é-functions. In fact, this approximation of the density was used
to obtain the corresponding constraints,

Onecan use, however, better approximations of the density, based on the
(sparse) SVM estimate described in Section 7.8. Using this approximation
of the density function one can obtain constraints different (perhaps more
accurate) from those used. In Chapter 8 we will introduce a new principle
of risk minimization that reflects this idea

7.11.2 Remark 2 One can use both labeled {training) and
unlabeled (test) data.

Toestimate the conditional probability function and the conditiona density
function one can use both elements of training data

[wl,:rl), vevy (We, xg) (764)
and elements of unlabeled (test) data
X*, ey Ty

Since according to our learning model, vectors x from the training and the
test sets have the same distribution F(z) generated by generator G (See
Chapter 1), one can use the joint set

x*

E],...,Ie,x;, ---1:rk

to estimate the distribution F(x) (or density function p(x)). To estimate
the distribution function F{x|w) one uses the subset df vectors X from
(7.64) corresponding to w = w™.

7.11.3 Remark 3. Method for obtaining sparse solutions of the
ill-posed problems.

Th*e method used for density, conditional probability, and conditional den-
sity estimation is quite general. It can be applied for obtaining sparse so-
lutions of atlier operator equations.

To obtain the sparse solution one has:

e Choose the regularizer as anorm in RKHS.

e Choose L, metricin £s.
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o e theresidual principle.

e Choosethe appropriate value « from the admissible set.



Informal Reasoning and
Comments — 7

/.12 THREE ELEMENTS OF A SCIENTIFIC THEORY

According to Kant any theory should contain three elements:
1. Setting the problem,
2. Resolution of the problem, and
3. Proofs.

At first glance, thisremark looks abvious. However, it has a degp meaning.
The crux of this remark istheideathat these three elementsd theory in
some SENSe ar e independent and equally tmportant.

1. The precise setting of the problem provides a general point of view
on the problem and its relation to other problems.

,2- The resolution of the problem comes not from deep theoretical anal-
ysis Of the setting of the problem but rather precedes this analysis.

3. Proofs are constructed not for searching for the solution of the prob-
lem but for justification of the solution that has already been sng-
gested,

Thefird two elements of thetheory reflact the understanding of theessence
d the problem of interest, its philosophy. The proofs make the general
(philosophical) nadd a scientific theory.
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7.12.1 Problem o Density Estimation

I n analyzingthedevelopment of thetheory of density estimation onecan see
how profound Kant’s remark is. Classical density estimation theories, both
parametric and nonparametric, contained only two elements. resolution of
the problem and proofs. They did not contain the setting d the problem.

| n the parametric case Fisher suggested the maximum likelihood method
(resolution o the problem}, and later it was proved by Le Cam (1953),
Ibragimov and Hasminski (1981) and others that under some (not very
wide, see the example in Section 1.7.4) conditions the maximum likelihood
method is consistent.

Thesame happened with nonparametric resolutions of the problem. First
the methods were proposed: The histogram niethod (Rosenblatt 1956)
Parzen’s method (Parzen 1962}, projection method (Chentsov 1963) and
so on followed by proofs of their consistency. In contrast to parametric
methods the nonparametric methods are consistent under very wide con-
ditions.

The absence of the general setting o the problem nade the density es-
timation methods look like a list of recipes. It also seems to have made
heuristic effortslook like the only possible approach to imnprove the meth-
ods. These created a huge collection o heuristic corrections to nonpara-
metric methods for practical applications.

The attempt to suggest the general setting of the density estimation
problem was made in 1978 (Vapnik and Stefanyuk (1978)), where the den-
sity estimation problem was derived directly from the definition of the
density, considered as a problem of solving an integral equation with un-
known right-hand side but given data. This general (since it follows from
the definition d the density) setting immediately connected density esti-
mation theory with the fundamental theory: the theory d solving ill-posed
problem.

7.12.2 Theory d ill-Posed Problems

The theory of ill-posed problems was originally developed for solving in-
verse mathematical physics problems. Later, however, the general nature
of this theory was discovered. It was demonstrated that one has to take
into account the statements of this theory every time one faces an inverse
problem, i.e., when one tries to derive the unknown causes from known
conseguences. In particular, the results of the theory of ill-posed problems
are important for statistical inverse problems, which include the problems
of density estimation, couditional probability estimation, and conditional
density estimation.

Theexistence of ill-posed problemswas discovered by Hadamard (1902).
Hadamard thought that ill-posed problems are pure mathematical phe-
nomensa and that rea-life problems axe well-posed. Soon, however, it was
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discovered that there exist important real-life problems that areill-posed.

In 1943 A.N. Tikhonov in proving a lemma about an inverse operator,
described the nature of well-posed problemsand therefore discovered meth-
ods for the regularization of ill-posed problems. It took twenty years more
before Phillips (1962), Ivanov (1962), and Tikhonov (1963) came to the
same constructive regularization idea, described, however, in aslightly dif-
ferent form. The important message of regularization theory was the fact
that in the problem of solving operator equations

Af(t) = F(z)

that define an ill-posed problem, the obvious resolution to the problem,
minimizing the functional

R(f) = ||Af - FII",

does not lead to good solutions. Instead, one should use the nonobvious
resolution that suggests that one minimize the " corrupted" (regularized)
functional

R*(f) = |Af _ FII* + (.

At the beginning o the 1960sthisideawas not obvious. T he fact that now
everybody accepts thisidea as natural is evidence of the deep influence of
regularization theory on thedifferent branches of mathematical science and
in particular on statistics.

/.13 STOCHASTIC ILL-POSED PROBLEMS

To construct a general theory of density estimation it was necessary to
generalize the theory d solving ill-posed problem for the stochastic case.

The generalization of thetheory of solvingill-posed problemsintroduced
for the deterministic case to stochastic ill-posed problems isvery straight-
forward. Using tbe same regularization techniques that were suggested for
solving deterministic ill-posed problems and the same key arguments based
on the lemma about inverse operators we generalized the main theorems
on the regularization method (V. Vapnik and A. Stefanyuk, 1978) to a
stochastic model. Later, A. Stefanyuk (1986) generalized thisresult for the
case Of an approximately defined operator,

The fact that the main problem o statistics - estimating functions from
a more or less wide set of functions - is ill-posed was known to every-
body. Nevertheless, the analysis of methods of solving the main statistical
problems, in particular density estimation, was never considered from the
formal point of view of regularization theory.”

7One possible explanation is that the theory of nonparametric methods for
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Instead, in the tradition of statistics there was first the suggestion of
some method for solving the problem, provingitsnice properties, and then
introducing some heuristic corrections to make this method useful for prac-
tical tasks (especially for multidimensional problems).

Attempts to derive new estimators from the point o view o solving
stochastic ill-posed problems was started with the analysis of the vari-
ous known algorithms for the density estimation problem (Aidu and V ap
nik,1989). It was observed that almost dl classica algorithms (such as
Parzen’s method and the projection method) can be obtained on the ba-
sis o the standard regularization method of solving stochastic ill-posed
problems under the condition tbat one chooses the empirical distribution
function as an approximation to the unknown distribution function.

The attempt to construct a new algorithm at that time wasinspired by
theidea d constructing, a better approximation to the unknown distribu-
tion function based on the available data, Using thisidea we constructed a
new estimators that justify many heuristic suggestions for estimating one
dimensional density functions.

In the 1980s the problem of nonparametric method density estimation
was very popular among both theoretists and practitioners in statistics.
The main problem was to find the law for choice of the optimal width
parameter for Parzen’s method. Asymptotic principles that connected the
value d the width with information about smootbness properties of the
actual density, properties o the kernel, and the number of observations
were found.

However, for practitioners these resultswere insufficient for two reasons,
first because they are valid only for sufficiently large data sets and second
because the estimate d one free parameter was based on some unknown
parameter (the smeotbness parameter, say, by the number o derivatives
possessed by the unknown density}.

Therefore, practitioners developed their own methods for estimating the
width parameter. Among these methods the leave-one-out estimate became
one d the most used. There is a vast literature devoted to experimental
analysiswidth o the parameter.

At theend of the 1980s the residual method for estimating the regular-
ization parameter (width parameter) was proposed (Vapnik 1988). It was
shown that this method is almost optimal (Vapnik et al., 1992}. Also, in
experimentswith awideset of one-dimensional densities it was shown that
thismethod d choice of thewidth parameter outperforms many theoretical
and heuristic approaches (Markovich, 1989}.

density estimation had begun (in the 1950s) before the regularization methods
for solving ill-posed problemswere discovered. In the late 1960s and in the 1970s
when the theory of ilk-posed problems attracted the attention d many researchers
in different. branches o mathematics, the paradigm in the analysis of the density
estimation problem had alredy been developed.
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Unfortunately, most of the results in density estimation are devoted to
the one-dimensiona case, while the main applied interest in the density
estimation problem is in the multidimensional case. For this case special
methods were devel oped.

The most popular of these, the Gaussian mixture model method, turned
out to beinconsistent (seeSection 1.7.4). Nevertheless, this method is used
for most high-dimensiona (say 50-dimensional} problems of density esti-
mation (for example in speech recognition}.

It is known, however, that even to construct good two-dimensional den-
Sity estimators one has to use new ideas.

The real challenge, however, isto find a good estimator for multidimen-
sional densities defined on bounded support,.

In this chapter we proposed a new method for multidimensional density
estimation. |t combines ideas from three different branches d mathemat-
ics: the theory of solving integral equations using the residual principle, the
universal Kolmogorov-Smirnov distribution, which allows oneto estimate
the parameter for the residual principle, and the 5¥M technique from sta-
tistical learning theory, which was developed t0O approximate functions in
high-dimensional spaces.

Two out of three d these ideas have been checked for solving one-
dimensional density estimation problems (Vapnik 1988, Aidu and Vapnik,
1989, Vapnik et a. 1992, Markovich 1989)}.

The third idea, to use as the regularized functional a norm in RKHS
and measure discrepancy in the Lo. norm, isthe direct result of the SVM
method for function approximation using s-insensitive loss function, de-
scribed for the first time in the first edition o this book. It was partly
checked for estimating one dimensional density functions.

The density estimation method described in this chapter was analyzed
by Sayan Mukherjee. His experiments with estimating a density in one-,
two- , and six-dimensional spaces demonstrated high accuracy and good
sparsity O solutions obtained. Two O these experiments are presented in
this book.

Direct solutions of theconditional probability and the conditional density
estimation problems described in this chapter are astraightforward gener-
alization Of the direct density estimation method. These methods have not
been checked experimentally.






Chapter 8

The Vicinal Risk Minimization
Principle and the SVMs

In thiscliapter we introduce a new principle for minimizing the expected
risk called the vicinal risk minimization ( VRM) principle! We use this
principle for solving our main problems. pattern recognition, regression
estimation, and density estimation.

We minimize the vicina risk functional using the SVM technique and
obtain solutions in the form of expansions on kernels that are different for
different training points.

8.1 THE VICINAL RISK MINIMIZATION PRINCIPLE

Consider again our standard setting of the function estimation problem: In
a set of functions f( €,a),a € A, minimize the functional

R@) = [ Lty 1z, 0)aP(z), (8.1)

where £{x) is a given loss function if the probability measure P(z,y) is
unknown but data

(yls-rl)s'v,(yfyzf) (82}

'With this name we would like to stress that our goal isto minimizetherisk in
vicinitiesz € v(=x;) o the training vectorsx,, i = 1,...,£, where (as we believe)
most of points x € w(z:) keep the same (Or almost the same) value y; as the
training vector x;, rather than to minimizethe empirical risk functlonal defined
only by the training vectors.
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are given.

I n thefirst chapters of the book in order to solve this problem we consid-
ered theempirical risk minimization principle, which suggested minimizing
the functional

£
Remp(@) = § 3 Lo — F(1,2) ®3)

instead of the functional (8.1).
L ater we mtroduced the structural risk minimization principle, wherewe
defined a structure on aset of functionsf (x,a) ,a € A,

S C - - C Sy,

and then we minimized functional (8.3) ontheappropriately chosen element
Sy of thisstructure.

Now we consider a new basic functional instead o the empirical risk
functional (8.3) and use thisfunctional in the structural risk minimization
scheme.

Note that introduction of the empirical risk functional reflects the fol-
lowing reasoning: Our goal isto minimize the expected risk (8.1) when the
probability measureis unknown. Let usestimate the density function from
the dataand then usethisestimate p(x,y) in functional (8.1) to obtain the
target functional

Rr(a) = / (Lly — f(,0))pla, y)dzdy. (8.4)

When we estimate the unknown density by the sum of 6-functions

£
1
Bz, y) ='§z T — )8y — ¥i)

we obtaln the empirical risk functional.

If we believe that both the density function and the target function
are smooth, then the empirical risk functional probably is not the best
approximation d the expected risk functional. The question arises as to
whether there exists a better approximation o the risk functional that
reflects the following two assumptions:

1. The unknown density function is smooth in avicinity of any point
I;.

2. Thefunction minimizingthe risk functional is adso smooth and sym-
metric in vicinity any point x;.

Below weintroduce a new target functional which wewill use instead of the
empirical risk functional. To introduce this functional we construct (using
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data) vicinity functions v(z;) of the vectors x; for all training vectors and
then using thesevicinity functionswe construct thetarget functional. Asin
Section 4.5 we distinguish between two conceptsd vicinity functions, hard
vicinity and soft vicinity functions. Below we first introduce the concept
of hard vicinity function and then consider soft vicinity function. One can
also use other concepts d vicinity functionswhich are more appropriate
for problems at hand.

8.1.1 Hard Vicinity Function

1 For any z;, i =1, ..., £ wedefine ameasurable subset v(z;) of the set
X € R"™ (thevicinity of point z;) with volume v;.

Wedefinethe vicinity of t hispoint as theset of paintsthat arer;-close
toz; = (z!,...,27) (r; dependson the point ;)

v{z) = {2 ||z — mlle < n},

where ||z — x;||g IS @ metric in space £. For example, it can be the
{y, the {3, or the {,, metric: {, metric defines the vicinity as aset

o(zs) = {z: 3| — 2| < 1),
k=1

{» metric defines the vicinity as the ball of radius ; with center at

point z;
n

vz ={z: 3|z -z <2,

k=1
while| metric defines a cube d size 2r; with a center at the point
- 1 n
2, = (2], .- )

v(z,) = {z: :e:f' —r <k < sr:f +7r, Vk=1,...,n}.

2. The vicinities of different training vectors have no common points.

3. We approximate the unknown density function p(zx) in the vicinities
d veetor x, as follows. All £ vicinitiesd the training dat a have an
equal probability neasure

P(x € v(z:)) = 1/1.

The distribution o the vectors within the vicinity is uniform,

pleto(z) = =,

1

where ¢; is the volume d vicinity ©{z;).
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FI GURE 8.1. Vicinity of pointsin different metrics: (a) in the {, metric, (b) in
the iz metric, and {c) in the i, metric.

Figure 8.1 shows the vicinity of points in different metrics: (a) in the {,
metric, (b) in the {2 metric, and (c) in the| metric.

Consider thefollowing functional, which we call the meinal risk functional

4
Ve)= ;}Z (yi— = f(a:,a)dw) . (8.5)

Vi Jufzs)

In order to find an approximation to the function that minimizes risk
functional (8.1) we are looking for the function that minimizes functional
(8.5). Minimizing functional (8.5) instead of functional (8.1) we call the
vicinal risk minimization (VRM) principle (method). Note that wheu v, —
0 thevicinal risk functional converges to the empirical risk functional.

Since the volumes O vicinities can be different for different tramning
points, by introducing this functional we expect that the function mini-
mizing it have different smoothness properties in the vicinities of different
points.

In asense the VRM method combines two different estimating methods:
the empirical risk minimization method and 1-nearest neighbor method.

8.1.2 Soft Vicinity Function

In our definition of the vicinal method we used parameters z, and r; ob-
tained from the training data to construct a uniferm distribution function
that is usad in equations for VRM.

However, one can use these parameters to construct other distribution
functionsp(z|z;, ;) where they define the parameters of position and width
(for example, one can use the normal distribution function p{z|z;,r;) =
N(z;,d;)). For soft vicinity functions all points of the space can belong to
avicinity of the vector =;. However, they have different measures.
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A st vicinity function defines the following (general) form d VRM

£
Vi) == > Ly — Ef(z,a))
§=1

ey |

= ;Z‘I;L (yi — /f(a:,a)p(:t:h:i,n)d:c)

In Section 8.3.1 we define a VRM method based on hard vicinity func-
tionsand based on soft vicinity functions.

8.2 VRM METHOD FOR THE PATTERN
RECOGNITION PROBLEM

| n this section we apply the VRM method to the two class {—1,1} pattern
recognition problem. Consider the set d indicator functions

= g(‘.l:,{l) = sign[f(:c, (I)], (86)

where f{z,a),a € A, isaset of real-valued functions. In previous chapters
we did not pay attention on thestructure (8.6) of the indicator function. In
order tofind thefunction from f{z,a),o € A, that minimizes the risk func-
tional, we minimized the empirical functional (8.3) with the loss function

ly — flz, o).
Now taking into account the structure (8.6) d indicator functions we
consider another loss function

L{y, f(z,a) = 8(—yf(z, a}), (8.7)

which defines the risk functional
R@@) = [ outaldP@, ), (8.8)

where &(u} is astep function.
To minimize this functional the VRM method suggests minimizing the
functional

£
1
- —4q g2 i dx . .
V{a) Ega[ ¥ / fz, o)palzs, T ] (8.9)
For the hard vicinity function we obtain

1~ [~
V(ﬂ’):?zg{u
i=1

i
i Jolx)

f(:c,cr}d:r:] .
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As in Chapter 5 we reduce this problem to the following optimization
problem: Minimize the functional

£
W) =CY_ &+f) (8.10)
=1
subject to the constraints

i /f(:r, aypl{z|z;, ri}de > 1 — &, (8.11}

where () is some regularization functional that we specify below.
Suppose that our set of functions is defined as follows. We mnap input
vectors z into featurevectors z and in the feature space construct ahyper-
plane
(w,2) +b=0

that separates data
(1,21}, ..., (¥e, 2e),

which are images in the feature space of our training data (8.2). (Let a
kernel K'{z,z") defines theinner product in the feature space.)

Our goadl is to find the function f{z,a) satisfying the constraints

[1H /f(fr.,ﬂ‘)p(IIIg,?‘i}dI 2 1 - &' (812)
whose image in the feature spaceis alinear function

() = (w*,2) + b

that minimizes the functional
)
Wi{w) = (w,w) + C‘Z{i. (8.13)
=1

We will solve this problem using the SVM technique and call thesolution
the vieinal SVM solution {VSV). Note that for linear functionsin the input
space

flz,a) = (w,z) + b, a €A,

and for vicinities where x; is the center of mass,
Xy = Eﬂ{:r,-)x

the VSV solution coincideswitb the SVM solution. Indeed, sincethetarget
functional in the both casesisthe same and

/[('w, z) + b)p(z|x;, ri)dx = (w, z;) + b,
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the problems coincide.

The difference between ERM and VRM can appear in two cases, if the
point x; is not the center of mass of the vicinity w(x;) or if we consider
nonlinear functions.

Let us (using the kernel K{z,z’)) introduce two new kernels: the one-
vicinal kernel

£z, 25) = Bon K(3,27) = / K(z, 2)p( |70, 73)dT’ (8.14)
and the two-vicinal kernel

M{mia m_j) = EU(I;)EU(Ij)K(J:’ I’)

=//K(J:,x")p(:ciz:;-,rt-)p(x’|xj,f'j)d$d$’. (8.15)

Thefollowing theorem is true.

Theorem 8.1. The wcinal suppert vector solution (VSV) has the form

£
fl@) = Y Ailiz,ze) +b. (8.16)
=1
where to define coefficients [3; one has to maximize the functional
£ 1 &
W(p3) = Zﬁz‘ -3 z Yilt; B Mz, T 5) (8.17)
=1 i,§=1
subject to the constraints
¢
3> upi=0, {8.18)
i=1
0< 3 <C. (8.18)

PROOF. Let us map input vectors z into feature vectors z. Consider
samplesd N points

1?{1,...,1'*”, 1=1,.04’g,

taken from tbe vicinities of points z;, 1 = 1,...,¢. Let theimages of these
pointsin feature space be

2 SR - JY i=1,...,f.
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Consider the problem of constructing the following vicinal optinal hy-
perplane in afeature space: Minimize the functional

£
. 1
W*(w) = S(ww) + ng.,.- (8.20)
subject to the constraints
1 N
Yy E‘“" Z) +8] 21— &. (8.21)

Note that the equivalent expression for (8.21) in theinput space is

N
N 3 f@na) 216 (8.22)

As N — w, expression (8.22) convergesto {(8.12). Therefore, the solution
of the optimization problem defined by (8.20) and (8.21) convergesto the
solution of the optimization problem defined by (8.13) and (8.12).

To minimize (8.20) under constraints (8.21) we introduce the Lagrangian

N

L(w) = g, w)+C 3 6= Y Altug Do, ) +H— 1461+ 3 né
=1 =1 i=1

k=1 =

(8.23)

The solution of our optimization problem isdefined by the saddle point

of the Lagrangian that minimizes the functional over &, &, and w and
maximizesit over # and 7. As the result of minimization we obtain

zyi;ﬁi =0, (8.24)
i=] s
08 <C, (8.25)
and
I
w = g iy kg Z, (8.26)

Putting (8.26) in the expression for the hyperplane we obtain

¢ N
(z)=(w,2)+b= Zyt-ﬁ,-—;; Z(z, zi )T b (8.27)
i=1 k=1

Putting expression (8.26) back into the Lagrangian we obtain

N N
W(g) = ;ﬁz’ — f—lg z ﬁz’ﬁjyiyj% Z}P—t; z_:l(zw Zou ) (8.28)

i,5=1
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Since (z,2') = K(x,2"), we can rewrite expressions (8.27) and (8.28) in the
form

4 a N
flz) = E Zh’ﬂt’% E K{x,24,) + b, (8.29)
=1 k=1

where the coeffictents /3; maximize the functional

. ¢ | £ AL
(8) = zﬂeﬁ 5 z yeyi Bl Z—N* z K(zy,,24,,)
=1 k=1 m=1

$,7=1

subject to constraints (8.24) and (8.25). Increasing N , we obtain

N
I\Jl'-l—IPoo N z_: K(z, 74, ) = L£(Z,T3),
1 e~ 1 w—
Jim Z % m2=jl K (%, 35,,) = M(zs, 15)

Therefore, the VSV solution is

£

&)=Y wli(z,x) + b, (8.30)
i=1
where to define the coefficients /3; one hasto maximize the functional
|
W(B) = Zﬁi ~ 3 Z Yy B8 M3, T5) (8.31)
i=1 t,=1

subject to the constraints
£

D =0,

g=1

8.3 EXAMPLES OF VICINAL KERNELS

In this section we give example of pairs of vicinity and kernel K(x,y)
that allow us to construct in the analytic form both the one-vicina kernel
L(zx,z;) and the two-vicina kernel M(z;, z;). In Section 8.3.1we introduce
these kernelsfor hard vicinity functionsand in Section 8.3.2 for soft vicinity
functions.
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8.3.1 Hard Vicinity Functions

We define the vicinitiesof pointsz;, i =1,...,£, using the {o, Metric:
|15 — Zalloo = sup |z* —zf), (8.32)
1<k<n
where z = (z1,...,z™) isa'vectorin R"™.

We define Size o the vicinity o the vectors i, i = 1,...,¢ from tbe
training data
{ylaxl)y-'-!(yfjxf)

using the following agorithm:

1. Define the triangle matrix
A =laigll, >,

of the pairwise distances (in the metric) o the vectorsfrom the
training set.
2 Define the smallest element d the matrix A (say a,;).

3 Assign the vaue
d; = Kag;
to dement x; and the value

d; = Koy

to element x,.

Hers & < 1/2 is the parameter that controls the size d vicinities
(usuallyit is reasonableto chooge the maximal possblesize s = 1/2).

4 Choose the next smallest element a,,s;0f the matrix A. If one d the
vectors (say z.,) Was aiready assgned somevdued,,, then assign the
vaue

s = Ky

to another vector z,, otherwise assign this vaueto both vectors.
5 Continue this process until valuesd have been assigned to all vectors.
Usng the value d; we define both the vicinity of the point x;,
v(x;) = {x ::r,f ~—di < F < xf‘ +di, Vh=1,...,n}

and the volume
v = (2d)"
of the vicinity.
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Let us introduce the notation

v(zX) ={2F: 2F - d, <2 <2 + D).

Now we cal culate both the one- and two-vicinal kernelsfor the Laplacian-
type kernd

. Nk
K(I,f)mp{_u xfuh} Hexp{ ok (m}
We obtain the one-vicinal kernd
1 lflf*ﬂ‘v’l} p
exp € — dx
(2di)™ Juizyy p{ A

__ﬁjxjkl ko - K{nrk oK
2nd;1 H/v{z"‘} { A }d(:t:) '_'j:!.;.[lﬁ (z¥, ).

After elementary calculations we obtain

Lz, z:) =

Kook gy 1 )z~ (&) i
£(x,xf)-—2di u(zﬂexp{ — d(x')
3 % [g_exp{ (d +$ } exp{ {d;—2 +Ik} ] iflxgk"‘xki idg,
%"XP{ - }(exp{ p—exp{~%}) if {z¥ — o*| > dq.

The n-dimensional two-vicinal kernel is the product o one-dimensional
kernels

Mzs, z;) = HM’*(:;,, xt

k=1

To calculate M *(z¥, z¥) we distinguish two cases: the case where s # ]
(say ¢ > j) and the case where i = j. For the case i # j we obtain (taking
into account that different vicinities have no common points)

k Mk
M K(zk, 2%y = / / {_i_f'? (z') !}
(3:2 IJ) 4didj v(z¥) v[z;‘) P A 47’ dx

~ ﬁﬂp{_wﬁ} (e{%} *e{%}) (e{%‘f} _e{—%})

idd, A




278 8. The Vieinal Risk Minimization Principle and the SVMs

For the casei = j we obtain

V¥ o m%)_m ﬂw} /w}m{ Afx’) 1} 'dz

exp{ zh - (ﬂ:") )}

25;2 v - A
Therefore, we have
MM(af, zf
R NI B SAN S IR S
) e (e —e )(e — € a) ifi 3,
A7 (e %} —1—%) f
2T A e =3
Notethat when J
a0

we obtain the classical SVM solution
L{z,z;) — K(z,x,),

M(ilft',l'j) — K(Iff,lfj).

Figure 8.2 showsthe one-vicinal kernel obtained from the Laplacian with
parameter A = 0.25 for different values of vicinities: (a) d = 0.02, (b)
d= 0.5, and {c) d = 1 Note that the larger the vicinity of the point z;,
the smoother the kernel approximate 'function in this vici nity.

(AN

) 0 2 2 0 2 0 2
{a) {D} {c}

FIGURE 8.2. One-viclnal kernel obtained from Laplacian with A = 0.25 for
different values of vicinities (a) d=0.02, (b) 4= 0.5, and (c) 4 = 1.
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5.3.2 Soft Vicinity Functions

T o construct one- and two-vicinal kernels for the Gaussian-type kernel

(z — ')
one has make the following:

1. To define the distance between two pointsin the {3-metric,

2. To define the values d; for all points z; of the training data using
the same algorithm that we used in the previous section.

3 Todefine soft vicinity functions by the normal law with parameters
x; and d;.

4. Tocalculate the one- and to vicinal functions

1 {x — a')? (& — z4)?
L e e C S s g L

M(Iﬂj,ﬂii)

1»")2 ' —2)? (x-wy)” ,
(Zw)(d i+d;} // { 2@ Zd{ }d.q:dﬂ:

= [1 ﬁ+d_? _?ex _ (z: —7;)°
AR V2P + &+ [

8.4 NUNSYMMETRIC VICINITIES

In the previous section, in order to obtain analytic expressions for vicinal
kernels, we considered symmetric vicinities. This type of vicinities reflects
the most simple information about problem at hand. Now our goal is to
define vicinities that allow us to construct vicinal kernels reflecting some
local invariants.

Below we consider the example of constructing such kernelsfor thedigit
recognition problem. However the main idea introduced in this example
can be used for various function estimation problems.

It is known that any small continuous hinear transformation d two di-
mensional images z; can be described by six functions (Lie derivatives)
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x; ) K=1,...,6 such that transformed image is

B
T=T; + E I:ktk:
k=1

wherety, &£ = 1,...,6 arereasonable small values. Thereforedifferent small
linear transformations of image x; are defined by six Lie derivatives of z;
and different small vectors t = (t1,...,ts), say {t] < ¢

L et usintroduce the following vicinity of x;

6
vp(z:) = {ﬂi DT =x+ ZI:,kfk, It < C} :

k=1

This vicinity is not necessarily symmetric. Note that if we will be able to
construct one- and two-vicinal kernels

'E'L(Ij x'i) = EUL{Z.')K(Iﬂ J’J)J

Mp(zi,25) = By (23 Fyy (2 K (2,27),
then the VSV solution

¢
fulm,o) = > wonlp(z,z:)

t=1

will take into account invariants with respect to small Lie transformations.
Of courseit is not easy toobtain vicinal kernelsin analytic form. However
onecan approximate these kernels by the sum

N + N
l I
ﬁL{:II,:IIi) = —P;F E Ev(;tk(m,'})K(x‘! IE;) = _I’J E .C,(.’.II, l‘k(ﬂli))
k=1 k=l

1 =1 &
Mp(z:,35) = 5 > N E ey e Boemiz ) B2, 7) =
1

k=1 m=

1 N N
I z Z M{(zi(z;), Im{i‘i))ﬂ

k=1m=1

where zx(z;), ¥ = 1,..., N are virtual examples obtained from z; using
small Lietransformation and {zx{:)) is symmetricvicinity for &-th virtual
example zx(x;) obtained from z;.

In other words, one can use the union of symmetric vicinities of vir-
tual examples (obtained from example z;} to approxi mate anon-symmetric
vicinity of example x;.
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Notethat in order to obtain the stateof the art performance in the digit
recognition probiem several authors (Y. LeCun et al. {1998), P. Simmard et
al. (1998), and B. Scholkopf et al. (1996)) used virtual examplestoincrease
the number of training examples.

In the SVM approach B. Scholkopf et al. considered the solution as ex-
pansion on the extended set of the training data

£ N
flz,0) =Y 0 Y curK(z, 2k(zs)), (8.33)

i=1 k=1

where extended set included both the training data and the virtual exam-
ples abtained from the training data using Lie transformation.

In the simplified vicinal approach, where the coefficient x that controls
the vicinities v(z;) isso small that

L{z, ;) = K(x,z), we obtain another expansion

£ N
fz,a)= Zyiﬂi}leK{:r,xk(zi)), (8.34)
=1 k=l

where z;{z;) is the the kth virtual example obtained from the vector z; of
the training data.

The difference between solutions f{z,a) and f*(z,a) can be described
as follows:

In f{x,a) one uses thefollowing information: new (virtual) examples
belong to the same class as example z;.

In f*(x,a) one usesthefollowing information: new (virtual) examples

. arethe same example as z;.

Theideaof constructing nonsymmetric vicinities as aunion of symmetric
vicinities can be used even in the case when one can not construct virtual
examples. One can consider as examples from the same union a (small)
cluster of examples belonging to the same class.

8.5 GENERALIZATION FOR ESTIMATION
REAL-VALUED FUNCTIONS

In Chapter 6 toestimate areal-valued function from a given set of functions
we used g-insensitive 10ss functions

Ly f(z,0)) = L{ly — f(z,a)]¢)-
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For thisfunctional we constructed the empirical risk functional

£
Remp(@) = 3 30 L{ly — f( o) (8.35)
§=1

Now instead of functional (8.34) we will use the vicinal risk functional
1 &
Vie) = 3 3 Ll - [ flz.odplalzadizl). (336
i=1

We can rewrite the problem of minimizing(8.34) in the following form:
Minimize the functional

¢
P(&:) = z L&), &=20 (8.37)
i=1

subject to the constraints

e / F(z, a)plafe,, dde > —¢ — &,

Yi — / fla, a)p(x|x;, di)dx <& + & (8.38)

However, we would like to minimize the reglarized functional
£
B(f) = C Y L&) + Q(f) (8.39)
=1

instead of (8.35), where we specify thefunctional Q(f) below.

Supposg(as in Section 8.2) that our set of functions is defined asfollows:
We map input vectors z into feature vectors z, and in feature space we
construct alinear function

H{z) = (w,z)+b
that approximates the data

{yljz‘l)j'* '!(yfrzf):

which are the image of our training data (8.2) in feature space. Let the
kernel K{z,z’) defines theinner product in feature space.

We would like to define thefunction that satisfies constraints {8.36) and
minimizes the functional

L
*=CY &+ {(ww).
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Consider the case where L{u) = ji.-
Thefollowing theorem holds true.

Theorem 82. The vicinal support vector solution has the form

£
flm) =) (B — B)L(z,2:) +b
i=1

whew to define coefficients 3; and 3* one has to mazimize the functional
W{(g)

£
= —€Y (BitBD+D_UBi—B) D_Bi- ; > (B BNB; — B Mz, x5)
i=]

i=1 i=1 ij=1

subject to the constraints

£ £
D 8= 5
=1 =1

U‘EﬁaSCa
0 <37 <C,

whew the wicinal kernels £{x,z;) and M{x:,T;) are defined by equations
(8.14) and (8.15).

The proof of thistheorem isidentical to the proof of Theorem 8.1.

One can prove analogous theorems for different loss functions I{u) =
L{ly — f(z,a)].). In particular, for the case where L = (y — f(=,a))? one
obtains the solution in closed form.

Theorem 83 The V&V solution for the boss function
L=(y— f(z,)?

flz)=Y" (M + %1) L,

where
YT = (yls--- :yf)

15 a 1 x ¢ matriz of the values y of observations,
M = {|M(zs, 35|

is an ¢ X £ matriz Whose elements are defined by the two-mcinal kernels,
L= ||£{$,$1), ...,.C,{:I, IE)HT

is an £ X 1 matriz Whose elements are defined by the one-vicinal kernels
L{z,x;), i =1,...,¢ and | isthe £ x £ identity matrix-
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8.6 ESTIMATING DENSITY AND CONDITIONAL
DENSITY

8.6.1 FEstimaiing a Density Function

In Chapter 7 when we used Method P for solving the density estimation
problem we reduced it to thefollowing optimization problem: Minimizethe

functional
Nfy={(f.Dx (8.40)
subject to the constraints

R~ [ f(:c')dx'i =or (8.41)

sup
£

However, for computational reasons we checked thisconstraint only for
the ¢ points defined by the data of observations

a

Fg{:l‘.) — f(x’)dﬂ:”

-

= gy, 1= 1, PR ,f. (842)

max
We also considered the solution as an expansion on the kernel (that defines
RKHS)

£
S fi=1, Bzo0. (8.43)

Now let us look for asolution in theform

F 4 £
o)=Y ;3% Ky(z,2)d2’ = 3 AL, 7:). (8.44)
i=1 t==]

t du{z.)
For such solution we obtain (taking into account the reproducing prop-

erties of the kernel K{x,z")) the following optimization problem:
Minimize the functional

£
W(B) =Q(f,f)= Y BiBiMy(xi,x;) (8.45)

i,j=1

subject te constraints (8.41) and the constrsints

= gp, 1 E i s EJ (8‘46)

. I
wox |Fea) = 328 [ eytel,a et
j=1 A=

I=1Ij
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where L, (x;,z") and M., (x;,2;) are functions defined by equations (8.14)
and (8.15), and y is a parameter of the width of the kernel

K. (z,2") = a(v)K (I ;:r.’) :

As in Chapter 7 we choose~ from the admissible set to obtain the minimum
{8.43) or/and sparse solution.

This estimator of the density function has an expansion on different
kernels depending on w{x; ).

8.6.2 Estimating a Conditional Probability Function

To usethe VSV solution for conditional probability estimation we consider
the analogous form of expansion asfor the density estimation problem

£{w) £
pluwlx) = e Zﬁiﬁ‘r(Ifxi)- {8.47)
i—1

Repeating the same reasoning as before, one showsthat to find the coeffi-
cients 3; one nieeds to minimize the functional

¢
WH(B) = Zﬁ:ﬁj-’”w(%, Xi) (8.48)
=1

subject to the constraints

S8 Lalesme(e, ;) - Felglu)| =

1=1 i=1

and the constraints

We choose # from the admissible set

Ymin S ¥ < Yinax {8.52)

tocontrol propertiesd the solution (accuracy and/or sparsity) minimizing
W.{() and/or choosing large admissible +.
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8.6.3 FEstimating a Conditzonal Density Function

To estimate the conditional density function we repeat tbe same reasoning.
We use the expansion

p(le Zﬁt i[‘. 2’.'; -7(!;'1 1&)1 .6:' > 0. (853)

Tofind the coefficients 3; we minimize the functional

¢
Wo(8) = Y BiBiMy(25,2:) Koy, 1) (8.54)

t,i=1
subject to the constraints

v

Zﬁa Zﬁ':r(xja 9(9:3: - x;.-) K (y yt)dy — Fe(zp, yp)

= g,

, (8.55)
p=11'-'1 )

and the constraints

£

Z ( Zﬁjﬁ-,(z:t,zj)) = 1, (8.56)

=1

g; > 0. (8.57)

To control the properties of the solution {accuracy and/or sparsity) we
choose an admissible parameter 4 that minimizes the target functional
and/or that islarge.

Remar k. When estimating density, conditional probability, and the con-
ditional density function we looked for a solution

2
f(ﬂf, ﬁ) = z,ﬁiﬁ'}-(x: I,‘)
1=1

that basthe following singularities:
G20, i=1,...,¢
L (T,%;) = B, K, (x,7),
M,y (ziz;) = Et,(m_.)Eu(zj)Kﬁ,(:c, T’),

where

Kyfz,7:) = a(n)K (x fy"“")
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with a normalization parameter a(y} (see Section 7.8).

Since parameters 3; are nonnegative it is reasonable to construct soiu-
tions based on kernels K'(z, ') that have light tails or have finite support.
In particular, onecan use the kernel defined by the normal law

1 r—z')

Fur this kernels we have

" 32
Lo(z,a’) = [2n(v* + d7)] % exp %H} (8.58)

N 2 211~ % (z - 2')?
M2, 7:) = [211'(7 +d? + dj)] exp {*2(72 I pry } . (8.59)
d 7

Asakernel K x, ;) defined on finite support onecan consider B,-spline

B (;1: I’):: lril (_-1)}- crtl {(z:—-z')-i—(n*l—- )'}’)n
i ¥ &g (1)1 Fy

It is known that starting with n = 2 a B,,-spline can be approximated by
a Gaussian function

U P _Slz *_-’”’)2-} (8.60)
B,(x,z') = ':'irf;?m exp{ el i

Therefore, for one- and two-vicinal kernels constructed on the basisof kernel
function defined by a B,-spline one has either to calculate them directly
or use the approximation (8.60) and expressions (5.58) and (5.59).

8.6.4 Estimating a Regression Function
To estimate the regression function

r(z) = /yp{ylz:)dy (8.61)

recall that the kernel K, (y,y,) isasymmetric (density) function the inte-
gral d which isequal to 1. For such afunction we have

/ yK (v, 4:)dy = . (8.62)

Therefore, from (8.51), (8.56), and (7.57) weobtain thefollowing regression
function:

£
r(z) =Y yifly(2,z:)






Informal Reasoning and
Comments — 8

The inductive principle introduced in this chapter is brand new. There
remainswork to properly analyzeit, but the first results are good.

Sayan Mukherjee used this principle far solving the density estimation
problem based on the VSV solution (so far in low-dimensional spaces).
He demonstrated its advantages by comparing it to existing approaches,
especially in the case where the sample size issmall.

Ideas that are close to this one have appeared in the nonparametric
density estimation literature. In particular, many discussons have taken
place in order to modernize the Parzen’s methods d density estimation.
Researchers have created methods that use different values d the width at
different points. It appeared that the width of the kernd at a given point
should be somehow connected to the Sze o the vicinity of this point.

However, the realizations of this idea were too straightforward: It was
proposed to choose the width o the kernel proportional to the value d; of
the vicinity d the corresponding point ;. In other words, it was proposed

to use the kernd a(v) K (%) This suggestion, however, created the fol-
lowing problem: When the value d the vicinity decreases, the new kernd

convergesto the é-function

=

dlihf.lga(dﬁ)K( 1 ) = §(x — z,).

In the 1980s, in constructing density estimatorsfrom various solutions of
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an integral equation we observed that classical methods such as Parzen’s
method or the projection method are defined by different conditions for
solving this integral equation with the same approximation on the right-
hand side — the empirical distribution function. The idea of using a dis-
continuous function to approximate a continuous function in the problem
of solving the integral equation that defines the derivative of the (given)
right-hand side is probably not the best.

Using in the same equations the continuous approximation to the distri-
bution function, we obtain nonclassical estimators. In particular, using a
continuous piecewise linear (polygonal) approximation we obtained (inthe
one-dimensional case) a Panen's-type estimator with a new kernel defined
as follows (Vapnik, 1988):

a Tit1 T -z
gnew($;$i3$’£+l"}') = “—'_(l)"_)/ K( )dzr
&y

(Tiy1 — Y

where z;, ;41 areelements of the variation seriesof thesampleand K ()
is the Parzen kernel.
This kernel converges to Parzen’s kernels when (z;4+; — z;) — O,

. r—z
lim Gnew (X Tiy Tig1,¥) = a{~y) K ( ) )

(zip1—2,)—0 Y

After the introduction of S¥VM methods, the (sparse) kernel approxima-
tion began to play an important role in solving variousfunction estimation
problems. As in Parzen’s density estimation method, the S¥YM methods
use the same kernel (with different values of coefficients of expansionsand
different support vectors). Of course, the question arises as to whether it is
possible to construct different kernels for different support vectors. Using
the VRM principle we obtain kernels of a new type in all the problems
considered in this book.

The VRM principlewas actually introduced as an attempt to understand
the nature of the solutions that usedifferent widths of kernel.



Chapter 9

Conclusion: What Is Important in
Learning Theory?

9.1 WHAT ISIMPORTANT IN THE SETTING OF THE
PROBLEM?

In the beginning of this book we postulated (without any discussion) that
learning is a problem of function estimation on the basis of empirical data.
To solve this problem we used a classical inductive principle - the ERM
principle. Later, however, weintroduced a new principle - the SRM princi-
ple. Nevertheless, the general understanding d the problem remains based
on the statistics of large samples. The geal is to derive the rule that pos-
sesses the lowest risk, The goal of obtaining the “lowest risk" reflects the
philosophy of large sample size statistics: The rule with low risk is good
because if we use this rule for alarge test set, with high probability the
means of fosses will be small.

Mostly, however, we face another situation. We are simultaneously given
training data (pairs (z;, %)) and test data (vectors z}), and the god isto
usethe learning machine with aset of functions f(x,a), a< A, to find the
y; for thegiven test data. In other words, weface the problem of estimating
the values d the unknown function at given points.

Why should the problem of estimating thevaluesof an unknown function
at given pointsof interest besolved in twostages. First estimating the func-
tion and second estimating the values of the function using the estimated
function? I n thii two-stage scheme one actually tries to solve a relatively
simple problem (estimating the values of afunction a given points of in-
terest) by first solving (as an intermediate problem) a much more difficult
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one (estimating the function). Recall that estimating a function requires
estimating the values of the function at all {infinite] points of the domain
where the function is defined including the points of interest. Why should
one first estimate the values of thefunction at all peints Of the domain to
estimate the values of the function at the pointsof interest?

| t can happen that one dees not have enough information (training data)
to estimate the function well, but one does have enough data to estimate
the values of the function at a given finite number Of poinis of interest.

Moreover, in human life, decision-making problems play an important
role. For learning machines these can be formulated as follows: Given the
training data

(mlqyl)a" . !(:E'E'J yf)'l

the machinewith functions f (x,a), « € A, hasto find among the test data

3

N

theone z% that belongsto thefirst class with highest probability (decision
making problem in the pattern recognition form.)' To solve this problem
one does not even need to estimate the values of the function at all given
points; therefore it can be solved in situations where one does not have
enough information (not enough training data) to estimate the value of a
function at given points.

The key to the solution of these problems is the following observation,
which for simplicity we will describe for the pattern recognition prohlem.

Thelearning machine (with aset of indicator functions @{z,8, « € A)
is simultaneously given two strings: the string of £ + k vectors x from the
training and the test sets, and the string of £ values y from the training
set. In pattern classification the goal of the machine isto define the string
containing & values y for the test data.

For the problem d estimating the valuesof afunction at the given points
theset of functions implemented by the learning machine can be factorized
into afinite set of equivalence classes. (Two indicator functions fall in the
same equivalence class if they coincide on the string x4, -..,xe+x). These
equivalence classes can be characterized by their cardinality (how many
functions they contain).

The cardinality d equivalence classesis aconcept that makesthe theory
of estimating the function at the given points differ from the theory of
estimating the function. This concept(as well as the theory of estimating
the function at given points) was considered in the 1970s (Vapnik, 1979).
For the set of linear functions it was found that the bound on generalization
ability, in the sense of minimizing the number of errors only on the given

'Or to find one that with the most probability possesses the largest vaue of
Y. [decison-making in regression forin),
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Approximating
function

Deduction

Values of the
function at points
of interest

Transduction

FIGURE 9.1. Different types of inference. Induction, deriving the function from
the given data. Deduction, deriving the values of the given function for points
d interest. Transduction, deriving the valuesof the unknown function for points
of interest from the given data. The classical scheme suggests deriving S the
values of the unknown function for points of interest in two steps: first using
the inductive step, and then using the deduction step, rather than obtaining the
direct solution in one step.

test data {along with the factors considered in this book), depends aso
on a new factor, the cardinality of equivalence classes. Therefore, since to
minimize arisk one can minimize the obtained bound over alarger number
of factors, one can find alower minimum. Now the problem is to construct
ageneral theory for estimating afunction at the given points. This brings
us to anew concept of learning.

Classical philosophy usually considers two types of inference: deduction,
describing the movement from general to particular, and induction, describ-
ing the movement from particular to general.

The model of estimating the value of a function at a given peint of
interest describes a new concept of inference: moving from particular o
particular. We call thistype o inference transductive inference. (Fig. 9.1)

Note that this concept of inference appears when one would like to get
the best result from a restricted amount of information. The main idea in
this case was described in Section 1.9asfollows:

If you are limited to a restricted amount of information, do not solve the
particular problem you need by solving a more general problem.

We used this idea for constructing a direct method of estimating the
functions. Now we would like to continue developing this idea: Do not
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solve the problem of estimating the values of afunction at given points by
estimating the entire function, and do not solve adecision-making problem
by estimating the d u e s of afunction at agiven points, etc.

The problem of estimating the values of a function at a given point
addresses a question that has been discussed in philosophy for more than
2000 years:

Wha is the basgis & human intelligence: knowledge of laws {rules) or the
culture d direct access to the truth (intuition, adhoc inference)?

Thereareseveral different modelsembracing thestatementsd thelearn-
ing problem, but from the conceptual point of view none can compare to
the problem of estimating the values of the function at given points. This
model can provide the strongest contribution to the 2000 years of discus-
sions about. the essence of human reason.

9.2 WHAT IS IMPORTANT IN THE THEORY OF
CONSISTENCY OF LEARNING PROCESSES?

Thetheory of consistency of learning processesis well devaloped. |t answers
amost al questionstoward understanding the conceptual model of learning
processes realizing the ERM principle. Theonly remaining open question is
that of necessary and sufficient conditionsfor afast rate of convergence. In
Chapter 2 we considered the sufficient condition described using annealed

entropy _

lim 22— =0
f—oo E

for the pattern recognition case. It a so can be shown that the conditions

lim Hi‘nné(s;f)- =0, V>0,
§—00

in terms of the annealed entropy H2 (¢;€) = In EN%{z;2),...,2¢) define
sufficient conditions for fast convergence in the case 0f regression estima-

tion.
Thefollowing question remains:

Do these equalities form the necessary conditions as well? If not, what
are necessary and sufficient conditions?

Why isit important to find a concept that describes necessary and suf-
ficient conditions for afast rate of convergence?

As was demonstrated, this concept plays a key role in the theory of
bounds. In our constructions we used the annealed entropy for finding both
(nonconstructive) distribution-independent bounds and (nonconstructive)
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distribution-dependent bounds. On the basis of annealed entropy, we con-
structed both the growth function and the generalized growth function.
Pmving necessity of annealed entropy for a fast rate of convergence would
amount to showing that thisis the best possible construction for deriving
bounds on the generalization ability of learning machines. If necessary and
sufficient conditions are described by another function, the constructions
can be reconsidered.

9.3 WHAT IS IMPORTANT IN THE THEORY OF
BOUNDS?

The theory of bounds contains two parts: the theory of nonconstructive
bounds, which are obtained on the basis d the concepts d the growth
function and the generalized growth function, and the theory of construc-
tive bounds, where the main problem is estimating these functions using
some constructive concept.

The main problem in the theory of bounds is in the second part. One
has to introduce some constructive concept by means of which one can
estimate the growth function or the generalized growth function. In 1968
we introduced the concept of the VC dimension and found the bound for
the growth function {Vapnik and Chervonenkis, 1968, 1971). We proved
that the value N*(£) iseither 2¢ or polynomial bounded,?

ef’ A

NMa,...,z) < (I)

Note that the polynomial on the right-hand side depends on one free pa-
rameter . This bound (which depends on one capacity parameter) cannot
be impmved (there exist examples where equality is achieved).

The challenge is to find refined concepts containing more than one pa-
rameter (say two parameters) that describe some properties of capacity
(and the set of distribution functions F(z) € P), by means of which one
can obtain better bounds.®

Thisisa very important question, and the answer would haveimmediate
impact on the bounds of the generalization ability of learning machines.

*In 1972 this bound was aso published by Sauer [Sauer, 1972).

*Recall the MDL bound: Even such a refined concept as the coefficient of
compression provides a worse bound than one based on three [actually rough)
concepts SUCh asthe vaued the empirical risk, the number d observations, and
the number of functionsin aset.
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9.4 WHAT IS IMPORTANT IN THE THEORY FOR
CONTROLLING THE GENERALIZATION ABILITY OF
LEARNING MACHINES?

The most important problem in the theory for controlling the generaliza-
tion ability of learning machines is finding a new inductive principle for
small samplesizes. In the mid-1970s, several techniques were suggested to
improve the classical metheds of function estimation. Among these arethe
various rules for choosing the degree o a polynomial in the polynomial
regression problem, various regularization techniques for multidimensional
regression estimation, and the regularization method for solving ill-p o d
problems. All these techniques are based on the sameidea: to provide the
set d functions with a structure and then to minimize the risk on the -
ements of the structure. In the 1970s the crucial role of capacity control
was discovered. We call thisgeneral idea SRM to stress the importance d
minimizing the risk in the element of the structures.

In SRM, one triesto control simultaneously two parameters: the value
of theempirical risk and the capacity of the element of the structure,

In the 1970s the MDL principle was proposed. Using this principle, one
can control the coefficient of compression,

The most important question isthis:

Does there exist a new inductive principle for estimating dependency from
small sample sizes?

In studies of inductive principles it iscrucial to find new concepts that
affect the bounds of the risk, and which therefore can be used in mini-
mizing these bounds. To use an additional concept, we introduced a new
statement of the learning problem: the local risk minimization problem.
In thisstatement, in the framework of the SRM principle, one can control
three parameters: empirical risk, capacity, and locality.

In the problem d estimating the values of afunction at the given points
one can use an additional concept: the cardinality d equivalence classes.
Thisaidsin controlling the generalization ability: By minimizing the bound
over four parameters, one can get smaller minimathan by minimizing the
bound over fewer parameters. The problem is to find a new concept that
can affect the upper bound o the risk. This will immediately lead to a new
learning procedure, and even to anew type d reasoning (asin the case o
transductive inference).

Finally, it isimportant to find new structures on the set d functions. It
Isinteresting to find structureswith elements containing functions that are
described by large numbers of parameters, but nevertheless have low VC
dimension. We have found only one such structure, and this brought usto
SV machines. New structuresof thiskind will probably result in new types
of learning machines.
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9.5 WHAT IS IMPORTANT IN THE THEORY FOR
CONSTRUCTING LEARNING ALGORITHMS?

The algorithms for learning should be well controlled. This meansthat one
has to control two main parameters responsible for generalization ability:
the valuedf theempirical risk and the VC dimension o f thesmallest element
o the structure that contains the chosen function.

The SV technique can be considered as an effective tool for control-
ling them two parameters if structures are defined on the sets of linear
functions in some high-dimensional feature space. This technique is not
restricted only to thesets of indicator functions (for solving pattern recog-
nition problems). At the end d Chapter 5 wedescribed the generalization
of the SV method for solving regression problems. In the framework of
this generalization, using aspecial convolution function one can construct
high-dimensional spline functions belonging to the subset 0f splines with
a chosen VC dimension. Using different convolution functions for the in-
ner product one can also construct different types of functions nonlinear in
input space.*

Moreover, the SV technique goes beyond the framework of learning the-
ory. It admits a general point of view asa new type of parameterization of
sets of functions.

The matter is that in solving the function estimation problems in both
computational statistics (say pattern recognition, regression, density esti-
mation) and in computational mathematics (say, obtaining approximations
to thesolution to multidimensional (operator) equations of different types)
the first step is describing {parameterizing) aset of functionsin which one
is looking for a solution.

In the first haf d this century the main idea of parameterization (after
the Weierstrass theorem) was polynomial series expansion. However, even
in the one-dimensional case sometimes one needs a few dozen terms for
accurate function approximation. To treat such a series for solving many
problems the accuracy of existing computers can be insufficient.

Therefore, in the middle d the 1950s a new type d function parameter-
ization was suggested, tho so-called spline functions {piecewise polynomial
functions). This type of parameterization allowed us to get an accurate

*Note once more that advanced estimation techniques in statistics developed
in the 1980s such as projection pursuit regresson, MARS, hinging hyperplanes,
etc in fact congder some special approximations in the sets of functions

y=7) ajK{{z w;)} +b,

i=1

whereas,. .., an are scalars and wq,...,wx are vectors.
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solution for most one-dimensional { sometimes two-dimensional) problems.
However, it often fails in, say, the four-dimensional case.

The SV parameterization of functions can be used in high-dimensional
space (recall that for this parameterization the complexity of approximation
depends on the number of support vectors rather than on the dimensional-
ity of the space). By controlling the " capacity” o the set d functions one
can control the “smoothness” properties of the approximation.

This type of parameterization sbould be taken into account whenever
one considers multidimensional problems of function estimation {function
approximation).

Currently we have experience only in using the SV technique for solving
pattern recognition problems. However, theoretically thereis no obstacle to
obtain using thistechnique the same high level of accuracy i n solving depen-
dency estimation problems that arisein different areas d statistics (such as
regression estimation, density estimation, conditional density estimation)
and computational mathematics (such as solving some multidimensional
linear operator equations).

One can consider the SV technique as a new typeof parameterization of
multidimensional functions that in many cases allows us to overcome the
curse of dimensionality.’?

9.6 WHAT IS THE MOST IMPORTANT?

Thelearning problem belongs to the problems of natural science: There ex-
ists a pbenomenon for which one has t o construct a model. In the attempts
to construct this model, theoreticians can choose one of two different po-
sitions depending on which part of Hegel’s formula (describing the general
philosophy of nature) they prefer:

Whatever is real is rational, and whatever is rational is real®

The interpretation o the first part d this formula can be as follows.
Somebody (say an experimenter) knows a model that describes reality,
and the problem of tbe theoretician isto prove that this model is rational
(he should define as well what it means to be rational). For example, if
somebody believes and can convince the theoretician that neural networks

*See footnote on page 170.

®In Hegel’s original assertion, the meaning of the words “real” and “rational”
does not coincide with the common meaning of these words. Nevertheless, ae-
cording t0 aremark of B. Russdll, the identification of the real and the rational
in acommon sense leads to the belief that "whatever is, isright.”" Russdl did not
accept thisidea (see B. Russdll, A History of Western Philosophy). However, we
do itnterpret Hegel's formula as: "Whatever existsis right, and whatever right is
exists.”
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are good modelsof real brains, then the goal of the theoretician isto prove
that this medel isrational.

Suppose that the theoretician considers the model to be “rational” if it
possesses Some remarkable asymptotic properties. In this case, the theo-
retician succeeds if he or she proves (as has been done) that the learning
process in neural networks asymptotically converges to local extrema and
that asufficiently large neural network can approximate well any smooth
function. Theconceptual part of such atheory will be complete if one can
prove that the achieved local extremum is close to the global one.

The second position is a heavier burden for the theoretician: The theo-
retician hasto define what a rational model is, then has to find thie model,
and finally, the must convince the experimenters to prove that this model
isreal (describes reality).

Probably, arational model isone that not only has remarkable asymp-
totic properties but also possesses some remarkable properties in dealing
with agiven finite number of observations.” In this case, the small sample
si ze philosophy is a useful tool for constructing rational models.

Therational medels can be S0 unusual that one needs to overcome prej-
udices of common sense in order to find them. For example, we saw that
the generalization ability of learning nachi nes depends on the VC dimen-
sion of the set of functions, rather than on the number of parameters that
define the functions within agiven set. Therefore, one can construct high-
degree polynomialsin high-dimensional input space with good generaliza-
tion ability. Without the theory for controlling the generalization ahility
this opportunity would not be clear. Now the experimenters have to an-
swer the question: Does generalization, as performed by real brains, include
mechanisms similar to the technology of support vectors?®

That is why the role o theory in studies of learning processes can be
more constructive than in many other branches o natural science.

This, however, depends on the choice of the general position in studies
of learning phenomeua. The choice uf the position refiects the belief of
whichin thisspecific area uf natural science isthe main discoverer of truth:
experiment or theory.

"Maybe it has to possess additional properties. Which?

*The idea that the generalization, the definition o the importance of the
observed facts, and storage of the important facts, are different aspects Of the
same hrain mechanism is very attractive.
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Remarks on References

Oned the greatest mathematicians uf the century, A.N. Kelmogorov, once
noted that an important difference between mathematical sciencesand his-
torical sciencesisthat facts once found in mathematics hold forever, while
thefactsfound in history are reconsidered by every generation of historians.

I n statistical learning theory as in mathematicstheimportance of results
obtained depends on new facts about learning phenomena, whatever they
reveal, rather than a new description of already known facts. Therefore, |
tried to refer to the works that reflect the following sequence of the main
events in developing the statistical learning theory described in this book:

1958-1962.
1962-1964.
1958-1963.
1962-1963.

1960-1965.

1968-1971.

Constructing the perceptron.
Proving the first theoremson learning processes.
Discovery of nonparametric statistics,

Discwery o the methods for solving ill-posed prob-
lems.

Discwery uf the algorithmic complexity concept and
its relation to inductive inference.

Discovery of the law of large numbers for the space
of indicator functions and its relation to the pattern
recognition problem,
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1965-1973. Creation of a general asymptotic learning theory far
stochastic approximation inductive inference.

1965-1972. Creation 0f ageneral nonasymptotic theory of pattern
recognition for the ERM principle.

1974. Formulation of the SRM principle.
1978. Formulation of the MDL principle.

1974-1979. Creation o the general nonasymptotic |earning theory
based on both the ERMand SRM principles.

1981. Generalization of thelaw of large numbers for the space
d real-valued functions.

1986. Construction of NN based on the back-propagation
method.

1989. Discovery o necessary and sufficient conditionsfor con-

sistency of the ERM principle and the ML method.

1989-1993. Discovery of the universality of function approximation
by asequence d superpositions of sigmoid functions.

1992-1995. Constructing the SV machines.
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