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Preface

Optimization is a subject that is widely and increasingly used in science,
engineering, economics, management, industry, and other areas. It deals
with selecting the best of many possible decisions in real-life environment,
constructing computational methods to find optimal solutions, exploring the
theoretical properties, and studying the computational performance of nu-
merical algorithms implemented based on computational methods.

Along with the rapid development of high-performance computers and
progress of computational methods, more and more large-scale optimization
problems have been studied and solved. As pointed out by Professor Yuqi He
of Harvard University, a member of the US National Academy of Engineering,
optimization is a cornerstone for the development of civilization.

This book systematically introduces optimization theory and methods,
discusses in detail optimality conditions, and develops computational meth-
ods for unconstrained, constrained, and nonsmooth optimization. Due to
limited space, we do not cover all important topics in optimization. We
omit some important topics, such as linear programming, conic convex pro-
gramming, mathematical programming with equilibrium constraints, semi-
infinite programming, and global optimization. Interested readers can refer
to Dantzig [78], Walsch [347], Shu-Cheng Fang and S. Puthenpura [121], Luo,
Pang, and Ralph [202], Wright [358], Wolkowitz, Saigal, and Vandenberghe
[355].

The book contains a lot of recent research results on nonlinear program-
ming including those of the authors, for example, results on trust region
methods, inexact Newton method, self-scaling variable metric method, conic
model method, non-quasi-Newton method, sequential quadratic program-
ming, and nonsmooth optimization, etc.. We have tried to make the book



xii PREFACE

self-contained, systematic in theory and algorithms, and easy to read. For
most methods, we motivate the idea, study the derivation, establish the global
and local convergence, and indicate the efficiency and reliability of the nu-
merical performance. The book also contains an extensive, not complete,
bibliography which is an important part of the book, and the authors hope
that it will be useful to readers for their further studies.

This book is a result of our teaching experience in various universities
and institutes in China and Brazil in the past ten years. It can be used as a
textbook for an optimization course for graduates and senior undergraduates
in mathematics, computational and applied mathematics, computer science,
operations research, science and engineering. It can also be used as a reference
book for researchers and engineers.

We are indebted to the following colleagues for their encouragement, help,
and suggestions during the preparation of the manuscript: Professors Kang
Feng, Xuchu He, Yuda Hu, Liqun Qi, M.J.D. Powell, Raimundo J.B. Sam-
paio, Zhongci Shi, E. Spedicato, J. Stoer, T. Terlaky, and Chengxian Xu.
Special thanks should be given to many of our former students who read
early versions of the book and helped us in improving it. We are grate-
ful to Edwin F. Beschler and several anonymous referees for many valuable
comments and suggestions. We would like to express our gratitude to the
National Natural Science Foundation of China for the continuous support to
our research. Finally, we are very grateful to Editors John Martindale, An-
gela Quilici Burke, and Robert Saley of Springer for their careful and patient
work.

Wenyu Sun, Nanjing Normal University
Yaxiang Yuan, Chinese Academy of Science
April 2005



Chapter 1

Introduction

1.1 Introduction

Optimization Theory and Methods is a young subject in applied mathemat-
ics, computational mathematics and operations research which has wide ap-
plications in science, engineering, business management, military and space
technology. The subject is involved in optimal solution of problems which are
defined mathematically, i.e., given a practical problem, the “best” solution to
the problem can be found from lots of schemes by means of scientific methods
and tools. It involves the study of optimality conditions of the problems, the
construction of model problems, the determination of algorithmic method
of solution, the establishment of convergence theory of the algorithms, and
numerical experiments with typical problems and real life problems. Though
optimization might date back to the very old extreme-value problems, it did
not become an independent subject until the late 1940s, when G.B. Dantzig
presented the well-known simplex algorithm for linear programming. Af-
ter the 1950s, when conjugate gradient methods and quasi-Newton methods
were presented, the nonlinear programming developed greatly. Now various
modern optimization methods can solve difficult and large scale optimization
problems, and become an indispensable tool for solving problems in diverse
fields.
The general form of optimization problems is

min f(x)
st. zeX, (1.1.1)

where x € R™ is a decision variable, f(x) an objective function, X C R™
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a constraint set or feasible region. Particularly, if the constraint set X =
R"™, the optimization problem (1.1.1) is called an unconstrained optimization
problem:

xnelinI}L f(x). (1.1.2)

The constrained optimization problem can be written as follows:

mingepe  f(7)
s.t. ci(r) =0,i€ E, (1.1.3)
ci(r)>0,i€el,

where E and [ are, respectively, the index set of equality constraints and
inequality constraints, ¢;(x), (i = 1,---,m € EUI) are constraint functions.
When both objective function and constraint functions are linear functions,
the problem is called linear programming. Otherwise, the problem is called
nonlinear programming.

This book mainly studies solving unconstrained optimization problem
(1.1.2) and constrained optimization problem (1.1.3) from the view points of
both theory and numerical methods. Chapters 2 to 7 deal with unconstrained
optimization. Chapters 8 to 13 discuss constrained optimization. Finally, in
Chapter 14, we give a simple and comprehensive introduction to nonsmooth
optimization.

1.2 Mathematics Foundations

In this section, we shall review a number of results from linear algebra and
analysis which are useful in optimization theory and methods.

Throughout this book, R™ will denote the real n-dimensional linear space
of column vector z with components x1,---,z,, and C™ the corresponding
space of complex column vectors. For z € R™, 7 denotes the transpose of
x, while, for z € C™, zf is the conjugate transpose. A real m x n matrix
A = (a;j) defines a linear mapping from R™ to R™ and will be written as
A€ R™™ or A € L(R",R™) to denote either the matrix or the linear
operator. Similarly, a complex m X n matrix A will be written as A € C™*"
or Ae L(C™,C™).
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1.2.1 Norm

Definition 1.2.1 A mapping || - || is called a norm if and only if it satisfies
the following properties:

(i) |lz|| > 0,Vx € R™; ||z|| = 0 if and only if x = 0;
(ii) [Jazx|| = |af|z|,Va € R,z € R";

(iii) [z +yll <=l + [lyll, Vz,y € R".

Well-known examples of vector norm are as follows:

lzlloo = max |zil,  (leo-norm) (1.2.1)
n

&/l = lail,  (li-norm) (1.2.2)
=1

n 1/2
l|lz]]2 = (Z |xl2> , (lo-norm). (1.2.3)
i=1

The above examples are particular cases of [,-norm which is defined as

n 1/p
|z, = (Z ]xip> , ({,-norm). (1.2.4)

=1

Another vector norm frequently used is the ellipsoid norm which is defined
as
|z][a = (27 Az)/?, (1.2.5)

where A € R™*"™ is a symmetric and positive definite matrix.
Similarly, we can define a matrix norm.

Definition 1.2.2 Let A, B € R™*". A mapping || - || : R™*"™ — R is said to
be a matriz norm if it satisfies the properties

(i) ||A]| > 0,VA € R™™; ||A|| = 0 if and only if A =0;
(ii) [JaAll = |a|l|A][,Va € R, A € R™*";

(iii) [|[A+ B|| < ||A]| + || B]l, VA, B € R™ ™.
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Corresponding to the above vector [,-norm, we have the matrix /,-norm:

Az
” 2l _ max | Az, (1.2.6)

1All, =
x;éo lzllp, — llell=1

which is said to be induced by, or subordinate to, the vector l,-norm. In
particular,

|All1 = max Z la;j|, (maximum column norm) (1.2.7)
| A]|co = ax Z laij|, (maximum row norm) (1.2.8)
1/2
| A2 = ()\max(ATA)> / ,  (spectral norm.) (1.2.9)
Obviously, we have
1
-1
A7 = — [ Az|lp *
270 T,
For an induced matrix norm, we always have ||I|| = 1, where I is an n X n
identity matrix. More generally, for any vector norm || - || on R™ and || - ||
on R™, the matrix norm is defined by
1Az]ls

[ Allas = sup

a (1.2.10)

The most frequently used matrix norms also include the Frobenius norm

m n 1/2
1Al = (ZZ!@UP) = [tr(ATA)]'?, (1.2.11)

i=1j=1

where tr(-) denotes the trace of a square matrix with tr(A) = >1*; a;;. The
trace satisfies

1. tr(aA + 3B) = atr(A) + ptr(B);
2. tr(AT) = tr(A);

4. tr(A) = Y1t A if the eigenvalues of A are denoted by A1, -+, Ay.
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The weighted Frobenius norm and weighted lo-norm are defined, respec-
tively, as
[Alla,p = IMAM||p, [[Allar2 = | MAM]2, (1.2.12)

where M is an n X n symmetric and positive definite matrix.
Further, let A € R"*"; if we define ||z||" = ||Pz|| for all z € R™ and P an
arbitrary nonsingular matrix, then

|A|l' = |[PAP7Y||. (1.2.13)

The orthogonally invariant matrix norm is a class of important norms
which satisfies, for A € R™*" and U an m x m orthogonal matrix, the
identity

|UA| = ||A]|- (1.2.14)

Clearly, the lo-norm and the Frobenius norm are orthogonally invariant ma-
trix norms.

A vector norm || - || and a matrix norm || - ||" are said to be consistent if,
for every A € R™*"™ and x € R",

[Az]| < A [l]]. (1.2.15)

Obviously, the l,-norm has this property, i.e.,

[Az]lp < [|Allplz[l,- (1.2.16)
More generally, for any vector norm || - ||, on R and || - ||3 on R™ we have
1Azl < [|Alla,sll2[las (1.2.17)
where || A4, is defined by
Az
|Alla,s = sup | Al (1.2.18)
20 [[2]la
which is subordinate to the vector norm || - ||, and | - ||
Likewise, if a norm || - || satisfies
IAB| < [[A[l[|B]; (1.2.19)

we say that the matrix norm satisfies the consistency condition (or submulti-
plicative property). It is easy to see that the Frobenius norm and the induced
matrix norms satisfy the consistency condition, and we have

|AB||r < min{||All2|| Bl #, [ All# || Bl|2}- (1.2.20)
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Next, about the equivalence of norms, we have

Definition 1.2.3 Let ||-||o and || || be two arbitrary norms on R™. If there
exist p1, o > 0, such that

plzlla < llzlis < pellzfa, Vo e R”, (1.2.21)
we say that the norms || - || and || - ||g are equivalent.

In particular, we have

[z]l2 < flzflv < v/nllz]l2, (1.2.22)
[2]loo < [lzll2 < VRllZ(oo, (1.2.23)
[z]loo < l2ll1 < nll2l0o, (1.2.24)
[2]loo < [lzll2 < [z, (1.2.25)
Vallls < [z a < VA]z|, (1.2.26)

where A and A are the smallest and the largest eigenvalues of A respectively.
For A € R™*", we have

|All2 < |AllF < V/nl|All2, (1.2.27)
max |a;j| < [|All2 < v/mnmax|ag], (1.2.28)
2, 1,7

1
— < < 2.
\/ﬁHAHoo < [[Afl2 < v'm|Alloo, (1.2.29)

1
—||All1 < ||A]]2 < Allq. 1.2.30
T4l < 14l < VAl (1.2.30)
By use of norms, it is immediate to introduce the notation of distance.

Let x,y € R™, the distance between two points = and y is defined by ||z —y]||.
In particular, in the 2-norm, if 2 = (z1,---,2,)", v = (y1,---,¥n)", then

e —yll2 = /(21— y)2 + - + (20 — yn)?

which is just a direct generalization of distance in analytical geometry.
Obviously, by Definition 1.2.1, we have the following properties of dis-
tance:

L [z =yl > 0,[[z —y| =0 if and only if z = y.
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2. o =zl < [lz =yl + [ly — =]
3. |l —yll = lly — =]

A vector sequence {xy} is said to be convergent to z* if

lim ||z — 2*|| = 0. (1.2.31)
k—o0

A matrix sequence { Ay} is said to be convergent to A if
lim ||Ax — A| =0. (1.2.32)
k—o00

Choice of norms is irrelevant since all norms in finite dimension space are
equivalent.

Definition 1.2.4 A sequence {x} C R" is said to be a Cauchy sequence if

lim ||z, — 2] = 0; (1.2.33)
m,l—o0
i.e., given € > 0, there is an integer N such that ||z, — x| < € for all
m,l > N.

In R", a sequence {xj} converges if and only if the sequence {zy} is a
Cauchy sequence . However, in a normed space, a Cauchy sequence may not
be convergent.

We conclude this subsection with several inequalities on norms.

(1) Cauchy-Schwarz inequality :

12Ty < ||z|l2]ly]l2, (1.2.34)

the equality holds if and only if  and y are linearly dependent.
(2) Let A be an n x n symmetric and positive definite matrix, then the
inequality
o Ay| < |zl allyll4 (1.2.35)

holds; the equality holds if and only if x and y are linearly dependent.
(3) Let A be an n x n symmetric and positive definite matrix, then the
inequality
lTy] <z allylla-s (1.2.36)

holds; the equality holds if and only if z and A~ !y are linearly dependent.
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(4) Young inequality: Assume that real numbers p and ¢ are each larger
than 1, and % + % = 1. If z and y are also real numbers, then

xy < n + =, (1.2.37)

and equality holds if and only if 2P = y9.
Proof. Set s = 2P and t = y?. From the arithmetic-geometry inequality,

we immediately have
ppllg o 5 1
ry=s""T < -4+ - =—4=.
p g p q

Further, the equality holds if and only if s = ¢, i.e., 2P = y4. O
(5) Holder inequality:

n 1/17 n 1/q
"y < Nlzllpllylly = <§:!mﬂp> <§:Iydq> : (1.2.38)
i=1

=1

where p and ¢ are real numbers larger than 1 and satisfy % + % =1
Proof. If z =0 or y = 0, the result is trivial. Now we assume that both
x and y are not zero. From Young inequality, we have

|zl 1laiP 1yl 1
Izllpllylly ~ pllzlp — allyld’ C

Taking the sum over ¢ on both sides of the above inequality yields

1 n
Z |z

Mo llyllg =

1 & 1 &
— N mlP + lyi|?
Mﬂ%g; ' MM@Z}Z
11
= — + —

P q
= 1. O

IN

Multiplying ||z|,|ly|lq on both sides gives our result.
(6) Minkowski inequality:

1z +yllp < llllp + lyllp, (1.2.39)
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ie.,

n 1/p n 1/p n 1/p
<Z |z +yi|p> < (Z m\p> + (Z !yi!p> , (1.2.40)
=1

i=1 =1

where p > 1. The proof of this inequality will be given in §1.3.2 as an
application of the convexity of a function.

1.2.2 Inverse and Generalized Inverse of a Matrix

In this subsection we collect some basic results of inverse and generalized
inverse.

Theorem 1.2.5 (Von-Neumann Lemma) Let || - || be a consistent matriz
norm with ||I|| = 1. Let E € R™*". If |E|| < 1, then I — E is nonsingular,
and

(I-E)!= iEk (1.2.41)
k=0
By <t
(7= E)" |l < 1= 15 (1.2.42)

If A € R™™" is nonsingular and ||A~*(B — A)|| < 1, then B is nonsingular
and satisfies

B 1= (1-A"'BfA, (1.2.43)
k=0
" jA
Bl < . (1.2.44
1B T :

Proof. Since ||[E|| < 1, then
Se2I+E+E2+-. +E*
defines a Cauchy sequence , and hence S is convergent. So,
[e¢]
> EF=lim Sy=(I-E)""
=0 k—o0

which proves (1.2.41)-(1.2.42).
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Since A is nonsingular and |A~Y(B — A)|| = || - (I — A™'B)|| < 1, by
setting £ = I — A~!'B and using (1.2.41) and (1.2.42), we obtain immediately
(1.2.43) and (1.2.44). O

This theorem indicates that the matrix B is invertible if B is sufficiently
approximate to an invertible matrix A. The above theorem also can be
written in the following form which sometimes is said to be the perturbation
theorem:

Theorem 1.2.6 Let A, B € R™ ™. Assume that A is invertible with || A7 <
a. If||A— B < B and a3 < 1, then B is also invertible, and

Q@
1—apB

B~ < (1.2.45)

Let L and M be subspaces of R™. The sum of two subspaces L and M is
defined as
L+M={z=y+z2| yeLze M} (1.2.46)

The intersection of two subspaces L and M is defined as
LNM={z|zeL and z € M}. (1.2.47)
Two subspaces L and M are orthogonal, denoted by L L M, if
<y,z>=0, Vye L Vze M.
R™ is said to be a direct sum of L and M, denoted by
R"=L® M,

if and only if R" = L + M and L N M = {0}.
Let R = L & M. If a linear operator P : R" — R" satisfies

Py=yVyeL; Pz=0,Vz e M,

then P is called a projector of R™ onto the subspace L along the subspace
M. Such a projector is denoted by P s or P. If M L L, then the above
projector is called an orthogonal projector, denoted by Pj, or P.

Normally, C™*™ denotes a set of all complex m x n matrices, C;"*"
denotes a set of all complex m X n matrices with rank r. A* denotes the
conjugate transpose of a matrix A. For a real matrix, R"*" and R]"*" have
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similar meaning. Now we present some definitions and representations of the
generalized inverse of a matrix A.

Let A € C™*", Then AT € C™*™ is a Moore-Penrose generalized inverse
of A if

AATA = A, AT AAT = AT (AAT)* = AAT, (ATA)* = ATA,  (1.2.48)

or equivalently,
AAT = Ppiay, ATA = Pria+), (1.2.49)

where Ppr4) and Pga+) are the orthogonal projectors on range R(A) and
R(A™) respectively.
If Ae C"*™ and A has the orthogonal decomposition
A= Q'RP, (1.2.50)

where () and P are m X m and n X n unitary matrices respectively, R € C™*",

o Ri1 O

where Ryp1 is the r X r nonsingular upper triangular matrix, then
AT = P*RTQ, (1.2.51)
where .
RY = l o ] .
Similarly, if A € CJ"*™ has the singular value decomposition (SVD)

A=UDV" (1.2.52)

where U and V are m x m and n X n unitary matrices respectively,

_ X 0 mxn
D= 0 0 ] eC ,
where ¥ = diag(oy,---,0,),0; > 0 (i = 1,---,r) are the nonzero singular

values of A, then
At =VDTU*, (1.2.53)
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where

b [500)

0 0

An important role of the generalized inverse is that it offers the solution
of general linear equations (including singular, rectangular, or inconsistent
case). In the following we state this theorem and prove it by the singular
value decomposition.

Theorem 1.2.7 Let A € C"™". b € C™. Then T = ATb is the unique
solution of Ax = b, i.e.,

IZ|| < ||lz||,Vz € {x | [|[Ax = b|| < ||Az —b||,Vz € C"}. (1.2.54)
Such an T is called the minimal least-squares solution of Ax = b.

Proof. From the singular value decomposition (1.2.52), (1.2.54) is equiv-
alent to

min {[|V7z[| [ |[DV*2 = Ub|| < |[DV72 — U™b]|, V= € B"}

ie., for y = V*zx,

min {[|y[l [ [[Dy — U"b]| < |DZ — U"b]|, V2 € B"}. (1.2.55)
y n

Since
,

m
1Dy —U*b|1* =D (owys — (U™b)i)* + D ((U*b)s)?
i=1 i=r+1
which is minimized by any y with y; = (U*b);/0y, (i = 1,---,7) and ||y||
is minimized by setting y; = 0(i = r + 1,---,m), then y = DTU*D is the
minimal least-squares solution of (1.2.55). Therefore 7 = VD U*b = ATb is
the minimal least-squares solution of Az =b6. O

1.2.3 Properties of Eigenvalues

In this subsection we state, in brief, some properties of eigenvalues and eigen-
vectors that we will use in the text. We also summarize the definitions of pos-
itive definite, negative definite and indefinite symmetric matrices and their
characterizations in terms of eigenvalues.
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The eigenvalue problem of a matrix A is that
Ax =Xz, Ae RV", x #0,2z € R", (1.2.56)

where A is called an eigenvalue of A, x an eigenvector of A corresponding to
A, (A, z) an eigen-pair of A.
The spectral radius of A is defined as

p(A) = max |\

1<i<n
Let A € R™*™ have singular values o1 > g9 > - -+ > 0y, then

|All2 = o1,
JA|F =0t + -+ 0.

In particular, if A € R™*"™ is symmetric with eigenvalues Aq,---, A,, then

All2 = Ail-
4l = max ||

Then we immediately have that if A is nonsingular, the condition number of
Ais

01
K(A) = —;
On
in addition, if A is symmetric, then
ax; |\
() = 2]
min; |\

Let A € R™™ with eigenvalues A1, - - -, \,,. We have the following conclu-
sions about the eigenvalues.

1. The eigenvectors corresponding to the distinct eigenvalues of A are
independent.

2. A is diagonalizable if and only if, for each eigenvalue of A, its geometric
multiplicity is equal to the algebraic multiplicity, i.e., the dimension of
its corresponding eigenvectors is equal to the multiplicity of the eigen-
value.

3. Let f(A) be a polynomial of A. If (A, x) is an eigen-pair of A, then
(f(N\),x) is the eigen-pair of f(A).
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4. Let B = PAP™!, where P € R™" is a nonsingular transformation
matrix. If (A, z) is an eigen-pair of A, then (A, Pz) is the eigen-pair
of B. This means that the similar transformation does not change the
eigenvalues of a matrix.

Definition 1.2.8 Let A € R™ " be symmetric. A is said to be positive
definite if vT Av > 0,Yv € R*,v #0. A is said to be positive semidefinite if
vl Av > 0,Yv € R™. A is said to be negative definite or negative semidefinite
if —A is positive definite or positive semidefinite. A is said to be indefinite
if it is neither positive semidefinite nor negative semidefinite.

The main properties of a symmetric matrix are as follows. Let A € R™*"
be symmetric. Then

(1) All eigenvalues of A are real.

(2) The eigenvectors corresponding to the distinct eigenvalues of A are or-
thogonal.

(3) A is orthogonally similar to a diagonal matrix, i.e., there exists an n x n
orthogonal matrix ) such that

A1
Q1AQ =QTAQ = ;
An

where Aq,---, A, are the eigenvalues of A. This means a symmetric
matrix has an orthonormal eigenvector system.

The following properties are about symmetric positive definite, symmetric
positive semidefinite, and so on.

Let A € R™"™ be symmetric. Then A is positive definite if and only if
all its eigenvalues are positive. A is positive semidefinite if and only if all its
eigenvalues are nonnegative. A is negative definite or negative semidefinite
if and only if all its eigenvalues are negative or nonpositive. A is indefinite
if and only if it has both positive and negative eigenvalues. Furthermore,
A is positive definite if and only if A has a unique Cholesky factorization
A= LDL" with all positive diagonal elements of D.

The following is the definition of the Rayleigh quotient of a matrix and
its properties.
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Definition 1.2.9 Let A be an n x n Hermitian matriz and v € C™. Then
the Rayleigh quotient of A is defined by

Ry(u) = ——, u #0. (1.2.57)
Theorem 1.2.10 Let A be an n x n Hermitian matriz and v € C™. Then

the Rayleigh quotient defined by (1.2.57) has the following basic properties:
(i) Homogeneous Property:

Ry(au) = Ry(u), a # 0. (1.2.58)

(ii) Extreme Property:

*A
A1 = max v Au= max - u’ (1.2.59)

[ulla=1 uA0 Ut

. " . utAu
= min u*Au = min , (1.2.60)

lull2=1 u£0  u*u

which show that the Rayleigh quotient has bounded property:

An < Ry(u) < Ay (1.2.61)

(i4i) Minimal Residual Property: for any u € C",
(A — Rx(u)])ul|| < ||(A — pl)ul|, V real number p. (1.2.62)

Proof. Property (i) is immediate from Definition 1.2.9. Now we consider
Property (ii). By Property (i), we can consider the Rayleigh quotient on a
unit sphere, i.e.,

Ry(u) = u*Au, |ulls = 1.

Let T be a unitary matrix such that T* AT = A, where A is a diagonal matrix.
Also let u = Ty, then

n > Ay S0 |yil?
u*Au: *A _ s 12 - \n =1 19| >
y Ay Z:ZI il yil { <MY, ]y1]2

Note that ||ull2 = ||ly||]2 = 1, hence the boundedness follows. Furthermore,
when y; = 1 and y; = 0,7 # 1,1 is the maximum; when y, = 1 and
y; = 0,4 # n, A, is the minimum. This proves Property (ii).
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To establish Property (iii), we define
s(u) = Au — Ry(u)u, u # 0, (1.2.63)

which implies that
Au = Ry(u)u + s(u). (1.2.64)

By Definition 1.2.9, we have (s(u),u) = (Au — Rx(u)u,u) = 0 which means
that the decomposition (1.2.64) is an orthogonal decomposition. Thus R (u)u
is an orthogonal projection of Au on L = {u}, which shows that the residual
defined by (1.2.63) has the minimal residual Property (iii). O

Next, we state some concepts of reducible and irreducible matrices which
are useful in discussing invertibility and positive definiteness of a matrix.

Definition 1.2.11 Let A € R™ ™. A is said to be reducible if there is a
permutation matriz P such that

B B
T _ 11 12
PAP _< ; Bﬂ),

where B11 and By are square matrices; A is irreducible if it is not reducible.

Equivalently, A is reducible if and only if there is a nonempty subset of indices
J C{1,---,n} such that

a; =0, Vk € J,j ¢ J.

Definition 1.2.12 Let A € R™*". A is said to be diagonally dominant if

n
> agl < lail, i=1,---,n. (1.2.65)
=L
A is said to be strictly diagonally dominant if strict inequality holds in (1.2.65)
for all i. A is said to be irreducibly diagonally dominant if it is irreducible,

diagonally dominant, and strict inequality holds in (1.2.65) for at least one
i.

The above concepts give an important theorem which is called the Diag-
onal Dominant Theorem.

Theorem 1.2.13 (Diagonal Dominant Theorem) Let A € R™ ™ be either
strictly or irreducibly diagonal dominant. Then A is invertible.
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As a corollary of the above theorem, we state the Gerschgorin circle The-
orem which gives an isolation property of eigenvalues.

Theorem 1.2.14 Let A € C™*™. Define the i-th circle as

n
D@:{)‘||)‘_au|§ Z |aij’},i:1,~~-,n.
J=1j#1
Then each eigenvalue of A lies in the union S = U;_D;. This also means
that

n
min \; > min{a;; — Z |agj| }
' ‘ j=1.j#i
and
n
max i < miaX{aii + Z |agj|}-
Jj=1,j#i

1.2.4 Rank-One Update

The rank-one update of matrices is often used in optimization. In this sub-
section we introduce inverse of rank-one update, determinant of rank-one
update, chain of the eigenvalues of rank-one update, and updating matrix
factorizations. Detailed proofs can be found in books on linear algebra or
numerical linear algebra.

The following theorem due to Sherman and Morrison is wellknown.

Theorem 1.2.15 Let A € R™*" be nonsingular and u,v € R™ be arbitrary.
If

1+ 0T A # 0, (1.2.66)
then the rank-one update A + wvl of A is nonsingular, and its inverse is
represented by
A T A1

Ty-1 _ -1 _
(A+w')" =4 o TA Ty

(1.2.67)

An interesting generalization of the above theorem is

Theorem 1.2.16 (Sherman-Morrison-Woodburg Theorem,)
Let A be an nxn nonsingular matriz, U,V nxm matrices. If [+V*A~1U
is invertible, then A+ UV™ is invertible, and

A+UvH 1 =a"' - A luqg+va~lu)y~tvral (1.2.68)
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Consider the determinant of a rank-one update; we have
det(I +uv”) =1+ u'v. (1.2.69)

In fact, assuming u # 0, we have that the eigenvectors of I + uv” are either
orthogonal to v or parallel to u. If they are orthogonal to v, the corresponding
eigenvalues are 1; otherwise the corresponding eigenvalue is 1 4+ u”v. Hence
(1.2.69) follows.

Furthermore, for the determinant of rank-two update, we have the fol-
lowing result:

det(I + uyud + uzul)
= (14 uTu)( 4+ ulug) — (ulug)(udus). (1.2.70)
In fact, as long as we note that
I+ uwud +usul = (I +uwud)[I+ (I + wud) tugul],
it follows from (1.2.69) and (1.2.67) that
det(I 4 uyud 4 uzul)
= (14 ulu)[1 4+ ul (I +uiud) us]

T T urug
= (14 uju2) [1+u4 (I— 1+U¥1U2> u;]
= (14 u]u) (1 + udug) — (ud ug)(udus).
By ||A||% = tr(AT A), where tr(-) denotes the trace of a matrix, it follows
that the Frobenius norm of rank-one update A + zy” is

1A +ay" |7 = [AllE + 25" ATz + ||z [ly]|*. (1.2.71)

About the chain of the eigenvalues of rank-one update, we have the fol-
lowing theorem.

Theorem 1.2.17 Let A be an n X n symmetric matrix with eigenvalues Ay >
Ao > o> N\,. Also let A= A+ cuul with eigenvalues A1 > Ao > -+ > Ay,
where u € R™. Then we have the conclusions:

(i) if o > 0, then

MM > X > N> >,

AV
v

An-
(i1) if o < 0, then
AL > A > e > A

Vv
Y
>
s
Vv
>
=
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Next, we discuss updating matrix factorizations which conclude updates
of Cholesky factorization and orthogonal decomposition.
Let B and B be n x n symmetric and positive definite matrices,

B=B+ayyl, B=LDL". (1.2.72)
We can find the Cholesky factorization B = LDL" as follows:

B = B+ayy!
= L(D+ app’)LT, (1.2.73)

where p solves Lp = . Note that since D+ app” is a positive definite matrix
with the Cholesky factorization D + app’ = LDL™T, we have

B=LLDL"LT = LDLY, (1.2.74)
where E_: LL,D = D. The following algorithm gives the steps for computing
L and D.

Algorithm 1.2.18 (Cholesky Factorization of Rank-One Update)
1. Set o = o, wM) =y,

2. Forj=1,2,---,n, compute
(4)

p] = wj )
Jj = dj + Oéjp]z,
Bj = pjaj/d;,

ajy1 = djoy/dj,
wi ) = @ —pjilyj, T =7+ 1,-,n,

Irj =l + Bjwd*, r=j+ 1, ,n.O

Similarly, for the negative rank-one update of Cholesky factorization , we
have

B = B-yy" =LD-pp")L"
LLDLTLT = LDLT. (1.2.75)
Since, in this case, it is possible that the elements of D become zero or

negative due to round-off error, this phenomenon must be taken into consid-
eration. The following algorithm keeps all d; (j =1,---,n) positive.
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Algorithm 1.2.19 (Cholesky Factorization of Negative Rank-One Update)

1. Solve Lp =y forp. Setty,i1 =1—p' D7 p. Ifty1 < enr,
set tny1 = €nr, where ey is the relative precision of the
computer.

2. Forj=n,n—1,---,1, compute

ty =ti1+p;/dj,

dj = djtjt1/t,

Bj = —p;/(djtjt1),

o =,

Ly = by + Bjwd ™, =+ 1, n.
w,(nj) - w$j+1) +pjlej, r=4+1,---,n. O

Furthermore, Algorithm 1.2.18 and Algorithm 1.2.19 about Cholesky fac-
torization of rank-one update can be used to compute the Cholesky factor-
ization of rank-two update. Consider

B = B +vw! +wu?. (1.2.76)
Setting
r=(w4+w)/V2 y=(@v—-w)/V2 (1.2.77)

yields B
B =B +zz! —yy”, (1.2.78)

so, we can use Algorithm 1.2.18 and Algorithm 1.2.19 to get the Cholesky
factorization of B.

Below, we consider the special cases of rank-two update. Let B be an nxn
symmetric positive definite matrix with Cholesky factorization B = LDL™.
Consider the case adding one row and one column to B:

B= [ bBT z ] , (1.2.79)

where b € R"™ and 6 is a number. If we set

- B 0
B= l 0 0 1 (1.2.80)
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then we have

T
- A b b
B=DB+en1 ( 0 ) + ( 0 ) el 1. (1.2.81)

So, we can use the above algorithm to compute Cholesky factors L and D of
B. In addition, we can show that L and D have the following forms:

L:ll{} ?],D:[lg 21. (1.2.82)
In fact, it is enough to consider
I R
and solve the equations obtained
LDl =1,
d=6-1"DI (1.2.84)

for [ and d. Then we get L and D from (1.2.82).
Now we consider the case deleting the j-th row and j-th column from B.
Let B = LDL” with the form

By : B
B=| .- - - | < j-th row. (1.2.85)
BT i By
Define
- [ B B,
B = l BT B, ] }n — lcolumns. (1.2.86)

The algebraic operations give
B=LDLT, (1.2.87)

which is our desired result, where L is an (n — 1) X n matrix obtained by
deleting the j-th row from L.

In the above, we discussed the Cholesky factorization of rank-one up-
date. Next, we handle the QR factorization of rank-one update. Let A, A €
R™™ y,v € R,

A=QR, A=A+ w". (1.2.88)
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Then we have
A=QR+w! = QR+ wvl), (1.2.89)

where w = QTu. Forming QR decomposition
R+ wv?l = QR,

we have
A=QOR~ QR, (1.2.90)
where Q = QQ, R = R.
Similarly, if m x n matrix A (m < n) has an orthogonal decomposition

A=[L0]Q, (1.2.91)

where L is an m x m unit lower triangular matrix and @ is an n xn orthogonal
matrix with QT@Q = I, then we can obtain the LQ decomposition of

A=A+ay” (1.2.92)
as follows.

A = A+ayt

= [L0]Q+azy"
([L 0] + zwT)Q  (where w = Qy)
([L 0] + zw?)PTPQ (where PTP = 1)
= ([H 0] + azel)PQ (where Pw = aey, H = LPT)
71 01PQ
[H 0|PPTPQ (where PPT =1)
[L 0]PTPQ (where [H 0|P = [L 0)])

[L0]Q (where Q = PTPQ). (1.2.93)

1.2.5 Function and Differential

This subsection presents some materials of set theory and multivariable cal-
culus background.
Give a point x € R™ and a § > 0. The §-neighborhood of z is defined as

Ns(x) ={y € R" | [ly — =|| < 6}
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Let D C R™ and x € D. The point « is said to be an interior point of
D if there exists a d-neighborhood of x such that Ns(x) C D. The set of all
such points is called the interior of D and is denoted by int(D). Obviously,
int(D) C D. Furthermore, if int(D) = D, i.e., every point of D is the interior
point of D, then D is an open set.

x € D C R™ is said to be an accumulation point if for each § > 0, D N
Ns(z) # ¢, where ¢ is an empty set. It means that there exists a subsequence
{zn,} C D, such that x,, — z. The set of all such points is called the closure
of D and is denoted by D. Obviously, D C D. Furthermore, if D = D, i.e.,
every accumulation point of D is contained in D, then D is said to be closed.
It is also clear that a set D C R" is closed if and only if its complement is
open.

A set D C R" is said to be compact if it is bounded and closed. For every
sequence {zp} in a compact set D, there exists a convergent subsequence
with a limit in D.

A function f : R™ — R is said to be continuous at T € R™ if, for any given
€ > 0, there exists § > 0 such that || — Z|| < 0 implies |f(z) — f(Z)| < e. Tt
can also be written as follows: Ve > 0,36 > 0, such that Vo € Ns(z), we have
f(x) € N(f(z)). If f is continuous at every point in an open set D C R",
then f is said to be continuous on D.

A continuous function f : R™ — R is said to be continuously differentiable
at x € R", if (%) (x) exists and is continuous, i = 1,---,n. The gradient
of f at z is defined as

T
Vi) = [gjl(x), . aagi(x) . (1.2.94)

If f is continuously differentiable at every point of an open set D C R™, then
f is said to be continuously differentiable on D and denoted by f € C'(D).
A continuously differentiable function f : R™ — R is called twice con-

tinuously differentiable at =z € R™ if afjgzj () exists and is continuous,

1 = 1,---,n. The Hessian of f is defined as the n X n symmetric matrix
with elements
[V2f(x))i = *f (), 1<i,j<n
R R )=

If f is twice continuously differentiable at every point in an open set D C R",
then f is said to be twice continuously differentiable on D and denoted by

fec® (D).
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Let f: R™ — R be continuously differentiable on an open set D C R™.
Then for x € D and d € R", the directional derivative of f at x in the
direction d is defined as
f(z+6d) — f(x)

0

where V f(z) is the gradient of f at x, an n x 1 vector.
For any z,z +d € D, if f € C1(D), then

=Vf(z)d, (1.2.95)

1o def .

flx+d) = f(x)+ /01 Vf(x+td)Tddt

r+d
— f@)+ / V/(€)de. (1.2.96)
Thus,
flx+d) = f(z) +Vf)Td, ¢ € (z,2+d). (1.2.97)
Similarly, for all x,y € D, we have
fy) = f@) + Vz +tly —2))" (y — ), t € (0,1), (1.2.98)
or
fy) = f(@)+ V@) (y—z)+ oy — ). (1.2.99)
It follows from (1.2.98) that
[f(y) = f@)] <|ly =zl sup [[f' (I, (1.2.100)
£eL(z,y)

where L(x,y) denotes the line segment with endpoints x and y.
Let f € C(D). For any € D,d € R", the second directional derivative
of f at x in the direction d is defined as

TV T f/($+9d§d)_f/(x§d)
f (xad)_égg 0 ’

which equals d”' V2 f(z)d, where V2f(x) denotes the Hessian of f at x. For
any x,x + d € D, there exists £ € (z,x + d) such that

(1.2.101)

Fa+d) = f@) + Vi) Td+ %dTVQ F(©)d, (1.2.102)

flx+d) = flx)+Vf(x)Td+ %dTV2f(x)d + o(||d|?). (1.2.103)
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Let h : R* - R,g: R™ - R, f : R® — R™ Let f € Cl, g €
C*, h(zo) = g(f(70)). Then the chain rule is

W (z0) = g'(f (20)) [ (x0), (1.2.104)
where f’(x¢) = [%} y is an m x n matrix. Also
K (z0) = V f(x0)TV2g[f(x0)]V f(20) + Z 8f ) [fi(xo)]”.  (1.2.105)

Next, we discuss the calculus of vector-valued functions.

A continuous function F': R™ — R™ is continuously differentiable at x €
R if each component function f;(i = 1,---,m) is continuously differentiable
at x. The derivative F'(z) € R™*" of F at x is called the Jacobian matrix
of F' at x,

with components

ofi

[ @)y = [T (@) = 575

( )a 221,,m,]:1,,n

If F: R™ — R™ is continuously differentiable in an open convex set D C R",
then for any =,z + d € D, we have

1 z+d
F(z+d) — F(x) :/0 J(x+td)ddt:/x F'(e)de. (1.2.106)

In many of our considerations, we shall wish to single out different types
of continuities.

Definition 1.2.20 F : D C R™ — R™ is Holder continuous on D if there
exist constants v > 0 and p € (0,1] so that for all x,y € D,

1E(y) = F(@)| <~lly — ]| (1.2.107)

If p = 1, then F is called Lipschitz continuous on D and v is a Lipschitz
constant.

F:D C R"— R™ is Hélder continuous at x € D if (1.2.107) holds for
any y in the neighborhood of x.
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Definition 1.2.21 F : D C R"™ — R™ is hemi-continuous at x € D if, for
any d € R™ and € > 0, there is a § = d(e,d) so that whenever |t| < ¢ and
r+tde D,

|F(z+td) — F(z)|| <e. (1.2.108)

We also can define the upper hemi-continuous and lower hemi-continuous
at x € D if, instead of (1.2.108), we use, respectively, F(x +td) < F(z) + €
and F(z + td) > F(x) — € for sufficiently small ¢.

The following two theorems establish the bounds of errors within which
some standard models approximate the objective functions. For F' : R" —
R™, Theorem 1.2.22 gives a bound of the error in linear model F(x)+ F’(x)d
as an approximation to F'(x + d). Similarly, for f : R" — R, Theorem
1.2.23 gives a bound of errors with a quadratic model as an approximation
to f(z +d).

Theorem 1.2.22 Let F' : R™ — R™ be continuously differentiable in the
open convex set D C R™. Let F' be Lipschitz continuous at x € D. Then for
any x +d € D, we have
|F(z +d) — F(z) — F'(z)d| < %Hdw. (1.2.109)
Proof.
F(z+d) — F(z) - F'(z)d — / (¢ + ad)dda — F'(z)d
= / [F'(x + ad) — F'(z)]dda.
Hence
|F (2 +d) = F(z) = F'(z)d|| < /01 I (2 + ad) — F'(z)|]|d]|da
< [ ldijajda

1
= Al | ada

.
— 2. ©



1.2. MATHEMATICS FOUNDATIONS 27

Theorem 1.2.23 Let f: R™ — R be twice continuously differentiable in the
open convex set D C R™. Let V2 f(z) be Lipschitz continuous at x € D with
Lipschitz constant v. Then for any x +d € D, we have

1
fle+d) = [f(2) + Vi@ d+ 5d"Vf@)d) < TIdP. (12.110)
The proof of this theorem is left to readers as an exercise.

As a generalization of Theorem 1.2.22, we obtain

Theorem 1.2.24 Let F' : R — R™ be continuously differentiable in the
open conver set D C R™. Then for any u,v,x € D, we have

1F(u) = F(v) = F'(x)(u — )]

< | sup ||[F'(v+tu—v))—F (@) |lu—o]. (1.2.111)
0<t<1

Furthermore, assume that F' is Lipschitz continuous in D, then
1F(u) = F(v) = F'(z)(u —v)|| < yo(u,v)[[u— (1.2.112)

and

u—xl| + v — =

|F(u) — F(v) — F'(z)(u —v)|| S’y” :

lu—wvf, (1.2.113)

where o(u,v) = max{||u — z||, ||lv — z||}.
Proof. By (1.2.106) and the mean-value theorem of integration, we have
1F'(w) = F(v) = F'(2)(u = 0)|

/Ol[F’(u +t(u —v)) — F'(2)](u — U)dtH

< | I o+ b — ) — @)l — vl

< l sup [|[F'(v +t(u—wv)) — F/@)H] [u— |
0<t<1

which is (1.2.111). Also since F’ is Lipschitz continuous in D, we proceed
with the above inequality and get

1F(u) = F(v) = F'(x)(u —v)]|
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IN

1
74|w+wu—w—wMu—ww

v sup [jo+t(u—v) — zfl[|u— o
0<t<1

IN

= 7o (u,v)[u—vl|

which is (1.2.112). Similarly, we can derive (1.2.113) which is left as an
exercise. O

The following theorem is useful, giving a relation between ||F'(u) — F(v)||
and |lu —v||.

Theorem 1.2.25 Let F' and F' satisfy the conditions of Theorem 1.2.24.
Assume that [F'(x)]~! ewists. Then there exist € > 0 and 8 > o > 0 such
that for all u,v € D, when max{||u — z||, ||v — z||} <€, we have

allu —vf| < [|F(u) = F(v)|| < Bllu—vl|. (1.2.114)
Proof. By the triangle inequality and (1.2.112),
[1F(u) = F(o)| IF' (@) (u = v)l| + [[F(u) = F(v) = F'(2)(u = v)|
(IF' (@)l +v0 (u,v))lu — o]
(IF (@)1 +ve) llu — vl

VAN VANVAN

Set 8 = ||F'(z)|| + e, we obtain the right inequality of (1.2.114). Similarly,

1F(u) — F)| > [|F'(@)(u— )| — | F(u) — F(v) — F'(z)(u — )|
> [/ @) = 0w, )] flu -l
> [/IE @)~ yelllu— o).
Hence, if m > ¢, the left inequality of (1.2.114) also holds with
1
CE@Ey T

Corollary 1.2.26 Let F and F' satisfy the conditions of Theorem 1.2.22.
When u and v are sufficiently close to x, we have

: lu — ]| : [F(u) — F(z)||
lim sup < Climsup —————,
w0 |Jv—z| w0 [[F(v) = F(z)|

(1.2.115)

where C = |[F'(z)||||F'(z) Y| is a constant and w = max{|u — x|, |[v — z||}.
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Proof. By using Theorem 1.2.22, we have

[F(v) = F@)| < [IF'(z)(v—2)|+[F(v) - F(z) - F'(z)(v - 2)|
< |F'@)llv = =zl + O([lo - =[*)
and
[F(u) = F(z)] > [[F'(z)(u—2)| - [[F(u) = F(z) = F'(z)(u — )|
> lu—2|[/[IIF' (@) + O(lu - ||?).
Then

1F(w) = F()|| _ flu—zll/|1F'(2)" M + Olu — «[*)
1F(w) = F@)| —  [1F @)l — 2l + O(lv —=?)

Setting C = || F'(x)||||[F'(x) || and taking limit give

. [1F(u) = F(o)ll _ .
Climsup ————=+ > limsup ,
w0 [F) = F@) w0 [lv— 2]

where w = max{||u — z||,|[v — z||}. O

We conclude this subsection with some remarks about differentiation of
the vector-valued functions.

About the calculus of vector-valued functions, we would like to review
Gateaux and Fréchet derivatives.

Definition 1.2.27 Let D C R™ be an open set. The function F' : D C
R" — R™ is Gateaux- (or G-) differentiable at x € D if there exists a linear
operator A € L(R"™, R™) such that for any d € R,

1
lim0 a||F(a: + ad) — F(z) — aAd|| = 0. (1.2.116)

The linear operator A is denoted by F'(x) and is called the G-derivative of
F at x.

Definition 1.2.28 Let D C R" be an open set. The function F': R — R™
is Fréchet- (or F-) differentiable at x € D if there is a linear operator A €
L(R™, R™) such that for any d € R",

. |F(x+d) - F(x) — Ad||

lim

0. (1.2.117)
d—0 ]
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The linear operator A is again denoted by F'(x), and is called the F-derivative
of F' at x.
The F-differentiability can also be written as

F(z+d) — F(z) = F'(z)d + o(||d]).

Furthermore, if for any u,v € R™,

[F(w) = F(v) = F'(2)(u = v)|

[u—v]—0 lu — v

=0, (1.2.118)

then F is called strongly F-differentiable at x € D and F'(z) is called a strong
F-derivative.

From the above two definitions, we know the following facts.

1.

If F: R" — R™ is continuous at z € R", then F' is hemi-continuous at
x.

If F: R — R™ is G-differentiable at x € D, then F' is hemi-continuous
at x.

If F: R® — R™ is F-differentiable at x € D, then F is continuous at
x.

If F is F-differentiable at x € D, then it is G-differentiable at x; how-
ever, the reverse is not true.

If F is G-differentiable and its G-derivative F’ is continuous, then F is
F-differentiable and the F-derivative is continuous. In this case, we say
that F' is continuously differentiable.

The G-derivative and F-derivative of F, if they exist, are equal and
given by the Jacobian matrix

o) 0 0

R O A CONMEI vl )
F’(x): .. .. .. ,

Afm Ofm Ofm

() Y(e) - G2(a)

where f1, fo, -+, fm are components of F'.
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7. The mean-value theorem: Let F': R™ — R™ be G-differentiable in the
open convex set D C R"™. Then we have the following forms of the
mean-value theorem:

(a) For any z,y,z € D, there exist t1,t9,---,t, € [0, 1] such that

filw +ti(y — )

Fy)— e = | a2

. (1.2.119)
S (@4 tn(y — )
and

I1F(y) = Fz)] < sup 1" (2 + t(y — 2))ly — «]|-

(b) For any z,y,z € D,

IF(y)—F(2)=F'(z)(y—2)| < Sup IF' (z+t(y—2)) = F'(2)|llly—=|-
o (1.2.120)

(c) Furthermore, if the G-derivative F” is hemi-continuous on D, then
for any z,y € D,

Fly) — F(z) = /01 Flz 4ty —o)(y —o)dt.  (1.2.121)

(d) If assume also that F'(z) is Holder continuous on D, then for all
z,y €D,

|F(y) — F(z) — F'(z)(y — 2)| < ]%Hy — Pt (1.2.122)

If p=1, it is just (1.2.109).

1.3 Convex Sets and Convex Functions

Convex sets and convex functions play an important role in the study of
optimization. In this section, we introduce the fundamental concepts and
results of convex sets and convex functions.
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1.3.1 Convex Sets
Definition 1.3.1 Let the set S C R". If, for any x1,x2 € S, we have
ar; + (1 —a)zy € S, Ya € [0,1], (1.3.1)

then S is said to be a conver set.

This definition indicates, in geometry, that for any two points x1,xo € 5,
the line segment joining x7 and x5 is entirely contained in S. It also states
that S is path-connected, i.e., two arbitrary points in S can be linked by a
continuous path.

It can be shown by induction that the set S C R" is convex if and only
if for any z1,29, -, zm € 5,

> i €8, (1.3.2)
i=1

where > a; = 1,0 > 0,i=1,---,m.

J

Convex Set
Nonconvex Set

Figure 1.3.1 Convex set and nonconvex set

In (1.3.1), x = az1+(1—a)za, where a € [0, 1], is called a convex combination
of 1 and z2. In (1.3.2), z = >, a,x; is called a convex combination of
Ti, -, Tm, where > a; = 1,05 > 0,0 =1,---,m.

Example 1.3.2 The hyperplane H = {x € R" | pTx = a} is a convex set,
where p € R™ is a nonzero vector referred to as the normal vector to the
hyperplane, and « is a scalar.
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In fact, for any 1,29 € H and each 6 € [0, 1],
pT[Gazl + (1 —=0)x9] = a

then 6z + (1 — 0)z2 € H.

In the hyperplane H = {x € R" | p’'z = a}, if a = 0, it can be reduced
to a subspace of vectors that are orthogonal to p.

Similarly, the closed half space H~ = {x € R" | p'z < 8} and Ht =

{r € R* | pT'x > 3} are closed convex sets. The open half space ( Jii )T =
{zx € R" | pTz < B} and (Iif)+ = {x € R" | p"z > 3} are open convex sets .

Example 1.3.3 Theray S ={z € R" | x = x9+ Ad, A\ > 0} is a convez set,
where d € R™ is a nonzero vector, and xg € R" is a fized point.

In fact, for any x1,x9 € S and each A € [0, 1], we have
1 = 20 + Md, 2 = T + Aod,
where A1, A2 € [0, 1]. Hence

Axq + (1 - )\)xg = )\(l‘o + Ald) + (1 — )\)(xo + )\Qd)
= x0+ [)\)\1 + (1 — )\))\Q]d

Since AA; + (1 — A)Ag > 0, then Azq + (1 — N)zg € S.

The finite intersection of closed half spaces
S={zeR"|ple<pi=1,---,m},

is called a polyhedral set, where p; is a nonzero vector, 5; a scalar. The
polyhedral is a convex set .

Since an equality can be represented by two inequalities, the following
sets are examples of polyhedral sets:

S={x € R"| Ax =b,x > 0},

S={zeR"| Az >0,z > 0}.

The theorems below state the algebraic properties and topological prop-
erties. That is the intersection of two convex sets is convex, the algebraic
sum of two convex sets is convex, the interior of a convex set is convex, and
the closure of a convex set is convex.
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Theorem 1.3.4 Let S1 and Sy be convex sets in R™. Then
1. S1 NSy is convex;

2. 851+ 8y ={z1 x|z €S1,22 € S2} is conver.

Proof. The proof is immediate from the definition of convex set and left
to readers as an exercise. O

From this theorem, we know that the feasible regions in linear program-
ming and quadratic programming are convex sets, because they are the in-
tersection of a hyperplane and a half space.

Theorem 1.3.5 Let S C R"™ be a convex set. Then
1. the interior intS of S is a convex set;

2. the closure S of S is a conver set.

Proof. 1) Let  and 2/ be in intS, and 2" = az + (1 — a)2’,a € (0,1).
Choose § > 0 such that B(z',0) C S, where B(z/,0) is the é-neighborhood
of 2/. Tt is easy to see that ||z’ — z||/||J2' — z|| = 1 — a. We know that
B(z", (1 — «)d) is just the set ax + (1 — a)B(2/,d) which is in S. Therefore
B(z",(1 — «)d) C S which shows that z” € int S.

2) Take z,2' € S. Select in S two sequences {x;} and {z}} converging
to x and 2’ respectively. Then, for « € [0, 1], we have

ek + (1 = a)ay] — [ox + (1 — a)a’]]
la(@r — 2) + (1 — &) (), — )|
< alzx -2l + (1 - a)z), — 2.

Taking the limit yields
klim [z + (1 — a)x)] — [z + (1 — a)2']|| =0,
— 00

which shows az + (1 —a)z’ € S. O

Now we state some concepts related to convex sets.
Let S C R™ be a nonempty set. We define the convex hull conv(S) as the
intersection of all convex sets containing S, which is described as the set of
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all convex combinations of the elements of S:
conv(S) = N{C | C is convex and contains S’}

= {zeR"|x=) amyz;€85) o =1,
i=1 i=1
a;>0,0=1,---,m}. (1.3.3)

We can see that conv(S) is the smallest convex set containing S.

A nonempty set C' C R" is called a cone if it is closed under positive scalar
multiplication, i.e., if x € C implies that Ax € C for all A > 0. If, in addition,
C'is convex, then C' is called a convex cone. C' C R" is a convex cone if and
only if it is closed under addition and positive scalar multiplication. The
smallest convex cone containing convex S is

C={\z|A>0,2€S}

The following are examples of convex cones. For example, the nonnegative
orthant of R™

{z=(&&) & >0,--,& >0},
positive orthant of R"
{o=(& &) & >0,-,& >0}
and the intersection of m half-spaces
{reR"|zTb; <0,b; € R"i=1,---,m}

are convex cones .

A specially important class of convex cones is polar cone. Let S be
a nonempty set in R"™. The polar cone of S, denoted by S*, is given by
{plpTz < 0forallz € S }. It is easy to see from the above definition that
the polar cone S* of a nonempty set S has the following properties:

1. S* is a closed convex cone.

2. 5 C §*, where 5™ is the polar cone of S*. If S is a nonempty closed
convex set, then S** = §.

3. If Sq, S2 are nonempty sets, then S; C Sy implies S5 C S7.
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The normal and tangent cones play a special role in constrained optimiza-
tion. Here we give their definitions below. Let S be a closed convex set. The
normal cone of S at T is defined as

N(z) ={y € R"|(y,x — &) < 0,Vz € S}. (1.3.4)
The tangent cone of S at & € S is the polar of the normal cone at z, that is
T(z)=(N(@)" = c{Mz—2)|A>0,2€ S} (1.3.5)

= {d!d::}qiﬂmj)\(w—:ﬁ), A>0,z €S},

where cl{S} denotes the closure of S.

1.3.2 Convex Functions

Definition 1.3.6 Let S C R" be a nonempty convex set. Let f:S C R" —
R. If, for any x1,22 € S and all o« € (0,1), we have

flazy + (1 = a)zg) < af(x1) + (1 - a)f(22), (1.3.6)

then f is said to be conver on S. If the above inequality is true as a strict
inequality for all z1 # 2, i.e.,

flazy + (1 = a)zz) < af(z1) + (1 - a)f(z2), (1.3.7)

then f is called a strict convex function on S. If there is a constant ¢ > 0
such that for any 1,29 € S,

1
flazi+(1-a)z2) < af(z1) +(1-a)f(22) - Sea(l—a)l|lz1 - %, (1.3.8)
then f is called a uniformly (or strongly) convex function on S.

If — f is a convex (strictly convex, uniformly convex) function on S, then
f is said to be a concave (strictly concave, uniformly concave) function.

— — =
—— —

I |
| |
. i l

1 i
X X X2 Xy X X2 X, Xy
r=ax;+(1—a)x, Concave Function Nonconvex and Nonconcave
Convex Function Function

Figure 1.3.2 Convex function and concave function
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Figure 1.3.2 gives examples of convex, concave, and neither convex nor
concave functions. The geometrical interpretation of a convex function says
that the function values are below the corresponding chord, that is, the values
of a convex function at points on the line segment axq + (1 — a)zo are less
than or equal to the height of the chord joining the points (z1, f(z1)) and
(22, f(z2)). It is obvious from the definition of convex function that a linear
function f(z) = a’z+ 3 is both a convex and concave function on R", where
a,r € R", 0 € R.

The other basic and important examples of convex functions are indicator
function, support function, norm and distance function.

Let S C R™ be a nonempty subset; the indicator function Ig : R® —
RU {+o0} is defined by

0, ifxels,

+o00, otherwise. (1.3.9)

Is(z) = {

Clearly, I is convex if and only if S is convex.
Let S C R™ be a nonempty subset. The support function of S is defined
by
os(s) :=sup{(s,z) | z € S}. (1.3.10)

This is a convex function.
It is easy to see that a norm on R" is a convex function. If we define the
distance function as

ds(z) == inf{|ly —z| | y € S},

where S C R™ is a nonempty convex set and || - || is any norm on R", then
dg is a convex function.

A convex function can also be described by an epigraph. Now we first
give the definition of the epigraph of f, and then show that f is convex if
and only if its epigraph is a convex set.

Let S C R"™ be a nonempty set. A set {(z,f(x)) : =z € S} ¢ R*"!
describing the function f is said to be the graph of the function f. Related
to the graph of f, there are the epigraph, which consists of points above the
graph of f, and the hypograph, which consists of points below the graph of

f.
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Definition 1.3.7 Let S C R"™ be a nonempty set. Let f: S C R™ — R. The
epigraph of f, denoted by epif, is a subset of R" defined by

epif ={(z,a)| f(z) <a,z € S, a € R}. (1.3.11)
The hypograph of f, denoted by hypf, is a subset of R™*1 defined by

hypf = {(z,a)| f(z) > o,z € S, € R}. (1.3.12)

Figure 1.3.3 Epigraph and hypograph
The following theorem indicates the relation between convex function and
convexity of epif.

Theorem 1.3.8 Let S C R" be a nonempty conver set. Let f : S C R" —
R. Then f is convez if and only if epif is a convex set.

Proof.  Assume that f is convex. Let 1,29 € S and (z1,a1), (2, a2) be
in epif. Then, it follows from Definition 1.3.6 and Definition 1.3.7 that

f()\ﬁl?l + (1 — )\)%2) < )\f(CL‘l) + (1 — )\)f(afg) < dag + (1 — )\)052

for any A € (0,1). Since S is a convex set, Az; + (1 — N)xy € S. Hence
(Az1 + (1 = N2, dag + (1 — N az) € epi f, which means epif is convex.

Conversely, assume that epif is convex, and let z1,z9 € S and (z1, f(z1)),
(2, f(z2)) € epif. Then we have from the convexity of epif that

(Ax1 + (1 — Nazo, \f(x1) + (1 — X) f(z2)) € epif, for A € (0,1).
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This means
fAz1+ (1= Na2) < Af(21) + (1= A)f(22)
for each A € (0,1). Hence f is convex. O

The epigraph epif of a function f is an important concept and it is used
often in convex programming. Here we would like to mention its properties.
The epif has a closed relation with the lower semi-continuity (l.s.c.) of f
which is also very important, because, for a function to have a minimum, a
very basic requirement is lower semi-continuity. We may recall that a function
f is lower semi-continuous if, for each x € R",

ligniglff(y) > f(x). (1.3.13)
The following theorem gives an equivalent property between epif and l.s.c.

Theorem 1.3.9 For f : R — R U {400}, the following three statements
are equivalent:

1. f is lower semi-continuous on R™;
2. epif is a closed set in R™ X R;

3. the level sets L,(f) = {x € R" | f(z) < r,r € R} are closed for all
r e R.

Proof. (1) = (2): Let {(yx, %)} be a sequence of epif converging to (z,)
for k — oco. Since f(yx) < ry for all k, the (1.3.13) gives

r= klim TR > liyminff(yk) > f(z),
—00 kT

which indicates that (z,r) € epif.

(2) = (3): Construct the level set L,(f) which is the intersection of two
closed sets epif and (R™ x {r}). Obviously the intersection is closed.

(3) = (1): Suppose that f is not lower semi-continuous at some z, which
means there exists a sequence {yx} converging to = such that {f(yx)} con-
verges to p < f(z) < +oo. Take r € (p, f(x)). When k tends large enough,
we have f(yx) < r < f(x) which means that L,(f) does not contain its limit
x. Hence L,(f) is not closed. O

Using Theorem 1.3.9, we can give a definition of closed function.
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Definition 1.3.10 A function f : R® — R U {+o0} is said to be closed if
it is lower semi-continuous everywhere, or if its epigraph is closed, or if its
level sets are closed.

Obviously, the indicator function Ig is closed if and only if S is closed.
Also, epilg = S x RT. The support function og is closed too.
Next, we give some properties of convex functions.

Theorem 1.3.11 1. Let f be a conver function on a convexr set S C R"™
and real number a > 0, then af is also a convex function on S.

2. Let f1, fo be conver functions on a convex set S, then f1 + fo is also a
convex function on S.

3. Let f1, fo,- -+, fm be convex functions on a convex set S and real num-
bers au,an, -+, > 0, then >0 aufi is also a convex function on
S.

Proof. We only prove the second statement. The others are similar.
Let 1,292 € S and 0 < a < 1, then

filazy + (1 — @)x2) + fol(axy + (1 — a)xs)
< alfi(@) + fo(@)] + (1 = a)[fi(z2) + fao(22)]. O

Continuity is an important property of a convex function. However, it
is not sure that a convex function whose domain is not open is continuous.
The following theorem shows that a convex function is continuous on an open
convex set or the interior of its domain.

Theorem 1.3.12 Let S C D be an open convex set. Let f : D C R™ — R
be convex. Then f is continuous on S.

Proof. Let xg be an arbitrary point in S. Since S is an open convex set,
we can find n+ 1 points z1, - -, 2p41 € S such that the interior of the convex

hull
n+1 n+1

C:{x|x:Zaimi,ai20,Za¢:1}
i=1 i=1

is not empty and xg € intC.
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Now let @ = maxj<j<p+1 f(2;i), then

n+1 n+1
flz)=f (Z aixi> < Z aif(zi) <a, Vo € C, (1.3.14)
i=1 i=1

so that f is bounded over C. Also, since xg € int C, there is a § > 0 such
that B(xg,d) C C, where B(xg,d) = {z| ||x — o] < §}. Hence for arbitrary
h € B(0,9) and A € [0,1], we have

Trog = 1 +)\(l'0 + )\h) + 1 +)\(l’0 — h) (1.3.15)
Since f is convex on C, then
Fl0) < 1 Flao + M) + 2 f(ao — h) (13.16)
= LA e i

By (1.3.16) and (1.3.14), we have

f(zo+Ah) = f(zo) = A(f(zo) — fzo — h)) = —Ala — f(z0)). (1.3.17)
On the other hand,

flxo+ Ah) = f(AMzo+h) + (1 = XN)zo) < Af(xo+ h) + (1 — N)f(xo),
which is

f(zo+Ah) = f(zo) < A(f(zo + h) — flzo)) < Mo — f(z0)).  (1.3.18)
Therefore, (1.3.17) and (1.3.18) give

|[f (o + Ah) — f(xo)| < Alf(z0) —af. (1.3.19)

Now, for given € > 0, choose ¢’ < 6 so that ¢'| f(xg) — a| < €d. Set d = A\h
with |||l = 4, then d € B(0,9) and

|f(xo+d) — f(zo)] <e. ]

If a convex function is differentiable, we can describe the characterization
of differential convex functions. The following theorem gives the first order
characterization of differential convex functions.
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Theorem 1.3.13 Let S C R™ be a nonempty open convexr set and let f :
S C R™ — R be a differentiable function. Then f is convex if and only if
f(y) > f(x) + V) (y—x), Yo,y € S. (1.3.20)
Similarly, f is strictly convex on S if and only if
f(y) > f(@) + V@) (y—=z), Yo,y € S,y # . (1.3.21)

Furthermore, f is strongly (or uniformly) convex if and only if

1
F) = f@) + V@) (v —2) + 5ely — =], Yoy e s, (1.3.22)
where ¢ > 0 s a constant.

Proof. Necessity: Let f(z) be a convex function, then for all a with
O<ax<l,
flay+ (1 —a)z) < af(y) + (1 - a)f(z).
Hence,
fz+aly—=)) - fz)

Q

< fy) — fx).
Setting o — 0 yields
Vi@ (y - =) < fy) - f().

Sufficiency: Assume that (1.3.20) holds. Pick any z1,z2 € S and set
x=ar;+ (1 —a)re,0 < a < 1. Then

flx) > f@)+ Vi) (21 —a),
flxa) > f(@)+ V(@) (22— ).
Hence
af(@)+ 1 —a)f(z2) > f(z)+ Vi) (az1+ (1 - )zs - 2)
= flazi+ (1= a)z2),

which indicates that f(x) is a convex function.
Similarly, we can prove (1.3.21) and (1.3.22) by use of (1.3.20). For
example, from the definition of the strictly convex, we have

[+ aly —x)) = f(x) <alf(y) — f(z)).
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Then, using (1.3.20) and the above inequality, we have

(Vf(z),aly —2)) < flz+aly —2) — f(2) <alf(y) - f(z))

which is the required (1.3.21).

To obtain (1.3.22), it is enough to apply (1.3.20) to the function f—3c|-||%.
O

Definition 1.3.6 of convex function indicates that the function value is
below the chord, which means that the linear interpolation of the function
values at two points is larger than the function value at the interpolation
point. This theorem represents that the linear approximation based on a
local derivative is a lower estimate, i.e., the convex function always lies above
its tangent at any point. Such a tangent is called a supporting hyperplane of
the convex function.

flx)+ J, i)
T (p—x) \

x y

Figure 1.3.4 The first order characteristic of a convex function

Below, we consider the second order characteristic of a twice continuously
differentiable convex function.

Theorem 1.3.14 Let S C R™ be a nonempty open convex set, and let f :
S C R" — R be twice continuously differentiable. Then

1. f is convez if and only if its Hessian matriz is positive semidefinite at
each point in S.

2. f is strictly convex if its Hessian matriz is positive definite at each point
inS.

3. f is uniformly convex if and only if its Hessian matriz is uniformly
positive definite at each point in S, i.e., there exists a constant m > 0
such that

ml|ul|? < uI'V2f(x)u, Vo € S, u e R".
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Proof. We only prove the first case. The other two cases are analogous.

Sufficiency. Suppose that the Hessian matrix V2 f(x) is positive semidef-
inite at each point z € S. Consider z,z € S. By the mean-value theorem,
we have

£(#) = F(@) + V@) @~ ) + 3 (o - DTV @)@ - 7).

where & =z + 0(x — z),0 € (0,1). Noting that & € S, it follows from the
assumption that
f(x) = f(2) + V(@) (2 - 7).
Hence f is a convex function by Theorem 1.3.13.
Necessity. Suppose that f is a convex function and let T € S. We need
to prove p! V2f(Z)p > 0, Vp € R". Since S is open, then there exists § > 0
such that when |A| < 0,Z + Ap € S. By Theorem 1.3.13,

f(Z+Xp) > () +AVf@)p. (1.3.23)

Also since f(z) is twice differentiable at Z, then

_ _ _ A2 _
F@+2p) = F(@) + AVF(@) ' p+ 50 VA @p +o(Mpl*). (1.3.24)
Substituting (1.3.24) into (1.3.23) yields
1
APV @)p +o(lAp?) > 0.
Dividing by A? and letting A — 0, it follows that
p' VA f(@)p = 0.0
Next, we would like to characterize a convex function with monotonicity

which is very useful.
We first introduce a definition of monotone mapping.

Definition 1.3.15 A mapping F : D C R™ — R" is monotone on Dy C D

if
(F(z) = F(y),x —y) >0, Yo,y € Do; (1.3.25)

F' is strictly monotone on Dq if

(F(z) = F(y),x —y) >0, Yo,y € Do,z #y; (1.3.26)
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F is uniformly ( or strongly ) monotone if there is a constant ¢ > 0 so that
(F(x) — F(y),x —y) > c|lz —y||?, Yo,y € Dy. (1.3.27)

If we let ¥ = V f in the above definition, we can get the following theo-
rem which says that, for convex function f, its gradient V f is a monotone

mapping.

Theorem 1.3.16 Suppose that f: D C R™ — R is differentiable on an open
set D, and that S C D is a convex subset. Then f is convex on S if and only
if its gradient V f is monotone, i.e.,

(Vf(z) =V f(y),z—y) >0, Va,y € S; (1.3.28)

and f is strictly conver on S if and only if its gradient V f is strictly mono-
tone, 1.€.,
(Vf(@) =Vf(y),z—y) >0, Vz,y € S,z #y; (1.3.29)

finally, f is uniformly (or strongly ) convex on S if and only if its gradient
V f is uniformly monotone, i.e.,

(VI(x) =V (y),z—y) >clz—yl? (1.3.30)
where ¢ > 0 is the constant of (1.3.8).

Proof. Let f be uniformly convex on S, then, by Theorem 1.3.13, for any
x,y € 5, we have

flo) > F@)+ (Vi@)y—a) +gely -l (1331
@) = f0)+ (Viha—y)+acle (1332

and addition of these two inequalities shows that (1.3.30) holds.

Similarly, if f is convex, (1.3.31) and (1.3.32) hold with ¢ = 0, and hence
(1.3.28) holds. Moreover, if f is strictly convex, then (1.3.31) and (1.3.32)
hold with ¢ = 0 but with strict inequality for = # y. Hence the addition
establishes (1.3.29).

Conversely, suppose that Vf is monotone. For any fixed z,y € S, the
mean-value theorem (1.2.97) gives

fy) = f@) = (V) y — =), (1.3.33)
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where £ =z +t(y — x),t € (0,1). Then, it follows from (1.3.28) that

(VH(©) ~ Vf()y —a) = IVFEQ) - Vi@ (€~ 2) 0, (1339
which, together with (1.3.33), gives

fy) = f@) = (Vf(E) - Vf(x),y—2a)+(Vf(z),y— )
> (Vf(z),y — ). (1.3.35)

The above inequality shows, by Theorem 1.3.13, that f is convex.

Similarly, if (1.3.29) holds, the same will be true in (1.3.35) with strict
inequality and z # y, and thus f is strictly convex.

Finally, for uniform convexity, suppose (1.3.30) holds. Let ¢(t) = f(z +
t(y — z)) = f(u), where u = x + t(y — z),t € (0,1). Noting that ¢'(t) =
(Vf(u),y —x) and ¢'(0) = (Vf(x),y — z), then (1.3.30) means

S0~ F(0) = (Viw) = Vf)y —a) = L(VF(w) = Vf()u )

v

1
sellu =l = telly — ol

Hence,

1 1
B(1) = 9(0) = ¢/(0) = [ [¢/() = (Ot = 3elly — x|,

which, by the definition of ¢, shows

Fl) > (@) + (Vi(@)y— 2} + gelly — 2l

Therefore, we complete the proof. O

Combining Theorem 1.3.14 and 1.3.16, we immediately obtain the follow-
ing theorem.

Theorem 1.3.17 Let S C R"™ be a nonempty open convex set and f be a
twice continuously differentiable function on S. Then

1. V£ is monotone on S if and only if V2 f(x) is positive semidefinite for
allz € S.
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2. IfV2f(x) is positive definite for all z € S, then V f is strictly monotone
on S.

3. Vf is uniformly ( or strongly) monotone on S if and only if V2 f(x) is
uniformly positive definite, i.e., there exists a number ¢ > 0 so that

d'V2f(z)d > ¢|d||?, Yz € S,d € R™.

In the following, we are concerned with the level set which is closely
related to a convex function and important to the minimization algorithm.
The following theorem shows that the level set L, corresponding to a convex
function is convex.

Theorem 1.3.18 Let S C R"™ be a nonempty convex set, f a convex function
defined on S, a a real number. Then the level set Lo, ={z |z € S, f(z) < a}
18 a convex set.

Proof. Let xy,x9 € Ly, then x1,z9 € S, f(x1) < a, f(z2) < a. Let
A€ (0,1) and z = Ax1 + (1 — A\)za. Then from the convexity of S, we have
x € §. Also since f is convex,

f@) < Af(z1)+ (1= N)f(x2) < da+ (1 - Na=a.

Hence x € L, which implies that L, is a convex set. O

From Theorem 1.3.18 and Theorem 1.3.9, we know immediately that if
f is a continuously convex function, then the level set L, is a closed convex
set. Furthermore, we also have

Theorem 1.3.19 Let f(x) be twice continuously differentiable on S C R™,
where S is a nonempty convex set. Suppose that there exists a number m > 0
such that

ul' V2 f(x)u > m|ul|?, Yo € L(xo),u € R™. (1.3.36)

Then the level set L(xg) = {z € S| f(z) < f(x0)} is a bounded closed convex
set.

Proof. By using Theorem 1.3.14, (1.3.36) implies that f is convex on
L(zp), and then it follows from Theorem 1.3.18 that L(z) is convex. Note
that f(z) is continuous, then L(xg) is a closed convex set for all xg € R™.
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Now we prove the boundedness of L(xzg). Using (1.3.36) and the fact that
L(zo) is convex, we have for any =,y € L(xy),

mlly —z)|* < (y — )"V f(x + aly — 2))(y — 2).
Also by twice differentiability and the above inequality, we have
fly) = fl@)+ V@) (y—a)
1 pt
+/ / (y —2)TV2f(z + aly — z))(y — z)dad t
0 Jo

> f() + VI o)+ gmly - 2],

where m is independent of x and y. Therefore for arbitrary y € L(xz¢) and
Yy # o,

Flo) ~ flmo) = Vo) (y — o) + gmlly — ol

1
=V f(o)lllly = zoll + 5mlly — zol[*.

v

Noting that f(y) < f(zo), the above inequality implies

2
_ < =
Iy = woll < =V £ (o)l

which shows that the level set L(zg) is bounded. O

To conclude this subsection, we give a proof of Minkowski inequality
which is an application of convexity of function.
Minkowski inequality:

2+ yllp < llzllp + yllp, (1.3.37)
i.e.,
n 1/p n 1/p n 1/p
(Z Rz +in”> < (Z Ixi!p> + <Z \yi\p> : (1.3.38)
i=1 i=1 i=1
where p > 1.
Proof. If x or y is the zero vector, the result is obvious. Now suppose

that x # 0 and y # 0.
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If p =1, since |z; + y;| < |xi| + |yi|, i = 1,---,n, then summing over i
gives the result.
Now let p > 1 and consider the function

o(t) =1t t > 0.

Since
¢"(t) =p(p— 1)t"2 >0,

then ¢(t) is strictly convex. Note that

lzle Iyl
Izl + ol Tl + ol

=1,

it follows from the definition of convex function that

P
( lllp =il oyl |in>
Il + lyllp |zl lzllp + [lyllp 1yl
[zl | )" [yl il \"
+ . (1.3.39)
zllp + llyllp \ 1]l zllp + llylly \ 1yl
Hence, using (1.3.39), we get
< |zi + vil )p
7\l + llylly
< |zi| + |yl )p
T\ lzllp + [lyllp
[Ea P —c] Iyl vl
T\ lzllp +yllp 1zl Nzl + lyllp [yl

p p
|1l 2] N il
T\l +llylle \ NIzl ]y + lylly \ [yl

M=

7

IA
M=

A

I
INgE

7

IA
M=

7

P P
< [lp Z( | ) N [yl z":( |yl )
= Azl + lylly &\ lllp zllp + llvllp = \lyllp
_ ||517||p Hng ||?J”p Hy”%

Izllp + Myl l2lp ezl + lullp [yl

= 1,
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which implies that

n

> lzi+wil” < (lzllp + llyllp)-
i=1

Taking the p-th root gives our result. O

1.3.3 Separation and Support of Convex Sets

The separation and support of convex sets are important tools for research
of optimality conditions. We first discuss the projection theorem which char-
acterizes the projection and describes the sufficient and necessary condition
for the distance between a closed convex set and a point not in the set to be
minimal.

Theorem 1.3.20 (Projection Theorem)
Let S C R™ be a nonempty closed convex set and y ¢ S, then there exists
a unique point T € S with minimal distance from y, i.e.,

ly - 2l = in ly — 2. (1.3.40)

Furthermore, T is the minimal point of (1.3.40) if and only if
(y—z,x—x) <0, Vz €585, (1.3.41)
or say that T is the projection Ps(y) of y on S if and only if (1.3.41) holds.

Proof. Let
inf{|ly —z| |z € S} =~v>0. (1.3.42)

There is a sequence {z} C S so that ||y — || — 7. In the following, we
prove {xj} is a Cauchy sequence and hence there exists a limit z € S.
By the parallelogram law, we have

ok —aml? = 2llar —yl? + 2)l@m — yl* = |2k + 2 — 297
T+ T
2

2

= 2|z —yl* + 2l|zm —yl* — 4 —yl (1.3.43)

Note that (xj + 2, )/2 € S, we have, from the definition of ~,

2
2

T + T >

2
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Therefore,
2k = zmll” < 2[|zk = ylI* + 2l|zm — yl* — 492
Taking k£ and m sufficiently large yields
|2k = Zm] — 0

which indicates that {z} is a Cauchy sequence with limit Z. Since S is
closed, then z € S. This shows there exists  such that ||y — z|| = 7.
Next, we prove the uniqueness. Suppose that Z,z € S and satisfy

ly —zll = [ly = '] =~ (1.3.44)
Since S is convex, (T +Z')/2 € S. Then
T+ 1 o1 _
v =255 < 3o =l + gy =21 = (1.3.45)

If the strict inequality holds, we get a contradiction to (1.3.42). Then the
equality holds in (1.3.45) and we have

y—T=MNy—2'), for some \.
So, it follows from (1.3.44) that [\| = 1. If A = —1, we havey = (z+7')/2 € S

which contradicts y ¢ S. Therefore, A = 1, that means = = 7’
Finally, we prove that the distance between z € S and y ¢ S is minimal
if and only if (1.3.41) holds.
Take x arbitrary in S and suppose (1.3.41) holds. Since
ly — 2> = lly-z+z -z
= |y —z|® + |1z — 2| + 2(z — )" (y - 2),
then |ly — z|> > |ly — #||* which is the desired sufficiency.
Conversely, let ||y —z|?> > |ly — z||?, Vz € S. Since Z+ \(x — Z) € S with
A € (0,1), then we have
ly =z = Xz —2)|* = [ly — z]*.
Developing the square gives
ly =2 = Mz = 2)|” = [ly — 2I° + M|z — 2|* + 2A\(z — 2)" (z — y).
Then we get
Mz —z)? +2Mz — )T (7 —y) > 0.
Dividing by A and letting A | 0, we obtain the result. O
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Figure 1.3.5 The angle-characterization of a projection

In fact, if we note that z = Pg(y) is the solution of
. é 1 o 2
min 6(z) 2 e — g,

then, for the above minimization problem, one concludes from the optimality
condition that
(¢/(z),z —7) >0, Vz € S.

Since ¢'(z) = = — y, we have
(z—y,x—2)>0,Vres

which is just (1.3.41).
Remark: If S is an affine manifold (for example, a subspace), then
T —x € S whenever z — z € S. Therefore, (1.3.41) implies

(y—2,2—-2)=0, Vz €5, (1.3.46)
which is (y —z) L S.

Now we can present the most fundamental separation theorem which
separates a closed convex set and a point not in the set. This theorem is
based on the above projection theorem.

Theorem 1.3.21 Let S C R™ be a nonempty closed convex set and y ¢ S.
Then there exist a nonzero vector p and a real number o such that

ply>aandp’z < a, Vo e S, (1.3.47)

i.e.,
ply > sup{p’z, Vz € S} (1.3.48)

which says there exists a hyperplane H = {z | pTx = a} that strictly separates
y and S.
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Proof. Since S is a nonempty closed convex set and y ¢ S, then, by
Theorem 1.3.20, there exists a unique point & € S such that

(x—2)T(y—7) <0, Vo € S.
Set p=y — T # 0, then

0

A\

y-—2)"(y—z+x—y)
= plz—pTy+|p)*

Hence
pTy = pTz+|p|? Vo € 5.

Set a = sup{p’ x|z € S}, and we get our result. O

As a consequence of Theorem 1.3.21, we immediately obtain Farkas’
Lemma which has been used extensively in the derivation of optimality con-
ditions.

Theorem 1.3.22 (Farkas’ Lemma) Let A € R™*™ and ¢ € R™. Then ex-
actly one of the following two systems has a solution:

System 1 Az <0, 'z >0, (1.3.49)
System 2 ATy =¢, y>0. (1.3.50)

Proof.  Suppose that there is a solution for (1.3.50), that is, there exists
y > 0 such that ATy = c. Let x satisfy Az < 0, it follows from y > 0 that

e =yTAx <0,

which shows that (1.3.49) has no solution.
Now suppose (1.3.50) has no solution. Let

S={x|z=A"y,y >0},

which is a polyhedral set, and hence it is a nonempty closed convex set and
c ¢ S. By Theorem 1.3.21, there exist p € R"™ and « € R such that

ple>aand pl'a < o, Vz e S.
Since 0 € S, a > pT0 = 0. Then pTc > 0. Also note that

a>ple=plAly=y"Ap, vy >0
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and that y could be made arbitrarily large, thus it follows that Ap < 0. So,
there is a vector p € R™ which is a solution of (1.3.49), and the proof is
complete. O

In order to discuss the separation between two convex sets, we need the

following definition and theorem of a supporting hyperplane.

Definition 1.3.23 Let S C R" be a nonempty set, p € R", and T € 0S5,
where 0S denotes the boundary of S. If either

SCcCH ={zeS|pl(z—z) >0} (1.3.51)

or

ScH ={zeS|p'(z—1) <0}, (1.3.52)

then the hyperplane H = {x € S|p’(x — Z) = 0} is called a supporting
hyperplane of S at Z. If, in addition, S ¢ H, then H is called a proper
supporting hyperplane of S at T.

The following theorem shows that a convex set has a supporting hyper-
plane at each boundary point (see Figure 1.3.6).

|

H
p

Figure 1.3.6 Supporting hyperplane

Theorem 1.3.24 Let S C R™ be a nonempty convex set and & € 9S. Then,
there exists a hyperplane supporting S at T; that is, there exists a nonzero
vector p such that

p(z—2)<0,Vz €S, (1.3.53)

where S denotes the closure of S.
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Proof.  Since 7 € 995, there exists a sequence {y.} ¢ S so that y, —
Z,(k — 00). By Theorem 1.3.21, corresponding to each yj, there exists
pr € R™ with ||pg|| = 1, such that

Piyk > ph, Vo € 5. (1.3.54)

Since {pg} is bounded, there is a convergent subsequence {py}x with limit p
and ||p|| = 1. For this subsequence, (1.3.54) holds, that is

Pk, Uk; > Ph,@, Yo € S.

Fix € S and take the limit as k € K and k — oo, we have p'z > pTz, Vz €
S, which is our desired result. O

By use of Theorem 1.3.21 and Theorem 1.3.24, the following corollary is
obvious.

Corollary 1.3.25 Let S C R™ be a nonempty convex set and & ¢ S. Then
there exists a monzero vector p such that

pi(x—2) <0, VzeS. (1.3.55)

Proof. Let ¢ S; there are two cases. If # ¢ S, the conclusion is
immediate from Theorem 1.3.21. If £ € 95, the corollary reduces to Theorem
1.3.24. O

Now, we are going to discuss the separation theorems of two convex sets
which include separation theorem, strict separation theorem and strong sep-
aration theorem.

Definition 1.3.26 Let S1,52 C R"™ be nonempty conver sets. If
ple>a,Vee S andp’z < a, Vo € Ss, (1.3.56)

then the hyperplane H = {z |pTx = a} is said to separate Sy and So. If, in
addition, S1 U Se ¢ H, then H is said to properly separate S1 and Sa. If

ple>a, Ve e S andp’z < a, Vo € Ss, (1.3.57)
then H is said to strictly separate S1 and So. If
ple>a+e VeeS andp’z < o, Va € Ss, (1.3.58)

then H is said to strongly separate S1 and Sy, where € > 0.
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Theorem 1.3.27 (Separation Theorem)

Let S1,52 C R™ be nonempty convexr sets. If Sy NSy = ¢, then there
exists a hyperplane separating S1 and So, that is, there exists a nonzero vector
p € R" such that

pTl'l < pT{L‘Q, Va1 € 51,$2 c 52. (1.3.59)

Proof. Let
SZSl —SQ = {xl —.%'2‘1‘1 c 51,1‘2 S SQ}
Note that S is a nonempty convex set and that 0 ¢ S (otherwise, if 0 € S,
then we have x1 — x9 = 0 and x7 = x9 € S1 N Se which implies S N Sy # ¢).
Hence, by Corollary 1.3.25, there exists a nonzero vector p such that
ple <plo=0, Ve e S,
which implies that
plazy < plag, Vay € S1,20 € S

Then we complete the proof. O
Note that (1.3.59) also can be written as

sup{p’ x|z € 81} < inf{p’x|z e Sy} (1.3.60)

Theorem 1.3.28 (Strong Separation Theorem)

Let S1 and Sy be two closed convex sets on R™, and suppose that So is
bounded. If S1NSy = ¢, then there exists a hyperplane that strongly separates
S1 and Sz, that is, there exist a nonzero vector p and € > 0 such that

inf{p’ x|z € So} > sup{p’z |z € S} +e (1.3.61)

Proof. Let S = S; — S3. Note that S is convex and 0 ¢ S. We first
prove that S is closed. Let {zy} C S,z — z. By the definition of S,
Tk = Yk — 2k, Y € S1, 2 € S9. Since Sy is compact, there exists a convergent
subsequence {zx}ic, zx — 2,2 € Sa,k € K. Since

Yk — 2k — T, 2k — 2, Vk € K,
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then v — y. Also since 57 is closed, y € S7. Therefore,
l’:y—Z,QGShZESQ,

which means x € S and S is closed.
Now we have that S is a closed convex set and 0 ¢ S. Then, by Theorem
1.3.21, there exist nonzero vector p and real number «, such that

ple <a, Yz e Sandpl0> a.
Hence, a < 0. Using the definition of S yields
plz>ply—a, Vye S,z €S,
which, by setting e = —a; > 0, is
inf{p" 2|z € So} > sup{p’y|y € Si} +e O
Similarly, we can obtain the following strict separation theorem.

Theorem 1.3.29 (Strict Separation Theorem)
Let S1 and Sy be two closed convex sets on R™, and suppose that So is
bounded. If S1 NSy = ¢, there exists a nonzero vector p such that

inf{p’ x|z € So} > sup{p’z|x € S1}. (1.3.62)

Proof. The result (1.3.62) is immediate from (1.3.61). O

1.4 Optimality Conditions for Unconstrained Op-
timization

In this section we consider the unconstrained optimization problem
min f(z), z € R" (1.4.1)

and present its optimality conditions which include first-order conditions and
second-order conditions.

In general, we have two types of minimizers: local minimizer and global
minimizer. In the following, we give their exact definitions.
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Definition 1.4.1 A point x* is called a local minimizer if there exists § > 0
such that f(x*) < f(x) for all x € R™ satisfying ||x — x*| < 0.

A point x* is called a strict local minimizer if there exists § > 0 such that
f(z*) < f(x) for all x € R™ with x # x* and ||z — z*|| < 6.

Definition 1.4.2 A point x* is called a global minimizer if f(x*)
all x € R™. A point x* is called a strict global minimizer if f(x*)
all z € R™ with x # x*.

<
<

f () for
f(x) for

fix) I Strict local minimizer

Local minimizer

/ \ Global minimizer

Figure 1.4.1 Types of minimal points

Note that, in practice, most algorithms are able to find only a local mini-
mizer that is not a global minimizer. Normally, finding a global minimizer is
a difficult task. In many practical applications, we are content with getting
a local minimizer. In addition, many global optimization algorithms proceed
by solving a sequence of local optimization algorithms. Hence, in this book,
our focus is on the model, property, convergence and computation of local
optimization algorithms. Usually, in the book, the minimizer refers to the
local minimizer. However, if the problem is a convex programming problem,
all local minimizers are also global minimizers.

The descent direction given in the following definition is an important
concept.

Definition 1.4.3 Let f: R™ — R be differentiable at x € R™. If there exists
a vector d € R™ such that

(Vf(z),d) <0, (1.4.2)

then d is called a descent direction of f at x.
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By means of Taylor’s expansion,
flay +td) = f(ay) + 1tV f(z)"d + o(t),
then it is easy to see that
30 > 0 such that f(xp +td) < f(xg), Vt € (0,0)
if and only if d is a descent direction of f at xj.

Now we discuss the first-order optimality condition.

Theorem 1.4.4 (First-Order Necessary Condition)
Let f: D C R™ — R be continuously differentiable on an open set D. If
x* € D is a local minimizer of (1.4.1), then

Vf(x*)=0. (1.4.3)
Proof. [proof I] Let 2* be a local minimizer. Consider the sequence
xp =a" — apVf(x"), ap > 0.
By Taylor’s expansion, for k sufficiently large, we have
0 < flag) = fz*) = =V f () TV f ("),

where ny is a convex combination of x; and z*. Dividing by oy and taking
the limit, it follows from f € C' that

0 <~V f(z")]

which means Vf(z*)=0. O
[proof II] (By contradiction). Suppose that Vf(z*) # 0. Taking d =
=V f(z*) yields
d'Vf(z*) = ~[IVf(z")]* < 0.

So, d is a descent direction and there exists § > 0 such that
fl@* + ad) < f(z¥), Ya € (0,0)

which contradicts the assumption that z* is a local minimizer. O
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[proof III] Let z* be a local minimizer, then there exists 6 > 0 so that
f(z) > f(z*) for any x with ||z — 2*|| < §. By Taylor’s expansion,

f(@) = f(z") + VF(") (@ - 2") + o]z — 2*[) > f(a").

Dividing ||z — «*|| and letting x — x* yield

Vf(x*)TM > 0.

[l — |
Setting s = (z — z*)/||lx — *||, the above inequality is
Vi*)Ts >0, Vs with ||s|| = 1.
Choosing s = +e;, (i = 1,---,n), we obtain Vf(z*) =0. O

Theorem 1.4.4 says that if * is a local minimizer, f has a zero slope at
x*. The following theorem indicates that if z* is a local minimizer, f has

nonnegative curvature at «* besides zero slope.

Theorem 1.4.5 (Second-Order Necessary Condition)

Let f : D C R™ — R be twice continuously differentiable on an open set
D. If z* is a local minimizer of (1.4.1), then Vf(z*) = 0 and V2f(z*) is
positive semidefinite.

Proof.  [proof I] We have known from Theorem 1.4.4 that Vf(z*) = 0,
hence we only need to prove that V2 f(z*) is positive semidefinite. Consider
the sequence

Tz = 1% + apd, ap >0,

where d is arbitrary. Since f € C? and Vf(z*) = 0, then by Taylor’s expan-
sion, we have for k sufficiently large that

0< fla) — F(a") = godd" T F(n),

where 7 is a convex combination of xj and z*. Dividing by %a% and taking
the limit, we get
dT'V2f(z*)d > 0, Vd € R™.

Hence we complete the proof. O
[proof I1] (By contradiction). Suppose that V2 f(z*) is not positive semidef-
inite, then we can choose d € R" such that d” V2f(x*)d < 0. Since f € C?,
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there exists § > 0 and we can choose € > 0 such that 2* + ed € B(z*,J) and
d'V? f(z* + ed)d < 0.
By use of Vf(z*) =0, it follows that

1
f(z* +ed) = f(z*) + 5e%va? f(z* + Oed)d,
where 0 < @ < 1. Therefore f(z* 4+ ed) < f(z*). This contradicts the

assumption that x* is a local minimizer. O

Next, we describe the second-order sufficient condition.

Theorem 1.4.6 (Second-Order Sufficient Condition)
Let f: D C R" — R be twice continuously differentiable on an open set
D. If Vf(z*) = 0 and V2f(z*) is positive definite, then x* € D is a strict

local minimizer.

Proof.  [proof I] Assume that Vf(z*) = 0 and V2 f(x*) is positive definite.
By Taylor’s expansion, for any vector d € R"™ such that z* + d lies in a
neighborhood of #* in which V2f(z* + d) is positive definite, we have

flz* +d) = f(z*) + %dTV2f(az* + 6d)d,

where 6 € (0,1). Then we can choose § > 0 such that z* +d € B(z*,§) and
d'V2f(x* + 0d)d > 0. Therefore,

f@® +d) > f(z")

which shows our result. O

[proof II] (By contradiction). Assume that z* is not a strict local min-
imizer, then there exists a sequence {xx} C D with xp # x*, Vk, such that
f(zx) < f(z*) for k sufficiently large. By use of Taylor’s expansion,

0 > flen) - S)
= VI (o~ %) + 5ok — 7)) (o~ ),

where 7y, is a convex combination of z; and x*. Using V f(z*) = 0, dividing
by %||zx — 2*||* and taking the limit, we have

0> el V2 f(x*)e, (1.4.4)
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where € is the accumulation point of the uniformly bounded sequence {(zx —
x*)/|lxx — «*||} and |le|| = 1. Obviously, (1.4.4) contradicts the positive
definiteness of V2f(z*). O

Definition 1.4.7 A point z* € R"™ is said to be a stationary (or critical)
point for the differentiable f if V f(z*) = 0.

Theorem 1.4.4 tells us that if z* is a local minimizer, then it is a station-
ary point. However, the converse is not true. If z* is a stationary point, it
is possible for * to be a local minimizer or maximizer, it is also possible for
* to not be an extreme point. If a stationary point x* is neither minimizer
nor maximizer, it is called a saddle point. Therefore, a stationary point need
not be a local minimizer. But if the objective function which is differen-
tiable is convex, its stationary points are the local minimizers and the global
minimizers.

Theorem 1.4.8 below says, for a convex function, that its local minimizer
is also a global minimizer. Theorem 1.4.9 says, for a differentiable convex
function, that its stationary point is also a global minimizer.

Theorem 1.4.8 Let S C R" be a nonempty convex set and f : S C R" — R.
Let z* € S be a local minimizer for mingcg f(x).

1. If f is convex, then x* s also a global minimizer.

2. If f is strictly convex, then x* is a unique global minimizer.

Proof. (1) Let f be convex and z* be a local minimizer, then there exists
a d-neighborhood B(z*,d) such that

f(z) > f(z¥), Vo € SN B(z*,0). (1.4.5)

By contradiction, suppose that z* is not a global minimizer. Then we can
find some & € S such that f(z) < f(z*). By convexity of f, we have for
aec(0,1),

flaz + (1 — a)x™)

A IA
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= =
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* =
N~—
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But for sufficiently small a > 0, oz + (1 — a)z* € S N B(x*, ). Therefore,
(1.4.6) contradicts (1.4.5). This contradiction proves the first conclusion.
(2) From part (1) we have that z* is a global minimizer because strict
convexity means convexity. Therefore, it is enough to prove the uniqueness.
By contradiction, suppose that z* is not the unique global minimizer, so
that we can find x € S,z # z*, such that f(x) = f(z*).
By strict convexity of f,

1 1 1 1

FGat 20t < Lr@) + L) = £, (1.4.7)
2 2 2 2

Note from the convexity of S that $z+5z* € S. Therefore, (1.4.7) contradicts
the fact that x* is a global minimizer. O

Theorem 1.4.9 Let f : R™ — R be a differentiable convex function. Then
x* is a global minimizer if and only if V f(z*) = 0.

Proof.  Sufficiency. Let f be a differentiable convex function in R"™ and
Vf(xz*) =0, then

f(@) = f(a") + V(") (x —27) = f(«7), Vo € R"

which indicates that z* is a global minimizer of f.
Necessity. It is obvious because the global minimizer is also a local mini-
mizer, and is also a stationary point. O

The optimality conditions of constrained optimization will be discussed
in Chapter 8.

1.5 Structure of Optimization Methods

Usually, the optimization method is an iterative one for finding the minimizer
of an optimization problem. The basic idea is that, given an initial point
xo € R"™, one generates an iterate sequence {x} by means of some iterative
rule, such that when {z;} is a finite sequence, the last point is the optimal
solution of the model problem; when {xj} is infinite, it has a limit point
which is the optimal solution of the model problem. A typical behavior of
an algorithm which is regarded as acceptable is that the iterates z; move
steadily towards the neighborhood of a local minimizer x*, and then rapidly
converge to the point z*. When a given convergence rule is satisfied, the
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iteration will be terminated. In general, the most natural stopping criterion
is

IV f ()]l <9, (1.5.1)

where 0 is a prescribed tolerance. If (1.5.1) is satisfied, it implies that the
gradient vector V f(zy) tends to zero and the iterate sequence {zj} converges
to a stationary point.

Let z; be the k-th iterate, di k-th direction, «j k-th steplength factor.
Then the k-th iteration is

Tt1 = Tk + agdy. (1.5.2)

We can see from (1.5.2) that the different stepsize aj, and different direction
dy form different methods. In Chapter 2 we will discuss several methods to
determine ay. In Chapter 3 we will present various methods to find search
directions di. Most optimization methods are so-called descent methods in
the sense that f satisfies at each iteration

f(@rg1) = fop + ardy) < f(ar),

in which dj, is a descent direction defined by Definition 1.4.3.
The basic scheme of optimization methods is as follows.

Algorithm 1.5.1 (Basic Scheme)

Step 0. (Initial step) Given initial point o € R™ and the tolerance
e>0.

Step 1. (Termination criterion) If |V f(zy)|| < €, stop.

Step 2. (Finding the direction) According to some iterative scheme,
find di, which is a descent direction.

Step 3. (Line search) Determine the stepsize ay, such that the objec-
tive function value decreases, i.e.,

flzp + agdy) < f(xp).

Step 4. (Loop) Set xy41 = xf + axdy, k := k + 1, and loop to Step
1. O
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Convergence rate, which is a local characterization of an algorithm, can
measure the effectiveness of an optimization method. We now give a brief
description associated with different types of convergence rate. More details
can be found in Ortega and Rheinboldt (1970).

Let the iterate sequence {xj} generated by an algorithm converge to x*
in some norm, i.e.,

lim ||z — 2| = 0. (1.5.3)
k—o0

If there are real number o« > 1 and a positive constant § which is independent
of the iterative number k, such that

i 121 =270 _ g (15.4)

k—oo ||l’k — iL‘*HO‘

we say that {xp} has a-order of Q-convergence rate, where Q-convergence
rate means Quotient-convergence rate. In particular,

1. when @ = 1 and B € (0,1), the sequence {xj} is said to converge
Q-linearly;

2. whena=1and 3 =0,0or 1 <a<2and f >0, the sequence {x} is
said to converge Q-superlinearly;

3. when o = 2, we say that {z}} has Q-quadratic convergence rate.

The primary motivation for introducing the Q-convergence rate is to com-
pare the speed of convergence of different iterations. It is not difficult to see
that the convergence rate depends on « and (more weakly) on (3. Suppose
that there are two sequences {zj} and {z}} and that their Q-order and Q-
factor are respectively {a, 8} and {o/, 5'}. If @ > o, then the sequence with
Q-a order converges faster than the sequence with Q-o’ order. For exam-
ple, a quadratically convergent sequence will eventually converge faster than
linearly and superlinearly convergent sequences. When a = o/, i.e., their
Q-order of convergence rate is the same, if 3 < 3/, then the sequence {z} is
faster than {z}}.

Mainly, we are concerned with Q-linear, Q-superlinear and Q-quadratic
convergence. Usually, if the convergence rate of an algorithm is Q-superlinear
or Q-quadratic, we say that it has rapid convergence rate. For example, quasi-
Newton methods converge Q-superlinearly, and Newton’s method converges
Q-quadratically.
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Another measure of the convergence rate which is weaker than Q-convergence

rate is R-convergence rate which means Root-convergence rate.
Let {zx} C R™ be any sequence that converges to x*. Let

R { lim supy,_, o ||zx — a;*Hl/k, ifp=1;

lim sup,_, o ||zx — x*”l/pk, itp>1.
If Ry =0, {x1} is said to be R-superlinearly convergent to z*.
If 0 < Ry <1, {x} is said to be R-linearly convergent to x*.

If Ry =1, {z} is said to be R-sublinearly convergent to z*.

Similarly, if Re = 0,0 < Ry < 1, Ry > 1 respectively, then {zx} is said to
be R-superquadratically, R-quadratically, and R-subquadratically convergent
to x* respectively.

The above R-rate of convergence can also be stated as follows:

The sequence {z} is said to be R-linearly convergent if there is a sequence
of nonnegative scalars {g;} such that

|lxp —x*|| < qx for all k, and {gx} converges Q-linearly to zero.

Similarly, the sequence {xy} is said to be R-superlinearly convergent if {g;}

converges @-superlinearly to zero; the sequence {xy} is said to be R-quadratically

convergent if {gx} converges Q-quadratically to zero.

Similar to Q-rate of convergence, R-rate of convergence also depends on
R-order p and R-factor R,. The higher the R-order is, the faster the corre-
sponding sequence converges. When the R-order is the same, the smaller the
R-factor is, the faster the corresponding sequence converges.

Throughout this book we mainly discuss Q-convergence rate. Hence, if
there is not specific indication, the convergence rate refers to Q-convergence
rate.

As indicated above, usually an algorithm with superlinear or quadratic
rate is said to be desirable. However, it must be appreciated that the theo-
retical results of the convergence and convergence rate are not a guarantee of
good performance. Not only do these results themselves fall short of guaran-
tee of good behavior, but also they neglect computer round-off errors which
may be crucial. In addition, these results often impose certain restrictions
on f(x) which may not be easy to verify, and in some cases (for example,
in the convex case), these conditions may not be satisfied in practice. Thus,
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the development of an optimization method also relies on numerical experi-
mentation. The ideal is a good selection of experimental testing backed up
by the proofs of convergence and convergence rate.

We have known from the above discussion that the convergence rate mea-
sures the local behavior of an algorithm and is used in local analysis. The
theorem below gives a characterization of superlinear convergence which is
useful for constructing termination criteria.

Theorem 1.5.2 If the sequence {xy} converges Q-superlinearly to x*, then

lim lzrs1 — okl

=1. 1.5.5
Ly ] (1:5:5)
However, in general, the converse is not true.
Proof. For a given integer k > 0,
[zher — 2| (ka1 — 2k) + (2 — 27)||
[z — ¥ [l
[Zr1 — el [lzx — 2]
g — 2| llze — 2|

It follows from the definition of Q-superlinear convergence that

pon Do =l

k—oo ||l’k — l‘*”

To show that the converse is not true, we give a counter-example. In
normed space {R, | -|}, define a sequence {x}} as follows:

1 .
T2i—1 = ﬁ (Z - 1727' : ')7

To; = 2T9i—1 (i: 1,2---).
Obviously, * = 0. We have

1, k=2i—1,i>1,

|[Zkt1 — T
LI 2 R 1
|$k_x*| 1*@, k:22,7/21.

So, {xr} satisfies (1.5.5) but does not converge Q-superlinearly to z*. O
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This theorem shows that if an algorithm is convergent Q-superlinearly,
instead of ||z — x*||, we can use ||z+1 — zk|| to give a termination criterion,
and the estimation will be improved as k increases.

Finally, we discuss some termination criteria which are used frequently
in practice. In order to guarantee convergence of an algorithm, we require

[f(z) = f(2")] < €eor |z — 2™ < e,

where the parameter € is user-supplied. Unfortunately, these are not practi-
cable since they need the information of the solution z*.
Instead, we often use the following termination criteria:

IV f(zx)]| < es, (1.5.6)
[h+1 — gl < e, (1.5.7)
f(xg) = f@p41) < e (1.5.8)

Normally, when an algorithm can be expected to converge rapidly, it
is suggested to use (1.5.7) or (1.5.8). When an algorithm has first-order
derivative information and can be expected to converge less rapidly, a test
based on (1.5.6) may be appropriate.

Himmeblau [174] suggested that it is suitable to use (1.5.7) together with
(1.5.8) as follows:

When |lz|| > €2 and |f(xy)| > €2, use

|2kr1 — o] |f (1) = f(2pe1)]
Ikl = 2R < g, < e (1.5.9)
k]| |f(z1)]
otherwise, use
|zki1 — oxll <er, [f(mr) — fmr)] < e (1.5.10)

He also suggested using (1.5.9)-(1.5.10) together with (1.5.6).
In general, take €; = €5 = 1077, e3 = 104

Exercises

1. Let A be an n x n nonsingular matrix. Prove that || Az| > ||z||/|| A~

2. Prove the equivalence (1.2.22)-(1.2.26) of vector norms.
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3. Prove Cauchy-Schwarz inequality (1.2.34). Further, prove inequality
(1.2.35).

4. Prove (1.2.45).

5. Let A = UDV™ be the singular value decomposition. Prove that
AT =VDTU*, where DV is defined in (1.2.54).

6. Prove Sherman-Morrison formula (1.2.67) and Sherman-Morrison-
Woodburg formula (1.2.68).

7. Show Theorem 1.2.6 (Von-Neumann Lemma).
8. Prove (1.2.69) and (1.2.70).

9. Prove that a function that is Fréchet differentiable must be Gateaux
differentiable, but the converse is not true.

10. Prove Theorem 1.2.23.
11. Show that the intersection of finitely many convex sets is a convex set.

12. Show by induction that the set S C R" is convex if and only if for

any ri, T2, -, Tm € 57
m
Zaixi €5,
1=1

where Y% oy = 1,; > 0,4 = 1,---,m. That means a convex combination
of arbitrarily finitely many points of a convex set still belongs to the convex
set.

13. Let A € R™*" b € R™. Show, by definition, that
S={zeR"| Az =b,xz >0}
is a convex set.

14. Let

Dy ={x|r1+22<1, 21>0}, Do={x|x1—22>0, 21 <0}
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Set D = D1UDs. Show that D is not necessarily convex though both D; and
Dy are convex. This means that the union of convex sets is not necessarily a
convex set.

15. Write the convex hull of the set S = {(0,0)7,(1,0)T, (0,1)T}.

16. Let S C R™. Prove that the following two statements are equivalent.
(1) The convex hull is the set of all convex combinations of arbitrarily finitely
many elements of S as defined in (1.3.3).
(2) The convex hull conv(S) is the intersection of all convex sets containing S.

17. Let fi(x),i = 1,2,---,m, be convex functions defined on convex set
D C R™. Show that the function

g(z) = ifi(z)
=1

is also a convex function on D, where > 7" a; = 1,0 > 0,0 = 1,2,---,m.
This means that the convex combination of convex functions is a convex
function.

18. Discriminate convexity of the following functions:
(1) f(z1,22) = we”rHm);
(2) f(z1,29,73) = 2% + 323 + 923 — 22129 + 62273 + 2w3771.

19. Prove Theorem 1.3.11.

20. State the first-order and second-order optimality conditions for un-
constrained optimization and outline their proofs.



Chapter 2

Line Search

2.1 Introduction

Line search, also called one-dimensional search, refers to an optimization pro-
cedure for univariable functions. It is the base of multivariable optimization.
As stated before, in multivariable optimization algorithms, for given xy, the
iterative scheme is

Tyl = Tk + pdp. (2.1.1)

The key is to find the direction vector di and a suitable step size ay. Let

o(a) = flag + ady). (2.1.2)

So, the problem that departs from z; and finds a step size in the direction
dj. such that

P(ar) < ¢(0)

is just line search about .
If we find oy, such that the objective function in the direction dj is mini-
mized, i.e.,
fxy + ogdy) = gl>i{)lf(xk + ady),

or

¢(ax) = min ¢(a),

a>0

such a line search is called exact line search or optimal line search, and «y is
called optimal step size. If we choose ay, such that the objective function has
acceptable descent amount, i.e., such that the descent f(xy)— f(xp+apdy) >



72 CHAPTER 2. LINE SEARCH

0 is acceptable by users, such a line search is called inexact line search, or
approximate line search, or acceptable line search.

Since, in practical computation, theoretically exact optimal step size gen-
erally cannot be found, and it is also expensive to find almost exact step
size, therefore the inexact line search with less computation load is highly
popular.

The framework of line search is as follows. First, determine or give an
initial search interval which contains the minimizer; then employ some section
techniques or interpolations to reduce the interval iteratively until the length
of the interval is less than some given tolerance.

Next, we give a notation about the search interval and a simple method
to determine the initial search interval.

Definition 2.1.1 Let ¢ : R — R,a* € [0,+00), and

kY .
¢(a”) = min ¢(a).
If there exists a closed interval [a,b] C [0,400) such that o € [a,b], then
[a,b] is called a search interval for one-dimensional minimization problem
ming>o ¢(a). Since the exact location of the minimum of ¢ over |a,b] is not
known, this interval is also called the interval of uncertainty.

A simple method to determine an initial interval is called the forward-
backward method. The basic idea of this method is as follows. Given an
initial point and an initial steplength, we attempt to determine three points
at which their function values show “high-low—high” geometry. If it is not
successful to go forward, we will go backward. Concretely, given an initial
point ag and a steplength hg > 0. If

d(ao + ho) < ¢(an),

then, next step, depart from ag+ hg and continue going forward with a larger
step until the objective function increases. If

¢(ao + ho) > ¢(ap),

then, next step, depart from ag and go backward until the objective function
increases. So, we will obtain an initial interval which contains the minimum

oF.
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Algorithm 2.1.2 (Forward-Backward Method)

Step 1. Given ag € [0,00),hg > 0, the multiple coefficient t > 1
(Usually t = 2). Evaluate ¢p(ap), k := 0.

Step 2. Compare the objective function values. Set a1 = ok + hy

and evaluate ¢p+1 = ¢(agy1). If dry1 < ¢r, go to Step 3;
otherwise, go to Step 4.

Step 3. Forward step. Set hxi1 = thy, o = g, o = Qpt1, O =
Ok+1,k =k +1, go to Step 2.

Step 4. Backward step. If k = 0, invert the search direction. Set
hi == —hg, ar := ag41, go to Step 2; otherwise, set

a = min{a, agy1}, b = max{a, agi1},
output [a,b] and stop. O

The methods of line search presented in this chapter use the unimodality
of the function and interval. The following definitions and theorem introduce
their concepts and properties.

Definition 2.1.3 Let ¢ : R — R, [a,b] C R. If there is o* € [a,b] such that
o) is strictly decreasing on |a,a*] and strictly increasing on [a*,b], then
() is called a unimodal function on [a,b]. Such an interval [a,b] is called
a unimodal interval related to ¢(av).

The unimodal function can also be defined as follows.

Definition 2.1.4 If there exists a unique o € |a,b], such that for any
a1, e € [a,b], a1 < ag, the following statements hold:

if ag < o, then ¢(ay) > ¢(a);
if on > o, then ¢(ar) < ¢p(az);

then ¢(av) is the unimodal function on |a,b].

Note that, first, the unimodal function does not require the continuity and
differentiability of the function; second, using the property of the unimodal
function, we can exclude portions of the interval of uncertainty that do not
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contain the minimum, such that the interval of uncertainty is reduced. The
following theorem shows that if the function ¢ is unimodal on [a, b], then the
interval of uncertainy could be reduced by comparing the function values of
¢ at two points within the interval.

Theorem 2.1.5 Let ¢ : R — R be unimodal on [a,b]. Let ay,an € [a,b],
and a1 < ag. Then

1. if p(ar) < P(a2), then [a, as] is a unimodal interval related to ¢;

2. if p(a1) > ¢(aa), then [a1,b] is a unimodal interval related to ¢.

Proof.  From the Definition 2.1.3, there exists a* € [a,b] such that ¢(«)
is strictly decreasing over [a,a*] and strictly increasing over [a*,b]. Since
¢(a1) < ¢(ag), then a* € [a, ag] (see Figure 2.1.1). Since ¢(a) is unimodal
on [a, b], it is also unimodal on [a, ag]. Therefore [a, 2] is a unimodal interval
related to ¢(«) and the proof of the first part is complete.

The second part of the theorem can be proved similarly. O

This theorem indicates that, for reducing the interval of uncertainty, we
must at least select two observations, evaluate and compare their function
values.

a a a* ay, b a a® ay @ b

Figure 2.1.1 Properties of unimodal interval and unimodal function

2.2 Convergence Theory for Exact Line Search

The general form of an unconstrained optimization algorithm is as follows.

Algorithm 2.2.1 (General Form of Unconstrained Optimization)

Initial Step: Given xg € R™,0 < e < 1.
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k-th Step: Compute the descent direction dy;
Compute the step size ay, such that

flag + apdy) = gl;%f(xk + ady); (2.2.1)

Set
Tyl = Tk + pdy; (2.2.2)

If |V f(zrs1)| < €, stop; otherwise, repeat the above steps.
O

Set
p(a) = flzg + ady), (2.2.3)

obviously we have from the algorithm that

$(0) = f(z1), ¢(a) < ¢(0).

In fact, (2.2.1) is to find the global minimizer of ¢(«) which is rather difficult.
Instead, we look for the first stationary point, i.e., take oy such that

ar = min{a > 0 | Vf(xg + ady) dy = 0}. (2.2.4)

Since, by (2.2.1) and (2.2.4), we find the exact minimizer and the stationary
point of ¢(a) respectively, we say that (2.2.1) and (2.2.4) are exact line
searches.

Let (dy, —V f(z1)) denote the angle between dy and —V f(xy), we have

di V f ()

cos(dy, =V f(xy)) = _m.

(2.2.5)
The following theorem gives a bound of descent in function values for each
iteration in exact line search.

Theorem 2.2.2 Let oy, > 0 be the solution of (2.2.1). Let ||V2f(x) +
ady)|| < M VYo > 0, where M is some positive number. Then

1

fzk) = flzg + oxdy) > mHVf(l“k)”Q cos?(dk, —V f (k). (2.2.6)
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Proof. From the assumptions we have that
T a’ 2
flay +ady) < f(zx) + ady Vf(zx) + o Mdi]]", Ya > 0. (2.2.7)

Set & = —dL'V f(x)/(M||dx||?); it follows from the assumptions, (2.2.7) and
(2.2.5) that

fzr) = flog + ardy)

v

f(@r) = f (g + ady)
=2
—ad{ v (ex) - 5 Mdi?

1 (dfVf(xp))?
2 M||dgl?

_ b 2
= oIV @l

v

(dEV f(xr))?
e[V f ()
(

1
= m”vf(flfk)HQCOSQ(dk,—Vf

12
.I‘k)>D

Now we are in position to state the convergence property of general un-
constrained optimization algorithms with exact line search. The following
two theorems state the convergence by different forms.

Theorem 2.2.3 Let f(x) be a continuously differentiable function on an
open set D C R", assume that the sequence from Algorithm 2.2.1 satisfies
f(zry1) < f(zp)Vk and Vf(x)Tdp < 0. Let € D be an accumulation
point of {x} and Ky be an index set with K1 = {k | limg_,oc xp = T}. Also
assume that there exists M > 0 such that ||di|| < M,Vk € Ky. Then, if d is
any accumulation point of {dy}, we have

V@) Td=o0. (2.2.8)

Furthermore, if f(x) is twice continuously differentiable on D, then
dT'V2f(z)d > 0. (2.2.9)
Proof. It is enough to prove (2.2.8) because the proof of (2.2.9) is similar.

Let Ko C K; be an index set with d = limgeg, dp. If d = 0, (2.2.8) is
trivial. Otherwise, we consider the following two cases.
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(i) There exists an index set K3 C Ky such that limgeg, o = 0. Since
ay is an exact step size, then V f (), + axdy,) T dy = 0. Since ||dy| is uniformly
bounded above and o — 0, taking the limit yields

Vi) Td=o0.

(ii) Case of liminfxeg, ap = @ > 0. Let Ky C K» be an index set of k
with a > @/2,Vk € K4. Now assume that the conclusion (2.2.8) is not true,
then we have

Vi) d< —6<0.

So, there exist a neighborhood N (%) of Z and an index set K5 C Ky such
that when z € N(z) and k € K,

Vi) ld, < —6/2 <0.

Let & be a sufficiently small positive number, such that for all 0 < a < &
and all k € Ks, xp + adp, € N(z). Take o = min(a/2,&), then from
the non-increasing property of the algorithm, exact line search and Taylor’s
expansion, we have

f@) = flzo) = D [f(zns1) = flan)]

k=0

< 3 [Fmrer) — Flan)]
keKs

< [flan+atdy) — flan)] (2.2.10)
keKs

= > V(e +md) atdy (2.2.11)
keKs

)
< () o
< >-(3)

where 0 < 73, < a*. The above contradiction shows that (2.2.8) also holds
for case (ii).

The proof of (2.2.9) is similar. It is enough to note using the second-order
form of the Taylor expansion instead of the first-order form in (2.2.11). In
fact, from (2.2.10) we have

f(@) = f(0)
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< D [f(@e 4 ofdy) — flan)]
keKs5
= Z lVf(:Ek)T(oz*dk) + m;)2d£v2f(xk + Tdy)dy | for 0 <7 < a*
keKs
< Z (a*)2d{V2f(xk + dek)dk for0 <7, < o
keKs 2
176
< R (Oé*)Q
3 [ (3)e]
- (2.2.12)

We also get a contradiction which proves (2.2.9). O

Theorem 2.2.4 Let Vf(x) be uniformly continuous on the level set L =
{zx € R" | f(z) < f(xz0)}. Let also the angle ) between —V f(xy) and the
direction dj, generated by Algorithm 2.2.1 is uniformly bounded away from
90°, i.e., satisfies

O, < g — u, for some p > 0. (2.2.13)

Then V f(x) = 0 for some k; or f(x) — —oo; or V f(xy) — 0.

Proof.  Assume that, for all k, Vf(zg) # 0 and f(zy) is bounded below.
Since {f(xy)} is monotonic descent, its limit exists. Therefore

f(xk) = f(zr41) — 0. (2.2.14)

Assume, by contradiction, that V f(x;) — 0 does not hold. Then there
exists € > 0 and a subset K, such that ||V f(zy)| > eVk € K. Therefore

YV f () dy/ ||dil = |V (25)]| cos O > esinp 2 €. (2.2.15)
Note that
f(zg + ady)
flae) + aV (&) dy
= flar) + oV (zr) dy + o[V (&) — V()] dy
V f () dy
< flzg) +alldell | =7 +IVF(&k) — Vf(ze)ll ], (2.2.16)

|||
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where & lies between x and x + ady. Since V f(z) is uniformly continuous
on the level set L, there exists & such that when 0 < o|di| < &, we have

HVf@w——Vf@mM\séfL (2.2.17)
By (2.2.15)—(2.2.17), we get

_dy [V f(zg)Tdy 16
(owragag) < s va (TRt ga)

1
< flzx) - jae.
Therefore
_ dg 1
flzrsr) < f <93k + Oé) < f(zx) — - ey,
||l 2

which contradicts (2.2.14). The contradiction shows that V f(xy) — 0. We
complete this proof. O

In the remainder of this section, we discuss the convergence rate of min-
imization algorithms with exact line search. For convenience of the proof of
the theorem, we first give some lemmas.

Lemma 2.2.5 Let ¢(a) be twice continuously differentiable on the closed
interval [0,b] and ¢'(0) < 0. If the minimizer o € (0,b) of ¢(a) on [0,b],

then
>a=—¢(0)/M, (2.2.18)

where M is a positive number such that ¢ (o) < M,V € [0,b].
Proof. Construct the auxiliary function
Y(a) = ¢/(0) + Ma,
which has the unique zero
G = —¢/(0)/M.

Noting that ¢"(a) < M, it follows that

)=+ [ "#(a)d o < #0) + / " Md a = (o).
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Setting a = a* in the above inequality and noting that ¢’(a*) = 0, we obtain
0 <9(a’) =¢'(0) + Ma”
which is (2.2.18). O

Lemma 2.2.6 Let f(x) be twice continuously differentiable on R™. Then for
any vector x,d € R™ and any number «, the equality

f(x+ad) = f(z) +aVf(x)Td+o? /01(1 —)[dT'V2f(z + tad)d]dt (2.2.19)
holds.

Proof. From calculus, we have
f(z + ad) — f(x)
1
= / df(z + tad)
0
1
- / [V f(z + tad)Td)d(1 — t)
0
= —[1-t)aVf(z+tad)d)}+ /01(1 — t)d[aV f(z + tad)'d]

= aVf(x)ld+a? /01[(1 —)d'V2f(z + tad)d]dt. O

Lemma 2.2.7 Let f(x) be twice continuously differentiable in the neighbor-
hood of the minimizer x*. Assume that there exist € > 0 and M > m > 0,
such that

mly|? < y" V2 f(z)y < M|jy||*, Vy € R" (2.2.20)

holds when ||z — x*|| < €. Then we have

Smlle =" < () — f(a*) < SMlJe —a° P (22.21)

and
IVf(@)]| = m|lz — 2. (2.2.22)
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Proof. From Lemma 2.2.6 we have
f(z) = f(z7)
= V@) (x—2*)+ /1(1 —t)(z — 2)TV2f(te + (1 — t)z*)(x — 2*)dt
0

= /01(1 —t)(x — 2TV f(tr + (1 — t)2*)(z — 2*)dt. (2.2.23)

Note that (2.2.20) and the integral mean-value theorem give
1
ml|z —3:*H2/ (1—t)dt
0

/01(1 —t)(z — 2V f(tr 4+ (1 — t)z*)(z — 2*)dt

IN

IN

M|z — z*|° /01(1 )t (2.2.24)
Then combining (2.2.23) and (2.2.24) yields (2.2.21).
Also, using Taylor expansion gives
V() =Vf(z)—-Vf(x*) = /01 V2f(te + (1 — t)z*) (z — z*)dt.
Then
IVf@)lllz =" > (z—2")"Vf(z)

_ /01@; ~ VIR f (4 (1 — ) (z — 27)dt
> mlz — o

which proves (2.2.22). O

Now we are in the position to give the theorem about convergence rate
which shows that the local convergence rate of Algorithm 2.2.1 with exact
line search is at least linear.

Theorem 2.2.8 Let the sequence {x} generated by Algorithm 2.2.1 con-
verge to the minimizer x* of f(x). Let f(x) be twice continuously differen-
tiable in a neighborhood of x*. If there exist € > 0 and M > m > 0 such that
when ||z — z*|| < e,

m|ly||* <y VAf(z)y < M|jy||*, Vy € R" (2.2.25)

holds, then the sequence {xy}, at least, converges linearly to z*.
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Proof.  Let limy .oz = z*. We may assume that ||z — z*|| < € for k
sufficiently large. Since ||zx4+1 — *| < €, there exists § > 0 such that

leg + (ax + 0)dr — 2¥|| = ||xper — 2™ + ddg|| < e (2.2.26)

Note that () = f(xy +ady), ¢' (o) = Vf(z+ady) " dy, ¢'(0) = V fay) " dy,
and [¢/(0)] < ||V f(x)]ll|dk|. We have ¢'(0) <0,

IV (@r)llldell < =¢"(0) < [V £ (k) ldi]l, for some p € (0,1)  (2.2.27)

and
¢" () = di,V? f (), + odp)dy, < M ||di||>.

Then, by Lemma 2.2.5, we know that the minimizer oy, of ¢(a) on [0, oy + 6]

satisfies ,
o>y — —¢ (0)2 > PIV IRl A
M| dg | M|\ dg||

g (2.2.28)

Set Ty, = x + ad. Obviously, it follows from (2.2.26) that ||Zx — z*|| < e.
Therefore,

J(wp 4 apdy) — f(ar)
J(wp 4 apdy) — f(or)

1
= o‘szf(xk)Tdk + 54%/0 (1-— t)dZVQf(xk + tagdy)didt (from Lemma 2.2.6)

IN

IN

1
(=) IV S )l + 5 Mag g (from (2.2.25) and (2:2.27))

PV )| (from (2.2.28))
~9n7 Ty, rom (2.2.

IN

_
2M
pm

2
< - (B) o) - f@) (from (2220)

IN

m?||zy, — 2*||* (from (2.2.22))

The above inequalities give

f@esr) = f(27) = [f(@rgr) = flae)] + [f (@) — f(27)]

IN
| — |
[u—
|
VR
<[3
~——
no
| —
oy
8
&
N~—
|
&h
—~
S
*
~—~
b
o
\o)
L
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Set

0= [1 - (‘;\?)21 : . (2.2.30)

Obviously 6 € (0,1). Therefore (2.2.29) can be written as

flar) = f(27) 0?(f (wx—1) — f(2")]

IN A CIA

02 [ f (o) — f(2)]. (2.2.31)

Furthermore, by (2.2.21), we have

o =2 < () - f)]
< ZOf(re) ~ f)
< 205w — o0l

which implies that

* M *
|z —2*|| < \/EHka_l — " (2.2.32)

and that the sequence {zy}, at least, converges linearly to z*. O
In the end of this section, we give a theorem which describes a descent
bound of the function value after each exact line search.

Theorem 2.2.9 Let oy, be an exact step size. Assume that f(z) satisfies
(= 2)"[Vf(z) = Vf(2)] = nllz — 2> (2.2.33)

Then
1
f(or) — flor + ardy) > 577H04kdk“2. (2.2.34)

Proof. Since «ay is an exact step size, then

Vf(zy + agdy)dy, = 0. (2.2.35)
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Therefore, it follows from the mean-value theorem, (2.2.35) and (2.2.33) that

Flax) = flap +apdy) = /0 ATV (o tdy)d

ap

=/ dL [V f(z + ogdy) — V f(xp + tdy)]dt
g 9
> /0 n(og — t)dt] dy|
1
= Snlledi]®. (2.2.36)

This completes the proof. O

2.3 The Golden Section Method and the Fibonacci
Method

The golden section method and the Fibonacci method are section methods.
Their basic idea for minimizing a unimodal function over [a,b] is iteratively
reducing the interval of uncertainty by comparing the function values of the
observations. When the length of the interval of uncertainty is reduced to
some desired degree, the points on the interval can be regarded as approxi-
mations of the minimizer. Such a class of methods only needs to evaluate the
functions and has wide applications, especially it is suitable to nonsmooth
problems and those problems with complicated derivative expressions.

2.3.1 The Golden Section Method

Let

p(a) = f(z + ad)
be a unimodal function on the interval [a,b]. At the iteration k of the golden
section method, let the interval of uncertainty be [ak, bx|. Take two observa-
tions A, ug € [ak, bg) and A\ < pg. Evaluate ¢(A;) and ¢(ug). By Theorem
2.1.5, we have

Case 1 if ¢(A\x) < ¢(ur), then set api1 = ag, bpy1 = pg;
Case 2 if ¢(\g) > ¢(uk), then set a1 = A, brr1 = by

How to choose the observations Ar and ui? We require that \p and puy
satisfy the following conditions:
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1. The distances from A\; and py to the end points of the interval [ay, by]
are equivalent, that is,

b — A\, = g — ag. (2.3.1)

2. The reduction rate of the intervals of uncertainty for each iteration is
the same, that is

bit1 — ap1 = 7(bk — ax), 7 € (0,1). (2.3.2)

3. Only one extra observation is needed for each new iteration.

Now we consider Case 1. Substituting the values of Case 1 into (2.3.2) and
combining (2.3.1) yield

M — A = T(bk—ak),
by — Ak = pg — ag.

Arranging the above equations gives

A = ap+ (1 — T)(bk — ak), (233)
pe = ag+ 7(by — ag). (2.3.4)
Note that, in this case, the new interval is [ag41,bg+1] = [ag, ). For fur-

ther reducing the interval of uncertainty, the observations Ax11 and pgy1 are
selected. By (2.3.4),

Pl = Gyl + T(bpt1 — Gky1)
ak + 7(k — ax)
ar + 7(ag + 7(bg, — ax) — ax)

= ap+7%(by — ap). (2.3.5)
If we set
=1-r1, (2.3.6)
then
Hk+1 = ag + (1 — T)(bk — ak) = A. (237)

It means that the new observation ujy; does not need to compute, because
tr+1 coincides with Ag.
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Similarly, if we consider Case 2, the new observation Agi; coincides with
1. Therefore, for each new iteration, only one extra observation is needed,
which is just required by the third condition.

What is the reduction rate of the interval of uncertainty for each iteration?
By solving the equation (2.3.6), we immediately obtain

—1+45
=—F

T

Since 7 > 0, then take

pobeman  VEo1 e (2.3.8)
by, — ag 2

Then the formula (2.3.3)-(2.3.4) can be written as

A = ap+ 0.382(bk — ak), (2.3.9)
U = ai+ 0.618(bk — ak). (2.3.10)

Therefore, the golden section method is also called the 0.618 method.

Obviously, comparing with the Fibonacci method below, the golden sec-
tion method is more simple in performance and we need not know the number
of observations in advance.

Since, for each iteration, the reduction rate of the interval of uncertainty
is 7 = 0.618, then if the initial interval is [a1, b1], the length of the interval
after n-th iteration is 7 1(b; — a1). Therefore the convergence rate of the
golden section method is linear.

Algorithm 2.3.1 (The Golden Section Method)

Step 1. Initial step. Determine the initial interval [aq1,b1] and give
the precision 6 > 0. Compute initial observations A1 and

Hi:

A = a1+ 0.382(b1 — (Il),
= ai;+ 0.618(b1 — al),

evaluate ¢(A1) and ¢(py), set k= 1.

Step 2. Compare the function values. If () > ¢(ux), go to Step
3;if 9(Ak) < @), go to Step 4.
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Step 3. (Case 2) If by — N\, < 0, stop and output py; otherwise, set

g1 7= Ay b1 i= by A1 := g,
P(Akt1) = d(pr)s 1 = k41 + 0.618(bg+1 — ak+1).

Evaluate ¢(ug41) and go to Steps.

Step 4. (Case 1) If pp — ax, < 6, stop and output \i; otherwise set

Q41 i= Ak, bpg1 = [k, Pt i= Mg,
A(prr1) = ¢(Ak), Aeg1 = apy1 + 0.382(bps1 — A1)

FEvaluate ¢(Ag4+1) and go to Step 5.

Step 5. k:=k+1, go to Step 2. O

2.3.2 The Fibonacci Method

Another section method which is similar to the golden section method is the

Fibonacci method. Their main difference is in that the reduction rate of

the interval of uncertainty for the Fibonacci method does not use the golden

section number 7 ~ 0.618, but uses the Fibonacci number. Therefore the

reduction of the interval of uncertainty varies from one iteration to another.
The Fibonacci sequence {Fy} is defined as follows:

Fo=F =1, (2.3.11)
Fop1=Fp+Fpq, k=1,2,---. (2.3.12)

If we use F,,_j/F,_k+1 instead of 7 in (2.3.3)(2.3.4), we immediately obtain
the formula

F,_
A = ap+ (1— n—k )(bk—ak) (2.3.13)
n—k+1
F,_i_
= ap+ nkl(bk—ak),k:L ,n—1,
Fn—k—H
ur = ag+ (bp —ag), k=1,--- ,n—1, (2.3.14)
Fok+1

which is called the Fibonacci formula.
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As stated in the last section, in Case 1, if p(A\g) < ¢(ug), the new interval
of uncertainty is [ag+1, bgt+1] = [ak, pi]. So, by using (2.3.14), we get

bk+1 — Q41 = (bk - CLk) (2315)
which gives a reduction in each iteration. This equality is also true for Case
2.

Assume that we ask for the length of the final interval no more than 9,
i.e.,

b, — a, <0.
Since
F
bp —an = f;(bn—l - an—l)
R FE Py
= BE R -a)
1
then )
Fy 2 = = (2.3.17)

Therefore, given initial interval [a1,b;] and the upper bound § of the length
of the final interval, we can find the Fibonacci number F;, and further n from
(2.3.17). Our search proceeds until the n-th observation. The procedure
of the Fibonacci method is similar to Algorithm 2.3.1. We leave it as an
exercise.

Letting F}, = r* and substituting in (2.3.11)-(2.3.12), we get

r2—r—1=0. (2.3.18)

Solving (2.3.18) gives

(2.3.19)

Then, the general solution of the difference equation Fy1q = Fj, + Fy_1 is

Fj, = Arf + Brb. (2.3.20)
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Using the initial condition Fy = F; =1, we get

A="L p__"

V5’ V5

Substituting in (2.3.20) gives

k+1 k+1
Fp, = \}5 { (1 +2‘/5> — (1 2\/5> } : (2.3.21)

_ Fq Vb1
lim = =T
k—oo F} 2

Hence

(2.3.22)

This shows that, when k — oo, the Fibonacci method and the golden section
method have the same reduction rate of the interval of uncertainty. There-
fore the Fibonacci method converges with convergence ratio 7. It is worth
mentioning that the Fibonacci method is the optimal sectioning method for
one-dimensional optimization and it requires the smallest observations for a
given final length ¢, and that the golden section method is approximately
optimal. However, since the procedure of the golden section method is very
simple, it is more popular.

2.4 Interpolation Method

Interpolation Methods are the other approach of line search. This class of
methods approximates ¢(a) = f(z + ad) by fitting a quadratic or cubic
polynomial in « to known data, and choosing a new a-value which mini-
mizes the polynomial. Then we reduce the bracketing interval by comparing
the new a-value and the known points. In general, when the function has
good analytical properties, for example, it is easy to get the derivatives, the
interpolation methods are superior to the golden section method and the
Fibonacci method discussed in the last subsection.

2.4.1 Quadratic Interpolation Methods

1. Quadratic Interpolation Method with Two Points (I).
Given two points a, @z, and their function values ¢(a1) and ¢(a2), and the
derivative ¢/(aq) (or ¢'(as)). Construct the quadratic interpolation function
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q(a) = aa® 4 ba + ¢ with the interpolation conditions:

gr) = aai +bay+c=p(a),
g(a) = a3 +bas+ ¢ = ¢(az), (2.4.1)
¢ (1) = 2aa;+b=¢ ().

Write ¢1 = ¢(n), d2 = ¢(a2), ¢’ = ¢'(c1), and ¢’y = ¢'(a2). Solving (2.4.1)

$1— 2 — ¢ (a1 — )

S
|

—(01 — a2)? )
P1— 2 — ¢ 1 (a1 — )
b = ¢ 2
d) 1 + (al _ Oé2)2 «
Hence
_ b
a = ——
2a

1 ' Haq — ag)?
- a;+- ¢1(1/ 2)
201 —ag — ¢ (a1 — az)

_ 1 (o1 — as)d'y
= - 9 ¢/1 _ $1=¢2 (2'4‘2)

a1 —a

Then we get the following iteration formula:

s = o Ll — 1)y
ktl =Sk 75 & — P—Pr—1 °

A —CQk—1

(2.4.3)

where ¢ = ¢(ag), dpr—1 = ¢(ar_1), and ¢’y = ¢' ().

After finding the new ay.1, we compare agy1 with ap and ag_1, and
reduce the bracketing interval. The procedure will continue until the length
of the interval is less than a prescribed tolerance.

2. Quadratic Interpolation Method with Two Points (II).

Given two points oy, g, and one function value ¢(a1) (or ¢(ae) ), and two
derivative values ¢'(a) and ¢'(ag). Construct the quadratic interpolation
function with the following conditions:

glar) = aof+bay+c=¢(a),

¢ (1) = 2aa;+b=¢ (1), (2.4.4)
d(a2) = 2aas+b= ¢ (a3).
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Precisely, with the same discussion as above we obtain

_ b o —a
= —— = - '. 2.4.5
«Q 2a aq ¢/1 - ¢/2 ¢ 1 ( )
Therefore the iteration scheme is
ap — Q-1 /
Q1 =0 — 7@, (2.4.6)
¢ —

which is also called the secant formula. The formula (2.4.5) can also be got
by setting L(a) = 0 where L(«) is the Lagrange interpolation formula

(a—a1)¢'y — (a— az)¢’y

Q2 —

L(a) =

(2.4.7)

which interpolates the derivative values of ¢'(«) at two points o1 and «s.

In the following discussion, for convenience, we call the quadratic inter-
polating method (I) the quadratic interpolation formula, and the quadratic
interpolation method (II) the secant formula. Next, we turn to the conver-
gence of the quadratic interpolating method with two points.

Theorem 2.4.1 Let ¢ : R — R be three times continuously differentiable.
Let o* be such that ¢'(a*) = 0 and ¢"(a*) # 0. Then the sequence {ay}

generated from (2.4.6) converges to o™ with the order 1+T‘/5 ~ 1.618 of con-
vergence rate.

Proof. By the representation of residual term of the Lagrange interpola-
tion formula

1
Ry(a) = ¢'(a) — L(a) = 58" (§)(a — ar)(a — ap-1), £ € (@, a1, ag).
(2.4.8)
Setting @ = a4+1 and noting that L(agy1) = 0, we have

¢ (oy1) = %¢///(§)(ak+1 —ap)(ape1r — ag—1), £ € (p—1, g, apy1), (2.4.9)

Substituting (2.4.6) into (2.4.9) yields

2
35 ¢ e (ak,l,ak,akﬂ). (2.4.10)

(¢,k - ¢/k—1>

¢ (apg1) = %(b///(g)(b/k(blk—l (o) = ar-1)
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We know from the mean-value theorem of differentiation that

(i::zkk_ll = ¢"(%), %o € (-1, %), (2.4.11)
¢i=¢i = ¢(a") = (i — a")¢"(&), (2.4.12)

where & € (a;,a*),i = k — 1,k,k + 1. Therefore it follows from (2.4.10)-
(2.4.12) that

18O )
s 2 (€ ) [0 (E0)P

Let ¢; = |oy; — a*|, (i = k — 1,k,k + 1). In the intervals considered, let

(a — a™)(ag—1 — a®). (2.4.13)

0 <mg < |¢"(a)] < Mz, 0 <my < |¢"(a)| < My,

K1 =mam?/(2M3), K = MoM}/(2m3).
Then

Ki|ag — o||ag—1 — | < |ags1 — | < Koy, — a*||ag—1 — ™|, (2.4.14)
Noting that ¢” and ¢" are continuous at o*, we get

Qi1 — Oé* 1 (ZSI//(OJ*)

- L7 2.4.15
(o — a*)(ag—1 — a¥) 2 ¢"(a¥) ( )

Therefore &)
Ck+1 — ’2¢/,(7Z712) €LCr—1 é Mekek_l, (2.4.16)

where my € (ag_1,ag,a®),n2 € (agp_1,01), M = |¢"(11)/2¢" (n2)|. The above
relations indicate that there exists 0 > 0 such that, when the initial points
ap, a1 € (of —6,a* 4+ 6) and o # a1, the sequence {ax} — a*.
Next, we consider the convergence rate. Set ¢, = Me;,y; = lne;,i =
k—1,kk+1, then
€kt1 = €xEE_1, (2.4.17)

Yk+1 = Yk + Yr—-1- (2.4.18)

Obviously, (2.4.18) is the equation that the Fibonacci sequence satisfies, and
its characteristic equation is

t2—t—1=0 (2.4.19)
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whose solutions are

Lty = . (2.4.20)
Therefore the Fibonacci sequence {yx} can be written as
ype = AtV + Bt k=0,1,---, (2.4.21)

where A and B are coefficients to be determined. Obviously, when k& — oo,

Ine, = yp ~ At (2.4.22)
Since .
€kl exp(At; ™) _
e lexp(Atf)r 7
then e
+1 _
=~ MhT (2.4.23)
€k

which implies that the convergence rate is t; = 1+—2\/5 ~1.618. O
This theorem tells us that the secant method has superlinear convergence.

3. Quadratic Interpolation Method with Three Points.
Given three distinct points aq,as and a3, and their function values. The
required interpolation conditions are

q(og) = aa? + bay + ¢ = Pp(ay), i =1,2,3. (2.4.24)
By solving the above equations, we obtain

(a2 —az)pr + (a3 — a1)g2 + (1 — a2)¢3

T (1 — ag)(a2 — asz)(ag — a1) ’
- (a5 — a3)¢1 + (a3 — af) g2 + (af — a3)¢3
(1 — az)(az — az)(as — a1)
Then
_ b
5=_2
2a
_ 1(af —ad)¢1 + (0f — af)do + (of — 03)ds (2.4.25)
2 (g —az)d1 + (a3 — a1)da + (a1 — a2)¢3 o
_ 1 1 (91 — ¢2) (a2 — a3) (a3 — 1)
— 2(a1 + ag) + 2 (g —o)d1 1+ (s —o)ba 1 (o1 = a2)¢3(.2.4.26)
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Equations (2.4.25) and (2.4.26) are called the quadratic interpolation formula
with three points. The above formula can also be obtained from considering
the Lagrange interpolation formula

B (a0 — ag)(a — a3) (a—ag)(a—a3) (a—ag)(a—ag)
Lle) = (1 —az)(ar — Oé:a)(ler(O@ —a1)(ag — a3)¢2+(a3 —a1)(az — a2)¢3’
(2.4.27)

and setting L'(a) = 0.

Algorithm 2.4.2 (Line Search Employing Quadratic Interpolation with Three
Points)

Step 0. Given tolerance €. Find an initial bracket {aq, a9, a3} con-
taining o*; Compute ¢(ay),i = 1,2, 3.

Step 1. Use the formula (2.4.25) to produce &;
Step 2. If (a —ay)(@—ag) > 0 go to Step 3; otherwise go to Step 4;

Step 3. Construct new bracket {ai1,as, a3} from ai,as, a3 and a.
Go to Step 1.

Step 4. If | — as] < €, stop; otherwise go to Step 3. O

Figure 2.4.1 is a diagram for the quadratic interpolation line search with
three points.

The following theorem shows that the above algorithm has convergence
rate with order 1.32.

Theorem 2.4.3 Let ¢(a) have continuous fourth-order derivatives. Let o
satisfy ¢'(a*) = 0 and ¢"(a*) # 0. Then the sequence {a} generated from
the formula (2.4.25) has convergence rate with order 1.32.

Proof. By Lagrange interpolation formula (2.4.27), we have
¢(a) = L) + R3(a), (2.4.28)

where

Rs3(a) = é(;ﬁ’”(f(oz))(a —ap)(a—ag)(a — ag). (2.4.29)
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Since 0 = ¢'(a*) = L'(a*) + R5(a*), we get

20 — (a3 + )

(a2 — ag)(ag — a1)

+ R(a*) = 0. (2.4.30)

20* — (ag + a3)
(1 — az)(a1 — as)
20 — (a1 + a2)
s (a3 — ar)(as — az)

b1

+ 2

Noting that (2.4.25) can be rewritten as

¢1(az+as) + d2(aztar) + ¢3(oitaz)
g = 1 lai—as)(a1-ag) T (az—ag)(az—a1) " (az—a1)(es—az) (2.4.31)
2 ¢1 + ( ¢2 + ( ¢3 ’ o

(a1—az)(a1—agz) ag—az)(az—ay) az—aq)(az—az)

it follows from (2.4.30) and (2.4.31) that

1 / *
o —ay = R3(? ) - . (24.32)

(061—012)(1041—043) T (ae—as)(az—ar) T (as—a1)(as—az)

Let e; = o — a,1 = 1,2, 3,4. It follows from (2.4.32) that

ea[—¢1(e2 — e3) — pa(e3 —e1) — ¢3(e1 — e2)]
= —%Rg(a*)(el —e2)(e2 —e3)(es —e1). (2.4.33)

Noting that ¢'(a*) = 0, it follows from Taylor expansion that

1
¢i = p(a®) + 563 (o) 4+ O(ed). (2.4.34)
Neglecting the third-order term and substituting (2.4.34) into (2.4.33) give
1
= ———Ri(a"). 2.4.35
€4 ¢H(O¢*) 3(a”) ( )
Also, by the Lagrange interpolation formula, we have
1
Ry(a) = 9" (€)@ — az)(a —az) + (a = ar)(a - a3)

o~ an)(a— a)] + 6@~ @)@ - az)(a — as),

which implies

Ry(a”) = é¢///(§(a*))(€162 + ezez +eser) + 2—14¢(4) (n)e1ezes. (2.4.36)
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Neglecting the fourth-order derivative term, it follows from (2.4.35) and
(2.4.36) that

_ ¢"(&(a"))

e4 = 7(6162 + eges + 6361) = M(€162 + soe3 + 6361),

69" ()
where M is some constant. In general, we have
ert2 = M(er_1ep + ereri1 + eryi1ep—1)- (2.4.37)
Since epy1 = O(ex) = O(ex_1) when e — 0, there exists M > 0 such that
lerva| < Mleg—1llexl,

ie.,
Mlegya| < Mleg—1|M|eg|.

When |e;|, (i = 1,2, 3) are sufficiently small such that

§ = max{M|e1|, M|ez|, Mles|} <1,

one has B B B
Mleq| < Mey|Mles| < 6%
Set B
Meg| < 0%, (2.4.38)
then
Mexya| < Mlep|M|ep_r| < 59 5% 2 sak+e,
hence
Qe+2 = Q@ + -1, (k> 2) (2.4.39)
where ¢; = g2 = g3 = 1. Obviously, the characteristic equation of (2.4.39) is
t3—t—1=0 (2.4.40)
with one root ¢; ~ 1.32 and other two conjugate complex roots, |to| = |t3| < 1.

The general solution of (2.4.39) has form
qr = Aty + Bts + Ctf, (2.4.41)
where A, B and C are coefficients to be determined. Clearly, when k& — oo,

Qri1 — t1qr = Bth(ta —t1) + Cth(ts — t1) — 0.
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Given a, h,e

!

Decide search interval

[ﬂl y g |a3]

Yes

97

a:=(a, +a;)/2; ¢:=¢(a)

No

|
——( la—a, | <€

Yes
bpe-its) Ma—ea) 0 )—

No Yes Yes

a i =a azi= @y i I

P =9 P5i=0, P =0,
a, i =a Py =@

No

A: =200 (a,—ay)+ 92 (e —a,)+93(a; —a,)]

A=0 ¢
No

Yes

a:=[9, (o} —ai)+o, (af

—at)+e;(e? —af)l/A

C (a—a,) (ﬂr—nr3}<0 ?

No

' Yes

¢:=¢la)

Figure 2.4.1 Flow chart for quadratic interpolation method

with three points
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So, when k is sufficiently large, we have

Qe+1 — t1gr = —0.1. (2.4.42)

Note from (2.4.38) that |eg| < (1/M)5% 2 By, (k> 1). Then, by (2.4.42),
when £k is sufficiently large,
Bt 5Qk+1/M

B - 5t1qk/(M)t1 = MU §a Tt < 5*0.1]\_4“717
k

which indicates that the convergence order t; &~ 1.32. O

2.4.2 Cubic Interpolation Method

The cubic interpolation method approximates the objective function ¢(a) by
a cubic polynomial. To construct the cubic polynomial p(«), four interpo-
lation conditions are required. For example, we may use function values at
four points, or function values at three points and a derivative value at one
point, or function values and derivative values at two points. Note that, in
general, the cubic interpolation has better convergence than the quadratic
interpolation, but that it needs computing of derivatives and more expensive
computation. Hence it is often used for smooth functions. In the following,
we discuss the cubic interpolation method with two points.

We are given two points a and b, the function values ¢(a) and ¢(b), and
the derivative values ¢/(a) and ¢'(b) to construct a cubic polynomial of the
form

pla) =ci(a—a)P +ec(a—a)+cs(a—a)+ ¢ (2.4.43)

where ¢; are the coefficients of the polynomial which are chosen such that
p(a) = ca = ¢(a),
p'(a) = c3 = ¢'(a),
p(b) = c1(b—a)® + ca(b—a)® + c3(b — a) + c1 = ¢(b),
p'(b) = 3ci1(b— a)® 4 2c2(b—a) + c3 = ¢'(b). (2.4.44)
From the sufficient condition of the minimizer, we have

p(a) =3ci(a—a)® +2c(a—a) +c5=0 (2.4.45)

and
p"(a) = 6c1(a — a) + 2¢o > 0. (2.4.46)
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Solving (2.4.45) yields

a = a+ , if ¢1 #0, (2.4.47)

a = a——, if¢; =0. (2.4.48)

In order to guarantee the condition (2.4.46) holding, we only take the
positive in (2.4.47). So we combine (2.4.47) with (2.4.48), and get

—cy +1/c3 — 3cics —c3
a—a= = . (2.4.49)
3c1 co + /3 — 3cics

When ¢; =0, (2.4.49) is just (2.4.48). Then the minimizer of p(«) is

a=a-— 63 (2.4.50)

co + \/cg —3cics

The minimizer in (2.4.50) is represented by c1,co and c3. We hope to
represent @ by ¢(a), #(b), ¢'(a) and ¢'(b) directly.

Let
=302 ) -9 0)
w? = 22 — ¢/ (a)¢/ (D). (2.4.51)
By use of (2.4.44), we have
= 3W =3[c1(b — a)? + ca(b— a) + c3),

s—¢'(a) — ¢'(b) = ca(b—a) + cs,
w? = 22— ¢'(a)d(b) = (b—a)*(c - Beicy).

w
(b—a)ea =z —c3, \/C3 — 3cie3 = o
[ - zZzH+w-c
Co + C% - 361C3 == Ta:s (2452)

Then

and so
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Using ¢3 = ¢'(a) and substituting (2.4.52) into (2.4.50), we get

a—a= m (2.4.53)
which is
oy = —b—a)g@)d ) _ —(b— a) (% — w?)
(z+w—4¢'(a)d’'(b)  ¢'(b)(z+w) — (22 —w?)
= W (2.4.54)

Unfortunately, the formula (2.4.54) is not adequate for calculating &, because
its denominator is possibly zero or merely very small. Fortunately, it can be
overcome by use of (2.4.53) and (2.4.54), and we have

5—a — —(b—a)¢'(a) _ (b—a)(w — 2)
z+w—¢'(a)  ¢0)—2z+w
(b—a)(—9¢'(a) + w — 2)

¢'(b) — ¢'(a) + 2w

B . ) tztw
= (b—a) (1 P OETIOE 2w> : (2.4.55)
Gat(b—a) @z (2.4.56)

¢'(b) = ¢'(a) + 2w’

In (2.4.55) and (2.4.56), the denominator ¢'(b) — ¢'(a) 4+ 2w # 0. In fact,
since ¢/(a) < 0 and ¢/(b) > 0, then w? = 22 — ¢'(a)¢’(b) > 0. Taking w > 0,
it follows that the denominator ¢/(b) — ¢'(a) + 2w > 0.

In the same way as we did in the last subsection, we can discuss the
convergence rate of the cubic interpolation method. Similar to (2.4.16), we
can obtain

ers1 = M(exej_; + efep—1),

where M is some constant. We can show that the characteristic equation is
2 —t—2=0,

which solution is t = 2. Therefore the cubic interpolation method with two
points has convergence rate with order 2.
Finally, we give a flow diagram of the method in Figure 2.4.2.
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Given initial point e, initial step h, ,accuracy e

|

mi=a; 9 i=9(,) ; ¢ 1=9",)

Yes
( o) 1<€ 9
No @

¢, 207

No Yes

h:=hi h:=—1hl

ty =pyths 9, =0(y) s @) =9 (n,)
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e ¢2'+z(‘+z
?, —p, +2w
ari=p +lb—a)z
e =00 e =0 ()

h:=hi/10 - —

Figure 2.4.2 Flow chart for cubic interpolation method with two points

2.5 Inexact Line Search Techniques

Line search is a basic part of optimization methods. In the last sections we
have discussed some exact line search techniques which find «a; such that

f(xk + Oékdk) = gl;gf(xk + Ozdk),

or

aj = min{a| V f(zy + adi) d, =0, a > 0}.

However, commonly, the exact line search is expensive. Especially, when an
iterate is far from the solution of the problem, it is not effective to solve
exactly a one-dimension subproblem. Also, in practice, for many optimiza-
tion methods, for example, Newton method and quasi-Newton method, their
convergence rate does not depend on the exact line search. Therefore, as
long as there is an acceptable steplength rule which ensures that the objec-
tive function has sufficient descent, the exact line search can be avoided and
the computing efforts will be decreased greatly. In the following, we define
gr = V f(xr,) without special indication.
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2.5.1 Armijo and Goldstein Rule

Armijo rule [4] is as follows: Given 3 € (0,1),p € (0,3),7 > 0, there exists
the least nonnegative integer my, such that

flax) = flap + B7rdy) > —pB™" gy di. (2.5.1)
Goldstein (1965) [157] presented the following rule. Let
J={a>0] f(zr+ ad;) < f(zk)} (2.5.2)

be an interval. In Figure 2.5.1 J = (0,a). In order to guarantee the objective
function decreases sufficiently, we want to choose « such that it is away from
the two end points of the interval J. The two reasonable conditions are

fxr + ady) < f(zr) + pagy di (2.5.3)

and
flxp + ady) > f(z) + (1 = p)agl dy, (2.5.4)
which exclude those points near the right end-point and the left end-point,
where 0 < p < 3, All o satisfying (2.5.3)-(2.5.4) constitute the interval
Ja = [b,c]. We call (2.5.3)-(2.5.4) Goldstein inexact line search rule, in brief,
Goldstein rule. When a step-length factor « satisfies (2.5.3)-(2.5.4), it is

called an acceptable step-length factor, and the obtained interval Jo = [b, ¢]
is called an acceptable interval.

fley+ad,)

flx) + pgls,

e
|

IN | Az +(-a)gl's
| “H]"‘“-.N lt S5k 2k

o e b c a "

Figure 2.5.1 Inexact line search

As before, let ¢(a) = f(xp + adg). Then (2.5.3) and (2.5.4) can be
rewritten respectively

¢(0) + parg'(0), (2.5.5)
¢(0) + (1 — p)age'(0). 2.5.6

<
>
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Note that the restriction p < % is necessary. In fact, if ¢(«) is a quadratic
function satisfying ¢/(0) < 0 and ¢”(0) > 0, then the global minimizer a* of
¢ satisfies

#(a) = 6(0) + 5076/ (0).

Hence o* satisfies (2.5.5) if and only if p < % The restriction p < % will
also finally permit o = 1 for Newton method and quasi-Newton method.
Therefore, without the restriction p < %, the superlinear convergence of the

methods will not be guaranteed.

2.5.2 Wolfe-Powell Rule

As shown in Figure 2.5.1, it is possible that the rule (2.5.4) excludes the
minimizing value of a outside the acceptable interval. Instead, the Wolfe-
Powell rule gives another rule to replace (2.5.4):

Gir1de > ogidy, o € (p,1), (2.5.7)
which implies that
¢ (ar) = [Vf(xr+ardy)] dp > oV () di
o/ (0) > ¢/ (0). (2.5.8)

It shows that the geometric interpretation of (2.5.7) is that the slope ¢'(ay)
at the acceptable point must be greater than or equal to some multiple o €
(0,1) of the initial slope. The rule (2.5.3) and (2.5.7) is called the Wolfe-
Powell inexact line search rule, in brief, the Wolfe-Powell rule, which gives
the acceptable interval Js = [e, ¢| that includes the minimizing values of a.

In fact, the rule (2.5.7) can be obtained from the mean-value theorem
and (2.5.4). Let oy, satisfy (2.5.4). Then

ap[V [z + Opardy)) dr = f(ox + ardy) — f(x)
> (1= p)oVf(zx) dy
which shows (2.5.7). Now we show the existence of ay, satisfying (2.5.3) and

(2.5.7). Let &y, satisfy the equality in (2.5.3). By the mean-value theorem
and (2.5.3), we have

&k [V f(zn + Opapde)Tde = f(ag + andy) — (k)
p6ueV f ()" di,
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where ), € (0,1). Let p < o < 1, and note that V f(z3)"dy < 0, we have
[Vf(l’k + dekdk)]Tdk = pr(.CUk)Tdk > O'Vf(l’k)Tdk

which is just (2.5.7) if we set a = rdi. The discussion above also shows
that the requirement p < o < 1 is necessary, such that there exists steplength
factor «y satisfying the Wolfe-Powell rule.

It should point out that the inequality requirement (2.5.7) is an approxi-
mation of the orthogonal condition

ng+1dk =0

which is satisfied by exact line search. However, unfortunately, one possible
disadvantage of (2.5.7) is that it does not reduce to an exact line search in
the limit ¢ — 0. In addition, a steplength may satisfy the Wolfe-Powell rule
(2.5.3) and (2.5.7) without being close to a minimizer of ¢. Luckily, if we
replace (2.5.7) by using the rule

\9F 1 dy| < —ogldy, (2.5.9)

the exact line search is obtained in the limit o — 0, and the points that are
far from a stationary point of ¢ will be excluded. Therefore the rule (2.5.3)
and (2.5.9) is also a successful pair of inexact line search rules which is called
the strong Wolfe-Powell rule. Furthermore, we often employ the following
form of the strong Wolfe-Powell rule:

|98 1dk| < ol|gi dy| (2.5.10)

or

¢/ (ax)] < al¢'(0)]. (2.5.11)

In general, the smaller the value o, the more exact the line search. Nor-
mally, taking ¢ = 0.1 gives a fairly accurate line search, whereas the value
o = 0.9 gives a weak line search. However, taking too small o may be unwise,
because the smaller the value o, the more expensive the computing effort.
Usually, p = 0.1 and ¢ = 0.4 are suitable, and it depends on the specific
problem.
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2.5.3 Goldstein Algorithm and Wolfe-Powell Algorithm

Although it is possible that the minimizing value of & may be excluded by the
rule (2.5.4), it seldom occurs in practice. Therefore, Goldstein rule (2.5.3)-
(2.5.4) is a frequently used rule in practice. The overall structure is illustrated
in Figure 2.5.2 and the details of the algorithm are described in Algorithm
2.5.1.

Choose initial data
ay =0, @ =02, >0

Compute ¢(0), ¢'(0)

1

Compute ¢ (a)

(2.5.4

{ (a, +a;)/2, if ay <t
Holds?

tee, else

Yes

/ a, =a, slni/

Figure 2.5.2 Flow chart for Goldstein inexact line search

Algorithm 2.5.1 (Inexact Line Search with Goldstein Rule)

Step 1. Choose initial data. Take initial point ag in [0,400) (or
[0, naz]). Compute ¢(0),¢'(0). Given p € (0,3),t > 1. Set
ag = 0,by := +00 (01 Qmaz), k := 0.

Step 2. Check the rule (2.5.3). Compute ¢p(oy). If

p(ar) < ¢(0) + pay¢'(0),
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go to Step 3; otherwise, set agy1 = ag,bpyr1 = ayg, go to
Step 4.

Step 3. Check the rule (2.5.4). If
¢(ax) = ¢(0) + (1 = p)axg'(0),

stop, and output ay; otherwise, set axi1 = g, bgy1 = by.
If by41 < 400, go to Step 4; otherwise set ag41 1= tag, k =
k+1, go to Step 2.

Step 4. Choose a new point. Set

_ Gg41 + bggr
ak+1 = f?

and k:=k+1, go to Step 2. O

Similarly, we give in Figure 2.5.3 the diagram of the Wolfe-Powell algo-
rithm.

Choose initial data
@, =0, ay=cc, a0

f=fx, f I=£Id;

i

Compute f=f(x+ad,)

A
Compute a:

@ —ay

A b —
=ty " Fif
I +— .

la —;r]-J_.I;‘ ;

Yes

Compute g=glx+ ad,)

and f'=gd,
SL‘f.al =a
| Compute a: - -f“:f =
(a—ea))f h=f
e=gt—— A
Uy =7 ) Gt

Yes

Set e, =a, stop
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Figure 2.5.3 Flow chart for Wolfe-Powell inexact line search

2.5.4 Backtracking Line Search

In practice, frequently, we also use only the condition (2.5.3) if we choose
an appropriate o which is not too small. This method is called backtracking
line search. The idea of backtracking is, at the beginning, to set a = 1. If
x + ady is not acceptable, we reduce « until zj + ady, satisfies (2.5.3).

Algorithm 2.5.2
Step 1. Given p € (0, %),O <l<u<l, seta=1.

Step 2. Test
flog + ady) < f(z) + pagf dy;

Step 3. If (2.5.3) is not satisfied, set a := wo,w € [l,u], and go to
Step 2; otherwise, set ay := o and Tpy1 = T + apdi. O

In Step 3 of the above algorithm, the quadratic interpolation can be used
to reduce a. Let

¢(a) = flzy + ady). (2.5.12)
At the beginning, we have
$(0) = f(xx), ¢'(0) = V f(zx)" dy. (2.5.13)
After computing f(xy, + dj), we have
¢(1) =[xk + di). (2.5.14)

If f(xg + di) does not satisfy (2.5.3), the following quadratic model can be
used to approximate ¢(«):

m(a) = [(1) — ¢(0) — ¢'(0)]a® + ¢ (0)ar + $(0), (2.5.15)

which obeys the three conditions in (2.5.13)-(2.5.14). Setting m/(a) = 0 gives

)
T T~ 0l0) — $ 0 (2:5:10)
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which can be taken as the next value of a.

In order to prevent o from being too small and not terminating, some
safeguards are needed. For example, given the least step minstep, if (2.5.3)
is not satisfied but ||ady|| < minstep, the line search stops.

In summary, in this section we introduced three kind of inexact line search
rules:

1. Goldstein rule: (2.5.3)-(2.5.4).

2. Wolfe-Powell rule: (2.5.3) and (2.5.7); Strong Wolfe-Powell rule: (2.5.3)
and (2.5.9).

3. Backtracking rule (also called Armijo rule): (2.5.3) or (2.5.1).

The above three inexact line search rules are frequently used in optimization
methods below.

2.5.5 Convergence Theorems of Inexact Line Search

In the final subsection we establish convergence theorems of inexact line
search methods. To prove the descent property of the methods, we try to
avoid the case in which the search directions s = ajd;. are nearly orthogonal
to the negative gradient —gg, that is, the angle 6 between s, and —g; is
uniformly bounded away from 90°,

s

On < 5 — i, Vh (2.5.17)

where i1 > 0,0y, € [0, 5] is defined by

cos O, = —git sx/ (|9l lIsx])), (2.5.18)

because, otherwise, g,{sk will approach zero and so s is almost not a descent
direction.
A general descent algorithm with inexact line search is as follows:

Algorithm 2.5.3
Step 1. Given xg € R™*,0<e < 1,k:=0.

Step 2 If ||V f(xk)|| < e, stop; otherwise, find a descent direction
di, such that dLV f(zy) < 0.
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Step 3 Find the steplength factor oy, by use of Goldstein rule (2.5.3)-
(2.5.4) or Wolfe-Powell rule (2.5.3) and (2.5.7).

Step 4 Set xp+1 = xp + apdi; k= k+ 1, go to Step 2. O

In Algorithm 2.5.3, dj, is a general descent direction provided it satisfies
dFV f(zr) <0, and oy is a general inexact line-search factor provided some
inexact line search rule is satisfied. So, this algorithm is a very general
algorithm, that is, it contains a great class of methods.

Now, we establish the global convergence of the general descent algorithm
with inexact line search.

Theorem 2.5.4 Let ay, in Algorithm 2.5.3 be defined by Goldstein rule (2.5.3)-
(2.5.4) or Wolfe-Powell rule (2.5.3) and (2.5.7). Let also sy satisfy (2.5.17).
If Vf exists and is uniformly continuous on the level set {z| f(x) < f(xo)},
then either V f(x) = 0 for some k, or f(x) — —oo,or V f(zy) — 0.

Proof. Let oy be defined by (2.5.3)-(2.5.4). Assume that, for all &k, g, =
Vf(xr) # 0 (whence s = agdy # 0) and f(zy) is bounded below, it follows
that f(zg) — f(zk41) — 0, hence —gi sy — 0 from (2.5.3).

Now assume that g — 0 does not hold. Then there exist ¢ > 0 and a
subsequence such that [|gy|| > € and ||s;]| — 0. Since 6, < T — p, we get

cos Oy, > cos(g — p) = sin u,

hence
—gk sk > sin | gi ||| skll > e sin pl|si |-

But the Taylor series gives

flari1) = flaw) + 9(&) sk,

where &, is on the line segment (z1,2r41). By uniform continuity, we have
9(&k) — g when s — 0. So

f(@isr) = f(@r) + g7 sk + o(lIskl)-

Therefore we obtain

fxr) = f(wgs1)

T
—9k Sk

— 1,
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which contradicts (2.5.4). Hence, g — 0, and the proof is complete.
Similarly, instead of (2.5.4), if we use (2.5.7), we can get global conver-
gence of the Wolfe-Powell algorithm. The proof is essentially the same as
above. We need only to note that, by uniform continuity of g(x), it follows
that
ghs15k = i sk + o(llskl),

such that .
Ji+15k
ThALT
95 Sk
This contradicts ngHsk/g,{sk < o < 1 given by (2.5.7). Hence gy — 0.
Therefore, the global convergence theorem also holds when a4 is defined by

Wolfe-Powell rule (2.5.3) and (2.5.7). O
Next, we give the convergence theorems with the Wolfe-Powell rule.

Theorem 2.5.5 Let f: R™ — R be continuously differentiable and bounded
below, and let V f be uniformly continuous on the level set = {x| f(x) <

f(zo)}. Assume that ay, is defined by Wolfe-Powell rule (2.5.3) and (2.5.7).
Then the sequence generated by Algorithm 2.5.8 satisfies

V()T sk

lim =0, 2.5.19
e ™ sl (25.19)

which means
IV f(xr)|| cos O — 0. (2.5.20)

Proof. Since Vf(z3)Ts, < 0 and f is bounded below, then the sequence
{z1} is well-defined and {z1} C Q. Also, since {f(xy)} is a descent sequence,
hence it is convergent.

We now prove (2.5.19) by contradiction. Assume that (2.5.19) does not
hold. Then there exist € > 0 and a subsequence with index set K, such that

V() sk

>e, ke K.
skl

From (2.5.3), one has

V (k) sk

f@r) = f(@rg1) = pllskl (— sl

) > pllsklle-



112 CHAPTER 2. LINE SEARCH
Since also {f(xy)} is a convergent sequence, then {s; : k € K} converges to
zero. Also by (2.5.7), we have

(1= o) (=Vf(xx)"sk) < (VF(ap +sx) = Vf(ar) sp, k= 0.

Therefore

V()T sy
lskll 1

! IV St i)~ VAl ke K. (25.21)

However, since we have proved {sx|k € K} — 0, then the right-hand side
of (2.5.21) goes to zero by the uniform continuity of V f on the level set (.
Hence there is a contradiction which completes the proof. O

Note that (2.5.19) implies

IV f ()| cos b — 0,

which is called the Zoutendijk condition, where 6; is the angle between
—Vf(z) and sg. If cosfy > § > 0, we have limy_,o ||V f(zx)| = 0. Also,
if the assumption of uniform continuity is replaced by Lipschitz continuity,
the theorem is also true. In the theorem below, we prove this case. We first
prove a lemma which gives a bound of descent for a single step.

Lemma 2.5.6 Let f: D C R" — R be continuously differentiable, also let
V f(z) satisfy Lipschitz condition
IVF(y) = V)| < Mlly — =],

where M > 0 is a constant. If f(zi + ady) is bounded below and oo > 0, then
for all ag, > 0 satisfying (2.5.3) and (2.5.7), we have

fla) = flox + ardr) 2 BIIV £ (@) cos®(dx, =V f(x)), (2.5.22)
where B > 0 is a constant.
Proof. From Lipschitz condition of Vf and (2.5.7) we have

apM||di||* = di [V f(ex + ardy) = Vf(z1)] = —(1 = 0)dg V f (),

that is

ulldel] > el ) cos(d, V(@)

= 2TV S o)l cosld, V7 ().

\%
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Using (2.5.3) yields

Flaw) = f(oe + apdy) > —appdf V f (x1)
= app|ldil||V f(zk)|| cos(dy, =V f ()

> IV ()| costds, ~V f(x)) IV (o)l cosla, ~ )
= 9 )| cos? (e~ ),

which is (2.5.22) in which 8 =p(1 —0)/M. O

Theorem 2.5.7 Let f(z) be continuously differentiable on R"™, and let V f(x)
satisfy Lipschitz condition

IVf(z) = Vil < Mz —yll. (2.5.23)

Also let oy, in Algorithm 2.5.8 be defined by Wolfe-Powell rule (2.5.3) and
(2.5.7). If the condition (2.5.17) is satisfied, then, for the sequence {xy}
generated by Algorithm 2.5.3, either V f(xy) = 0 for some k, or f(xy) —
—00, or Vf(zy) — 0.

Proof.  Assume that Vf(zy) # 0,Vk. By Lemma 2.5.6, we have

Flar) = f(@re1) = Beos® O ||V f (x|, (2.5.24)

where 3 = p(1 — 0)/M is a positive constant being independent of k. Then,
for all £ > 0, we have

k—1
f(zo) — flzr) = [f(xi) — f(@is1)]
i=0
k-1
> ﬁorgiingVf(xi)HQ > cos® 6;. (2.5.25)
== i=0

Since 6y, satisfies (2.5.17), this means that

o0
Z cos® 0, = +o0. (2.5.26)
k=0

Then it follows from (2.5.25) that either V f(zy) — 0 or f(z) — —oo. This
completes the proof. O
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In fact, Theorem 2.5.7 is a direct result coming from (2.5.20) and the
angle condition (2.5.17).

Finally, we derive an estimate of descent amount of f(z) under inexact
line search.

Theorem 2.5.8 Let oy, satisfy (2.5.3). If f(x) is a uniformly convex func-
tion, i.e., there exists a constant n > 0 such that

(y—2) [V fy) = V(=) =nlly -z (2.5.27)
or there exist positive constants m and M (m < M), such that
mlyl* < y"Vf(z)y < Mlly|*. (2.5.28)

Then

flag) = flog + agdy) > ledi?, (2.5.29)

Mmoo
1+ M/m

where p is defined in (2.5.3).

Proof. We divide into two cases.
First, assume that d{Vf(xk + agdy) < 0. In this case we have

F@n) = flag + ardy) = /0 ATV (g + g )dt
= [V andh) — Vo + )t

1
= - d||?
277”05143 k”

PI llods 2. (2.5.30)

14+ /M/m

Second, assume that di'V f(x) + ardy) > 0. Then there exists 0 < a* <
a, such that dL'V f(zy + a*dy) = 0. So, it follows from (2.5.28) that

v

Flaw) — s +ad) < L M]Jo"dy | (2531)

and
1
flag + agdy) — f(zr + a™dy) > 57””(0% — a*)dkHQ. (2.5.32)
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Since f(xp + axdy) < f(zg), it follows from (2.5.31) and (2.5.32) that

ay < (1 + \/g) a*. (2.5.33)

Hence
flan) — flan +apdy) > —owpdl V f(z)
> appdl [V f(zp + o di) — V f(2z)]
> npaga®||dy?
R E— P (2.5.34)
L++/M/m

Hence (2.5.29) holds in both cases. This completes the proof. O

In this chapter we have discussed exact and inexact line search techniques
which guarantee monotonic decrease of the objective function. On the other
hand it is found that enforcing monotonicity of the function values may con-
siderably slow the rate of convergence, especially in the presence of narrow
curved valleys. Therefore, it is reasonable to present a nonmonotonic line
search technique for optimization which allows an increase in function value
at each step, while retaining global convergence. Grippo etc. [164] general-
ized the Armijo rule to the nonmonotone case and relaxed the condition of
monotonic decrease. Several papers also deal with these techniques. Here we
only state the basic result of nonmonotonic line search as follows.

Theorem 2.5.9 Let {x} be a sequence defined by
Tt1 = Tk + axdy, di # 0.

Let 7 > 0,0 € (0,1),7 € (0,1) and let M be a nonnegative integer. Assume
that

(i) the level set Q = {z | f(x) < f(xo)} is compact;

(ii) there exist positive numbers ¢y, ca such that

Vfap) dy < —er||V f )| (2.5.35)
ldill < 2|V f () l; (2.5.36)
(iii) oy, = o T, where hy is the first nonnegative integer h, such that

flap+o"rdy) < max [f(zp)] + 70" 7V f (2x) " dy, (2.5.37)
0<j<m(k)
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where m(0) =0 and 0 < m(k) < min[m(k — 1) + 1, M],k > 1.
Then the sequence {xy} remains in 0 and every accumulation point T
satisfies V f(z) = 0.

Proof. See Grippo etc. [164]. O

Exercises

1. Let f(x) = (sinz)®tan(1 — 2)e3"®. Find the maximum of f(z) in [0, 1]
by use of the 0.618 method, quadratic interpolation method, and Goldstein
line search, respectively.

2. Write the Fibonacci algorithm and its program in MATLAB (or FOR-
TRAN, C).

3. Let ¢(t) = e7* + €. Let the initial interval be [—1,1].
(1) Minimize ¢(t) by 0.618 method.

(2) Minimize ¢(t) by Fibonacci method.

(3) Minimize ¢(t) by Armijo line search.

4. Let ¢(t) = 1 — te~**. Let the initial interval be [0,1]. Try to minimize
¢(t) by quadratic interpolation method.

5. Let ¢(t) = —2t3 + 212 — 60t + 50.

(1) Minimize ¢(t) by Armijo rule if ¢o = 0.5 and p = 0.1.

(2) Minimize ¢(t) by Goldstein rule if to = 0.5 and p = 0.1.

(3) Minimize ¢(t) by Wolfe rule if tg = 0.5,p = 0.1, and ¢ = 0.8.

6. Let f(z) = xf + 22 + 22. Given current point x;, = (1,1)7 and
=(-3,-1)T. Let p=0.1,0 = 0.5.

(1) Try using the Wolfe rule to find a new point xj1.

(2) Set @« = 1, = 0.5, = 0.1 respectively, describe that for which «
satisfies the Wolfe rule and for which « does not satisfy the Wolfe rule.

dy,

7. Show that if 0 < o < p < 1, then there may be no steplengths that
satisfy the Wolfe rule.

8. Describe the outline of Theorem 2.5.4.
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9. Prove the other form of Theorem 2.5.5: Let f : R™ — R be continu-
ously differentiable and bounded below, and let V f be Lipschitz continuous
on the level set Q = {z | f(x) < f(xo)}. Assume that « is defined by Wolfe-
Powell rule (2.5.3) and (2.5.7). Then the sequence generated by Algorithm

2.5.3 satisfies .
lim Vi(@r) sk _ 0.
k—too ||skl|

which means
IV f(zk)| cos b — 0.



Chapter 3

Newton’s Methods

3.1 The Steepest Descent Method

3.1.1 The Steepest Descent Method

The steepest descent method is one of the simplest and the most fundamental
minimization methods for unconstrained optimization. Since it uses the neg-
ative gradient as its descent direction, it is also called the gradient method.

Suppose that f(x) is continuously differentiable near xj, and the gradient
Ik v/ f(zx) # 0. From the Taylor expansion

f(@) = flaw) + (@ = 2x) g+ o[z — zx]), (3.1.1)

we know that, if we write x — 2 = adp, then the direction dj satisfying
dFgr < 0 is called a descent direction that is such that f(z) < f(zx). Fixing
a, it follows that the smaller the value d} g, (i.e., the larger the value |d}. gx|)
is, the faster the function value decreases. By the Cauchy-Schwartz inequality

\d} gk < lldilllgkll, (3.1.2)

we have that the value d;‘ggk is the smallest if and only if dp = —gg. Therefore
—gp. is the steepest descent direction.
The iterative scheme of the steepest descent method is

Thk+1 = Tk — Ok Gk (313)

In the following we give the algorithm.
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Algorithm 3.1.1 (The Steepest Descent Method)

Step 0. Let 0 < e < 1 be the termination tolerance. Given an initial
point xg € R". Set k = 0.

Step 1. If ||gr|l < e, stop ; otherwise let dy = —g.

Step 2. Find the steplength factor oy, such that

f(zp + agdy) = min f(zp + ady);
a>0

Step 3. Compute xpr1 = xf + opdy.

Step 4. k:=k+1, return to Step 1. O

3.1.2 Convergence of the Steepest Descent Method

The steepest descent method is of importance in the area of optimization
from the theoretical point of view. The importance of its convergence theory
is not only in itself but also in other optimization methods. In the following,
we discuss the global convergence and local convergence rate of the steepest
descent method.

Theorem 3.1.2 (Global convergence theorem of the steepest descent method)
Let f € C'. Then each accumulation point of the iterative sequence {xy}
generated by the steepest descent Algorithm 3.1.1 with exact line search is a
stationary point.

Proof. Let & be any accumulation point of {z;} and K an infinite index
set such that limpex 71, = 2. Set dp = —V f(z1). Since f € C!, the sequence
{di | k € K} is uniformly bounded and ||dg|| = ||V f(zk)||. Since the as-
sumptions of Theorem 2.2.3 are satisfied, it follows that ||V f(z)||?> = 0, i.e.,
Vf(z)=0. O

Theorem 3.1.3 (Global convergence theorem of the steepest descent method)
Let f(x) be twice continuously differentiable in R™ and |[V2f(x)| < M for
a positive constant M. Given any initial xo and € > 0. Then the sequence
generated from Algorithm 3.1.1 terminates in finitely many iterations, or
limg oo f(xf) = —00, or limg_, Vf(zx) = 0.
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Proof. Consider the infinite case. From Algorithm 3.1.1 and Theorem
2.2.2, we have

Flaw) — flon) > 5 IV Al
Then
k-1 1 k=l
Flwo) = fla) = 3 _[f(@i) = flwin)] = o7 2 IV F(@)]”
=0 1=0
Taking limits yields either limy_. f(zx) = —o0 or limg_,o ||V f(zx)|| = 0.

The result then follows. O

Instead of the exact line search in Step 2 of Algorithm 3.1.1, the steepest
descent method can also use inexact line search technique. For this case, the
global convergence is given below.

Theorem 3.1.4 (Convergence theorem of the steepest descent method with
inezact line search)

Let f € Ct. Consider the steepest descent method with inexact line search.
Then each accumulation point of the sequence {xy} is a stationary point.

Proof. It follows directly from Theorem 2.5.4. O

Unfortunately, the global convergence does not guarantee that the steep-
est descent method is an effective method. We can clearly find this problem
from the following analysis and the local convergence rate theorem.

In fact, the steepest descent direction is only a local property of the
algorithm. For many problems, the steepest descent method is not the actual
“steepest”, but is very slow. Although the method usually works well in the
early steps, as a stationary point is approached, it descends very slowly with
zigzagging phenomena. This zigzagging phenomena is illustrated in Figure
3.1.1 for the problem

min(x; — 2)4 + (1 — 2$2)2,

in which zigzagging occurs along the valley shown by the dotted lines.
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Figure 3.1.1 Zigzagging in the steepest descent method

In fact, the zigzagging of the steepest descent method can be explained
by the following facts. Since, from exact line search, one has

g;ﬂldk =0,

then

QkT+19k: = d;‘cpﬂdk = 0. (3.1.4)
This shows that two gradients are orthogonal to each other on the successive
iterates, and thus two successive directions are also orthogonal, which leads
to the zigzagging. When the stationary point is approached, ||gg| will be
very small. By means of the expression

Fai +ad) = f(ax) + agld + o [ad])). (3.1.5)

it is easy to see that the first order term agl d = —al|gx||? is of a very small
order of magnitude. Hence the descent of f is very small.

Next, we discuss the convergence rate of the steepest descent method,
first for the case of a quadratic function and then for the case of a general
function.

When the objective function is quadratic, the convergence rate of the
steepest descent method depends on the ratio of the longest axis and the
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shortest axis of the ellipsoid which corresponds to the contour of the objec-
tive function. The bigger the ratio is, the slower the descent is. The following
theorem indicates this fact and says that the steepest descent method con-
verges linearly.

Theorem 3.1.5 (The convergence rate theorem of the steepest descent method
for the case of a quadratic function)
Consider the unconstrained minimization problem

min f(z) = 1

T
= .
in 5% Gz, (3.1.6)

where G is an n X n symmetric and positive definite matrixz. Let A1 and
An be the largest and the smallest eigenvalues of G respectively. Let x* be
the solution of the problem (3.1.6). Then the sequence {xi} generated by
the steepest descent method converges to x*, the convergence rate is at least
linear, and the following bounds hold:

flen) = f@)  _ (5=1)2 (A= n)?

= : 3.1.7
flaw) = f@) = (+1)2 (M +An)? (3.1.7)
@311 — ¥ k—1 (,\1_)\”>
= = 1.
lox — a2l = w+1 \M+A /)0 (3.1.8)

kaJrl—x*” k—1 )\1 ()\1—)\71)
< =4/ = 3.1.9
e R s Sl 1 wil & vy wy R
where k = A1/ Ap.

Proof. Consider the minimization of (3.1.6); we have

Thi1 = Tk — QkJk, (3.1.10)
with .
= Ik Ik (3.1.11)
9L Gy,
and g = Guxy.
flan) = flangn) 2l Gy — 2 (zg — angr) T G(xr — argr)

kgl Gy — Saigl Gy,

1. T
5T, Gy,
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(gfgn)® 1 (9 gr)?

gFGar 2 gF Gy

tglG1gy,
= (9:.9¢)° . (3.1.12)
(98 Gar) (gt G~ gr)
By using Kantorovich inequality (3.1.33), we have immediately that
T, \2
f (k) (9x Gor) (95 G gr)
AN\, ] </\1—)\n>2
< 1= = : 3.1.14
- [ ()\1 -+ )\n)2 A+ A\ ( )

which is just (3.1.7).

By using (3.1.13), it is not difficult to get (3.1.8) and (3.1.9). In fact, let
er = xp — ¥, Yk > 0. Noting that G is symmetric and positive definite, we
have

Mneter < el Gep < Mef eg. (3.1.15)

Since x* = 0, we have
lzr — 2¥||% = el Gep, = x1 Gy, = 2f (). (3.1.16)
So, it follows from (3.1.15) that
Aollzr — 2¥)|)? < 2f(x1) < M|l — ¥, VE > 0. (3.1.17)
From (3.1.13), (3.1.16) and (3.1.17), we get

Al @pgr — 2| < Iz — |2, < (/\1 —/\n)2
Mz —2*12 — lze—2*Z ~ \ M+ /]

(3.1.18)

which gives (3.1.8) and (3.1.9). O
If we consider, more generally, the objective function with the form

1
f(z) = §xTGx — bz, (3.1.19)
where G is an n X n symmetric positive definite matrix and b € R™, the above
theorem is also true.
If the objective function is generalized to the non-quadratic case, we also

can get the linear convergence rate of the steepest descent method.
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Theorem 3.1.6 Let f(x) satisfy the assumptions of Theorem 2.2.8. If the
sequence {xr} generated from the steepest descent method converges to x*,
then the convergence rate is at least linear.

Proof. It is a direct result from Theorem 2.2.8. O
The above convergence rate theorem of the steepest descent method for
a general function can also be described as follows.

Theorem 3.1.7 Let f(x) be twice continuously differentiable near x* with
Vf(z*) =0 and V2 f(z*) positive definite. Let the sequence {x1} generated
by the steepest descent method converge to x*. Let

f(@e1) — f(7)

o) —f) (3.1.20)
Then B, < 1,Vk and
limsup f < A;m <1, (3.1.21)
where M and m satisfy
0<m< A <A <M, (3.1.22)

and A, and A1 are respectively the smallest and the largest eigenvalues of

V2f(z).
Proof. From Theorem 2.2.2, we have

[f(@e) = f@)] = [f(@re) = f@)] = flaw) = flre)
S IVIEIR, (3.1.23)

Y

which is, by the definition of G, that
1
(L= Bi)lf (k) — f(27)] = mllvf(wk)lﬁ

Hence, by the assumption of f, we get

IV (i) II?

O = M () — £()]

<1 (3.1.24)
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Now suppose that (z3 — x*)/||zx — 2*|| — d. It is obvious that
IV f(@)l” = [l — 2|2 (IV>f (2)d]|* + o(1))

and
Flaew) — F*) = Ll — 2 [P@ 1)+ o(1))

Using the above equalities and (3.1.22) yields

o IVF@O? 2V
e fla) — (%)~ dTVEf(aT)d

> 2m. (3.1.25)
Hence, it follows from (3.1.24) and (3.1.25) that

. . IV f ()2
stk < 1=t g

m
< 1-—x<1
- M

We complete the proof. O

3.1.3 Barzilai and Borwein Gradient Method

From the above discussions we know that the classical steepest descent method
performs poorly, converges linearly, and is badly affected by ill-conditioning.
Barzilai and Borwein [8] presented a two-point step size gradient method,
which is called usually the Barzilai-Borwein (or BB) gradient method. In the
method, the step size is derived from a two-point approximation to the secant
equation underlying quasi-Newton methods (see Chapter 5).
Consider the gradient iteration form

Tyl = T — Qg (3.1.26)

which can be written as
Tht1 = Tk — Dkgk, (3.1.27)

where Dy, = apl. In order to make the matrix Dy have quasi-Newton prop-
erty, we compute ay, such that

min  ||sg—1 — Dryg—1]- (3.1.28)
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This yields that
. Sg_lyk—1

- , (3.1.29)
Yl yk—1

Qg
where sg_1 = T — T—1,Yk—1 = gk — Jk—1-
By symmetry, we may minimize HD,;lsk_l — yk—1]| with respect to ay
and get
T
_ Sk—15k—1

ar = — . (3.1.30)
Sp—1Yk—1

The above description produces the following algorithm.

Algorithm 3.1.8 (The Barzilai-Borwein gradient method)
Step 0. Given xg € R",0<e <K 1. Set k=0.
Step 1. If ||gr|| < e, stop ; otherwise let d, = —gy.

Step 2. If k = 0, find ag by line search; otherwise compute oy, by
(3.1.29) or (3.1.30).

Step 3. Set xpy1 = xp + aypdy.

Step 4. k:=k+ 1, return to Step 1. O

It is easy to see that in this method no matrix computations and no line
searches (except k = 0) are required. The Barzilai-Borwein method is, in
fact, a gradient method, but requires less computational work, and greatly
speeds up the convergence of the gradient method. Barzilai and Borwein
[8] proved that the above algorithm is R-superlinearly convergent for the
quadratic case.

In the general non-quadratic case, a globalization strategy based on non-
monotone line search is suitable to Barzilai-Borwein gradient method. In
addition, in general non-quadratic case, o computed by (3.1.29) or (3.1.30)
can be unacceptably large or small. Therefore, we must assume that oy
satisfies the condition

0<al < < a(“), for all k,

where o and o are previously determined numbers.
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If we employ the iteration

1
Tpi1l = Tk — OTkgk =T — A\kGk (3.1.31)
with
S;;F_lyk—1 1
ap = T A= (3.1.32)
51%1516—1 (677
note that s, = —a—lkgk = —A\igk, then we have
oy = SkUk _ —AkGE Yk GeYn
stk Mgl et g

Now we give the following Barzilai-Borwein gradient algorithm with non-
monotone globalization.

Algorithm 3.1.9 (The Barzilai-Borwein gradient algorithm with nonmono-
tone linesearch)

Step 0. Givenzg € R™",0 < e < 1, an integer M >0, p € (0,1), >
0,0<o; <oy<1,a® a®. Setk=0.

Step 1. If ||gk|l < e, stop.
Step 2. If oy < oW or oy, > o) then set oy, = 6.
Step 3. Set A =1/ay.

Step 4. (nonmonotone line search) If

“Aq) < ) — pAgk
f(xr — Agr) _ogjglﬁgffk,mﬂxk i) = PAGk Gk

then set
Ae = A, Thi1 = Tk — kG,
and go to Step 6.
Step 5. Choose o € [01,09], set A =\, and go to Step 4.

Step 6. Set agy1 = — (gL yr)/ (Mgt gr), k :=k+1, return to Step 1.
O

Obviously, the above algorithm is globally convergent.
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3.1.4 Appendix: Kantorovich Inequality

We conclude this section with a famous Kantorovich Inequality which is used
in the proof of Theorem 3.1.5.

Theorem 3.1.10 (Kantorovich Inequality) Let G be an n X n symmetric
positive definite matriz with eigenvalues A1 > --- > A,. Then, for any x €
R™, the following inequality holds:

(xTx)? S AN A

. 3.1.33
(zTGx) (TG 1x) = (A1 + Mn)? ( )
Proof. Let the spectral decomposition of G be
G =UAU.
Set x = Uy, then
(2" x)? _ (y"y)?
(zTGa)(zTG~1x) — (yTAy)(yTA1y)
= (i v0)” . (3.1.34)
(i M) (i w7 /)
Let )
Yi 1
&= ﬁv (;5()\) - N (3-1-35)
then (3.1.34) becomes
T2
1
(z” ) = (3.1.36)

(2TGr)(aTG 1 e) (X7 M) (i ¢(N)&i)

Below we use the convexity of ¢ to estimate the lower bound of the right-
hand side of (3.1.36). Let

A= Z Ai&iy, Ay = Zcf)(/\i)fi- (3.1.37)
-1 =1

Since §&; >0 (i=1,---,n) and >1* ; & = 1, we have A\, < XA < A;. Then each
A; can be represented as a convex combination of A\ and Ay:
_ AL — N . Ai — An

)\i )\1-
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From the convexity of ¢, we have obviously

AL — N Ai — A
) <
p(Ni) < Al — A\ Al — Ay

Then, it follows from (3.1.37), (3.1.38) and (3.1.35) that

" A= N
Ay < ZMA () +
=1 n

P(An) +

d(\1). (3.1.38)

Ai_'An
A — A

o(A1)| &

LI NI WY
E:AJ;AAAAAA,&

i=1 A1An
A+ A=A
= - 3.1.39
)\1)\” ( )
Therefore, by (3.1.36), (3.1.37) and (3.1.39) we obtain
(z"x)? 1 A
(2TGx)(2TG1x) Mg~ AL+ Ay — )
AlAn 4A1An
> —

maxyepn, \] AL+ A = A) (A4 An)?

which is our result. O

3.2 Newton’s Method

The basic idea of Newton’s method for unconstrained optimization is to it-
eratively use the quadratic approximation ¢'*) to the objective function f at
the current iterate xj and to minimize the approximation ¢(*).

Let f : R — R be twice continuously differentiable, x; € R™, and the
Hessian V2 f(x,) positive definite. We model f at the current point zj by
the quadratic approximation q(k),

1
flak +5) = qW(s) = flag) + VFar)'s + 55V (21)s, (3.2.1)
where s = & — x;,. Minimizing ¢*) (s) yields

Thp1 = ak — [V2f (@) V f (k) (3.2.2)

which is Newton’s formula. Set

G = V2 f(xx), gk = V (k). (3.2.3)
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Then we write (3.2.2) as

—1

Th+1 = Tk — Gk gk, (3.2.4)

where s, = xp11 — T = —G,;lgk is a Newton’s direction. Clearly, the New-
ton’s direction is a descent direction because it satisfies ngsk = —ggGgl gr <

0 if G}, is positive definite. Please note, in the remainder of this book, the
first and the second derivatives of f will be denoted by

g(z) 2 Vf(2), Glz) £ V2 f(z) (3.2.5)

for convenience, if they exist.
The corresponding algorithm is stated as follows.

Algorithm 3.2.1 (Newton’s Method)
Step 1. Given xg € R", e > 0,k :=0;
Step 2. If ||gkll < €, stop;
Step 3. Solve Gs = —gy, for si;
Step 4. Set xp11 = xp + Sk;

Step 5. k:=k+1, go to Step 2. O

Obviously, Newton’s method can be regarded as a steepest descent method
under the ellipsoid norm | - ||g,. In fact, for f(zy + s) ~ f(xg) + gi s, we
regard si as the solution of the minimization problem

T
min 22, (3.2.6)
seR™ ||s]|
The solution of (3.2.6) depends on the norm. If we employ lo norm, then we
get sp = —gi and the resultant method is the steepest descent method. If
we employ the ellipsoid norm || - ||, , then we get s, = —G}. ' g which is just
the Newton’s method. In fact, in this case, (3.2.6) is equivalent to

minge pn g,{s
s.t. |slla, < 1.
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Note that, by (1.2.36), we have that
(9 5)% < (95 Gy, "gr) (57 Gis)

and that g%s will be the smallest when s = —G,;l gr. The above discussion
gives us a clear explanation.

For the positive definite quadratic function, Newton’s method can reach
the minimizer with one iteration. However, for a general non-quadratic func-
tion, it is not sure that Newton’s method can reach the minimizer with
finite iterations. Fortunately, since the objective function is approximate to
a quadratic function near the minimizer, then if the starting point is close
to the minimizer the Newton’s method will converge rapidly. The following
theorem shows the local convergence and the quadratic convergence rate of
Newton’s method.

Theorem 3.2.2 (Convergence Theorem of Newton’s Method) Let f € C?
and xj be close enough to the solution x* of the minimization problem with
g(x*) = 0. If the Hessian G(z*) is positive definite and G(x) satisfies Lips-
chitz condition

|Gij(x) — Gij(y)| < Bllz —yl|, for some B, for all i,j (3.2.7)

where Gi;(x) is the (i,j)-element of G(x), then for all k, Newton’s iteration
(3.2.4) is well-defined; the generated sequence {xy} converges to x* with a
quadratic rate.

Proof. Let hy =z — x2*. From Taylor’s formula, it follows that
0 =g(z*) = gr — Grhi + O([| he]|*).

Since f € C?, x;, is close enough to z*, and G(z*) is positive definite, it is rea-
sonable to assume that xj is in the neighborhood of z*, G} positive definite,
G,:l upper bounded. Hence the k-th Newton’s iteration exists. Multiplying
through by G,;l yields
0 = Gilgk—hi+O(|hi]?)
= s —hi + O(||hy?)
— a0l

By definition of O(+), there is a constant C' such that

lhnall < Ol (3.2.8)
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IfxpeQ={x|||h| <v/C,h=z—2%~€(0,1)}, then
W]l < 1llhall < 42/C < /C. (3.2.9)

Hence xy11 € Q. By induction on k, Newton’s iteration is well-defined for all
k, and ||hg]| — 0 as kK — oo. Therefore the iteration converges. Also, (3.2.8)
shows that the convergence rate of the iteration sequence is quadratic. O

Note that Newton’s method is a local method. When the starting point
is far away from the solution, it is not sure that Gy is positive definite and
Newton’s direction dj is a descent direction. Hence the convergence is not
guaranteed. Since, as we know, the line search is a global strategy, we can
employ Newton’s method with line search to guarantee the global conver-
gence. However it should be noted that only when the step size sequence
{ag} converges to 1, Newton’s method is convergent with the quadratic rate.
Newton’s iteration with line search is as follows:

dp = —Glzlgk, (3.2.10)
Thr1 = T+ apdy, (3.2.11)

where «y, is a step size. The formula (3.2.10)—(3.2.11) corresponds to the
following algorithm.

Algorithm 3.2.3 (Newton’s Method with Line Search)
Step 1. Initial step: given xg € R™, e > 0, set k := 0.

Step 2. Compute gi. If ||gk|| < €, stop and output zy; otherwise go
to Step 3.

Step 3. Solve Grd = —gi. for dj.

Step 4. Line search step: find oy such that

flak + apdy) = min f(zy, + ady).

Step 5. Set xpy1 = xp + apdy, k:=k+1, go to Step 2. O

Next, we prove the above Algorithm 3.2.3 is globally convergent.
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Theorem 3.2.4 Let f : R — R be twice continuously differentiable on
open conver set D C R™. Assume that for any xg € D there exists a constant
m > 0 such that f(z) satisfies

ul V2 f(x)u > m|ul|?, Yu € R",z € L(x), (3.2.12)

where L(xg) = {x | f(z) < f(xo)} is the corresponding level set. Then the
sequence {xy} generated by Algorithm 3.2.3 satisfies

1. when {x} is a finite sequence, g = 0 for some k;

2. when {x} is an infinite sequence, {xy} converges to the unique mini-
mizer x* of f.

Proof. First, from (3.2.12), we know that f(x) is a strictly convex function
on R"™, and hence its stationary point is the unique global minimizer.

Also, from the assumption, it follows that the level set L(xg) is a bounded
closed convex set. Since {f(xx)} is monotonic descent, then {xy} C L(xo)
and {zj} is bounded. Therefore there exists a limit point & € L(zg) with
ry, — Z, and further f(x) — f(Z). Also since f € C?(D), by Theorem 2.2.4,
we have gy — ¢(Z) = 0. Finally, note that the stationary point is unique,
then the whole sequence {zj} converges to  which is the unique minimizer.
O

Similarly, if we employ inexact line search rule (2.5.3) and (2.5.7), it
follows from (2.5.22) that

flak) — flazk + ardy) > 7lgxll? cos®(di, —gr), (3.2.13)

where 7] is some constant independent of k. In this case the global convergence
still holds.

Theorem 3.2.5 Let f : R" — R be twice continuously differentiable on an
open convexr set D C R"™. Assume that for any xo € R"™, there exists m > 0
such that f(x) satisfies (3.2.12) on the level set L(xg). If the line search
employed satisfies (3.2.13), then the sequence {xy} generated from Newton’s
algorithm satisfies
lim |lgel| =0, (3.2.14)
k—o0

and {xy} converges to the unique minimizer of f(x).
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Proof. Since f(z) satisfies (3.2.12), we see that f(z) is uniformly convex
on L(zg). Also, from (3.2.13), it follows that f(x) is strictly monotonically
descending and further that {xy} is bounded. Therefore there exists a con-
stant M > 0 such that

Gk < M Vk. (3.2.15)
From (3.2.10), (3.2.12) and (3.2.15), it follows that
—dT TG—I
cos(dk, —gk) = LELI gfl b Sk
ldellllgell Gy grlll g
= GRGE T (3.2.16)
|k ||| Grdy]|

Hence, by (3.2.13) and (3.2.16), we have

0 > Z Fapi)] Zanugkn (3:217)

which shows (3.2.14). Note that f(x) is uniformly convex, then f(x) has
only one stationary point, and (3.2.14) indicates that {z}} converges to the
unique minimizer z* of f. O

3.3 Modified Newton’s Method

The main difficulty faced by Newton’s method is that the Hessian G}, is not

positive definite. In this case, it is not sure that the model function has

minimizers. When Gy, is indefinite, the model function will be unbounded.
To overcome these difficulties, there are several modified schemes.

Goldstein-Price Method

Goldstein and Price [159] presented a modified method: when Gy, is not
positive definite, the steepest descent direction —gy is used. If we combine
this strategy with the angle rule

HSg—,u, for some p > 0,

where 6 is the angle between —g; and dj, we can determine the direction dj
as follows:

— _Glglglm if cosf > n,
0 = { — 9k, otherwise, (3.3.1)
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where 17 > 0 is a given constant. Then the consultant direction dj, satisfies
cos 8 > n and the angle rule is satisfied, and thus the corresponding algorithm
is convergent.

Goldfeld et al. Method

Goldfeld et al. [156] presented another modified Newton’s method. Their
method does not substitute the steepest descent method for Newton’s method,
but makes the Newton’s direction —G,;l gi turn to the steepest descent direc-
tion —gr. More precisely, when G} is not positive definite, one changes the
model Hessian Gj to G + vi I, where v > 0 such that Gy + v 1 is positive
definite and well-conditioned. Ideally, v is not much larger than the smallest
v that makes Gy, + v1 positive definite and well-conditioned. The framework
of the algorithm is as follows.

Algorithm 3.3.1 (Modified Newton’s Method)
Initial step: Given an initial point o € R™.
k-th step:
(1) Set Gj, = Gy + viI, where
v, =0, if Gy is positive definite;
v, > 0, otherwise.
(2) Solve Grd = —gi for dy.
(3) Set 41 =xf +di. O
In the above algorithm, the smallest possible vy, is slightly larger than the
magnitude of the most negative eigenvalue of Gi. We suggest applying the

Gill-Murray’s modified Cholesky factorization to G to determine v, which

results in
G+ E=LDLT, (3.3.2)

where F is a diagonal matrix with nonnegative diagonal elements (see Gill,
Murray and Wright [152]). If E = 0, set v = 0; if E # 0, we can use the
Gerschgorin Circle Theorem 1.2.14 to compute an upper bound b; of vy:

by = > ‘min Ai
KA

. (3.3.3)

. {(Gk)ii - \(Gk)z‘j!}

J#
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In addition, note that
bg = max{eii} (334)

is also an upper bound of vy, where e;; is the i-th diagonal element of FE.
Then we set

v = min{by, b2}, (3.3.5)

and get the positive definite matrix G}, and its Cholesky factorization.
In the remainder of this section, we would like to introduce another nu-
merically stable modified Cholesky factorization due to Gill and Murray [149].
It is well-known that the Cholesky factorization G, = LDL™ of a positive
definite matrix (G can be described as follows:

j—1
djj = gjj— > dssls, (3.3.6)
s=1
1 it
Lj = — |9ij =) dssljslis |, i >j+1, (3.3.7)
djj =

where g;; denote the elements of Gy, d;; the diagonal elements of D. Now we
ask the Cholesky factors L and D to satisfy the following two requirements:
one is that all the diagonal elements of D are positive; the other is that the
elements of the factors are uniformly bounded. That is,

dr > 0 > 0, Vk and |ri| < B, @ > k, (3.3.8)

where 7, = lizv/dpi, 3 is a given positive number and ¢ is a small positive
number.

Below we will describe the j-th step of this factorization. Suppose that
the first j — 1 columns of the factors have been computed, that is, for k =
1,--+,j—1,dg and L (1 = 1, -+, n) have been computed and satisfy (3.3.8).
Now we compute

7j—1
v =186 — Y dasliyl, (3.3.9)
s=1
where ¢; takes g;; and the test value d takes

d = max{~;,5}. (3.3.10)
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In order to judge whether to accept d as the Jj-th element of D, we check if
Ty = lij\/& satisfies (3.3.8). If yes, set d;; = d and form the j-th column of
L by use of l;; = r35/+/d;;; otherwise, set

djj = , (3.3.11)

j—1
gj - Z dssl]zs
s=1

where we take £ = gj; + €;j; in which ej; is chosen such that max |r;;| = £,
and also form the j-th column of L as above.
When the above procedure is complete, we obtain a Cholesky factoriza-
tion of Gy,
G =LDLY =G, +E, (3.3.12)

where F is a diagonal matrix with nonnegative diagonal elements e;;. For
given Gy, the nonnegative diagonal matrix F depends on the given §. Gill
and Murray (1974) prove that if n > 1, then

§ 2
1E(B)]loc < (ﬁ +(n— 1)6) +2(y+ (n—1)8%) +34, (3.3.13)

where £ and ~ are respectively the maximum modules of non-diagonal ele-
ments and diagonal elements of G},. Since, when 3% = £/v/n? — 1, the above
bound is minimized, then we take 3 satisfying

3% = max{y,&/Vn2 —1,ep} (3.3.14)

where €;; denotes the machine precision. Also, note that adding the term
ey in (3.3.14) is to prevent the case in which |G| is too small.

Now we are in a position to state the modified Cholesky factorization al-
gorithm in which ¢;5 = ljsdss(s = 1,--+,j;i = j,---,n) are auxiliary variables
saved in Gy and we need not increase the storage.

Algorithm 3.3.2 (Modified Cholesky Factorization due to Gill and Murray
(1974))

Step 1. Compute 5 by (3.3.14). Given §. Set j := 1,¢i; = gii for
i=1,--,n.

Step 2. Find the smallest index q such that |cqq| = maxj<i<p |cii,
exchange the q-th and the i-th rows, the q-th and the i-th
columns.
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Step 3. Compute the j-th row of L and find the maximum module of

Set ljs = cjs/dss,s =1,---,5 —1;
Compute cij = gij — S0_1 ljsCis,i = j + 1, -+, n;
Set 0 = max;1<i<n |cij| (if 5 =n,0; =0).
Step 4. Compute the j-th diagonal element of D:
2
dj; = max{§, |c;;|,67/6°};
Update the element ej;: ej; = djj — cjj. If j = n, stop.
Step 5. Update c;; = ci; — cfj/djj,i =7+1,---,n;
Set j:=7+1, go to Step 2. O

The modified Cholesky factorization above needs about %n3 arithmetic
operations which are almost the same as the normal Cholesky factorization.

Example 3.3.3 Consider

1 1 2
Gp=|1 1+107% 3 |. (3.3.15)
2 3 1

By the above Algorithm 3.3.2, we can get 3% = 1.061,

1 0 0 3.771 0 0
L= 0.2652 1 0 |,D= 0 570 0 ,
0.5303 0.4295 1 0 0 1.121

2.771 0 0
E= 0 5.016 0
0 0 2.243

The difference |Gy, — Gil|lr = | E||F =~ 6.154. Since dj; > & in the modified
factorization, it is guaranteed that Gy, = G, + E, is positive definite and the
condition number is uniformly bounded, i.e.,

IGKIIGE ] < 5, k> 0.
So, we have

VIS S 119 pan). (3.3.16)
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Thus, it follows from the inexact line search, (2.5.19) and (3.3.16) that
{Vf(zk)} converges to zero.

Theorem 3.3.4 Let f : D C R™ — R be twice continuously differentiable
on an open set D. Let the level set Q = {z | f(z) < f(xo)} be compact. If
the sequence {xy} is generated by the modified Newton’s method, then

lim Vf(xp)=0. (3.3.17)

k—o0

3.4 Finite-Difference Newton’s Method

The finite-difference Newton’s method is to use the finite-difference as an
approximation of derivatives in Newton’s method.

We first review the finite-difference derivative approximations.

Let F : R™ — R™. The (i, j)-component of the Jacobian J(x) of F(x)
can be approximated by

filz + hej) — fi(x)
h )
where f;(z) denotes the i-th component of F(z), e; the j-th unit vector, h a

small perturbation of z. Equivalently, if A ; denotes the j-th column of A,
we have

(3.4.1)

ij =

F(x + hej) — F(x)
Y .

Theorem 3.4.1 Let F': R™ — R™ satisfy the conditions of Theorem 1.2.22.
Let the norm || - || satisfy |lej|| = 1,7 =1,---,n. Then

Aj= (3.4.2)

|4 = (@)l < SIAL. (3.4.3)
If the norm used is l; norm, then
|A—J@) < Al (3.4.4)
Proof. By setting d = he; in (1.2.109), we obtain
|F(a+ hej) = F(a) = J(@)he; | < 2 lhes]* = S |hP.

Dividing by h gives (3.4.3). Noting from (1.2.7) that the /; norm of a matrix
is the maximum of the /1 norm of a vector, we immediately get (3.4.4). O
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Now, let f: R™ — R. An approximation to the gradient V f(z) can be
obtained by the forward-difference approximation, defined as

of o __ flx+he)— f(z)
5y (1) ~ : . (3.4.5)

This process requires evaluation of f at n + 1 points: x and x + he;, i =
1,---,n. Obviously, it follows from (1.2.109) that

) hei) —
85;(3;):““ eh) 1@ 4, (3.4.6)

where
|0n] < %h. (3.4.7)

It means there is O(h) error in the forward-difference formula.
A more accurate approximation to the derivative can be obtained by using
the central-difference formula, defined as

of _ f(x+he;) — f(z — he;)
Ox; (@) ~ 2h '

The two theorems below give respectively approximations to the gradient
and the Hessian of f, and describe the error bounds of these approximations.

Theorem 3.4.2 Let f : D C R™ — R satisfy the conditions of Theorem
1.2.23. Let the norm used satisfy ||e;|| = 1,4 = 1,---,n. Assume that v +

he;j,x —he; € D,i=1,---,n. Also let the vector a € R™ with components a;,

be defined as
f(x + he;) — f(x — he;)

a; = o7 (3.4.8)
Then
ja; ~ |V F (@)}l < Gh* (3.4.9)
If the norm used is the loo morm, then
la = Vi@l < g1 (3.4.10)

Proof. Define a and 3 respectively as

a = f(z+ he;)) — f(x) — [V f(x)]; — %hQ[VQf(x)]ii (3.4.11)
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and 1
B = f(z—hei) — f(z) + h[V f(2)]; — §h2[V2f($)]z‘z‘- (3.4.12)
By using (1.2.110) and setting d = +he;, we have
Vi3 73
< -=h < =h”.
ol < 203, 18] < 2
Then using the triangle inequality gives
7.3
-0l < =h°.
gl <]
Also, from (3.4.11)-(3.4.12) and (3.4.8), we get
a— = 2h(a; — [V f(2))),

which gives (3.4.9). Finally, by using the definition of I, norm, we get
(3.4.10) immediately from (3.4.9). O

Theorem 3.4.3 Let f satisfy the conditions of Theorem 3.4.2. Assume that
x,x + hej,x + hej,x + he; + he; € D, 1 <i,5 <n. Also let A € R™™" with
components a;; defined as

f(x + he; + hej) — f(x + he;) — f(x + hej) + f(x)

Qij = % . (3.4.13)
Then -
s = [V2f(@)]ij] < 37h- (3.4.14)
If the matriz norm is l1, lo, or Frobenius norm, then
5
14 = V2 f(@)] < gyhn. (3.4.15)

Proof. The proof is similar to the proof in Theorem 3.4.2. Set
a = f(z+he +he;) — f(x) — (hei + hej)TVf(z)
— 5 (hex + hey) "V () (he: + hey),
B = St he) — (@) (he)) V() — 5(he) V7S (@) (her),

n = [fle+he) = fx) = (hey)"V f(z) - %(hej)TVZf(fﬂ)(hej),



3.4. FINITE-DIFFERENCE NEWTON’S METHOD 143

respectively. Then

a—f3—n=h*(a; - [Vf(2)]i))- (3.4.16)
Also, we have
a=B=nl < lal+18]+In
< gllhei + hesllP + Ellhedl® + lihe;
< gvhs-

This inequality together with (3.4.16) gives the result (3.4.14). The inequality
(3.4.15) is a consequence of (3.4.14) and definitions of norms. O

Now we are in a position to discuss the finite-difference Newton’s method
for nonlinear equations

F(z) =0, (3.4.17)

where F': R" — R" is continuously differentiable.

The Newton’s method for (3.4.17) is as follows:
Solve J(xg)d = —F(xy) for dy;
Set xx11 = Tk + agdy;
where J(zy) is the Jacobian matrix of F' at x;. When J(z) is not available,
we can use finite-difference derivative approximation and get the following
finite-difference Newton’s method for (3.4.17):

F hpe;) — F
(Ak>.j _ (xk‘i‘ k}f]z) ($k),j:17”_7n’ (3.4.18)

Tpp1 = ap— A F(xr), k=0,1,--. (3.4.19)

Theorem 3.4.4 Let F : R™ — R"™ be continuously differentiable on an open
convexr set D C R"™. Assume there exist x* € R"™ and r,3 > 0, so that
N(x*,7) C D, F(z*) = 0,J(z*)7! exists and satisfies || J(z*) || < 3, where
J is Lipschitz continuous in the neighborhood N (z*,r) = {x € R"| ||z —a*| <
r}. Then there exist e,h > 0, such that if xo € N(z*,€) and {hy} is a real
sequence with 0 < |hg| < h, then the sequence {x1} generated from (3.4.18)-
(8.4.19) is well-defined and converges to x* linearly. If

lim hy = 0,

k—o0
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the convergence is superlinear. Furthermore, if there exists a constant cy,
such that

hi| < crljor — 27, (3.4.20)

or equivalently, there exists a constant co, such that
|| < 2| F(y), (3.4.21)
then the convergence rate is quadratic.

Proof. Choose € and h such that, for z € N(z*,€), Ay is nonsingular and
|hi| < h. Let e < r and

1
e+h< —. 3.4.22
23y ( )

Now we prove, by induction, that

* 1 *
g4 = 2™l < Sllzw =27, (3.4.23)
SO
Tp41 € N(x™€). (3.4.24)

For k = 0, we first prove Ay is nonsingular. By assumptions and Theorem

3.4.1, we have |A(z) — J(z)|| < %, and then

17 (")~ [Ao — J ()]

< () I[Ao — J(wo)] + [J (xo) — I ()]
< p <fy2h + 'ye) < % (3.4.25)

From Von-Neumann Theorem 1.2.5 we know that Ag is nonsingular and that
145 < 28. (3.4.26)
Hence x1 is well-defined and

T —zF = —AalF(.%o) +xg —x*
= AgH[F(z*) — F(x0) — J(wo)(z* — x0)]
+[(J(z0) — Ao)(z" — x0)]}- (3.4.27)
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Then from (3.4.26), (1.2.109) and (3.4.22), we get
lzy — 2| < JAGHH{IE(2") = F(zo) — J(wo)(a* — o) |

Ao — J(o)[l2* — zoll} (3.4.28)
< 28{ 31"~ a0l + Jhlo - o7 } (3.4.29)
< Byle+ et — ol
< %on — 2. (3.4.30)

Assume that the conclusion holds for & = j, in the same way as k = 0,
we can prove that the conclusion is also true for k¥ = j + 1. Therefore,
(3.4.23)-(3.4.24) hold. They also show the linear convergence of the iterative
sequence.

The key for superlinear and quadratic convergence requires an improved
bound on [|Ag—J(z0)||. When limy_,~ ht, = 0, the second term in the bracket
of (3.4.29) approaches zero, and hence

k41 — "]

— 0, when k — oo,
[

which implies that the method converges superlinearly. Similarly, when
(3.4.20) is satisfied, it follows from (3.4.29) that the method converges to
x* quadratically. Finally, the equivalence of (3.4.20) and (3.4.21) is just a
consequence of Theorem 1.2.25. O

For unconstrained optimization problem

zrg}%r}l f(x), (3.4.31)

when the gradient V f(x) is available, we can obtain the Hessian approxima-
tion by using the forward-difference or central-difference of the gradient. In
this case, the iteration scheme for the k-th step is as follows:

Vf(a:k + hje]) — Vf(xk)

(A4),; = ‘ =1, ,m, (3.4.32)
hj
T
Ay = #, (3.4.33)
T = wp — ALV (), (3.4.34)

where
h; = y/nmax{|z;|, Z;}sign(x;), (3.4.35)
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Z; is a typical estimation given by users, and 7 is a small number more than
the machine accuracy.
If the standard assumptions of Theorem 3.4.4 hold, and if h; satisfies

hj = O(||lzx — ™)),

this finite-difference Newton’s method (3.4.34) maintains the quadratic con-
vergence rate.

Sometimes, some algorithms require us to supply the Hessian matrix-
vector product V2 f(z)d, where d is a given vector. Instead of (3.4.32), we
can use

Vf(zy + hd) — Vf(xp)
h )

which also has O(h) approximation error. For obtaining this approximation,
the cost is only evaluation of a single gradient at xx + hd. However, the cost
of (3.4.32) is evaluation of the gradient at n+ 1 points z}, and xj, + hje;, j =
1,--.n.

In the case that the gradient V f(x) is not available, we can only use the
function values to approximate the Hessian. The expression (3.4.13) gives
the Hessian approximation as follows:

V2 f(xp)d ~ (3.4.36)

(Ag)ij =
[f (21 + hiei + hje;) — f(op + hiei)] — [f(zr + hje;) — f(a)]
hih; ’
where
hj = nmax{|x;|, T;}sign(z;)
or

hy = ()3,

where € is a machine accuracy. Using the forward-difference and central-
difference, the gradient approximations are respectively

(G8); = Sl + hjlj]:) - f(xk)7 i1 m (3.4.37)
J

and

hies) — — hies
(Gr)j = flow+ ]ej)% fa jej), j=1,---,n. (3.4.38)
i
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Their approximation errors are O(h;) and O(h?) respectively. In this case,
the finite-difference Newton’s iteration is

Tp1 = 2k — Ay G, (3.4.39)

where Ay and §; are finite-difference approximations of V2 f(xy) and V f(x)
respectively. Under the standard assumptions of Theorem 3.4.4, we have
similarly

* — v * *
lzxes =2l < NAC NGl = 21 + 1Ak = V2 f (@) |l — 7]

+ gk = Vf(@e)l)- (3.4.40)

Note that there is an additional term ||g, —V f (2 )| than (3.4.28). If we want
to get the quadratic convergence rate, it is obvious to require ||gx—V f(zk)|| =
O(||zx — 2*||?) which implies h; = O(||lzx — 2*||?). Therefore, it tells us that,
when using the central-difference, the iteration (3.4.39) possesses quadratic
rate. If we use the forward-difference, the iteration has quadratic rate only
when h; = O(||zg — z*]|?).

In general, the forward-difference scheme is practical. Although the error
of the central-difference scheme is O(h?), as compared to the O(h;) error in
forward-difference, the cost is about twice as much as that of the forward-
difference. Hence, we use the central-difference scheme only for those prob-
lems which need higher accuracy. Stewart [323] gave a switch rule from
forward difference to central difference. Finally, it should be mentioned that,
if the gradient is available, it is better to make the best use of it.

3.5 Negative Curvature Direction Method

Another strategy for modifying Newton’s method, the negative curvature
direction method, is presented, because the modified Newton’s methods de-
scribed above are not adequate for the case in which the Hessian V2 f(xy,) is
indefinite and xj, is close to a saddle point.

Now, we first put forward the definition below.

Definition 3.5.1 Let f: R® — R be twice continuously differentiable on an
open set D C R".

(i) If V2f(z) has at least a negative eigenvalue, then x is said to be an
indefinite point.
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(ii) If x is an indefinite point and d satisfies d* V2 f(x)d < 0, then d is said
to be a negative curvature direction of f(x) at x.

(iii) If
s'Vf(x) <0, d"Vf(z) <0, d"V?f(x)d <0,
then the vector pair (s,d) is said to be a descent pair at the indefinite
point x. If x is not an indefinite point and satisfies

sTVf(z) <0, d'Vf(z) <0, d'V2f(x)d =0,
then the vector pair (s,d) is said to be a descent pair at x.

As an example of a descent pair, we can choose

s = Vi),

p 0, if V2f(z) >0,
N —sign (uI'V f(x))u, otherwise,

where u is a unit eigenvector corresponding to a negative eigenvalue of
V2f(z).

Obviously, there no longer exists the descent pair if and only if V f(z) =0
and V2 f(z) is positive semi-definite.

From the definition above, at the stationary point, the negative curvature
direction must be a descent direction. At a general point, if the negative
curvature direction satisfies d” V f(x) = 0, then both d and —d are descent
directions. If dT'V f(x) <0, d is a descent direction, and if d” V f(x) > 0, —d
is a descent direction.

In this section, we first give the Gill-Murray stable Newton’s method
which uses negative curvature direction. Then we discuss two negative cur-
vature direction methods: Fiacco-McCormick method and Fletcher-Freeman
method. Finally, we consider the second order Armijo step rules and the
second order Wolfe-Powell step rules.

3.5.1 Gill-Murray Stable Newton’s Method

The basic idea of Gill-Murray stable Newton’s method is: when the Hessian
G, is indefinite, one uses the modified Cholesky factorization to force the
matrix Gy to be positive definite; when xj approaches to a stationary point,
use the negative curvature direction to decrease the objective function.
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Let the modified Cholesky factorization be
Gy = Gy, + B, = Ly Dy L[,

where
Dk = diag(dn, tey, dnn), Ek = diag(en, s ,em).

When ||gx|| < € and V2 f () is not positive semi-definite, we use the following
negative curvature direction algorithm.

Algorithm 3.5.2
Step 1. Set p; =dj; —ej;, j=1,---,n.
Step 2. Find the subscript t, such that ¢y = min{y;|j=1,---,n}.

Step 8. If ¢y > 0, stop; otherwise, solve
LEd=e (3.5.1)
for dy, where e; is a unit vector with the t-th component of
et being 1. O
Theorem 3.5.3 Let Gy be the Hessian of f(x) at xj and
Gr = Gy + E, = Ly DL} .

If the direction dy, is obtained by Algorithm 8.5.2, then di is a negative cur-
vature direction at xj, and at least one in dy and —dy, is descent direction at
T

Proof. Since Ly is a unit lower triangular matrix, the solution dj, of (3.5.1)
has the form

dk = (Pl:' "7Pt—171707"‘70)T-
Then
dLGrdy = dFGrdy — di Epdy,
= dfLyDyLEd, — dL Eydy,

t—1
= 6?Dk€t — <Z p%err + ett)

r=1
t—1

2
= duy—ey— Z PrCrr
r=1

t—1
= - Z p%err-
r=1
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By the modified Cholesky factorization Algorithm 3.3.2, we have

7j—1
_ 2
ejj = Gij— 95 = djj + Y_Gydr — g5

r=1

dj'—ijZO,

which indicates that Zt;ll p2eq. > 0. Also, since ¥y < 0, we obtain d;‘kadk <

T
0, which means dj, is a negative curvature direction, and —dj, too. If ggdk <0,

then dj is a descent direction; otherwise, —d}, is a descent direction. O

The algorithm below is the Gill-Murray numerically stable Newton’s
method.

Algorithm 3.5.4
Step 1. Given a starting point xg, € > 0. Set k :=1.
Step 2. Compute g and Gy,.

Step 3. Compute modified Cholesky factorization by using Algorithm
3.8.2
G+ Ey, = LDy LY.

Step 4. If |lgk|| > €, solve LyDyLEdy = —gi for dy, and go to Step
6; otherwise, go to Step 5.

Step &5 Perform Algorithm 3.5.2. If it cannot produce dj, (i.e., 1y >
0), stop; otherwise, find dj, and set

7\ d.,  otherwise.

Step 6. Compute line search factor oy, and set xpy1 = x + aypdy.

Step 7. If f(xke1) > f(zk), stop; otherwise, set k =k + 1, and go
to Step 2. O

About the convergence of the algorithm above, we have the following
theorem.



3.5. NEGATIVE CURVATURE DIRECTION METHOD 151

Theorem 3.5.5 Let f : R — R be twice continuously differentiable on an
open set D. Assume there exists T € D C R™ such that the level set

L(z) = {z| f(x) < f(7)}

s a bounded closed convex set. Assume that we pick ¢ = 0 in Algorithm
3.5.4, and the starting point xo € L(Z). Then the sequence {x} generated
from Algorithm 3.5.4 satisfies

(1) when {xx} is a finite sequence, its last element must be the stationary
point of f(x);

(ii) when {xy} is an infinite sequence, it must have accumulation points, and
all accumulation points are the stationary points of f(x).

The proof is omitted. We refer the interested reader to the original paper
Gill and Murray [147].

3.5.2 Fiacco-McCormick Method

The idea of the negative curvature direction method was first presented by
Fiacco and McCormick [122] who dealt with the case that the Hessian G has
negative eigenvalues and employed the exact line search. The idea is simply
to go forward along a negative curvature direction and decrease the objective
function.
When
dFgr < 0and df Gydy <0, (3.5.2)

1
flan+di) & f (o) + diggr + 5 di Gy

will be descending. Since Gy is indefinite, the Fiacco-McCormick method
uses the decomposition
Gy = LDLT, (3.5.3)

where L is a unit lower triangular, and D is a diagonal matrix. If Gj is
positive definite, the dj, generated from this decomposition (3.5.3) is a descent
direction. However, if there exists a negative d;;, then solve

LTt = a, (3.5.4)
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where the components a; of the vector a is defined as

17 dm S 07
a; = { 0. dy >0, (3.5.5)
It is easy to show that
ot glt<o,
di, = { 1, glt>0, (3.5.6)

is a negative curvature direction satisfying (3.5.2).

Unfortunately, the decomposition (3.5.3) may be potentially unstable,
amplify the rounding errors, and even do not exist. Hence, Fletcher and
Freeman [135] employ a stable symmetric indefinite factorization.

3.5.3 Fletcher-Freeman Method

Fletcher and Freeman [135], instead, employ a stable symmetric indefinite
factorization due to Bunch and Parlett [33]. For any symmetric matrix Gy,
there exists a permutation matrix, such that

PTGLP=LDL", (3.5.7)

where L is unit lower triangular, D is a block diagonal matrix with blocks
of dimension 1 or 2. The aim to use the permutation matrix is to maintain
the symmetricity and numerical stability. Contrasting with the factorization
(3.5.3), the factorization (3.5.7) always exists and can be computed by a
numerically stable process. Now, for 1 x 1 pivot case, let A be an n x n
matrix

=T
_ 40 _ | a11 an
A=A l o1 Agy ] , (3.5.8)

where @o; is (n—1) x 1 vector, Ags is an (n—1) x (n— 1) matrix. Eliminating
one row and one column yields a reduced matrix A®):

T
0 0 1, (3.5.9)

AW = AO _ g 0T = L
1A 0 Aoy — do1ddy /d1n

where

_ _ i air | 1
di1 = a1, I = du l o ] = l Gon /s ] . (3.5.10)
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For 2 x 2 pivot case, let

T
40 [ Ai ﬁz; ] , (3.5.11)

where Aj; is a 2 x 2 block matrix, Ag; is an (n — 2) X 2 matrix, and Ag is
an (n —2) x (n — 2) matrix. Eliminating two rows and two columns yields a
reduced matrix A®;

A® = A0 _ D LT = A0 _ l LI ] Dy[I L3;]
21
0 0
_ [ 0 Ap— A DAL ] , (3.5.12)
where

A 1 I Al T
Dy = Ay, Ly = Dyl = e . 3.5.13
! = l Az 1 ! [ Ay AT} ] [ Loy ] ( )

Next step, we will apply the same process to the remaining matrix Ags —
G915y /dy1 or Agg — Ale_lAg1 with dimension (n—1) x (n—1) or (n—2) x
(n — 2) respectively. Finally, this recursive procedure gives (3.5.7).

In all the iterations, the algorithm has to identify the pivot block between
two pivoting forms. A natural problem is how to identify 1 x 1 submatrix
a11 or 2 x 2 block submatrix Aq; as a pivot block. Now we describe a criteria
as follows. First, compute the largest-magnitude diagonal and the largest-
magnitude off-diagonal elements, denoting their respective magnitude by &4,
and &yrr. If the growth ratio &4,4/&0fy is acceptable, we choose the diagonal
element with largest-magnitude as a pivot and perform row-column exchange
such that aq; is just the element. Otherwise, we choose the off-diagonal
element, say a;j, whose magnitude is &,;r, and choose the corresponding

2 x 2 block
Qi; Qi
aij  Gjj

as a pivot block. Then we perform row-column exchange such that Aj; is
this 2 x 2 block.

This decomposition needs n3/6 + O(n?) multiplications. Maybe the ex-
pensive computation is a disadvantage of this method. A more economical
improvement is presented by Bunch and Kaufman [32]. The interested reader
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may consult that paper. The forms of L and D produced by the decompo-
sition are a block lower triangular matrix and a block diagonal matrix, for
example,

- . - o -

* ¥ ¥ O

* % x =

* O =

1
* * 1

The decomposition above is said to be Bunch-Parlett factorization, in brief,
B-P factorization which can generate negative curvature direction.
Let G, have symmetric indefinite factorization

Gy = LDL". (3.5.14)
We solve the triangular system of equations
LTt = a, (3.5.15)
where, in the case of 1 x 1 pivot, the components of a are

17 dzz S 07

in the case of 2 x 2 pivot, ( aai ) is the unit eigenvector corresponding to
i+1

o di  dis
the negative eigenvalue of v B Set
dit1i  dit1,i+1

(3.5.17)

& — t, when g,{t <0,
k= —t, when g,:gt > 0,

then dj, is the negative curvature direction satisfying (3.5.2). In fact, we have

df Gedy = d{ LDL"dy = a"Da = Y X <0, (3.5.18)
:2;<0

and
digx < 0. (3.5.19)
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In addition, when D has negative eigenvalues, the direction dj can also
be computed by
dy=—L"TDTL g, (3.5.20)

where D is the positive part of D, i.e.,

D' . diz’, when d;; > 0,
‘10, otherwise,

and D7 is the generalized inverse of D.
When D contains at least one zero eigenvalue, the direction d; can be
computed by
Grdy = LDLYd}, = 0, gidy, < 0. (3.5.21)

When all the eigenvalues of D are positive, all blocks of D are 1 x 1
elements. In this case, B-P decomposition is reduced to usual Cholesky
factorization, and the direction produced is usual Newton’s direction

dy=—L"TD 'L 1g..

It is not difficult to see that the negative curvature descent direction de-
termined by (3.5.17) is limited in some subspace; the direction from (3.5.20)
is a Newton’s direction limited in the subspace of positive curvature direc-
tion. Although the idea of using negative curvature directions is in some ways
attractive, Fletcher and Freeman [135] find that it is not satisfactory to use
such directions on successive iterations and that if we alternate positive cur-
vature and negative curvature search, i.e., alternate (3.5.17) and (3.5.20), we
can get better results. Similarly, if one continuously meets zero eigenvalue,
alternating (3.5.20) and (3.5.21) will give better results.

3.5.4 Second-Order Step Rules
Second-Order Armijo Step Rule — McCormick Method

In §2.5 we have discussed Armijo line search rule. Consider
min f(z), v € D C R", (3.5.22)

where f : R® — R is a continuously differentiable function in the open set
D.
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Given 8 € (0,1) and p € (0,1),my is the least nonnegative integer m
such that
f@g+ B7dy) < fax) + pB" 7 gi dr, (3.5.23)

where 7 > 0, or require « to satisfy
f(zr 4+ ady) < f(zp) + pagl dy. (3.5.24)
For the steepest descent method
Tpp1 = T — 2 g, (3.5.25)
the Armijo rule is
flarsr) < fax) = p2 " lgil?, p € (0,1). (3.5.26)

Instead of using only one descent direction and searching in a line deter-
mined by that direction, we search along a curve of the form

z(a) =z + d1()sy + pa(a)dy, (3.5.27)

where (sg,dj) is a descent pair at xj defined in Definition 3.5.1, ¢1(a) and
¢2() are polynomials with ¢1(0) = ¢2(0) = 0.

If we set ®(a) = f(z(a)) and assume that p € (0,1), there is an @ > 0
such that

B(a) < D(0) + p[@' (0)a + %@”(0)(12} (3.5.28)

for all a € [0, @] provided that either ®'(0) < 0 or ®'(0) =0 and ®”(0) < 0.
Normally, in (3.5.27) we choose ¢1(«) and ¢2(«) as lower-order polyno-
mials. The simplest functions of this type are

¢1(a) = a®, ¢a(a) = a,
which lead to the iteration

z(a) = x1, + sy, + ady,. (3.5.29)
If we set a =%, v € (0,1), (3.5.29) becomes

2 (i) = o + s, ++'dy, € D. (3.5.30)
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The second-order Armijo rule requires us to find i(k) which is the smallest
nonnegative integer ¢ such that

F@r(@) < fzx) + pv* (g7 sk + %d}kadk], (3.5.31)

where p € (0,1), and set x4 = xx(i(k)). Typically, McCormick [203]
chooses 7% = 3 in (3.5.30).
There exists a finite i(k) satisfying (3.5.31) provided that

sF g, < 0, whenever g # 0 (3.5.32)

and
d{dek < 0, whenever g, = 0. (3.5.33)

Only if zp is a point satisfying the second-order optimal condition, there
does not exist the descent pair satisfying (3.5.32)-(3.5.33), and the algorithm
terminates. The following is the convergence theorem of the second-order
Armijo rule.

Theorem 3.5.6 Let f: R™ — R be twice continuously differentiable on the
open set D, and assume that for some xg € D, the level set

L(zo) ={z €D : f(x) < f(x0)}

is compact. Suppose that {||s||} and {||dk||} are bounded. If {xy} satisfies
(3.5.30) and (3.5.31), then

lim gfs, =0 (3.5.34)
k—o00
and
Jim. dYGrdy, = 0. (3.5.35)

Proof.  The sequence {f(zy)} is decreasing and bounded below due to
the continuity of f and the compactness of L(xg). Thus {f(zr) — f(zr+1)}
converges to zero. Let i(k) be the smallest nonnegative integer such that
(3.5.30)-(3.5.31) hold, then there are two cases to consider.

Case 1. Suppose the integer sequence {i(k)} is bounded above by 5 > 0.
Then

1
flxg) = flzr) > —pv*P gt s + idkadk]. (3.5.36)
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Since —ggsk >0 and —d;‘gdek > 0, the conclusion follows.

Case 2. Suppose that the integer {i(k)} is not bounded above. So, with-
out loss of generality, we can assume that limy_. . i(k) = +00. By (3.5.30)-
(3.5.31),

Flalitk) = 1) = fa) > PO Vigloy + dlGrdi]. (3537)
For convenience, let
o = 201, 4 i1y
By using Taylor’s theorem and noting that V2 f(z) is continuous, we have
Fla(i(k) = 1)) = f(wx) = phow + 3pE Gups + oGO ). (35.39)
Combining (3.5.37) and (3.5.38) gives
o) > (1= )i gT sy~ 2 G (35.39)
Dividing by (1 — p)y2®*) =1 and taking limits yields
g,zsk — 0 and dckerdk — 0. O
Furthermore, we have the following result.

Theorem 3.5.7 Assume that the conditions in Theorem 3.5.6 hold. In ad-
dition, suppose there exist positive constants ci,co,c3, such that

el > sllgel (3.5.40)
df Grdy < ca),, (3.5.41)
—stgr > c1llsullllgxll, (3.5.42)

where \g, s the most negative eigenvalue of Gy. Then the accumulation
point x* of {xy} satisfies V f(x*) =0, and V2 f(x*) is positive semi-definite
with at least one zero eigenvalue.

Proof. From Theorem 3.5.6, we have

ggsk — 0 and dekdk — 0.
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Using (3.5.42) and (3.5.40) gives

—git sk > cicsl|grl?

Thus we get [|gx|| — 0. Also, it follows from (3.5.41) that d'V2f(x*)d = 0
with d a limit eigenvector of a subsequence of {dj}. Therefore, V2f(z*) is
positive semi-definite with at least one zero eigenvalue. O

Second-Order Armijo Step Rule — Goldfarb Method

Goldfarb [154] thinks that the iteration
zp(a) = 2 + a’sp + ady, (3.5.43)

is not ideal. The form (3.5.43) may be good in the neighborhood of a saddle
point. However, far from a saddle point, it is not a good approach. Then
Goldfarb [154] put forward a similar second-order Armijo rule based on the
iteration of the form

z(Q) = o + asg + o’dy, (3.5.44)

and gives the following algorithm:

For given ~y and p, where 0 < v, p < 1, and an initial point zg, determine
Tra1, for k=0,1,---, as follows:

Choose a descent pair (s, di) at xx. If none exists, stop. Otherwise, let
i(k) + 1 be the smallest nonnegative integer such that

. . 1 .
Fan(r) = flak) < ply sk gn + 57" di Grai] (3.5.45)
and set '
Tpg1 = ap (7 ), (3.5.46)
In very much the same manner as Theorem 3.5.6 and Theorem 3.5.7, we

have the convergence theorems. So we give them as follows without proof.

Theorem 3.5.8 Let f : R® — R have two continuous derivatives on the
open set D and let the level set S = {z | f(z) < f(xo)} be a compact subset
of D for a given x¢g € D. Suppose that an admissible sequence of descent
pairs {(sk,dx)} is used in the above algorithm, and that

—stgr > allskl? (3.5.47)
sEGrsr < callskl?, (3.5.48)

where 0 < ¢1,c9 < 00. Then g — 0,8, — 0, \px — 0, and dp — 0.
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Theorem 3.5.9 In addition to the assumptions of Theorem 3.5.8, assume
that the set of stationary points of f(x) in the level set L is finite. Then, if
{zy} is the sequence obtained by the second-order Armijo steplength algorithm
(3.5.45) and (3.5.46), we have

lim zp = 2", g(z*) =0, G(z*) > 0. (3.5.49)

k—o0

Moreover, if infinitely many Gy, # 0, then G(z*) has at least one eigenvalue
equal to zero.

Second-Order Wolfe-Powell Step Rule — Moré-Sorensen Rule
Consider the iteration of the form
z(a) = x1, + sy, + ady, (3.5.50)

where (sg, dy) is a descent pair at . Replacing Wolfe-Powell step rule (2.5.3)
and (2.5.7), we ask a to satisfy

Fla(a)) < () + po?[V () + S V2 f ()], (3.5.51)

Vi) Ta' (o) > o[Vf(x)Td+2aVf(2)Ts + ad' Vif(z)d], (3.5.52)

where 0 < p < 0 < 1. When d = 0, these conditions reduce to those
of (2.5.3) and (2.5.7). The conditions (3.5.51) and (3.5.52) are said to be
the second-order Wolfe-Powell step rule which is contributed by Moré and
Sorensen [221].

If (sk,dg) is a descent pair at xj and we set

Oy (a) = f(op + a?sp + ady), (3.5.53)
then (3.5.51) and (3.5.52) are equivalent to

®(0) + %p@Z(O)az, (3.5.54)
(k) > o[®(0) + P (0)ay]. (3.5.55)

A
=
Q
&
IN

The second order Wolfe-Powell step rule has a geometric interpretation as
shown in Figure 3.5.1.
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— f4pat(gTs+ L a7 Ga)

i / Sflxlea))

ct+olagTd+a?(gTs El d" Gd)

Figure 3.5.1 Second-order Wolfe-Powell step rule

Similar to the preceding discussion, we now give the following convergence
results.

Theorem 3.5.10 Let f: R" — R have twice continuous derivatives on the
open set D, and assume that for some xg € D, the level set

L(zo) ={zx € D[ f(z) < f(zo)}
is a compact subset of D. If {x} satisfies (3.5.50)-(3.5.52), then

Jim gt s =0 and Jim dL Grdy, = 0. (3.5.56)

Proof. From (3.5.53) we have ®}(0) = g{d) and
37 (0) = 2g7 sy + df Grdy..
Since (sg,dy) is a descent pair, ®)(0) < 0 and ®7(0) < 0. Thus (3.5.51)

implies that {1} C L(x). By the continuity of f and compactness of L(x)
we have that {fx — frt+1} converges to zero. Since

1
e = frg1 2> —ipé’,c’(O)a% >0,

it follows that
Jim. gl sy =0 (3.5.57)

and
Jim @2 dl Grdy, = 0. (3.5.58)
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From (3.5.55) we have
Op(ar) — 4(0) — @ (0) > —(1 — 0)[D7(0) + Py (0)ax],
and hence
@1 () — 3 (0) — a®L(0) > —(1 — o) P (0) k.
An application of the mean-value theorem yields that for some 6 € (0, o),
3(0) — B(0) > —(1 - 0)2(0). (3.5.59)

In the following, we prove (3.5.56) by contradiction. Suppose either the
first equality or the second equality does not hold, then there is a subsequence
{k;} and n > 0 such that

— @7 (0) > 7 > 0. (3.5.60)

Hence (3.5.59) implies that {aj,} does not converge to zero. However, if

{ay,} does not converge to zero and (3.5.60) holds, then (3.5.57) and (3.5.58)

cannot be satisfied. This contradiction establishes the theorem. O
Furthermore, we have

Theorem 3.5.11 Let f : R" — R have twice continuous derivatives on
the open set D, and assume that, for some xy € D, the level set L(xg) =
{r € D| f(x) < f(xo)} is compact. In addition, assume that f has a finite
number of critical points in L(xg). Then, if {xy} is a sequence obtained by
the second-order step rule (3.5.50)-(3.5.52), we have

klim zp =2", g(z*) =0, G(z*) > 0. (3.5.61)
Moreover, if infinitely many Gy # 0, then G(z*) has at least one eigenvalue
equal to zero.

Proof. It is similar to the proof of Theorem 3.5.7. O

Determine Descent Pair (s, dy)

Finally, we mention a way to obtain the descent pair (sg, dj) which satisfies all
of the requirements of Theorem 3.5.10 and 3.5.11. First, consider computing
sk. Assume that

Gy = Ly DL}
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is the Bunch-Parlett symmetric indefinite factorization where we omit the
permutations, Lj is a unit lower triangular matrix, Dj; a block diagonal
matrix with 1 x 1 or 2 x 2 diagonal block. Let

Dy = Uy A UL

be the spectral decomposition of Dy. Set

k) () (k) =1,
)‘j _max{|/\j |7 6”1%1%}%”\1 |a E}a J= 17 ) Ty

A = diag(A, -+, A,
where € is the relative machine precision. Set
Dy, = Uy A UL
We obtain s;, as the solution of
LipDyLEs = —gj.
Next, the negative curvature direction dj is obtained as the solution of
LY dy, = | min{A(Dy), 0}|2 2,

where A\(Dy) is the smallest eigenvalue of Dy and zj the corresponding unit
eigenvector of Dy. The other way to obtain a negative curvature direction
dj. is to solve
Lide=% > 2.
A (Dg)<0

3.6 Inexact Newton’s Method

As mentioned before, the pure Newton’s method is expensive in each iter-
ation, especially when the dimension n is large. Also, the quadratic model
used to derive the Newton equation may not provide a good prediction of the
behavior of the function, especially when the iterate xj is remote from the
solution x*. In this section, we consider a class of inexact Newton’s methods
in which we only approximately solve the Newton equation. In the following,
we discuss this class of methods for solving nonlinear equations F(x) = 0. It
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is not difficult for readers to deal with unconstrained optimization problems
by using this way.
Consider solving the nonlinear equations

F(z) =0, (3.6.1)
where F': R — R" is assumed to have the following properties:
A1 There exists z* such that F(z*) = 0.
A2 F is continuously differentiable in the neighborhood of z*.
A3 F'(z*) is nonsingular.
Recall that the basic Newton’s step is obtained by solving
F'(xy)sp = —F(zg) (3.6.2)

and setting
Tht1 = Tk + Sk- (3.6.3)

Now, we consider inexact Newton’s method: solve

F’(:ck)sk = —F(J}k) + 7k, (364)
where
7l < mll F (). (3.6.5)
Set
Tit+1 = Tk + Sk- (3.6.6)

Here, r = F'(x)sk+ F(x) denotes the residual, and {n;} (with 0 < n; < 1)
is a forcing sequence which controls the inexactness.
Next, we study the local convergence of inexact Newton’s methods.

Lemma 3.6.1 Let ' : D C R" — R"™ be continuously differentiable in a
neighborhood of ©* € D, and let F'(x*) be nonsingular. Then there exist
6 >0, >0, and € > 0, such that when ||y — 2*|| < 6 and y € D, F'(y) is
nonsingular and

IF' ()~ < € (3.6.7)

Also, F'(y)~! is continuous at x*, that is

1F" ()~ = F'(@") 7Y < e. (3.6.8)
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Proof. Set a = ||F'(z*)7!||. For a given 8 < a~!, choose § such that
when ||y — 2*|| < 0 with y € D,

IF(z7) = F'(y)ll < 8.

It follows from Von-Neumann Theorem 1.2.5 that F’(y) is invertible, and
(3.6.7) holds with £ = a/(1 — Ba). Thus,

IF' (@) = F'(y) Ml = |F'(@) " (F'(y) = F'(@*)F'(y) 7'
< af||[F'(z7) = F'(y)]|
< afg
A

67
which says that the continuity of F’ guarantees the continuity of (F’)~!. O

In the following, we establish the linear convergence in Theorem 3.6.2 and
superlinear convergence in Theorem 3.6.4.

Theorem 3.6.2 Let F': R™ — R" satisfy the properties (A1)-(A3). Assume
that the sequence {ny} satisfies 0 < mp < n <t < 1. Then, for some e > 0, if
the starting point xq is sufficiently near x*, the sequence {x} generated by
inexact Newton’s method (3.6.4)-(5.6.6) converges to x*, and the convergence
rate is linear, i.e.,

ki1 — 2l < tlok — 2o, (3.6.9)

where [|y[l. = [|F"(z")y-

Proof. Since F'(z*) is nonsingular, for y € R™, we have

1
;Hyll < lllls < wllyll, (3.6.10)
where
p = max{|[F' ()|, | F'(«*) |}, (3.6.11)
Since 1 < t, there exists sufficiently small v > 0, such that
(I +v) N1+ py) +2uy] < t. (3.6.12)
Now choose € > 0 sufficiently small, such that if ||y — 2*|| < p?e, we have
1F'(y) = F'(z")] <, (3.6.13)
|E' (y)~ = F'(2*) 7Y <, (3.6.14)

1F(y) = F(a") = F'(z")(y — )| <~y — 2™l (3.6.15)
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Let ||xg—z*|| < e. We now prove (3.6.9) by induction. By using (3.6.10)—
(3.6.11) and assumption of the induction, we have

lew ' < plag— 2] < ptllao — |l
< a0 — a7 < .

Then, when y = zy, (3.6.13)—(3.6.15) hold. Since

!

(&) (T4 — 27)

= Fl(a*)(ep — " = F'(xy) " Fay) + F'(ep) )

F' (") F' () " [F" () (wp — 27) = F (k) + 7y

= [+ F'(@")(F(2n) ™ = F'(@) )] + (F () = F'(2) (2 — )
—(F(xp) = Fa®) = F'(2") (2 — ")), (3.6.16)

by taking norms and using (3.6.11), (3.6.14), (3.6.5), (3.6.13) and (3.6.15),
we obtain

Trr1 — il

< A+ F @)IF (zn) ™ = F'@) " el +
[F' (xx) — F'(a)[|lox — ™[] + [|F(zx) — F(2*) — F'(2")(x), — 27)]]
< (4 )l F (@)l + yllzk — 2% + yllee — 2] (3.6.17)
Note that

F(ay) = [F'(«") (xp — 2")] + [F(zg) — F(a®) = F'(a") (2, — 7)),
taking the norm gives
|F (i)l < llze — 2 [l« + llzk — 2. (3.6.18)
Substituting (3.6.18) into (3.6.17) and using (3.6.10) and (3.6.12) yield

< (T py)mellee — 2|« +ylloe — 27)]) + 2y)|zp — 2]
< (T4 py) 1+ py) + 2py] ||z — x|
< tllag —xtl. O

21 = 27|

Below, we discuss the superlinear convergence rate of the inexact New-
ton’s methods. We first give a lemma.
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Lemma 3.6.3 Let

1
o = masel|F'(z")| + 55,26
where 8 = |F'(z*)7L||. Then, for ||y — z*|| sufficiently small, the inequality
1 * *
Sy =27 < IF@)I < ally - 27]) (3.6.19)
holds.
Proof. From the continuous differentiability of F', we know that there

exists a sufficiently small § > 0, such that when |y — 2*| < 4,

IF(y) = F(z*) = F'(a")(y — 2")|| < 216||y — 7 (3.6.20)

holds. Note that
Fy) = [F'(a")(y — 2")] + [F(y) — F(2") = F'(2")(y — 27)],
and take norms, then we have

@I < 1F @)y — 2"l + [1F(y) = F(2") = F'(2")(y — 27|

< (IP@)+55) o= (3:6.21)
and
IF@I = @)y = = F) - F) - P - )]
> (1P - g5) Iy =)

26
216Hy —z*|. (3.6.22)

Combining (3.6.21) and (3.6.22) gives (3.6.19). O

Theorem 3.6.4 Let the assumptions of Theorem 3.6.2 be satisfied. Assume
that the sequence {xy} generated by the inexact Newton’s method converges
to x*, then, if and only if

7kl = o([[F'(zx)Il), k — oo, (3.6.23)

{z} converges to x* superlinearly.
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Proof.  Assume that {z}} converges to z* superlinearly. Since

rr = Flxp) + F'(z) (@pg1 — 1)
= [F(xy) — F(z") = F'(z")(x), — 27)] = [F'(zg) — F'(2")] (2, — z7)
+[F' (") 4+ (F' (k) — F'(2))](wg 41 — %),

taking norms and using property (A1)-(A3) and the superlinear convergence
property of {zy} yield

Irell < [[F(zx) = F(z*) = F'(2") (g — 2")l| + [ F' () — F' (@) |[[|ox — 27|
HIE @)+ 1F (2n) = F' (@) ] |lzpea — 7]
= olllzx — 2"|) + o(V) [z — 27
HIEF @)+ o)]o(|lz — 2])). (3.6.24)

Thus, by use of Lemma 3.6.3, we have, when & — oo, that
7kl = ollak — ™)) = o([|F' () ])- (3.6.25)

Conversely, assume that ||rg|]| = o(||F(zx)|]). From (3.6.16), it follows
that

[EresEr

(" ™)~ + 1 (i)™ = F @) D e

HIF (k) = F'(@) llwe — 2™ + [ F(ax) = F(2") = /(") (@ — 7))
= (IF'@) M + o) UIF(i)ll) + oW lzx — 2™ + ol — 27])))-

IN

Therefore, we get from Lemma 3.6.3 that

[zetr — 2% = o([[F(zr)|]) + o([Jxr — ™))
= o([Jzr — =),

which shows the superlinear convergence of sequence {xx}. O
The following corollary indicates that when {n;} — 0, the sequence {z}}
converges to z* superlinearly.

Corollary 3.6.5 Assume that the sequence {x} generated by ineract New-
ton’s method converges to x*. Then, if sequence {n} converges to zero, the
sequence {xy} converges to x* superlinearly.
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Proof. If limg .o, nx = 0, then

: 7]
limsup ——— =0,
koo |[F ()
which means that ||rg|| = o(||F(zx)||). Then the conclusion is obtained from

Theorem 3.6.4. O

There are several proofs of local convergence for the inexact Newton’s
method. Below, we give outlines of other proofs.

The outline of the second proof is as follows.

From (3.6.4)(3.6.6), we have

Tpr1 — °
= ap — a2 — F'(zp)  Fag) + F(zp) 'y
= F'(xp) ' F'(zp)(xp — %) — F(agp) + F(z*) + 7). (3.6.26)

Taking norms, and using (3.6.7), (3.6.15) and Lipschitzian continuity of F'(z),
pe., [F(z)ll = | F(zx) — F(z*)]| < Llia — o], we obtain

Ellzr — 2| + mp Ll — 7]

[T =
< &(v+mel)|zk — 27| (3.6.27)

If we choose v and n such that {(y + npL) < 1, then {zy} converges to
x* linearly. If we choose 1, — 0 and note that ~ is sufficiently small, then
&(y+ L) — 0, and thus the sequence {x} converges to x* superlinearly.

The third proof is as follows.

Theorem 3.6.6 Let F': R" — R"™ satisfy the properties (A1)-(A3). Assume
that the sequence {ni} satisfies 0 < mp < n < 1. Then, for some e > 0, if
the starting point xq is sufficiently near x*, the sequence {x} generated by
inexact Newton’s method (3.6.4)—(3.6.6) converges to x*, and the convergence
rate is linear, i.e., for all k sufficiently large,

[Te+1 — &% < cf|zp — 27| (3.6.28)

for some constant 0 < ¢ < 1.
Furthermore, if n, — 0, then the sequence {xy} converges to x* superlin-
early. If n, = O(||F(xk)]), then the sequence converges to x* quadratically.
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Proof. From (3.6.4),
sk = F'(x) "' [=F(xy) + 1y
Taking norms and using (3.6.7) and (3.6.5), we obtain
skl < SUE @Rl + lrell) < E@+ )| F(ze)|| < 281 F(zk)ll. (3.6.29)
By using Taylor’s theorem, (3.6.4) and the above expression, we have
F(zpr1) = Flap) + F'(ar)s, + O([se]?)
= 1+ O(|F(z)|*). (3.6.30)
By taking norms and using (3.6.5), we get
| @)l < mellF ()| + O(IF @) ). (3.6.31)

Dividing both sides by || F(xt)||, passing to the lim sup, k — oo, noting that
N < n <1, we deduce

F
tim sup 1@l (3.6.32)

k—oo I F(zr)ll —

By using Corollary 1.2.26 (or Lemma 3.6.3) we immediately obtain

: [Zr1 — 2" , [F (zr41)]]
limsup —— < Climsup ———— 3.6.33
il P I v g FIE (3:6:33)
for some constant C. When {z}} is sufficiently close to z* and Cn < 1, the
sequence {xj} converges to z* locally and linearly.
Furthermore, if np — 0, then

limsup ——— =0,
koo [ F ()]

ie., ||rkll = o(J|F (zk)|]). By using (3.6.30) and taking norms, we have
- 1 (@)l
limsup ———— =0 (3.6.34)
koo [[F(@)]]

which indicates the superlinear convergence in the function value sequence
{F(xr)}. It is easy to see that

lim sup L2 =2 (3.6.35)

koo |lok — ¥
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by use of Corollary 1.2.26 (or (3.6.19)).
If
e = O(|F (zx)]), (3.6.36)

then there exists some constant ¢; such that n; < c¢1||F(zy)||. By using
(3.6.5) we get that
l

lim sup -——%05 < c1, (3.6.37)
koo [[F ()7
which shows that
ry = O(||F' (z1)|1%)- (3.6.38)
We have immediately from (3.6.30) that
F
timsup L] (3.6.39)

for some constant ¢, which means quadratic convergence of {F(xj)}. And
therefore we have that

lim sup
k—oo ka -

O (3.6.40)

It is easy to apply the above result to unconstrained optimization problem
mingeprn f(x). In fact, instead of (3.6.4)—(3.6.5), we use

VQf(xk)sk = —Vf(xk) + g, (3.6.41)

where
7kl < mellV ()l (3.6.42)

and then we can get the same results for unconstrained optimization prob-
lems. Similar to the above discussion we have the following theorem.

Theorem 3.6.7 Suppose that V f(z) is continuously differentiable in a neigh-
borhood of a minimizer x*, and assume that V2f(x*) is positive definite.
Consider the iteration xi11 = T + Si, where sg is an inexact Newton step
satisfying (3.6.41) and (3.6.42). Assume that the sequence {ny} satisfies
0 < ny <n < 1. Then, if the starting point xg is sufficiently near x*, the
sequence {1} converges to x* linearly, i.e., for all k sufficiently large,

e — | < ellay — 27 (3.6.43)

for some constant 0 < ¢ < 1.
The sequence {xy} converges to x* superlinearly if ||ri| = o(||V f(zk)]])-
The sequence {x1} converges to z* quadratically if |rg|| = O(||V f(zx)]|?).
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About the implementation of the inexact Newton’s method, we can gen-
erate the search direction by applying the conjugate gradient method to the
Newton’s equation V2 f(z)s, = —V f(x), and then ask that the termination
test (3.6.42) be satisfied.

Inexact Newton’s method is an efficient method, especially for large scale
nonlinear equations and optimization problems. Inexact Newton’s method
was due to Dembo, Eisenstat and Steihaug [83]. The other important works
about this method can be found in Steihaug [321], Dennis and Walker [99],
Ypma [365], and Nash [229].

Exercises

1. Let f(z) = 323+ 123 —2122—21. Let the initial point #(*) = (-2,4)7.
Minimize f(z) by use of the steepest descent method and Newton’s method,
respectively.

2. Let
(1) f(x) = 5(af + 923);
(2) f(z) = 5(af + 10%3).
Discuss the convergence rate of the steepest descent method.

=N

3. Let f(z) = 3272 + 30(2T Az)?, where

= O = Ot
OV = =
S W= O
N O O

Let (1) 2(%) = (cos 70°, sin 70°, cos 70°, sin 70°)T;

(2) 29 = (cos 50°, sin 50°, cos 50°, sin 50°) .
In the case of o = 1 and o = 10%, discuss the numerical results and behavior
of convergence rate of pure Newton’s method and Newton’s method with line
search respectively.

4. Minimize the Rosenbrock function f(z) = 100(ze — 22)%? + (1 — 1)?
by the steepest descent method and Newton’s method respectively, where
0 = (=1.2,1)7, 2" = (1,17, f(z*) = 0.

5. By your opinion, state the reasons that the steepest descent method
converges slowly.
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6. Prove the convergence of the inexact Newton methods.



Chapter 4

Conjugate Gradient Method

In the preceding chapter we have discussed the steepest descent method and
the Newton method. In this chapter we introduce the conjugate gradient
method which is one between the steepest descent method and the Newton
method. The conjugate gradient method deflects the direction of the steepest
descent method by adding to it a positive multiple of the direction used in the
last step. This method only requires the first-order derivatives but overcomes
the steepest descent method’s shortcoming of slow convergence. At the same
time, the method need not save and compute the second-order derivatives
which are needed by Newton method. In particular, since it does not require
the Hessian matrix or its approximation, it is widely used to solve large scale
optimization problems.

In this chapter, we will discuss the derivation, the properties, the al-
gorithm and numerical experiments, and the convergence of the conjugate
gradient method. Note that the restarting and preconditioning are very im-
portant to improve the conjugate gradient method. As a beginning, we first
introduce the concept of conjugate directions and the conjugate direction
method.

4.1 Conjugate Direction Methods

One of the main properties of the conjugate gradient method is that its
directions are conjugate. Now, we first introduce conjugate directions and
conjugate direction methods.
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Definition 4.1.1 Let G be an n X n symmetric and positive definite matriz,
di,do, -, dy € R" be non-zero vectors, m <n. If

dr'Gd; =0, Vi # j, (4.1.1)
the vectors dy,da, - -+, dm are called G-conjugate or simply conjugate.

Obviously, if vectors dy,---,d,, are G-conjugate, then they are linearly
independent. If G = I, the conjugacy is equivalent to the usual orthogonality.
A general conjugate direction method has the following steps:

Algorithm 4.1.2 (General Conjugate Direction Method)

Step 1. Given an initial point xg,e > 0,k := 0. Compute gy = g(xo);
Compute dy such that df go < 0.

Step 2. If ||lgkll < e, stop.

Step 8. Compute oy, such that

[z, + apdy) = glggf(l‘k + ady,).

Set xp11 = xp + opdy.

Step 4. Compute di11 by some conjugate direction method, such that
di 1Gdj=0,j=0,1,--- k.

Step 5. Set k:=k+1, go to Step 2. O

The conjugate direction method is an important class of optimization
methods. The following theorem shows that, under exact line search, the
conjugate direction methods have quadratic termination property, which
means that the method terminates in at most n steps when it is applied
to a quadratic function with positive definite Hessian.

Theorem 4.1.3 (Principal Theorem of Conjugate Direction Method) For a
quadratic function with positive definite Hessian G, the conjugate direction
method terminates in at most n exact line searches. FEach x;1 is the min-
imizer in the subspace generated by xg and the directions dg,---,d;, that is

{z|x=x0+ Zé:o ajd;}.
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Proof. Since G is positive definite and the conjugate directions dg, dy, - - -
are linearly independent, it is enough to prove for all i < n — 1 that

9i1d; =0, j =0, i. (4.1.2)

(Note that if (4.1.2) holds, we immediately have gZd; = 0,5 =0,---,n —1
and g, = 0, therefore z,, is a minimizer.)
To prove (4.1.2), we consider two cases j < ¢ and j = i. Keep in mind

that Des
e
Yo = Grt1 — gk = Glzr1 — k) = Gy (4.1.3)

When j < i, by use of exact line search and the conjugacy, we have

i
T T T
gi1dj = gind; + Z Y, d;
k=j+1

= giadi+ Y apdfGd; (4.1.4)
k=j+1
= 0.

When j =i, (4.1.2) is a direct result from the exact line search. Thus (4.1.2)
holds and we complete the proof. O

This theorem is simple but important. All conjugate direction methods
rely on this theorem. We reemphasize that, under exact line search, all
conjugate direction methods satisfy (4.1.2), and have quadratic termination
property. This shows that conjugacy plus exact line search implies quadratic
termination.

gk
Figure 4.1.1 The gradient of conjugate direction method satisfies (4.1.2)
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4.2 Conjugate Gradient Method

4.2.1 Conjugate Gradient Method

In the conjugate direction method described in §4.1, there is not an explicit
procedure for generating a conjugate system of vectors di,ds,---. In this
section we describe a method for generating mutually conjugate direction
vectors, which is theoretically appealing and computationally effective. This
method is called the conjugate gradient method.

In conjugate direction methods, the conjugate gradient method is of par-
ticular importance. Now it is widely used to solve large scale optimiza-
tion problems. The conjugate gradient method was originally proposed by
Hestenes and Stiefel [173] in the 1950s to solve linear systems. Since solv-
ing a linear system is equivalent to minimizing a positive definite quadratic
function, Fletcher and Reeves [138] in the 1960s modified it and developed
a conjugate gradient method for unconstrained minimization. By means of
conjugacy, the conjugate gradient method makes the steepest descent direc-
tion have conjugacy, and thus increases the efficiency and reliability of the
algorithm.

Now we derive the conjugate gradient method for the quadratic case.

Let

1
f(z) = §$TG£E + bz +c, (4.2.1)

where GG is an n X n symmetric positive definite matrix, b € R™ and c is a
real number. Obviously, the gradient of f(x) is

g(z) = Gx + b. (4.2.2)
Set
dO = —4o, (423)
then we have
T1 = x9 + aodp, (4.2.4)

where qg is generated by an exact line search. Then we have
gldy=0. (4.2.5)

Set,
di = —g1 + Bodo, (4.2.6)
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and choose 3y such that
dTGdy = 0. (4.2.7)

It follows from multiplying (4.2.6) by di G that

_9iGdy g1 —90) 9ig

Bo = = — L7 4.2.8
djGdy — df (g1 —90) 93 90 (4.28)
In general, in the k-th iteration, set
k—1
di = —ge + > Bids. (4.2.9)
i=0

Choosing (; such that dngi = 0,i = 0,1,---,k — 1, and noticing from
Theorem 4.1.3 that

gdi=0,glgi=0,i=0,1,--- k-1, (4.2.10)

it follows from multiplying (4.2.9) by djTG, (j=0,1,---,k —1) that

gt Gd;  gf (9511 — g5)

8 = - L j=0,1,-- k—1. (4.2.11)
TodlGd; o df (g541 — 95)
Then
Bi = 0,j=01,---k—2, (4.2.12)
T(0 — T
By 96 (9 —9k-1) 9y 9k (4.2.13)

A (g6 — gk—1)  9F 961

The above derivation establishes the iterative scheme of the conjugate
gradient method:

Tkl = Tk + apdg, (4.2.14)
dy = —9gk+ Bp—1dk_1, (4.2.15)
where
9 9k
Br—1 = Tki, (F-R Formula) (4.2.16)
9i_19k—1

and «ay, is an exact step size, in particular, for the quadratic case,

_ —gldk
Gy

ay (4.2.17)
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The other famous formulas of §; are as follows:

T _
Boy = B9 g o W Formula)  (4.2.18)

dt (gk — gr—1)
9t (gk — gk—1)

Pr-1 = “—p———, (PRP Formula) (4.2.19)
9k_19k—-1
99
Br-1 = —Tkik, (Dixon Formula) (4.2.20)
dk_lgkfl
T
Be-1 = I Ik ., (D-Y Formula) (4.2.21)

df  (gk — gk—1)

where F-R, H-S (or C-W), PRP, Dixon and D-Y formula refer respectively
Fletcher-Reeves formula, Hestenes-Stiefel (or Crowder-Wolfe) formula, Polak-
Ribiere-Polyak formula, Dixon formula and Dai-Yuan Formula. It is easy to
see that these formulas are equivalent in the sense that all yield the same
search directions when used in minimizing a quadratic function with positive
definite Hessian matrix. However, for a general nonlinear function with inex-
act line search, their behavior is markedly different. Some descriptions will
be given later in this subsection.

From (4.2.14)-(4.2.16), we can see that the conjugate gradient method
is only a little more complex than the steepest descent method, but it has
quadratic termination property and need not compute the Hessian or its
approximation matrix. Besides, we will learn below that the conjugate gra-
dient method has global convergence and n-step local quadratic convergence.
Hence this method is very attractive especially for large scale optimization
problems.

The following theorem includes the main properties of a conjugate gradi-
ent method.

Theorem 4.2.1 (Property theorem of conjugate gradient method) For posi-
tive definite quadratic function (4.2.1), the conjugate gradient method (4.2.14)-
(4.2.16) with exact line searches terminates after m < n steps, and the fol-
lowing properties hold for all i, (0 <i <m),

dI'Gd; =0, j=0,1,---,i—1, (4.2.22)

9i9;=0,j=01,--,i—1, (4.2.23)
d} gi = —g 9, (4.2.24)
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(90,91, 9i] = [90, Ggo, -+, G'g0], (4.2.25)
[d[), dla T 7dl] = [.gO> GgUa te 7GigO]' (4226)

where m is the number of distinct eigenvalues of G.

Proof. = We prove (4.2.22)—(4.2.24) by induction. For ¢ = 1, it is trivial.
Suppose (4.2.22)—(4.2.24) hold for some i < m. We show that they also hold
for ¢ + 1.

For quadratic function (4.2.1), we have obviously

git1 = gi + G(ziy1 — x;) = g; + ;Gd,;. (4.2.27)

From (4.2.17), o; can be written as

T

9; i
i = 0. 4.2.28
o= o (4.2.28)

Using (4.2.27) and (4.2.15) gives

9i19; = 9} 9+ oud] Gg;
= g} gj — oud] G(dj — Bj_1d;j_1). (4.2.29)

When j =i, (4.2.29) becomes

T T Q-Tgi T
9i+19i = 9; 9i — dngdi d; Gd; = 0.

When j < i, (4.2.29) is zero directly by induction hypothesis. So, (4.2.23)
follows.
Now, from (4.2.15) and (4.2.27), it follows that

df,\Gd; = —gl\,Gd; + Bid] Gd,
= 941(95 — 9j+1)/a; + Bid! Gdj. (4.2.30)
When j = i, it follows from (4.2.30), (4.2.23), (4.2.28) and (4.2.16) that
gi19i+1 9i19i+1
df1Gd; = =22 d] Gy + S dl G, = 0,
g; i 9; i

When j < i, (4.2.30) is also zero from induction hypothesis. Then (4.2.22)
follows.
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Also, from (4.2.15) and the exact line search, we have

T T T
dii19i+1 = —Git19i+1 + Bid; gita
T
= —Gi+19i+1,

which shows (4.2.24) holds for ¢ + 1.
Finally, we show (4.2.25) and (4.2.26) by induction. It is trivial for i = 0.
Now suppose they hold for some ¢, and we prove that they hold also for i+ 1.
From the induction hypothesis, both g; and Gd; belong to

[907 GgO7 Ty Gi.QO) Gi+190] .

Then it follows from (4.2.27) that g;41 € [go, Ggo, - -, G go]. Furthermore,
we need to show

git1 & [90,Ggo, -+, G'g0] = [do, -+, d;].

In fact, since vectors dy, - - -, d; are conjugate, it follows from Theorem 4.1.3

that Gi+1 1 [do, T 7dl] If gi+1 € [907 G907 M) ngo] = [Cl(), M) d’b]7 then it

results in g;4+1 = 0. This is a contradiction. Therefore (4.2.25) follows.
Similarly, by (4.2.15) and induction hypothesis, we can get (4.2.26). O

In this theorem, (4.2.22)—(4.2.24) represent respectively conjugacy of di-
rections, orthogonality of gradients, and descent condition. (4.2.25)—(4.2.26)
give some relations between direction vectors and gradients. Usually, The
subspace [go, Ggo, - - -, G'go] is called the Krylov subspace.

Recall please the convergence rate (3.1.7), (3.1.8), and (3.1.9) of the steep-
est descent method for quadratic functions in Theorem 3.1.5. Similarly, for
quadratic functions, we can also obtain the following facts for the conjugate
gradient method:

Fact 1:

% k
[zo —2*llc — \Vr+1

where k is the spectral condition number of G.
Fact 2: starting from =z, the iterate xiio of the conjugate gradient
method after k + 1 iterations satisfies

At — An)2 (1 — An/AkH)Q
E < (ZHL=2n) Blay) = (— 22250 Bigy), 4.2.32
(@es2) < (T3 ) Bl = (505 ) B, 4232)
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where E(x) is defined by

B@) = 5z — ") Gz — o),

and the eigenvalues \; of G satisfy
ALZ A2 2N 2 A1 =00 2> Ay > 0.
Clearly, after the first iteration (k = 0), the obtained iterate xy satisfies

which is the same as convergence rate (3.1.8) of the steepest descent method,
this is because, at the first iteration, the direction of the conjugate gradient
method just is the steepest descent direction. However, after the second
iteration (k = 1), we have

Bzs) < (H)QE@“).

At this time, the influence of the largest eigenvalue A; has been removed. The
formula (4.2.32) indicates that after each additional iteration of the conjugate
gradient method, the influence of one bigger eigenvalue will be removed.
Next, we would like to discuss restart strategy. Since the direction d
after n steps is no longer conjugate for general non-quadratic functions, it is
suitable to reset periodically dj to the steepest descent direction, i.e., set

dcn:_gcrw c=12---

This strategy is called restart. With this strategy, the resultant x,,_; is nearer
to * than xy. Especially, when the iterate enters from an area in which
non-quadratic behavior is strong into a neighborhood in which a quadratic
model function approximates f(x) well, the restart method is able to con-
verge rapidly. For large scale problems, restart strategy will be used more
frequently, for example, every k iterations restart, where k < n, even k < n.

Notice that the restart conjugate gradient method permits inexact line
search. However, some control measures are needed so that the resultant
direction is descending. In fact, we have

gL dy = —gf g + Br_19} dy—1. (4.2.33)
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If exact line search was used in the previous iteration, then ggdk_l =0, and
hence ggdk = —nggk < 0 which guarantees that dj is a descent direction.
However, if inexact line search was used in the previous iteration, the quantity
ﬂk,lggdk,l may be positive and larger than —gggk, consequently —g,{gk +
ﬁk_lggdk_l is possibly larger than zero. In this case di will not be a descent
direction. A typical remedy for such an eventuality is to restart the algorithm
with dj, as the steepest descent direction —gi. However, frequently setting dj
to the steepest descent direction will lessen the efficiency of the algorithm,
and make the behavior of the algorithm incline to a steepest descent method.
This situation requires care. The following control measure can be used to
overcome this difficulty.

Let Gry1,dps1 and By denote the computed values of gii1,dipr1 and Gy
at x + aldy, respectively, where {a7} is a test step size sequence generated
from a step size algorithm. If

—Gt1die1 > ol Ge1 2]l dita 12, (4.2.34)

where o is a small positive number, then o/ is accepted as ay. If (4.2.34) is
not satisfied at any trial points, we will use exact line search to produce c.

The following algorithm is a restart conjugate gradient method with exact
line search.

Algorithm 4.2.2 (Restart F-R Conjugate Gradient Method)
Step 0. Given xg, € > 0.
Step 1. Set k = 0. Compute go = g(xo).
Step 2. If ||go|| < €, stop; otherwise, set dy = —gp.

Step 3. Compute step size oy, such that

flag + apdy) = min{ f (g + ady)}-

Step 4. Set xp11 = xp + apdp, k =k + 1.

Step 5. Compute g, = g(xr). If ||gx|| < €, stop; otherwise go to Step
0.

Step 6. If k = n, set xg = xk, and go to Step 1; otherwise, go to
Step 7.
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Step 7. Compute B = gL gi/9}_195—1,dk = —gi + Bdj—1.

Step 8. If d{gk > 0, set xg = x, and go to Step 1; otherwise go to
Step 3. O

(4.2.18)—(4.2.20) are common formulas of the conjugate gradient method.
The Fletcher-Reeves formula (4.2.16) is the first presented in 1964 for solving
optimization problems and now is the most widely used in practice. However,
in general, this formula does not have the descent property and is often used
in conjunction with exact line search. Dixon’s formula (4.2.20) has descent
property. If we employ inexact line search

gt 1di| < —ogidy, 0< o<1,
Dixon’s formula satisfies
df g <0, if g # 0.

The Polak-Ribiere-Polyak (PRP) formula (4.2.19) has a characteristic
that it can restart automatically. When the algorithm goes slowly and gx1 ~
gx, PRP formula will produce §; ~ 0 and thus dy1+1 =~ —gi+1. This indicates
that the algorithm has a tendency of restarting automatically, so that it
can overcome some shortcomings of going forward slowly. Various numerical
experiments show that PRP formula is more robust and efficient than other
existing formulas for solving optimization problems.

4.2.2 Beale’s Three-Term Conjugate Gradient Method

Beale [10] considered the three-term conjugate gradient method. The idea is
as follows. When frequently periodic restarts with the steepest descent direc-
tion are used, the reduction at the restart iteration is often poor compared
with the reduction that would have occurred without restarting. However, if
the restart direction is taken as an arbitrary vector, the required conjugacy
relations may not hold. Now we consider restarting at x;, and take the di-
rection d; generated by the algorithm as the restarting direction to begin the
new cycle, and require the constructed sequence of directions to satisfy the
conjugacy.
Set

div1 = —gir1 + Bedy, (4.2.35)
de = —gk+—1dt + Brradipr + o+ Bp1dg—1,  (4.2.36)
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where n +t —1 > k > t + 2. Similar to the derivation of the traditional
conjugate gradient method, by means of conjugacy between d;; and dy, dy

and dg, dgt1, -+, dr_1, we can get the following relation:
Qngk—l g]{Gdt

= G T G

k-1 %k—1 t t

Bi=0,j=t+1 k-2
Then (4.2.36) can be reduced as

di = =gk + Br—1dr—1 + Ye-1ds, (4.2.37)
where
T
95 (9k — gr—1)
Br—1 = , (4.2.38)
df(gr — gk—1)
0, ifk=t+1;
= r _ L.
Tkt 95 9r1=90) e g p g, (4.2.39)
di (gt+1—gt)

Note that [r_; in (4.2.38) can be represented as any formula in (4.2.18)-
(4.2.21), for example,
_ 9i9n
Br-1=—7F——
9k—19k—1
which is F-R formula.

Note also that in Beale’s three-term formula (4.2.37), di may not be a
descent direction, even if exact line searches are made. In order to make dj
be sufficient downhill and make two consecutive gradients not be far from
orthogonal, we may impose some control measures as follows,

—gk di > o || glll|dil, (4.2.40)
where o is a small positive number, and
|9i—191| < 0:2]|gx|1*. (4.2.41)

Since the iterate xj, generated from (4.2.37)-(4.2.39) is a minimizer of the
linear manifold

Br1 = xp+[di,digr, - di1]
= ¢+ [di, Gry1, 5 Gl—1),
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and hence
gk L [dt7dt+17 T 7dk71]

and
gk L [de, ge1, -, gr—1]-

Below, we give Beale’s three-term conjugate gradient algorithm.
Algorithm 4.2.3 (Beale’s three-term CG method)

Step 1. Given xq, set k = 0,t =0, evaluate go = g(xo). If ||go|| <€,
stop; otherwise set dy = —go.

Step 2. Compute oy by exact line search.
Step 3. Set xyy1 = x) + apdy, set k:=k + 1, evaluate g = g(xy).
Step 4. If ||gk|| < e, stop; otherwise go to Step 5.

Step 5. If both conditions

l9E 19kl > 0.2]|gx]1°

and
k—t>n—-1

do not hold, go to Step 7; otherwise go to Step 6.
Step 6. Sett =k —1.
Step 7. Compute dy by (4.2.37)-(4.2.39).
Step 8. If k > t+ 1, go to Step 9; otherwise go to Step 2.

Step 9 If
—1.2||gx|1* < dif gk < —0.8]Igk?,

go to Step 2; otherwise go to Step 6. O
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4.2.3 Preconditioned Conjugate Gradient Method

In the discussion above we have known that if the conjugate gradient method
is applied to minimize the quadratic function

1
f(z) = imTGJ: +bvlz +c, (4.2.42)
where G is symmetric and positive definite, it computes the solution of the

System
Gz = —b. (4.2.43)

In this case, the algorithm is called the linear conjugate gradient method,
and the notation r is used for the gradient vector Gxy + b, which, in fact, is
the residual of the system (4.2.43).

The linear conjugate gradient method is as follows: given xg and r¢ =
Gzro+b,6-1 =0,d_1 =0, and each iteration includes the following steps for
k=01, -:

dy = =1 + Br—1dp—1,
T

_ TETk
T dGdy
Tkl = Tk + apdy, (4.2.44)
Thy1 = Tk + pGdy,
T
Th+17k+1
e

If exact arithmetic is used, the convergence of the linear conjugate gradient
method will be achieved in m(< n) iterations, where m is the number of
distinct eigenvalues of G. If the eigenvalues of G are clustered into groups of
approximately equal value, the method may converge very quickly. However,
for general eigenvalue structure, due to rounding errors, considerably more
than n iterations may be required. Hence, the convergence rate depends on
the structure of eigenvalues of G and the condition number of G. If the
original system is replaced by an equivalent system in which the conditioning
of GG is improved, then the convergence rate can be improved. This technique
is called preconditioning.
Consider the transformation

z=C"1z,
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where C' is a nonsingular matrix. The solution of Gx = —b is equivalent to
solving the linear system

cTgo= 1z =—-Cc .

If we adequately choose C' such that the condition number of C-TGC~! is
as small as possible, the convergence rate of the algorithm will be improved.
Since C~TGC~! is similar to WG, where W = CT(C, it means that we
should choose W such that the condition number of W~!G is as small as
possible.

The preconditioned conjugate gradient method is as follows: given x, set
go = Gxg+ b, and let vg = W~lgy and dg = —vg. For k=0,1,---,

T
g = d%kgflk7 (4.2.45)
Tpt1 = Tk + opdg, (4.2.46)
Ik+1 = gk + o Gdy, (4.2.47)
ki1 = W lgra, (4.2.48)
By, = M, (4.2.49)
9i Vk
dit1 = —Vkt1 + Brdy. (4.2.50)

The preconditioning matrix W can be defined in several ways. The sim-
plest strategy is to choose W as the diagonal of GG. In this case, the condition
number of WG is bounded by (1 + §)/(1 — §), where § < 1. The popular
strategy for preconditioning is use of incomplete Cholesky factorization. The
basic idea is as follows. Instead of computing the exact Cholesky factor L
which satisfies G = LLT, we compute an approximate factor L which is more
sparse than L, such that G = I:I:T, and then choose C' = f}T, and hence
W =LL",

crfget'=L'GL " ~1
and
WG = (LET)'G ~ I.
In this procedure, any fill-in during the sparse Cholesky factorization is dis-
carded.

The other preconditioning matrix can be obtained by performing a limited-
memory quasi-Newton method. From the quasi-Newton method (see Chap-
ter 5) the limited memory matrix M satisfies the quasi-Newton condition for
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r (r < n) pairs of vectors {s;,y;},
sj=My;, j=1,---,m,
where s; = xj11 — 24,Y; = gj+1 — g Since Gs; = y;j, we have
sj = MGsj,
and the matrix MG has r unit eigenvalues with eigenvectors {s;}. Therefore,
M can be used as W1

For the minimization of a non-quadratic function, the preconditioning
matrix W is varied from iteration to iteration. In this case, we consider

z=C""z (4.2.51)
and the objective function is transformed as
fl) = f(C7'2) = f(2). (4.2.52)

Set
2k = Cap, Gr = Vf(z) = CTV f(a) = C gy,
then .
dy = Cdy, 31, = Csg, G = C Ly

So, application of conjugate gradient method, for example (4.2.18), to f (2)
yields the direction

~T ~ ~
5 } Gior1 (Ger1 — Gk) <
dk+1 = —0k4+1 + li;1~ ——dj,
di. (Gk+1 — Jk)

dgi\ -
- (1 — Jij ) Gt 1s (4.2.53)

and hence

drpyl _
dk+1 = - (I_ kyl;) w 1gk+17

A
= —Pk+1gk+1 (4254)

which is the formula of the preconditioned conjugate gradient method, where
W = CT(C. Similarly, we can obtain

1 T T ykTyk Sksf -1
div1 = — |1 — ——(ursp + 1Y) + [ 1+ 5 7| W gry1 (4.2.55)
Yi Sk Y Sk ) Yi Sk



4.3. CONVERGENCE OF CONJUGATE GRADIENT METHODS 191

which is the preconditioned conjugate gradient method in BFGS formula
without memory.

In general, the preconditioning matrix is varied with different problems.
There is not a general-purpose formula for preconditioners.

4.3 Convergence of Conjugate Gradient Methods

As for the convergence results of the conjugate gradient method for mini-
mizing a general non-quadratic function, there have been various results. In
this section, we introduce global convergence results of conjugate gradient
methods due to Zoutendijk [385], Polyak [255] and Al-Baali [2] etc., and also
give in brief the outline of local convergence rates obtained by Cohen [61],
and McCormick and Ritter [205].

4.3.1 Global Convergence of Conjugate Gradient Methods

This subsection is divided into two parts. The first part discusses the global
convergence of conjugate gradient methods with exact line search, and con-
sists of three theorems which state respectively global convergence of Fletcher-
Reeves (F-R) conjugate gradient method, Crowder-Wolfe (C-W) conjugate
gradient method, and Polak-Ribiere-Polyak (PRP) conjugate gradient method.
The second part discusses the global convergence of F-R conjugate gradient
method with inexact line search.

Now, we start the discussion by proving the global convergence result of
F-R method in the case of exact line search.

Theorem 4.3.1 ( Global convergence of F-R conjugate gradient method )

Suppose that f : R® — R is continuously differentiable on a bounded level
set L={x € R"| f(x) < f(xo)}, and that F-R conjugate gradient method is
implemented with exact line search. Then the produced sequence {xy} has at
least one accumulation point which is a stationary point, i.e.,

(1) when {xy} is a finite sequence, then the final point x* is a stationary
point of f;

(2) when {x} is an infinite sequence, it has limit point, and any limit
point s a stationary point.

Proof. (1) When {z}} is finite, from the termination condition, it fol-
lows that the final point z* satisfies V f(z*) = 0, and hence z* is a stationary
point of f.
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(2) When {zy} is infinite, we have Vf(zy) # 0,Vk. Noting that d =
—gk + Br—1dg—1 and g,{dk,l = 0 by exact line search, we have

gidi, = —|\gl* + Be—19} dk—1 = —||gx||* < 0, (4.3.1)

which means that dj is a descent direction, {f(zj)} is a monotone descent
sequence, and thus {z} C L. Therefore {z} is a bounded sequence and
must have a limit point.

Let 2* be a limit point of {zy}. Then there is a subsequence {zj}x,
converging to z*, where K is an index set of a subsequence of {z}}. Since
{zr}r, C {ar}, {f(xr)}r, C {f(zx)}. It follows from the continuity of f
that for k € K1,

f(2®) = f(lim z) = lim f(zx) = f*. (4.3.2)
k—o0 k—o0
Similarly, {zg+1} is also a bounded sequence. Hence there exists a subse-
quence {xp41} K, converging to z*, where Ky is an index set of a subsequence
of {zky1}. In this case,

f@7) = f(lm zy41) = lim flzp) = f7 (4.3.3)
Then
f(@*) = f@®) = [~ (4.3.4)

Now we prove Vf(z*) = 0 by contradiction. Suppose that V f(z*) # 0,
then, for « sufficiently small, we have

f(z™ 4+ ad”) < f(z¥). (4.3.5)

Since

f(l'k+1) = f(:ck + akdk) < f(xk + Ozdk), Va > 0,
then for k € K5, passing to limit & — oo and using (4.3.5), we get
f(@) < fx" +ad*) < f(z¥), (4.3.6)

which contradicts (4.3.4). This proves Vf(z*) = 0, i.e., 2* is a stationary
point of f. O

Similarly, we can state the global convergence of Crowder-Wolfe (C-W)
restart conjugate gradient method with exact line search as follows.
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Theorem 4.3.2 (Global convergence of Crowder-Wolfe conjugate gradient
method) Suppose that the level set L = {x € R" | f(z) < f(x0)} is bounded,
and that V f(x) is Lipschitz continuous. Assume that Crowder- Wolfe conju-
gate gradient method is implemented with exact line search and restart strat-
egy. Then the produced sequence {xp} has at least one accumulation point
which is a stationary point.

Proof. See Polyak [255]. O

As mentioned before, PRP method is more efficient than F-R method.
We naturally hope PRP method has also the above property for a general
non-quadratic function. Unfortunately, the above Theorem 4.3.1 is not true
for PRP method (see Powell [270]). However, with stronger condition that f
is uniformly convex, the PRP method is globally convergent. The following
theorem states this result.

Theorem 4.3.3 Let f(x) be twice continuously differentiable and the level
set L={x € R"| f(x) < f(xo)} be bounded. Suppose that there is a constant
m > 0 such that for x € L,

mlyl* < y"Vf(z)y, ¥y € R". (4.3.7)

Then the sequence {xy} generated by PRP method with exact line search
converges to the unique minimizer x* of f.

Proof. From Theorem 2.2.4, we know that it is enough to prove that
(2.2.13) holds, that is, there exists a constant p > 0 such that

~gidi = pllglll1dill; (4.3.8)

which means
cosbi > p>0.

Then, from Theorem 2.2.4, we have g — 0 and g(z*) = 0. From (4.3.7), it
follows that {xp} — «* which is a unique minimizer.
By using g} di_1 = 0 and (4.2.15), we have

gi di. = —|gk*-

Then (4.3.8) is equivalent to

llgell (4.3.9)

ldl| =
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From (4.2.17) and (4.2.15), it follows that

T 2
Je—19k-1 g1l

Qg = — - , 4.3.10

di_Gr_rdp—y  d}_ Gr_1dp_y ( )

where

1
Gr_1 :/ G(xk,1 + takfldkfl)dt. (4.3.11)
0
By (4.3.11), the integral form of the mean-value theorem is
Ik — gr—1 = g(Tp—1 + ap—1dp—1) — g(wp—1) = k—1G_1dp—1.  (4.3.12)

Then, by (4.3.11) and (4.3.10), (4.2.19) becomes

gk — gk-1) 9t Gr—1dk_1
1 = T =T
Ih_19k-1 | gr—1]]
gt Gr_1dy_1

- 4.3.13
dl | Gr_1di—1 ( )

Since the level set L is bounded, there is a constant M > 0, such that
yI'G(x)y < M||y||J?, = € L,Vy € R™. (4.3.14)
Then, by (4.3.13), (4.3.14) and (4.3.7), we have

lgrlll|Gr1drll _ M |gxl

Br—1] < < ) 4.3.15
Pl < g S e (4.3.15)
Therefore
ldell < gkl + |Bk—1|lldk—1]|
M
< lgell + —llgxll
m
M
= <1+> gl (4.3.16)
m
which gives
(Al ( M>1
L > (14— . (4.3.17)
[l || m

The above inequality shows that (4.3.9) holds. We complete the proof. O
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Next, we discuss the case of inexact line search. Al-Baali [2] studied the
F-R conjugate gradient method with strong Wolfe-Powell rule (2.5.3) and
(2.5.9), and proved the global convergence. The following theorem indicates
that, in the inexact case, the search direction dj satisfies descent property:
ggdk < 0.

Theorem 4.3.4 If, for all k, oy are determined by strong Wolfe-Powell rule
(2.5.8) and (2.5.9), then for F-R-CG method, the inequality

—Zaj <

<2+ ¢ (4.3.18)
Hng2 Z

holds for all k, and hence the descent property
gtdy, <0, Vk (4.3.19)
holds, as long as g # 0.

Proof.  The proof is by induction. For k = 0, dy = —go,0” = 1, hence
(4.3.18) and (4.3.19) hold for k = 0.

Now we suppose that (4.3.18) and (4.3.19) hold for any £ > 0. By (4.2.15)
and (4.2.16), we have

lges1l? lgrll?

T g T g
Ter1Chi1 _ k1 0k (4.3.20)

Using (2.5.9) and induction assumption (4.3.19) yields

T I .d Iq
L S T R R (4.3.21)

lgrll® = llgrall? 11>

Also, by induction assumption (4.3.18), we have

k+1 ) d
—ZO‘J = 1—aZaj<gk+1 k+21
: gkl

k41

< —1+aZaj:—2+Zaj.
J=0 J=0

Then, (4.3.18) holds for k + 1.
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Since
k+1
gk-‘,—ldk’-i-l
< -2+ ol (4.3.22)
||9k:+1 ”2 Z
and
k+1

ZU] <ZO‘J

where o € (0,1), it follows from 1 — o > 1 that —2 + ZkH 07 < 0. Hence,
from (4.3.22), we obtain gk+1dk+1 < 0. We complete the proof by induction.
O

Now, we are in a position to prove the global convergence of F-R-CG
algorithm with inexact line search.

(4.3.23)

Theorem 4.3.5 Let f be twice continuously differentiable, and the level set
L ={xe€ R"| f(x) < f(zo)} be bounded. Suppose that the steplength oy,
is determined by strong Wolfe-Powell rule (2.5.3) and (2.5.9), where 0 <
p<o< % Then the sequence {xy} generated by F-R-CG method is globally
convergent, i.e.,
liminf ||gg|| = 0. (4.3.24)
k—o0

Proof. By (2.5.9), (4.3.18) and (4.3.23), we have

k—1

gk di—1| < —ogi_1dj—1 <0 Y 0|gpa|]? < ——
7=0

1_ lgr—1l®.  (4.3.25)

Also, by (4.2.15), (4.3.25) and (4.2.16), we obtain

ldil? = lgrll® — 2Bk—19F dr—1 + Bi_1|dk—1]?

20
< lgel® + f(jllgkll2 + B lldk—|?

140
= ( >||gk||2+ﬂk k1. (4.3.26)

1-—

By applying this relation repeatedly, it follows that

Jaul? < (122 ) Ll (Z o~ ) (1.3.27)
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where we used the facts that

gkl
lgr-i-1]]?

BiBry Bri=

Now we prove (4.3.24) by contradiction. It assumes that (4.3.24) does
not hold, then there exists a constant € > 0 such that

gkl >€>0 (4.3.28)

holds for all k sufficiently large. Since g is bounded above on the level set
L, it follows from (4.3.27) that

di* < erk, (4.3.29)

where ¢; is a positive constant. From (4.3.18) and (4.3.23), we have

cost = —7g£dk > Q—iaj llgell
AT
1- 20) lgx|
> . 4.3.30
> (7)) (:3:0)
Since o < 3, substituting (4.3.29) and (4.3.28) into (4.3.30) gives
1—20\* ¢ llgx]? 1
2

0, > > — 4.3.31
Yotz (T=7) Tpipzaky (e

where ¢y is a positive constant. Therefore, the series 3", cos? . is divergent.
Let M be an upper bound of |G(z)|| on the level set L, then

91k = (gx + G () di) di, < gf d + M ||di ||

By using (2.5.9), i.e., ogldy < ng+1dk < —ogldy, we obtain

1—0
ap >

T
—_— . 4.3.32

Substituting ay, of (4.3.32) into (2.5.3) gives

(L—o)p (gfdi\’
fe = =y <H’sz||>

= fi — cslgx||® cos® b,
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where c3 = % > 0. Since f(z) is bounded below, 3", ||g|* cos? 6 con-

verges, which indicates that >, cos? 6}, converges by use of (4.3.28). This
fact contradicts (4.3.31). We complete the proof. O

In the above theorem, the conclusion is also true if, instead of f being
twice continuously differentiable, the assumptions on f are changed: let f be
continuously differentiable and bounded below, and V f be Lipschitz contin-
uous.

To conclude the subsection, we give the global convergence of D-Y con-
jugate gradient method with Wolfe-Powell rule.

Theorem 4.3.6 Let x1 be a starting point, f(x) be continuously differen-
tiable and bounded below on the level set L, V f(x) satisfy the Lipschitz con-
dition on L. Let oy, satisfy Wolfe-Powell rule (2.5.3) and (2.5.7). Then, for
all k,

gidy, <0,

and further
liminf ||gx|| = 0.
k—o0

Proof. See Dai and Yuan [75]. O

4.3.2 Convergence Rate of Conjugate Gradient Methods

We have already seen that the conjugate gradient method has quadratic
termination, that is, for a convex quadratic function, the conjugate gradient
method with exact line search terminates after n iterations.

In (4.2.31) and (4.2.32), we give two formulas for convergence rate of
conjugate gradient method, from which we have seen that, for a quadratic
function, the rate of convergence of conjugate gradient methods is not worse
than that of the steepest descent method; that is, it is not worse than linear.
Furthermore, we can also have the following demonstration. For convenience,
we assume

f(z) = %I‘TG:B, (4.3.33)

where G is an n x n positive definite matrix. Clearly, the explicit expression

of steplength is

_d{ka _ d%gk
dF Gdy, dFGdy,

o = (4.3.34)
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So, we can obtain

1
fxpy) = iwnglekJrl
1
= §(xk + Oékdk)TG(.’L'k + Oékdk)
I 7 1 (g;fdk)z
= = - = . 4.3.
2:17ka/€ 2 4 Gy (4.3.35)

In the case of the steepest descent (SD) method we have dj, = —g; and thus

1 gkt
2 gl Gy

1
flahth) = §$£Gl’k (4.3.36)

Whereas in the case of the conjugate gradient (CG) method, we have dj =
—gr + Br_1dip_1 and thus

1 1 [lgel*
k+1 T
1 |lgel?
= - = . 4.3.38
Since
diGdy, = (—gr+ Be_1dk—1)" G(—gr + Br_1dx_1)
= gL Ggk + Bi_1dr—1Gdi—1
< gi Gy,
it follows that
flals) < flakih). (4.3.39)

The above discussion indicates again that the conjugate gradient method
reduces the value of f at least as much as the steepest descent method. Since
the steepest descent method has a linear convergence rate, we conclude that
conjugate gradient methods have convergence rates that are no worse than
the linear rate. From (4.3.38) we also know that, for conjugate gradient
methods, the objective value is strictly decreasing. Similarly, the result is
true for the preconditioned conjugate gradient method and we have

1 T 2
Fakh) = ) = 5 Sk

(4.3.40)
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where v, = W™ lg,.

Note that the conjugate gradient method with exact line search can find
the minimizer of a convex quadratic function in at most n iterations, which
corresponds to one step of Newton method. Hence we can say that if n
iterations of the conjugate gradient method are regarded as a big iteration,
the conjugate gradient method should have a similar convergence rate as
Newton method. Cohen [61], Burmeister [39], and McCormick and Ritter
[205] studied the n-step quadratic convergence rate. We now state this result
without proof in the following theorem.

Assume that

(A1) f: R™ — R is three times continuously differentiable;

(A2) there exist constants M > m > 0 such that

mlyll* <y"V2f(x)y < M|y|]*, vy e R", z € L, (4.3.41)
where L is a bounded level set.

Theorem 4.3.7 Assume that the conditions (A1) and (A2) are satisfied,

then the sequence {xy} generated by PRP-CG and F-R-CG restart methods

have n-step quadratic convergence rate, that is, there exists a constant ¢ > 0,
such that .

lim sup Ikr = 2] <c < oo, (4.3.42)

k—oo  ||Thr — z*[|?

where r means that the methods restart per r iterations.

Further, Ritter [287] shows that the convergence rate is nm-step super-
quadratic, that is,
k0 — 2| = o||zx — 2*||%). (4.3.43)

The other results on convergence rate of conjugate gradient methods can
consult Stoer [325].

Exercises

1. Let G be an n X n symmetric positive definite matrix, p1, p2,-- -, pn be
n linearly independent vectors. Define

dl = P1,
i p{HGdi

djy1 = Pe1 — )~
< dI'Gd;

di, k=1,2,---,n—1.



4.3. CONVERGENCE OF CONJUGATE GRADIENT METHODS 201

Prove that {dj} are G-conjugate.

2. Using F-R conjugate gradient method minimize the following func-
tions:

(1) f(x) =23+ 2:52 — 22129 + 225 + 2, the initial point 2(*) = (O 0)T.

(2) f(z) = (z1 — 1)* + (z1 — 29)?, the initial point z(®) = (0,0).

3. Using respectively F-R conjugate gradient method and PRP conjugate
gradient method minimize the Rosenbrock function in Appendix 1.1 and Ex-
tended Rosenbrock function in Appendix 1.2.

4. Try to prove respectively that {d} generated by PRP-CG method
and Dixon-CG method are conjugate.

5. Derive the Beale three-term conjugate gradient formula (4.2.38)—
(4.2.39).

6. Let f(z) = 12T Az — b"2, where A is an n x n symmetric positive
definite matrix. Setting xpy1 = 2 + ardy and dy = —r + Brdr—_1, prove
T
T'k dk
dl Ady,’

(1) the exact step size ap = —
T
_ T'k Adk,1
(2) /6’6 - dg_lAdkfl .

7. Using the linear conjugate gradient method minimize function flx) =
%mTAx — bz, where A is a Hilbert matrix A = (H] 1) b=(1,1,---,1)7T,
the initial point (%) = 0. Try considering the cases of n = 5,10, 20.



Chapter 5

Quasi-Newton Methods

5.1 Quasi-Newton Methods

We have seen that Newton’s method xy41 = xf — G,;lgk is successful because
it uses the Hessian which offers the useful curvature information. However,
for various practical problems, the computing efforts of the Hessian matrices
are very expensive, or the evaluation of the Hessian is difficult, even the
Hessian is not available analytically. These lead to a class of methods that
only uses the function values and the gradients of the objective function and
that is closely related to Newton’s method. Quasi-Newton method is such a
class of methods which need not compute the Hessian, but generates a series
of Hessian approximations, and at the same time maintains a fast rate of
convergence.

Recall that in Chapter 3 the n-dimensional Newton’s method xy11 =
Tp — G’,;l g comes from the one-dimensional Newton’s method. Can we get
any inspiration to the n-dimensional quasi-Newton method from the one-
dimensional method? The answer is positive.

In Chapter 2, for quadratic interpolation with two points (2.4.6), we use
interpolation condition (2.4.4) and obtain

A — g1

9. 5.1.1
& = 2_1% ( )

Opy1 = O —

If we set

r
by, = M, (5.1.2)
O — O—1
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then (5.1.1) can be written as
g1 = o — by ') (5.1.3)

which is also called the secant method. Comparing with Newton’s form
a1 = ag — [#]] 71 ¢}, indicates that here by, is used to approach ¢} without
computing ¢}. Also, the convergence rate of the secant method is % ~
1.618 (see Theorem 2.4.1) which is fast. Now we apply this idea to the
n-dimensional quasi-Newton method.

5.1.1 Quasi-Newton Equation

Instead of computing the Hessian G, we would like to construct Hessian
approximation, for example, By in the quasi-Newton method. We hope that
the sequence {Bj} possesses positive definiteness, has the direction dj =
-B; Lgr down, and behaves like Newton’s method. In addition, it is also
required that its computation is convenient. What conditions does such a
sequence { By} satisfy? How to form {Bj}? In this subsection, we first reply
the first question, and in the subsequent subsections we shall discuss the
formations of B.

Let f : R®™ — R be twice continuously differentiable on an open set
D C R". Let the quadratic approximation of f at xpy1 be

£(@) % flone) + 0 (@ = ore1) + 50— 2re0) G (0 = 2a1), (514)

>

where gx1 £ Vf(zgs1) and Gy = V2f(zpe1). Finding the derivative
yields

9(z) = git1 + Grg1(x — 2pq1). (5.1.5)
Setting © = xk, g = Tp41 — Tk and Yg = gr41 — gk, We get
Gtk ~ k- (5.1.6)

Clearly, it is true that (5.1.6) holds exactly with equality for quadratic func-
tion f with the Hessian G, i.e.,

sy = G lyg, or yp = Gsy. (5.1.7)

Now we ask the produced inverse Hessian approximations Hy1 in the quasi-
Newton method to satisfy this relation, i.e.,

Hy 11y = sk, (5.1.8)
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which is called the quasi-Newton equation or quasi-Newton condition, where

Sk = Thyl — Tk, Yk = Gkt1 — Gh- (5.1.9)

In fact, if we consider the model function at xg1,

1
Mer1(2) = f(@r41) + i (T —wpp1) + = r41) Bpi(z—ag11) (5.1.10)
which satisfies the interpolation conditions

M1 (Tp+1) = [(@ht1), Vg1 (Trt1) = o1, (5.1.11)

where By 1 = H,_ 431 is an approximation to the Hessian Gj1. Instead of the

interpolation condition V?my1(zx11) = Gy1 in Newton’s method, we ask
the model (5.1.10) to satisfy

Vmgi1(zk) = gg, (5.1.12)
that is
9k = Grk+1 + Brr1 (T — Tgy1)-
So we have
Bi1(Thy1 — k) = Grey1 — Gk
or

Bry1sk = yg (5.1.13)

which is also the quasi-Newton equation expressed in Hessian approximation
form.
Premultiplying (5.1.13) by s} gives

T T
Sk Br+15k = S Yk-

It means that if
skyr >0, (5.1.14)

the matrix Bj41 is positive definite. Usually, (5.1.14) is called the curvature
condition.

The above discussion tells us that the key point of the quasi-Newton
method is to produce Hyy; (or Byy1) by use of some convenient methods
such that the quasi-Newton equation (5.1.8) (or (5.1.13)) holds. In general,
such an Hyyq will be produced by updating Hy into Hy41, which is our
topic in the subsequent subsections. Now we state a general quasi-Newton
algorithm below.
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Algorithm 5.1.1 (A general quasi-Newton algorithm)

Step 1.
Step 2.
Step 3.

Step 4.

Step 5.

Step 6.

Given g € R, Hy € R™",0<e< 1,k :=0.

If llgrll < €, stop.

Compute
dy = —Hy,gp.. (5.1.15)

Find a step size ar > 0 by line search, and set xpy1 =
xp + apd.

Update Hy, into Hpy1 such that the quasi-Newton equation
(5.1.8) holds.

k:=k-+1 and go to Step 2. O

In the above algorithm, it is common to start the algorithm with Hy = I,
an identity matrix or set Hy to be a finite-difference approximation to the
inverse Hessian Gy L If Hy = I, the first iteration is just a steepest descent
iteration. Sometimes, quasi-Newton method takes the form of Hessian ap-
proximation By. In this case, the Step 3 and Step 5 in Algorithm 5.1.1 have
the following forms respectively.

Step 3*. Solve

Bkd = —0k for Clk. (5.1.16)

Step 5*. Update By, into By so that quasi-Newton equation (5.1.13) holds.

Next, we give some comparisons with Newton’s method, which indicate
that the quasi-Newton method is advantageous.

Comparison of quasi-Newton method vs Newton’s method

quasi-Newton method Newton’s method
Only need the function values Need the function values,
and gradients gradients and Hessians
{H}} maintains positive definite | {G}} is not sure to be
for several updates positive definite
Need O(n?) multiplications Need O(n?) multiplications
in each iteration in each iteration
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As Newton’s method is a steepest descent method under the norm ||- ||, ,
the quasi-Newton method is a steepest descent method under the norm ||-|| 5, ,
where Bj is the approximation of the Hessian Gj. In fact, di now is the
solution of the minimization problem

min gl d
s.t. ldllg, <1. (5.1.17)

From the inequality
(97 d)* < (9 By, 'g1)(d" Byd),

it follows that when
dy = —Bj, 'gr = —Hygr,

ggdk is the smallest.

By the way, since the metric matrices By, are positive definite and always
changed from iteration to iteration, the method is also called the variable
metric method.

5.1.2 Symmetric Rank-One (SR1) Update

As we have seen, the key point of the quasi-Newton method is to generate
Hy1 (or Bgi1) by means of the quasi-Newton equation. This subsection
and the subsequent two subsections will discuss some typical and popular
quasi-Newton updates. In this subsection we introduce a simple rank-one
update that satisfies the quasi-Newton equation.

Let Hjy be the inverse Hessian approximation of the k-th iteration. We
try updating Hy into Hyy1, i.e.,

Hyy = Hp + Ej, (5.1.18)

where, usually, Fj is a matrix with lower rank. In the case of rank-one, we
have
Hyp = Hy +uo’, (5.1.19)

where u,v € R". By quasi-Newton equation (5.1.8), we obtain
Hisryp = (He +w")yp, = s,

that is
(v"yr)u = s, — Hypyp. (5.1.20)
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This indicates that u must be in the direction of s — Hgyr. Assume that
sk — Hpyr # 0 (otherwise, Hy, has satisfied the quasi-Newton equation) and
that the vector v satisfies v1y;, # 0, then it follows from (5.1.19) and (5.1.20)
that

1
Hyyy = Hy + T (s — Hyyp)v™ . (5.1.21)

Since the inverse Hessian approximation Hj is required to be symmetric, we
can set simply v = s — Hpy, and get

(sk — Hiyw)(si — Hiyr) ™

H, = H. +
s g (sk — Heyr) T yk

(5.1.22)

which is called the symmetric rank-one update (SR1 update).

By the way, (5.1.21) is a general Broyden rank-one update in which, par-
ticularly, if v = yg, (5.1.21) is called the Broyden rank-one update presented
by Broyden (1965) for solving systems of nonlinear equations.

The distinct property of SR1 update is its natural quadratic termination,
that is, for a quadratic function, it need not to do line search, but can be
terminated within n steps, i.e., H, = G~!, where G is the Hessian of the
quadratic function. This fact is proved by Theorem 5.1.2 below.

Theorem 5.1.2 (Property Theorem of SR1 Update) Let sg,S1,---,Sp—1 be
linearly independent. Then, for a quadratic function with a positive definite
Hessian, SR1 method terminates at n + 1 steps, that is, H, = G~1.

Proof. Let the Hessian G be positive definite. We can use
yr = Gsg, k=0,1,---,n—1, (5.1.23)

that is shared by all proofs on quadratic termination.
First, by induction, we prove the hereditary property

Hiyj =s5, j=0,1,---,i— L (5.1.24)

For i = 1, it is trivial from (5.1.22). Now suppose it is true for i > 1; we will
prove it holds for ¢ + 1.
From (5.1.22), we have

(si — Hiyi)(si — Hyyi)"'y;

T e (si — Hiyi)Tys

(5.1.25)
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When j < i, from the induction assumption and (5.1.23), we have

(si—Hw)"y; = sjy;— vy Hiy
= Sy U s
= s/ Gsj—s] Gs;
0.

Then
Hi1y; = Hiy; = 55, j <t

When j =i, it is a direct consequence from (5.1.22) that
Hit1yi = si.

Therefore, (5.1.24) follows.
Furthermore, since

sj = Hyy; = H,Gsj, j=0,1,---,n—1

and sj(j = 0,1,---,n — 1) are linearly independent, then H,G = I, that is
H,=G '. O

It is not difficult to find that SR1 update has the following characteristics.
1. SR1 update possesses natural quadratic termination.
2. SR1 update satisfies the hereditary property: H;y; = s;,7 < i.

3. SR1 update does not retain the positive definiteness of Hj. If and
only if (s, — Hyyr) yr > 0, SR1 update retains positive definiteness.
However, this condition is difficult to guarantee. The remedy is that
SR1 update can be used in the trust region framework since the trust
region method does not require positive definiteness of the Hessian
approximations (see Chapter 6).

4. Sometimes, the denominator (sz — Hyyr)” yi is very small or zero, which
results in serious numerical difficulty or even the algorithm is broken.
This disadvantage restricts its applications. So, it is a topic deserving
research how to modify SR1 update such that it possesses not only
natural quadratic termination but also positive definiteness. A special
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skipping strategy to prevent the SR1 update from breaking down is as
follows. We use (5.1.22) only if

|(si — Hiya)"wil > rllsi — Hiyilllwill, (5.1.26)
where r € (0,1); otherwise we set H; 11 = H;.

5. The SR1 update has a good behavior that it continues to generate good
Hessian approximations, which is stated in the following theorem.

Theorem 5.1.3 Let f be twice continuously differentiable, and its Hes-
sian be bounded and Lipschitz continuous in a neighborhood of a point
x*. Let {x} be a sequence of iterates with x, — x*. Suppose that the
skipping rule (5.1.26) holds for all k, and the steps sy are uniformly
linearly independent. Then the matriz sequence { B} generated by SR1

update satisfies
lim | H; — [V ()] 7 = 0. (5.1.27)

5.1.3 DFP Update

DFP update is another typical update which is a rank-two update, i.e., Hg 1
is formed by adding to Hy two symmetric matrices, each of rank one. Let us
consider the symmetric rank-two update

Hyy1 = Hi + avu® + bov” (5.1.28)

where u,v € R, a and b are scalars to be determined. By the quasi-Newton
equation (5.1.8),
Hyyp, + auuyy, + bovTyy, = s (5.1.29)

Clearly, u and v are not uniquely determined, but their obvious choices are
u = Sk, v = Hpys.
Then, from (5.1.29), we have
a=1/uly, =1/styr, b= —1/vyp = —1/yl Hyys.

Therefore

T T
Si.S H, H
Hyy = Hy + 8%k TRV T (5.1.30)
1, Yk Vi Hryk
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The formula (5.1.30) is the first quasi-Newton update proposed originally by
Davidon [79] and developed later by Fletcher and Powell [137]. Hence it is
called DFP update.

Now we state the quasi-Newton algorithm with DFP update (in brief,
DFP method) as follows.

Algorithm 5.1.4 (DFP method)

Initial Step: Given xg € R™ an initial point, Hy € R™™"™ a symmetric and
positive definite matriz, € > 0 a termination scalar, k := 0.

k-th Step: For k=0,1,---,
1. If lgwll < €, stop.
2. Compute dp, = —Hygp.
3. Compute the step size ay.
4. Set sp = agdy, Tt1 = T + Sk, Yk = Gk+1 — ks and

sksy,  Hyyryg Hy
siyk Yl Hiy

Hy 1 = Hy +

5 k:=k+1, goto Step 1. O

DFP method has the following important properties:
1. For a quadratic function (under exact line search)

(1) DFP update has quadratic termination, i.e., H, = G 1.

(2) DFP update has hereditary property, i.e., Hjy; = sj,j < i.

(3) DFP method generates conjugate directions; when Hy = I, the
method generates conjugate gradients.

2. For a general function

(1) DFP update maintains positive definiteness.
(2) Each iteration requires 3n? + O(n) multiplications.
(3) DFP method is superlinearly convergent.

(4) For a strictly convex function, under exact line search, DFP method
is globally convergent.
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The convergence properties of DFP method will be established in §5.3
and §5.4. In the remainder of this subsection we shall discuss the other
two important properties: positive definiteness of the update and quadratic
termination of the method.

The fact that quasi-Newton update retains positive definiteness is of im-
portance in efficiency, numerical stability and global convergence. If the Hes-
sian G(x*) is positive definite, the stationary point z* is a strong minimizer.
Hence, we hope Hessian approximation { By} (or inverse Hessian approxima-
tion {Hy}) is positive definite. In addition, if {By} (or {Hy}) is positive
definite, the local quadratic model of f has a unique local minimizer, and
the direction dj from (5.1.15) or (5.1.16) is a descent direction. Usually, the
update retaining positive definiteness means that if Hy (or By) is positive
definite, then Hy,1 (or By1) is also positive definite. Such an update is also
called positive definite update. Next, we discuss the positive definiteness of
DFP update.

Theorem 5.1.5 (Positive Definiteness of DFP Update)
DFP update (5.1.80) retains positive definiteness if and only if s{yk > 0.

Proof. For the proof, we give two methods.
Proof (I) Sufficiency. We will prove

2T Hypz >0, V2 #0 (5.1.31)

by induction.

Obviously, Hg is symmetric and positive definite. We now suppose that
(5.1.31) holds for some k > 0 and set Hy = LLT as the Cholesky factorization
of Hy,. Let

a=L"z b= L"y,. (5.1.32)

Then by DFP update (5.1.30) we have

Hkykyl{Hk> o4 ZTSkS;}F

zTHkHz = 2T <Hk—

z
vl Hiyk sFu
T1\2 T.\2
v (a'd) (2" s1)
= |la a— + . 5.1.33
l bTd ] s%yk ( )

It is obvious from Cauchy-Schwartz inequality that

Tb2
Lo — (a”b)

> 0. 1.
o, 20 (5.1.34)
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In addition, the second term in (5.1.33) is also nonnegative because of s;‘gyk >
0. Therefore we obtain that

zTHkHz > 0.

Below, we must prove that at least one term in (5.1.33) is strictly larger
than zero. Since z # 0, the equality holds in (5.1.34) if and only if a is
parallel to b, equivalently, if and only if z is parallel to y. If z is parallel to
Yr, we have z = By, where § #£ 0, and

(2Ts1,)2

= sl yr > 0,
Sk Yk

which indicates that if z is parallel to yg, i.e., if the first term in (5.1.33)
equals zero, the second term must be strictly larger than zero. Thus, for any
z # 0, we always have 27 Hj 1z > 0. The sufficiency follows.

In analogy, the necessity can be shown. O

Proof (II). Let Hy = LLT,j = LTy;,5 = L~ 's;. Then DFP update
(5.1.30) can be written as

Hy = LWLT, (5.1.35)
where . .
gy 58
gy 5Ty ( )

By the determinant relation (1.2.70) of update,

T T
_ Sk Yk

S
7'y ylHgyr'

<

det(W) =

which, together with (5.1.35), gives

T
det(Hy 1) = det(Hy) kb (5.1.37)
Yi Hyyy.
This implies that if Hy, is positive definite, then det(H4+1) > 0 if and only if
s{yk > 0.
Let

T HuwlH, - HyyeylH
Hypy = Hy + k% DRYRYL Tk _ g DkYkYk Tk

shyy, vl Hyyp, vl Hiys,
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_ T
where H = H; + Sksy’“.

Tk
Theorem 1.2.17 that s{yk > 0 implies all eigenvalues of H are positive, i.e.,
H is positive definite. Using Theorem 1.2.17 again indicates that, at most,
the smallest eigenvalue of Hyi is not positive. Hence, det(Hgy1) and the
smallest eigenvalue of Hy,1 have the same sign, which shows that Hy; is
positive definite if and only if det(Hg41) > 0. Therefore we have

Since Hyp is positive definite, we know by use of

s%yk >0 < det(Hgy1) >0 < Hpgyq is positive definite. O

This theorem gives a sufficient and necessary condition of positive definite
DFP update. By different definitions of positive definiteness and different
algebraic tricks, we can establish this theorem. The interested readers may
try different methods to give the proofs. The curvature condition sgyk > 0 for
preserving positive definiteness is moderate, practical, and can be satisfied.
For a quadratic positive definite function, obviously,

shyr = st Gsp, > 0.

For a strong convex function, the average Hessian

1
G = / V2 f (g + Ts1)d7 (5.1.38)
0

is positive definite. So, from Taylor’s formula

1 —_
Y = Vf(wk + Sk) — Vf(xk) = /0 VQf(ack + Tsk)sde = Gpsg,

we have that
T. _ THA
Yi Sk = 8, Gksk > 0.

For a general function, we have
T T T
Sk Yk = 9k+15k — Gk Sk-

Note that ggsk < 0 is due to s; being a descent direction. Using exact line
search with 9;{;181@ = 0, we have s;{yk > 0. When we use inexact line search,
for example, if the rule (2.5.7) is satisfied, the condition sly; > 0 can also
be satisfied. In general, as long as we increase the precision of line search,
we can make ggﬂsk small enough in magnitude to the desired degree.

From this theorem and the above discussion, it is obvious that, for Algo-
rithm 5.1.4 with exact or inexact line search, the condition S;fyk > 0 holds
and therefore each update matrix Hy in DFP algorithm is positive definite.
So, we have the following corollary.
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Corollary 5.1.6 Each matriz Hy generated by DFP Algorithm 5.1.4 is pos-
itive definite, and the directions d = —Hpgy are descent directions.

Finally, we give a theorem on quadratic termination of DFP method. This
theorem shows that, for a quadratic function with positive definite Hessian
G, the directions generated from DFP method are conjugate, and the method
terminates at n steps, that is H, = G~

Theorem 5.1.7 (Quadratic Termination Theorem of DFP Method)

Let f(z) be a quadratic function with positive definite Hessian G. Then,
if exact line search is used, the sequence {s;} generated from DFP method
satisfies hereditary property, conjugate property and quadratic termination,
that is, fori =0,1,---,m, where m <n — 1,

1. Hiwyj =85, j=0,1,---,i; (hereditary property)
2. sTGsj =0, j=0,1,---,i—1; (conjugate direction property)

3. The method terminates at m + 1 < n steps. If m =n — 1, then H, =
G

Proof. = We prove part (1) and (2) by induction. Clearly, when i = 0,
it is trivial. Now suppose that part (1) and (2) hold for some i. We show
that they also hold for ¢ + 1. Since g;+1 # 0, by exact line search, the fact
that yx = gr+1 — 9k = G(xkr1 — 2x) = Gsk, (1 < k < i) and the induction
hypothesis, we have, for j < i,

K3
T T T
9i+157 = Ggj+18; + > (k1 —g6)"s;
k=j+1

K3
_ T T,
= giasit D Uks
k=i +1

7
= 0+ Y siGs;
k=j+1

= 0. (5.1.39)

Hence, by use of s;+1 = —a+1H;+19i+1, induction hypothesis in part (1) and
(5.1.39), it follows that

T T
5;01Gs; = —ai19;1 Hit1y,
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= —047:+19£L1 Sj
= 0, (5.1.40)

which proves part (2) holds for i + 1.
Next, we prove that part (1) holds for i + 1, i.e.,

Hi+2yj:3j, j=0,1,---;14+ 1. (5.1.41)
When j =i+ 1, part (1) is immediate from DFP update (5.1.30), that is
Hi+2yi+1 = Si+1- (5142)

When j <7, it follows from (5.1.40) and the induction hypothesis in part (1)
that
sin¥y = 5i1Gs; =0,

T T T
Yir1Hir1y; = Yip185 = si41Gs; = 0.

Then
siv1siy; Hipyioylo Hisy;
Hiyoy; = Hiny;+—7 - T
Siv1Yi+1 Y1 Hiv1Yiva
Hit1y;
= s, (5.1.43)

This, together with (5.1.42), shows (5.1.41). Therefore part (1) follows.

Finally, since s; (i = 0,1, - -, m) are conjugate, the method is a conjugate
direction method. Based on Theorem 4.1.3 of the conjugate direction method,
the method terminates after m(< n) steps. When m =n — 1, since s; (i =
0,1,---,n — 1) are linearly independent, then part (1) means

H,Gs; = Hpyy; =55, 5=0,1,--- ,n—1
which implies H, = G~!. O

From this theorem we see that DFP method is a conjugate direction
method. If the initial approximation Hy = I, the method becomes a con-
jugate gradient method. By the hereditary property, we have H;;1Gs; =
sj,j = 0,1,---,4, which also indicates that these s; are eigenvectors of ma-
trix H;+1G(j = 0,1,---,4) corresponding to the eigenvalue 1.

DFP method is a seminal quasi-Newton method and has been widely
used in many computer codes. It has played an important role in theoretical
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analysis and numerical computing. However, further studies indicate that
DFP method is numerically unstable, and sometimes produces numerically
singular Hessian approximations. The other famous quasi-Newton update —
BFGS update introduced in the next subsection will overcome these draw-
backs and perform better than DFP update.

5.1.4 BFGS Update and PSB Update
In §5.1.1 we have seen that

Hiyp1yr = si and Bipi1sk = Yk (5.1.44)

are the quasi-Newton equations with respect to inverse Hessian approxima-
tion and Hessian approximation respectively. Note that any approxima-
tion in (5.1.44) can be obtained from the other by means of exchanging
Hpy1 < Byiq and sg < yi. In analogy to the derivation of DFP update
(5.1.30) about Hy, we can get

(BFGS) Ykyt  Birsist By

B =Bt k- —rpi (5.1.45)
which is called BFGS update discovered independently by Broyden [27],
Fletcher [125], Goldfarb [153] and Shanno [304]. In fact, if one makes di-
rectly simple exchanges Hy, < By, and s < yx, BFGS update (5.1.45) is just
obtained from DFP update (5.1.30). Thus, BFGS update is also said to be
a complement DFP update. Since Bysp = —aggr and Brdyp = —gy, (5.1.45)
can also be written as

Yy
oyt dy

99}

BBFGS) _
gL d

P By + +

(5.1.46)

By using twice the Sherman-Morrison formula (1.2.67), (5.1.45) will be-
come as follows:

'y spsL
H}(ijS) — Hp+ |1+ ykayk ;k
Sk Yk Sk Yk

sy Hi, + Hyyrsi

5.1.47
Ton (5.1.47)

(s — Hiy)st + se(si — Hiy) "

stk
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(sk — Hrye) Tk 1

— SkS 5.1.48
Tup (145
T T T
- ([ — 2k ) H, (I — S ) + 2% (5.1.49)
Sk stue)  stun
k k k

(5.1.47)-(5.1.49) are the three forms of BFGS update about Hj. Further-
more, by making exchanges Hy < By and s < yg in (5.1.47)—(5.1.49), we
can get three corresponding forms of DFP update about Bj:

BETY — By <1 + 855”’“) Ukl
Yi. Sk Yi. Sk
_yks;ka + Bisky}
y%sk
(yk — Brsk)yi + yk(yx — Brsi)”
Yi sk

(5.1.50)

= B+

— Bpsi)!s

(yl 's)?

T T T
_ <I _ YiPk ) By (I — ZkU ) + %% (5.1.52)
Yi. Sk Yi. Sk Yi. Sk

The above discussions describe a method for finding its dual update from
a given update. Given a quasi-Newton update Hy,, about H-form, by ex-

changing Hy, < Bj and s, < y, we can get its dual update B,(i)l about

B-form. Then, applying the Sherman-Morrison formula to B,i_?_)l, we will

produce the dual update H,glj% of Hy1 about the H-form. Similarly, if we

employ the same operations to the dual update H ,ijﬂ, the original update

Hj. 1 will be restored. Notice that, for an H-form, the dual update of Hy; is
H élﬁ In addition, the dual operation maintains the quasi-Newton equation.

The following figure represents the dual relation.
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o8P Commutative o
(1 ' _— e "G5S
['!kﬂ By

asJaau]

Inverse

B;PIFP] — H! 'El:-‘GS\
Commutative
(DFP) (BFGS)

Figure 5.1.1 Duality of H;'/y "~ " and Hy

For SR1 update
(sk — Hyyr) (sr — Hypyr)"

g — g, o : 5.1.53
h g (st — Hiye) Tk ( )
exchanging Hy <+ Bj and s; < y; gives
- B — Bysi)T
BD) = B, + (9 — Brsw) (yx — Brsk)” (5.1.54)

(yr — Brsk) s,

Then applying the Sherman-Morrison formula to (5.1.54), we see that the
resultant H,iﬂ is still the ngi}fl), i.e., Hliﬂ = H,gijfl). Thus SR1 update
is self-dual. As we pointed out in §5.1.2, SR1 update does not retain the
positive definiteness of the update. A self-dual update retaining the positive
definiteness is called Hoshino update which will be given in (5.2.6) of §5.2.

The BFGS update is presently considered to be the best one of all quasi-
Newton updates, which has all good properties of DFP update. In addition,
when inexact line search (2.5.3) and (2.5.7) are used, BFGS method is glob-
ally convergent. Note that it is still an open problem whether DFP update
has this property. The numerical performance of BFGS update is superior
to that of DFP update. In particular, BFGS update can often work well in
conjunction with some line searches with lower accuracy.

The next topic in this subsection is PSB update which is formally known
as the Powell-symmetric-Broyden update due to Powell [260].

Let B € R™ "™ be a symmetric matrix. Consider the general Broyden
rank-one update
(y — Bs)c"

Ci =B
1 + s

)
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where ¢ € R",c’'s # 0. In general, C is not symmetric. So, we consider a
symmetrization:
Cy = (Cl —|-01T)/2

Now (' is symmetric but, in general, does not obey the quasi-Newton equa-
tion. Then we might continue the above process and generate the sequence

{Ck}:

— Cops)cl
Copt1 = Co + (yCTQSk>7
Copra = (Copy1+Chi1)/2, k=0,1,-- (5.1.55)

where Cy = B. Here each Cy;y1 is the closest matrix in Q(y, s) to Co, and
each Cygio is the closest symmetric matrix to Coxy1, where Q(y, s) = {C €
R™™ | Cs = y} is a matrix set satisfying the quasi-Newton equation. The
Figure 5.1.2 illustrates the symmetrization process, where S denotes the set
of symmetric matrices.

Qy,s)

> Cs Ci C C=B
Figure 5.1.2 Production of the sequence Cy,

Below, we show the limit of matrix sequence {Cj} is

. (y = Bs)c" +c(y—Bs)"  (y—Bs)'s 1
B=B - 1.
+ T (Ts)2 ce (5.1.56)

which satisfies symmetricity and the quasi-Newton equation.

Theorem 5.1.8 Let B € R™" be symmetric, ¢, s,y € R" and c¢'s # 0. Let
the sequence {Cy} be defined by (5.1.55), and Cy = B. Then the sequence
{Cy} converges to B in (5.1.56).
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Proof. = We only need to prove that the sequence {Coy} converges. Let

Gr, = Cog. From (5.1.55), we have

1 wiel + cw?
Grp1 =G+ 5k
2 ct's

where wp = y — Ggs. Note that

w1 = Y — Grpas
T T
_ y—Gks—lwkc S:CWkS
2 ct's

1 cs?
- —(r-=-
2 < cTs> Wk

1 T
Wiy = Pwyg, where P = — l[ — CS] .

that is
2 cTs

Then it follows from Sherman-Morrison formula (1.2.67) that

Swe = Y PHy—Gos) = > Pry— B
k=0

k=0 k=0
1est
— -1 —
= (I-P) (y—Bs)=2 [I_z&‘| (y — Bs)
T
cs
= 2(y—Bs)— —_(y— Bs).

Since

klirgo G, =B+ Z(Gk’"‘l - Gy),

(5.1.57)

(5.1.58)

(5.1.59)

(5.1.60)

k=0
and by (5.1.57) and (5.1.59), we get that the sequence {G}} is convergent.
Note that
= 1 & wiel + cwl
Z(Gk‘H —Gr) =3 Z %
k=0 2i s
1 r 1s"(y—Bs) r v 1(y—Bs)'s 7
= E (y_BS)C —§ch +C(y—B5) —§TCC
1 T T (y — BS)TS T
= 7, lly—Bs)c +cly—Bs)'| - e (5.1.61)
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hence the conclusion (5.1.56) follows by (5.1.60) and (5.1.61). O
(5.1.56) gives a class of rank-two update which is derived by a symmetriza-
tion process. If we add the subscripts, it can be written as

— Bpsp)el + ¢ — Bpsp)T
Boi = Bi+t (yr — Brsk)cy, : k(yr — Brsi)
— B T
(k= Brs) s o1 (5.1.62)

(cf sk)?
which is called the general PSB update. In particular,
If Ck = Yk — Bksk, (5162) is SR1 update (5154)

If ¢, = yg, (5.1.62) is DFP update (5.1.51).

If ¢, = ﬁyk + %Bksk, where w;, = (y,zsk/sgBksk)%, (5.1.62) is BFGS
update (5.1.46).

If ¢, = sg, (5.1.62) is PSB update:
(yi — Bisk)sy + sk(ye — Brsp)”

Bry1 = By + o
S}, Sk

— B T
(o = Bisw)” sk o1 (5.1.63)

(sfs1)?

Its dual update in H-form is
(st — Heyr)yl + y(sk — Hryr)"
Yi Uk
(sk — Hiyr) Ty 1
— YrY (5.1.64)
(i yw)? g

Hiyw = Hp+

which is called Greenstadt update (see Greenstadt [163]).

PSB update (5.1.63) is important in theoretical research and practical
computing. However, the drawback that PSB update does not retain the
positive definiteness of updates hurts its performance in computing. Fortu-
nately, the drawback can be avoided if we employ the trust region framework
with PSB update.
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5.1.5 The Least Change Secant Update

Various quasi-Newton updates obey the least change property which refers
to the Hii1 (or Bgy1) being the minimum change to Hy (or By) consistent
with the quasi-Newton equation if the change Hypiq — Hy (or Biy1 — Byg)
is measured under some norm. This property is helpful to maintain some
information of the last iteration. By the way, by use of the property, we also
can derive quasi-Newton update.

Theorem 5.1.9 Let B € R"™", s,y € R™ and s # 0. Then Broyden rank-
one update

_ (y — Bs)sT
B=B+-“*——F—"— 5.1.65
+ sTs ( )
s a unique solution of the minimization problem
min{||B — B||r : Bs=y}. (5.1.66)
Proof.  [proof I] Since y = Bs, then
_ (y — Bs)sT . ssT
1B-8 = |2 < lB-m)
F F
< ||B— B|F. (5.1.67)

Also, since the Frobenius norm is strictly convex and the set of matrix B
satisfying the quasi-Newton equation is convex, then the solution of (5.1.66)
is unique.

[proof IT] Define C' = B— B and let ¢! be the i-th row of C'. Then (5.1.66)
can be represented as

n
min Y lef |3
i=1

st. cls=(y—Bs),i=1,---,n (5.1.68)

i
where (y — Bs); denotes the i-th component of y — Bs. Obviously, (5.1.68)
can be divided into n subproblems
T2
12

min  ||¢;

st.  cl's=(y— Bs). (5.1.69)

1
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Solving (5.1.69) is equivalent to finding the Moore-Penrose inverse st of s.

Therefore
(y—B S)iST

el =(y—Bs)sT = =

' s

which indicates that (5.1.65) is the unique solution of (5.1.66). O

S

This theorem shows that Broyden’s rank-one update

— Bysy)st
Bjy1 = By + (ur = Brow)sy _ k)5 (5.1.70)

is the unique solution of the minimization problem

min{||B — Bi|r : Bsp =y} (5.1.71)
Similarly,
- H T
Higr = Hy + (56— Hiv)v (5.1.72)
Yi Yk
is the unique solution of the minimization problem
min{||H — Hy||p : Hyp = si}. (5.1.73)

Next, we discuss the least change property of general symmetric rank-two
update.

Theorem 5.1.10 Let B € R™" be symmetric, ¢,s,y € R", and ¢'s > 0.
Assume that M € R™™ is a symmetric and nonsingular matriz satisfying

Mc=M"'s. (5.1.74)
Then the general PSB update

. (y = Bs)c" +c(y—Bs)"  (y—Bs)'s
B=BHB — 5.1.75
+ cT's (cT's)? “ ( )

is the unique solution of the minimization problem
min{||B — B||pr : Bs=vy, B = B}, (5.1.76)

where || By = ||MBM||F.
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Proof. Let B be a symmetric matrix obeying y = Bs. Let also Mc =
M~'s=2E=M(B-B)M,E= M(B— B)M. Left- and right-multiplying
(5.1.75) by M yields

P Ez2T + 22TE _ 2TEz T
2Tz (272)2

Clearly, |[Ez||2 = ||Ez||2, and if v L z, then |[Ev|]z < ||Ev|j2. Therefore
|E|lF < ||E|lF. Also, note that the weighted Frobenius norm || - [[a,r is
strictly convex and the matrix set {B | Bs = y, BT = B} is convex, thus the
general PSB update (5.1.75) is the unique solution of the problem (5.1.76).
|

In particular, some different choices of ¢ in (5.1.75) give different conclu-
sions.

Choosing ¢ = s (in this case, M = I), we get PSB update (5.1.63). Hence,
Theorem 5.1.10 implies that BPSB is the unique solution to the problem

“min {||B - B|r|Bs=y, BT =B}. (5.1.77)
BeRan

Choosing ¢ = y (in this case, M satisfies M ~2s = y), we get DFP update
(5.1.50). Hence Theorem 5.1.10 implies that BP¥? is the unique solution to
the problem

min{||B — B||yr | Bs =y, BT = B}. (5.1.78)

Similarly, by the dual technique, HPFES in (5.1.47) is the unique solution
to the problem
min{[|H — H|p-1p | Hy = s, H' = H}. (5.1.79)

As an exercise, it is not difficult to discuss the least change property of
dual general PSB update.

5.2 The Broyden Class

From the last section we have seen that both DFP and BFGS updates are
symmetric and positive definite rank-two updates consisting of Hpyx and s.
It is natural to discuss their weighted (or convex) combinations which have
the same type, and consider their behaviors.
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Consider the update class

HY,y = (1— ¢)HPRP + oHPRCS, (5.2.1)

where ¢ is a parameter. (5.2.1) is called the Broyden class of update. If
¢ € [0,1], (5.2.1) is called the Broyden convex class of update. Obviously,
Broyden class (5.2.1) satisfies quasi-Newton equation (5.1.8). We can also
write (5.2.1) in the following forms:

Yy = HPAD + dopo (5.2.2)
= HPECS + (60— Dogof, (5.2.3)

sksy  Hyyryl Hy

= Hp+ + pupvl, 5.2.4
St Yk yi Heye g (5.24)
where
T 1| Sk Hyyp,
V=Y Hkyk 2 — . 5.2.5
(i ) LZyk y;:fHkyJ (5.25)
In particular, in (5.2.4),
set ¢ = 0, we get DFP update (5.1.30);
set ¢ = 1, we get BFGS update (5.1.47);
T
set ¢ = %, we get SR1 update (5.1.22);
set 1
¢ = (5.2.6)

L (yf Hyyr/skyr)
we get Hoshino update.

Broyden class (5.2.2)—(5.2.4) can be derived directly by the quasi-Newton
equation. Consider a general rank-two update consisting of s;, and Hyyg:

Hy1 = Hy, + aspsf + b(Hyyrst + spyi Hy) + cHyyryi Hy, (5.2.7)

where a, b, ¢ are scalars to be determined. Using the quasi-Newton equation
yields

asi yx + by Hxyr,
0 = 1+ bs{yk + cykTHkyk. (5.2.8)
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Here are two equations with three unknowns and one free degree. Set

b= —¢/s} Yk, (5.2.9)

where ¢ is a parameter. Solving (5.2.8) and substituting the result into
(5.2.7), we have

sksy  Hyyryl Hy
sty Y Hiyn

where vy, is defined by (5.2.5). The above expression is just (5.2.2) and (5.2.4).
By a slight arrangement, Broyden class has the following matrix form:

H,(fﬂ = H + +¢vkvg:H£ﬁP+¢vkvg,

Loyl Hiyk/siye
T T
HY, | = Hy, + [, Hyy] RE et | sk Hyye] T (5.2.10)
stk yF Hyyp

Correspondingly, it is easy to produce Broyden class in B-form:

BY., = 0BPEF +(1-0)BBESS (5.2.11)
= BPI + wpwi (5.2.12)
= BPEP + (0 — Dwpw] (5.2.13)
T T

YkYi,  Brsksy By T
= Bp+ - + Owiwy, , (5.2.14)

szyk s;{Bksk k

where
_ (T 1/2 | Yk Bysk

WE = (S Bksk) — . (5.2.15
(5 lsfyk s%Bksk] )

Note that the relation between 6 and ¢ is

0= (p—-1)/(¢—1—¢p), (5.2.16)
where Ty .
Y HEYkSy, DESk
= (Sfyk)Q (5.2.17)

Since v}yr = 0 and w} sy = 0, then (5.2.1)-(5.2.2) and (5.2.11)-(5.2.14)
satisfy respectively the quasi-Newton equation (5.1.8) and (5.1.13) for any
parameter ¢ and 6. In analogous to Theorem 5.1.2 and Theorem 5.1.5, we
can show the quadratic termination property and positive definite property
of Broyden class.
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Theorem 5.2.1 (Quadratic Termination Theorem of Broyden Class) Let
f(x) be a quadratic function with positive definite Hessian G. Then, when
exact line search is used, the Broyden class of update has hereditary property
and conjugate direction property, that is, fori=0,1,--- m,(m <n—1),

Hereditary property: Hit1y; =55, 7=0,1,---,1. (5.2.18)
Conjugate direction: siTst =0,j=0,1,---,i—1. (5.2.19)

The method terminates at m steps. If m =n — 1, then H,, = G~

Proof. It is similar to the proof of Theorem 5.1.5. O

Theorem 5.2.2 (Positive Definiteness of Broyden Class of Update) Let ¢ >
0. If and only if s;‘gyk > 0, Broyden class of update (5.2.2) retains the positive
definiteness.

Proof. From Theorem 5.1.2, if and only if s%yk > 0, DFP update retains
positive definiteness. Since ¢ > 0, it follows from (5.2.3) and Theorem 1.2.17
that the smallest eigenvalue of H,(f 41 1s not less than the smallest one of

H kDfiP . Hence H ,‘f 41 is positive definite. O

This theorem shows that not all members of Broyden class retain the
positive definiteness. Clearly, when ¢ > 0, H ,‘f 1 Maintains its positive defi-
niteness; when ¢ < 0, it is possible that the update becomes singular. The
following Theorem 5.2.3 gives a value ¢, and says that as long as ¢ > ¢, H,f 41
will maintain positive definiteness. Such a value ¢ is called the degenerate
value of Broyden class, which makes H ,(f 1 singular.

Theorem 5.2.3 The degenerate value of Broyden class of update is

_ 1 1
b= = i 5.2.20
L—p 1 —yl Hyyrst Bese/ (st yr)? ( )
Proof. Let dp = —Hggr, sy = apdi. When we use exact line search,

ggﬂdk =0= ggﬂsk. Notice also that g1 = yr + gk,vggk = 0, and using
(5.2.5), we have

di—&-l = _Hif+19k+1

B skst Hyyryt Hy
“\Het+ 7= 7
1, Yk Vi Hryi

+ ¢Ukv;:£> Jk+1
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i H,(9k + k)

= —Hypgr — Hryr + T Hiyr — ovi gvk
Yk Hyyp,
T
Yi. Hegr
= —Hpgr + mﬂkyk — Gvi gr vk
k
Tq
k
= dr— yj?{];{kyk Hiyr — ovi gk
k
df y T 1 d Hyyp
— _ "kJIk H /2 _ _ T
(yf Hyyr) /2 (Wi Hi) diye vl Hiyr Pk 9k
dj, yi T
= <(ngkyk)1/2 — OV, g | V- (5.2.21)

This shows that when exact line search is used, (5.2.21) holds. When g1 #
0, if dfﬂ = —Hg)+1gk+1 = 0, then ¢ is called the degenerate value of Hlf+1'
By using dfﬂ = 0 and (5.2.5), we obtain

yi dy,
(y& Hiyr) /2ol g
yi dy,
—gF Hiyr + (st gi) (vl Hiyr) /sty
1
1— (s¥ Bisi) (y{ Hryr)
(s¥yr)?
1

= — . 0O
I—p

¢ =

(5.2.21) indicates that the parameter ¢ of Broyden class does not change
the search direction, but only the length. Hence, we could expect that: any
method of Broyden class is, in some degree, independent from the parameter
¢. Dixon [107] proves: under exact line search, all updates of Broyden class
(¢ > @) generate the identical points, although for non-quadratic functions.

Theorem 5.2.4 Let f: R™ — R be continuously differentiable, the level set
L(zo) ={z | f(z) < f(xo)} be bounded, and Hy € R"™ "™ be symmetric and

positive definite. Let {H,(f} be a sequence generated by Broyden class, where

¢r > ¢ and ¢ is the degenerate value of Broyden class. Assume that H,§+F1GS

is an update obtained by applying BFGS update to H,‘f Then, under ezxact
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line search, Broyden class of update has the property: for all k > 0, x4 and

HliFlGS are independent from parameters ¢g, ¢1,- -, Or_1-

Proof.  We show this result by induction. For k = 0, it is trivially true.
Now suppose it is true for k£ > 0, i.e., 511 and H, ,fflGS are independent from
do, P1, -, dr—1. We shall show it is also true for k£ + 1.

From (5.2.21), the direction dk+1 generated by Broyden class does not
depend on ¢g. Since diiq —HEE pate gk+1, by the induction hypothesis,
the direction di.1 does not also depend on ¢g, P1, -+, ¢r_1. Then, by exact
line search, xx42 = Tx41 + ax+1dr+1 does not depend on ¢q, @1, -+, Prp—1, k-
Now, from the assumption,

T T T
Sk k1S Sk+1S
m§f5:<f—+ﬂ%H>H¢ <[_y+1Ml>+ HOkL - (5.2.22)

335+13/k+1 wH 5£+1yk+1 3£+1yk+1
Note
Hk+1 = HPZEE + (¢ — Dwgof - (5.2.23)
Since
8k+1y1?+1
I— ——| skg+1 =0,
Sk+1Yk+1
it follows from (5.2.21) that
T
s
P—iﬂ%“L%:e (5.2.24)
Sk+1Yk+1

Then, substituting (5.2. 23) 1nto (5.2.22) and using (5.2.24) yield that H, ,?_QGS
can be defined by use of Hk,Jrl , Sk+1, and ygy1. So, by induction hypothesis,

H ,?f;GS is independent from ¢q, ¢1, - - -, ¢x. We complete the proof. O

To conclude this section, we give a brief introduction to Huang class of
updates. Huang [180] presented a wider class of updates than Broyden class.
In Broyden class, the update matrix sequence {Hy} satisfies symmetricity
and quasi-Newton equation, i.e.,

Hg = Hk and HkJrlyk- = Sk. (5225)

However, in Huang class, the symmetricity condition is removed, and the
update matrix {Hj} is required to obey

Hi11yk = psk, (5.2.26)
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which is said to be a generalized quasi-Newton equation or a generalized
quasi-Newton condition, where p is a parameter.
Huang class of updates can be described as follows:

Hip1 = Hi + spu + Heyrof (5.2.27)

where u; and vy satisfy

up = 118k + a12HY Y, (5.2.28)
U = a5k + ag HiL g, (5.2.29)
ub e = p, (5.2.30)
vhye = —1. (5.2.31)

There are five parameters a11, a12, a21, aze and p, in which three parameters
are free. Hence, in fact, Huang class of update depends on three parameters.
In particular, if requiring {Hy} symmetric and setting p = 1, then Huang
class is just Broyden class. This means that Broyden class is a subclass of
Huang class.

The main properties of Huang class of update are as follows:

e For positive definite and quadratic functions, Huang class generates
conjugate directions and has quadratic termination property. All meth-
ods of Huang class generate the identical points.

e For general functions, the sequence generated by Huang class only de-
pends on the parameter p.

Based on our experience, the generalized quasi-Newton equation (5.2.26)
is important to present a good quasi-Newton method. The parameter p will
play a big role on the iterative sequence and the properties of algorithms.

5.3 Global Convergence of Quasi-Newton Methods

In this section we discuss the global convergence for quasi-Newton methods.
The global properties of quasi-Newton methods were established by Pow-
ell [262] and Powell [265]. These results have been extended to restricted
Broyden’s class by Byrd, Nocedal and Yuan [47]. We will study the global
convergence of quasi-Newton methods under exact line search and inexact
line search respectively in §5.3.1 and §5.3.2.

In the discussion of this section, we need the following assumptions:
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Assumption 5.3.1 (a) f: R" — R is twice continuously differentiable on
convez set D.

(b) f(z) is uniformly convex, i.e., there exist positive constants m and M
such that for all x € L(x) = {z|f(z) < f(xo)}, which is convex, we

have
m|jul* < uT V2 f(z)u < M|u|?, Yu € R™ (5.3.1)

The assumption (b) implies that V2 f(x) is positive definite on L(z), and
that f has a unique minimizer z* in L(x).

5.3.1 Global Convergence under Exact Line Search

We begin the discussion in case of exact line search.

Let .
G = / V2 f (2 + Tsp)dr, (5.3.2)
0
then we have from Taylor’s theorem that
yr = Gsp. (5.3.3)
Immediately, we have
T T
Yr Sk Sk Grsk
< = <M (5.3.4)
sk I? (B
and )
1 1
~ < ”ST’“H < — (5.3.5)
M = yos, — m
Since also ) T Ao
[yl _ Sk kask'
sty shGrsi’
1
if we let 2, = G s, then
2 TG
ol _ =L Gun _ 556
Sk Yk 2L 2k

In addition, we have

lyell < Gkl sell < G Hllyxll
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which give
skl

and .
Isell o 1 (5.3.8)
[yl — m

Therefore, from the above discussion, we have
Lemma 5.3.2 Let f: R — R satisfy Assumption 5.5.1. Then

skl Nlvell stye  stye |lyell?
Nyl el 1Iskll? llyell®” styx

are bounded.

Lemma 5.3.3 Under ezact line search, Y. ||si||?> and 3 ||lyxl|? are conver-
gent.

Proof. Let ¢(7) = f(zg+1 — 78k). From (5.3.1), it follows that ¢ (1) >
m||sk||>. Note that the exact line search gives 1’(0) = 0. Then we have

1
$(r) 2 9(0) + gmllsilPr
Taking 7 = 1, we deduces
1
flar) = f(@r1) = §m|\8k||2-

By summing this expression we have
oo
> llskll? < 2{f (o) — f(2*)}/m,
k=0

which implies 3" ||s||? is convergent, where f(z*) is the minimum of f(z).
By Lemma 5.3.2, we also obtain that 3" ||y is convergent. O

Lemma 5.3.4 For all vectors x, the inequality

lg(@)II* > mlf(z) - f(z")] (5.3.9)

holds, where f(x*) is the minimum of f(x).
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Proof. Since the function
(1) = fle+7(z" —2)), (0<7<1)
is a convex function, then
fla+7(@* =) > f(z) +7(z" —2)Tg(x).
In particular, set 7 = 1, then we have
f(@) = f(a*) < (" = 2)Tg(z) < [lg(@)l[]2* — =] (5.3.10)

By (5.3.5) and Cauchy-Schwartz inequality, we deduce

lz* —x|* < (2" —2)(g(z*) - g(x))/m (5.3.11)
< =" = zllllg(z®) — g(@)]|/m,
which gives
" — 2| < [lg(z”) — g(@)[|/m = ||lg(z)[|/m. (5.3.12)

Substituting (5.3.12) into (5.3.10) establishes (5.3.9). O

Theorem 5.3.5 Suppose that f(x) satisfies Assumption 5.3.1. Then, under
exact line search, the sequence {x} generated by DFP method converges to
the minimizer x* of f.

Proof. Consider DFP formula of inverse Hessian approximation

B Hyyryt Hi  spst

Hyy1 = Hy, (5.3.13)
" i Hyyr Stk
and DFP formula of Hessian approximation
T T T
S s
Biy1 = (1 — Y% ) By <I — kU ) + YV (5.3.14)
Sk Yk Sk Yk Sk Yk

Obviously, Bgy1Hk+1 = I. By computing the trace of (5.3.14), we have

Tr(Bgy1) = Tr(Bg) — 28£Bkyk (Skask)(ygyk) y;{yk‘

S1 Yk (st k) sty

(5.3.15)
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The middle two terms can be written as
o5k By (5§ Brsw) (Wi ui)
Sk Yk (sk yx)?
3 298k (—gi sr) Wi vr)
ag |—p — + T, 2
Si Y (5% Yx)
29} yi + vt vk
Sfyk
lgrs1ll® = llgrll®
gt Hy,gk

(5.3.16)

Since g,arlsk =0, then

QgHHkHQkH = g;fﬂ [Hk_ Ti}g Ik+

(9% Higr) (971 Hrgrt1)
9 Higr + gl Hrgrr
By finding the inverse number of the above expression, we get
1 B 1 1
G Hir19r1 B G 1 Hrgrr * 9t Higr'
Using (5.3.16) and (5.3.17), then (5.3.15) becomes

(5.3.17)

Tr(Br+1) = Tr(Bg) + lgrall®  llgxll?
G Hevigker 91 Hiege
2 2
_ T||9k+1” + ”?ék“ _ (5.3.18)
Ier1Hrger1  Si Uk

By recurrence, we obtain

H9k+1\|2 . H90H2

G Hrrigk+1 98 Hogo
k

k o2 .
oy Jol® sl (5.3.19)

T 1
=0 9i1Hi95+1 j=0 Sj Yi

Tr(Bry1) = Tr(Bo) +
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Therefore, by Lemma 5.3.2, there exists a positive number M which is inde-
pendent of k, such that

k

2 . 2
T(Bisr) < — lgpall® THg]+1H + Mk. (5.3.20)
gk+1Hk+19k+1 =0 9j+1Hj9j+1

In the left part, we will prove that if the theorem does not hold, then the
sum of the last two terms in (5.3.20) is negative.
Now consider the trace of Hyy;. From (5.3.13), we have

Hjy;|l? si|1?
Tr(Hpsy) = Z I Jyj” H JH (5.3.21)

Oy] y josy]

Since Hy. 1 is positive definite, the right-hand side of (5.3.21) is positive. By
Lemma 5.3.2, there exists m > 0 which is independent of k, such that

H 2
Z I Jy]H . (5.3.22)
JyJ m
Note that
(y] Hyy;)* < | Hjy;l*lly;1° (5.3.23)
and
vi Hyyj = giaHgie1 + 9] Hig; + 297,14
> gjHigin (5.3.24)

by the positive definiteness of H; and exact line search, then by using (5.3.24),
(5.3.23) and (5.3.22) in turn, we obtain

k
ZM ) Z Hjy; Z ||H]yJH2 , (5.3.25)

=0 Hy]”2 j=0 ||y]||2 7=0 y] m

By using Cauchy-Schwartz inequality and (5.3.25)

2
k 2
g5+l llgj+l 91 Higiv1
> > z - Gy

g7 Hygrm Il ) /% T

N (E:H%+ﬂ> (5.3.26)

19l
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Now suppose that the theorem is not true, that is, there exists § > 0 such
that for all sufficiently large k,

gkl = 6. (5.3.27)

Also, by (5.3.11) and Theorem 2.2.9, there exists a constant n > 0 such that

Flaw) = faren) = Sl

which gives ||sg|| — 0 and further ||yx|| — 0. Then, by (5.3.26) and (5.3.27),
we deduce, for k sufficiently large, that

2
agieal™ gy (5.3.28)
§=0 gj+1ngj+1

The above inequality implies that the sum of the last two terms in (5.3.20)
is negative.
By (5.3.28) and (5.3.20), we immediately obtain

g1

Tr(Bpy1) < —ot
g;:gFHHngkH

(5.3.29)

Note that, for a symmetric and positive definite matrix, the inverse of trace
is the lower bound of the least eigenvalue of inverse of the matrix. Then, it
follows from (5.3.29) that

T
Ik 1HE+19k+1

<u, 5.3.30
™ (5.3.50)

where p is the lower bound of the least eigenvalue of Hy,;. However, from
Theorem 1.2.10 on the property of Rayleigh quotient, we have

T
9/<;+1Hk+19k+1

> [, (5.3.31)
1 gk+11?

which contradicts (5.3.30). This contradiction proves that {z}} converges to
x* and that our theorem holds. O
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5.3.2 Global Convergence under Inexact Line Search

Now, we turn to study the global convergence of BFGS method under inexact
line search.
Let us rewrite BFGS method as follows:

Tht1 = Ty + s = Ty + apdy, = x), — By, gy, (5.3.32)

Bisksi B yryl
Byi1 = By — k k

. 5.3.33
sI Bysy, stk ( )

Theorem 5.3.6 Let xg and By be a starting point and a symmetric positive
definite initial matriz, respectively. Suppose that f(x) satisfies Assumption

5.8.1. Then, under Wolfe-Powell inexact line search (2.5.3) and (2.5.7), the
sequence {xy} generated by BFGS method converges to the minimizer x* of

f.

Proof. By computing the trace and determinant of BFGS formula (5.3.33),
we obtain that

I Brsell | lyll?
Tr(Bgi1) = Tr(Bg) — 5.3.34
(Buaa) = Te(By) = it o+ (53.34)
and
yTSk
det(Bj41) = det(By) - (5.3.35)
53, Bysy,
Let us define T T
my, = h2E gy, = TR0k (5.3.36)
Sk Sk Yi. Sk
It follows from (5.3.4) and (5.3.6) that
m<my <M, m<M, <M. (5.3.37)
Let us also define
st Bysi, st Bysk,
cosly = —E P8 _ g = TRRTR 5.3.38
st N Brsx] Tk (5.3.38)
We then obtain that
||Bk8kH2 — HBksk‘H2H8kH2 S%BkSk — qk (5339)

S%Bksk (S{Bksk)Q HSkH2 cos? Hk
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In addition, we have from (5.3.36) that

T T
det(Byy1) = det(By) Lk k%R _ qey(By) k. (5.3.40)
S} Sk S}, Brsk qk

Now we introduce the following function of a positive definite matrix By:
Y(By) = Tr(By,) — In(det(By)), (5.3.41)

where In(-) denotes the natural logarithm. It is not difficult to show that
Y (By) > 0. By using (5.3.34)—(5.3.41), we have that

qk

V(Bi1) = Tr(Bg)+ My — cos2r In(det(By)) — Inmy, + In gy,
= w(Bk) + (Mk — lnmk — 1)
dk gk 2
1-— 1 1 0. .3.42
+ o2 O, +In cos2 Oy + In cos” 6, (5.3.42)

Note that the function h(f) =1 —t+1Int < 0 for all ¢ > 0. Hence the term
inside the square brackets is nonpositive, and thus by summing both sides of
(5.3.42), we have

k
0 < (Bys1) < ¥(B1) +ck+ > Incos®6;, (5.3.43)
j=1

where the constant ¢ = M — Inm — 1 is assumed to be positive without loss
of generality.
From Theorem 2.5.5, we have

klim llgr || cos O, = 0. (5.3.44)

If 8% is bounded away from 90°, there is a positive constant § such that
cosfp > >0, for k sufficiently large,

and thus we have our result.
Now assume, by contradiction, that cos#; — 0. Then there exists k1 > 0
such that for all j > ki, we have

In cos? 0; < —2c,
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where c is the constant defined above.
By using (5.3.43), we deduce, for all k > k;, that

k1 k
0 < (B1)+ck+ z:lncos2 0; + Z (—2¢)
=1 j=k1t1

k1

= ¢P(By)+ 2:111(3052 0; + 2cky — ck
j=1

< 0,

which gives a contradiction. Therefore the assumption cos; — 0 is not true,
and there exists a subsequence {ji} such that

{cos ;. } > >0,

which means
liminf |V f(zg)|| = 0. (5.3.45)

Since the problem is strong convex, then (5.3.45) implies xx — x*. O

5.4 Local Convergence of Quasi-Newton Methods

In this section, we discuss local convergence of quasi-Newton methods. The
convergence analysis in this section mainly makes use of Broyden, Dennis, and
Moré [29], Dennis and Moré [91], Dennis and Moré [92], Nocedal and Wright
[233] and others. In §5.4.1 we first consider solving F'(z) = 0. The necessary
and sufficient condition of superlinear convergence for solving F'(z) = 0 is
given in Theorem 5.4.3, which is basic and the most important in conver-
gence analysis for quasi-Newton methods. Theorem 5.4.4 is a corollary of
Theorem 5.4.3, and Lemma 5.4.5 gives the geometry of superlinear conver-
gence for quasi-Newton methods. Then, we generalize the above results to
minimization problems. We give superlinear convergence results in the case
of basic iteration, exact line search and inexact line search respectively in
Theorem 5.4.6, Theorem 5.4.7 and Theorem 5.4.8. In §5.4.2, we give linear
convergence of general quasi-Newton methods by means of the bounded de-
terioration principle. In §5.4.3 the linear and superlinear convergence of SR1
method is established. In §5.5.4, we discuss the linear convergence of DFP
method. In §5.4.5 and 5.4.6. we give the superlinear convergence results
of BFGS and DFP methods respectively by different techniques. Finally, in
§5.4.7, the local convergence of Broyden’s class methods is discussed.
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5.4.1 Superlinear Convergence of General Quasi-Newton Meth-
ods

First, we consider

F(z) =0, (5.4.1)

where F' : R" — R™ is a mapping. In convergence analysis, we often need
the following assumption.

Assumption 5.4.1 (a) F : R" — R" is continuously differentiable on an
open conver set D C R™.

(b) There is x* € D with F(z*) =0 and F'(z*) nonsingular.

(¢) F' is Lipschitzian at x*, i.e., there is a constant vy such that

1F(z) — F'(z")|| < 7llz — 27|, z € D.
Second, we consider the minimization problem

i . 5.4.2

min f(z) (5.4.2)

If in Assumption 5.4.1, we replace F(x) and F'(x) by g(z) and V2f(x) re-
spectively, we get the following assumption for optimization problem (5.4.2):

Assumption 5.4.2 (a) f : R"™ — R is twice continuously differentiable on
an open convex set D C R™.

(b) There is a strong local minimizer x* € D with V2f(x*) symmetric
and positive definite.

(c) There is a neighborhood N(x* ) of x* such that

IV2f(@) = V2f (@)l < 7]z — 2|, Yo,z € N(z",¢).

Superlinear Convergence: Nonlinear System
We begin our discussion on a basic necessary and sufficient condition of
superlinear convergence for a nonlinear system.

Theorem 5.4.3 Let F' : R" — R"™ satisfy (a) and (b) in Assumption 5.4.1.
Let {By} be a sequence of nonsingular matrices. Suppose, for xo € D, that
the iterates generated by

Thtl = Tk — B,;lF(xk) (5.4.3)
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remain in D. x # x* (Yk > 0). Suppose also that {xy} converges to x*.
Then {x} converges to x* at a superlinear rate if and only if

ti MBE = F'@)](@rs1 — a) |
k——4o00 ka+1 — .Z'kH

= 0. (5.4.4)

Proof. Our idea is to prove the following equivalence:

By — F'(z* F
B Pl [Pl
k—o00 (B k—oo ||sk|
e gm =l 54

k—oo ||{L‘k — :E*H

where s = T 11 — Tk
First, suppose (5.4.4) holds. By (5.4.3), we have

[Br, — F'(2")](wg41 — 1)
= —F(ag) = F'(2") (@11 — 1)
= [F(aps1) = F(og) — F'(2") (@rp1 — a2x)] — F(zgg).  (5.4.6)

By taking the norm, dividing by ||sk||, and using Theorem 1.2.24, we obtain

Pl o I(Br = F'(2")) skl N | F(z41) — Fzg) — F' (%) sl
sl = llskll (B
|(Br, — F'(z*))s4]l
[l skl

¥ . i
+ 2ok = 21 + g — 2 I)(5.4.7)

Since limg_, o 2 = x*, it follows from (5.4.4) that

F
tim IE@ec)l (5.4.8)
k—oo sk
Since also limy_, ||Sx|| = 0, we have

F(z*) = leIEO F(z) = 0.

Noting that F’(x*) is nonsingular, it follows from Theorem 1.2.25 that there
isa 8 > 0 and kg > 0 such that Vk > kg, we have

IE@rr)ll = 1 (2he) = F@) = Bllzg — 2.
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Thus
| F (@r41) ] Bllzks — =] — gk (5.4.9)
|Zkr1 — 2kl — ok — 2% + flzg — 2| I
where i}
w27
T — T
|z — ||

Combining (5.4.8) and (5.4.9) implies that

" g
1+ Tk
which gives
lim 7y =0, (5.4.10)
k—oo

i.e., the sequence {x} is convergent to =* superlinearly.
Conversely, assume that {z}} converges superlinearly to z* and F(z*) =
0. By Theorem 1.2.25, there exist § > 0 and kg > 0, such that Vk > ko, we
have
IP (sl < Bllanss — 2.

Since {zy} is convergent superlinearly, we have

o = lme =l )]
k—o0 ka—a:*H k—>ooﬂ||3?k—l’*”
o L FG)] e — ol
k—oo B ||zkt1 — mk| |k — 2*|

By use of Theorem 1.5.2 giving limy_.o ||2g+1 —zk||/||zx —2*| = 1, we obtain

pn IFGrs)

=0,
k—oo [|[Tpr1 — k|

which gives (5.4.4) by means of (5.4.6). O

Theorem 5.4.3 indicates that if By, converges to F'(z*) along the direction
sk, then quasi-Newton methods converge superlinearly. This theorem is very
important in analysis of quasi-Newton methods. Equation (5.4.4) is called
the Dennis-Moré characterization of superlinear convergence. The following
theorem shows, for the iteration (5.4.11), that the method is convergent su-
perlinearly if and only if the sequence of steplength factors {ay} converges
to 1. The proof of Theorem 5.4.4 is completed by use of Theorem 5.4.3.
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Theorem 5.4.4 Let F' : R — R" satisfy the assumptions of Theorem 5.4.3.
Let {By} be a sequence of nonsingular matrices. Suppose, for xy € D, that

the iteration
Tht1 = Tk — OékBk_lF(l'k) (5.4.11)

remains in D and {xy} converges to x*. If (5.4.4) holds, then {xy} converges
to x* superlinearly and F(z*) = 0 if and only if {ay} converges to 1.

Proof.  Necessity. Suppose that {z;} converges to z* superlinearly and
F(2*) = 0. By Theorem 5.4.3, we have

lim I[eg " Bi = F' (")) (w1 — @) |
k—00 |Trs1 — |

= 0. (5.4.12)

So, (5.4.4) implies that
Jm (gt = V) By(@rsr — zp)ll/ a1 — zxll = 0.

Since By (zgt1 — xx) = —aiF(xy), the above equality can be written as

dim [[(a = DF(@e)ll/llaprr — 2kl = 0. (5.4.13)

Noting that F’(x*) is nonsingular, it follows from Theorem 1.2.25 that there
exists § > 0 such that ||F(xg)| > B||zx —«*||. Then, from (5.4.13), we obtain

i fog — 1 Bl ==l _

=0. 5.4.14
o, | (5.4.14)

Since also {xy} is convergent superlinearly, i.e., limy oo ||2p+1 — zk||/||2r —
x*|| = 1, we obtain immediately from (5.4.14) that {ay} — 1.

Sufficiency. Suppose that {a;} — 1. It follows from (5.4.4) that (5.4.12)
holds. Therefore, from Theorem 5.4.3, we obtain that {z}} converges to z*
superlinearly and F(z*) =0. O

This theorem suggests that when a method is required to be superlinearly
convergent, we should ask for ap — 1 as k — oo.

Next, we interpret the geometry of superlinear convergence of quasi-
Newton methods, which is an equivalent and geometric representation of
(5.4.4).

Let sy = xp11—2k. Let also Newton’s iteration be sf = —F’(zy) "L F ().
Since F(xj) = —Bgsy, then

Sk — Sév = S + F/(IL‘k)_lF(:L'k) = F/(l‘k)_l[F,($k) — Bk}skz- (5.4.15)
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By use of Assumption 5.4.1, we have that | F'(x}) ™| is bounded above for
x, sufficiently close to x*. Thus,

F' () ' [F'(zx) — Bilsk, = O(I[F' (zx) — Brlskll) = o|lskl),

where we have used (5.4.4). Therefore (5.4.15) is equivalent to

Ll — sl

=0. 5.4.16
P (5.4.16)

The above (5.4.16) indicates that when {xp} converges superlinearly, the
relative error of si should tend to zero. It is not difficult to prove that
(5.4.16) is equivalent to the fact that sj tends to s in both direction and
length. For this, we introduce the following lemma.

Lemma 5.4.5 Let u,v € R",u,v # 0, and a € (0,1). If ||lu — v|| < oful,
then (u,v) is positive and

oLl

[l

<a,1-— ( {u, v) )2 <ol (5.4.17)

o]

Conversely, if (u,v) is positive and (5.4.17) holds, then
lu —v| < 3alul. (5.4.18)
Proof. First, assume that |[u — v|| < af|lu||. Then

[l = [l

which implies that the first inequality in (5.4.17) holds.
Let w = (u, v)/(Jull o). Since

) (1, )? (1, 0)7?
ol = 2(u.0) + — [ m H] >0,

then
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So,
lu—l* = Jlul? = 2]jull|lollw + [lo]* (5.4.19)
(u, v)?
> lulf® ~
[o]]?
= Jlul*(1 = w?). (5.4.20)
Therefore,
2
1—w?< Ju ZH <a?
[l

giving the second inequality of (5.4.17). In addition, if w < 0, it follows from
(5.4.19) that ||u — v|| > ||ul|, and therefore o > 1. Hence, if a@ < 1, we have
that (u,v) is positive.

Conversely, if (u,v) is positive and (5.4.17) holds, then by using (5.4.17)
and some manipulations, we obtain

lu—ol® = (llull = [0I)* + 21 = w) ull o]
< oflulP[1+2(1+a)],

which gives (5.4.18) since « < 1. O
If (5.4.16) holds, we have, for given ¢ € (0, 1), that

N
sk — s || < ellsll

when k > kg. So, by Lemma 5.4.5, it follows that if (s, s{y) > 0 and k > ko,
we have N
' EA

<e

HSkH

N\ 2
1— <<Sk’5kN> ) <el
Isxllllsy |
They show that (5.4.16) is equivalent to

N N
T L < Ok Sk >= 1. (5.4.21)

koo [[sll koo \ [lsell” [IsY]

Therefore we have a conclusion: the necessary and sufficient condition of

superlinear convergence of quasi-Newton method is that s; approaches skN in

both length and direction.

and
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Superlinear Convergence: Minimization Problem

Next, we consider minimization problem (5.4.2) and discuss the superlin-
ear convergence in the case of basic iteration, exact line search, and inexact
line search.

Completely similar to Theorem 5.4.3, for minimization problem (5.4.2),
we have

Theorem 5.4.6 Let f : R™ — R satisfy the assumptions (a) and (b) in
Assumption 5.4.2. Consider iteration sequence

Tyl = Tk — B;lgk, (5.4.22)

where {By} is a sequence of symmetric and positive definite matrices. As-
sume that {x} converges to x*. Then {xy} converges superlinearly to x* if
and only if

I[Bx = V2 @)]sell _ (5.4.23)

lim
k—00 skl

Proof. The proof is the same as for Theorem 5.4.3. O

The following Theorem 5.4.7 shows the superlinear convergence of quasi-
Newton method in the case of exact line search.

Theorem 5.4.7 Let f : R™ — R satisfy conditions (a) and (b) in Assump-
tion 5.4.2. Suppose {By} is a sequence of symmetric and positive definite
matrices. Consider, for a given xog € D, the iteration

Thtl = Tl — O‘kB];lgka (5.4.24)

where oy is determined by exact line search. If the sequence {x} provided
by (5.4.24) remains in D and xj, # x* (Yk > 0), and if xp — z*, then when

_\72 *
lim WBe = VF@Olsell (5.4.25)
k—o00 skl

we have a, — 1 and g(x*) = 0, hence {x} converges to x* superlinearly.

Proof. It is enough to prove a — 1 when (5.4.25) holds. Other conclu-
sions can be obtained direct from Theorem 5.4.4.
Since V2 f(z*) is positive definite, there exists m > 0 such that

st V2 f(a*)sp > ml|sp]|?.
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Therefore we only need to prove
(o — 1)sEV2f(2")s1 = o(||sk]?). (5.4.26)
From (1.2.111), we have
lgn-r1 = g& = V2 f (@")sk]| < max [V2f (zx + ts) — V2 F (27)| ][]
Then from 3, — 2* and the continuity of V2 f(z), we obtain
g1 — gk — V2 f(@)sell = o([|skl))

which implies

Ghs15k — g sk — 51 V2 (@) s = o(||se[|*)- (5.4.27)

Since ay, is a steplength from exact line search, ggﬂsk = 0. Also, noting
that Bysp = apBrdr = —aggr, we may write (5.4.27) as

st VAf(2*)sk = —gisk+o(||s]?)

1
= ;kszksk + o(||sk %) (5.4.28)

From (5.4.25), we have
s [Br, — V2f(x)]sr. = o(|[sxll*)- (5.4.29)
So, combining (5.4.28) and (5.4.29) gives
(o = Vs V2Af(a")se = sp[Be — V2 f(@")]se + of[[se]]?)
= ofllskll*)

which proves (5.4.26). O
About inexact line search, we consider Wolfe-Powell rule (2.5.3) and
(2.5.7). By use of dy, = —Byg, we employ the following rule: if

flar—Bilay) < flaw) — pal By g, (5.4.30)
g(xg — B’k_lgk)TBk_lglC < Jgg’Bk_lgk (5.4.31)
hold, take aj = 1; otherwise, take ay > 0 such that
flze — By gi) < flan) — powgl By gr. (5.4.32)
g(xp — akBk_lgk)TBk_lgk < ag,{Bk_lgk, (5.4.33)

where g(-) = V().
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Theorem 5.4.8 Let f : R™ — R satisfy conditions (a) and (b) in Assump-
tion 5.4.2. Suppose that {By} is a sequence of symmetric and positive def-
inite matrices. For given xo € D, consider the iteration (5.4.24), where ay
is determined by Wolfe-Powell rule (5.4.30)—(5.4.33). If the sequence {xj}
produced by (5.4.24) remains in D and xj, # x* (Vk > 0) and if xj, — =*, then
when (5.4.25) holds, ag, — 1 and hence {x} converges to x* superlinearly.

Proof. Now we only need to prove that for sufficiently large k, (5.4.30)—
(5.4.33) hold, and thus o = 1. The remainder is obtained from Theorem
5.4.4.

Since Bysi = —agg, it follows from (5.4.25) that

1Bk — V2 f ()]s

0 = lim
k—o00 (e
_ g — V2 f(2*) By g
= lim — .
k=00 | B, " ||
Then
G By lar — (B tgr) VA f(2*) (B k)
= (g — V2 f(@") By 1) (B gr)
o(||B; gk l?),
that is
9t By 'gr = (B}, gi) TV f(2*)(By ' gk) + o(|| By ' gkl?). (5.4.34)

Since V2 f(x*) is positive definite, there exists 7 > 0 such that for sufficiently
large k,
9k By, gk = 1l B gl (5.4.35)
Then, from Taylor’s expansion (1.2.103) and (5.4.34), we have
_ _ 1 _ _
flar— By lgr) — flon) = —gi By g + 597 By g + o(lI1B; ' grll?)
2
1 _ _
= —iggBk Yo+ o(| By Lgk]1?)
< —pgi B gx. (5.4.36)
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Also, by (1.2.111) and a proof similar to (5.4.27), we get
9(xx — By 'or) By ok — 91 By 'k + (By tar) T VA f () (By  gk)
= o(|IB; gxl®),

which, together with (5.4.34), gives

g(zr — By gr)" By gk = o(| B ' grl?) < o9 B i (5.4.37)
It follows from (5.4.36) and (5.4.37) that (5.4.30)-(5.4.31) hold, and thus
ar = 1 for k sufficiently large. O
5.4.2 Linear Convergence of General Quasi-Newton Methods

In this subsection, our goal is to discuss the local and linear convergence
results of general quasi-Newton methods. Let the iterative scheme of general
quasi-Newton methods be

Thtl = Tk — Blle(ZEk), (5.4.38)
Biy1 € Uz, By), (5.4.39)

where U(xy, By) denotes a nonempty set of updates, (zy, Bg) € domU, domU
denotes the domain of U.

Theorem 5.4.9 Let F : R" — R™ satisfy the assumptions (a), (b) and (c)
in Assumption 5.4.1, U an update function, such that for all (xy, By) € domU
and Byi1 € U(xy, By), we have that

[Brs1 — F'(@")|| < ||1B — F'(27)|| + %(ka-&-l — 2| + [z — 27), (5.4.40)
where v 1s some constant, or that
1B —F' (@) < [+ a1 (@g, 2]l Be— F' (@) |+ oo (g, ops1), (5.4.41)
where ap and as are some constants, and
o(zg, xpt1) = max{||zx — =%, |xx+1 — ™|} (5.4.42)

Then, there exist constants € and 0, such that, for ||zg — z*|| < e and
|Bo — F'(x*)|| < 0, the iteration (5.4.38)—(5.4.39) is well-defined, and {xy}
converges to x* linearly.
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Proof.  First, we prove the conclusion for the given condition (5.4.40).
Assume ||F'(z*)7!|| < 8 and choose ¢ and § such that

6806 < 1, (5.4.43)

3ve < 26. (5.4.44)
To prove the local and linear convergence, we prove, by induction, that
| Bx — F' ()] < (2 — 27F)g, (5.4.45)
lzis — ol < Sllos — 2. (5.4.46)
For k =0, (5.4.45) is obvious. Since the proof of (5.4.46) for k = 0 is the
same as that in the following general case, we omit it here.

Now, suppose that (5.4.45) and (5.4.46) hold for kK = 0,1,---,i — 1. For
k =i, by assumption of induction and (5.4.40), we have

* * ’7 * *
1Bi = F'(a") < 1Bicr = /(@) + 5 (llwi = 2™ + |zia — 27]))

: 3
< (2-270") 4+ pllwion =", (5.4.47)
From (5.4.46) and ||zp — 2*|| < &, we have

zimy — 2| <270V ||zg — 2| < 270 Ve, (5.4.48)

Substituting (5.4.48) into (5.4.47) and using (5.4.44) yield

IB; — F'(z")| < (2- 2*(1'*1))(5 4 Z’Y Lo—(i=1)
< (2 — 2_(i_1) + 2—Z>6 — (2 _ 2—7j)5’ (5449)

which proves (5.4.45).
To prove (5.4.46), we first show that B; is invertible. In fact, since
| F'(z*)~L|| < B, it follows from (5.4.45) and (5.4.43) that
|F (%)~ [Bi — F'(2™)]]]
1F (%) |1 B; — F' ()

< BR2-275<285 < %

IN
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Then, by Von-Neumann Theorem 1.2.5, we know that B; is invertible, and

- [ ()~ 1]
1B < v *
1= ||F"(2*) "1 (B; — F'(2%))|
B 30
=, 5.4.50
- o1-1 2 ( )
Thus, x;4+1 is well-defined. Also,
Bi(CIZZ'_H — a;*) = Bz(a;, — a:*) — F(w,) + F(JZ*)
= [-F(w) + F(z") + F'(27) (2 — 2")]
+[B; — F'(x)](x; — x), (5.4.51)
which gives
|z =[] < BT = Fas) + F(a*) + F'(2") (@ — %)
+|B; — F'(x")||||zi — =*|]]- (5.4.52)
By use of Theorem 1.2.22,
| = F(zi) + F(2%) + F'(2")(z; — 2")| < %lei —a*|%. (5.4.53)
So, (5.4.52), (5.4.50), (5.4.53) and (5.4.49) give
* 3 v * —1 *
o =2 < 56| wi -2l + @ - 270| loi =7l (5454)

Also, using (5.4.48) and (5.4.44), we have

—1

s 2
i — ) < 2 9e < 205

Substituting the above inequality into (5.4.54), we obtain

IN

. 3 1., » \
o =" < 58 |52 4227 o= o

IA
w
@
=
El
|
8

IN

B
8

_*

Therefore, the desired result (5.4.46) is proved.
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Similarly, for the given condition (5.4.41), we also can prove our conclu-
sion.

In fact, let ||F'(z*)|| < 8 and r € (0,1). Choose &(r) = ¢ and 6(r) = 9,
such that

(2010 + a2) < - <3, (5.4.55)

B+ 7r)(ve +_25) <r. (5.4.56)

To prove the local and linear convergence, we still prove

1B — F'(a")]| < 25, (5.4.57)
lewsr — 2"l < rlle — 2| (5.4.58)

by induction.
Obviously, for k = 0, the conclusion holds. Suppose that the conclusion
holds for k =0,1,---,i— 1. By (5.4.41), we have

| Bei1 — F'(z)|| — ||Bx — F'(2®)]| < 2011 8er* + aer”,

Summing for k =0 to ¢ — 1 yields

* * E
1Bi = F'(z")| < | Bo = F'(2") ]| + (216 + @) —
So, using (5.4.55) and || By — F'(z*)|| < §, we obtain
1B - F'a™)] < 25, (5.4.59)

which proves (5.4.57).
To prove (5.4.58), first note that ||B;!|| < (1 + )8 from (5.4.59) and
Theorem 1.2.5. Then, by Theorem 1.2.24, we have

lzivr =2l < IB7IIE (i) = F(a®) = F'(2%) (@i — 27|
+HBi = F'(27)|l |l — =7
< B +7)(ve +26)[lwi — 27|,

By using (5.4.56) we immediately obtain
s — 27 < rllzi — 27,

So, (5.4.58) is proved. We complete the proof by induction. O
Similarly, we have the following local and linear convergence theorem for
update of the inverse Hessian approximation.
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Theorem 5.4.10 Let F : R™ — R" satisfy the conditions (a), (b), and
(c) in Assumption 5.4.1. Let U be an update function, such that for all
(xg, Hi) € domU and Hy4q € U(xy, Hy), we have that

| Hioa = ') < = F @) 42 (e =+ =), (5.4.60)
where v is some constant, or that

|Hiar — F'(2*) 7 < [1+ ano (o, zee) I He — F'(@) ) + a0 (e, 2n),
(5.4.61)
where ap and as are some constants, and

o (k, Trt1) = max{||zg — "], [wprs — 27}

Then, there ezist constants € and §, such that, for |zo — z*|| < e and ||Hp —
F'(z*)71|| < 6, the iteration

Tyl = T — HkF<1'k>, Hk+1 S U(a:k, Hk) (5.4.62)
is well-defined and {zy} converges to x* linearly.

As a consequence of the above two theorems, we give the following corol-
laries on superlinear convergence for general iterations.

Corollary 5.4.11 Suppose that the assumptions of Theorem 5.4.9 hold. If
some subsequence of {||Bx, — F'(x*)||} converges to zero, then {x}} converges
to x* superlinearly.

Proof. We hope to prove

o =2l _

lim
k——+o0 ”l’k — x*H
Let r € (0,1). It follows from Theorem 5.4.9 that there exist e(r) and J(r)
such that | By—F'(x*)|| < §(r) and ||zo—x*|| < e(r) imply that ||z —z*]| <
r||lzg — z*||, Yk > 0. From the assumption, we can choose m > 0 such
that || B, — F'(z*)|| < 6(r) and ||z, — 2*|| < e(r). Hence ||z — ¥ <
||z — z*||, V& > m. Since r € (0, 1) is arbitrary, the conclusion is shown.
g
Similarly, we have

Corollary 5.4.12 Suppose that the conditions of Theorem 5.4.10 hold. If
some subsequence of {||Hy — F'(z*)7 ||} converges to zero, then {x} con-
verges to x* superlinearly.
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5.4.3 Local Convergence of Broyden’s Rank-One Update

In this section, we prove the linear convergence and superlinear convergence
of Broyden’s rank-one update

Tp1 = — By 'F(x), (5.4.63)
— Bisy)st
Bjy1 = By + M (5.4.64)
S, Sk

Theorem 5.4.13 Let F' : R™ — R™ satisfy the conditions (a), (b), and (c)
in Assumption 5.4.1. Assume that there exist positive constants € and 0
such that ||zg — x*|| < € and ||By — F'(z*)|| < §. Then the sequence {xy}
generated by Broyden’s rank-one update (5.4.68)—(5.4.64) is well-defined and
convergent to ¥ superlinearly.

Proof. It is enough to prove, under the conditions of the theorem, that
(5.4.40) and (5.4.4) are satisfied respectively.

First, we prove that By, generated by Broyden’s rank-one update sat-
isfies (5.4.40).

By (5.4.63)—(5.4.64), we have

- B T
Bk+1 B F’(l‘*) _ Bk: - F,(.iU*) + (yk k8k>8kz

sfsk
= Bp-— F,(.’L'*) + (F,(x*)SkT_ Bksk)sg + (yk - F;(ﬂf*)Sk)S;}F
S} Sk Sk Sk
T — F!(x* T
= (B - F'(z")) ll - S’;‘S’f] ;o T("T Js)Sk (5.4.65)
Taking norms gives
T — F'(g*
1B — F'(@) < 1By — Fa) | |1 — 2k | 4 Do = EDsell = 5 4 g
shsk (e
Note that
sksf
I—— =1 (5.4.67)
and

lye = F' (") skl 1F (2p41) = Faw) = F'(2") s

0 % "
< §(Hl‘k+1 — x| + ||l — 2¥|))[[sk]|  (5.4.68)

A
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by Theorem 1.2.24, we obtain immediately that
* * 7 * *k
1Bpr = F'(@)|| < 1By = F'(@) 1 + 5 (lznr = 27| + [l — 2"])),

which is (5.4.40). The linear convergence is proved.

Next, we prove the superlinear convergence of Broyden’s rank-one update
by use of Theorem 5.4.3, that is, we want to prove that (5.4.4) holds.

Let E = By — F'(z*). From (5.4.65),

T — F'(g* T
1Exallr < || By (1— 2% + (167 (Tx Jsselle 5 4 6o)
Sk ) || g 51, Sk
Since
2
Bk g ((Bes) () o
Sgsk P (s;fsk)2
Bkl e I Ekskll?
= 74”3 = T2
B (B
we get
T2 T\ [|2
Sk SkS
ot = o] o (1-2%E)
2
||Ek5k||2+ E, IﬁSk»S;‘g
e T )|
Hence )
T E 2\ 2
B (1= 220 )| = (1B} - H ks’“QH : (5.4.70)
5p5% ) || p [l skl

D=

Since (a? — 3?)2 < a — $%/(2a) for any a > |3] > 0, (5.4.70) implies that

T

Also, by means of Theorem 1.2.24,

1 ||Ek8k\>2
< ||E — . 54.71
< 1Bl 2mmF(H%n (5:4.71)

F

Y *
Iy — F'()sille < 2llowsr — 2N+ lan — 2 Dlisell.— (5.472)
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So, by using (5.4.71), (5.4.72), and (5.4.46), we can write (5.4.69) as

| Exsl? 3 .
|Ek1llr < N Ekllr = 5700+ 512k — 27,
2| Exllpllsel? 4
which is
Eysil? 3 .
’”*916“2” < 2/ Exllr |1 Exllp = 1 Exallr + gyl — 27| - (5.4.73)

Recalling (5.4.45) and (5.4.46), we have that
| Ex|lF < 26, Vk >0

and
o0

Z |xp — ¥ < 2e.

k=0
Thus, (5.4.73) can be written as

| Eps||?

3
ENE <40 [HEHF — 1Bkt llr + Z’Yka — J:*H] : (5.4.74)

By summing both sides, we obtain

% 2 r
Eysy, 3
ZM < 40 |[|EollF — [|Eitallr + 72||xk—x |]
= sl I =
[ 3
< 45| IBolr + 50e]
(3
< 4 5+276}, (5.4.75)

which holds for any ¢ > 0. Therefore

Z | Exsell*

= Nsell?

is finite and further

FE
lim | Exsl|

=0, 5.4.76
B2 Tl (54.76)

which is (5.4.4). Then we have proved the superlinear convergence of Broy-
den’s rank-one update by use of Theorem 5.4.3. O
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Similarly, for the following form of Broyden’s rank-one update in inverse
Hessian approximation:

Tpy1 = xk — HpF(zp), (5.4.77)
sy — H, r
Hopr = 0y + O Hivelye yT;i/’“)yk (5.4.78)
k

we have the following theorem.

Theorem 5.4.14 Let F' : R" — R" satisfy the conditions (a), (b), and
(c) in Assumption 5.4.1. Assume that there exist ¢ and § such that ||z —
v*|| < € and ||Hy — F'(2*)~Y| < 8. Then the sequence {xy} generated by
Broyden’s rank-one update (5.4.77)—(5.4.78) is well-defined and convergent
to x* superlinearly.

5.4.4 Local and Linear Convergence of DFP Method

In this subsection and subsequent subsections, we discuss the local conver-
gence of rank-two methods, which includes the linear and superlinear conver-
gence, and local convergence under line search. Note that we introduce two
different techniques to prove the superlinear convergence of BFGS and DFP
methods respectively.

The DFP iteration we consider is

Te1 = ap— By 'V (), (5.4.79)
— Brsp)yl + — Bysp)T
Bisi = Bt (yk — Brsk)yi Tyk:(yk kSk)
Yi. Sk
(yk — Brsi) sk 7
- YU, - (5.4.80)
(yf sx)? g

To study the local convergence of DFP method, it is required to estimate
|Brs1 — V2f(z*)||. As shown in the following theorem, there is a matrix

T
P=1- %yyz in By1 — V2f(x*). Since

skl 1y

P[]z = T‘ ’, (5.4.81)
Sk Yk

it is a secant of the angle between y; and sg. In general, yp and s; is

not parallel, so ||P||2 may be quite big, and it is not suitable to estimate
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| Brs1 — V2f(z*)|| by means of Iy norm. However, near x*, f(x) closes a
1 1
quadratic function, and hence A2y, and A2s; are approximately parallel,

where A = V2 f(2*). It motivates us to use some weighted norm to estimate
| Brs1 — V2f(2*)|. Then we define
1.1
1Elprp =1E] -y , = lA"2EA72]F. (5.4.82)

Below, we first develop the linear convergence of DFP method.

Theorem 5.4.15 Let f: R™ — R satisfy Assumption 5.4.2. Also let

(5.4.83)

Lo =

pyo (Tg, Trpgr) <

in a neighborhood of z*, where p = ||V2f(z*) 7|, 0 (), Tp11) = max{||zy —
¥|, |xg+1—x*||}. Then, there existe > 0 and § > 0 such that for ||zo—z*|| <
e and || Bo—V?f(z*)||prp < 9, the iteration (5.4.79)-(5.4.80) of DFP method

is well-defined, and the produced sequence {xy} converges to x* linearly.

Proof. Based on Theorem 5.4.9, to prove the linear convergence of DFP
method, it is enough to prove

|Bes1 — V2f(@")lprp < [1+ ar0(zk, z5i1)]| Br — V2 f (%) prp
JrOéQO'(xk, Jik+1), (5.4.84)

where a; and ap are positive constants independent of zy and g1, (T, Tg+1) =
max{ ||z — z*||, [2k+1 — 2"}
Let A= V2f(z*). From (5.4.79)—(5.4.80), it follows that

(yr — Ask)yl + yr(yr — Asp)T P
yl sk

Bjy1— A=PY(B,— AP + . (5.4.85)

where -
_ SkYg

T
Sk Yk

Note that | Pllo = [lsilllyll/s5yx. hence

P=1 (5.4.86)

1 1
|PT (B, — A)P|prp < |[A2PA™2|3||By — Allprp
1
1B — Allpre, (5.4.87)

IN
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1 1
yr(yr — Asp)" P 1 |A 2y, — Az
T S - T ; (5.4.88)
Yk ok DFP v (| A2 s |
— As )T LIlA=S 0 — A2
(o = AsiJyy < 1lATEp - Arsl (5.459)
Yk 5k DFP w | AZ s |
where
T _1 1
Yk Sk A 2yk, A2 sy,
W=t = <7; T ) : (5.4.90)
[A72ylll[Azsll [[A72ygll[[A2 skl

Now, we estimate ||Bi1+1— Al prp by using (5.4.87), (5.4.88) and (5.4.89),
and have

1
|Br+1 — Allprp < EHBk — Allprp

2 |A 2y, — Az sy

(5.4.91)
Wi Az s
Note from Theorem 1.2.24 that
1 1 1
A2y, — A7 2sill o [[AT2 lllye — Askll
1 > 1
| A2 5| l[skll/I|A™Z]]
lyr — Asg||
skl
1
< pyo(xg, Tre1) < 3 (5.4.92)

Also, by Lemma 5.4.5, we have

1—w?<

{ lye — Asi|

2
] < [uyo(zg, Tpia)].
skl
Then, if xp and z;41 are in the neighborhood of x*, then

1
1-— (.d2 S [M’YU(xk,xk+1)]2 < 57

which is

1
w? > 3 > Yo (T, Tgpt1)-
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Hence

1—w? (o (zk, Ter1))?

— = 1+ <1+
2 w? Yo (T, Thog1)

—_

= 1+ pyo(xk, Tei1)-

So, the two terms in (5.4.91) satisfy respectively
1
2llBe — Allppp < (1 + pyo(zk, 2441))|Be — Allprp (5.4.93)

and

_1 1
2 [|[AT2yp — Azs|
2 1

| A7 s

" 2[1 + pyo(@k, Tp1)]uyo (k, Ti1) | Hyo (Tk, Ti41)

< 3uyo(Tk, Thy1)- (5.4.94)

Substituting (5.4.93) and (5.4.94) into (5.4.112) yields (5.4.113), where oy =
Wy, as = 3uy. So, we complete the proof. O

5.4.5 Superlinear Convergence of BFGS Method

In this subsection, we discuss the superlinear convergence of BFGS method.
Let

1 _1 . _1 _1
5p = GZsp, G = G 2y, By = G2 2ByG 2, (5.4.95)
where G, = G(z*) = V2f(2*). Define

~T - ~ ~T — ~
~ B B
cos b, = kTR g = Tk RTk (5.4.96)
3% || Be 3k [
and define
~ ~ 12 T~
A (5.4.97)
yk Sk Sk Sk

_1
By pre- and postmultiplying the BFGS update (5.1.45) by G %, we obtain

= - Bus8F By il
Bgy1 = By — R

= o 5.4.98
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Since this expression has precisely the same form as the BFGS formula, it
follows from the argument leading to (5.3.42) that

$(Bep1) = (By) + (Mg — Iniy — 1)

= ll— qk~ +In qu

+ In cos? 0. 5.4.99
cos? 0y, cos? 0, F ( )

Noting that
Ui — Gusi = (G — Gy si,

where

B 1
G = / V2 f(xp + Ts)dT,
0
we obtain
_1 _1
Uk — Sk = Gy (G — Gi) Gy % 5.
Assuming that the Hessian matrix G is Lipschitz at «*, then we have

_1 _ _1
156 = 3kll < NG P13kl Gr = Gall < G 1P 113k ]| Le

which gives

18— el o, (5.4.100)
155l
for some positive constant ¢, where
e = max{||xpr1 — ", [|zx — ||} (5.4.101)

Now we are in a position to prove the superlinear convergence theorem.

Theorem 5.4.16 Let f be twice continuously differentiable and the Hessian
matriz G be Lipschitz continuous at x*. Suppose that the sequence generated
by the BFGS algorithm converges to a minimizer x* and that the condition

[e.e]
> g — 2| < o0 (5.4.102)
k=1

holds. Then {x} converges to x* at a superlinear rate.
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Proof. By (5.4.100), we have

Tl = 113kl < eexllell, 15kl — lgxll < Cerll3kll,

which give
(1 —eer) I3l < gl < (1 + cer) |3k (5.4.103)

By squaring (5.4.100) and using (5.4.103), we obtain
(1= 2ex) (1581 = 20 3k + 156 l1* < G611 — 207 35 + I56]1* < S l13]1%,
and therefore
201 81 > (1 — 2¢ex + e + 1 — Eep)||5k]1* = 2(1 — cer) |35

It follows from the definition of my that

> 1 — Ceg. (5.4.104)

Combining (5.4.103) and (5.4.104) gives also that

~ 2 —
Mk _ ‘LyjiCNH < 1+C€k

gls, — 1—ce,

(5.4.105)

Since zy, — z*, we have that ¢, — 0. Thus by (5.4.105) there exists a positive
constant ¢ > ¢ such that the following inequalities hold for all sufficient large
k:

3 26
My <14+ =€
1 — cep

€ <1+ cep. (5.4.106)
Making use of the nonpositiveness of the function h(t) =1 — ¢+ Int gives

—X

1
—In(l—2z) = <
- n(l—z) h(l—x>0

Now for k large enough we can assume that cep < %, and by using the above
inequality we have

In(1 — ce) >

This relation and (5.4.104) imply that for sufficiently large k, we have

Iy > In(1 — ce) > —2¢e > —2cey. (5.4.107)
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We can now deduce from (5.4.99), (5.4.106), and (5.4.107) that

+1n

0< w(ékz—i-l) < w(Bk) + 3cep, + Incos? 0, + [1 _ k_ ] '
cos? by,
(5.4.108)

By summing this expression and making use of (5.4.102) we have that

cos2 0y,

1-— 9 — +1In 95 -
cos? 0; cos?0;

o0
< §(Bo) +3¢)_ € < +oo.
j=0

> <1n

=0

20.
cos* 0;

Since the term in the square brackets is nonpositive, and since In(1/ cos? §;) >
0 for all j, we obtain

1 5. G
lim In — =0, lim |1— 4 +1In %) = 0,
j—oo  cos? 0 j—o0 cos? 0; cos? 0;

which imply that 3
lim cosf; =1, lim ¢; = 1. (5.4.109)
j—oo

J—00

By use of these limits we can obtain that

_1 ~
G ? (B — Go)sell® _ 1(Br — D)3ll?
G2 s 151
_ || Bkl — 28] Brdy + 31 8
sksy,
-2
qx ~
= — —2qr +1
cos? 0, I
= 0. (5.4.110)

Then we conclude that

B - *
lim 1Bk = Gl (5.4.111)
ko0 skl

which shows that the rate of convergence is superlinear. O
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5.4.6 Superlinear Convergence of DFP Method

We first give the following three lemmas.

Lemma 5.4.17 Let M € R™" be a nonsingular symmetric matriz. If, for
B €1[0,1/3], the inequality

| My — M~ s < B M~ sy (5.4.112)
holds, then for any nonzero matriz E € R™™™, we have
(a)
(1= BIM sil” < ylsi < (14 B)[M sy, (5.4.113)
(*) 1 1o \T
M~ M~
HE l[ _{ Sk)T( 5t) < V1—af?|E|p, (5.4.114)
Yi. Sk F
(c)
M~ sp(My)T
Yi. Sk I
My, — M1
< |Viza@ 4 - g WMo M sl |y gy (5.4015)
[ M~ s
where
125 ] |EM s
a=——¢€|-,1|,0=F———— €[0,1]. 5.4.116
= < s EEET R (4110

Proof. Note that
Y sk = (Myg)" (M sg) = (Myg — M~ )" M~ g+ | M s [|°. (5.4.117)
Also, it follows from Cauchy-Schwartz inequality and (5.4.112) that
[(Muyr, — M~ si) "M si| < BIIM sy (5.4.118)

Then, combining (5.4.117) and (5.4.118) gives the first conclusion (a).
Now, we prove (b). By using the property (1.2.71) of Frobenius norm of
a rank-one update, we have

1B — w7 = Bl — 20" BT Bu+ || Eul||v].
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In particular,
2

||E [] B (M_lsk)(M_lsk)T]
?J%Sk

F
[EM s

= |E|% + (—2yf sk + [|M " si?)
F (yi sk)?

Using (a) and (5.4.116) yields

HE [] _ (M_lsk)(M_lsk)T] ’

Yi sk h
128\ |[EM~1s;|?
< B - () s
1-p Yi. Sk
2
EM sy
< B — o [ NEM sl
= 15l (ansku
= [IE[F(1 - af?),

which shows (b).
Finally, we prove (c) by means of (b). It is enough to prove that

M_lsk(M_lsk — Myk)T

E
H Ui Sk F
_ My — M~ sy
< (1-p)"" I E|p. 4.11
< (1-p) ( M sy IE|F (5 9)

Since

M syl M s — M

M‘lsk(M_lsk — Myk)T
. Yi sk

T
Yi Sk

then we obtain (5.4.119) by using (a). O

Lemma 5.4.18 Let {¢r} and {0} be sequences of nonnegative numbers sat-
isfying

Grr1 < (14 6k) Pk + Ok (5.4.120)

and .
> 0k < 400, (5.4.121)

k=1

then {¢r} converges.



5.4. LOCAL CONVERGENCE OF QUASI-NEWTON METHODS 267

Proof. We first prove that {¢;} is bounded above. Let

k-1

e = [T (1+0)).

Jj=1

Obviously, pi > 1. Inequality (5.4.121) indicates that there exists a constant
p such that px < p. By using (5.4.120), we have

Ori1 Pk Ok ok _ Pk

Be+1 Mk ME4+1 Mk

Hence

¢m+1 < + Z 5k
Nm+1 el
From (5.4.121) and the boundedness of {uk}, we obtain that {¢y} is bounded.
Since {¢r} is bounded, then there is at least a limit point. Suppose that
there are two subsequences {¢y, } and {¢x, }, which converge to ¢’ and ¢"
respectively. We can show that ¢’ < ¢”, and that ¢ < ¢’ by symmetry.
Thus ¢/ = ¢” and {¢y} is convergent.
In fact, let ¢ be a bound of {¢x}. Let also, for example, k,, > k;,,. From
(5.4.120), we have

En—1
Py — Pk < (L+0) Y 05
J=km
By the selection of k,, we have
¢ = h, < (1+0) Y 65
J=km

By the selection of k,,, we have

¢/_¢// <0.

Therefore ¢’ < ¢”. Similarly, by symmetry, we obtain ¢ < ¢’. We complete
the proof. O

We have known that if f : R"™ — R satisfies Assumption 5.4.2, then
(5.4.84) holds. Let ||By—A|lprp = ¢r and max{aio(x, Tpt1), @20 (Tk, Thy1)} =
0. Then (5.4.121) holds. Thus, it follows from Lemma 5.4.18 that the limit

k—+o00

exists.
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Lemma 5.4.19 Under the assumptions of Theorem 5.4.15, there exist pos-
itive constants [, B2, and (B3, such that Vi, x4 € N(z*, ), we have

|Bis1 — V2f(2")||prp < [\/ 1 — 3107 + Boo (g, z11) | | Bk — VA (@) | pFp

+B30 (Tk, Tht1), (5.4.123)
where
o(xg, 1) = max{||zr — ||, [Tk — 27| }, (5.4.124)
2 *\—2 2 )\ &
B _
1B — V2 f(z*)|[prpl V2 f(z*)2 sk
Proof. Write A = V2f(2*). From (5.4.85), we have
— Asp)y¥
1Bt — Alpre < |1PT(Bi — A)Pllpgp + || WA
Y 5k DFP
— Asp)TP
||l . ) . (5.4.126)
Yk Sk DFP
Let ) )
A3 sy T A3
Q=1- "0 2 g~ A3 (B — A)ATR. (5.4.127)
Yi Sk
Then
|PT(By— A)Pllprp = [[(A"2PTAZ)(A™2(By — A)A™2)(A2PA™S)||p
= |QTEQ]|F.

Similar to the proof of Theorem 5.4.15, we know that there exist as and
g > 0 such that

_ LAy — Arsy

> i
prp % [| A2 s

(yx — Asp)yl
y]z;Sk

S 0530-(1%7 xk-l—l)u

_1 1
yr(yr — Asp)" P < 1 [[AT 2y, — AZs|
T = 2 1
Yi. Sk prp Y | Az 5|

If we let B3 = a3 + g, then (5.4.126) becomes

|Bii1 — Allpre < |QTEQ||F + B30 (xk, Tri1)- (5.4.128)

< o (T, Thg1)-
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Since ) )
A 2y, — Azs 1
| ykl K < pyolen zpsr) < 5,
[ AZ skl 3
then, by use of Lemma 5.4.17, we obtain
1
_ A_iyk — A§Sk
QT EQIr < [1 - gy A Al oy
[ A2 sy |

Note that |QTE|r = |ETQ|r = | EQ| F, thus, by using Lemma 5.4.17 once
more, we obtain

IEQ|r <

A3y, — Ass
J1—at? (1 g A2 ’f“]uEuF,

1
A2 5|

where 6}, is defined by (5.4.125). Then

1 1
5) 1|[AT 2y — Azsg
e e v [
Sk

< 1= 5102 + Boo(xk, zis1)]|| B s (5.4.129)

where 61 = a, B2 = %(1 — B)"Luy. Substituting (5.4.129) into (5.4.128), we
deduce the desired result (5.4.123). The proof is complete. O

Using the above three lemmas, we can establish the following superlinear
convergence theorem of DFP method.

Theorem 5.4.20 Under the assumptions of Theorem 5.4.15, DFP method
defined by (5.4.79)—(5.4.80) is convergent superlinearly.

Proof.  Since (1— ﬁlﬁi)% < 1—(61/2)63, then (5.4.123) can be written as

(B107/2)|Br, — Allprp < ||Br — Allprp — || Bes1 — Allprp
+[Be|| By, — Allprp + B3]o(Tr, Try1)-

Summing both sides yields

1 [o¢] o0
5612913H3k —Allprp < |Br—Allprp + 82 0(xk, 2k41) |1 By — Allprp
k=1 k=1

o0

+03 > o(h, Thy1)-

k=1
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Since, from Theorem 5.4.15, {z}} is linearly convergent, then Y 72, o(zg, Tp41) <
0o. Also, since {||Bx, — A||prp} is bounded, then

b1
? Z QI%HBk — AHDFP < Q.
k=1

By (5.4.56), the limit limj_, || Bx — Al|prp exists. Hence, if some subse-
quence of {||Br — A||prp} converges to zero, the whole sequence converges

to zero. Therefore
|(Br — A)sell

lim =0,

k—oo |||

and the conclusion holds. Otherwise, if | By — Al prp > w > 0,Vk > ko, then
0;. — 0. Note that

1 1
[(Br = Asill - [[A2[[[A72(Br — A)skl
sl T Az YAz

1
|A™2(By, — A)sy]|
1
| Br — Allprpl| A2 si||
= || AllllBx — Al prpOs,

IAIlIBx — Allprp

then, by using 6, — 0, we immediately obtain

|(Br — A)sell

lim =0.

k—oo |5kl
Hence {x1} is convergent superlinearly. We complete the proof. O

Similarly, we can state the superlinear convergence theorem for BFGS
method.

Theorem 5.4.21 Under the assumptions of Theorem 5.4.15, the sequence
{zr} generated by BFGS method (5.4.79) and (5.1.45) is convergent to z*
superlinearly.

It is not difficult to describe the above theorems in inverse Hessian ap-
proximations, which proofs are left to interested readers as an exercise.

We consider BFGS update in inverse Hessian approximation (5.1.48), now
written again as

Tpr1 = zp — Hygr, (5.4.130)
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s — H, st + sp(sp — H, T
Heoi — Hy+ (sk — Hrye) kST k(sk — Hryr)
k Yk
- H T
_ (o T’“y’;) Yk ST (5.4.131)
(85 Yk)
We employ the weighted norm
IElsras = I1E| g1/2, p = |AY2EAY?||p, (5.4.132)

where A = V2f(z*).

Theorem 5.4.22 Let f: R" — R satisfy Assumption 5.4.2. Also let

1
Yo (Tr, Trr1) < 3 (5.4.133)

in a neighborhood of x*, where p = || V2 f(x*) 7| and o(zg, 2p41) = max{||zp—
z¥||, |xg+1—a*||}. Then, there exist e > 0 and § > 0 such that for ||zo—z*|| <
e and |Ho—V2f(2*) Y| pras < 6, BFGS method (5.4.130)-(5.4.131) is well-
defined, and the produced sequence {1} converges to x* linearly. Further, if
Yoreo |z —x*|| < 400, then the sequence {xy} converges to x* superlinearly.

5.4.7 Local Convergence of Broyden’s Class Methods

Finally, in this section, we discuss local convergence of Broyden’s class meth-
ods.

Byrd, Nocedal and Yuan [47] proved the superlinear convergence of Broy-
den’s class method. We state the theorem without proof.

Theorem 5.4.23 Suppose that f : R™ — R is twice continuously differen-
tiable on a convex set D and that f(x) is uniformly convez, i.e., there exists
m > 0 such that for any x € R™ and u € R",

W2 f(w)u > milul.
Suppose also that there is a neighborhood N(x*,¢e) of x*, such that
IV2f(z) = V2 f(@)|| < yllz — 2|, Vo, & € N(2*e).

Then, for any positive definite matriz By, when line search satisfies Wolfe-
Powell rule (5.4.30)—(5.4.33), the sequence {x} generated by the restricted
Broyden’s class (0 € (0,1)) converges to x* superlinearly.
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For Broyden’s class with exact line search, we have

Theorem 5.4.24 Suppose that the assumptions of Theorem 5.4.23 hold.
When the ezact line search is employed, the sequence {xy} generated by Broy-
den’s class method converges to x* superlinearly.

Byrd, Liu, and Nocedal [43] established the following superlinear char-
acterization in which the superlinear characterization (5.4.25) is replaced by
(5.4.135) and (5.4.136).

Theorem 5.4.25 Let iterates generated by
Ti1 = T — By gy
converge to x* with V f(x*) = 0 and V2 f(x*) positive definite. Then

lim W=l (5.4.134)

if and only if
klim cos?(B; L gk, — V2 f(z*) tgr) = 1 (5.4.135)
—00

and .

lim %k lefsk

k—oo g sy Y

=1. (5.4.136)

Proof.  Suppose that (5.4.134) holds, then we have

klim cos?(B; L gg, xp, — %) = 1. (5.4.137)
—00
Note also that
Jim cos®(xy — *, —V2f(2*) Lgr) = 1. (5.4.138)
—00

Hence (5.4.135) holds.
By (5.4.134) and the positive definiteness of V2 f(z*), we have

i 19k + Ykl 0.

k—oo |\ gkl
which implies
Stk + Sk Yk —0
k—oo skl gkl
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Therefore T
lim "k 9k

=1, 5.4.139
k—o0 Sgyk ( )

which means (5.4.136).
Conversely, assume that (5.4.135) and (5.4.136) hold. By (5.4.135) and

(5.4.138) we deduce that (5.4.137) holds. Also, (5.4.136) means (5.4.139).

Then, we obtain

sEgr + sTV2 f(x*)sk

lim =0,
k—o0 54 Uk
which is e ) .
lim A ;[é];+z I ol _, (5.4.140)
—00 3, V2 f(x*)sy,
Then, (5.4.140) and (5.4.135) gives
2 *\—1
lim U3 V@)l (5.4.141)
k=00 skl

which is equivalent to (5.4.134). We complete the proof. O

5.5 Self-Scaling Variable Metric (SSVM) Methods
5.5.1 Motivation to SSVM Method

We have seen that DFP method is a typical rank-two quasi-Newton method.
However, numerical experiments show that its implementation is not ideal.
Why? Below, we would like to give some analysis.

First, we clarify that the single-step convergence Theorem 3.1.5 of the
steepest descent method is also true for various Newton-like methods. Let

flz) = %mTGx — bz, (5.5.1)

where G is an n X n symmetric and positive definite matrix. Let the Newton-
like method be defined by

Tpt1 = Tk — pHpgr, (5.5.2)
where

g = Gz — b, (5.5.3)
o = gL Higr/ 91 HyGHy.gp,
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then we have the following theorem.

Theorem 5.5.1 Let z* be a minimizer of the quadratic function (5.5.1),
and let Newton-like methods be defined by (5.5.2). Then, the single-step
convergence rate satisfies the following bound:

f@egr) — f(@*) (M —An)?
Flan) — f@ﬂ SLM+A@ (5.5.5)
2
E(zpi1) < E ;2E( k), (5.5.6)

where E(zy) = $(z, — 2*)T Gz, — %), A1 and A, are the largest and the
smallest eigenvalues of matrix HpG respectively.

Proof. Since

o =xp — G gy (5.5.7)
and )
flan) = f(@") = 59.G an, (5:5.8)

and since the exact line search factor ay is represented by (5.5.4), we have

1
f(wpg1) = fzr) — §a%g£HkGHkgk

and
f(@pg1) — f(z¥) = ; 9 G g — %O‘kgk H,GHygy.
Hence
(@) — f(x¥)
flzy) — f(z*)
1_ (9¢ Higr)?
(9f G gx) (9 HxGHygr)
- 1 (2 7)* . (5.5.9)

1 1 1 1
(z,r{(H,C )TG-1H, 2zk)(z,{H,§G(H,§ )T 2)

1
where 2z, = H} gr. Then the conclusion (5.5.5) is obtained by using Kan-
torovich Theorem 3.1.10.
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Similarly, we have

E(xy) — E(xker) _ (2L z1)?
E(x) (I Thoz) LT )

where T, = H k% GH k% . By using Kantorovich Theorem 3.1.10 and noting that
HG and Ty, are similar, we immediately obtain the conclusion (5.5.6). O

From Theorem 5.5.1, we may see that if the condition number x(T}) is
very large, the single-step convergence rate will be very slow. In order to
obtain a rapid rate in every iteration, we should make

(iﬁliﬁf or {%r (5.5.10)

as small as possible, where (T}) = A1/ \p.

Second, let us observe carefully the DFP method. It is not difficult to
see the fact that, usually, the eigenvalues of HoG are greater than 1, and
that DFP method and Broyden class method make one eigenvalue to being
1 in essence in each iteration. Hence, in the iterative procedure, a non-ideal
eigen-ratio of {H;G} is produced. Also since HiG and T} are similar, the
eigen-ratio of {T}} is also non-ideal.

In fact, if we let

Rk = G%HkG%, T = G%Sk, (5.5.11)

then Ry is similar to HpG, and further to T;. By using yx = G%sk, the DFP
formula (5.1.30) is equivalent to

RkT‘kT{Rk Tkrl?

R = Ry — . 5.5.12
i k T%erk r,{rk ( )
Let the eigenvalues of Ry satisfy Ay > Ao > --- > A, > 0. Let
RyrerE Ry,
P=R, - ——"~— 5.5.13
k T%Rm‘k ( )

with eigenvalues py > p2 > -+ > . Obviously, Pry = 0. Then we have

M 2> > A > g > > Ay >y, = 0. (5.5.14)
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From (5.5.12), it follows that

rkrg
Rk+1 - P"‘ T (5515)
T Tk
and
Rpy1r = 1. (5.5.16)

Since ri is the eigenvector of P, and since P is symmetric, then all other
eigenvectors of P are orthogonal to ri. So, the unique different eigenvalue
between Ry and P is the eigenvalue associated to 7, which is 1. This
shows that DFP method moves one eigenvalue of Ry to 1 in each iteration.
Note that Ry, is similar to HyG, thus, it implies that if all eigenvalues of HyG
are greater than 1, then the eigen-ratio of HG will worsen.

However, if 1 € [A,, A\1], then, it follows from the above discussion that
the eigenvalues pi, pa, -+, tin—1 of Rgyq and 1 will be contained in [\, A1].
Hence, in this case, the eigen-ratio of HpG will not worsen. This conclusion
is true for updates of Broyden class with 0 < ¢ < 1.

Theorem 5.5.2 Let A1, A2, -+, Ay be eigenvalues of Hp,G with A1 > Ay >
<o > Ay, > 0. Suppose that 1 € [A\n, M\1]. Then, for any ¢ with 0 < ¢ < 1, the

etgenvalues of H,fHG are contained in [An, A1), where H,f_H 1s the Broyden
class update defined by (5.2.4).

Proof. The case ¢ = 0 has been proved as before.
Now we consider the case ¢ = 1 (BFGS update). The BFGS formula
(5.1.45) can be written as

T —1. Tyr—1
1 1. YkYi H, " sysj, Hy
Hify =Hy + 7= — T -1 )
S Yk s Hy, ~sg,

which is equivalent to

-1, Tp—1 T
Rl —Rp-l_ Ry “rprg Ry, TET)
k+1 = fv

) 5.5.17
T R,;lrk T%T‘k ( )

Since the eigenvalues of R,;l satisfy

<

|-
¥
>
:\.
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then we have 1 € [1/A1,1/A,]. Similar to the above discussion, we know
that if the eigenvalues of R,;il satisfy 1/pu1 < 1/ug < --- <1/up, then these
eigenvalues are contained in [1/A1,1/\,]. Hence, we have that 1/\; < 1/
and 1/, > 1/up, ie., pup > A, and gy < Ap. This shows that all eigenvalues
of Ry4+1 are contained in [\, A;]. Therefore, the conclusion holds for ¢ = 1.

Finally, we know that Broyden class updating formula (5.2.4) is equivalent

to
RkaT‘TRk Tk’I”T
R?, =Ry — k k4 pupul, 5.5.18
k+1 k T%Rk"”k rgrk ¢ kU ( )
where
1 1| 1% Ryry.
— Gavp = (r'R 3 _ ) 5.5.19
ug vk = (1 Rere) lﬁm s Rm] ( )

Clearly, the eigenvalues of Ri 41 are increasing monotonically as k in-
creases. Since, for ¢ = 0 and ¢ = 1, the eigenvalues of Rz 41 are contained
in [An, A1], then, for 0 < ¢ < 1, the eigenvalues of Rg 41 are also contained

in [\, A1]. Thus, from the fact that Rl(erl and H,‘fHG are similar, we obtain
the conclusion. O

The above theorem says that if we scale the matrix Hj such that the
eigenvalues of HyG satisfy 1 € [\, A1], the eigenvalue structure of Rf 4 will
be improved.

Obviously, for a quadratic function, it is enough to scale only the initial
matrix Hy. However, in general, it is useful to scale each Hy.

5.5.2 Self-Scaling Variable Metric (SSVM) Method

In this section we describe SSVM method due to Oren [237]. Multiplying Hy,
by v, and then replacing Hy by v Hj in (5.2.2) yield

Hyyyl Hy SkSk
g — (g, — TEIRIR TR g T )y 4 2ROk (5.5.20)
k+1 ykTHkyk k szyk

where X
vk = (yi Hiyr)? [sk/ sk ye — Hiy/yi Hiyrl,
where ¢ is a parameter of Broyden class and ~; a self-scaling parameter.

The formula (5.5.20) is referred to as the self-scaling variable metric (SSVM)
formula. When v; = 1, it is reduced to Broyden class update.
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Algorithm 5.5.3 (SSVM Algorithm)

Step 0. Given an initial matriz Hy and a starting point xg. Set
k=0.

Step 1. Set dy, = —Hpgx-

Step 2. Find stepsize oy, and set xp11 = xp + adi, compute gii1
and set Y = gr+1 — Gk-

Step 8. Choose Broyden’s class parameter ¢ > 0 and self-scaling

parameter v, > 0, and compute H,gi?’“) by (5.5.20).

Step 4. k:=k+1, go to Step 1. O

Similar to the discussion of DFP method in §5.1, we can prove that the
SSVM method has the following properties. The proof is omitted.

Theorem 5.5.4 (Properties of SSVM Method)

1. If Hy is positive definite and s%yk > 0, then when ¢ > 0 and v, > 0,

the matrix H,gﬁi”‘) produced by (5.5.20) is positive definite.

2. If f(x) is a quadratic function with Hessian G, the vectors sg, 1, Sp—1
produced by SSVM method are G-conjugate, i.e., satisfy

sTGs;=0,i#3;4,j=0,1,---,n—1, (5.5.21)
and for each k, sg,s1,- -+, s are the eigenvalues of H,i?k)G i.e., sat-
isfy

HY MGy = s, 0 < i < k, (5.5.22)

where i, = H?:Hl i, Yii = 1.

This theorem shows that although the property Hp, (@m=1) — G=1 {5 not
retained for quadratic functions by SSVM method, the property of conjugate
directions is still retained. Therefore, for quadratic functions, the sequence
generated from SSVM method converges to a minimizer in at most n steps.
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5.5.3 Choices of the Scaling Factor

Now, the problem is how to choose a suitable scaling factor. Let Ay > Ay >
-+« > Ap > 0 be eigenvalues of HpGG. Clearly, they are also the eigenvalues
of Rj. We hope to choose a suitable scaling factor which is used to multiply
Hj, such that 1 is contained among the new eigenvalues and thus the eigen-
structure is improved. Therefore we get n(Rg 1) < K(Rg). The following
theorem is a consequence of Theorem 5.5.2.

Theorem 5.5.5 Let ¢ € [0,1] and v > 0. Let Ry and R,‘fH be defined
respectively by (5.5.11) and (5.5.24). Let A1 > Xy > -+ > \,, and ,uf > ug >

> u? be eigenvalues of Ry, and Rerl respectively. Then the following
statements hold.

1. If ypdn > 1, then p$ =1 and 1 < i1 §uf) <ApAi,t=1,2,-++ n—
1.

2. If’Yk)\l < 17 then /’Lglb =1 and ’Yk)\z < ,U,,(Z) < Vk)\i—l < 17 i = 2737"'77]"

3. If vedn <1 <A1 and ig is an index with YpXig+1 < 1 < YAy, then

1 > > i > i > 1> pigt

A > > he >
> VeNig+1 = 2 YeAns (5.5.23)

and there is at least one eigenvalue in /,LZ and uiﬂ which equals 1.
Proof. This theorem is a direct consequence of Theorem 5.5.2. Since

SSVM method is equivalent to

RkaTTRk T ’I”kT‘T
R}, = |Ry— "2k | + =k 5.5.24
k41 ( k T'Z;erk ¢ukuk Vi rz;rk ( )

where r, and uy are defined respectively by (5.5.11) and (5.5.19), the above
expression is just obtained by replacing Ry by iRy in (5.5.18). Therefore,
from Theorem 5.5.2, replacing A1, A2, -+, Ay by use of Y1, -+, Vedn gives
our conclusion. 0O

Corollary 5.5.6 Let ¢ € [0,1] and v = 1. Then

g — 1] < A\, —1]. (5.5.25)
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Proof.  From Theorem 5.5.5, for v, = 1, one of the following cases will
hold:

(a) \i>pf > 1;

(b) A <pf <1.

Hence the conclusion (5.5.25) is obtained. O

Obviously, if we choose 7, such that

1
An < — < A, (5.5.26)
Yk
we have
YeAn <1< A, (5.5.27)

which says that 1 is included in the interval of scaled eigenvalues. In addition,
we have

Corollary 5.5.7 Let ¢ € [0,1] and ~, > 0. Let k(-) denote the condition
number. If \, < 'Yik < Ay, then, for (5.5.24), we have

k(R 1) < K(Ry). (5.5.28)

Proof. From Theorem 5.5.5 (3), it follows that

WAL > > 1> pd > e, (5.5.29)
which gives
MM
ph A

Thus, we complete the proof. O

In the above discussion about the condition of =, we always restrict the
Broyden class parameter ¢ € [0,1]. In fact, this restriction is sufficient and
also necessary for the statement that if A, < %k < \Ap, then H(Rf_H) < k(Ry)

and H ,gi?’“) is positive definite.
Corollary 5.5.7 says that \,, < %k < A1 is a suitable requirement to choose
a scaling factor. Note that

L Ryry, _ YL Hyyp,

T T
T Tk 51 Yk
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and .
N LU
it follows that .
St Yk
Vg = —r— (5.5.30)
v Hiye
is a suitable scaling factor. Similarly, since
r%R;lrk B ngk_lsk
T,’{Tk sfyk
and )
i < T‘ER,; Tk < i
AT T‘%’l‘k A
we have that .
sfHk_ Sk aks;{gk sggk
Sk YUk Sk Yk 9 Hryr
is also a suitable scaling factor. Noting that when «ay, is an optimal stepsize,
we have that sfyk = —s;‘fgk, and thus
Yk = Ok (5.5.32)

The above (5.5.32) shows an interesting fact, that we may choose directly an
optimal stepsize as a scaling factor.
For any w € [0, 1],

T Trr—1
S st H Sk
LYk kg

5.5.33
vl Hiyk sFus, ( )

Y= (1 —w)
is a convex combination of (5.5.30) and (5.5.31). Hence (5.5.33) gives a convex
class of suitable scaling factors. For this convex class, Oren [239] presented
the following switch rule of parameters ¢ and w.

Si Uk _ _
IfyH > 1, choose ¢ =1 and w =0,
k

(le s & =1, = sLuk/vi Heyr)-
Ifs’c ¥ <1, choose ¢ = 0,w = 1.
k

TH s
( )¢ O)Vk_ikk)

Syk
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T T rr—1

s s H, “sp

If T’;{yk <1< ek 7k choose
Y 1KLYk Sk Yk

sTyr (vl Heyk—st yi) :
w=q¢= k k k i.e. =1).
¢ (sTH, sie)(l Hoye)—(sFyi)?’ (e v )

Another technique is an initial scaling method presented by Shanno and
Phua [306]. At the beginning, set Hy = I, and the stepsize o is determined
by some line search, such that the objective function descends sufficiently.
Before computing Hi, instead of Hy, we use

}f[() = Oé()Ho, (5534)
and compute Hy from f[g, where ag is a stepsize or determined by

S0t (5.5.35)
Qg =Y = . ..
yg Hoyo
The difference between the initial scaling and SSVM is that SSVM does
process scaling in each iteration, but the initial scaling method does only at
the beginning. Numerical experiments show that the initial scaling is simple
and effective for a lot of problems in which the curvature changes smoothly.
By the way, a special self-scaling BFGS formula

Sk Yk (B _ Bkskszk> +yky{

Bji1 = (5.5.36)

S%Bksk sZBksk sgyk

is used widely in practice.

5.6 Sparse Quasi-Newton Methods

Schubert [303] first extended quasi-Newton update to an unsymmetric sparse
matrix and proposed a sparse quasi-Newton method for solving nonlinear
equations. Powell and Toint [276], Toint [341] derived sparse quasi-Newton
update respectively, and Steihaug [321] presented a sparse quasi-Newton
method with preconditioning and established the convergence.

The sparse quasi-Newton method requires generating sparse quasi-Newton
updates which have the same (or similar) sparsity pattern as the true Hes-
sian. It means that the current Hessian approximation By, reflects the nonzero
structure of the true Hessian, i.e.,

(Bk)lj =0 for (Z,]) el, (561)
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where N
1= {(i,4) [ [V?f(2)]i = 0} (5.6.2)
is a set of integer pairs. We also define

A

T2 A{(0, ) [ [V2f(2)]ij # 0} (5.6.3)

It says that J, a set of integer pairs, is a complement of I. So, we demand
that By, 1 satisfies the quasi-Newton condition

Bj+1Sk = Yk, (5.6.4)

and keeps symmetry and sparsity. Neglecting the subscript, we would like to
find B, such that

B=B+E, (5.6.5)
where E satisfies
Es =y — Bs, (5.6.6)
E=FET, (5.6.7)
E;; =0, (i,j) €1, (5.6.8)

where E;; are elements of the matrix F. If we determined £, we can get
B from (5.6.5). However, (5.6.6)—(5.6.8) cannot determine completely the
matrix E. So, to this end, we require that B is as close as possible to B in
Frobenius norm. Therefore, we consider the following minimization problem:

1
min §||E||% (5.6.9)
st. Es=m, (5.6.10)
E=ET, (5.6.11)

)

Eij =0, (Z,j) el (5612

where r is assumed to be
r =y — Bs. (5.6.13)

In the left part of the section, we denote the j-th component of the vector
s by s, and define the component of vector s(i) as

s(i); = { SJ 8;; Ei (5.6.14)
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Then the condition (5.6.10) can be written as

n

Z i)j=ri, i=1,--,n. (5.6.15)
In order to let ¥ be symmetric, take

= %(A + A"). (5.6.16)

Then the problem (5.6.9)-(5.6.12) becomes the following problem: finding a
matrix A, such that

1

min g||A+AT||F (5.6.17)

st Y (Ag+ Aji)s(i); =2r,i=1,---,n, (5.6.18)
j=1

where A;; denote the elements of A.
Now, we discuss solving the problem (5.6.17)—(5.6.18). The Lagrangian
function is

n n

1
(40 = ¢ DN (AF + A%+ 245A5)
i=1j=1
A Z (Aij + Aji)s(i); — 2r; | (5.6.19)
=1 =1

Setting the derivative with respect to A;; to be zero, we have

OB(A, \)

1 4 ,
oAy 5 (Aij + Aji) = Xis(i); — Ajs(5)i = 0,

i j=1,-,n. (5.6.20)
By using (5.6.16), the above expression is just
Eij = Nis(i)j + Ajs(9)i, 4,5 =1,---,n. (5.6.21)

In place of (5.6.18), we employ (5.6.15). Substituting (5.6.21) into (5.6.15),
we obtain

Y as(@); +Azs(G)ils(i)y = riy i =1, ,m, (5.6.22)
j=1
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which is

Yy

n n
J]=

[s(i); 124+ Njs(h)is(@); =ri, i=1,---,n. (5.6.23)
1 j=1

Thus, we derive the update formula

B=B+E, (5.6.24)
which is, from (5.6.21), that
B=B+> Ales(i) + s(i)e]], (5.6.25)
=1

where e; is the i-th unit vector and A is a Lagrange multiplier vector satisfying
QA= (5.6.26)

where

Q= zn:(s(i)Tsei + el'ss(i))el . (5.6.27)
i=1

In fact, as long as we notice that

QN = r=FEs= z”: Nileis(i)E's + s(i)el s]
i=1

n

= Z[s(z‘)Tsei + el ss(i)]el A,
i=1

we can immediately obtain (5.6.27).

The matrix ) defined above satisfies symmetry, sparsity and positive
definiteness. The properties of symmetry and sparsity can be seen direct
from (5.6.27). As to the positive definiteness of @, we give the following
theorem.

Theorem 5.6.1 If all vectors s(i) (i = 1,---,n) are nonzero, then the matriz
Q is positive definite, that is

2'Qz>0,Vze R,z #0. (5.6.28)
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Proof. Take z # 0,z € R™. Let z; denote the components of vector z.
From (5.6.27),

TQz = Z Z ziTQijzj

> 0. (5.6.29)

Suppose that 27’ Qz = 0; since z # 0, there exists a component of z, for
example, z; # 0, such that by (5.6.29) we have

zpsE = 0, (5.6.30)

zksj + 25, =0, (k,j) € J,j # k. (5.6.31)

Thus, s, = 0. Furthermore, s; = 0,5 # k, (k,j) € J. This is equivalent to

s(k) = 0, which contradicts the assumption. We complete the proof. O
Since @ is positive definite, it follows from (5.6.21) and (5.6.26) that

Eij = (Q'r)is(i); + (Q7'r);5(5)s, (5.6.32)
which can be written as
07 (17]) € '[7
E;; = U 5.6.33
J { )\Z'Sj + )\jsi, (Z,j) e J. ( )

The above discussion gives the derivation of general sparse quasi-Newton
update.

Now, we turn to the sparse PSB update.

Let F : R" — R™. For solving sparse nonlinear equations F(z) = 0,
Schuburt [303] first suggested that Broyden’s rank-one update

. (y — Bs)s”

B=B+ (5.6.34)

sTs



5.6. SPARSE QUASI-NEWTON METHODS 287

can be written in the following form

r(y — Bs)s”

T i

- (5.6.35)

B= B+Zez
1=1

which is an update by row, where e; is the i-th unit vector. By use of notation
s(i), one knows that

B= B+Zlez yf;%g“ (5.6.36)

satisfies the quasi-Newton condition Bs = vy, and has the sparsity pattern
desired.
The general form of Schuburt sparse update is

B=B+)> aeiz(i)", (5.6.37)
i=1
where .
4 (y_BS) N Zjs (iaj)eju
a; = T s@Ts 2(1); = { 0. (i) el (5.6.38)

Now we employ symmetrization to (5.6.37) and deduce that

B = B—G—Zozz e;iz(i)T + z(i)el). (5.6.39)
=1

Let us choose «;, such that B satisfies the quasi-Newton condition. Obvi-
ously, B is symmetric and satisfies sparsity.
Similar to the discussion before, we can obtain that « satisfies

Ta=r, (5.6.40)

where
n

T= Z[z(i)Tsei + el'sz(i)]el . (5.6.41)
i=1
In particular, setting z(i) = s(i), we immediately get (5.6.25)—(5.6.27), which
is sparse PSB update.
Next, let us proceed to the sparse BFGS update.
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For clarity, we repeat the BFGS update given in (5.1.45):

(5.6.42)

where B is assumed to have some sparsity pattern. Since the B defined by
the above formula has not such a structure, we modify it and make it have
this kind of sparsity structure. Define

B=B+E. (5.6.43)
We demand that B satisfies the following conditions:
(i) B satisfies the quasi-Newton condition.
(ii) B is symmetric.
(iii) B is the closest to B in Frobenius norm.

So, we consider the following minimization problem:

1
mmHEhziﬂwﬁm (5.6.44)
st. Es=0, (5.6.45)
E’ij = _Bija (Z,j) S I, (5646)
E=E". (5.6.47)
To solve (5.6.44)—(5.6.47), we define the Lagrange function ® as follows:
O(E, 1, A, ) :%ﬂwﬁm—ﬂwwﬁ—ﬁmw—Eﬂ)

- Z )\ijTI‘(E‘FB)ej(ZZT
(3,9)el

- %Tr(ETE) — Te(Bsp’) = Te(A(E - ET))
~Te(AT(E + B)), (5.6.48)

where g is the multiplier vector, A and A are multiplier matrices, and A;;
are the elements of the matrix A. When (7, j) € J, \;; = 0.
Differentiating (5.6.48) and setting 9% = 0, we have
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which gives
E=suym + A— A+ AT

and
ET = pusT + AT — AT £ A,

By using (5.6.47), we get
E—ET =sum + A= AT +2(AT —A) =0,

that is 1
A—AT = i(s,uT—usT—i-A—AT).

By use of (5.6.50) and (5.6.53), we have

1
E=g(su’ +ps' + A+ A,

which gives, by (5.6.46), that

1 —
el Bej = S (ef us"ej + el spTej + Nij + Aji) = =By,

2
that is

Nij + Nji = —2By; — el ps"e; — e sp'e;j, (i,4) € 1.

The above expression can be written in matrix form:

A+ AT = 2BY S el (us(i)” + si(i)"),
i=1

where
K O) (7’7])6‘]7
o ) S (i,5) eI, ., . )y, (i,7) € 1,
S(l)]_{ 0, (i,5) € J, “(2)]_{ 0, (i,4) €.

By (5.6.54) and (5.6.56), we deduce that

|
|

n

E =

NE

Il
—_

=1

eiel (us(i)? 4 sp(i)T) — QB(I)] )

3

1
2
1
2

%
7

1
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(5.6.50)

(5.6.51)

(5.6.52)

(5.6.53)

(5.6.54)

(5.6.55)

(5.6.56)

(5.6.57)

(5.6.58)

eiel (us” + su™) —2BD = 3" el (us(i)” + si(i)")

(5.6.59)
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where
S\ M (iaj)E‘L
p(i); = { 0. (i) el (5.6.60)
Also, by (5.6.45), we have
[Z eie T4 su(i)T) - ZB(I)] 5 =0, (5.6.61)
which is
Z eiel Ts+su(i)’'s) =2BWs. (5.6.62)
Note that
Zeze sp(i Z,Uz 7
and we can rewrite (5.6.62) as
Z,ui(eis(i)T + s(i)el)s =t, (5.6.63)

1=1

where ¢t = 2BWs.
Then, provided that we solve (5.6.63) for u; and substitute u; into (5.6.59),
we can deduce that

= %Z pi(ess(i)T + s(i)el) — BW. (5.6.64)
i=1
Thus,
B = B+E
= B+~ Z“Z eis(i)' + s(i)el’) — BY
=1
= BY 4= ZM eis(i)T + s(i)el) (5.6.65)
i=1
where

BY = { By, (7)€ 7 (5.6.66)
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The formula (5.6.65) is said to be sparse BFGS update. Similarly, we can
derive the sparse update for other quasi-Newton updates.

Note that the above formula (5.6.65) is obtained by minimization of prob-
lem (5.6.44)—(5.6.47) in Frobenius norm. Instead, we consider this minimiza-
tion problem in the weighted Frobenius norm, i.e., consider the problem

1
min ||E|wr = 5Tr(WETWE) (5.6.67)
st. Es=0, (5.6.68)
Eij = _Bija (Z,j) el (5669)
E=ET, (5.6.70)
Then, corresponding to (5.6.54), we have
1
E = §[z(sTM) + (Ms)z" + M(A + ATYM], (5.6.71)

where M = W=, 2 = Mpu.
Set p = Ms. We can obtain that if and only if M(A+AT)M and A+ AT
have the same sparsity pattern, the solution of (5.6.67)—(5.6.70) is

n

B=BY 1+ z(eip(@)” + p(i)el), (5.6.72)
=1
where
. i (i,9) € J,
p(i); = { gﬂ Ez jg c (5.6.73)

z; 18 the solution of the equations

zi(eip(i)T + p(i)el)s = 2BWs. (5.6.74)
1

n

)

Clearly, if W is a positive definite and diagonal matrix, M (A + AT)M and
A + AT have the same sparsity structure.

Toint [341] considered sparse quasi-Newton update in the case that the
weighted matrix is a non-diagonal matrix. For solving efficiently the sparse
equations about p;, Steihaug [321] presented a preconditioned conjugate gra-
dient method to solve the linear equations.

An alternative approach is to relax the quasi-Newton equation, making
sure that it is approximately satisfied along the last few steps rather than
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requiring it to hold strictly on the latest step. Define the n x m matrices S
and Yy by
Sk = [Sk—ms s Sk—1)s Y = [Yk—ms> """ Yr—1]- (5.6.75)

We ask Byi1 to be a solution of

min ||BSy — Yi|/% (5.6.76)
st. B=BT, (5.6.77)
Bij =0, (i,j) € I. (5.6.78)

In general, sparse quasi-Newton methods lost some advantages of dense
quasi-Newton methods.

(1) Because of the complexity of the sparse pattern, the modified matrix E
is a rank-n matrix, rather than a rank-two matrix.

(2) To compute the matrix E, we must solve a sparse linear equation about
g -

(3) The positive definiteness of the update matrix {By} cannot be guaran-
teed.

(4) So far, the numerical performance is not ideal.

We think that it is still a challenging topic to solve large-scale optimization
problems by studying sparse quasi-Newton methods.

5.7 Limited Memory BFGS Method

Limited memory quasi-Newton methods are useful for solving large-scale op-
timization problems. For large-scale problems, the methods save only a few
n-dimensional vectors, instead of storing and computing fully dense n x n
approximations of the Hessian. Since BFGS method is the most efficient
method for solving unconstrained optimization problems, in this section we
consider the limited memory BFGS method, known as L-BFGS, which is
based on BFGS method.

As we know that the BFGS formula for inverse Hessian approximation

Hk is
T T T
S S SES
Hyppr = (1= 2% )y (1 — L2k ) 2R%% (5.7.1)
Sp Yk Sk Yk SE Yk
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Set

1
p=—7—, Vi=1I—pyrsi, (5.7.2)
Sk Yk

then
Hy1 = Vi" HyVi, + prsist - (5.7.3)

The above equation says that the matrix Hy,1 is obtained by updating Hy,
using the pair {sg,yx}. In L-BFGS method we save implicitly a modified
version of Hy, by storing m pairs {s;,y;}(i=k—m,k—m+1,--- k—1).
In the following, we describe the expression of the updating matrix Hy of
the k-th iteration in L-BFGS method.
Choose some initial Hessian approximation H. lgo) for the k-th iteration.
We apply the formula (5.7.3) m times repeatedly, i.e.,

i1 . )
H]gj+ ) = kallm+]H]gj)Vk*m+j + pk7m+j8k7m+j3£—m+j7 J= 07 17 e, — 17

(5.7.4)
and obtain

He = (VT VI HL (ViemViemst - Vier)
+ob-m(Vil1 - Vil s )8k -mSh—m (Viema1 -+ Vie1)
A0kt (Vi 1 Vi) Skema18h—ma1 Veemez -+ V1)
+Ph—15k—15h_1- (5.7.5)
It follows from the above expression that if we know pairs {s;,y;}(i = k —
m,k—m+1,---,k—1), we can compute Hy. In fact, we need not compute

and save Hy, explicitly, instead, we only save the pairs {s;,y;} and compute
Hygi, where gg, is the gradient of f at x. So, we have

Higr = VI ViE)HY VienViemer - Vie1) g
F0kem (Vi1 Vi 1) Skem Sk (Viema1 -+ Vie1) 0
ki1 (Vi1 Vi 2)Sk—mt15h 1 Viemaz -+ - V1) gk
4Pk 15— 1511 Gk (5.7.6)
Since
Vige = (I — pivis! )gu, i =k — 1,k — 2,k —m,

we have the following algorithm to compute Hygy.
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Algorithm 5.7.1 (L-BFGS two-loop recursion for Hygy)
Step 1. q := gg;

Step 2. fori=k—-1,k—2,--- )k—m
i = pis; q;
q:=q— QY5
end (for)

Step 3. r:= H,go)q;

Step 4. for i =k—m,k—m+1,--- k-1

B = piylr;
ri=r+si(a; — )
end (for) O

By use of the above algorithm, we obtain r = Hygg. A choice of H,go) is

T
©) _ SkYk 5.7.7
E T Tl (5.7.7)

The limited memory BFGS algorithm can be stated as follows.
Algorithm 5.7.2 (L-BFGS Method)

Step 1. Given a starting point xg € R™, an initial symmetric and
positive definite matriz Hy € R™™ ™, a nonnegative integer
m >0, an error tolerance € > 0, k := 0.

Step 2. Compute g, = V f(zr). If ||gx| < €, we take * = xy, stop;
otherwise, compute d = —Hygy from Algorithm 5.7.1.

Step 3. Find a step size ag > 0 by using Wolfe rule.
Step 4. Set xp11 = xp + apdy.

Step 5. If k > m, discard the vector pairs {Sk—m,Yx—m} from stor-
age;
Set si = Tpy1 — Tk, Yk = Jh+1 — Gk;

T
Take H{" = fEbe 1.

Step 6. k:=k+1 and go to Step 2. O
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The above L-BFGS algorithm is equivalent to the usual BFGS algorithm
if the initial matrix Hy is the same in both algorithms, and if H ,50) = Hjp
at each iteration. Normally, for large-scale problems, we take m < n. In
practice, the choice of m is dependent on the dimension of the problem and
the storage of employed computer. Usually, we take 3 < m < 30.

In the following, we establish the convergence and convergence rate of
L-BFGS method.

Lemma 5.7.3 Let f(x) be a twice continuously differentiable and uniformly
convezx function, i.e., there exist 0 < m < M such that

m|ul* < uT G(z)u < M|ul|?, Vo € L(zo), u € R, (5.7.8)

where G(z) = V2f(z) and L(zo) = {x | f(x) < f(x0)}. Then

lyll 55| -1 [7Als <M (5.7.9)
Iskll =7 sty = m’ shy, =77 o

Proof. 1) Let G = fol G(zy + 7si)dr. Then

1 —
Yk = Gk+1 — Gk = /0 G(xg + Tsi)spdT = Gsy. (5.7.10)
Taking the norm, then we obtain
1
ol < Nsell |G+ i) . (5.7.11)

From the assumptions, it follows that L(z¢) is a bounded, closed and convex
set, then xy + 7s € L(xp). Then ||G(xg + 7si)|| < M. Thus we have that
llye|| < M||sg|| which is the first conclusion in (5.7.9).

2) By use of (5.7.10), we have that

1
sty = / sEG(wg + 7s1)spdr > m||si|?, (5.7.12)
0

which means
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3) Since y;, = G's,, then

_1 - —1
lwell> vl  sfG2GGzsy
st - T,  TAlAL
k Yk Sk Yk SkGQGQSk
ra
= Bk, (5.7.13)
Vi Vi

1
where v, = G2s,. O

Theorem 5.7.4 Let f(x) be a twice continuously differentiable and uni-
formly convex function. Then the iterative sequence {xy} generated from
L-BFGS Algorithm 5.7.2 converges to the unique minimizer * of f(x).

Proof. From Lemma 5.7.3, we have

2 2
lsel™ oy Beell™ g (5.7.14)
S1 Yk Sk Yk
Then
Vil <14 M. (5.7.15)

Let m = min{k, m}. Without loss of generality, we assume that ||H ,SO) | <
M. Then by (5.7.5) and (5.7.14)-(5.7.15) we get

[Hell < M(1+M)* 437 M(1+ M)
j=1
< M(1+M)*™(m+1). (5.7.16)

On the other hand, write B,(go) = (ngo))—1_ From (5.7.4) we have

) Bl(cj)sk—m-l—jsg—m-&-j(Bl(gj))T Yk—mtiYh s j

BYtY = BU) _ - > + ,j=0,1,m—1.
Sk—m+j Bk Sk—m+j Ykt Sh—m+j
Then

BM™ = B, = H; ..
Since Tr(zy?) = 2Ty for z,y € R® and Tr(A + B) =Tr(A)+Tr(B) for
n X n matrices A and B, then it follows from (5.7.14) that

I?

HBI(CJ)SIC*T?H“J' Hyk—m+j||2

T B(J) +yT _ .8 =
Sh—m+; Bk Sk—m-+j k—m+jok—m+t]

< Tr(BY) + M. (5.7.17)

T(BYY) = m(BY)) -
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Repeatedly applying (5.7.17) m times, and using (5.7.7) and (5.7.14), we
obtain that

Tr(By) = Tr(B™) < Tx(BY) + mM
= Te(H) Y +mM
< (n+m)M. (5.7.18)

Let the eigenvalues of By be 0 < Ay < --- < Ay, then the eigenvalues of

Hj, are
1 1 1
0< — < <<
)\n An—l )\1
By use of the property of the Rayleigh quotient and Tr(By) = 3774 A;, we
obtain

cosl — —d} gk _ 9t Hygk
Ndillllgrell [ Hegwllllgwll
H9k||2/>‘n _ 1
“ I Hellllgr > AnllHyl
1
> 5.7.19
2 T(B ] (5.7.19)

Then, it follows from (5.7.16) and (5.7.18) that there is a p > 0 such that
cosOp > p (5.7.20)
holds for all k. This implies that there is iz > 0 such that

O < g — f, k. (5.7.21)

The assumptions of the theorem and Theorem 1.3.19 indicate that the
level L(zp) is bounded, closed and convex. Then, the continuous function
V f(x) exists and is uniformly continuous on L(xp). Noting that oy, is deter-
mined by Wolfe rule, then we obtain, by Theorem 2.5.5 and (5.7.21), that
the sequence {zj} converges to the unique minimizer z* of f(z). O

Next, we establish the convergence rate of L-BFGS method.

Lemma 5.7.5 Let f(x) be a twice continuously differentiable and uniformly
convex function. Then

fla) = f(=*) < —lg(@)l* (5.7.22)
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Proof. Since f(x) is a convex function, for any x € R" we have
flx) = f@@*) < g(@)" (z — 2*) < g(@)|l|l= — 2] (5.7.23)

Note that
1
g(z) = g(x) — g(a*) = /0 Glz* + 7(x — %)) (x — ¥)dr. (5.7.24)

Writing G = [ G(2z* + 7(x — 2*))dr, then we have
g(z) = Gz — x*). (5.7.25)
By use of (5.7.8), we get

mle —z*|? < (¢ -2 Gz —2") < (x—2%)g(2)
<z —2™llg(=)], (5.7.26)

that is
o =2 < lg(a)l/m. (5.7.27)

Substituting (5.7.27) into (5.7.23) gives (5.7.22). O

Lemma 5.7.6 Let f(x) be a twice continuously differentiable and uniformly
convex function. Let xpy1 = xp + apdy, where oy is determined by Wolfe
rule. Then

cilgrll cos O < ||skll < c2llgkl| cos O (5.7.28)

and

f(zrg1) — flz*) < (1= pmey cos® 0)[f () — f(z¥)], (5.7.29)

where ¢; = (1 —0)/M,ca = 2(1 — p)/m, p and o are defined by Wolfe rule,
0k is an angle between dj, and —gy.

Proof. From (5.7.9) we have that

T
Y SkZ < Hyk||H52k|| _ el < M. (5.7.30)
skl (B skl

By using Wolfe rule, we have that

Yk Sk = gip15k — gk sk > — (1 — 0)gj sk (5.7.31)
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Then the above expressions give

ygsk >_1—O‘
M — M

1—o0
Isxll* > gk su = =7 llgulllsell cos O,

that is )
lswll = —=llgell cos . (5.7.32)

We obtain the left-hand side inequality of (5.7.28).

By Taylor expression and Wolfe rule, we have that

1
i sk + §5£G(fk)3k: = f(zrs1) — (k) < pal sk, (5.7.33)

where &, lies between z and zpy1. Then
st G (&k)sk < —2(1 = p)gf si. (5.7.34)

Since L(xg) is a bounded, closed and convex set, £ € L(xg). Then we have
that
m||sk||? < st G(E)sk (5.7.35)

The inequalities (5.7.34) and (5.7.35) yield

2(1—p)

skl < i

gkl cos O,

which is the right-hand side of (5.7.28).
Finally, we prove (5.7.29). By using Wolfe rule and (5.7.28), we have that

flaren) = far) < pgise = —pllgelllsel cos b
< —peillgrl? cos? Oy (5.7.36)

From Lemma 5.7.5, we have
lgkll® > m[f (zx) = f(a")). (5.7.37)
So, we can substitute (5.7.37) into (5.7.36) to obtain that

f(@esr) = for) < —pmey cos® O [f (xi) — f(2%)], (5.7.38)

which gives result (5.7.29) by subtracting f(z*) from both sides. O
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Theorem 5.7.7 Let f(x) be a twice continuously differentiable and uni-
formly convex function. Assume that the iterative sequence {xy} generated
by L-BFGS Algorithm 5.7.2 converges to the unique minimizer x* of f(x).
Then the rate of convergence is at least R-linear.

Proof. From (5.7.29) we have

f(@ra) = f(27) < 0(f(zr) = f(27)),

where 6 € (0,1). Also, since f(x) is a uniformly convex function, there are
0 < mq < Mj such that

my||ul|? < wTG(x)u < M ||u|?, Yz € L(xg), u € R™. (5.7.39)

By using Taylor expression of f(xy) at * and (5.7.39), we obtain that

J@x) = f@*) 2 THllar =P (5.7.40)
Hence
2 1
o —a'll < [ () = T
< ([t () - f)?
<
< R — S (5.7.41)

The above inequality shows that the sequence {x}} is R-linearly convergent.
a

This theorem indicates that L-BFGS method often converges slowly, which
leads to a relatively large number of function evaluations. Also, it is inef-
ficient on highly ill-conditioned optimization problems. Though there are
some weaknesses, L-BFGS method is a main choice for large-scale problems
in which the true Hessian is not sparse, because, in this case, it may outper-
form other rival algorithms. For further details of L-BFGS method, please
consult Liu and Nocedal [200] and Nash and Nocedal [228].



5.7. LIMITED MEMORY BFGS METHOD 301

At the end of this section, we mension a memoryless BFGS formula. For
BFGS formula (5.7.1) and (5.7.3), if we set Hy, = I at each iteration, we have

Hipr = ViI'Vi+ prsksi (5.7.42)
T T T

_ (1 — ZkO ) <I = yf’“) + 2% (5.7.43)
Sk Yk Sk Yk Sk Yk

The above formula satisfies quasi-Newton condition and positive definite-
ness, and is called the memoryless BFGS formula. Obviously, if m = 1

and H IEO) = I,Vk, the limited memory BFGS method is just the memoryless
BFGS method.

Exercises

1. Using DFP method minimize the Rosenbrock function in Appendix
1.1 and the Extended Rosenbrock function in Appendix 1.2.

2. Using BFGS method minimize the Extended Rosenbrock function in
Appendix 1.2 and the Powell singular function in Appendix 1.4.

3. State the properties of DFP and BFGS formulas and their relations.
4. Prove that if f is strong convex, ygsk > ( holds.

5. Prove that H ffles given by (5.1.49) is the unique solution of problem
(5.1.79).

6. Prove Theorem 5.2.1.

7. State the properties of Broyden class and Huang class, and their rela-
tions.

8. Prove Theorem 5.4.3.

9. Describe the motivation of self-scaling strategy in variable metric meth-
ods by observing DFP method.

10. Do programming of L-BFGS algorithm in §5.9 in MATLAB or FOR-
TRAN.



Chapter 6

Trust-Region Methods and
Conic Model Methods

6.1 Trust-Region Methods

6.1.1 Trust-Region Methods

The basic idea of Newton’s method is to approximate the objective function
f(x) around xj, by choosing a quadratic model of the form

1
qW(s) = flag) +gfs + §5TGk5,

where g, = V f(z) and Gy, = V2 f(x}), and use the minimizer s of ¢(¥)(s) to
modify x,
Tht+1 = Tk + Sk-

However, this method can only guarantee the local convergence, i.e., when
s is small enough, the method is convergent locally. In Chapter 2, we have
introduced line search approaches which guarantee the method is convergent
globally. Line search approaches use the quadratic model to generate a search
direction and then find a suitable stepsize « along the direction. Although
it is successful at most time, it does not use sufficiently the n-dimensional
quadratic model. The other disadvantage is that the Newton’s method can-
not be used if the Hessian matrices are not positive definite.

In this section the other class of global approaches is introduced, which
is called the trust-region method. It not only replaces line search to get
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the global convergence, but also circumvents the difficulty caused by non-
positive definite Hessian matrices in line search. Besides, it produces more
significant reduction in objective value f than line search approaches. In the
trust-region method, we first define a region around the current iterate

U ={z : [z — 2] < A},

where Ay is the radius of €, in which the model is trusted to be adequate
to the objective function. And then we choose a step to be the approximate
minimizer of the quadratic model in the trust-region, i.e., such that xj + si
is the approximately best point on the generalized sphere

{zr+ s [lsll < Ax}

with center xj; and radius A. If the step is not acceptable, we reduce the size
of the trust-region and find a new minimizer. This method retains the rapid
local convergence rate of Newton’s method and quasi-Newton method, but
also has ideal global convergence. Since the step is restricted by the trust-
region, it is also called the restricted step method. The model subproblem
of the trust-region method is

1
min  q®(s) = fzr) + gp s+ 55" Brs
st |Is] < Ay, (6.1.1)

where Ay > 0 is the trust-region radius, By is symmetric and approximate to
the Hessian G. Normally, we use I3 norm || -||2 so that sj is the minimizer of
q®)(s) in the ball of radius A;. Other norms can also be used, however, the
different norms define the different shapes of the trust-region. In (6.1.1), if we
set Br = Gy, the method is said to be a Newton-type trust-region method.

How to choose Ajp at each iteration? In general, when there is good
agreement between the model ¢(¥)(s) and the objective function value f(zj, +
s), one should select Ay as large as possible. Let

Aredy, = f(xx) — f(xg + sk) (6.1.2)

which is called the actual reduction, and let

Pred;, = ¢ (0) — ¢ (s3,) (6.1.3)
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which is called the predicted reduction. Define the ratio

_ Aredy,
7 Predy,’

r

(6.1.4)

which measures the agreement between the model function ¢*) and the ob-
jective function f. This ratio r; plays an important role in selecting new
iterate x4 and updating the trust-region radius Ag. If rg is close to 1, it
means there is good agreement, and we can expand the trust-region for the
next iteration; if r is close to zero or negative, we shrink the trust-region;
otherwise, we do not alter the trust-region. The following is the trust-region
algorithm.

Algorithm 6.1.1 (Trust-Region Algorithm)

Step 1. Given initial point xg, A, Ag € (0,A),e > 0,0 <n; <mp <1
and 0 <y <1<y, k:=0.

Step 2. If ||gk|l < €, stop.
Step 3. Approximately solve the subproblem (6.1.1) for sg.

Step 4. Compute f(xy + si) and ri. Set

N B T
k1 Tr, otherwise.

Step 5. If 1, < my, then Apiq € (0,71A];

If rig € [n1,m2), then Mgy € [118%, Agl; )
Ifri, > n2 and ||sk|| = Ak, then Agy1 € [Ag, min{y2Ag, A}

Step 6. Generate By11, update q®), set k := k + 1, go to Step 2.
O

In the above algorithm, A is an overall bound for all Aj. The iterations
for which r; > m and thus for which Agy; > Ay, are said to be very
successful iterations; the iterations for which r; > 7 and thus for which
Tk+1 = Tk + Sk, are said to be successful iterations; otherwise the iterations
for which r; < n; and thus for which xy11 = x, are said to be unsuccessful
iterations. Sometimes, the iterations in the first two cases are said to be
successful iterations.
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We like to point out some choices of the parameters, for instance, 7 =
0.01,m72 = 0.75,v1 = 05,79 = 2,Ag = 1 or Ay = %Hgg”. However, the
algorithm is insensitive to their change. In addition, A1 can be selected by
polynomial interpolation. For example, if ri < 0.01, then Ay, can be chosen
in an interval (0.01, 0.5)]|sk|| on the basis of a polynomial interpolation. Also,
if we use quadratic interpolation, we have

T
—9 Sk
A= , 6.1.5
2[f (xp + sk) — flar) — gL sk] ( )
and we set
A1 = Allsgll- (6.1.6)

Finally, to conclude this subsection, we give the characterization of the
solution of subproblem (6.1.1). For convenience, we drop the subscripts in
the following theorem.

Theorem 6.1.2 The vector s* is the solution of the subproblem
1
min  f+gls+ 5sTBs (6.1.7)
s.t. IIs|l2 < A, (6.1.8)

if and only if there is a scalar \* > 0 such that

(B + \1)s* = —g, (6.1.9)
[s*]]2 < A, (6.1.10)
N (A — |s*||2) = 0, (6.1.11)

and (B + A\*I) is positive semidefinite.

Proof.  Let s* be the solution of subproblem (6.1.7)-(6.1.8). From the
optimality condition of constrained optimization (see Chapter 8), there exists
a multiplier A* > 0 such that (6.1.9)-(6.1.11) hold. We now need to prove
that the matrix (B + A\*I) is positive semidefinite.

If ||s*|l2 < A, then A* = 0 and s* is an unconstrained minimizer of ¢,
and thus B is positive semidefinite and furthermore (B + A\*I) is positive
semidefinite.

If ||s*|l2 = A, it follows from the second-order necessary condition (see
§8.3) that

sT(B+X1)s>0 (6.1.12)
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for all s satisfying s”s* = 0. If sTs* # 0, take t = —2s7s*/|s||3, then
||s* +ts|l2 = A. By the definition of s*, we have

1 1
q(s* +1ts) + 5/\*"8* +ts)|3 > q(s*) + 5/\*\\8*“% (6.1.13)
Developing ¢(+) yields
1
?%UB+AWﬁz—a§@+mB+vnyn (6.1.14)

By using (6.1.9) we get that the right-hand side of (6.1.14) is equal to zero.
Then the above inequality indicates that

sT(B+X1)s>0

for all s with s7s* # 0. Therefore, B + A\*I is positive semidefinite.

Conversely, assume that there is A* > 0 such that s* satisfies (6.1.9)-
(6.1.11) and that B + A*[ is positive semidefinite. Then, for all s satisfying
IIs]l2 < A, we have

1 * 1 *
a(s) = @)+ g"s+ 55T (B+ N Ds — X sl
1 1
> f(@)+ 95+ ()T (B N D= o3 sl
* 1 * *
= a(s") + V157~ IsI.

By use of (6.1.11), we have that A\*(A? — (s*)Ts*) = 0. So, the above in-
equality becomes

q(s)

v

q(s") + %/\*[(lls*llg — A%) + (A% — |s]3)]
= a(s") + G NIA7 5]
Thus, from A\* > 0 and ||s]|2 < A, we immediately have
a(s) > q(s"),
which implies s* is the solution of (6.1.7)-(6.1.8). O

If (B + A\*I) is singular, we refer to this case as the hard case. In this

case, d* has the form
d*=—(B+XI1)Tg+w, (6.1.15)



308 CHAPTER 6. TRUST-REGION AND CONIC MODEL METHODS

where (B + A*I)T denotes the generalized inverse of (B + A*I), and v is a
vector in null space of (B 4+ \*I).

Assume that (B + A\*I) is positive definite, then d* can be obtained by
solving

AA = [(B+ A1) gll2] =0, (6.1.16)
I(B+AD)glla<A, A>0 (6.1.17)

for A* and then setting
d* = —(B+ X1 y.

If B is positive definite and ||[B~lg|l2 < A, then d* = —B~!g simply. Other-
wise, A* > 0. We need to solve

1 1

YN =BT R A

= 0. (6.1.18)

We consider solving () = 0, instead of solving A — ||(B + AI)"lg|]2 = 0,
because 1(\) is nearly linear in the considered range. By direct computation,
we have

i = STHN g
T —4
e =:jT;,{f§f227H§[1 — o ((HON) g, HO)2g))],  (6.1.20)

where H(A) = B+ M. Therefore, for the most negative eigenvalue A; < 0, if
A > —Aq, ¥()) is strictly increasing and concave. So, Newton’s method can
be used to solve (6.1.18), that is,

)
o /
W'(A)
1 1 1
=A—— _ . (6.1.21)
70 |[(B+ AL gls A
ey 0 ATl

Ay

6.1.2 Convergence of Trust-Region Methods

In order to discuss the convergence of trust-region methods, we first give
some assumptions and technical lemmas.
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We assume that the approximate Hessians Bj, are uniformly bounded in
norm, and that the level set

{z | f(z) < flxo)} (6.1.22)

is bounded, on which the function f : R™ — R is continuously differentiable.
For generality, we also allow the length of the approximate solution s of the
subproblem (6.1.1) to exceed the trust-region bound, provided that it stays
within a fixed multiple of the bound, that is

[sell < 1A, (6.1.23)

where 7] is a positive constant. The above assumptions are said to be As-
sumption (Ap).

For trust-region algorithm, in general, we do not seek an accurate solution
of subproblem (6.1.1) but we are content with a nearly optimal solution of
(6.1.1). Strong theoretical and numerical results can be obtained if the step
s produced by Algorithm 6.1.1 satisfies

0 (0) = qr(sk) > Bil|grll2 min {Ak, l9i - } : (6.1.24)

B2
where (; € (0,1]. Below, we show that the Cauchy point s satisfies (6.1.24)
with 0 = % and that the exact solution sy of the subproblem (6.1.1) satisfies
(6.1.24) with ) = % If s; is an approximate solution of the subproblem
(6.1.1) with ¢ (0) —¢®) (s5) > Ba(q™ (0) — ) (5)), then it satisfies (6.1.24)

with 61 = %ﬁg

Lemma 6.1.3 Let sy be the solution of (6.1.1), let || - || = - |2, then
Pred, = ¢®™(0)—q® (sp)
1 : [19k]l2 }
> min < Ay, . 6.1.25
> Slarlmin { Ay, 502 (6.1.25)

Proof. By the definition of sg, for all « € [0, 1], we have

A
q(k>(0) _ q(k)(sk) > q(k) (0) — q(k)(_allng|2gk)

1
= algllgkll2 — 5042Ai953k9k/\|9k||§

1
> algllgellz — 5oﬂAzHBng. (6.1.26)
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Therefore we must have

12
> - —
Predy > max [adelguls — 50> A7 Bl

s, lulz)
> = min § Ay, . O 6.1.27
> glaclomin { A, 20 (6.1.27)

The Cauchy point of the subproblem (6.1.1) can be defined by
¢ (55) = min{g® (s) | s = 75¢, [ls] < A}, (6.1.28)
where s¢ solves a linear version of subproblem (6.1.1):

min  f(zx) + g s
st |ls| < Ag. (6.1.29)

Obviously, the solution of (6.1.29) is

Ay
& = T 9k
gk |2

Therefore, the Cauchy point of the subproblem (6.1.1) can be expressed as

Ay
S = ThSE = —Th— Gk, (6.1.30)
Mlgellz
where
1 if g} Brgr < 0;
Tk = : . 6.1.31
" {Hmﬂ%@KMmbwl}omﬂmw (6.1.31)

In fact, if g} Brgr < 0, the function ¢ (s¢) = ¢¥)(75¢) decreases monotoni-
cally with 7 when gi # 0. Therefore, we can take 7 as large as possible within
|7s¢|| < Ag. In this case, by use of (6.1.30) and ||7s$|| < A, we have that
7 = 1. If g{ Brgr > 0, q(k) (75{) is a convex and quadratic function in 7.
Then, by minimizing q(k) (75$), we obtain that 74 equals ||gx||3/(AxgF Brgr),

or the boundary value 1.

Lemma 6.1.4 The Cauchy point s, satisfies

1 )
q(k)(()) — q(k)(si) > —||gk|l2 min {Ak, lgx > } . (6.1.32)
2 | Bk |2
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Consider first the case of ngBkgk < 0. In this case, it follows from

(6.1.31) that 7, = 1, and we have

Ay
d0) - VD) = ¥ (kg
19k l2
1
= Agllgrllz - §Ak9k Brigr/ 913
= Apllgrllz
> ||gk|]2min{Ak, ”9’“”2}. (6.1.33)
1Bk |l2
Consider the case of ngBkgk > (0 and
[lgx|l®
= 6.1.34
Argt Brgi ( )
In this case, 7 = ||k |®/(Akgi Brgk), and we have
4 4
K (0 (k) (e lgkllz 1 7 llgx|l2
g7 (0) — ¢ (sp) = - 59 B
g 9f Brgr 27" (97 Brgr)?
_ 1 lglls
2 g} Brg
> 1 lgell3
2 (| B2
1 : { Hngz}
> = min ¢ Ay, . 6.1.35
2 5lloellz © 1Bl ( )
Consider the case of gj, I'Brgr > 0 and
g1l
— > 1. 6.1.36
Aygt Brgi ( )
In this case, 7, = 1, and by use of (6.1.36) we have
¢ (0) — g™ (sp) = Axllgrllz— 5A7%9F Bror/llgwl
1 AL lgxl3
> Agllgrlla = 5=
1962 = 5 Tgulg A
1
— A
5 Akllgkl2
1 : { ”ngQ}
> - min § Ay, . 6.1.37
2 5llgkllz © 1Bl ( )
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The above discussion of three cases gives the result (6.1.32). O
Usually, we assume that sj is an approximate solution of the subproblem
(6.1.1) and satisfies

g®)(0) — ¢ (1) = Ba(g™)(0) — W (s7)), (6.1.38)

where sf, is an exact solution of subproblem (6.1.1) and 32 € (0,1] is a
constant. Since ¢¥)(s§) < ¢F)(s$), we immediately have

g®)(0) — ¢ (s1) = Ba(g™)(0) — W (s7)), (6.1.39)

where sf, = —Tk”gAﬁgk with 0 < 7, < 1 is a Cauchy point. So, we immedi-
ately have

Lemma 6.1.5 Let si be an approzimate solution of (6.1.1) and satisfy (6.1.38)
or (6.1.39). Then

Pred, = ¢®™(0)—q®(sp)

1 : g% |2
— A 6.1.40
2ﬂ2\gk\|2mln{ s HBkH2}7 ( )

Y

where (2 € (0, 1].

Next, in order to prove the global convergence theorem, we give some
technical lemmas.

Lemma 6.1.6 Let Assumption (Ag) hold. We have

1
|f (i + s) — ¢®) (sp)] < §M||Sk\|2 + ClIselDllskll, (6.1.41)
where C(||sk||) is arbitrarily small by restricting the size of sy.

Proof. By Taylor’s theorem,

1
Flan +s5) = flan) + gF sk + /0 IV (2 + tsg) — V f ()] st

Also,
1
q™ () = fxk) + gF sk + §3£Bk5k'
Then
1 1
|flazk + sx) — ¢® (s)] = lis{Bksk - /0 [V f(xp + tsg) — Vf(x)] T spdt]

1
< GMllsll* + ClllseDlskll. O
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Lemma 6.1.7 Assume that Assumption (Ao) holds. Suppose that ||gk|l2 >
€ > 0 and that Ay, is smaller than some threshold A. Then the k-th iteration
is a very successful iteration which satisfies Agy1 > Ag.

Proof. By Lemma 6.1.5 and the assumptions,
Pred, = q™(0)—q® (sp)

1 : ll gk |2
> =l gk 2m1n{Ak7 }

1 . €
> §Bgemln {Ak, M} . (6.1.42)

From Algorithm 6.1.1, by use of (6.1.41), (6.1.42) and (6.1.23), we have

(f(@r) = flak + s6) — (@P(0) — W (sp)) ‘

g™ (0) — ¢ (s,
flae+ 1) — ¥ (si)
q®(0) — q®) (s
s M|[sill? + Cllskl)lskl
% Qemin{Ak,e/M}
< NAL(M7A 4+ 2C(||sk]]))
B 5gemin{Ak,e/M} '

rp —1] = ‘

IN

(6.1.43)

Since Ay is smaller than some threshold A, we may choose A to be small
enough such that

Ap <A < /M, MijAy +2C(||sil]) < (1 — n2)Bae/,

so we have 1 > ny. It follows from Algorithm 6.1.1 that Ag.q > Ag. O
This lemma indicates that if the current iterate is not a first-order sta-
tionary point and the trust-region radius Ay is small enough, then we always
have Agy1 > Ag and the iteration is very successful. Now we are in a position
to give the global convergence theorem.
First, we consider the case when there are only finitely many successful
iterations.

Theorem 6.1.8 Under Assumption (Ay), if Algorithm 6.1.1 has finitely many
successful iterations, then the algorithm converges to the first-order stationary
point.
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Proof.  Since the algorithm has only finitely many successful iterations,
then, for sufficiently large k, the iteration is unsuccessful. Thus, the sequence
{A} from the algorithm converges to zero.

Suppose that ko is the index of the last successful iteration. If ||gx,+1]| > 0,
it follows from Lemma 6.1.7 that there must be a very successful iteration of
index larger than ko, which satisfies Ay 1141 > Agy41. This is a contradiction
to the assumption. The contradiction proves our theorem. O

Next, we only need to restrict our attention to the case where there are
infinitely many successful iterations.

Theorem 6.1.9 Let Assumption (Ag) hold. If Algorithm 6.1.1 has infinitely
many successful iterations, then the sequence of Algorithm 6.1.1 satisfies

lim inf [lgi | = 0. (6.1.44)

Proof. Assume, by contradiction, that there is € > 0 and a positive index
K such that
lgr|| > € for all k > K.

From Algorithm 6.1.1 and Lemma 6.1.5, it follows for successful iterations
that

Far) = fare) > mlg®(0) — ¢®(sp)]
1 T gl
2 5P| gkll2 min [Ak, ||Bk:H2]
> %7’]1,@26 min [Ak, ;} , (6.1.45)

where § = max{1+ || Bg||2} is an upper bound of the Hessian approximation.
So,

flxo) = flawsr) = D [f(x)) = fxje)]

j=0,j€8

v

1 €
—0o emin |Ag, =,
5 k1152 { k5
where oy, is a number of successful iterations till the k-th iteration with

lim o} = 400,
k—oo

and S is an index set of successful iterations.
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Since f is bounded below, it follows from the above inequality that

lim Ay, =0, (6.1.46)

k—o0

contradicting the conclusion of Lemma 6.1.7. O
Now we give a stronger result on the convergence which is for all limit
points.

Theorem 6.1.10 Suppose that Assumption (Ag) holds. Then
lim gx = 0. (6.1.47)
k—o0
Proof. Assume, by contradiction, that the conclusion does not hold, then
there is a subsequence of successful iterations such that
gt = 26 >0 (6.1.48)

for some € > 0 and for all 4.
Theorem 6.1.9 guarantees that, for each i, there exists a first successful

iteration [(t;) > t; such that [|g;,)|| < e. We denote [; = [(t;). Thus, there
exists another subsequence {l;} such that

lgrll > € for t; <k<l and |g,] <e (6.1.49)
Since
flar) — flare) > mlg™(0) — g™ (sp)]
> %mﬁxmin[Ak,e/B], (6.1.50)

it follows from the monotonically decreasing and the bounded below of the
sequence { f(x)} that

klim A, =0. (6.1.51)
Then
D€ () ~ Flain) (6.1.52)

which implies that for ¢ sufficiently large,
li—1 li—1
e, =l < D0 Moy =zl < D0 A
i=ti j=ti
2
mPae

IN

[f (@) = f (1)) (6.1.53)
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From the fact that the right-hand side converges to zero, we get
|z, — x| — 0, when i — oo,
which deduces from continuity of gradient that

llgt; — ai; |l — 0,

which contradicts (6.1.49), because (6.1.49) implies that ||g;, — ¢;,]] > €. The
contradiction proves our conclusion. O

6.1.3 Solving A Trust-Region Subproblem

The Dogleg Method and The Double Dogleg Method

An efficient implementation to solve the trust-region subproblem is the
so-called dogleg method which was presented by Powell [260]. To find an
approximate solution of the subproblem (6.1.1), i.e., to find xy 11 = x + sg
such that ||sg|| = Ak, Powell used a path consisting of two line segments to
approximate s. The first line segment runs from the origin to the Cauchy
point (a minimizer C.P. generated by the steepest descent method); the sec-
ond line segment runs from the Cauchy point C.P. to the Newton point (the
minimizer xév ',1 generated by Newton method or quasi-Newton method). Let
Zx41 be the intersection point of the path and the trust-region boundary. Ob-
viously, ||2k+1 — 7k|| = Ag. When the Newton step siY satisfies ||sY|| < Ay,
the new iterate xx1 is just the Newton point, x5 = x]kvﬂ =z — Bk_lgk.

Dennis and Mei [90] found that if the point generated by trust-region
iteration is biased towards the Newton direction, the behavior of the algo-
rithm will be further improved. Then we choose a point N on the Newton
direction, and connect the Cauchy point C.P. to N. The intersection point
of the connection line and the trust-region boundary is taken as the new it-
erate ri11 (see x,(ﬁl in Figure 6.1.1). Comparatively, .%Ef_?_l is more biased to

the Newton direction than x,(glll We say zp, — C.P. — fz:fCVH as dogleg, and

2 — C.P. > N — ka+1 as double dogleg.
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Figure 6.1.1 Dogleg method and double dogleg method

For quadratic model

1
q® (xy, — agr) = f(zx) — allgr|3 + 5a2953k9k7

the exact line search factor aj has the obvious representation

_ llgkll3
9% Brgk

Then the step along the steepest descent direction is

T
9. 9k
Sk = —Qpgk = — 5= Gk- (6.1.54)
g 9% Brgr
If ||sf]l2 = lakgrll2 > Ak, we take
A

Sk = —T—10k (6.1.55)

llgxl2

and A

k
Thil = Tk = Gk (6.1.56)
g% |l2

which lies at the intersection of the negative gradient and the trust-region
boundary. If ||s¢||2 < Ay and ||s¥ ]2 > Ay, we take

sp(A) = 8¢+ A(sh —59), 0 <A< 1,
and thus

Ty = o + sk (N) = xp + 5§+ A(sh —s5), 0< A< 1, (6.1.57)
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where the value A is obtained by solving the equation
s + A(s = sl = Ag.

Otherwise, take
s, = sy = —B; gk (6.1.58)

Combining (6.1.56), (6.1.57) and (6.1.58) yields

T — ”gAﬁgkv when ||s§|l2 > Ag,
Thpy1 = @k + 8§ + A(sy —s6), when [[s]|2 < Ag and ||s) |2 > Ay,
), — By gr, when [[s¢[|2 < Ag and ||s) |2 < Ay,

(6.1.59)
where 0 < \ < 1.
The following theorem demonstrates the property possessed by the dogleg
method and the double dogleg method. In the following, as an example, we
only consider the double dogleg method.

Theorem 6.1.11 In the double dogleg method,
1. The distance from xp to C.P., to N, is increasing monotonically.

2. The model value q(k)(mk + ) is decreasing monotonically when the point
moves from xp to C.P., to N, and to xfﬂ\;l.

Proof. (1) Since

Isill = || = argell = llgrll3/ 9% Brgw
< lgrll3 Nlgell2ll By ' gill2
~ 9l Brgk gl B ok
_ gl 15N
(9% Brgr) (98 By ' gr) :
2 llsy (6.1.60)

it follows from Kantorovich inequality (3.1.33) that v < 1 and then

Isillz <Al llz < N1k - (6.1.61)
Take N being

N _ -1, _ N
7 =z =B gk = Tk + 18y (6.1.62)
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where
y<n<l1l (6.1.63)

Thus A
o = wells < 1™ = wlls < oy — illa (6.1.64)

which shows the property (1) holds.
(2) Tt is enough to prove that ¢®) (z + s) decreases monotonically when
the point moves from the point C.P. to the point N. In fact,

Tra1(N) = xp + 5§+ Ansh —s%), 0< A< 1. (6.1.65)
The direction derivative of ¢*) at x4 1()\) is

Va® (@p (V)T (st — s5)
= (gr+ Bisi)T(nsy — st) + sy — si)" Be(nsy — s.). (6.1.66)

When By, is positive definite, the right-hand side of (6.1.66) is a monotone
increasing function of A. Therefore, in order to make the above equality
negative when 0 < A < 1, it is enough to ask the above equality to be
negative when \ =1, i.e.,

(gr + Brsi) " (nsiy — s5) + AMnsy — s) Br(mesy — s%) < 0.
Developing and using BkskN = —g;, the above inequality is equivalent to

0> (L—n)(gf (s — s)) = (L —n)(v — ) (g By, ' gx)- (6.1.67)

Obviously, it is satisfied when v < 1 < 1. Therefore the second property
holds. O

In summary, the double dogleg method chooses the point N which is
defined by

Ti1 = Tk +nsn, 1 E [v,1]. (6.1.68)

When 1 = 1, the point N is just the Newton point J:fCVH and the double
dogleg step is just the dogleg step. Generally, we take n = 0.8y 4+ 0.2.

After generating the points C.P. and N, we find x;41(A) by (6.1.65), such
that

s + A(nsi = sp)ll3 = A, (6.1.69)
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which is a one-dimensional root-finding problem and can be solved by New-
ton’s method. If x;;1(\) obtained satisfies the descent requirement

1

F@re1(N) < f@r) + pgi (mra(N) — i), p € (0, ) (6.1.70)
xp+1(A\) will be accepted as new iterate xp41, and the trust-region will be
updated by Step 4 in Algorithm 6.1.1; if x;41(A\) does not satisfy (6.1.70),

then set xy41 := k.
Steihaug-CG Method

The methods for solving the trust-region subproblem described above
require the solution of a linear system. When the problem is large, the
operation may be quite costly. Steihaug [322] proposed a technique based
on a preconditioned and truncated conjugate gradient method and trust-
region method, which solves the trust-region subproblem approximately. This
method is usually called Steihaug-CG method. Since it was independently
proposed by Toint [341], it is also called the Steihaug-Toint method.

Consider a scaled trust-region subproblem

1
min ¢(s) = g's + §STBS (6.1.71)

st [sllw < A, (6.1.72)

(we drop the subscripts here for simplicity) where W is a symmetric and
positive definite matrix. Steihaug applied the preconditioned conjugate gra-
dient method (PCG) to subproblem (6.1.71)-(6.1.72), and considered three
possible termination rules. Firstly, if d{Bdk > 0, the method corresponds to
the convex interior solution. Secondly, if d;{Bdk < 0, we meet a direction of
negative curvature. In this case, we move to the trust-region boundary along
the line si + 7dy, with 7 > 0 so that ||sg + 7dg|lw = A. Finally, if the solution
lies outside the trust-region, we ask that the new point be on the boundary.
The Steihaug-CG algorithm for trust-region subproblem is as follows.

Algorithm 6.1.12 (Steihaug-CG Algorithm for TR Subproblem)

Step 0. Given e > 0. Let so = 0,90 = g,v0 = W 1go,dp = —vp.
If ||lgol| < €, set s = s, stop;
For j =0,1,---, perform the following steps:



6.1. TRUST-REGION METHODS 321

Step 1. If dedj <0, compute T > 0 so that ||s; + 7d;|lw = A,
set s = s; + 7d;,
stop;
End if

Step 2. Set aj = g;fpvj/dedj;
Set Sj+1 = S5 + Oéjdj,’
If ||lsjs1llw > A, compute T > 0 so that ||s; + 7d;||lw = A,
set s = s; + 7dj,
stop;
End if

Step 3. Set gj11 = gj + ojBd;;
If lgj+1llw <ellgollw, set s = sji1, stop;
End if

Step 4. Set
vjt1 =W lgj,
Bj = g} 1vi1/9] vj,
djt1 = —vj41 + Bjd;.

This method has some properties similar to the dogleg method. Next,
we state these properties. In the proof of the property theorem, we need the
following lemma which is easy.

Lemma 6.1.13 Assume d! Bd; # 0, then we have

T ngUj T .
dfWd; = Z—=d[Wd;, 0<i <, (6.1.74)
gz vZ
1 (g} vi)?

i = i) — = . 1.
q(si+1) = q(si) > dTBd; (6.1.75)

Proof. We can use the explicit formula for the steplength « and iterative
scheme of PCG to get the results. In fact, by ngdj,l = 0 and the conjugacy
of d; and d;_1, we have

givj = gj(=dj+Bj—1dj-1)
—qrd.
7 )
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—(gj—1+ aj_1Bd;—1)"d;

T
= —g;-14;

= —gldj, i<j

which shows (6.1.73).
Next, we prove (6.1.74).

diWd; = (—vj+ Bj_1dj—1)" Wi,
= —vf Wdi + Bj1d;_ W,
= —g;di + fj1d]_Wd;
= Bjad_Wd;.

By recurrence, we have

diWd; = Bj 182 Bid] Wd;

T
LU
g; Vi

that shows (6.1.74).

For (6.1.75), it is a direct consequence of (4.3.40). O

Now we are in a position to state the properties of the Steihaug-CG
algorithm.

Theorem 6.1.14 Let ||s;|| be the iterates generated by PCG Algorithm 6.1.12.
Then q(sj) in (6.1.71) is strictly decreasing, i.e.,

a(sj+1) < a(s;). (6.1.76)
Further, ||s;|\w is strictly increasing:
0= [lsollw <--- <llsjllw <llsjallw <--- <lsllw <A (6.1.77)

Proof.  We first prove (6.1.76). From (6.1.75), ¢(s;) is strictly decreasing.
Consider the last iterate s. If s = s;,1, then the result follows directly.
From (6.1.73) we have that

g;‘rdj = —ngvj = —(Bs; + g)TW_l(st +9) <0,
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hence d; is a descent direction for ¢(s;). If dedj > 0, then
q(sj) > q(sj +7d;) > q(sj41), for 0 < 7 < 5.

Since 7 < «aj, we have the desired result.
For d]Tij < 0, then the quadratic term is non-positive, and we have

q(sj) = q(sj + 7d;), for 7 > 0,

and the result follows.
Now we show that ||s;||w is strictly increasing and that (6.1.77) holds.
From Algorithm 6.1.12, we have

Jj—1 Jj—1
8 =80+ Z apdy = Z ody (6178)
k=0 k=0
and
ap >0, k=0,1,---,7 — 1. (6.1.79)

Hence, by (6.1.78) and (6.1.74), we have

j—1
sTWdj = opdj, Wdj; > 0. (6.1.80)
k=0
Using (6.1.80) and (6.1.79) gives
s;ﬂ_lejH = S?WSJ' + 20zj3]Tde + oz?dJTCdj > SJTWSJ- (6.1.81)

which shows ||s;||w is strictly increasing.

If s = sj4+1, then (6.1.77) follows directly. If the algorithm stops because
d]Tij < 0or ||sj+1]lw > A, then the final iterate s is chosen on the bound-
ary, i.e., ||s|lw = A, which is the largest possible length any iterate can have.
Therefore (6.1.77) is satisfied. O

Steihaug-CG method is used in Step 3 in Algorithm 6.1.1 for solving
the trust-region subproblem. The trust-region method with Steihaug-CG
technique is very useful for large-scale optimization problems.

About other techniques of solving subproblems, please consult Gay [144],
Moré and Sorensen [222], and Rendl and Wolkowicz [286].
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6.2 Conic Model and Collinear Scaling Algorithm

6.2.1 Conic Model

The well-known quadratic model usually considered is
1
q(d) = f(xx) + gid + 5d" Byd, (6.2.1)

where gy = Vf(zy) and By is a symmetric matrix that is intended to ap-
proximate the Hessian matrix. The model (6.2.1) satisfies

q(0) = f(zx), Vq(0) = V f(x). (6.2.2)

In quasi-Newton method, the updates satisfy the quasi-Newton condition
Bi(zk — xp—1) = Vf(xg) — V(xg_1), (6.2.3)
which is just the interpolation condition
Vq(—d) =V f(zk-1). (6.2.4)

Therefore, a secant method based on a quadratic model satisfies the three
interpolation conditions in (6.2.2) and (6.2.4). However, a quadratic function
simply does not possess enough degrees of freedom to incorporate all of the
information in the iterative procedure. It often leads to poor prediction of
minimizer by these methods based on a quadratic model, especially for those
functions with strong non-quadratic behavior or severely changed curvature.

Davidon [82] proposed a new class of algorithm which is able to interpolate
richer information on functions and gradients. Such a model function is more
general than the quadratic model. This new model is called a conic model.
The new algorithm is called a conic model algorithm or a collinear scaling
algorithm.

A smooth function is said to be conic if and only if it is a ratio of a
quadratic function to the square of an affine function.

Now, we consider the conic model function

gfd 1 dTAd

ed) = f@e) + 7 ma s T s ot

(6.2.5)
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Its gradient is

(1+bTd)gr —gfdb (1 +bTd)2Apd — (1 + bTd)dT Apdb
(1+bTd)2 (1+bTd)*
(L+0"d) I —bd" (1 +b"d)gi + Ard

1+6Td (1+bTd)2
1 T A
_ [I bd wd ] ‘

Ve(d) =

[gk; + (6.2.6)

1+0Td " 1+0b7d 1+b7d

This gradient vanishes, Ve(d) = 0, if and only if

Apd
1+0Td

gk + 0. (6.2.7)

In this time, the conic model ¢(d) has minimizer which is by (6.2.7) that

—A71
R (6.2.8)
1+b Ak 9k
Hence, if 1 + bTA/,;1 gr # 0, then the desired minimizer is
AL gk
Thal =T — ——o——— 6.2.9
k+1 k 1+ bTAlzlgk; ( )

In fact, an essential ingredient of a conic model is to construct a collinear
scaling

d
1+07d

1>

z(d)—z=d= (6.2.10)

or
d

d= =. 6.2.11
1—0bd ( )

In new variable d-space, the conic model (6.2.5) becomes a quadratic model

~ 1 -
od) = f(wk) + gid + 5d" Agd. (6.2.12)
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6.2.2 Generalized Quasi-Newton Equation

By means of collinear scaling, Sorensen [315] derived the generalized quasi-
Newton equations that the conic model method satisfies.
Let collinear scaling be

Jw

W) = T4 Ty

(6.2.13)

where J € R™*™, h € R™, and w € R™. The local quadratic model to the
scaled objective function ¢(w) = f(x(w)) has the form

W(w) = 6(0) + ¢ (0)w + %wTBw. (6.2.14)
Obviously,
¢'(w) = f'(x(w))z'(w) (6.2.15)
with ’
' (w) = 1—|—1hTwJ l[ . 1—1:};%1;] : (6.2.16)

In terms of the objective function f and the matrix J in the collinear scaling,
the quadratic model has the form

P(w) = flz) + f(x)Jw + %wTBw. (6.2.17)

If B is positive definite, then the step v that solves
vIB = —f(x)J (6.2.18)

is a predicted minimizer of the scaled function ¢(w). The step s from = to
is

Ju

S 6.2.19
T 7T ( )

S

so that £ = z(v) in (6.2.13).

Next, we develop the generalized quasi-Newton equations that the conic
model satisfies. Let T be not an acceptable approximation to a local min-
imizer of f. Then we wish to update the collinear scaling and also the
quadratic model of the new scaled function

o(w) = f(z(w)). (6.2.20)
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Here -
Jw
T =T+ —=— 6.2.21
Hw) =2+ 14+ hTw ( )
is a collinear scaling with barred quantities .J, h, Z replacing J, h, z in (6.2.13).
The corresponding new quadratic model of the new scaled function is

Y(w) = ¢(0) + ¢'(0)w + %wTBw. (6.2.22)

For convenience of discussion, we write the derivatives as follows:

(1 + hTw)J — JwhT

' (w) = T i) (6.2.23)
z'(0) = J, (6.2.24)
_, (11— hTv)J + Juh™
T(—v) = (I (6.2.25)
<z§’(w) = f(@(w))z"(w), (6.2.26)
dj’(O) = f'(2(0))z'(0) = f'(z)J, - (6.2.27)
¢'(—v) = f'(@(—0)T' (-v) = f'(x)(J + sh") /vy,  (6.2.28)
Y (w) = ¢'(0) + w! B, (6.2.29)
¥'(0) = ¢(0) = f'(2)J, (6.2.30)
' (—v) = ¢'(0) —vT'B = f(z)J — v B, (6.2.31)
where
y=1+4+hT(—v) =1-hTw. (6.2.32)
Then, (6.2.22) can be written as
- B _ Vi) s 15T TBJ 15
vw) = f@+ 777 ST T3y (6.2.33)
= f@) + fl(z)Jw+ %wTBw, (6.2.34)
where
5 = Jw/(1+hTw), (6.2.35)
w = J1'5/(1-hTJT5). (6.2.36)

To update J, h, B to J, h, B, we introduce the consistency condition
z(0) ==z, 2(—v) =x (6.2.37)
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and the interpolation conditions:

$(0) = $(0), ¥'(0) = ¢'(0), (6.2.38)
P(—v) = ¢(—v), ¥'(~v) = ¢ (~v). (6.2.39)
From the consistency condition Z(—v) = x, we have
r=2(—v)=7— Ju/y, (6.2.40)
that is
Jv = s, (6.2.41)

where s = 7 — z. Obviously, conditions (6.2.38) are immediately met by
the quadratic model (6.2.22). Also, consider the interpolation conditions
(6.2.39); since

(-v) = 50) - FOw+ 5" B
= f(@) - f(@)Jv+ %UTBU
= f(@)—~f'(2)s+ %UTBU
and B
¢(—v) = f(z),
then the first equation of (6.2.39) becomes
F@) = £@) -~ (@)s + %UTBU. (6.2.42)

Similarly, it follows from (6.2.31) and (6.2.28) that the second equation of
(6.2.39) becomes

f(@)(J +shh) /v = f(z)J — ' B, (6.2.43)
that can be written as
Bv =r, (6.2.44)
where
rT = ¢'(0) = ¢'(—v) = f'(2)] — f'(2)(J + sh") /7, (6.2.45)

which is the gradient difference of the scaled function.
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Then, we obtain a generalized quasi-Newton equation
Bu=r, Ju=~vs, hlv=1—~, (6.2.46)

where 7 is defined by (6.2.45). In particular, when J = I,h = 0,y = 1,
the generalized quasi-Newton equations reduce to the usual quasi-Newton
equation

Bv=r. (6.2.47)

At this time, v =s =% —x and r = f'(Z) — f'(x).
It remains to determine the choices of . By the second and the third
equations of (6.2.46), we have

(J + shT)v = s, (6.2.48)
so that
v Bu=rTv = (v1'(3) - f()/7)s £ 47, (6.2.49)
where
y=2f@" =)/ (6.2.50)
Substituting the above into (6.2.42) gives
V' (@)s + 29[f (2) = f(@)] + f'(2)s = 0. (6.2.51)
To make v real, we must require
P2 (F(@) = F(2))? = (f(@)s)(f'(x)s) > 0. (6.2.52)
If B is to be positive definite, then we obtain
vI Bv = 2p (6.2.53)
from (6.2.49) by taking
_ —f'(x)s
1= e (6.2.54)
_ S - f@) +p
= —F@)s (6.2.55)

as the positive root of (6.2.51).
For the one-dimensional case, the corresponding conic model iteration is
as follows.
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Algorithm 6.2.1 (Conic Model Algorithm for One-dimensional Case)
Step 0. Given x1,s1, evaluate fi, f1 at x1;
Step k. fork=1,2,---
Step k.1 set Tipy1 = T + Sk

Step k.2 evaluate fyi1, fi1;

Step k.3 set pr = ((fi — frs1)? — (Fhsi) (fhors0))? 5
Vi = —f.51/(fe — Jea1 + px);

Step kg s = s/l L/ Fip) — 1. O

6.2.3 Updates that Preserve Past Information

Based on the generalized quasi-Newton equations and other criteria, we can
obtain some updates about J, h, and B.

Let W be the linear span of previous scaled search directions and let
W = span{W, v}. Then a natural requirement is that

d(w —v) =p(w), Yw € Ny CW, (6.2.56)

where Ng = {w € W: 1+ h'w > 0}. Condition (6.2.56) immediately leads
to the requirement

Z(w —v) = z(w), Yw € Ng C W. (6.2.57)
Since Z(—v) = = and Z(0) = z, it follows that

J(w — )
T (w —v) +1
N R k)]
v hWTw+~y
Ju(hTw/~) + Jw

hTw + v
T T
— o+ W (by (6.2.46)(ii)). (6.2.58)

T(w—v) = z(0)+
(by (6.2.46)(iii))

= :[j—'—
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By (6.2.57) and (6.2.58), we have

(J + shT)w Jw

_ = = —_— .2.59
hTw + ~ z(w) $+hTw+1 (6.2.59)

Set w = ap,p € Ny C W, «a € [0,1]. Matching the coefficients of o on both
sides of (6.2.59) yields

(J + shT)p=~Jp, h'p=~hp

for every p € Nyg. Then we obtain

(J + shh)w = yJw (6.2.60)
and B
hWlw = yhTw, Yw € W. (6.2.61)
Since
o Jv
- KTy 41’

then (6.2.60) becomes
(J + yshDw = vJw, Yw € W,

that is
J =~(J —shT) (6.2.62)

satisfying Jv = s as well as (6.2.60). The equation (6.2.62) is an update
about J. B
Next, we discuss the update about h. Note that h satisfies

hfw = yhTw, Ko =1—~. (6.2.63)
Now let @ be an orthogonal projector on W and P =1 — Q. Let
h = Qc+ Pd, (6.2.64)
where ¢ and d are arbitrary vectors. Multiplying (6.2.64) by w’ gives
yhTw =hTw =w'Qc = ¢Tw,
then we take ¢ = yh. Further, multiplying (6.2.64) by v” yields

1—~=hTv=90"Qh +vTPd. (6.2.65)
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Then T
7T, _ T —7— ' Qh o7
hv=1—y=v Qh+ TP Pd. (6.2.66)
Hence, we take -
h=~Qh+ Pd (6.2.67)
or .
- 1—v—vv"Qh
=~vQh + TPy Pd (6.2.68)

as long as v Pd # 0. So, we obtain the updates about h.
By use of (6.2.27) and (6.2.28), it follows from (6.2.60) that

f’(ﬁﬂ) T
5 (T +shhw
(

z) .,

F o =
f/

= ¢ (0)w. (6.2.69)

To update the Hessian of the quadratic model of a scaled function, the
following requirements are imposed:

Y(w —v) = p(w), (6.2.70)
Y (w —v)qg = (w)g, (6.2.71)

for all w,q € W. Condition (6.2.70) implies that

3(0) + 6(0)(w — v) + 5 (w — )" Blw —v) = 6(0) + &/ O)w + Ju” Bu

for all w € W. Arranging it gives

- - 1 g -
6(0) = ¢ (0)v + Sv" Bv = ¢(0)| +[#'(0) — ¢/(0) — v" Blw
+§wT(B —B)w =0, Yw € W.
The first term vanishes identically due to (6.2.42), and the second term van-
ishes due to (6.2.60) and (6.2.43). Therefore, we have

w? (B — B)w = 0,Yw € W. (6.2.72)
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Similarly, condition (6.2.71) implies
[4/(0) + (w —v)" Blg = [¢/(0) + w" Blg,
that is
[¢/(0) = ¢'(0) —v" Blg + w" (B — B)q =0, Yw,q € W.

The first bracket in the left-hand side of the above equation vanishes due to
(6.2.60) and (6.2.43). Then we also get

wl (B —B)q=0, Yw,qeW. (6.2.73)
Hence, the above discussion shows that if and only if
wl (B —-B)g=0, Yw,qg €W, (6.2.74)

both (6.2.70) and (6.2.71) are satisfied.
Consequently, the required update satisfies

Bv=r, wl(B—-B)g=0, Yw,q € W. (6.2.75)

The above can be written as

B = Ug(B,v,r)

B Bv =7,QT(B — B)Q = 0, Bsymmetric,
@ is an orthogonal projector in W.

} . (6.2.76)

Here the update class coming from additional requirements (6.2.70)-(6.2.71)
is bigger than the update class due to Schnabel [299]:

{B|Bv=r,(B—-B)w=0,Vwe W, Bsymmetric} .

Also, the update (6.2.75) includes the optimal conditioning update due to
Davidon [80].
From the above discussion, we have obtained a class of updates:

J =~(J —shT), (6.2.77)

- 1 -y =" Qh
h =~Qh+ TPy

w? (B — B)qg=0, Yw,q € W. (6.2.79)

Pd, (6.2.78)
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6.2.4 Collinear Scaling BFGS Algorithm

Sorensen [315] developed a collinear scaling BFGS algorithm without projec-
tions. That is, in (6.2.77)—(6.2.79) we take P = I and Q = 0. Further, we
take

d=J"g, s=2—x,y=79-9/7

Then we obtain the following updating formulas:

=(J (6.2.80)

A ) (6.2.81)
v— Hr)vT rT(v — Hr

H= ( ) 1 Ufr) - EvTr)éI ) o, (6.2.82)

which is called a collinear scaling BFGS formula for updating the inverse
Hessian approximation H, where H = B~! and H = B~ L.
Further, denote
C=JHJ', C=JHJT. (6.2.83)

Using (6.2.80), (6.2.81) and (6.2.45), we have

= 1 - - . 1 - 1—+
ro= JTg— —(JT +hsT)g = JTg— —(JT + —2LJT)g
g gl Y
- 1 -
= J'g- ?JTg = (J —sh™)Ty. (6.2.84)
Thus
or? vs(JTy — hsTy)T syl
I——— | =~(J—sh")~ -2 J (62
J( UTT> v(J —sh™) STy iy (6.2.85)

Equation (6.2.85) allows us to obtain

T T
= 2 Sy ys SS

So, instead of updating J and H, we only need to update C.
By (6.2.21), the scaled direction is

1

T
Sp41 = T Jey1Vp41 (note vpy1 = —Hpp1Jp 1 Gry1)
1+ hk+1vk+l
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— 1 Hi1 T gl
1— (1 =) 9F Jrpr Hip1 I grr1 / (] )

A —JeriHe Il gk
1+ 041

= —Ok+1Ck+19k+1- (6.2.87)

Hence, we obtain the iterative scheme
Tpr1 = Tk — OCrork, (6.2.88)
where
O = 1/(1+ &),

0k = —(1 = Ye-1) 9} 1Ckgr/ (Vk—197—15K—1),
Cr =U(Ci=1,5k—1, Yk—1)-

In the following, we give a description of the algorithm.

Algorithm 6.2.2 (Collinear Scaling BFGS Algorithm)

Step 1. Initialize Cy positive definite, xg,dg, @max > 0. Compute
fo,90. Set k=0.

Step 2. If 6, < 0, set & = min(amax, —1/0), else @ := amax-
Do line search for the function

A «
(o) = f (xk ~ 17 a5k0k9k>

and find oy, € (0,a). Set

g
B 1+ akék
Th+1 = Tk + Sk,
frr1 = F(@r41), G = £ (Trt),

P> = (fi — fos1)® — (94 15%) (g€ sk),

s = Crk,

such that p> > 0 and fry1 < fr.

Step 3. If “convergence” then stop.
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Step 4. Compute

Yk = _ggsk/(fk — fet1 + P)a Yk = VkGk+1 — Ik/ Vs

Cha1 = Wl = skyl /st yi)Cu(I — ysi /s yk) + Sksi / sk Yl

Okt1 = —(1 = Y6) 97 Chs19k+1/ k91 Sk-

Setk:=k+1, goto Step 2. O

Following the Broyden-Dennis-Moré convergence theory about quasi-Newton

methods, we can establish Q-superlinear convergence of the collinear scaling
BFGS algorithm, i.e.,
x —z*
lim 12 =l
Furthermore, Di and Sun [101] propose a conic trust-region method for
unconstrained optimization.

Let x denote the current approximation of the minimizer and let

f=1(=), g=9g(x)=V[(z). (6.2.89)
Then the conic trust-region model of f(x + s) is
T T
) g's 1 s'As
= - 2.
min  Y(s) = f+ T + 21— a2 (6.2.90)
st. ||Ds|| <A, (6.2.91)

where A € R™*" is the Hessian approximation at x, a € R"™ is a horizontal
vector such that 1 —a’s > 0, D is a scaling matrix and A a trust-region
radius. The above subproblem can be written as

1
min f + g7 Jw + §wTBw (6.2.92)
st. s=Jw/(1+hTw), |Ds|| < A. (6.2.93)

Di and Sun [101] discussed the necessary and sufficient condition of the so-
lution for the conic trust-region subproblem, presented an algorithm and
established the global and superlinear convergence. Besides, Zhu etc. [384]
discussed a quasi-Newton type trust-region method based on a conic model
for solving unconstrained optimization. Sun and Yuan [337], Sun, Yuan,
and Yuan [338] studied a conic trust-region algorithm for linear and nonlin-
ear constrained optimization respectively. About the topic of conic model
method, readers are referred also to Grandinetti [162], Ariyawansa [3], Sun
[333], Sheng [308], Han, Sun et al. [168].
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6.3 Tensor Methods

The tensor method is also a generalization of the quadratic model method. In
fact, the tensor method is based on the third- or fourth-order model for opti-
mization problems, and intends to improve upon the efficiency and reliability
of standard methods on problem where V2 f(z*) is singular.

The tensor method was introduced by Schnabel and Frank [302] for solv-
ing systems of nonlinear equations and by Schnabel and Chow [301] for un-
constrained optimization, respectively. In this section, we will describe the
tensor methods for nonlinear equations and for unconstrained optimization.

6.3.1 Tensor Method for Nonlinear Equations

Let F': R® — R™. Consider solving nonlinear equations
F(z) =0, (6.3.1)

that is to find z* € R" so that F(z*) = 0. Newton’s method for (6.3.1) is
defined as
ry =z, — F'(x.) ' F(x,), (6.3.2)

when F’(z.) is nonsingular, where . and z; denote the current and the next
iterate respectively. Newton’s method is based on the linear model at .,

M(z.+d) = F(z.) + F'(z.)d. (6.3.3)

As we know, the outstanding advantage of Newton’s method is its rapid
convergence, that is if F'(x.) is Lipschitz continuous in the neighborhood of
x* and F'(x*) is nonsingular, then the sequence produced by (6.3.2) locally
and quadratically converges to z*. This implies that there are 6 > 0 and
¢ > 0, such that when ||zg — 2*|| < 6, the iterative sequence {z}} satisfies

i — 2|l < el — 27 (6.3.4)

However, if F'(x*) is singular, then the iterative sequence does not converge
rapidly. The tensor method described in this section will overcome the short-
coming, and we can see that the tensor method still has rapid convergence
when F’(x*) is singular.

Consider the second-order model

1
Mr(ze+d) = F(x:) + F'(z.)d + §Tcdd, (6.3.5)
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where T, € R™ ™™ is a three-dimensional tensor. Usually, the (6.3.5) is
said to be a tensor model, and the corresponding method is called a tensor
method. To discuss the tensor method, we first give a definition concerning
these tensors.

Definition 6.3.1 Let T € R™ ™", Then T consists of n horizontal faces
H;, € R™*" i =1,---,n, where H;[j, k] = T[i,j,k]. Forv,w € R™, we have
Tvw € R™ with the i-th component

Tvwli] = vT Hyw = i i Tli, 7, kJv[j]wl[k]. (6.3.6)
j=1k=1

Hence, the tensor model given in (6.3.5) is, in fact, an n-dimensional
vector in which each component is a quadratic model of the component of
F(x), i.e.,

1
(Mr(ze + d)li] = fi + g7 d+ 5d Hid, i = 1,--+,m, (6.3.7)

where f; = F(x.)[i], g is the i-th row of F’(z.), and H; the Hessian matrix
of the i-th component of F(x).

An obvious choice of T, in (6.3.5) is F”(z.). However, the computational
amount is prohibitive, since, in each iteration, it needs to compute n? second-
order partial derivatives of F”(z.), store over n3/2 elements, and solve n
quadratic equations in n unknowns. To overcome these drawbacks, the tensor
method constructs 7, in low-rank by using available information of function
values and first derivatives. So, the additional efforts are small related to the
standard method.

To construct T., we select p not necessarily consecutive past iterates
x_1,--+,x_p and ask the model (6.3.5) to interpolate F'(x) at these points,
ie.,

1
F<x7k) = F(l’c) + F/(CUC)Sk + §Tc$k8k, k= 17 D,y (638)

where
Sp=Z_p— T, k=1,---,p. (6.3.9)

The selected directions {s;} are required to be strongly independent, i.e.,
make the angle between each direction s; and the subspace spanned by other
directions have at least 6 degree. Values of 6 between 20 and 40 degrees
have proven to be best in practice. This procedure is easily implemented by
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using a modified Gram-Schmidt algorithm. Since directions {sj} are linearly
independent, then p < n. In practice, one takes

p <+/n.
Now we write (6.3.8) as
Tespsy =2, k=1,---,p, (6.3.10)

where

2k = 2(F(x_1) — F(xe) — F'(2¢)s1). (6.3.11)

The (6.3.10) is a set of np < n®? linear equations in n® unknowns T.[1, j, k],
1 < 14,5,k < n. We choose the smallest symmetric 7, in the Frobenius
norm, which satisfies the equations (6.3.10). Below, we choose T, following
the technique for a secant update with the smallest change in quasi-Newton
methods (see Chapter 5).

First, we define the three-dimensional rank-one tensor.

Definition 6.3.2 Let u,v,w € R™. The tensor T € R™*™ ™, for which

Tli, g, k] = uli] - v[j] - wlk], (1 <4i,7,k <mn), (6.3.12)

RanXTL

1s called a third-order rank-one tensor of T' € and is denoted by

T=u®v®w. (6.3.13)

Obviously, the i-th horizontal face of the rank-one tensor u ® v @ w is a
rank-one matrix uli](vw’).

Theorem 6.3.3 Let p < n. Let sp € R", k = 1,---,p with {sx} linearly
independent, and let z;, € R", k = 1,---,p. Define M € RP*P by M]i, j| =
(slTsj)2, 1 <4,5 <p, and define Z € R™P with z the k-th column, k =
1,---,p. Then M is positive definite, and the solution to

minTceRanxn ||TCHF (6314)
s.t. Tespsp =25, k=1,---p (6.3.15)
18
p
Z ar @ S & Sk (6.3.16)

where ay, is the k-th column of A€ R"P and A= M~'Z.
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Proof.  Since the objective function and constraints can be decomposed
into n separate objective functions and constraints, then (6.3.14)-(6.3.15) are
equivalent to the following separate minimization problem

s.t. sEHisp = z[i], k=1,---,p, (6.3.18)

where H; are the horizontal faces of T, ¢ = 1,---,n. Note that the problem
(6.3.17)-(6.3.18) is a sub-determined set of p equations in n? unknowns.
Let h; € R™,

hi = (Hi[la 1]’Hi[1a2]’ o 'aHi[lvn]aHi[27 1]7 Tty
H;[2,n],---, Hin,1],---, Hi[n,n])T. (6.3.19)

Let S € RpX"2, the k-th row of S is
5p = (sk[1]st, se[2)sE, -, spn]s)). (6.3.20)
Let also the i-th row of Z € R™*P be z;,
zZi € RP, Zi[k] = zli], 1 <i<n,1 <k <p.
Then (6.3.17) is equivalent to

min, o2 a2 (6.3.21)
s.t. Sh; = zF. (6.3.22)

Note that the {si} are linearly independent, then S is full row rank, and
hence the solution to (6.3.21)-(6.3.22) is

h; = ST(SST)~ 121, (6.3.23)
Since M = §S7T, then M is positive definite. Also,

ai <1
—A=M"'17=(85")"1] . |. (6.3.24)

an, Zn
Hence the i-th row of A is

a; = (SSH 1z, (6.3.25)
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Therefore (6.3.23) means B
h; = STal. (6.3.26)

Note that here a; is the i-th row of A and ay, is the k-th column of A, then
ailk] =axfi], 1<i<n, 1<k<p.

Then it follows from (6.3.26) that

p

p
hi =Y ailklsf =Y alilsf, (6.3.27)
k=1 k=1

where 5 is defined by (6.3.20) and the k-th row of S, the 5. denotes a
transpose of 5, and a column vector with n? elements.

Returning to (6.3.27) in the terms of H; and s, and using (6.3.19) and
(6.3.20) give

p
Hi = ali]sgs}.- (6.3.28)
k=1
Finally, combining n matrices H; gives the desired T, in (6.3.16).
Substituting (6.3.16) into (6.3.5), the tensor model has the form

Mr(ze+d) = Fzo) + F'(z.)d + % 3 an(d”s)2. (6.3.29)
k=1

In the above model, the simple form of the second-order term is a key to
efficiently find a minimizer of this model. In the tensor method, the additional
4pn storage are required to save {ax}, {sk}, {z_r} and {F(x_)}. Additional
cost is n?p+O(np?) operations for computing A = M~1Z. Since p < \/n, this
is a very small additional cost, more than the cost of the standard quadratic
model method.

6.3.2 Tensor Methods for Unconstrained Optimization

In this subsection, we extend the tensor method to solving unconstrained
optimization problem

;?élg}t f(x), f: R" — R. (6.3.30)

Note that the standard quadratic model methods do not converge quickly if
the Hessian V2 f(2*) is singular. In this case, the convergence rate is linear
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at best. Furthermore, the third derivatives do not supply information in the
direction where the second derivative matrix is lacking. Thus, adding an ap-
proximation to V3 f(z.) alone will not lead to better-than-linear convergence.
Therefore, we consider employing the following fourth order tensor model

1
6
where T, € R"*"™*", a three-dimensional tensor and V. € R"*"*"*" g four-
dimensional tensor, are symmetric. Equation (6.3.31) is called a tensor model
for unconstrained optimization; the methods based on (6.3.31) are referred
to tensor methods.

1 1
mp(ze+d) :f(xc)+Vf(xc).d+§v2f(xc)-d2+ Tc-d3+ﬂvc-d4, (6.3.31)

How to Choose T, and V,.7

To select T, and V., we select p not necessarily consecutive past iterates
x_1, -+, %_p, and ask that the model (6.3.31) interpolate f(z) and V f(x) at
these points, i.e.,

1

1
flax) = flae) + VFwe) s+ 5V f(ae) -5+ T s

1

+ogVer s, (6.3.32)
1
vf(x—k) = vf(l'c) + VQf(mc) © Sk + §TC : Si

1
_,_évc . 53, (6.3.33)
where s, = z_p — x., k = 1,---,p. As in the previous subsection, the direc-

1/3

tions {sx} are strongly linearly independent. We also set p < n
Multiplying (6.3.33) by sj gives

1 1

Vi(x_y) - sp=Vf(xe)-sp+ Vif(x.) - s2+ 5 Te 53+ gVe sp. (6.3.34)
Define «, 8 € RP respectively by

alk] =T, s}, (6.3.35)

Blk] = Ve - s, (6.3.36)

where £ = 1,---,p. Then (6.3.34) and (6.3.32) have the following form
respectively:

Sl + S0k = alk], (6:3.7)
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—alk] + —Blk] = g[K], (6.3.38)
where

k] = Vf(z_p) s — Vf(ze) - sp — Vif(ze) - s2, (6.3.39)
@lk] = f(z—r) — f(xc) = Vf(2e) - 56 — %V2f(xc) .52, (6.3.40)
for k =1,2,---,p. The system (6.3.37)-(6.3.38) is nonsingular, so each «[k]

and (k] are uniquely determined. Thus, we can determine V. by the mini-
mization problem

minvgeRanXan ||‘/;3”F
s.t. Ve-sp =0k, k=1,---,p. (6.3.41)

V. symmetric.
We then substitute the obtained value of V, into (6.3.33), obtaining
T.-st=ag, k=1,---,p, (6.3.42)

where

0 =2 (v,ﬂx_k) — V) = V) s — gV o)

This is a set of np < n*/3 linear equations in n® unknowns T,[i, j, k], 1 <
1,7,k < n. Then we determine T, by the minimization problem

minTCeRanXn HTCHF
s.t. T. - s?=a;,i=1,---,p (6.3.43)

T, symmetric.

The following two theorems give the solutions of problems (6.3.41) and
(6.3.43).

Theorem 6.3.4 Let p < n. Let sp € R", k = 1,---,p with {sx} linearly
independent, and let 3 € RP. Define M € RP*P by M[i,j] = (sI's;)* 1 <

i,j < p. Definey € RP by y= M~'3. Then the solution to (6.3.41) is

p
Ve = Z VK] (s @ sk @ sk ® sg). (6.3.44)
k=1
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Proof. Define © € R™ by

QA}T: (‘/:3[1717171]7‘/0[1717172]7‘"7‘/6[17171777’]7
‘/0[17 1727 1}7 e 7‘/;2[17 1,2771], o '7%[”7”7 n7n])

Let the matrix S € RP*™ with the k-th row as
(sk[1D)", (skl1)? (skl2]), - - (s[1)? (sk[n]), -+ -, (se[n])™.
Then, (6.3.41) is equivalent to

min@ ”@HQ (6345)
st. St =4, V. symmetric, (6.3.46)

where V, is the original form of v. Since {sy} are linearly independent, S has
full row rank. Hence, the solution to

st. So=0 (6.3.48)
is A
o =8T(88T) 13 =8TM"13= 25T, (6.3.49)

where M = SST. By reversing the transformation from 4 to V., we get
(6.3.44). Since V, is symmetric, it is the solution of (6.3.41). O

Theorem 6.3.5 Let p < n. Let sp € R", k = 1,---,p with {sx} linearly
independent, and let ap, € R", k = 1,---,p. Then the solution to problem
(6.3.43) is

p
T. = (b ® sk @ sp + 5k @ bp @ s + 55 D 55 @ by, (6.3.50)
k=1

where by, € R", k =1,---,p, and {b;} is the unique set of vectors for which
(6.3.50) satisfies
Tcs?:ai, t=1,---,p.

Proof.  First, we show that the constraint set in (6.3.43) is feasible. Let
t; € R"i=1,--- p satisfy

1, 1=3
T ) Js .
tisj:{o’ i, forj=1,---,p.
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Since {s;} are linearly independent, such vectors ¢; can be obtained via a QR
factorization. Then

p
T = Z(tz Rt ®a; +t,®a; 9t +a;, @t @t; — 2(0?31')(751' Rt @t;))
i=1
is a feasible solution to (6.3.43).
Dennis and Schnabel [93] assume that the set of tensors T; € R"*™*" is
generated by the following procedure: Tp = 0 and for j = 0,1,---, To;41 is
the solution of

min HT2j+1 - TQjHF (6351)
st. Thjp1-82=a;, i=1,--,p, (6.3.52)

and T5; 2 is the solution of

min HT2j+2 - TQJ‘_HHF (6353)
s.t.  Tyjqpo symmetric. (6.3.54)

Then the sequence {7} has a limit which is the unique solution to (6.3.43).
(see the derivation of Powell symmetric Broyden update in §5.1).

Next, we show that this limit has form (6.3.50) for some set of vectors
{br}, by showing that each T5; has this form.

Trivially, it is true for Ty. Assume it is true for some 7, i.e.,

p
ng = Z(’U,k X Sk X Sk + Sk QUL @ S + S @ S X uk) (6.3.55)
k=1

for some set of vectors ug. Then from Theorem 6.3.3, the solution to (6.3.51)-
(6.3.52) is

p
Toju1 =Toj+ Y (0 ® 55, ® )
k=1

for some set of vectors {vy}. Thus

1

Thjia2 = T2j+3

p
Z(Uk‘@fsk@sk+3k®vk®3k+5kz®3k®vk)
k=1

L Vg UV
= > ((w+5 )@k @sp+s5:® (ur+— | @ sy,
= 3 3

+Sk ® Sk & (uk + ?)) , (6.3.56)
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which again has the form (6.3.55). Thus, by induction, the solution T, must
have the form (6.3.50) for some set of vectors {by}.
Finally, we show that the set of vectors {by }, for which T, given by (6.3.50)
satisfies
T.s? =a;, i=1,---,p, (6.3.57)

is unique. This will mean that equations (6.3.50) and (6.3.57) uniquely deter-
mine the solution to (6.3.43). In fact, substituting (6.3.50) into (6.3.57) gives
a system of np linear equations in np unknowns, where the matrix is a func-
tion of {sy}, the unknowns are the elements of the {b;}, and the right-hand
side consists of the elements of the {ay}.

Since we have showed above that (6.3.43) is feasible for any {ay}, the
above derivation and the theory of Dennis-Schnabel [93] imply that for any
set {si}, this linear system has at least one solution for any right-hand side.
Therefore, the linear system must be nonsingular and have a unique solution.
This means that the set of vectors {by} is uniquely determined. O

Solving the Tensor Model

Substituting the values of T, and V. in (6.3.50) and (6.3.44) into the
tensor model (6.3.31) gives

mp(ze+d) = f(ze)+ V(e d+ %v%(;pc) -d?
p
50l sTa? + 5 Do Alk(sTa)*
k=1
= flw) + g d+ pd"Hd
S (Bl a)s i S AT, (6.358)

k=1 k=1

where g = Vf(z.), H = V?f(x.).

Let S € R™P with k-th column s;. Let Z € R"*(""P) and W € R™¥P
have full column rank and satisfy Z7S = 0 and W''S = I, respectively. The
Z and W can be calculated through the QR factorization of S.

Write

DN |

_|_

d=Wu+ Zt, (6.3.59)
where u € RP and ¢t € R"P. Substituting (6.3.59) into (6.3.58) gives

1
mrp(ze + Wu+ Zt) = f(ze) + g Wu+ g7 Zt + 5uTWTHWu
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+u WTHZt + tTZTHZt+ Z 12 (b Wu + b Zt)
k 1

1 p
o z:: (6.3.60)

which is a quadratic with respect to t. Therefore, for the tensor model to
have a minimizer, Z7 HZ must be positive definite and the derivative of the
model with respect to ¢t must be 0, i.e.,

Ztg+ ZVHZt + ZVHWu + ZT Z biulfi]? = 0. (6.3.61)
i=1
Therefore
= —(zTHZz) 'z ( + HWu + = Zb uli ) (6.3.62)
=1

Substituting (6.3.62) into (6.3.60) reduces the problem of minimizing the
tensor model to finding a minimizer of

mr(u) = f+ g Wu+ uTWTHWqu Z 2 (bF W)
i=1

p T
-1-21427[2']u[i]4—;<g+HWu+ 3 bl )

=1

1 p
Z(Z'HZ) 2T <g + HWu+ 5 > biu[iF) . (6.3.63)

which is a fourth-degree polynomial in u-variable. If (6.3.63) has a minimizer
u*, then the minimizer of the original tensor model (6.3.58) is given by

d* = Wu* + Zt*, (6.3.64)

where t* is determined by setting « = u* in (6.3.60).

In implementation we may employ line search or trust-region strategy. If
the obtained direction d* is a descent direction, but x.+ d* is not acceptable,
we set x4 = z. + Ad* where X is a steplength factor. If (6.3.63) has no
minimizer, or d* is not in a descent direction, we find the next iterate by
using a line search algorithm based on the standard quadratic model.
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Similarly, we can also use trust-region technique studied in §6.1. The
trust-region tensor model is

mingegn  mp(z. + d) (6.3.65)
st |dls < A, (6.3.66)

where A, € R is the trust-region radius.
The tensor algorithm for unconstrained optimization is as follows.

Algorithm 6.3.6 (Tensor Method) Given x., f(x¢), Ac.

Step 1. Calculate V f(x.), and decide whether to stop. If not, go to
Step 2.

Step 2. Calculate V2 f(x.).

Step 3. Select p past points from among the n'/? most recent past
points.

Step 4. Calculate T, and V.

Step 5. Find a potential acceptable next iterate x.+dr and a poten-
tial new trust-region radius Ap by using the tensor model
and a trust-region technique.

Step 6. Find a potential acceptable next iterate x.+dy and a poten-
tial new trust-region radius Ay by using the quadratic model
and a trust-region technique.

Step 7. If f(xze+dr) < f(zc+ dn), then set

Ty =T+ dr, Ay = A

else set
Ty =xc+dy, Ar = Ap.

Step 8. Set x. = x4, f(x.) = f(z4), Ac = A4, and go to Step 1.
O

Note that in the tensor method, the Hessian can be replaced by finite
difference Hessian approximation or secant updates, because the cost of com-
puting a Hessian is large. Also, we would like to point out that the tensor
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method is a generalization of the standard quadratic model method. How-
ever, there are still various problems waiting for us to solve. For example, the
strategy of computing both tensor model and quadratic model at each itera-
tion is not ideal; how to choose a suitable p, how to use the tensor method in
constrained problems and so on. This kind of method is worth doing further
study.

Exercises

1. Let f(z) = #} + 2} +23. Let the current iterate z*) = (1,1)7, A}, =
Try using double-dogleg method to find z(++1).

N[ =

2. Let f(z) = 32} +23. Let the starting point ) = (1,1)T. For Ag =1
and Ag = %,
(1) Use dogleg method to find (1.
(2) Use double-dogleg method to find z(?).

3. Let s be an approximate solution of subproblem (6.1.1). Show that
s satisfies

0(0) ~ ¥ (1) 2 Flgullmin { A, gl 3
1Bellz

where € (0,1].
4. What is the attractive point of the trust-region method?

5. Use trust-region Newton method to minimize the Rosenbrock function
(see Appendix: Problem 1.1).

6. Use trust-region quasi-Newton method to minimize the extended
Rosenbrock function (see Appendix: Problem 1.2).

7. Consider using dogleg method to construct path s(7). Show that
||s(7)|| increases monotonically along this path.

8. Derive expression (6.1.30)-(6.1.31) of the Cauchy point.
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9. (1) Let s§ solve

min f(zx) + gi s
s.t. || Ds|| < Ag.
Show that
A

G —2
S = —71) k
FT D gl Y

(2) The generalized Cauchy point can be defined by
¢®)(s7) = min{q™)(s) | s = 75, || Ds|| < Ay},
where skG is defined by (1). Therefore, the generalized Cauchy point can be

expressed as
Ay,

sh = ks = —Thimg D gk, 6.3.67
O VS PA e (6:3.67)
where
T = arg m>118 d®(rs¢) st |TDsS| < Ay
T
Show:
_ )1 if gt D™ByD~?g; < 0;
T min{[| D" gx||3/(Argf D~2Br.D~?gy), 1} otherwise.

(6.3.68)
10. Mimic Theorem 6.1.2, state and prove the necessary and sufficient
condition that s* is the solution of subproblem

1
ming f+gls+ ESTBS
s.t. || Dsll2 < A.

11. Write out the program of Steihaug-CG Algorithm 6.1.12.

12. Try to state the relations among quadratic model, conic model, tensor
model and collinear scaling.
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13. Starting from collinear scaling s =
Newton equation.

WLLTUJ’ derive a generalized quasi-

14. Derive the collinear scaling BFGS formula. Try to derive other for-
mulas of collinear scaling.



Chapter 7

Solving Nonlinear
Least-Squares Problems

7.1 Introduction

This chapter is devoted to solving the following nonlinear least-squares prob-

lems:
m

> (@), m=n (7.1.1)

min f(z) = Sr(x)"r(z) =

where r : R" — R™ is a nonlinear function of z. If r(x) is a linear function,
the problem (7.1.1) is the linear least-squares problem.

Nonlinear least-squares problem (7.1.1) can be regarded as a special case
for unconstrained minimization with a special structure. This problem can
also be interpreted as solving the system of m nonlinear equations

ri(x)=0,i=1,2,---,m, (7.1.2)

where r;(z) is called the residual function. When m > n, the system is called
over-determined, and when m = n the system is well-determined.

Nonlinear least-squares problems have wide applications in data fitting,
parameter estimation, function approximation, and others. For example,
suppose we are given the data (t1,41), (t2,42), -, (tm, Ym) and want to fit
a function ¢(¢,x) which is a nonlinear function of . We want to choose x
such that the function ¢(t, z) fits the data as well as possible in the sense of
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minimizing the sum of the squares of the residual,
m
min Z[rl(az)]z (7.1.3)
i=1

where

ri(z) = ¢(ti,x) —yi, it =1,---,m (7.1.4)
are the residual. Usually, m > n. So, we obtain the problem (7.1.1). For
solving nonlinear least-squares problem, we usually use Newton’s method to
solve the resulting system of the normal equations. However, it is expensive,
and the normal equations tend easily to be ill-conditioned. Note that the
problem (7.1.1) has special structure which inspires some special methods.
In this chapter, we shall give some effective and special methods for solving
nonlinear least-squares problem (7.1.1).

Let J(z) be the Jacobian of r(x),

@ e - e
Hay= | onlth o am r
Go(e) Gm() oo Gm)

Then the gradient of f(x) is
Zn )Vri(x) = J(x)r(x) (7.1.6)

and the Hessian is

(Vri(x )Vri(x)T + T’i(x)VQTZ‘(.T}))

NE

G(z) =

s
Il
—

= J(:):)TJ(w) + S(x), (7.1.7)

where
m

Z z)Vir(z (7.1.8)

=

Therefore, the quadratic model of he objective function f(x) is

H@) = o) + o) (0 —2) + 3 (@ — 2 Claw) (o — )
= Sren) ) + () @) @ - o)
1

+5 (- i) (T ()T T (2r) + S(2r)) (x — xp). (7.1.9)
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Then we have Newton’s method for (7.1.1),
Tpy1 = xp — (J(xp)T T () + S(xr) " T () r(2). (7.1.10)

We have seen in Chapter 3 that, under standard assumptions, the iter-
ation (7.1.10) is locally quadratically convergent. However, the main disad-
vantage of the above Newton’s method is that the second-order term S(z)
in the Hessian G(z) is difficult or expensive to compute. It is also not suit-
able to use a secant approximation of the whole of G(z), because J(x) and
furthermore the first-order term J(z)?J(x) in G(z) are available when we
compute the gradient g(x). Hence, for reducing the computation, it may be
reasonable and effective to either neglect S(z) or use first-order derivative
information to approximate S(x). Notice from (7.1.8) that when r;(x) ap-
proaches zero or closes to a linear function, in which case V?r;(z) approaches
zero, S(x) is small and can be neglected. We call this case a small residual
problem, otherwise, a large residual problem.

7.2 Gauss-Newton Method

In this section, we discuss the Gauss-Newton method, which is obtained by
neglecting the second-order term S(z) of G(z) in the quadratic model (7.1.9).
So, (7.1.9) becomes

M) = %T(ﬂfk)TT(wkH(J(xk)TT(:ﬂk))T(w*wk)

—i—%(x — ap) T (T () T () (x — ). (7.2.1)
Hence (7.1.10) becomes
w1 = w4+ sk = o — (J (@) T (@) 7 () T (). (7.2.2)

To make the iteration well-defined, it is required that Jacobian matrix J(zy)
has full column rank. The following is the Gauss-Newton algorithm.

Algorithm 7.2.1 (Gauss-Newton Method)
Step 0. Given xg,e > 0,k :=0.

Step 1. If ||gr|| <€, stop.
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Step 2 Solve

J(xi) T (xr)s = —J (@) r(zy)  for sy (7.2.3)

Step 3. Set xx11 =x + sk, k:=k+1. Go to Step 1. O

Obviously, whenever J(xy) has full rank and the gradient g(xy) is nonzero,
the search direction sj is a descent direction for f, because

sEV f(xy) = st J(xp) r(xy) = —st J(zp)T T (21)s, < 0.

The final inequality is strict unless J(x;)Ts, = 0, which is equivalent to
I (k) r(zr) = g(zx) = 0.

Equation (7.2.3) is said to be the Gauss-Newton equation. Obviously, by
comparing (7.2.3) and (7.1.10), we find that the difference between Gauss-
Newton method and Newton method is that the first-order term .J(zz)7 J(x,)
is used to replace the Hessian G(zy).

Note that Step 2 in Algorithm 7.2.1 is just analogous to the normal equa-
tions of linear least-squares problem. Besides, the model (7.2.1) is equivalent
to considering the affine model of r(x) near zy,

My, = r(zy) + J(zr)(x — 21), (7.2.4)

and solve the linear least-squares problem
I 2
min §HMI€($)H . (7.2.5)

These two observations expose that Gauss-Newton method, in fact, is a lin-
earization method for nonlinear least-squares problem. From (7.2.2), we see
that Gauss-Newton method has some advantages in that it only requires
the first-order derivative information of the residual function r(x), and that
J(x)T J(x) is at least positive semi-definite.

Since Newton’s method, under the standard assumptions, is locally and
quadratically convergent, the success of Gauss-Newton method will depend
on the importance of the neglected second-order term S(z) in G(x). The
following theorem shows:

1. if S(2*) = 0, the Gauss-Newton method is quadratically convergent;

2. if S(z*) is small relative to J(z*)TJ(z*), the Gauss-Newton method is
locally Q-linearly convergent;
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3. if S(z*) is too large, the Gauss-Newton method will not be convergent.

The proofs of the following theorem are similar to that of Theorem 3.2.2
for Newton’s method. The different proofs given in Theorem 7.2.2 and The-
orem 7.2.3 are helpful to study and understand the convergence theorems of
various iterative methods.

Theorem 7.2.2 Let f : R" — R and f € C?. Assume that x* is the local
minimizer of the nonlinear least-squares problem (7.1.1) and J(x*)TJ(x*)
is positive definite. Assume also that the sequence {x} generated by Algo-
rithm 7.2.1 converges to x*. Then, if G(x) and (J(x)T J(x))™" are Lipschitz
continuous in the neighborhood of x*, we have

1 =™l < (I (@) T (@) TS @)z —a* | +O(lzx —a%). (7.2.6)

Proof.  Since G(z) is Lipschitz continuous, J(z)”J(x) and S(z) are also
Lipschitz continuous. Hence, there exist «, 3,7 > 0, such that for any z,y in
the neighborhood of x*, we have

17 ()" (@) = T ()" T (W)l < allz —yll, (7.2.7)
15(z) = Sl < Bllz -yl (7.2.8)
(T ()" (@)™ = ()" Ty) T < Alle =yl (7.2.9)

(see Exercise).
Since f € C? and G(x) is Lipschitz continuous, then we have

g(zr + 5) = glz) + G(zk)s + O(||s]?). (7.2.10)
Let hy = 3, — z* and s = —hy. We can deduce that
0= g(z*) = g(ar) — Glar)hy + O(|hs]1?). (7.2.11)
Substituting (7.1.6) and (7.1.7) into (7.2.11) gives
I (@) r(wr) — (J(en) " I (2r) + S(ax)) i + O(||hie]|?) = 0. (7.2.12)

Assume that zp is in a neighborhood of x*. From Theorem 1.2.5, it
follows that for k sufficiently large, J(zx)?J(xy) is positive definite, and
hence (J(zx)? J(x1))~! is bounded above and

1 (@)™ T () 7HI < 20T (@) T (@) 7). (7.2.13)
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Then, multiplying (7.2.12) by (J(zx)" J(x}))~! yields that
—sp — b — (J ()" T (2x)) 1S (an) b + O(|| i ||?) = 0. (7.2.14)
Note that sx + hy, = Tp4+1 — ™ = hi41, the above equality can be written as

—hgr = (J(@) T (@) 7S (@) = (T ()T (2x) (S (2x) = S(@*))hy,
—[(T ()T T ()t = (T (@) T (@) S (@), + O(|[ )
=0. (7.2.15)

Taking the norm and using (7.2.8)—(7.2.9) and (7.2.13) give the result (7.2.6).
g

Theorem 7.2.3 Let f : D C R® — R and f € C?(D), where D is an open
convex set. Let J(x) be Lipschitz continuous on D, i.e.,

17 (z) = J(W)ll2 < vllz = yll2, Y2,y € D, (7.2.16)

and ||J(z)||2 < a,Vx € D. Assume that there exist x* € D and X\,0 > 0 such
that J(z*)Tr(z*) = 0, X is the smallest eigenvalue of J(x*)T J(x*), and

|(J(x) = J(@)Tr(z)||2 < o|lz — z*|2, V2 € D. (7.2.17)

If o < A, then, for any ¢ € (1,\/0), there exists € > 0 such that for all
xo € N(x*,€), the sequence generated by Gauss-Newton Algorithm 7.2.1 is
well-defined, converges to x*, and satisfies

. co cary
2k 1 — 22 < <ok — 2|2 + o o — 213 (7.2.18)
A 2
and L
e — 2l < 5 g — s < g — 2 (7.2.19)
Proof. By induction. For convenience, let Jy,ro,7* denote J(xq),r(xo)

and r(z*). From Theorem 1.2.5, it follows that there exists e; > 0 such that
J{& Jo is nonsingular and satisfies

I(JETo) 7Y < ¢/A, for zg € N(z*,€1). (7.2.20)
Let \
€ = min {61, — CU} ) (7.2.21)
cory
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where ~ is the Lipschitz constant defined in (7.2.16). Then, z is well-defined
at the first iteration, and we have

r1—z° = zg—a" — (J(;‘FJO)_IJOTTO
= —(Jg Jo) I ro + Jg Jo(a* — x0)]
= —(JE ) I = JE (= ro — Jo(z™ — x0))]. (7.2.22)

By Theorem 1.2.22, we have
|r* —ro — Jo(z* — x0)|| < %on — |2 (7.2.23)

Noting that J(z*)Tr(z*) = 0 and using (7.2.17), we get
1o 7]l = |(Jo — J(@*))"r*|| < ol — 2. (7.2.24)

By using (7.2.20), (7.2.24), (7.2.23) and ||Jo|| < «, it follows from (7.2.22)
that

lzy =21 <110 Jo) MG Il + I ollllr™ = ro — Jo(a™ = wo)ll)

c e .
X (O’HJ}Q —z*|| + %on -z ||2> : (7.2.25)

This proves that (7.2.18) holds at k& = 0.
Furthermore, from (7.2.25) and (7.2.21), we deduce that

IN

o =" < oo 2" (5 + G llzo — 7]
< | *H<ca+)\—ca>
o — T -
= AT 2)
co+ A .
= e =o'
< lzo — 2|, (7.2.26)

which shows that (7.2.19) holds at k = 0.
For the general case of k, the proof is the same completely as the above.
Hence, we complete the proof by induction. O

Theorem 7.2.4 Assume that the assumptions of Theorem 7.2.2 or Theorem
7.2.8 are satisfied. If r(x*) = 0, then there exists € > 0 such that for any xg €
N(z*,€), the sequence {xy} generated by Gauss-Newton method converges to
¥ with quadratic convergence rate.
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Proof. For Theorem 7.2.2, if r(2*) = 0, then S(z*) = 0. So, the quadratic
convergence rate is obtained immediately from (7.2.6).

For Theorem 7.2.3, if r(2*) = 0, then the o in (7.2.17) can be taken as
o = 0. Hence, it follows from (7.2.19) that {z} converges to z*, and from
(7.2.18) that the rate is quadratic. O

Gauss-Newton method now is the most basic method for solving nonlinear
least-squares problems. The following example demonstrates that it works
well with small residual problems.

Example 7.2.5 Let ri(z) = 2+ 1,72(z) = A\v? +x — 1. Consider
min f(z) = Zri(x)2 =(x+1)*+ A\ + 2 —1)%
i=1

where n = 1,m = 2, and z* = 0. For A = 0.1, the Gauss-Newton iteration
has the following result:

k 1 2 3 ] 5 6

T | 1.000000 | 0.131148 | 0.013635 | 0.001369 | 0.000137 | 0.000014

You can see that, when A = 0.1, the degree of nonlinearity in r(x) is
small, and the Gauss-Newton method works well. In this case, from (7.2.2),
the Gauss-Newton iteration is

2)\2m% + )\x% + 2z},
xr =
P 1+ (2Mzp + 1)2

When A = 0, in which case r(z) is linear, then ;1 = 0 = z*. This indicates
that Gauss-Newton method gets its minimizer in one iteration. When A # 0,
we have

w1 = Azg + O([la])?).

When A is small enough, the convergence rate is linear. When |\| > 1, the
Gauss-Newton method fails to converge. This example shows that Gauss-
Newton method is valuable only when both zq closes to * and the matrix
S(z*) is small.

Remark: In practice, we usually use Gauss-Newton method with line
search
T = 2 — ap(J (@) T (@) 7T () T r(x), (7.2.27)
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which is called the damped Gauss-Newton method, where «ay, is a step size.
As we have seen, this method guarantees the descent of the objective function
in each step and therefore global convergence.

To conclude this section, we mention some numerical aspects on Gauss-
Newton method. It should be pointed out that for the problem to solve
Gauss-Newton equations

J(xp)T T (xr)s = —J(xp) T r(x), (7.2.28)

usually, we employ matrix factorization instead of solving (7.2.28) directly.
Then the solution is found by back-substitution technique. So, we can sub-
stantially improve the numerical precision. To see this, it follows from the
error analysis that

108U )T T )

sl =

(2]
| ()T ()|

(7.2.29)

where

k(J(xx) T (2r)) = o /oy, (7.2.30)

§s and E denote the errors of s and J(zy)? J(x)) respectively, and o7 and
oy, are the largest and smallest singular values of J(xj) respectively.
If we employ QR factorization for the augmented matrix, we have

[J(zr) ] =Q[R Q"ry, (7.2.31)
where @ is an orthogonal matrix,
_ [
r=g ]

and R; is a nonsingular upper triangular matrix. Then, we obtain
J(x)TJ(xr) = RTR = RTR;. (7.2.32)
The solution of (7.2.28) can be found by solving
Ris = —(QTrp)n, (7.2.33)

where (-),, denotes the first n element partition.
It can be shown that o
K(Ry) = —- (7.2.34)

n
and therefore the errors generated by the orthogonal factorization approach
are magnified much less than that directly solve (7.2.28).
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7.3 Levenberg-Marquardt Method

7.3.1 Motivation and Properties

Usually, Gauss-Newton method with line search is employed in practice.
However, if J(z) is rank-deficient, then either the Gauss-Newton method
cannot work well, or the algorithm converges to a non-stationary point.

To overcome the difficulty, we consider employing trust-region technique
(for details, see §6.1). In fact, we have seen that, in Gauss-Newton method,
a linearized model (7.2.4) is used to replace nonlinear function r(x), and
that a linear least-squares problem (7.2.5) is obtained. Unfortunately, this
linearization is not effective for all (z — xy,). Therefore, we put a constraint
of trust-region on it, and consider the following trust-region model:

. 1
min o[ (ze) (@ = @) + 7 ()13 (7.3.1)
stz — 2kl < Ag, (7.3.2)
which is a constrained linear least-squares problem. Model (7.3.1)-(7.3.2) can
be written as
. 1 1
min gx(x) = iHrkHz + i J(ag) (@ — xp) + 5(3: — ap) T T ()T T (1) (2 — )
s.t. Ha; — .iCk”Q < Ak. (7.3.3)

Set s = x—x. The solution of the subproblem (7.3.1)-(7.3.2) is characterized
by solving the system

(J(xp)T T () + pd)s = —J(x1) r(xp). (7.3.4)
Hence,
Tpy1 = 2 — (J(@p) T T () + ) 71T () Tr(2). (7.3.5)

When [|(J(zx)T J(zx)) " T (z) T r(zk)]| < A, then py, = 0 and the sub-
problem is solved by si. Otherwise, there exists p > 0 such that the solution
sy satisfying ||si|| = Ag and

(J(xp)T T () + pd)se = —J () T r(x). (7.3.6)

Since (J(x)T J(xr) + pid) is positive definite, the direction s produced by
(7.3.4) is a descent direction. This method is called the Levenberg-Marquardt
method, since it was proposed by Levenberg [199] and Marquardt [210]. The
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above discussion exposes that the Levenberg-Marquardt method is just a
Gauss-Newton method by replacing the line search with a trust region strat-
egy.

Another perspective about Levenberg-Marquardt method is as follows.
This method is just a switch rule between Gauss-Newton method and the
steepest descent method. This implies that this method allows choosing any
direction between these two directions to be a search direction. When p;, = 0,
it reduces to the Gauss-Newton direction. While py is very large, (7.3.4) is
approximate to

prls = —J () r(xy). (7.3.7)

The produced direction is close to the steepest descent direction.
Furthermore, if, instead of I, we employ some positive definite and diag-
onal matrix Dy, then (7.3.4) becomes

(J(xp)T T () + prDr)s = —J (x) T r(ay). (7.3.8)

In this case, the produced direction is a combination of Gauss-Newton di-
rection and the steepest descent direction with respect to a metric matrix
Dy.
Next, we will describe some properties of Levenberg-Marquardt method.
Let s = s(u) be a solution of

(JYT + pl)s = —J'r, (7.3.9)
where, for convenience, J = J(z),r = r(z), and g = g(x) = J'r.

Theorem 7.3.1 When u increases monotonically from zero, ||s()|| will de-
crease strictly monotonically.

Proof.
d d ST
T.\% H
—||s|l = =—(s"5)2 = . 7.3.10
ol = -k = S (7:3.10)
Differentiating (7.3.9) gives
ds
JUT 4+ pl)— = —s. 7.3.11
(1T un g = s (73.11)
It follows from (7.3.11) and (7.3.9) that
d
5 = (JTT + ul) 2. (7.3.12)

dp
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By substituting (7.3.12) into (7.3.10) and using (7.3.9), we obtain

g7 (JTT + ul)
s

When p > 0, JI'J + ul is positive definite. Therefore (7.3.13) shows that
||s(p)|| decreases strictly monotonically. O

d
— = — 7.3.13

Theorem 7.3.2 The angle i between s and —g does not increase monoton-
ically as p increases.

Proof. Since

T
g's
cost = — , (7.3.14)
lglllisl
then it is enough to prove
d
@ cosp > 0.

By using (7.3.9)-(7.3.13), we deduce

_T1ds d|s]]
L eosy) = o du 9's “dp
dp HQHH I llglllisll sl

= (e 7T+ D) )2

+(g" (JTT + D)) (g" (T + pI)"Pg)}. (7.3.15)

So, it is enough to prove that the part in braces is greater than or equal to
Zero.

Note that J7.J is symmetric, then there is an orthogonal matrix @Q such
that

JT'T=Q"DQ,

where D = diag(\1, -+, Ay). Set v = Qg, then the part in braces on the
right-hand-side of (7.3.15) can be written as

nonl v} v3v?
I e ROt =) L

j=1k=1
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If let

a

(o )
A+ )32 T )32

) ( vy vy, )T
A +m)2 T A+ )]

then (7.3.16) becomes

lal®lIo1* — {a, b)*,

365

and it follows from Schwartz inequality that the above expression is greater
than or equal to zero. Therefore v is not increasing. We complete the proof.

|

Theorem 7.3.3 Let ux > 0 and s be a solution of (7.53.4). Then si is a
global solution of the subproblem

. 1
min g (s) = 5 s + a3

st sl < llsll-

Proof.  Since si is a solution of (7.3.4), then

q(k)(sk)

On the other hand,

g™ (s)

1 1
= irl{rk + T%Jksk + §S£J5Jk8k

1
= ir,{rk — sE(JE T + ped) sy, + §8£J,€TJksk
1

1
T T T 1T
= 2?”k Tk — UESE Sk — 231: Jk: JkSk.

for any s, we have

1 1
= iT‘ZT‘k + STJkTTk + isTJkTJks

1

1
= irgrk — sT(TE T + D) sy + §STJng5

1

1
= frgrk — uksTsk — sTJngsk + fSTJkTJks.

2 2

Then, for any s satisfying ||s|| < ||sk||, we deduce that

1
d® () =P (si) = =(sp— ) T Tu(sk — )+ pn(shsp — s

T
2
1

v

2
0,

v

(7.3.17)
(7.3.18)

(7.3.19)

(7.3.20)

Sk)

—(sk — )T T (s — 8) + el sell (s ll = 1s])

(7.3.21)
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which shows that s is a global optimal solution of problem (7.3.17)-(7.3.18).
g

Theorem 7.3.4 The vector sy, is a solution of problem (7.3.1)-(7.3.2), i.e.,

min %HJks + 1|3 (7.3.22)
st |Is|| < Ag (7.3.23)
for some A > 0 if and only if there exists > 0 such that
(JETy, 4 ul)sy = —JEry, (7.3.24)
m(Ap — lIsell) =0, (7.3.25)
sl < A (7.3.26)

Proof. It is obtained directly from Theorem 6.1.2. O

Usually, Levenberg-Marquardt method is characterized by the equation
(J(xp)T T () + pD(xg))s = —J (x) Tr(zp), (7.3.27)

where D(xy) is a diagonal and positive definite matrix. The steplength factor
oy, satisfies Armijio rule (2.5.3):

1
f(xy + apsg) < flog) + oongl sk, o€ (O, 2) . (7.3.28)

Theorem 7.3.5 For (7.5.27), the condition number of J(z)T J(x) + uD(x)
is a non-increasing function of p.

Proof. Let 51 and (3, be the largest and smallest eigenvalues of D(x) re-
spectively. Let A\; and \, be the largest and smallest eigenvalues of J ()7 J(x)+
uD(x) respectively. Let also 1 > pe > 0. Since the range of a normal matrix
is a convex hull of its spectrum, we have

M) 0 Aalpz) + (1 — p2) B

An(p1) 7 An(p2) + (p1 — p2)Bn
< Aal2) + (= p2) (1 + pr2) ™ (oa)
T Anlp2) + (1 — p2) (L4 p2) P An (p2
o A(p2)
a An(p2)

Therefore, the conclusion is obtained. O
This property indicates that the Levenberg-Marquardt method improves
the condition of the equations solved.
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7.3.2 Convergence of Levenberg-Marquardt Method

In this subsection we establish convergence of the Levenberg-Marquardt method.

Theorem 7.3.6 Let {x;} be a sequence produced by Levenberg-Marquardt
method (7.3.27). Suppose that the step lengths oy, are determined by Armijo
rule (7.3.28). If there is a subsequence {zy,} that converges to x*, and if
the corresponding subsequence {JkTiJki + pk; Dy, } converges to some positive
definite matriz P, where Jy, = J(xr,) and Dy, = D(zy,) denoting a diagonal
positive definite matriz, then g(z*) = 0.

Proof. (By contradiction) Suppose that g(z*) # 0. Let
sk = — (T Ths + 1 D)~ T
s* = limsy, = — P 1J(@")r(z"),

where 7, = r(zy,). Obviously, g(z*)"s* < 0. Let 8 € (0,1), o € (0, 3). Let
also m* be the least non-negative integer m such that

@t + B7s) < F(a*) + ofmg(w*) s(a”).
By continuity, for k£ sufficiently large, we have
flan, + 6™ sn,) < flaw,) +0B8™ g(zr,) s,
Hence
F(@rg1) = fag, + B™isk) < flan,) +oB™ glak,) sk, (7.3.29)

By the monotone descent of the method, we have

lim f(@p,41) = lim f(zy,) = f(z7).
Therefore, taking limits on both sides of (7.3.29) yields

fla*) < fla*) +af™ g(z*)Ts* <0.

This is impossible because o3 g(z*)Ts* < 0. So we complete the proof.

O

The above theorem states the convergence of a subsequence. Below, we
give convergence of the whole sequence.
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Theorem 7.3.7 Suppose that the following assumptions hold:

(a) the level set
L(z) ={z|f(z) < f(2)}

s bounded and closed for any * € R";

(b) the number of stationary points at which the function values of f(x) are
the same is finite;

(c) J(z)TJ(x) is positive definite ¥ x;
(d) pr < M < o0, Yk, that is, M is an upper bound of .

Then for any initial point x, the sequence {x} generated from Levenberg-
Marquardt method converges to a stationary point of f(x).

Proof. From (a) and the monotone property of iterative function, we know
that the sequence {x1} is in compact set L(z). This shows that {z;} must
have accumulation points. To prove the theorem, we only need to prove the
accumulation points are unique.

By (c), (d) and Theorem 7.3.6, we have that each accumulation point of
{zk} is unique. Since {f(x)} is a monotone descent sequence, f(z) has the
same values at accumulation points of {z}}. Also, from (b), it follows that
the number of stationary points of f on L(Z) are finite. Therefore, there are
only finitely many accumulation points.

Notice that, for some subsequence {xy, }, we have zj, — & and

dim g(zy,) = g(@) = 0.
Notice also that
() = —(J (@) T (xh,) + e, D(,)) " g (i)

Then it follows from (c) and (d) that s(ug,) — 0. Therefore, for sequence
{s(pe)}, we have s(up) — 0.

Assume for the moment that there are more than one accumulation point
of {z1}. Let €" be the smallest distance between any two accumulation points.
Since {z}} is in a compact set, there exists a positive integer N, such that
for all £k > N, zj, is contained in a closed ball with some accumulation point
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as center and €¢*/4 as radius. On the other hand, there is an integer N’ > N
such that
Is(ue)l| < €/4, Yk = N'.

Therefore, when k > N’, all x, are in the closed ball mentioned above with
that accumulation point as center and €*/4 as radius. Then we have a con-
tradiction which proves the theorem. O

The above theorem establishes global convergence of the Levenberg-Marqu-
ardt method. In the following, similar to Theorem 7.2.2, we discuss the
convergence rate of the Levenberg-Marquardt method.

Theorem 7.3.8 Suppose that the iterates xy, generated by Levenberg-Marquardt
method converge to a stationary point x*. Let | be the smallest eigenvalue of
J(x)TJ(x*), M the mazimum of absolute values of eigenvalues of S(z*) =

Sty (@) Viri(a®). If

T=M/l<1,0<8<(1—-71)/2, up — 0, (7.3.30)
then, for all k sufficiently large, the stepsize oy =1,
_ *
lim sup M <, (7.3.31)
[z — 2|

and x* is a strict local minimizer of f(x).

Proof. We first prove o, = 1 for k large enough. Notice that
1
fzp + si) — fxp) = gt s + is{G(azk + Osi) sk, (7.3.32)

where 6 € (0,1). By means of Armijo rule (7.3.28), to prove o = 1 for k
large enough, we need to show

Batsk — [f(@r + sx) — fax)] > 0. (7.3.33)

By use of gi. = —(JkTJk + i Dy)sg and (7.3.32), the left-hand side of (7.3.33)
can be written as

1
(1-— ﬁ)sg(JkTJk + purDy)sk — §SEG($1€ + Osg) sk

= s, {(1 — B I — %G(ﬂﬁk) + (1 = B)u Dy

- 1(G(ﬂﬁk + Osg) — G(ivk))] Sk

\V]

= st

1 1
(2 — [3) JET, — 5S(:ck) + Vk] Sk,
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where Vi, = (1 — B)ueDy — 3(G(zi, + 0si,) — G(zy)), S(zy) is defined by
(7.1.7). Since Vi — 0, to prove (7.3.33) holds for k large enough, we show
(3 — B)JLJi, — 3S(xk) converges to a positive definite matrix. Note that the
smallest eigenvalue of

(5-8) 776" - 58

is bounded below and that the lower bound is

1 1 1 1
which holds because the second inequality in (7.3.30) is met for 5. So we

obtain « = 1 for sufficiently large k.
Second, we prove (7.3.31). By (7.3.27) and (7.1.7), we have

Tppr —2F = xp — 2 — (JE Tk + meDi) " gx
= ap— " — (JE T 4 D) 7GR (z — %)
+gx + Gr(2" — x)]
= —(J{ Tk + D) T[S (k) (g — 2¥)
—pkDi(z — %) + gk + G (2™ — x5)]. (7.3.34)

Taking norm gives

lzesr — 2| < NET) TS (@) [l — )]
k|| Dellllee — 2| + [lgr + Gr(z™ — 2)]).(7.3.35)
Since
gk + Gr(z™ —zp)|| = llgx — 9(2") — Gi(ak — 7))

< GkHl‘k - .CU*H, (7336)
where ¢, — 0, then dividing the both sides of (7.3.35) by ||z — *|| deduces

|l zpsrr — x| _
H:EZT*H < T TR) T IS (@) |+ sl Dl + ex)- (7.3.37)

Note that pp — 0 and that ¢, — 0, and it follows immediately that

|Tpsr — 2™ _ M
—_— _7_’

li
111 sup ka—:]j*H =7
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which proves (7.3.31).

Finally, since g(z*) = 0 and G(z*) = J(z*)T J(z*) + S(«*) with the lower
bound [ — M > 0 of the smallest eigenvalue, then G(z*) is positive definite.
Hence z* is a strict local minimizer of f(z). O

As mentioned above, the Levenberg-Marquardt method can be described
and analyzed by use of the framework of trust region method (7.3.1)—(7.3.2)
or (7.3.3). So, following the discussions of Section 6.1, we immediately have
the following algorithm and theorem which are straightforward consequences
of Algorithm 6.1.1 and Theorem 6.1.9, respectively.

Algorithm 7.3.9 (Trust-Region Type Levenberg-Marquardt Algorithm)

Step 1. Given initial point xg, A, Ag € (0,A),e > 0,0 < <mp < 1
and 0 <1 <1<y, k:=0.

Step 2. If ||gull = |7 ri]l < €, stop.
Step 3. Approximately solve the subproblem (7.3.1)-(7.3.2) for sy.

Step 4. Compute

Pred;, = f(fEk) - Qk(sk)7
Aredy, = f(xr) — f(ar + si),
B Aredy,

k= Pred;,’

Step 5. If ri, < m, set A = 1A, and go to Step 3.

Step 6. Set xpy1 = xp + Sg. Set

A _ min{yAg, A}, if rp > n2 and ||sk|| = Ag,
k+1 Ay, otherwise.

Step 7. Set k:=k+1, go to Step 2. O

From Step 3 of the above algorithm, s is the approximate solution of
subproblem (7.3.1)—(7.3.2). It follows from Lemma 6.1.3 that

. Jlr
46(0) — qi(sk) > c1l|Jif || min <Ak, ” - kH) (7.3.38)
15 Tkl
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for some constant ¢; > 0.
Now we can state the convergence result which is a straightforward con-
sequence of Theorem 6.1.9.

Theorem 7.3.10 Suppose that the function f(z) = 3 S0 [r;(2)]? is twice
continuously differentiable, that the level set

L(zo) ={z | f(z) < flzo)}

is bounded, and that there are constants My > 0, Ms > 0 such that
IV2f(@)ll < M1, Va € L(xo),
17 (2)" T (2)|] < Ma, Va € L(xo).

Then we have that

Jim Vf(zx) = lim JEr, = 0. (7.3.39)

7.4 Implementation of L-M Method

There are various implementations of the Levenberg-Marquardt method.
Moré [218] gave an efficient and reliable implementation, which is contained
in the MINPACK software package.

The Levenberg-Marquardt method Moré [218] considered is to find s by
means of solving equations

s(p) = —(J{ Je + pe D D)~ T, (7.4.1)

which correspond to a trust region subproblem (or a constrained linear least-
squares problem)

min H?‘k + chSH s.t. HDkSH < Ap, (742)

where Ap > 0 is the trust-region radius. If Jp is singular and pi = 0, the
solution of (7.4.2) can be defined by a limit

Dys(0) = lim Dys(ur) = —(Ji Dy 1) Ty (7.4.3)

fi—

There are two possibilities: either p; = 0 and || Dgs(0)|| < Ay, in which case
5(0) is the solution of (7.4.2); or ux > 0 and || Dgs(ur)|| = Ak, in which case
s(p) is a unique solution of (7.4.2). Hence we can describe the following
algorithm.
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Algorithm 7.4.1 (Levenberg-Marquardt Algorithm,)

(a) Given Ay >0, find px > 0 such that
(JE Ik + e Di)si = = 7.

Then either pr = 0 and ||Dysg|| < Ag, or pur > 0 and
HDkskH = Ak

Jki1; otherwise set 1 = v and Jpi1 = Ji.

(¢c) Choose Apy1 and Dyyq. O

In the following, we discuss how to perform the above algorithm efficiently
and reliably.

(1) How to solve the trust-region subproblem (i.e., constrained linear
least-squares problem).
For equations
(JE Ty + peDEDy)s = —JFry, (7.4.4)

the simplest way is using Cholesky factorization. However, because of the
special structure of the coefficient matrix in (7.4.4), it is easy to use QR
factorization.

Note that (7.4.4) are just the normal equations for linear least-squares

problem
I N r
Ml/ng S = — 0 . (745)
k

For the structure of (7.4.5), instead of computing J,?Jk and DkTDk and their
Cholesky factorization, we can use column pivoting QR factorization.

Now we describe the two-step QR factorization to find the solution of the
linear least-squares problem (7.4.5).

First Step: Calculate the QR factorization of J; and obtain

- (7.4.6)

T
QJpm = [ v ] :
where () is orthogonal, T is a nonsingular upper triangular matrix with
rank(7T") =rank(Jy), and 7 is a permutation matrix. If up = 0, then the



374 CHAPTER 7. NONLINEAR LEAST-SQUARES PROBLEMS

solution of (7.4.5) is

Tt 0 _
s=m [ 0 0 ] Qry = Ji, i, (7.4.7)
where J, denotes {1,3}-inverse satisfying

Tedy Tk = Ty, Ty = (e Ji))T

(see X.He and W. Sun [172], Ben-Israel and Greville [12]). If py > 0, since
(7.4.6) becomes

T R
[ 1/2 ] ™= O 5 (748)

Q@ 0
0 =n¥
1/2

where D, = 77 Dy and R is an upper trapezoid matrix, it follows from
(7.4.8) that (7.4.5) becomes

R
0 |7ls=— [ %T ] . (7.4.9)
DN

Second Step: It is easy to eliminate D, in (7.4.9) by a sequence of n(n +
1)/2 Givens rotations and obtain

R R,
wl o |l=|o0|, (7.4.10)
D, 0

where R, is a nonsingular upper triangular matrix and W a product of a
sequence of rotations. Then (7.4.9) becomes

R, _ Qr | a|u
[O]WTS—W[O]E[U], (7.4.11)

s =R, u. (7.4.12)

and we obtain

(2) How to update the trust-region radius Ay.
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As described in §6.1, the choice of Ay depends on the ratio between actual
reduction and predicted reduction of the objective function. In the nonlinear
least-squares case, the ratio is

. [ (zp)||* = [l (xx + 51|
[r(@e)lI? = |7 (zk) + J () skl/?

which measures the agreement between the linearized model and the nonlin-
ear function. For example, if r(x) is linear, then p = 1. If J(z)Tr(z1) # 0,
then p — 1 when |[|sg]| — 0. If ||r(zx + si)|| > ||7(«k)]|, then p <O0.

Because of roundoff error, there may be overflow when we compute p by
(7.4.13). So we write (7.4.13) in a safeguard form. Multiplying both sides of
(7.4.4) by 2sT yields

(7.4.13)

—2rF JFs = 25T T Jis + 2upsDE Dys,
which is
r,{rk — r%rk — 27{(],33 — sTJkTJks = sTJkTJks + 2,uksTDngs.
Then we obtain
[7.l1? = e + Jwsl|? = [|Jks||® + 2] Dys]>. (7.4.14)

Substituting the above into (7.4.13) gives

[l sl
s esi

_ 5
ITesll 12 [ 1 Dws]
ranl] T2 el

7 ()l
It is easy to see from (7.4.14) that

(7.4.15)

1/2
1 ksll < (@l 1Dl < ()]

Hence the computation in (7.4.15) will not lead to overflow. Also, regardless
of roundoff error, the denominator in (7.4.15) is always nonnegative. It should
be mentioned that when |7(xy + si)|| > ||r(zx)|, the numerator in (7.4.15)
may be overflown. However, since we are only interested in p > 0, then
when ||r(xr + sk)|| > ||7(zk)||, we set p = 0 without needing to compute p by
(7.4.15).
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(3) How to find a Levenberg-Marquardt parameter.
In the Moré algorithm, if

[p(w)] < oA, o €(0,1), (7.4.16)

where

o(p) = | DI T+ uDT D)L I r| - A, (7.4.17)

then p > 0 is accepted as a Levenberg-Marquardt parameter, where ¢ indi-
cates the related error in ||Dgs(u)||. If ¢(0) < 0, then p = 0 is a required
parameter. Therefore we only need to discuss the case of ¢(0) > 0. Since ¢ is
a continuous and strictly descending function, then, when y — oo, we have
¢(pn) — —A. Thus, there exists a unique p* > 0 such that ¢(p*) = 0. To
determine the Levenberg-Marquardt parameter, we start from pg > 0 and
generate a sequence {pup} — p*.
From (7.4.17), we have

o) = | (J7T + D)7 - A, (7.4.18)
where J = JD™ 1. Let J = UXVT be the singular value decomposition of J,
then
n 2 2 1/2
= [ ] — A, (7.4.19)
=1 U +,LL
where z = U"r, o1,---, 0, are singular values of J. Hence we assume
' =¢ 7.4.20
o) = i = 9l (7.420

and choose a and b such that ¢(uu) = ¢(ur), &' (k) = ¢' (k). Then @(pp11) =

0 if R |:¢(Mki+ A] [ zl((zz))] _ (7.4.21)

To make computation of g1 safe and reliable, the Moré algorithm de-
signs the following technique for computing figy1.
Let

D—l T
o = DT

A
l { —$(0)/¢/(0), if J is nonsingular,
0 =
0,

otherwise,
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(a) If px & (Ig, up), set pu = max{0.001uy, (lux)"/?}.
(b) Compute ¢(ug) and ¢'(ug). Update ug:

wn = ) pws 1 O(uk) <0,
k+1 ug, otherwise.

Update [j:

- (k)
lg+1 = ma {lka,uk ¢’(Mk)}'

(c) Compute pg1 by (7.4.21).

The above algorithm gives upper and lower bounds of y. In (a), it shows
that if ug is not in (lg, ug), a point in (I, uy) inclining to I will replace py.
In (b), the convexity of ¢ guarantees that the Newton’s iteration can be used
to update l;. The sequence {uy} generated by the algorithm will converge
to p*. In fact, if we set o = 0.1, it takes no more than two steps on average
to satisfy (7.4.16).

As to computing ¢'(u), we have from (7.4.17) that

(DT q(u)" (JTJ + pDT D)~ (DT q(p))

i) =~ TGl | (r4.22)
where g(p) = Ds(p). By (7.4.8) and (7.4.10) we get
7' (JTJ 4+ uD" D) = R R,,.
Then . )
) = — —r (7 D7q(p)
@' (1) = —lla(w) HR# ( Tl ) (7.4.23)

(4) How to update the scaling matrix.
In the Levenberg-Marquardt method, Dy is a diagonal matrix which re-
duces the effects of poor scaling of the problems. In the algorithm, we choose

Dy = diag (", -+, alk)), (7.4.24)

n

where

& = (| (x0)|,

(
d*) = max{d* ™V o (@)}, k> 1.



378 CHAPTER 7. NONLINEAR LEAST-SQUARES PROBLEMS

We should point out that the above scaling is invariant under scaling, that
is, if D is a diagonal and positive definite matrix, then for function r(x)
with starting point x¢ and for function 7(z) = r(D~'x) with starting point
Zo = Dxg, Algorithm 7.4.1 generates the same sequence of iterates.

Finally, we give the Moré version of the Levenberg-Marquardt algorithm
and the convergence theorem.

Algorithm 7.4.2 (Moré’s Version)

(a) Let o € (0,1). If | DipJy ri|l < (1 + o)Ay, set pup, = 0 and
s = —Jy ri; otherwise, determine puy, > 0 such that if

Ji 5. o Tk
M;lc/QDk g 0

(i.e., si is the solution of the above least-squares problem),
then
(1 - O’)Ak < ”DkSkH < (1 + O')Ak;

(b) Compute the ratio py between the actual reduction and the
predicted reduction of the objective function.

(c) If pr, < 0.0001, set 1 = xx and Jp11 = Jg.
If pr, > 0.0001, set xp41 = T + Sk, and compute Jpi1.

(d) If p < %, set Agiq € {%Ak,%Ak] If either p, € [%,%}
and pi =0, or pp > %, then set A1 = 2||Disgl| -

(e) Update Dy by (7.4.24). O

For the above algorithm, the convergence theorem is stated as follows
without proof. The interested readers may consult Moré [218].

Theorem 7.4.3 Let r : R" — R™ be continuously differentiable. Let {xy}
be a sequence generated by Algorithm 7.4.2. Then

liminf ||(Jy Dy ) ry|| = 0. (7.4.25)
k—4o00

This result indicates that the scaled gradient is, at last, sufficiently small. If
{Jx} is bounded, then (7.4.25) implies

liminf ||J} rx| = 0. (7.4.26)
k—+4o00
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Further, if Vr(z) is uniformly continuous, then

khm | JErs|| = 0. (7.4.27)

7.5 Quasi-Newton Method

We have seen from the above sections that, for large-residual problems (i.e.,
r(z) is large or r(z) is severely nonlinear), the performance of the Gauss-
Newton method and Levenberg-Marquardt method is usually poor. The
convergence is slow and only linear. This is because we don’t use the second-
order information S(z) in Hessian G(z) = J(z)?J(z) + S(z) which is signif-
icant. As mentioned in §7.1, in fact, computation of S(x) is either difficult
or expensive. It is also not suitable to use the secant approximation of the
whole Hessian G(z). So, it may be a good idea to use a secant approximation
of the second information S(x) = 7%, 7;(z)V?ri(z) in G(z).

Let By be a secant approximation of S(zy), then the iteration (7.1.10)
becomes

(J(H?k)TJ(:Ck) + Bk)dk = —J(I‘k>TT(1‘k>. (7.5.1)
Since .
S(Tk+1) Zrl Tpy1)V2ri(@ps1), (7.5.2)
=1
then we use
Bk-+1 ZT’Z I’k+1 k+1 (753)

to approximate S(zy1), where (H;)x1 is a secant approximation of V2r; (2 1).
Then we have that

(Hi)gt1(xpy1 — x) = Vri(zre1) — Vri(zg). (7.5.4)
Hence, we get
m
Bi1 (@i — ) = Y ri(@her) (Hi) e (Tpg1 — 2x)
=1

= Y i) (Vri(zgg) — Vri(ag)
1=1

= (J(@r1) = J@)Tr(@en) 2y (7.5.5)
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which is a quasi-Newton condition imposed on By.
Similarly, if we ask

(J(@rs1)" I (@1) + Brgr)si = J (@rrn) r(@pen) — I () (@) (7.5.6)
to hold, then Bjy,q should satisfy
Bri15k = ks (7.5.7)
where
Ok = J(@pe ) r(zpgr) — J (@) r(zr) — J(@pe1) T T (@1 Sk (7.5.8)

Now, we give an update formula for By by weighted Frobenius norm. The
following theorem is a restatement of Theorem 5.1.10 in Chapter 5.

Theorem 7.5.1 Let vask >0 and T € R™"™ be a symmetric and positive
definite matrix such that
TT 51, = vy, (7.5.9)

where

v 2 Vf(wre) - V()

= J(zre)Tr(epey) — J(@p)Tr(z). (7.5.10)
Then the update
-B r — Bysi)T
Bivi — Bi+ (yr. — Brsk) v, ﬂTka(ykz kSk)
Si Vk
T
- B
_kavg (7.5.11)

(sk vk)?
is a unique solution of the minimization problem
min |77 (By1 — Be)T|p
s.t.  (Bgt+1 — Bg) is symmetric, Byy1Sk = Yk. (7.5.12)
Dennis, Gay and Welsch [88] use the quasi-Newton condition (7.5.5) and

(7.5.11), and present a quasi-Newton algorithm NL2SOL with trust region
strategy. At each step, it is required to solve the subproblem

min %r(mk)Tr(:ck) + (z — xk)TJ(xk)TT(xk)

@ = )T @) + Bl — o)

stz =zl < Ag. (7.5.13)
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In this algorithm, a deficiency of the update (7.5.11) for By, is that this matrix
is not guaranteed to vanish when the iterates approach to a zero-residual
solution, so it can interfere with superlinear convergence. This problem can
be avoided by a strategy of scaling By, that is, we choose a scaling factor

] Sk (7.5.14)
= min ,1 5, 5.
T s{Bksk

multiply By by 7k, and then use (7.5.11) to update it.

Numerical experiments show that, for large-residual problems, quasi-
Newton algorithm NL2SOL is significantly advantageous; for small-residual
problems, the performance of NL2SOL and Moré’s Levenberg-Marquardt al-
gorithm is similar; for zero-residual problems we prefer the Gauss-Newton
method. Therefore, the Gauss-Newton method, Levenberg-Marquardt method,
and quasi-Newton method introduced in this chapter are very important to
solve nonlinear least-squares problems. Now, Moré’s Levenberg-Marquardt
algorithm and quasi-Newton algorithm NL2SOL are very popular.

Similar to the above discussion, Bartholomew-Biggs [15] uses the quasi-
Newton condition (7.5.5) and the following rank-one updating formula

(yi — Brsk)(ye — Brsk)”
(yr — Bisk)T sk

Byy1 = By + ) (7.5.15)
and gives a quasi-Newton method for nonlinear least-squares problems. In
Bartholomew-Biggs’ algorithm, the scaling factor is

Vo = Thy1 k1 /TH Th- (7.5.16)

Fletcher and Xu [139] presented a hybrid algorithm which combines Gauss-
Newton method and quasi-Newton method. If the current Gauss-Newton
step reduces the function f by a certain fixed amount, i.e.,

flae) = f(@pga) = 7f(21), 7€ (0,1), (7.5.17)

we use the Gauss-Newton step. Otherwise, we use quasi-Newton update
(for example, BFGS update). In the zero-residual case, the method eventu-
ally takes Gauss-Newton steps and gives quadratic convergence; while in the
nonzero-residual case, the method eventually reduces to BFGS formula. The
theoretical analysis shows that Fletcher-Xu method is superlinearly conver-
gent. Normally, we take 7 = 0.2 in (7.5.17).
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Exercises

1. Solve the least-squares problem
. 1
min f(z) = 5 [(2 = 21) + (1= 21)%], 2 = (0,0)"
by Gauss-Newton method and Levenberg-Marquardt method.

2. Consider nonlinear least-squares problems:

, 1
min f(z) = 5r(@)'r(z) =

Y (@), m>n
i=1

N | =

where

ri(x) = 2% + a3 4+ 23 — 1,

ro(z) = 23 + 23 + (z3 — 2)% — 1,

r3(z) = 21+ 22 + 23 — 1,

rq(x) =21 + 0 — 3 + 1,

r5(x) = 3 + 323 + (5wg — 21 +1)% — 36.

(1) Compute V f(x), J(z)TJ(x), and V2f(x).
(2) Please answer whether J(z)TJ(z) = V2f(x) holds for x = (0,0), and
why?

3. Prove (7.2.7)-(7.2.9).
4. Suppose that the function f(z) = 3 S, [ri(z)]? is twice continuously
differentiable, and that the level set

L(zo) ={z | f(z) < f(wo0)}

is bounded. Let the sequence {z}} generated by trust-region type Levenberg-
Marquardt Algorithm 7.3.9 converge to z* with positive definite V2 f(2*) and
m
S(z*) = Zri(x*)V%i(m*) =0.

i=1

Prove that {z\} converges to z* with quadratic rate.
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5. Let r € R™, J € R™", 1> 0. Prove that s = —(JTJ + pI)~'J7r is
the solution of the least squares problem

min ||[Ws+ y||27

S

1
p2l
6. Consider nonlinear least-squares problems

where

) 1 1 —
min f(z) = 5r(@)'r(z) = 5 ;[n(azﬂ?, m>mn

where r : R — R™ is a nonlinear function of x and its Jacobian matrix
J(x) is full-rank for all z € R". Denote the Gauss-Newton direction, the

Levenberg-Marquardt direction, and the steepest descent direction respec-
tively by s&N, sEM and s¢:

sON =~ "
sPM = —(JTT + ul)~H ",
s¢=—JTr

Prove that

LM( GN

p)=s"",
SLM

lim s
pu—0

C
lim (1) s

p=oo [|sEM ()| [IsC”




Chapter 8

Theory of Constrained
Optimization

8.1 Constrained Optimization Problems

A general formulation for nonlinear constrained optimization is

&1}% f(x) (8.1.1)
st.  ci(x) =0, Cee Me; (8.1.2)

ci(r) >0, i=me+1,---,m, (8.1.3)

where the objective function f(z) and the constrained functions ¢;(x), (i =
1,--+,m) are all smooth, real-valued functions on R", and at least one is non-
linear, and m. and m are nonnegative integers with 0 < m, < m. Sometimes,
we set

E={1,---,mand I ={me+1,---,m}

as index sets of equality constraints and inequality constraints, respectively.
If m = 0, the problem (8.1.1)-(8.1.3) is an unconstrained optimization prob-
lem; if m, = m # 0, the problem is called an equality constrained opti-
mization problem; if all ¢;(z)(i = 1,---,m) are linear functions, the problem
(8.1.1)-(8.1.3) is called a linearly constralned optimization problem. A lin-
early constrained optimization problem with quadratic objective function
f(z) is said to be a quadratic programming problem which will be discussed
in Chapter 9.
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Definition 8.1.1 The point x € R" is said to be a feasible point if and only
if (8.1.2)-(8.1.8) hold. The set of all feasible points is said to be a feasible
set.

In problem (8.1.1)—(8.1.3), (8.1.2)-(8.1.3) are constrained conditions. From
Definition 8.1.1, the feasible point is the point satisfying all constraints. We
write the feasible set X as

Nt

X ={x]|ci(x)=0, i€ FE; ¢j(x) >0, iel} (8.1.5)

ci(z) >0, i=me+1,---,m

Cigx) =0, i=1,--,me; } ‘ (8.1.4)

or

So, we can rewrite problem (8.1.1)-(8.1.3) as

;Iéi)f(l f(z) (8.1.6)

which means that solution of constrained optimization problem (8.1.1)-(8.1.3)
is just to find a point = on the feasible set X, such that the objective function
f(z) is minimized.

In the following, we give some definitions about local and global minimiz-
ers.

Definition 8.1.2 If z* € X and if
f(x) > f(z¥), Vx € X, (8.1.7)

then x* is said to be a global minimizer of the problem (8.1.1)-(8.1.3). If
z* € X and if
f(z) > f(z%), Ve € X,z # x7, (8.1.8)

then x* is said to be a strict global minimizer.

Definition 8.1.3 If z* € X and if there is a neighborhood B(z*,6) of x*
such that
J(@) > f(a), Vo € X1 B0, (.19)

then x* is said to be a local minimizer of problem (8.1.1)—(8.1.3), where

B(z*,0) = {z | ||z — 2*||2 < 8} (8.1.10)
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and 6 > 0.
If x* € X and if there is a neighborhood B(z*, ) of x* such that

f(x) > f(z¥), Y € X N B(z*,0),x # =¥, (8.1.11)
then x* is said to be a strict local minimizer.

Definition 8.1.4 If z* € X and if there is a neighborhood B(x*,d) of =*
such that =* is the only local minimizer in X N B(x*,§), then x* is an isolated
local minimizer.

Obviously, a global minimizer is also a local minimizer.
Assume that z* is a local minimizer of problem (8.1.1)—(8.1.3), if there is
an index ig € I = [m, + 1,m] such that

¢io (%) > 0, (8.1.12)

then, if we delete the ip-th constraint, z* is still the local minimizer of the
problem obtained by deleting ig-th constraint. Thus, we say that the ip-th
constraint is inactive at x*. Now, we give the definitions of active constraint
and inactive constraint. First, write

I(z) ={i| ci(x) =0,i € I}. (8.1.13)
Definition 8.1.5 For any x € R", the set
A(x) = EUI(x) (8.1.14)

is an index set of active constraints at x, ¢;(x) (i € A(x)) is an active con-
straint at x, ¢;(x) (i ¢ A) is an inactive constraint at x.

Assume that A(z*) is an index set of the active constraints of problem
(8.1.1)—(8.1.3) at z*, then, from the observation about inactive constraints,
it is enough for us to solve the constrained optimization problem

min  f(x)
st.  ci(z) =0, i€ A(z"). (8.1.15)

In general, it is easier to solve equality constraint problem (8.1.15) than the
original problem (8.1.1)—(8.1.3).
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8.2 First-Order Optimality Conditions

In this section we discuss the first-order optimality conditions. Since the
feasible directions play a very important role in deriving the optimality con-
ditions, we first give some definitions of several feasible directions.

Definition 8.2.1 Let z* € X, 0 # d € R". If there exists 0 > 0 such that
¥ +td e X, Vt € 0,4],

then d is said to be a feasible direction of X at x*. The set of all feasible
directions of X at x* is

FD(z*, X)={d|z" +td € X, ¥t € [0,6]}. (8.2.1)
Definition 8.2.2 Let z* € X and d € R". If

d'Vei(z*) =0, i€E,
d'Vei(z*) >0, e I(z*),

then d is said to be a linearized feasible direction of X at x*. The set of all
linearized feasible directions of X at x* is

(8.2.2)

T ¥ .
LFD(z*, X) = {d‘ d Vei(2') =0, i€k }

d'Vei(z*) >0, i€ I(z)

Definition 8.2.3 Let 2* € X and d € R™. If there exist sequences di(k =
1,2,--+) and 6 > 0,(k = 1,2,---) such that =* + 6xd, € X, Vk and dp —
d,dr — 0, then the limiting direction d is called the sequential feasible di-
rection of X at x*. The set of all sequential feasible directions of X at z*
is

(8.2.3)

SFD(:”’X):{CZ dj, — d, 65 — 0

T + 0pdy € X, Vk }

In the definition above, if set x = x* + dxdy, then {x} is a feasible point
sequence that satisfies:
(1) o # 2™, Vk;
(2) img oo T = ™5
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(3) x € X for all k sufficiently large.
If set 0 = ||z — 2*||, then we have

T — x*

dy, d,

= —
|z — 2|
which means that x;, = £* +d,d}. is a feasible point sequence with the feasible
direction d.
Note that if SED(z*, X) includes the zero vector, it is referred to as the
tangent cone of X at z*, i.e.,

Tx(z*) = SFD(z*, X) U {0}.

Obviously, by use of the above definitions of some feasible directions, we
have the following lemma which indicates the relations of the above sets of
feasible directions F'D(z*, X),SFD(z*, X) and LFD(z*, X).

Lemma 8.2.4 Let x* € X. If all constraint functions are differentiable at
x*, then

FD(z*,X) C SFD(z*,X) C LFD(z*, X). (8.2.4)

Proof. For any d € FD(x*, X), it follows from Definition 8.2.1 that there
is a § > 0 such that (8.2.1) holds. Set dj = d and 8§ = /2%, then (8.2.3)
holds and clearly dy — d and 6y — 0. Thus d € SFD(z*, X). Since d is
arbitrary, then

FD(z*,X) C SFD(z*, X). (8.2.5)

Next, for any d € SFD(x*, X), if d = 0, then d € LFD(z*, X). Assume
that d # 0. By Definition 8.2.3, there exist sequences di (kK = 1,2,--+) and
Ok > 0(k=1,2,--) such that (8.2.3) holds, and dy — d # 0 and 0 — 0. By
use of (8.2.3), we see that z* + §dy € X, i.e.,

0= ci(a:* + 6kdk) = (5kd;‘chZ(a:*) + O(H(Skdk”), 1 € B, (8.2.6)

0 < ci(z* + dpdy) = SrdEVei(z*) + o(||dwdi]), i € I(z*). (8.2.7)

Dividing the above two equations by J§; > 0 and setting ¥ — oo, we obtain
(8.2.2). Thus we also have

SFD(z*,X) C LFD(z*, X). (8.2.8)

Both (8.2.5) and (8.2.8) give the result of (8.2.4). O
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In order to describe clearly necessary conditions for a local solution, it is
convenient to introduce the set

D) =D ={d | d"Vf(z') <0}, (8.2.9)

which is called a set of descent direction at z'.
Now we describe the most basic necessary condition — geometry optimality
condition as follows.

Theorem 8.2.5 (Geometry optimality condition) Let x* € X be a local
minimizer of problem (8.1.1)-(8.1.3). If f(z) and ¢;(x) (i = 1,2,---,m) are
differentiable at x*, then

dT'V f(z*) >0, Vd € SFD(z*, X), (8.2.10)
which means
SED(z*, X)ND(z*) = &, (8.2.11)

where ¢ is an empty set.

Proof. For any d € SFD(x*, X), there exist o, > 0(k = 1,2,---) and
di (k = 1,2,---) such that z* + dpdr € X with § — 0 and d — d. Since
x* + 0pdr — x* and x* is a local minimizer, then for k sufficiently large, we
have

f(a*) < f(a* + 6pdy) = f(2*) + 0pdi V f(2*) + 0(5k) (8.2.12)

which implies

d'V f(z*) > 0. (8.2.13)

Since d is arbitrary, we obtain (8.2.10).
Furthermore, (8.2.13) also implies d ¢ D(x*), and hence SFD(z*, X) N
D(z*)=¢. O

If we use terminology of the tangent cone to represent (8.2.10), we have
dT'V f(z*) >0, Vd € Tx(z*),

i.e.,

~Vf(*)Td <0, vd € Tx(z*). (8.2.14)

This implies that
—Vf(z*) € Nx(z¥), (8.2.15)
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where Nx (x*) is the normal cone of X at z*.

Theorem 8.2.5 shows that there is no sequential feasible direction at a
local minimizer x*. Unfortunately, it is not possible to proceed further with-
out constraint qualification. In the following, by means of Farkas’ Lemma
1.3.22 and the constraint qualification, we can get the first-order optimality
condition — the famous Karush-Kuhn-Tucker Theorem.

Farkas’ Lemma 1.3.22 gives the following form.

Lemma 8.2.6 The set

d'Vf(z*) <0,
S=Sd| d'Vei(z*)=0,i € E, (8.2.16)
d'Vei(z*) >0,i€l

1s empty if and only if there exist real numbers X\;,1 € E and nonnegative real
numbers \; > 0,1 € I such that

i€EE i€l
In fact, set
Vel (z%)
d:—l‘,Vf(.’L'*):C,A: 7)‘:y7
Vel (x%)

we immediately have that (8.2.16) is just (1.3.49), and that (8.2.17) and
Ai > 0,7 € I are just (1.3.50). This implies that Lemma 8.2.6 is a direct
consequence of Farkas’ Lemma 1.3.22 and also called Farkas’ Lemma.

It is convenient to state the optimality condition by introducing the La-
grangian function

L(z,\) = f(x)— Z)\ici(m), (8.2.18)
i=1
where A = (A1, -, A\n)? € R™ is a Lagrange multiplier vector.

Now, we are in a position to state the first-order necessary condition of a
local minimizer by use of Farkas’ Lemma and Theorem 8.2.5.

Theorem 8.2.7 (Karush-Kuhn-Tucker Theorem,)
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Let x* be a local minimizer of problem (8.1.1)-(8.1.3). If the constraint
qualification (CQ)
SFD(z*,X) = LFD(z*, X) (8.2.19)

holds, then there exist Lagrange multipliers X} such that the following condi-
tions are satisfied at (x*, \*):

V@) => AiVe(a*) =0, (8.2.20)
=1
ci(z*)=0, Viek, (8.2.21)
ci(x*) >0, Viel, (8.2.22)
AF >0, Viel, (8.2.23)
ANei(z*)=0, Viel. (8.2.24)
Proof. Since z* is a local minimizer, z* is feasible and the conditions

(8.2.21) and (8.2.22) are satisfied.

Let d € SFD(z*, X); since z* is a local minimizer, it follows from Theo-
rem 8.2.5 that d/Vf(2*) > 0. By constraint qualification (8.2.19), we have
d € LFD(z*, X). Thus the system

dTVei(z*) = i€ E, (8.2.25)
dTVe;(x )z ielI(z), (8.2.26)
A"V f(x*) <0 (8.2.27)

has no solution. By Farkas’ Lemma, we immediately obtain that

Vix*) = Z A Ve (z%) + Z A Ve(x"), (8.2.28)

icE i€l (z*)

where \f € R(i € E) and A} > 0(i € I(z*)). Setting A} =0 (i € I\I(x")), it
follows that m
= Z)\?Vci(x*),
=1

which is (8.2.20). It is obvious that A} > 0,Vi € I.

Finally, note that:

when i € I(z*), ¢;(2*) = 0 and A} > 0, therefore \¢;(z*) = 0;

when ¢ € I\ I(z*), ¢i(z*) > 0 but A} = 0, therefore we also have
Mei(z*) = 0.
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Thus we obtain that A¢;(z*) =0,Vie I. O

Theorem 8.2.7 was presented by Kuhn and Tucker [193], and is known as
the Kuhn-Tucker Theorem. Since Karush [185] also considered similarly the
optimality condition for constrained optimization, the conditions (8.2.20)—
(8.2.24) are often known as the Karush-Kuhn-Tucker conditions, or KKT
conditions for short. A point that satisfies the conditions is referred to as a
KKT point.

In KKT conditions, (8.2.20) is called a stationary point condition, because
it can be rewritten as

Vo L(z" ) = Vf(z*) — i AiVe(z*) = 0. (8.2.29)
=1

Conditions (8.2.21) and (8.2.22) are called the feasibility conditions, (8.2.23)
is the nonnegativity condition for multipliers, and (8.2.24) is referred to as the
complementarity condition which states that both A and ¢;(z*) cannot be
nonzero, or equivalently that Lagrange multipliers corresponding to inactive
constraints are zero.

We say that the strict complementarity condition holds if exactly one
of \¥ and ¢;(z*) is zero for each i € I, i.e., we have that \} > 0 for each
ielInAlx").

An inequality constraint ¢; is strongly active if i € I N A(z*) and A} > 0,
ie,, Af > 0 and ¢;(z*) = 0. An inequality constraint ¢; is weakly active if
i€ INA(z*) and \f =0, i.e.,, \f = ¢;i(z*) = 0.

The condition (8.2.19) is called the constraint qualification (CQ). The
constraint qualification is important for KKT conditions. As an example
given by Fletcher [133], it indicates that if constraint qualification (8.2.19)
does not hold, then the local minimizer of problem (8.1.1)—(8.1.3) may not
be a KKT point.

Example:
min T 8.2.30
(z1,22)ER? ! ( )
st a8 — 19 >0, (8.2.31)
x9 > 0. (8.2.32)

It is not difficult to see that z* = (0,0)T is the global minimizer of
(8.2.30)—(8.2.32). At z*, we have

SFD(z*, X) = {d ‘ = ( g‘ ) o> 0} (8.2.33)
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and
LFD(z*,X) = {d ‘d: ( 8‘ ) ,a€R! } (8.2.34)

Therefore, (8.2.19) does not hold. By direct computing, we have

V(") = ( (1) ) Ve (z*) = ( f)l ) Veo(z*) = ( (1) ) . (8.2.35)

which show that there does not exist A7 and A3 such that
Vi(z*) = A\]Ver(z") + A5Vea(z"). (8.2.36)

This simple example indicates the importance of constraint qualification.
However, it is not easy to examine whether or not the CQ condition (8.2.19)
holds. In the following, we give some concrete constraint qualifications which
are easy to examine and frequently used.

The most simple and obvious constraint qualification is linear function
constraint qualification.

Definition 8.2.8 If all constraints c;(x*) (i € A(z*) = EUI(z*)) are linear
functions, we say that linear function constraint qualification (LFCQ) holds.

By the definition, if ¢;(z*) (i € A(x*)) are linear functions, then CQ
condition (8.2.19) holds and we have the following corollary.

Corollary 8.2.9 Let x* be a local minimizer of problem (8.1.1)-(8.1.3). If
the linear function constraint qualification holds at x*, then x* is a KKT
point.

The most important and frequently used constraint qualification is the
following linear independence constraint qualification (LICQ).

Definition 8.2.10 If active constraint gradients Vc;(xz*),i € A(x*) are lin-

early independent, we say that the linear independence constraint qualification
(LICQ) holds.

Theorem 8.2.11 Let x* be a feasible point and A(x*) an index set of active
constraints at x*. If Vei(z*),i € A(x*), are linearly independent, then the
constraint qualification (8.2.19) holds.
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Proof. Since SFD(z*,X) C LFD(x*, X), it is enough that we only need
to prove LFD(z*,X) C SFD(z*,X). Let d € LFD(z*, X) be arbitrary.
Now let
Alz*)=FEUI(z*)={1,---,l}, me <l <n.
Since Veyi(z*),- -+, Ve(z*) are linearly independent, there are byyq,---, by
such that Vey(2%),- -+, Ve (2*),bi41, - -, by, are linearly independent.
Consider the nonlinear system

r(z,0) =0, (8.2.37)
whose components are defined as

ri(x,0) = ¢i(x) — 0dT Vei(z®),  i=1,---,1, (8.2.38)
ri(x,0) = (x — 29 b —0dTb;, i=1+1,---,n. (8.2.39)

When 6 = 0, the system (8.2.37) is solved by z*, and when 6 > 0 is sufficiently
small, any solution z is also a feasible point in (8.1.1)—(8.1.3).
Let us write

A= [Vei(x), -+, Vel ()], B= b1, ,bn).

Then the Jacobian matrix J(z,0) = V,rT(z,0) = [A : B]. Obviously,
J(xz*) = [A(z*) : B] is nonsingular. Hence by the implicit function theo-
rem there exist open neighborhoods €2, about x* and 2y about 8 = 0 such
that for any 6 € Qp, a unique solution x(6) € €2, exists, and z(0) is feasible
and continuously differentiable with respect to 6. From (8.2.37) and using
the chain rule,

dn Z or; d:z:] or;

=1
gz, 0 e T ™
that is
rda T :
Vei(z)T @—V ci(z*)'d=0,i=1,---,1, (8.2.40)
bf% —bld=0,i=1+1,---,n. (8.2.41)

The above system is

Jsz — J(2")Td = 0.
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Since x = x* at 6 = 0, we have J = J(z*) at § = 0. Thus the above equation

becomes q
x
J(x*)[—9=0 — d] = 0.
() S5lo=o —

Since the coefficient matrix is nonsingular, we obtain

dz

— =d atf0 =0

a — ’
which implies that if 65 | 0 is any sequence, then x(6y) is a feasible sequence

with the feasible direction d, i.e.,
x(0) — x*
Ok

This shows that d € SFD(z*, X). Since d € LFD(z*, X) is arbitrary, we get
LED(z*,X) C SFD(z*, X). O

—d.

By the above theorem and Theorem 8.2.7, we immediately obtain the
following theorem.

Theorem 8.2.12 Let x* be a local minimizer of problem (8.1.1)-(8.1.8). If
LICQ holds, i.e., Vei(x*),i € A(x*) = EU I(z*), are linearly independent,
then there are Lagrange multipliers \I (i = 1,---,m) such that (8.2.20)-
(8.2.24) hold.

We want to mention that sometimes we use the regularity assumption
SFD(z*,X)ND(z*) = LFD(z*, X)ND(x"). (8.2.42)

Since both sides are subsets of SFD(x*, X) and LFD(x*, X) respectively,
this assumption is clearly implied by the CQ (8.2.19). However, the converse
does not hold.

With the regularity assumption (8.2.42), the necessary condition (8.2.14)
in Theorem 8.2.5 (no feasible descent directions: SFD(z*, X) ND(z*) = ¢)
becomes

LFD(z*, X) N D(z*) = ¢,

i.e., there are no linearized feasible descent directions. Furthermore, as a
corollary of KKT Theorem 8.2.7, we have

Theorem 8.2.13 Let x* be a local minimizer of problem (8.1.1)-(8.1.3). If
the regularity assumption (8.2.42) holds, then x* is a KKT point.
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Next, we discuss the first-order sufficiency condition.

Theorem 8.2.14 Let x* € X. Let f(x) and ¢;(x) (i = 1,---,m) be differen-
tiable at x*. If

dTV f(z*) >0, V0 #d € SFD(z*, X), (8.2.43)
then x* is a strict local minimizer of problem (8.1.1)-(8.1.3).

Proof. Suppose, by contradiction, that x* is not a strict local minimizer,
then there exist x € X(k =1,2,---) such that

flxg) < f(z7), (8.2.44)

and xp — o*,x # 2% (k = 1,2,---). Without loss of generality, we assume

that i
L AN (8.2.45)

|2k — 2*[]2

Set dy, = (xf — x*)/ ||z — x*||2, 0k = ||k — 2*||2. By Definition 8.2.3, we have
d e SFD(z*, X). (8.2.46)

By use of (8.2.44), (8.2.45) and f(x1) = f(z*) + (zx — )TV f(z*) + o(||xx —
x*||2), by dividing ||z — 2*||2 and then taking the limit as k — oo, we obtain

d'V f(z*) <0, (8.2.47)

which, together with (8.2.46), contradicts (8.2.43). This completes the proof.
O

Since SFD(z*,X) C LFD(z*, X), we also have the following corollary.

Corollary 8.2.15 Let z* € X. Let f(x) and ¢;(x) (i = 1,---,m) be differ-
entiable at x*. If

d'Vf(z*) >0, V0 #d € LFD(z*, X), (8.2.48)
then x* is a strict local minimizer of problem (8.1.1)-(8.1.3).

The other important optimality condition, which is credited to Fritz John
[183], is the Fritz John optimality condition, which needs no the constraint
qualification.
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Theorem 8.2.16 Let f(x) and ¢;(z) (i = 1,---,m) be continuously differ-
entiable on a nonempty open set containing the feasible set X. If x* is a local
minimizer of problem (8.1.1)-(8.1.3), then there exist a scalar \§ > 0 and a
vector \* € R™ such that

AoV f( Z \iVei(z*) =0, (8.2.49)
ci(z¥) =0, i€ E (8.2.50)
ci(z*)>0,i€el, (8.2.51)
>0, i€l (8.2.52)
Aei(z*) =0, Vi, (8.2.53)
(A)? > 0. (8.2.54)
=0

Proof. If Vei(2*) (i € A(x*)) are linearly dependent, then there are
Af (i € A(z*)) not all zero, such that

> AVe(at) =0. (8.2.55)
i€A(x*)

Set A\j =0 and A} =0, (i € I\I(z*)), we obtain (8.2.49)—(8.2.54).
If Vei(z*) (i € A(z*)) are linearly independent, we can obtain immedi-
ately (8.2.49)—(8.2.54) with A\g = 1 by means of Theorem 8.2.12. O

The point satisfying (8.2.49)—(8.2.54) is said to be the Fritz John point.
The following weighted Lagrangian function

L(z, Mo, ) = Ao f (z Z Nici(z (8.2.56)

is said to be the Fritz John function. Obviously, the Fritz John point is the
stationary point of the Fritz John function. Note that A\g > 0. If A\g > 0,
the Fritz John function can be regarded as a Ag multiple of the Lagrangian
function. However, if \yg = 0, the Fritz John function only describes the
constraint functions and is independent of the objective function. In such
a case, Fritz John optimality conditions do not represent actually the op-
timality conditions of the original constrained optimization problem. This
disadvantage makes the Fritz John conditions unfavorable.
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We conclude this section with an optimality condition of convex program-
ming.

As we know, the problem of minimizing a convex function on a convex
set € is said to be a convex programming problem. Such a problem has the
form

min f(x)
st. xeq, (8.2.57)

where f(z) is a convex function on a convex set ). Typically, in nonlinear
programming
min  f(x
st.  ci(xr)=0,i€E, (8.2.58)
ci(z) >0,i€el,

~—

if f(z) is convex, ¢;(z), (i € E) are linear functions, and ¢;(x), (i € I) are
concave, then the constrained set Q = {z | ¢;(z) = 0,7 € E; ¢;(x) > 0,i € I}
is a convex set, and hence the problem (8.2.58) is convex programming.

As Theorem 1.4.9 in the unconstrained case, the following theorem in-
dicates that the local minimizer of convex programming is also its global
minimizer.

Theorem 8.2.17 Fach local minimizer of convex programming problem (8.2.57)
1s also the global minimizer, and the set S of global minimizers is convex.

Proof. Suppose, by contradiction, that z* is a local but not global mini-
mizer. Then there exists z1 € Q such that f(z1) < f(z*). Consider

xzg = (1 —0)z" + 0z, 6 € [0,1].
By convexity of 0, g € Q. Also, by convexity of f,
flzg) < (1—-0)f(z") +0f(21)

= f(z")+0(f(z1) — f(z7))
f(@).
For sufficiently small 0, xg) € N(x*,¢) N Q. So, it follows from assumption

that * is a local minimizer that f(xg) > f(2*). We get a contradiction
which means that local minimizers are global.

A
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Let xg,z1 € S. Define 9 = (1 — 0)zg + 0x1,0 € [0,1]. By the global
property, f(xg) > f(xo) = f(x1). However, by convexity of f, f(zg) <
(1 =0)f(x0) + 0f(x1) = fwo) = f(x1). Therefore f(zg) = f(zo) = f(21)

and so xy € S, which means that S is convex. O

Theorem 8.2.18 The KKT point of convex programming must be its mini-
mizer.

Proof. Let (z*,\*) be any KKT pair of convex programming. Obviously,
the Lagrangian function

L(z,\*) = f(z) — Z Aei(z) — Z Arci(z) (8.2.59)
icE icl
is convex for x. By use of properties of convex function and KKT conditions,

we have for any feasible x,

L(z, ) > L(z*\) + (x — o) V,L(z*, \*)

= L(z*,\Y)
= f(@*) =) Nea(")
=1
= f("). (8.2.60)

Note that x is a feasible point and A} > 0,7 € I, so we have
Aici(z) =0,i € E; Njci(x) >0,i€l.

Hence
L(xz,\*) < f(x). (8.2.61)

By (8.2.60) and (8.2.61) we obtain

f(x) > f(z"), (8.2.62)

that is, KKT point z* is a minimizer. O

Theorem 8.2.19 The convex programming with strictly convex objective func-
tion has unique minimizer.

The proof of this theorem is as an exercise.
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8.3 Second-Order Optimality Conditions

We have seen in unconstrained optimization that the second-order derivative
information has significant implications in optimality conditions. Let z* € X.
If

dT'V f(z*) > 0,Y0 # d € SFD(2*, X), (8.3.1)

then x* is a strict local minimizer of problem (8.1.1)—(8.1.3). If
there exists d € SFD(z*, X) such that d Vf(z*) <0, (8.3.2)

then from Theorem 8.2.5 it follows that z* must not be a local minimizer of
problem (8.1.1)—(8.1.3). These results tell us that, provided either (8.3.1) or
(8.3.2) holds, the first-order optimality condition can be used to determine
whether z* is a local minimizer. However, we cannot determine whether x*
is a local minimizer by the first derivative information alone, if both (8.3.1)
and (8.3.2) do not hold, i.e.,

dTV f(z*) >0, Vd € SFD(z*, X); (8.3.3)

dT'Vf(z*)=0,30+#dc SFD(z*, X). (8.3.4)

In these cases, the second-order derivative information is needed.

Assume that the constraint qualification (8.2.19) holds. It follows from
(8.3.3), (8.2.19) and Farkas’ Lemma 8.2.6 that z* is a KKT point. By (8.3.4)
and the definition of Lagrange multipliers, there exists 0 # d € SFD(x*, X)
such that .

d"Vf(z*) =Y Nd"Vei(z*) = 0. (8.3.5)
i=1
Since SFD(z*,X) C LFD(x*, X), by use of Definition 8.2.2, we have that
(8.3.5) is equivalent to

NdTVei(z*) =0, Vi € I(z*). (8.3.6)

So, we give the following definitions. Let z* be a KKT point of (8.1.1)—
(8.1.3), and A* a corresponding Lagrange multiplier vector. Define a set of
strong active constraints as

I (z¥) = {i | i € I(z*) with A} > 0}. (8.3.7)

Obviously, Iy (z*) C I(z*).
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Definition 8.3.1 Let x* be a KKT point of (8.1.1)-(8.1.8), and \* a corre-
sponding Lagrange multiplier vector. If there exist sequences dy (k =1,2,---)
and 0 > 0(k=1,2,--+) such that

o+ Spdy, € X (8.3.8)

satisfy
ci(zg) =0, 1€ EUIL(z"), (8.3.9)
ci(zg) >0, i€ (") \ Iy (x¥), (8.3.10)

and d, — d and & — 0, then d is said to be a sequential null constraint
direction at x*. The set of all sequential null constraint directions is written
as S(z*, \*),

Tp=x"+ 0pdp € X, 0, > 0,6, — 0,dp, — d,
S, \*)=1d | ci(zg) =0,i€ EUIL(x%),
ci(zg) >0, i € I(z*) — I (z%).

(8.3.11)
It is easy to see that (8.3.9)—(8.3.10) imply that
> Afei(@® + pdy) = 0. (8.3.12)
i=1
So, equivalently,
. de SFD(z*, X);
S(z*, \*) = {d n Nerz) = 0 } (8.3.13)

Obviously, S(z*, \*) C SFD(z*, X).
Similar to the linearized feasible direction, we have the following defini-
tion.

Definition 8.3.2 Let z* be a KKT point of (8.1.1)-(8.1.3), and \* a corre-
sponding Lagrange multiplier vector. If d is a linearized feasible direction at
x* and (8.3.6) holds, then d is said to be a linearized null constraint direction.
The set of all linearized null constraint directions is written as G(z*, \*),

d#0,
Gz*,\)=<{d | d'Vei(z*)

=0, i€ EUIL(z"), . (8.3.14)
dT'Vei(z*) >0,

i€ I(z*)\ I(z").
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Fquivalently,

de LED(z", \"); } (8.3.15)

Gz™,\) = {d | d'Vei(z*) = 0,i € I ().
If the Lagrange multiplier at x* is unique, G(x*,\*) can be denoted by
G(z*).
By the above definitions, we have
S(z*,\*) C SFD(z*,X), (8.3.16)
G(z*,\") C LFD(z* X). (8.3.17)
Similar to SFD(x*, X) C LFD(z*, X), we also can prove
S(z*, \*) C G(z*, \"), (8.3.18)

which is an exercise left to readers.
Now, we state the main results of this section.

Theorem 8.3.3 (Second-order necessary conditions)
Let x* be a local minimizer of (8.1.1)-(8.1.8). If the constraint qualifica-
tion (8.2.19) holds, then we have

A"V, L(x", A)d > 0, Vd € S(z*,\%), (8.3.19)

where L(x,\) is a Lagrangian function.
Furthermore, if
S(z*, \*) = G(z™, "), (8.3.20)
then
dTV2 L(x*, \*)d >0, Vd € G(z*, \*). (8.3.21)

Proof. TForanyd € S(z*,\*),if d = 0, it is obvious that dT V2_L(z*, \*)d =
0. Now we consider d # 0. From the definition of S(x*, \*), there exist {dj}
and {0} such that (8.3.8)—(8.3.12) hold. Therefore, by (8.3.12) and KKT

conditions, we have
f@™ +0kdy) = L(z" + Opdp, A7)
1
= LX) 4 SRV L N Yy + o5

1
= f(x*)+§5£de§x£(x*,A*)dk—I—o(&,%). (8.3.22)
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Since z* is a local minimizer, it follows for all k sufficiently large that

fz®™ + 0dy) > f(z¥). (8.3.23)
Using (8.3.22)—(8.3.23) and taking limits give

dTV2, L(x*, \*)d > 0.

Since d € S(z*, \*) is arbitrary, then (8.3.19) follows.
By (8.3.20), we immediately obtain (8.3.21) from (8.3.19). O

Theorem 8.3.4 (Second-order sufficient conditions)
Let x* be a KKT point of (8.1.1)-(8.1.8). If

dTV2 L(x*, \*)d > 0, Vd € G(z*, \*), (8.3.24)
then x* is a strict local minimizer.

Proof. Assume that x* is not a strict local minimizer, then there exists a
sequence {z;} C X such that

flxg) < f(z¥), (8.3.25)

with 2 — z* and zp # z*(k = 1,2,---). Without loss of generality, we

assume that .
T — X
k — d.

2k — 2*||2

By a similar argument to (8.2.45)—(8.2.47), we have
ATV f(z*) <0 (8.3.26)

and
de SFD(z*,X) C LFD(z", X). (8.3.27)

It follows by KKT conditions and (8.2.4) that
d"Vf(z*) =Y Nd"Vei(z*) > 0. (8.3.28)
i=1
Note that (8.3.26) and (8.3.28) give

ATV f(z*) =0 (8.3.29)
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which implies from (8.3.28) and Definition 8.2.2 that
NdTVei(z*) =0, Vi € I(z*). (8.3.30)
So, it follows from (8.3.27), (8.3.30) and Definition 8.3.2 that
de G(z*,\"). (8.3.31)
From (8.3.25), we have
L(z*,\*) > L(z, \Y)
= L(z*\) + %5zd{v§mﬁ(x*, N Ydy + 0(67).  (8.3.32)
Dividing by 67 and taking the limit give
dTV2 L(x*,\)d <0 (8.3.33)

which contradicts (8.3.24). We complete the proof. O
Notice that a sufficient condition for (8.3.24) is that

d'V2 . L(x*, N\ )d >0
for all d # 0 such that d” Ve;(2*) =0, i € Ay (2%, \*), where
Ap(x*, X)) = EU{ilie I(z"),\] >0}, (8.3.34)

which is obtained by deleting indices for which A¥ =0, i € I(z*) from A(z").
The A (z*, A*) is said to be an index set of strong active constraints, which is
a union of the index sets of equality constraints and strongly active inequality
constraints. So, we immediately obtain the following corollary which is also
a second-order sufficient condition and more convenient to verify in practice.

Corollary 8.3.5 Let z* be a KKT point of (8.1.1)-(8.1.3). If
dT'V2 L(x*, d*)d >0 (8.3.35)
for all d satisfying
d'Vei(xz*) =0, Vi € Ay (z*,\), (8.3.36)

then x* is a strict local minimizer.
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Proof. It is enough to prove that (8.3.35)—(8.3.36) are the sufficient con-
ditions of (8.3.24). In fact, if 2* is a KKT point, then Vd € SFD(z*, X) C
LFD(z*, X),

d'Vei(z*) =0, i€E (8.3.37)
d'Vei(z*) >0, e l(zY). (8.3.38)

So, (8.3.6) holds, which implies d € G(z*, \*) from Definition 8.3.2. There-
fore, by means of Theorem 8.3.4, it follows that (8.3.35)—(8.3.36) implies
(8.3.24). O

8.4 Duality

We conclude this chapter with a brief discussion of duality. The concept
of duality occurs widely in the mathematical programming literature. The
aim is to provide an alternative formulation of a mathematical programming
problem which is more convenient computationally or has some theoretical
significance.

The original problem is referred to as the primal, and the transformed
problem is referred to as the dual.

In this section, we give an introduction of duality theory which is asso-
ciated with the convex programming problem. We will introduce the La-
grangian dual problem, and prove the duality theorem and the weak duality
theorem. Now we first state the duality theorem.

Theorem 8.4.1 Let x* be a minimizer of convex primal problem (P)
min fx)
st.  c(xr)>0,i=1,---,m. (8.4.1)

If f(x) and ¢i(z), (i =1,---,m) are continuously differentiable and the reg-
ularity condition (8.2.42) holds, then x* and \* solve the dual problem

max  L(x,\)
st.  ViL(xz,\) =0, (8.4.2)
A>0.

Furthermore, the minimum of the primal and the maximum of the dual
are equal, i.e.,
f(z™) = L(x*, \%). (8.4.3)
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Proof. By the assumption and KKT Theorem 8.2.7, there exist Lagrange
multipliers A* > 0 such that V,£(z*,\*) =0 and A¢;(z*) =0,i=1,---,m.
Thus, f(x*) = L(x*, \*).

Let x, A be dual feasible. Using A > 0, convexity of £, and V,L(z,\) =0

gives

L@ N) = f(@*) > fa*) =Y diei(a®)
1=1

L(z*,N\)
L(z,\) + (2% — )TV L(z, )
= L(z,)N) (8.4.4)

v

which means that (z*, \*) solves the dual problem. O

Usually, (8.4.3) is said to be the strong duality. Now, we give some
examples of dual problems. Let the primal problem in linear programming
be

min lx

st. ATz >b. (8.4.5)
By Theorem 8.4.1, we immediately have the dual:

max bI'A
st.  Al=g¢, (8.4.6)
A>0.

Normally, linear programs have standard form:

min L
s.t. Ax =b, (8.4.7)
xz > 0.

The corresponding dual problem is

max D)

st.  ATa<e (8.4.8)

It is easy to examine that the optimality conditions of (8.4.7) and (8.4.8) are
identical.
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For convex quadratic programming, the primal problem is
1
min TG+ hlz
k2 2
st. ATz >0, (8.4.9)

where G is positive definite. The dual problem is

1
max E.ZCTGH? +hTe = \T(AT2 —b)
s.t. Gx+h—AXN=0, (8.4.10)

A>0. (8.4.11)
By eliminating x, we obtain the following problem:
1 1
max —iAT(ATG‘lA))\ +M(b—ATG™h) - §hTG—lh
s.t. A>0. (8.4.12)

This is a quadratic programming problem in A with bounded-constraints
A>0.

The following theorem, referred to as the weak duality theorem, shows
that the objective value of any feasible point of the primal problem is larger
than or equal to the objective value of any feasible point of the dual problem.

Theorem 8.4.2 Let 2’ be any feasible point in primal problem (8.4.1). Let
(x,\) be any feasible point in dual problem (8.4.2). Then

fx') > Lz, N). (8.4.13)

Proof. Let 2’ be primal feasible and (z, \) dual feasible. Then by convex-
ity of f, dual feasibility, concavity of ¢;, and nonnegativity of ¢;(z’) and \;
in turn, it follows that

fla) = flx) = V()@ —z)

= Z \iVei(z)T (2! — x)
i=1

AV

Y Ailei(@) = ei)
=1

— Z )\ici (ZL')
i=1

v
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Hence

f@') > fx) = hici(z) = L(z, ). O
i=1

From the above theorem, we immediately have

inf f(x) > sup L(x, ). (8.4.14)
z z,\

This implies that if the primal problem is unbounded, it follows that inf, f(x) =
sup,  £(x,\) = —o0, and this is not possible if (z, ) is feasible. Therefore,
an unbounded primal implies an inconsistent dual.

Exercises

1. Assume that f(z) is a convex function, ¢;(z) (1 < i < m,) are linear
functions and ¢;(x) (me+1 < i < m) are concave functions. Show that z* is
a global minimizer of (8.1.1)—(8.1.3) if it is a local minimizer of (8.1.1)—(8.1.3).

2. Define the e-active set by
I(z) ={i|ci(z) <e, i€l(x)}.
Prove that, for any given x € R",
lim I.(z) = I(x).

e—04

3. Prove: if ¢;j(x) (i € A(z*)) are linear functions, then CQ condition
(8.2.19) holds.

4. Prove (8.3.16) and (8.3.17).
5. Prove (8.3.18).

6. Let 0 # ¢ € ™. Consider the problem

min o

st |z]3 < 1.
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Prove that z* = ¢/||c||2 satisfies the second-order sufficient condition.

7. Form the KKT conditions for

max  (z+1)2+ (y+1)>
s.t. :L‘2+y2§2,
1—y>0

and then determine the solution.

8. Give an example in which the second-order necessary condition holds
while the second-order sufficient condition fails.

9. By solving the KKT equation, find the point on the ellipse defined
by the intersection of the surface z +y = 1 and 2% 4+ 2y + 22 = 1 which is

nearest to the origin.

10. Show that the dual of problem

i Lou? Lado
min —ox —T X
st. 1 >0

is a maximization problem in terms of a Largrange multiplier A. For the case
0 =41 and o = —1, investigate whether the local solution of the dual gives
the multiplier \* which exists at the local solution to the primal.



Chapter 9

Quadratic Programming

9.1 Optimality Conditions for Quadratic Program-
ming

Quadratic programming is the simplest constrained nonlinear optimization
problem. It is a special class of optimization problem (8.1.1)—(8.1.3) with a
quadratic objective function f(z) and linear constraints ¢;(z) (i = 1,---,m).
The general quadratic programming (QP) has the following form:

1
min  Q(x) = ixTGx +gla (9.1.1)
st.  alz=0b,i€E, (9.1.2)

alz>b,icl, (9.1.3)

where G is a symmetric n X n matrix, F and [ are finite sets of indices, F =
{1,---,mc} and I = {me+1,---,m}. If the Hessian matrix G is positive semi-
definite, then (9.1.1)—(9.1.3) is a convex quadratic programming problem
and the local solution z* is a global solution. If G is positive definite, then
(9.1.1)—(9.1.3) is a strict convex QP and z* is a unique global solution. If G
is indefinite, then (9.1.1)—(9.1.3) is a nonconvex QP which is more important
and worth emphasizing.

From Theorem 8.2.7, Theorem 8.3.3 and Theorem 8.3.4, we immediately
get the following theorems:

Theorem 9.1.1 (Necessary conditions)
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Let x* be a local minimizer of quadratic programming problem (9.1.1)-
(9.1.3). Then there exist multipliers X} (i = 1,---,m) such that

m
g+Ga* =) Na;, (9.1.4)
=1
alz* =b;, i € E, (9.1.5)
alz* >b;, i€l (9.1.6)
MN(alz* —b)=0,i¢el, (9.1.7)
\N>0,i€l. (9.1.8)
Furthermore,
d'Gd > 0, Vd € G(z*,\"), (9.1.9)
where

dfa;=0,i€E
Gx*,\)={d#0 | d’a; >0, i I(z*) : (9.1.10)
da; =0, i€ I(z*) and \f >0

Theorem 9.1.2 (Sufficient conditions)

Let x* be a KKT point and \* a corresponding Lagrange multiplier vector.
If d"Gd > 0 Y0 # d € G(z*,\*), then x* is a strict local minimizer to
(9.1.1)-(9.1.3).

Next, we give a sufficient and necessary optimality condition for (9.1.1)—
(9.1.3).

Theorem 9.1.3 (Necessary and sufficient conditions)

Let x* be a feasible point of quadratic programming problem (9.1.1)—
(9.1.3), then z* is a local minimizer if and only if (x*,\*) is a KKT pair
such that (9.1.4)-(9.1.8) hold, and

d'Gd > 0, Vd € G(z*,\"). (9.1.11)

Proof. Let z* be a local minimizer, it follows from Theorem 9.1.1 that
there exists multiplier vector A\* such that (9.1.4)—(9.1.8) hold. Let 0 # d €
G(z*,\*). Obviously, for sufficiently small ¢ > 0, we have

o* 4 td € X. (9.1.12)
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Then, by the definition of d, for sufficiently small £ > 0, we have
1
Qz") < Q(z* +1td) = Q(z*) + td" (Gz* + g) + §t2dTGd
n 1
= N +t> Nald+ -t2dTGd
Q") + ; jajd+35t°d'G
1
= Qz*) + 5tQaZTGd, (9.1.13)

which, together with the arbitrariness of d, means (9.1.11) holds.
Second, we prove the sufficiency. Suppose, by contradiction, that x* is
not a local minimizer, so that there exists zy, = x* + d,d;, € X such that

Q(zr) = Q(@" + dpdy) < Q(z"), (9.1.14)

where 0, > 0,9, — 0,d, — d. Completely similar to the proof of Theorem
8.3.4, we know that B
d e G(z*, \Y). (9.1.15)

Thus, it follows from (9.1.14) and KKT conditions that
L(z*,\*) > L(xg, ")
1
= Lz, \) + 55,361;—50@ + 0(03). (9.1.16)

Dividing both sides by 5,% and taking the limit, we obtain

d'Gd < 0. (9.1.17)

Noting that d € G(x*, \*), it follows that (9.1.17) contradicts the assumption
(9.1.11). Then we complete the proof. O

Obviously, finding the KKT point of a quadratic programming problem
is equivalent to finding x* € R™, \* € R™ such that (9.1.4)—(9.1.8) hold.

9.2 Duality for Quadratic Programming

In this section we give more detailed discussion on the duality of convex
quadratic programming, because in some classes of practical problems we
can take advantage of the special structure of the dual to solve the problems
more efficiently.
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Assume that G is a positive definite matrix. From the results in §9.1, we
have known that solving the quadratic programming problem (9.1.1)-(9.1.3)
is equivalent to solving (9.1.4)—(9.1.8). Write

y=A\—y, (9.2.1)

and

ti=alz—b;, iel, (9.2.2)

where A = [a1, -, am] € R™™ X = [A,--+, \n]T € R™. Note that (9.1.4)
is just y = Gz and that (9.1.5)-(9.1.6) become

AT — b= (0,0, tmst, )7,

then (9.1.4)—(9.1.8) can be written as

- AT
[ b ‘|:[ 4 ]:c+(0,--~,O7tme+1,~-,tm,0,--~,O)T(9-2.3)

Gy 1
AN —y =y, (9.2.4)
A >0, i€l (9.2.5)
thi=0, ¢l (9.2.6)
>0, i¢el. (9.2.7)

By KKT conditions, it follows that (9.2.3)—(9.2.7) are equivalent to solving
the problem

1 ef =
max b — §yTG_1y el QN y) (9.2.8)
7y
s.t. AN—y =g, (9.2.9)
AN >0,iel, (9.2.10)

which is the dual of the primal (9.1.1)-(9.1.3). As an exercise, please prove
that problem (9.2.8)—(9.2.10) just is

1
max, y L(z,\) = §xTGx + gz = \T(ATz —b) (9.2.11)
st. VuL(z,\) =0 (9.2.12)
A >0, i€l (9.2.13)
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Eliminating y in (9.2.9) by use of (9.2.1), we get that (9.2.8)—(9.2.10) can
be reduced to

1
gin - —(b+ ATGr)TA + §AT(ATG—1A)A (9.2.14)
st.  XN>0,i€el. (9.2.15)

Assume that z and (), y) are feasible points of the primal problem (9.1.1)—
(9.1.3) and the dual problem (9.2.8)—(9.2.10) respectively, then we have

Q(z) —Q\y) = zT(AA—y)+ %xTGx

1
—(NTAz =) Mty — §yTG71?J)
i€l
1
= Z Aiti + §($TG1‘ + 947Gy — 227y), (9.2.16)
icl

where t; is defined in (9.2.2). Then, the positive definiteness of G gives

Qz) > Q(\,y), (9.2.17)

which is what we showed in Theorem 8.4.2.
It also follows from (9.2.16) that both sides of (9.2.17) are equal if and
only if
> Xilafm—b) =0 (9.2.18)
iel
and
r=G1y. (9.2.19)

It is not difficult to see that (9.2.19) and (9.2.18) are equivalent to (9.1.4)
and (9.1.7) respectively. So, with the assumptions of feasibility, we have the
following theorem.

Theorem 9.2.1 Let G be positive definite. If the primal problem is feasible,
then z* € X is a solution of primal problem (9.1.1)-(9.1.3) if and only if
(A", y*) is the solution of dual problem (9.2.8)-(9.2.10).

In §8.4, we have shown that an unbounded primal implies an infeasible
dual. We would like to know whether or not an infeasible primal implies an
unbounded dual. This guess does not always hold. However, it is true for
linearly constrained problems.
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Theorem 9.2.2 Let G be positive definite. Then the primal problem (9.1.1)—
(9.1.3) is infeasible if and only if the dual (9.2.8)-(9.2.10) is unbounded.

Proof. From (9.2.17), if the primal problem is feasible, the objective
function of the dual problem on set satisfying constraints (9.2.9)—(9.2.10) is
uniformly bounded above.

Now suppose that the primal problem is infeasible, then the system

(al b))z =0,i€E, (9.2.20)
(al b)E>0,i€l, (9.2.21)
0,---,0,1)Z <0 (9.2.22)

has no solution for z € R™ 1. By Corollary 8.2.6 of Farkas’ Lemma, it follows
that there exist A; (i = 1,---,m) such that

(0,-++,0,1) =" Ni(al ,bi) + Y Ni(al, by), (9.2.23)
1€ER el
ie.,

> Aiai =0, (9.2.24)
=1
> by =1, (9.2.25)
=1
XN >0,i€el. (9.2.26)

Set \; = t);, then (9.2.24) gives A\ = tAX = 0. It follows from (9.2.9) that
y = —g. Therefore, when ¢ — 400, it follows from (9.2.8) and (9.2.25) that

Q\,y) =t — +oo.

Also, for all ¢ > 0, we have that A = (tAy,---,t\y,)7 and y = —g satisfy
constraints (9.2.9)—(9.2.10) of the dual problem. This shows that the dual
problem is unbounded. O

There is a closed connection between Lagrangian function

m

L(z,\) =Qx) = > Ni(a] x —b;) (9.2.27)

=1
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of the primal problem and duality. It is not difficult to see that solving KKT
conditions is equivalent to finding a stationary point of £(x, A) on the area
{(z,\)|\i > 0,14 € I}. Since the Hessian matrix of L(z, ) is

9 _ G -A
V2L(z,A) = l oo | (9.2.28)
by use of the identity
I 0 | oo I G'A| |G 0
lATGl I ] VL@ A) [ 0 I ] - [ 0 —ATGA ] (9:2:29)

we know that V2£(z, \) has just n positive eigenvalues, and that the number
of negative eigenvalues equals rank(A). Thus, in general, the stationary point
of L(z,)\) is a saddle point, i.e., there is A* € A,

A={NeR" |\ >0,i€l}
such that (z*, \*) satisfies
L(z*, ) < L(z", ") < L(z, A7) (9.2.30)

for all z € X and X\ € A.
In fact, for all x € X, we have

rileaicﬁ(x,)\) = Q(x). (9.2.31)

For any A € A, set
y=A\—yg, (9.2.32)

then (A,y) is a feasible point of dual problem (9.2.8)—(9.2.10). This means
that such a feasible (), y) satisfies (9.2.9), which is V,L(x,\) = 0, i.e., such
a feasible (A, y) such that mingegn £(z, ). Therefore,

rg}?(r% L(x,\) =bTA— %yTGfly =Q(\,y). (9.2.33)

Let (z*,\*) be a solution of (9.1.4)—(9.1.8). Let y* = A\* — g. It follows
that (A*,y") is a feasible point of (9.2.8)-(9.2.10). Then, for any x € X and
any A € A, we have

L(z,\) > Q" y")
L(z",\) = Q(z*) > L(z*, N), (9.2.34)
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which means that (z*, \*) is a saddle point of L(x, \).
Conversely, if
L(z*,\) < L(z",\*) < L(z, A7) (9.2.35)

holds for all z € X and A € A, then

m m

Q") =Y Nilaj z* —b;) < ZA;" alz* —b;)
=1
< =Y Xf(afz—1b;). (9.2.36)

Rearranging the first inequality gives

m

> (i = A)(a] = = b) >0, (9.2.37)
i=1
which is
S (i = A)(alz* —bi) + > (N )(alz* —b;) > 0. (9.2.38)
i€E i€l
Now we prove
alz*=b;, i€E (9.2.39)
ale*>b;, iel (9.2.40)

by contradiction. Suppose that af:n* > by, for some k € E. Set \; = A}
for i # k and A\, = A} — 1, then we get a contradiction from (9.2.38) to the
assumption a%x* > by. If we suppose a{x* < by, for some k € E, we can get
a similar contradiction. Therefore, we have that aiTx* =b;, Vi€ F.

Now assume, for some k € I, that

A = AL+ land \; = A} for ¢ # k. (9.2.41)
Obviously, it follows that
afz* —b, >0, kel (9.2.42)
Repeating the process for all k € I, we obtain

alz* —b;>0,Viel. (9.2.43)
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Then, z* is a feasible point to the primal problem.
Set A = 0, it follows from (9.2.35) that £(z*, \*) > L(z*,0), which is

> Af(af = —b;) <0. (9.2.44)
=1

By use of (9.2.44), (9.2.35) and \* € A, we have, for all z € X,

Q@) < Q") =Y X(ajz" — b))
i=1
= L(z*,\%)
< L(z,\%)
< Lz, \) + i MN(alz —b;)
i=1

(9.2.45)

I
b
=

which shows that z* is a minimizer of the primal problem.

Therefore, we get the following theorem which is a famous saddle point
theorem on the relationship between the saddle point of a Lagrangian func-
tion and the minimizer of the primal problem.

Theorem 9.2.3 (Saddle point theorem for quadratic programming)

Let G be positive definite. Then x* € X is a minimizer of the primal
problem (9.1.1)-(9.1.3) if and only if there exists \* € A such that (x*, \*) is
a saddle point of Lagrangian function L(x, \), i.e., the saddle point conditions

L%, \) < L(z*,\*) < Lz, \) (9.2.46)

hold for all x € X and \ € A.

9.3 Equality-Constrained Quadratic Programming

The equality-constrained quadratic programming problem can be written as

1
. T T
_ 3.1
min Qx)=g x+ -2 Gx (9.3.1)

st. ATz =, (9.3.2)
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where ¢ € R",b € R, A = [a1, " ,am] € R G € R™™ and G is
symmetric. Without loss of generality, we assume that rank (A) =m, i.e., A
has full column rank.

First, we introduce the variable elimination method. Assume that the
partitions are as follows:

B Ap 9B Ges GBN
GO b B G Rl P

where xp € R™, xny € R"™™, and Ap is invertible. By these partitions, the
constraint condition (9.3.2) can be written as

ALap + Alzy = 0. (9.3.4)
Since Agl exists, then
rp = (AgHT(b— AL zy). (9.3.5)

Substituting it into (9.3.1) gives the following form

1 A
min *.T%GN.TN + Q%ac]v + ¢, (9.3.6)
TN ERR—™ 2

which is equivalent to (9.3.1), where

N = 9N — ANAglgB + [GNB — ANAglGBB](Aél)Tb, (9.3.7)
G'N = GNN—GNB(AEI)TA%
~ANAR'Gpn + ANAZ Gpp(AgH)T AL, (9.3.8)

1
¢ = ibTAglGBBAE;Tb + gp A", (9.3.9)
If Gy is positive definite, the solution of (9.3.6) is
oy = -GN (9.3.10)

which is unique. So the solution of problem (9.3.1)-(9.3.2) is

e _ | @n | _ | (ApHTb
r= o | 0

Let A\* be the Lagrange multiplier vector at z*, then

(ApHT AL

+ s ] G- (9.3.11)

g+ Gaz™ = AN, (9.3.12)



9.3. EQUALITY-CONSTRAINED QUADRATIC PROGRAMMING 421

and thus
N = A5l (g + Gppaly + Genrl). (9.3.13)

If Gy in (9.3.6) is positive semi-definite, then when
(I - GNGH)an =0, (9.3.14)

ie., gv € R(Gy), the minimization problem (9.3.6) is bounded, and its
solution is ) o
oy = —Ghon + (I — GLGN)7, (9.3.15)

where £ € R"~"™ is any vector, C?fv denotes the generalized inverse matrix of
Gy In this case, the solution of problem (9.3.1)-(9.3.2) can be represented
by (9.3.15) and (9.3.5). If (9.3.14) does not hold, the problem (9.3.6) has no
lower bound, and thus the original problem (9.3.1)—(9.3.4) also has no lower
bound, that is, the original problem has no finite solution.

If Gy has negative eigenvalue, it is obvious that the minimization problem
(9.3.6) has not lower bound, and thus the problem (9.3.1)—(9.3.2) has not
finite solution.

Example 9.3.1

min  Q(z) = 23 — 2% — 23 (9.3.16)
s.t. x4+ a9+ a3 =1, (9.3.17)
o — T3 = 1. (9318)

From (9.3.18), we have
ws = x5+ 1. (9.3.19)

Substituting it into (9.3.17) yields
r1 = —21’3. (9.3.20)

In fact, here x5 = (71, 22)7, 7Ny = 3. By substituting (9.3.19)—(9.3.20) into
(9.3.16), we obtain
min 423 — (x3 +1)% — 22, (9.3.21)
z3€ER
Solving (9.3.21) gives z3 = 3. By substituting z3 = 3 into (9.3.19)-(9.3.20),
we get

. 31
z :(_1)§)§)T)
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which is the solution of (9.3.16)—(9.3.18).
By use of g* = AX*, it follows that

-2 1 0 v
-3 |=(1 1 ( )\i ) (9.3.22)
-1 1 -1 2

which gives Lagrange multipliers A\] = =2 and A5 = —-1. O

The idea of variable elimination method is simple and clear. However,
when Ap closes to singular, computing the solution by (9.3.11) will lead to
a numerically instable case.

A direct generalization of the variable elimination method is the gener-
alized elimination method. We partition R" into two complementary sub-
spaces, i.e., R = R(A)® N(AT). Let y1,---,ym be a set of linearly indepen-
dent vectors in R(A), the range of A, and let 21, -+, z,—, be a set of linearly
independent vectors in N (A”), the null space of A”. Write

Y: [yh'”?ym]a Z: [Zh"'azn—mL

which are n x m and n x (n — m) matrices respectively. Obviously, R(Y') =
R(A), R(Z) = N(AT), and [Y : Z] is nonsingular. In addition, ATY is
nonsingular and A”Z = 0. Set

v =YZI+ 7%, (9.3.23)

where £ € R™,z € R"™™, it follows from the constraint condition (9.3.2)
that

b=A"z=A"vz. (9.3.24)
Then the feasible point of (9.3.1)-(9.3.2) can be represented as
r=Y(ATY) b+ Zz. (9.3.25)
By substituting (9.3.25) into (9.3.1), we obtain
1
min_ (g+ GY (AT '0)T zz + 5:&TZTGZ@, (9.3.26)
TzeRr—™

which is an unconstrained minimization problem in R*~™. Here ZTGZ and
ZT(g+ GY (ATY)~1b) are called reduced Hessian and reduced gradient, re-
spectively. Suppose that ZTGZ is positive definite, then it follows from
(9.3.26) that

(ZTG2)i = —[ZTGY (ATY) Yo+ Z1 g (9.3.27)
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or

it =—(Z21Gz2) ZT (g + GY (ATY) ). (9.3.28)

The system (9.3.27) can be solved by means of Cholesky factorization. Thus,
the (9.3.28) and (9.3.25) give the solution of problem (9.3.1)-(9.3.2)

2 =Y (ATY) o — 2(ZTG2) 1 27 (g + GY (ATY) " 1b)
= (I-2z(ZTG2) ' Z2Ta)Y (ATY) o — 2(ZTGZ)" 1 27 4.(9.3.29)

Furthermore, from the KKT condition
AN =g+ Gz*,
by left-multiplying Y7 and noting that A”Y is nonsingular, we obtain

YTAN =YT(g+ Gz™)

and
Moo= (AT Ty g+ Ga]
= (ATY) TyT[Pg+GPTY (ATY) 1), (9.3.30)
where
P=I-Gz(z'Gz)'z" (9.3.31)

is an affine mapping from R"™ to R(A). In particular, if we choose Y such
that
ATy =1, (9.3.32)

where Y is a left-inverse of AT then (9.3.25) becomes
r=Yb+ 7z, (9.3.33)

where Z € R"™™, and further (9.3.29)—(9.3.30) become

ot = Yb—-2Z2(Z'G2)' Z (g + GYD) (9.3.34)
= Plyv—-2z(Z"Gz)' 727y, (9.3.35)
and
X o= YT(g+ Gz¥)

YT (Pg+ GPTYD). (9.3.36)
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From (9.3.25), we know that the feasible area of (9.3.1)—(9.3.2) is a sub-
space parallel to N(AT). The generalized elimination method just uses
column-vectors z; (i = 1,---,n—m) of Z, which form a base of the null space
of AT as basis vectors and transforms the quadratic programming prob-
lem (9.3.1)—(9.3.2) into an unconstrained minimization (9.3.26) of quadratic
function in a reduced space. Thus, this kind of method is also said to be
null-space method.

The above discussions tell us that how to choose matrix Z, base matrix
of the null space N (A7), is a key for this kind of methods. Different choices
of Z form different null-space methods for solving quadratic programming
problem (9.3.1)—(9.3.2). In the following we give some typical choices.

Clearly, the variable elimination method is a particular case of the gen-
eralized elimination method in which

vy — lAéSl], (9.3.37)
7 = lABITA%]. (9.3.38)

Another particular case is based on QR decomposition of A. Let

A=Q [ i ] Q1 Q) l N ] — QiR (9.3.39)

where @) is an n X n orthogonal matrix, R is an m X m nonsingular upper
triangular matrix. Therefore, we have a choice

Y =(ANT =QiRT, Z = Q.. (9.3.40)

A general scheme for choosing Y and Z is as follows. For any Y and Z
with ATY =T and ATZ =0,

ATy z)=1I0]. (9.3.41)
Since [V Z] is nonsingular, there exists V € R™(»=™) such that
AT ]‘1

T (9.3.42)

[YZ]:[
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ie.,

[AV]™! = [ }Zfi ] : (9.3.43)

It means that the different choices of V € R"*("=m) lead to different Y and
Z, and different elimination methods. For example, if we set

0

we can get the variable elimination method (9.3.11). If we set

V = Qo,

the above orthogonal decomposition choice (9.3.40) is obtained. Normally,
null-space method is very useful, especially for small and medium-sized prob-
lems and when the computation of the null-space matrix Z and the factors
of ZT'GZ is not very expensive.

The Lagrange method for solving equality-constrained quadratic pro-
gramming is based on KKT conditions, which are

g+ Gr = A\, (9.3.44)
ATz =0, (9.3.45)

The above system can be written in the matrix form
G -A x| g
EHEA! s

[ _iT _OA ] (9.3.47)

Here

is a KKT matrix for quadratic programming (9.3.1)—(9.3.2). It is not difficult
to show that if A has full column-rank and ZTGZ is positive definite, then
KKT matrix (9.3.47) is nonsingular.

Theorem 9.3.2 Let A € R™™ be a full column-rank matriz. Assume
that the reduced Hessian ZTGZ is positive definite. Then the KKT matriz
(9.3.47) is nonsingular. Furthermore, there exists a unique KKT pair (z*, \*)
such that equation (9.3.46) is satisfied.
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Proof. The proof is by contradiction. Suppose that KKT matrix (9.3.47)
is singular, then there exists nonzero vector (p,v) # 0 such that

G —A
l T 0 1 [ﬂ =0, (9.3.48)

where p € R" and v € R™. Clearly, we have A”p = 0. By left-multiplying

T
l b ] on both sides of (9.3.48), we obtain

v
T
_|p G “Allp|_ r
Since p € N(AT) and Z = [z1, -+, 24_m] spans N(AT), we may denote
p = Zu for some v € R™™ and have

0=p"'Gp=u"ZGZwu.
The assumption that Z7GZ is positive definite gives u = 0 and then
p=Zu=0. (9.3.49)

So, it follows from (9.3.48) that Av = 0. Notice that A has full column-rank,
then we obtain also v = 0 which together with (9.3.49) contradicts the fact
(p,v) #0. We complete the proof. O

Now let KKT matrix be nonsingular. Then there exist matrices U €
R™ ™ W € R™™ and T € R™*™ such that

-1
l _iT _OA ] = l MI/JT Vz[f ] : (9.3.50)

and the unique solution of (9.3.46) is

z* = —Ug—Wb, (9.3.51)
N = —WTg—Tb. (9.3.52)

As long as the KKT matrix (9.3.47) is nonsingular, then (9.3.50) is deter-
mined uniquely, so the stationary point of the Lagrangian function is deter-
mined uniquely by (9.3.51)—(9.3.52). However, since there are many expres-

sions for U, W, and T, and we can derive a different computational schemes
of formula (9.3.51)—(9.3.52).
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If G is invertible and A has full column-rank, then (ATG~1A)~! exists.
It is not difficult to show that the expressions of U, W, and T in (9.3.50) are

U = G'-gtAATGta) AT, (9.3.53)
W = —GtAATG 1A, (9.3.54)
T = —(ATg A~ (9.3.55)

Then it follows from (9.3.46) that the solution for quadratic programming
with equality constraints is

¥ = —Glg+ GTTAATGTTA) T ATG g+ ], (9.3.56)
Moo= (ATG A HATG g + 0. (9.3.57)
As we said, if 4 has full column-rank and Z7GZ is positive definite, then

KKT matrix is invertible. In this case, if Y and Z are defined by (9.3.42),
the matrices U, W, and T in (9.3.50) can be represented as

U = 2(Z¥Gz)7t7T, (9.3.58)
w = —PTy, (9.3.59)
T = -YT'gprTy, (9.3.60)

where P is defined by (9.3.31). Substituting (9.3.58)—(9.3.60) into (9.3.51)—
(9.3.52) yields the formula (9.3.35)—(9.3.36). Hence, the Lagrange method is
equivalent to the generalized elimination method.

9.4 Active Set Methods

Most QP problems involve inequality constraints and so can be expressed
in the form (9.1.1)—(9.1.3). In this section we describe how the methods for
solving equality-constrained QP can be generalized to handle the general QP
problem (9.1.1)—(9.1.3) by means of active set methods, which are, in general,
the most effective methods for small and medium-sized problems. We start
our discussion by considering the convex case, i.e., the matrix G in (9.1.1)—
(9.1.3) is positive semi-definite. The other case in which G is indefinite will
be simply discussed in the end of the section. Intuitively, inactive inequality
constraints do not play any role near the solution, so they can be dropped;
the active inequality constraints have zero values at solution, and so they can
be replaced by equality constraints. The following lemma is a base for active
set methods.
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Lemma 9.4.1 Let x* be a local minimizer of QP problem (9.1.1)-(9.1.3).
Then x* is a local minimizer of problem
1

mingepn ¢l + imTGx (9.4.1)

s.t. ales =b;, i€ EUI(z"). (9.4.2)

Conversely, if x* is a feasible point of (9.1.1)-(9.1.3) and a KKT point of
(9.4.1)-(9.4.2), and the corresponding Lagrange multiplier vector \* satisfies

Aj >0, i€ I(z"), (9.4.3)
then x* is also the KKT point of problem (9.1.1)-(9.1.3).

Proof.  Since, near z*, the feasible point of (9.1.1)—(9.1.3) is also feasible
for problem (9.4.1)-(9.4.2), then, obviously, the local minimizer of (9.1.1)-
(9.1.3) is also the local minimizer of problem (9.4.1)—(9.4.2).

Now let x* be feasible for (9.1.1)-(9.1.3) and a KKT point for (9.4.1)—
(9.4.2). Let there exist Af (i € EUI(z*)) such that

Gr*+g= > a), (9.4.4)
i€l (z*)UE
N(al'z* —b) =0, \f >0, i€ I(z"). (9.4.5)
Define

ANi=0,1el\Ix"). (9.4.6)

Then we immediately have from (9.4.4)—(9.4.6) that
Gz*+g=> Ma, (9.4.7)

i=1

alz* =b;, i€ E, (9.4.8)
alz* > b, iel, (9.4.9)
N> 0, i€, (9.4.10)
M(al'z* —b) =0, Vi (9.4.11)

which means that z* is a KKT point of problem (9.1.1)—(9.1.3). O

The active set methods are a feasible point method, that is, all iterates
remain feasible. In each iteration, we solve a quadratic programming sub-
problem with a subset of equality constraints. This subset is said to be a
working set and is denoted by S C E'U I(z*).
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If the solution of the equality-constrained QP subproblem on Sy, is feasible
for original problem (9.1.1)-(9.1.3), we need to examine whether (9.4.3) is
satisfied or not. If (9.4.3) is satisfied, then stop and we get the solution of the
original problem. Otherwise, the KKT conditions are not satisfied, and the
objective function ¢(-) can be decreased by dropping this constraint. Thus,
we remove the index from the working set Sp and solve a new subproblem.
If the solution of equality-constrained QP subproblem on Sy is not feasible
for problem (9.1.1)—(9.1.3), we need to add a constraint into the working set
S and then solve a new subproblem.

At each iteration, a feasible point x; and a working set S are known.
Each iteration attempts to locate a solution of an equality-constrained sub-
problem on Si. Let d be a step from x;. We can express the QP subproblem
in terms of d. Consider the QP subproblem

1
minge gn §(xk4—dYTGKwk4—d)+—gT(xk+—dL (9.4.12)
st.  ald=0,ieS8, (9.4.13)

which can be written as

1
minge g 5dTGaz +gtd (9.4.14)
st.  ald=0,ieS; (9.4.15)
where g, = VQ(zx) = Gy, + g. Denote the KKT point of (9.4.12)—(9.4.13)

by dg, the corresponding Lagrange multipliers by )\Z(- ) (1 € S). If dp, =0,
then z is the KKT point of subproblem

1
minge pn §x71?x—%ng (9.4.16)
st.  alz=b;,i€Sy. (9.4.17)

At this time, if )\Z(k) > 0,Vi € S N1, then x; is a KKT point of problem
(9.1.1)-(9.1.3), and we terminate the iteration. Otherwise, there exists nega-
tive Lagrange multiplier, for example, /\Ef) < 0. In this case, it is possible to
reduce the objective function by dropping the ig-th constraint from current
working set Si. Then we solve the resulting QP subproblem. Note that if
there are more than one index such that A; < 0, it is usual to choose iy for
which

i, = min )\( ) (9.4.18)

1€SENI
A <o
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and set

Sk =Sk \ {ix}- (9.4.19)
Suppose that the solution di # 0. If xx + dy, is feasible with regard to all
the constraints, then we set
Tkl = Tk + d. (9.4.20)
Otherwise, a line search is made along the direction di and we set
Tkl = Tk + apdy, (9.4.21)

where «ay, is a steplength such that zp + apdy is the “best” feasible point on
[z, x) + di] and the closest to x + di, i.e., take «y as large as possible in
the interval [0, 1].

Now we derive the explicit formula for ap. We ask x4+ aidy, for satisfying
all constraints. Obviously, if ¢ € Sk, then the corresponding constraint will
be certainly feasible. Thus we only need to consider those constraints for
which i ¢ Sy. There are two cases we need to consider. If al dy > 0 for some
i ¢ Sk, then we have for all ay > 0,

af (zp + owdy) > af x> by, i & Sy
In this case, the constraint is satisfied. If a,ZTdk < 0 for some ¢ ¢ S, we have

ai (zy + agdy) > b;

only if
b —alxy .
o < L =1 ¢S 9.4.22
LT (0422
Hence, we should take
by —alwy,
ap = min ————— 9.4.23
k 1¢S5y afdk ( )
a;rdk<0

Since we want aj to be as large as possible in [0, 1] subject to remaining
feasibility, we have the following formula:

. . b —almy
ar =min¢ 1, min ————
a;rdk<0

(9.4.24)
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If ap < 1, i.e., (9.4.23) holds, then there exists some j ¢ Sy such that

T
_b] aj T

o =
a]Tdk

Thus,
a;‘rwkﬂ = a]T:rk + ozka;‘pdk = b;.
This means that there is a new constraint indexed by j ¢ Sy becoming an
active constraint at xx11. So we put it into the working set, that is, set
Sk+1 =S U{j}-
If a, = 1, then the working set remains the same, i.e., Sx11 = Sk.
So, we can continue the next iteration on the new working set Si41.

Now, we are in a position to give the algorithm of active set method as
follows.

Algorithm 9.4.2 (Active Set Methods)
Step 1. Given 1, set S = EUI(xy),k = 1.

Step 2. Find the solution dy, for subproblem (9.4.12)-(9.4.13).
If dy, # 0, go to Step 3;
Else if d, = 0, compute )\Z(k) Jrom Gz + 9 =3 ics, )\Z(k)ai.
If )\Z(k) >0Vie SN, stop;
else find i by (9.4.18).
Sk = Sk \ {i}, Tkr1 = 2k, go to Step 4.

Step 3. Find oy, by (9.4.24);
Set
Tht1 = Tk + pdp. (9.4.25)

If ap,. =1, go to Step 4;
Else find j ¢ Sk such that

a;f(xk + Otkdk) = bj. (9.4.26)
Set S, := S, U {j}

Step 4. Sgy1:=Sk, k:=k+1, go to Step 2. O
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Now we give analysis to the algorithm.
From Algorithm 9.4.2, we know that all iterates are feasible, i.e.,

z, € X, Vk, (9.4.27)
and the objective function remains descent, i.e.,

Q(wr+1) < Q(x), Vk. (9.4.28)

Further, as long as dj, # 0 (i.e., zj is not the KKT point of (9.4.16)—(9.4.17))
and oy > 0, we have

Qi) < Q). (9.4.29)

If the algorithm terminates in finitely many steps, the obtained point is
a KKT point of the original problem (9.1.1)—(9.1.3).

Suppose that the algorithm does not terminate in finitely many steps;
since there is only a finite number of constraints, it is impossible that the
number of elements in Sy increases infinitely many times and does not reduce.
So there are infinitely many indices k such that dp = 0. It follows from the
algorithm that there are infinitely many indices k£ such that xp is a KKT
point of (9.4.16)—(9.4.17). Since the number of constraints is finite, Sy has
only finitely many different combinations and so the sequence of the objective
values {@(zr)} has only finitely many elements. Therefore, there must exist
a sufficiently large kg such that

Then for all k > kg, in both
ap =10 (9.4.31)

and
dp =0, (9.4.32)

only one holds. Since there are only finitely many constraints, it is impossible
that the algorithm only increases the constraint into Sy, nor reduces the
constraint from Si. Hence, there must be infinitely many indices k such that

di # 0, (9.4.33)
and infinitely many indices k such that

dj, = 0. (9.4.34)
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So, there exist ko > k1 > kg such that

dp, = 0, dy, =0, (9.4.35)
dy, 7'é 0, k1 < k < ko, (9.4.36)

and
ko > Ky + 1. (9.4.37)

Lemma 9.4.3 Let kg be an index satisfying (9.4.30). If ko > k1 > ko satisfy
(9.4.35)-(9.4.37), then
Sk, # Sk - (9.4.38)

Proof. By (9.4.35), there exist )\Z(kl) such that

g+Gr=3 a\", (9.4.39)
iESkl

where T = z,. From (9.4.31)-(9.4.32), it follows that xj = z for all k > ko.
Since dg,+1 # 0, ag,+1 = 0, there must be

J & Ski+1, (9.4.40)
such that j € Sk, 42,
j € I(x) (9.4.41)
and
al dy, 11 < 0. (9.4.42)

Since dy, is a solution for subproblem (9.4.12)-(9.4.13), i.e., dj is a descent
direction of the objective function, then

(g +Gz)Tdy, 41 <0. (9.4.43)
By using (9.4.39), (9.4.43) and Sk, +1 = Sk, \ {ik, }, we get

MNal di, 1 <0, (9.4.44)
which means that
aj, di 41> 0 (9.4.45)

by the definition of {i;}. Comparing (9.4.42)—(9.4.44) gives j # ix,. Hence
it follows from (9.4.40) that j ¢ Sk, .

On the other hand, j € Sk,42 € Sk, Hence we have Sy, # Sg,. The
proof is complete. O

Finally, we give the convergence theorem of active set methods.
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Theorem 9.4.4 If, for all k, a; (i € E U I(xy)) are linearly independent,
then either the sequence generated from Algorithm 9.4.2 converges to a KKT

point of problem (9.1.1)-(9.1.8) in finite iterations, or the original problem
(9.1.1)-(9.1.3) is unbounded below.

Proof.  Assume that the problem (9.1.1)—(9.1.3) is bounded below, then
the sequence {zy} is bounded.
If the solution of subproblem (9.4.12)—(9.4.13) is dx = 0, then zj is a

KKT point of (9.4.16)—(9.4.17) for the current working set Sj. If )\Z(k) >
0, Vi € §pN1I, then xy is a KKT point of the original problem (9.1.1)—(9.1.3).
Otherwise, there exists /\z(’z]:) < 0 (ix € SN 1) for which we can find a feasible
descent direction dj, such that

aldy =0, j €Sk j# i (9.4.46)
al dy >0 (9.4.47)

and

ghdy = AT ATdy, = (ol d) A ey = (@ di)A <0, (9.4.48)
If we substitute (9.4.46) for the constraints in (9.4.13), i.e., set S, := S\ {ixr},
the resulting QP subproblem will have a feasible descent direction. Since
ag > 0, we have

Q(wr+1) < Q(wk),

and consequently, by finiteness of constraints, the algorithm never returns to
the current working set Sy, and the sequence {z}} is finite.

If d # 0 and ai = 1, then Sk11 = Sk, and the subproblem (9.4.12)—
(9.4.13) is unchanged for zy1 and so the zjy; is the solution of (9.4.12)-
(9.4.13).

Only if di # 0 and oy < 1, xk4+1 is not the solution of (9.4.12)—(9.4.13).
At this time, from (9.4.26) in Step 3 of Algorithm 9.4.2, we know that there is
an index j ¢ S such that the j-th constraint is feasible. So, such a constraint
is added into Sgy1. If this procedure occurs repeatedly, then after at most n
iterations the working set Sy will contains n indices, which correspond to n
linearly independent vectors, then it follows from (9.4.13) that dx = 0. Thus
such a procedure continues at most n times. So there will be a KKT point
xy of (9.4.16)—(9.4.17) at most after n iterations.

Combining the above discussion, in any case, the algorithm will converge
in finite iterations to the KKT point of problem (9.1.1)—(9.1.3). O
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By modifying the algorithm, the active set method for a convex QP prob-
lem can be adopted to the indefinite case in which the Hessian matrix G has
some negative eigenvalues.

As we know from §9.3 that if G in S is indefinite, then the problem
(9.4.13) may be unbounded. We can choose the direction dj, such that a? dj, =
0 (Vi € Sk) and either

dEGdy, <0 (9.4.49)

or

VQ(z)Tdy, <0, dLGdy =0 (9.4.50)

where VQ(z1) = g + Gay. If, for all i ¢ Sy, al'dy > 0, then the original
problem (9.1.1)—(9.1.3) is unbounded below. Otherwise, we can find i ¢ S
and adek < 0. Then, when o > 0 is sufficiently large, xp + adi is not
a feasible point of (9.1.1)—(9.1.3). In this case we can take «aj as large as
possible and make x; + aidj feasible.

9.5 Dual Method

For the convex QP problem

1

mingcpn gl x + §xTGx (9.5.1)
s.t. alz="b;, i€ E, (9.5.2)
alz>b,iel, (9.5.3)

where G is symmetric and positive definite. We know from §9.2 that the dual
problem is

1
minyegm  —(b+ AG 1) TN + 5,\T(ATG—lA)/\ (9.5.4)
st. M\ >0,iel (9.5.5)

Now we adopt the active-set method to (9.5.4)—(9.5.5). The equality-
constrained subproblem we solved at each iteration is

1
minyepm —(b+ ATG1g)TA + 5AT(ATG—lA)A (9.5.6)
s.t. \i=0,i€Sy, (9.5.7)
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where S C I is a working set for dual problem (9.5.4)-(9.5.5). Let A, be a
KKT point of the subproblem (9.5.6)-(9.5.7). Set

= -G g — A\, (9.5.8)
then
Gryp + g = A)g, (9.5.9)
and from
(b+ATG g — ATG1AN,); =0, Vi ¢ S, (9.5.10)
we have
(ATz), — b); =0, Vi ¢ Sp. (9.5.11)

Thus, zj is the KKT point of the subproblem

1
mingepn g’ @ + 5;chch (9.5.12)
st.  alz=b;,i¢ Sy (9.5.13)

Write S = {I U E} \ S. It is obvious that (9.5.12)-(9.5.13) is the same as
(9.4.16)—(9.4.17). It is not difficult to see that the Lagrange multipliers of
dual problem (9.5.6)-(9.5.7) satisfy

(ATG7TAN, — b — ATGYg);
= (AT.CCk — b)z = al-Txk —b;, 1 € gk (9.5.14)

We ask \i to be a feasible point of (9.5.4)—(9.5.5). If the Lagrange multiplier
(9.5.14) of the dual problem (9.5.6)—(9.5.7) is nonnegative, zj, is a KKT point
of the original problem (9.5.1)—(9.5.3). Let Aj be a matrix with the columns
a; (i € Sg), A\ the vector consisting of the components of \; corresponding
to i € Sk. It follows from (9.5.10) that

bi+al G lg—al GTI AN =0, i € S, (9.5.15)

ie.,

b 4 ATG g — ATG AR, = 0, (9.5.16)

where () consists of the components of b corresponding to ¢ € Sg. Then
(9.5.16) gives
Ao = (AFG14) ™ + AT G ] (9.5.17)



9.5. DUAL METHOD 437

When Lagrange multipliers in (9.5.10) are not all nonnegative, we should,
by the active-set method, drop an index iy, € Sg, that is, add the index iy into
Sk. For convenience of sign, we write i as p. Then we have S = S U{p}.

Let -
Abyl = ( AO’“ ) + ( 52: ) . (9.5.18)

It follows from (9.5.17) that

ATG71A, AlTG la, o\ _ 0 (9.5.19)
agG_lAk. aZ;G_lap O bp—a;‘f:ck ’ e

which gives

_ \ (ATG-1A4)1AT -1
/\k—i—l:(/\ok)-i-ﬂk( (i G ’“1) kG ap). (9.5.20)
So,

— -1 Y j\k

Th+1 = T + G Ak+1 >\k+1 — O
= @+ BG T — AR(Af G AR) TTALG ay. (9.5.21)

Let

Po= (ALGT' Ay TAL G (9.5.22)
yp = Ajap. (9.5.23)

Since A1 should satisfy A\x.1 > 0, it follows from (9.5.20) and (9.5.23) that

0<f; < min EA’“ij (9.5.24)
(yjk)j];O Yk J
If
G™HI — ApA})a, =0 (9.5.25)

and yi < 0, then

(=4 )T (A G Agpa) ( B ) —0 (9.5.26)
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and
(—ye, DTOF + AT G g) = b, — alay > 0, (9.5.27)

which indicate that the dual problem (9.5.4)—(9.5.5) is unbounded. Further,
we know by the duality theory that the original problem (9.5.1)—(9.5.3) has
no feasible point.

Now, by use of the analysis above, we describe the dual method due to
Goldfarb and Idnani [155] as follows (we consider the case in which m. = 0,
i.e., the problem with only inequality constraints).

Algorithm 9.5.1 (Dual Method)
Step 1. 1= -G g, f1 = %gTarl,Sl =& k=1, =,¢=0.

Step 2. Computer; =b; —alzp, i=1,---,m.
If r; <0, stop.
Choose p such that r, = maxi<j<m 7i;

)\k::<>(\)k>.

Step 3. dj, := Gkap = G I — ApA})ay; yi = ALayp.
If {j] (yx); > 0,7 € Sk} is nonempty, set
M)j _ Qwr,

_ = R0 9.5.28
= 00 (e); . (W) ( )
JjESK

else set o, = 00.

Step 4. If di, # 0, go to Step 5;
If o, = 00, stop (the original problem has no feasible point);
Sk =8 \{l}; ¢g:=q¢—1,
—Yk ).
1 )
Modify A}, and Gy turn to Step 3.

Xk:::Xkﬁ-ak

Step 5 & = —(by — a;‘ka)/agdk;
ay = min{oy, &};
Tht1 i= Tf + opdy; B
Srr1 = fr + ogal di (5o + (Me)gr1)

N1 = Ak + o ( _1yk
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Step 6. If o, < &, go to Step 7;
Sp+1 =8 U{ph ¢:=q+1;
Compute Giy1 and Ay, k =k + 1; turn to Step 2.

Step 7. Sk =S \{l}; ¢:=q¢—1; B B
Removwe the [-th component from A and obtain a new \g;
Compute Gy, and A3, turn to Step 8. O

Next, we give a simple example which employs Algorithm 9.5.1.

Example 9.5.2

1 1 1
min 53:% + 5953 + 5:53 — 39 — 23 (9.5.29)
s.t. —x1 — w9 —x3 > —1, (9.5.30)
r3 — T2 Z —1. (9.5.31)

Solution. This example is a modification of the problem (9.3.16)—(9.3.18).
The unique solution is still (1,2, 1)T. By use of Algorithm 9.5.1, we have

)22
0
rn=-Glg=1| 3 [,
1

7’1=3>0, ro =1>0.

Then we have p = 1 from Step 2, and
dy = Gilap =1 -1
-1
Since &7 is empty, a; = oo in Step 3. In Step 5, we get
= —rl/agdl =1,
and obtain

a1 =1, zo =21 + aqd = 2 s

5\2 = (1)7 Sy = {1}
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Thus, after one iteration, x5 is the solution of the subproblem

1 1 1
min ix% + im% + 51:3 — 319 — 3 (9.5.32)
st. —x1 — a9 — 23 = —1. (9.5.33)

In the second iteration, we have
= 0, Tro = 1.

Then p = 2 from Step 2, and

1Y 0 0
dy=G Y I—| 1 3 11| -1 | =] -1
1 1 1

Since y2 = ala; = 0, we have ap = oo in Step 3. In Step 5, we have

N 1
oz:—rg/aQTd2:§
Then as := & = %,
-1 1 0 -1
T3 =xo+ aodo = | —1 +§ -1 | = _% 7

and A3 = (1 %)T Hence, z3 is the solution of the original problem and A3 is

the corresponding Lagrange multiplier. O
In concrete computation, Goldfarb and Idnani suggested using the Cholesky
factorization of G,
G=LL",

and then employing QR decomposition to L™ Ay, that is,
L™ A = Qy [ ]?)k ] :

This approach allows us to get better numerical stability than by using G~*
directly.
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Instead, Powell [274] suggested using
R R
A = Qr l 0’“ ] = QW Q) l ok ] , (9.5.34)

and then employing the inverse Cholesky factorization of [Q,(f)]TGQEf), ie.,

nUf = QP17 GQY, (9.5.35)

where Uy, is an upper triangular matrix. In the algorithm that Powell [274]
presented, each iteration updates QS), Ry, and Uy.

9.6 Interior Ellipsoid Method

Karmarkar [184] introduced a new polynomial-time algorithm for solving lin-
ear programming problems that sparked enormous interest in the mathemat-
ical programming community. Karmarkar’s algorithm generates a sequence
of points in the interior of the feasible region while converging to the opti-
mal solution. This algorithm is effective and competitive with the simplex
method in terms of solution time for linear programming (LP).

Ye and Tse [364] present an extension of Karmarkar’s LP algorithm for
convex quadratic programming. We introduce this algorithm in brief. The
interested readers can consult the original paper for details.

The original version of Karmarkar’s algorithm solves a linear program-
ming of the special form

min &7'3 (9.6.1)

st. ATz =0,"4=n+1,2>0,
where ¢ € R"t! & e Rt A e ROvHDx(m+]) o — (1,... . 1)T € R"t!. Now,
we generalize the Karmarkar’s algorithm to convex quadratic programming.
Consider convex quadratic programming problem

1
min g7z + §xTG:c 2 q(z) (9.6.3)

st. ATz =1, (9.6.4)
x>0, (9.6.5)
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where A € R™™™. Let x be an interior point, i.e.,

ATz = b, (9.6.6)
x> 0. (9.6.7)
Define
()1 0
Dy, = diag(zy) = . (9.6.8)
0 (T)n

Let the transformation & = Tz € R" ! as follows:

1)(D )
PO s Z(l EDi G (9.6.9)
e'D, e +1

Fny1 = (n+1)/[e" D e +1]. (9.6.10)

Obviously, the inverse transformation 7} L. Rt — R™ is defined by

r=T, s == , (9.6.11)
Tn41
where ¢ = (1,---,1)T € R™! 2[n] = (21, --,42,)7. Then, the problem
(9.6.3)—(9.6.5) can be written as
minge ot np1q(T) ') 2 G(2) (9.6.12)
s.t. AT Dyi[n] — & 1b =0, (9.6.13)
eld=n+1, (9.6.14)
&[n] >0, &> 0. (9.6.15)

By substituting (9.6.11) into (9.6.12), we obtain an equivalent form of (9.6.12)—
(9.6.15):

1 ~
min  §{ &[n] + §£[n}TGk§c[n] [Eni1 (9.6.16)
st. AFi=b, (9.6.17)
&[n] >0, Zpy1 >0, (9.6.18)

where
Gk = DyGDy, gr = Dyg, (9.6.19)
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0
~ DkA ~
Ay = e |, b= : (9.6.20)
—bT 0
n+1

Using the interior ellipsoid method, we solve the following subproblem
(9.6.22)—(9.6.24) over an interior ellipsoid centered at Iy, instead of solving
the subproblem (9.6.12)-(9.6.15). Note that, for a given iterate xj, T =
Trx, = e and §(2) = ¢(e) = q(zx). So, the interior ellipsoid happens to be
an interior sphere in the feasible area of problem (9.6.12)—(9.6.15). Thus, the
condition (9.6.18) can be enhanced to

& —ells < B < 1. (9.6.21)

Obviously, (9.6.18) will hold provided (9.6.21) holds. Hence, we consider the
subproblem

1 1 .
min  §i &[n] + il + §z[n]TGk;i[n] [Ena1 (9.6.22)
st. ATz =1, (9.6.23)

|2 —ella <B <1, (9.6.24)

where 3 < 1 is a constant independent of k.
By the Karush-Kuhn-Tucker Theorem, solving (9.6.22)-(9.6.24) is equiv-
alent to solving the following system:

g, + @ b1 Grzn] = Ap[n]A + p(z[n] — e[n)), (9.6.25)
1 1 A R .
—5 =z Ghdln] = (@) "N + uldn — 1) =0, (9.6.26)
anrl
Alz =, (9.6.27)
12 —ell2 < B, (9.6.28)
plllz —ellz—B] =0, p <0, (9.6.29)

where (9.6.25) and (9.6.26) are the first n equations and the last equation of

the stationary point condition in KKT conditions respectively. Here Ay, [n]
is the matrix of the first n rows of matrix Ay, &gﬁl is the (n 4 1)-th row of
A, eln] = (1,---,1)T € R" and A € R™1. So, (9.6.25) and (9.6.27) can be

written in the following form

] = &pp1b+ D, (9.6.30)
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where
Gr+pl —A[n)
P X 9.6.31
B — 0k 3 fie
b=| b |,b=| 0 |, (9.6.32)
-1 n+1
A= Gni\, L = —Fni1p. (9.6.33)

Then, for any given i > 0, we can find A and Z[n] from (9.6.30). Then we
obtain &4 from substituting A and Z[n] into (9.6.26). This indicates that
for any given i > 0, we can find Z(fz). Define the function

h(p) = [1Z(f) — ell2 — 6. (9.6.34)
h( ) < 0, then #(0) is the solution of (9.6.12)—(9.6.15). In this case,
= Dy&(0)[n]/2(0)n+1 is the solution of the original problem.

If h(0) > 0, since lim;_. h(f1) = —3 < 0, we can find i, by a bisectioning
method such that h(f;) = 0, and further the solution (/i) of problem
(9.6.22)—(9.6.24). By back-substituting Z(jix), we obtain the new iterate
To1, Le.,

Dy
wpir = Ty Y2 (i) = M, (9.6.35)
&(fu)n1

where () [n] = (&(f)1, - &))"
The interior ellipsoid algorithm for solving convex quadratic programming
problems is introduced as follows.

Algorithm 9.6.1 (Interior Ellipsoid Method for Conver QP)
Step 1. Given a strict interior point x1 of (9.6.3)-(9.6.5); k := 1.

Step 2. Solve the subproblem (9.6.22)-(9.6.24) for &(fu); and com-
pute xxy1 by (9.6.35).

Step 3. If xpy1 s a KKT point, stop;
k:=k+1, goto Step 2. O

The further details of interior ellipsoid methods for convex quadratic pro-
gramming can be found in Ye and Tse (1989).
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9.7 Primal-Dual Interior-Point Methods

The primal-dual interior-point method for linear programming can be applied
to convex quadratic programming through a simple extension of the method.
Since we have not discussed the topic linear programming in the book, we
first outline this method for linear programming.

Consider the linear programming problem in standard form

minge pn 'z
s.t. Az = b, (9.7.1)
x>0,

where ¢ and x are vectors in R™, b is a vector in R™, and A is an m X n
matrix. The dual problem for (9.7.1) is

maxycpm bT)\
s.t. AT +5=c, (9.7.2)
s >0,

where ) is a vector in R™ and s is a vector in R". The primal-dual solution
of (9.7.1) and (9.7.2) are characterized by the Karush-Kuhn-Tucker (KKT)
conditions:

AT +s=c, (9.7.3)
Az = b, (9.7.4)
z;8i=0, i=1,---,n (9.7.5)
(z,s) >0, (9.7.6)

where vectors A and s are Lagrange multipliers for the constraints Az = b
and x > 0, respectively.

Primal-dual interior-point methods find primal-dual solutions (z*, A*, s*)
of KKT system by applying variants of Newton’s method to the three equality
conditions (9.7.3)—(9.7.5) of this system and modifying the search directions
and steplength so that the inequalities (x, s) > 0 are satisfied strictly at every
iteration.

To derive primal-dual interior-point methods, we restate the KKT con-
ditions (9.7.3)—(9.7.6) in a slightly different form by means of a mapping
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F - R2n+m N R2n+m:

AT +s—c¢
F(z, A\ s) = Az —b =0, (9.7.7)
XSe
(x,s) >0, (9.7.8)
where
X = diag(x1,x9, -+, xn), S = diag(si, s, -,sn),
and e = (1,1,---,1)”. Note that F is actually linear in its first two terms

Az — b, ATA\ + s — ¢, and only mildly nonlinear in the remaining term X Se.

Primal-dual interior-point methods generate iterates (z*, \¥, s¥) that sat-
isfy the bound (9.7.8) strictly, that is, ¥ > 0 and s¥ > 0. This property is
the origin of the term interior-point. By respecting these bounds, the meth-
ods avoid spurious solutions, which are points that satisfy F'(x, A, s) = 0 but
not (z,s) > 0.

Newton’s method forms a linear model of F' around the current point and
obtains the search direction (Ax, A\, As) by solving the following system of
linear equations:

Azx
J(x, N, 8) | AN | = —=F(x,)\,s), (9.7.9)
As

where J is the Jacobian of F'. If the current point is strictly feasible, the
Newton step equations become

0 AT T Ax 0
A 0 0 AN | = 0 . (9.7.10)
S 0 X As —XSe

Note that a full step along this direction usually is not permissible, since it
would violate the bound (x,s) > 0. To avoid this difficulty, we perform a
line search along the Newton direction so that the new iterate is

(x, A, s) + a(Azx, AN As) (9.7.11)

for some line search parameter a € (0, 1]. Unfortunately, we often can take
only a small step along the direction (o < 1) before violating the condition
(x,s) > 0. Hence the pure Newton direction (9.7.10) often does not allow us
to make much progress toward a solution.
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In the following, we give the central path technique which modifies the
basic Newton procedure.

The Central Path

The central path C is an arc of strictly feasible points that plays a vital
role in primal-dual algorithms. It is parametrized by a scalar 7 > 0, and each
point (z, Ar,s;) € C solves the following system:

AT)N +s=c, (9.7.12)
Az =0, (9.7.13)
ris; =71, 1=1,2,---,m, (9.7.14)
(z,5) > 0. (9.7.15)

These conditions differ from KKT conditions only in the term 7 on the right-
hand side of (9.7.14). Instead of the complementarity condition (9.7.5), we
require that the pairwise product x;s; have the same value 7 for all indices
i. From (9.7.12)—(9.7.15), we can define the central path as

C={(xr,A\r,s7) | T>0}.

It can be shown that (x,, A;,s;) is defined uniquely for each 7 > 0 if and
only if the strictly feasible set F° defined by

Fo={(z,\s) | Az =b, AT\ +s5=c,(z,5) >0}

is nonempty. Hence the entire path C is well defined.
Another way of defining C is to use the mapping F' defined in (9.7.7) and
write

0
F(zr,Arys7)=1 0 |, (zr,8:) >0. (9.7.16)

TE

The equations (9.7.12)—(9.7.15) approximate (9.7.3)—(9.7.6) more and more
closely as 7 goes to zero. If C converges to anything as 7 | 0, it must con-
verge to a primal-dual solution of the linear program. The central path thus
guides us to a solution along a route that steers clear of spurious solutions by
keeping all the pairwise products x;s; strictly positive and decreasing them
to zero at the same rate.

Primal-dual interior-point algorithms take Newton steps toward points on
C for which 7 > 0, rather than pure Newton steps for F'. Since these steps are
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biased toward the interior of the nonnegative orthant defined by (z,s) > 0,
it usually is possible to take longer steps along them than along the pure
Newton steps for F' before violating the positivity condition. To describe the
biased search direction, we introduce a centering parameter o € [0, 1] and a
duality measure p defined by

1& xls
=- i8i = —, 7.1
1 ni;azs - (9.7.17)

which measures the average value of the pairwise product x;s;. By writing
7 = op and applying Newton’s method to the system (9.7.16), we obtain

0 AT I Az 0
A 0 0 |]AaN]|= 0 : (9.7.18)
S 0 X As —XSe+oue

The step (Az, AX, As) is a Newton step toward the point (24, Aoy, Sopu) € C,
at which the pairwise product x;s; are all equal to ou. In contrast, the step
(9.7.10) aims directly for the point at which the KKT conditions (9.7.3)—
(9.7.6) are satisfied.

If o = 1, the equations (9.7.18) define a centering direction, a Newton step
toward the point (z,, Ay, s,) € C. If 0 = 0, the (9.7.18) gives the standard
Newton step.

In the following, we define a general framework of primal-dual interior-
point algorithm.

Algorithm 9.7.1 (A Primal-Dual Interior-Point Framework)
Given (20,\Y s0) € F°.

For £=0,1,2, -,
solve
0 AT T Azx¥ 0
A 0 0 AN | = 0 ,
Sk 0 Xk AsF —X*Ske + op e

where oy, € [0,1] and py, = (2F)Ts* /n;

set
(2P AL SR = (2R AR P 4 ag (Azk, ANF AsP),

choosing oy, such that (z*+1, s¥+1) > 0.
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end(For). O

For most problems, however, a strictly feasible starting point (22, A\°, s°)
is difficult to find. Infeasible interior-point methods require only that the
components of z° and s° be strictly positive. Therefore, we give a slight
change to the equation (9.7.18). If we define the residuals for the two linear
equations as

r=Ax —b, r.=A"N+s—c¢,

the modified step equation is

0 AT T Az —7Te
A 0 O AN | = -7 . (9.7.19)
S 0 X As —XSe+oue

Primal-Dual Interior-Point Methods for Convex Quadratic Pro-
gramming

Now we return to convex quadratic programming. Let us discuss convex
quadratic programming with inequality constraints:

ef 1
mingepn  q(z) def §JJTG$ + 2Ty (9.7.20)

s.t. Az >, (9.7.21)

where g € R",b € R™, A € R™*"™ and G € R™ "™ is symmetric and positive
semidefinite. The KKT conditions of (9.7.20)—(9.7.21) state as follows: If
x* is a solution of (9.7.20)—(9.7.21), there is a Lagrange multiplier vector \*
such that the following conditions are satisfied for (z, ) = (z*, \*):

Gr— AT\ +g=0, (9.7.22)
Az —b >0, (9.7.23)
(Az — b))y =0, i=1,2,---,m, (9.7.24)
A > 0. (9.7.25)

By introducing the slack vector y = Az — b, we have
Gr—ATA+g=0,
Az —y—b=0,
yl)\’L =0, i=1,2,---,m,
(y,A) = 0.
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As in the case of linear programming, here the KKT conditions are not
only necessary but also sufficient, because problem (9.7.20)—(9.7.21) is convex
programming. Hence we can solve it by finding solutions of system (9.7.26)—
(9.7.29). As discussed above, we apply modifications of Newton’s method to
this system. We can define

Gr— AT\ +g¢
Flz,y,\)=1| Az—y-b |, (y,A) >0, (9.7.30)
Y Ae

where
Y:diag(y17y27"'7ym)v A:diag(kla)‘Qa"'aAm)a 62(1717"'71)T'

Given a current iterate (x,y,\) that satisfies (y,A) > 0, we can define a

duality measure y by

———E i = —. .7.31
o mily (9.7.31)

m

The central path C is the set of points (x,,y-, A\;)(7 > 0) satisfying

0
F(«Tﬂyﬂ )\’T) = 0 ’ (yTa )‘T) > 0 (9732)

TE

The generic step (Axz, Ay, AX) is a Newton-type step toward the point (2o, You, Aop) €
C. As in (9.7.19), this step satisfies the following system:

G —AT 0 Ax —Ty
A 0 —I Ay | = -1 , (9.7.33)
0 Y A AX —ASe+ope

where
Tg:Gm—AT)\+g, ry = Axr —y —b.

So, we obtain the next iterate
(2,57 A7) = (2,9, ) + a(Az, Ay, AN), (9.7.34)
where « is chosen so that (y*,A\") > 0.

For mode details of primal-dual interior-point methods for convex quadratic
programming, please consult Wright [358].
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Exercises

1. Let H = Diag(h11, ha2, ..., hnn) be a positive definite diagonal matrix.
Find the minimizer of (9.1.1) subject to the condition ||z < 1.

2. Prove Theorem 9.1.1.

3. Prove that problem (9.2.8)—(9.2.10) is the dual of problem (9.1.1)-
(9.1.3).

4. Solve the dual of the problem

min (2% +23)/2 + 2
s.t. x1 > 0.

5. If f(z) is a convex function and ¢;(z)(i = 1,---,m) are concave func-
tions, the problem

min  f(x)
st.  ¢(x) >0

is called a convex programming problem. Generalize the dual theory in Sec-
tion 9.2 from convex quadratic programming to general convex programming.

6. Find the smallest circle in the plane that contains the points (1, —4),
(—=2,—2), (—4,1) and (4,5). Formulate the problem as a convex program-
ming problem, then solve the dual.

7. Assume that B € R™™" is positive definite, A € R™*", g € R™ and
b € R™. Give the dual problem of the following QP:

1
min ng + §$TB$
s.t. Ax =b.
8. Solve the equality constraint QP problem

T
min 1 —i—}T L2
—1) 7% L2 4)"

st. a1+ a9 =1.
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I m

9. 1) Check that if set V = [ ] in (9.3.42), the choice (9.3.37)—

(9.3.38) can be obtained.
2) Check that if set V = @2 in (9.3.42), the choice (9.3.40) can be ob-
tained.

10. Show that if A € R™ ™ has full column-rank and Z7GZ is positive
definite, then KKT matrix (9.3.47) is nonsingular.

11. Show (9.3.53)(9.3.55).
12. Show (9.3.58)(9.3.60).

13. Assume A € R™*™ has full row rank. Let Z € R"*("~™) be any full
column rank matrix such that AZ = 0. Prove that the matrix

B AT
[A 0] (9.7.35)

is nonsingular if and only if Z7 BZ is nonsingular.

14. Use the active set method to solve the problem

min  —1000z; — 1000z + 23 + 23
s.t. 3x1+ 20 >3,

1 +4x9 > 4,

r1 >0,

xo > 0.

Illustrate the result by sketching the set of feasible solutions.

15. Program Algorithm 9.4.2 and use it to solve

min x% + 2.7,’% — 2x1 — 629 — 22129

t L +1 <1
S.T. 2$1 21’2_,

—z1 + 29 < 2,
x1, 22 2 0.
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16. Try to give the primal-dual interior-point algorithm for convex quadratic
programming (9.7.20)—(9.7.21).



Chapter 10

Penalty Function Methods

10.1 Penalty Function

The penalty function methods are an important class of methods for con-
strained optimization problem

mingepn  f(x) (10.1.1)
st. cle)=0,ie B2 1, me, (10.1.2)
ci(z) >0, iel™ fme+1,--,m). (10.1.3)

In this class of methods we replace the original constrained problem by a
sequence of unconstrained subproblems that minimizes the penalty functions.
The penalty function is a function with penalty property

P(z) = P(f(z),c(x)), (10.1.4)

constructed from the objective function f(x) and the constraints c¢(x). The
so-called “penalty” property requires P(x) = f(x) for all feasible points z €
X of (10.1.1)-(10.1.3), and P(x) is much larger than f(z) when the constraint
violations are severe.

To describe the degree of constraint violation, we define the constraint
violation function ¢(=)(z) = ( (_)(ac), e ,c(_)(ac))T as follows:

@) = clx), i€k, (10.1.5)
(@) = min{e;(),0}, i€ L. (10.1.6)
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Define
C ={ci(z)|ci(x) =0,i € E; ¢i(x) >0,i €I} (10.1.7)

Obviously, z is a feasible point if and only if ¢(z) € C. Furthermore,
if ¢;(z) >0, ie., ¢;(x) € C, then cg_)(:v) =0;

if ¢;(x) <0, ie., ¢i(z) ¢ C, then cl(-_)(a:) # 0.

This means, for each constraint, the constraint violation function is nonzero
when the corresponding constraint is violated and zero when the correspond-
ing constraint is feasible.

It is not difficult to see that for any x € R", we have

1) () ||2 = dist (¢(x), C), (10.1.8)
where dist(-, -) denotes the distance from a point to a set and is defined as
dist(z,Y) = min{||z — y||2 | Vy € Y}. (10.1.9)

The penalty function consists of a sum of the original objective function
and a penalty term, i.e.,

P(z) = f(x) + h(c ) (2)), (10.1.10)
where the penalty term h(c(7)(z)) is a function defined on R™ and satisfies

h(0) =0, lim h(c)=+o0. (10.1.11)

l[ell =00

The earliest penalty function is the Courant penalty function, or called
the quadratic penalty function, defined as

P(z) = f(z) + ol ()| 3, (10.1.12)

where o > 0 is a positive constant, which is called the penalty parameter.
We give an example to describe the penalty function.

min x
st. z—22>0. (10.1.13)
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Then

(e (@) = || (@)]13 = [min{0, 2 — 2}]* = { (« _02)2 ii i gf

Note that the minimum of f(z)+ o||¢(=)(z)||? occurs at the point 2 — 1 and
approaches the minimum point Z = 2 of the original problem, as o approaches
0.

Obviously, (10.1.12) is a particular case of (10.1.10) in which h(c) =
olle/|3. In fact, for any norm on R™ and any « > 0, the function h(c) = o||c[|*

satisfies (10.1.11). So, a class of penalty functions can be defined as:
P(z) = f(z) + o[ ()|, (10.1.14)

where ¢ > 0 is a penalty parameter, a > 0, and || - || is some norm on R™.
Typically, (10.1.12) is often written as

Plz) = f(x)+%a”c<*>(x)\|2 (10.1.15)
= f(x)+%aicg(x)+%a 3 @) (10116
=1 i=me+1

and is called the quadratic penalty function, where o > 0 and cz(»_)(x) =
min{0, ¢;(z)}.
Besides (10.1.12), the common particular forms of (10.1.14) are

Pi(z) = f(x) + ol (@) (10.1.17)

and
Poo() = f(2) + o]l (@)oo, (10.1.18)

which are called L; penalty function and L, penalty function respectively.

If the penalty function takes values approaching +o0o as x approaches the
boundary of the feasible region, it is called the interior point penalty function.
The interior point penalty function is suitable only to inequality-constrained
problems, i.e., m, = 0. Typically, the two most important interior point
penalty functions are the inverse barrier function

UL |

Pla) = 1)+ 23 s

(10.1.19)

Q=
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and the logarithmic barrier function
1 m
P(x) = f(z) — = logci(x). (10.1.20)
o -
=1

If given an initial point in the interior of the feasible region, the whole se-
quence generated by the interior point penalty function method is interior
points. Since these functions set an infinitely high “barrier” on the boundary,
they are also said to be barrier functions.

Let z* be a KKT point of constrained optimization (10.1.1)-(10.1.3).
Then it follows from (10.1.12) that VP(z*) = V f(2*). In general, z* is not
a stationary point of the Courant penalty function, and the penalty function
method attempts to create a local minimizer at z* in the limit o — oco. To
overcome this shortcoming, we introduce parameters 6; (i = 1,---,m) with
0; >0 (i =me+1,---,m) to change the origin of the penalty term. Write
0= (61, -,0m)T. Modifying (10.1.12) gives

x) = f(z Ti (f(e(x) — " g2
Pw) =1+ 3G ([tew -] - e2)
= J@)+ 3 [Aiet@) + (@)

i=1

- —Nici(z) + Loi(ei(2)? i o(z) < A,
7i’(10.1.21
* Z { N2 /oy, otherwise ( )

where
)\i:()'igi, 1= 1,---,m. (10122)

Because the penalty function (10.1.21) can be obtained from Lagrange func-
tion (8.2.18) by adding a penalty term, (10.1.21) is referred to as an aug-
mented Lagrangian function. Alternatively, (10.1.21) can be also obtained
from the penalty function (10.1.12) by adding a multiplier term —\”'¢c, (10.1.21)
is also called a multiplier penalty function. Let z* be a KKT point of
the constrained optimization problem, and A (i = 1,---,m) correspond-
ing Lagrange multipliers. Then the augmented Lagrangian function with
A (i=1,---,m) satisfies VP(z*) = 0. In addition, the Lagrange multiplier
A* is not known in advance, so the augmented Lagrangian function method
needs to update \; (i = 1,---,m) successfully.
For equality-constrained problem (m, = m), we define

Mz) = (A(z)) T g(x), (10.1.23)
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where A(z) = (Vey(x), -+, Ven(x)) is an n X m matrix, g(x) = Vf(z), AT
denotes the generalized inverse of A, and the multiplier A\(z) is the minimum
l> norm solution of the least-squares problem

2

min

10.1.24
AER™ ( )

i=1

2

By using (10.1.23), we can give Fletcher’s smooth exact penalty func-
tion (or Fletcher’s augmented Lagrangian function) for the case where only
equality constraints are present in (10.1.1)—(10.1.3) as follows:

1 m
P(z) = f(2) = A(z)"e(2) + 5 D_oilei(@))?, (10.1.25)
i=1
where 0; >0 (i = 1,---,m) are penalty parameters.

Let x* be the solution of the equality-constrained problem, A(z*) have
full column rank,

VoP(z") = g(a) — A@")A" =0,
V2, P(z*) = W*+ A(z*)A(z*)TW*
+W*A(z*)A(z*) T + A(z*)DA(z*)T,  (10.1.26)

where D = diag(oy,---,0p,) and
W* = V2f(z*) = > N Vie(a*) = V2, L(z*, \Y).
i=1

Lemma 10.1.1 Let H € R™" be symmetric and A € R"*"™. If
d"Hd >0 (10.1.27)
for any nonzero vector d with ATd = 0, then there exists o > 0 such that
H+ o AAT (10.1.28)
18 a positive definite matriz.

Proof. By assumption, there is 6 > 0, such that if |[ATd||z < § and
ld||]2 = 1, then (10.1.27) holds. Consider

d'Hd

min @ ——.
j1aTajy>s ||ATd||3
lldllo=1

(10.1.29)
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Since the set {d||d||2 = 1, ||ATd|ls > 4} is a finite and closed set, then
the minimum of (10.1.29) is achieved. Hence there is 1 such that for all
de{d|||d|s =1, ||ATd|s > 6} we have

HCZTI% > 7. (10.1.30)
Set 0 = max{—n,0}. Therefore, for any d with ||d||2 = 1, we have
dT(H 4+ 0 AAT)d > 0. (10.1.31)
We complete the proof. O
If the second-order sufficient condition
dTW*d > 0,¥d # 0, (A")Td=0 (10.1.32)

holds, then it follows from the above lemma that there exists ¢ > 0 such that
for all o; > &, the matrix V2, P(x*) defined by (10.1.26) is positive definite.
Therefore the penalty function (10.1.25) is said to be exact if the solution
x* of the original problem is also the strict local minimizer of the penalty
function P(z*).

If Lagrange multipliers A; of the augmented Lagrangian function are the
Lagrange multipliers A} at the solution z* of the problem, then under the
second-order sufficient condition (10.1.32), z* is also the local minimizer of
the augmented Lagrangian function (10.1.21) when o is large enough. Thus,
the augmented Lagrangian function is also an exact penalty function.

For an Ly penalty function, if

o> N [loos (10.1.33)

then under the second-order sufficient condition (10.1.32), the solution z* of
the original problem is also a strict local minimizer of the L; penalty function.
Thus, the L1 penalty function is referred to as an L exact penalty function.
Similarly, an Lo, penalty function is also exact.

Note that the KKT point of the constrained optimization problem is not,
in general, the stationary point of the Courant penalty function. Thus, the
Courant penalty function is not an exact penalty function.

In this chapter, we will describe the simple penalty function method,
interior point penalty function method (i.e., barrier function method), mul-
tiplier penalty function method, smooth exact penalty function method and
non-smooth exact penalty function method.
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10.2 The Simple Penalty Function Method

The penalty function method is an approach to minimize a sequence of
penalty functions and obtain the minimizer of the original constrained opti-
mization problem.

Consider the simple penalty function

Po(z) = f(2) + o (@)%, (10.2.1)

where o > 0 is the penalty parameter, o > 0 a positive constant, and || - || a
given norm on R™. Write (o) as a solution of problem

min Py (). (10.2.2)

TERM

Next, we first give some lemmas.

Lemma 10.2.1 Let 0 < 01 < 0. Then

Py (2(01)) < Poy(z(02)), (10.2.3)
fla(o) < f(z(ow)), (10.2.4)
D @e)) = (e (@ (o2))]]. (10.2.5)

Proof. From the definition of z(¢), we have

By (2(01)) < Py (2(02)) < Po,y (2(02)) < Po,y(2(01)), (10.2.6)
which shows (10.2.3). By use of (10.2.6) and (10.2.1), we have
0 < By (2(02)) = Poy(2(02)) = [Py (93(01)) By (2(01))]
= (o1 =)l (o) |* = [l (@ (e1))]°], (10.2.7)

which means that (10.2.5) holds. Using (10.2.6) and (10.2.5) gives
fla(on) < fla(o2) +o1(ld) (@(o2)) | = | (@(01)) )
< f(x(o2)). (10.2.8)
Hence (10.2.4) holds. We complete the proof. O

(
(

Lemma 10.2.2 Let § = ||c(7)(z(0))||. Then x(c) is also the solution of
problem

mingepn  f(z) (10.2.9)

st. (@) <. (10.2.10)
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Proof. For any x satisfying (10.2.10), we have

Ha(@)* = @)
= Fo(z(0)) = f(2(0)) = Fo(2) + f(2)
= [Fo(2(0)) = Po(2)] + f(2) = f(2(0))

0 < offet”

< f@) - flalo). (10.2.11)
Hence, for any z satisfying (10.2.10), we have
f(z) > f(z(0)), (10.2.12)

which shows that z(o) is the solution of (10.2.9)—(10.2.10). O
By the definition of the constraint violation function ¢(=)(z), the original
problem (10.1.1)—(10.1.3) can be written equivalently as

mingepn  f(x), (10.2.13)
st. [l @)| =o. (10.2.14)

Hence, if § is sufficiently small, the problem (10.2.9)—(10.2.10) can be re-
garded as an approximation of (10.2.13)—(10.2.14), and so z(o) can be re-
garded as the approximate solution of the original problem. In fact, from
Lemma 10.2.2, we know that when ¢(=)(z(c)) = 0, z(0) is just the solution
of problem (10.1.1)—(10.1.3).

The basic idea of the penalty function method is that the penalty param-
eter o is increased in each iteration until ||¢(=) (x(c))| is smaller than a given
tolerance. Below we give a penalty function method with the simple penalty
function.

Algorithm 10.2.3 (Simple Penalty Function Method)
Step 1. Given x1 € R",01 > 0,6 > 0,k :=1.
Step 2. Find a solution x(oy) of

min Py, (x), (10.2.15)

starting at xp.

Step 3. If || (z(op))|| < e, stop;
Set x41 = x(0k), op+1 = 100%;
k:=k+1, turn to Step 2. O
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Note that the parameter {o}} can be chosen flexibly and adoptively. It
means that you can choose o411 = 100 or ox41 = 20k, which depends on
the difficulty of minimizing the penalty function at iteration k.

Now we discuss the convergence property of Algorithm 10.2.3.

Theorem 10.2.4 Suppose that the tolerance € in Algorithm 10.2.3 satisfies
in ||~ 10.2.1
e > min [ ()], (10.2.16)

then the algorithm must terminate finitely.

Proof. Suppose, by contradiction, that the theorem is not true. Then
there must exist o, — +o00 and for all &,
1) (x(or))|| > e. (10.2.17)
From (10.2.16), there exists & € R" such that
1) ()] < e (10.2.18)

By use of the definition of z(¢) and (10.2.4), we have

F(@) + ol @) = flalon) + onlld ) (@(on) |
> f(a(on)) + oxlle) (@(on) . (10.2.19)

By arranging (10.2.19) and taking the limit as o — +00, we obtain that

IO @)l — 1 @ (o)
> [f(a(on) — £(@)] — 0, (10.2.20)

which contradicts (10.2.17)—(10.2.18). This completes the proof. O

Theorem 10.2.5 If Algorithm 10.2.3 does not terminate finitely, then

; (=) >
Inin Il (x)]| > € (10.2.21)
and
; (=) — mi (=)
Tim e (x(o0))| = min ) ). (10.2.22)
and any accumulation point x* of {x(oy)} is the solution of problem
min f(x), (10.2.23)

s.t. || (2)]] = min || (1)]). (10.2.24)
yeR™
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Proof. Suppose that the algorithm does not terminate finitely. It follows
from Theorem 10.2.4 that (10.2.21) holds. Since o}, — +o00 and by (10.2.20),
we have that for given z € R,

liminf [[lc(@)]* - e (@(ox)]*] = 0 (10.2.25)

which concludes (10.2.22).

Let z* be any accumulation point of {z(o%)}. By (10.2.22), z* must be
feasible point of (10.3.25). If z* is not the solution of (10.2.23)-(10.3.25),
there exists z such that

f(@) < f(z") (10.2.26)
and
1) (@)l = min 1 @)]l- (10.2.27)

It follows from Lemma 10.2.1 that f(z(ox)) approach to f(z*). Then, by
(10.2.26), we have that the inequality

f(@) < f(x(ow)) (10.2.28)
holds for k sufficiently large, which, together with (10.2.27), gives

f@ + ol @ < flalor) + ok min 1) ()]
= f(@(ok)) + oxll! ) (@(on))l| (10.2.29)
for k sufficiently large. This is just
P, (2) < Py, (x(0%)). (10.2.30)

This contradicts the definition of z(o). The contradiction proves our theo-
rem. U
The above two theorems establish a direct consequence.

Corollary 10.2.6 Let problem (10.1.1)-(10.1.3) have feasible points. Then
Algorithm 10.2.3 either finitely terminates at the solution of (10.2.9)-(10.2.10),
or any accumulation points of the generated sequence are the solution of the
original problem.
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For the Courant penalty function, i.e., || - |2 and @ = 2 in (10.2.1), we
have
Vi(@(on) + 201> ¢ (@(04) Vel (z(on)) = 0. (10.2.31)
i=1

Suppose that the infinite sequence {zy} from Algorithm 10.2.3 converges to
x*, we then have

Vi) = Y Ae (@00), (10.2.32)
=1
where
AR = 960 (@r41). (10.2.33)

Hence the multiplier A(**1) given in (10.2.33) is an approximation to a La-
grangian multiplier. It is not difficult to see that if z, — z*,¢(7)(z*) = 0
and V¢;(z*) (i € EUI(x*)) are linearly independent, then Ay — A*. Since,
in the general case, ||A*]|2 # 0, it follows from (10.2.33) that
1 _ *

o O([l (@r41)ll2) = O(llrpsr — *]l2)- (10.2.34)
On the other hand, by using (10.2.32), ¢{=)(z*) = 0 and |[AF1 — \*|| =
O(||zk+1 — z*||), we can obtain

wro AT Tpy1 — @\ _ 0 *
O ] (T ) = (e ) ot -,

(10.2.35)
where
W* = V*_L(z*, \), (10.2.36)
A* is a matrix consisting of Ve;(2*) (i € E or \¥ > 0), \* is a vector consisting
of those components of \* (i € E or A* > 0), and the definitions of A**1 and
é(x41) are similar to A*. By (10.2.33), we have

letersll =0 (=) (10.2.37)

Ok

If the second sufficient conditions (8.3.35)-(8.3.36) are satisfied, then the

matrix
w* —A*
l —(A*)T 0 ] (10.2.38)
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is nonsingular. By use of (10.2.35) and (10.2.37), we have

. 1

lzies — ]| = O () . (10.2.39)
Ok

Then, the above equality and (10.2.34) implies that the rate of ||xg41 —z*|| —

0 is the same as that of G—lk — 0. This phenomenon can be illustrated by the

following example.

Example 10.2.7 Consider the problem

min(ml’m)eRz X1 + X2, (10240)
s.t. zy — 7 = 0. (10.2.41)

Solution.  For the Courant penalty function, we have

20

_1 . 0|1
$(U) = 1 21 =T — 1 — (10242)
4 2 |0
where z* = (—1/2,1/4) is the unique solution of (10.2.40)-(10.2.41). Thus,
the sequence {z\} generated by Algorithm 10.2.3 satisfies

1
Tpp1 — " = [ 0 ] —. (10.2.43)
o

_1

2

Therefore, we need to choose a very large penalty factor o; to solve con-
strained optimization problems. However, this leads to numerical difficulties

of ill-conditioning. O

If Ly or Lo, penalty functions are employed, in general, Algorithm 10.2.3
terminates finitely at an exact solution of the original problem. In fact, let
x* be a solution of the original constrained problem, and \* a corresponding
Lagrange multiplier, then z* is a minimizer of the L, exact penalty function
if o1 > [|A*]|oo. Unfortunately, it is a nonsmooth optimization problem to
minimize a L; exact penalty function. The topic about minimization of
nonsmooth exact penalty function will be discussed in detail in §10.6.

10.3 Interior Point Penalty Functions

Similar to the penalty functions discussed in the previous sections, the inte-
rior point penalty functions are also used to transform a constrained problem
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into an unconstrained problem or into a sequence of unconstrained problems.
These functions set a barrier against leaving the feasible region, i.e., these
functions are characterized by the property of preserving strict constraint
feasibility at all times (i.e., the generated sequence always lies in the interior
of the feasible region), by using an interior point penalty term which is infi-
nite on the constraint boundaries. Such methods based on an interior point
penalty function are referred to as interior point penalty function methods.
Note that the interior point penalty function is also said to be a barrier
function, and the corresponding techniques are known as barrier function
methods.

The interior point function methods are used to deal with the inequality-
constrained optimization problem

mingepn  f(z) (10.3.1)
s.t. ci(zr) >0,i=1,---,m, (10.3.2)
where
X={zeR"|c¢zr)>0,i=1,2,---,m}

is a feasible region. The strictly feasible region is defined by
int(X) = {z € R" | ¢i(z) > 0 for all i}. (10.3.3)

We assume that int X is nonempty.
The interior point penalty function is of a general form

Po(a) = f() + 3 hlei(a)) (10.3.4)
=1

where o > 0 is a barrier parameter, which controls the iteration. If {o}} — oo
is chosen, the barrier term becomes more and more negligible except close to
the boundary. The h(c;) is a real function defined on (0, +00) which satisfies
that
lim h(c¢) = +o0, (10.3.5)
c;i—04
which means the value h(c;) approaches oo as = approaches the boundary of
int(X), and that
h(c1) > h(c2), Yer < ca. (10.3.6)

Some interior point penalty functions satisfy

h(CZ) > 0, Ve, > 0. (10.3.7)
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As we have seen, the inverse barrier function (10.1.19) and the logarithmic
barrier function (10.3.16) are the two most important special cases of (10.3.4).
For the inverse barrier function, (10.3.7) holds.

Let z(o) be the solution of the problem

min P,(x). (10.3.8)

Assume that we solve (10.3.8) with a strict interior point as an initial point.
Note that P,(z) has value co on its boundary, then x(o) must be an interior
point.

Similar to Lemma 10.2.1 and Lemma 10.2.2, we can prove the following
results.

Lemma 10.3.1 Let 09 > o1 > 0, then
f(a(o2)) < f(a(
> hlei(a(02)))

)

o1)), (10.3.9)
>3 h(ci(z(o1))). (10.3.10)
=1

Lemma 10.3.2 Set 6 = > h(ci(z(0))). Then x(o) is a solution of prob-
lem

mingepn  f(2) (10.3.11)
st Y h(ci(z)) <6 (10.3.12)
=1

When § is sufficiently large, the problem (10.3.11)-(10.3.12) can be re-
garded as an approximation to

mingepn  f(x) (10.3.13)
st Y h(ei(x)) < +oo. (10.3.14)
=1

By the definition of h(¢;), (10.3.14) is equivalent to
ci(z)>0,i=1,--,m. (10.3.15)

The difference between (10.3.15) and (10.3.2) is whether the boundary of the
feasible region is feasible points or not. If ¢ > 0 is very large and § in Lemma
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10.3.2 is very large, then (o) is close to the boundary of the feasible region
of (10.3.2). Hence, the feasible region of (10.3.12) is also close to that of
the original problem. Therefore x(o) is close to the solution of the original
problem.

If 0 > 0 is very large but § bounded, it follows from the definition of
(10.3.4)that the interior point penalty function P,(z) is very close to f(x)
near x(o). In this case, x(o) is regarded approximately as a local minimizer
of f(z). Based on these analyses, an algorithm can be written as follows. We
assume that h(-) satisfies (10.3.7).

Algorithm 10.3.3 (Algorithm based on interior point penalty function)
Step 1. Given x1 satisfying (10.8.15). Let o1 >0, € >0, k := 1.

Step 2. Starting with xy solve the problem (10.3.8) for x(oy). Set
Tht1 = Z‘(O’k)

Step 3. If
- > hlei(zri)) < e (10.3.16)

Tk 21
stop; otherwise, set ox+1 = 100k, k := k 4+ 1; go to Step 2.
O

For Algorithm 10.3.3, we will establish the following convergence theorem.

Theorem 10.3.4 Let f(x) be bounded below on the feasible region X. Then
Algorithm 10.3.3 will terminate finitely at € > 0, and when it does not ter-
minate finitely, we have that

1
lim —h(ci(zk41)) =0 (10.3.17)
k—oo O
and
lim f(zx) = inf f(z) (10.3.18)
k—o0 zEINHX)

hold, where int(X) is defined by (10.3.3). Furthermore, any accumulation
point of {xk} is the solution of problem (10.5.1)-(10.3.2).
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Proof. Obviously, we only need to prove that (10.3.17)-(10.3.18) hold
when the algorithm does not terminate finitely.
First, for any 1 > 0, there exists x,, € int(X) such that

flzy) < xeiirrlltf(X) f(z) + 2 (10.3.19)

Since the algorithm does not terminate finitely, there is o — 400. Hence
there exists k such that

2 _
ok > =Y h(ci(zy)), Yk > k. (10.3.20)
=1

Then, by using the definition of z441, and (10.3.19)-(10.3.20), we have

Pak (xk—i-l) = Po'k- (:C(O’k)) < Pdk- (xﬂ)v

that is
LS heiann) < Flag) +— 3 h(es(ay)) — Faen)
7= Ok ;=1
1
< @) gnt gn )
< 7 (10.3.21)

holds for all k£ > k. Since n > 0 is arbitrary, it follows from (10.3.21) that
(10.3.17) is true.
From the first row in (10.3.21), we also get

Flan) < flea)+ > hele)

=1
< inf  f(z)+7n (10.3.22)
zelnt(X)
holds for all k£ > k. Then (10.3.18) holds. O

Suppose that the sequence {z\} generated by Algorithm 10.3.3 converges
to z*. If x* is a strict interior point, then it follows from

Vf(l‘k_H) + (le Z h/(Ci(lL‘k+1))Vci({L‘k+1) =0 (10.3.23)
i=1
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that .
IV ()] = O () . (10.3.24)

Ok

If the second-order sufficient condition (i.e., V2f(x*) positive definite) is
satisfied, then (10.3.24) is equivalent to

|21 — 27| = O <1> . (10.3.25)
Ok

The above discussion also tells us that the rate of ||xg41 — 2*|] — 0 is, in

general, no quicker than 1/oy.

Now, let us consider xp — z*, where z* is a boundary point of the
feasible region of (10.3.2), i.e., there exists i such that ¢;(z*) = 0. Let
Vei(z*)(i € I(z*)) be linearly independent. Let Y denote the Lagrange
multiplier at z*. From (10.3.23), we have

khm —h’(ci(:zk+1))/ak = )\:< (10.3.26)
Write
AL — (—h/(cl(fﬁkﬂ)), R _h/(cm($k+l)))T/Uk-

Define A* as a matrix consisting of Ve;(z*) (i € I(z*)), A\* as a vector con-
sisting of those components A of A* (i € I(2")), and note that the definitions
of A1) and é(zj41) are similar to A\*. By (10.3.26), we have

A =0 (Ulk) Vi ¢ I(z*). (10.3.27)
Since the columns of A* are linearly independent, the above equality gives
IAGH) _ 3% = 0 <||xk+1 — o+ 01k> . (10.3.28)
Note that by (10.3.23), we obtain
W*(@ps1 — x*) — ASAFHD XY = o(||zppr — 2*]|) + O (;) . (10.3.29)
Also,

—(A") (w1 — 2%) = —é(zps1) + o(|wpsr — =) (10.3.30)
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Then the above two equalities give
W —A* Tpy1 —xF
_(A*)T 0 S\(k—i-l) _ 5\*

0
—&(Thy1)

1
+ o(||zper — 2*[) + O <0> . (10331)
k

Suppose that AY > 0 (i € I(z*)). Then for an inverse barrier function and
a logarithmic barrier function, by using (10.3.26), we obtain respectively

co(wpst) = O <\/%) ie (@) (10.3.32)
and )
ci(xps1) =0 (O'k) , 1€ I(z"). (10.3.33)

Hence, provided that the second-order sufficient condition is satisfied, for the
inverse barrier function and logarithmic barrier function, we have

fll 1
2wt — 2| = O (\@) (10.3.34)

and )
lzpst —2*| = O () . (10.3.35)

Ok

From (10.3.34)-(10.3.35), it is easy to see that the logarithmic barrier function
converges more quickly than the inverse barrier function does.

Now we consider solving (10.3.8) inexactly by interior point function
methods. Suppose that both f(x) and h(c;(x)) are convex functions of z,
then P,(x) is also convex with respect to x. Given starting point xj, then
for problem

min P, (x), (10.3.36)

the Newton step is
dp = _[V2P0k (xk)]ilvpak («Tk) (10337)

To avoid solving the subproblem exactly, the xy + di is regarded as an ap-
proximate solution of (10.3.36). For simplicity, we assume

h(c;) = —log ¢ (). (10.3.38)
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Set z11 = xf + di. Then we have from (10.3.37) that

V2 Py, (1) (@hr1 — 71) = =V Py, (z1). (10.3.39)
Note that
VePo(or) = Vi) - > 2 e
g — o ci(zy) ’
x~ Ok p Ok Cl((L‘k) 7
+ Em: i#Vc —i(xx) Vei(zy) "
= oy (ci(zr))? IV EATR)
Write )
P
‘ orci(Tr)

Then (10.3.39) can be written as

(v%(:ck) = 3N + YA Wo:k)v@-(xk)T)
i=1 i=1 i\r
-(.Z'k+1 - .Z‘k) = - lVf(xk) - i )\Ek)ch(xk)] . (10.3.40)
i=1

If the z;y1 defined above lies in the interior of the feasible region, it is re-
garded as next iterate. Otherwise, there is @ > 0 such that the point xp+agdg
lies on the boundary of the feasible region. In such a case, we set

Tp+1 = T + 090 dy. (10.3.41)

So, the x4 still is an interior point. Hence, an inexact interior point penalty
function algorithm for subproblem (10.3.36) can be written as follows.

Algorithm 10.3.5 (Inezact Log-Barrier Function Method)
Step 1. Given x1 satisfying (10.3.15), 01 > 0,e > 0,k := 1.

(k) _ 1 . .
Step 2. Compute \;”’ = sra@) = 1, ,m;
dy = —[V2f(x) = 3 AP V2ei(ay)

=1
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a1 g T
+;/\i e LCONCCON

(Vf(xp) Z ABT e () (10.3.42)

If di. # 0 go to Step 3;
If IV f(zp)ll < €, stop;
Otherunse, oy, := 100y, go to step 2.
Step 3. Set ap, = 1;
If x4+ di, is an interior point, go to Step 4;
Find 1 > ag > 0 such that xp + agdy is on the boundary of
the feasible region;
Set ay, := 0.9ay,.

Step 4. Set xpy1 := xp + apdy;

If
- Zlog (cz 0

stop; ox41 = 100%; k‘ :=k+1; go to Step 2. O

) <e, (10.3.43)

10.4 Augmented Lagrangian Method

In this section we discuss the augmented Lagrangian method (or the method
of multiplier penalty function).

We know from §10.1 that this method is an extension of the quadratic
penalty function method. It reduces the possibility of ill-conditioning of the
subproblem by introducing Lagrange multiplier estimates. In fact, it is a
combination of the Lagrangian function and the quadratic penalty function.

For the case where only equality constraints are presented (m = m,), we
rewrite the augmented Lagrangian function as

Pz, ), 0) Z Nees(x) + ;;ai(q(l«))?. (10.4.1)
When we differentiate with respect to x, we obtain
Vi.P(xz, A\ o)=Vf(z)— Z()‘l —oici(z))Vei(x), (10.4.2)

i=1
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which suggests the formula
AT 2B _ 8 (). (10.4.3)

Now we consider the general problem (10.1.1)—(10.1.3) by the augmented
Lagrangian function. We rewrite the augmented Lagrangian function P(z, A, o)
(10.1.21) as follows:

1
P(z,\,0) = +Z[ Aici(z) + Soic Q(x)}
e 1.2 i o Y
" Z { [ lAzQCz(x) + 50ic; (x)} , 1fcz(a:).< 7110.4.4)
i=me-t1 —5A; /o, otherwise
where \; (i = 1,---,m) are Lagrange multipliers, o; (i = 1,- - -, m) are penalty
parameters.
(k) (k

Consider the k-th iteration, using A\;"’ and o, ) to denote corresponding
components of A and o respectively at the k-th iteration. Let xpy1 be the
solution of the subproblem

*®) &*)
3?61}%711 Pz, \ ) (10.4.5)
Then we have
Vi) =Y WY = oM ei(wpn)Veilzia)
i=1

+ 3 max{ A" — o e;(wp11),01Vei (w41)-(10.4.6)
i=me+1

Hence we take

)\Z(k+1) _ )\Z(k) _ O'l(k)ci(xk—l-l)a i=1,,me; (10.4.7)
A maxtA ooy ), 0, § = e+ 1 m, (10.45)

as next Lagrange multipliers. By (10.4.6)—(10.4.8), we have that

m
f(zks1) Z)\Ekﬂ Vei(zgy1) =0, (10.4.9)
=1
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which indicates that for any k& > 2, the error of the KKT condition for (zx, A;)
is

IV L@, A ||+ (167 @) = 1 ()l (10.4.10)

where L(z,\) is the Lagrangian function defined in (8.2.18), ¢(7)(z) is a
constraint violation function defined in (10.1.5)—(10.1.6). Therefore, for k& >
2, provided that the inequality

_ 1, (-
e el < 717 ()] (10.4.11)
is not satisfied, we enlarge the penalty parameters, i.e., set

oD = 1008 (10.4.12)

A %
Below, we give an algorithm based on the augmented Lagrangian function.
Algorithm 10.4.1 (Augmented Lagrangian Method)
Step 1. Given starting point 1 € R", A\ € R™ with /\El) >0 (e
I); 01(1) >0(i=1,---,m); €e>0, k:=1.

Step 2. Find approrimate minimizer xyyq to (10.4.5).
If | (@g41) |00 < €, stop.

Step 8. Fori=1,---,m, set
D) { o, if (10.4.11) holds;

max[l()ai(k),kﬂ, otherwise.
(10.4.13)

Step 4. Update Lagrange multipliers using (10.4.7)-(10.4.8) to ob-
tain A6k =k +1, go to Step 2. O

A practical implementation of the above algorithm is given in LANCELOT
due to Conn, Gould, and Toint [68].
Now we establish the finite termination of Algorithm 10.4.1.

Theorem 10.4.2 Let the feasible region X of problem (10.1.1)-(10.1.3) be
nonempty. Then for some € > 0, Algorithm 10.4.1 is either finitely termi-
nated, or the sequence {xy} produced by Algorithm 10.4.1 satisfies

ligninff(xk) = —00. (10.4.14)
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Proof. Suppose, on the contrary, that the theorem is not true, that is,
for some € > 0, Algorithm 10.4.1 does not terminate finitely, and {f(zx)} is
bounded below. Define the set J by

J= {z | lim @) =0, 1<i< m} (10.4.15)
—00
Since the algorithm does not terminate finitely, then the set
J={1,2,---,m}/J (10.4.16)

is not empty. Thus, by the construction of the algorithm, for any ¢ € J , We
have

lim oM = foo. (10.4.17)
Define
pB = AW o ®), (10.4.18)

It is not difficult to prove that
> NI/
i=1
< HM(MH% + 2[P($k+1a /\(k)v U(k)> - f(karl)]
—2[P(z, A", o)) — f(2)]
< e ®NE + 20/ (@) = flarg)), (10.4.19)

where 7 is any feasible point of (10.1.1)—(10.1.3). Since {f(zx)} is bounded
below, then (10.4.19) suggests that there exists § > 0 such that

)3

IN

[t

11®|3 < ok (10.4.20)
holds for all k. Set .
J = {i| lim o™ = +oo}. (10.4.21)

Equation (10.4.17) indicates that .J C .J. By the definition of 241, we have

NOMNE NOAE
f@+2§9Nw@>@Q

1>Me g
2 2
1 & AR AP
> floe)+ Y 501( ) [(Ci(xk—i-l) ~——w) | =®
i<me 9 T

I ) AR ? A ?
+'Z 3% <ci(:ck+1)—f(k)> —( l(k)> : (10.4.22)

g;
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where Z is any feasible point of (10.1.1)—(10.1.3), () denotes min{0, a}.
By use of (10.4.20)-(10.4.22), we can deduce that

i<me U’i Ui
ieJ
r 2 k) 2
1 ® A A
- _Z 50 (ez»(:ckﬂ) -~ S |- (104.23)
i>me g, _ o,
ic€J -

Since the algorithm does not terminate finitely, then for any k, there exists
(k1) O‘Z(k) and

k > k such that for some i € J, we have o,
lci(xgp1)| > €if i < me

or
[(ci(wgyq))=| > €if i > me.

Then it follows from (10.4.23) that

F@) — fap) > OF) + 2o®e 4 o(o®)

2 7

_ 1-
> 0(k)+1k26 (10.4.24)
> él?:?e. (10.4.25)

This contradicts the fact that the {f(zx)} is bounded below. The contradic-
tion proves the theorem. O

Theorem 10.4.3 Let the feasible region X of problem (10.1.1)-(10.1.3) be
nonempty. Then for e = 0, any accumulation point x* of the sequence {xy}
generated by Algorithm 10.4.1 is feasible. Further, if {)\(k)} is bounded, then
x* is the solution of the original problem (10.1.1)-(10.1.3).

Proof. By Algorithm 10.4.1 and Theorem 10.4.2, we have
lim [|¢™ (z)|| = 0. (10.4.26)
k—o0

Hence, any accumulation point of {z} is a feasible point of (10.1.1)—(10.1.3).
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Suppose that {A(¥)} is bounded for all k. Then by (10.4.22) and (10.4.26),
we can deduce that

1@ 2 S+ Y goPd )

i<Me
(k) 2 (k) 2
1 k) A A
+ Z §O'Z~ [(C(I‘kJrl) — O.(k)> - <_O-(k) + 0(1)

1>Me i - ) —

> f(karl) + 0(1). (10.4.27)
Since T € X is arbitrary, we have

kli}rglo fz) = wlél)f( f(z). (10.4.28)

Thus, any accumulation point z* of {x}} is the solution of the original prob-
lem. O

Finally, we consider the convergence rate of Algorithm 10.4.1. For sim-
plicity, we consider the case with equality constraints only.

Suppose that z; — x*. By Theorem 10.4.3, z* is the solution of (10.1.1)—
(10.1.3). Let A(z*) have full column rank with rank(A(z*)) = m. Let A(zy)
have full column rank for all k too. Then the A(**1) generated by Algorithm
10.4.1 is equivalent to the A(z41) defined by the following expression

A(@r41)A(@k+1) = 9(Tpt1), (10.4.29)

where g(z) = V f(z). Note that

A(z) = [A(z)] T g(2). (10.4.30)
It is not difficult to get
VA(z) = [A(z)] "W (), (10.4.31)
where
W(z) = V2f(z) — i[A(z)]iV%i(a:). (10.4.32)

By (10.4.7), we have

Mzpa1) + Dre(xps1) = Mzg), (10.4.33)
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where
ng) 0
Dy = ) (10.4.34)
0 aqgf)

Then, it suggests by differentiation that
(DR AT + AW () (hg1 — %) = A(z*)TW (2*) (2, — 2*). (10.4.35)

The above expression says that, unless 0(¥) — 400, the sequence {z;} gen-
erated by Algorithm 10.4.1 is, in general, convergent linearly.

A shortcoming of the augmented Lagrangian function is that it is only
once continuously differentiable. Hence it is possible that there will be some
numerical difficulties in solving the subproblem (10.4.5).

10.5 Smooth Exact Penalty Functions

For the equality-constrained problem

mingepn  f(2), (10.5.1)
s.t. c(x) =0, (10.5.2)

Fletcher [126] first presented a smooth exact penalty function
1
P(z,0) = f(z) — Mz)Te(z) + §c(ac)TDc(:c), (10.5.3)

where A(z) is given by (10.1.23), D = diag(o1,- -+, 0m). From the discussions
in §10.1 and §10.4, we know that, if the second-order sufficient condition holds
and o; are sufficiently large, then the local minimizer of (10.5.1)—(10.5.2) is
a strict local minimizer of the penalty function (10.5.3). Conversely, if Z is a
minimizer of (10.5.3) and ¢(z) = 0, then Z is also the minimizer of problem
(10.5.1)~(10.5.2).

If we set all o; equal in (10.5.3), then a simple form of Fletcher’s smooth
exact penalty function

P(z,0) = f(z) = Mz) e(z) + %GIIC(I)H% (10.5.4)

is obtained. For this penalty function, let (o) be a solution of the subprob-
lem

in P . 10.5.
min P(z,0) (10.5.5)
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We have, similar to (10.2.5), that
le(z(02))]l2 < |le(z(o1))]|2, Yoo > o1 > 0. (10.5.6)

Comparing with the simple penalty function, by use of (10.5.5) and (10.5.4),
we need not require o — 400. Thus it is possible to attempt the solution of
original problem (10.5.1)—(10.5.2) by solving (10.5.5) without needing o —
+oo. In addition, the exact penalty function (10.5.3) is smooth, and thus
the convergence rate of methods to solve the unconstrained optimization
problem (10.5.5) is rapid. A drawback of this approach is, however, that
computing V,P(z,0) needs computation of VA(z), and further V2 f(z) and
V2¢i(x), (i=1,---,me). It is expensive.
If, in (10.5.3), we replace D by

20AT (AT, (10.5.7)
where A = Ve(x), we obtain
P(z) = f(z) — n(x)Te(x), (10.5.8)
where
m(z) = AT(g(z) — o(AT) e(x)). (10.5.9)

It is not difficult to find that 7(z) is the Lagrange multiplier of the problem
1

minge gn §ade + g(z)Td (10.5.10)

s.t A(x)Td 4 ¢(x) = 0. (10.5.11)

For general inequality constrained optimization problem (10.1.1)—(10.1.3),
we can define 7(x) as the Lagrange multiplier of subproblem

1
mingepe  g(z)Td + §0Hd||§, (10.5.12)
s.t. ci(x) +d'Ve(z) =0, i € B, (10.5.13)
ci(x) +dTVei(x) >0, i€, (10.5.14)

and then construct the penalty function

P(z) = f(z) — n(x)Tc(x). (10.5.15)
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The multiplier 7(x) can also be obtained by solve the dual problem of (10.5.12)-

(10.5.14)
2

+ onle(x). (10.5.16)
2

1
min —
™20 2
i€l

g(z) — Z T Vei(x)
i=1

As an alternative to the subproblem (10.5.4), we may consider the smooth
exact penalty function

PN = f(@) e\t Lolle(x)]3
ool M@)lgl@) ~ A@NIB - (105.17)

to deal with an equality constrained problem, where M () can be A(z)T, A(x)™,
or an identity matrix. Equation (10.5.17) may be extended to handle an
inequality-constrained problem. We refer the reader to Di Pillo, Grippo and
Lampariell [104] or Fletcher [132].

10.6 Nonsmooth Exact Penalty Functions

Let h(c) be a convex function defined on R™ with h(0) = 0. If there exists a
positive constant § > 0 such that

h(c) > 8lc|lx (10.6.1)

holds for all ¢ € R™, then h(c) is called a strong distance function.
For any strong distance function h(c), we say that the penalty function

P,p(z) = f(z) + oh(c ) (z)) (10.6.2)

is a nonsmooth exact penalty function, where o > 0 is a penalty parameter
and ¢(7)(z) is a constraint violation function defined in (10.1.5)-(10.1.6).

For nonsmooth exact penalty function (10.6.2), we give the following
theorem about necessity.

Theorem 10.6.1 Let x* be a local minimizer of constrained optimization
problem (10.1.1)-(10.1.3) satisfying, together with the corresponding Lagrange
multiplier vector X*, the second-order sufficient condition

dTV2, L(z*,\*)d > 0, Y0 # d € LFD (z*, X). (10.6.3)



10.6. NONSMOOTH EXACT PENALTY FUNCTIONS 483
Then, if
a0 > |\ oo, (10.6.4)

the vector x* is a strict local minimizer of penalty function Py p(x) defined
in (10.6.2).

Proof. Let (10.6.4) hold. Suppose, to the contrary, that the theorem is
not true. Then there exist z (k = 1,2,--+) such that x # z*, 2, — 2™ and

Py n(xy) < P(x¥), Vk. (10.6.5)
The above expression gives
fxx) + o6 @) r < f2"). (10.6.6)
Without loss of generality, we assume that
(xp, — ) /||lxx — =*| — d. (10.6.7)
By (10.6.6) and the definition of Lagrange multiplier, we obtain
(06 = [X*]loo) 147 (1) 1
= (9(z") = A@)N) (@ — %) + (08 — [N [loo) |7 (@) I
= S0 = 3 Nen) = 67 = 3o = a7 VLX)
+(06 = [\ [loo) 17 @r) 11 + o[l — %)

m

= f(ax) + odlle D @)l = F@*) = DN Nlolel ™ (@i)] + X i)

i=1

1 * oy ok * *
=5 d Vi Lz N dllag — 7 [l3 + o[y — 27]3)

1
—§dTV§xL(x*, MYd||zp — 2|3 + o||zk — z*|)3). (10.6.8)
By using (10.6.8) and (10.6.4), and taking the limit, we yield

()
lim 1@l _ (10.6.9)

k—o00 ”Ik—JT*H a

which indicates
d € LFD(z*, X). (10.6.10)
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From the second-order sufficient condition we have
dT'V2, L(z*,\*)d > 0 (10.6.11)

which shows that the last row in inequality (10.6.8) is negative when k is
sufficiently large. Then it produces a contradiction. The contradiction proves
the theorem. O

The common nonsmooth exact penalty functions are the L1 exact penalty
function

Pi(x) = 1(@) + ollcO @) (10.6.12)

and the L, exact penalty function
Pyo(z) = f(2) + o] (2)]|so- (10.6.13)

For nonsmooth exact penalty function (10.6.2), let z(o) be a minimizer
of the problem

Inin Py (). (10.6.14)

Completely similar to Lemma 10.2.1 and Lemma 10.2.2, we have the following
lemmas. The proofs are omitted.

Lemma 10.6.2 Let 09 > 01 > 0. Then we have

f(a(02)) > fa(o1)), (10.6.15)
R (2(02))) < h(e ) (z(01))). (10.6.16)

Lemma 10.6.3 Let n = h(c(7)(z(0))), then x(c) is also the solution of
cconstrained problem

mingepn  f(z) (10.6.17)
st k(@) <n. (10.6.18)

It is advantageous for an exact penalty function that it is possible to
attempt exactly the solution of a constrained optimization problem by solving
only a single or finitely many unconstrained problems.

The nonsmooth exact penalty methods can be written in the following
form:

Algorithm 10.6.4 (Nonsmooth Ezact Penalty Method)
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Step 1. Given x1 € R",01 > 0,k :=1.

Step 2. Solve

min P, p(z) (10.6.19)

at xy to obtain x(o).

Step 3. If ) (x(oy,)) = 0, stop;
Tp1 = x(0k), Oks1 := 100%;
k:=k+1; go to Step 2. O

Note that since P, () is an exact penalty function, we can obtain the
exact solution of the original problem provided that ¢ is sufficiently large.
The following is the convergence result of Algorithm 10.6.4.

Theorem 10.6.5 Let f(x), ¢i(x) (i = 1,---,m) be twice continuously differ-
entiable. Let the feasible region of constrained optimization problem (10.1.1)-
(10.1.3) be nonempty. If second order sufficient condition (10.6.3) holds,
then either Algorithm 10.6.4 terminates at a strict local minimizer of prob-
lem (10.1.1)-(10.1.3) in finitely many iterations, or the generated sequence
satisfies ||zk|| — oo.

Proof. (1) If the algorithm terminates finitely at (o), then z(o%) must be
a local minimizer of Py, (x). By Lemma 10.6.6, which will be presented be-
low, z(o}) is also a local minimizer of the original problem (10.1.1)—(10.1.3).
Since the second-order sufficient condition is satisfied at z(oy), then z(oy) is
a strict local minimizer.

(2) Now we prove the second conclusion by contradiction. Suppose that
the theorem is not true. Then, for any k, we have (=) (z}) # 0, {||zx||} has a
bounded subsequence and o, — oo. Let Z be any local minimizer of problem
(10.1.1)-(10.1.3). By the definition of z(o}), we have

f@rer) + oph( ) (@p41)) < £(2) + oxh(d (@) = f(z),  (10.6.20)

which means
orh( ) (wr41)) < F(®) = flarpn).

Then we have

lim A(c) (zp41)) = 0. (10.6.21)

k—oo
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The above expression and (10.6.1) suggest that
lim [|c7) (2)]| = 0. (10.6.22)
k—o0

Since {||zx||} has a bounded subsequence, we may let & be an accumulation
point of {zy} and therefore using (10.6.22) we have
(@) = 0. (10.6.23)

Let xy; — 2. If & is not a local minimizer of (10.1.1)-(10.1.3), then there
exists Z sufficiently approaching z and we have

f(@) < f(2), (10.6.24)
A(F) = 0. (10.6.25)

From (10.6.24) and that x3; — &, we obtain
fary) > f(Z) (10.6.26)
for j sufficiently large. Hence, we deduce
By, 1m(xhy) > Poy _, n(2), (10.6.27)

which contradicts the definition of {zy;}. Therefore, & is a local minimizer
of the original problem (10.1.1)-(10.1.3). )
Then it follows from Theorem 10.6.1 that there exist 6 and & such that

Ps h(z) > P p(2), V|z — 2| <0,  # 2. (10.6.28)
The above expression suggests that
P,n(x) > Pop(2), Ve # &, ||z —2|| <0, 0 > 0. (10.6.29)

Since oy, — 00, k; — & and x; # T, then there exists j such that ||z, —2[ <
6 and og;—1 > 0. Hence

Paqu,h(xkj) > Pakjfuh(ﬁj)v (10.6.30)

which contradicts the definition of T, The contradiction shows the theorem.
Od

If Algorithm 10.6.4 terminates finitely, it is sure that it terminates at
a local minimizer of the original problem. This is based on the following
lemma.
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Lemma 10.6.6 For anyo > 0 and Z € R™, if h(c\™)(Z)) = 0 and Z is a local
minimizer of the nonsmooth exact penalty function P, (x), then T is also a
local minimizer of the constrained optimization problem (10.1.1)-(10.1.3).

Proof. Let 7 satisfy h(c(7)(z)) = 0 and be a local minimizer of P, ().
Suppose, to the contrary, that the lemma is not true. Then there exist
xg, (k=1,2,--+), such that z; — Z,xp # T and

flzg) < f(2), (10.6.31)
I (ay) = 0. (10.6.32)

Then, we have
P, 1(z1) < Py(Z), (10.6.33)

which contradicts the fact that z is a local minimizer of P, j(x). Then we
complete the proof. O

We would like to mention that, in a rare case, it is possible that there is
||xk|| — oo for Algorithm 10.6.4. For example, consider

. _ 1
min,cp1 100e™* — o] (10.6.34)
s.t. xe ¥ =0. (10.6.35)
Taking h(c) = || yields that the penalty function is
P,(x) =100e™* — + o |ze™™|. (10.6.36)

2 +1

For a sufficiently large ¢ > 0, the minimizer z(o) of P,(x) satisfies the
equation

2ze”
—1 — = -1 10.6.
00 + TEESIE olx —1), (10.6.37)
and z(c) > 1. Then
l 2en) 1 10.6.38
A R & (10.6.38)
Therefore
Jim z(o) = 400, (10.6.39)

which says that the sequence generated by Algorithm 10.6.4 satisfies x; —
+00.
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We note that when the gradients of the constraint function are linearly
dependent, it is possible that the minimizer of the original problem (10.1.1)—
(10.1.3) is not a stationary point of the exact penalty function (10.6.2). For
example,

mingcpr (10.6.40)
st.  clz)=22=0. (10.6.41)

Taking h(c) = c yields that, for any given o > 0, the solution z* = 0 of
problem (10.6.40)—(10.6.41) is not the stationary point of the exact penalty

function
P,p(z) =z + ox?. (10.6.42)

However, if the gradients of the constraint function are linearly indepen-
dent, the minimizer of original problem (10.1.1)-(10.1.3) is also the minimizer
of the exact penalty function.

Theorem 10.6.7 Let x* be a local minimizer of constrained optimization
problem (10.1.1)-(10.1.3) and \* be a corresponding Lagrange multiplier. If

Vei(z*), 1€ EUI(z") (10.6.43)

are linearly independent, then when (10.6.4) holds, the x* is also a local
minimizer of the penalty function (10.6.2).

Proof. If the theorem is not true, then there exist xj (k = 1,2,---) such
that xp # ¥, xp — «* and

P, p(xy) < P(x¥), Vk. (10.6.44)
Then by (10.6.1) we have
Flag) + ool (@) < f(z"). (10.6.45)

Similar to the proof of Theorem 10.6.1, we may assume that (10.6.7) holds
and use (10.6.8) to get
d € LFD (z*, X). (10.6.46)

The second-order necessary condition gives

dTV2, L(z*, \*)d > 0, (10.6.47)
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from which together with (10.6.8), we can deduce that
d'V2 L(z*,\*)d = 0. (10.6.48)

Then
e (@)1 = oll|lzk — =*||?). (10.6.49)

Since z* is a local minimizer of the original problem (10.1.1)—(10.1.3), it
follows from (10.6.45) that

) (@)l > 0 (10.6.50)

for all sufficiently large k. Since the gradients of all active constraints are
linearly independent, then there is some g such that

¢ (ge) = 0 (10.6.51)

and
lye — x| = Ol () ). (10.6.52)

By use of the optimality of z* and (10.6.51), we have
fyr) = f(x"). (10.6.53)

On the other hand, by the KKT condition, (10.6.4) and (10.6.45), we can
obtain that

fe) = flar) + V@) (e — 2i) + olllye — 2l])

Flaw) + 3 A — ) Veile®) + ol — i)
=1

@) + A Jloolle ) @) Il + o[ (@) 1)
f(@x) + 06| () [
f(@®), (10.6.54)

ANRVAR VAN

which contradicts (10.6.53). The contradiction proves the theorem. O

It is not difficult to see that the equivalence between the nonsmooth exact
penalty function (10.6.2) and the constrained optimization problem is based
on (10.6.4). In fact, if the inequality (10.6.4) is not satisfied, then the local
minimizer of (10.1.1)—(10.1.3) is not necessarily a stationary point of the
penalty function (10.6.2).
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Theorem 10.6.8 Let x* be a local minimizer of constrained optimization
(10.1.1)-(10.1.83) and V f(z*) # 0. Write

T = max v (10.6.55)
veOh(0)
Then, when
o[ Vel (@) < |V £ ()II/T, (10.6.56)

*

x* is not the stationary point of the penalty function (10.6.2).

Proof.  Since the subgradient of the penalty function (10.6.2) at z* is
AP, (") = Vf(x*) + oV (2*)Thn(0), (10.6.57)

then, by (10.6.56), we have

0 ¢ 0P, p(z"). (10.6.58)

Therefore, z* is not a stationary point of P, p(z). O

Exercises

1. Use the Courant penalty function method to solve the problem

min —2x; + o

st. a9 —a2 =0.

2. Apply the inverse penalty function method to solve the problem

min —x% — x%
st. 1 <8,
T2 < 8,
T1+x02>1

with the initial point (2 2)7.
3. Apply the logarithmic barrier function method to solve the problem

min x; —x9 + x%
st. x>0,
X9 Z 0
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with the initial point (1,1)7.

4. Apply the Augmented Lagrangian function method to solve the prob-
lem in the previous exercise, using initial multipliers A\; = 1 and Ay = 1
Compare the performances of the two methods ( Logarithmic barrier func-
tion method and the Augmented Lagrangian function method).

5. Let (o) be the solution of
1 m

P it
min P(z,0) 021

(10.6.59)
in the interior region {x|c;(x) > 0,7 = 1,...,m}, where o > 0 is a parameter.
Prove that, as ¢ increases,

(1) P(z(0), 0') is non-increasing;

(2) >, p» ( is non-decreasing;

(3) f(x(o) is non-increasing.

6. Discuss the penalty function (10.1.10) when h(c) = €°.

7. Using the approximation

m
max{cy, ...,y } ~ log (Z eci> ,
=1

we can replace the Lo, penalty function by

P.(z) = f(z) + olog (i e'ci(w”) .

i=1

Study the properties of the above penalty function P.(z).

8. Introducing the slack variables for the inequality constraints, we can
reformulate (8.1.1)—(8.1.3) as

min f(x)

st. c(z)=0, i=1,---,m,,
ci(r)—y; =0, i=me+1,....m
Y, >0, i=me+1,...,m
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Compare the augmented Lagrange function for the reformulated problem and
(10.4.4).

9. Prove (10.5.6).

10. Prove Lemma 10.6.2.



Chapter 11

Feasible Direction Methods

11.1 Feasible Point Methods

A feasible point method requires that all iterate points xj, generated are
feasible points of the constraints. For general constrained optimization prob-
lems (8.1.1)-(8.1.3), given a current iterate zj € X, if we can find a descent
direction d which is also a feasible direction at x;, namely

dTV f(xy) < 0, (11.1.1)
d € FD (x4, X), (11.1.2)

there must exist new feasible points in the form of z; + ad with the property
that f(zr + ad) < f(xg). Here FD (x, X) is defined by Definition 8.2.1. A
direction d satisfying (11.1.1)-(11.1.2) is called a feasible descent direction at
Tk

Let ¢1 € (0,1) be a given positive constant, zj be any point in the feasible
set X, and d be a vector that satisfies (11.1.1)-(11.1.2). We call « a feasible
point Armijo step along direction d at point xy if o > 0 satisfies

fzp + ad) < f(x) + ac d? Vf(xy), (11.1.3)

and
f(xr 4 2ad) > f(zg) + 201 d? V f () (11.1.4)

holds when z; 4+ 2ad € X.
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Lemma 11.1.1 Assume that x;, € X and d satisfies (11.1.1)-(11.1.2). Let
«a be a feasible point Armijo step along direction d at point xy, then

_ T 2
Flae +ad) < flay) ~ 0 [d fdﬁf’ﬂ (11.15)
if v + 2ad € X, and
Flan+ ad) < F(or) + e EEE T £ (), (11.1.6)

2||d]l2

if ) + 2ad ¢ X, where M = maxo<i<a |V2f(zg + td)||2 and T'(Z) is the
distance from T to the set of all infeasible points, namely

I'(z) = inf ||z — y||. 11.1.7
@ = inf o~y (1L.L7)

Proof.  First assume that zj + 2ad € X. It follows from (11.1.4) and
Taylor expansion that

1
20c1d"Vf(xp) < 2adTVf(xk)+§(2ad)TV2 £z + me2ad) (2ad)
< 20d"V f(xp) + 222 M||d]|3, (11.1.8)

where 7 € (0,1). From the above inequality we can obtain that

(I—c) r
a>— d' V f(xg). (11.1.9)
M|d3
Inequality (11.1.15) follows from the above relation and (11.1.3).
Now we consider the case when zp + 2ad ¢ X. It follows from the
definition of T'(x) that
2a\d|2 > T(xg). (11.1.10)

Thus, a > g#h). This inequality and condition (11.1.3) imply (11.1.6). O

The algorithm given below is a simple algorithm for calculating a feasible
point Armijo step. It tries to find an acceptable step by repeatedly doubling
or halving the step.

Algorithm 11.1.2
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Step 1. Givenx € X, d € DF(x,X) and d'Vf(z) <0;
given c1 € (0,1);
let amax = 400, a = 1.

Step 2. if
f(z 4 ad) > f(z) + crad? Vf(z),

orz+ad ¢ X go to Step 3;
if amax < 00 then stop;
o :=2a; Go to Step 2.

Step 3. amax = a; a:=«a/2; Go to Step 2. O

It is easy to see that Algorithm 11.1.2 terminates after finitely many
iterations with a feasible point Armijo step unless x 4+ 2Fd € X for all k
and f(x + 2%d) — —oo. Instead of simply doubling or halving the trial step,
we can also use quadratic or cubic interpolations in the above algorithm to
accelerate the convergence speed.

For any x € X and d € FD (z, X), we call the step a* > 0 that satisfies

o min f(z + ad) (11.1.11)

rzt+adeX

a feasible point exact line search step.

Lemma 11.1.3 Assume thatx € X, d € FD (z,X), and o* satisfies (11.1.11).
It follows that

oo 1 [d"Vf(@)]
f(a?)—f(a?—i—a d) > T [HdHQ] y (11.1.12)
£@) = flo +a*d) > —~ & TG (), (11.1.13)
2||d]|2

where M = maxy>q | V2 f(x + td)||2 and where T'(x) is defined by (11.1.7).

Proof. From Taylor expansion, it follows that
T M 2 92 A
flz+ad) < f(z)+ ad Vf(:c)—F?HdHQa = ¢(a). (11.1.14)

Let ag = —dTV f(x)/(M|d||3). If z + apd € X, we have that
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flz+a’d) < f(z+ aod) < d(a)

B 1 [dV )]
- f(x)‘ml 1l ] '

(11.1.15)
If x + apd ¢ X, it follows that oy > I'(z)/||d||. From the convexity of ¢(«),
we can show that

fx) = flz+a’d) = sup  [f(z) — f(z + ad)]
0<a<l(z)/|ldl2

sup  [f(z) — ¢(a)]
0<a<T(z)/|dl2

(@) - 6I0(2)/ ]l
L) (12 — g(ao)]

Ei{preny
_ ;ﬁ;ﬁ“’; A"V f(z). (11.1.16)

Y

Vv

The above two inequalities indicate that the lemma is true. O

Having the technique of searching along a feasible direction in the feasible
region, we can solve a constrained optimization problem iteratively as long
as we can find a feasible descent direction in every iteration. However, it is
not always possible to find a feasible descent direction. For example, for the
constraint

c(z,y) =y —a* =0, ( ‘; ) € R% (11.1.17)

FD((z,y),X) = & at every feasible point. Therefore no feasible descent
direction exists at any feasible point. Fortunately, when the feasible set X is
convex, at any point x € X there exists a feasible descent direction provided
that = is not a KKT point. We write this result in the form of a lemma as
follows.

Lemma 11.1.4 Assume that v € X, X is a convex set and f(x) is a convex
function. Then there exists a feasible descent direction at x if and only if x
is not a minimizer of problem (8.1.1)-(8.1.3).

Proof. It is obvious that there exists no feasible descent direction at x if
x is a minimizer.
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Now assume that x is not a minimizer, then there exists an & € X such
that

£(#) < f(z). (11.1.18)

Because f(z) is a convex function, it follows from (11.1.18) that
dT'Vf(zx) <0,

where d = & — x. Because of the convexity of X, d € FD (z, X). Therefore
d is a feasible descent direction. O

A general algorithm that uses feasible descent directions is given as fol-
lows.

Algorithm 11.1.5

Step 1. Given initial point x1 € X, k:=1;

Step 2. If no vector d satisfies (11.1.1)-(11.1.2) then stop;
find dy, that satisfies (11.1.1)-(11.1.2);

Step 3. Carry out a certain feasible point search, obtaining ay, > 0.

Step 4. xpr1 =z + ogdi; ki=k+1; Go to Step 2.

We can use a feasible point exact line search or a feasible point Armijo
search to obtain oy, in Step 3 of the above algorithm.

From example (11.1.17), even if Algorithm 11.1.5 terminates, it may not
stop at a stationary point. However, when the objective function f(z) is
convex and when the feasible set is convex, xj must be the optimal solution
if Algorithm 11.1.5 terminates at iteration k.

An important issue is the choice of dj that satisfies (11.1.1)-(11.1.2).
Consider the very special case when X = R". Let f(z) be a uniformly
convex function defined on ™. Assume that dj, is the search direction at the
k-th iteration satisfying

dEV f(zp) < 0. (11.1.19)

Let 0 be the angle between dj, and the steepest descent direction —V f(zy),

namely

i V()
[dill2l|V f ()|

cos O = (11.1.20)
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Lemma 11.1.6 For an unconstrained optimization problem, assume that the
objective function is twice continuously differentiable and uniformly convex
and that a line search algorithm with xi11 = x + agdr and |V f(zg)|| # 0
for all k, satisfies

oo
Zcos2 0 < +o0, (11.1.21)
k=1

where cos Oy, is defined by (11.1.20). Then

Jim inf |V £ ()| > 0. (11.1.22)

Proof. Because f(z) is uniformly convex, there exists z* such that

f(z*) = Hl%?t f(z). (11.1.23)

xre

It is obvious that (11.1.22) is equivalent to
lim f(zx) > f(z"). (11.1.24)
k—o0

Define Xy = {z|f(z) < f(z1)} and

= i i d C ? d’ 11.1.25
M —_— d d- 11.1.26

It can be shown that 0 < m; < M; < 400 because f(x) is uniformly convex.
Therefore,

flzr) = ferg1) < f(ivk)—rggf(xwrtdk)

1
< S lIVF@0IE cos® b
cos2 0
< S (Ml = o)
cos? 0y, ( My\? .
< 0 () U - £l L
mi

Consequently, it follows that

2

f(@p41) — f(27) = (1 - 2Mil cos” <9k> [f(zr) — f(2")], (11.1.28)

2
m
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for all k. Assumption (11.1.21) implies the existence of ko such that

2

Mi o
Tm%COS O, <1, Vk > ko. (11.1.29)

Because |V f(xg,)|| # 0, we have that f(xg,)—f(z*) = > 0. From (11.1.21)
there exists n > 0 such that

00 ]\412 2
ke |1 mcos 0| >n>0. (11.1.30)

Thus, it follows from (11.1.28) and (11.1.30) that

flay) = f(z%) 206 >0

for all k£ > ko. This implies that (11.1.24). O
The above lemma tells us that we require

o
> cos? O, = +oo, (11.1.31)
k=1

to ensure the algorithm converging to a stationary point.
Similar to the steepest descent direction, we can define the feasible steep-
est descent direction as follows.

Definition 11.1.7 Let xz € X; if a vector d in the closure of FD(x, X) solves

dTV ()
min ———=,
deFD (z,X) ”dHQ
d#0

(11.1.32)

it 1s called a feasible steepest descent direction.

Because FD(z, X)) may not be a closed set, the minimum of (11.1.32)
can not be reached by any d € FD (z, X). Thus, a feasible steepest descent
direction may not belong to FD(x, X). Therefore, it is not easy to generate
the steepest direction directly to constrained optimization by simply making
the steepest descent direction “feasible”.

Consider the inequality constrained optimization problem

min f(z), (11.1.33)
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st.ci(x) >0 i=1,---,m. (11.1.34)

Let z; € X. It is obvious that I(xz;) = {i|ci(zr) = 0}. In order to find a
feasible descent direction at the k-th iteration, we consider the approximate

subproblem
min ad? Vf(21), (11.1.35)

st. xp +ad e X. (11.1.36)

As the aim for constructing this subproblem is to find a search direction,
we can assume that |lad|| is very small. When ||ad| is sufficiently small,
(11.1.36) is equivalent to

cj(zp+ad) >0, jel(xyg). (11.1.37)
The above inequalities hold if we require that
T 1 2 2 .
ad' Vej(xy) — QMa lldllz >0, jeI(xk), (11.1.38)
where M > 0 is an upper bound for

v2 . 11.1.39
mag max [VZej(z)ll2 ( )

Replacing ad by d, we can obtain the following subproblem

min d? 'V f (zy,), (11.1.40)
T M, o :
s.t. d' Ve(xy) — EHdHQ >0, i€ l(xg). (11.1.41)
By further replacing d by Md, the above problem can be rewritten as
min d? V f (zy,), (11.1.42)
T Lo .
s.t. d* Vei(xg) — §Hde >0, i€ l(xy). (11.1.43)

The dual problem for the above problem is

d"Vf(ze) — > N dTch(xk)—HdHQ)] (11.1.44)

max min
A
1€l(z)

deR”

st. A\ >0, i€ I(l’k) (11.1.45)
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The above problem can be written in the equivalent form

9700 - Sicriop MVa)],

miny , (11.1.46)
Dicl(ay) Ni
st AN >0, i€ I(xy), > Ai>0. (11.1.47)
iEI(xk)
Define
1
d(N) = =5 | V() - > AiVei(a) (11.1.48)
ZiEI(Ik) i ZEI(SEk)
The objective function in (11.1.46) can be written as
= > AlldV 5 (11.1.49)

i€l (zy)
Direct calculations show that

2d(N)"Veg, () =[N3
Vo(A) = : : (11.1.50)
2d(\)" Vg, (zx) = [d(N)3

where {k1, ko, -+, kr} are the elements of I(xy). Furthermore, we have that
2
V(N = =TT, (11.1.51)
Dicl(ay) Ni
where

T(A) = (d(A\) — Vg, (z1), d(A) — Verg (k) - -+, d(X) — Vg, (zy)). (11.1.52)

Thus, ¢()\) is a convex function. Let A(*) be a solution of (11.1.46)-(11.1.47),
then d(A(*)) is a solution of problem (11.1.40)-(11.1.41). In that case, xy, is
a KKT point of (11.1.33)-(11.1.34) if d(A(®)) = 0, and d(A*)) is a feasible
descent direction at zj satisfying

ld(A®)]13

ANV f(2) = NG <0, (11.1.53)

iEI(CEk)
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if d(AR) £ 0.
It is not difficult to show that subproblem (11.1.40)-(11.1.41) has nonzero
minimum if and only if

dU'V f(x)
dTVCZ' (.Tk)

, (11.1.54)

< 0
> 0, i€ l(xg) (11.1.55)
has a solution. That is to say, when (11.1.54)-(11.1.55) has a solution we
can obtain a feasible descent direction by solving (11.1.40)-(11.1.41). On the
other hand, if (11.1.54)-(11.1.55) has no solution, similar to Lemma 8.2.5 it
can be shown that there exist A(i € I(zg)) > 0 and A§ > 0 such that

NV () — > AVe(a*) =0, (11.1.56)
i€l(xg)

and that }_;cr(,) A2+ \) # 0. Therefore we know that z, is a Fritz John
point of the original optimization problem (11.1.33)-(11.1.34).

Another subproblem for finding a feasible descent direction is directly
based on (11.1.54)-(11.1.55), having the form:

min o (11.1.57)

st. d'Vf(zr) < +o, (11.1.58)
d'Vei(xy) > —o, i€ l(xp), (11.1.59)
ld| < 1. (11.1.60)

It is easy to see that the minimum of the above subproblem ¢* = 0 if and
only if (11.1.54)-(11.1.55) has no solutions.

11.2 Generalized Elimination

Consider the equality constrained problem

min  f(z) (11.2.1)
st.  c(x) =0, (11.2.2)
where c(z) = (c1(x), -, cm(x))T. Assume that we have a certain partition

on the variable x:

z = [ vB ] , (11.2.3)

TN
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where xg € R, xny € R, Therefore (11.2.2) can be written as
clxp,xn) =0. (11.2.4)

Suppose that we can solve zp from (11.2.4), namely

xp = ¢(zN), (11.2.5)
then (11.2.1)-(11.2.2) is equivalent to
min _ f(zp,2n) = f((zn), 2n) = flzn). (11.2.6)
"ENG%TL m
The vector ~
g(xzn) = Vanf(zn) (11.2.7)
is called the reduced gradient. It is easy to verify that
0 ozt 9
g = — —2 : 11.2.8
g(zN) 8fo(xB’$N) * Sen 925 (zp,zN) ( )

T
From (11.2.4) we can see that gz—ﬁ satisfies that

ozt 0 T 0 T
—£ — =0. 11.2.9
D ach(xB,a:N) + (%*NC(xB’xN) ( )
If gﬂi; is nonsingular, the above two equations imply that
_ _ Of(zB,zN)
oc(rp,zn)’ | Oc(xp, vN)T - Of (xB,zN)
— 2 2 2 . (11.2.10)
oxnN oxp Oxp

Therefore, the reduced gradient can be expressed as the gradient of the La-
grangian function at the reduced space:

an) = 5o f(@) = ATe()] (11.211)

where X is a multiplier satisfying

Of(x) _ 9c’ ()
al‘B - 83:3

Al (11.2.12)
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In other words, when the Lagrange multiplier A is chosen as

0T ()] Of(x)
[ o ] . (11.2.13)
we have that
0
V.L(z,\) = l Haw) ] . (11.2.14)

Therefore, the reduced gradient can be viewed as the nonzero part of the
gradient of the Lagrangian function.

Using the reduced gradients, we can construct line search directions for
the unconstrained problem (11.2.6). For example, we can use the steepest
descent direction

di = —g((zn)k) (11.2.15)
or the quasi-Newton direction

dr = =B '3((zn)k)- (11.2.16)

Here the subscript k£ indicates the iterate number, B is an approximate
Hessian matrix which can be updated from iteration to iteration(for example,
by BFGS formula). It is worth pointing out that carrying out a line search

migf(qs((a;]v)k +ady), (zn)k + ady) (11.2.17)

a>

on the unconstrained problem (11.2.6) is equivalent to carrying out a curve
search on the original objective function f(z) along the following curve:

c(zp, (xn)g + ady) = 0. (11.2.18)

Because the function ¢(x) is not known explicitly, for every trial o we need
to solve (11.2.18) to obtain

rp = ¢((zn)k + ady) (11.2.19)

when carrying out line searches (11.2.17). This can be done by an approxi-
mate Newton’s method, namely

2 = (zp), (11.2.20)

, » dc(xy)T - '
o5 = <’35§)_laxk] (@) (en)i +ady).  (11.2.21)
B
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Because Newton’s method converges quadratically, usually an acceptable zp
will be obtained after applying (11.2.21) for a few iterations. If $g) does
not converge after some iterations, a should be reduced to continue the line
search procedure.

The following is a general framework of the variable elimination method.

Algorithm 11.2.1 (Variable Elimination Method)
Step 1. Given a feasible point x1 € X, e >0, k=1;

Step 2. Compute

oc(zp)t | A
= l Ai ] , (11.2.22)

where the partition satisfies that Ap is nonsingular.
Compute X by (11.2.12), and g by (11.2.11).

Step 3. If ||gr|| < € then Stop; )
Generate a feasible descent direction dj, satisfying

L gy, < 0. (11.2.23)

Step 4. Carry out line search (11.2.17) obtaining oy, > 0,

Let w1 = (0((xn)k + ardr), (n)k+ crdy),
k:=k+1; go to Step 2.

It is very easy to see that the above algorithm is in fact a descent method
for the unconstrained optimization problem (11.2.6). The only thing that we
should keep in mind is that the partition (zp, zx) may differ from iteration to
iteration. Using the convergence results of descent methods for unconstrained
optimization, we can easily establish the following result.

Theorem 11.2.2 Assume that f(z) and c(x) are twice continuously differ-
entiable. If [(Ve(z)T)T Ve(z)T) ! is bounded above uniformly on the feasible
set X, Algorithm 11.2.1 with exact line searches and the assumption

> " cos*(d, gr) = oo (11.2.24)

ensures that
lim inf [|(V f (1) — Ve(z) )| = 0, (11.2.25)
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or
klim f(zg) = —o0, (11.2.26)

where Ay = [Ve(zp)T|EV f ().

Let dp = —§r, then (11.2.23) and (11.2.24) hold. In that case, Algo-
rithm 11.2.1 is exactly the steepest descent method in the lower dimensional
space using the variable partition.

Consider any nonsingular matrix S € "*" and variable transformation:

r = Sw. (11.2.27)
We partition the variable w:
w= l B 1 : (11.2.28)
WN

where wg € R, wy € R"™. Using the constrained condition
C((S)BU)B + (S)NU)N) =0 (11.2.29)

to eliminate variable wp, namely

wp = ¢(wN). (11.2.30)
In this way, the optimization problem (11.2.1)-(11.2.2) is equivalent to

min f(SBwB + SN?UN) = f(wN) (11231)
wyet" ™

Provided that SEVC(z)T is nonsingular, direct calculations give that
Vuy Fwy) = glwn) = Sy[Vf(z) = V(@) A, (11.2.32)

where \ satisfies
STV f(z) — Ve(x)TN] = 0. (11.2.33)

Thus, we have obtained an elimination method based on the variable
transformations at every iterations. This method is called the generalized
elimination method.

Algorithm 11.2.3 (General Elimination Method)
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Step 1. Given a feasible point 11 € X, € >0, k= 1;

Step 2. Construct a nonsingular matriz Sy, and a partition S =
[(Sk)B ,  (Sk)n] such that (Sk)EVe(zg)T nonsingular;
Compute \ by (11.2.83) and gi by (11.2.32).

Step 3. If ||gr|| < € then stop; )
Generate a descent direction dy, satisfying

dLg, <0 (11.2.34)

Step 4. Carry out line search:

min F((Sk)Bo((wr)n + ady) + (Sk)n[(wi) v + ady))
(11.2.35)
obtaining ag > 0; let

Tr+1 = (Sk)BO((we) N + ardy) + (Sk)N[(wk) v + agdy);
(11.2.36)
k:=k+1; go to Step 2. O

In the algorithm, wy is a vector satisfying x; = Spwg. Similar to the
elimination method, for each trial step a > 0, we need to compute

wp = ¢((wy) N + ady), (11.2.37)

which can be done by applying the approximate Newton’s method to the
nonlinear system

c((Sk)pwp + (Sk)N[(wk)N + ac?k]) =0. (11.2.38)
That is,
wit™ = wl) — [(Ve(zr))T () 5] e((Sk) sl
+ (Se)n[(wp)n +adg]), i=1,2,---. (11.2.39)

It is not difficult to see that if .Sy is the unit matrix in every iteration, the
generalized elimination method is exactly the original elimination method.

The variable increment xj11 — 2 of the generalized elimination method
in every iteration is actually the sum of two parts:

Tpp1 = xp + )+ dP (11.2.40)
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where

d) = ox(Sk)ndr, (11.2.41)
4P = (S)Bl6((we)n + ardy) — (wy)p). (11.2.42)

The iteration process first obtains the step d,gl) , then uses the approximate

Newton method along the direction d,(f) to find a point in the feasible set, as
shown in Figure 11.2.1.

Figure 11.2.1 Iterative procedure of generalized elimination method

Looking at Figure 11.2.1, we see an undesirable property of such a process.
The iteration first moves away from the feasible set, and then it comes back,
though the essential idea for feasible point methods is to force all iterate
points inside the feasible region. Except for very special constraints, it is
unavoidable to use the technique of moving away and coming back if we
require that all iterate points are feasible. But, how to make the “moving
away” as small as possible? An intuitive answer is to choose dl(;) to be
a linearized feasible direction at x. It is reasonable to believe that such
a d,(gl) would make zp + d](gl) closer to the feasible region, consequently the
approximate Newton’s method will bring xj, + dl(:) back to the feasible region
more quickly. Figure 11.2.2 illustrates the above discussions.
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1)
ds
Xk*

‘ri-\‘f
clx)=0

Figure 11.2.2

When d,(cl) is a linearized feasible direction, the method is called a feasible

direction method. It is obvious that if
(Sp) L Velz)T =0 (11.2.43)

holds, dg) is a linearized feasible direction. Because of this, feasible direction
methods can also be viewed as special generalized elimination methods.

11.3 Generalized Reduced Gradient Method

The generalized reduced gradient method (GRG method) is in fact Algo-
rithm 11.2.1 with d, = —§. It is the steepest descent method in the reduced
space.

In each iteration, the line search can be the Armijo rule, namely reducing
the trial step repeatedly until an acceptable one is obtained. The condition
for accepting the new point can be the simple reduction

Flanst) < f(zp). (11.3.1)

In each iteration, we apply (11.2.21) for at most N times to compute z g,
where N is a given positive number. If the approximate Newton’s method has
not converged after IV iterations, we reduce the trial step o and repeat the
iteration. Because the quadratic convergence of Newton’s method, normally
one or two iterations of (11.2.21) will return a sufficiently accurate feasible
point xgy1. Therefore in practice we can choose N between 3 to 6.

The algorithm is the generalized reduced gradient method with Armijo
line searches requiring simple reductions.

Algorithm 11.3.1 (Generalized Reduced Gradient Method)
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Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.
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Given a feasible point x1 € X, € > 0, € > 0; positive integer
M; k:=1.

Compute

Ve(xg)! = [ ﬁff ] , (11.3.2)

where the partition satisfies that Ag € R™*" is nonsingular;
Compute X from (11.2.12) and Gy from (11.2.11).

If ||gr|| < € then stop;
let d, = —g; and o = a,(fo) > 0.

N = (xk)N + onk;
zp = (zx)B; j :=0.

B = IR — ABTC(Z'B,.’EN);

compute c(xpg, TN);

if |lc(zp,zN)| < € then go to Step 7;
ji=7+1;4f 5 <M go to Step 5.

a:=a/2, go to Step 4.

If f(xp,xN) > f(zk) then go to Step 6.
41 = (x,zN), k:=k+1; go to Step 2.

This algorithm is in fact a gradient method. Thus the simple reduction
(11.3.1) on the objective function can not guarantee convergence. In other
words, we can not show that the iterates generated by Algorithm 11.3.1
converges to a KKT point of the original optimization problem (11.2.1)-
(11.2.2). There are two ways to overcome this. The first one is to use a
better line search condition. For example, we can replace the simple reduction
condition (11.3.1) by the Wolfe line search condition

f((ze)N + andy) < f((ze)n) + Bawd} gk, (11.3.3)

where « is the step length, 8 € (0,1) is a positive constant, and f(zy) is
defined by (11.2.6). Condition (11.3.3) can be written as

Flaps1) < flan) — arBldel3- (11.3.4)
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Thus if we replace the condition f(zp,zy) > f(xf) for rejecting a new point
in Step 7 of Algorithm 11.3.1 by

flz,zn) > flzr) — aB|del3, (11.3.5)

the Wolfe line search condition (11.3.3) is satisfied. Another way is to require

that the initial trial step length ag)) in Step 3 of the algorithm satisfies that

(0)

o

Izl
oo (0)

QO
> e = 400, (11.3.7)
= Nkl

Similar to convergence analyses for unconstrained optimization methods,
we can prove the following convergence results.

Theorem 11.3.2 Assume that f(x), c(x) are twice continuously differen-

tiable, that the matrices Agl in Step 2 of Algorithm 11.3.1 are bounded above
uniformly, and that a,(co) in Step 3 satisfies that (oz,(vo))_1 is uniformly bounded.
If the condition f(xp,zN) > f(xg) in Step 7 is replaced by (11.3.5), if € =0

and if Algorithm 11.3.1 does not terminate, it follows that either

lim il =0 (11.3.8)
or
klim f(zy) = —o0. (11.3.9)

Theorem 11.3.3 Assume that f(z), c(x) are twice continuously differen-
tiable, that the matrices Agl in Step 2 of Algorithm 11.8.1 are bounded above

uniformly, and that a,go) in Step 3 satisfies (11.3.6) and (11.3.7). Then if
e =0 and if Algorithm 11.3.1 does not terminate, either (11.3.8) or (11.3.9)
holds.

One advantage of the generalized reduced gradient method is the dimen-
sion of the problem is reduced due to variable elimination. The method can
also make good use of the special structure of the problem such as sparsity
and constant coefficients so that A and §g can be computed quickly. Simi-
larly, if Ap is sparse, sparse linear system solvers can be used when using
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the approximate Newton’s method to obtain xp. Therefore, for large-scale
nonlinear programming problems there are many linear constraints or with
sparse structures, the generalized reduced gradient method is one of the most
efficient methods.

Because one or more systems of nonlinear equations have to be solved in
the generalized reduced gradient method, its computation cost is very high
if the matrix Ap is not sparse and without special structures.

11.4 Projected Gradient Method
From the discussions at the end of Section 11.2, in order to choose dg) as a
linearized feasible direction in the generalized elimination method, Si should
satisfy

(Sp) S Ve(z)t =o0. (11.4.1)

Consider the case that the steepest descent direction is used in the generalized
elimination method, namely
di, = —G. (11.4.2)

From (11.2.41) it follows that
dy) = —ar(S) N (S KV f (). (11.4.3)

Obviously, (Sy)n (Sk)% is a linear projection from R" to the subspace spanned
by the columns of (Si)n. Suppose A, = Ve(xi)T is full column rank, the
subspace spanned by the columns of (Sk)x is the null space of AL, Therefore
the direction defined by (11.4.3) is actually the projection of the negative
gradient of the objective function to the null space of the Jacobi matrix. If
Sy, satisfies

(Sk)N(Sk)N =1, (11.4.4)

(Sk)n(Sk)% is an orthogonal projector, and

P, = (Sk)N(Sk)n
= I - A(ALA) AT, (11.4.5)

when Ay has full column rank. In this case, P,V f(x) is an orthogonal pro-
jection of V f(xy) to the null space of A%. Therefore, the generalized elimina-
tion method is a projected gradient method. In a practical implementation
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of the projected gradient method, we can use the QR factorization of Ay:

A = [V Zk]['ﬁ? ]. (11.4.6)

It is easy to see that we can let (Si)ny = Zi. Hence,
g = ZL g (11.4.7)
is the reduced gradient and
dy, = —Zygx = —ZuZE g (11.4.8)

is a projection of the negative gradient to the null space of A%, which is a
descent direction of f(x). Thus, we can choose oy such that

f(xk + akdk) < f(l’k) (11.4.9)

The point xf + axdr may be infeasible. A feasible point can be obtained by
the approximate Newton’s method

2V = wp+ apdp, (11.4.10)
xl(jﬂ) _ x,ﬁi)—YkRglc(xéi))7 i=1,2,.... (11.4.11)

When c(x}") is sufficiently small, we terminate (11.4.11) and set xj 1 =

x](jﬂ). The above iteration process is essentially (11.2.39) with (Sk)p = Y.

If ay, is sufficiently small, we have that
|zrs1 — (zp + ardy)|| = O(a}), (11.4.12)
therefore there exists ay, > 0 such that

f(@pi1) < f(@k). (11.4.13)

The algorithm given below is the projected gradient method with Armijo line
searches requiring simple reductions.

Algorithm 11.4.1 (Projected Gradient Method)

Step 1. Given a feasible point x1 € X, ¢ > 0, € > 0, a positive
integer N, k :=1.
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Step 2. Compute the QR Factorization
R
VCO(x)" = Vi Zi) l Ok ] ;

Gk = ZEV f(xp);
if ||gr|l < € then stop;

(0)

dyp, = —ZLgy; set a = ozk,o > 0.

Step 8. y = xp + adg; i := 0.

Step 4. y: =1y — Ylezlc(y);
if |C(y)|| <€ and f(y) < f(xx) then go to Step 5;
1:=1+1; if © < N then go to Step 4;
a = «a/2; go to Step 3.

Step 5. xpv1 =y, k:=k+1; go to Step 2.

Similar to the generalized reduced gradient method, Algorithm 11.4.1
needs to modify its line search conditions or to impose certain conditions on
the initial steplength in order to guarantee convergence.

For inequality constraints, active set technique can be used to obtain
feasible directions. However, one difficulty of the active set technique is the
zigzagging phenomenon, which was pointed out by Wolfe [350]. There are
many ways to overcome zigzagging in feasible direction methods. The main
idea for avoiding zigzagging is not to delete constraints from the active set
unless it is absolutely needed.

If the search direction dp = —Z,gr in the last line of Step 2 in Algo-
rithm 11.4.1 is replaced by

dk = —Zkzk, (11.4.14)

where z; € R"™™ is any vector that satisfies
T —
2 g < 0, (11.4.15)

then the algorithm is a general form of the linearized feasible direction method,
often called feasible direction method.

Based on our definitions, the search directions in a feasible direction
method is only a linearized feasible direction instead of a feasible direction.
An exception is the case when all the constraints are linear functions. In this
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case, the linearized feasible directions are also feasible directions. Because
feasible direction methods were first used for linearly constrained problems,
when they are generalized to nonlinear constraints they are still called feasible
direction methods. To be precise, this method, when applied to nonlinearly
constrained problems, should be called linearized feasible direction method
instead of feasible direction method.

For nonlinear constraints, normally linearized feasible directions are not
feasible directions. Therefore searching along a linearized feasible direction
may return an infeasible point. That is why Newton’s method or approximate
Newton’s method should be applied to bring the iterate back to the feasible
region before continuing the next search along a search direction and another
moving back to the feasible region. This procedure leads to the sawtooth
phenomenon, as indicated by Figure 11.4.1

b
(_U‘"‘“ﬂ

Figure 11.4.1

11.5 Linearly Constrained Problems

Feasible direction methods are very efficient for linearly constrained problems,
for example, for equality constrained problem

min g f(2), (11.5.1)
st. ATz =0, (11.5.2)

where b € R, A € R™™, rank(A) = m, and f(z) is a nonlinear function.
The search direction of a feasible direction method can be expressed by

dy, = Zdj,, (11.5.3)
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where dj, € "™, and Z € R~ satisfying

ATz = o, (11.5.4)
dEZTV f(x) < 0. (11.5.5)

Specifically, we can let dy, = —Z7'V f(x},), which leads to the following feasible
direction method based on steepest descent direction.

Algorithm 11.5.1

Step 1. Given a feasible point x1;
Compute Z such that ATZ =0 and Rank(Z) = n —m;
k=1,e¢>0.

Step 2. dp = —ZZTV f(x1); if ||di|| < € then stop;
Carry out line search along di obtaining oy > 0;
Tht1 = T + agdp; k =k +1; go to Step 2.

The algorithm is actually a steepest descent method in the feasible region.
Thus, its convergence can be established under certain line search conditions.
When Z satisfies Z7 Z = I, Algorithm 11.5.1 is a projected gradient method.

Now we discuss a projected gradient method for general linearly con-
strained optimization problems, which was proposed by Calamai and Moré
[50].

For a general linearly constrained optimization problem

min_ g f(2), (11.5.6)
s.t. alr="0b;, i€E, (11.5.7)
alez>b;, iel, (11.5.8)
the feasible set X is

X ={z|lalz=0b;, i € E;alx >b;, i € I}. (11.5.9)

Define the mapping P,
P(z) = argmin{||z — z|, z € X}, (11.5.10)
where arg min indicates any z € X that minimizes ||z — z||, || - || is a norm.

For simplicity, we assume that || - || is the Euclidean norm || - ||2.
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Consider the steepest descent method. The iterate xy41 should be a point

on the straight line
(o) =z — oV f(zg). (11.5.11)

But we need the iterate points on the feasible region, we use the projection
P to project the line (11.5.11) to X, obtaining the piecewise line

zp(a) = Plag — aV f(xg)]. (11.5.12)
We search along the piecewise line, namely find aj > 0 such that

flap(an)) < for) + pa(zn(ar) — 2) "V f (), (11.5.13)
ap >y or ag >y ag >0, (11.5.14)

where ¢y, satisfies
flar(ar)) > flan) + po(ep(ar) — zx) "V (). (11.5.15)

Here, 1, v2, pi1, 12 are positive constants and puq, uo € (0,1).
The method of Calamai and Moré can be stated as follows.

Algorithm 11.5.2
Step 1. Given a feasible point x1, p € (0,1), v >0, ag =1, k:=1;
Step 2. oy, := max{2a;_1,7}-

Step 3. if (11.5.13) holds go to Step 4;
ap = ag/4; go to Step 3;

Step 4. xp+1 = xp(ag); k:=k+1; go to Step 2.

It is easy to see that aj computed by Algorithm 11.5.2 satisfies (11.5.13)-

(11.5.15) for po = p1 = p, y1 =1y, y2 = 1/4.
From the definition of P(x), for any € R" it follows that

(z — P(z))'(z = P(z)) <0, VzelX. (11.5.16)

Let x = xp — apV f(zr) and z = xj in the above relation, then we obtain
that
(xr — axV f(zg) — LL‘]H_l)T(:L‘k —xp11) <0. (11.5.17)
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Thus, it follows from (11.5.13) and (11.5.17) that

k1 — k3
flzr) = f(zpg1) = e (11.5.18)

First we have the following lemmas.

Lemma 11.5.3 Assume that f(x) is continuously differentiable and bounded
below on the feasible set X. If Vf(x) is uniformly continuous on X, the
iterates generated by Algorithm 11.5.2 satisfy

lim JZar1 =kl (11.5.19)
k—oo Qf

Proof. If the lemma is not true, there is an infinite subsequence Ky such
that
[Zpt1 — k|
&7

>4, VkekK, (11.5.20)

where § > 0 is a positive constant independent of k. It follows from the above
relation and (11.5.18) that for all £ € K we have that

fan) = fanga) > S llopgr — ol > P, (11.5.21)

Because f(z) is bounded below on the feasible set and all z, are feasible, it
follows that

[e.9]

S [f(@r) = f@ra)] < +oo. (11.5.22)

k=1
Inequalities (11.5.21) and (11.5.22) imply that

Jim |zkt1 — x| = lim ay = 0. (11.5.23)
keKy keRy

Therefore the first condition of (11.5.14) does not hold for sufficiently large
k € Kgy, which shows that
Qg = Y20y, (11.5.24)

and that (11.5.15) holds. Using the monotonically non-increasing property
of

_ IP(z + ad) — 2|
- - ,

¥(a) a>0 (11.5.25)
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and relation (11.5.24), we can prove that

[z —fck(ak)H > min{L i} |z — 2 (o) ]|
Qg Y2 Qg

Thus, letting x = z, — @V f(x) and z = xy in (11.5.16) gives that

(11.5.26)

N NT |zx — 2k ()|
(z(ax) — zx)" Vf(zg) > o
> min{l,;}dﬂxk — 2@ (11.5.27)

for all sufficiently large k& € Ky. The uniform continuity of Vf(z) on X
implies that

Flar(on)) = fla) = (@r(ar) — 2) V(@) + o(|lze(en) — zi). (11.5.28)
It follows from (11.5.15) and (11.5.28) that
—(:Ck(@k) — q:k)TVf(a;k) < O(ka — xk(dk)H) (11.5.29)

The above inequality contradicts (11.5.27), which shows that the lemma is
true. O

Lemma 11.5.4 A point z* € X is a KKT point of problem (11.5.6)-(11.5.8)
if and only if there exists § > 0 such that

P(z* —aVf(z")) =" (11.5.30)
holds for all o € [0, 4].
Proof. Equation (11.5.30) is equivalent to
lz* = 6V f(z") — 2*[I3 < [la* — 6V f(2*) — 23 (11.5.31)
holds for all x € X. Because X is a convex set, (11.5.31) is equivalent to
(x —x")Vf(z*) >0 (11.5.32)

holds for all feasible points sufficiently close to x*. This means that x* is the
minimizer of function 7V f(z*) on X, which is equivalent to that z* is a
KKT point of problem (11.5.6)-(11.5.8). O

From the above two lemmas, we can easily establish the convergence result
of Algorithm 11.5.2.
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Theorem 11.5.5 Assume that f(x) is continuously differentiable on the fea-
sible set X. Then, any accumulation point x=* of {xy} generated by Algo-
rithm 11.5.2 is a KKT point of problem (11.5.6)-(11.5.8).

Proof. If the theorem is not true, there exist a subsequence of {zj}
satisfying
klél}l{lo xp =", (11.5.33)
k—oo
and
P(z* — 0V f(z*)) # 2*, (11.5.34)

where § > 0, Ky is a subset of {1,2,---}. Because of (11.5.33), we can
assume that =, € S (k € Kp), and S is a bounded closed set. Because V f(x)
is continuous on S, it is also uniformly continuous on S. It follows from
Lemma 11.5.3 that

i 121 = 7ell (11.5.35)
R @

From the continuity of V f(z) and (11.5.33)-(11.5.34), we can show that

i Nee®) =l _ 1P =3V F@*) - o)

kEkq i) )
k—oo

> 0. (11.5.36)

Because the function ¥(a) defined by (11.5.25) is monotonically non-increasing,
it follows from (11.5.35) and (11.5.36) that oy > ¢ holds for all sufficiently
large k € Ky. Therefore,

flaw) = flepn) = —pa(V ()" (an(on) — zx)
> —pa(V ()" (2x(6) — 1)
5 2
> ”x’“(‘s)é_ zell”, (11.5.37)
Now it follows from (11.5.37) and (11.5.36) that
klér}?o 1nf[f(mk) — f(xk+1)] > 0. (11.5.38)

This contradicts the fact that limg_.o f(zr) = f(2*). Therefore the theorem
is true. O

Exercises
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1. Assume that X is a convex polyhedral defined by X = {xz | Az > b}.
Show that finding a direction d satisfying (11.1.1)-(11.1.2) is a convex pro-
gramming problem and give its dual.

2. By direct elimination, find the point on the ellipse defined by the in-
tersection of the surface x +y = 1 and 22 + 2y? + 22 = 1 which is nearest to
the origin.

3. Apply Newton’s method with the generalized elimination to solve the
problem

min  8z] — 23

st. x4+ x9=1.

4. For the above problem, at the point (3, —2)T, please give the projected
gradient and the projected Hessian. What are the projected gradient and the
projected Hessian at the solution?

5. Give the projected gradient algorithm for the box constrained problem

min f(x)

st. [ <zx<u.

6. Prove Theorem 11.3.2.

7. Assume the symmetric matrix B € R"*" is invertible and b € R".
Prove that the matrix

~

B= (11.5.39)

B b
v B
is invertible if and only if 3 — " B~'b # 0. And prove that, when B is
invertible, there exist © and u such that

R -1
B~ = [BO 8} + punt. (11.5.40)



Chapter 12

Sequential Quadratic
Programming

12.1 Lagrange-Newton Method

Consider the equality constrained optimization problem

min f(zx) (12.1.1)
zeR”
st.  c(x) =0, (12.1.2)
where c(z) = (c1(z), -, cm(z))T € R™. The Lagrangian function is
L(z,\) = f(z) — ATe(z). (12.1.3)

A point z is a KKT point of (12.1.1)-(12.1.2) if and only if there exists A € R™
such that

V.L(z,\) = Vf(z) - Ve(x)'r =0, (12.1.4)
ViaL(z,\) = —c(z) = 0. (12.1.5)
The nonlinear system (12.1.4)-(12.1.5) requires x to be a stationary point of
the Lagrangian function. Therefore any method based on solving (12.1.4)-
(12.1.5) can be called a Lagrange method. For a given iterate point zj € R"

and an approximate Lagrange multiplier A\, € R, the Newton-Raphson step
for solving (12.1.4)-(12.1.5) is ((6x)k, (0A)x), which satisfies

W(a:k, )\k) —A(J}k) (&U)k _ _ Vf(a:k) — A((L‘k))\k
—A(xp)T 0 (0N —c(xg) ’
(12.1.6)
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where
Axy) = Ve(zp)?, (12.1.7)
Wi(ze, Ak) = V2f(zr) = > (A)iViei(my). (12.1.8)
=1

Consider the penalty function

P(,\) = [9£(z) =A@+ lle(@) 13 (12.1.9)
it is easy to show that (dz)x and (d\)y defined by (12.1.6) satisfy that
((62)F, GNE)VP (2, \p) = —2P (x5, \) < 0. (12.1.10)

Here VP is the gradient of P in the space (x,\). The method given below
is based on (12.1.6), hence it is called the Lagrange-Newton method.

Algorithm 12.1.1 (Lagrange-Newton Method)
Step 1. Given 1 € ", \y € R, € (0,1), >0, k:=1;

Step 2. Compute P(xp, A\g); if P(xr, A\x) < € then stop;
solving (12.1.6) obtaining (dz) and (ON)g;
a=1;

Step 3. if
P(azk+a(5m)k,)\k+a(5)\)k) < (1*ﬂa)P($k,)\k), (12.1.11)

then go to Step 4;
a=«a/4, go to Step 3;

Step 4. Tp1 = ok + a(02)k; M1 = Ak + (6N ks
k:=k+1; go to Step 2. O

For the above algorithm, we have the following convergence result.

Theorem 12.1.2 Assume that f(x) and c(z) are twice continuously differ-
entiable. If the matrix

W(a:k, )\k) —A(l’k> -

AT 0 (12.1.12)

is uniformly bounded, then any accumulation point of {(xk, \i)} generated by
Algorithm 12.1.1 is a root of P(x,\) = 0.
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Proof. Suppose that the theorem is not true, i.e., suppose (Z,\) is an
accumulation point of {(zg, \)} and

P(z,)\) > 0. (12.1.13)

Then there exists a subset Ky C {1,2, - - -} which has infinitely many elements
and satisfies that
lim z, =2, lLm A\ =\ (12.1.14)

kEKQ kEK(

k— o0 k— o0

From the line search condition (12.1.11), we can see that

P41, Aer1) < (1= Bog) Pk, Ak). (12.1.15)

It follows from (12.1.13)-(12.1.15) that

kléglo o = 0. (12.1.16)
k—oo
Therefore we have that
P(z + ar(02)k, Ak + ag(0N)) > (1 — Bay) Pz, Ak) (12.1.17)

for all sufficiently large k € K, where &y = 4ay, € (0,1). Let (dz,0)) be the
solution of

z,\) —Az x z) — Ve(z) T\
(0 ) (&) (5. g

Because & — 0, we can show that

i D@08 A+ AN = P@N) - op 3y o _p(z,0). (12.1.19)
i Uk

From the uniform boundedness of (12.1.12) and the fact that (xg, Ax) —
(z,\)(k € Ky), it follows that ((6x)g,(0A\)x) — (6x,6)). Therefore, for
sufficiently large k € Ky we have that
Py + ap(0)k, Ak + @ (0N)g) — P(xg, Ak)
Qg

< —P(zp, Ap). (12.1.20)

Because § < 1, (12.1.20) contradicts (12.1.17). This implies that the theorem
is true. O
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Theorem 12.1.3 Assume that f(x) and c(z) are twice continuously differ-
entiable. If the matrix (12.1.12) is uniformly bounded, then any accumulation
point of {xx} generated by Algorithm 12.1.1 is a KKT point of (12.1.1)-
(12.1.2).

Proof. If the theorem is not true, it follows from the monotonicity of
P(a:k, )\k) that
lim P(ag, A) > 0. (12.1.21)
—00

This limit and condition (12.1.11) imply that
o0
H (1 — Bay,) > (12.1.22)

The above relation indicates that

i g < +oc. (12.1.23)
=1
Because
Wi(xg, M) —A(xr) (07)k | =Vf(x)
“A@)T 0 1 Amax)k]‘l () 1 (12.1.24)

there exists a positive constant v > 0 such that
1G2)ell + 11he + Nl < A1V F )| + e ). (12.1.25)
Let & be any accumulation point of {xj}. Define the set
Ss = {zl|||lz — z|| < d}, (12.1.26)

where 6 > 0 is any given positive constant. From (12.1.25) we know that
there exists a constant > 0 such that

10z)kll < n (12.1.27)

for all 2, € Ss. It follows from (12.1.23) that there exists k such that

> 1)
—. 12.1.2
z_:_ak < by ( 8)
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Because Z is an accumulation point of {zy}, there exists k > k such that

J
lz; —z| < 7 (12.1.29)
From (12.1.27)-(12.1.29) and the fact that ||zx11 — zk|| = ag||(d2)k|| we have

that

zp € S5, Vk> k. (12.1.30)
Therefore (12.1.27) holds for all k > k. Thus, it follows from (12.1.23) that
lim 2, = 7. (12.1.31)

This relation and the last theorem imply that there are no accumulation
points of {(zk, \i)}, which shows that

klim | Ak]| = oo (12.1.32)
Hence, it follows from (12.1.32) and (12.1.25) that

A1l = 1A + ar(6N)]]
= (1 = ap) Xk + ar(Ag + (6A)k) ||
= (1= o)Al + O(ar) < || Akl (12.1.33)

holds for all sufficiently large k, which contradicts (12.1.32). This completes
our proof. O

About the convergence rate of Algorithm 12.1.1, we have the following
result.

Theorem 12.1.4 Assume that the sequence {xy} generated by Algorithm 12.1.1
converges to x*, if f(x) and c(x) are three times continuously differentiable
near *, A(z*) is full column rank, and the second-order sufficient condition
1s satisfied at x*, then A\ — A", and

2

) . (12.1.34)

Ty — XF 0 Ty — x*
Ak — AF A — AF

Proof. Because Algorithm 12.1.1 is the Newton-Raphson method for
(12.1.4)-(12.1.5), and because the second-order sufficient condition implies

that the matrix
W(x*, \*) —A(z*)
l —A(x*)T 0 (12.1.35)
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is nonsingular, we have that

2
(i) o((25)) o

for all sufficiently large k. The above relation, and the fact that f(z) and
c(z) are three times continuously differentiable imply that (12.1.11) holds for
a = 1. Therefore (12.1.34) holds. O

It should be pointed out that (12.1.34) is not equivalent to the usual
quadratic convergence, which is

|zpe1 — || = O(||zx — 2*|)?). (12.1.37)

For the analysis of the convergence rate of the iterates {zx}, we need the
following result.

Lemma 12.1.5 Under the assumptions of Theorem 12.1.4, we have that
err1 = O(||lzr — 2™ ex), (12.1.38)
where
ex = llzk — 2" + | A — A*|. (12.1.39)

Proof. From the proof of Theorem 12.1.4 we see that ap = 1 for all
sufficiently large k. Therefore it follows from the definitions of (dx); and
((5/\) 1 that

W(mk, )‘k:) —A(:Ek) Tpil — r* _ —Vf(l'k) + A(mk))\k
—A(Q?k>T 0 )\k+1 — ¥ C(.I'k)
W, M) (@ — 2*) — A(zi) (A — A7) ]

* —A(w)T (- )

_ [ (A(z*) — A1) Ak — A*) + O(||lzy, — 2*[|?) ]
O(||zx — 2*||?)
_ l O(llzk — a*|[llax — a* [ + A — A1) ]
O(|lax — z*[|%)
= O(”l’k —:L'*Hek). (12.1.40)

The above relation and the nonsingularity of matrix (12.1.35) show that the
lemma holds. O
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Theorem 12.1.6 Under the assumptions of Theorem 12.1.4, the sequence
{zk} converges to x* superlinearly and

P

ok — 2l = o (ka — o Tl — x*u) (12.1.41)
j=1

holds for any given positive integer p.

Proof. It follows from (12.1.38) that {x} converges to z* superlinearly.
For any given positive integer p, applying (12.1.38) recursively we obtain that

ek — 2"l = Oleryr) = O([lar — 2™[|ex)
= O(llzr — ™| lzg—1 — =*[lex-1)

P
= 0 (ka — 2| [T oy — x*!ﬂc—p)

J=1

2
0 (ka — | H |lr—j — :U*H) . (12.1.42)
j=1

Therefore the theorem is true. O

One of the most important contributions of the Lagrange-Newton method
is the development of the sequential quadratic programming method based
on it. Sequential quadratic programming algorithms are the most impor-
tant algorithms for solving medium and small scale nonlinear constrained
optimization problems.

Setting Ay, = A\ + (9A)k, we can write (12.1.6) in the following equivalent
form

W@k, Ae) (0x)k + V f(zr) = Alzg)[Ae+ (6A)],  (12.1.43)
clzy) + A(zp)T (6z)y = 0, (12.1.44)

which is just, in matrix form,

Wi(zg, \i)  —A(x) (6x) | _ | —g(xk)
— A(zp)T 0 ]l A 1—[ o(x) 1 (12.1.45)

with solution (6x); and Ap. Then x3,; is given by

Tpr1 = Tk + (02)p. (12.1.46)
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It is easy to show that the above system (12.1.45) is a KKT condition of the
quadratic programming subproblem

. 1
min d'V f(og) + idTW(xk, Ak)d, (12.1.47)
st. clar) + A(zp)Td=0 (12.1.48)

with ((62)x, A\x) being the corresponding KKT pair thereof. Therefore, the
Lagrange-Newton method can be viewed as a method that solves the quadratic
programming subproblem (12.1.47)-(12.1.48) successively.

12.2 Wilson-Han-Powell Method

In this section we present a sequential quadratic programming method, which
was proposed by Han [169]. The method is based on the Lagrange-Newton
method discussed in the previous section. In each iteration the matrix
W (g, M) is replaced by a matrix By. Because the Lagrange-Newton method
was first considered by Wilson [349], and because Han’s method was modified
and analyzed by Powell [268], the method presented in this section is often
called the Wilson-Han-Powell method.

Consider nonlinearly constrained optimization problem (8.1.1)-(8.1.3),
Similar to (12.1.47)-(12.1.48), we construct the following subproblem

min  gfd+ 1dTBkd, (12.2.1)
det” 2
st ai(zp)d+ci(zy) =0, i € B, (12.2.2)
ai(zp)Td + ci(xy) >0, i€l (12.2.3)
where
A(zy) = [ar(xr), - am(xr)] = Ve(ap) T, (12.2.4)

g = g9(xg) = Vf(zk), E={1,2,--mc}, I = {me+1,---,m}, and By € R™*"

is an approximation to the Hessian matrix of the Lagrangian function. Let

d, be a solution of (12.2.1)-(12.2.3). The vector dj, is the search direction in

the k-th iteration by the Wilson-Han-Powell method. Let Ay be the corre-

sponding Lagrange multiplier of (12.2.1)-(12.2.3) (just like A in the previous
section), then it follows that

gk + Bdy A(xg) M, (12.2.5)

()i > 0, i€l (12.2.6)

(Ak)ilci(zk) + ai(ack)Tdk] = 0, i€l (12.2.7)
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A very good property of dj, is that it is a descent direction of many penalty
functions. For example, considering the L1 exact penalty function, we have
the following result.

Lemma 12.2.1 Let di, be a KKT point of (12.2.1)-(12.2.8) and \j be the
corresponding Lagrange multiplier. Consider the Ly penalty function

P(z,0) = f(z) + ol ()]s, (12.2.8)
where ) (x) is defined by (10.1.2)-(10.1.3). Then we have that
Pl(zk + ady,0)|,—g < —dE Brdy — 0|7 () ||1 + AE e(z). (12.2.9)

If d{Bkdk >0 and 0 > || Aklloo, then di is a descent direction of the penalty
function (12.2.8) at xy,.

Proof. By Taylor expression and using convexity of ||(¢ + Ad)(7)||;, we
have that

P dp) — P
P! (zp + ady, o 0)|peo = lim (z + ady) (k)

a—04 (6%

lle(ar) + aAzr)Tdd Ol — (1) ()

«

=gidp+ lim o
a—04
< g di + oll|(e(ar) + Alzr) )l = 147 (@) 1]
= gFdy, — o] (@) |1 (12.2.10)
It follows from (12.2.5) and (12.2.7) that
ggdk = —dszdk + )\gc(ﬂjk) (12.2.11)
Therefore (12.2.9) follows from (12.2.10) and (12.2.11).
Because A\ satisfies (12.2.6), it follows from the definition of ¢(~)(z) that

M e(ar) Z il 1657 (@) (12.2.12)

Substituting the above inequality into (12.2.9), and using the assumptions
that df Brdy > 0 and o > ||Ag 0, we have that

m

Pl(ag + ady, 0)| g < —dE Bpdy — 3 (0 — |(A)il) el ()] < 0. (12.2.13)
=1
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This shows that the lemma is true. O
The following algorithm is the sequential quadratic programming algo-
rithm proposed by Han [169].

Algorithm 12.2.2

Step 1. Givenxy € R", 0 >0,6>0, Bie R"", >0, k:=1;

Step 2. Solve (12.2.1)-(12.2.3) giving dy;
if ||dg|| < € then stop;
find oy, € [0, 6] such that

P(xp + apdg,0) < min P(z; + adg,0) + €. (12.2.14)
0<a<s
Step 8. xpi1 = Tk + apdy;

Evaluate f(xk+1), Grt1, ¢(Tht1), Akt

Step 4. Compute A1 = —(A{HA;CH)AA{H%H;
Set s, = ady, yx = Vo L(Thi1, Mey1) — Ve L(2p, Met1);
generate Byi1 by updating By using a quasi-Newton for-
mula;
k:=k+41; go to Step 2. O

In (12.2.14), the penalty function P(x, o) is the L; exact penalty function,
€ 1s a sequence of nonnegative numbers satisfying

o0
> e < +oo. (12.2.15)
k=1

The global convergence result of the above algorithm is as follows.

Theorem 12.2.3 Assume that f(x) and c;(x) are continuously differen-
tiable, and that there exist constants m, M > 0 such that

m||d||? < d¥ Byd < M||d|? (12.2.16)

holds for all k and d € R", if |[A¢]loc < o for all k, then any accumulation
point of {xy} generated by Algorithm 12.2.2 is a KKT point of (8.1.1)-(8.1.3).



12.2.  WILSON-HAN-POWELL METHOD 533

Proof. If the theorem is not true, there exists a subsequence of {zj}
converging to T which is not a KKT point. Therefore there exists a subset
Ky having infinitely many elements such that

lim xp = Z. (12.2.17)

keK(
k—oo

Without loss of generality, we can assume that

Jim X = A, lim By = B. (12.2.18)
k—oo k—oo
If
dim x| =0, (12.2.19)
k—oo
from the relation
gk + Brdy, = A(z) M, (12.2.20)
it follows that -
g(x) = A(Z)\. (12.2.21)

This contradicts the fact that T is not a KKT point. Therefore we can assume
that
|di|| > n >0, Vke Ky, (12.2.22)

where 7 is a constant. The above relation and (12.2.13) imply that
Pl (x4 adi, 0)| g < —mn||d]], (12.2.23)

holds for all k € K. It follows from (12.2.23) and the continuity assumptions
on the functions that there exists a positive constant 7 such that

min P(zy + adg,0) < P(zg,0) — 17 (12.2.24)
0<a<s

hold for all £ € K. Thus,
P(zgq1,0) < P(ag,0) — 71+ €, Yk € K. (12.2.25)

Consequently we can derive the inequality

Yo < Y [Plak,0) = P(arin,0)]+ Y e

keKo keKo kGKO
[o¢]
< Y [P(xk,0) = P(aps1,0 +Z€k (12.2.26)

k=1
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Because limy_, o, P(xg,0) = P(Z,0), it follows that

o
Z n < P(z1,0) — P(z,0) + Z e < +00. (12.2.27)
keKo k=1

From the above inequality and 7 > 0 we see that Ky can have only finitely
many elements, which contradicts our assumption in the beginning of the
proof. This indicates that the theorem is true. O

The global convergence requires that
o> || Ak]loo (12.2.28)

for all k. However, in practice it is very difficult to choose such a penalty
parameter. If o is too small, condition (12.2.28) may be violated. If o
is too large, the step-length aj; may tend to be too small to prevent the
fast convergence of the algorithm. Powell [268] suggests using exact penalty

function
m

P(z,01) = f(z) + Y (on)ile ()] (12.2.29)
i=1
in the k-th iteration, where (o%); > 0 and these parameters are updated in
the following way.

(01)i = (M), (12.2.30)
(ok)i = maX{H/\kM,;[(Uk1)i+()\k)iu}, k>1, (12.2.31)

for all ¢ = 1,---, m. The parameters o defined above satisfy
(ok)i > |(Ak)il, i=1,2,---,m. (12.2.32)

This very clever update technique allows the penalty parameters to change
from iteration to iteration, and, intuitively, the inequality (12.2.32) offers
a similar property to (12.2.28). But, because (0}); are not constants, the
conditions of Theorem 12.2.3 do not hold. And Chamberlain [53] gives an
example to show that cycles may happen due to this update technique.
Now we discuss the update of Byy1, which is usually generated by a cer-
tain quasi-Newton formula. From our analyses in Section 12.1, we hope that
Byt is an approximation to the Hessian matrix of the Lagrangian function.
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Similar to unconstrained optimization, we can apply the standard quasi-
Newton updates using

Sk = Xyl — Tk, (12.2.33)
yr = Vf(@rr1) — Vf(zr)
=Y ()ilVei(zir) — Vei(a)]. (12.2.34)
i=1

A crucial difference is that line
T
Spyk > 0, (12.2.35)
which would be always true for unconstrained optimization. Therefore, for

example, we can not directly apply the BFGS update. Powell [268] suggests
that y; be replaced by

- Yk lf Sgyk 2 0'28£Bk;8k,
e { Oryr + (1 — 0i)Bisg, otherwise (12.2.36)
where
0.8s'B
R — (12.2.37)

T T, °
Sk BkSk — S Yk

The vector ¥, defined above satisfies sggjk > 0.
The idea of such a choice of g is to obtain an update vector using the
convex combination of y; and Bysi. Because Bpsp can also be viewed as

an approximation to yg, because it satisfies (assuming that By is positive
definite)

sF(Bgsi) > 0, (12.2.38)

it is very natural to use the convex combination of y; and Bysg. The geomet-
ric interpretation of Powell’s formula is as follows. Suppose we normalize the
length of the projection of Bysy to direction si. The rule (12.2.36)-(12.2.37)
is in fact to choose gy from the line segment between y; and Bjsy that is
as close to yi as possible and whose projection to s is at least 0.2. This is
shown in Figure 12.2.1.
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5 |

B Sk

Figure 12.2.1

Having computed the vector g, we can now apply the BFGS formula to
update Bjy1:

Bispst BEY gyt

Biyi = By — k| (12.2.39)
+ s%Bksk sgyk
Another way to modify y is to use
m

Ok =k +2p Y —ci(zk)Vei(zy) (12.2.40)

i=1

to replace yi, where p > 0 is a parameter. Because

Ok ~ [V2L(zk, Ar) + 20A(x) Azy) s, (12.2.41)

updating By by using g can be viewed as making By, approximate the
Hessian matrix of the augmented Lagrange function. An advantage of this
choice is that

st > 0 (12.2.42)

can usually be satisfied. If s{gx < 0, we can always make (12.2.42) hold
by increasing p, unless ||A(zx)sk|| = 0. Normally, the Hessian matrix of the
augmented Lagrange function is positive definite, thus it is very reasonable
to use a positive definite matrix By to approximate it.
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12.3 Superlinear Convergence of SQP Step

In order to prove the superlinear convergence property of the sequential
quadratic programming method, i.e.

|zgs1 — 2| _

lim =0, (12.3.1)

k—oo ||£L‘k — l‘*”
we only need to show that the search direction dj satisfies

lim N2t de = (12.3.2)
k—oo  ||lzp — x|
and that the line search condition will allow ay = 1 for all large k if (12.3.2)
holds. Thus, the important thing is to show that the search direction gen-
erated by the SQP method satisfies (12.3.2). A step dj, satisfying (12.3.2) is
called a superlinearly convergent step. In this section, we discuss the condi-
tions for ensuring the sequential quadratic programming method to produce
superlinearly convergent steps.
Throughout this section, we make the following assumptions.

Assumption 12.3.1

1) f(x),ci(x) are twice continuously differentiable;
2) x — x*;
3) x* is a KKT point and
Vei(z®), i€ EUI(z) (12.3.3)

are linearly independent. Let A(x*) be the n x |E U I(z*)| matriz
consisting of the vectors given in (12.3.3). For all nonzero vectors d
satisfying

A(z*)Td =0, (12.3.4)

we have that
dTW (z*,\*)d # 0, (12.3.5)

where W (x*, \*) is defined by (12.1.8), and X\* is the Lagrange mul-
tiplier at x*.
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The above assumptions are often used for local convergence analyses of
algorithms for constrained optimization. For example, relations (12.3.4) and
(12.3.5) hold if we assume the second-order sufficient condition

dTW(z*, \)d >0, VYd+#0, A(z*)Td=0. (12.3.6)

We also make the assumption that the active set at the solution can be
identified when the iterations are very close to the solution. Therefore, when
k is sufficiently large, the search direction dj is actually the solution of an
equality constrained quadratic programming subproblem.

Assumption 12.3.2 For sufficiently large k, di. is a solution of

1
min gl d+ ~d' Bd (12.3.7)
deR” 2
st ci(xp) +d Vei(zy) =0, i€ EUI(x"). (12.3.8)
Under Assumption 12.3.2, for all large k there exists A\; € RIFVIE! such
that
gr + Brd, = A(xk))\k, (12.3.9)
Alxp)Tdy, = —é(a), (12.3.10)

where ¢(z) is a vector whose elements are ¢;(x)(i € EU I(z*)).

Theorem 12.3.3 Under the conditions of Assumptions 12.3.1 and 12.3.2,
di s a superlinearly convergent step, namely

I ka—i-dk —x*H
m ————F
iy P

=0 (12.3.11)
if and only if

P B _ * *
lig NEE(Br = W (2™, X))y | _
k—o0 e

0, (12.3.12)

where Py is a projection from R onto the null space of A(xy)T

P =1— A(z)(A(zp) T A(zy)) "t Azp) T (12.3.13)
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Proof. From (12.3.9) and the definition of Py, we have that

PyBrd, = —Pugr = —Pp[Vf(ri)— A(zg)\']
—P W (2, \) (z — 2*) + O(||ag, — 2¥]|?). (12.3.14)

Therefore, it follows that

Pk(Bk - W(.%'*, )\*))dk = —PkW((I}*, /\*)[:Ck + dj, — 1'*]
+O(|Jag — z*||?). (12.3.15)

Using relation (12.3.10) and

e(or) = élay) —e(a")
= Axp)" (2 — %) + O([Jag, — 2*]?), (12.3.16)

we can show that
Aa) (zp + di — 27%) = O([Jag, — 2*||). (12.3.17)
Equations (12.3.15) and (12.3.17) can be rewritten in matrix form:

[ PuW (2%, \¥)

A( )T ] (xp +dp — ) = l —Py(By, — W (z*, X*))dy,
T,

0
+ O(||zk — z*|?). (12.3.18)
Define the matrix
« | PW(x*,\%)
G* = [ A(m*)T ], (12.3.19)

where P, = I — A(x*)(A(x*)T A(x*)) " A(2*)T. For any d € R", if G*d = 0
we have that

A@a")Td =

dTP,W (z*, \")d =

0, (12.3.20)
0. (12.3.21)

From (12.3.20) it follows that P.d = d. Thus,

dTW (z*, \*)d = 0. (12.3.22)



540 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

The above relation and Assumption 12.3.1 show that d = 0. Therefore matrix
G* is a full column rank matrix. Hence, from (12.3.18) and the fact that
xp — x* we can see that (12.3.11) is equivalent to

i BB = W (2™, X))y _

0. 12.3.23
k—oo H.’L‘k — QT*H ( )

Using the equivalence between (12.3.23) and (12.3.11) and that between
(12.3.11) and

lim [y — @ 1 /lldill = 1, (12.3.24)

we can show that (12.3.23) is equivalent to (12.3.12). This completes the
proof. O
Using relation (12.3.9) and A\ — A*, we have that

W (*, X*)di, = W (g, A)di + o([|die|)
= Vf(zk +di) — Az + di) A — Vf(xr) + A(zg) Ap + o([|di|))

= Vf(l’k + dk) — A(l’k + dk))\k + Bidy + O(HdkH) (12.3.25)
Therefore,
Pi(By = W (2™, \"))dy, = —P[Vf(xr+dy) — Alxg + di) M)
+o(||dk|))- (12.3.26)

From the above relation and Theorem 12.3.3, we can get the following
result.

Corollary 12.3.4 Under the assumptions of Theorem 12.3.3, (12.3.11) is
equivalent to

lim \|Pk[Vf(a:k + dk) — A(a;k + dk))\kH _
ko0 |||

0. (12.3.27)

From Theorem 12.3.3, we should choose By such that (12.3.12) is satis-
fied in order to have superlinear convergence, namely Bj should be a good
approximation to W (z*, A*).
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12.4 Maratos Effect

For unconstrained optimization, if z* is a stationary point at which the
second-order sufficient condition holds, namely

V2f(z*) positive definite, (12.4.1)
if z — x*, and if di is a superlinearly convergent step, then

flxg +di) < flzx) (12.4.2)

holds for all large k. That is to say, superlinearly convergent steps are ac-
ceptable for unconstrained problems. However, this is not always true for
constrained problems. Such a phenomenon was first discovered by Maratos
[209], so it is called the Maratos Effect.

Consider the equality constrained optimization problem

min f(z) = 30 — 2u, (12.4.3)

x:(u,v)€§R2
st.  clx)=u—2*=0. (12.4.4)
It is easy to see that * = (0,0)7 is the unique minimizer and condition 3) of
Assumption 12.3.1 is satisfied. In fact, the second-order sufficient condition
holds at z*. Consider any points that are close to the solution z* and that

have the form
z(e) = (u(e),v(e))T = (2, 6)T (12.4.5)

where € > 0 is a small parameter. Let B = W (x*, A\*); the quadratic pro-
gramming subproblem is

. [ —2 L 10 0
525?2 d ( 6e >+2d 0 2 d, (12.4.6)
r{ 1 ) _
st. d ( Y ) = 0. (12.4.7)

It is easy to see that the solution of (12.4.6)-(12.4.7) is

d(e) = l —2¢f ] . (12.4.8)
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Therefore, we have that
1Z(e) +d(e) — z*|| = O(||(e) — ™). (12.4.9)

Thus, d(e) is a superlinearly convergent step. Direct calculation indicates
that

f(Z(e) +d(e) = 2é2, (12.4.10)
c(z(e) +d(e)) = —€ (12.4.11)
Because

fa) = &, (12.4.12)
c(z(e)) = 0, (12.4.13)

we have that
f(f(6)+fi_(6)) > f(z(e)), (12.4.14)
le(z(e) + d(e)] > |e(@(e))]. (12.4.15)

This example shows that even though d(e) is a superlinearly convergent step
(namely Z(¢) 4 d(¢) is much closer to z* than Z(e)), the point Z(e) + d(e) is
“worse” than Z(e) from the objective function values and from the constraint
violations. In fact, for any penalty functions P,j(z) having the form of
(10.6.2), we would have that

Py (2(€) +d(€)) > Pyp((e)). (12.4.16)

Especially, when the merit function is the L; exact penalty function,
Z(€) + d(e) is not acceptable.

The Maratos Effect shows that for many penalty functions a superlin-
early convergent step may not be accepted, which, sometimes, prevents the
algorithm from fast convergence.

There are mainly three ways to overcome the Maratos Effect. The first
one is to relax the line search conditions. Roughly speaking, since the search
direction dj, is a superlinearly convergent step, we should choose a; = 1 as
often as possible provided that convergence is ensured. The second one is to
use a second-order correction step dy, where dj, satisfies ||dy|| = O(||d||?),
and Py (xg + di + dk) < Py(xg). In this way, di + d, is an acceptable step
and it is still a superlinearly convergent step. The third way is to use smooth
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exact penalty functions as merit functions. If the penalty function P,(z) is
smooth, we can show that

Pg(xk + dk) < Pa(fk) (12.4.17)

for all large k as long as (12.3.11) holds.
We will discuss these three techniques in the following sections.

12.5 Watchdog Technique

The nature of the Maratos Effect is the inequality
Py(xp, + dy) > Py (x1), (12.5.1)

makes zp11 # T + di, therefore the superlinearly convergent property is
destroyed. In the Watchdog technique proposed by Chamberlain et. al. [54],
the standard linear search which implies that

P, (zg41) < Po(xg), (12.5.2)

is used in some iterations, but in the other iterations, the line search con-
ditions are relaxed. The relaxed line search can be either simply ap = 1 or
requiring the Lagrange function to be reduced. Assume that the new point
obtained in one iteration yields a sufficient reduction on the merit function
P,(x); comparing with the best point in the previous iterations, we can use
the relaxed line search in the next iteration.

Define the function

Py(x) = f(z) + ioilci(mﬂ + Z o;| min|0, ¢; ()]l (12.5.3)
i=1

1=me+1

and the approximate models
1
PW(x) = flag)+ (@ —2) "V f(2r) + - )" By(z — )

+ Y ailei(ay) + (@ = 2) T Vei(ay))
=1

m

+ Z ;| min[0, ¢; (1) + (x — zx)T Vi (21)]]- (12.5.4)
i=me+1



544 CHAPTER 12. SEQUENTIAL QUADRATIC PROGRAMMING

Assume that [ < k is the index in which the best point has been found
up to the k-th iteration, namely

P,(z;) = 1212‘i£k P, (x;). (12.5.5)

Let g € (0, %) be a given positive constant. If the iterate point obtained in
the k-th iteration xy11 = xx + aidy satisfies

Py(w141) < Polw1) = B[Py (1) = P (2141)), (12.5.6)

then we say zp41 (comparing to x;) yields a “sufficient” reduction on the
merit function P,(z).
The following is an algorithm with the Watchdog technique.

Algorithm 12.5.1 (Watchdog Method)

Step 1. Given x1 € R", a positive constant .
Set line search type to be standard; k :=1:=1;

Step 2. Compute the search direction dj,;
Carry out line search using the line search type, obtaining

ag > 0;
Tp1 = T + agdy;

Step 3. if (12.5.6) holds, then set the next line search type to be
“relaxzed”, otherwise to be standard.

Step 4. if Py(xgs1) < Py(xy), thenl:=k+1;

Step 5. if k <1+ n, then go to Step 6;
Tpr1 = Li=k+1;

Step 6. if convergence criterion is satisfied then stop;
k:=k+1; go to Step 2. O

Actually, if the “relaxed” line search conditions are the same as the stan-
dard condition, the above algorithm is the original method that is based on
the standard line searches. Therefore, the Watchdog method is a generaliza-
tion of the standard method.

Assume the standard line search condition is

Py(wx11) < Po(ay) = B[Pr(xx) — P& (wy4)]. (12.5.7)



12.6. SECOND-ORDER CORRECTION STEP 545

From the descriptions of the above algorithm, we know that there exists
k <l+n+ 1 such that

Py(w41) < Po(y) — B[Py (1) — PP (w141)]- (12.5.8)

Thus, the watchdog method will reduce the merit function P,(z) in every n+1
iterations, even though it can not guarantee the monotonically decreasing of
Py(xy). Let I(j) be the j-th value of I; from the discussions above we see
that

() <lG+1)<I(y)+n+2. (12.5.9)

If we assume that the sequence {} is bounded, then P, (z;(;)) will not tend
to negative infinity. Thus, it follows from the inequality

Po(y41)) < Polmi)) = BIPs (115)) — PY9 (y5y41)] (12.5.10)

that -
S [Po (i) — PO (2y05y41)] < +oc. (12.5.11)

j=1

The above relation shows that there exists an accumulation point of {xy}
that is a KKT point of the constrained optimization problem.

12.6 Second-Order Correction Step
A second-order correction step is a vector cik such that
ldk|l = O(||dx|1*) (12.6.1)

and R
Po(l'k + di + dk) < Pg(l'k) (12.6.2)

for all sufficiently large k. Consider that dy, is defined as a solution of the
following quadratic programming problem:

1
iy g (di + d) + 5 (di + d)" By (di, + d)), (12.6.3)
de
st. ci(zp+dp) +ai(xp)Td=0, i€E, (12.6.4)
ci(zp +dip) + ai(xp)Td >0, iel, (12.6.5)

where dj, is the solution of (12.2.1)-(12.2.3).
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For simplicity, we assume that all the constraints are equality constraints.
We also assume that the second-order sufficient conditions hold at x* and that
x, — 2*. From the KKT condition there exist A\, € ™ and A\, € R™ such
that

Bydy, = —gr + A(zp) A, (12.6.6)
Azp) dy = —c(ap) (12.6.7)
and that
Bydy, + Brdy = —gi + A(ag) \r, (12.6.8)
A({L‘k)TCZk; = —c(zk +dg). (12.6.9)

From (12.6.6) and (12.6.8) we see that
PyBydy =0, (12.6.10)
where Py is defined by (12.3.13). We make the following assumptions.
Assumption 12.6.1
1) xp — x*;
2) A(x*) is full column rank;
3) there exist positive constants m and M such that | Bg|| < M and that
d" Byd > m)||d||3 (12.6.11)
holds for all d satisfying A(zy)"d =0 for all k.
From the above assumptions we can show the following lemma.

Lemma 12.6.2 Under the conditions of Assumption 12.6.1, there exists a
positive constant n such that

(A )

holds for all d € R"™ and aoll sufficiently large k.

> nd (12.6.12)
2
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Proof. Let the QR factorization of A(xy) be

Alzg) = [V Za] l If)k ] . (12.6.13)

Because A(x*) is nonsingular, there exists kg such that for k > ko we have
IR, 2 <, (12.6.14)

where 7 > 0 is a constant. Therefore,
1
1A(zk) T dll2 = |RLY, d]2 > EHYdeHQ, (12.6.15)

for k > kg. Using the relation YkYkT + ZkZ,F{ = I, we can show that

|PeBrdlla = [1ZcZ;; Brdll2
= |ZwZI Bl d + 2, ZF BiZyZEd|) o

> || ZuZy; BeZZg dl2 — | Bell2 ]| Yy d2
> |zl dls - MY d]s. (12.6.16)
Thus, if ~
m
vld| > —|zld 12.6.17
i) = o)\ ZEd, (12:6.17)
it follows from (12.6.15) that
1
1A@r) ]2 > 5IIYdeH2
Rl
> 2 ||d|2. (12.6.18)

a1+ ()

If (12.6.17) does not hold, it follows from (12.6.16) that

=

1
| P Brdl|2 = §mHZTd|!2 > —————|dl|2. (12.6.19)
=)

Therefore, when k > ko, either of (12.6.18) and (12.6.19) must hold. Let

n:min{l,M

1
L }\/1+4< M /m)

(12.6.20)
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then we see that (12.6.12) holds for all £ > kg and alld € R". O
Using (12.6.9)-(12.6.10), we have that

bP.B ~ 0
[ A(];;k)kT ] dr = [ —c(xp + dy) 1 = O([|dx13)- (12.6.21)

Now, from the above relation and Lemma 12.6.2 we can show the following
lemma.

Lemma 12.6.3 Under the conditions of Assumption 12.6.1, there exists a
positive constant 7 > 0 such that

ldilla < lldel3 (12.6.22)

To this end, we have shown that the step defined by (12.6.3)-(12.6.5) is
indeed a second-order correction step.

In the following we show that the second-order correction step di, will
make the step dj + cfk acceptable. First, using (12.6.9) we see that

c(zp +dp+dy) = clag+di) + Alzp)Tdy + o(||dil)
= olldill?) = o([|zr — =*[|?). (12.6.23)

Define the vector
di = —(A(zp) ") Te(ar, + di) — Polag + di — 3%), (12.6.24)

then it follows that

ka+dk+cik x| = ||(I — Pg)(z + di, — x™)

—(A(z)") " elzx + dy)|

= (I = Pe)(zy + dy, — 27)
—(Alar)") Alar)" (ap + di — )|

+o(llak — a*|%) = oz — 2*[?).  (12.6.25)
Furthermore, it follows from (12.6.24) that
Alzp)Tdy = —c(ap, + dy). (12.6.26)
If we assume not only (12.3.12) but also

[(Bx = W(z*, A%))d||
el

—0 (12.6.27)
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holds for d = dj, + cZk, and d = dj, + d, then it follows that
1
(gr — AX)Td + 5dTBkd

= L(zg +d, ) — L(zg, \*) + o([|d]]?) + o( |z — 2*|1?)
= L(zp +d,\) — L(ag, A) + ol zx — 2*[12) (12.6.28)

holds for d = di, + di and d = dj, + dj,. From the definition of dj, we can
show that

. 1 . .
ggdk + §(dk + dk)TBk(dk + dk)
1 B _
< g,{dk + i(dk + dk)TBk(dk + dy,). (12.6.29)
If follows from (12.6.28) and (12.6.29) that

L(zy, + dy, + di, A) + of[|lzy, — 2*[|?)
L(z*, \*) + o(||zg — z*|?). (12.6.30)

L(xp + di + (ik, A*) <
<

The above inequality and (12.6.23) imply that
flan + di +di) < f(@*) + o([lae — 2*)1?). (12.6.31)
It follows from the above relation and (12.6.23) that
Py(zk + dy + di) < Po(2®) + o ||z — z*[|?). (12.6.32)

Under the second-order sufficient condition, there exists a positive constant
0 > 0 such that
P, (xy) > Py(x*) + 6|jay, — 2™ || (12.6.33)

Therefore, by the above two inequalities we can deduce that
Py (zy + dy + dy,) < Po(x). (12.6.34)
To be more exact, from (12.6.32)-(12.6.33) we can show that

- P, (x) — Py(xp, + dy, + dy)
k—o0 P(,(J;k) — Pg($*)

Therefore, it follows from (12.6.22) and (12.6.34), that

= 1. (12.6.35)

g+ dy + d — 2
lim =

0, (12.6.36)
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namely, di + (fk is a superlinearly convergent step and it is acceptable.
Another way to compute a second-order correction step is to solve the
following subproblem:

1
min gl d+ ~d' By, (12.6.37)
deg%n 2
st.  cilep) +ai(z)Td=0, i€E, (12.6.38)
ci(zy) +ai(zp)Td >0, iel, (12.6.39)
where
- 1 &
Gk =9+ 3 > (A)ilVei(ar) = Vei(g + di), (12.6.40)
i=1

and where \g is the Lagrange multiplier of the quadratic programming sub-
problem (12.2.1)-(12.2.3). It can be shown that the search direction defined
by (12.6.37)-(12.6.39) is a superlinearly convergent step and is also an ac-
ceptable step. For more detailed discussions, please see Mayne and Polak
[214] and Fukushima [142].

12.7 Smooth Exact Penalty Functions

The reason for the Maratos Effect to happen is because the merit function
used to carry out line search is nonsmooth. If P(x) is a smooth function,
if 2* is its minimizer, and if V2P(z*) is positive definite, we can easily see
that, for all x sufficiently close to x*,

M|z —z*||* > P(z) — P(z*) > |z — z*|?, (12.7.1)
where M > m are two positive constants. Therefore if

d _ *
H$k + dy *x H =0, (12.7.2)
g — 2=
it is easy to show that

P(l‘k + dk) < P(JZ*) + MHask +dj, — QZ*HQ
< P(z*) +mzp — z*)? < P(xy) (12.7.3)

holds for sufficiently large k. Therefore, the Maratos Effect can be avoided
if we use a smooth exact penalty function as the merit function.
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Consider the equality constrained optimization problem:

Ig;%nn fx), (12.7.4)
st.  c(x)=0. (12.7.5)

We use Fletcher’s smooth exact penalty function (10.5.4) as the merit func-
tion. Because the derivative of function (10.5.4) needs to compute the second-
order derivatives of f(z) and ¢(x), Powell and Yuan [277] uses an approximate
form of (10.5.4):

@ i(afri) = f(op+ abidy)
— [Mak) + a(M(@g + Bradi) — Max))] e(zr + aby,dy)

1
+ okl + aBridi)|l3, 0<a<l, (12.7.6)
where dj, is a solution of the quadratic programming subproblem (12.2.1)-
(12.2.3), B, is the (¢ + 1)-th trial step length in the k-th iteration, and oy ;
is the current penalty parameter which satisfies that

1
ki(0) < —g[d;‘kadk+0k,z'HC(fEk)H%]
1
< _ng,i”c(ﬂfk)”g' (12.7.7)

The Powell and Yuan’s method can be stated as follows:
Algorithm 12.7.1 (Powell and Yuan’s Method)

Step 1. Given x1 € R", 1 € (0,1), B2 € (f1,1), p € (0,1/2),
01,—-1 > 0, B; € %nxn} €e>0. k:=1;

Step 2. Solve (12.2.1)-(12.2.3), giving dy;
if ||dk|| < e then stop;
leti=0, Bro=1;

Step 3. Choose oy, ; such that (12.7.7) holds; if
Ppi(Bri) < Pri(0) + B, Py ;(0), (12.7.8)

then go to Step 4.
i:=1i+1, By € [B1,32]Bki-1; go to Step 3;
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Step 4. Tp41 = Tk + Bridi; Ok+1,—1 = Oky; update Byyq;
k:=k+1; go to Step 2.

For the above algorithm, it can be shown that the following lemma holds.

Lemma 12.7.2 Assume that {zy}, {dr}, {Bx} are bounded. If A(x) =
Ve(z)T is full column rank for all x € R™ and if there exists a constant
0 > 0 such that

d' Brd > 6||d||3, VA(zp)Td=0 (12.7.9)
holds for all k, then there exists a positive integer k' such that
Opi =0 o=0>0 (12.7.10)
for all k > k' and that

Jim k|| = 0. (12.7.11)

Using this lemma, we can prove the global convergence result of Algo-
rithm 12.7.1

Theorem 12.7.3 Under the conditions of Lemma 12.7.2, any accumulation
point of {xy} generated by Algorithm 12.7.1 is a KKT point of (12.7.4)-
(12.7.5).

Now we show that when the iterates are close to a solution, any super-
linearly convergent step will be accepted by Algorithm 12.7.1.

Lemma 12.7.4 Suppose that the assumptions of Lemma 12.7.2 are satisfied,
and assume that the sequence {xy} generated by Algorithm 12.7.1 converges
to z*. For any subsequence {k;,i =1,2,---}, if

|k; + di; — || = o(||zg, — 2™]), ki — o0, (12.7.12)

then we have that
Thy+1 = Th; + dp, (12.7.13)

for all large 1.
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Proof. Without loss of generality, we assume that k; > k’. For simplicity
of notation, we substitute k; by j. From the descriptions of the algorithm,
we only need to show that

®j0(1) — @5,0(0) — pud’4(0) < 0. (12.7.14)
It follows from (12.7.10) that
1_
(I)jp(l) = f(m] + dj) — )\(.Tj + dj)Tc(an + dj) + 50’”6(:6]‘ + dj)”% (12.7.15)
Because f(z) is twice continuously differentiable, we have that
1
floj+dj) = f(x5)+ 5djlg; + 9w + d)] + o(dj]13)
1 *
= f(@)+ 5djlg; + 9(@)] + olld; 5)- (12.7.16)

Also, we can obtain similar formulae as (12.7.16) for ¢;(x;+d;). Substituting
all these formulae into (12.7.15), we obtain that

1 *
Pjo(1) — @50(0) = §djT[£/j + g(z")]
1 1,
Mg+ dy)T [cj + 5 ATd; + 5 AT

1_
= [ATes + 5ol ] + ollas )

= 5950(0) + 5 o) — AN +dy)]
Follldg)B) = 5@0(0) + o(lds 3) (12.7.17)

It is not difficult to show there exists a positive constant 7 such that
14(0) < —77lldlf3 (12.7.18)

holds for all k and 4. From (12.7.17), (12.7.18) and p < 3, we can see that
(12.7.14) holds for sufficiently large j = k;. Thus, the lemma is true. O

A direct corollary of the above result is the superlinear convergence of
the algorithm, which we write as follows.
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Theorem 12.7.5 Suppose that the assumptions of Lemma 12.7.2 are satis-
fied, and assume that the sequence {xy} generated by Algorithm 12.7.1 con-
verges to x*. If
I ka—i-dk —x*H
im ———

—0, 12.7.19
L e (12.7.19)

then we have that xx11 = x + di for all sufficiently large k, which implies
that {x} superlinearly converges to x*.

12.8 Reduced Hessian Matrix Method

The reduced Hessian matrix method was also developed from the Lagrange-
Newton method. A fundamental idea of the reduced Hessian matrix method
is that only part of the Hessian matrix of the Lagrangian function is used so
that the method requires less storage and computing costs in each iteration.
Consider the equality constrained problem (12.1.1) and (12.1.2). Denot-
ing the Lagrange-Newton step by (dg, (0A\)x), it follows from (12.1.6) that

Wk, \e) —A(zg) di. | _ | Vf(xg) — A(zr) M\
“A@)T 0 ] [(&)k]— [ () (128.1)
Using the notations

Wk = W(.%'k,)\k>, (12.8.2)
A = Alxp) = Ve(xp)?, (12.8.3)
g = Vf(xk), (12.8.4)
. = c(xg), (12.8.5)
MNe = A+ (BN, (12.8.6)

we can rewrite (12.8.1) as
Wi —Ag di | | —gk
sl [E] (2] e
Let the QR factorization of Ay be

Ap = [Yi Zi) [ ](%)’“ ] , (12.8.8)
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then linear system (12.8.7) can be written in the following form:

VIWeYe YIWiZ, —Ry Dk ~Y, g1
ZIwWyYy, ZFwyZe 0 a | = | ~ZLg |, (12.8.9)
—~RT 0 0 A& Ch
where
pe = Yidg, (12.8.10)
. = Zldy. (12.8.11)

It is obvious that py and ¢ are the projections of dj to the range space of
AT and the null space of AL. Because (12.8.9) has a block triangle form, we
can easily solve pg, g and g in turns:

RIpr = —a, (12.8.12)
(ZiWiZe)ae = —Zi gk — Zi WiYapk, (12.8.13)
Ride = Y gi + Y Wi (Yipe + Ziar).- (12.8.14)

If we consider only the last two lines in the linear system (12.8.9), we obtain
a linear system independent of A:

ZEWW Y ZEWyZ pe | _ | —Zign (12.8.15)
—R}, 0 T Ck ’ o
which is essentially
T _ T
ZeWe | o= | %9k | (12.8.16)

Nocedal and Overton [232] suggests that the matrix ZkTWk be replaced by
a quasi-Newton matrix By, namely at each iteration the line search direction
dy, is obtained by solving the linear system

By, —ZL g
d= k , 12.8.17
| o[ 7] aze1n)

where By € R"~™)*" is an approximation to ZFWy. We can apply Broy-
den’s nonsymmetric rank-one formula to update By, that is

- B T
Bugs = By + e~ Brswlsi (12.8.18)

S, Sk
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where

Sk= The1 — T (12.8.19)
v = Ziagker — Zi k. (12.8.20)

Because ZZWk is a one-side reduced Hessian matrix, this method is also
called the one-side reduced Hessian matrix method. Under certain conditions,
Nocedal and Overton [232] proved that the one-side reduced Hessian matrix
method using (12.8.18)-(12.8.20) is locally superlinearly convergent.

If we use a symmetric matrix By € R ™*(=m) 4 substitute for

Z,?Wka, and a zero matrix to replace Z,?WkYk, we can see that (12.8.15)

yields that
0 By Pk —Z g
= . 12.8.21
EiIE -
One reason for doing so is a fact discovered by Powell [274] that the SQP
method converges 2-step Q-superlinearly

ek =2t

= 12.8.22
h N P (12.8.22)

provided YkTWka is bounded. Another reason is that when all iteration
points are feasible, we have pp = 0, the value of ZkTWkYk does not alter qy.
For linearly constrained problems, all iteration points zy(k > ko) are feasible
if the initial point xy, is feasible. An advantage of updating ZkTWk 7. instead
of Zng is that ZkTWka is a square matrix and it is symmetric positive
definite near the solution where the second-order sufficient conditions hold.
Therefore, we can use positive definite matrices to approximate it, such as
the BFGS update:

Bisksi By yryl

Byy1 = By — , 12.8.23
* S%Bksk S%yk ( )
where
sk = Z (wp1 — p), (12.8.24)
vk = Ziva9k — Zi ghe (12.8.25)

We can write (12.8.21) in the equivalent form

Byzl —Z5 gk
di, = . 12.8.26
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Because the matrix By tries to approximate Z,ZWka, which is a two-side
reduced Hessian matrix, the method using search direction dj defined by
(12.8.26) is called the two-side reduced Hessian matrix method. Such a
method is two-step superlinearly convergent near the solution.

Theorem 12.8.1 Let dj be defined by (12.8.26). If vy41 = xx+dy, xx — =¥,
A(z*) s full column rank, second-order sufficient conditions hold at x*, and
| B, || is bounded uniformly and satisfies

1Bk — Z(a*) "W (a*, X*) Z (=) Zi di ]| _

lim 0, 12.8.27
o ] (12:8:21)

then the sequence converges 2-step Q-superlinearly:
T S e Y (12.8.28)

k—o0 ||SU]€_1 — CC*H N
Proof. It follows from (12.8.26) that

BuZidy = —Zjgk=—2; g5 — Ax)N']
= —ZIW (@, \)(xp — %) + O(||lzr — z*)?). (12.8.29)
Thus, we have that
B, — Z(a*)TW(x* \)Z (x| Z] dy,
= —ZIW(z* \)(xp — x*) — Z(a*)TW (z*, \*)dy
+O(||lz, — 2*|1*) + O Y (2*) ") + o||dx )
= —ZIW(x* \*)(xp + dp — x¥)
+O(|lzx — |1 + 1Y (2*) " dl]) + o(l|dil)).  (12.8.30)

Therefore, based on the assumption (12.8.27), it follows from the above in-
equality that

ZIW (@ XY (aptdi—*) = ollax—a |+ di]) + O(Y () dgl]). (12.8.31)
The definition of d implies that
AL (zp + dy, — 2*) = O(||ag — z*||?). (12.8.32)
Because A(x*) is full column rank, we have that

1Y ()" die|| = Olle(zx)ll) = O(l|dx—1]%)- (12.8.33)
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Using (12.8.31) and (12.8.32), we see that

ZTW *,)\* * *

Af

Observing the assumption that B, !is uniformly bounded, and using (12.8.26),
we can show that
ldill = O(llzx — 27])), (12.8.35)
which indicates that ||xp — o*|| < ||zk—1 — | + ||dk—1]| = O(||xx—1 — =*]]).
Thus, it follows from (12.8.34) that
l Z'?Wi%*’ ) ] (2 + dy — %) = o(|xn_t — 2°])). (12.8.36)

Similar to (12.3.19), we can prove that the matrix

Z(x*)TW (z*, \¥)
l A (12.8.37)
is nonsingular. Therefore, it follows from (12.8.36) that
lok + di — 2% = o||xp_1 — z*]), (12.8.38)

which shows that the theorem is true. O

The 2-step superlinearly convergence result of the two-side reduced Hes-
sian matrix method can not be improved. In fact, an example given by Yuan
[370] shows that it is possible to show that

|Tok+1 — 2 |oo = ||Z2k — 2" o0, (12.8.39)
2okt — T |oe = [@ap1 — 7|2, (12.8.40)

which reveals the “one-step fast one-step slow” behaviour of the two-side
reduced Hessian matrix method, and it shows that it is impossible to establish
a one-step Q-superlinearly convergence result. A similar example was also
given by Byrd [40] independently.

Exercises

1. Use the Lagrange-Newton method to solve Rosenbrock’s problem:

min (1 — z;)?

s.t. a2 —x% =0
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with initial point (0.8,0.6)” and A = 1.0. Give the first three iterations.

2. The damped BFGS update (12.2.39) uses g which is a linear combina-
tion of ¥ and Bgsk. Consider the case generating g by linear combinations
of yr and s;. What are the advantages and disadvantages of using s instead
of Bk8k7

3. Prove Corollary 12.3.4.

4. If the QP subproblem in a SQP method is infeasible, one way to
overcome this difficulty is to consider the subproblem

. 1
mlnde%nﬂdoﬂ ggd + idTBkd + O'(]. — 0)2

s.t. ai(zp)Td +0ci(xy) =0, i€E,
ai(xk)Td + 0ci(zr) >0, 1€l

Let (d(0),0(0) be the solution of the above QP subproblem. Prove that (o)
is non-decreasing as o increases. Discuss the case when (o) = 0 for all o > 0.

5. Consider application of the SQP method to the following problem:

min  —x1 + 10(z] + 23)

st. xf+a3 =1

Give the point & = (cos(6),sin(f))” and calculate d by solving the QP sub-
problem with B = I. Assume 6 is very small and show that

P,(z) < Py(T +d)

for any ¢ > 0, where P,(x) is the L; exact penalty function. Calculate a
second-order correction step d and verify that

P, (%) > Py(Z +d +d).

6. Prove that the Watchdog Technique (Algorithm 12.5.1) can overcome
the Maratos Effect.
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7. Apply the two-sided reduced Hessian method to the following problem:

1
min QCC% — 122 + m |:_4($2 — x1)3 — 6(.’132 - $1)2({L‘1 — x%)
2\
—12(xy — x1) (21 — 23)? — 17(x; — 23)3 + 3M
1— a9
1
st. x+ m[(mz —x1)? 4 (w9 — 1) (z1 — 22) + 2(x1 —23)?] =0

with initial point (e,€), where € > 0 is a very small positive number. You
will find the iterates converge to the solution (0,0) in the one-fast-one-slow
pattern.



Chapter 13

Trust-Region Methods for
Constrained Problems

13.1 Introduction

Trust-region methods for unconstrained optimization have been discussed in
Chapter 6. In this chapter we consider trust-region methods for constrained
optimization.
The essential of a trust-region method is that the trial step is within
a trust-region. Unlike line search methods where line searches are carried
out along a search direction, trust-region algorithms compute a trial step dy
which satisfies
ldi|| < A, (13.1.1)

where Ay > 0 is the trust-region bound at the k-th iteration, and || - ||
is some norm in R”. The fundamental belief is that the increment to the
variables should not be too large and that it seems not to be a wise idea to
search along a not-so-good direction (for example when step of one is not
accepted in the search direction). For unconstrained optimization, a line
search type algorithm normally obtains its search direction by minimizing
an approximation model (for example, a quadratic model in a quasi-Newton
method). Minimizing the same approximation model with the trust-region
constraint:

ld]| < Ay (13.1.2)

would give a trial step in the trust-region. Therefore it is obvious that almost
all line search algorithms for unconstrained optimization can be modified to
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derive corresponding trust-region algorithms.

Unfortunately, the situation for constrained cases are not the same. First,
it is easy to see that we can not transform a line search algorithm for con-
strained optimization into a trust-region algorithm by simply adding a trust-
region constraint (13.1.2) to the subproblem of a line search algorithm. Be-
cause the subproblems of most line search algorithms for constrained opti-
mization have linear or quadratic constraints, which are approximations to
the original constraints, these linear or quadratic constraints may not be
consistent with the trust-region condition. For example, if the line search al-
gorithm we have in mind is the Wilson-Han-Powell method discussed in Sec-
tion 12.2, the undesirable situation is that the linearized constraints (12.2.2)—
(12.2.3) may have no solutions in the trust-region (13.1.2). To overcome this
infeasibility difficulty, some special considerations have to be made. There are
mainly three approaches, which lead to three different types of trust-region
subproblems.

The first approach is to scale the constraint violations:

Opci(zy) +d Ve (z) = 0 i=1,2,...,me; (13.1.3)
chi(xk) —&—dTVci(xk) > 0 i=me+1,....m (13.1.4)

where 0, € (0,1] is a parameter (see Byrd, Schnabel and Shultz [48] and
Vardi [345]). We can see that a smaller §; would have smaller constraint
violations for the linearized constraints (13.1.3)—(13.1.4), which makes it more
likely that its feasible set has a nonempty intersection with the trust-region
(13.1.2). Geometrically, the parameter 6 moves all the feasible points of the
linearized constraints (12.2.2)—(12.2.3) towards the origin with the fraction of
0. Trial steps of the trust-region algorithms that apply null space techniques
can also be viewed as solutions of (13.1.2)—(13.1.4).

The second approach is replacing all the linearized constraints by a linear
squares constraint. Namely, linear constraints (12.2.2)—(12.2.3) are replaced
by a single constraint:

Me
Z(cz(xk) + d'Vei(xp))? + Z (mln 0, ¢i(zg) + d Vc,(nvk)))2 < &
i=1 i=me+1
(13.1.5)
where & > 0 is a parameter. It can be seen that if & = 0, the single
constraint on piece-wise linear squares is equivalent to the original linearized
constraints (12.2.2)—(12.2.3). The parameter & should be chosen in such a
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way that the constraint (13.1.5) has a nonempty intersection with the trust-
region ball (13.1.2).

The third way to overcome the inconsistency of the linearized constraints
and the trust-region constraint is replacing the linearized constraints by a
penalty term in the subproblem. This approach is essentially applying a trust-
region algorithm for nonsmooth optimization to the corresponding penalty
function.

A giant monograph on trust-region methods was published by Conn,
Gould and Toint [70].

13.2 Linear Constraints

In this section we give a trust-region algorithm for linearly constrained opti-
mization problems. The method uses trust-region conditions to define trial
steps and forces all iteration points in the feasible set. The method can be
considered as a combination of the feasible point method and a trust-region
technique.

Consider the linearly constrained problem

min f(z) (13.2.1)

zet”

s.t. alxz=10b, i€F, (13.2.2)
alz>b;, icl. (13.2.3)

Assume that the current iterate point zj at the k-th iteration is feasible. The
trust-region subproblem can be defined by

min  gld+ ~d"Byd 2 én(d), (13.2.4)
deR” 2

st. ald=0, icE, (13.2.5)

al (x4 d) > b;, i € 1, (13.2.6)

d]loe < Ay (13.2.7)

It is easy to see that (13.2.4)—(13.2.7) is a quadratic programming prob-
lem, which can be solved by methods discussed in Chapter 9. Let di be a
solution of (13.2.4)—(13.2.7). Define the ratio of actual reduction and pre-
dicted reduction by
f(ak) — fan + dy)

¢r(0) — dr(dr)

e = (13.2.8)
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From the definition of dj, we can easily see that di = 0 if and only if zj is a
KKT point of the original problem (13.2.1)-(13.2.3). Because all constraints
are considered in the subproblem (13.2.4)—(13.2.7), the zigzagging can not
happen. The following is the statement of a trust-region algorithm, assuming
that the initial point x is feasible.

Algorithm 13.2.1

Step 1. Given x1 satisfying (13.2.2)-(153.2.3); given By € R™*",
AL >0,e>0, k=1

Step 2. Solve (13.2.4)-(13.2.7) giving dy; if ||di|| < e then stop;
Compute (13.2.8);

Tk, Otherwise.

Phot = { rp+dg, if re>0 (13.2.9)

Step 8. If r, > 0.25, go to Step 4;
Ay = Ag/2, go to Step 5.

Step 4. If ri, < 0.75 or ||dg|lcc < Ay then go to Step 5;
A = 2A.

Step 5. Apiq := Ag; Generate Byiq;
k:=k+1; go to Step 2.

The matrix By can be updated by quasi-Newton formulae. In the
convergence analyses below, we assume that {Bj} are uniformly bounded.
Namely, there exists a positive constant M such that

|Bel < M (13.2.10)

holds for all k.

Theorem 13.2.2 Assume that f(x) is continuously differentiable on the fea-
sible set and that (13.2.10) holds. If the sequence {xi} generated by Algo-
rithm 13.2.1 has accumulation points, then there exists an accumulation point
which is also a KKT point of the original constrained optimization problem
(13.2.1)-(13.2.3).
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Proof. If the theorem is not true, we can show that
lim Ag =0. (13.2.11)
k—oo

If the above relation does not hold, there exists a positive constant § > 0,
such that
A >96 and ri>0.25 (13.2.12)

hold for infinitely many k. Define by Ky the set of all £ such that (13.2.12)
hold. Without loss of generality, we assume that

kléIII(lo T = T. (13.2.13)

k—oo

From our assumption, z is not a KKT point of (13.2.1)-(13.2.2), thus d =0
is not a solution of

M
min  ¢(z)7d+ 7||dH§ (13.2.14)
st. ald=0, i€E, (13.2.15)
al (Z+d)>0,iel, (13.2.16)
[d]|oo < /2. (13.2.17)
Let d be a solution of (13.2.14)-(13.2.17), then
-1 _
n=g@"d+ 5M|yd||§ < 0. (13.2.18)
Thus, it follows from (13.2.12), (13.2.13) and (13.2.18) that
1
(0) = dulde) 2 —5n >0 (13.2.19)

holds for all sufficiently large k € Kjy. Using (13.2.19) and the second in-
equality of (13.2.12) we can see that

f(zg) — f(zp41) > —%n >0 (13.2.20)

holds for all sufficiently large k& € Kjy. Because limy .o f(2x) = f(Z),
(13.2.20) can not hold for infinitely many k. This contradiction indicates
that (13.2.11) must hold if the theorem is not true.
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Now we suppose that the theorem is not true. The above analyses imply
that (13.2.11) holds. There exists a subsequence K such that

re < 0.25, Vk € K. (13.2.21)
Assume that
lim zp = Z. (13.2.22)
kEKq

k—o0

From our assumption, # is not a KKT point. Let d be a solution of the

subproblem
1
min  g(2)Td 4+ = M||d|]3, (13.2.23)
deR” 2
st. ald=0, icE, (13.2.24)
al (& +d)>b;, i€, (13.2.25)
ldlloo < 1, (13.2.26)
then we have that o
g(@)7d+ ?HJH% =7 <0. (13.2.27)

Thus, because (Akcz) is a feasible point of the problem

1
min, g g(&)"d+ 5Mudug, (13.2.28)
st.  ald=0,i€E, (13.2.29)
al (& +d)>b;, iel, (13.2.30)
ldlloo < Ap, (13.2.31)

we can see that 1
g(@)"dy, + §M\|dk||§ < Ap), (13.2.32)

provided that Ay < 1, where dj, is a solution of (13.2.28)(13.2.31). It follows
from (13.2.22) and (13.2.32) that

?x(0) — ¢ (dx) > —%ﬁAk (13.2.33)

holds for all sufficiently large £ € K;. From the continuously differentiable
property of f(z) and the uniform boundedness of { By}, we have that

Predy, = Aredy + o(||dx|)). (13.2.34)



13.2. LINEAR CONSTRAINTS 567

It can be shown from (13.2.33) and (13.2.34) that

Jim g = 1. (13.2.35)

k— o0

This contradicts (12.2.21). Therefore the theorem is true. O

Similar to our analysis of the trust-region method for unconstrained op-
timization, Theorem 13.2.2 is still true if the condition (13.2.10) is replaced
by

> 1

D

k=1

= +o0. 13.2.36
1 4+ maxi <<y || Bi| | )

From the proof of the above theorem, we can see that it is not necessary to
require the trial step dj to be the exact solution of (13.2.4)-(13.2.7). Define
the projected gradient of f(z) (with respect to the feasible set X) by

P(zx —aV -
Vyfo) = lim LEZaV/@) = (13.2.37)

a—04 (07

where
P(y) = arg min{||z — y[|, 2 € X}.

It is not difficult to show that z* is a KKT point of (13.2.1)—(13.2.3) if and
only if
Vxf(z*) =0. (13.2.38)

From the proof of Theorem 13.2.2, we can see that Algorithm 13.2.1 remains
globally convergent provided that d is a feasible point of (13.2.5)—(13.2.7)
and satisfies

91(0) = dn(dr) = 8| Vx f (ax)|| min {A’“ 1 Bx

As for local convergence analysis, we assume that x; — =* and that there
are only equality constraints. We also assume that the second-order sufficient
conditions hold at #* and that the Jacobian matrix A(z*) = Ve(z*)T € ™™
has full column rank. Under these conditions, it is not difficult to show that
Algorithm 13.2.1 is superlinearly convergent, namely

lim WZ1 = (13.2.40)

k—o00 ||.Tk — x*H
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if and only if
12T (B~ (V) — SNV 22 T
k=09 |

where Z* € R"*("=™) is a matrix satisfying Z*T A(z*) = 0 and Z*TZ* = 1.

0, (13.2.41)

13.3 Trust-Region Subproblems

The key part of a trust-region algorithm is the calculation of the trial step
dy, which is normally a solution of a trust-region subproblem. Therefore the
crucial issue of a trust-region algorithm is the construction of the trust-region
subproblem. Because one of the most successful line search type methods is
the sequential quadratic programming method, it is natural to consider the
combination of quadratic models and trust-region technique. The combined
method is usually called the TR-SQP (Trust-Region — Sequential Quadratic
Programming) method. Since a trust-region constraint has the form

ld|| < Ay, (13.3.1)

directly amalgamating (13.3.1) and the quadratic programming subproblem
(12.2.1)—(12.2.3) of the sequential quadratic programming method gives the
following subproblem:

1
min, g ghd+ 5d" Byd 2 oi(d), (13.3.2)
s.t. cilzy) + ai(zp)fd=0,i€ E (13.3.3)
ci(zy) +ai(zp)td >0,ie1 (13.3.4)

[d]l < A (13.3.5)

This is not a perfect way, as the constraints (13.3.3)-(13.3.5) might have
no solutions. Therefore, the subproblem (13.3.2)—(13.3.5) has to be modi-
fied in order to derive a reasonable trust-region subproblem for constrained
optimization.

First, we can consider a subproblem of the following type:

. 1
min,_gpn gl d+ §dTBkd 2 41.(d),

(

s.t. 9k01($k) + dTVCZ'(iL'k) =0,i€ FE, (13.3.7
Orci(zg) +d' Vei(zg) > 0,i € 1, (
lld]| < Ag, (
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where 0 € (0,1] is a parameter. Subproblem (13.3.7)—(13.3.9) usually has
feasible points when 6 is sufficiently small. Geometrically, multiplying ¢;(zx)
by a factor @y, is to pull the feasible points of the linearized constraints towards
the original. In other words, the role of 6 is to shift the line corresponding
to the linearized constraints to a parallel line that intersects the trust-region.
This technique of introducing a parameter had already been used in line
search algorithms.

If 0, # 1, obviously the trial step di obtained by solving subproblem
(13.3.6)—(13.3.9) may not be a feasible point of (13.3.3) and (13.3.4). In
order to force dj, to be as feasible in the sense of (13.3.3)—(13.3.4) as possible,
we should choose 8}, as close to 1 as possible. On the other hand, the larger
the parameter 6y, the smaller the feasible set of (13.3.7)—(13.3.9). To allow
certain freedom to the subproblem, we should not choose a too large .

The minimum-norm solution of the problem

min ||(c(zy) + A(zg) d) 7| (13.3.10)
deR"”

is called the Gauss-Newton step, which is denoted by dgN . Here ¢ is
defined by (10.1.5)-(10.1.6). From the definition of d{V, (13.3.7)-(13.3.9) is
feasible if and only if

0,1 dSN || < Ay (13.3.11)

To avoid unnecessary small 0, it is reasonable to require
Orl AN || > 614 (13.3.12)

if 0 < 1, where 0; € (0,1) is a given constant. For example, we can define
0r by the formula

if 2)dgN] < Ay,

L
" { 3Ak/[|dEN]l, otherwise. (13.3.13)

An indirect way to choose the parameter 6 is regarding 6 = 0 as a
variable. The idea of forcing 6 as large as possible is achieved by a penalty
term (6 — 1)2. The subproblem can be written as

ming o geo.1) gtd+ %dTBkd +o(0 — 1)% (13.3.14)
s.t. Oci(xy) +dT Vei(zy) =0, i€ E,  (13.3.15)
Oci(z1) +dTVei(xy) >0,ie1,  (13.3.16)

ld]l < Ay, (13.3.17)
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where o5 > 0 is a penalty parameter.

Another method to overcome the inconsistency of (13.3.3)-(13.3.5) is re-
placing (13.3.3)—(13.3.4) by a single constraint, which requires the sum of the
squares of all linearized constraints being bounded by a certain bound:

(ex + AL ) T3 < &, (13.3.18)

where ¢, = c(zg) = (c1(zr), - em(zr)?, Ax = A(xy) = Ve(ap)T, and
& > 0 is a parameter. Thus, the subproblem has the form

1
min  gld+ —d' Bd, (13.3.19)

deR” 2
st ek + AF D)2 < &, (13.3.20)
dll5 < Af. (13.3.21)

It is easy to see that &, must satisfy

> min  ||(cx + AFd))3, 13.3.22
&c_”dHQSAkH( k+ Ard) 2 ( )

in order to secure the feasibility of (13.3.20)—(13.3.21). Let dj be the negative
gradient direction of the function ||(c + AL d)(7)|3 at d = 0, namely dj, =

—Akc(_), and let ag > 0 be the solution of problem

min [|(cx + A ady) )3 (13.3.23)

ledy lo<Ag

We call ay,dj, the Cauchy point or the Cauchy step, which is denoted by dgp .
In the method of Celis, Dennis and Tapia [52],

& = ||(cx + ALET) 3, (13.3.24)
while in Powell and Yuan [278], { can be any number satisfying

' + ATHO)12 <6, < i + AT))2, (13.3.25
Hd”?ilzfiak”(c’“ kd) H2_§k_HdH?££AkH(Ck kd) 7z ( )

where b; > by are two positive constants in (0, 1).
The third type of trust-region subproblem is based on exact penalty func-
tions. For example, based on the exact penalty function

P(z,0) = f(z) + ol ()], (13.3.26)



13.4. NULL SPACE METHOD 571

we can construct trust-region subproblem

1
miy, grd+ 5azTBkoz + onll(er + AFa) ), (13.3.27)
€
st ld] < Ag. (13.3.28)

For this kind of subproblems, the norm in (13.3.27) and that in (13.3.28) may
not be necessarily the same. For example, if we take the /;-norm in (13.3.27)
and ls-norm in (13.3.28), we obtain the subproblem

1
mﬁ% gid+ idTBkd + o Z |ci(wg) + Vi (o) d|

de i€E
+oi Y lei(zn) + Vei(zy)Td| ) (13.3.29)
el
st. |ldlle < A (13.3.30)

Essentially, a trust-region algorithm based on subproblem (13.2.27)—(13.2.28)
is the same as a nonsmooth trust-region algorithm for minimizing the exact
penalty function (13.3.26).

13.4 Null Space Method

Consider the equality constrained problem

min_ g f(2), (13.4.1)
s.t. c(xz) = 0. (13.4.2)

The trust-region subproblem (13.3.6)—(13.3.9) can be written as

1

: T T _
mingepn  gp d+ 5d° Brd = di(d), (13.4.3)
st Orep + Apd =0, (13.4.4)
ldll2 < Ag. (13.4.5)

We assume that ¢, € Range (A7), it follows from (13.3.11) that ) should
satisfy

Okl (AF) Ferlla < Ay (13.4.6)
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Let di be a solution of (13.4.3)—(13.4.5). It can be seen that dj is also a
solution of the following problem

min, g Pk (d), (13.4.7)
st.  AF(d—d) =0, (13.4.8)
ld — dilla < A, (13.4.9)
where
dp = —0(AN) ey, (13.4.10)

Ap = /A2 —|dl3 (13.4.11)

Notice that cZk = dekGN where deN is the Gauss-Newton step discussed in
the previous section. Define variable d = d—dj, and let Zj, be a matrix whose

columns are an orthonormal base of the null space of A%, namely A%Zk =0,
ZkTZk = I. We can then write

d= Zyu, ue R, (13.4.12)

where r is the rank of Ax. Using the above relation, we can rewrite subprob-
lem (13.4.7)—(13.4.9) in the following equivalent form:

1
§uTBku, (13.4.13)

s.t. llull2 < Ay, (13.4.14)

. _T
min gn-r Gy U +

where g, = ZI (gr+ Bidy,), By = Z§ By Zy.. This is already in the form of the
trust-region subproblem for unconstrained optimization, which is discussed
in Chapter 6. Techniques given there can be used to solve problem (13.4.13)—
(13.4.14), giving uy. Once uy is computed, the trial step dj can be obtained
by using dp = czk + Zpuy.

We use the Ly exact penalty function

Py(x) = f(z) + og||lc(z)]]1 (13.4.15)

as the merit function to decide whether the trial step dj should be accepted.
The actual reduction of the exact penalty function is

Aredy, = Pi(xzx) — Pr(zg + dy). (13.4.16)
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We define the predicted reduction by the reduction of the approximate penalty
function ¢y (d) + ok||ck + ALd||1, namely,

Predy, = ¢x(0) — ér(di) + onlllexll — llex + A di[l]- (13.4.17)

Assume that f(z) and ¢(z) are twice continuously differentiable and || By is
bounded, then we have that

Ared), = Predy, + O(||dy||3). (13.4.18)
From the definition of cfk, it follows that

dp = (ADTALdy, (13.4.19)
dp —dy = ZpZldp = (I — (AD)* AT, (13.4.20)

The step dy, is a vector in the range space of Ag, hence it is called the range
space step. While the step dj — dy, is in the null space of AT it is called the
null space step. Geometrically, it is often that the range space step is vertical
and the null space step is horizontal when we sketch an illustrated diagram
(for example, see Figure 13.4.1). Therefore, the range space step and the null
space step are called the vertical step and the horizontal step respectively.

Figure 13.4.1

Using the vertical step and the horizontal step, we can decompose the
predicted reduction into two parts:

Vpredy = ¢x(0) = n(di) + on(llerlls = llox + ALdxll), (13.4.21)
Hpred, = o¢r(dy) — or(d). (13.4.22)
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We can assume that 0}, satisfies the “not too small” condition:
Ol (AN Y eplla > 614, if 6, < 1. (13.4.23)

Assume again that we choose a sufficiently large o so that
1 .
o > HA; (gk + QBkdk) H + p. (13.4.24)
o0
With all these, we can show that

Vipredy, > pminl||eg||1, 0184 /||(A%) *|l2]- (13.4.25)

For the null space, the situation is essentially the same as that of uncon-
strained optimization. Applying Lemma 6.1.3, we have that

1 o
Hpredy, 2 S ||gxll2 minfAy, [|gxl2/[| Bel2]- (13.4.26)

Thus, we have established that there exist positive constants p1, p2 such that

Predy, > prminf|eg|l1, Ax/[(AF)T]]2]
+p2||gk |l2 min[Ay, ||k ll2/ || Brll2]- (13.4.27)

In practice, we can first compute dp, using the Gauss-Newton step, and then
obtain ug, by solving (13.4.13)—(13.4.14) inexactly. The vector dy, = dy + Zpuy
satisfies the sufficient reduction condition (13.4.27).

The following is a trust-region algorithm based on null space technique.
Algorithm 13.4.1

Step 1. Given x1 € R", A1 >0, ¢ > 0.
0<B3<Bu<1I<PB,0< o< B2<,
Bo > 0,01 >0,k :=1;

Step 2. If |lckll2 + | ZE grll2 < € then stop;
If (13.4.24) is satisfied then go to Step 3. Set

1 A
oL = HA;: (gk + 2Bkdk>

’+2p;

Step 3. Compute a trial step dy satisfying (13.4.27).
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Step 4. Compute Aredy and Predy by (13.4.16)—(153.4.17);
Set ry, = Aredy,/Predy;

Th1 = { @ di, 4 7 > fo, (13.4.28)

T, otherwise.

Choose Ajyq such that

(Bslldill2, BaAk), if 1. < o,
Akl € { (Ag, B1AR), otherwise. (13.4.29)

Step 5. Generate Byy1; Set opy1 := o and k := k + 1; go to Step
2.

In order to establish the global convergence of the above algorithm, we
need the following lemma.

Lemma 13.4.2 If dj satisfies (13.4.27), the inequality
Predy, > 7 minleg, 1] min[Ag, e, /(1 + || Bk||2)] (13.4.30)

holds, where T = min[py/[2max(1, |4} ||2)], p2/4] and

e = llexllz + 127 gxllo- (13.4.31)
Proof. If A
leklla > ——a—, (13.4.32)
2[| A [|2

it follows directly from (13.4.27) that
Predy, > p1Ay/2|| A2 (13.4.33)

Thus we see that (13.4.30) holds.
Therefore, for the rest of the proof we can assume that (13.4.32) is not
true. This implies that

_ = 1
B = /A7 el = /A2 — (1AL IallcrlB)? = SAk (13434)

If
(1 + 2 Bell2l A l12)llexll2 < 125 grll2. (13.4.35)



576 CHAPTER 13. TR METHODS FOR CONSTRAINED PROBLEMS

we can show that

lgrllz = 11ZE gkll2 = | Bellzlldxll2
> 1 Zk grll2 = | Brll2ll A7 Izl k|2
1 1
> S(1Zigllz + llexll2) = en. (13.4.36)
This inequality, (13.4.34) and (13.4.27) indicate that (13.4.30) holds when

T = po/4.
Now, we assume that inequality (13.4.35) does not hold, which implies

that
£k

L+ || Blll| A7 112)
Consequently, we can use (13.4.27) to show that

> 13.4.37
exll2 > 2 ( )

Predy > pyminfe/[2(1+ || BillallA; [12)], Ax/IA] 2]

P1 .
= Ap,ep/(L+ | Bgll2)],  (13.4.38
2 L, AT Ak e/ 1 Bell2)], - (13.4.38)

which says that (13.4.30) holds when 7 = p1/(2max[1, || Af]]2]). O

The following lemma says that the norm of the trial step can not converge
to zero faster than the reciprocal of the norm of quasi-Newton matrices By,
if the iteration points are bounded away from KKT points.

Lemma 13.4.3 Assume that f(x) and c(x) are twice continuously differen-
tiable and that {xp, k = 1,2,...} are generated by Algorithm 15.4.1. If || Ak||2
is bounded above uniformly and

lexllz + 127 grlla = 6 > 0 (13.4.39)
or all k, then there exists a positive constant (35 such that
f
ldkll2 > B5/My, k=1,2,-- (13.4.40)

holds for all k, where
My, = max || Bj||2 + 1. (13.4.41)
1<i<k

Proof. If ||dg||2 < Ak, we can easily see that

ldill2 < Ag. (13.4.42)
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The definition of dj, and the above inequality imply that
gk + Bydy, = 0. (13.4.43)
Thus, we have

Igkll2 < 1 ZE gill2 - HZ/rgpngg

dilla > -5 > > 13.4.44
S T A R 77 (13.4.44)
From the definition of cik, we see that
di||2 > min [61Ak, ”Ck”ﬂ . (13.4.45)
[ Akl
Relations (13.4.44) and (13.4.45) indicate that either
ldilla > 614y, (13.4.46)
" lewllz + 112 grl
1 Ckll2 + Zk 9kl|2
dill2 > . 13.4.47
T VIS R VA (13.447)

The boundedness of || Ag| shows that (13.4.40) holds if (13.4.46) fails.
For the rest of the proof, we assume that (13.4.46) holds. If the lemma
is not true there exists a subsequence {k;} such that

[k [l2 > 012, (13.4.48)
and
lim Ay, My, = 0. (13.4.49)
1—00

A direct consequence of the above limit is Ay, — 0. Because M}, is monotoni-
cally increasing, we can assume that Ay, < Ay, for all i. Denote i = k; —1,
(13.4.29) implies that ||d;|l2 > Ak, /B3, which, together with (13.4.49) and
M; < My, shows that

leglo ||d5|| M; = 0. (13.4.50)

This shows that
||| > d14;. (13.4.51)

This inequality guarantees the existence of a positive number 7 such that

Pred; > 7||d;]|2 (13.4.52)
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for sufficiently large 7. This inequality and (13.4.18) show that

) . Ared;
zli>nc;lo Thi—1 = zliglo Pred, 1. (13.4.53)
Therefore, for sufficient large ¢, we have that
Ap, > Ap,—1. (13.4.54)

This contradicts the assumption that Ay, _; < Ay,. Thus, the lemma is true.
O

The following lemma is due to Powell [264], which is a very powerful tool
for convergence analysis of trust-region algorithms.

Lemma 13.4.4 Suppose that {Ar} and { My} are two sequences of positive
numbers. If there exist positive constants T > 0, $1 > 0, B4 € (0,1), and a
subset I of {1,2,3,---} such that

Apy1 < 1Ak, VR eI
Apy1 < By, Ve E I
Ay > 7/Mj, Vk; (13.4.55)
My > My, Vk;
Yoker /My < 400,

then
> 1
Dy — < +oo. (13.4.56)
=1 M

Proof. Let p be a positive integer satisfying

G- <1 (13.4.57)
Define the set
I, =1In{1,2,--- k}. (13.4.58)
Denote the number of elements of I by |Ij|. Define the set
Ji={k | k< plI|}. (13.4.59)
From the monotone property of M}, and the above definition, we have that
]ék <p). ]\;k < 4o00. (13.4.60)

keJ kel
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For k ¢ J, we have that || < k/p, which gives |I}—1| < |Ix| < (k —1)/p.
Thus,

/8|11k—1|/8i3_1_|1k—1‘A1
(B35 HD/P A (13.4.61)

Ap <
<

holds for all & ¢ J. Consequently, we have that

1 > _ _
3 S 2B ERA
kgJ Tk k=1

A
= ! . (13.4.62)

T[L = (B1 V7]
Now, we can see that (13.4.56) follows from (13.4.60) and (13.4.62). DO

Using the above lemmas, we can prove the global convergence of Algo-
rithm 13.4.1.

Theorem 13.4.5 Assume that f(z) and c(x) are twice continuously differ-
entiable, that all the iteration points {xy} generated by Algorithm 13.4.1 are
in an open set S, and that V f(z), V?f(z), A(z), VA(z) are bounded above
on S. If o, = & for all sufficiently large k, Pi(xy) is bounded below, and
{1l 4kll2, | A |12} are uniformly bounded, and

[o¢]
= oo, 13.4.63
2 T masicier [Bil (13.4.63)
then
lim inf {||cgl2 + [| 25 gxl2] = 0. (13.4.64)

Furthermore, under additional assumptions that ||Bg||2 is uniformly bounded
and By > 0, we have that

Jim {lleg]l2 + 12 gill2] = 0. (13.4.65)

Proof. If the theorem is not true, the sequence {Ps(xx) = f(zx) +
dl|le(z)]|1} is bounded below and there exists a positive constant ¢ such
that (13.4.39) holds for all k. Define the set

1= (ki > Ao, (13.4.66)
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then it follows from Lemmas 13.4.2 and 13.4.3 that

+o0 > Y [Pylay) = Polapin)] = Y [Po(ar) — Polapi)]
k=1 kel
> Y BoPredy >y %525min[Ak, 6/ M]
kel kel
> k% %Bgémin[ﬁg,, 8]/ Mj,. (13.4.67)

This inequality and the previous lemma imply that

— < 400, (13.4.68)

which contracts (13.4.63). Therefore the theorem is true. O

13.5 CDT Subproblem

Consider the subproblem (13.3.19)—(13.3.21) for the case when there are only
equality constraints (m. = m). It can be written as

1

min  ¢'d+ ~d' Bd = ¢(d), (13.5.1)
deR” 2

st |[ATd + ¢l <€, (13.5.2)

Id]|2 < A, (13.5.3)

here we omit the subscript for convenience. Such a subproblem was proposed
by Celis, Dennis and Tapia [52], and is generally called the CDT subproblem.

Obviously, only when

. T
€ > &min = ||dI|n|21£A |A*d + cl|2, (13.5.4)
there exist feasible points for (13.5.2)—(13.5.3).

First, we consider the case when £ = &, It is easy to deduce from the
convexity of ||d||2 that either there is only one feasible solution of (13.5.2)—
(13.5.3) or that

€=¢, = min |[ATd + ¢ (13.5.5)
det”
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The case when there is only one feasible solution of (13.5.2)—(13.5.3) requires
no further consideration since this feasible point must be the solution of the
CDT subproblem. This feasible point must have the following form:

d=—(AAT + \I)*e, (13.5.6)

where A > 0, and A = 0 if [|d|ls < A. AAT + A is nonsingular unless
lld||2 = A. For the case when (13.5.5) holds, we have that

Id]l2 < A, (13.5.7)

where d = —(AT)"¢ is the minimal norm solution (also called the Gauss-
Newton Step). Let Z be a matrix whose columns are a basis of the null space
of AT. By the variable substitution d = d+ Zu as given in the previous
section, problem (13.5.1)—(13.5.3) can be transformed as

1
ming,cpa gTu—l—iuTBu, (13.5.8)

s.t. lullz2 < A, (13.5.9)

which is already in the form of the trust-region subproblem for unconstrained
optimization discussed in Chapter 6.
Therefore in this section, we concentrate our attention on the case when

£ > &min- (13.5.10)
First we have the following necessary result.

Theorem 13.5.1 Let d* be a global solution of the subproblem (13.5.1)-
(13.5.3). Assume that (13.5.10) holds. Then there exist nonnegative con-
stants \*, u* such that

(B + X1+ p*AATYd* = — (g + p* Ac), (13.5.11)

where \* and p* satisfy the complementarity conditions

A[A = |d*[lz] = 0, (13.5.12)
pe—lle+ATd ] = o (13.5.13)

Furthermore, the matriz
H(\, u*) = B+ X1+ p*AAT (13.5.14)

has at most one negative eigenvalue if the multipliers \* and p* are unique.
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Proof.  Assumption (13.5.10) implies that the feasible region X of (13.5.2)—
(13.5.3) is convex and has a nonempty interior, and we can easily prove that
LFD(d*, X) = SFD(d*, X). From the results in Chapter 8, there exist non-
negative numbers \* and p* such that (13.5.11)—(13.5.13) hold. To complete
the proof, we only need to prove that the matrix H(A*, u*) has no more than
one negative eigenvalue if the multipliers A*, y* are unique.

If at most one of the constraints (13.5.2)—(13.5.3) is active at the solution
d*, the second-order sufficient condition given in Chapter 8 shows that the
matrix H(A*, ©*) has at most one negative eigenvalue.

For the rest of the proof, we assume that both constraints are active.
Define the vector

y* = A(c+ ATd"). (13.5.15)
If d* and y* are linearly dependent, there exists 7 € R such that
Yy =nd". (13.5.16)

The assumption £ > &nin implies n > 0. It follows from the uniqueness
of \* and p* that \* = p* = 0. Thus, d* is a stationary point of ¢(d).
From (13.5.16) and n > 0 we see that d is a feasible direction provided that
d'd* < 0. This shows that d” Bd > 0 holds for all d satisfying d” d* < 0,
which implies that B is a semi-definite matrix.

If d* and y* are linearly independent, the second-order necessary condi-
tion shows that the matrix H(\*, u*) is positive semi-definite in the n — 2 di-
mensional subspace orthogonal to d* and y*. Assume that H(\*, u*) has two
negative eigenvalues, then there exist linearly independent vectors 21, zo € R"
such that H(\*, u*) is negative definite on Span(zi,z2). The intersection of
Span(z1, z2) and the n — 2 dimensional subspace mentioned above is empty
except the original. Therefore the matrix

T g% T 7%
zi1d" oz d
13.5.17

< Ayt Ay ) ( )
is nonsingular. The nonsingularity of the above matrix implies the existence
of a nonzero vector d € Span(z1, z2) such that

|d* +d|s = A, |lc+ AT(d* +d)||2 = &. (13.5.18)
Relation (13.5.18) and the negative definiteness of H(\*, u*) on Span(zi, 22)

give that ¢(d* + d) < ¢(d*). This contradicts the optimality of d*. Hence
the lemma is true. O

The following is a sufficient condition.
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Theorem 13.5.2 Let d* be a feasible point of (13.5.2)-(13.5.3). If there ex-
ist \* >0 and p* > 0 such that (13.5.11)-(13.5.13) hold, and that H(\*, u*)
is positive semi-definite, then d* is a global solution of (18.5.1)-(13.5.13).
Proof. Let d be any vector satisfying (13.5.2)—(13.5.3). We have that
1., 1,
o) = old)+ gX Il + Lcle-+ AT}

1 * %
—5 W ldl3 + plle + AT dl 3]

Y

Od) + SN I+ su e+ AT
1 * *

51 + e + ATdl

= 0(d") + G (AR 3] + S [ER — e+ ATdJ]

> ¢(d"). (13.5.19)

Thus, we can see that d* is a global solution of (13.5.1)—(13.5.3). O
A direct consequence of the above theorem is the following.

Corollary 13.5.3 Assume that B is positive semi-definite. A feasible point
d* of (13.5.2)-(15.5.3) is a solution of (13.5.1)-(13.5.3) if and only if there
exist \* >0, u* > 0 such that (13.5.11)-(13.5.13) hold.

Therefore, when B is positive definite, the solution of (13.5.1)—(13.5.3)
must have the form

d(\, ) = —H(\, 1) g + pAd. (13.5.20)
From Corollary 13.5.3 we can easily see that the following lemma holds.

Lemma 13.5.4 Assume that B is positive definite. Then d(\, ) defined by
(13.5.20) is a solution of (13.5.1)—(13.5.3) if and only if it is a feasible point
of (13.5.2)—(13.5.3), and one of the following holds:

1. A=pu=0;
2. x>0, n=0, ||d()‘7:u)”2 = A;
8AN=0, >0, e+ ATd\, w2 = &;
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4o A>0,>0, [ld\, )2 = A, e+ AT\, p)l2 = €.

From the above statements, solving a convex CDT subproblem is equiv-
alent to finding A*, u* > 0 such that d(\*, p*) is feasible and one of the four
possibilities in Lemma 13.5.4 holds.

For the case \* = p* = 0, the solution is d = —B~!g.

For ;* = 0 and \* > 0, we can solve (), 0) = 0 to obtain \*, where

_ 1 1

D ) = eI (13.5.21)

The reason for considering ¥(\, 0) = 0 instead of ||d(),0)||2 = A is similar to
that in Chapter 6, namely 1(), 0) behaves more like a linear function. (X, i)
as a function of A is concave and increasing, thus we can apply Newton’s
iteration:

ey
V3 (A, 0)
It is not difficult to show that iteration process (13.5.22) with any initial
A € [0, \*] will generate a monotone increasing sequence converging to A*.
When \* =0 and p* > 0, we define

- 1

A=A : (13.5.22)

[

DO\ p) = — 13.5.23
) = e ATl € (15:5:2%)
Similarly, we can apply Newton’s method to 1/3(0, w) = 0, that is,
[y = — fﬁ,(o’“) . (13.5.24)
(0, 1)
When A* > 0 and p* > 0, we need to solve
v\ pu) = 0, (13.5.25)
(M p) = 0. (13.5.26)
The Newton iteration for the above system is
- —JO, . , 13.5.27
<u+> (u) O w) (@Z)(/\,u) ( )
where J (A, pt) is the Jacobi matrix:
AN 1) (A )
T =| 9 b . 13.5.28
on) [ B () (15:5:25)

An algorithm based on the above analyses is given as follows.
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Algorithm 13.5.5
Step 1. Given g € R, B positive definite, A > 0, & > Enin.

Step 2. Compute d(0,0). If d(0,0) is feasible then stop;
If ||d(0,0)|| < A then go to Step 4;

Step 3. Applying (13.5.22) to solve ¥(X\,0) = 0 giving \*;
If d(A*,0) is feasible then stop;

Step 4 Applying (13.5.24) to solve (0, 1) = 0 giving u*;
If d(0, u*) is feasible then stop;

Step 5. Applying (15.5.27) to solve (13.5.25)—(13.5.26) giving \*, u*;
stop.

The above algorithm is in fact an enumeration of the four cases given in
Lemma 13.5.4. A more direct way is to solve the system

7,/_1()\,/1) T 77/_}()‘7/‘) o
( own ) 20 ™m0 1 =0 (13.5.29)

in the nonnegative orthant %i = {\ > 0, u > 0}. Such an approach to
identify the Lagrange multipliers \* and p* is equivalent to solving the dual
problem of (13.5.1)—(13.5.3). A truncated Newton’s method based on the
dual of (13.5.1)—(13.5.3) is given by Yuan [373], which is basically the Newton-
Raphson method for the nonlinear system (13.5.29). The approach given by
Zhang [381] is to reformulate (13.5.29) as a univariate problem. Basically it
is to solve the problem

(M), 1) =0 (13.5.30)
where A(u) is defined by ¥(\, u) = 0.

13.6 Powell-Yuan Algorithm

Consider the constrained optimization problem (13.4.1)—(13.4.2). The trial
step dj is obtained by solving

1
min gl d+ =d" Bpd = ¢p(d), (13.6.1)
deR" 2

st [lex + Afdll2 < &, (13.6.2)

[d]l2 < Ag, (13.6.3)
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where Ay is the trust-region radius, § is a parameter satisfying (13.3.25).
The merit function is Fletcher’s differentiable function:

Py(a) = f(z) = M) e(@) + oxlle(@)][13, (13.6.4)
where oy, > 0 is a penalty parameter, A(x) is the minimum norm solution of

;élg%}n llg(z) — A()All2- (13.6.5)

The actual reduction is
Aredy, = Py(xy) — Pp(zk + dy), (13.6.6)

and the predicted reduction is defined by
1 _
Predk = —(gk — Ak/\k)Tdk — idszdk

+\@k + di) = )" ok + %A%dk)
+op(llexl3 — llew + Axdrl3), (13.6.7)
where d}, is the orthogonal projection of dj, to the null space of AL, namely
dy = Py, (13.6.8)
P, = I — A(zp)A(z)™. (13.6.9)

If || ek |l2—|lek+ AL dg |2 > 0, from (13.6.7) and by increasing oy, (if needed),
we have that )
Predy, > Son([lexl3 = llex + Ag di13). (13.6.10)

If ||cgl2—|lek + AL dg |2 = 0, dj, is the minimizer of ¢ (d) in the intersection
of the trust-region and the null space of A} and Predy = ¢1(0) — ¢r(dg).
Thus, Pred;, = 0 if and only if g, — AgAr = 0.

The following algorithm is given by Powell and Yuan(1991):

Algorithm 13.6.1

Step 1. Given x1 € R, A1 >0, ¢ > 0.
O<7‘3<7‘4<1<T1,0§T0§7‘2<1,7'2>0,']€::1.

Step 2. If ||ckll2 + ||lgr — AxAkl|2 < € then Stop. Otherwise solve the
problem (13.6.1)-(15.6.3) which gives dj;
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Step 3. Calculate Predy by formula (13.6.7); If (13.6.10) is satisfied
then go to Step 4; Set

—2Predy,
— llex + Af di 13

Recalculate Predy, by (13.6.7).

op =204 + max {0, — ;o (3611
llexll3

Step 4. Calculate the ratio v, = Aredy/Predy. Set the values

_ ) ae+dg, if >0,
Thtl = { Zr, otherwise; (13.6.12)
and
max[4”dng, Ak], if rp > 0.9,
Appr =14 Ay, 0.1 < ry < 0.9,

min[Ak/éL, ||dk”2/2], rp < 0.1.
(13.6.13)

Step 5. Generate Byy1. Set ogy1 := 0. Set k:=k+1 and go to
Step 2.

In order to establish the convergence results of the above algorithm, we
make the following assumptions.

Assumption 13.6.2

1. There ezists a bounded convex closed set Q € R" such that {zy}, {zr +
dr} are all in Q for all k.

2. A(x) has full column rank for all z € Q.
3. The matrices {B|k = 1,2,---} are uniformly bounded.

The following two lemmas provide a lower bound on the predicted reduc-
tion Predy.

Lemma 13.6.3 The inequality
bo Ap

Jeella = Nt + AT dell = min el -] (13.6.14)
k

holds for all k, where by is introduced in (13.5.25).
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Proof. If boA, > ||(AL) T ck|l2, we have & = 0. Thus,
lekllz = llek + AL dill2 = llckll2, (13.6.15)

which implies (13.6.14).
In the case when byA < |[(AF)F k|2, it follows from (13.3.25) and con-
straint condition (13.6.2) that

lellz = llex + A dill > llexll2 — &
boAL
> _ _AT _ amr T\+
= lexllz Hck k{H(Af)*CkIIJ( ) C’“Hz

boAr bal
1A Ferllz — 1AL ]2

Thus the lemma is true. O

l[ckll2 (13.6.16)

Lemma 13.6.4 There exists a positive constant 1 such that the inequality

1
Predy, — §0k(\|6k||§ — llex + AL dill3) + 61 lldi 12k 2
L5 rx 1Pegell2
> =P min | Ay,
> 1Pl min [Ag, 5t
1 . ba Ay
+—0ok||ckll2 min |||k |2, (13.6.17)
2 { IIAWJ
holds for all k, where we use the notation
G = g+ Budy, (13.6.18)
(jk = di — Pydy, = dj, — Jk, (13.6.19)

A = A2 —|dil3 (13.6.20)

Proof. The definition of dy and ||cj, + ALdy||2 < |k l2 imply the bound

ldilla = 1| ARAT dilla = [[(A) T [(ck + AL di) = e]2
< 2|4} lallcullo (13.6.21)
From its definition, dj, is a solution of the subproblem
1
min  gid+ ~d’ Bpd, (13.6.22)
deR” 2
s.t.  Ald=o, (13.6.23)

ldi + dll2 < Ay (13.6.24)
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It is easy to see that dj, also solves the calculation

_ 1 _ _

min  (Pugr)’d + = (Ppd)” Br(Ppd), (13.6.25)
deR” 2

s.t. |ldll2 < Ay (13.6.26)

Similar to the proof of Lemma 6.1.3, we can show that

HpkgchQ}

_ 1 - _
_T _ .
dp < —=||P, min [A .

(13.6.27)

Hence the definitions of A, Jlj, Jk, the fact that expression (13.6.25) increases
monotonically between d = dj, and d = 0, and the inequalities (13.6.21) and
(13.6.27) imply the bound

1 1 T _
(gr — Axde)Tdr + §d£Bkdk = (gk + EBkdk) dy,

1
5l
1

B _ B 1 e
gL dy + d{Bkdk +gkdy) < Qg{dk

IN

Gedi+ 5 HBkdkH Ik |2

HPkngz}
2| Br||2

+1Af 2l Brll2lldrll2llck 2 (13.6.28)

IA

_Z||Pk§k“2 min [Ak,

Moreover, due to the definition of A(z) and Assumption 13.6.2, there exists
a positive constant do > 0 such that the condition

[A(zk) — Mok + di)[|l2 < 02ld]]2 (13.6.29)

holds for all k. The convexity of |, + AL d||s shows that

e + ATdkH Hckuz + llek + AT dyll2) < llckllo- (13.6.30)

Therefore, the inequality (13.6.17) now follows from (13.6.7) and (13.6.14)
and (13.6.28)-(13.6.30) if we let 01 = 2 + supgs1{[|Bkll2||Af |2}, which is
finite due to Assumption 13.6.2. O

A direct corollary of the above lemma is that (13.6.10) is satisfied if
llck|l2/ Ak is sufficiently small.
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Corollary 13.6.5 There exist positive constants d3 and d4, such that, on the
iterations that satisfy the condition

lekllz < 030, (13.6.31)

we have the inequality
P d>710 2_ + ATd 2+5A 1 2
reag = 9 klllexllz = llex k e 12] 42k- (13.6.32)

Proof. From Assumption 13.6.2, there exists M such that A, < M. If
b3 < 337, (13.6.31) implies |[ck|l2 < €/3. Unless the algorithm terminates, we
have that

lge — ArAxll2 > 2€/3. (13.6.33)

If 535 < €/(6M supy, || Bel2|| Af [12), (13.6.31) yields

€

[exllz < : (13.6.34)
6supy <y, || Brl2l| A [|2
which implies that
gk — AxXellz = [[1Prgill2 < [ Prgill2 + | PeBrdill2
< N\ Pegrcll2 + 2045 121 Bellzllex ]l
— €
< IFkgellz + 3 (13.6.35)
Thus, provided that
83 < —— min 1 ! ] (13.6.36)
3 S ; s .0.
3M 2sup || Byl Ay |2
we have, using (13.6.33) and (13.6.35), that
_ €
1Pk Gill2 = - (13.6.37)
Consequently, it follows from Lemma 13.6.4 that
1
Pred, — §0k[\\0k\|§ — [lex + AL k]3] + 61 | dill2]lck |2
€ - €
> —min |Ay, ———|. 13.6.38
> < min k,GHBkH} ( )
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If 03 satisfies

b5 < 0.3/ sup || A, (13.6.39)
k
we have Ay > 0.8A,, from (13.6.31). When
€ 0.8 €
5 13.6.40
< 310, ™ 0 6w BT 3640
it follows from (13.6.31) that
€
5 d A : 13.6.41
tlerllzlidell2 < 57 min [088k, o] (13.6.41)
Now, inequalities (13.6.38) and (13.6.41) give that
1
Predy — Solllegl3 = llex + A di 3]
> — 0.8A 13.6.42
> 24m1n[ k,6HBkH} (13.6.42)

The corollary follows from the above inequality, and the assumptions that
{Ax}, {||Bk||} are bounded. O

Now, using the above results, we can easily prove the boundedness of the
sequence {0y}, which is important in establishing the convergence properties
of the algorithm.

Lemma 13.6.6 The sequence {ox|k = 1,2,---} remains bounded. In other
words, because any increase in oy, is by at least a factor of 2, there exists k,
such that

op =05, Vk>k. (13.6.43)

Proof.  Corollary 13.6.5 shows that (13.6.10) fails only if ||cx|l2 > d3Ak.
In this case, using Ay > ||dg||2 too, Lemma 13.6.4 provides the bound

1
Pred; - fmmﬁwm+£@@

> ||di|a ||ckuz[ opmin(dg, ba/05) — 81, (13.6.44)

where 05 is an upper bound on {||Af]|2,k = 1,2,---}. Hence condition
(13.6.10) holds if o > 26; max[1/ds3,05/ba]. Therefore the number of in-
crease in oy is finite. O

We now assume without loss of generality that o, = o for all k. The next
lemma shows that both the trust-region bound and the constraints converges
to zero, if the algorithm does not terminate after finitely many iterations.
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Lemma 13.6.7 If the algorithm does not terminate, we have the limits

lim Ay =0, (13.6.45)
Jim Jlegll2 = 0. (13.6.46)

Proof. To prove (13.6.45), we assume that the number

n = limsup Ay (13.6.47)

k—o0

is positive and deduce a contradiction. Define K to be the set of integers k
satisfying
r > 0.1, Ap>n/8. (13.6.48)

The set K contains infinitely many elements because of (13.6.47). Since the
monotonically decreasing sequence { P(xy)} is convergent, we have that

lim Pred; = 0. (13.6.49)
keK

k— oo

Therefore, (13.6.32) does not hold for sufficiently large £ € K. It follows
from Corollary 13.6.5 and (13.6.48) that

lexllz > d3m/8 (13.6.50)
holds for all sufficiently large k € K. Thus, Lemma 13.6.3 implies that

1
Predy, > 50[\\%”% — Jlox + AL di||3]

bo Ak }
147 112

v

1 .
g0 lerllmin [fleil2, (13.6.51)

Using the above inequality, relations (13.6.48) and (13.6.49), we can deduce
that
lim (cgl2 = 0, (13.6.52)
k—oo
which contradicts (13.6.50). Therefore (13.6.45) is true.
As for (13.6.46), we deduce a contradiction from the assumption that

77 = limsup [|cg||2 > 0. (13.6.53)

k—oo
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Define K = {kl||lcxlla > 7/2}. Tt follows from (13.6.51) and (13.6.45) that
there exists a constant § > 0 such that

Predy, > 0A,, Vke K. (13.6.54)
The above inequality and (13.6.45) imply that

£1€mK re =1, (13.6.55)
k—oo

which, together with (13.6.54), shows that

> Ap < +oo. (13.6.56)
keK

From the definition of K, inequality (13.6.56) and the continuity of c¢(z), we

can show that
lim ||ex|l2 = 7. (13.6.57)
k—oo

Thus, k& € K for all sufficiently large k. This observation and relation
(13.6.55) imply that Agi; > Ay for all sufficiently large k. This contra-
dicts (13.6.45). Therefore, (13.6.46) is true. O

Having established the above results, we can easily show the global con-
vergence of the algorithm.

Theorem 13.6.8 Under Assumption 13.6.2, Algorithm 13.6.1 will termi-
nate after finitely many iterations. In other words, if we remove the conver-
gence test from Step 2, then dy, = 0 for some k or the limit

lim inf{fjcx [l2 + || Pagell2] = 0 (13.6.58)

is obtained, which ensures that {zi, k = 1,2,...} is not bounded away from
stationary points of the problem (13.4.1)-(13.4.2).

Proof. First we assume that € > 0. If the algorithm does not terminate,
then the inequality
lexll2 + 1| Prgrll2 > € (13.6.59)

holds for all k. It follows from (13.6.46) that

| Prgillz > €/2 (13.6.60)
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holds for all sufficiently large k. Using (13.6.60), (13.6.45), (13.6.46) and
(13.6.17) we can show that there exists a positive constant § such that

PT@dk > (5Ak (13.6.61)
is true for all sufficiently large k. The above inequality implies that

lim g = 1, (13.6.62)
k—o0
which leads to the inequality Agi; > Ay (for all sufficiently large k). This
contradicts (13.6.45). The contradiction indicates that for any positive € > 0
Algorithm 13.6.1 will terminate after finitely many iterations.
If € = 0, then the algorithm terminates if and only if dj = 0. If dy =
0, then xj is a KKT point of the optimization problem (13.4.1)—(13.4.2).
Assume that the algorithm dost not terminate, then di # 0 for all k. Let

n = inf{llexlla + | Prgell2]- (13.6.63)

If n > 0, we see that the algorithm does not terminate for e = 7/2, which
contradicts the proof given above. This shows that we must have n = 0,
which implies (13.6.58). O

Under second-order sufficient conditions and other mild conditions, lo-
cally superlinear convergence of the algorithm can be proved (see, Powell
and Yuan [278]).

Exercises
1. Prove that the trust-region subproblem
: 1 _
min gtd+ idTBkd + oxll(ck + Agd)( )Hoo

subject to
ldlloc < A

can be reformulated as a quadratic programming problem.

2. Extend the null space trust-region method for equality constrained
optimization to handle also inequality constraints.
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3. Consider the CDT subproblem when

e(3) (3 8) e (3)

A =2 and £ = 1. Verify that the Hessian of the Lagrange function can have
one negative eigenvalue even when only one of the constraints are active at
the solution.

4. Construct an example to show that the Hessian of the Lagrange of the
CDT subproblem at the solution may have two negative eigenvalues.

5. Let C, D € R™*™ be two symmetric matrices and let A and B be two
closed sets in ™ such that A U B = R™. If we have that

#T'Cx > 0,Vz € A, #"' Dz > 0,Vz € B,

prove that there exists a ¢ € [0,1] such that the matrix tC + (1 — ¢)D is
positive semi-definite.

6. Discuss the local convergence properties of Powell-Yuan’s trust-region
algorithm.



Chapter 14

Nonsmooth Optimization

14.1 Generalized Gradients

In this book, nonsmooth functions are those functions which need not be
differentiable. Therefore they are also called nondifferentiable functions.

The nonlinear programming problem (8.1.1)—(8.1.3) is said to be a nons-
mooth optimization problem, provided that either the objective function f(x)
or at least one of the constraint functions ¢;(z), (i = 1,- -+, m) is a nonsmooth
function.

To conclude the book, we would like to give an initial and readable in-
troduction to nonsmooth optimization. To study the optimality condition
of nonsmooth optimization and construct some numerical methods for solv-
ing nonsmooth optimization problems, we first introduce the fundamental
conceptions and properties of nonsmooth functions.

Let X be a Banach space with a norm || - || defined on X. Let Y be a
subset of X. A function f:Y — R is Lipschitz on Y if f(z) satisfies

[f(@) = f)| < Kllz —yl|, Yo,y € Y C X, (14.1.1)

where K is called the Lipschitz constant. The inequality (14.1.1) is also
referred to as a Lipschitz condition.
We define a generalized sphere

Bla,) = {y | | -yl < e}. (14.1.2)

We say that f is Lipschitz near x if, for some ¢ > 0, f satisfies a Lipschitz
condition on B(z,¢€).
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It is easy to see that a function having a Lipschitz property near a point
need not be differentiable there, nor need admit a directional derivative in
the classical sense.

The directional derivative of f at x in the direction d is

flw+td) - f(z)

1. T
fi(z;d) = ltll%l " (14.1.3)

The upper Dini directional derivative of f at = in the direction d is
fP)(z;d) = limsup fle+td) = f(:c) (14.1.4)

t10 t
Let f be Lipschitz near a given point x, and let d be any other vector in X.

The generalized directional derivative of f at x in the direction d is defined

as follows:
f°(z;d) = limsup fly+td) - f(y)

)
y—w t
t10

(14.1.5)

where of course y is a vector in X and t is a positive scalar, and t | 0 denotes
that t tends to zero monotonically and downward. Since the generalized
directional derivative is due to Clarke [60], it is also referred to as a Clarke
directional derivative.

For a locally Lipschitz function, the directional derivative may not exist
but the Dini and the Clarke directional derivatives always exist. Obviously,
we always have the relation

FPNasd) < fo(x;d) (14.1.6)

for all z and d. If the directional derivative exists, then it is equal to the
upper Dini directional derivative. If f’(x;d) exists at = for all d, then f is
said to be directionally differentiable at z. If f is directionally differentiable

at ¢ and
f(x;d) = fO(z;d), (14.1.7)

then f is said to be regular at x. The function f is said to be a regular
function if it is regular everywhere.

Lemma 14.1.1 Let f(x) be Lipschitz near x. Then

1. The function d — f°(x;d) is positive homogeneous and subadditive on
X, and satisfies
(s )] < Kd]. (14.1.8)
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2. f°(xz;d) is Lipschitz on X as a function of d.
3. f°(x;d) is upper semicontinuous as a function of (x;d).
4. fo(@;=d) = (= f)°(x;d).

Proof. 1) In view of (14.1.1), (14.1.5) and the fact that f(z) is Lipschitz
near r, we immediately have (14.1.8). The fact that

oz Ad) = A f°(x;d)

for any A > 0 is immediate from the definition (14.1.5). Now we turn to the
subadditivity.
From (14.1.5), we have

fo(z;di +da) = limsup fy+td +ds)) = fy)

y—a t

tl0
y fly + tdy +tds) — f(y + tds)
1m sup

y—w t

tl0
+ T sup fly +tds) — fly)

y—w t
10

< fo<$;d1) +fo(.’L'; dg). (14.1.9)

IN

2) Let any dj,dy € X be given. We have from the Lipschitz condition
that

fly+tdy) — fly) < fly+tda) — f(y) + Kt|dy — da| (14.1.10)

holds for y near x, t > 0 sufficiently small. Dividing by ¢ and taking upper
limits as y — x,t | 0, gives

fo(zydr) < f;d2) + K||di — da|. (14.1.11)
Similarly, we obtain

fox;de) < fOz;dy) + K||dv — da]|. (14.1.12)
The above two inequalities give

|fO(x;dr) — fO(x;da)| < K||dy — da. (14.1.13)
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Then we complete 2).

3) Now let {z;} and {d;} be arbitrary sequences with z; — z and dj — d
respectively. For each i, by definition of upper limit, there exist y, € X and
ti > 0 such that

1
e — all + 1 < (14.1.14)
1
Folansdy) =
_ Sy +tdi) = fy)
< t
tpdy) — trd trd) —
< Flyr + tedi) = flyn +ted) | fyn + ted) = Flyr) (14.1.15)
tr tg,
Upon taking upper limits (as k — 00), we derive
limsup f°(zg; di) < f(z;d), (14.1.16)
k—oo
which establishes the upper semicontinuity.
4) Finally, we calculate
—td) —
o
e CH( ) = (1))
utﬂ)z t
= (=f)(z:d), (14.1.17)

where u = y — td. Hence, we complete the proof. O

The Hahn-Banach Theorem (for example, see Cryer [72], Theorem 7.4)
asserts that any positive homogeneous and subadditive functional on X ma-
jorizes some linear functional on X. Under the condition of Lemma 14.1.1,
therefore, there is at least one linear functional ¢ : X — R such that, for all
d € X, one has

fo(z;d) = €(d).
It follows also that £ is bounded, and hence belongs to the dual space X*
of continuous linear functionals on X, for which we adopt the convention of

using (&, d) or (d, &) for £(d).
We then give the following definition:
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Definition 14.1.2 Let f(x) be Lipschitz near x. Then we say that the gen-
eralized differential (or Clarke differential) of f at x is the set

of(x) ={¢ € X* | f°(x;d) > (&,d), Vd € X}. (14.1.18)
The & is said to be the generalized gradient.

The norm |||, in conjugate space X* is defined as
€]l = sup{(&, d) : d € X,[|d|| < 1}. (14.1.19)

The following summarizes some basic properties of the generalized gradi-
ent.

Lemma 14.1.3 Let f(x) be Lipschitz near x. Then

1) 0f(z) is a nonempty, convex, weak*-compact subset of X* and ||£]]« <
K for every £ € Of(x).

2) For every d € X, one has

fo(z;d) :é_g})z}é){(& d)}. (14.1.20)

Proof.  Assertion 1) is immediate from the preceding remarks and Lemma
14.1.1. (The weak*-compactness follows from Alaoglu’s Theorem.)

Assertion 2) is simply a restatement of the fact that 9 f(z) is by definition
the weak*-closed convex set whose support function is f°(z;-). To see this
independently, suppose that for some d, f°(z; d) exceeded the given maximum
(it cannot be less, by definition of df(x)). According to a common version of
the Hahn-Banach Theorem there is a linear functional £ majorized by f°(x,-)
and agreeing with it at d. It follows that £ € df(z), whence f°(x;d) >
(&;d) = f°(x;d). This contradiction establishes the assertion 2). O

Note that if f(x) is convex, the conceptions of generalized directional
derivative and generalized gradient coincide with that of directional derivative
and subgradient defined for convex functions due to Rockafellar [288].

As an example, we calculate the generalized differential of the absolute-
value function in the case of X = R.
Consider the problem

fz) = |z|.
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Obviously, f is Lipschitz by the triangle inequality. If x > 0, we calculate

td —
fo(x;d) — hmsup y—ny =
y—x
t10

d,

so that
df(x) = {¢| d > ¢d, vd € R}

reduces to the singleton {1}.
Similarly, we have

of(x) ={-1} if x <O0.
The remaining case is z = 0. We find

d, ifd>0,
fO(O;d):{ —d, ifd<0

that is
f2(0,d) = [d|.

Thus 0f(0) consists of those £ satisfying |d| > £d for all d; that is 0f(0) =
{—1,1}. Therefore, we conclude

{1}, x>0,
Of(x) =49 {-1}, =<0,
(~1,1}, z=0.

We introduce an important conception as follows.
The support function of a nonempty subset Q of X is a function oq(§) :
X* — RU {400} defined by

oq (&) = sup{(&, x)}. (14.1.21)

e

It is easy to see that f°(x;-) is the support function of df(x).
By (14.1.21) and Definition 14.1.2, the following lemma is obvious.

Lemma 14.1.4 Let f(x) be Lipschitz near x. Then
€ € 0f(x) if and only if f°(x;d) > (&;d) Vd € X. (14.1.22)

Furthermore, Of(x) has the following properties:
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a)
Of (z) = Ns>0 Uyer+B(0,8) Of (y)s (14.1.23)
where
B(0,6) = {z|llz]| <4, z € X}.
If X is finite-dimensional, then the Of is upper semi-continuous.

b) If fi (i = 1,---,m) are finitely many Lipschitz functions near x, then
Yoty fi is also Lipschitz near x and

m m

O fi(x) € D ofilx). (14.1.24)
i=1 i=1

c) If f(z) = g(h(x)), where h(z) = (hi(z),- -, ha(x))", each hi(z) is
Lipschitz near x, and g(x) is Lipschitz near h(z), then f(x) is Lipschitz near
T and

af(.%') C co {i ;& & € 8h,(1‘), o€ 6g(h)\h:h(x)} s (14.1.25)
=1

where €o denotes a weak™-compact convex hull (see Theorem 2.3.9 in Clarke

[60]).

Below, we turn to the optimal condition for minimization of a Lipschitz
function. By Lemma 14.1.4, we can immediately deduce the first-order nec-
essary condition.

Theorem 14.1.5 If f(x) attains a local minimum or maximum at x* and
f(x) is Lipschitz near x*, then

0 € df(z"). (14.1.26)

Proof. If z* is a local minimizer of f(x), then it follows from the definition
(14.1.5) that for any d € X we have

fe(z*;d) > 0. (14.1.27)

Thus, by Lemma 14.1.4, we have 0 € 9f(z*).
If z* is a local maximizer of f(z), then x* is a local minimizer of (—f)(z).
It suggests that 0 € O(—f)(x*). It is not difficult to show that for any scalar
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s, one has d(sf)(x) = sdf(x). Therefore 0 € O(—f)(z*) = —0f(x*) which
means 0 € 0f(x*). Hence we complete the proof. O

A point x* is called a stationary point of f if f is directionally differen-
tiable at =* and for all d,
f'(z*,d) > 0. (14.1.28)

A point z* is called a Dini stationary point of f if for all d,
FP)(z*:d) > 0. (14.1.29)
A point z* is called a Clarke stationary point of f if for all d,
fo(z*;d) >0, (14.1.30)

i.e.,

0€df(z"). (14.1.31)

A local minimizer x* of a local Lipschitzian function f is always a Dini
stationary point of f. If f is directionally differentiable at x*, then x* is also
a stationary point. A Dini stationary point is always a Clarke stationary
point but not vice versa.

Now we state the sufficient condition which is based on a lemma below.

Lemma 14.1.6 Let f(x) be conver and Lipschitz near x*, then the general-
ized differential Of(x) coincides with the subdifferential at x, and the gener-
alized directional derivative f°(x;d) coincides with the directional derivative
f'(x;d) for each d.

Proof. It is known from convex analysis that f’(z;d) exists for each d
and f'(x;d) is the support function of the subdifferential at z. It suffices
therefore to prove that for any d, f°(z;d) = f’(x;d). Note that

" td) — f(a
fo(z;d) =lim sup  sup f@'+td) — f(x ),
€l0 ||/ —z||<es O<t<e t

(14.1.32)

where ¢ is any fixed positive number. It follows from the definition of convex
function that the function

f(@' +td) — f(z')
t

—
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is non-decreasing, whence

/ d) — /
f(xz;d) =lim  sup f@ +ed) = flx )
€10 |2/ —z||<es €

Now by the Lipschitz condition, for any z’ in z + B(0, €j), one has

f@' +ed) = f@) _flated = f@)] o0

so that

fo(l‘;d) < lim f(.ZL‘ + 6d) — f(il])

+ 20K = f'(x;d) + 20K.
€l0 €

Since ¢ is arbitrary, we deduce f°(z;d) < f'(x;d). Therefore the equality
follows. The proof is complete. O
We now can state the sufficient condition.

Theorem 14.1.7 Let f(x) be convex and Lipschitz near x*, and
0€ af(a"), (14.1.33)
then x* is a local minimizer of f(x).

Proof. For a convex and Lipschitzian function, from Lemma 14.1.6, the
generalized differential and the subdifferential

{eX™|f(z)— flz) > (& z—1x), Vz € X} (14.1.34)

are equivalent. Then, by (14.1.33) and (14.1.34), we have that z* is a local
minimizer of f(z). O

Hence, for a convex and Lipschitzian function, (14.1.33) is a sufficient
and necessary condition for z* to be a local minimizer of f(x). This is also

equivalent to
fo(x*;d) >0, Vd € X. (14.1.35)

For a convex and Lipschitzian function, the generalized directional derivative
f°(z;d) coincides with the directional derivative f'(z;d):

Vo ) — iy & D) = f(z)
f(x,d)—lglr(r)l , :

(14.1.36)

(We would like to mention that, from convex analysis, convex functions are
Lipschitz except in the pathological case).

Furthermore, we can state a sufficient condition for a strict (strong) min-
imizer.
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Theorem 14.1.8 Let f(x) be convex and Lipschitz near x*. If
F(z*;d) >0, Vd £ 0,d € X, (14.1.37)

then x* is a strict (strong) minimizer of f(x), i.e., there exists § > 0 such
that
f(x) = f(z*) = 6llx — o (14.1.38)

holds for all x sufficiently close to x*.
Proof. Define a set
S={d|de X,|d|| =1}.

Obviously, S is compact and closed. By (14.1.37), it follows that f/(2*,d) is
positive on S. Then, from the continuity of f’(z*,d) (in fact, f'(z*;d) is a
positive homogeneous and convex function of d), there exists § > 0 such that

f(z*;d) > 25, Vd € S. (14.1.39)
Then for any d € S, there exists ¢(d) > 0 such that
f(z* +td) — f(z¥) > td, Vt € [0,t(d)]. (14.1.40)

By convexity and continuity of f(z), we can show that there is an € > 0 such
that

t(d) > ¢, Vd € S. (14.1.41)
Hence, for all z with ||z — 2*|| <€, we have
F@) - f) > bl — 27| (14.1.42)

which indicates (14.1.38). O

However, for a non-convex function, the above sufficiency result is not
true. In fact, let us consider an example below: for f : R! — R!,

fla) = { é_l)kﬂ |z —3e], w e [[)2"1121"} ) (14.1.43)
) T = Y
f(x) = f(—x), Vo € [-1,0). (14.1.44)
Clearly, f(z) is Lipschitz on [—1, 1], and
fo(x*;£1)=3>0 (14.1.45)

at * = 0, which means there are two generalized directional derivatives equal
to 3. But z* = 0 is not the extreme point.
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14.2 Nonsmooth Optimization Problem

Consider unconstrained optimization problem

;nei)rcl f(z), (14.2.1)

where f(z) is a nondifferentiable function defined in Banach space and sat-
isfies a Lipschitz condition. From the discussion in §14.1, if z* is a solution
of (14.2.1), then

0€df(z"), (14.2.2)

i.e., * is a stationary point of (14.2.1).

As to solution for nonsmooth optimization problem (14.2.1), there are two
main difficulties if one is using a method suitable for differentiable problems.
First, it is not easy to give a termination criteria. It is well-known that when
x approaches the minimizer of a continuously differentiable function f(x),
the ||V f(x)| is very small. Hence the common termination criteria

IVf(z)] <e (14.2.3)

is used. However, for a nonsmooth function, there are no similar results. For
example, consider the simple problem that f : R! — R! and f(z) = ||.
Then, for any = that is not a solution, f(z) is differentiable and

|0f(x)] = |Vf(z)] = 1. (14.2.4)

Hence, in this case, we cannot use (14.2.3) as a termination criteria.

Second, as indicated by Wolfe [354], when f(z) is nondifferentiable, if
one uses the steepest descent method with line search to solve (14.2.1), it is
possible to generate a sequence {x}} converging to a non-stationary point.
For example, let f: R? — R',z = (u,v)” and

f(x) = max BuQ + (v —1)%, %uQ + (v+ 1)2] . (14.2.5)

Suppose that z; has the form

2, = ( 201+ lexl) ) , (14.2.6)

€k

where €, # 0. Then we can calculate

Vf(zh) = ( ;glﬁej)'zk ) — 201 + |ex]) < tlk ) (14.2.7)
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where t;, = sign(eg). If we employ the negative gradient direction —V f(xy),
then we have

2(1 + |ex|/3
Tpy1 = xk+op(=Vf(vg)) = e ]
—€r/3
_ l 2(1+ lek41) ] 7 (14.2.8)
€k+1
where €11 = —€;/3 # 0. Then we can prove ¢, — 0. So, for a given initial

point as (2 + 2|d],6)T, where § # 0, the sequence generated by the steepest
descent method with exact line search converges to (2,0)7. It is obvious that
(2,0)T is not the stationary point.

A nonsmooth constrained optimization problem has the form

gg}r} f(x), (14.2.9)

where Y C X is a set, or a feasible region. Define a distance function

dist(z,Y) = min ||y — z||. (14.2.10)
yey

By the theory of penalty function, under suitable conditions, (14.2.9) is equiv-
alent to

rréi)rg f(z) + odist(z,Y), (14.2.11)

where f(x) + odist(z,Y) is a non-differentiable function. Hence, the non-
smooth constrained optimization problem is transformed to an equivalent
nonsmooth unconstrained problem. This interprets why one always is inter-
ested in studying nonsmooth unconstrained optimization problems.

There are many examples of nonsmooth optimization problems, for ex-
ample, the minimax problem

min max fi(x). (14.2.12)

In addition, in order to solve nonlinear equations
filz)=0,i=1,---,m, (14.2.13)
we often find the solution of the minimization problem

min f(z) = min | F(2)| (14.2.14)
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under some norm | - ||, where f(z) = ||f(2)], f(z) = (fi(z), -, fm(x)) is a
vector function from X to R". Clearly, the problem (14.2.14) is a nonsmooth
optimization problem. In particular, if || - || = || - |1, it is a L minimization
problem; if || - || = || - ||oo, it is Chebyshev approximation problem.

Note that the exact penalty function (10.6.2) is also a nonsmooth func-
tion. Therefore, the minimization to the exact penalty function is also a
nonsmooth optimization problem.

14.3 The Subgradient Method

The subgradient method is a direct generalization of the steepest descent
method, which generates a sequence {zj} by use of —gy as a direction, where

gr € Of (wp)-

Let f(z) be a convex function on R™ and the minimization problem be
mingeprn f(x). We have seen that the convex function is differentiable almost
everywhere, and

Of(xz) = conv Q(x), (14.3.1)
where conv{2 denotes the convex hull of €2,
Qx) ={g|g=1mV[f(z;),z; =z, Vf(x;) exists}. (14.3.2)
The subgradient method is described as follows.
Algorithm 14.3.1 (The subgratient method)
Step 1. Given an initial point 1 € R", k := 1.
Step 2. Compute f(xy),gr € Of (xk).
Step 3. Choose stepsize g, > 0 and set
Tr1 = T — kr/ | gxll2; (14.3.3)
k:=k+1, goto Step 2. O
As shown in the above section, in the subgradient method, the exact line
search may cause convergence to a non-stationary point.
In smooth optimization, inexact line search is to find the stepsize oy such

that
Flae + ondi) < fan) + agerdh V f (), (14.3.4)
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where ¢; € (0,1) is a constant. For the steepest descent method, the above
rule becomes

flar — arV f(ar)) < flxr) —aper |V f ()| (14.3.5)

However, when f(x) is nonsmooth, then for any ¢; € (0,1) and gx € f (zk),
the inequality

flar — age) < flzr) — aci]gel? (14.3.6)

may not hold for any a > 0. Therefore, inexact line search is also not
practicable in nonsmooth optimization.

Note that a constant stepsize is unsuitable because the function may be
nondifferentiable at the solution and then {gx} does not necessarily tend to
zero, even if {x;} converges to the optimal point.

Therefore, the rules for determining «y, for the subgradient method are
entirely different from that for the steepest descent method.

Although the exact and inexact line search for smooth optimization can-
not be simply generalized to the nonsmooth case, the negative subgradient
direction is a “good” direction such that the new iterate is closer to the
solution.

Lemma 14.3.2 Let f(x) be a convex function and the set

S*={z|f(x) = f" = min f(z)} (14.3.7)

rER"™

be nonempty. If xy ¢ S*, then for any x* € S* and g € Of (zk), there must
exist T, > 0 such that

T — Ik _ | < |k — 2™ |2 (14.3.8)
1gkll2 2
holds for all o € (0,T%).
Proof. For any xy,
2
9k * %12
Tl — O — = T — X
P

T
120 <9’“) (z* — zp) + 2. (14.3.9)
19k l2
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Since gy € Of(xx) and xx ¢ S*, then we have

gt (z* —ap) < f(a*) — f(ar) < 0. (14.3.10)
Define
Tr = —2g7 (z* — x1)/||gxll2 > 0, (14.3.11)
then (14.3.9) becomes
|y — aujﬁ — "3 = o — 213 + ala — T). (14.3.12)

If 0 < a < Ty, then a(a — Ty) < 0 and further (14.3.8) holds. O

By use of the above property of subgradient direction, we can take a
sufficiently small step, such that the sequence {x}} is closer and closer to the
solution. From the above lemma we can deduce easily the following result
due to Shor [309].

Theorem 14.3.3 Let f(z) be convex and the set S* be nonempty. For any
0 > 0 there exists r > 0 such that if the subgradient Algorithm 14.5.1 is used
with ag, = a € (0,7) then we have

likminff(xk) < ff+0. (14.3.13)
— 00

Note that the choice of constant stepsize ap = o may cause the algorithm
not to converge. Ermoliev [118] and Polyak [254] suggest choosing «j, which
would satisfy

o >0, lim oy, =0, (14.3.14)
> o = o0, (14.3.15)
k=1

and establish the following convergence theorem.

Theorem 14.3.4 Let f(x) be convex, and the set S* be nonempty and bounded.
If oy satisfies (14.8.14) and (14.8.15), then the sequence {xy} generated by
Algorithm 14.8.1 satisfies

lim dist(zg,S™) =0, (14.3.16)
k—oo

where dist(x, S) is defined by (14.2.10).
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Proof.  Since f(x) is convex, there exists continuous function d(e) such
that
flx) < f"+e (14.3.17)

holds for any
dist(z, S*) < d(e), (14.3.18)

where 0(€) > 0 (Ve > 0). For each k, we define

€ = f(.%'k) - f* > 0. (14.3.19)
If €, > 0, then
lzker =22 = g — %[> + af — 200z, — %)  gx/llgkl2
= |lzp — 2> + aF — 26(ex)
9k T
=20 |z — " — 0(e) i/ |9k ll2
llgkll2
< lwg — 2))* + af — 26(ex) o (14.3.20)
Hence
[dist (241, 5%)]? — [dist(zg, S™)]? < —ar[20(ex) — ). (14.3.21)

Define §(0) = 0, then the above expression holds for every k. Summing both
sides of (14.3.21) gives

lim inf () = 0. (14.3.22)
Thus,
lign inf dist(xg, S*) = 0. (14.3.23)

Suppose to the contrary that the theorem is not true. Then there exist a
positive constant ¢’ > 0 and infinitely many k such that

dist(zg41, 5™) > dist(xg, S¥) (14.3.24)

and
e >0 (14.3.25)

hold. From (14.3.24) and (14.3.21), we deduce that

20(ex) < ag (14.3.26)
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holds for sufficiently large k. Clearly, (14.3.26) contradicts (14.3.25). This
contradiction shows the theorem. O

The above theorem indicates that Algorithm 14.3.1 converges if oy, satis-
fies (14.3.14)—(14.3.15). However, for such chosen «y, the algorithm does not
converge rapidly. In fact, we have

log — ™| + [|[zprer — 2% = |lax — 2ps1]] = o (14.3.27)
Then, by (14.3.27) and (14.3.15), we have immediately that
oo
> wg — 2| = +oo, (14.3.28)
k=1
which shows that the sequence cannot converge R-linearly.
To make the algorithm converge R-linearly, Shor [310] takes
ap =g, 0< g<1. (14.3.29)

But, such an oy, does not satisfy (14.3.15). For any given ag and ¢, as long

as
Qo

dist(zy, S*) > (14.3.30)

1—q’
the sequence generated from the algorithm is not possible to close S*.

The convergence result of the algorithm with step rule (14.3.29) is stated
as follows.

Theorem 14.3.5 Let f(x) be convex and let there exist positive constant
61 > 0 such that for all x,

(x—2)7g = aillglllz — 2|, ¥g € O (x), (14.3.31)
then there must exist constants q € (0,1) and & > 0 such that, provided that
q€(q,1), ap > a, (14.3.32)

then the sequence {xy} generated by Algorithm 14.3.1 satisfies
2k — 2*|] < M(5, ) g, (14.3.33)

where x* € S*, ¢ and & are constants related to || x1 —x*|| and §1, M (51, ap) >
0 is a constant irrelative to k and related to 1 and ap.
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However, the rule (14.3.29) to determine stepsize is almost infeasible in
practice, because, in general, it is impossible to know the values of & and q.
If the given «yq is too small, then (14.3.32) is not satisfied; if g is too big,
then the algorithm converges very slowly.

When f* is known in advance, let us set

flee) = f~

ar = \
g gl

L0<A<2 (14.3.34)

The convergence theorem of Algorithm 14.3.1 with stepsize rule (14.3.34) is
due to Polyak [255] and stated as follows.

Theorem 14.3.6 Let f(x) be convex and the set S* be nonempty. If there
exist positive numbers ¢ and ¢ such that

loll < & Vg € 3f (), (14.3.35)
f(z) — f* > édist(x, S™) (14.3.36)
hold for all x satisfying dist(x, S*) < dist(x1,5*), then the sequence generated

by Algorithm 14.3.1 with stepsize (14.3.34) converges to some z* € S*, and
there exists a positive constant M such that

|2z — 2*|| < Md", (14.3.37)
where g = (1 — \(2 = \)é? /)2 < 1.

The above discussion has shown that the improvements only in the step-
size rule cannot, in general, significantly accelerate convergence. Indeed, slow
convergence is due to the fact that the gradient is almost perpendicular to
the direction towards the minimum. There is a simple way of changing the
angles between the gradient and the direction towards the minimum. This
can be done by performing a space dilation technique, which, in fact, is a

generalization of the variable metric method.
Now we describe the space dilation method as follows:

Algorithm 14.3.7 (The space dilation method)
Step 1. Given initial point x1,a > 0, H; = al; k := 1.
Step 2. Ewvaluate gy, € Of (xr); find the stepsize oy, > 0; set

Thy1 = T — apHygr/(9F Hegr) V. (14.3.38)
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Step 3. Choose 1, > 0 and B, < 1. Set

Hygrgt Hy )

14.3.39
9t Hig, ( )

Hyi =y (Hk — Bk

k:=k+1, go to Step 2. O

It is not difficult to see that the matrix sequence {Hj} generated by
(14.3.39) are positive definite. There are various ways to choose ay, B and
ri, for example,

1 2 n?

e = — = —. 14.3.40
TL—Fl’ﬁk 7’L—|—2’Tk n2 —1 ( )

Q. —

Below, we state the convergence of the space dilation method without
proof. The interested reader can consult Shor [311].

Theorem 14.3.8 Let f(z) be conver and the set S* be nonempty. If
dist(x1,5*) < a,

then the sequence {xy} generated by Algorithm 14.3.7 with (14.3.40) satisfies

_ *
TR AC i M (14.3.41)
k—oo q
where )
2 2n n
=(1- . 14.3.42
1 ( n+ 1) n? —1 ( )

There are other generalizations to the subgradient method, for example,
ellipsoid algorithm, finite difference approximation etc. We refer the readers
to Zowe [386] and Shor [313] for details.

14.4 Cutting Plane Method

The cutting plane method for convex programming was presented indepen-
dently by Kelley [186] and Cheney and Goldstein [58] respectively. The
underlying idea of the cutting plane method is to find the minimum of a
function on a convex polyhedral set in each iteration. After each iteration,
a cutting plane is introduced, and a point, which does not satisfy the new
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hyperplane, is cut off from the feasible region, and hence the polyhedral set
is reduced. At last, the iterates converge to a solution. The procedure is
performed by solving a sequence of approximating linear programming.

For convex function f(z), obviously, we have

f(x) =sup sup [f(y)+g"(x—y)]. (14.4.1)
Y gei(y)

Therefore, the minimization of f(z) is equivalent to the following problem

min v (14.4.2)
st. v>fly)+g (x—vy), Vye R" g df(y).  (14.4.3)
The cutting plane method is just, at each iteration, to solve an approxi-

mation problem to (14.4.2)-(14.4.3). Let x; (i = 1, - - -, k) be existing iterates.
At each iteration, we would like to solve the subproblem

min v (14.4.4)
st. v> flz) +gl(x—x),i=1,-- k. (14.4.5)

Obviously, the linear programming problem (14.4.4)—(14.4.5) is an approxi-
mation to problem (14.4.2)—(14.4.3).
We can state the cutting plane method as follows.

Algorithm 14.4.1 (Cutting plane method)

Step 1. Given an initial point x1 € S, where S is a given polyhedral
set. Set k:=1.

Step 2. Compute g € Of (xx).

Step 3. Solve the linear program (14.4.4)—(14.4.5) for vi41 and xp4q.
Setk:=k+1, goto Step 2. O

As indicated above, at each iteration, the algorithm adds a new con-
straint, which means, in geometry, that a part in .S which does not contain
the solution, will be cut off by a hyperplane.

The convergence of the cutting plane method can be stated below.

Theorem 14.4.2 Let f(x) be convex and bounded below. Then the sequences
{zi} and {v} generated by Algorithm 14.4.1 satisfy

1) vy <wg <--- <y — fFL

2) Any accumulation point of {xy} is a minimizer of f(x) in S.



14.5. THE BUNDLE METHODS 617

Suppose that f(x) is differentiable and the algorithm converges to a so-
lution, then for k sufficiently large, gr = V f(xx) is very small, and hence
the constraint condition (14.4.5) will be ill-conditioned. The other disadvan-
tage of the cutting plane method is that when k is sufficiently large, there
are too many constraints in problem (14.4.4)—(14.4.5) such that the cost is
prohibitively expensive, since cutting plane constraints are always added to
the existing set of constraints but are never deleted. Because of these disad-
vantages, the cutting plane methods have never been attractive, although it
is one of the earliest methods for general convex programming. Therefore,
some modified versions of the cutting plane methods are needed.

14.5 The Bundle Methods

The bundle method is a class of methods extended from the conjugate sub-
gradient method. This is a descent method with f(zp41) < f(zx) for each
k.

The conjugate subgradient method was presented by Wolfe [354]. At the
k-th iteration, there is an index set I C {1,---,k}. The search direction is
determined by

dk = — Z )\Z(k)gi, g; € 8f($k), (14.5.1)
i€},
where )\Ek) (i € Iy) are obtained by solving the subproblem

2
min || )" Aigi (14.5.2)

i€l 2
st > Ai=1,>0. (14.5.3)

i€l

When f(z) is a convex quadratic function and I, = {1,2,---, k}, under exact

line search, the direction generated from (14.5.1)—(14.5.3) is the same as that
of the conjugate gradient method. So, this method is said to be a conjugate
subgradient method. We now state the algorithm as follows.

Algorithm 14.5.1 (Conjugate Subgradient Method)

Step 1. Given initial point x1 € R™, compute g1 € Of(x1). Choose
0<ma<mi <3 0<mg<lie>0,n>0k:=11 =

{1}.
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Step 2. Compute the direction dy by (14.5.1)-(14.5.3).
If ||d|| < n stop.

Step 3. Compute yp, = xi + apdy such that

Flyr) < flar) — moay||di |3, (14.5.4)

or
lyr — 2k < mae. (14.5.5)

Step 4. If there is g1 € Of (yx) such that
Gerrde > —ma|di |3, (14.5.6)

then set xpy1 := yi, otherwise set Tx4q = Tg.

Step 5. Set Iyy1 := I U{k + 1} \ Ty, where T}, is an index set
T = A{ifllws — wpsall > €}
Step 6. k:=k+1, go to Step 2. O
The following convergence theorem was given by Wolfe [354].

Theorem 14.5.2 Let f(x) be convex and ||0f(x)|| be bounded on some open
set containing the set {x| f(x) < f(x1)}. Let the sequence {xy} generated
by Algorithm 14.5.1 make f(xy) bounded below. Then the algorithm must
terminate in finitely many iterations.

Now we consider an extension of the conjugate subgradient method. Sup-
pose that we have performed several steps of the conjugate subgradient
method. A certain number of points have been generated, at which the value
of f has been computed together with some subgradient. We symbolize this
information by the bundle 1, -+, zk; f1, -, fx; 91, -+, gr; where f; = f(x;)
and g; € 0f(z;).

Suppose that at k-th iteration we have weighted factors tl(.k) >0 (=
1,---,k). Consider the following subproblem

(14.5.7)

min

k
> Aigi
i=1
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k
dAi=1,X2>0, (14.5.8)
=1

k

St <é (14.5.9)
i+1

where € > 0 is a given constant. Write /\Z(»k) as a solution of (14.5.7)—(14.5.9).
Then the search direction of the bundle method is

k
-3 AWy, (14.5.10)

It is not difficult to see that if tl(- ) =0 (i € It) and t® = 400 (i ¢ I}), then

)

(14.5.7)—(14.5.9) is equivalent completely to (14.5.2)—(1 4 5.3).

Algorithm 14.5.3 (Bundle Method)

Step 1. Given initial point x1 € R™, compute g1 € Of(x1). Choose
0<m2<m1<%,0<m3<1,e>0,n>0,k::1and

M =1,

Step 2. Solve (14.5.7)~(14.5.9) for AP
Compute dy, by (14.5.10).
If ||dg|l < n stop.

Step 3. Compute yi = xp + agdy such that (14.5.4) holds or
Flu) = argiadi > f(ar) — €, (14.5.11)

where gp+1 € Of (Yk)-
If (14.5.4) does not hold, then go to Step 5.
Step 4 T4l = yk:t](j:il) - 1}

t§k+1) - ]k) + f(karl) - f(xk) - Oékg‘;rdkv j = 17 B k.
Set k:=k+1, go to Step 2.

Step 5. xpyq = mk,tgkﬂ) = t(k) (j=1,---,k)

tet ! = flan) — ) + ongliidie
Setk:=k+1, goto Step 2. O
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The convergence of the bundle method was established by Lemarechal
[196] and stated below.

Theorem 14.5.4 Under the assumptions of Theorem 14.5.2, Algorithm 14.5.3
will terminate in finitely many iterations, i.e., there exists k € IN such that
f(zr) < f*+ €, where IN is an index set of positive integers.

14.6 Basic Property of a Composite Nonsmooth
Function

In the following two sections of the chapter, we will discuss a problem with
the special form

;g}%}l h(f(x)), (14.6.1)

and develop the trust-region method for solving this class of problems. In
(14.6.1), f(z) = (fi(z), -, fm(z))T is a continuously differentiable function,
and h(f) : R™ — R! is convex but nonsmooth. The objective function in
(14.6.1) is a composite function, and the problem (14.6.1) is referred to as
composite nonsmooth optimization (for brief, composite NSO) or composite
nondifferentiable optimization (for brief, composite NDO).

There are many examples of composite NSO in discrete approximation
and data fitting. The following is a simple example.

Consider linear equations

Ax =0, (14.6.2)

where A € R™*™ and b € R™. If m > n, the equations (14.6.2) in general
have no solution. However, we can take x such that the error between Az and
b is as small as possible. This means that we need to solve the minimization
problem
min || Az — b||, (14.6.3)
reERM

where | - || is a norm on R™. Obviously, (14.6.3) is a form of (14.6.1). If we
take || - ||2 in (14.6.3), the problem is just the classical least-squares problem.
In addition, note that a general smooth constrained optimization problem
can be transformed to a composite NSO problem via an L; exact penalty
function. This is the other reason that the composite NSO attracts us.
A prerequisite for describing algorithms for composite NSO is a study of
optimality conditions for composite NSO, which is a direct use of the result
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in §14.1. For simplicity, we introduce the following conception:

X(z,d) = h(f(2)) — h(f(z) + A(z)"d), (14.6.4)

wwﬁ=ﬁ%§x@¢& (14.6.5)

DF(z,d)= sup dTA(z)\, (14.6.6)
AEOR(f(x))

where Oh(f(z)) denotes the subgradient of h(-) at f(x), A(z) = Vf(x) is
an n X m matrix.

Since h(-) is a convex function, by use of the chain rule of the subgradient
of a composite function, it is not difficult to get the following lemma.

Lemma 14.6.1 For composite function f(z) = h(f(z)), the fact
0 df(x) (14.6.7)

s equivalent to
DF(xz,d) >0, Vd € R". (14.6.8)

Then the stationary point of nonsmooth optimization satisfies (14.6.8).
From the convexity of h(f), we can also obtain the following results:

Lemma 14.6.2 Let x(z,d), Y+(x), DF(x,d) be defined in (14.6.4)-(14.6.6).
Then

1) DF(x,d) ezists for all x and d ;

2) x(x,d) is a concave function with respect to d, its directional derivative
at d* =0 in the direction d is —DF(x,d).

3) P(x) >0, ¥Vt > 0; P1(x) = 0 if and only if x is a stationary point;

4) ¥(x) is a concave function of t;

5) () is a continuous function of x for any given t > 0.

By the above results, we can show that the following statements are
equivalent:
1) The sequence {xj} has an accumulation point * which is a stationary
point.
2)
lim inf ¢ (z5) = 0. (14.6.9)
k—o0

From the necessity theorem in §14.1, it follows that if z* is a minimizer
of h(f(x)), then it is a stationary point. For a special form of composite
nonsmooth function, it can be written in the following equivalent form.
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Theorem 14.6.3 Ifx* is a local minimizer of composite NSO problem (14.6.1),
then there exists \* € Oh(f(z*)) such that

A(z*)\" =0, (14.6.10)
where A(x) = Vf(x)T.
Proof. It is enough to prove that (14.6.10) and
DF(z*,d) >0, Vd € R" (14.6.11)

are equivalent.
If (14.6.10) holds, then it follows from the definition (14.6.6) that (14.6.11)
holds.

Now let us assume that (14.6.11) holds. Suppose to the contrary that
(14.6.10) does not hold. Then the set

S = {A(@)A | A € h(f(z*))} (14.6.12)

does not contain the origin. Since Oh(f(z*)) is a closed convex set, then S
is too. Hence by applying the separation theorem of convex sets, we know
there must exist d € R™ such that

dTA(z*)A < 0, VA € On(f(z")). (14.6.13)

Since Oh(f(z*)) is closed, the above expression (14.6.13) contradicts the

fact that DF(z*,d) > 0. This contradiction shows the equivalence between
(14.6.11) and (14.6.10). O

Although the function f(z) = h(f(z)) may not be convex, we can obtain
the following first-order sufficient conditions.

Theorem 14.6.4 (First order sufficient conditions) If

DF(z*,d) > 0 (14.6.14)
holds for all nonzero vectors d, then x* is a strictly local minimizer of h(f(x)).
Proof. By (14.6.14), there exists ¢ > 0 such that

DF(z*,d) > 6, V||d||s = 1. (14.6.15)
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Suppose that the theorem is not true, then there exists x; — z* with
h(f(zr)) < h(f(z*)). Let us suppose that
zr = o + apdy, ”dkHQ =1, a0, >0, ap — 04.

Then

h(f(xr)) = h(f(z7))

h(f(a*) + A(z")" (2 — 2*)) = h(f(2")) + o(ay,)
arDF(z*,di) + o(ag)

a0 + o(ag), (14.6.16)

AVANAY

which contradicts the fact that h(f(zx)) < h(f(z*)). The contradiction
proves the theorem. O

In fact, it also follows from (14.6.16) that, under assumption (14.6.14),
there exist 6 and € such that

h(f(x)) = h(f(z")) = dl|lx — 2| (14.6.17)

holds for all z with ||z — 2*|| < €.

14.7 Trust Region Method for Composite Nons-
mooth Optimization

For composite nonsmooth optimization (14.6.1), the subproblem of the trust-
region method has the form

1
mingepe h(f(xx) + Alax)"d) + 5d" Brd 2 pu(d)  (14.7.1)
st. |ldl| < A, (14.7.2)

where A(z) = Vf(z)T € R™™ By € R™™ is a symmetric matrix, and Ay, >
0 is a radius of the trust-region which is adjusted adaptively to be as large
as possible subject to adequate agreement between ¢y (d) and h(f(xy + d))
being maintained. The norm || - || in (14.7.2) is arbitrary but || - ||2 is used in
this section without special specification.

Let dj, be a solution of subproblem (14.7.1)—(14.7.2). Similar to Theorem
14.6.3, we can prove that there must exist

A € Oh(f(x) + A(:Ck)Tdk), (14.7.3)
pk € Ol\dkll, (14.7.4)
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and fig > 0 such that

A(xk)M\e + Brdy + figpr =0, (14.7.5)
fir[Ag — [|d[]] = 0. (14.7.6)

The trust-region algorithm for composite nonsmooth optimization due to
Fletcher [129] is as follows.

Algorithm 14.7.1 (Trust-region algorithm for composite NSO)
Step 1. Givenx1 € R*", A\ € R™, A1 >0,¢>0, k:=1.

Step 2. Compute

m

Bk = Z(Ak,l)lvzf,(wky (14.7.7)

=1
Solve the subproblem (14.7.1)-(14.7.2) for dj;
If ||di|| < e, stop.

Step 3. Calculate

_ lf (@) — h(f(zx +dy))

= dx(0) — ¢r(di) (14.78)

If r, < 0.25 set Ak—‘rl = ||dk||/4,
if i > 0.75 and HdkH = Ay, set AkJrl =2Ay;
otherwise, set Agy1 = Ag.

Step 4. If rp, > 0 go to Step 5;
else xpy1 = xk, A\ ' = Ag—1, go to Step 6.

Step 5. Set w11 := xp + dp, A is defined by (14.7.5).

Step 6. k:=k+1, go to Step 2. O

To analyze the convergence of Algorithm 14.7.1, we assume that the se-
quence {x} from the algorithm is bounded, which is implied if any level set
{z | h(f(z)) < h(f(x1))} is bounded. The boundedness of {x}} suggests that
there exists a bounded, closed convex set ) such that

T € xp+dp €, VeE=1,2,---. (14.7.9)
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Since h(-) is convex and well-defined on all of R™, then there exists constant
L > 0 such that

|h(f1) = h(fo)| < Ll f1 — fell (14.7.10)

holds for all fi,fo € f(2) = {v = f(z), z € Q}. From the continuous
differentiability of f and the boundedness of 2, it follows that there is a
constant M > 0 such that

|A(z)|| < M (14.7.11)

holds for all z € Q.

Theorem 14.7.2 Let fi(z) (i = 1,---,m) be twice continuously differen-
tiable, if the sequence {xy} generated by Algorithm 14.7.1 is bounded, then
there exists an accumulation point z* of Algorithm 14.7.1, which is a station-
ary point of optimization problem (14.6.1).

As to the proof of the theorem, please consult Fletcher (1981). Further,
we have the following corollary.

Corollary 14.7.3 Under the assumption of Theorem 14.7.2, if, instead of
(14.7.7), || Bkl is uniformly bounded, then {xy} has an accumulation point
x*, which is a stationary point.

Now, the uniform boundedness of || By|| is relaxed to

k
IBill < s +c6 ) A (14.7.12)
=1

Also, the adjustment of trust-region radius can be extended to the general
case:

HdkH S Ak+1 S min[clAk,A], if Tk 2 C9, (14713)
C3HdkH < Ak+1 < C4Ak, if r, < Cco, (14.7.14)
where ¢;(i = 1,---,6) are positive constants and satisfy ¢; > 1 > ¢4 >

c3, co < 1; A is a constant given in advance, an upper bound of the trust-
region radius.

Under the extended conditions, we also can establish the convergence.
We first give a lemma.
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Lemma 14.7.4 Let dj be a solution of (14.7.1)-(14.7.2), then

1 : dek(xk)
h(f(zx)) — or(de) > im (1) min [1, ||BkHA;2j , (14.7.15)

where Y (x) is defined by (14.6.4)-(14.6.5).
Proof. It follows from the definition of d;, that

h(f(xr)) — dr(di) > h(f(xr)) — ¢dr(d) (14.7.16)

holds for any d with [|d|| < Ag. By the definition (14.6.5) of (), there
exists ||di|| < Ag such that

P, (@r) = h(f(zk)) — h(f(xr) + A(zr) " dg). (14.7.17)

Then, by using the convexity of h(:), we obtain that

h(f(xg)) — ¢r(de) > h(f(zx)) — or(ady)
= x(zp, ady) — %aQa_lkaJk

- 1 _
> ax(en i) = 50%) Bl ]
1
> appag (o) = ol || Brll AR (14.7.18)

holds for all a € [0, 1]. Therefore
1
(@) = dulde) = gmax |avi (o) — 50| Bl A

[Ya (k)]
1Bkl A

A%

1 min [wAk (xk)a

5 ] . (14.7.19)

We complete the proof. O
It is now possible to establish an extended conclusion of Theorem 14.7.2.

Theorem 14.7.5 Let fi(z)(i = 1,---,m) be twice continuously differen-
tiable. Suppose that By in Algorithm 14.7.1 is not given by (14.7.7) but
instead by (14.7.12) and that the sequence {xzi} of the algorithm is bounded,
then there must exist an accumulation point x* of {x} which is a stationary
point of the problem (14.6.1).
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Proof. Suppose that the theorem does not hold, so there exists a positive
constant ¢ > 0 such that
1(xg) >0, Vk. (14.7.20)

By use of 5) of Lemma 14.6.2, Lemma 14.7.4, inequality (14.7.20) and bound-
edness of Ay, we deduce that

h(f(xk)) _ ¢k(dk) >  cymin [Ak7 HBI;CH}
1
cs + cg Z?:l A;

>  c¢ymin lAk, ], (14.7.21)

where c7 is a positive constant. Define a set
S = {k | Tk > CQ}, (14.7.22)

then we have

h(f(21) —minh(f(z)) > D [A(f(zx)) = h(f(2r41))]

Q
BaS k=1

> > [h(f(xk) = h(f(z41))]

kesS

> 2 ) [h( — ¢r(dy)].  (14.7.23)

keS
y (14.7.23), (14.7.21), (14.7.12) and Ag < A, it follows that

> Ag/ <c5 + g Z A, ) < +o0. (14.7.24)

kesS

In view of definition of Agy1, we have
Ak+1 < C4Ak, Vk ¢ S, (14.7.25)

which gives

i S( - 4) ZA + A1, (14.7.26)

ZES

Combining (14.7.24) and (14.7.26) yields that Y ;cg A; converges, and fur-
ther that Y 7, Ay converges by (14.7.26) again. Hence || Byl is uniformly
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bounded. So, by Corollary 14.7.3, we know that (14.7.20) cannot hold for all
k. The contradiction proves the theorem. O

Similar to the analysis of the trust-region method for unconstrained op-
timization, the condition (14.7.12) can further be weakened to

Bkl < es + cok. (14.7.27)

However, for the nonsmooth trust-region method, no matter what choices
of By, there is only linear convergence. Several modifications are available to
avoid the Maratos effect and enable the second-order rate to be established.
The interested reader can consult Fletcher [131] and Yuan [369] for details.

14.8 Nonsmooth Newton’s Method

Qi and Sun [283] extended the classical Newton’s method to a non-smooth
case by using the generalized Jacobian instead of the classical Jacobian. In
this section, following Qi and Sun [283], we discuss the non-smooth Newton’s
method.

First, we introduce the generalized Jacobian and semismooth function.
Suppose that F': R* — R™ is a locally Lipschitzian function. Rademacher’s
theorem says that F' is differentiable almost everywhere. Denote the set of
points at which F' is differentiable by Dr. We write JF(z) for the usual
m X n Jacobian matrix of partial derivatives whenever x is a point at which
the necessary partial derivatives exist.

The generalized Jacobian of F' at x, denoted by 0F(z), is a convex hull of
all m x n matrices V obtained as the limit of a sequence of the form JF(x;),
where z; — x and z; € Dp. Then, we have

OF (z) = co {lim JF(z;) | ;i — x, x; € Dp}. (14.8.1)

Let F be Lipschitz on an open convex set U in R", and let = and y be
points in U. Then, by Proposition 2.6.5 of Clarke [60], one has

F(y) — F(x) € OF([z,y])(y — x). (14.8.2)
Assume that for any h € R",

{Vh} (14.8.3)

1m
VEDF (x+th)
t10o
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exists. Then the classical directional derivative

(s )  tim FE ) — (@)

i ; (14.8.4)

exists, and

/ . _ .
Fl(wsh) = _lim {Vh}. (14.8.5)
t10

In fact, by (14.8.2), we have

F(z +tjh) — F(x)
tj

€ co0F ([x,x + t;h])h.

k)

By the Caratheodory theorem, there exist k) ¢ [0, 5], )\Ek) € [0,1], Vj( €

J

OF ([z,x + ¢ R]), for k=0,1,--,m, 7o A% =1, such that

F(.’L‘—i—tjh) —F
tj

() = (k) k)
—I;))\j V" h.

By passing to a subsequence, we can assume that )\E-k) — Ajas j — oo. We
have A\j € [0,1] for k =0,---,m and Y2y A\; = 1. Then there are t; | 0 such
that

Pl - lim FEHLI = F@)

Jj—00 tj

= 1im {3 APV
I k=0

S () g ISR < S
= Z]liglo Aj glgﬁlo{v} h} = Z Aj veagglﬂh){v’h}
k=0 k=0 o
= VE@I}‘{];Ithh) {Vh}.
t]0

F is called semismooth at x if F' is locally Lipschitzian at x and

. !
L (V) (14.8.6)
h! —h,t|0

exists for any h € R™. It implies that

F N—F
i ZEF)ZF@) (14.8.7)
W —h t VEDF (z+th!)
tl0 h! —h,t|0
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Lemma 14.8.1 suppose that F' : R — R™ 1s locally Lipschitzian and
F'(x; h) exists for any h at . Then

(1) F'(x;h) is Lipschitzian;

(2) for any h, there exists a V € OF (x) such that

F'(z;h) = Vh. (14.8.8)

Proof. For any h,h' € R",

F th) — F th'
I Ga3 ) = a5 = g D=
t10 t
F —F !
< g IFE = PGl

where L is the Lipschitzian constant near z. This proves (1).
By (14.8.2) and (14.8.4), there are a sequence {{;} and a sequence {Vj}
such that ¢ | 0, Vi € codF ([x,z + txh]),

F'(x;h) = klirgo{vkh}.

Because of the local Lipschitzian property of F', {Vy} is bounded. By passing
to a subsequence, we may assume that V, — V. Also since OF is closed,
V € 0F (x). So, (2) is proved. O

If F is semismooth, then for any V' € 0F (z + h) and h — 0,

Vh — F'(z;h) = o||h]]) (14.8.9)
and F'(z + hyh) — F'(a; h
T G 10 B G210 Y (14.8.10)
@+heDy HhH
h—0

In fact, if F' is semismooth, we have a conclusion that the right-hand side of
(14.8.7) is uniformly convergent for all h. Suppose that this conclusion does
not hold. Then there exist € > 0, {hx € R" | ||h| = 1,k = 1,2,---}, ||hx —
hil| — 0, tp | 0, Vi € OF (z + tihy) such that

|Vihi — F'(z; i) || > 2, (14.8.11)

for k =12, By passing to a subsequence, we may assume that hp — h.
Thus, hy — h too. By Lemma 14.8.1 (1) and (14.8.11), we can get

|Vihie — F'(z;h)| > € (14.8.12)
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for all sufficiently large k. This contradicts the semismoothness assumption.
The uniform convergence of the right-hand side of (14.8.7) implies the
uniform convergence of the right-hand side of (14.8.5), which further implies
(14.8.9).
Also, it immediately follows from (14.8.9) and (14.8.8) that (14.8.10)
holds.

The Fréchet derivative F’(x) is said to be strong if
p— p— / p—
L F() = F(y) — Fa)(z— )

e Iz =yl
z—x z y

= 0. (14.8.13)

Clearly, if F' has strong Fréchet derivative at x, then F' is semismooth at z.
If for any V € OF (x + h) and h — 0,

Vh —F'(z;h) = O(||p]|**?),

where 0 < p < 1, then we call F' p-order semismooth at z. Obviously, p-order
semismoothness (0 < p < 1) implies semismoothness.
Note that, if F'is semismooth at x, then for any h — 0,

F(x+h)— F(z) — F'(x;h) = o(||h]]). (14.8.14)
If F' is p-order semismooth at x, then for any h — 0,

F(z + h) — F(z) — F'(z; h) = O(|h||*?). (14.8.15)

Now, we are in a position to give the nonsmooth Newton’s method.
It is well-known that for smooth function F' : R® — R", the Newton’s
method for solving the nonlinear equation

F(z)=0 (14.8.16)
Ty = T — [F'(z)] L (2). (14.8.17)

Now, suppose that F' is not a smooth function, but a locally Lipschitzian
function. Then the formula (14.8.17) cannot be used. Let 0F(x) be the
generalized Jacobian of F' at . Instead of (14.8.17), we may use

Tpp1 = 3k — Vi Fa), (14.8.18)
where V}, € OF (zy), to solve the nonsmooth equation

F(z)=0. (14.8.19)
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Lemma 14.8.2 If all V € OF(x) are nonsingular, then there is a neigh-
borhood N(x) of x and a constant C such that for any y € N(z) and any
V € OF (y), V is nonsingular and

V=Y <. (14.8.20)

Proof. By contradiction. If the lemma is not true, there is a sequence
Yr — x, Vi € OF (yx) such that either all Vj are singular or ||V, || — oc.
Since F' is locally Lipschitzian, OF' is bounded in a neighborhood of z. By
passing to a subsequence, we may assume that V, — V. Then V must
be singular, a contradiction to the assumption for this proposition. This
completes the proof. O

Theorem 14.8.3 (Local Convergence) Suppose that x* is a solution of non-
smooth equation (14.8.19), F is locally Lipschitzian and semismooth at z*,
and all V- € OF (x*) are nonsingular. Then the iterative method (14.8.18)
is well-defined and convergent to x* in a neighborhood of x*. If in addition
F is p-order semismooth at x*, then the convergence of (14.8.18) is of order
1+p.

Proof. By Lemma 14.8.2, the iteration (14.8.18) is well-defined in the
neighborhood of z*. By (14.8.18), (14.8.9) and (14.8.14), we have
lener =2l = g —a* = V7 Fay)l|
< AV F () = Fa*) = F'(a*, 2 — 27)]]
HIV Vil — 2%) = F' (2" 2 — 27)]|
= o(||lzx — z*|)). (14.8.21)
The case that F'is p-order semismooth at x is similar. O

Finally we give the global convergence of nonsmooth Newton’s method.

Theorem 14.8.4 (Global Convergence) Suppose that F is locally Lipschitzian
and semismooth on S = {x € R" : ||z — x| < r}. Also suppose that for
any V € OF (z) and z,y € S, V is nonsingular,

VI < B, IV(y = 2) = F'(asy — 2)|| < olly — =],

and
|F(y) — F(x) = F'(z;y — x)|| < dlly — =,
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where a = B(y+9) < 1 and B||F(xzo)|| < r(1—«). Then the iterates (14.8.18)
remain in S and converge to the unique solution x* of (14.8.19). Moreover,
the error estimate

g — 2" < o/ (1 = )|z — 2 (14.8.22)
holds for k=1,2,---
Proof. Obviously,

lz1 = @oll = Vg™ F (o)l < BIIF (o) < r(1 — a).

So x1 € S. Suppose now that x1,z9, -,z € S. Then
lzgir =2l = (Vi F ()|l < BIF ()|
< B|IF(zx) — F(wgp-1) — F'(zp—1; 2 — 24—1) ||
+0[|Vie—1(@p — 2p—1) — F'(xp—1, T — 2—1)||
< B+ y)ller — zeoa |l = allzg — zpa | < Pz — o]
< rof(1-a). (14.8.23)
Hence
k k '
@1 — zoll <D llwjer — a5l <D rad(1—a) <. (14.8.24)
§=0 j=0

So x4 € S, i.e., all the iterates (14.8.18) remain in S.
For any k£ and n,

k+n k+n )
|Tktnt1 — zkl| < Z |21 — ]| < Z ra (1 —a) < raoF. (14.8.25)
Jj=k Jj=k

So the iterates (14.8.18) converge to a point z* in S. Since F' is Lipschitzian
in S, ||V is uniformly bounded. Thus

[F@)] = hm |[Fzg)ll < Im [[Villl|zrer —awll =0,
—00 k—o0

ie., F(z*)=0.
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Suppose that there are z*,y* € S with F(z*) = 0 and F(y*) = 0. Let
V* € OF (z*). Then

ly" —= BIV(y™ — ")
BIVI(y" —a") — F'(a"y" —a")|
+BIF(y") — Fa®) — F'(a"y" —27)|
< B+ — 2| = ally” — 27| (14.8.26)
This implies
ly" — 2" <0,

i.e., * = y*. This shows that z* is the unique solution of (14.8.19).
Finally,

k+n
[ Thina1 =zl <D i — a5l < Za”lllxk — zp1]|
7=k
< 1o a\lxk — Tp—1]|-

Setting n — oo, we obtain the result (14.8.22). O

Exercises

1. Describe directional derivative, Dini directional derivative, Clarke di-
rectional derivative of f at x in the direction d respectively, and their prop-
erties and relations.

2. Describe the definition and properties of semi-smoothness.

3. Assume that f(z) is continuously differentiable. Prove that

Of(x) = Vf(x).

4. Assume that ¢;(z )( = ) are continuously differentiable. Let

1,.
£(@) = maxi<icm (@) and F(x) = 2, les(e)|. Compute f(z) and Of (z).

5. Prove Theorem 14.3.3.
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6. Assume that f(z) is a convex function. Prove

f(@) =sup sup [f(y)+g" (z—y)].
Y geof(y)

7. Prove Theorem 14.4.2.

8. Prove the global convergence of the bundle method for uniformly con-
vex functions.

9. Prove Lemma 14.6.2.

10. Apply the trust-region Algorithm 14.7.1 to problem
min f(z) = max{1 +z; — 23,1 — 21 + (1 + €)x3}

where € > 0 is a small positive number with the starting point (,6%) and
initial trust-region radius A; = 0.59, § > 0 being a small positive number.
You should observe that the iterates converge only linearly if the trust-region
is chosen {d| ||d|lcc < A}

11. Prove Theorem 14.7.2.
12. Modify Algorithm 14.7.1 to derive a nonmonotone algorithm.

13. Give a generalized Newton’s method for nonsmooth optimization and
establish its global and local convergence.



Appendix: Test Functions

§1.Test Functions for Unconstrained Optimization Problems

Problem 1.1 Rosenbrock function:
f(z) =100(z — 23)? + (1 — x1)?, (1.1)
zo = [-1.2,1]7, z* = [1,1]T, f(z*) = 0.

Problem 1.2 Extended Rosenbrock function:

n—1

f(@) = [100(zip1 — 27)* + (1 — 2:)7], (1.2)
=1
zo=[-1.2,1,---,-1.2, 1%, z* =[1,1,---,1,1], f(z*) =0.

Problem 1.3 Wood function:

f(z) = 100(x? — 22)% + (z1 — 1)* + (23 — 1)2 + 90(x3 — 24)?
4+10.1[(z9 — 1)2 + (24 — D] + 19.8(xp — 1)(z4 — 1), (1.3)

zo=[-3,-1,-3,-1]%, z* =[1,1,1,1], f(z*) = 0.
Problem 1.4 Powell singular function:
f(z) = (z1 4 1029)% 4 5(z3 — 24)> + (z2 — 223)* + 10(z1 — x4)?,  (1.4)
xo=[3,-1,0,1]7, 2* =[0,0,0,0]", f(z*) = 0.
Problem 1.5 Cube function
f(x) = 100(zy — 23)* 4+ (1 — z1)?, (1.5)

To = [_1'27 _1}T7 Tt = [1? 1]T7 f(ﬂj‘*) =0.
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Problem 1.6 Trigonometric function

n
= n+i(l — cosz;) — sinz; — Zcosx] , (1.6)
=1
1 177
xo |:57’L7 ’571] y L [7 7} 7f($)

Problem 1.7 Helical valley function

f(@) = 100[(z5 — 100)” + (/2 + 23 — 1)%] + a3, (1.7)
where
90 — arctan(zi/x2) if 21 > 0,
| 7+ arctan(zy/z1) ifxy <O,

zo = [~1,0,0]7, z* = [1,0,0], f(z*) = 0.

§2. Test Functions for Constrained Optimization Problems

The test functions for constrained optimization are selected from Hock
and Schittkowski [176].

Problem 2.1 (No. 14 in [176])
Number of Variables: n = 2
Objective Function:

fl@) = (x1 = 2)% + (22 — 1)
Constraints:

—0.252% —x3+1>0,
1 —2x9+1=0.
Start: z9 = (2,2), f(xo) = 1.

Solution: z* = (0.5(v/7 — 1), 0.25(\/7 + 1)),
f(z*) =9 —2.875\/7.

Problem 2.2 (No. 22 in [176])
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Number of Variables: n = 2
Objective Function:

flx) = (21— 2)% + (32 — 1)
Constraints:

—r1—22+22>0
—x%+x220

Start: o = (2,2), f(zo) =1.
Solution: z* = (1,1), f(z*) = 1.

Problem 2.3 (No. 59 in [176])
Number of Variables: n = 2
Objective Functions:

f(x) = —75.196 + 3.811221 + 0.0020567z} — 1.0345E-5x7
+6.830629 — 0.030234x1 15 + 1.28134E-3z027
+2.266E-7x o — 0.2564523 + 0.003460423 — 1.3514E-523
+28.106/ (o + 1) + 5.2375E-62323 + 6.3E-8x3 23
—7E-10z323 — 3.405B-4z1 22 4 1.6638E-621 25
+2.8673 exp(0.0005z129) — 3.5256E-523 x5

Constraints:

x1x9 — 700 > 0,

xy — 23/125 > 0,

(29 — 50)% — 5(x1 — 55) > 0,
0 < x <75,

0 < o < 65.

Start: zo = (90, 10), f(z) = 86.878639
Solution: z* = (13.55010424, 51.66018129), f(z*) = —7.804226324.

Problem 2.4 (No. 63 in [176])
Number of Variables: n = 3
Objective Function:

f(z) =1000 — 2% — 223 — 23 — 129 — 2123
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Constraints:

8x1 + 14xo 4+ Txs — 56 = 0,
x%—i—x%—i—x%—%:(),
0<x,1=1,2,3.
Start: zo = (2,2,2), f(zo) =976
Solution: z* = (3.512118414, 0.2169881741, 3.552174034), f(x*) = 961.7151721

Problem 2.5 (No. 25 in [176])
Number of Variables: n =3
Objective Function:

where

fz(x) = —0.01z + exp<_x11(ui — 29)")

u; = 254 (=50In(0.01i))%3, i=1,---,99.
Constraints:

0.1< 21 <100
0< x99 <256
0 S T3 S 5

Start: xo = (100,12.5,3), f(xo) = 32.835
Solution: z* = (50,25,1.5), f(z*) =0

Problem 2.6 (No. 35 in [176])
Number of Variables: n =3
Objective Function:

+22129 + 22123

Constraints:

3—.711—%2—2%320
0<ua;,i=1,2,3.
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Start: xg = (0.5,0.5,0.5), f(xg) =2.25
Solution: z* = (4/3,7/9,4/9), f(z*)=1/9.

Problem 2.7 (No. 38 in [176])
Number of Variables: n =4
Objective Function:

f(z) = 100(ze — x%)Q +(1— g;l)Q +90(zy — x%)Q +(1- $3)2
+10.1((22 — 1)? + (24 — 1)) +19.8(22 — 1) (24 — 1)

Constraints:

-10<2;<10,i1=1,---,4
Start: o = (—3,—1,—-3,—1), f(xg) = 19192
Solution: x* —(1,1,1,1), f(z*) =0.

Problem 2.8 (No. 43 in [176])
Number of Variables: n =4
Objective Function:
f(x) = 23 4+ 22 + 223 4+ 22 — 52y — Sy — 21a3 + T2y

Constraints:

8—af — w3 —ai -2t —widae—a3+as>0

10 — 23 — 223 — 23 — 223 + 21 + 24 > 0
5—2:6'1— %— %—2x1+x2+x420
Start: zg = (0,0,0,0), f(zo) =0.
Solution: z* = (0,1,2,-1), f(z*) = —44

Problem 2.9 (No. 73 in [176])
Number of Variables: n = 4
Objective Function:

F(z) = 24.5521 + 26.75z5 + 3923 + 40.5024
Constraints:

2321 + 5.622 + 11.1z5 + 1324 — 5 > 0

1221 + 11.929 + 41.823 + 52.1z4 — 21

—1.645(0.2822 + 0.1922 + 20.522 + 0.6222)% > 0

T1+x9s+x3+24—1=0

0<a,i=1,--,4.



642 APPENDIX: TEST FUNCTIONS
Start: xo = (1,1,1,1), f(xg) = 130.8
Solution:

2* = (0.6355216, —0.12E-11,0.3127019, 0.05177655),
f(z*) = 29.894378

Problem 2.10 (No. 83 in [176])
Number of Variables: n =5
Objective Function:

f(z) = 5.3578547x3 + 0.8356891x1 x5 + 37.29323921 — 40792.141

Constraints:
92 > a1 + aswews + azw1T4 — a4x375 > 0
20 > a5 + agroxrs + arxixs + agac% —90>0
5 > ag + a10T3%5 + a117173 + a12w3rs — 20 > 0
78 < x1 <102
33 < x9 <45
97 < w; < 45, i = 3,4,5,
where

a1 = 85.334407, az = 0.0056858, a3z = 0.0006262,

as = 0.0022053, as = 80.51249, ag = 0.0071317,
a7 = 0.0029955, ag = 0.0021813, a9 = 9.300961,
a1o = 0.0047026, a;; = 0.0012547, a2 = 0.0019085

Start: zo = (78,33,27,27,27), f(xg) = —32217
Solution: z* = (78, 33,29.99526, 45, 36.77581), f(x*) = —30665.53867

Problem 2.11 (No. 86 in [176])
Number of Variables: n =5
Objective Function:

5

5 5 5
f(l’) = Z e;x; + Z Z CijTixj + Z dja:?
j=1

j=1 i=1j=1
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Constraints:
5
Zaijmj —bz‘ 20, 1= 1,---,10,
j=1
0<mxy,i=1,---,5,
where
j 1 2 3 4 5

e; -1p -27 36 -18 -12
cij 30 -20  -10 32 -10

coj  -20 39 -6 -31 32
cz; -10 -6 10 -6 -10
C4; 32 -31 -6 39 -20
cs;  -100 32 -10 -20 30
d; 4 8 10 6 2
ay;  -16 2 0o 1 0
@24 0 -2 0 4 2
az; -35 0 2 0 0
ag; 0 -2 0 -4 -1
as; 0 -9 -2 1 -2.8

b; -40 -2 -025 4 -4

Start: 29 = (0,0,0,0,1), f(zo) =20
Solution: z* = (0.3, 0.33346761, 0.4, 0.42831010, 0.22396487), f(z*) = —32.34867897

Problem 2.12 (No. 93 in [176])
Number of Variables: n = 6
Objective Function:

f(z) = 0.0204z124(x1 + 22 + 23) + 0.01872923(21 + 1.5722 + 24)
+0.0607x 2422 (21 4 29 + T3)
+0.0437$2x3x%(:v1 + 1.57x9 + x4)

Constraints:
0.0011‘11’21‘3.’1}4.%5.%6 —2.07 Z 0,
1 —0.00062x1 x422 (21 + 29 + 23),

—0.00058z9x322(x1 + 1.57x9 + 24) > 0,
0<zyi=1,---6.
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Start: @o = (5.54,4.4,12.02,11.82,0.702,0.852), f(zo) = 137.066

Solution:

z* = (5.332666,4.656744, 10.43299,
12.08230, 0.7526074, 0.87865084),
f(x*) = 135.075961

Problem 2.13 (No. 108 in [176])
Number of Variables: n =9
Objective Function:

f(z) = —0.5(z124 — z2x3 + 2329 — T5T9 + T5T8 — TeL7)

Constraints:

1— (21 —x5)° — (w2 —26)” >0,
1— (21— 27)* — (22 — 28)* > 0,
1— (23— 25)° — (24 — 26)” > 0,
1— (x3 — a7)* — (4 — 28)* >0,

r12T4 — w23 > 0,
x319 2> 0,

—z529 2 0,

x5x8 — wrex7 > 0,
0 S xXg.

Start:

zo=(1,1,1,1,1,1,1,1,1),
f(wo) =0



Solution:

= (0.8841292, 0.4672425, 0.03742076, 0.9992996,
0.8841292, 0.4672424, 0.03742076, 0.9992996,
0.26E-19),

f(z*) = —0.8660254038

Problem 2.14 (No. 110 in [176])
Number of Variables: n = 10
Objective Function:

10

flx) = Z[(ln(mz —2))%2 4 (In(10 — z)) H ;)

i=1
Constraints:
2.001 <x;<9.999, i =1,---,10.
Start: xg = (9,---,9), f(xo) = —43.134337
Solution: z* = (9.35025655, - - -,9.35025655), f(x*) = —45.77846971

Problem 2.15 (No. 111 in [176])
Number of Variables: n = 10
Objective Function:

10
Zexp (zj)(cj +xj —1In Zexp (zx))

7=1
where
¢l = —6.089, ¢y = —17.164, ¢3 = —34.054,
c1 = —5.914, c5 = —24.721, cg = —14.986,
cr = —24.100, cg = —10.708, cg = —26.662, 19 = —22.179
Constraints:
xp(1) + 2exp(r2) + 2 exp(s) + exp(ze) + exp(arp) — 2 = 0,
exp( 1) + 2exp(x5) + exp(zg) + exp(z7) — 1 =0,
exp(z3) + exp(z7) + exp(xs) + 2exp(xg) + exp(w10) — 1 =0,

~100 < 7; <100, i =1,-- -, 10.

645
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Start: zg = (—2.3,---,—-2.3), f(xg) = —21.015
Solution:

¥ = (—3.201212, —1.912060, —0.2444413, —6.537489,
—0.7231524, —7.267738, —3.596711, —4.017769,
—3.287462, —2.335582),

fla*) = —47.76109026

Problem 2.16 (No. 112 in [176])
Number of Variables: n = 10
Objective Function:

ij Cj+ln 1+ +x10

where c; are defined in Problem 2.15.
Constraints:

1 + 229 + 223 + 26 + 210 — 2 =0,
T4+ 2x5+ 16+ 27 —1 =0,

r3+ a7+ 23 + 229 + 219 = 0,
1.E6<x;,t=1,---,10.

Start: zp = (0.1,---,0.1), f(zo) = —20.961
Solution:

z* = (0.01773548,0.08200180, 0.8825646, 0.7233256E-3,
0.4907851, 0.4335469E-3,0.01727298,
0.007765639, 0.01984929, 0.05269826),

f(z*) = —47.707579

Problem 2.17 (No. 117 in [176])
Number of Variables: n = 15
Objective Function:

5 5
Zb Ti+ DD ChjT00kT1045 + ZZd T304
k=1

7j=1



647

Constraints:
