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Preface to the Sixth Edition

v

The sixth edition includes additional material in all chapters. For instance,

Section 2.6.1 gives a simple derivation of the joint distribution of the
sample mean and sample variance of a normal data sample.

Section 3.6.4 presents k-record values and the surprising Ignatov’s
theorem.

Section 4.5.3 presents an analysis, based on random walk theory, of a
probabilistic algorithm for the satisfiability problem.

Section 4.6 deals with the mean times spent in transient states by a
Markov chain.

Section 4.9 introduces Markov chain Monte Carlo methods.

Section 5.2.4 gives a simple derivation of the convolution of exponen-
tial random variables.

Section 7.9 presents new results concerning the distribution of time
until a certain pattern occurs when a sequence of independent and
identically distributed random variables is observed. In Section 7.9.1,
we show how renewal theory can be used to derive both the mean and
the variance of the length of time until a specified pattern appears, as
well as the mean time until one of a finite number of specified patterns
appears. In Section 7.9.2, we suppose that the random variables are
equally likely to take on any of m possible values, and compute an
expression for the mean time until a run of m distinct values occurs.
In Section 7.9.3, we suppose the random variables are continuous and
derive an expression for the mean time until a run of m consecutive
increasing values occurs.

Section 9.6.1 illustrates a method for determining an upper bound for
the expected life of a parallel system of not necessarily independent
components.

xi



xii Preface to Sixth Edition

® Section 11.6.4 introduces the important simulation technique of impor-
tance sampling, and indicates the usefulness of tilted distributions
when applying this method.

Among the new examples are ones relating to

Random walks on circles (Example 2.52).

The matching rounds problem (Example 3.13).

The best prize problem (Example 3.21).

A probabilistic characterization of e (Example 3.24).
® Ignatov’s theorem (Example 3.25).

We have added a large number of new exercises, so that there are now
approximately 570 exercises (most consisting of multiple parts). More than
100 of these exercises have been starred and their solutions provided at
the end of the text. These starred problems can be used by students for
independent study and test preparation. An Instructor’s Manual, containing
solutions to all exercises, is available free of charge to instructors who adopt
the book for class.

We would like to acknowledge with thanks the helpful suggestions made
by the many reviewers of the text, including:

Garth Isaak, Lehigh University

Galen Shorack, University of Washington, Seattle

Amarjot Kaur, Pennsylvania State University

Marlin Thomas, Purdue University

Zhenyuan Wang, State University of New York, Binghampton

The reviewers’ comments have been critical in our attempt to continue to
improve this textbook in its sixth edition.
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Preface to the Fifth Edition
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This text is intended as an introduction to elementary probability theory
and stochastic processes. It is particularly well suited for those wanting to
see how probability theory can be applied to the study of phenomena in
fields such as engineering, management science, the physical and social
sciences, and operations research.

It is generally felt that there are two approaches to the study of probability
theory. One approach is heuristic and nonrigorous and attempts to develop
in the student an intuitive feel for the subject which enables him or her to
“‘think probabilistically.’’ The other approach attempts a rigorous develop-
ment of probability by using the tools of measure theory. It is the first
approach that is employed in this text. However, because it is extremely
important in both understanding and applying probability theory to be able
to ‘“think probabilistically,” this text should also be useful to students
interested primarily in the second approach.

Chapters 1 and 2 deal with basic ideas of probability theory. In Chapter 1
an axiomatic framework is presented, while in Chapter 2 the important
concept of a random variable is introduced.

Chapter 3 is concerned with the subject matter of conditional probability
and conditional expectation. ‘‘Conditioning’’ is one of the key tools of
probability theory, and it is stressed throughout the book. When properly
used, conditioning often enables us to easily solve problems that at first
glance seem quite difficult. The final section of this chapter presents
applications to (1) a computer list problem, (2) a random graph, and (3) the
Polya urn model and its relation to the Bose-Einstein distribution.

In Chapter 4 we come into contact with our first random, or stochastic,
process, known as a Markov chain, which is widely applicable to the
study of many real-world phenomena. New applications to genetics and

xiii



xiv Preface to the Fifth Edition

production processes are presented. The concept of time reversibility is
introduced and its usefulness illustrated. In the final section we consider a
model for optimally making decisions known as a Markovian decision
process.

In Chapter 5 we are concerned with a type of stochastic process known as
a counting process. In particular, we study a kind of counting process known
as a Poisson process. The intimate relationship between this process and
the exponential distribution is discussed. Examples relating to analyzing
greedy algorithms, minimizing highway encounters, collecting coupons,
and tracking the AIDS virus, as well as material on compound Poisson
processes are included in this chapter.

Chapter 6 considers Markov chains in continuous time with an emphasis
on birth and death models. Time reversibility is shown to be a useful concept,
as it is in the study of discrete-time Markov chains. The final section presents
the computationally important technique of uniformization.

Chapter- 7, the renewal theory chapter, is concerned with a type of
counting process more general than the Poisson. By making use of renewal
reward processes, limiting results are obtained and applied to various fields.

Chapter 8 deals with queueing, or waiting line, theory. After some prelim-
inaries dealing with basic cost identities and types of limiting probabilities,
we consider exponential queueing models and show how such models can
be analyzed. Included in the models we study is the important class known
as a network of queues. We then study models in which some of the
distributions are allowed to be arbitrary.

Chapter 9 is concerned with reliability theory. This chapter will probably
be of greatest interest to the engineer and operations researcher.

Chapter 10 is concerned with Brownian motion and its applications. The
theory of options pricing is discussed. Also, the arbitrage theorem is
presented and its relationship to the duality theorem of linear program is
indicated. We show how the arbitrage theorem leads to the Black-Scholes
option pricing formula.

Ideally, this text would be used in a one-year course in probability models.
Other possible courses would be a one-semester course in introductory
probability theory (involving Chapters 1-3 and parts of others) or a course
in elementary stochastic processes. It is felt that the textbook is flexible
enough to be used in a variety of possible courses. For example, I have used
Chapters 5 and 8, with smatterings from Chapters 4 and 6, as the basis of
an introductory course in queueing theory.

Many examples are worked out throughout the text, and there are also a
large number of problems to be worked by students.
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Chapter 1

Introduction to
Probability Theory

v

1.1. Introduction

Any realistic model of a real-world phenomenon must take into account
the possibility of randomness. That is, more often than not, the quantities
we are interested in will not be predictable in advance but, rather, will
exhibit an inherent variation that should be taken into account by the
model. This is usually accomplished by allowing the model to be prob-
abilistic in nature. Such a model is, naturally enough, referred to as a
probability model.

The majority of the chapters of this book will be concerned with different
probability models of natural phenomena. Clearly, in order to master both
the ““model building’’ and the subsequent analysis of these models, we must
have a certain knowledge of basic probability theory. The remainder of this
chapter, as well as the next two chapters, will be concerned with a study of
this subject.

1.2, Sample Space and Events

Suppose that we are about to perform an experiment whose outcome is not
predictable in advance. However, while the outcome of the experiment will
not be known in advance, let us suppose that the set of all possible outcomes
is known. This set of all possible outcomes of an experiment is known as the
sample space of the experiment and is denoted by S.

1



2 1 Introduction to Probability Theory

Some examples are the following.
1. If the experiment consists of the flipping of a coin, then

S={HT)
where H means that the outcome of the toss is a head and T that it

is a tail.
2. If the experiment consists of tossing a die, then the sample space is

§=1{1,2,3,4,5,6}
where the outcome i means that i appeared on the die, i = 1, 2, 3,
4,5,6.

3. If the experiment consists of flipping two coins, then the sample space
consists of the following four points:

S ={(H,H),(H, T),(T,H),(T,T))

The outcome will be (H, H) if both coins come up heads; it will be
(H, T) if the first coin comes up heads and the second comes up tails;
it will be (T, H) if the first comes up tails and the second heads; and
it will be (7, T) if both coins come up tails.

4. If the experiment consists of tossing two dice, then the sample space
consists of the following 36 points:

1,1, 1,2),1,3), (1,9, (1,5), (1, 6)
2, 1), 2,2),2,3), (2,9, 2,9, (2,6)
s=]6G1,3,2),3,3), (3,4, 3,5, 3,6)
4, 1), 4,2), (4,3), (4,4), 4,5), 4,6)
(5, 1), (5,2), (53), 5,9, 5,95, 5,6)
6, 1), (6,2), (6, 3), (6,4), (6, 5), (6, 6)
where the outcome (i, j) is said to occur if i appears on the first die and
J on the second die.
5. If the experiment consists of measuring the lifetime of a car, then the
sample space consists of all nonnegative real numbers. That is,

S=[0,0) &

Any subset E of the sample space S is known as an event. Some examples
of events are the following.

I'. In Example (1), if E = {H}, then E is the event that a head appears
on the flip of the coin. Similarly, if E = {T}, then E would be the
event that a tail appears.

* The set (a, b) is defined to consist of all points x such that ¢ < x < b. The set [a, b1 is
defined to consist of all points x such that @ < x < b. The sets (a, b] and {a, b) are defined,
respectively, to consist of all points x such that ¢ < x < b and all points x such thata < x < b.
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2'. In Example (2), if E = {1}, then E is the event that one appears on the
toss of the die. If E = {2, 4, 6}, then E would be the event that an
even number appears on the toss.

3. In Example (3), if E = {(H, H), (H, T)}, then E is the event that a
head appears on the first coin. :

4'. In Example (4), if E = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}, then
E is the event that the sum of the dice equals seven.

5'. In Example (5), if E = (2, 6), then E is the event that the car lasts
between two and six years. €

For any two events E and F of a sample space S we define the new event
E U F to consist of all points which are either in E or in F or in both E and
F. That is, the event E U F will occur if either E or F occurs. For example,
in (1) if E = {H} and F = (T}, then

EUF={H,T)

That is, E'U F would be the whole sample space S. In (2) if £ = {1,3,5}and
F = {1, 2,3}, then

EUF=1{1,2,3,5)

and thus £ U F would occur if the outcome of the die is 1 or 2 or 3 or 5.
The event E U F is often referred to as the union of the event E and the
event F,

For any two events E and F, we may also define the new event EF,
referred to as the intersection of E and F, as follows. EF consists of all points
which are both in E and in F. That is, the event EF will occur only if both £
and F occur. For example, in (2) if both £ = {1, 3, 5} and F = {1, 2, 3}, then

EF = (1,3}

and thus EF would occur if the outcome of the die is either 1 or 3. In
Example (1) if E = {H} and F = {T'}, then the event EF would not consist
of any points and hence could not occur. To give such an event a name
we shall refer to it as the null event and denote it by . (That is, ¢ refers
to the event consisting of no points.) If EF = 5, then E and F are said to
be mutually exclusive.

We also define unions and intersections of more than two events in a
similar manner. If E,, E,, ... are events, then the union of these events,
denoted by Uy_, E,, is defined to be that event which consists of all
points that are in E, for at least one value of n = 1,2, .... Similarly,
the intersection of the events E,, denoted by N<_, E,, is defined to be
the event consisting of those points that are in all of the events E,,
n=1,2,....
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Finally, for any event E we define the new event E°, referred to as the
complement of E, to consist of all points in the sample space S which are
not in E. That is E€ will occur if and only if E' does not occur. In Example
@iIfE = ((1,6), (2, 5), (3, 4), 4, 3), 5, 2), (6, 1)}, then E* will occur if the
sum of the dice does not equal seven. Also note that since the experiment
must result in some outcome, it follows that S¢ = (.

1.3. Probabilities Defined on Events

Consider an experiment whose sample space is S. For each event E of the
sample space S, we assume that a number P(E) is defined and satisfies the
following three conditions:

() 0= PE) < 1.
(i) P(S) = 1.
(iii) For any sequence of events E,, E,, ... which are mutually exclusive,
that is, events for which E,E,, = (& when n # m, then

P( U En> = ¥ P(E,)
n=1 n=1
We refer to P(E) as the probability of the event E.
Example 1.1 In the coin tossing example, if we assume that a head is
equally likely to appear as a tail, then we would have:
P(H)) = P(T}) =1

On the other hand, if we had a biased coin and felt that a head was twice
as likely to appear as a tail, then we would have

P{H) =%, P(TN=1%1 @&
Example 1.2 In the die tossing example, if we supposed that all six
numbers were equally likely to appear, then we would have
P(1) = P(2]) = P((3) = P({4}) = P(5)) = P({6}) = +

From (iii) it would follow that the probability of getting an even number
would equal

P({2, 4, 6)) = P({2}) + P((4)) + P({6))
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Remark We have chosen to give a rather formal definition of prob-
abilities as being functions defined on the events of a sample space.
However, it turns out that these probabilities have a nice intuitive property.
Namely, if our experiment is repeated over and over again then (with
probability 1) the proportion of time that event E occurs will just be P(E).

Since the events E and E€ are always mutually exclusive and since
E U E° = S we have by (ii) and (iii) that

1 = P(S) = P(EUE®) = P(E) + P(EF)
or
P(E) + P(E°) = 1 1.1

In words, Equation (1.1) states that the probability that an event does not
occur is one minus the probability that it does occur.

We shall now derive a formula for P(E U F), the probability of all points
either in E or in F. To do so, consider P(E) + P(F), which is the probability
of all points in E plus the probability of all points in F. Since any point that
is in both E and F will be counted twice in P(E) + P(F) and only once in
P(E U F), we must have

P(E) + P(F) = P(EUF) + P(EF)
or equivalently
P(EUF) = P(E) + P(F) — P(EF) 1.2)

Note that when E and F are mutually exclusive (that is, when EF = ),
then Equation (1.2) states that

P(EUF) = P(E) + P(F) - P(Q)
= P(E) + P(F)

a result which also follows from condition (iii). [Why is P() = 07?]
Example 1.3 Suppose that we toss two coins, and suppose that we
assume that each of the four points in the sample space

S ={H,H),(H, T),(T, H),(T, T)}
is equally likely and hence has probability L. Let

E = {(H,H),(H, T)} and F = {(H,H),(T, H)

That is, E is the event that the first coin falls heads, and F is the event that
the second coin falls heads.



6 1 Introduction to Probablility Theory

By Equation (1.2) we have that P(E U F), the probability that either the
first or the second coin falls heads, is given by

P(EVUF) =P(E) + P(F) — P(EF)
=1+ 1 - PUH, H))

2
=1—

SN

=3
= 4
This probability could, of course, have been computed directly since

PEVUF) = P(H,H), H, T),(TH)) =}

We may also calculate the probability that any one of the three events £
or F or G occurs. This is done as follows

PEUFUG)=P(EUF)UG)
which by Equation (1.2) equals
P(EUF) + P(G) - P(EVU F)G)

Now we leave it for the reader to show that the events (EUF)G and
EG U FG are equivalent, and hence the above equals

PEEUFUG)
= P(E) + P(F) — P(EF) + P(G) — P(EG U FG)
= P(E) + P(F) — P(EF) + P(G) - P(EG) — P(FG) + P(EGFG)
= P(E) + P(F) + P(G) - P(EF) - P(EG) — P(FG) + P(EFG) (1.3)

In fact, it can be shown by induction that, for any n events E,, E,,
E;,...,E,,

PE,VE,U-..UE,)
= E P(E) - E P(E,E)) + ¥ P(E,E;E})

i<j i<j<k
- X P(EE;ELE) + -+ + (-1)""'P(E\E, ---E,) (1.4)
i<j<k<l

In words, Equation (1.4) states that the probability of the union of n
events equals the sum of the probabilities of these events taken one at a
time minus the sum of the probabilities of these events taken two at a
time plus the sum of the probabilities of these events taken three at a time,
and so on.
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1.4. Conditional Probabilities

Suppose that we toss two dice and suppose that each of the 36 possible out-
comes is equally likely to occur and hence has probability 4. Suppose that
we observe that the first die is a four. Then, given this information, what is
the probability that the sum of the two dice equals six? To calculate this
probability we reason as follows: Given that the initial die is a four, it
follows that there can be at most six possible outcomes of our experiment,
namely, (4, 1), (4,2), (4, 3), (4,4), (4,5), and (4, 6). Since each of these
outcomes originally had the same probability of occurring, they should still
have equal probabilities. That is, given that the first die is a four, then the
(conditional) probability of each of the outcomes (4, 1), 4, 2), 4, 3), 4, 4),
(4, 5), (4, 6) is ¢ while the (conditional) probability of the other 30 points in
the sample space is 0. Hence, the desired probability will be .

If we let E and F denote respectively the event that the sum of the dice
is six and the event that the first die is a four, then the probability just
obtained is called the conditional probability that E occurs given that F has
occurred and is denoted by

P(E|F)

A general formula for P(E|F) which is valid for all events E and F is
derived in the same manner as above. Namely, if the event F occurs, then
in order for E to occur it is necessary for the actual occurrence to be a point
in both E and in F, that is, it must be in EF. Now, as we know that F has
occurred, it follows that F becomes our new sample space and hence the
probability that the event EF occurs will equal the probability of EF relative
to the probability of F. That is
P(EF)
PE|F) = PE)
Note that Equation (1.5) is only well defined when P(F) > 0 and hence
P(E|F) is only defined when P(F) > 0.

(1.5)

Example 1.4 Suppose cards numbered one through ten are placed in a
hat, mixed up, and then one of the cards is drawn. If we are told that the
number on the drawn card is at least five, then what is the conditional
probability that it is ten?

Solution: Let E denote the event that the number of the drawn card is
ten, and let F be the event that it is at least five. The desired probability
is P(E|F). Now, from Equation (1.5)

_ P(EF)

PE|F) P
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However, EF = E since the number of the card will be both ten and at
least five if and only if it is number ten. Hence,

1o
PE|F) =10 .
10

O\ =

Example 1.5 A family has two children. What is the conditional
probability that both are boys given that at least one of them is a boy?
Assume that the sample space S is given by S = {(b, b), (b,8), (g, b), (g, )},
and all outcomes are equally likely. [(b, g) means for instance that the older
child is a boy and the younger child a girl.]

Solution: Letting E denote the event that both children are boys, and F
the event that at least one of them is a boy, then the desired probability
is given by

P(E.
PE|F) = 15(—:))
I (O S SE U
P, b), (b,g), (g, b)) 2 3

Example 1.6 Bev can either take a course in computers or in chemistry.
If Bev takes the computer course, then she will receive an A grade with
probability 1, while if she takes the chemistry course then she will receive an
A grade with probability 1. Bev decides to base her decision on the flip of
a fair coin. What is the probability that Bev will get an A in chemistry?

Solution: If we let F be the event that Bev takes chemistry and E
denote the event that she receives an A in whatever course she takes, then
the desired probability is P(EF). This is calculated by using Equation (1.5)
as follows:

P(EF) = P(F)P(E | F)

-4=1 *

Example 1.7 Suppose an urn contains seven black balls and five white
balls. We draw two balls from the urn without replacement. Assuming that
each ball in the urn is equally likely to be drawn, what is the probability that
both drawn balls are black?

Solution: Let F and E denote respectively the events that the first and
second balls drawn are black. Now, given that the first ball selected is
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black, there are six remaining black balls and five white balls, and so
P(E|F) = f. As P(F) is clearly 7, our desired probability is

P(EF) = P(F)P(E|F)
- ki =i o
Example 1.8 Suppose that each of three men at a party throws his hat
into the center of the room. The hats are first mixed up and then each man

randomly selects a hat. What is the probability that none of the three men
selects his own hat?

Solution: We shall solve the above by first calculating the comple-
mentary probability that at least one man selects his own hat. Let us
denote by E;, i = 1, 2, 3, the event that the ith man selects his own hat.
To calculate the probability P(E, U E, U E,), we first note that

PE) =1, i=1,2,3
PEE) =1, i#j (1.6)
P(E\E,E;) =
To see why Equation (1.6) is correct, consider first
P(E,E;) = P(E))P(E,;|E;)

Now P(E;), the probability that the ith man selects his own hat, is clearly
1 since he is equally likely to select any of the three hats. On the other
hand, given that the ith man has selected his own hat, then there remain
two hats that the jth man may select, and as one of these two is
his own hat, it follows that with probability 4 he will select it. That is,
P(E;|E;) = % and so

P(EiEj) = P(Ei)P(Ej'Ei) = Jf% = Js‘
To calculate P(E, E, E,) we write

P(E\E,E;3) = P(E\E,)P(E; | E,\E)

= %P(E3|E1E2)

However, given that the first two men get their own hats it follows that
the third man must also get his own hat (since there are no other hats
left). That is, P(E;|E, E,) = 1 and so

P(EIEZES) = %
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Now, from Equation (1.4) we have that
P(E, U E, UEy) = P(E) + P(E,) + P(E;) — P(E,E,)
- P(E,E3) — P(E,E3) + P(E\E,E;)

—1-%+4
2
3

Hence, the probability that none of the men selects his own hat is
1-%2=1 o

1.5. Independent Events

Two events E and F are said to be independent if
P(EF) = P(E)P(F)
By Equation (1.5) this implies that E and F are independent if
P(E|F) = P(E)

[which also implies that P(F|E) = P(F)]. That, is, E and F are inde-
pendent if knowledge that F has occurred does not affect the probability
that E occurs. That is, the occurrence of £ is independent of whether or not
F occurs.

Two events E and F which are not independent are said to be dependent.

Example 1.9 Suppose we toss two fair dice. Let E| denote the event that
the sum of the dice is six and F denote the event that the first die equals
four. Then

P(EF) = P(4,2)) = %
while
PEYPEF) = 51 = 55

and hence E; and F are not independent. Intuitively, the reason for this is
clear for if we are interested in the possibility of throwing a six (with two
dice), then we will be quite happy if the first die lands four (or any of the
numbers 1, 2, 3, 4, 5) for then we still have a possibility of getting a total
of six. On the other hand, if the first die landed six, then we would be
unhappy as we would no longer have a chance of getting a total of six. In
other words, our chance of getting a total of six depends on the outcome of
the first die and hence E, and F cannot be independent.
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Let E, be the event that the sum of the dice equals seven. Is E,
independent of F? The answer is yes since ~
P(E,F) = P({(4,3))) = 45
while
PENPF) = t% = 45
We leave it for the reader to present the intuitive argument why the event

that the sum of the dice equals seven is independent of the outcome on the
first die. @

The definition of independence can be extended to more than two events.
The events E,, E,, ..., E, are said to be independent if for every subset
Ey,Ey, ..., E., r < n, of these events

P(EVE) -+ E,) = P(E\)P(E;) -+ P(E,)
Intuitively, the events E, E,, ..., E, are independent if knowledge of the

occurrence of any of these events has no effect on the probability of any
other event.

Example 1.10 (Pairwise Independent Events That-Are Not Indepen-
dent): Let a ball be drawn from an urn containing four balls, numbered
1,2,3,4. Let E=(1,2}, F={1,3}, G = {1, 4}. If all four outcomes are
assumed equally likely, then

P(EF) = P(E)P(F) =%,

P(EG) = P(E)P(G) = £,

P(FG) = P(F)P(G) = %
However,

4 = P(EFG) = P(EYP(F)P(G)

Hence, even though the events E, F, G are pairwise independent, they are
not jointly independent. ¢

Suppose that a sequence of experiments, each of which results in either a
““success’” or a ‘‘failure,’” is to be performed. Let E;, i = 1, denote the

event that the /th experiment results in a success. If, for all Iiyiny euey by,
n
P(EilEiz v Ei,,) = H P(Ei_,-)
Jji=1

we say that the sequence of experiments consists of independent trials.
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Example 1.11 The successive flips of a coin consist of independent
trials if we assume (as is usually done) that the outcome on any flip is not
influenced by the outcomes on earlier flips. A ““success”” might consist of
the outcome heads and a ““failure”’ tails, or possibly the reverse. ¢

1.6. Bayes’ Formula

Let E and F be events. We may express E as
E = EF U EF*

for in order for a point to be in E, it must either be in both E and F,orit
must be in £ and not in F. Since EF and EF° are obviously mutually
exclusive, we have that

P(E) = P(EF) + P(EF°)
= P(E|F)P(F) + P(E | F)P(F°)
= P(E|F)P(F) + P(E|F)(1 - P(F)) (1.7)

Equation (1.7) states that the probability of the event E is a weighted
average of the conditional probability of E given that F has occurred
and the conditional probability of E given that F has not occurred, each
conditional probability being given as much weight as the event it is
conditioned on has of occurring.

Example 1.12 Consider two urns. The first contains two white and
seven black balls, and the second contains five white and six black balls. We
flip a fair coin and then draw a ball from the first urn or the second
urn depending on whether the outcome was heads or tails. What is the
conditional probability that the outcome of the toss was heads given that a
white ball was selected?

Solution: Let W be the event that a white ball is drawn, and let H be
the event that the coin comes up heads. The desired probability P(H | W)
may be calculated as follows:

PEH|W) = PHW) _ P(W | H)P(H)

PW) PW)
_ P(W | H)P(H)
~ P(W| H)P(H) + P(W | H)P(H*)
§F 2

=y ey = *
1 +4t 67
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Example 1.13 In answering a question on a multiple choice test a
student either knows the answer or he guesses. Let p be the probability that
she knows the answer and 1 — p the probability that she guesses. Assume
that a student who guesses at the answer will be correct with probability
1/m, where m is the number of multiple-choice alternatives. What is the
conditional probability that a student knew the answer to a question given
that she answered it correctly?

Solution: Let C and X denote respectively the event that the student
answers the question correctly and the event that she actually knows the
answer. Now

PKC) _ P(C|K)P(K)
P(C) ~ P(C|K)P(K) + P(C|K)P(K®)
- p__-
P+ (I/m)1 - p)
- mp
1+ (m-1)p

PX|C) =

Thus, for example, if m = §, p = 1, then the probability that a student
knew the answer to a question she correctly answered is ¢. @

Example 1.14 A laboratory blood test is 95 percent effective in
detecting a certain disease when it is, in fact, present. However, the test also
yields a ‘‘false positive’’ result for 1 percent of the healthy persons tested.
(That is, if a healthy person is tested, then, with probability 0.01, the test
result will imply he has the disease.) If 0.5 percent of the population actually
has the disease, what is the probability a person has the disease given that
his test result is positive?

Solution: Let D be the event that the tested person has the disease, and
E' the event that his test result is positive. The desired probability P{(D | E)
is obtained by
P(DE) P(E | D)P(D)
P(E) PE|D)PWD) + P(E | D°)P(D®)
_ (0.95)(0.005)
(0.95)(0.005) + (0.01)(0.995)
95

= ﬁz = 0323

Thus, only 32 percent of those persons whose test results are positive
actually have the disease. ¢

P(D|E) =
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Equation (1.7) may be generalized in the following manner. Suppose that
F,, F,, ..., F, are mutually exclusive events such that U?-1 F; = S. In other
words, exactly one of the events F,F,, ..., F, will occur. By writing

n
E = |JEF,
i=1
and using the fact that the events EF;,i=1,...,n, are mutually exclusive,
we obtain that

P(E) P(EF)
1

i

I
x I P]x

Y P(E|F)P(F) (1.8)
i=1

Thus, Equation (1.8) shows how, for given events F, F;, ..., F, of which
one and only one must occur, we can compute P(E) by first ‘‘conditioning’’
upon which one of the F; occurs. That is, it states that P(E) is equal to a
weighted average of P(E | F}), each term being weighted by the probability
of the event on which it is conditioned.

Suppose now that E has occurred and we are interested in determining
which one of the F; also occurred. By Equation (1.8) we have that
P(EF)

P(E)
_ _ PEIFR)PEF)

Li-1 P(E|F)P(F)

Equation (1.9) is known as Bayes’ formula.

P(F|E) =

(1.9)

Example 1.15 You know that a certain letter is equally likely to be in
any one of three different folders. Let a; be the probability that you will
find your letter upon making a quick examination of folder i if the letter is,
in fact, in folder i, i = 1, 2,3. (Wemay have o; < 1.) Suppose you look in
folder 1 and do not find the letter. What is the probability that the letter is
in folder 1?

Solution: LetF,i=1, 2, 3, be the event that the letter is in folder i ;

and let E be the event that a search of folder 1 does not come up with the

letter. We desire P(F, | E). From Bayes’ formula we obtain
P(E|FR)P(F,)

Yi-1 PE|F)PF)

_ ad-a)} _1-q
J-a)p+i+1 3-¢q

P(R|E) =

*
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Exercises

1. A box contains three marbles: one red, one green, and one blue.
Consider an experiment that consists of taking one marble from the box
then replacing it in the box and drawing a second marble from the box. What
is the sample space? If, at all times, each marble in the box is equally likely
to be selected, what is the probability of each point in the sample space?

‘2. Repeat 1 when the second marble is drawn without replacing the first
marble.

3. A coin is to be tossed until a head appears twice in a row. What is the
sample space for this experiment? If the coin is fair, then what is the
probability that it will be tossed exactly four times?

4. Let E, F, G be three events. Find expressions for the events that of
E,F, G

(a) only F occurs,

(b) both E and F but not G occurs,
(c) at least one event occurs,

(d) at least two events occur,

(e) all three events occur,

(f) none occurs,

(g) at most one occurs,

(h) at most two occur.

*5. An individual uses the following gambling system at Las Vegas. He
bets $1 that the roulette wheel will come up red. If he wins, he quits. If he
loses then he makes the same bet a second time only this time he bets $2; and
then regardless of the outcome, quits. Assuming that he has a probability of
| of winning each bet, what is the probability that he goes home a winner?
Why is this system not used by everyone?

6. Show that EFU G) = EFU EG.
7. Show that (E U F)° = E°F°,

8. If P(E)=0.9 and P(F) = 0.8, show that P(EF) = 0.7. In general,
show that

P(EF) = P(E) + P(F) — 1
This is known as Bonferroni’s inequality.

‘9. Wesay that E C F if every point in E is also in F. Show that if E C F,
then

P(F) = P(E) + P(FE®) = P(E)
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10. Show that
P<UEi> = Y P(E)

i=1 i=1
This is known as Boole’s inequality.

Hint: Either use Equation (1.2) and mathematical induction, or else
show that U}_, E; = U}_, F;, where F, = E,, F; = E, I1,21 Ef, and use
property (iii) of a probability.

11. If two fair dice are tossed, what is the probability that the sum is 7,
1=2,3,...,12?

12. Let E and F be mutually exclusive events in the sample space of an
experiment. Suppose that the experiment is repeated until either event E or
event F occurs. What does the sample space of this new super experiment
look like? Show that the probability that event E occurs before event F is
P(E)/[P(E) + P(F)].

Hint: Argue that the probability that the original experiment is
performed 7 times and E appears on the nth time is PE)x (1 — py*~1,
n=12,..., where p = P(E) + P(F). Add these probabilities to get the
desired answer. :

13. The dice game craps is played as follows. The player throws two dice,
and if the sum is seven or eleven, then he wins. If the sum is two, three, or
twelve, then he loses. If the sum is anything else, then he continues throwing
until he either throws that number again (in which case he wins) or he
throws a seven (in which case he loses). Calculate the probability that the
player wins.

14. The probability of winning on a single toss of the dice is D. A starts,
and if he fails, he passes the dice to B, who then attempts to win on her toss.
They continue tossing the dice back and forth until one of them wins. What
are their respective probabilities of winning?

15. Arguethat E = EFUEF°, EUF = E U FE.
16. Use Exercise 15 to show that P(E U F) = P(E) + P(F) — P(EF).

*17. Suppose each of three persons tosses a coin. If the outcome of one
of the tosses differs from the other outcomes, then the game ends. If not,
then the persons start over and retoss their coins. Assuming fair coins, what
is the probability that the game will end with the first round of tosses? If all
three coins are biased and have a probability  of landing heads, then what
is the probability that the game will end at the first round?
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18. Assume that each child that is born is equally likely to be a boy or a
girl. If a family has two children, what is the probability that both are girls
given that (a) the eldest is a girl, (b) at least one is a girl?

*19. Two dice are rolled. What is the probability that at least one is a six?
1f the two faces are different, what is the probability that at least one is a six?

20. Three dice are thrown. What is the probability the same number
appears on exactly two of the three dice?

21. Suppose that 5 percent of men and 0.25 percent of women are color-
blind. A color-blind person is chosen at random. What is the probability of

this person being male? Assume that there are an equal number of males
and females.

22. A and B play until one has 2 more points than the other. Assuming
that each point is independently won by 4 with probability p, what is the
probability they will play a total of 2n points? What is the probability that
A will win?

23. For events E,, E,, ..., E, show that
P(E\E, -+ E,) = P(E\)P(E, |E\)P(E;|E,Ey) --- P(E,|E, --- E,_,)

24. In an election, candidate 4 receives n votes and candidate B receives
m votes, where n > m. Assume that in the count of the votes all possible
orderings of the n + m votes are equally likely. Let P, ,, denote the
probability that from the first vote on A is always in the lead. Find

(@) P, ®) P, © B, ('d) Py, © P,

() B, , (8) Py ; (h) Ps ;5 @ P,

(j) Make a conjecture as to the value of p,,.
*25. Two cards are randomly selected from a deck of 52 playing cards.

(a) What is the probability they constitute a pair (that is, that they are of
the same denomination)?

(b) What is the conditional probability they constitute a pair given that
they are of different suits?

26. A deck of 52 playing cards, containing all 4 aces, is randomly divided
into 4 piles of 13 cards each. Define events E,, E,, E;, and E, as follows:
E, = [the first pile has exactly 1 ace},
E, = [the second pile has exactly 1 ace},
E; = {the third pile has exactly 1 ace},
E, = {the fourth pile has exactly 1 ace}

Use Exercise 23 to find P(E,E,FE,E,), the probability that each pile has
an ace.
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*27. Suppose in Exercise 26 we had defined the events E;,i=1,2,3,4,by
E, = {one of the piles contains the ace of spades],
E, = {the ace of spaces and the ace of hearts are in different piles},

E; = {the ace of spades, the ace of hearts, and the
ace of diamonds are in different piles},

E, = {all 4 aces are in different piles)

Now use Exercise 23 to find P(E\E,E,E,), the probability that each pile has
an ace. Compare your answer with the one you obtained in Exercise 26.

28. If the occurrence of B makes 4 more likely, does the occurrence of A
make B more likely?

29. Suppose that P(E) = 0.6. What can you say about P(E |F) when
(@) E and F are mutually exclusive?
(b) ECF?
() FCE?

*30. Bill and George go target shooting together. Both shoot at a target

at the same time. Suppose Bill hits the target with probability 0.7, whereas
George, independently, hits the target with probability 0.4,

(a) Given that exactly one shot hit the target, what is the probability that
it was George’s shot?
(b) Given that the target is hit, what is the probability that George hit it?

31. What is the conditional probability that the first die is six given that
the sum of the dice is seven?

*32. Suppose all # men at a party throw their hats in the center of the
room. Each man then randomly selects a hat. Show that the probability that
none of the n men selects his own hat is

1 1 1 (=1)"

20 31 a4 T T
Note that as # = oo this converges to e, Is this surprising?

33. In a class there are four freshman boys, six freshman girls, and six
sophomore boys. How many sophomore girls must be present if sex and
class are to be independent when a student is selected at random?

34. Mr. Jones has devised a gambling system for winning at roulette.
When he bets, he bets on red, and places a bet only when the ten previous
spins of the roulette have landed on a black number. He reasons that his
chance of winning is quite large since the probability of eleven consecutive
spins resulting in black is quite small. What do you think of this system?
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35. A fair coin is continually flipped. What is the probability that the first
four flips are

(@) H,H, H, H?

(b) T, H, H, H?

(c) What is the probability that the pattern T, H, H, H occurs before the
pattern H, H, H, H?

36. Consider two boxes, one containing one black and one white marble,
the other, two black and one white marble. A box is selected at random and
a marble is drawn at random from the selected box. What is the probability
that the marble is-black?

37. In Exercise 36, what is the probability that the first box was the one
selected given that the marble is white?

38. Urn 1 contains two white balls and one black ball, while urn 2
contains one white ball and five black balls. One ball is drawn at random
from urn 1 and placed in urn 2. A ball is then drawn from urn 2. It happens
to be white. What is the probability that the transferred ball was white?

39. Stores 4, B, and C have 50, 75, 100 employees, and respectively 50,
60, and 70 percent of these are women. Resignations are equally likely
among all employees, regardless of sex. One employee resigns and this is a
woman. What is the probability that she works in store C?

*40. (a) A gambler has in his pocket a fair coin and a two-headed coin.
He selects one of the coins at random, and when he flips it, it shows heads.
What is the probability that it is the fair coin? (b) Suppose that he flips the
same coin a second time and again it shows heads. Now what is the prob-
ability that it is the fair coin? (c) Suppose that he flips the same coin a third
time and it shows tails. Now what is the probability that it is the fair coin?

41. In a certain species of rats, black dominates over brown. Suppose that
a black rat with two black parents has a brown sibling.

(a) What is the probability that this rat is a pure black rat (as opposed to
being a hybrid with one black and one brown gene)?

(b) Suppose that when the black rat is mated with a brown rat, all five of
their offspring are black. Now, what is the probability that the rat is a
pure black rat?

42. There are three coins in a box. One is a two-headed coin, another is
a fair coin, and the third is a biased coin which comes up heads 75 percent
of the time. When one of the three coins is selected at random and flipped,
it shows heads. What is the probability that it was the two-headed coin?
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43. Suppose we have ten coins which are such that if the ith one is flipped
then heads will appear with probability i/10, i = 1,2, ..., 10. When one of
the coins is randomly selected and flipped, it shows heads. What is the
conditional probability that it was the fifth coin?

44. Urn 1 has five white and seven black balls. Urn 2 has three white and
twelve black balls. We flip a fair coin. If the outcome is heads, then a ball
from urn 1 is selected, while if the outcome is tails, then a ball from urn 2
is selected. Suppose that a white ball is selected. What is the probability that
the coin landed tails?

*45. An urn contains b black balls and r red balls. One of the balls is
drawn at random, but when it is put back in the urn ¢ additional balls of the
same color are put in with it. Now suppose that we draw another ball. Show
that the probability that the first ball drawn was black given that the second
ball drawn was red is b/(b + r+ o).

46. Three prisoners are informed by their jailer that one of them has been
chosen at random to be executed, and the other two are to be freed.
Prisoner A asks the jailer to tell him privately which of his fellow prisoners
will be set free, claiming that there would be no harm in divulging this
information, since he already knows that at least one will go free. The jailer
refuses to answer this question, pointing out that if 4 knew which of his
fellows were to be set free, then his own probability of being executed would
rise from 4 to 1, since he would then be one of two prisoners. What do you
think of the jailer’s reasoning?
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Chapter 2
Random Variables

v

2.1. Random Variables

It frequently occurs that in performing an experiment we are mainly
interested in some function of the outcome as opposed to the outcome
itself. For instance, in tossing dice we are often interested in the sum of the
two dice and are not really concerned about the actual outcome. That is, we
may be interested in knowing that the sum is seven and not be concerned
over whether the actual outcome was (1, 6) or (2, 5) or (3,4) or (4, 3) or (5, 2)
or (6,1). These quantities of interest, or more formally, these real-valued
functions defined on the sample space, are known as random variables.

Since the value of a random variable is determined by the outcome of
the experiment, we may assign probabilities to the possible values of the
random variable.

Example 2.1 Letting X denote the random variable that is defined as
the sum of two fair dice; then

P{X = 2J=P{(1, 1)) =%,

P{X = 3)=P{(1,2,2, 1) =%,

P{X = 4} =P{(1,3),2,2),3, ) =+,

P(X = 5)=P((1,4),2,3),3,2),4 1) = &,

PiX = 6] = P{(1,5),2,4),3,3), 42,5 1)) = =,

PX = 7 = P, 6), 2, 5), 3,4, 4,3),5,2), (6, 1)}
21
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PlX = 8 = Pl(2,6),(3,5),(4,4),(53),(6,2) = &,

PiX = 9} = P{(3,6),(4,95), (5, 9), 6,3)) = &,

P[X = 10} = P{(4,6),(5,5),(6,4) = &,

PIX = 11) = P{(5, 6), (6, 5)} = &,

PX =12} = P((6,6)} = & 2.1
In other words, the random variable X can take on any integral value
between two and twelve, and the probability that it takes on each value is

given by Equation (2.1). Since X must take on one of the values two
through twelve, we must have that

12

12
1=P{U{X=n}} = Y PX=n)
i=2

n=2

which may be checked from Equation 2.1). e

Example 2.2 For a second example, suppose that our experiment
consists of tossing two fair coins. Letting Y denote the number of heads
appearing, then Y is a random variable taking on one of the values 0, 1, 2
with respective probabilities

PY = 0} = P(T, T)} = %,

PlY = 1} = P(T,H), (H, T)) = 2,

PY =2} = P((H,H)} = }
Of course, P{Y = 0} + P{Y = 1} + PlY=2}=1. ¢
Example 2.3 Suppose that we toss a coin having a probability p of
coming up heads, until the first head appears. Letting N denote the number
of flips required, then assuming that the outcome of successive flips are

independent, N is a random variable taking on one of the values 1, 2, 3, ...,
with respective probabilities

PIN =1} = P{H)} = p,
PIN =2} = P((T,H)} = (1 - p)p,
PIN =3} =P{T,T,H)} = (1 - p)°p,

.

PIN=n)=P(T.T,...T,H)}=(1 - p)"'p, n=1

n-1
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As a check, note that

P{O{N=n}}= EP{N=n}

n=1 n=1
=p Y (1-p!
n=1
- P
1-(1-p
=1 &

Example 2.4 Suppose that our experiment consists of seeing how long
a battery can operate before wearing down. Suppose also that we are not
primarily interested in the actual lifetime of the battery but are only
concerned about whether or not the battery lasts at least two years. In this
case, we may define the random variable I by

I 1, if the lifetime of the battery is two or more years
o, otherwise

If E denotes the event that the battery lasts two or more years, then the
random variable / is known as the indicator random variable for event E.
(Note that I equals 1 or 0 depending on whether or not £ occurs.) €

Example 2.5 Suppose that independent trials, each of which results
in any of m possible outcomes with respective probabilities p,, ..., Pm,
i1 p; = 1, are continually performed. Let X denote the number of trials
needed until each outcome has occurred at least once.

Rather than directly considering P{X = n} we will first determine
P{X > n}, the probability that at least one of the outcomes has not yet
occurred after n trials. Letting A; denote the event that outcome i has not
yet occurred after the first » trials, i = 1, ..., m, then

P{X>n} = P<OA,~>

i=1
m
= Y PA) - Y ¥ P(4,A)
i=1 i<j
+ Y Y Y PA4,4;4;) - -+ (- 1D)"PA, - A,)
i<j<k
Now, P(A;) is the probability that each of the first » trials all result in a
non-i outcome, and so by independence

P(A) = (1 - p)"
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Similarly, P(A4;A4 ;) is the probability that the first n trials all result in a
non-i and non-j outcome, and so

P(AiAj) =(-p; - Pj)n
As all of the other probabilities are similar, we see that

PX>n =L (d-py~LL(-p-p)

i<j
+ Y Y YA -pi-p-po - -
i<j<k
Since PIX=n}=P{X>n - 1} — P{X > n}, we see, upon using the
algebraic identity (1 - a)"! — (1 - @)" = (1 — a)""!, that

P{X =n} = ;lpi(l -p)y ! - E Z o + p)1 - p; - Pj)"_l

i<j

+L X E(Pi"'Pj"‘Pk)(l —-Pi—-Pi-p) - @

i<j<k

In all of the preceding examples, the random variables of interest took on
either a finite or a countable number of possible values. Such random
variables are called discrete. However, there also exist random variables
that take on a continuum of possible values. These are known as continuous
random variables. One example is the random variable denoting the lifetime
of a car, when the car’s lifetime is assumed to take on any value in some
interval (a, b).

The cumulative distribution Junction (cdf) (or more simply the distribu-
tion function) F(-) of the random variable X is defined for any real number
b, —0 < b < o, by

F(b) = P{X < b}

In words, F(b) denotes the probability that the random variable X takes on
a value which will be less than or equal to b. Some properties of the cdf F are

(i) F(b)is a nondecreasing function of b,
(i) lim,_,, F(b) = F(0) = 1,
(iii) lim,, _ F(b) = F(—) = 0.

Property (i) follows since for ¢ < b the event {X < g} is contained in the
event {X < b}, and so it must have a smaller probability. Properties (ii) and
(iii) follow since X must take on some finite value.

All probability questions about X can be answered in terms of the cdf
F(*). For example,

Pla < X < b} = F(b) - F(a) foralla < b



2.2. Discrete Random Variables 25

This follows since we may calculate P{a < X =< b} by first computing the
probability that X < b [that is, F(b)] and then subtracting from this the
probability that X =< ¢ [that is, F(a)].

If we desire the probability that X is strictly smaller than b, we may
calculate this probability by

P{X < b}

lim P{X<b-h)
h-0*

lim F(b — h)
h—=0

where lim, _, o+ means that we are taking the limit as /4 decreases to 0. Note
that P{X < b} does not necessarily equal F(b) since F(b) also includes the
probability that X includes b.

2.2. Discrete Random Variables

As was previously mentioned, a random variable that can take on at
most a countable number of possible values is said to be discrete. For
a discrete random variable X, we define the probability mass function p(a)
of X by

pla) = P{X = aj
The probability mass function p(a) is positive for at most a countable

number of values of «. That is, if X must assume one of the values
Xis Xy, ..., then

p(x;) > 0, i=1,2,...
p(x) =0, all other values of x
Since X must take on one of the values x;, we have
L pix) =1
i=1

The cumulative distribution function F can be expressed in terms of
p(a) by

Fa)= Y px)

alx;sa

For instance, suppose X has a probability mass function given by

=% pPO=% PO =%
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Flx)

i

-

! 2 3
Figure 2.1. Graph of F(x).

then, the cumulative distribution function F of X is given by
0, a<l]

i, l<a<?2

3, 2=<a<3

1, 3<a

Fla) =

This is graphically presented in Figure 2.1.
Discrete random variables are often classified according to their prob-
ability mass function. We now consider some of these random variables.

2.2.1. The Bernoulli Random Variable

Suppose that a trial, or an experiment, whose outcome can be classified as
either a “‘success” or as a “failure”’ is performed. If we let X equal 1 if the
outcome is a success and 0 if it is a failure, then the probability mass
function of X is given by

PO)=PX=0)=1-p,
P=PX=1}=p

where p, 0 < D =<1, is the probability that the trial is a ‘‘success.”’
A random variable X is said to be a Bernoulli random variable if its
probability mass function is given by Equation (2.2) for some p € ©, 1).

2.2)

2.2.2. The Binomial Random Variable

Suppose that n independent trials, each of which results in a ““‘success’’ with
probability p and in a “failure’” with probability 1 - p, are to be per-
formed. If X represents the number of successes that occur in the » trials,
then X is said to be a binomial random variable with parameters (n, D).
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The probability mass function of a binomial random variable having
parameters (n, p) is given by

pli) = <:.l>pi(1 -p,  i=0,1,..,n (2.3)

ny _ n!
i) (n- D

equals the number of different groups of i objects that can be chosen from
a set of n objects. The validity of Equation (2.3) may be verified by first
noting that the probability of any particular sequence of the n outcomes
containing / successes and n — i failures is, by the assumed independence

where

. . n
of trials, p'(1 — p)"~*. Equation (2.3) then follows since there are (1)
different sequences of the n outcomes leading to i/ successes and n — i
. . . . 3 .
failures. For instance, if n = 3, i = 2, then there are < 2) = 3 ways in

which the three trials can result in two successes. Namely, any one of the
three outcomes (s, s, f), (s, £, 5), (, 5, 5), where the outcome (s, s, f) means
that the first two trials are successes and the third a failure. Since each of the
three outcomes (s, s, f), (s, f,5), (f,s,s) has a probability p*(1 — p) of

. . e 3
occurring the desired probability is thus < 2) p*( - p).

Note that, by the binomial theorem, the probabilities sum to one, that is,
n

PEOES) <’,’ )p‘(l - =Py =1

i=0

Example 2.6 Four fair coins are flipped. If the outcomes are assumed
independent, what is the probability that two heads and two tails are
obtained?

Solution: Letting X equal the number of heads (“‘successes’’) that
appear, then X is a binomial random variable with parameters (n = 4,
P = %). Hence, by Equation (2.3),

- (YOI -1 o

Example 2.7 Itisknown that all items produced by a certain machine will
be defective with probability 0.1, independently of each other. What is the
probability that in a sample of three items, at most one will be defective?
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Solution: If X is the number of defective items in the sample, then X
is a binomial random variable with parameters (3,0.1). Hence, the
desired probability is given by

PX=0}+PxX=1]= (3)(0.1)0(0.9)3 + <f>(0.1)1(0.9)2 =0.972 ¢

Example 2.8 Suppose that an airplane engine will fail, when in flight,
with probability 1 — P independently from engine to engine; suppose that
the airplane will make a successful flight if at least 50 percent of its engines
remain operative. For what values of pis a four-engine plane preferable to
a two-engine plane?

Solution: Because each engine is assumed to fail or function indepen-
dently of what happens with the other engines, it follows that the number
of engines remaining operative is a binomial random variable. Hence, the
probability that a four-engine plane makes a successful flight is

4 201 _ 2 4 301 _ 4\ 4 — 0
<2>p(1 p)+<3>p(1 p)+<4>p(1 D)

= 60°(1 - p)* + 4p°(1 - p) + p*
whereas the Ccorresponding probability for a two-engine plane is

<f>p(l -+ <;>p2 =2p(1 - p) + p?
Hence the four-engine plane is safer if

6P°(1 = p)* + 4p°(1 ~ p) + p* = 2p(1 - p) + p2
or equivalently if
(1 = PP + 4p*(1 - p) + p* 2 2 - p
which simplifies to
3-8+ Tp-220 or @-1D*3p-2)=20
which is equivalent to
3p-220 o p> 2

Hence, the four-engine plane is safer when the engine success prob-
ability is at least as large as 4, whereas the two-engine plane is safer when
this probability falls below TR
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Example 2.9 Suppose that a particular trait of a person (such as eye
color or left handedness) is classified on the basis of one pair of genes and
suppose that d represents a dominant gene and r a recessive gene. Thus a
person with dd genes is pure dominance, one with rr is pure recessive, and
one with rd is hybrid. The pure dominance and the hybrid are alike in
appearance. Children receive one gene from each parent. If, with respect to
a particular trait, two hybrid parents have a total of four children, what is
the probability that exactly three of the four children have the outward
appearance of the dominant gene?

Solution: If we assume that each child is equally likely to inherit either
of two genes from each parent, the probabilities that the child of two
hybrid parents will have dd, rr, or rd pairs of genes are, respectively, %,
+, 3. Hence, as an offspring will have the outward appearance of the
dominant gene if its gene pair is either dd or rd, it follows that the
number of such children is binomially distributed with parameters (4, 3.
Thus the desired probability is

4\ /3 /1\' 27
HIOION-X
Remark on Terminology If X is a binomial random variable with

parameters (n, p), then we say that X has a binomial distribution with
parameters (n, p). .

2.2.3. The Geometric Random Variable

Suppose that independent trials, each having a probability p of being a
success, are performed until a success occurs. If we let X be the number of
trials required until the first success, then X is said to be a geometric random
variable with parameter p. Its probability mass function is given by

p(n) = P{X=n}=(01 - p)p, n=12,... 2.4)

Equation (2.4) follows since in order for X to equal 7 it is necessary and
sufficient that the first n — 1 trials be failures and the nth trial a success.
Equation (2.4) follows since the outcomes of the successive trials are assumed
to be independent.

To check that p(n) is a probability mass function, we note that

o«

Ypm=pYd-prt=1
1 1

n=
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2.2.4. The Poisson Random Variable

A random variable X, taking on one of the values 0,1, 2,..., is said to be
a Poisson random variable with parameter A, if for some 1 > 0,

Y

pi)=PX=i}=e R

i=0,1,... (2.5)

Equation (2.5) defines a probability mass function since
=e et = 1

© Ai

Lo =e*T =

i=0 i=o !
The Poisson random variable has a wide range of applications in a diverse
number of areas, as will be seen in Chapter 5.

An important property of the Poisson random variable is that it may
be used to approximate a binomial random variable when the binomial
parameter n is large and p is small. To see this, suppose that X is a
binomial random variable with parameters (n, p), and let A = np. Then

PiX=1i)=

n! i n—i
mﬂ(l - D)

N n! i)l 1 _ é)n—i
T (n-Dlit\n n

_mn D (n-i+ DA - /ny
- n' it (1 - A/ny

Now, for n large and p small

<1-%> e, Moz Den-ivD <1—£>z]

T

Hence, for n large and p small,

Example 2.10 Suppose that the number of typographical errors on a

single page of this book has a Poisson distribution with parameter 1 = 1.

Calculate the probability that there is at least one error on this page.
Solution:

PXz21)=1-PX=0=1-¢1~0633 &
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Example 2.11 If the number of accidents occurring on a highway
cach day is a Poisson random variable with parameter A = 3, what is the
probability that no accidents occur today?

Solution:
PiX=0=e3=005 &

Example 2.12 Consider an experiment that consists of counting the
number of «-particles given off in a one-second interval by one gram of
radioactive material. If we know from past experience that, on the average,
3.2 such a-particles are given off, what is a good approximation to the
probability that no more than 2 «-particles will appear?

Solution: If we think of the gram of radioactive material as consisting
of a large number n of atoms each of which has probability 3.2/n of
disintegrating and sending off an a-particle during the second considered,
then we see that, to a very close approximation, the number of «-particles
given off will be a Poisson random variable with parameter A = 3.2.
Hence the desired probability is

22038 ¢

2
P =2 = 4320074 8 o

2.3. Continuous Random Variables

In this section, we shall concern ourselves with random variables whose set
of possible values is uncountable. Let X be such a random variable. We
say that X is a continuous random variable if there exists a nonnegative
function f(x), defined for all real x € (—, ), having the property that for
any set B of real numbers

P{X e B} = S Sx) dx (2.6)
B
The function f(x) is called the probability density function of the random
variable X.

In words, Equation (2.6) states that the probability that X will be in B
may be obtained by integrating the probability density function over the set
B. Since X must assume some value, f(x) must satisfy

1 = P{X € (~o, )] = r F()dx
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All probability statements about X can be answered in terms of J).
For instance, letting B = [a, b], we obtain from Equation (2.6) that

b
Pla<X=<b} = j F09) dx 2.7

If we let @ = b in the preceding, then
a
PiX =a) = j J&x)dx =0
a
In words, this equation states that the probability that a continuous random
variable will assume any particular value is Zero.
The relationship between the cumulative distribution F(-) and the
probability density f(-) is expressed by

Fla) = P{X € (-, a)} = j J(x) dx

Differentiating both sides of the preceding yields

d
ot @ = f@

That is, the density is the derivative of the cumulative distribution function.
A somewhat more intuitive interpretation of the density function may be
obtained from Equation (2.7) as follows:

£ € a+e/2
P{a——sXsa+—}=j Jx)dx = ¢f(a)

2 2 a-e/2
when ¢ is small. In other words, the probability that X will be contained in
an interval of length € around the point @ is approximately ¢f(a). From this,
we see that f(a) is a measure of how likely it is that the random variable will
be near a.

There are several important continuous random variables that appear

frequently in probability theory. The remainder of this section is devoted to
a study of certain of these random variables.

2.3.1. The Uniform Random Variable

A random variable is said to be uniformly distributed over the interval ©, 1)
if its probability density function is given by

1, O<x<1

0, otherwise

Jx) = {
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Note that the preceding is a density function since f(x) = 0 and
1

S Sx)dx = X dx=1

—0oo 0

Since f(x) > 0 only when x € (0, 1), it follows that X must assume a value
in (0, 1). Also, since f(x) is constant for x € (0, 1), X is just as likely to be
‘‘near’’ any value in (0, 1) as any other value. To check this, note that, for
any0<a<b<l,

b
P{asXsb]=j Jx)dx=b-a

In other words, the probability that X is in any particular subinterval of
(0, 1) equals the length of that subinterval.

In general, we say that X is a uniform random variable on the interval
(o, B) if its probability density function is given by

1 .
foy = {F=a fa<x<p 2.8)

0, otherwise

Example 2.13 Calculate the cumulative distribution function of a
random variable uniformly distributed over (a, f).

Solution: Since F(a) = %, f(x) dx, we obtain from Equation (2.8) that

0, asa
F@) = {g—o  a<a<p
1, az=pf &

Example 2.14 If X is uniformly distributed over (0, 10), calculate the
probability that () X <3, (b)) X > 7, () 1 < X < 6.

Solution: TR
3 [
_5@_3
PIX<3)= 10 ~ 10’
Vax 3
- 7 = —
PX>7= 10 10°
6
f6dx 1
Pl<X<6 =122
{ <8="5 "3 ¢
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2.3.2. Exponential Random Variables

A continuous random variable whose probability density function is given,
for some A > 0, by

ie™ ifx=0

0, ifx<o0

is said to be an exponential random variable with parameter A. These

random variables will be extensively studied in Chapter 5, so we will content
ourselves here with just calculating the cumulative distribution function F:

Jx) = {

F(a)=j le™™ =1 — g™, az=0
0

Note that F(e0) = [ Ae™ dx = 1, as, of course, it must.

2.3.3. Gamma Random Variables

A continuous random variable whose density is given by
e M(Ax)*!
fx) = (o)
0, ifx<o0
for some 4 >0, o> 0 is said to be a gamma random variable with

parameters o, A. The quantity I'(a) is called the gamma function and is
defined by

) ifx=0

%

o) = j e *x*dx
V]

It is easy to show by induction that for integral o, say o = n,
I'(n) = (n - D!

2.3.4. Normal Random Variables

We say that X is a normal random variable (or simply that X is normally
distributed) with parameters u and o2 if the density of X is given by

1 2942
SO) = = W2 cx<
2rno

This density function is a bell-shaped curve that is symmetric around u
(see Figure 2.2).
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1
—~— - O n + @ ——

Figure 2.2. Normal density function.

An important fact about normal random variables is that if X is normally
distributed with parameters u and ¢? then Y = aX + B is normally -
distributed with parameters au + B and a?g®. To prove this, suppose first
that @ > 0 and note that Fy(:)* the cumulative distribution function of the
random variable Y is given by

Fy(a) = P{Y < a}
= PlaX + B < a}

-plx<224]

a

-(*7)

@-Bye |
— j e~ -2 g

o 2m0
_ | 1 = = (au + P
- j_w 2n a0 CXP{ 200? } dv 2-9)

where the last equality is obtained by the change in variables v = ax + B.
However, since Fy(a) = |%,, fy(v) dv, it follows from Equation (2.9) that
the probability density function fy(-) is given by

1 (1 — 2
RS ey

* When there is more than one random variable under consideration, we shall denote the
cumulative distribution function of a random variable Z by F, (). Similarly, we shall denote the
density of Z by f5().
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Hence, Y is normally distributed with parameters au + B and (ao)?.
A similar result is also true when o < 0.

One implication of the preceding result is that if X is normally distributed
with parameters 4 and 62 then ¥ = (X ~ u)/0 is normally distributed with
parameters 0 and 1. Such a random variable Y is said to have the standard
or unit normal distribution.

2.4. Expectation of a Random Variable
2.4.1. The Discrete Case

If X is a discrete random variable having a probability mass function ox),
then the expected value of X is defined by

ElX]= Y xpx)
x:p(x)>0

In other words, the expected value of X is a weighted average of the
possible values that X can take on, each value being weighted by the
probability that X assumes that value. For example, if the probability mass
function of X is given by

p(1) =% =p2)
then

EXI =13 +2() = %

is just an ordinary average of the two possible values 1 and 2 that X can
assume. On the other hand, if

=%, p2)=%
then

EXI=1@)+23) =%

is a weighted average of the two possible values 1 and 2 where the value 2
is given twice as much weight as the value 1 since p(2) = 2p(1).

Example 2.15 Find E[X] where X is the outcome when we roll a
fair die.

Solution: Since p(1) = PQ2) =p@3) = p@d) = p(5) = p(6) = 4, we obtain
E[X] = 1@) + 2) + 3¢d) + 4@) + 5¢) + 6@3) = i e
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Example 2.16 (Expectation of a Bernoulli Random Variable): Calculate
L[X] when X is a Bernoulli random variable with parameter D.

Solution: Since p(0) = 1 — p, p(1) = p, we have
EX]1=01~-p)+1(p)=p

Thus, the expected number of successes in a single trial is just the
probability that the trial will be a success. ¢

Example 2.17 (Expectation of a Binomial Random Variable): Calculate
E[X] when X is binomially distributed with parameters # and D.

Solution:

Il
™=

E[X] ip(¥)
i=0

=X i(?)p"u - py

i=0
n

in! i n—i
B ATE LA

_ zn: n! i n—i
R T A 2

_ - (n - i—1py i
B T T

n—1 -1

- ¥ (” ) )p"(l - ik
k=0

=nplp + (1 - pI"!

=np

where the second from the last equality follows by letting k =/ — 1.
Thus, the expected number of successes in » independent trials is »
multiplied by the probability that a trial results in a success. L 2

Example 2.18 (Expectation of a Geometric Random Variable): Calcu-
late the expectation of a geometric random variable having parameter p.
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Solution: By Equation (2.4), we have

0

Y np(1 - py*!

n=

E[X]

whereg =1 - p,

In words, the expected number of independent trials we need to perform
until we attain our first success equals the reciprocal of the probability
that any one trial results in a success. 4

Example 2.19 (Expectation of a Poisson Random Variable): Calculate
E[X] if X is a Poisson random variable with parameter A.

Solution: From Equation (2.5), we have
ie ™}
AT
e !
i=1 @ = 1!
= i-1
i=1 (= 1)!
-
K=o k!
= Ae7e*
= A
where we have used the identity ¥5_,A¥/k! = ¢*. @

E[X] =

I
C18 '8

e

= le
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2.4.2. The Continuous Case

We may also define the expected value of a continuous random variable.
This is done as follows. If X is a continuous random variable having a
probability density function f(x), then the expected value of X is defined by

L)

E[X] = j xf(x) dx

Example 2.20 (Expectation of a Uniform Random Variable): Calculate
the expectation of a random variable uniformly distributed over (a, ).

Solution: From Equation (2.8) we have
8

X
aﬁ_a

ﬁZ__a2
2B -

_B+a
2

dx

E[X]=S

In other words, the expected value of a random variable uniformly
distributed over the interval (e, B) is just the midpoint of the interval. @

Example 2.21 (Expectation of an Exponential Random Variable): Let
X be exponentially distributed with parameter 1. Calculate E[X].

Solution:

o

E[X] = S xle ™M dx
0

Integrating by parts yields

E[X] = —xe™

+ S e Mdx
0 0
.
0-& _
A

-]

0

1
=5 *

Example 2.22 (Expectation of a Normal Random Variable): Calculate
£[X] when X is normally distributed with parameters u and g°.
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Solution:

l «©
E[X] = \/—70!‘ xe~ M2 gy

Writing x as (x — ) + u yields

—0o0

V2rnao

1 «©
E[X] = ——— S (x — p)e~ W27 gy

hd 2
j e~ -1 /202 dx

-0

1
+
K 2no
Letting y = x — u leads to

1 (=
E[X1=mj ye’2/2°2dy+u§

where f(x) is the normal density. By symmetry, the first integral must be
0, and so

" fxdx

«©

SNdy=u &

E[X] =u§

2.4.3. Expectation of a Function of a Random Variable

~ Suppose now that we are given a random variable X and its probability

- distribution (that is, its probability mass function in the discrete case or its

- probability density function in the continuous case). Suppose also that we
are interested in calculating, not the expected value of X , but the expected
value of some function of X, say, g(X). How do we go about doing this?
One way is as follows. Since g(X) is itself a random variable, it must have
a probability distribution, which should be computable from a knowledge
of the distribution of X. Once we have obtained the distribution of 2(X), we
can then compute E[g(X)] by the definition of the expectation.

Example 2.23 Suppose X has the following probability mass function:
2(0) = 0.2, p(1) =0.5, p2) =0.3
Calculate E[X?].

Solution: Letting ¥ = X2, we have that Y is a random variable that
can take on one of the values 0%, 12, 22 with respective probabilities
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py(0) = P{Y = 0} = 0.2,
py(l) = P{Y = 13} = 0.5,
py(@ = P{Y =23 = 0.3
Hence,
E[X?] = E[Y] = 0(0.2) + 1(0.5) + 4(0.3) = 1.7
Note that
1.7 = E[X?] # (E[X])* =121 &

Example 2.24 Let X be uniformly distributed over (0, 1). Calculate
EX?).

Solution: Letting Y = X, we calculate the distribution of Y as follows.
For0=a=<1,

Fy(a) = P{Y < a}
= P{X3 < a)
P{X < a'¥)

I Vi

where the last equality follows since X is uniformly distributed over
(0, 1). By differentiating Fy(a), we obtain the density of Y, namely,

fr@=%a"*3, O0=ax1
Hence,

E[X’ = E[Y] =

While the foregoing procedure will, in theory, always enable us to compute
the expectation of any function of X from a knowledge of the distribution of
X, there is, fortunately, an easier way to do this. The following proposition
shows how we can calculate the expectation of g(X) without first determining
its distribution.
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Proposition 2.1 (@) If X is a discrete random variable with probability
mass function p(x), then for any real-valued function g,

ElgX]= Y gx)p

x:p(x)>0

(b) If X is a continuous random variable with probability density function
J(x), then for any real-valued function g,

E[g(X)] = j g f(x)dx &

Example 2.25 Applying the proposition to Example 2.23 yields
E[X?] = 0%(0.2) + (1)(0.5) + (25(0.3) = 1.7
which, of course, checks with the result derived in Example 2.23. ¢

Example 2.26 Applying the proposition to Example 2.24 yields
1

E[X? = j x*dx  (since f(x) = 1,0 < x < 1)
0

=1 @
A simple corollary of Proposition 2.1 is the following.

Corollary 2.2 If g and b are constants, then
ElaX + b] = aE[X] + b

Proof In the discrete case,
ElaX +bl= Y (ax + b)p(x)

x:p(¥)>0
=a ¥ xp@+b Y pw
x:p(x)>0 x:p(x) >0
=aFE[X] + b

In the continuous case,

@©

ElaX + b] = j (ax + b)f(x) dx

= ajm xf(x)dx + bjw Sx) dx

=aE[X]+b @&

The expected value of a random variable X, E[X], is also referred to as the
mean or the first moment of X. The quantity E[X"], n = 1, is called the nth
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moment of X. By Proposition 2.1, we note that
Y x"p(x), if X is discrete

xp(x)>0
E[Xn] = o
j x"f(x) dx, if X is continuous

—c0

Another quantity of interest is the variance of a random variable X,
denoted by Var(X), which is defined by

Var(X) = E[(X — E[X])}
Thus, the variance of X measures the expected square of the deviation of X
from its expected value.

Example 2.27 (Variance of the Normal Random Variable): Let X be
normally distributed with parameters 4 and ¢*. Find Var(X).
Solution: Recalling (see Example 2.22) that E[X ] = u, we have that
Var(X) = E[(X - p)’]
1 ® 2, ~(x—p)/20%
= — - d
2no j (x—uye *

-0

Substituting y = (x — u)/o yields

Var(X) = \/—;2—7 5 e dy

We now employ an identity that can be found in many integration tables,
namely, [, y*¢™/*dy = V2n. Hence,

Var(X) = o*
Another derivation of Var(X) will be given in Example 2.42. ¢

Suppose that X is continuous with density £, and let E[X] = u. Then,
Var(X) = E[(X - p))]
= E[X? — 2uX + 14

= r O = 2ux + @) f(x) dx

-—00

«© -~

xf(x) dx + u* j S dx

—o0

= r’ x2f() dx - ZuJ

~o0 -0

= E[X?] - 2up + u?
= E[X? - 2
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A similar proof holds in the discrete case, and so we obtain the useful
identity

Var(X) = E[X?] — (EIX])?

Example 2.28 Calculate Var(X) when X represents the outcome when
a fair die is rolled.
Solution: As previously noted in Example 2.15, E[X] = %. Also,
EX"] = 1) + 22@}) + 3°@) + @) + 5°¢}) + @) = )1
Hence,
Var) = % - @ =3 &

2.5. Jointly Distributed Random Variables
2.5.1. Joint Distribution Functions

Thus far, we have concerned ourselves with the probability distribution of
a single random variable. However, we are often interested in probability
statements concerning two or more random variables. To deal with such
probabilities, we define, for any two random variables X and Y, the joint
cumulative probability distribution function of X and Y by

Fla,b)=P{X=<a,Y=<b)], - <a,b< o

The distribution of X can be obtained from the joint distribution of X and
Y as follows:

Fy(a) = P{X < a}
=P{X=<aY=< o}
= F(a, )
Similarly, the cumulative distribution function of Y is given by
Fy(b) = P{Y < b} = F(0, b)

In the case where X and Y are both discrete random variables, it is
convenient to define the joint probability mass function of X and Y by

px,y)=PX=x,Y =y
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The probability mass function of X may be obtained from p(x, y) by

@)=Y pxy)
y:p(x,)>0
Similarly,
ry() = ¥ pkx))
xp(x,y)>0

We say that X and Y are jointly continuous if there exists a function
Sf(x, ), defined for all real x and y, having the property that for all sets A
and B of real numbers

P{XeA,YeB}=S jf(x,y)dxdy
B JA

The function f(x, y) is called the joint probability density function of X and
Y. The probability density of X can be obtained from a knowledge of
f(x,») by the following reasoning:

PiXe€Al=P{XeA,Ye (-, x)

=§ 5 Sx, y)dx dy
A

-0

= S Jx(x)dx
A

where

o

Sx() = j J&x,»)dy

—c0

is thus the probability density function of X. Similarly, the probability
density function of Y is given by

0

Jr(y) = S S(x, y)dx

A variation of Proposition 2.1 states that if X and Y are random
variables and g is a function of two variables, then

Elg(X, Y)]

Y ¥ ex, yp(x, ») in the discrete case
y x

X S gx, Nf(x,y)dxdy in the continuous case

—00
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For example, if g(X, Y) = X + Y, then, in the continuous case,

E[X + Y]

r r & + Y)f(x, y)dxdy

—c0

j j xf(x,y)dxdy+j j Yf(x, y) dxdy

- -0 -0

= j XG J&x, ») dy) dx +j yd Sx, ») dx> dy

= j xfx (x) dx +E Yy(»)dy

= E[X] + E[Y]

The same result holds in the discrete case and, combined with the corollary
in Section 2.4.3, yields that for any constants a, b

ElaX + bY)] = gE[X] + bE[Y] (2.10)

Joint probability distributions may also be defined for » random
variables. The details are exactly the same as when n = 2 and are left
as an exercise. The corresponding result to Equation (2.10) states that

if X,X,,...,X, are n random variables, then for any n constants
a,,a,...,a,,
E[ale + azXz + b + a,,X,,]
=@ E[X]] + & E[X,] + -+ + a,E[X,] (2.11)

Example 2.29 Calculate the expected sum obtained when three fair dice
are rolled.

Solution: Let X denote the sum obtained. Then X = X, + X, + X,
where X; represents the value of the jth die. Thus,

EIXT=EX\] +EX] + E[X;] =3Q) =3 &

Example 2.30 As another example of the usefulness of Equation
(2.11), let us use it to obtain the expectation of a binomial random variable
having parameters n and P. Recalling that such a random variable X
represents the number of successes in 7 trials when each trial has probability
p of being a success, we have that

X=X1+X2+"'+X"
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where
X = 1, if the ith trial is a success
*7 {0, if the ith trial is a failure

tience, X; is a Bernoulli random variable having expectation E [Xi] =
{p) + 01 — p) = p. Thus,

E[X] = E[X|] + E[X;} + -+ + E[X,] = np

This derivation should be compared with the one presented in Example

217 @

Example 2.31 At a party N men throw their hats into the center of a
room. The hats are mixed up and each man randomly selects one. Find the
expected number of men that select their own hats.

Solution: Letting X denote the number of men that select their own
hats, we can best compute E[X] by noting that
X=X1+X2+ "'+XN
where
1, if the ith man selects his own hat
X = .
0, otherwise
Now, as the ith man is equally likely to select any of the N hats, it follows
that
1
P{X; = 1) = P{ith man selects his own hat} = N
and so

E[X;] = 1P{X; = 1] + OP{X; = 0} =}iV
Hence, from Equation (2.11) we obtain that
1
E[X]=E[X] + --- + E[Xy] = <N>N= 1

Hence, no matter how many people are at the party, on the average
exactly one of the men will select his own hat. ¢

Example 2.32 Suppose there are 25 different types of coupons and
suppose that each time one obtains a coupon, it is equally likely to be any
one of the 25 types. Compute the expected number of different types that
are contained in a set of 10 coupons.
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Solution: Let X denote the number of different types in the set of 10
coupons. We compute E[X] by using the representation

X=X+ - + Xps
where

X = 1, if at least one type i coupon is in the set of 10
"7 10, otherwise

Now,
ElX)] = PIX; = 1)

= Pfat least one type i coupon is in the set of 10}

1 — P{no type i coupons are in the set of 10}

1 - (_%)10

when the last equality follows since each of the 10 coupons will
(independently) not be a type i with probability 4. Hence,

ElX]=E[X|] + --- + E[Xp5] = 25[1 - 3D &

2.5.2. Independent Random Variables

The random variables X and Y are said to be independent if, for all a, b,
P{X=<a,Y < b} = P{X < a}P{Y < b} (2.12)

In other words, X and Y are independent if, for all @ and b, the events
E, = {X = a} and F, = {Y < b} are independent.

In terms of the joint distribution function F of X and Y, we have that X
and Y are independent if 4

Fa, b) = Fy(a)Fy(b) foralla, b
When X and Y are discrete, the condition of independence reduces to
P, ) = px(X)py(y) (2.13)
while if X and Y are jointly continuous, independence reduces to

S, ») = K () fr () (2.14)

To prove this statement, consider first the discrete version, and suppose
that the joint probability mass function p(x, y) satisfies Equation (2.13).
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Then

PiX=<a,Y=<bl=Y Y pxvy

ysbaxsa

Y Y px®py(y)

ysbxsa

Y oy ¥ pxx)

y=sb xsa
= P{Y < b)P{X = a}

and so X and Y are independent. That Equation (2.14) implies independence
in the continuous case is proven in the same manner, and is left as an exercise.
An important result concerning independence is the following.

Proposition 2.3 If X and Y are independent, then for any functions 4
and g

Elg(X)h(Y)] = E[g(X)IE[h(Y)]

Proof Suppose that X and Y are jointly continuous. Then

—0o0

E[g(X)n(Y)] = X j 8N fx, y) dx dy

j S g fx ) fy(¥) dx dy

—0

-

g(x) fx (x) dx

j k) fr(¥) dy j

o

= E[h(V)IE[g(X)]

The proof in the discrete case is similar. €

2.5.3. Covariance and Variance of Sums of Random Variables

The covariance of any two random variables X and Y, denoted by
Cov(X, Y), is defined by

Cov(X, Y) = E[(X - E[XIXY - E[Y])]
= E[XY - YE[X] - XE[Y] + E[X]E[Y]]
= E[XY] - E[Y]E[X] — E[X)E[Y] + E[X]E[Y]
= E[XY] - E[X]E[Y)

Note that if X and Y are independent, then by Proposition 2.3 it follows
that Cov(X, Y) = 0.
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Let us consider now the special case where X and Y are indicator
variables for whether or not the events 4 and B occur. That is, for events
A and B, define

X = il, if A occurs _ {1, if B occurs
0, otherwise. ’ 0, otherwise
Then,
Cov(X,Y) = E[XY] — E[X]E[Y]
and, as XY will equal 1 or 0 depending on whether or not both X and ¥
equal 1, we see that

Cov(X,Y)=P{X=1,Y=1} - P(X = 1}P{Y = 1}

From this we see that
Cov(X,Y)>0e P(X=1,Y =1} > P{X = I}JP[Y = 1}
PiX=1Y=1)

PiX =1}
@ PY=1|X=1}>PY =1
That is, the covariance of X and Y is positive if the outcome X = 1 makes
it more likely that Y = 1 (which, as is easily seen by symmetry, also implies
the reverse).

In general it can be shown that a positive value of Cov(X,Y) is an
indication that Y tends to increase as X does, whereas a negative value

indicates that Y tends to decrease as X increases.
The following are important properties of covariance.

> P{Y = 1)

Properties of Covariance

For any random variables X, Y, Z and constant c,
. Cov(X, X) = Var(X),

. Cov(X, Y)=Cov(Y, X),

. Cov(eX,Y) = cCov(X, Y),
. Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z).

B WN -

Whereas the first three properties are immediate, the final one is easily
proven as follows:

Cov(X, Y + Z) = E[X(Y + Z)] — EIX]E[Y + Z]
= E[XY] - E[X)E[Y] + E[XZ] - E[X]E|Z]
= Cov(X, Y) + Cov(X, Z)
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The fourth property listed easily generalizes to give the following result:
COV( X, X )§> = ¥ Y Cov(X,, Y) (2.15)
i=1 j=1 i=1j=1

A useful expression for the variance of the random variables can be
obtained from Equation (2.15) as follows:

n n n
Var< ) X,~> Cov( Y x, ¥ XJ>
i=1 i=1 j=1

i Zn: COV(X,', X_])

i=1j=1

}'f Cov(X;, X;) + E Y Cov(X;, X;)
1

i i=1 ji

I
[N oo BB

Var(X)) + 2 E ¥ Cov(X;, X)) (2.16)
1

i i=1j<i

If X;,i=1,...,nare independent random variables, then Equation (2.16)
reduces to

Var<i X,-> = i Var(X;)
i=1 i

i=1

Definition 2.1 If Xy, ..., X, are independent and identically distributed
then the random variable X = ¥7_; X;/n is called the sample mean.

The following proposition shows that the covariance between the sample
mean and a deviation from that sample mean is zero. It will be needed in
Section 2.6.1.

Proposition 2.4 Suppose that X, ..., X, are independent and identi-
cally distributed with expected value u and variance 2. Then,

(@) E[X] = u.
(b) Var(X) = ¢*/n. _
(¢ Cov(X, X; - X)=0, i=1,...,n.

Proof Parts (a) and (b) are easily established as follows:

_ 1
E[X]=- Y EIX] =y

ni-

- 1\ " AR o’
Var(X) = <;> Var( ) Xi) = <;> Y Var(X)) = —
i=1 i=1
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To establish part (c) we reason as follows:

Cov(X, X; - X) = Cov(X, X;) - Cov(X, X

x)
Cov(X,- + ¥ XJ,X,> Var(X)

_l
n J#i
1 1 a?
=~Cov(X;, X;) + -Cov| ¥ X, X;) — —
n n =i n
2 2
=2 _% _)
n n

where the final equality used the fact that X; and };_; X; are independent
and thus have covariance 0. ¢

Equation (2.16) is often useful when computing variances.

Example 2.33 (Variance of a Binomial Random Variable): Compute
the variance of a binomial random variable X with parameters # and p.

Solution: Since such a random variable represents the number of
successes in 7 independent trials when each trial has a common prob-
ability p of being a success, we may write

X = X 1 + ... + Xn
where the X; are independent Bernoulli random variables such that

1, if the ith trial is a success
Xi = .
0, otherwise

Hence, from Equation (2.16) we obtain

Var(X) = Var(X,)) + --- + Var(X,)

But
Var(X)) = ELX7] - (EX,])?
= ElX}] - (EIX)]))*  since X? = X,
= p _— pz
and thus

Var(X) = np(1 - p) &
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Example 2.34 (Sampling from a Finite Population: The Hypergeo-
metric): Consider a population of N individuals, some of whom are in favor
of a certain proposition. In particular suppose that Np of them are in favor
and N — Np are opposed, where p is assumed to be unknown, We are
interested in estimating p, the fraction of the population that is for the
proposition, by randomly choosing and then determining the positions of n
members of the population.

In such situations as described in the preceding, it is common to use the
fraction of the sampled population that is in favor of the proposition as an
estimator of p. Hence, if we let

1, if the ith person chosen is in favor
X,' - .
0, otherwise

then the usual estimator of pis ¥ 7., X;/n. Let us now compute its mean

and variance. Now
n
E[ 5 X,]
i=1

where the final equality follows since the ith person chosen is equally likely
to be any of the N individuals in the population and so has probability
Np/N of being in favor.

21: E[X;]

=np

Var<i Xi> = ‘Z: Var(X;) + 2 ¥ Y, Cov(X;, X))
1 1

i<j
Now, since X; is a Bernoulli random variable with mean p, it follows that

Var(X;) = p(1 — p)
Also, for i # j,

Cov(X;, X)) = EIX;X}] - EIXE[X]
= PX;=1,X=1 - p

= PiX; = BP{X; = 1|X; = 1) - p?

S
N N-1 *F

where the last equality follows since if the ith person to be chosen is in
favor, then the jth person chosen is equally likely to be any of the other
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N — 1 of which Np - 1 are in favor. Thus, we see that

d n\[ p(Np - 1) ZJ
v X;) =npQ1 - 2 —_—
w(Ex) <o o) 2220

- Dp1 -
= np(1 - p) - n(n N)f(l p)

and so the mean and variance of our estimator are given by

E[i'{'] =P,

1 N

~Xi| _pA-p) (n-1pa - p)
Var[;?]' n T aN-D

Some remarks are in order: As the mean of the estimator is the unknown
value p, we would like its variance to be as small as possible (why is this?),
and we see by the preceding that, as a function of the population size N, the
variance increases as N increases. The limiting value, as N — oo, of the
variance is p(1 - Pp)/n, which is not surprising since for N large each of the
X; will be (approximately) independent random variables, and thus Y X;
will have an (approximately) binomial distribution with parameters n
and p.

The random variable Y1 X, can be thought of as representing the number
of white balls obtained when 7 balls are randomly selected from a
population consisting of Np white and N — Np black balls. (Identify a
person who favors the proposition with a white ball and one against with a
black ball.) Such a random variable is called hypergeometric and has a
probability mass function given by

rfin-g- GO
B

It is often important to be able to calculate the distribution of X + Y from
thedistributions of X and Ywhen X and Y are independent. Suppose first that
X and Y are continuous, X having probability density f and Y having
probability density 8. Then, letting Fy..y(a) be the cumulative distribution
function of X + Y, we have
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Fy.y@ =PX+Y <a)

= S S S)g(y) dx dy
x+ysa

«© a—y
S S S)g(») dx dy

—c0 -0

«© a-y
j <§ J) dx>g(y) dy

= S Fx(a — »)g(») dy (2.17)

-0

The cumulative distribution function Fy.,y is called the convolution of the
distributions Fy and Fy (the cumulative distribution functions of X and Y,
respectively).

By differentiating Equation (2.17), we obtain that the probability density
function fy,y(a) of X + Y is given by

d (- -]
Jx+v(@) = a2 X_ Fx(a - y)g(y) dy

-0

® d
- S %(Fx(a - ey)dy

= E fla - y)g(y)dy (2.18)

—0

Example 2,35 (Sum of Two Independent Uniform Random Variables):
If X and Y are independent random variables both uniformly distributed
on (0, 1), then calculate the probability density of X + Y.

Solution: From Equation (2.18), since

1, O<ax<l
0, otherwise

f@) = gla) = {

we obtain
1

Jx+v(@) = Xo Sla—y)dy
For 0 < a < 1, this yields

a

Jx+y(a@) = S dy=a

0
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For 1 < a < 2, we get

1
Jxsv(@) = j dy=2-a
a-1
Hence,
a, 0=<a=x<1
Jxsv@=4{2-4a, l<a<2
0, otherwise €

Rather than deriving a general expression for the distribution of X + Y
in the discrete case, we shall consider an example.

Example 2.36 (Sums of Independent Poisson Random Variables): Let
X and Y be independent Poisson random variables with respective means
Ay and 4,. Calculate the distribution of X + Y.

Solution: Since the event {X + Y = n} may be written as the union of
the disjoint events (X = k, Y = n — k}, 0 = k < n, we have

PIX+Y=n)= 2 PX=k,Y=n-k
k=0

i P{X = k)P{Y = n — k}
k=0

TN
o KIS -k
n l’fﬂ.g—k
k=0 k!(n - k)!
~(+tA) n !
=T T e Mg
n! L Zokl(n - k)!
e~ Pt

= e_()‘1+)‘2)

(A1 + 1,)"

n!
In words, X; + X, has a Poisson distribution with mean A; + 4,. ¢
The concept .of independence may, of course, be defined for more than

two random variables. In general, the n random variables X, X,, ..., X,
are said to be independent if, for all values a,,ay, ..., 0a,,

P{XISa,,Xzsaz,...,X,,sa,,}
= P{Xl = al}P{Xz Sazl"'P{Xn =< a"}
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Example 2.37 LetX,, ..., X, be independent and identically distributed
continuous random variables with probability distribution F and density
function F' = f. If we let X;, denote the ith smallest of these random
variables, then Xy, ..., Xy are called the order statistics. To obtain the
distribution of X, note that X{;, will be less than or equal to x if and only
if at least i of the n random variables Xj, ..., X, are less than or equal to x.
Hence,

PXp=xj= ¥ < >(F(x»"(1 Fey"*
k=i
Differentiation yields that the density function of X, is as follows:

@ = f(0) Z ( >k(F(x))" (1 - F)**

- J(®) kg (Z)(n - BFE)I - Fay"*!

!
~ 1) § e (OO~ Fooy™
_.f ”il —n_'__ F k(l _ F )n-k—l
(x)k=i k= 1)!k!( 69)) )
!
= 100 T o (09101 — Fy™
f Y — 11 - Foy™
@ T TG o e - R
!
= TR WEe A - F@y

The preceding density is quite intuitive, since in order for Xj;, to equal x,
i — 1 of the n values Xj, ..., X, must be less than x; n — i of them must be
greater than x; and one must be equal to x. Now, the probability density
that every member of a specified set of i — 1 of the Xj is less than x, every
member of another specified set of n — i is greater than x, and the remaining
value is equal to x is (F(x))'"'(1 — F(x))""'f(x). Therefore, since there are
nl/[(i — DY(n — i)!] different partitions of the n random variables into the
three groups, we obtain the preceding density function.
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2.5.4. Joint Probability Distribution of Functions of
Random Variables '

Let X, and X, be jointly continuous random variables with joint probability
density function f(x,, x,). It is sometimes necessary to obtain the joint
distribution of the random variables ¥; and Y, which arise as functions of
X, and X, . Specifically, suppose that Y, =g1(X1, X)) and Y, = g,(X, X))
for some functions g, and g, .

Assume that the functions g, and g, satisfy the following conditions.

1. The equations y, = g,(x,;, x,) and Y2 = g(x;, x;) can be uniquely
solved for x, and x, in terms of y, and y, with solutions given by, say,
X1 = h(yy, 22), X2 = ho(3y, o).

2. The functions g, and g, have continuous partial derivatives at all
points (x;, x,) and are such that the following 2 x 2 determinant

91 Oz
J0xy, x,) = %y dx, =&%_%@¢0
172 %2, 0g| Ox 0%, Ox; ox
dax; Ox,

at all points (x,, x;).

Under these two conditions it can be shown that the random variables Y;
and Y, are jointly continuous with joint density function given by

le,Yz(Jﬁ 'y 2) = Jx,x,(%1s X )| J(xy, x)| 7! (2.19)

where x; = (¥, ), x, = hy (Y15 32).
A proof of Equation (2.19) would proceed along the following lines:

PYy =y, Y, =y} = j j Jx,x,000, X3) dx, dx, (2.20)

(x1,x2):
81(x1,x3) Sy
22(x1,x3) Sy,
The joint density function can now be obtained by differentiating Equation
(2.20) with respect to y; and y,. That the result of this differentiation will
be equal to the right-hand side of Equation (2.19) is an exercise in advanced
calculus whose proof will not be presented in the present text.

Example 2.38 If X and Y are independent gamma random variables
with parameters (o, 1) and (8, 1), respectively, compute the joint density of
U=X+Yand V=X/(X+7Y).
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Solution: The joint density of X and Y is given by
AeMUx)E ! e M (Ay)P!

fx,Y(x, ») =

I'a) (B
AOH'ﬁ Nix+,
= x y)xa-lyB—l
T'(@)I'(8)
Now, if g,(x,y) = x + y, g2(x, ) = x/(x + ¥), then
98, _ %8 _ oy = %&_ __ X
ax 9y ’ ax  (x+p)* ay (x + y)
and so
1 1 1
J(x’ y) = y —-X =

arf wap| 77

Finally, because the equations u = x + y, v = x/(x + ») have as their
solutions x = uv, y = u(l — v), we see that

fU,V(u, v) = fX,Y[qu u(l — v)u
Ae M)t 21 - 0P Ta + B)
'« + B) T(@)I'(B)

Hence X + Y and X/(X + Y) are independent, with X + Y having a
gamma distribution with parameters (o + 8, 4) and X/(X + Y) having
density function

Sr(v) =

I'la + B)
T(@)I'(B)

This is called the beta density with parameters («, §).

The above result is quite interesting. For suppose there are n + m jobs
to be performed, with each (independently) taking an exponential
amount of time with rate A for performance, and suppose that we have
two workers to perform these jobs. Worker I will do jobs 1, 2, ..., n, and
worker II will do the remaining m jobs. If we let X and Y denote the total
working times of workers I and II, respectively, then upon using the
above result it follows that X and Y will be independent gamma random
variables having parameters (n, ) and (m, 1), respectively. Then the
above result yields that independently of the working time needed to com-
plete all n + m jobs (that is, of X + Y), the proportion of this work that
will be performed by worker I has a beta distribution with parameters
n,m. &

vl - v)fl, O<v<l
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When the joint density function of the n random variables X, X,
--+» X, is given and we want to compute the joint density function of
Y. %,...,Y,, where

),l=gl(Xl"“’Xn)’ ),2=gZ(Xl)""Xn)’ ceey
Y, = g.(X,,....,X,)

the approach is the same. Namely, we assume that the functions g
have continuous partial derivatives and that the Jacobian determinant
Jxy, ..., x,) # 0 at all points (x,, ..., x,), where

ax; dx, ox,
g, dg, dg,
J(X], vesy n) = axl axz axn
dax; 9x, ax,

Furthermore, we suppose that the equations Y1=81(x1,..0,x,), », =
&(x1, ..., x,), v Yn = &ulXy, ..., x,;) have a unique solution, say, x| =
"Y1 e Va), evs Xn = hy(¥y, ..., ¥,). Under these assumptions the joint
density function of the random variables Y; is given by

where x; = ;(y,, o) i=1,2,...,n.

2.6. Moment Generating Functions

The moment generating function ¢(¢) of the random variable X is defined
for all values ¢ by

é(1) = E[e”]

Y e"p(v), if X is discrete
X

j e f(x) dx, if X is continuous

-0
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We call ¢(f) the moment generating function because all of the moments of
X can be obtained by successively differentiating ¢(¢). For example,

d
o'(t) = EE[e"‘]

R I
—E[dt(e )]

= E[Xe™]
Hence,
¢'(0) = E1X]
Similarly,

d
¢"(1) = Ecb’(t)
=9 pixeX
—th[Xe ]

_E| & (xex
-E[dt(Xe )]

= E[X%e¥]
and so
¢"(0) = E[X?]

In general, the nth derivative of ¢(f) evaluated at ¢ = 0 equals E[X"],
that is, '

¢"0) = E[X"], n=1

We now compute ¢(¢) for some common distributions.

Example 2.39 (The Binomial Distribution with Parameters » and p):
o(1) = E[e¥]

kz'_l:o etk<z>pk(1 _ p)n—k

n

¥ <Z>(pe‘)"(1 - Py

k=0

(pe' +1 - p)*
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Hence,
o'(t) = n(pe’ + 1 — p)*~'pe’
and so
E[X]=¢'(0) = np

which checks with the result obtained in Example 2.17. Differentiating a
second time yields

¢"(1) = n(n — 1)(pe' + 1 - p)"*(pe')’ + n(pe' + 1 — p)*"'pe’
and so
E[X’] = ¢"(0) = n(n -~ 1)p* + np
Thus, the variance of X is given
Var(X) = E[X?] - (E[X])?
=n(n - )p* + np — n?p*
=np(l—-p) &

Example 2.40 (The Poisson Distribution with Mean A):
o(t) = E[e”]

E eme—)\ln
n=

o n!
Y - (Aet)"
=e —_
n=0 n!

_ t
=e€ )‘e)"

exp{A(e’ — 1)}

Differentiation yields
¢'(t) = Ae’ exp{d(e’ - 1)},
¢"(t) = (Ae')? expfA(e’ — 1)} + Ae' explA(e’ — 1}
and so
E[X] = ¢'(0) = 4,
E[X*) = ¢"(0) = 1> + 4,
Var(X) = E[X?] - (E[X])*
=2

Thus, both the mean and the variance of the Poisson equal .. &
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Example 2.41 (The Exponential Distribution with Parameter 1):
o(1) = E[e™]

= S e*le Mdx
0

= AS e O gx

0
A
T A-t
We note by the preceding derivation that, for the exponential distribution,
#(?) is only defined for values of ¢ less than 1. Differentiation of ¢(¢) yields
22
4 -1’

fort < A

t — A " —
¢(t)_(A_t)2’ ¢(t)—

Hence,

1 2
E[X] =¢'0) = 7, E[X2]=¢"(0)=1—2

The variance of X is thus given by
1

Var(X) = E[X*] - (E[X]) = 53

/12.

Example 2.42 (The Normal Distribution with Parameters u and o).

¢(1) = Ele”]
= 217“7 Xw e~ G-m27 g
1 (= —(x% = 2ux + 4* — 26°1x)
= oo S_ exp{ 52 dx

Now writing
x% = 2ux + p* - 20%x = x¥ = 2u + P)x + P
=(x—(u+ ) - (u+ ) +u
= (x — (u + 620 — o*t* — 2uc’t

1 2 + 2uctt) (™ —(x - a*t))?
o) = \/TEGCXP{G 202”“ } S_w CXD{ = (Zﬂcr;- ))}dx

02 2 1 ) _ _ 0'2 2
= exp {Tt + ut} \-/_77; “w exp{ (x (2lf72+ ) } dx

we have
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However,
I —x-w+any o _
2naj_wexP{ 207 }dx—P{-oo<X< o} =]

where X is a normally distributed random variable having parameters
# =y + o’t and 6% = ¢2. Thus, we have shown that

2
#(?) = exp {izt— + ut}

By differentiating we obtain

2
®'(t) = (u + te)) exp {izt— + ,ut}

2 2
®"(t) = (u + to*)* exp {glzi + ,ut} + o?exp {ath + #t}

and so
E[X] = ¢'(0) = 4,

E[X?] = ¢"(0) = y* + &*
implying that
Var(X) = E[X?] - E([X])?

~c* @

Tables 2.1 and 2.2 give the moment generating function for some
common distributions.

An important property of moment generating functions is that the
moment generating function of the sum of independent random variables is

_ Just the product of the individual moment generating functions. To see this,

suppose that X and Y are independent and have moment generating
functions ¢ (¢) and ¢y(?), respectively. Then ¢yx,y(¢), the moment
generating function of X + Y, is given by
bx.iy(t) = E[e¥+Y)]
= E[e¥e']

= E[e*]E[e'"]

= ¢:(Noy(?)
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Table 2.1
Discrete probability Probability mass Moment generating
distribution function, p(x) function, ¢(f) Mean  Variance
Binomial with ny e . n
parameters n, p <x>p 1 -p", (pe" + (1 - p) np  np(l1 - p)
0=<sp=xsl x=0,1,...,n
Poisson with N .
parameter e prt exp{A(e’ - 1)} A A
A>0 x=0,1,2,...
Geometric with p(l - pyt, e’ 1 1-p
parameter 0 < p < 1 x=12,.. 1-(1 - p)e D e

where the next to the last equality follows from Proposition 2.3 since X and
Y areindependent.

Another important result is that the moment generating function uniquely
determines the distribution. That is, there exists a one-to-one correspondence
between the moment generating function and the distribution function of a

random variable,

Table 2.2
Continuous Moment
probability Probability density generating
distribution function, f(x) function, ¢(z) Mean Variance
Uniform over 1 b e’ — e a+b (b-a’
(@, b) foy={b-a %< 1% —a 2 12
0, otherwise
Exponential with le ™, x>0 A 1 1
parameter >0 W =1, " At 1 2
Gamma with e~ M(Axyr! 0 AN n n
parameters (n, 1) f6) = —_(n iy xz= Fa— 7 z
A>0
0, x<0
Normal with 1 2 a*?
= - (-
parameters S = Bra’ N, exp {,ut 7 H o
(u, 0%

—o < x < ®
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Example 2.43 Suppose the moment generating function of a random
variable X is given by ¢(¢) = €3€ V. What is P{X = 0}?

Solution: We see from Table 2.1 that ¢(r) = e*®~? is the moment
generating function of a Poisson random variable with mean 3. Hence,
by the one-to-one correspondence between moment generating functions
and distribution functions, it follows that X must be a Poisson random
variable with mean 3. Thus, P{X = 0} = ™. @

Example 2.44 (Sums of Independent Binomial Random Variables):
If X and Y are independent binomial random variables with parameters
(n, p) and (m, p), respectively, then what is the distribution of X + Y?

Solution: The moment generating function of X + Y is given by
bx.y(t) = dx(ey(?) = (pe' + 1 — p)'(pe + 1 — p)™"
—_ (pet +1 _p)m+n

But (pe’ + (1 — p))™*™ is just the moment generating function of a
binomial random variable having parameters m + n and p. Thus, this
must be the distributionof X + Y. @

Example 2.45 (Sums of Independent Poisson Random Variables):
Calculate the distribution of X + Y when X and Y are independent Poisson
random variables with means 4, and A,, respectively.

Solution:
dx (Do (2)

= exl(e' -D e)\z(e’— D

dx+y(?)

= eM+ -1

Hence, X + Y is Poisson distributed with mean A, + A,, verifying the
result given in Example 2.36. @

Exampie 2.46 (Sums of Independent Normal Random Variables):
Show that if X and Y are independent normal random variables with
parameters (u,, g3) and (u,, 02), respectively, then X + Y is normal with
mean u; + U, and variance o7 +
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Solution:

Ox+y(t) = ox(Ddy(?)

o2 a3
exp T-I'[llt exp T+ﬂzt

2
exp {(a% +2 o)t

+ (U + #2)%

which is the moment generating function of a normal random variable with
mean u,; + 4, and variance a7 + a3. Hence, the result follows since the
moment generating function uniquely determines the distribution. 4

It is also possible to define the joint moment generating function of two
or more random variables. This is done as follows. For any » random
variables X}, ..., X,, the joint moment generating function, ¢(#,, ..., ),
is defined for all real values of ¢, ..., 1, by

¢(t1 g aeny tn) = E[e(t]X1+-~- +r'an)]
It can be shown that ¢(t,, ..., t,) uniquely determines the joint distribution
Ole’ ""Xn'

Example 2.47 (The Multivariate Normal Distribution): Let Z,, ..., Z,
be a set of n independent unit normal random variables. If, for some
constants @, l <ism,1 <j<n,and y;, 1 =i=s=m,

Xi=anZ+ -+ a2, + yy,

X2 = aZIZl Ll aZnZn + Uz,
Xi=anZ, + - + aynZy + W,

Xm = amlzl + -t amnzn + U

then the random variables X, ..., X,, are said to have a multivariate
normal distribution.

1t follows from the fact that the sum of independent normal random
variables is itself a normal random variable that each X; is a normal random
variable with mean and variance given by

E[Xi] = wi,

Var(X;) = E a

Jj=1
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Let us now determine
¢(t]a ceey tm) = E[exp{thl + oo+ thm}]

the joint moment generating function of X1, ..., X,,. The first thing to note
is that since Y7L, X, is itself a linear combination of the independent
normal random variables Z,, ..., Z,, it is also normally distributed. Its
mean and variance are respectively

E[ g t.-Xi] = g bl

i=1 i=1

m
Var< Z tiXi> =
i=1

and

I
A

m m
E txXi! 'El tj’Yj>
= J=

Il
ANk
||M3

tt Cov(X;, X})
i=1j

Now, if Y is a normal random variable with mean u and variance 0%, then

Ele"] = ¢y(0)],a; = e+
Thus, we see that
m m m
Bty ..oy byy) = exp{ Ytm++ L ¥ titjCov(Xi,)(,-)}
i=1 i=1j=1

which shows that the joint distribution of X1, ..., X, is completely
determined from a knowledge of the values of E [X;] and Cov(X;, X)),
Lji=1,....m. ®

2.6.1. The Joint Distribution of the Sample Mean and
Sample Variance from a Normal Population

Let X, ..., X, be independent and 1dent1cally distributed random variables,
each w1th mean y and variance ¢%. The random variable S? defined by

& (X - X)?
i=1 n-1

§2 =

is called the sample variance of these data. To compute E[S?] we use the
identity

EI(X X7 = E(X 4’ — n(X — p)? 2.21)
i= i=1
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which is proven as follows:

TXG-X) =Y X —u+u-X
=Y X -+ nu-XP+2u-X) L &Xi—p
= Y (Xi—w + n(u - XP + 2u — X)nX - ny)

i~ 1Y+ n(u — X - 2n(u - X)?

Il
[N ao K]
X

and identity (2.21) follows.
Using identity (2.21) gives

El(n - DS}

;x E[(X; - )] = nE[(X - )]

na* — nVar(X)

= (n — No? from Proposition 2.4(b)
Thus, we obtain from the preceding that
E[S?] = o

69

We will now determine the joint distribution of the sample mean

X = Y7, X;/n and the sample variance S* when the X; have a normal

distribution. To begin we need the concept of a chi-squared random variable.

Definition 2.2 1If z,, ..., Z, are independent standard normal random
variables, then the random variable ¥7_, Z?2 is said to be a chi-squared

random variable with n degrees of freedom.

We shall now compute the moment generating function of ¥7_, Z2. To

begin, note that

1 -
Elexp{tZ})] = = j e*e~"/2 gy

—

1 ® —x2/202 2 -1
= — e * %" dx where ¢* = (1 — 2¢
e S ( )

=0

(1 _ 2t)—l/2

-0
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Hence,

E[exp{t E z,?H = H Elexp{tZ%)] = (1 — 2¢)~"?

i=1 i=1

Now, let Xj, ..., X, be independent normal random variables, each with
mean 4 and variance 2, and let X = ¥7_, X,/n and S denote their sample
mean and sample variance. Since the sum of independent normal random
variables is also a normal random variable, it follows that X is a normal
random variable with expected value 4 and variance ¢2/7. In addition,
from Proposition 2.4,

Cov(X,X; - X) =0, i=1,..,n (2.22)

Also, since X, X; — X, X, — X, ..., X, — X are all linear combinations of
the independent standard normal random variables Xi—w/a,i=1,...,n,
it follows that the random variables X, X; — X, X, — X, ..., X, — X have
a joint distribution that is multivariate normal. However, if we let Y be a
normal random variable with mean x and variance ¢®/n that is independent
of Xj, ..., X, then the random variables Y, X; — XX, -X,...,X,- X
also have a multivariate normal distribution, and by Equation (2.22),
they have the same expected values and covariances as the random variables
X, Xi-X,i=1, ..., n. Thus, since a multivariate normal distribution is
completely determined by its expected values and covariances, we can
conclude that the random vectors Y, X, - X, X, - X,..., X, - X and
X, X,-X,X, - X,...,X, — X have the same joint distribution; thus
showing that X is independent of the sequence of deviations X; — X,
i=1,...,n.

Since X is independent of the sequence of deviations X, — X,
i =1,...,n, it follows that it is also independent of the sample variance

2oy X - X7
§ _igl n-1

To determine the distribution of S2, use the identity (2.21) to obtain
(n=1DS*= ¥ (X; — ) - n(X - pp
i=1

Dividing both sides of this equation by g2 yields

(n—-1S* (X-p\* (X, - pp :
2 * (O’/ﬁ) - i§l o’ @29

ag
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Now, Y7 ,(X; — u)*/a” is the sum of the squares of n independent
standard normal random variables, and so is a chi-squared random variable
with n degrees of freedom; it thus has moment generating function
(1 — 20)™™2, Also [(X — u)/(6/Vn)}? is the square of a standard normal
random variable and so is a chi-squared random variable with one degree
of freedom; and thus has moment generating function (1 — 2¢)~V/2.
In addition, we have previously seen that the two random variables on the
left side of Equation (2.23) are independent. Therefore, because the
moment generating function of the sum of independent random variables is
cqual to the product of their individual moment generating functions, we
obtain that

E[et(n—l)sz/dzl(l _ 2t)—l/2 = (1 _ 2t)—n/2
or

E[et(n—l)sz/azl - (1 _ 2t)-(n—l)/2

But as (1 — 27)""Y2 js the moment generating function of a chi-squared
random variable with » — 1 degrees of freedom, we can conclude, since the
moment generating function uniquely determines the distribution of the
random variable, that this is the distribution of (n — 1)§%/¢2.

Summing up, we have shown the following.

Proposition 2.5 If X, ..., X, are independent and identically distri-
buted normal random variables with mean g and variance ¢2, then the
sample mean X and the sample variance S? are independent. X is a normal
random variable with mean u and variance ¢?/n; (n — 1)S%/6? is a
chi-squared random variable with n — 1 degrees of freedom.

2.7. Limit Theorems

We start this section by proving a result known as Markov’s inequality.

Proposition 2.6 (Markov’s Inequality). If X is a random variable that
takes only nonnegative values, then for any value ¢ > 0

P{Xza}sgai(—]
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Proof We give a proof for the case where X is continuous with density f:

-

ElX] = j xf(x) dx
0

o©

=\ xf(x)dx + j xf(x) dx

a

>

xf(x) dx

l
)

> j«o af(x) dx

a

=ajwf(x) dx

= aP{X = a)

and the result is proven. @
As a corollary, we obtain the following.

Proposition 2.7 (Chebyshev’s Inequality). If X is a random variable
with mean y and variance ¢, then, for any value k£ > 0,

P{IX—ulzk}sg

Proof Since (X - u)? is a nonnegative random variable, we can apply
Markov’s inequality (with @ = k%) to obtain

E[(X - p)?]

ez

But since (X — u)> = k% if and only if |X — u| = k, the preceding is
equivalent to

PIX -u=k}=<

E{(X - w? o?
P{|X—/1[ Zk]sl_kzﬂ=F
and the proof is complete. @

The importance of Markov’s and Chebyshev’s inequalities is that they
enable us to derive bounds on probabilities when only the mean, or both
the mean and the variance, of the probability distribution are known. Of
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course, if the actual distribution were known, then the desired probabilities
could be exactly computed, and we would not need to resort to bounds.

Example 2.48 Suppose we know that the number of items produced in
a factory during a week is a random variable with mean 500.

(a) What can be said about the probability that this week’s production
will be at least 1000? '

(b) If the variance of a week’s production is known to equal 100, then
what can be said about the probability that this week’s production will be
between 400 and 600?

Solution: Let X be the number of items that will be produced in
a week.

(a) By Markov’s inequality,

E[X] 500 1
>1 s ===
Pl = 1000} 1000 1000 2
{b) By Chebyshev’s inequality,
a* 1
P{|X — 500| = 100} < (100 = 100
Hence,
1 99

P{IX—500|<100121—W=IT0

and so the probability that this week’s production will be between 400
and 600, is at least 0.99. @

The following theorem, known as the strong law of large numbers, is
probably the most well-known result in probability theory. It states that
the average of a sequence of independent random variables having the
same distribution will, with probability 1, converge to the mean of that
distribution.

Theorem 2.1 (Strong Law of Large Numbers). Let X;, X, ... be a
sequence of independent random variables having a common distribution,
and let E[X;] = u. Then, with probability 1,

X1+X2+“'+Xn
n

—>u asn—
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As an example of the preceding, suppose that a sequence of independent
trials are performed. Let E be a fixed event and denote by P{E]} the
probability that E occurs on any particular trial. Letting

X = 1, if E occurs on the ith trial
7o, if E does not occur on the ith trial

we have by the strong law of large numbers that, with probability 1,

)—(—‘—in—” ~ E[X] = P(E) 2.24)
Since X, + --- + X, represents the number of times that the event E occurs
in the first n trials, we may interpret Equation (2.24) as stating that, with
probability 1, the limiting proportion of time that the event E occurs is
just P{E}.

Running neck and neck with the strong law of large numbers for the
honor of being probability theory’s number one result is the central limit
theorem. Besides its theoretical interest and importance, this theorem
provides a simple method for computing approximate probabilities for
sums of independent random variables. It also explains the remarkable fact
that the empirical frequencies of so many natural ‘‘populations’’ exhibit a
bell-shaped (that is, normal) curve.

Theorem 2.2 (Central Limit Theorem). Let X, X,, ... be a sequence
of independent, identically distributed random variables each with mean u
and variance . Then the distribution of
X1+X2+ ---+X,,'—n/1
a\n

tends to the standard normal as n = . That is,

Xi+ X+ + X, - nu | e
P =< —_—
{ o a _)\/75 _we dx

asn — oo,

Note that like the other results of this section, this theorem holds for any
distribution of the X;’s; herein lies its power.

If X is binomially distributed with parameters n and p, then X has the
same distribution as the sum of n independent Bernoulli random variables
each with parameter p. (Recall that the Bernoulli random variable is just
a binomial random variable whose parameter n equals 1.) Hence, the
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distribution of
X-EX] X-np
JVar(X) np(1T =p)
approaches the standard normal distribution as n approaches o. The

normal approximation will, in general, be quite good for values of n
satisfying np(1 — p) = 10.

Example 2.49 (Normal Approximation to the Binomial): Let X be the
number of times that a fair coin, flipped 40 times, lands heads. Find the
probability that X = 20. Use the normal approximation and then compare
it to the exact solution.

Solution: Since the binomial is a discrete random variable, and the
normal a continuous random variable, it leads to a better approximation
to write the desired probability as

P{X = 20} = P{19.5 < X < 20.5)

_pf195-20 Xx-20 20520
- V10 V10 V10

X -20
= P{-0.1 —— .16
{06< 710 <0 }

= ®(0.16) — ®(-0.16)

where ®(x), the probability that the standard normal is less than x is
given by

O(x) = \/%_n S e dy

By the symmetry of the standard normal distribution

-0

®(-0.16) = P{N(0,1) > 0.16} = 1 — ®(0.16)

where N(0, 1) is a standard normal random variable. Hence, the desired
probability is approximated by

PiX = 20} = 20(0.16) — 1
Using Table 2.3, we obtain that
P{X = 20} = 0.1272
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Table 2.3 Area ®(x) under the Standard Normal Curve to the Left of x

x 0.00 0.01 _0.02 0.03 0.04 005 006 007 0.08 009
0.0 | 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 | 0.5398 0.5438 0.5478 0.5517 0.5557 0.5597 0.5636 0.5675 0.5714 0.5753
0.2 | 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 | 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 | 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 | 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 | 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 | 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 | 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 | 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 | 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8557 0.8599 0.8621
1.1 | 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 | 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 | 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 .0.9147 0.9162 0.9177
1.4 | 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 | 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.944}
1.6 | 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 | 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 | 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 | 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 | 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 | 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 | 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 | 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 | 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 | 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 | 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 | 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 | 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 | 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 | 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 | 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 | 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 | 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 | 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
The exact result is
40\ /1\*°
PLX = 20) (20)<2>

which, after some calculation, can be shown to equal 0.1268. @

Example 2.50 LetX;,i=1,2,..., 10 be independent random variables,
each being uniformly distributed over (0, 1). Calculate P{¥1°X; > 7.
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Solution: Since E[X;] = 1, Var(X;) = &5 we have by the central limit
theorem that

10 Tiox, -5 7—5}
{21: ” } { V10(&) >\/10(11—2)

=1 - 02.2)
= 0.0139 @

Example 2.51 The lifetime of a special type of battery is a random
variable with mean 40 hours and standard deviation 20 hours. A battery is
used until it fails, at which point it is replaced by a new one. Assuming a
stockpile of 25 such batteries the lifetimes of which are independent,
approximate the probability that over 1100 hours of use can be obtained.

Solution: If we let X; denote the lifetime of the /th battery to be put in
use, then we desire p = P{X, + --- + X,5 > 1100}, which is approximated
as follows:

X, 4 -+ + X,5 — 1000 1100 — 1000
p=P >
2025 20/25
~ P{N(0,1) > 1}
=1-®Q)
~ 0.1587 &

2.8. Stochastic Processes

A stochastic process {X(t), t € T'}is a collection of random variables. That is,
for each ¢ € T, X(¢) is a random variable. The index ¢ is often interpreted as
time and, as a result, we refer to X(¢) as the state of the process at time ¢. For
example, X(#) might equal the total number of customers that have entered a
supermarket by time ¢; or the number of customers in the supermarket at
time #; or the total amount of sales that have been recorded in the market by
time ¢; etc.

The set T is called the index set of the process. When T is a countable set
the stochastic process is said to be discrete-time process. If T is an interval of
thereal line, the stochastic process is said to be a continuous-time process. For
instance, {X,, n=0,1,...] is a discrete-time stochastic process indexed by
the nonnegative integers; while {X(¢), ¢ = 0} is a continuous-time stochastic
process indexed by the nonnegative real numbers.
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Figure 2.3. Particle moving around a circle.

The state space of a stochastic process is defined as the set of all possible
values that the random variables X(¢) can assume.

Thus, a stochastic process is a family of random variables that describes
the evolution through time of some (physical) process. We shall see much of
stochastic processes in the following chapters of this text.

Example 2.52 Consider a particle that moves along a set of m + 1 nodes,
labeled 0,1,...,m, that are arranged around a circle (see Figure 2.3).
At each step the particle is equally likely to move one position in either the
clockwise or counterclockwise direction. That is, if X, is the position of the
particle after its nth step then

PXy =i+ 1|X,=i}=PX,,, =i-1|X,=1}=}%

wherei/ + 1 = Owheni = m,andi — 1 = m wheni = 0. Suppose now that
the particle starts at 0 and continues to move around according to the
preceding rules until all the nodes 1, 2, ..., m have been visited. What is the
probability that node i, i = 1, ..., m, is the last one visited?

Solution: Surprisingly enough, the probability that node i is the last
node visited can be determined without any computations. To do so,
consider the first time that the particle is at one of the two neighbors of
node i, that is, the first time that the particle is at one of the nodes i — 1
ori + 1 (with m + 1 = 0). Suppose it is at node i — 1 (the argument in
the alternative situation is identical). Since neither node i nor i + 1 has
yet been visited, it follows that i will be the last node visited if and only
if i + 1 is visited before i. This is so because in order to visit i + 1 before
i the particle will have to visit all the nodes on the counterclockwise path
from i — 1toi + 1 before it visits i. But the probability that a particle at
node / — 1 will visit i/ + 1 before i is just the probability that a particle
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will progress m — 1 steps in a specified direction before progressing one
step in the other direction. That is, it is equal to the probability that a
gambler who starts with one unit, and wins one when a fair coin turns up
heads and loses one when it turns up tails, will have his fortune go up by
m — 1 before he goes broke. Hence, because the preceding implies that
the probability that node i is the last node visited is the same for all i, and
because these probabilities must sum to 1, we obtain

Pf{i is the last node visited} = 1/m, i=1,....m @
Remark The argument used in Example 2.52 also shows that a gambler

who is equally likely to either win or lose one unit on each gamble will lose
n before winning 1 with probability 1/(n + 1); or equivalently

Pfigambler is up 1 before being down n} = P

Suppose now we want the probability that the gambler is up 2 before being
down n. Upon conditioning on whether he reaches up 1 before down n, we
obtain that

P{gambler is up 2 before being down n}

= P{up 2 before down n|up 1 before down n}

n+1
n
= Pfup 1 before down n + 1}
n+1

_nh+l n  n

“n+2n+1 n+2
Repeating this argument yields that

Pfigambler is up k before being down n} = - : %

Exercises

1. An urn contains five red, three orange, and two blue balls. Two balls
are randomly selected. What is the sample space of this experiment? Let X
represent the number of orange balls selected. What are the possible values
of X? Calculate P{X = 0}.

2. Let X represent the difference between the number of heads and the
number of tails obtained when a coin is tossed » times. What are the
possible values of X?
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3. In Exercise 2, if the coin is assumed fair, then, for n = 2, what are
the probabilities associated with the values that X can take on?

*4. Suppose a die is rolled twice. What are the possible values that the
following random variables can take on?

(i) The maximum value to appear in the two rolls.
(ii) The minimum value to appear in the two rolls.
(iii) The sum of the two rolls.
(iv) The value of the first roll minus the value of the second roll.

5. If the die in Exercise 4 is assumed fair, calculate the probabilities
associated with the random variables in (i)-(iv).

6. Suppose five fair coins are tossed. Let E be the event that all coins land
heads. Define the random variable I

I = 1, if E occurs
E~ o, if E€ occurs

For what outcomes in the original sample space does I equal 1? What is
P{I; =117

7. Suppose a coin having probability 0.7 of coming up heads is tossed
three times. Let X denote the number of heads that appear in the three
tosses. Determine the probability mass function of X.

8. Suppose the distribution function of X is given by

0, b<O
Fb)y=4%, 0=sb<1
1, l=b< o

What is the probability mass function of X?

9. If the distribution function of F is given by

[0, b<0

i, 0<b<1

3, 1=bhb<?2
Fo =1y 2=b<3

%, 3=<b<3s

[y

\

calculate the probability mass function of X.

, b=3.5
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10. Suppose three fair dice are rolled. What is the probability that at most
one six appears?

*11. A ball is drawn from an urn containing three white and three black
balls. After the ball is drawn, it is then replaced and another ball is drawn.
This goes on indefinitely. What is the probability that of the first four balls
drawn, exactly two are white?

12. On a multiple-choice exam with three possible answers for each of the
five questions, what is the probability that a student would get four or more
correct answers just by guessing?

13. Anindividual claims to have extrasensory perception (ESP). As a test,
a fair coin is flipped ten times, and he is asked to predict in advance the
outcome. Our individual gets seven out of ten correct. What is the prob-
ability he would have done at least this well if he had no ESP? (Explain why
the relevant probability is P{X = 7} and not P{X = 7}.)

14, Suppose X has a binomial distribution with parameters 6 and 3.
Show that X = 3 is the most likely outcome.

15. Let X be binomially distributed with parameters » and p. Show that
as k goes from 0 to n, P(X = k) increases monotonically, then decreases
monotonically reaching its largest value.

(a) in the case that (n + 1)p is an integer, when k equals either
(n+bDp—-1or(n+ 1)p,

(b) in the case that (n + 1)p is not an integer, when k satisfies
n+DDp-1<k<(n+ )p

Hint: Consider P{X = k}/P{X = k — 1} and see for what values of k it
is greater or less than 1.

*16. An airline knows that 5 percent of the people making reservations
on a certain flight will not show up. Consequently, their policy is to sell 52
tickets for a flight that can only hold 50 passengers. What is the probability
that there will be a seat available for every passenger that shows up?

17. Suppose that an experiment can result in one of r possible outcomes,
the ith outcome having probability p;, i=1,...,r, Yioipi=1.1f n of
these experiments are performed, and if the outcome of any one of the n
does not affect the outcome of the other n — 1 experiments, then show that
the probability that the first outcome appears x; times, the second x, times,
and the rth x, times is

n! X

——— pip3* - whenx; + x, + .- + x, = n
xl!XZ!"'xr! 142 r 1 2 r

This is known as the multinomial distribution.
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18. Show that when r = 2 the multinomial reduces to the binomial.

19. In Exercise 17, let X; denote the number of times the ith outcome
appears, i=1,...,7. What is the probability mass function of
X1+X2+"'+Xk?

20. A television store owner figures that 50 percent of the customers
entering his store will purchase an ordinary television set, 20 percent will
purchase a color television set, and 30 percent will just be browsing. If five
customers enter his store on a certain day, what is the probability that two
customers purchase color sets, one customer purchases an ordinary set, and
two customers purchase nothing?

21. In Exercise 20, what is the probability that our store owner sells three
or more televisions on that day?

22, If a fair coin is successively flipped, find the probability that a head
first appears on the fifth trial.

*23. A coin having a probability p of coming up heads is successively
flipped until the rth head appears. Argue that X, the number of flips
required, will be n, n = r, with probability

PiX =n}= <’:: 11>p’(1 -p)y, nzr

This is known as the negative binomial distribution.
Hint: How many successes must there be in the first n — 1 trials?

24. The probability mass function of X is given by

r+ k-1
p(k) = ( r—1 >pr(1 _p)k, k= O’ ls-"

Give a possible intepretation of the random variable X.

Hint: See Exercise 23.

In Exercises 25 and 26, suppose that two teams are playing a series of
games, each of which is independently won by team 4 with probability p
and by team B with probability 1 — p. The winner of the series is the first
team to win / games.

25. Ifi = 4, find the probability that a total of 7 games are played. Also
show that this probability is maximized when p = 1/2.
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26. Find the expected number of games that are played when

(@) i = 2.
(b) i = 3.

in both cases, show that this number is maximized when p = 1/2.

*27. A fair coin is independently flipped n times, k times by A and n — &
times by B. Show that the probability that A and B flip the same number
of heads is equal to the probability that there are a total of k heads.

28. Suppose that we want to generate a random variable X that is equally
likely to be either 0 or 1, and that all we have at our disposal is a biased coin
that, when flipped, lands on heads with some (unknown) probability p.
Consider the following procedure:

1. Flip the coin, and let 0, either heads or tails, be the result.
2. Flip the coin again, and let 0, be the result.

3. If 0, and 0, are the same, return to step 1.

4. If 0, is heads, set X = 0, otherwise set X = 1.

(a) Show that the random variable X generated by this procedure is
equally likely to be either 0 or 1.

(b) Could we use a simpler procedure that continues to flip the coin until
the last two flips are different, and then sets X = 0 if the final flip is a
head, and sets X = 1 if it is a tail?

29. Consider n independent flips of a coin having probability p of landing
heads. Say a changeover occurs whenever an outcome differs from the one
preceding it. For instance, if the results of the flipsare HHTHTHHT,
then there are a total of 5 changeovers. If p = 1/2, what is the probability
there are k changeovers?

30. Let X be a Poisson random variable with parameter A. Show that
P{X = i} increases monotonically and then decreases monotonically as
i increases, reaching its maximum when / is the largest integer not
exceeding A.

Hint: Consider P{X = i}/P(X =i - 1}.

31. Compare the Poisson approximation with the correct binomial
probability for the following cases:

() P{X =2}whenn=28,p=0.1.
(ii) P{X = 9} when n = 10, p = 0.95.
(iii) P{X = 0} when n = 10, p = 0.1.
(iv) P{X =4} whenn =9, p = 0.2.
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32. If you buy a lottery ticket in 50 lotteries, in each of which your chance
of winning a prize is 145, what is the (approximate) probability that you will
win a prize (a) at least once, (b) exactly once, (c) at least twice?

33. Let X be a random variable with probability density
ol ~xh), -l1<x<1
ﬂﬂ={ )

0, otherwise
(a) What is the value of ¢?
(b) What is the cumulative distribution function of X?

34. Let the probability density of X be given by
4 - 2xY), O0<x<?2
ﬂw={“ )

0, otherwise
(a) What is the value of ¢?
M) PE<X<3=1?

35. The density of X is given by )
10/x2, for x > 10
T = {O, forx < 10
What is the distribution of X? Find P{X > 20}.

36. A point is uniformly distributed within the disk of radius 1. That is,
its density is

S, =C, O0=sx*+y*<]1

Find the probability that its distance from the origin is less than x,
O0<x=1.

37. Let Xy, X,, ..., X, be independent random variables, each having a
uniform distribution over (0,1). Let M = maximum X1, X5, ..., X)).
Show that the distribution function of M, Fy(+), is given by

Fy (@) = x", O=sx=<1
What is the probability density function of M?
*38. If the density function of X equals

2x
Jx) = {

ce O0<x<w
0, x<0
find c. What is P{X > 2}?
39. The random variable X has the following probability mass function

=%, pQ) =% pRe=1%
Calculate E[X].
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40. Suppose that two teams are playing a series of games, each of which
is independently won by team A with probability p and by team B with
probability 1 — p. The winner of the series is the first team to win 4 games.
Find the expected number of games that are played, and evaluate this
quantity when p = 1/2.

41. Consider the case of arbitrary p in Exercise 29. Compute the expected
number of changeovers.

42. Suppose that each coupon obtained is, independent of what has been
previously obtained, equally likely to be any of m different types. Find the
expected number of coupons one needs to obtain in order to have at least
one of each type.

Hint: Let X be the number needed. It is useful to represent X by

m
X = ZX,

i=1
where each X is a geometric random variable.

43. Anurncontainsn + m balls, of which » are red and m are black. They
are withdrawn from the urn, one at a time and without replacement. Let X be
the number of red balls removed before the first black ball is chosen. We are
interested in determining E[X]. To obtain this quantity, number the red balls
from 1 to n. Now define the random variables X;,i = 1, ..., n, by

X = 1, if red ball i is taken before any black ball is chosen
710, otherwise

(a) Express X in terms of the X;.
(b) Find E[X].

44. In Exercise 43, let Y denote the number of red balls chosen after the
first but before the second black ball has been chosen.

(a) Express Y as the sum of n random variables, each of which is equal
to either 0 or 1.

(b) Find E[Y].

(c) Compare E[Y] to E[X] obtained in Exercise 43.

(d) Can you explain the result obtained in part (c)?

45. A total of r keys are to be put, one at a time, in k boxes, with each key
independently being put in box i with probability p;, Y% 1 pi=1. Each
time a key is put in a nonempty box, we say that a collision occurs. Find the
expected number of collisions.
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*46. Consider three trials, each of which is either a success or not. Let X
denote the number of successes. Suppose that E[X] = 1.8.

(a) What is the largest possible value of P{X = 3}?
(b) What is the smallest possible value of P{X = 3}?

In both cases, construct a probability scenario that results in P{X = 3}
having the desired value.

47. If X is uniformly distributed over (0, 1), calculate E[X?].
"48. Prove that E[X?] = (E[X])>. When do we have equality?
49. Let ¢ be a constant. Show that

(i) Var(cX) = c* Var(X).
(ii) Var(c + X) = Var(Xx).

50. A coin, having probability p of landing heads, is flipped until the head
appears for the rth time. Let N denote the number of flips required.
Calculate E[N].

Hint: There is an easy way of doing this. It involves writing N as the
sum of r geometric random variables.

51. Calculate the variance of the Bernoulli random variable.

52. (a) Calculate E[X] for the maximum random variable of Exercise 37.
(b) Calculate E(X) for X as in Exercise 33.
(¢) Calculate F[X] for X as in Exercise 34.

53. If X is uniform over (0, 1), calculate E[X"] and Var(X").
54. Let X and Y each take on either the value 1 or —1. Let
p(,)=PX=1,Y=1)},
pl,-1)=PX=1Y=-1),
p(-1,1)=P{X=-1,Y=1},
p(~-1,-1)=P{X =-1,Y = -1}
Suppose that E[X] = E[Y] = 0. Show that

(@) p(1,1) = p(~1, ~1)

() p(1, -1) = p(-1, 1)
Let p = 2p(1, 1). Find

(c) Var(X)

(d) Var(Y)

(e) Cov(X,Y)
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55. Let X be a positive random variable having density function f(x). If
f(x) < c for all x, show that, for a > 0,

PiX>alz1-ac

*56. Calculate, without using moment generating functions, the variance
of a binomial random variable with parameters n and p.

57. Suppose that X and Y are independent binomial random variables
with parameters (n, p) and (m, p). Argue probabilistically (no computations
necessary) that X + Y is binomial with parameters (n + m, D).

58. Suppose that X and Y are independent continuous random variables.
Show that

o0

P{X<Y}= S Fx)fy(y) dy

59. Let X,, X;, X3, and X, be independent continuous random variables
with a common distribution function F and let

p=P[X1<X2>X3<X4]

(a) Argue that the value of p is the same for all continuous distribution
functions F.

(b) Find p by integrating the joint density function over the appropriate
region.

(c) Find p by using the fact that all 4! possible orderings of X, ..., X,
are equally likely.

60. Calculate the moment generating function of the uniform distribution
on (0, 1). Obtain E[X] and Var[X] by differentiating.

61. Suppose that X takes on each of the values 1, 2, 3 with probability 1.
What is the moment generating function? Derive E[X1], E[X?], and E[X]
by differentiating the moment generating function and then compare the
obtained result with a direct derivation of these moments.

62. Suppose the density of X is given by

Ixe™™?, x>0
0, otherwise

Jx) = {

Calculate the moment generating function, E[X], and Var(X).

63. Calculate the moment generating function of a geometric random
variable.
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*64. Show that the sum of independent identically distributed exponential
random variables has a gamma distribution.

65. Consider Example 2.47. Find Cov(X;, Xj;) in terms of the a,,.

66. Use Chebyshev’s inequality to prove the weak law of large numbers.
Namely, if X;, X,, ... are independent and identically distributed with
mean 4 and variance ¢ then, for any ¢ > 0,

P{ X1+X2+"‘+Xn

n
67. Suppose that X is a random variable with mean 10 and variance 15.
What can we say about P{5 < X < 15}?

- u >s}—>0 asn— o

68. Let X, X,, ..., X, be independent Poisson random variable with
mean 1.

(i) Use the Markov inequality to get a bound on PiX, 4+ -+ X, 2 15).
(ii) Use the central limit theorem to approximate P{X; + - + X9 = 15).

69. If X is normally distributed with mean 1 and variance 4, use the tables
to find P{2 < X < 3].

*70. Show that

1
n—+w k=0 k! 2
Hint: Let X, be Poisson with mean n. Use the central limit theorem to
show that P{X, < n} —» %.

71. Let X denote the number of white balls selected when k balls are
chosen at random from an urn containing n white and m black balls.

(i) Compute P{X = i}.

(i) Let, fori=1,2,...,k;j=1,2,...,n,

{l, if the ith ball selected is white
X i~ .
0, otherwise

Y, =

J

1, if the jth white ball is selected
0, otherwise

Compute E[X] in two ways be expressing X first as a function of the X, s
and then of the ¥}’s.

*72. Show that Var(X) = 1 when X is the number of men that select their
own hats in Example 2.31.
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73. For the multinomial distribution (Exercise 17), let N; denote the
number of times outcome i occurs. Find

@) E[NV]
(i) Var(V;)
(iii) Cov(V;, N;)
(iv) Compute the expected number of outcomes which do not occur.

74. Let X,,X,, ... be a sequence of independent identically distributed
continuous random variables. We say that a record occurs at time »n if
X, > max(X;, ..., X,_1). That is, X, is a record if it is larger than each of
Xiyeeos Xp_1. Show

(i) P{a record occurs at time n} = 1/n
(ii) E[number of records by time n} = Y7_,1/i
(iii) Var(number of records by time n) = Y7_,( — 1)/i?
(iv) Let N=min{n:n> 1 and a record occurs at time n}. Show E[N] = .

Hint: For (ii) and (iii) represent the number of records as the sum of
indicator (that is, Bernoulli) random variables.

75. Leta, < a, < --- < a, denote a set of n numbers, and consider any
permutation of these numbers. We say that there is an inversion of g;
and g; in the permutation if i < j and a; precedes @;. For instance the
permutation 4, 2, 1, 5, 3 has 5 inversions—(4, 2), (4, 1), 4, 3), 2, 1), (5, 3).
Consider now a random permutation of a,,a,, ..., a,—in the sense that
each of the n! permutations is equally likely to be chosen—and let N denote
the number of inversions in this permutation. Also, let

N; = number of k: k < i, a; precedes a; in the permutation
and note that N = ¥Y7_| N,.

(i) Show that Ny, ..., N, are independent random variables.
(ii) What is the distribution of N;?
(iii) Compute E[N] and Var(N).

76. Let X and Y be independent random variables with means u, and U,
and variances o2 and oZ. Show that

Var(XY) = oi0; + 0% + ula;

77. Let X and Y be independent normal random variables each having
parameters u and . Show that X + Y is independent of X — Y.
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78. Let ¢(f;,...,t,) denote the joint moment generating function of
Xiseees Xp.

(a) Explain how the moment generating function of Xj, ¢x,(#), can be
obtained from (¢, ..., #,).

(b) Show that X, ..., X, are independent if and only if
¢(t1 yeeey tn) = ¢X1(t1) ot ¢X,,(tn)
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Chapter 3

Conditional Probability and
Conditional Expectation

“I.l..?’

3.1. Introduction

One of the most useful concepts in probability theory is that of conditional
probability and conditional expectation. The reason is twofold. First, in
practice, we are often interested in calculating probabilities and expectations
when some partial information is available; hence, the desired probabilities
and expectations are conditional ones. Secondly, in calculating a desired
probability or expectation it is often extremely useful to first ‘‘condition”
on some appropriate random variable.

3.2. The Discrete Case

Recall that for any two events E and F, the conditional probability of E
given F is defined, as long as P(F) > 0, by

P(EF)

P(F)

Hence, if X and Y are discrete random variables, then it is natural to define
the conditional probability mass function of X given that Y = y, by

Pxiy(x|y) = P{X = x|Y = y]
_PX=x,Y =y
- Py =y
_ X))
py()
91

P(E|F) =
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for all values of y such that P{Y = y} > 0. Similarly, the conditional
probability distribution function of X given that Y = y is defined, for all y
such that P{Y = y} > 0, by

Fyy(x|y) = P(X < x|Y = y}
= E thy(a|J’)

asx

Finally, the conditional expectation of X given that Y = y is defined by
EX|Y=yl= ¥ xP{X=x|Y =)

x

= Y xpx|y(x|y)

In other words, the definitions are exactly as before with the exception
that everything is now conditional on the event that Y = y. If X is
independent of Y, then the conditional mass function, distribution, and
expectation are the same as the unconditional ones. This follows, since if X
is independent of Y, then

Pxjy(x|y) = P{X = x|Y = y}
P{X =x,Y =y}
P{Y = y}
_ PX =x}P{Y = y}
P{Y = y}
= P{X = x}

Example 3.1 Suppose that p(x, y), the joint probability mass function
of X and Y, is given by

p(1,1) = 0.5, p(1,2) =0.1, p2,1)=0.1, p2,2)=10.3
Calculate the probability mass function of X given that Y = 1.

Solution: We first note that
py() = ¥ p(x, 1) = p(1,1) + p2,1) = 0.6
Hence,
pxiyD)=PX=1|Y=1)
_PX=1Y=1
T PiY=1
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Similarly,
p2,1)

1
=~ @
py() 6

Pxiy(2|1) =

Example 3.2 If X and Y are independent Poisson random variables
with respective means A, and 4,, then calculate the conditional expected
value of X given that X + Y = n.

Solution: Let us first calculate the conditional probability mass
function of X given that X + ¥ = n. We obtain

PIX=k,X+Y=n
PX=k|X+Y=n= {HX+Y=M )

_PX=k,Y=n-k
T PIX+Y-=n

_PIX=KP{Y=n-k
B P(X +Y = n}

where the last equality follows from the assumed independence of X and
Y. Recalling (see Example 2.36) that X + Y has a Poisson distribution
with mean 4, + A,, the preceding equation equals

e MAf ek [e‘o‘l“‘l)(,ll + )Lz)"] -

PX=k|X+Y=n]= K ol ol

. n! Akag-k
(- k(A + A

NAYARTIR VAR "I
IRV FAVEEE N AVERTR

In other words, the conditional distribution of X given that X + Y = n,
is the binomial distribution with parameters n and A,/(4; + 4,).
Hence,

A

EX|X+Y=n =
X|X+Y=n "t

L 4

Example 3.3 If X and Y are independent binomial random variables
with identical parameters n and p, calculate the conditional probability
mass function of X given that X + Y = m.
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Solution: For k < min(n, m),
P X=kX+Y=m)
PX +Y=mj
_PX=k,Y=m— k]
P{X +Y=m]
_PX=kPlY=m -k}
PiX +Y = m}

n k n~k n m-key _ \n—m+k
<k>p d-p (m _ k>p 1-p

2n meq 2n—-m
< m>p a-p

where we have used the fact (see Example 2.44) that X + Y is binomially
distributed with parameters (2n, p). Hence, the conditional probability
mass function of X given that X + Y = m is given by

n n
k/)\m—-k .
—_— k=0,1,..., min(m, n)
2n
< m) 3.1
The distribution given in Equation (3.1) is known as the hypergeometric
distribution. It arises as the distribution of the number of black balls that

are chosen when a sample of m balis is randomly selected from an urn
containing n white and » black balls. ¢

PX=k|X+Y=m)=

PIX=k|X+Y=m}=

Example 3.4 Consider an experiment which results in one of three
possible outcomes. Outcome i occurring with probability p;, i = 1,2,3,
Y3_,p: = 1. Suppose that n independent replications of this experiment
are performed and let X;, i = 1, 2, 3, denote the number of times outcome
i appears. Determine the conditional distribution of X, given that X, = m.

Solution: Fork<n-m,
PiX, = k, X, = m}
P{X, = m}
Now if X; = kand X, = m, then it follows that X; = n — k — m. However,
PX,=k,X,=m,X;=n—-k - mj
n!
T kKtml(n — k — m)!

PiX, = k|X,=m}=

prpypst ™ (3.2
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This follows since any particular sequence of the n experiments having

outcome 1 appearing k times, outcome 2 m times, and outcome 3

(n — k — m) times has probability p¥p7'p{"~¥=™ of occurring. Since there

are n!/[k!m!(n — k — m)!] such sequences, Equation (3.2) follows.
Therefore, we have

n!

N k, m_(n—k—m)
D1DP2 D3
k'mi(n — k — m)!
P{X1=k|X2=m]= oy
* m 1 — n-m
——m!(n—m)!pZ( P2)

where we have used the fact that X, has a binomial distribution with
parameters # and p,. Hence,

(n _ m)' p k p n-m—-k
P = K|X, = m) = kin — m — k)! <1 —lpz> <1 —3p2>

or equivalently, writing p; = 1 — p, — p,,

n-—m k n-m—-k
P =i =m = () (7 25) (- 725)

In other words, the conditional distribution of X, given that X, = m, is
binomial with parameters n — m and p,/(1 — p;). &

Remarks (i) The desired conditional probability in Example 3.4 could
also have been computed in the following manner. Consider the n — m
experiments which did not result in outcome 2. For each of these
experiments, the probability that outcome 1 was obtained is given by

Pioutcome 1, not outcome 2}
Pf{not outcome 2}

=P
1-p,

P{outcome 1|not outcome 2} =

It therefore follows that, given X, = m, the number of times outcome 1
occurs is binomially distributed with parameters n — m and p,/(1 — p,).

(ii) Conditional expectations possess all of the properties of ordinary
expectations. For instance, such identities as

E[ ) Xi|Y=}’] = Y EX;|Y = )]

i=1 i=1

remain valid.
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Example 3.5 Consider n + m independent trials, each of which results
in a success with probability p. Compute the expected number of successes
in the first n trials given that there are k successes in all.

Solution: Letting Y denote the total number of successes, and

1, if the ith trial is a success
X i = .
0, otherwise

the desired expectation is E[Y7_; X;|Y = k] which is obtained as

E[é::X,-IY= k]

f:E[XiIY= k]
1

k
n
n+m

where the last equality follows since if there are a total of k successes,
then any individual trial will be a success with probability k/(n + m).
That is,

E[X;|Y = k] = P{X; = 1|Y = k}

k
n+m

3.3. The Continuous Case

If X and Y have a joint probability density function f(x, y), then the
conditional probability density function of X, given that Y = y, is defined
for all values of y such that fi-(») > 0, by

J(x, ¥)
()

To motivate this definition, multiply the left side by dx and the right side by
(dxdy)/dy to get

fle(x|y) =

J(x, y)dx dy

Jr(»)dy
_PxsX=x+dx,y<Y=y+dy
N Ply<Y=<y+dy)

Sxiy(x|y)dx =

=Px=sX=<sx+dx|lysY=<y+dy
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In other words, for small values dx and dy, fX|y(x| ) dx represents the
conditional probability that X is between x and x + dx given that Y is
between y and y + dy.

The conditional expectation of X, given that Y = y, is defined for all
values of y such that fy(y) > 0, by

E[X|Y=y]=S

«©

xfxy(x|y) dx

Example 3.6 Suppose the joint density of X and Y is given by

6xy(2 — x — y), O0<x<1l,0<y<1
0, otherwise

Jx,y) = [

Compute the conditional expectation of X given that Y = y, where
O<y< 1.

Solution: We first compute the conditional density
J&, )
Fr»)

6xy(2 — x — y)
N [66xp(2 — x — y)dx
_bxy(2 - x - )
T 4 -3y)
_6x2-x—-y)

4 -3y

Sriytx|y) =

Hence,

1 2 _ _
EX|Y =] = S 6x%Q2 — x — y)dx
(4]

Example 3.7 Suppose the joint density of X and Y is given by

4y(x — y)e ¢, O0<x<ow,0<sy=<x
0, otherwise

Jx, ) = {

Compute E[X|Y = y].
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Solution: The conditional density of X, given that Y = ¥, is given by

J(x,)

Sy ()

_ Ay(x — p)e &

B I 4y — p)e~ & ax’

fxly(x|}’) =

x>y

)
TP - y)e " ax

_ = per
Iy — ye*dx

Integrating by parts shows that the above gives

frrtrly) = E=E

==, x>y
Therefore,

L

EX|Y =y] = S Xfx )y (x| y) dx

= j x(x — y)e~* M dx
y
Integration by parts yields

E[X|Y = y] = —x(x = y)e ¢ | + j (2x — y)e™* dx

¥y y

«©

2x — Y)e N gx

y

-Q2x - y)e—(x—y)

o -]
+ 2] e ¥ gy
y y

=y+2 @
Example 3.8 The joint density of X and Y is given by

1ye™@, O0<x<eo,0<y<?2
0, otherwise

Jx, ) = {

What is E[e*?|Y = 1]?
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Solution: The conditional density of X, given that Y = 1, is given by

S
fx[y(xl 1) = _———_fy(l)

e

= =e
fote > dx

-X

Hence, by Proposition 2.1,

E[eX/2|Y= 1] = Smexnfxw(x“)dx
0

oo

= S e’%e " dx
0

=2

*

3.4. Computing Expectations by Conditioning

Let us denote by E[X|Y] that function of the random variable Y whose
value at Y =y is E[X]|Y = y]. Note that E[X|Y] is itself a random
variable. An extremely important property of conditional expectation is
that for all random variables X and Y

E(X] = EIEIX|Y]] (3.3)
If Y is a discrete random variable, then Equation (3.3) states that
E[X] = Y E[X|Y = yIP{Y = )} (3.3a)
y
while if Y is continuous with density f+(»), then Equation (3.3) says that
E[X] = S ELX|Y = y1fy(») dy (3.3b)

We now give a proof of Equation (3.3) in the case where X and Y are both
discrete random variables.

Proof of Equation (3.3) When X and Y Are Discrete We must
show that

E(X] = X EIX|Y = )IP[Y =} (3.4)
¥y
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Now, the right side of the preceding can be written

LEXIY=)IPY =y} = T T xP(X = x|Y = y)P(Y = y}
¥y y x

=L gxP{XPTYx;);; 2P =)
=Y ?xP{X=x,Y=y]

= %XE:P{X=X,Y=}']

= L#PX = 4

= E[X]

and the result is obtained. ¢

One way to understand Equation (3.4) is to interpret it as follows.
It states that to calculate E[X] we may take a weighted average of the
conditional expected value of X given that Y = y, each of the terms
E[X|Y = y] being weighted by the probability of the event on which it
is conditioned.

The following examples will indicate the usefulness of Equation (3.3).

Example 3.9 Sam will read either one chapter of his probability book or
one chapter of his history book. If the number of misprints in a chapter of
his probability book is Poisson distributed with mean 2 and if the number
of misprints in his history chapter is Poisson distributed with mean 5, then
assuming Sam is equally likely to choose either book, what is the expected
number of misprints that Sam will come across?

Solution: Letting X denote the number of misprints and letting

Yy - 1, if Sam chooses his history book
~ {2, if Sam chooses his probability book

then
E[X] = E[X|Y = 11P{Y = 1} + E[X|Y = 2]P{Y = 2}
=50) + 29
2

N
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Example 3.10 (The Expectation of the Sum of a Random Number of
Random Variables): Suppose that the expected number of accidents per
week at an industrial plant is four. Suppose also that the numbers of
workers injured in each accident are independent random variables with a

common mean of 2. Assume also that the number of workers injured in

each accident is independent of the number of accidents that occur. What
is the expected number of injuries during a week?

Solution: Letting N denote the number of accidents and X; the number
injured in the ith accident, i/ = 1, 2, ..., then the total number of injuries
can be expressed as ¥, X;. Now

] -of o]

= E[ ¥ X,-] by the independence of X; and N

1
= nE[X]
which yields that
N
E[ ¥ X,.|N] = NE[X]
i=1
and thus
N
E [ ) X.-] = E[NE[X]] = E[N]E[X]
i=1

Therefore, in our example, the expected number of injuries during a week
equals4x2 =8. @

Example 3.11 (The Mean of a Geometric Distribution): A coin, having
probability p of coming up heads, is to be successively flipped until the first
head appears. What is the expected number of flips required?

Solution: Let N be the number of flips required, and let

Y- 1, if the first flip results in a head
~ {0, if the first flip results in a tail
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Now
E[N] = E[N|Y = 1]P{Y = 1} + E[N|Y = 0]P{Y = 0}
= pE[N|Y = 1] + (1 - P)E[N|Y = 0] (3.5)
However,
EIN|Y =1] =1, E[N|Y =0] = 1 + E[N] 3.6)

To see why Equation (3.6) is true, consider E{N|Y = 1]. Since Y = 1, we
know that the first flip resulted in heads and so, clearly, the expected
number of flips required is 1. On the other hand if ¥ = 0, then the first
flip resulted in tails. However, since the successive flips are assumed
independent, it follows that, after the first tail, the expected additional
number of flips until the first head is just E[N]. Hence E INlY=0] =
1 + E[N]. Substituting Equation (3.6) into Equation (3.5) yields

EIN] =p+ (1 - p)(1 + E[N))
or
ENl=1/p &

Because the random variable NV is a geometric random variable with prob-
ability mass function p(n) = p(1 - p)*~}, its expectation could easily have
been computed from E[N] = YT np(n) without recourse to conditional
expectation. However, if the reader attempts to obtain the solution to our
next example without using conditional expectation, he will quickly learn
what a useful technique ‘‘conditioning’’ can be.

Example 3.12 A miner is trapped in a mine containing three doors. The
first door leads to a tunnel which takes him to safety after two hours of
travel. The second door leads to a tunnel which returns him to the mine
after three hours of travel. The third door leads to a tunnel which returns
him to his mine after five hours. Assuming that the miner is at all times
equally likely to choose any one of the doors, what is the expected length of
time until the miner reaches safety?

Solution: Let X denote the time until the miner reaches safety, and let
Y denote the door he initially chooses. Now
E[X] = E[X|Y = 1]P{Y = 1} + E[X]|Y = 2]P{Y = 2)
+ E[X|Y = 3]P{Y = 3}
= HE[X|Y = 1] + E[X|Y = 2] + E[X|Y = 3D
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However,
EX|Yy=1=2

E[X|Y = 2] =3 + E[X]
E[X|Y =3] =5 + E[X] 3.7

To understand why the above is correct consider, for instance,
E[X]Y = 2], and reason as follows. If the miner chooses the second
door, then he spends three hours in the tunnel and then returns to
his cell. But once he returns to his cell the problem is as before, and
hence his expected additional time until safety is just E[X]. Hence
E[X|Y = 2} = 3 + E[Y]. The argument behind the other equalities in
Equation (3.7) is similar. Hence

EiX] =42 +3 + E[X] + 5 + E[X)) or EX]=10 &

Example 3.13 (The Matching Rounds Problem): Suppose in Example
2.31 that those choosing their own hats depart, while the others (those
without a match) put their selected hats in the center of the room, mix them
up, and then reselect. Also, suppose that this process continues until each
individual has his or her own hat.

(a) Find E[R,] where R, is the number of rounds that are necessary when
n individuals are initially present.

(b) Find E[S,] where S, is the total number of selections made by the n
individuals, n = 2.

(c) Find the expected number of false selections made by one of the n
people, n = 2.

Solution: (a) It follows from the results of Example 2.31 that no matter
how many people remain there will, on average, be one match per round.
Hence, one might suggest that E[R,] = n. This turns out to be true,
and an induction proof will now be given. Because it is obvious that
E[R,] = 1, assume that E[R;] = k for k = 1,...,n — 1. To compute
E[R,], start by conditioning on X,,, the number of matches that occur in
the first round. This gives

E[R,] = i E[R,| X, = i]P{X, = i}
i=0

Now, given a total of i matches in the initial round, the number of rounds
needed will equal 1 plus the number of rounds that are required when
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n — i persons are to be matched with their hats. Therefore,

E[R,] = i (1 + E[R,_]DPLX, = i}
i=0

n

1+ E[R,)P(X, = 0} + ¥ E[R,_,JPX, = i}
i=1

i=

= 1 + E[R,)P{X, = 0} + )n: (n — DHPX, = i}

i=1
by the induction hypothesis

1 +E[R,]P(X, = 0} + n(1 — P{X, = 0)) — E[X,]
= E[R,]P(X, = 0} + n(1 — P{X, = 0))

where the final equality used the result, established in Example 2.31, that
E[X,] = 1. Since the preceding equation implies that E[R,] = n, the
result is proven.

(b) For n = 2, conditioning on X,, the number of matches in round 1,
gives

E[S,] i E[S,| X, = i|P(X, = i}
i=0

i=

i (n + E[S,_;DP{X, = i}
i=0

n+ i E[S,_i|PX, = i}
i=0

where E[Sy] = 0. To solve the preceding equation, rewrite it as
E[S,] = n + E[S,_x,]

Now, if there were exactly one match in each round, then it would take
atotal of 1 +2 + --- + n = n(n + 1)/2 selections. Thus, let us try a
solution of the form E[S,] = an + bn®. For the preceding equation to be
satisfied by a solution of this type, for n = 2, we need

an + bn* = n + Ela(n — X,) + b(n — X,)?]
or, equivalently,

an + bn* = n + a(n — E[X,]) + b(n* - 2nE[X,] + E[X2])
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Now, using the results of Example 2.31 and Exercise 72 of Chapter 2 that
E[X,] = Var(X,) = 1, the preceding will be satisfied if

an + bn®> =n +an — a + bn® — 2nb + 2b
and this will be valid provided that b = 1/2, a = 1. That is,
E[S,] = n + n*/2

satisfies the recursive equation for E [S.].

The formal proof that E[S,) =n + n*/2, n=2, is obtamed by
induction on n. It is true when n = 2 (since, in this case, the number of
selections is twice the number of rounds and the number of rounds is a
geometric random variable with parameter p = 1/2). Now, the recursion
gives that

E[S,] = n + E[S,]P{X, = 0] + i E[S,-i]P(X, = i}

i=1

Hehce, upon assuming that E[S,] = E[S,] =0, E[S;] =k + k*/2, for
k=2,...,n— 1 and using that P{X, = n — 1} = 0, we see that

n + E[S,]P{X, = 0] + Z [n—i+ (n—i)P22P{X, = i}
i=1

n + E[S,]P{X, = 0) + (n + n*/2)(1 — P{X,, = 0})
—(n + DE[X,] + E[X?2/2

E[S,]

Substituting the identities E[X,] = 1, E[X?] = 2 in the preceding shows
that ’

E[S,] = n + n*/2
and the induction proof is complete.

(¢) If we let C; denote the number of hats chosen by person j,
Jj=1,...,nthen

Taking expectations, and using the fact that each C; has the same mean,
yields the result

E[C;] = E[S,)/n =1+ n/2
Hence, the expected number of false selections by person j is

E[C;- 1] =n/2. &



106 3 Conditional Probabllity and Conditional Expectation

Example 3.14 Independent trials, each of which is a success with
probability p, are performed until there are k consecutive successes. What
is the mean number of necessary trials?

Solution: Let N, denote the number of necessary trials to obtain k
consecutive successes, and let M, denote its mean. We will obtain a
recursive equation for M, by conditioning on N, _,, the number of trials
needed for k — 1 consecutive successes. This yields

M, = E[Ni] = E[E[Ng|N;_1l]

Now,
E[Ni|Ngoyl = Nioy + 1+ (1 = pE[N]

where the above follows since if it takes N,_, trials to obtain k — 1
consecutive successes, then either the next trial is a success and we
have our k in a row or it is a failure and we must begin anew. Taking
expectations of both sides of the above yields

Mk = Mk—l +1+ (l —P)Mk
or

1 M,

M, =+
K p  p

Since N, the time of the first success, is geometric with parameter D,
we see that

w1
p
and, recursively
1 1
M, = -+ =,
2 P p2
1 1 1
My=—+—S+—
p PP
and, in general,
1 1 i
Mi=-+=+--+—5 @
“Tp P p*
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Example 3.15 (Analyzing the Quick-Sort Algorithm): Suppose we are
given a set of n distinct values—xy, ..., X,—and we desire to put these
values in increasing order or, as it is commonly called, to sort them.
An efficient procedure for accomplishing this is the quick-sort algorithm
which is defined recursively as follows: When n = 2 the algorithm compares
the 2 values and puts them in the appropriate order. When n > 2 it starts
by choosing at random one of the n values—say, x;—and then compares
each of the other n — 1 values with x;, noting which are smaller and which
are larger than x;. Letting S; denote the set of elements smaller than x;,
and §; the set of elements greater than x;, the algorithm now sorts the
set S; and the set S;. The final ordering, therefore, consists of the ordered
set of the elements in S;, then x;, and then the ordered set of the elements
in §,. For instance, suppose that the set of elements is 10, 5, 8, 2, 1, 4, 7.
We start by choosing one of these values at random (that is, each of the
7 values has probability of 4 of being chosen). Suppose, for instance, that
the value 4 is chosen. We then compare 4 with each of the other 6 values
to obtain

{2,1},4,110,5,8,7)
We now sort the set {2, 1} to obtain
1,2,4,{10,5,8,7}

Next we choose a value at random from {10, 5, 8, 7}—say, 7 is chosen—and
compare each of the other 3 values with 7 to obtain

1,2,4,5,7,{10, 8}
Finally, we sort {10, 8} to end up with
1,2,4,5,7,8,10

One measure of the effectiveness of this algorithm is the expected number
of comparisons that it makes. Let us denote by M, the expected number of
comparisons needed by the quick-sort algorithm to sort a set of n distinct
values. To obtain a recursion for M,, we condition on the rank of the initial
value selected to obtain:

n

. .. 1
M, = ¥ E[number of comparisons|value selected is jth smallest] ~

Jj=1

Now if the initial value selected is the jth smallest, then the set of values
smaller than it is of size j — 1, and the set of values greater than it is of size
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n — j. Hence, as n — 1 comparisons with the initial value chosen must be
made, we see that :

- 1
M,=Y (n—1+M_, +M, )~
j=1 n

n-1

o n=
n—-1+-= Y M, (since M, = 0)
ng=y

or, equivalently,

n-1
nM,=nn-1)+2Y M,
k=

1
To solve the preceding, note that upon replacing 7 by n + 1 we obtain

n
M+ DMy, =(n+Dn+2 Y M,
k=1

Hence, upon subtraction,

(n+ D)M,,, — nM, = 2n + 2M,
or

(n+ DM, =(n+2)M, + 2n
Therefore,

M, 2n M,

n+2 EDn+d) nrl

Iterating this gives

M., _ 2n . 2m-1 M,
n+2 (m+Dn+2) nn+1) n

n-1 n—k
2
kgo (n+ 1 - k)(n +2_k)

since M; = 0

Hence,

M, —2(n+2)n2_:1 n— k
ml ko +1—-kn+2-k

. .
=2n+2) ¥ d nel

i+ DI+ 2’
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Using the identity i/(i + 1)(i + 2) = 2/(i + 2) — 1/(i + 1), we can approxi-
mate M, , for large n as follows:

My =20 +2| T e = T — ]

i1i+2 i+
B n+22 n+11

~2(n+2) X —dx—s —dx]
| Js X 2 X

= 2(n + 2)[2log(n + 2) — log(n + 1) + ‘log2 — 2log 3]

2
= 2(n + 2) login +2) + log 2-F

n+1

+ log2 — 210g3]
~2(n+2)logn +2) &

The conditional expectation is often useful in computing the variance of

a random variable. In particular, we have that
Var(X) = E[X?] - (E[X])
= E[E[X*|Y]] - (EIEIX|Y]]))

Example 3.16 (The Variance of a Random Number of Random
Variables): In Example 3.10 we showed that if X, X,, ... are independent

and identically distributed, and if NV is a nonnegative integer valued random
variable independent of the X’s, then

N
E[ Y X,] = E[N]E[X]

i=1

What can we say about Var(Y7_, X;)?

(gl ()]G 5] on

To compute each of the individual terms, we condition on N:

e (£9)] - = (£ )]

Now, given that N = n, (Y., X;)? is distributed as the square of the
sum of n independent and identically distributed random variables.

Solution:
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Hence, using the identity E[Z?] = Var(2) + (E(Z])?, we have that
N 2 n n 2
i=1 i=1 i=1

= nVar(X) + (nE[X])?
Therefore,
N 2
5l (£x)
i=1

Taking expectations of both sides of the above equation yields that

N] = N Var(X) + N¥E[X])?

N 2
E[( Yy X,.) ] = E[N] Var(X) + E[N*|(E[X))?
i=1

Hence, from Equation (3.8) we obtain
N N 2
Var( ¥y X,-> =FE[N] Var(X) + E[NZ](E[X])2 — (E[ )) X,])
i=1 i=1

= E[N]Var(X) + EIN*(E[X])* - (E[N]E[X])?
= E[N]Var(X) + (E[X]D*E[N?] - (EIN])?
= E[N] Var(X) + (E[X])? Var(N) ¢

Example 3.17 (Variance of the Geometric Distribution): Independent
trials, each resulting in a success with probability p, are successively
performed. Let N be the time of the first success. Find Var(N).

Solution: Let Y = 1 if the first trial results in a success, and Y = 0
otherwise.

Var(N) = E(N?) - (E[N))*
To calculate E[N?] and E[N] we condition on Y. For instance,
E[N?] = E[EIN?|Y1]]
However,
EIN*|lY =1} =1
E[N?|Y = 0] = E[(1 + N)}

These two equations are true since if the first trial results in a success,
then clearly N = 1 and so N2 = 1. On the other hand, if the first trial
results in a failure, then the total number of trials necessary for the first
success will equal one (the first trial that results in failure) plus the
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necessary number of additional trials. Since this latter quantity has the
same distribution as N, we get that E[N?|Y = 0] = E[(1 + N)*]. Hence,
we see that

E[N? = E[N?|Y = 1]P{Y = 1} + E[N?|Y = 0JP{Y = 0}
=p + E[(1 + NYI1 - p)
=1+ (1 - pE[2N + N}
Since, as was shown in Example 3.11, E[N] = 1/p, this yields

2(1

EINY1 =1+ —-p_—p) + (1 — p)E[N?

or
2 —
E[N? = Tz’i
Therefore,
Var(N) = E[N?] — (EIN]

3.5. Computing Probabilities by Conditioning

Not only can we obtain expectations by first conditioning on an appropriate
random variable, but we may also use this approach to compute prob-
abilities. To see this, let E denote an arbitrary event and define the indicator
random variable X by

X = 1, if E occurs
~ 0, if E does not occur

It follows from the definition of X that
E[X] = P(E),
E[X|Y =y = P(E|Y=1y), for any random variable Y
Therefore, from Equations (3.3a) and (3.3b) we obtain
P(E) = Y PE|Y = y)P(Y = ), if Y is discrete
¥y

= S PE|Y = »fi()dy, if Y is continuous
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Example 3.18 Suppose that X and Y are independent continuous
random variables having densities f, and Jy, respectively. Compute
PiX <Y].

Solution: Conditioning on the value of ¥ yields

o

PX < Y|Y = y)fy(») dy

P{X < Y}=j

j CPX <y|Y = Yfy() dy

-0

1l

j P{X <y} fy(»)dy

= j Ex(»)fy(y)dy

where

y
Fx()’)'—‘j Sx(x)dx &

Example 3.19 Suppose that X and Y are independent continuous
random variables. Find the distribution of X + Y.

Solution: By conditioning on the value of ¥ we obtain

o

P X+Y<a)= j P{X +Y<alY =y fy(y)dy

-0

_ j PIX +y <alY¥ = /() dy

j P{X < a -yl fy(y)dy

= j Fx(@a - »fr()dy &

Example 3.20 Each customer who enters Rebecca’s clothing store will
purchase a suit with probability p. If the number of customers entering the
store is Poisson distributed with mean A, what is the probability that
Rebecca does not sell any suits?
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Solution: Let X be the number of suits that Rebecca sells, and let N
denote the number of customers who enter the store. By conditioning on
N we see that

P{X = 0}

P{X = 0|N = n}P{N = n}

X
(=]

0118 118

o

P{X = 0|N = n}e™*A"/n!

k]

Now, given that n customers enter the store, the probability that Rebecca
does not sell any suits is just (1 — p)". That is, P{X = 0|N = n} =
(1 — p)". Therefore,

o (1 _ )n —)\ln
E ~ &7
Y E “aa -py* -p))"

P{X =0}

- e—xex(l—p)

=e™ ¢
Example 3.20 (continued) What is the probability that Rebecca sells
k suits?
Solution:

P(X=k}= Y P{X = k|N = n}e*A"/n!

n=0

Now, given that N = n, X has a binomial distribution with parameters »
and p. Hence,

n k _ n—k
P(X = k|N =n} = (k>1’(1 Y n=zk

0, n<k

: pr - pyre A"
g < > n!
>

n!  (Ap*AQ - p)re™
nek (n = k)k! n!

e0pt 5 G0 - pyt
k! .2 -k

so that

P{X = k)
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2@p)* & 4a - py
= ,.§o i

= e (lp)k M1-P)
k!

e (Ap)*
k!

In other words, X has a Poisson distribution with mean Ap. ¢

Example 3.21 (The Best Prize Problem): Suppose that we are to be
presented with » distinct prizes in sequence. After being presented with a
prize we must immediately decide whether to accept it or reject it and
consider the next prize. The only information we are given when deciding
whether to accept a prize is the relative rank of that prize compared to ones
already seen. That is, for instance, when the fifth prize is presented we learn
how it compares with the first four prizes already seen. Suppose that once
a prize is rejected it is lost, and that our objective is to maximize the
probability of obtaining the best prize. Assuming that all n! orderings of the
prizes are equally likely, how well can we do?

Solution: Rather surprisingly, we can do quite well. To see this, fix a
value k, 0 < k < n, and consider the strategy that rejects the first k prizes
and then accepts the first one that is better than all of those first k. Let
Py (best) denote the probability that the best prize is selected when this
strategy is employed. To compute this probability, condition on X, the
position of the best prize. This gives

P, (best) = zn: P (best| X = HPX = i)

i=1

N |-

Y P.(best| X = i)
i=1

Now, if the overall best prize is among the first k, then no prize is ever
selected under the strategy considered. On the other hand, if the best prize
isin position 7, where i > k, then the best prize will be selected if the best of
the first & prizes is also the best of the first i — 1 prizes (for then none of the
prizes in positions kK + 1, k + 2,...,i — 1 would be selected). Hence,
we see that

P.(best| X = i) = 0, ifisk
Pc(best | X = i) = P{best of first i — 1 is among the first k}
= k/(i — 1), ifi>k
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From the preceding, we obtain that
“ 1

k
Pk(best) = ; ) ; . i—1
i=k+

J, e
=)
®

ll

X NI =

<}
®

—
=}
2]

R

Now, if we consider the function

glx) = — log :)

g'x) = —los<> %

g'(x) =0=log(n/x) =1=x=n/e

then

and so

Thus, since P.(best) = g(k), we see that the best strategy of the type
considered is to let the first n/e prizes go by and then accept the first one
to appear that is better than all of those. In addition, since g(n/e) = 1/e,
the probability that this strategy selects the best prize is approximately
1/e = 0.36788.

Remark Most students are quite surprised by the size of the probability
of obtaining the best prize, thinking that this probability would be close to
0 when n is large. However, even without going through the calculations, a
little thought reveals that the probability of obtaining the best prize can be
made to be reasonably large. Consider the strategy of letting half of the
prizes go by, and then selecting the first one to appear that is better than all
of those. The probability that a prize is actually selected is the probability
that the overall best is among the second half and this is 1/2. In addition,
given that a prize is selected, at the time of selection that prize would have
been the best of more than n/2 prizes to have appeared, and would thus
have probability of at least 1/2 of being the overall best. Hence, the strategy
of letting the first half of all prizes go by and then accepting the first one
that is better than all of those prizes results in a probability greater than 1/4
of obtaining the best prize. @



116 3 Conditional Probabllity and Conditional Expectation

Example 3.22 At a party n men take off their hats. The hats are then
mixed up and each man randomly selects one. We say that a match occurs
if a man selects his own hat. What is the probability of no matches? What
is the probability of exactly k matches?

Solution: Let E denote the event that no matches occur, and to make
explicit the dependence on n, write P, = P(E). We start by conditioning
on whether or not the first man selects his own hat—call these events M
and M°. Then

B, = P(E) = P(E|M)P(M) + P(E|M)P(M°).

Clearly, P(E|M) = 0, and so
n-1

P, = P(E|M°) (3.9

Now, P(E|M°) is the probability of no matches when n — 1 men select
from a set of n — 1 hats that does not contain the hat of one of these
men. This can happen in either of two mutually exclusive ways. Either
there are no matches and the extra man does not select the extra hat
(this being the hat of the man that chose first), or there are no matches
and the extra man does select the extra hat. The probability of the first of
these events is just P,_,, which is seen by regarding the extra hat as
“belonging’” to the extra man. As the second event has probability
[1/(n — D)P,_,, we have

1
PE|M) = P,y + ——P, ,
and thus, from Equation (3.9)
n-1 1
Pn= Pn—1+_Pn—2
n
or, equivalently,
1
Pn _Pn—l = _;(Pn—l _Pn—z) (3-10)

However, as P, is the probability of no matches when 7 men select among
their own hats, we have

P, =0, P2='2L
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and so, from Equation (3.10),

P,-P) 1 1 1
PB-h=-—F—"="5 o B=5-
__B-p) 1 1 1 1
Pomh=-"m7=n o By aty
and, in general, we see that
1 1 1 -1
TR TR TR

To obtain the probability of exactly k matches, we consider any fixed
group of k men. The probability that they, and only they, select their own
hats is

1 1 1 _(n = k)
nn—1 n—(k=1)""*" v "k

where P,_, is the conditional probability that the other n — k men,
. n
selecting among their own hats, have no matches. As there are < k>

choices of a set of k men, the desired probability of exactly k matches is
1 1 _1\n—k
11, e
P, 20 3! (n — k)!

k! k!

which, for n large, is approximately equal to e™!/k!. @

Example 3.23 (The Ballot Problem): In an election, candidate A4
receives n votes, and candidate B receives m votes where n > m. Assuming
that all orderings are equally likely, show that the probability that A is
always ahead in the count of votes is (n — m)/(n + m).

Solution: Let P, , denote the desired probability. By conditioning on
which candidate receives the last vote counted we have

P, . = P{A always ahead | A receives last vote}

n+m

+ P{A always ahead | B receives last vote}
n+m

Now given that A receives the last vote, one can see that the probability
that A is always ahead is the same as if 4 had received a total of n — 1
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and B a total of m votes. Because a similar result is true when we are
given that B receives the last vote, we see from the above that

n

m
Pn,m = mPn-l,m + m + nPn,m—-l (3-11)

We can now prove that P, ,, = (n — m)/(n + m) by induction on n + m.
As it is true when n+ m =1, i.e., P, o =1, assume it whenever
n+ m = k. Then whenn + m = k + 1, we have by Equation (3.11) and
the induction hypothesis that

n n—-1-m m n—-m+1
"n+mn-1+m m+nn+m-1

n,m

n—-m
n+m

and the result is proven. ¢

The ballot problem has some interesting applications. For example,
consider successive flips of a coin which always land on ‘‘heads’’ with prob-
ability p, and let us determine the probability distribution of the first time,
after beginning, that the total number of heads is equal to the total number
of tails. The probability that the first time this occurs is at time 21 can be
obtained by first conditioning on the total number of heads in the first 2»
trials. This yields

Pffirst time equal = 2n}
. e o 2
= Pf{first time equal = 2n|n heads in first 2n}( :) "1 - p)

Now given a total of n heads in the first 2n flips, one can see that all possible
orderings of the n heads and n tails are equally likely, and thus the
preceding conditional probability is equivalent to the probability that in an
election, in which each candidate receives n votes, one of the candidates is
always ahead in the counting until the last vote (which ties them). But by
conditioning on whomever receives the last vote, we see that this is just the
probability in the ballot problem when m = n — 1. Hence

Pffirst time equal = 2n} = P,,,,,_1<2:>,p"(1 -pr

2
( :)p"(l -p)"

- 2n -1




3.5. Computing Probabilities by Conditioning 119

Suppose now that we wanted to determine the probability that the first
time there are i more heads than tails occurs after the (27 + i)th flip. Now,
in order for this to be the case, the following two events must occur:

(a) The first 2n + i tosses result in n + i heads and » tails; and

(b) the order in which the n + i heads and n tails occur is such that the
number of heads is never i more than the number of tails until after the
final flip.

Now, it is easy to see that event (b) will occur if and only if the order of
appearance of the n + i heads and n tails is such that starting from the final
flip and working backwards heads is always in the lead. For instance, if
there are 4 heads and 2 tails (n = 2,/ = 2), then the outcome _ ~ TH
would not suffice because there would have been 2 more heads than tails
sometime before the sixth flip (since the first 4 flips resulted in 2 more heads
than tails).

Now, the probability of the event specified in (a) is just the binomial
probability of getting n + i heads and n tails in 2n + i flips of the coin.

We must now determine the conditional probability of the event specified
in (b) given that there are n + i heads and n tails in the first 2n + i flips. To
do so, note first that given that there are a total of n + i heads and 7 tails
in the first 2n + i flips, all possible orderings of these flips are equally
likely. As a result, the conditional probability of (b) given (a) is just the
probability that a random ordering of n + i heads and n tails will, when
counted in reverse order, always have more heads than tails. Since all
reverse orderings are also equally likely, it follows from the ballot problem
that this conditional probability is i/(2n + i).

That is, we have shown that

2 ] .
Pla) = < ": '>p"*'(1 - ",

and so

Pf{first time heads leads by i is after flip 2n + i}

2n 4+ i\ o
=< n )p (-p

2n + i



120 3 Conditional Probabllity and Conditional Expectation

Example 3.24 Let Uy, U,, ... be a sequence of independent uniform
(0, 1) random variables, and let

N=minfn =2:U, > U,_,}
and
M=minfn=21:U, + --- + U, > 1}

That is, N is the index of the first uniform random variable that is larger
than its immediate predecessor, and M is the number of uniform random
variables whose sum we need to exceed 1. Surprisingly, N and M have the
same probability distribution, and their common mean is e!

Solution: 1t is easy to find the distribution of N. Since all n! possible
orderings of Uy, ..., U, are equally likely, we have

PIN>n}=PU >U,>-->U,) = 1/n!

To show that P{M > n} = 1/n!, we will use mathematical induction.
However, to give ourselves a stronger result to use as the induction
hypothesis, we will prove the stronger result that for 0 < x < 1,
PM(x) > n} = x"/n!, n = 1, where

M) =minfn = 2:U; + --- + U, > x}

is the mean number of uniforms that need be summed to exceed x. To
prove that P{M(x) > n} = x"/n!, note first that it is true for n = 1 since

PM(x) > 1} = P[U} <=xj=x

So assume that for all 0 < x < 1, P{M(x) > n} = x"/n!. To determine
P{M(x) > n + 1}, condition on U, to obtain:

1

PMx)>n+ 1} = j PMx)>n+ 1|U, = y}dy
0

= rP{M(x) >n+ 1|U; = yldy
0

= ij[M(x - ¥)> n}dy
0

-y
n!

=Su—du

dy by the induction hypothesis

€y
=3

o n!

xn+l

CES)
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where the third equality of the preceding follows from the fact that given
U, = y, M(x) is distributed as 1 plus the number of uniforms that need be
summed to exceed x — y. Thus, the induction is complete and we have
shown that for0<x < 1,n =1,

P{M(x) > n} = x"/n!

Letting x = 1 shows that N and M have the same distribution. Finally, we
have that

-~

EM]=E[N]= Y PIN>n}= E I/nl=e¢ @
n=0

n=0

Example 3.25 Let X, X,,... be independent continuous random
variables with a common distribution function F and density f = F’, and
suppose that they are to be observed one at a time in sequence. Let

_ N = min{n = 2: X, = second largest of X}, ..., X,}
and let
M = min{n = 2: X, = second smallest of X,, ..., X,}

Which random variable Xy, the first random variable which when observed
is the second largest of those that have been seen, or X M the first one that
on observation is the second smallest to have been seen, tends to be larger?

Solution: To calculate the probability density function of X; Ny it i
natural to condition on the value of N; so let us start by determining its
probability mass function. Now, if we let

A; = {X; # second largest of X;,...,X;}), i=2

then, for n = 2,
PIN=n}= P(A,A, "'An—lAfl)

Since the X; are independent and identically distributed it follows that,
for any m = 1, knowing the ordering of the variables X, ..., X,, yields
no information about the set of m values {X,, ..., X,,}. That is, for
instance, knowing that X, < X, gives us no information about the values
of min(X, X;) or max(X;, X;). It follows from this that the events A;,
[ = 2 are independent. Also, since X; is equally likely to be the largest,
or the second largest, ..., or the ith largest of X; ..., X; it follows that
PlA;} = (i — 1)/i, i = 2. Therefore, we see that

123 n-21_ 1
234 n—ln_n(n—l)
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Hence, conditioning on N yields that the probability density function of
Xy is as follows:

Sy = L

n=2 meMN(xln)

Now, since the ordering of the variables X, ..., X, is independent of
the set of values {Xi,...,X,}, it follows that the event {N = n} is
independent of {X;, ..., X,}. From this, it follows that the conditional
distribution of X,y given that N = n is equal to the distribution of the
second largest from a set of # random variables having distribution F.
Thus, using the results of Example 2.37 concerning the density function
of such a random variable, we obtain that

hd 1

— n! n—-2
i@ = L oo ey P — Foo)

=fx)(1 - Fx)) ;0 Fe)'

= f(x)

Thus, rather surprisingly, X has the same distribution as X;, namely,
F. Also, if we now let W; = — X, i = 1, then W, will be the value of the
first W;, which on observation is the second largest of all those that have
been seen. Hence, by the preceding, it follows that W,, has the same
distribution as W;. That is, — X, has the same distribution as —X,, and
s0 X, also has distribution F! In other words, whether we stop at the
first random variable that is the second largest of all those presently
observed, or we stop at the first one that is the second smallest of all
those presently observed, we will end up with a random variable having
distribution F.

Whereas the preceding result is quite surprising, it is a special case of
a general result known as Ignatov’s theorem, which yields even more
surprises. For instance, for k = 1, let

N, = min{n = k: X, = kth largest of X, ..., X,;}

Therefore, N, is what we previously called /V and Xy, is the first random
variable that upon observation is the kth largest of all those observed up
to this point. It can then be shown by a similar argument as used in the
preceding that Xy, has distribution function F for all k (see Exercise 67
at the end of this chapter). In addition, it can be shown that the random
variables Xy,, k=1 are independent. (A statement and proof of
Ignatov’s theorem in the case of discrete random variables is given in
Section 3.6.4.) @
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The use of conditioning can also result in a more computationally
efficient solution than a direct calculation. This is illustrated by our next
example.

Example 3.26 Consider n independent trials in which each trial results
in one of the outcomes 1,..., k with respective probabilities p,, ..., px,
Y% 1 p; = 1. Suppose further that n > k, and that we are interested in
determining the probability that each outcome occurs at least once. If we let
A; denote the event that outcome i does not occur in any of the n trials, then
the desired probability is 1 — P({U%_, A4;), and it can be obtained by using
the inclusion-exclusion theorem as follows:

p(u A)= L P4y - I T PAia)

i=1 i j>i

+Y ¥ ¥ PA;A4;4;) — - + (-DFPA, - Ay)

i j>ik>j
where
PA) =01 - p)*
PA;A) =1 - pi— p)), i<j
P(A;AjAL) = (1 = pi — p; — pi)'s i<j<k

The difficulty with the preceding solution is that its computation requires
the calculation of 2¥ — 1 terms, each of which is a quantity raised to the
power n. The preceding solution is thus computationally inefficient when &
is large. Let us now see how to make use of conditioning to obtain an
efficient solution.

To begin, note that if we start by conditioning on N, (the number of
times that outcome &k occurs) then when N, > 0 the resulting conditional
probability will equal the probability that all of the outcomes 1, ...,k — 1
occur at least once when n — N, trials are performed, and each results in
outcome i with probability p;/ Z}‘; 1 pj,i=1,...,k — 1. We could then use
a similar conditioning step on these terms.

To follow through on the preceding idea, let 4, ,, for m < n, r <k,
denote the event that each of the outcomes 1, ..., r occurs at least once
when m independent trials are performed, where each trial results in one of
the outcomes 1, ..., r with respective probabilities p,/P,, ..., p,/P., where
P, = Y;_,pj. Let P(m,r) = P(A,,,) and note that P(n, k) is the desired
probability. To obtain an expression for P(m, r), condition on the number
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of times that outcome r occurs. This gives

m Jj m—j
j;o P{A,, .| r occurs j times](’;> <%:> <1 - ‘%:)
m-r+1 m p J P m-~j

Pim - j,r—1 Ery(y - &

E, Pm ’(,-)(p) <1 P,

Pim,1) =1, ifmz=1
P(m,1) =0, ifm=20

P(m,r)

Starting with

we can use the preceding recursion to obtain the quantities P(m, 2), m =
2,...,n—(k—2), and then the quantities P(m,3), m=3,...,n —
(k — 3),andsoon,upto P(m,k — 1),m = k — 1,...,n — 1. At this point
we can then use the recursion to compute P(n, k). It is not difficult to check
that the amount of computation needed is a polynomial function of k,
which will be much smaller than 2* when k is large. @

3.6. Some Applications
3.6.1. A List Model

Consider n elements—e, , e,, ..., e,—which are initially arranged in some
ordered list. At each unit of time a request is made for one of these
elements—e; being requested, independently of the past, with probability
P.. After being requested the element is then moved to the front of the list.
That is, for instance, if the present ordering is e;, e,, e;, €, and if e, is
requested, then the next ordering is e, e,, e,, e;.

We are interested in determining the expected position of the element
requested after this process has been in operation for a long time. However,
before computing this expectation, let us note two possible applications of
this model. In the first we have a stack of reference books. At each unit of
time a book is randomly selected and is then returned to the top of the
stack. In the second application we have a computer receiving requests for
elements stored in its memory. The request probabilities for the elements
may not be known, so to reduce the average time it takes the computer to
locate the element requested (which is proportional to the position of the
requested element if the computer locates the element by starting at the
beginning and then going down the list), the computer is programmed to
replace the requested element at the beginning of the list.
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To compute the expected position of the element requested, we start by
conditioning on which element is selected. This yields

E[position of element requested]

n
Y E[position|e; is selected]P,

i=1

n
Y. E[position of ¢;|e; is selected]P, (3.12)

i=1

n
Y El[position of ¢;}P,

i=1

Now
positionof ¢, =1 + ¥, I,
Jwi
where
I = 1,  if ; precedes e;
4 0, otherwise
and so,
E[position of ¢;] = 1 + Y, E[1)]
Jni
=1+ Y Ple; precedes e;} (3.13)
J=i

To compute Pfe; precedes e;}, note that e; will precede ¢; if the most recent
request for either of them was for e;. But given that a request is for either
e; or ¢;, the probability that it is for e; is

P
Ple;le; or e} = P +JPJ~
and, thus,
Pfe;precedes e;] = B
J i P' + RI

Hence from Equations (3.12) and (3.13) we see that

n

E[position of element requested] = 1+ ¥ B, Y} B
i=1 jub+ B
This list model will be further analyzed in Section 4.8, where we will assume
a different reordering rule—namely, that the element requested is moved
one closer to the front of the list as opposed to being moved to the front
of the list as assumed here. We will show there that the average position of
the requested element is less under the one-closer rule than it is under the
front-of-the-line rule,
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Figure 3.1. A graph.

3.6.2. A Random Graph

A graph consists of a set ¥ of elements called nodes and a set A of pairs of
elements of V called arcs. A graph can be represented graphically by
drawing circles for nodes and drawing lines between nodes i and j whenever
(i,j) is an arc. For instance if V = {1, 2, 3,4} and A = {(1, 2), (1, 4), (2, 3),
(1, 2), (3, 3)}, then we can represent this graph as shown in Figure 3.1.
Note that the arcs have no direction (a graph in which the arcs are ordered
pairs of nodes is called a directed graph); and that in the figure there are
multiple arcs connecting nodes 1 and 2, and a self-arc (called a self-loop)
from node 3 to itself.

We say that there exists a path from node i to node j, i # j, if there exists
a sequence of nodes i, i, ..., Iy, j such that (i, i), (i;, i), ..., (i, J) are

all arcs. If there is a path between each of the distinct pair of nodes

n
2
we say that the graph is connected. The graph in Figure 3.1 is connected
but the graph in Figure 3.2 is not. Consider now the following graph
where V = {1, 2, ..., n} and A = {(i, X(0)), i = 1, ..., n} where the X(J) are
independent random variables such that

1
P{X()=j}= ot j=1,2,...,n
In other words from each node i we select at random one of the n nodes

(including possibly the node { itself) and then join node i/ and the selected
node with an arc. Such a graph is commonly referred to as a random graph.

> o
/ @/

Figure 3.2. A disconnected graph.
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Figure 3.3.

We are interested in determining the probability that the random graph
so obtained is connected. As a prelude, starting at some node—say, node 1—
let us follow the sequence of nodes, 1, X(1), X*(1),..., where X*(1) =
X(X™1(1)); and define N to equal the first k£ such that X' k(1) is not a new
node. In other words,

N = 1st k such that X*(1) € {1, X(1), ..., X*7 (1)}

We can represent this as shown in Figure 3.3 where the arc from X N-1(1)
goes back to a node previously visited.
To obtain the probability that the graph is connected we first condition

on N to obtain
n

P{graph is connected) = Y P{connected|N = k}P{N = k} (3.14)
k=1

Now given that N = k, the k nodes 1, X(1), ..., X*-1(1) are connected to
each other, and there are no other arcs emanating out of these nodes.
In other words, if we regard these k nodes as being one supernode, the
situation is the same as if we had one supernode and n — k ordinary nodes
with arcs emanating from the ordinary nodes—each arc going into the
supernode with probability k/n. The solution in this situation is obtained
from Lemma 3.1 by taking r = n — k.

Lemma 3.1 Given a random graph consisting of nodes 0, 1, ..., rand r

arcs—namely’ (lr K); i= 1, veey Ty where
1
i ith bilit , i=1,...,
J wi probanyr+k J r
Yi =
0 ith probabilit
Wi P s r+k
then
Pf{graph is connected} = ——
tgraph 1 ] r+k

(In other words, for the preceding graph there are r + 1 nodes—r
ordinary nodes and one supernode. Out of each ordinary node an arc is
chosen. The arc goes to the supernode with probability k/(r + k) and to
each of the ordinary ones with probability 1/(r + k). There is no arc
emanating out of the supernode.)
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Proof The proof is by induction on r. As it is true when r = 1 for any &,
assume it true for all values less than r. Now in the case under considera-
tion, let us first condition on the number of arcs (j, ¥;) for which ¥; = 0.
This yields

P{connected}

4 . r k N/ r YV
= iZ:OP[connectedlz of the ¥; = 0](i>(m> <r " k> (3.15)

Now given that exactly i of the arcs are into the supernode (see Figure 3.4),
the situation for the remaining r — i arcs which do not go into the super-
node is the same as if we had r — i ordinary nodes and one supernode with
an arc going out of each of the ordinary nodes—into the supernode with
probability i/r and into each ordinary node with probability 1/r. But by the
induction hypothesis the probability that this would lead to a connected
graph is i/r.
Hence,

~ | ™~

P{connected |/ of the ¥; = 0} =

and from Equation (3.15)

P{connected) E ;(r)( _l: k>( r k>H
[bmomml(r, _I:k>]

r+k

\I'—

which completes the proof of the lemma.

o]

Figure 3.4. The situation given that i of the r arcs are into the supernode.
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Hence as the situation given N = k is exactly as described by Lemma 3.1

when r = n — k, we see that, for the original graph,

k

P{graph is connected |N = k} = -

and, from Equation (3.14),

EN
P{graph is connected} = __(;_2

To compute E(N) we use the identity

-]

EN)= Y P{N = i}
i=1

i=
which can be proved by defining indicator variables I;, i = 1, by
I = {1, ifisN

0, ifi>N
Hence,
N=Y I
i=1
and so
EN) = E{ Z I,-]
i=1
= E E[1]
i=1
= Y P{N =i}

i=1

(3.16)

3.17

Now the event {N = i} occurs if the nodes 1, X(1), ..., X*"'(1) are all

distinct. Hence,

_(n=-1)(n-2) (n-i+1

=— el "
(n-Dn!

T (n - D)n'?

P{N = i}

and so, from Equations (3.16) and (3.17),
i 1

P h i ted}] = (n — 1! —_—
{graph is connected} = (n ) i=21 TR

_(n=nrngtad L
=0 R byj=n-1)

(3.18)
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We can also use Equation (3.18) to obtain a simple approximate expres-
sion for the probability that the graph is connected when # is large. To do
so, we first note that if X is a Poisson random variable with mean n, then

n—-1 n J
PiX<nl=e"Y —
j=o0 J!
Since a Poisson random variable with mean n can be regarded as being the
sum of n independent Poisson random variables each with mean 1, it
follows from the central limit theorem that for » large such a random
variable has approximately a normal distribution and as such has
probability 4 of being less than its mean. That is, for n large

PX<n=1%

and so for n large,
n-1 nj
j=0 J!

Hence from Equation (3.18), for n large,

=

e"
2

"(n — D!
Pf{graph is connected} = e—(—{;—nn—)

By employing an approximation due to Stirling which states that for n large

nl = nn+1/2e—n / P

we see that, for n large,

-1 n
Pf{graph is connected} = ’ 2 (nn_ 0 e<n . )

and as

We see that, for n large,

Plgraph is connected} = ’2(+_1)

Now a graph is said to consist of 7 connected components if its nodes can
be partitioned into r subsets so that each of the subsets is connected and
there are no arcs between nodes in different subsets. For instance, the graph
in Figure 3.5 consists of three connected components—namely, {1,2, 3},
{4, 5}, and {6). Let C denote the number of connected components of our
random graph and let

P,(i) = P{C =i}
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LN

Figure 3.5. A graph having three connected components.

where we use the notation P,(i) to make explicit the dependence on n, the
number of nodes. Since a connected graph is by definition a graph
consisting of exactly one component, from Equation (3.18) we have

P,(1) = PIC =1}

_(-nrretad

. (3.19)
n

j=0J!

To obtain P,(2), the probability of exactly two components, let us first fix
attention on some particular node-—say, node 1. In order that a given set of
k — 1 other nodes—say, nodes 2, ..., k—will along with node 1 constitute
one connected component and the remaining » — k a second connected
component, we must have

() X()efl,2,....,k},foralli=1,..., k.

) X@etk+1,...,n},foralli=k +1,...,n
(iii) The nodes 1, 2, ..., k form a connected subgraph.
(iv) The nodes k + 1, ..., n form a connected subgraph.

The probability of the preceding occurring is clearly

k k _ k n—-k
<;,-> (” — > P(1)P,_i (1)

and because there are (: |

the nodes 2 through n, we have

"= 1\ (k¢ (n - K\
F@ =X <k_ 1)(;)( - ) B (P, (1)

and so P,(2) can be computed from Equation (3.19). In general, the
recursive formula for P,(i) is given by

._n—i+1 n-1 kkn_kn-k )
P,0) = kgl (k_ 1><,—1>< - ) PP, (i = 1)

> ways of choosing a set of £ — 1 nodes from
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Figure 3.6. A cycle.

To compute E[C], the expected number of connected components, first
note that every connected component of our random graph must contain
exactly one cycle [a cycle is a set of arcs of the form (i, i), (1, 8), ...
(k15 ix)s (ix, i) for distinct nodes i, iy, ..., i;]. For example, Figure 3.6

depicts a cycle.

The fact that every connected component of our random graph must
contain exactly one cycle is most easily proved by noting that if the
connected component consists of 7 nodes, then it must also have r arcs and,

hence, must contain exactly one cycle (why?). Thus, we see that

E[C] = E[number of cycles]
=E [ ) I(S)]
s
= Y E[K(S)]
s
where the sum is over all subsets S C {1, 2, ..., n} and

1(S) = {

0, otherwise
Now, if S consists of k nodes, say 1, ..., k, then
E[I(S)] = P{1, X(1), ..., X* (1) are all distinct and
contained in 1, ..., k and X*(1) = 1)
k- D!

n*

k—-1k-2
n n

11

nn N
B} n .

Hence, as there are < k> subsets of size k we see that

n - !
ElCl= ¥ (:)——‘k L

k=1 n

1, if the nodes in S are all the nodes of a cycle
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3.6.3. Uniform Priors, Polya’s Urn Model, and
Bose-Einstein Statistics

Suppose that n independent trials, each of which is a success with
probability p are performed. If we let X denote the total number of
successes, then X is a binomial random variable such that

P{X-:' klp} = <n>pk(l _p)n_k’ k= 0’ 1, cees

k
However, let us now suppose that whereas the trials all have the same
success probability p, its value is not predetermined but is chosen according
to a uniform distribution on (0, 1). (For instance, a coin may be chosen at
random from a huge bin of coins representing a uniform spread over all
possible values of p, the coin’s probability of coming up heads. The chosen
coin is then flipped » times.) In this case, by conditioning on the actual
value of p, we have that

1
P{X =k} = L P{X = k|p)f(p)dp

| ()era - preap
o \k

Now, it can be shown that

1 ki(n — k)!
k _ n—k =
Lp (1 =-p""dp =71 (3.20)
and thus
(N ki(n - k)!
P{X‘kl‘<k> (n + !
1
=— k=0,1,...,n (3.21)

In other words, each of the n + 1 possible values of X is equally likely.
As an alternate way of describing the preceding experiment, let us

compute the conditional probability that the (r + 1)st trial will result in a

success given a total of k successes (and r — k failures) in the first r trials.

P{(r + st trial is a success | k successes in first 7}

_ P{(r + 1)st is a success, k successes in first r trials)
P{k successes in first r trials}
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fo PU(r + 1)st is a success, k in first r|p}dp
= 1/ + 1)

1
=(r+ l)j <r>p"“(l -p)Y*dp
o k
_ r\ k+ )i - k! .
=(r+ 1)< k> —W by Equation (3.20)
k+1
= r+2 (3.22)

That is, if the first r trials result in & successes, then the next trial will be a
success with probability (k + 1)/(r + 2).

It follows from Equation (3.22) that an alternative description of the
stochastic process of the successive outcomes of the trials can be described
as follows: There is an urn which initially contains one white and one black
ball. At each stage a ball is randomly drawn and is then replaced along with
another ball of the same color. Thus, for instance, if of the first r balls
drawn k were white, then the urn at the time of the (r + 1)th draw would
consist of k + 1 whiteand r — k + 1 black, and thus the next ball would
be white with probability (k + /(r + 2). If we identify the drawing of a
white ball with a successful trial, then we see that this yields an alternate
description of the original model. This latter urn model is called Polya’s
urn model.

Remarks (i) Inthe special case when k = r, Equation (3.22) is sometimes
called Laplace’s rule of succession, after the French mathematician Pierre
de Laplace. In Laplace’s era, this “‘rule’’ provoked much controversy, for
people attempted to employ it in diverse situations where its validity was
questionable. For instance, it was used to justify such propositions as “‘If
you have dined twice at a restaurant and both meals were good, then the
next meal also will be good with probability 4,”’ and ‘‘Since the sun has
risen the past 1,826,213 days, so will it rise tomorrow with probability
1,826,214/1,826,215.” The trouble with such claims resides in the fact that
it is not at all clear the situation they are describing can be modeled as
consisting of independent trials having a common probability of success
which is itself uniformly chosen.

(i) In the original description of the experiment, we referred to the
successive trials as being independent, and in fact they are independent
when the success probability is known. However, when p is regarded as a
random variable, the successive outcomes are no longer independent since
knowing whether an outcome is a success or not gives us some information
about p, which in turn yields information about the other outcomes.
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The preceding can be generalized to situations in which each trial has
more than two possible outcomes. Suppose that n independent trials, each
resulting in one of m possible outcomes 1,...,m with respective
probabilities py, ..., p,, are performed. If we let X; denote the number of
type i outcomes that result in the n trials, i = 1, ..., m, then the vector
Xi, ..., X,, will have the multinomial distribution given by

PiX,=x,X3=%,....; Xy = xmlp} = '—'p;’lp;z R i
Xyl x,!
where x,, ..., X, is any vector of nonnegative integers which sum to n. Now
let us suppose that the vector p = (p,, ..., P,,) is not specified, but instead
is chosen by a ‘‘uniform’’ distribution. Such a distribution would be of
the form '

c, O=sp;=<l,i=1,....m Y p;=1
f(pl9"'apm)= ; '

0, otherwise

The preceding multivariate distribution is a special case of what is known as
the Dirichlet distribution, and it is not difficult to show, using the fact that
the distribution must integrate to 1, that ¢ = (m — 1)!.

The unconditional distribution of the vector X is given by

P{X1=x1,...,Xm= m}
= S S ---SP{Xl =Xy eees Xop = X | D1y ooy D)

xf(ply ---spm)dpl "'dpm

(m — Din!
=Tt | |\ Pt pardpy .. dp,,
! " Osp;s1
Iipi=1

Now it can be shown that

ce-\ D' ---Dimdp, -+ dpy, = X! o X! (3.23)
! m "X+ m = 1) '
0sp;s1
Iipi=1
and thus, using the fact that YT x; = n, we see that
nl(m - 1!
PiX,=X%1,...., X, = =
Xy =x m m) o +m=1)!

m-—1

-1
=<n+m—1> (3.24)
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-1 +m-—1
Hence, all of the <n -;zm 1 > possible outcomes (there are <n mm 1 )

possible nonnegative integer valued solutions of x, + --- + x,, = n) of the
vector (X, ..., X,,) are equally likely. The probability distribution given
by Equation (3.24) is sometimes called the Bose-Einstein distribution.

To obtain an alternative description of the foregoing, let us compute the
conditional probability that the (n + 1)st outcome is of type j if the first n
trials have resulted in x; type i outcomes, i = 1, ..., m, YT x; = n. This is
given by

P{(n + st is j|x; type i in first n, i = 1, ..., m}

_ P{(n + Dstis j, x; type i in first n, i = 1, ..., m}
- Pix;type i in first n, i = 1, ..., m)

ni(m - 1)!
m__' ves p‘{l...p}j"‘l...p;'mdpl...dpm
1° m*

n+m-1\"!
m-—1
where the numerator is obtained by conditioning on the p vector and the

denominator is obtained by using Equation (3.24). By Equation (3.23), we
have that

P{(n + l)stis j|x; type i in first n, i = 1, ..., m}

(x; + Dnt(m - 1)!
(n + m)!
(m — Din!
n+m-1!

_xj+1

3.25
n+m 3-23)

Using Equation (3.25), we can now present an urn model description of
the stochastic process of successive outcomes. Namely, consider an urn
which initially contains one of each of m types of balls. Balls are then
randomly drawn and are replaced along with another of the same type.
Hence, if in the first n drawings there have been a total of X; type j balls
drawn, then the urn immediately before the (n + 1)st draw will contain
Xx; + 1 type j balls out of a total of m + n, and so the probability of a type
J on the (n + 1)st draw will be given by Equation (3.25).
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Remarks Consider a situation where n particles are to be distributed at
random among m possible regions; and suppose that the regions appear,
at least before the experiment, to have the same physical characteristics.
It would thus seem that the most likely distribution for the numbers of
particles that fall into each of the regions is the multinomial distribution
with p; = 1/m. (This, of course, would correspond to each particle,
independent of the others, being equally likely to fall in any of the m
regions.) Physicists studying how particles distribute themselves observed
the behavior of such particles as photons and atoms containing an even
number of elementary particles. However, when they studied the resulting
data, they were amazed to discover that the observed frequencies did not
follow the multinomial distribution but rather seemed to follow the Bose-
Einstein distribution. They were amazed because they could not imagine a
physical model for the distribution of particles which would result in all
possible outcomes being equally likely. (For instance, if 10 particles are to
distribute themselves between two regions, it hardly seems reasonable that
it is just as likely that both regions will contain 5 particles as it is that ail 10
will fall in region 1 or that all 10 will fall in region 2.)

However, from the results of this section we now have a better under-
standing of the cause of the physicists’ dilemma. In fact, two possible
hypotheses present themselves. First, it may be that the data gathered by the
physicists were actually obtained under a variety of different situations,
each having its own characteristic p vector which gave rise to a uniform
spread over all possible p vectors. A second possibility (suggested by the urn
model interpretation) is that the particles select their regions sequentially
and a given particle’s probability of falling in a region is roughly propor-
tional to the fraction of the landed particles that are in that region. (In other
words, the particles presently in a region provide an ‘‘attractive’’ force on
elements which have not yet landed.)

3.6.4. The k-Record Values of Discrete Random Variables

Let X, X,, ... be independent and identically distributed random variables
whose set of possible values are the positive integers, and let P{X =j},j= 1,
denote their common probability mass function. Suppose that these random
variables are observed in sequence, and say that X, is a k-record value if

X; = X, for exactly k of the values i, i=1,...,n

That is, the nth value in the sequence is a k-record value if exactly k of the
first #» values (including X,) are at least as large as it. Let R, denote the
ordered set of k-record values.
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It is a rather surprising result that not only do the sequences of k-record
values have the same probability distributions for all k, but these sequences
are also independent of each other. This result is known as Ignatov’s
theorem.

Ignatov’s Theorem R,, k = 1, are independent and identically distri-
buted random vectors.

Proof Define a series of subsequences of the data sequence X 1» X2, ... by
letting the ith subsequence consist of all data values that are at least as large
as i, i = 1. For instance, if the data sequence is

2,5,1,6,9,8,3,4,1,5,7,8,2,1,3,4,2,5,6, 1, ...
then the subsequences are as follows:
=1 2,5,1,6,9,8,3,4,1,5,7,8,2,1,3,4,2,5,6, 1, ...
=2: 2,5,6,9,8,3,4,5,7,8,2,3,4,2,5,6, ...
=3: 5,6,9,8,3,4,57,8,3,4,5,6, ...

and so on.

Let X} be the jth element of subsequence i. That is, X is the jth data
value that is at least as large as i. An important observation is that i is a
k-record value if and only if X} = i. That is, / will be a k-record value if and
only if the kth value to be at least as large as i is equal to i. (For instance,
for the preceding data since the fifth value to be at least as large as 3 is equal
to 3 it follows that 3 is a 5-record value.) Now, it is not difficult to see that,
independent of which values in the first subsequence are equal to 1, the
values in the second subsequence are independent and identically distributed
according to the mass function

Ptvalue in second subsequence = j} = P(X = j| X = 2}, Jj=2

Similarly, independent of which values in the first subsequence are equal to
I and which values in the second subsequence are equal to 2, the values in
the third subsequence are independent and identically distributed according
to the mass function

Pfvalue in third subsequence = j} = P{X = j| X = 3}, Jj=z3

and so on. It therefore follows that the events {X} =i},i=z1,j=1, are
independent and

P(i is a k-record value} = P{X} = i} = P{X = i\ X=i)
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It now follows from the independence of the events {X; =i}, i=1,
and the fact that P{i is a k-record value} does not depend on k, that R,
has the same distribution for all ¥ = 1. In addition, it follows from the
independence of the events {X] { = {}, that the random vectors Ry, k = 1, are
also independent.

Suppose now that the X;, i = 1 are independent finite-valued random
variables with probability mass function

pi=P{X=i], i=1,....m
and let

T = min{n : X; = X, for exactly k of the values i, i =1, ..., n}

denote the first k-record index. We will now determine its mean.
Proposition 3.1 Let 4, = p;/Yj.;p;, i =1,...,m. Then

m-1
E[Tl=k+*k-1) X 4

i=1

Proof To begin, suppose that the observed random variables X, X;, ...
take on one of the values i, i + 1, ..., m with respective probabilities

PX=ji=—-B — j=i..,m
Di+ o+ Dy
Let 7; denote the first k-record index when the observed data have the
preceding mass function, and note that since the each data value is at least

i it follows that the k-record value will equal i, and T; will equal k, if X, = i.
As a result, :

E[T| X, =il =k

On the other hand, if X, > i then the k-record value will exceed /, and so
all data values equal to i can be disregarded when searching for the k-record
value. In addition, since each data value greater than i will have probability
mass function

. . Pj . .
PX=jlX>ij=—"L——, Jj=i+1,....m
Diz1+ - + Pm

it follows that the total number of data values greater than i that need be
observed until a k-record value appears has the same distribution as 7;,,.
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Hence,
E[T;| X, > i] = E[Tiy, + N;| X, > il

where T;,, is the total number of variables greater than i/ that we need
observe to obtain a k-record, and M, is the number of values equal to i that
are observed in that time. Now, given that X, > i/ and that TLi,y=nmnzk)
it follows that the time to observe 7T;,, values greater than / has the same
distribution as the number of trials to obtain » successes given that trial k
is a success and that each trial is independently a success with probability
1 = pi/¥j2ipj =1 — A;. Thus, since the number of trials needed to obtain
a success is a geometric random variable with mean 1/(1 — 4;), we see that

7;'+1_1=T1:+1_’1i
1 -2, 1= 4

ElG| T, Xe>il=1+
Taking expectations gives that

T;'+1 - li

1 = A,
E[7}|Xk>i]=E[ - Xk>i]=E[T'—“]—'
= A

1 -4

Thus, upon conditioning on whether X = i, we obtain
E[T) = E[T;| X, = il4; + E[T;| X, > iJ(1 — 4)
= (k = DA; + E[T,4]
Starting with E[T,,] = k, the preceding gives that
ET,l=G(-1DA,_; +k
E[T,l =k -1DAp_s+ (k- DA,y + k

m-—1

=k-1) ¥ A+k
Jj=m-2
m-1
Ell,5l=(=-Dips+ k-1 ¥ A+k
Jj=m-=2
m-—1
=k-1) ¥ A+k
Jj=m-3

In general,

m-1
Effl=(k-1) T A+k

J=1

and the result follows since T= 7;. ¢
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Exercises
1. If X and Y are both discrete, show that T, pxjy(x|y) = 1 for all y
such that py(») > 0.

*2. Let X, and X, be independent geometric random variables having the
same parameter p. Guess the value of

P{X1=ilX1+X2=n}

Hint: Suppose a coin having probability p of coming up heads is
continually flipped. If the second head occurs on flip number n, what is
the conditional probability that the first head was on flip number i,
i=1,...,n—17

Verify your guess analytically.

3. The joint probability mass function of X and Y, p(x, »), is given by
p,)=4% p2,D=% P3G D=4%
p(1,2 =%, p2,2)=0, pB3,2)=1%
p1,3)=0, p2,3)=% p3.3I)=%

Compute E[X|Y =il fori=1,2,3.

4. In Exercise 3, are the random variables X and Y independent?

5. An urn contains three white, six red, and five black balls. Six of these
balls are randomly selected from the urn. Let X and Y denote respectively
the number of white and black balls selected. Compute the conditional
probability mass function of X given that Y = 3. Also compute
E[X|Y =1].

*6. Repeat Exercise 5 but under the assumption that when a ball is
selected its color is noted, and it is then replaced in the urn before the next
selection is made.

7. Suppose p(x, ¥, z), the joint probability mass function of the random
variables X, Y, and Z, is given by

p(1, 1, =%,  p2, 1,1 =4,
p(1,1,2 =%,  pR2, 1,2 =+,
p(1,2,) =+, pR2,2,1)=0,
p(1,2,2) =0, p2,2,2)=%
What is E[X|Y = 2]? What is E[X|Y = 2,Z = 1]?
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8. An unbiased die is successively rolled. Let X and Y denote respectively
the number of rolls necessary to obtain a six and a five. Find (a) E[X],
M EX|Y = 1], () E[X]|Y = 5].

9. Show in the discrete case that if X and Y are independent, then
E[X|Y = y] = E[X] for all y

10. Suppose X and Y are independent continuous random variables.
Show that

E[X|Y = y] = E[X] for all y
11. The joint density of X and Y is

42
f(x,}’)=g?-x—)e", 0<y<o, —-y<sx=<y

Show that E[X|Y = y] = 0.
12. The joint density of X and Y is given by

—x/ye—y
Sx, ) = 5 0<x<w, 0<y<ow

Show E[X|Y = y] = y.
*13. Let X be exponential with mean 1/4; that is,

) =4e™, O<x<owo
Find E[X|X > 1].

14. Let X be uniform over (0, 1). Find E[X | X < $].
15. The joint density of X and Y is given by

-y
f(x,y)=e—y—, 0<x<y, 0<y<o

Compute E[X?|Y = y].

16. The random variables X and Y are said to have a bivariate normal
distribution if their joint density function is given by

1 1
2no,0,V1 - p? { 2(1 - pY

o [ <x - ux>2 _ 20— 0 — ) | <y - uy)z]}
o, 0,3, g,

Sfox,») =
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for —o < x < 0, —00 < y < oo, where g, Gy, Uy, Uy, and p are constants
such that -1 <p<1,0,>0,0,>0, —0 <y, <o, =0 <l <.

(2) Show that X is normally distributed with mean u, and variance o2,
and Y is normally distributed with mean 4, and variance as.

(b) Show that the conditional density of X given that Y = y is normal
with mean g, + (po,/6,)(y — u,) and variance o3(1 — 2.

The quantity p is called the correlation between X and Y. It can be
shown that

9= E[(X - p)Y — )]

0,0,

_ Cov(X, Y)
T o, gy

17. Let Y be a gamma random variable with parameters (s, a). That is, its
density is

fr() =Ce™™@yl,  y>0

where C is a constant that does not depend on y. Suppose also that the
conditional distribution of X given that Y = y is Poisson with mean y.
That is,

PX=ilY=y)=e?y/il, iz0

Show that the conditional distribution of Y given that X = i is the gamma
distribution with parameters (s + i, a + 1).

18. Let Xj, ..., X, be independent random variables having a common
distribution function that is specified up to an unknown parameter 6. Let
T = T(X) be a function of the data X = (X, ..., X,). If the conditional
distribution of X7, ..., X, given T(X) does not depend on 0 then T(X) is
said to be a sufficient statistic for 6. In the following cases, show that
T(X) = Y7, X; is a sufficient statistic for 6.

(@) The X; are normal with mean 6 and variance 1.

(b) The density of X; is f(x) = 6e~ %, x > 0.

(¢) The mass function of X;is p(x) = 6*(1 — 6)' %, x=0,1,0< 6 < 1.

(d) The X; are Poisson random variables with mean 6.

*19. Prove that if X and Y are jointly continuous, then

oo

E[X] = S EIX|Y = ylfy(») dy
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20. Consider Example 3.12 which refers to a miner trapped in a mine. Let
N denote the total number of doors selected before the miner reaches
safety. Also, let 7; denote the travel time corresponding to the ith choice,
i = 1. Again let X denote the time when the miner reaches safety.

(a) Give an identity that relates X to N and the T;.
(b) What is E[N]?

(c) What is E[Ty]?

(d) What is E[TN., T;|N = n]?

(e) Using the preceding, what is E[X]?

21. Suppose that independent trials, each of which is equally likely to

have any of m possible outcomes, are performed until the same outcome

occurs k consecutive times. If N denotes the number of trials, show that
m* -1

E[N]=m—1

Some people believe that the successive digits in the expansion of
n = 3.14159... are ‘‘uniformly’’ distributed. That is, they believe that
these digits have all the appearance of being independent choices from a
distribution that is equally likely to be any of the digits from 0 through 9.
Possible evidence against this hypothesis is the fact that starting with the
24,658,601st digit there is a run of nine successive 7’s. Is this information
consistent with the hypothesis of a uniform distribution?

To answer this, we note from the preceding that if the uniform hypothesis
were correct, then the expected number of digits until a run of nine of the
same value occurs is

10° - 1)/9 = 111,111,111

Thus, the actual value of approximately 25 million is roughly 22 percent of
the theoretical mean. However, it can be shown that under the uniformity
assumption the standard deviation of N will be approximately equal to the
mean. As a result, the observed value is approximately 0.78 standard
deviations less than its theoretical mean and is thus quite consistent with the
uniformity assumption.

*22. A coin having probability p of coming up heads is successively
flipped until 2 of the most recent 3 flips are heads. Let N denote the
number of flips. (Note that if the first 2 flips are heads, then N = 2.)
Find E[N].
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23. A coin, having probability p of landing heads, is continually flipped
until at least one head and one tail have been flipped.

(a) Find the expected number of flips needed.

(b) Find the expected number of flips that lands on heads.

(c) Find the expected number of flips that land on tails.

(d) Repeat part (a) in the case where flipping is continued until there has
been a total of at least two heads and one tail.

24. The random variables X and Y have the following joint probability
mass function:

e~@+bd (bi)’_ a_'

PX=iY=j}= T
Jv it

i=z0,j=0
(a) What is the conditional distribution of Y given that X = i?
(b) Find Cov(X, Y).

25. Two players take turns shooting at a target, with each shot by player
i hitting the target with probability p;, i = 1, 2. Shooting ends when two
consecutive shots hit the target. Let 4; denote the mean number of shots
taken when player i shoots first, i = 1, 2.

(a) Find y, and u,.
(b) Let h; denote the mean number of times that the target is hit when
player i shoots first, i = 1, 2. Find &, and A,.

26. Let X;, i = 0 be independent and identically distributed random
variables with probability mass function

pU)=PX;=j}, Jj=1,..m _ZIP(J') =1
Jj=

Find E[N], where N = min{n > 0: X, = X,}.

27. A set of n dice is thrown. All those that land on six are put aside, and
the others are again thrown. This is repeated until all the dice have landed
on six. Let N denote the number of throws needed. (For instance, suppose
that n = 3 and that on the initial throw exactly 2 of the dice land on six.
Then the other die will be thrown, and if it lands on six, then N =2.)
Let m, = E[N].

(a) Derive a recursive formula for m, and use it to calculate m;,
i = 2,3,4, and to show that ms = 13.024.

(b) Let X; denote the number of dice rolled on the ith throw. Find
E[LiL 1 X))
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28. Aninterval of length 1 is broken at a point uniformly distributed over
(0, 1). Find the expected length of the subinterval that contains the point x,
0 < x < 1, and show that it is maximized when x = 1.

29. A manuscript is sent to a typing firm consisting of typists 4, B,
and C. If it is typed by A4, then the number of errors made is a Poisson
random variable with mean 2.6; if typed by B, then the number of errors is
a Poisson random variable with mean 3; and if typed by C, then it is a
Poisson random variable with mean 3.4. Let X denote the number of errors
in the typed manuscript. Assume that each typist is equally likely to do
the work.

(a) Find E[X]
(b) Find Var(X).

30. Let Ube a uniform (0, 1) random variable. Suppose that » trials are to
be performed and that conditional on U = u these trials will be independent
with a common success probability . Compute the mean and variance of
the number of successes that occur in these trials.

31. A deck of n cards, numbered 1 through n, is randomly shuffled so
that all n! possible permutations are equally likely. The cards are then
turned over one at a time until card number 1 appears. These upturned
cards constitute the first cycle. We now determine (by looking at the
upturned cards) the lowest numbered card that has not yet appeared, and
we continue to turn the cards face up until that card appears. This new
set of cards represents the second cycle. We again determine the lowest
numbered of the remaining cards and turn the cards until it appears, and
so on until all cards have been turned over. Let m,, denote the mean number
of cycles.

(a) Derive a recursive formula for m,, interms of my, k =1,...,n — 1.
(b) Starting with m, = 0, use the recursion to find m,, m,, m;, and m,.
(c) Conjecture a general formula for m,.

(d) Prove your formula by induction on n. That is, show it is valid for
n = 1, then assume it is true whenever k is any of the values 1,...,n — 1
and show that this implies it is true when k = n.

(e) Let X; equal 1 if one of the cycles ends with card i, and let it equal
0 otherwise, i = 1, ..., n. Express the number of cycles in terms of
these X;.

(f) Use the representation in part (e) to determine m,,.

(g) Are the random variables X,, ..., X, independent? Explain.

(h) Find the variance of the number of cycles.
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32. A prisoner is trapped in a cell containing three doors. The first door
leads to a tunnel which returns him to his cell after two-day’s travel. The
second leads to a tunnel which returns him to his cell after three day’s
travel. The third door leads immediately to freedom.

(a) Assuming that the prisoner will always select doors, 1, 2, and 3 with
probabilities 0.5, 0.3, 0.2, what is the expected number of days until he
reaches freedom?

(b) Assuming that the prisoner is always equally likely to choose among
those doors that he has not used, what is the expected number of days
until he reaches freedom? (In this version, for instance, if the prisoner
initially tries door 1, then when he returns to the cell, he will now select
only from doors 2 and 3.)

(¢) For parts (a) and (b) find the variance of the number of days until our
prisoner reaches freedom.

33. A rat is trapped in a maze. Initially he has to choose one of two
directions. If he goes to the right, then he will wander around in the maze
for three minutes and will then return to his initial position. If he goes to the
left, then with probability 1 he will depart the maze after two minutes of
traveling, and with probability 4 he will return to his initial position after
five minutes of traveling. Assuming that the rat is at all times equally likely
to go to the left or the right, what is the expected number of minutes that
he will be trapped in the maze?

34. Find the variance of the amount of time the rat spends in the maze in
Exercise 33.

35. The number of claims received at an insurance company during a
week is a random variable with mean u, and variance o3 . The amount paid
in each claim is a random variable with mean u, and variance d3. Find the
mean and variance of the amount of money paid by the insurance company
each week. What independence assumptions are you making? Are these
assumptions reasonable?

36. The number of customers entering a store on a given day is Poisson
distributed with mean A = 10. The amount of money spent by a customer
is uniformly distributed over (0, 100). Find the mean and variance of the
amount of money that the store takes in on a given day.

37. The conditional variance of X, given the random variable Y, is
defined by
Var(X|Y) = E[[X - E(X|Y))*|Y]
Show that
Var(X) = E[Var(X|Y)] + Var(E[X]|Y])
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*38. Use Exercise 37 to give another proof of the fact that
N

Var< ¥ X,-) = E[N] Var(X) + (E[X])? Var(N)
i=1

39. An individual traveling on the real line is trying to reach the origin.
However, the larger the desired step, the greater is the variance in the result of
that step. Specifically, whenever the person is at location x, he next moves to
alocation having mean 0 and variance fx?. Let X, denote the position of the
individual after having taken n steps. Supposing that X, = x,, find

(@) EL[X,]
(®) Var(X,)

40. (a) Show that
Cov(X, Y) = Cov(X, E[Y|X])

(b) Suppose, that, for constants g and b,

E[lY|X]=a+ bX
Show that
b = Cov(X, Y)/Var(X)

*41. IfE[Y|X] = 1, show that
Var(XY) = Var(X)

42. Give another proof of Exercise 38 by computing the moment
generating function of YN, X; and then differentiating to obtain its
moments.

Hint: Let

Now,
N n
E[exp(t ¥y X,~> N= n] = E[exp(t )) X,~>] = (x ()"
i=1 i=1

since N is independent of the X’s where ¢x(¢) = E[e”] is the moment
generating function for the X’s. Therefore,

o(1) = E[(ox ()]




Exercises 149

Differentiation yields

¢'(t) = EIN@x ()" oz ()],

¢"(2) = EINN — D(éx )V 25 () + Nox ()" '¢5(1)]
Evaluate at f = 0 to get the desired result.

43. The number of fish that Elise catches in a day is a Poisson random
variable with mean 30. However, on the average, Elise tosses back two
out of every three fish she catches. What is the probability that, on a given
day, Elise takes home » fish. What is the mean and variance of (a) the
number of fish she catches, (b) the number of fish she takes home?
(What independence assumptions have you made?)

44. There are three coins in a barrel. These coins, when flipped, will come
up heads with respective probabilities 0.3, 0.5, 0.7. A coin is randomly
selected from among these three and is then flipped ten times. Let N be the
number of heads obtained on the ten flips. Find

(a) P{N = 0].

(b) PIN=n},n=0,1,...,10.

(c) Does N have a binomial distribution?

(d) If you win $1 each time a head appears and you lose $1 each time a
tail appears, is this a fair game? Explain.

45. Do Exercise 44 under the assumption that each time a coin is flipped,
it is then put back in the barrel and another coin is randomly selected. Does
N have a binomial distribution now?

46. Explain the relationship between the general formula
PE) = Y PE|Y = y)PY = y)
y
and Bayes’ formula.

*47. Suppose X is a Poisson random variable with mean A. The param-
eter A is itself a random variable whose distribution is exponential with
mean 1. Show that P{X = n} = (3)"*!.

48. A coin is randomly selected from a group of ten coins, the nth coin
having a probability n/10 of coming up heads. The coin is then repeatedly
flipped until a head appears. Let N denote the number of flips necessary.
What is the probability distribution of N? Is N a geometric random
variable? When would N be a geometric random variable; that is, what
would have to be done differently?
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49. A collection of n coins is flipped. The outcomes are independent, and
the ith coin comes up heads with probability «;, i = 1, ..., n. Suppose that
for some valueof j, 1 =j=n, a; = 1. Find the probability that the total
number of heads to appear on the n coins is an even number.

50. Let A and B be mutually exclusive events of an experiment. If
independent replications of the experiment are continually performed, what
is the probability that A occurs before B?

*51. Two players alternate flipping a coin that comes up heads with
probability p. The first one to obtain a head is declared the winner. We are
interested in the probability that the first player to flip is the winner. Before
determining this probability, which we will call f(p), answer the following
questions.

(a) Do you think that f(p) is a monotone function of p? If so, is it
increasing or decreasing?

(b) What do you think is the value of lim,_,, f(p)?

(c) What do you think is the value of lim,_, f(p)?

(d) Find f(p).

52. Suppose in Exercise 25 that the shooting ends when the target has
been hit twice. Let m; denote the mean number of shots needed for the first
hit when player i shoots first, i = 1,2. Also, let P, i = 1,2, denote the
probability that the first hit is by player 1, when player i shoots first.

(a) Find m; and m,.
(b) Find P, and P,.

For the remainder of the problem, assume that player 1 shoots first.

(¢) Find the probability that the final hit was by 1.
(d) Find the probability that both hits were by 1.
(e) Find the probability that both hits were by 2.
(f) Find the mean number of shots taken.

53. A, B, and C are evenly matched tennis players. Initially A and B play
a set, and the winner then plays C. This continues, with the winner always
playing the waiting player, until one of the players has won two sets in a
row. That player is then declared the overall winner. Find the probability
that A4 is the overall winner.

54. Let X, and X, be independent geometric random variables with
respective parameters p, and p,. Find P{|X, — X,| < 1}.
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49. A collection of n coins is flipped. The outcomes are independent, and
the ith coin comes up heads with probability o;, { = 1, ..., n. Suppose that
for some valueof j, 1 <j=<n, ;= 1. Find the probability that the total
number of heads to appear on the »n coins is an even number.

50. Let A and B be mutually exclusive events of an experiment. If
independent replications of the experiment are continually performed, what
is the probability that A occurs before B?

*51. Two players alternate flipping a coin that comes up heads with
probability p. The first one to obtain a head is declared the winner. We are
interested in the probability that the first player to flip is the winner. Before
determining this probability, which we will call f(p), answer the following
questions.

(a) Do you think that f(p) is a monotone function of p? If so, is it
increasing or decreasing?

(b) What do you think is the value of lim,_,, f(p)?

(c) What do you think is the value of lim,_, f(p)?

(d) Find f(p).

52. Suppose in Exercise 25 that the shooting ends when the target has
been hit twice. Let m; denote the mean number of shots needed for the first
hit when player i shoots first, i = 1, 2. Also, let P, i = 1, 2, denote the
probability that the first hit is by player 1, when player i shoots first.

(a) Find m, and m,.
(b) Find P, and P,.

For the remainder of the problem, assume that player 1 shoots first.

(c) Find the probability that the final hit was by 1.
(d) Find the probability that both hits were by 1.
(e) Find the probability that both hits were by 2.
(f) Find the mean number of shots taken.

53. A, B, and C are evenly matched tennis players. Initially 4 and B play
a set, and the winner then plays C. This continues, with the winner always
playing the waiting player, until one of the players has won two sets in a
row. That player is then declared the overall winner. Find the probability
that A4 is the overall winner.

54. Let X, and X, be independent geometric random variables with
respective parameters p, and p,. Find P{|X; — X,| < 1}.
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49. A collection of n coins is flipped. The outcomes are independent, and
the ith coin comes up heads with probability o, i = 1, ..., n. Suppose that
for some value of j, l = j=n,q; = 1. Find the probability that the total
number of heads to appear on the n coins is an even number.

50. Let A and B be mutually exclusive events of an experiment. If
independent replications of the experiment are continually performed, what
is the probability that 4 occurs before B?

*51. Two players alternate flipping a coin that comes up heads with
probability p. The first one to obtain a head is declared the winner. We are
interested in the probability that the first player to flip is the winner. Before
determining this probability, which we will call f(p), answer the following
questions.

(@) Do you think that f(p) is a monotone function of p? If so, is it
increasing or decreasing?

(b) What do you think is the value of lim,_., f(p)?

(c) What do you think is the value of lim,_,, f(P)?

(d) Find f(p).

52. Suppose in Exercise 25 that the shooting ends when the target has
been hit twice. Let m; denote the mean number of shots needed for the first
hit when player i shoots first, i = 1,2. Also, let P, i =1, 2, denote the
probability that the first hit is by player 1, when player i shoots first.

(a) Find m, and m,.
(b) Find P, and P,.

For the remainder of the problem, assume that player 1 shoots first.

(c) Find the probability that the final hit was by 1.
(d) Find the probability that both hits were by 1.
(e) Find the probability that both hits were by 2.
(f) Find the mean number of shots taken.

53. A, B, and C are evenly matched tennis players. Initially 4 and B play
a set, and the winner then plays C. This continues, with the winner always
playing the waiting player, until one of the players has won two sets in a
row. That player is then declared the overall winner. Find the probability
that A is the overall winner.

54. Let X, and X, be independent geometric random variables with
respective parameters p; and p,. Find P{|X;, - X,| = 1}.
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55. A and Brolla pair of dice in turn, with 4 rolling first. A’s objective is to
obtain a sum of 6, and B’s is to obtain a sum of 7. The game ends when either
player reaches his or her objective, and that player is declared the winner.

(a) Find the probability that A is the winner.
(b) Find the expected number of rolls of the dice.
(¢) Find the variance of the number of rolls of the dice.

56. The number of red balls in an urn that contains n balls is a random
variable that is equally likely to be any of the values 0, 1, ..., n. That is,

1
Pfired, n — i non-red} = —, i=0,...,n
n+1
The n balls are then randomly removed one at a time. Let Y, denote the
number of red balls in the first k selections, k =1, ..., n.

(a) Find P{Y,, =j},j=0,...,n.

() Find P{Y,,_, =j},j=0,...,n

(c) What do you think is the value of P{Y; = j},j=0,...,n?

(d) Verify your answer to part (c) by a backwards induction argument.
That is, check that your answer is correct when k = n, and then show that
whenever it is true for kit is also true fork — 1, k= 1,...,n.

57. In Example 3.24 show that the conditional distribution of N given
that U, = y is the same as the conditional distribution of M given that
U, =1 — y. Also, show that

EIN|U =yl =EM|U;=1-y]=1+¢.
*58. Suppose that we continually roll a die until the sum of all throws
exceeds 100. What is the most likely value of this total when you stop?

59. There are five components. The components act independently, with
component i working with probability p;, i = 1,2, 3,4, 5. These components
form a system as shown in Figure 3.7.

3

Figure 3.7.
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The system is said to work if a signal originating at the left end of the diagram
can reach the right end, where it can only pass through a component if that
component is working. (For instance, if components 1 and 4 both work,
then the system also works.) What is the probability that the system works?

60. This problem will present another proof of the ballot problem of
Example 3.23.

(a) Argue that
P, , =1 — P{A and B are tied at some point}

(b) Explain why
P{A receives first vote and they are eventually tied}
= P{B receives first vote and they are eventually tied}

Hint: Any outcome in which they are eventually tied with A4 receiving
the first vote corresponds to an outcome in which they are eventually tied
with B receiving the first vote. Explain this correspondence.

(c) Argue that P{eventually tied} = 2m/(n + m), and conclude that
P,y =(n—m/(n+ m).

61. Consider a gambler who on each bet either wins 1 with probability
18/38 or loses 1 with probability 20/38. (These are the probabilities if the
bet is that a roulette wheel will land on a specified color.) The gambler will
quit either when he is winning a total of 5 or after 100 plays. What is the
probability he or she plays exactly 15 times?

62. Show that

(@) E[XY|Y =yl = yE[X|Y = )]
(b) Elg(X, Y)|Y = y] = E[g(X, »)|Y = ]
(c) E[XY] = E[YE[X|Y]]

63. In the ballot problem (Example 3.23), compute P{4 is never behind].

64. An urn contains # white and m black balls which are removed one at
atime. If # > m, show that the probability that there are always more white
than black balls in the urn (until, of course, the urn is empty) equals
(n — m)/(n + m). Explain why this probability is equal to the probability
that the set of withdrawn balls always contains more white than black balls.
(This latter probability is (n — m)/(n + m) by the ballot problem.)

65. A coin that comes up heads with probability p is flipped n consecutive
times. What is the probability that starting with the first flip there are
always more heads than tails that have appeared?
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66. Let X;, i = 1, be independent uniform (0, 1) random variables, and
define N by
N =min{n: X, < X,_{}
where X, = x. Let f(x) = E[N].
(a) Derive an integral equation for f(x) by conditioning on Xj;.
(b) Differentiate both sides of the equation derived in part (a).
(c) Solve the resulting equation obtained in part (b).
(d) For a second approach to determining f(x) argue that
(1 _ x)k—l
PINzkl=—
W=k="G"n
(e) Use part (d) to obtain f(x).
67. Let X,,X,, ... be independent continuous random variables with a
common distribution function F and density f = F’, and for k = 1 let
N, = min{n = k: X, = kth largest of X, ..., X,}

(a) Show that P{N, = n} = (k — 1)/n(n - 1), n = k.
{b) Argue that

_ ® j -2 .
Sy = FOFQN T T (' v )(F(x»'

i=

(c) Prove the following identity:
o fi+k—-2 .
ad k=3 < ; >(1—a)', 0<a<l,k=2
i=0
Hint: Use induction. First prove it when k = 2, and then assume it
for k. To prove it for k + 1, use the fact that

- ikt e ik |
Z<'+i >(1-a)'=z;<’+’; 2)(1—«:)'

i=1 i=1
= fi+k-2 ;
P L (e

where the preceding used the combinatorial identity

. )= , + 1 .
i i i—-1
Now, use the induction hypothesis to evaluate the first term on the right

side of the preceding equation.
(d) Conclude that X}, has distribution F.
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68. An urn contains # balls, with ball i having weight w;, i = 1, ..., n.
The balls are withdrawn from the urn one at a time according to the follow-
ing scheme: When S is the set of balls that remains, ball i, / € S, is the next
ball withdrawn with probability w;/¥ ;. s w;. Find the expected number of
balls that are withdrawn before balli, i =1, ..., n.

69. In the list example of Section 3.6.1 suppose that the initial ordering
at time ¢ = O is determined completely at random; that is, initially all n!
permutations are equally likely. Following the front of the line rule,
compute the expected position of the element requested at time ¢.

Hint: To compute Pfe; precedes e; at time 7} condition on whether or
not either ¢; or ¢; have ever been requested prior to ¢.

70. In the list problem, when the P, are known, show that the best
ordering (best in the sense of minimizing the expected position of the
element requested) is to place the elements in decreasing order of their
probabilities. That is, if P, > P, > ..- > P,, show that 1,2, ..., n is the
best ordering.

71. Consider the random graph of Section 3.6.2 when n = 5. Compute
the probability distribution of the number of components and verify your
solution by using it to compute E[C] and then comparing your solution

with
5[5 -
E[C]: E (k)(k_sk_)

k=1

72. (a) From the results of Section 3.6.3 we can conclude that there are

n+m-—1 . . .
m— 1 nonnegative integer valued solutions of the equation

Xy + -+ + Xx,, = n. Prove this directly.
(b) How many positive integer valued solutions of x; + --- + x,,, = n
are there?

Hint: Lety, =x; - 1.

(c) For the Bose-Einstein distribution, compute the probability that
exactly k of the X; are equal to 0.

73. In Section 3.6.3, we saw that if U is a random variable that is uniform
on (0, 1) and if, conditional on U = p, X is binomial with parameters » and
P, then
1
n+1

PiX =i} = , i=0,1,...,n
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For another way of showing this result, let U, X, X5,...,X, be
independent uniform (0, 1) random variables. Define X by
X=#:X;<U

That is, if the n + 1 variables are ordered from smallest to largest, then U
would be in position X + 1.

(a) What is P{X = i}?

(b) Explain how this proves the result stated in the preceding.
74. Let I,,...,I, be independent random variables, each of which is

equally likely to be either Oor 1. A well-known nonparametric statistical test
(called the signed rank test) is concerned with determining P, (k) defined by

n
jIjsk}
=1

J

P (k) = P{

Justify the following formula:

Pn(k = 2Pn—l(k) + '%Pn—l(k -n
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Chapter 4
Markov Chains

v

4.1. Introduction

In this chapter, we consider a stochastic process {X,,n = 0,1, 2, ...} that
takes on a finite or countable number of possible values. Unless otherwise
mentioned, this set of possible values of the process will be denoted by the
set of nonnegative integers {0, 1, 2, ...}. If X, = i, then the process is said to
be in state / at time n. We suppose that whenever the process is in state /,
there is a fixed probability P; that it will next be in state j. That is, we
suppose that

P Xy =Jl X =8, Xyoy = oy, oo, Xy = iy, Xo = i) = Py (4.1)

for all states iy, iy, ..., i,_1,4,/ and all n = 0. Such a stochastic process
is known as a Markov chain. Equation (4.1) may be interpreted as
stating that, for a Markov chain, the conditional distribution of any
future state X,,, given the past states X,, X, ..., X,, and the present
state X, is independent of the past states and depends only on the
present state.

The value P; represents the probability that the process will, when in
state i, next make a transition into state j. Since probabilities are non-
negative and since the process must make a transition into some state, we
have that

P;jz0, i,j=0, Y P;j=1, i=0,1,....
Jj=0

157
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Let P denote the matrix of one-step transition probabilities Py, so that
P, 00 P, 01 P, 02
P 10 P 11 P 12

Py Py P

Example 4.1 (Forecasting the Weather): Suppose that the chance of
rain tomorrow depends on previous weather conditions only through
whether or not it is raining today and not on past weather conditions.
Suppose also that if it rains today, then it will rain tomorrow with prob-
ability «; and if it does not rain today, then it will rain tomorrow with
probability 8.

If we say that the process is in state 0 when it rains and state 1 when it
does not rain, then the above is a two-state Markov chain whose transition
probabilities are given by

a 1l -«

B 1-§8

Example 4.2 (A Communications System): Consider a communications
system which transmits the digits 0 and 1. Each digit transmitted must pass
through several stages, at each of which there is a probability p that the
digit entered will be unchanged when it leaves. Letting X, . denote the digit
entering the nth stage, then {X,,n = 0, 1, ...} is a two-state Markov chain
having a transition probability matrix

p 1-p
l1-p p

P= g

Example 4.3 On any given day Gary is either cheerful (C), so-so (S), or
glum (G). If he is cheerful today, then he will be C, S, or G tomorrow with
respective probabilities 0.5, 0.4, 0.1. If he is feeling so-so today, then he will
be C, S, or G tomorrow with probabilities 0.3, 0.4, 0.3. If he is glum today,
then he will be C, S, or G tomorrow with probabilities 0.2, 0.3, 0.5.

Letting X,, denote Gary’s mood on the nth day, then {X,,n = 0} is a
three-state Markov chain (state 0 = C, state 1 = S, state 2 = G) with
transition probability matrix
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0.5 04 0.1
P=]}03 04 03| &
0.2 03 0.5

Example 4.4 (Transforming a Process into a Markov Chain): Suppose
that whether or not it rains today depends on previous weather conditions
through the last two days. Specifically, suppose that if it has rained for the
past two days, then it will rain tomorrow with probability 0.7; if it rained
today but not yesterday, then it will rain tomorrow with probability 0.5;
if it rained yesterday but not today, then it will rain tomorrow with
probability 0.4; if it has not rained in the past two days, then it will rain
tomorrow with probability 0.2.

If we let the state at time » depend only on whether or not it is raining at
time n, then the above model is not a Markov chain (why not?). However,
we can transform the above model into a Markov chain by saying that the
state at any time is determined by the weather conditions during both that
day and the previous day. In other words, we can say that the process is in

state 0 if it rained both today and yesterday,
state 1 if it rained today but not yesterday,

state 2 if it rained yesterday but not today,

state 3 if it did not rain either yesterday or today.

The preceding would then represent a four-state Markov chain having a
transition probability matrix

07 0 03 O
05 0 05 0
0 04 0 0.6
0 02 0 038

The reader should carefully check the matrix P, and make sure he or she
understands how it was obtained. @

Example 4.5 (A Random Walk Model): A Markov chain whose state
space is given by the integers i = 0, =1, +2, ... is said to be a random walk
if, for some number 0 < p < 1,

P iww=p=1-P,;,, i=0,=l1,...

The preceding Markov chain is called a random walk for we may think of
it as being a model for an individual walking on a straight line who at each
point of time either takes one step to the right with probability p or one step
to the left with probability 1 — p. @
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Example 4.6 (A Gambling Model): Consider a gambler who, at each
play of the game, either wins $1 with probability p or loses $1 with prob-
ability 1 — p. If we suppose that our gambler quits playing either when he
goes broke or he attains a fortune of $N, then the gambler’s fortune is a
Markov chain having transition probabilities

Pi,i+1=p=1_Pi,i—1! i=192’---’N'_1
Py = Pyy =1
States 0 and N are called absorbing states since once entered they are

never left. Note that the above is a finite state random walk with absorbing
barriers (states 0 and N). €

4.2, Chapman-Kolmogorov Equations

We have already defined the one-step transition probabilities P;. We now
define the n-step transition probabilities P to be the probability that a
process in state / will be in state j after n additional transitions. That is,

})i7=P[Xn+m=j|Xm=i]’ nz0,ijz0

Of course P,-lj = P;. The Chapman-Kolmogorov equations provide a method
for computing these n-step transition probabilities. These equations are

Pt = kzo P} Py; foralln,m =0, all i, 4.2

and are most easily understood by noting that P Py} represents the prob-
ability that starting in / the process will go to state j in n + m transitions
through a path which takes it into state k at the nth transition. Hence,
summing over all intermediate states k yields the probability that the
process will be in state j after n + m transitions. Formally, we have

Pi™™ = PXpym = j|Xo = i)

E PiXpim = Js X, = k‘XO = i}
=0

k

P{Xn+m =j|Xn = k’ XO
]

iJP(X, = k| X, = i}

Il
18

k

I
118

m pn
ij ik
0
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If we let P™ denote the matrix of n-step transition probabilities Pj;, then
Equation (4.2) asserts that

pl+m _ p@ . pm

where the dot represents matrix multiplication.* Hence, in particular,
p® = pi+V =p.p = P*
and by induction
P(n) - P(rl—l+l) = Pn—l P =P"

That is, the n-step transition matrix may be obtained by multiplying the
matrix P by itself # times.

Example 4.7 Consider Example 4.1 in which the weather is considered
as a two-state Markov chain. If « = 0.7 and 8 = 0.4, then calculate the
probability that it will rain four days from today given that it is raining
today.

Solution: The one-step transition probability matrix is given by

0.7 0.3
P =
0.4 0.6
Hence,
P(Z)_Pz_ 0.7 0.3 0.7 0.3
~" T lo4 06| |04 06
0.61 0.39
“lo.s2 o048’
PO _ B2y = 0.61 039 [0.61 0.39
0.52 0.48 0.52 0.48
_ | 0.5749 o0.4251
~ | 0.5668 0.4332

and the desired probability P, equals 0.5749. @

Example 4.8 Consider Example 4.4. Given that it rained on Monday
and Tuesday, what is the probability that it will rain on Thursday?
* If A is an N x M matrix whose element in the ith row and jth column is a; and B is a

M x K matrix whose element in the ith row and jth column is b;, then A - B is defined to be
the N X K matrix whose element in the ith row and jth column is T3. ; a; by;.
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Solution: The two-step transition matrix is given by

07 0 03 0 07 0 03
05 0 05 0 05 0 0.5
0 04 0 06[ |0 04 0 06
0 020 o8 [0 020 o8

0.49 0.12 0.21 0.18
0.35 0.20 0.15 0.30
0.20 0.12 0.20 0.48
0.10 0.16 0.10 0.64

(=2 -]

P® = p? =

Since rain on Thursday is equivalent to the process being in either state 0
or state 1 on Thursday, the desired probability is given by P2, + P} =
0.49 + 0.12=0.61. &

So far, all of the probabilities we have considered are conditional
probabilities. For instance, Pj is the probability that the state at time 7 is j
given that the initial state at time 0 is i. If the unconditional distribution of
the state at time n is desired, it is necessary to specify the probability
distribution of the initial state. Let us denote this by

o = P{X, = i}, izO(Ea,-=l>
i=0

All unconditional probabilities may be computed by conditioning on the
initial state. That is,

PiX, = j}

L PX, =jlX, = }P(X, = i}
i=0

©
— n
i=0

For instance, if oy = 0.4, o; = 0.6, in Example 4.7, then the (uncon-
ditional) probability that it will rain four days after we begin keeping
weather records is

P(X, = 0} = 0.4P{, + 0.6P%,
= (0.4)(0.5749) + (0.6)(0.5668)
= 0.5700
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4.3. Classification of StatesA

State j is said to be accessible from state i if P;; > 0 for some n = 0. Note
that this implies that state j is accessible from state / if and only if, starting
in 7, it is possible that the process will ever enter state j. This is true since if
J is not accessible from i, then

P{ever enter j|start in i)

P[L_JO{X,. = i11% = i}

L PX,=jlXo=i}
0

n=

A

I

L Pj
n=0
=0

Two states i and j that are accessible to each other are said to communicate,
and we write i © J.
Note that any state communicates with itself since, by definition,

Pl=PX,=ilX,=i}=1
The relation of communication satisfies the following three properties:

(i) State i communicates with state i, all i = 0.
(ii) If state /i communicates with state j, then state j communicates with
state i.
(iii) If state /i communicates with state j, and state j communicates with
state k, then state / communicates with state k.

Properties (i) and (ii) follow immediately from the definition of com-
munication. To prove (iii) suppose that / communicates with j, and j
communicates with k. Thus, there exists integers n and m such that Pj; > 0,
Pj > 0. Now by the Chapman-Kolmogorov equations, we have that

-]
Py™m =Y PPz PPy >0
r=0

Hence, state k is accessible from state i. Similarly, we can show that state i
is accessible from state k. Hence, states i and kK communicate.

Two states that communicate are said to be in the same class. It is an easy
consequence of (i), (ii), and (iii) that any two classes of states are either
identical or disjoint. In other words, the concept of communication divides
the state space up into a number of separate classes. The Markov
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chain is said to be irreducible if there is only one class, that is, if all states
communicate with each other.

Example 4.9 Consider the Markov chain consisting of the three states
0, 1, 2 and having transition probability matrix

P10
P=13 ¢ 4
0 % %

It is easy to verify that this Markov chain is irreducible. For example, it is
possible to go from state 0 to state 2 since

0—-1-2

That is, one way of getting from state 0 to state 2 is to go from state O to
state 1 (with probability 1) and then go from state 1 to state 2 (with
probability 4). @

Example 4.10 Consider a Markov chain consisting of the four states 0,
1, 2, 3 and have a transition probability matrix

+ 100

1 0

1 1

4 4

00 1

The classes of this Markov chain are {0, 1}, {2}, and {3]. Note that while state
0 (or 1) is accessible from state 2, the reverse is not true. Since state 3 is an
absorbing state, that is, P;; = 1, no other state is accessible from it. ¢

B Np= N
(=

For any state i we let f; denote the probability that, starting in state i, the
process will ever reenter state i. State / is said to be recurrent if f; = 1 and
transient if f; < 1.

Suppose that the process starts in state / and / is recurrent. Hence, with
probability 1, the process will eventually reenter state i. However, by the
definition of a Markov chain, it follows that the process will be starting over
again when it reenters state / and, therefore, state / will eventually be visited
again. Continual repetition of this argument leads to the conclusion that if
state i is recurrent then, starting in state i, the process will reenter state i
again and again and again—in fact, infinitely often.

On the other hand, suppose that state i is transient. Hence, each time
the process enters state / there will be a positive probability, namely, 1 — f;,
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that it will never again enter that state. Therefore, starting in state 7, the
probability that the process will be in state i for exactly n time periods
equals f77!(1 — f;), n = 1. In other words, if state i is transient then,
starting in state i, the number of time periods that the process will be in state
i has a geometric distribution with finite mean 1/(1 — fi)-

From the preceding two paragraphs, it follows that state i is recurrent if
and only if, starting in state i, the expected number of time periods that the
process is in state i is infinite. But, letting

- 1, ifX,=i
"o, ifX,#i

we have that ¥_, I, represents the number of periods that the process isin
state i. Also,

Y ElL|X, =il

n=0

E|: Z In‘X0= l]
n=90

i PiX, = i|X, =i}
[/}

n=

P
0

I
s

n

We have thus proven the following.

Proposition 4.1 State i is

recurrent if ), Pjj = o,

n=1

transient if Y, Pjj < oo
n=1

The argument leading to the preceding proposition is doubly important
because it also shows that a transient state will only be visited a finite
number of times (hence the name transient). This leads to the conclusion
that in a finite-state Markov chain not all states can be transient. To see
this, suppose the states are 0,1,...,M and suppose that they are all
transient. Then after a finite amount of time (say, after time Tp) state O will
never be visited, and after a time (say, T;) state 1 will never be visited, and
after a time (say, T,) state 2 will never be visited, etc. Thus, after a finite
time T = max{T,, T;, ..., Tps} Do states will be visited. But as the process
must be in some state after time 7" we arrive at a contradiction, which shows

that at least one of the states must be recurrent.
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Another use of Proposition 4.1 is that it enables us to show that
recurrence is a class property.

Corollary 4.2 If state i is recurrent, and state i communicates with state
J, then state j is recurrent.

Proof To prove this we first note that, since state i communicates with
state j, there exists integers k and m such that Pi’,f > 0, P; > 0. Now, for
any integer n
k k
Pk = PRPLPS

This follows since the left side of the above is the probability of going from
Jj tojinm+ n + k steps, while the right side is the probability of going
from j tojinm + n + k steps via a path that goes from j to i in m steps,
then from i/ to i/ in an additional » steps, then from i to j in an additional
k steps.

From the preceding we obtain, by summing over n, that
L Pj*"* = PiPj ¥ Pii=rco

n=1 n=1

since P}{‘P{; > 0, and ¥ _, P} is infinite since state i is recurrent. Thus, by
Proposition 4.1 it follows that state j is also recurrent. €

Remarks (i) Corollary 4.2 also implies that transience is a class property.
For if state i is transient and communicates with state j, then state j must
also be transient. For if j were recurrent then, by Corollary 4.2, i would
also be recurrent and hence could not be transient.

(ii) Corollary 4.2 along with our previous result that not all states in a
finite Markov chain can be transient leads to the conclusion that all states
of a finite irreducible Markov chain are recurrent.

Example 4.11 Let the Markov chain consisting of the states 0, 1, 2, 3
have the transition probability matrix

0 0 % 1
P=1000
0100
0100

Determine which states are transient and which are recurrent.

Solution: 1t is a simple matter to check that all states communicate and
hence, since this is a finite chain, all states must be recurrent. €
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Example 4.12 Consider the Markov chain having states 0, 1, 2, 3, 4 and

3 300
£13+000
P=]0 01+ 4 0
003+ 1o
11003

Determine the recurrent state.

Solution: This chain consists of the three classes {0, 1}, {2, 3}, and {4}.
The first two classes are recurrent and the third transient. 4

Example 4.13 (A Random Walk): Consider a Markov chain whose
state space consists of the integers i = 0, 1, +2, ..., and have transition
probabilities given by

P imi=p=1-PF,, i=0=x1,£2,...

where 0 < p < 1. In other words, on each transition the process either
moves one step to the right (with probability p) or one step to the left (with
probability 1 — p). One colorful interpretation of this process is that it
represents the wanderings of a drunken man as he walks along a straight
line. Another is that it represents the winnings of a gambler who on each
play of the game either wins or loses one dollar.

Since all states clearly communicate, it follows from Corollary 4.2 that
they are either all transient or all recurrent. So let us consider state 0 and
attempt to determine if Y. | Pgo is finite or infinite.

Since it is impossible to be even (using the gambling model interpretation)
after an odd number of plays we must, of course, have that

P¥l=0, n=12,..

On the other hand, we would be even after 2n trials if and only if we won
n of these and lost n of these. Because each play of the game results in a win
with probability p and a loss with probability 1 — p, the desired probability
is thus the binomial probability

2 2n)!
Py = <:>p"(1 -p)= (71!—'3—!(1)(1 -p)y', n=12,3,...

By using an approximation, due to Stirling, which asserts that

nl ~ n"*V2%e "\ 2n, 4.3)
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where we say that a, ~ b, when lim, . . a,/b, = 1, we obtain

_ @ - py)
Vnn

Now it is easy to verify that if a, ~ b,, then X,a, < o if and only if
X,b, <., Hence, ¥ ., P§, will converge if and only if

E @p(1 - p))"*
n=1 \/ﬁ

does. However, 4p(1 — p) < 1 with equality holding if and only if p = 3.
Hence, Y7., Py = « if and only if p = 4. Thus, the chain is recurrent
when p = § and transient if p # 1.

When p = 4, the above process is called a symmetric random walk. We
could also look at symmetric random walks in more than one dimension.
For instance, in the two-dimensional symmetric random walk the process
would, at each transition, either take one step to the left, right, up, or
down, each having probability 1. That is, the state is the pair of integers
(#,/) and the transition probabilities are given by

2n
P, 00

Pi.p,a+1.0 = Pap,a-1.0p = Pajy,a,ivv = Pap,d.j-n = %
By using the same method as in the one-dimensional case, we now show that
this Markov chain is also recurrent.

Since the preceding chain is irreducible, it follows that all states will be
recurrent if state 0 = (0, 0) is recurrent. So consider P&'. Now after 2n
steps, the chain will be back in its original location if for some i, 0 < i < n,
the 27 steps consist of i steps to the left, i to the right, n — i up,andn — i
down. Since each step will be either of these four types with probability 1,
it follows that the desired probability is a multinomial probability. That is,

“ 2n)! 1"

P = Eo itil(n —( i))!(n Y <Z>
B Z @n)! n n! <1>2"

jco min!l (n— DUY (n - Dt \4

6 CEOG)
4 n/iZo\i/\n-~-i
N> /2n\ (2n
-6 ) “

where the last equality uses the combinatorial identity

C)=£0G")
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which follows upon noting that both sides represent the number of subgroups
of size n one can select from a set of n white and » black objects. Now,

2n 2n)!
<n> " nln!
@n)¥+V2e~n\og

- n2”+1e'2"(2n)

by Stirling’s approximation

4n
- \N7n
Hence, from Equation (4.4) we see that
1
P2n ~
0 an

which shows that X, P& = o, and thus all states are recurrent.

Interestingly enough, whereas the symmetric random walks in one and
two dimensions are both recurrent, all high-dimensional symmetric random
walks turn out to be transient. (For instance, the three-dimensional sym-
metric random walk is at each transition equally likely to move in any of
six ways—either to the left, right, up, down, in, or out.) @

Remark We cancompute the probability of whether the one-dimensional
random walk of Example 4.13 ever returns to state 0 when p # 1/2 by
conditioning on the initial transition:

P{ever return} = Pfever return| X, = 1)p
+ Pfever return | X; = —1}(1 — p)

Suppose that p > 1/2. Then it can be shown (see Exercise 11 at the end of
this chapter) that p{ever return | X; = —1} = 1, and thus

Pfever return} = Pfever return | X, = 1lp+ 1 - p .5
Let o = Pfever return | X, = 1]. Conditioning on the next transition gives
o = Pfever return| X; = 1, X, = 0}(1 - p)
+ Pfever return | X; = 1, X, = 2}p
=1 — p + Plever enter 0| X, = 2}p

Now, if the chain is at state 2 then in order for it to enter state O it must first
enter state 1 and the probability that this ever occurs is o (why is that?).
Also, if it does enter state 1 then the probability that it ever enters state 0 is
also «. Thus, we see that the probability of ever entering state 0 starting at
state 2 is o, Therefore, we have that

a=1-p+pa?
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The two roots of this equation are o = 1 and a = (1 — p)/p. The first is
impossible since we know by transience that o < 1. Hence, a = (1 - p)/p,
and we obtain from Equation (4.5) that

Pleverreturn}j =1 -p + 1 — p=21-p

Similarly, when p < 1/2 we can show that Pfever return} = 2p. Thus, in
general we have that

Pfever return} = 2min(p, 1 - D)

Example 4.14 (On the Ultimate Instability of the Aloha Protocol):
Consider a communications facility in which the numbers of messages
arriving during each of the time periods n = 1,2, ... are independent and
identically distributed random variables. Let a; = P{i arrivals}, and
suppose that ¢, + @, < 1. Each arriving message will transmit at the end of
the period in which it arrives. If exactly one message is transmitted, then the
transmission is successful and the message leaves the system. However, if at
any time two or more messages simultaneously transmit, then a collision is
deemed to occur and these messages remain in the system. Once a message
is involved in a collision it will, independently of all else, transmit at the end
of each additional period with probability p—the so-called Aloha protocol
(because it was first instituted at the University of Hawaii). We will show
that such a system is asymptotically unstable in the sense that the number of
successful transmissions will, with probability 1, be finite.

To begin let X, denote the number of messages in the facility at the
beginning of the nth period, and note that {X,, n = 0} is a Markov chain.
Now for k& = 0 define the indicator variables I, by

1, if the first time that the chain departs state k it
I, = directly goes to state & — 1

0, otherwise

and let it be 0 if the system is never in state k, k = 0. (For instance, if the
successive states are 0, 1, 3, 3, 4, ... » then I3 = 0 since when the chain first
departs state 3 it goes to state 4; whereas, if they are 0, 3,3,2,..., then
I; = 1 since this time it goes to state 2.) Now,

El: r Ik:l = Y E[L]
k=0 k=0
= Y P, =1)
k=0
=< E Pl = 1|k is ever visited) 4.6)
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Now, P{I, = 1|k is ever visited} is the probability that when state k is
departed the next state is k — 1. That is, it is the conditional probability that
a transition from k is to k — 1 given that it is not back into &, and so

P,
P{I, = 1|k is ever visited} = ——k=1
1 — Py
As
Py k-1 = aokp(l - pF!
P = aoll — kp(1 = pY"'1 + &,(1 - p)*

which is seen by noting that if there are kK messages present on the beginning
of a day, then (a) there will be k¥ — 1 at the beginning of the next day if there
are no new messages that day and exactly one of the k messages transmits;
and (b) there will be k at the beginning of the next day if either

(i) there are no new messages and it is not the case that exactly one of the
existing k messages transmits, or

(ii) there is exactly one new message (which automatically transmits) and
none of the other k messages transmits.

Substitution of the preceding into Equation (4.6) yields

«©

: agkp(l — p)*~!
E I | <
[kgo k] = kX=:0 1 — a1l = kp(1 = p)*~ '] - a,(1 - p)*

< o0

where the convergence follows by noting that when k is large the
denominator of the expression in the preceding sum converges to 1 — a,
and so the convergence or divergence of the sum is determined by whether
or not the sum of the terms in the numerator converge and
Te-ok(l - p) 1 < oo,

Hence, E[Yx=01x] < o, which implies that ¥ i _ o/, < o with probability
1 (for if there was a positive probability that Y} . I could be o, then its
mean would be ). Hence, with probability 1, there will be only a finite
number of states that are initially departed via a successful transmission; or
equivalently, there will be some finite integer N such that whenever there
are N or more messages in the system, there will never again be a successful
transmission. From this (and the fact that such higher states will eventually
be reached—why?) it follows that, with probability 1, there will only be a
finite number of successful transmissions. 4

Remark For a (slightly less than rigorous) probabilistic proof of
Stirling’s approximation, let X;, X,, ... be independent Poisson random
variables each having mean 1. Let S, = Y7_; X}, and note that both the
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mean and variance of S, are equal to n. Now,
P{S,=nl=Pn-1<8§,=<nj
= P{—1/Vn < (S, — n)/Vn < 0}

217)" 172 -x2/2 i
v ﬁ( m)~ e dx central limit theorem

£

So when 7 is large, by the

=~ (2m)"*(1/Vn)
= (znn)—l/l

But S, is Poisson with mean n, and so

-n,n

n

P(S, = n) =

Hence, for n large
e—n n

- ~ (27!”)—1/2

or, equivalently
nl = nn+1/2e—n /27.[

which is Stirling’s approximation.

4.4, Limiting Probabilities

In Example 4.7, we calculated P® for a two-state Markov chain; it turned
out to be

@ _

0.5749 0.4251
0.5668 0.4332

From this it follows that P® = P® . P® js given (to three significant
places) by

0.572 0.428
0.570 0.430

Note that the matrix P® is almost identical to the matrix P®, and secondly,
that each of the rows of P® has almost identical entries. In fact it seems
that P is converging to some value (as n = o) which is the same for all i.
In other words, there seems to exist a limiting probability that the process
will be in state j after a large number of transitions, and this value is
independent of the initial state.
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To make the above heuristics more precise there are two additional
properties of the states of a Markov chain that we need consider. State i is
said to have period d if P;j = 0 whenever n is not divisible by d, and d is the
largest integer with this property. For instance, starting in i, it may be
possible for the process to enter state i only at the times 2,4,6,8, ..., in
which case state i has period 2. A state with period 1 is said to be aperiodic.
It can be shown that periodicity is a class property. That is, if state i has
period d, and states / and j communicate, then state Jj also has period d.

If state i is recurrent, then it is said to be positive recurrent if, starting in
i, the expected time until the process returns to state i is finite. It can be
shown that positive recurrence is a class property. While there exist recur-
rent states that are not positive recurrent,* it can be shown that in a finite-
state Markov chain all recurrent states are positive recurrent. Positive
recurrent, aperiodic states are called ergodic.

We are now ready for the following important theorem which we state
without proof.

Theorem 4.1 For an irreducible ergodic Markov chain lim,,_, , Pj} exists
and is independent of i. Furthermore, letting

m; = lim Py, jz0

n—c

then 7; is the unique nonnegative solution of

7[_,'=; Zn,-P,-j, jZO
i=0

4.7

Ym=1
j=0

Remarks (i) Given that n; = lim, ., , P} exists and is independent of the
initial state i, it is not difficult to (heuristically) see that the 7’s must satisfy
Equation (4.7). For let us derive an expression for P{X, ., =Jj} by con-
ditioning on the state at time n. That is,

]

Y P(Xyy = Jj1X, = i)PIX, = i}
i=0

P{Xniy =J)
= "E P,P{X, = i}

* Such states are called null recurrent.



174 4 Markov Chains

Letting n — o, and assuming that we can bring the limit inside the
summation, leads to

7lj = Z P, ,:,'ni
i=0
(ii) It can be shown that = ;» the limiting probability that the process will
be in state j at time #, also equals the long-run proportion of time that the
process will be in state j.

@iii) In the irreducible, positive recurrent, periodic case we still have that
the n;, j = 0, are the unique nonnegative solution of

7lj=E7l,'Pij,
an=l

But now n; must be interpreted as the long-run proportion of time that
the Markov chain is in state j.

Example 4.15 Consider Example 4.1, in which we assume that if it
rains today, then it will rain tomorrow with probability «; and if it does not
rain today, then it will rain tomorrow with probability 8. If we say that the
state is O when it rains and 1 when it does not rain, then by Equation (4.7)
the limiting probabilities 7, and 7, are given by

Ty = amng + fny,

m=0-an,+ (1 - P,

7l0+n1=1
which yields that
_ B _ l-a
T TYf-« MT1¥p-a

For example if « = 0.7 and § = 0.4, then the limiting probability of rain is
Ty =%=0571. &

Example 4.16 Consider Example 4.3 in which the mood of an
individual is considered as a three-state Markov chain having a transition
probability matrix

0.5 04 0.1
P=1]03 04 03
02 03 0.5
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In the long run, what proportion of time is the process in each of the three
states?

Solution: The limiting probabilities n;, i = 0, 1,2, are obtained by
solving the set of equations in Equation (4.1). In this case these equations
are

g = 0.57(0 + O.37ll + 0.27[2,

n, = 0.4n, + 0.47; + 0.37,,

Ty 0.17[0 + 0.37{1 + 0.57[2,
Mo+ M +7y,=1

Solving yields
’ = %%’ T, = % L 4

mln
Nl

Mg =

Example 4.17 (A Model of Class Mobility): A problem of interest to
sociologists is to determine the proportion of society that has an upper- or
lower-class occupation. One possible mathematical model would be to
assume that transitions between social classes of the successive generations
in a family can be regarded as transitions of a Markov chain. That is, we
assume that the occupation of a child depends only on his or her parent’s
occupation. Let us suppose that such a model is appropriate and that the
transition probability matrix is given by

0.45 0.48 0.07

P=0.05 0.70 0.25 4.8)
0.01 0.50 0.49

That is, for instance, we suppose that the child of a middle-class worker
will attain an upper-, middle-, or lower-class occupation with respective
probabilities 0.05, 0.70, 0.25.

The limiting probabilities 7;, thus satisfy

o = 0.457, + 0.057, + 0.017,,
n, = 0.487, + 0.707, + 0.507,,
7y = 0.07n, + 0.257, + 0.497,,

Mo+ My + Ty, = 1
Hence,
7[0 = 0.07, n, = 0.62, 7[2 = 0.31
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In other words, a society in which social mobility between classes can be
described by a Markov chain with transition probability matrix given by
Equation (4.8) has, in the long run, 7 percent of its people in upper-class
jobs, 62 percent of its people in middle-class jobs, and 31 percent in lower-
class jobs., @

Example 4.18 (The Hardy-Weinberg Law and a Markov Chain in
Genetics): Consider a large population of individuals each of whom
possesses a particular pair of genes, of which each individual gene is
classified as being of type 4 or type a. Assume that the proportions of
individuals whose gene pairs are AA, aa, or Aa are respectively p,, q,, and
Io (Do + go + ro = 1). When two individuals mate, each contributes one of
his or her genes, chosen at random, to the resultant offspring. Assuming
that the mating occurs at random, in that each individual is equally likely
to mate with any other individual, we are interested in determining the
proportions of individuals in the next generation whose genes are A4, aa,
or Aa. Calling these proportions p, g, and r, they are easily obtained by
focusing attention on an individual of the next generation and then deter-
mining the probabilities for the gene pair of that individual.

To begin, note that randomly choosing a parent and then randomly
choosing one of its genes is equivalent to just randomly choosing a gene
from the total gene population. By conditioning on the gene pair of the
parent, we see that a randomly chosen gene will be type A with probability

P{A} = P{A|AA}p, + P{A|aalq, + P{A|Ad}r,
= po + ry/2
Similarly, it will be type a with probability
Pla} = qo + ry/2

Thus, under random mating a randomly chosen member of the next
generation will be type 44 with probability p, where

p = PLA}P{A) = (p, + ro/2)?
Similarly, the randomly chosen member will be type aa with probability
q = P{a}P(a} = (go + ro/2)°
and will be type Aa with probability
r = 2P{A}P{a} = 2(py + ro/2)(qo + ro/2)
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Since each member of the next generation will independently be of each of
the three gene types with probabilities p, g, 7, it follows that the percentages
of the members of the next generation that are of type A4, aa, or Aa are
respectively p, g, and r.

If we now consider the total gene pool of this next generation, then
p + r/2, the fraction of its genes that are A, will be unchanged from the
previous generation. This follows either by arguing that the total gene pool
has not changed from generation to generation or by the following simple
algebra:

D+ r/2 = (Do + 1e/2)* + (Do + To/2) (g0 + To/2)
= (po + ro/2)pg + re/2 + qo + ro/2]
= po + re/2 since pop + 79 + go = 1
= P{A) 4.9)

Thus, the fractions of the gene pool that are A and g are the same as in the
initial generation. From this it follows that, under random mating, in all
successive generations after the initial one the percentages of the population
having gene pairs AA, aa, and Aa will remain fixed at the values p, g,
and r. This is known as the Hardy-Weinberg law. @

Suppose now that the gene pair population has stabilized in the percen-
tages p, g, r, and let us follow the genetic history of a single individual and
her descendants. (For simplicity, assume that each individual has exactly
one offspring.) So, for a given individual, let X, denote the genetic state of
her descendant in the nth generation. The transition probability matrix of
this Markov chain, namely,

AA aa Aa

r r
A4alp+L o r
P+ g+

aa 0 +£ +r
at; P*3
p . rq. rp. q. r
AdalZ+2 242 £, 4, 7
a3*t3 2% 23273

is easily verified by conditioning on the state of the randomly chosen mate.
It is quite intuitive (why?) that the limiting probabilities for this Markov
chain (which also equal the fractions of the individual’s descendants that
are in each of the three genetic states) should just be p, ¢, and r. To verify
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this we must show that they satisfy Equation (4.7). As one of the equations
in Equation (4.7) is redundant, it suffices to show that

r p r\?
perlprs) e 5+5)=(o+3).
r q r r\?
a=a(av) e r(§+5)=(ar3),

p+g+r=1

But this follows from Equation (4.9), and thus the result is established.

Example 4.19 Suppose that a production process changes states in
accordance with a Markov chain having transition probabilities Py, i,j =
1, ..., n, and suppose that certain of the states are considered acceptable
and the remaining unacceptable. Let A denote the acceptable states and A€
the unacceptable ones. If the production process is said to be ‘‘up’’ when in
an acceptable state and ‘‘down’’ when in an unacceptable state, determine

1. the rate at which the production process goes from up to down (that
is, the rate of breakdowns);

2. the average length of time the process remains down when it goes
down; and

3. the average length of time the process remains up when it goes up.

Solution: Let n,, k = 1, ..., n, denote the limiting probabilities. Now
for i € A and j € A° the rate at which the process enters state j from
state 7 is

rate enter j from i = ;P

and so the rate at which the production process enters state j from an
acceptable state is

rate enter j from A = Y, m;P;
ieA

Hence, the rate at which it enters an unacceptable state from an acceptable
one (which is the rate at which breakdowns occur) is

rate breakdowns occur = ), Y} m,P; (4.10)

jedfied

Now let U and D denote the average time the process remains up when it
goes up and down when it goes down. Because there is a single breakdown
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every U + D time units on the average, if follows heuristically that

1
rate at which breakdowns occur = T;-—l:)

and, so from Equation (4.10),

i
—— =Y Y nP 4.11)
U+D jeuica °
To obtain a second equation relating U and D, consider the percentage of
time the process is up, which, of course, is equal to Y e 4 7;. However,
since the process is up on the average U out of every U + D time units,
it follows (again somewhat heuristically) that the

proportion of up time =

and so U+D
U
gy = = 7Z,~ 4.12
U+D i§A ( )
Hence, from Equations (4.11) and (4.12) we obtain
0= YieaTi ,
ZjeA" Yiea ﬂiPij
D= 1= Yieam
EjeA‘ YieamiPy
Yiea T

ZjeA" YieamiPy

For example, suppose the transition probability matrix is

1
T+ 10
N
I N S §
4 4 4 4
P o

where the acceptable (up) states are 1, 2 and the unacceptable (down)
ones are 3, 4. The limiting probabilities satisfy

M= Mg+ Mg+ e,
My = My + md + mad + med,
My = My + Mt + Mg,

T+ +m+n,=1
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These solve to yield
=15 =1, my =4, =5

and thus
Rate of breakdowns = m,(Py; + Pyg) + mp(Pas + Pay)
-5,
U =%

U=

and D=2

Hence, on the average, breakdowns occur about 5 (or 28 percent) of the
time. They last, on the average, 2 time units, and then there follows a
stretch of (on the average) 4 time units when the system is up. @

Remarks (i) The long run proportions n;, j = 0, are often called
stationary probabilities. The reason being that if the initial state is chosen
according to the probabilities 7;, j = 0, then the probability of being in
state j at any time # is also equal to x;. That is, if

P{X, = j}=m;, jz0
then
PX,=jl=m; foralln,j=0

The preceding is easily proven by induction, for if we suppose it true for
n — 1, then writing

P{Xn =J] = ZP{Xn =j|Xn—1 = i}P{Xn—l = l}
= Y Pym; by the induction hypothesis
i

=7 by Equation (4.7)

(i) For state j, define m;; to be the expected number of transitions until a
Markov chain, starting in state j, returns to that state. Since, on the average,
the chain will spend 1 unit of time in state j for every m;; units of time, it
follows that

M = —
J my
In words, the proportion of time in state j equals the inverse of the mean
time between visits to j. (The above is a special case of a general result,
sometimes called the strong law for renewal processes, which will be
presented in Chapter 7.)
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Example 4.20 Consider independent tosses of a coin that, on each toss,
lands on heads (H) with probability p and on tails (T) with probability
g = 1 — p. What is the expected number of tosses needed for the pattern
HTHT to appear?

Solution: To answer the question, let us imagine that the coin tossing
does not stop when the pattern appears, but rather it goes on indefinitely.
If we define the state at time n to be the most recent 4 outcomes when
n = 4, and the most recent n outcomes when n < 4, then it is easy to see
that the successive states constitute a Markov chain. For instance, if the
first 5 outcomes are TTTHH, then the successive states of the Markov
chainare X, = T, X, = TT, X; = TTT, X, = TTTH, and X5 = TTHH.
It therefore follows from remark (ii) that 7yryr, the limiting probability
of state HTHT, is equal to the inverse of the mean time to go from state
HTHT to HTHT. However, for any n = 4, the probability that the state
at time n is HTHT is just the probability that the toss at n is T, the one
atn — 1is H, theone at n — 2 is T, and the one at n — 3 is H. Since the
successive tosses are independent, it follows that

P{X, = HTHT} = p%¢*>, n=4
and so

TTHTHT =’}l_f2° P{X, = HTHT} = quz

Hence, 1/(p*q?) is the mean time to go from HTHT to HTHT. But this
means that starting with HT the expected number of additional trials to
obtain HTHT is 1/(p2¢?). Therefore, since in order to obtain HTHT one
must first obtain HT, it follows that

1
E[time to pattern HTHT] = E[time to the pattern HT} + e

To determine the expected time to the pattern HT, we can reason in the
same way and let the state be the most recent 2 tosses. By the same
argument as used before, it follows that the expected time between
appearances of HT is equal to 1/myt = 1/(pq). As this is the same as the
expected time until HT first appears, we finally obtain that

1 1
E[time until HTHT appears] = — + ——
pq pq
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The same approach can be used to obtain the mean time until any given
pattern appears. For instance, reasoning as before, we obtain that

1
E[time until HTHHTHTHH] = E[time until HTHH] + p6_q3

1 1
= E[time until H] + =+t %3
pq pgq

LI
r’a  p°¢’

|-

Also, it is not necessary that the basic experiment has only two possible
outcomes (which we designated as H and T). For instance, if the succes-
sive values are independently and identically distributed with p; denoting
the probability that any given value is equal to j, j = 0, then

1
E[time until 012301] = E[time until 01] + ————
PoP1P2P3
1 1
= 53
PoPy PoP1P2P3

The following result is quite useful.

Proposition 4.3 Let {X,,n = 1} be an irreducible Markov chain with
stationary probabilities n;, j = 0, and let 7 be a bounded function on the
state space. Then, with probability 1,
N o
=1 1(X})

1- n=1 r( nl . .

NI-IEQ - N j§o r(Jj)n;
Proof If we let a;(N) be the amount of time the Markov chain spends in
state j during time periods 1, ..., N, then

N ©

Y X, = Y a(N)r(j)

n=1 Jj=0

Since a;(N)/N — n; the result follows from the preceding upon dividing by
N and then letting N = ©, @

If we suppose that we earn a reward r(j) whenever the chain is in
state j, then Proposition 4.3 states that our average reward per unit time is

Lr()m;.
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4.5. Some Applications
4.5.1. The Gambler’s Ruin Problem

Consider a gambler who at each play of the game has probability p of winning
one unit and probability ¢ = 1 — p of losing one unit. Assuming that
successive plays of the game are independent, what is the probability that,
starting with 7 units, the gambler’s fortune will reach /V before reaching 0?
If we let X, denote the players fortune at time n, then the process
{X,,n=0,1,2,...} is a Markov chain with transition probabilities

Py = Pyy = 1,
Piyw=p=1-P,;,, i=12,..,N-1

This Markov chain has three classes, namely, {0}, {1,2, ..., N — 1}, and {N};
the first and third class being recurrent and the second transient. Since each
transient state is visited only finitely often, it follows that, after some finite
amount of time, the gambler will either attain his goal of N or go broke.

Let P, i = 0,1, ..., N, denote the probability that, starting with /, the
gambler’s fortune will eventually reach N. By conditioning on the outcome
of the initial play of the game we obtain

P, =pP+4qP,, i=12..,N-1
or equivalently, since p + ¢ = 1,

PP; + qP; = pP;,, + qP;_,
or

Pi+1_Pi=g‘(Pi—Pi..1), i=12,....N—-1
Hence, since P, = 0, we obtain from the preceding line that

q q
Pz“P1=;(P1'P0)=;P1a

2

q q
p_p=_(p_p)=<_>p,
3 2=, 1 )

q qi-l
Pi_Pi‘lzi(Pi—l_Pi—2)= (;) Pl’

. q g\!
Py~ Py == }(Py-1— Pn2) = | = P
N N-1 <p>(Nl 'N-2) <p> 1
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Adding the first i — 1 of these equations yields

per= (8 (3 4 (9]

or
1 - (¢/p) o
P p., ifdxg
BERCZ N p
ip,, ifd -1
P

Now, using the fact that Py = 1, we obtain that

1 —-(q/p) . 1
T—wp TP*2
Pl =
1 p=1
N’ p=3
and hence
1 - (g/p) 1
I—wp® P*3
P, = 4.13)
i fp=
N’ p=3
Note that, as N = o,
q\y . 1
1-(2), f =
(- (@) e
i . 1
0, lfp SE

Thus, if p > 1, there is a positive probability that the gambler’s fortune will
increase indefinitely; while if p < 1, the gambler will, with probability 1, go
broke against an infinitely rich adversary.

Example 4.21 Suppose Max and Patty decide to flip pennies; the one
coming closest to the wall wins. Patty, being the better player, has a
probability 0.6 of winning on each flip. If Patty starts with five pennies and
Max with ten, then what is the probability that Patty will wipe Max out?
What if Patty starts with ten and Max with 20?



4.5. Some Applications 185

Solution: (a) The desired probability is obtained from Equation (4.13)
by letting i = 5, N = 15, and p = 0.6. Hence, the desired probability is

1-&F
— = 0.87
-
(b) The desired probability is
1-@®"°
T_—(§5 = (.98 ’

For an application of the gambler’s ruin problem to drug testing, suppose
that two new drugs have been developed for treating a certain disease. Drug
i has a cure rate P;, i = 1, 2, in the sense that each patient treated with drug
i will be cured with probability P;. These cure rates are, however, not
known, and suppose we are interested in a method for deciding whether
P, > P, or P, > P,. To decide upon one of these alternatives, consider the
following test: Pairs of patients are treated sequentially with one member of
the pair receiving drug 1 and the other drug 2. The results for each pair are
determined, and the testing stops when the cumulative number of cures
using one of the drugs exceeds the cumulative number of cures when using
the other by some fixed predetermined number. More formally, let

Xj=

1, if the patient in the jth pair to receive drug number 1 is cured
0, otherwise

Y = 1, if the patient in the jth pair to receive drug number 2 is cured
7o, otherwise

For a predetermined positive integer M the test stops after pair N where
N is the first value of n such that either

X+ +X,-(h+---+Y)=M
or
Xi+ o+ X, - (Y 4+ +Y)=-M

In the former case we then assert that P, > P,, and in the latter that
P, > P;.

In order to help ascertain whether the preceding is a good test, one thing
we would like to know is the probability of it leading to an incorrect
decision. That is, for given P, and P, where P, > P,, what is the probability
that the test will incorrectly assert that P, > P,? To determine this prob-
ability, note that after each pair is checked the cumulative difference of
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cures using drug 1 versus drug 2 will either go up by 1 with probability
P,(1 — P,)—since this is the probability that drug 1 leads to a cure and
drug 2 does not—or go down by 1 with probability (1 — P,)P,, or remain the
same with probability P, P, + (1 — P))(1 — P,). Hence, if we only consider
those pairs in which the cumulative difference changes, then the difference
will go up 1 with probability

p = Pfup 1]up 1 or down 1}

__ PO-P)
P(1-P)+ (1~ P)P,

and down 1 with probability

- Pz(l"Pl)
P(1-P)+ (1 - P)P,

g=1-p

Hence, the probability that the test will assert that P, > P, is equal to the
probability that a gambler who wins each (one unit) bet with probability p
will go down M before going up M. But Equation (4.12) with i = M,
N = 2M, shows that this probability is given by

1 - (g/p)™

Pftest asserts that P, > Pj} =1 — 1—_(—5}%—
-
"1+ (p/gM

Thus, for instance, if P, = 0.6 and P, = 0.4 then the probability of an
incorrect decision is 0.017 when M = 5 and reduces to 0.0003 when M = 10.

4.5.2. A Model for Algorithmic Efficiency

The following optimization problem is called a linear program:
minimize ¢x,
subject to Ax = b,
x=0

where A is an m X n matrix of fixed constants; ¢ = (¢y,...,¢c,) and
b = (b, ..., b,) are vectors of fixed constants, and x = (x;, ..., X;,) is the
n-vector of nonnegative values that is to be chosen to minimize cx =
Y 7.1 cix;. Supposing that n > m, it can be shown that the optimal x can
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always be chosen to have at least n — m components equal to O—that is, it
can always be taken to be one of the so-called extreme points of the
feasibility region.

The simplex algorithm solves this linear program by moving from an
extreme point of the feasibility region to a better (in terms of the objective
function c¢x) extreme point (via the pivot operation) until the optimal is

n .
reached. Because there can be as many as N = m> such extreme points,

it would seem that this method might take many iterations, but, surprisingly
to some, this does not appear to be the case in practice.

To obtain a feel for whether or not the preceding statement is surprising,
let us consider a simple probabilistic (Markov chain) model as to how the
algorithm moves along the extreme points. Specifically, we will suppose
that if at any time the algorithm is at the jth best extreme point then after
the next pivot the resulting extreme point is equally likely to be any of the
J — 1 best. Under this assumption, we show that the time to get from the
Nth best to the best extreme point has approximately, for large N, a normal
distribution with mean and variance equal to the logarithm (base e) of N.

Consider a Markov chain for which P;; = 1 and

j=1,...,i-1i>1

and let 7; denote the number of transitions needed to go from state i to state
1. A recursive formula for E[T;] can be obtained by conditioning on the
initial transition:

i-1

E[f]1=1+—— ¥ E[T)
| A j=1

Starting with E[T;] = 0, we successively see that
E[L] =1,
E[T) =1+,
ElTl=1+31+14+H=1+1+1

and it is not difficult to guess and then prove inductively that

i-1
E[f]1= ¥ 1/

i=1
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However, to obtain a more complete description of 7, we will use the
representation

N-1
Iy = E IJ
Jj=1
where

I =

{1, if the process ever enters j
J

0, otherwise

The importance of the preceding representation stems from the following:

Proposition 4.4 1,,...,I,_, are independent and
PiLi=13=1/j, 1=<jsN-1

Proof Given I;,,,...,Iy, let n = min{i:i > j, I, = 1} denote the lowest
numbered state, greater than j, that is entered. Thus we know that the
process enters state n and the next state entered is one of the states
1,2, ...,Jj. Hence, as the next state from state » is equally likely to be any
of the lower number states 1,2, ...,n — 1 we see that
1/(n-1)
P{iL=1|1,....INN = —————==1/j
{_] | Jj+1 N} j/(n _ l) J

Hence, P{I; = 1} = 1/j, and independence follows since the preceding
conditional probability does not depend on I, ...,Iy. @

Corollary 4.5
() E[Ty] = T)51 /).
(i) Var(Ty) = L7571 (12)1 - 1/)).
(iii) For N large, Ty has approximately a normal distribution with mean
log N and variance log N.

Proof Parts (i) and (ii) follow from Proposition 4.4 and the representa-
tion Ty = L;-1 I;. Part (iii) follows from the central limit theorem since
Ndx N-1 N-1 dx
— < 1/j< 1 —
S 1 X ; SR X 1 X
or
N-1
logN< Y 1/j<1+1logN-1)
1

and so
N-1
logN= Y 1/j &

j=1
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Returning to the simplex algorithm, if we assume that n, m, and n — m
are all large, we have by Stirling’s approximation that

n nn+1/2
N = <m> =~ 1 — my=" Va2 g
and so, letting ¢ = n/m,
log N ~ (mc + 1) log(mc) — (m(c — 1) + ) log(m(c — 1))

— (m + $)logm — +log(2m)
or
c
c—-1

log N ~ m[clog + log(c — 1)]

Now, as lim, .., xlog[x/(x — 1)] = 1, it follows that, when c is large,
log N ~ m[1 + log(c — 1)}

Thus for instance, if n = 8000, m = 1000, then the number of necessary
transitions is approximately normally distributed with mean and variance
equal to 1000(1 + log 7) = 3000. Hence, the number of necessary transitions
would be roughly between

3000 + 2+/3000 or, roughly 3000 + 110,
95 percent of the time.

4.5.3. Using a Random Walk to Analyze a Probabilistic
Algorithm for the Satisfiability Problem
Consider a Markov chain with states 0, 1, ..., n having
Py=1, Pin=0n, P, ,=q=1-p, l=<i=n

and suppose that we are interested in studying the time that it takes for
the chain to go from state 0 to state n. One approach to obtaining the
mean time to reach state n would be to let m; denote the mean time to go
from state i to state n, i = 0, ..., n — 1. If we then condition on the initial
transition, we obtain the following set of equations:

my=1+m
m; = E[time to reach n | next state is i + 1]p
+ E[time to reach n | next state is i — 1)q
=0 +m)p+ A+ m_1)g

=1+ pm;, + gm;_,, i=1,...,n-1
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Whereas the preceding equations can be solved for m;,i = 0, ...,n — 1, we
do not pursue their solution; we instead make use of the special structure of
the Markov chain to obtain a simpler set of equations. To start, let N;
denote the number of additional transitions that it takes the chain when it
first enters state i until it enters state i + 1. By the Markovian property, it
follows that these random variables N;, i = 0, ..., n — 1 are independent.
Also, we can express N, ,, the number of transitions that it takes the chain
to go from state O to state n, as

Now= I N, 4.14)

Letting u; = E[N;] we obtain, upon conditioning on the next transition
after the chain enters state i, that fori = 1,...,n — 1

#; = 1 + E[number of additional transitions to reach i + 1|chainto i — 1]g

Now, if the chain next enters state / — 1, then in order for it to reach i + 1
it must first return to state i and must then go from state i + 1. Hence, we
have from the preceding that

4 =1+ E[N%, + Nflg

where N, and N} are, respectively, the additional number of transitions
to return to state / from / — 1 and the number to then go from ito i + 1.
Now, it follows from the Markovian property that these random variables
have, respectively, the same distributions as N;_; and N;. In addition, they
are independent (although we will only use this when we compute the
variance of N, ,). Hence, we see that

=1+ qlui_y + u)
or
1 g ,
Ui=—+=pu_y, i=1,...,n-1
i p p i—-1

Starting with g, = 1, and letting @ = ¢/p, we obtain from the preceding
recursion that

U=1/p+all/p+a)=1/p + a/p + o*
Us=1/p + a(l/p + a/p + a?

=1/p+a/p+ap+ db
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In general, we see that
i-1
==Y ol +df, i=1,...,n -1 4.15)
p_] 4]

Using Equation (4.14), we now get
n-1 i-1 n-1

1
ENgs=14+=-Y Y o'+ ¥ &
p i=1j=0 i=1
When p = 1, and so o = 1, we see from the preceding that
ENg, J=1+n—-Dn+n-1=n

When p # 4, we obtain that

.
E[Ng 1 =1+ 1-
[ O,n] p(l—oz) 'Z( 1-a
1 — n — n
14 +a n—l—(a a”) il
l -« -« l -«

20" —(n+ Da? +n -1

1+ (1= o)

where the second equality used the fact that p = 1/(1 + «). Therefore, we
see that when o > 1, or equivalently when p < 4, the expected number of
transitions to reach n is an exponentially increasing functlon of n. On the
other hand, when p = 1, E[N,,»] = n*, and when p > 1 s EINy, ] is, for
large n, essentially linear in n.

Let us now compute Var(N, ,). To do so, we will again make use of the
representation given by Equation (4.14). Letting v; = Var(;), we start by
determining the v; recursively by using the conditional variance formula.
Let §; = 1 if the first transition out of state i is into state i + 1, and let

S; = -1 if the transition is into state i — 1, i = 1, ..., n — 1. Then,
given that S; = 1: N =1
given that S; = —1: N;=1+ N}, +Nf
Hence,
E[Nilsi =1] =

E[N;|S;=-11=1 + fiq + Ol
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implying that
Var(E[N;|S;]) = Var(E[N;|S;] — 1)
= (ui_y + w)q — iy + w)’q?
= qp(ui_y + m)?

Also, since N ; and N}, the numbers of transitions to return from state
i — 1 to i and to then go from state i to state i + 1 are, by the Markovian
property, independent random variables having the same distributions as
N;_; and N, respectively, we see that

Var(V;|S;=1) =0

Var(N,"S,- = —'1) = v,-_l + U"
Hence,
E[Var(NV;| $)] = q(vi_y + v)

From the conditional variance formula, we thus obtain that
v; = pq(ioy + 1) + q(viny + v)
or, equivalently
vi=qu + ) +av., i=1,...,n—-1

Starting with v, = 0, we obtain from the preceding recursion that

vy = quo + uy)’,

v, = quy + 1o)* + agquy + 1),

vy = q(; + 1) + aq(y + 1) + Pqug + 1)
In general, we have for i > 0,

i
vi=q ¥ o iy + w) (4.16)
Jj=1
Therefore, we see that

n— n-1

1
Var(V, ,) = Z V;=4q
i=0

i
Y o, + uy)?
i=1j=1
where y; is given by Equation (4.15).

We see from Equations (4.15) and (4.16) that when p = 4, and so
o < 1, that 4; and v;, the mean and variance of the number of transitions
to go from state i to / + 1, do not increase too rapidly in i. For instance,



4.5. Some Applications 193

when p = 1 it follows from Equations (4.15) and (4.16) that
Hi = 2i + 1,

and

;l @y =8%Y j*

Jj=1

v; =

[ S AR
[,

Hence, since Ny , is the sum of independent random variables, which are
of roughly similar magnitudes when p = 4, it follows in this case from the
central limit theorem that N, , is, for large n, approximately normally
distributed. In particular, when p = 4, N, , is approximately normal with
mean n* and variance

n-1

VarVo,) =8 L, T J°

i=1j=1

n-1 n-1

=8Y Y Jj?

j=1i=j

n-1
=8 % (n - )’
Jj=1

n-1
~ SS (n — x)x%dx

1

~ &nt
= £n

Example 4.22 (The Satisfiability Problem): A Boolean variable x is one
that takes on either of two values—either TRUE or FALSE. If x;,i = 1 are
Boolean variables, then a Boolean clause of the form

Xy + X + X3

is TRUE if x, is TRUE, or if x, is FALSE, or if x, is TRUE. That is, the
symbol “+’’ means ‘““or’’ and X is TRUE if x is FALSE and vice versa.
A Boolean formula is a combination of clauses such as

(e + 1) * (X + X3) * (0 + X5) * (%) + 5) * (x; + x3)

In the preceding, the terms between the parentheses represent clauses, and
the formula is TRUE if all the clauses are TRUE, and is FALSE otherwise.
For a given Boolean formula, the satisfiability problem is to either determine
values for the variables that result in the formula being TRUE, or to
determine that the formula is never true. For instance, one set of values that
makes the preceding formula TRUE is to set X; = TRUE, x, = FALSE,
and x; = FALSE.
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Consider a formula of the n Boolean variables x,, ..., x, and suppose
that each clause in this formula refers to exactly two variables. We will now
present a probabilistic algorithm that will either find values that satisfy the
formula or determine to a high probability that it is not possible to satisfy
it. To begin, start with an arbitrary setting of values. Then, at each stage
choose a clause whose value is FALSE, and randomly choose one of the
Boolean variables in that clause and change its value. That is, if the variable
has value TRUE then change its value to FALSE, and vice versa. If this new
setting makes the formula TRUE then stop, otherwise continue in the same
fashion. If you have not stopped after n*(1 + 4v%) repetitions, then declare
that the formula cannot be satisfied. We will now argue that if there is a
satisfiable assignment then this algorithm will find such an assignment with
a probability very close to 1.

Let us start by assuming that there is a satisfiable assignment of truth
values and let @ be such an assignment. At each stage of the algorithm
there is a certain assignment of values. Let Y; denote the number of the n
variables whose values at the jth stage of the algorithm agree with their
values in @. For instance, suppose that n = 3 and @ consists of the settings
X; = X, = x; = TRUE. If the assignment of values at the jth step of the
algorithm is x; = TRUE, x, = x; = FALSE, then Y, = 1. Now, at each
stage, the algorithm considers a clause that is not satisfied, thus implying
that at least one of the values of the two variables in this clause does not
agree with its value in @. As a result, when we randomly choose one of
the variables in this clause then there is a probability of at least 4 that
Y,1=Y;+ | and at most £ that Y;,, = ¥; — 1. That is, independent of
what has previously transpired in the algorithm, at each stage the number
of settings in agreement with those in @ will either increase or decrease by
I and the probability of an increase is at least 4 (it is 1 if both variables
have values different from their values in ®). Thus, even though the
process Y;, j = 0 is not itself a Markov chain (why not?) it is intuitively
clear that both the expectation and the variance of the number of stages of
the algorithm needed to obtain the values of @ will be less than or equal
to the expectation and variance of the number of transitions to go from
state 0 to state n in the Markov chain of Section 4.5.2. Hence, if the
algorithm has not yet terminated because it found a set of satisfiable
values different from that of @, it will do so within an expected time of at
most n’ and with a standard deviation of at most n*vZ. In addition, since
the time for the Markov chain to go from 0 to n is approximately normal
when 7 is large we can be quite certain that a satisfiable assignment will be
reached by n* + 4(n*>V%) stages, and thus if one has not been found by this
number of stages of the algorithm we can be quite certain that there is no
satisfiable assignment.
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Our analysis also makes it clear why we assumed that there are only two
variables in each clause. For if there were k, k > 2, variables in a clause
then as any clause that is not presently satisfied may only have 1 incorrect
setting, a randomly chosen variable whose value is changed might only
increase the number of values in agreement with @ with probability 1/k and
so we could only conclude from our prior Markov chain results that the
mean time to obtain the values in @ is an exponential function of n, which
is not an efficient algorithm when 7 is large. @

4.6. Mean Time Spent in Transient States

Consider now a finite state Markov chain and suppose that the states
are numbered so that T = {1, 2, ..., ¢} denotes the set of transient states.
Let

Py Py - Py

Pr={Py P, -~ P

Py Pp - Py
and note that since Py specifies only the transition probabilities from
transient states into transient states, some of its row sums are less than 1

(otherwise, T would be a closed class of states).

For transient states i and j, let s; denote the expected number of time
periods that the Markov chain is in state j, given that it starts in state i.

Let &;; = | when i = j and let it be 0 otherwise. Condition on the initial
transition to obtain

sy = 0i,j + L PuSj
k

t
= 6,',_,' + Z P,-kskj (4.17)
k=1

where the final equality follows since it is impossible to go from a recurrent
to a transient state, implying that s,; = 0 when k is a recurrent state.
Let S denote the matrix of values s, i,j = 1, ..., ¢. That is

S13 S12 vt Su
S=1|sn Sp - Su

S Sttt Su
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In matrix notation, Equation (4.17) can be written as
S=1+P;S

where I is the identity matrix of size ¢. Because the preceding equation is
equivalent to

d-PpsS=1
we obtain, upon multiplying both sides by (I — Py)~?,

S=(1-Pp!
That is, the quantities s;;, i € T, j € T, can be obtained by inverting the
matrix I — Py. (The existence of the inverse is easily established.)
Example 4.23 Consider the gambler’s ruin problem with p = 0.4 and

N = 7. Starting with 3 units, determine

(a) the expected amount of time the gambler has 5 units,
(b) the expected amount of time the gambler has 2 units.

Solution: The matrix Py, which specifies P;i,je(l,2,3,4,5,6), is
as follows:

1 2 3 4 5 6

1/]0 04 0 0 0 O
2(06 0 04 0 0 O
P 3]0 06 0 04 0 O
T74/0 0 06 0 04 0
5!10 0 0 06 0 0.4
610 0 0 o0 06 O

Inverting I — Py gives

1.6149 1.0248 0.6314 0.3691 0.1943 0.0777
1.5372 2.5619 1.5784 0.9228 0.4857 0.1943
1.4206 2.3677 2.9990 1.7533 0.9228 0.3691

= (1 — -1 _
§=@-Py 1.2458 2.0763 2.6299 2.9990 1.5784 0.6314
0.9835 1.6391 2.0763 2.3677 2.5619 11,0248
0.5901 0.9835 1.2458 1.4206 1.5372 1.6149
Hence,

53,5 = 0.9228,  5;,=23677 &
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Fori e T,j e T, the quantity f;;, equal to the probability that the Markov
chain ever makes a transition into state j given that it starts in state i, is
easily determined from Py. To determine the relationship, let us start by
deriving an expression for s; by conditioning on whether state j is ever
entered. This yields

s = E[time in j | start in i, ever transit to j1f};
+ E[time in j | start in i, never transit to j}(1 — f)
= (0, + sy + 0 ;(L = [, )
=0+ Jysy

since s;; is the expected number of additional time periods spent in state j
given that it is eventually entered from state i. Solving the preceding equation
yields

Example 4.24 In Example 4.23, what is the probability that the gambler
ever has a fortune of 1.

Solution: Since s; ; = 1.4206 and s,,, = 1.6149, then

foy =21 = 0.8797
’ S1,1

As a check, note that f; ; is just the probability that a gambler starting

with 3 reaches 1 before 7. That is, it is the probability that the gambler’s

fortune will go down 2 before going up 4; which is the probability that a

gambler starting with 2 will go broke before reaching 6. Therefore,

1 — (0.6/0.4)*

=1 - —0 = 0.8797
Sia=1 1 - (0.6/0.4)° 8

which checks with our earlier answer. 4

4.7. Branching Processes

In this section we consider a class of Markov chains, known as branching
processes, which have a wide variety of applications in the biological,
sociological, and engineering sciences.
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Consider a population consisting of individuals able to produce offspring
of the same kind. Suppose that each individual will, by the end of its
lifetime, have produced j new offspring with probability P;, j = 0, inde-
pendently of the number produced by any other individual. We suppose
that P; <1 for all j = 0. The number of individuals initially present,
denoted by X, is called the size of the zeroth generation. All offspring of
the zeroth generation constitute the first generation and their number is
denoted by X,. In general, let X, denote the size of the nth generation. It
follows that {X,,n = 0, 1, ...} is a Markov chain having as its state space
the set of nonnegative integers.

Note that state 0 is a recurrent state, since clearly Py, = 1. Also, if
P, > 0, all other states are transient. This follows since P;, = P}, which
implies that starting with 7/ individuals there is a positive probability of at
least P{; that no later generation will ever consist of / individuals. Moreover,
since any finite set of transient states {1, 2, ..., n} will be visited only finitely
often, this leads to the important conclusion that, if P, > 0, then the
population will either die out or its size will converge to infinity.

Let

denote the mean number of offspring of a single individual, and let
o*= T (- wPh
j=0

be the variance of the number of offspring produced by a single individual.
Let us suppose that X, = 1, that is, initially there is a single individual
present. We calculate E[X,] and Var(X,) by first noting that we may write

Xn—l
Xn = Z Z;
i=1

where Z; represents the number of offspring of the ith individual of the
(n — 1)st generation. By conditioning on X,,_,, we obtain

E[X,] = E[E[X,| X,-,]]

A g

= E[X,_,u]
= HE[X,-4] (4.18)
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where we have used the fact that E[Z;] = u. Since E[X,] = 1, Equation
(4.18) yields

E[XI] = U,
E[X,] = pE[X)] = u?,

E[X,] = uEIX,_\] = 4"

Similarly, Var(X,) may be obtained by using the conditional variance
formula

Var(X,) = E[Var(X,| X,-)] + Var(E[X,| X,_])

Now, given X,_,, X, is just the sum of X,,_, independent random variables
each having the distribution {P;, j = 0}. Hence,

Var(X,| X,_;) = X,_,0°
Thus, the conditional variance formula yields
Var(X,) = E[X,_;067] + Var(X,_,4)
= g?u" ! + u* Var(X,_,)

Using the fact that Var(X,) = 0 we can show by mathematical induction
that the preceding implies

azu"'1<u — 1>, ifu=l
Var(X,) = u—-1 4.19)

ne?, ifu=1

Let 7, denote the probability that the population will eventually die out
(under the assumption that X, = 1). More formally,

The problem of determining the value of 7, was first raised in connection
with the extinction of family surnames by Galton in 1889.
We first note that ny = 1if 4 < 1. This follows since

o©

p" = EIX,] = ¥ jPX, =]
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Since u" — 0 when u < 1, it follows that P{X, > 1} = 0, and hence
P{X, =0} —1.

In fact, it can be shown that 7, = 1 even when u = 1. When u > 1, it
turns out that n, < 1, and an equation determining 7, may be derived by
conditioning on the number of offspring of the initial individual, as follows:

ny = P{population dies out}
= Y P(population dies out| X, = j}P,
j=0

Now, given that X, = j, the population will eventually die out if and only
if each of the j families started by the members of the first generation
eventually dies out. Since each family is assumed to act independently, and
since the probability that any particular family dies out is just 7o, this yields

P{population dies out|X, = j} = n}
and thus n, satisfies

o= ¥ P, (4.20)
j=0

In fact when > 1, it can be shown that n, is the smallest positive number
satisfying Equation (4.20).

Example 4.25 If P, =1, P, = 1, P, = 1, then determine 7,.
Solution: Since u = 2 < 1, it follows that 7y = 1. @
Example 4.26 1If P, = 4, P, = 1, P, = 1, then determine 7,.

Solution: 7, satisfies

2
Mo =% + 47 + 373

or
2n2 - 3n,+1=0

The smallest positive solution of this quadratic equation is 7, = i, &

Example 4.27 In Examples 4.25 and 4.26, what is the probability that
the population will die out if it initially consists of n individuals?

Solution: Since the population will die out if and only if the families
of each of the members of the initial generation die out, the desired
probability is #5. For Example 4.25 this yields n§ = 1, and for Example
426,75 = 3)". &
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4.8. Time Reversible Markov Chains

Consider a stationary ergodic Markov chain (that is, an ergodic Markov
chain that has been in operation for a long time) having transition prob-
abilities P; and stationary probabilities z;, and suppose that starting at
some time we trace the sequence of states going backwards in time. That is,
starting at time n, consider the sequence of states X,,, X,,_1, X,_5,.... It
turns out that this sequence of states is itself a Markov chain with transition
probabilities Q;; defined by

Qi = P(X,, = j| Xppiy = 1)
- P{Xm = J, Xm+1 = i}

P{Xpyy = i}
_ PXm = J1P(Xmsy = i Xm = J)
P{Xmsy = i}
_ b
;

To prove that the reversed process is indeed a Markov chain, we must
verify that

Pi{X,, =j|Xm+l =i, Xm+2’Xm+3! ...} = PlX,, =jIXm+1 = i)

To see that this is so, suppose that the present time is m + 1. Now,
since Xy, X;, X3, ... is @ Markov chain, it follows that the conditional
distribution of the future X,,,5, X;n+3, --- given the present state X,,,, is
independent of the past state X,,. However, independence is a symmetric
relationship (that is, if 4 is independent of B, then B is independent of A4),
and so this means that given X,.,, X,, is independent of X,,,,,, X;ny3, ... .
But this is exactly what we had to verify.

Thus, the reversed process is also a Markov chain with transition
probabilities given by
P

Ji

;
-
Qij = '.

If Q;; = Pyforalli, j, then the Markov chain is said to be time reversible. The
condition for time reversibility, namely, Q; = P;;, can also be expressed as

Py = m; Py for all i, j 4.21)

The condition in Equation (4.21) can be stated that, for all states i and j, the
rate at which the process goes from i to j (namely, n;P;) is equal to the rate
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at which it goes from j to i (namely, n;P;). It is worth noting that this is an
obvious necessary condition for time reversibility since a transition from i
to j going backward in time is equivalent to a transition from J to i going
forward in time; i.e., if X, = i and X,._1 = Jj, then a transition from i to
J is observed if we are looking backward, and one from J to i if we are
looking forward in time. Thus, the rate at which the forward process makes
a transition from j to i is always equal to the rate at which the reverse
process makes a transition from i to j; if time reversible, this must equal the
rate at which the forward process makes a transition from i to J.

If we can find nonnegative numbers, summing to one, which satisfy
Equation (4.21), then it follows that the Markov chain is time reversible and
the numbers represent the limiting probabilities. This is so since if

1 4.22)

I

x,PU = ijj,- for all i,j, Ex,'
i
Then summing over i yields

inPij=ijPji=xj, in=1

1 H I
and, as the limiting probabilities n; are the unique solution of the above, it
follows that x; = #; for all i.

Example 4.28 Consider a random walk with states 0,1, ...,M and
transition probabilities

Pi,i+1=ai=1—Pi,i_1, i=1,...,M-1,
P01=0¢o=1—Po,o,
Py =y =1~ Py

Without the need of any computations, it is possible to argue that this
Markov chain, which can only make transitions from a state to one of its
two nearest neighbors, is time reversible. This follows by noting that the
number of transitions from i to i + 1 must at all times be within 1 of the
number from i + 1 to i. This is so since between any two transitions from
i toi + 1 there must be one from i + 1to i (and conversely) since the only
way to reenter / from a higher state is via state / + 1. Hence, it follows that
the rate of transitions from i to / + 1 equals the rate from i + 1 to i, and so
the process is time reversible.

We can easily obtain the limiting probabilities by equating for each state
i=0,1,...,M — 1 the rate at which the process goes from i to / + 1 with
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the rate at which it goes from i + 1 to i. This yields
moag = Myl — ay),

ma; = 1l — ay),

Moy = Mipy(1 — o), i=01,....M-1
Solving in terms of n, yields

Qo

T, = 1 Ty,
- oy

o [e 3% 1)

2 MU —ay)

= 1 - 22
and, in general,
Qi1 g
= b4 N
-0 (I—a)”®
Since ¥M 7; = 1, we obtain

M
no[l + ¥ e A ]:1

i1l —a)--Q - ay)

m i=1,2,..,M

or

il -1
_ Qe O
o = l:l + jz: (1 -a)--(- 0‘1)] (4.23)

and
Ay Oy
= T .
AI-a)0=-ap?®

For instance, if o; = «, then

oo B G

;i i=1,....M (4.24)

1 -
='IT'B_MTI
and, in general,
il _
ni='lﬁ(_T€)1’ i=0,1,...,M
where
B=— @
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Another special case of Example 4.28 is the following urn model, proposed
by the physicists P. and T. Ehrenfest to describe the movements of molecules.
Suppose that M molecules are distributed among two urns; and at each time
point one of the molecules is chosen at random, removed from its urn, and
placed in the other one. The number of molecules in urn 7 is a special case
of the Markov chain of Example 4.28 having

M-

o = ——

, i =0,1,....,.M
o7 i

Hence, using Equations (4.23) and (4.24) the limiting probabilities in this
case are

B M=+ 1) M- M|
”"‘[”El G- D1 ]

1l
ne—
I
N
S
B—

Hence, from Equation (4.24)

1 M
”"=<Ai[><§> . i=0,1,..., M

As the preceding are just the binomial probabilities, it follows that in the
long run, the positions of each of the M balls are independent and each one
is equally likely to be in either urn. This, however, is quite intuitive, for if
we focus on any one ball, it becomes quite clear that its position will be
independent of the positions of the other balls (since no matter where the
other M — 1 balls are, the ball under consideration at each stage will be
moved with probability 1/M) and by symmetry, it is equally likely to be in
either urn.
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Figure 4.1. A connected graph with arc weights.

Example 4.29 Consider an arbitrary connected graph (see Section 3.6
for definitions) having a number w;; associated with arc (i, j) for each arc.
One instance of such a graph is given by Figure 4.1. Now consider a particle
moving from node to node in this manner: If at any time the particle resides
at node i, then it will next move to node j with probability P;; where

Wi

ij =
LW

and where w;; is 0 if (i, ) is not an arc. For instance, for the graph of Figure
4.1, P, =3/3+1+2) =41,
The time reversibility equations

niPij = nj[?ii
reduce to
W;; W
7 Vo 7 Ji
riwy Yiw;

or, equivalently, since w;; = wy;

which is equivalent to

or
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or,since l = ¥;7;

Wy
;= EJ i

B Yiliwy

As the 7;’s given by this equation satisfy the time reversibility equations, it
follows that the process is time reversible with these limiting probabilities.
For the graph of Figure 4.1 we have that

—_ — — 6 — 3 = 12
=3 Ty = 3, T3 = 325 T4 = 37, =3 @

If we try to solve Equation (4.22) for an arbitrary Markov chain with
states 0,1, ..., M, it will usually turn out that no solution exists. For
example, from Equation (4.22),

X Py = x; Py,

kakj = xJRIk
implying (if P;;P; > 0) that

Xi _ Bl
Xy PPy

which in general need not equal P;;/P, . Thus, we see that a necessary
condition for time reversibility is that

})ikijI)ji = PUijPki for all i,j, k (4.25)

which is equivalent to the statement that, starting in state i, the path
[ = k = j = i has the same probability as the reversed path i — J=2 k-
To understand the necessity of this note that time reversibility implies that
the rate at which a sequence of transitions from i to k to J to i occurs must
equal the rate of ones from i to j to k to i (why?), and so we must have

"iPikijPji = ;P Py Py,

implying Equation (4.25) when 7; > 0.
In fact, we can show the following:

Theorem 4.2 An ergodic Markov chain for which P; = 0 whenever
P; = 0 is time reversible if and only if starting in state i, any path back to
i has the same probability as the reversed path. That is, if

PPy, P, =P, P

"'Pil,i (4.26)

i ko k-1

for all states 7, iy, ..., i.
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Proof We have already proven necessity. To prove sufficiency, fix states
i and j and rewrite (4.26) as

Py Pyiy Pi iPii = PyFy i Pii

Summing the above over all states iy, ..., i yields

Pi§+1Pji = PuPJ’lH-l
Letting k — oo yields
n;Py = Pym;

which proves the theorem. €

Example 4.30 Suppose we are given a set of n elements, numbered 1
through n, which are to be arranged in some ordered list. At each unit of
time a request is made to retrieve one of these elements, element | being
requested (independently of the past) with probability P;. After being
requested, the element then is put back but not necessarily in the same
position. In fact, let us suppose that the element requested is moved one
closer to the front of the list; for instance, if the present list ordering is
1,3,4,2,5 and element 2 is requested, then the new ordering becomes
1,3,2,4,5. We are interested in the long-run average position of the
element requested.

For any given probability vector P = (Py, ..., P), the preceding can be
modeled as a Markov chain with n! states, with the state at any time being
the list order at that time. We shall show that this Markov chain is time
reversible and then use this to show that the average position of the element
requested when this one-closer rule is in effect is less than when the rule of
always moving the requested element to the front of the line is used. The
time reversibility of the resulting Markov chain when the one-closer
reordering rule is in effect easily follows from Theorem 4.2. For instance,
suppose n = 3 and consider the following path from state 1, 2, 3) to itself

(1,2,3)-2,1,)->2,3, 1)~ (3,2,)~>(,1,2~(1,3,2) > (1,2,3)
The product of the transition probabilities in the forward direction is
P,P,P,P,P,P, = P}P}P}
whereas in the reverse direction, it is
P,P,P,P,P,P, = PP}P}

As the general result follows in much the same manner, the Markov chain
is indeed time reversible. (For a formal argument note that if f; denotes the
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number of times element i moves forward in the path, then as the path goes
from a fixed state back to itself, it follows that element i/ will also move
backwards f; times. Therefore, since the backwards moves of element i/ are
precisely the times that it moves forward in the reverse path, it follows that
the product of the transition probabilities for both the path and its reversal
will equal

II 11ﬁ+n
i

H

where r; is equal to the number of times that element i is in the first position
and the path (or the reverse path) does not change states.)

For any permutation iy, i, ..., i, of 1, 2, ..., n, let n(iy, i, ..., i,) denote
the limiting probability under the one-closer rule. By time reversibility
we have

Py mliys oo iy iy ooer ) = Pymtliy,s ooy djags iy ooy i) (427)

for all permutations.

Now the average position of the element requested can be expressed (as in
Section 3.6.1) as

Average position = ), P,E[Position of element /]

1

y Pi[l + Y Pfelement j precedes element i }]

J#i

1+ Y ¥ P.Ple; precedes e;}

T j=i
=1+ Y [P,Ple; precedes e;} + P;Ple; precedes e;]
i<j
=1+ Y [P,Ple; precedes e;} + P,(1 — Pfle; precedes e;})]
i<j
=1+ Y Y (P, — P)Ple; precedes ¢;} + L Y P,
i<j i<j

Hence, to minimize the average position of the element requested, we would
want to make Pf{e; precedes e;} as large as possible when P; > P; and as
small as possible when P; > P;. Now under the front-of-the-line rule we
showed in Section 3.6.1 that

L)

P+ P,

Pfe; precedes ¢;} =

(since under the front-of-the-line rule element j will precede element i if and
only if the last request for either i or j was for j).
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Therefore, to show that the one-closer rule is better than the front-of-the-
line rule, it suffices to show that under the one-closer rule

P,
Pfe; precedes e;} > P +’ P when P; > P;

Now consider any state where element i precedes element j, say
(--vsds 015 vy Igs Jy ---). By successive transpositions using Equation (4.27),
we have

§2

k+1
ﬂnqhh,m,hJ““)=(ﬁ> Roeesdniyy eenrinyiy..) (4.28)
J,

For instance,

P.
ﬂuza=§mnam=P
3

2Pl
2 173,1,2
E&M )

P, P, P, P\’
=220%0,63 5 5= (2) 13,21
PPy Py 2 D) <P3 76,2 1)

Now when P; > P;, Equation (4.28) implies that

T(ovasdylyy eensdisdyond) <=T(eeyfybyyeansipsiy..)
By

Letting (i, j) = Ple; precedes e;}, we see by summing over all states for
which i precedes j and by using the preceding that

oli,j) < %au, i)

which, since a(i,j) = 1 — a(j, i), yields

P,
., . > J
alJ, i) P+ P

Hence, the average position of the element requested is indeed smaller
under the one-closer rule than under the front-of-the-line rule. 4

The concept of the reversed chain is useful even when the process is not
time reversible. To illustrate this, we start with the following proposition
whose proof is left as an exercise.
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Proposition 4.6 Consider an irreducible Markov chain with transition
probabilities P;. If one can find positive numbers #;, i = 0, summing to
one, and a transition probability matrix Q = [Q;;] such that

"iPii = anji (4'29)

then the Q;; are the transition probabilities of the reversed chain and the =;
are the stationary probabilities both for the original and reversed chain.

The importance of the preceding proposition is that, by thinking back-
wards, we can sometimes guess at the nature of the reversed chain and then
use the set of equations (4.29) to obtain both the stationary probabilities
and the Q;;.

Example 4.31 A single bulb is necessary to light a given room. When
the bulb in use fails, it is replaced by a new one at the beginning of the next
day. Let X, equal i if the bulb in use at the beginning of day » is in its ith
day of use (that is, if its present age is i). For instance, if a bulb fails on day
n — 1, then a new bulb will be put in use at the beginning of day » and so
X, = 1. If we suppose that each bulb, independently, fails on its ith day of
use with probability p;, i = 1, then it is easy to see that {X,, n = 1} is a
Markov chain whose transition probabilities are as follows:

P, , = P{bulb, on its ith day of use, fails}
= P{life of bulb = {|life of bulb = i}
_P{L =1}
P{L = i}
where L, a random variable representing the lifetime of a bulb, is such that
P{L =i} = p;. Also,
Pi,i+1 =1- Pi,l
Suppose now that this chain has been in operation for a long (in theory, an
infinite) time and consider the sequence of states going backwards in time.
Since, in the forward direction, the state is always increasing by 1 until it
reaches the age at which the item fails, it is easy to see that the reverse chain
will always decrease by 1 until it reaches 1 and then it will jump to a random
value representing the lifetime of the (in real time) previous bulb. Thus, it
seems that the reverse chain should have transition probabilities given by
Qi,i—l = 1, i > 1
O1,i = pis iz1
To check this, and at the same time determine the stationary probabilities, we
must see if we can find, with the Q; ; as given above, positive numbers {r;}
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such that
P =m0
To begin, let j = 1 and consider the resulting equations:
Py =7 0h,
This is equivalent to
P{L=i
=0 _ o pL=i

TipL= ™
or
n; = M P{L =z i}
Summing over all i yields

l= Y m=mn ¥ P{L=i)=mnE[L]
i=1 i=1

and so, for the Q;; above to represent the reverse transition probabilities,
it is necessary that the stationary probabilities are

_P{L =i} ,
ni————E[L] , iz1

To finish the proof that the reverse transition probabilities and stationary
probabilities are as given all that remains is to show that they satisfy

TP iy = Mip1Qisn,i
which is equivalent to

P{in}( _PIL=i}\ PLzi+]]
E[L] P{L =i} E[L]

and which is true since P{L =i} - P{L =i}=P{L=i+ 1}. &

4.9. Markov Chain Monte Carlo Methods

Let X be a discrete random vector whose set of possible values is x;, j = 1.
Let the probability mass function of X be given by P{X = x;},j= 1, and
suppose that we are interested in calculating

6 = E[h(X)] = ¥ h(x)P{X = x;)
j=1

J

for some specified function 4. In situations where it is computationally
difficult to evaluate the function A(x;), j = 1, we often turn to simulation
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to approximate 6. The usual approach, called Monte Carlo simulation, is to
use random numbers to generate a partial sequence of independent and
identically distributed random vectors X, X;, ..., X, having the mass
function P{X = x;}, j = 1 (see Chapter 11 for a discussion as to how this
can be accomplished). Since the strong law of large numbers yields
n
Hm E @ =

n—ow ;-1 N

0 (4.30)

it follows that we can estimate 8 by letting n be large and using the average
of the values of #(X;), i = 1, ..., n as the estimator.

1t often, however, turns out that it is difficult to generate a random vector
having the specified probability mass function, particularly if X is a vector
of dependent random variables. In addition, its probability mass function is
sometimes given in the form P{X = x;} = Cb;, j = 1, where the b; are
specified, but C must be computed, and in many applications it is not
computationally feasible to sum the b; so as to determine C. Fortunately,
however, there is another way of using simulation to estimate 6 in these
situations. It works by generating a sequence, not of independent random
vectors, but of the successive states of a vector-valued Markov chain
X,, X,, ... whose stationary probabilities are P{X = x;}, j = 1. If this can
be accomplished, then it would follow from Proposition 4.3 that Equation
(4.30) remains valid, implying that we can then use Y7_, #(X;)/n as an
estimator of 6.

We now show how to generate a Markov chain with arbitrary stationary
probabilities that may only be specified up to a multiplicative constant.
Let b(j),j = 1, ... be positive numbers whose sum B = Y., b(j) is finite.
The following, known as the Hastings-Metropolis algorithm, can be used to
generate a time reversible Markov chain whose stationary probabilities are

n(j) = b(j)/B, Jj=1,...

To begin, let Q be any specified irreducible Markov transition probability
matrix on the integers, with g(i, j) representing the row i column j element
of Q. Now define a Markov chain {X,, n = 0} as follows. When X, = i,
generate a random variable Y such that P{Y =j} =q(,j), j=1,....
If Y = j, then set X,,,, equal to j with probability a(i, /), and set it equal to
i with probability 1 — «(i, j). Under these conditions, it is easy to see that
the sequence of states constitutes a Markov chain with transition
probabilities P, ; given by

By =ql,)al,j), ifj#i
Pi=q(, i)+ ¥ ql, k)1 - o, k)

k#i
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This Markov chain will be time reversible and have stationary probabilities
n(j) if
n(@)P,; = n(j)B,;  forj =i
which is equivalent to
n()ql, e, j) = n(j)qU, Delj, i) 4.31)

But if we take n; = b(j)/B and set

n())qU, i) 1) @32

o) = mi“(n(i)q(i,j) ’
vthen Equation (4.31) is easily seen to be satisfied. For if
n(j)a(, i)
n(i)q, j)
then a(j, /) = 1 and Equation (4.31) follows, and if a(i, j) = 1 then

oli,j) =

i iy = F0a6)
S = 2(aGh i)

and again Equation (4.31) holds, thus showing that the Markov chain is
time reversible with stationary probabilities 7(j). Also, since n(j) = b(j)/B,
we see from (4.32) that

(el i)
olhj) = m‘“(b(i)q(i,j) ’ 1>

which shows that the value of B is not needed to define the Markov chain,
because the values b(j) suffice. Also, it is almost always the case that n(J),
J =1 will not only be stationary probabilities but will also be limiting
probabilities. (Indeed, a sufficient condition is that P; ; > 0 for some i.)

Example 4.32 Suppose that we want to generate a uniformly distri-
buted element in 8, the set of all permutations (x,, ..., X,) of the numbers
(1, ..., n) for which ¥7_, jx; > a for a given constant a. To utilize the
Hastings-Metropolis algorithm we need to define an irreducible Markov
transition probability matrix on the state space $. To accomplish this, we
first define a concept of ‘“neighboring’’ elements of 8, and then construct
a graph whose vertex set is 8. We start by putting an arc between each pair
of neighboring elements in $, where any two permutations in § are said to
be neighbors if one results from an interchange of two of the positions of
the other. That is, (1, 2, 3, 4) and (1, 2, 4, 3) are neighbors whereas (1, 2, 3, 4)
and (1, 3,4, 2) are not. Now, define the g transition probability function
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as follows. With N(s) defined as the set of neighbors of s, and |N(s)| equal
to the number of elements in the set N(s), let

q(s, t if t € N(s)

1
) = oo
ING)|
That is, the candidate next state from s is equally likely to be any of its
neighbors. Since the desired limiting probabilities of the Markov chain are
n(s) = C, it follows that n(s) = =n(t), and so

(s, 1) = min(|N@)|/IN®)], 1)

That is, if the present state of the Markov chain is s then one of its
neighbors is randomly chosen, say, t. If t is a state with fewer neighbors
than s (in graph theory language, if the degree of vertex t is less than that
of vertex s), then the next state is t. If not, a uniform (0, 1) random number
U is generated and the next state if tif U < |N(s)|/|N(t)| and is s otherwise.
The limiting probabilities of this Markov chain are n(s) = 1/|8|, where |$|
is the (unknown) number of permutations in 8.

The preceding does not specify how to randomly choose a neighbor
permutation of s. One possibility, which is efficient when »n is small enough
so that we can easily keep track of all the neighbors of s, is to just randomly
choose one, call it t, as the target next state. The number of the neighbors
of t would then have to be determined, and the next state of the Markov
chain would then either be t with probability min(1, |N(s)|/|N(@)|) or it
would remain s otherwise. However, if # is large this may be impractical,
and a better approach might be to expand the state space to consist of all »n!
permutations. The desired limiting probability mass function is then

© C, ses
n(s) =
0, sg¢ 8

n
~ With this setup, each permutation s has ( 2> neighbors, and one can be

randomly chosen by generating a random subset of size two from the set
1, ..., nand if i and j are chosen then the candidate next state t is obtained
by interchanging the values of the ith and jth coordinates of s. If t € §
then t becomes the next state of the chain, and if not then the next state
remains s. ¢

The most widely used version of the Hastings-Metropolis algorithm is the
Gibbs sampler. Let X = (X, ..., X,) be a random vector with probability
mass function p(x), which may only be specified up to a multiplicative
constant, and suppose that we want to generate a random vector whose
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distribution is that of the conditional distribution of X given that X € @ for
some set @. That is, we want to generate a random vector having mass
function

p(x)

—_— f
PX € @) orxe@®

f&x) =

The Gibbs sampler assumes that for any i, i = 1, ..., n and values x;, j # i,
we can generate a random variable X having the probability mass function

P{X =x} = P{X;=x|X;=x;,j # i)
It operates by considering a Markov chain with states
X = (X1 ey Xjy ooy Xg) €Q

and then uses the Hastings-Metropolis algorithm with Markov transition
probabilities defined as follows., Whenever the present state is x, a coordinate
that is equally likely to be any of 1, ..., n is generated. If coordinate / is the
one chosen, then a random variable X having probability mass function
PIX = x} = P{X; = xlXj = x;,J # i} is generated, and if X = x then the
state ¥ = (X1, ..., Xi_1, X, Xj115 ---» X) i considered as a candidate for
transition. In other words, the Gibbs sampler uses the Hastings-Metropolis
algorithm with

1 R | p(y)
,Y) = —P(X; = x| X; = x;, =- S—
() n [ x| X; = x50 # 1) n P{X; = x;, j # i}

Since we want the limiting mass function to be f, we have from Equation
(4.32) that the vector y is then accepted as the new state with probability

f(¥a(y, x) 1)

oy = min(f x)g(x,y)’

Now, forxe@andy e @

fMeG,x) _ f(px) _
S®ax,y) fx)p(y)

whereas for x € @ and y ¢ @ we have [since f(y) = 0}

SWa(y, x) _ 0
J(X)q(x,y)

Hence, the next state is either y if y € @ or it remains x if y ¢ Q.
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Example 4.33 Suppose we want to generate n uniformly distributed
points in the circle of radius 1 centered at the origin, conditional on the event
that no two points are within a distance d of each other, where

B = P{no two points are within d of each other}

is assumed to be a small positive number. (If § were not small, then we
could just continue to generate sets of » uniformly distributed points in the
circle, stopping the first time that no two points in the set are within d of
each other.) This can be accomplished by the Gibbs sampler by starting with
any n points in the circle, x, ..., x,,, for which no two are within a distance
d of each other. Then generate the value of a random variable 7 that is
equally likely to be any of the values 1, ..., n. Also generate a random point
in the circle (see Chapter 11 for details of these generations). If this point
is not within d of any of the other n — 1 points excluding x; then replace
x; by this generated point, otherwise do not make a change. After a large
number of iterations the set of # points will approximately have the desired
distribution. @

The Gibbs sampler for generating a random vector X conditional on the
event that X € @ moves from state to state by choosing a coordinate 7 at
random and then generating a random variable from the conditional distri-
bution of X given the values of the other random variables, X, j # I. If the
vector obtained by replacing the old value of X; by this generated value
remains in @ then it becomes the next state, and if not then the next state
remains unchanged from the previous one. However, if we can easily generate
X; conditional both on the values of X, j # I and on the condition that
X € A, then the Gibbs sampler may be performed by doing this generation
and then obtaining the next state of the Markov chain by replacing the old
value of X, by the value generated. This is illustrated by our next example.

Example 4.34 Let X;, i = 1,...,n be independent random variables
with X; having an exponential distribution with rate A;, i = 1, ..., n. Let
S = ¥}7.,X; and suppose that we want to generate the random vector
X = (X}, ..., X,) conditional on the event that S > ¢ for some large
positive constant ¢. That is, we want to generate the value of a random
vector whose density function is given by

1 i —Nix; : c
f(xl,...,x,,)—l—__,{—s—>—c}il=_lli,-e lfiglxi>c

This is easily accomplished by starting with an initial vector x = (x;, ..., X,)
satisfying x; > 0, i = 1, ..., n and Y¥7_,x; > c. Then generate a variable /
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that is equally likely to be any of 1, ..., n. Now, we want to generate an
exponential random variable X with rate A,, conditioned on the event that
X + Y;«rx; > c. That is, we want to generate the value of X conditional
on the event that it exceeds ¢ — }¥;.,;x;. Hence, using the fact that an
exponential conditioned to be greater than a positive constant is distributed
as the constant plus the exponential, we see that we should generate an
exponential random variable Y with rate 4,, and set

+
X=Y+ <c - X xj>
J=I
where b™ is equal to b when b > 0 and is 0 otherwise. The value of x; should
then be reset to equal X and a new iteration of the algorithm begun. @

Remark As can be seen by Examples 4.33 and 4.34, although the theory
for the Gibb’s sampler was presented under the assumption that the
distribution to be generated was discrete, it also holds when this distribution
is continuous.

4.10. Markov Decision Processes

Consider a process that is observed at discrete time points to be in any one
of M possible states, which we number by 1, 2, ..., M. After observing the
state of the process, an action must be chosen, and we let A, assumed finite,
denote the set of all possible actions.

If the process is in state / at time n and action a is chosen, then the next state
of the system is determined according to the transition probabilities Py(a).
If we let X, denote the state of the process at time n and a, the action chosen
at time 7, then the above is equivalent to stating that

P{X, .1 =j|XOsa0:X19al9 Xy =l,a,=a} = Rj(a)

Thus, the transition probabilities are functions only of the present state and
the subsequent action.

By a policy, we mean a rule for choosing actions. We shall restrict
ourselves to policies which are of the form that the action they prescribe at
any time depends only on the state of the process at that time (and not on
any information concerning prior states and actions). However, we shall
allow the policy to be ‘‘randomized’’ in that its instructions may be to
choose actions according to a probability distribution. In other words,
a policy B is a set of numbers B = {B;(a),a e 4, i=1,..., M} with the
interpretation that if the process is in state i, then action « is to be chosen
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with probability B;(a). Of course, we need have that
0=<pia=<1, foralli,a
Y Bi(a@) =1, foralli

Under any given policy B, the sequence of states {X,,n=0,1,...}
constitutes a Markov chain with transition probabilities P;;(p) given by

Py(B) = Pyl Xpsy = jl1 Xy = i)*
= Z P ij(a)ﬂi(a)

where the last equality follows by conditioning on the action chosen when
in state i. Let us suppose that for every choice of a policy B, the resultant
Markov chain {X,, n = 0, 1, ...} is ergodic.

For any policy B, let m;, denote the limiting (or steady-state) probability
that the process will be in state i/ and action a will be chosen if policy P is
employed. That is,

T, = lim Py{X, = i, a, = 4}

n-—*cc
The vector n = (m;,) must satisfy

(i) n,=0foralli,a

(i) YiYemg =1

(ii) Yo7, = Li Lo Mg Pyy(a) for all j (4.33)
Equations (i) and (ii) are obvious, and Equation (iii) which is an analogue
of Equation (4.7) follows as the left-hand side equals the steady-state
probability of being in state j and the right-hand side is the same probability
computed by conditioning on the state and action chosen one stage earlier.

Thus for any policy B, there is a vector n = (m;;) which satisfies (i)-(iii)
and with the interpretation that =, is equal to the steady-state probability
of being in state i and choosing action ¢ when policy B is employed.
Moreover, it turns out that the reverse is also true. Namely, for any vector
n = (m;,) which satisfies (i)-(iii), there exists a policy p such that if g is used,
then the steady-state probability of being in i and choosing action a equals
;.- To verify this last statement, suppose that n = (7,) is a vector which
satisfies (i)-(iii). Then, let the policy B = (5;(a)) be

Bi(a) = P{p chooses a|state is i}
. _ Tig
B Ea Mg

* We use the notation P, to signify that the probability is conditional on the fact that policy
B is used.
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Now let P, denote the limiting probability of being in i and choosing a
when policy B is employed. We need to show that P, = 7;,. To do so, first
note that {P,,, i = 1, ..., M, a € A} are the limiting probabilities of the two-
dimensional Markov chain {(X,, a,), n = 0}. Hence, by the fundamental
Theorem 4.1, they are the unique solution of

(i) P,z 0
(i) XiXaPia=1
(iii') Py, = i Lo Pio Py(a')B;(@)
where (iii’) follows since
PiXyi1 = Js Gny1 = a|Xn =i, a,=a'} = Pya)B;a)
Since
nja
Ea 7tja

we see that (P,,) is the unique solution of

ﬂj(a) =

P, =0,
EZPia = 13
P,=YYP ,p..(a')___”i“
. ia ey Ea 7-tja

Hence, to show that P;, = m,,, we need show that
Mg 2= 0,

LY. =1,

i a

7[ N
Tja nia'P"(a,)——Ja_
I ; ; v Ea 7Tjnz
The top two equations follow from (i) and (ii) of Equation (4.33), and the
third which is equivalent to

E Njg = EZ 7'[ia’Pij(a,)
a ia

follows from condition (iii) of Equation (4.33).

Thus we have shown that a vector n = (n;,) will satisfy (i), (ii), and (iii)
of Equation (4.33) if and only if there exists a policy B such that x;, is equal
to the steady-state probability of being in state i and choosing action a when
B is used. In fact, the policy P is defined by B;(a) = 7,/ Y Ttia -
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The preceding is quite important in the determination of ‘‘optimal’
policies. For instance, suppose that a reward R(i, a) is earned whenever
action « is chosen in state i. Since R(X;, a;) would then represent the reward
earned at time i, the expected average reward per unit time under policy S
can be expressed as

[ i=1RX;, ai)]

expected average reward under B = lim Ey .

n—+o

Now, if 7;, denotes the steady-state probability of being in state / and
choosing action a, it follows that the limiting expected reward at time n
equals

lim E[R(X,,a,)] = LY mi.R(, )

which implies (see Exercise 60) that

expected average reward under p = Y. Y 7, R(, a)

i a
Hence, the problem of determining the policy that maximizes the expected
average reward is

maximize Y, ), n;,R(i, a)

% = (7y) i a

subject to @;, = 0, for all i, a,
EZ Mg =1,
Y 1, = LY miPy(a), for all j (4.34)

However, the above maximization problem is a special case of what is
known as a linear program* and can thus be solved by a standard linear
programming algorithm known as the simplex algorithm. If n* = (n}})
maximizes the preceding, then the optimal policy will be given by B* where

*
Tia

Lamia

B (a) =

Remarks (i) It can be shown that there is a n* maximizing Equation
(4.34) that has the property that for each i, n}, is zero for all but one value
of a, which implies that the optimal policy is nonrandomized. That is, the
action it prescribes when in state i is a deterministic function of i.

* It is called a linear program since the objective function ¥; ¥, R(i, a)n;, and the constraints
are all linear functions of the m;,.
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(ii) The linear programming formulation also often works when there are
restrictions placed on the class of allowable policies. For instance, suppose
there is a restriction on the fraction of time the process spends in some state,
say, state 1. Specifically, suppose that we are only allowed to consider
policies having the property that their use results in the process being in
state 1 less that 100« percent of time. To determine the optimal policy
subject to this requirement, we add to the linear programming problem the
additional constraint

Y=<«
a

since ¥, m,, represents the proportion of time that the process is in state 1.

Exercises

*1. Three white and three black balls are distributed in two urns in such
a way that each contains three balls. We say that the system is in state i,
i=0,1,2,3, if the first urn contains i/ white balls. At each step, we draw
one ball from each urn and place the ball drawn from the first urn into the
second, and conversely with the ball from the second urn. Let X, denote the
state of the system after the nth step. Explain why {(X,, n =0,1,2,...}is
a Markov chain and calculate its transition probability matrix.

2. Suppose that whether or not it rains today depends on previous weather
conditions through the last three days. Show how this system may be
analyzed by using a Markov chain. How many states are needed?

3. In Exercise 2, suppose that if it has rained for the past three days, then
it will rain today with probability 0.8; if it did not rain for any of the past
three days, then it will rain today with probability 0.2; and in any other case
the weather today will, with probability 0.6, be the same as the weather
yesterday. Determine P for this Markov chain.

*4, Consider a process {X,, n = 0, 1, ...} which takes on the values 0, 1,
or 2. Suppose
P

when # is even
P{X = j| X, =i,Xn— =i— a---’X =i} = e i
(Xni1 = J| Xy 1= g o = ) {P,—Ijl, when 7 is odd

where $2_ P} = Y2 (Pl = 1,i = 0,1,2.Is {X,, n = 0) a Markov chain?
If not, then show how, by enlarging the state space, we may transform it
into a Markov chain. '
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5. Let the transition probability matrix of a two-state Markov chain be
given, as in Example 4.2, by

P=

p l—p"
l-p p

Show by mathematical induction that

1+3Cp-1" +-2@p- 1)

P® =
1-3ep- 1 t+dee -1

6. In Example 4.4 suppose that it has rained neither yesterday nor the day
before yesterday. What is the probability that it will rain tomorrow?

7. Suppose that coin 1 has probability 0.7 of coming up heads, and coin
2 has probability 0.6 of coming up heads. If the coin flipped today comes
up heads, then we select coin 1 to flip tomorrow, and if it comes up tails,
then we select coin 2 to flip tomorrow. If the coin initially flipped is equally
likely to be coin 1 or coin 2, then what is the probability that the coin
flipped on the third day after the initial flip is coin 1?

8. Specify the classes of the following Markov chains, and determine
whether they are transient or recurrent:

011 0 001
pol1 o 1 I,=0001
1 2 2 2-1-100

11 o 2 2

2 0010

1 01 00 i1 3 000

1+ 100 1 £ 000
P,=3 03 00 P,=|0 0 1 00

0 00 1 1 00 4 20

0 00 % 3% 1 0 000

9. Prove that if the number of states in a Markov chain is M, and if state
Jj can be reached from state i, then it can be reached in M steps or less.

*10. Show that if state / is recurrent and state i does not communicate
with state j, then P; = 0. This implies that once a process enters a recurrent
class of states it can never leave that class. For this reason, a recurrent class
is often referred to as a closed class.
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11. For the random walk of Example 4.13 use the strong law of large
numbers to give another proof that the Markov chain is transient when
p#3

Hint: Note that the state at time »n can be written as ¥7_, Y; where the
Y;’s are independent and P(Y; = 1} = p = 1 — P{Y; = —1}. Argue that if
p > %, then, by the strong law of large numbers, Y1Y, > oasn— o
and hence the initial state 0 can be visited only finitely often, and hence
must be transient. A similar argument holds when p < 1.

12. Coin 1 comes up heads with probability 0.6 and coin 2 with probability
0.5. A coin is continually flipped until it comes up tails, at which time that
coin is put aside and we start flipping the other one.

(a) What proportion of flips use coin 1?
(b) If we start the process with coin 1 what is the probability that coin 2
is used on the fifth flip?

13. For Example 4.4, calculate the proportion of days that it rains.

14. A transition probability matrix P is said to be doubly stochastic if the
sum over each column equals one; that is,

YP;=1, forallj

If such a chain is irreducible and aperiodic and consists of M + 1 states
0,1, ..., M, show that the limiting probabilities are given by

1
T M1

Jj=0,1,....M

*15. A particle moves on a circle through points which have been marked
0, 1, 2, 3, 4 (in a clockwise order). At each step it has a probability p of
moving to the right (clockwise) and 1 — p to the left (counterclockwise). Let
X, denote its location on the circle after the nth step. The process
{X., n = 0} is a Markov chain.

(a) Find the transition probability matrix.
(b) Calculate the limiting probabilities.

16. Let Y, be the sum of » independent rolls of a fair die. Find

lim P{Y, is a multiple of 13}

n-»c

Hint: Define an appropriate Markov chain and apply the results of
Exercise 14.
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17. Each morning an individual leaves his house and goes for a run. He
is equally likely to leave either from his front or back door. Upon leaving
the house, he chooses a pair of running shoes (or goes running barefoot if
there are no shoes at the door from which he departed). On his return he is
equally likely to enter, and leave his running shoes, either by the front or
back door. If he owns a total of k pairs of running shoes, what proportion
of the time does he run barefooted?

18. Consider the following approach to shuffling a deck of n cards.
Starting with any initial ordering of the cards, one of the numbers
1,2, ..., n is randomly chosen in such a manner that each one is equally
likely to be selected. If number i is chosen, then we take the card that is in
position i and put it on top of the deck—that is, we put that card in position
1. We then repeatedly perform the same operation. Show that, in the limit,
the deck is perfectly shuffled in the sense that the resultant ordering is
equally likely to be any of the n! possible orderings.

*19. Determine the limiting probabilities z; for the model presented in
Exercise 1. Give an intuitive explanation of your answer.

20. For a series of dependent trials the probability of success on any trial
is (k + 1)/(k + 2) where k is equal to the number of successes on the
previous two trials. Compute lim,,_, ., P{success on the nth trial}.

21. An organization has N employees where N is a large number. Each
employee has one of three possible job classifications and changes
classifications (independently) according to a Markov chain with transition
probabilities

0.7 0.2 0.1
0.2 0.6 0.2
0.1 0.4 0.5

What percentage of employees are in each classification?

22. Three out of every four trucks on the road are followed by a car, while
only one out of every five cars is followed by a truck. What fraction of
vehicles on the road are trucks?

23. A certain town never has two sunny days in a row. Each day is
classified as being either sunny, cloudy (but dry), or rainy. If it is sunny one
day, then it is equally likely to be either cloudy or rainy the next day. If it
is rainy or cloudy one day, then there is one chance in two that it will be the
same the next day, and if it changes then it is equally likely to be either of
the other two possibilities. In the long run, what proportion of days are
sunny? What proportion are cloudy?
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*24. Each of two switches is either on or off during a day. On day n, each
switch will independently be on with probability

[1 + number of on switches during day n — 1]/4

For instance, if both switches are on during day n» — 1, then each will
independently be on during day » with probability 3/4. What fraction of
days are both switches on? What fraction are both off?

25. A professor continually gives exams to her students. She can give
three possible types of exams, and her class is graded as either having done
well or badly. Let p; denote the probability that the class does well on a type
i exam, and suppose that p; = 0.3, p, = 0.6, and p; = 0.9. If the class does
well on an exam, then the next exam is equally likely to be any of the three
types. If the class does badly, then the next exam is always type 1. What
proportion of exams are type i, i = 1, 2, 3?

26. A flea moves around the vertices of a triangle in the following
manner: Whenever it is at vertex i it moves to its clockwise neighbor vertex
with probability p; and to the counterclockwise neighbor with probability
gi=1-p,i=1,2,3.

(a) Find the proportion of time that the flea is at each of the vertices.
(b) How often does the flea make a counterclockwise move which is then
followed by 5 consecutive clockwise moves?

27. Consider a Markov chain with states 0, 1, 2, 3, 4. Suppose Py 4 = 1;
and suppose that when the chain is in state i, i > 0, the next state is equally
likely to be any of the states 0, 1, ..., 7 — 1. Find the limiting probabilities
of this Markov chain.

*28. Let n; denote the long-run proportion of time a given Markov chain
is in state i.

(a) Explain why #; is also the proportion of transitions that are into state
i as well as being the proportion of transitions that are from state i.
(b) n;P; represents the proportion of transitions that satisfy what
property?

(c) X:m;P; represent the proportion of transitions that satisfy what
property?

(d) Using the preceding explain why

;= E Py
i
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29, Let A be a set of states, and let A° be the remaining states.

(a) What is the interpretation of

E E n; Py;?

ieA jeA
(b) What is the interpretation of

Z E niPij?

ieA jeA
(c) Explain the identity

Y Y mPi=Y Y mpy

ied jeAC ieA° jeA
30. Each day, one of n possible elements is requested, the ith one with
probability P, i = 1, ¥1 P, = 1. These elements are at all times arranged in
an ordered list which is revised as follows: The element selected is moved to
the front of the list with the relative positions of all the other elements
remaining unchanged. Define the state at any time to be the list ordering at
that time and note that there are n! possible states.

(a) Argue that the preceding is a Markov chain.
(b) For any state #,, ..., i, (which is a permutation of 1,2, ..., n), let
n(iy, ..., i,) denote the limiting probability. In order for the state to be
iys ..., Iy, it is necessary for the last request to be for i, the last non-i,
request for i), the last non-i; or i, request for i;, and so on. Hence, it
appears intuitive that

B P

B
j 9..-,. =P e ==t
n(i in) lll_Pill_Pil_Pi I_Pi,—"“’Pi,,—Z

Verify when n = 3 that the above are indeed the limiting probabilities.

31. Suppose that a population consists of a fixed number, say, m, of
genes in any generation. Each gene is one of two possible genetic types. If
any generation has exactly i (of its m) genes being type 1, then the next
generation will have j type 1 (and m — j type 2) genes with probability

DR e

Let X, denote the number of type 1 genes in the nth generation, and
assume that X, = /.

(a) Find E[X,].
(b) What is the probability that eventually all the genes will be type 1?
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32. Consider an irreducible finite Markov chain with states 0, 1, ..., N.

(a) Starting in state i, what is the probability the process will ever visit
state j 7 Explain!

(b) Let x; = P{visit state N before state 0|start in /}. Compute a set of
linear equations which the x; satisfy, i = 0, 1, ..., N.
©@ILjpy=ifori=1,....N-1, show that x; = i/N is a solution
to the equations in part (b).

33. An individual possesses r umbrellas which he employs in going from
his home to office, and vice versa. If he is at home (the office) at the
beginning (end) of a day and it is raining, then he will take an umbrella with
him to the office (home), provided there is one to be taken. If it is not
raining, then he never takes an umbrella. Assume that, independent of the
past, it rains at the beginning (end) of a day with probability p.

(i) Define a Markov chain with r + 1 states which will help us to
determine the proportion of time that our man gets wet. (Note: He
gets wet if it is raining, and all umbrellas are at his other location.)

(i) Show that the limiting probabilities are given by

q

, ifi=0
r+gq
i

n; = whereg=1-p

s ifi=1,...,r
r+gq

(iii) What fraction of time does our man get wet?
(iv) When r = 3, what value of p maximizes the fraction of time he
gets wet?

*34. Let {X,, n = 0} denote an ergodic Markov chain with limiting
probabilities 7. Define the process {Y,, n = 1} by ¥, = (X,_,, X,). That is,
Y, keeps track of the last two states of the original chain. Is {Y,, n = 1} a
Markov chain? If so, determine its transition probabilities and find

lim P{Y, = (i,/)}
n—o
35. Verify the transition probability matrix given in Example 4.18.

36. Let P® and P® denote transition probability matrices for ergodic
Markov chains having the same state space. Let n' and n denote the
stationary (limiting) probability vectors for the two chains. Consider a
process defined as follows:
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(i) X, = 1. A coin is then flipped and if it comes up heads, then the
remaining states X;,... are obtained from the transition probability
matrix P® and if tails from the matrix P@®. Is {X,,, n = 0} a Markov
chain? If p = P{coin comes up heads}, what is lim,,_, , P(X,, = i}?

(ii) X, = 1. At each stage the coin is flipped and if it comes up heads,
then the next state is chosen according to P® and if tails comes up, then
it is chosen according to P® . In this case do the successive states constitute
a Markov chain? If so, determine the transition probabilities. Show by a
counterexample that the limiting probabilities are not the same as in

part (i).

37. A fair coin is continually flipped. Compute the expected number of
flips until the following patterns appear:

(a) HHTTHT
*(b) HHTTHH
(¢) HHTHHT

38. Consider the Ehrenfest urn model in which M molecules are
distributed among two urns, and at each time point one of the molecules is
chosen at random and is then removed from its urn and placed in the other
one. Let X, denote the number of molecules in urn 1 after the nth switch
and let u,, = E[X,}. Show that

@) #py1 =1+ 1A - 2/M)y,
(ii) Use (i) to prove that

M M - 2\" M
Ho =5+ (T) (E[X(’]_?)

39. Consider a population of individuals each of whom possesses two
genes which can be either type A or type a. Suppose that in outward
appearance type A is dominant and type a is recessive. (That is, an
individual will only have the outward characteristics of the recessive gene
if its pair is aa.) Suppose that the population has stabilized, and the
percentages of individuals having respective gene pairs AA4, aa, and Aa are
D, q, and r. Call an individual dominant or recessive depending on the
outward characteristics it exhibits. Let S;; denote the probability that an
offspring of two dominant parents will be recessive; and let S,, denote the
probability that the offspring of one dominant and one recessive parent will
be recessive. Compute S;, and S,, to show that S;; = S%. (The quantities
S10 and Sy, are known in the genetics literature as Snyder’s ratios.)
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40. Suppose that on each play of the game a gambler either wins 1 with
probability p or loses 1 with probability 1 — p. The gambler continues
betting until she or he is either winning # or losing m. What is the probability
that the gambler quits a winner?

41, A particle moves among n + 1 vertices that are situated on a circle
in the following manner: At each step it moves one step either in the
clockwise direction with probability p or the counterclockwise direction
with probability g = 1 — p. Starting at a specified state, call it state 0, let T’
be the time of the first return to state 0. Find the probability that all states
have been visited by time 7.

Hint: Condition on the initial transition and then use results from the
gambler’s ruin problem.

42. Inthe gambler’s ruin problem of Section 4.5.1, suppose the gambler’s
fortune is presently i, and suppose that we know that the gambler’s fortune
will eventually reach N (before it goes to 0). Given this information, show
that the probability he wins the next gamble is

pll - (g/p)™]

—, ifp#t

1 - (¢/p) 2
i+l _

2%’ ifp=1

Hint: The probability we want is
P{X,,, =i+ 1|X,=1i, lim X, = N}
m—

_ P{X,., =i+1,lim,X, =N|X, =i]
- P{lim,, X,, = N| X, = i}

43. For the gambler’s ruin model of Section 4.5.1, let M, denote the mean
number of games that must be played until the gambler either goes broke or
reaches a fortune of N, given that he starts with i, i = 0, 1, ..., N. Show
that M, satisfies

M0=MN=O; Mi=1+pMi+l+in—1’ i=1,...,N—l
44. Solve the equations given in Exercise 43 to obtain
M; = i(N - i), ifp=1%

_ i N 1-@/bpy
g-p q-pl1— (/D

ifp=4
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*45. In Exercise 15,

(a) what is the expected number of steps the particle takes to return to the
starting position?

(b) what is the probability that all other positions are visited before the
particle returns to its starting state?

46. For the Markov chain with states 1, 2, 3, 4 whose transition probability
matrix P is as specified below find f}; and s;; for i = 1, 2, 3.

04 0.2 0.1 0.3

0.1 05 0.2 0.2

0.3 04 0.2 0.1

0 0 O 1
47. Consider a branching process having 4 < 1. Show that if Xy =1,

then the expected number of individuals that ever exist in this population is
given by 1/(1 — u). What if X, = n?

48. In a branching process having X, = 1 and u > 1, prove that 7, is the
smallest positive number satisfying Equation (4.15).

Hint: Let 7 be any solution of 7 = Ti-o anj. Show by mathematical
induction that n = P{X, = 0} for all n, and let n > . In using the
induction argue that

(@ Po=%apz=%
®)Ph=4,P=3,P, =1
© P0=%’Pl=%!P3='3L

50. At all times, an urn contains N balls—some white balls and some
black balls. At each stage, a coin having probability p, 0 < p < 1, of
landing heads is flipped. If heads appears, then a ball is chosen at random
from the urn and is replaced by a white ball; if tails appears, then a ball is
chosen from the urn and is replaced by a black ball. Let X, denote the
number of white balls in the urn after the nth stage.
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(@) Is {X,, n = 0] a Markov chain? If so, explain why.

(b) What are its classes? What are their periods? Are they transient or
recurrent?

(c) Compute the transition probabilities P;.

(d) Let N = 2. Find the proportion of time in each state.

(¢) Based on your answer in part (d) and your intuition, guess the answer
for the limiting probability in the general case.

(f) Prove your guess in part (€) either by showing that Equation (4.7) is
satisfied or by using the results of Example 4.28.

(g) If p = 1, what is the expected time until there are only white balls in
the urn if initially there are i white and N — i black?

*51. (a) Show that the limiting probabilities of the reversed Markov
chain are the same as for the forward chain by showing that they satisfy the
equations

n; = Z Qi
1]
(b) Give an intuitive explanation for the result of part (a).

52, M balls are initially distributed among m urns. At each stage one of
the balls is selected at random, taken from whichever urn it is in, and then
placed, at random, in one of the other M — 1 urns. Consider the Markov
chain whose state at any time is the vector (n,, ..., n,,) wWhere n; denotes the
number of balls in urn i. Guess at the limiting probabilities for this Markov
chain and then verify your guess and show at the same time that the Markov
chain is time reversible.

53. It follows from Theorem 4.2 that for a time reversible Markov chain
PPy Py = Py PP foralli,j, k

It turns out that if the state space is finite and P; > 0 for all i, j, then the
preceding is also a sufficient condition for time reversibility. (That is, in this
case, we need only check Equation (4.26) for paths from i to i that have
only two intermediate states.) Prove this.

Hint: Fix i and show that the equations
anjk = ﬂkij
are satisfied by n; = cP;/P;, where ¢ is chosen so that ¥;m; = 1.

54. For a time reversible Markov chain, argue that the rate at which
transitions from 7 to j to k occur must equal the rate at which transitions
from k to j to i occur.
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55. Show that the Markov chain of Exercise 23 is time reversible.

56. A group of n processors are arranged in an ordered list. When a job
arrives, the first processor in line attempts it; if it is unsuccessful, then the
next in line tries it; if it too is unsuccessful, then the next in line tries it, and
so on. When the job is successfully processed or after all processors have
been unsuccessful, the job leaves the system. At this point we are allowed to
reorder the processors, and a new job appears. Suppose that we use the
one-closer reordering rule, which moves the processor that was successful
one closer to the front of the line by interchanging its position with the one
in front of it. If all processors were unsuccessful (or if the processor in the
first position was successful), then the ordering remains the same. Suppose
that each time processor / attempts a job then, independently of anything
else, it is successful with probability p;.

(a) Define an appropriate Markov chain to analyze this model.
(b) Show that this Markov chain is time reversible.
(c) Find the long run probabilities.

57. A Markov chain is said to be a tree process if

() P; > 0 whenever P; > 0.
(ii) for every pair of states i and j, i # j, there is a unique sequence of
distinct states i = iy, iy, ..., iy_y, i, = j such that

P, >0, k=0,1,...,n—1

ko bka1

In other words, a Markov chain is a tree process if for every pair of
distinct states / and j there is a unique way for the process to go from i to
J without reentering a state (and this path is the reverse of the unique path
from j to i). Argue that an ergodic tree process is time reversible.

58. On a chessboard compute the expected number of plays it takes a
knight, starting in one of the four corners of the chessboard, to return to its
initial position if we assume that at each play it is equally likely to choose
any of its legal moves. (No other pieces are on the board.)

Hint: Make use of Example 4.29.

59. Ina Markov decision problem, another criterion often used, different
than the expected average return per unit time, is that of the expected
discounted return. In this criterion we choose a number a, 0 < « < 1, and
try to choose a policy so as to maximize E[L{ o o'R(X;, a;)]. (That is,
rewards at time n are discounted at rate «.) Suppose that the initial state is
chosen according to the probabilities ;. That is,

PXo=i}=b;, i=1,...,n
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For a given policy B let y;, denote the expected discounted time that the
process is in state j and action a is chosen. That is,

Yia = En[ X a"’{xn=j,an=a}]

n=0
where for any event A the indicator variable I, is defined by
. = 1, if A occurs
4710, otherwise
(a) Show that
L YVie = E[ ) a"’{x,=j}]
a n=0

or, in other words, ¥, ¥, is the expected discounted time in state j
under $.
(b) Show that

1 -«

s 1

Ye=b;j+ Z X YiaPy(a)
1 a
Hint: For the second equation, use the identity
I, oot = L L xpesane i =)
1 a

Take expectations of the preceding to obtain
Elly,,,-i)) = L X Elix,_,a,.31P;(@)-
1 a

(c) Let {y;,] be a set of numbers satisfying
1
Z Z Yia =
J a

l-«o
YVe=bi+a E Y Vi Pj(a) (4.35)

Argue that y;, can be interpreted as the expected discounted time that the
process is in state j and action a is chosen when the initial state is chosen
according to the probabilities b; and the policy B, given by

Yia

ﬁi(a) B Ea Yia

is employed.



234 4 Markov Chains

Hint: Derive a set of equations for the expected discounted times when
policy P is used and show that they are equivalent to Equation (4.35).

(d) Argue that an optimal policy with respect to the expected discounted
return criterion can be obtained by first solving the linear program

maximize Y, Y, y;,R(J, a),
J a
1

1-¢a’

Y Ve=bj+a E Y. v Py(a),
a i a

such that Y Y », =
a

J

yjaZO’ aujaa;
and then defining the policy f* by
Vi
Lo Via

where the y}, are the solutions of the linear program.

HMa) =
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Chapter 5

The Exponential Distribution
and the Poisson Process

v

5.1. Introduction

In making a mathematical model for a real-world phenomenon it is always
necessary to make certain simplifying assumptions so as to render the
mathematics tractable. On the other hand, however, we cannot make too
many simplifying assumptions, for then our conclusions, obtained from the
mathematical model, would not be applicable to the real-world situation.
Thus, in short, we must make enough simplifying assumptions to enable us
to handle the mathematics but not so many that the mathematical model no
longer resembles the real-world phenomenon. One simplifying assumption
that is often made is to assume that certain random variables are exponen-
tially distributed. The reason for this is that the exponential distribution is
both relatively easy to work with and is often a good approximation to the
actual distribution.

The property of the exponential distribution which makes it easy to
analyze is that it does not deteriorate with time. By this we mean that if the
lifetime of an item is exponentially distributed, then an item which has been
in use for ten (or any number of) hours is as good as a new item in regards
to the amount of time remaining until the item fails. This will be formally
defined in Section 5.2 where it will be shown that the exponential is the only
distribution which possesses this property.

In Section 5.3 we shall study counting processes with an emphasis on a
kind of counting process known as the Poisson process. Among other
things we shall discover about this process is its intimate connection with the
exponential distribution.

235
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5.2. The Exponential Distribution
5.2.1. Definition

A continuous random variable X is said to have an exponential distribution
with parameter A, A > 0, if its probability density function is given by

Ae™, x=0
OE I
or, equivalently, if its cdf is given by
* 1—e™, x=0
Fx) = X_wf(y) dy = {0’ v <0
The mean of the exponential distribution, E[X], is given by
E[X] = S xf(x) dx
= j Axe ™ dx
1]
Integrating by parts (1 = x, dv = Ae™™ dx) yields
® 1
E[X] = —xe ™[5 + S e Mdx = -
o A

The moment generating function ¢(z) of the exponential distribution is
1iven by

¢(t) = E[e™]

= § e e ™ dx

o

A 5.1
T fort< A 5.1

All the moments of X can now be obtained by differentiating Equation

(5.1). For example,

d2

dr

2

G-
2

K

E[X?] = —5 ¢(t)

t=0

t=0
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Also, from the preceding, we obtain
Var(X) = E[X?] - (E[X])’
1

12

e

ol =

5.2.2. Properties of the Exponential Distribution

A random variable X is said to be without memory, or memoryless, if
PIX>s5+t|X>t}=PlX > s) foralls,t =0 (5.2)

If we think of X as being the lifetime of some instrument, then Equation
(5.2) states that the probability that the instrument lives for at least s + ¢
hours given that it has survived ¢ hours is the same as the initial probability
that it lives for at least s hours. In other words, if the instrument is alive at
time ¢, then the distribution of the remaining amount of time that it survives
is the same as the original lifetime distribution, that is, the instrument does
not remember that it has already been in use for a time ¢.
The condition in Equation (5.2) is equivalent to

PX>s+1,X>t)
P{X >t}

= P{X > s}

or
P{X >s5+ t} = P{X >sIPIX > ) 5.3)

Since Equation (5.3) is satisfied when X is exponentially distributed
(for e D = ¢™™e™M) it follows that exponentially distributed random
variables are memoryless.

Example 5.1 Suppose that the amount of time one spends in a bank is
exponentially distributed with mean ten minutes, that is, A = i5. What is
the probability that a customer will spend more than fifteen minutes in the
bank? What is the probability that a customer will spend more than fifteen
minutes in the bank given that he is still in the bank after ten minutes?

Solution: If X represents the amount of time that the customer spends
in the bank, then the first probability is just
PX > 15} = e = 7% = 0.220

The second question asks for the probability that a customer who has
spent ten minutes in the bank will have to spend at least five more minutes.
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However, since the exponential distribution does not ‘‘remember’’ that
the customer has already spent ten minutes in the bank, this must equal
the probability that an entering customer spends at least five minutes in
the bank. That is, the desired probability is just

PiX>5l=e?=e12=0604 &

Example 5.2 Consider a post office which is manned by two clerks.
Suppose that when Mr. Smith enters the system he discovers that Mr. Jones
is being served by one of the clerks and Mr. Brown by the other. Suppose
also that Mr. Smith is told that his service will begin as soon as either Jones
or Brown leaves. If the amount of time that a clerk spends with a customer
is exponentially distributed with mean 1/4, what is the probability that, of
the three customers, Mr. Smith is the last to leave the post office?

Solution: The answer is obtained by this reasoning: Consider the time
at which Mr. Smith first finds a free clerk. At this point either Mr. Jones
or Mr. Brown would have just left and the other one would still be in
service. However, by the lack of memory of the exponential, it follows
that the amount of time that this other man (either Jones or Brown)
would still have to spend in the post office is exponentially distributed
with mean 1/A. That is, it is the same as if he was just starting his service
at this point. Hence, by symmetry, the probability that he finishes before
Smith must equal 3. @

It turns out that not only is the exponential distribution ‘‘memoryless,”’
but it is the unique distribution possessing this property. To see this,
suppose that X is memoryless and let F(x) = P{X > x}. Then by Equation
(5.3) it follows that

F(s + 1) = F@s)F@)
That is, F(x) satisfies the functional equation
g(s + 1) = g(s)g(®)

However, it turns out that the only right continuous solution of this

functional equation is

go) = e

* This is proven as follows: If g(s + ) = g(s)g(?), then

) ) -4

and repeating this yields g(m/n) = g™(1/n). Also
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and since a distribution function is always right continuous we must have

Foy=e™
or
F)=PX<x}=1-¢™

which shows that X is exponentially distributed.

Example 5.3 Suppose that the amount of time that a lightbulb works
before burning itself out is exponentially distributed with mean ten hours.
Suppose that a person enters a room in which a lightbulb is burning.
If this person desires to work for five hours, then what is the probability
that he will be able to complete his work without the bulb burning out?
What can be said about this probability when the distribution is not
exponential?

Solution: Since the bulb is burning when the person enters the room
it follows, by the memoryless property of the exponential, that its
remaining lifetime is exponential with mean ten. Hence the desired
probability is

P{remaining lifetime > 5} = 1 — F(§) = e ™ = ¢!
However, if the lifetime distribution F is not exponential, then the
relevant probability is

1 - F(t+5)
1 - F()

where ¢ is the amount of time that the bulb had been in use prior to the
person entering the room. That is, if the distribution is not exponential
then additional information is needed (namely, ) before the desired
probability can be calculated. In fact, it is for this reason, namely, that
the distribution of the remaining lifetime is independent of the amount of
time that the object has already survived, that the assumption of an
exponential distribution is so often made. @

Pf{lifetime > ¢ + 5|1ifetime >t)=

The memoryless property is further illustrated by the failure rate function
(also called the hazard rate function) of the exponential distribution.

1 1 1 n 1 1 /n
g =g(=+-+ - +=)=g"= or  gl—-) =)
n n n n n

Hence g(m/n) = (g(1))™", which implies, since g is right continuous, that g(x) = ey
Since g(1) = (g(2))? = 0 we obtain g(x) = ™™, where 4 = —log(g(1)).
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Consider a continuous positive random variable X having distribution
function F and density f. The failure (or hazard) rate function r(t) is
defined by

)

“1-FO (5.4)

To interpret 7(¢), suppose that X has survived for ¢ hours, and we desire the
probability that X will not survive for an additional time dt. That is,
consider P{X € (t, ¢t + dt)| X > t}. Now

PXe(tt+d)X>t)
PiX >t}

_P{Xe(,t+d)
a P{X > t}
[ dt

= l—:'m = r(t)dt

PXe(t,t+d)|X>1t)=

That is, 7(f) represents the conditional probability density that a ¢-year-old
item will fail.

Suppose now that the lifetime distribution is exponential. Then, by the
memoryless property, it follows that the distribution of remaining life for a
t-year-old item is the same as for a new item. Hence () should be constant.
This checks out since

i)
™= T"rmp

A.e_)‘t
= = A'
e—)\t

Thus, the failure rate function for the exponential distribution is constant.
The parameter A is often referred to as the rate of the distribution. (Note
that the rate is the reciprocal of the mean, and vice versa.)

It turns out that the failure rate function r(¢) uniquely determines the
distribution F. To prove this, we note by Equation (5.4) that

_ d/dtF(¥)
=T m
Integrating both sides yields

t

log(l — F(2)) = —S rif)dt + k
0
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or
1 — F(t) = e exp {—S @) dt}
0

Letting t = 0 shows that k = 0 and thus
t
Fty=1- exp{—S r() dt}
0

Example 5.4 Let X;,...,X, be independent exponential random
variables with respective rates 1,, ..., 4,, where A; # A;wheni # j. Let Nbe
independent of these random variables and suppose that

n
Y p=1 where P, = P(N = j}
j=1

The random variable X is said to be a hyperexponential random variable.
By conditioning on the value of N, we obtain that its density function is

SO = 0 = T St IN =P,

Y fx, (OB,
j=1

n

—\;t
Y BAje™
j=1

where the next to last equality used the fact that N is independent of X;.
To see how such a random variable might originate, imagine that a bin
contains n different types of batteries, with a type j battery lasting for an
exponential distributed time with rate 4;, j = 1, ..., n. Suppose further that
P, is the proportion of batteries in the bin that are type j for each j =
1, ..., n. If a battery is randomly chosen, in the sense that it is equally likely
to be any of the batteries in the bin, then the lifetime of the battery selected
will have the hyperexponential distribution specified in the preceding.
Since

1 - F@) = rf(t) dr = Z PN
t Jj=1

we see that the failure rate function of a hyperexponential random variable is

L1 PAe™

) = == %
Li-1Fe Nt
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If we let 4; = min(4,, ..., 4,) then, upon multiplying the numerator and

denominator of r(t) by ', we have

Tro 1 PAje ™Y PA+ T BAe” TN
LeiBe ™ T TR LaBe O

r(t) =

Hence, since for j # i, 4; — A; > 0, we see that

PA;
lim r(t) = == A;
imr@) === 4
That is, as a randomly chosen battery ages its failure rate converges to the
failure rate of the exponential type having the smallest failure rate, which is
intuitive since the longer the battery lasts, the most likely it seems that it is
a battery type with the smallest failure rate. 4

5.2.3. Further Properties of the Exponential Distribution

Let X;,..., X, be independent and identically distributed exponential
random variables having mean 1/A. It follows from the results of Example
2.38 that X; + --- + X, has a gamma distribution with parameters n and 4.
Let us now give a second verification of this result by using mathematical
induction. As there is nothing to prove when n = 1, let us start by assuming
that X; + .-+ + X,_; has density given by

@an"?
(n -2

Jxytorx,, () = Ae™

Hence,

fX1+-~-+X,,_,+X,,(t) = SO fX,,(t - s)fX1+~--+X,,_1(s) ds

- Stxe"‘("‘)/le'“Mds
0 (n — 2)!
= Ae”™ —-(M)nnl

(n—- 1!
which proves the result.

Another useful calculation is to determine the probability that one
exponential random variable is smaller than another. That is, suppose that
X, and X, are independent exponential random variables with respective
means 1/A; and 1/1,; then what is P{X; < X,}? This probability is
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easily calculated by conditioning on X

PiX; < X,} = S PiX, < X,| X, = x}A, e ™ dx
0

S Pix < X,}A, e M dx
0

00
=S e ML e M dx
0

= rlle'("‘“‘”"dx
0
T A+ A

(5.5)

Example 5.5 Suppose one has a stereo system consisting of two main
parts, a radio and a speaker. If the lifetime of the radio is exponential
with mean 1000 hours and the lifetime of the speaker is exponential with
mean 500 hours independent of the radio’s lifetime, then what is the
probability that the system’s failure (when it occurs) will be caused by the
radio failing?

Solution: From Equation (5.5) (with 4; = 1/1000, 4, = 1/500) we see
that the answer is

1/1000 1 .

1/1000 + 1/500 ~ 3
Suppose that X;,X,,...,X, are independent exponential random
variables, with X; having rate y;, i = 1, ..., n. It turns out that the smallest
of the X; is exponential with a rate equal to the sum of the g;. This is shown
as follows:

P{minimum(X|, ..., X,) > x}

P{X; > x for each i = 1, . 1

II PiX; > x) (by independence)

i=1

n
H e k¥
i=1

exp {-<z u,)x} 5.6)
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Example 5.6 (Analyzing Greedy Algorithms for the Assignment
Problem): A group of n people are to be assigned to a set of #n jobs, with one
person assigned to each job. For a given set of n* values Cyj,i,i=1,...,n,
a cost C; is incurred when person i is assigned to job j. The classical
assignment problem is to determine the set of assignments that minimizes
the sum of the n costs incurred.

Rather than trying to determine the optimal assignment, let us consider
two heuristic algorithms for solving this problem. The first heuristic is as
follows. Assign person 1 to the job that results in the least cost. That is,
person 1 is assigned to job j, where C(1,j,) = minimum; C(1, j). Now
eliminate that job from consideration and assign person 2 to the job that
results in the least cost. That is, person 2 is assigned to job j, where
C(2, j;) = minimum;_; C(2, /). This procedure is then continued until all n
persons are assigned. Since this procedure always selects the best job for the
person under consideration, we will call it Greedy Algorithm A.

The second algorithm, which we call Greedy Algorithm B, is a more
““global’’ version of the first greedy algorithm. It considers all n* cost values
and chooses the pair i,, j, for which C(i,j) is minimal. It then assigns
person i, to job j, . It then eliminates all cost values involving either person
i, or job j, [so that (n — 1)* values remain] and continues in the same
fashion. That is, at each stage it chooses the person and job that have the
smallest cost among all the unassigned people and jobs.

Under the assumption that the C; constitute a set of n® independent
exponential random variables each having mean 1, which of the two
algorithms results in a smaller expected total cost?

Solution: Suppose first that Greedy Algorithm A is employed. Let C;
denote the cost associated with person i, i = 1,...,n. Now C, is the
minimum of » independent exponentials each having rate 1; so by
Equation (5.6) it will be exponential with rate ». Similarly, C, is the
minimum of # — 1 independent exponentials with rate 1, and so is
exponential with rate n — 1. Indeed, by the same reasoning C; will be
exponential with rate n — i + 1, i = 1, ..., n. Thus, the expected total
cost under Greedy Algorithm A is

E [total cost] = E[Cy + --- + C,]
=Y Vi
i=1

Let us now analyze Greedy Algorithm B. Let C; be the cost of the ith
person-job pair assigned by this algorithm. Since C, is the minimum of
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all the #* values C;;, it follows from Equation (5.6) that C, is exponential
with rate n%. Now, it follows from the lack of memory property of the
exponential that the amounts by which the other C;; exceed C, will be
independent exponentials with rates 1. As a result, C, is equal to C; plus
the minimum of (n — 1) independent exponentials with rate 1. Similarly,
C; is equal to C, plus the minimum of (n — 2)* independent exponentials
with rate 1, and so on. Therefore, we see that

E[C] = 1/n?,
E[C,)] = EIC|] + V/(n — 1%,
E[C3] = E[C,] + 1/(n — 2)%,

E[C)] -;E[C-_l] + 1/(n—j+ 1)

EIC,] = EIC,] + 1
Therefore,
E[C,) = 1/n?,
E[C,) = I/n* + 1/(n — 1),
E[Cs] = 1/n* + 1/(n — 1)* + 1/(n - 2)?,

E[C,] = Un* + 1/(n =172 + 1/(n = 2> + -+ + 1
Adding up all the E[C;] yields that
n/mt+ (= 1)/ =12+ (1= 2)/(n = 2 + - + 1
1
1

Eg[total cost]

I
[N ao K]

i=1

The expected cost is thus the same for both greedy algorithms. €

5.2.4. Convolutions of Exponential Random Variables

Let X;, i = 1,..., n, be independent exponential random variables with
respective rates 4;, i = 1,...,n, and suppose that A; # A; for i # j. The
random variable Y¥7_, X; is said to be a hypoexponential random variable.
To compute its probability density function, let us start with the case n = 2.
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Now,

Jx+x(8) = So Sx, ) fx,(t — 5)ds

t
= S Aye ™M, e 209 g
0

: t
= AjA e ™! S e~ ®i=2s g
(4]

Ay
= 1, e~ N1 — e~ ®im
P 2€ ( 4 )
_ M

T A A,

i
le Mt 4 T2 ) ™™
2 Az _ '11 1

Using the preceding, a similar computation yields, when n = 3,

3 A
fX1+X2+X3(t) = Z Aie_)""<H 4 : l,-)

i=1 J=i M

which suggests the general result:

fX1+...+X,,(t) = E Ci,nllie_)‘it
i=1

where

A
Cin= H :
ST SR ¥

We will now prove the preceding formula by induction on r. Since we have
already established it for n = 2, assume it for n and consider » + 1 arbitrary
independent exponentials X; with distinct rates 4;, i =1,...,n+ 1. If
necessary, renumber X; and X,,,, so that 1,,; < 4,. Now,

t
Srproax, () = E Siisor 12, (hnyy €107 ds
0

n

t
Z C,",, X A‘i e—)\isl,”_l e_)\'”l(t_s) ds
0

i=1
- A _ A Y
)X Ci,n<——‘—/1n+le 1t —lﬂ—l;lie )“t>

i=1 Ai - A'n+l n+l —

n
= KnsiAnsr € + ¥ Cipprhie™ (5.7

i=1
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where K, = Li.1 C; n4i/(A; — A,4,) is a constant that does not depend
on t. But, we also have that

t
-
fX1+---+X,,+1(t) = S fX2+--~+X,,+1(s)/11€ =9 dg
0

which implies, by the same argument that resulted in Equation (5.7), that
for a constant X,
n+1

Sttt @) = Kid €™M + ¥ C oy die™
i=2

Equating these two expressions for x4 ax,,,() yields

n+1

M

- t -\t N\t -\ t
Kpiidp€ ™ + C pidie™™ = KA e™ + Coyy o nir1Anpr €

Multiplying both sides of the preceding equation by e*+1’ and then letting
t = oo yields [since e~ ®172+D! — 0 a5 # - o0]
Kn+l = Cn+1,n+1

and this, using Equation (5.7), completes the induction proof. Thus, we
have shown that if § = ¥¥_, X;, then

fsO =Y Ciphie™ (5.9
i=1
where
A
Ci,n = H !
jei Ay = A

Integrating both sides of the expression for fg from 7 to  yields that the tail
distribution function of § is given by

P{S >t} = z Cine ™™ (5.9

i=1
Hence, we obtain from Equations (5.8) and (5.9) that rg(z), the failure rate
function of S, is as follows:
Zx"l= 1 Ci,nlli e_)\it
E?= 1 Ci,n e‘)‘it

rs() =

If we let A4; = min(4,, ..., 4,), then it follows, upon multiplying the
numerator and denominator of rg(¢) by e¥’, that

lim rg(7) = A;
=
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From the preceding, we can conclude that the remaining lifetime of a
hypoexponentially distributed item that has survived to age ¢ is, for ¢ large,
approximately that of an exponentially distributed random variable with a
rate equal to the minimum of the rates of the random variables whose sums
make up the hypoexponential.

Remark Although

o n n
1= |"swar- § - £ 125
0 i=1 i=1 j=i A — A
it should not be thought that the C; ,,, i = 1, ..., n are probabilities, because
some of them will be negative. Thus, while the form of the hypoexponential
density is similar to that of the hyperexponential density (see Example 5.4)
these two random variables are very different.

Example 5.7 Let Xj,...,X, be independent exponential random
variables with respective rates 4,, ..., 4,,, where 4; # 1, when i # j. Let N
be independent of these random variables and suppose that ¥/, P, = 1,
where P, = P{N = n}. The random variable

N
Y=Y X
ji=1
is said to be a Coxian random variable. Conditioning on N gives its density
function:

fr) = L fy(t|N=n)P,

n=1

= ¥ foex,t|N = )P,

n=1

m

glfx,+---+x,,(t)Pn

m n
E Pn Z Ci,nlie_)\it

n=1 i=1

Let
rin) = PIN = n|N = n}

If we interpret N as a lifetime measured in discrete time periods, then r(n)
denotes the probability that an item will die in its nth period of use given
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that it has survived up to that time. Thus, r(n) is the discrete time analog of
the failure rate function r(¢), and is correspondingly referred to as the
discrete time failure (or hazard) rate function.

Coxian random variables often arise in the following manner. Suppose
that an item must go through m stages of treatment to be cured. However,
suppose that after each stage there is a probability that the item will quit the
program. If we suppose that the amounts of time that it takes the item to
pass through the successive stages are independent exponential random
variables, and that the probability that an item that has just completed stage
n quits the program is (independent of how long it took to go through the
n stages) equal to r(n), then the total time that an item spends in the
program is a Coxian random variable. 4

5.3. The Poisson Process
5.3.1. Counting Processes

A stochastic process {N(f), ¢ = 0} is said to be a counting process if N(1)
represents the total number of ‘‘events’” that have occurred up to time ¢.
Some examples of counting processes are the following:

(@) If we let N(f) equal the number of persons who have entered a
particular store at or prior to time 7, then {N(¢),f = 0} is a counting
process in which an event corresponds to a person entering the store.
Note that if we had let N(f) equal the number of persons in the store at
time ¢, then {N(?), t = 0} would not be a counting process (why not?).
(b) If we say that an event occurs whenever a child is born, then {N(@),
¢ = 0} is a counting process when N(f) equals the total number of people
who were born by time . (Does N(¢) include persons who have died by
time #? Explain why it must.)

(c) If N(t) equals the number of goals that a given soccer player has
scored by time ¢, then {N(¢), t = 0} is a counting process. An event of this
process will occur whenever the soccer player scores a goal.

From its definition we see that for a counting process N(#) must satisfy:

{) N(t) = 0.
(i1) N(2) is integer valued.
(iii) If s < ¢, then N(s) < N(?).
(iv) For s < t, N(tf) — N(s) equals the number of events that have
occurred in the interval (s, 7).
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A counting process is said to possess independent increments if the
numbers of events which occur in disjoint time intervals are independent.
For example, this means that the number of events which have occurred
by time 10 [that is, N(10)] must be independent of the number of events
occurring between times 10 and 15 [that is, N(15) — N(10)].

The assumption of independent increments might be reasonable for
example (a), but it probably would be unreasonable for example (b). The
reason for this is that if in example (b) N(¢) is very large, then it is probable
that there are many people alive at time ¢; this would lead us to believe that
the number of new births between time ¢ and time ¢ + s would also tend
to be large [that is, it does not seem reasonable that N(¢) is independent
of N(t + s) — N(t), and so {N(¢), t = 0} would not have independent
increments in example (b)]. The assumption of independent increments in
example (c) would be justified if we believed that the soccer player’s chances
of scoring a goal today does not depend on ‘‘how he’s been going.”
It would not be justified if we believed in ‘‘hot streaks’’ or ‘‘slumps.”’

A counting process is said to possess stationary increments if the distribu-
tion of the number of events which occur in any interval of time depends
only on the length of the time interval. In other words, the process has
stationary increments if the number of events in the interval (¢; + s, {, + 5)
(that is, N(t, + §) — N(t; + $)) has the same distribution as the number of
events in the interval (¢, , £,) (that is, N(,) — N(¢,)) forall ¢, < t,, and s > 0.

The assumption of stationary increments would only be reasonable in
example (a) if there were no times of day at which people were more likely
to enter the store. Thus, for instance, if there was a rush hour (say, between
12 p.M. and 1 r.M.) each day, then the stationarity assumption would not be
justified. If we believed that the earth’s population is basically constant
(a belief not held at present by most scientists), then the assumption of
stationary increments might be reasonable in example (b). Stationary
increments do not seem to be a reasonable assumption in example (c) since,
for one thing, most people would agree that the soccer player would
probably score more goals while in the age bracket 25-30 than he would
while in the age bracket 35-40.

5.3.2. Definition of the Poisson Process

One of the most important counting processes is the Poisson process which
is defined as follows:

Definition 5.1 The counting process {N(¢), ¢ = 0} is said to be a Poisson
process having rate A, A > 0, if
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(i) N©) = 0.
(if) The process has independent increments.
(iii) The number of events in any interval of length ¢ is Poisson
distributed with mean A¢. That is, for all s,z = 0
A

PNt +s)—-N@s)=n}=e P n=20,1,...

Note that it follows from condition (iii) that a P01sson process has
stationary increments and also that

E[N(@)] = At

which explains why A is called the rate of the process.

To determine if an arbitrary counting process is actually a Poisson
process, we must show that conditions (i), (ii), and (iii) are satisfied.
Condition (i), which simply states that the counting of events begins at time
t = 0, and condition (ii) can usually be directly verified from our knowledge
of the process. However, it is not at all clear how we would determine that
condition (iii) is satisfied, and for this reason an equivalent definition of a
Poisson process would be useful.

As a prelude to giving a second definition of a Poisson process we shall
define the concept of a function f(-) being o(h).

Definition 5.2 The function f(-) is said to be o(h) if

Example 5.8

(i) The function f(x) = x? is o(h) since

2
llmf( )— hmh—: limh=0
h-0 h h—0 h B0

(i) The function f(x) = x is not o(k) since

limi(—h—)= limé=liml =10
r-0 Hh k-0 R R0
(iii) If f()is o(h) and g(*) is o(h), then so is f(+) + g(+). This follows since
IV ORY DR NN BRI
h—>0 h hvo h h—»o
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(iv) If f() is o(k), then so is g(*) = ¢f(-). This follows since

lim A = climﬁl-2 =
=0 h

c-0=0
(v) From (iii) and (iv) it follows that any finite linear combination of
functions, each of which is o(h), is o(h). @

In order for the function f(-) to be o(k) it is necessary that f(h)/h go
to zero as h goes to zero. But if 4 goes to zero, the only way for f(h)/h
to go to zero is for (k) to go to zero faster than 4 does. That is, for 4 small,
f(h) must be small compared with A.

We are now in a position to give an alternative definition of a Poisson
process.

Definition 5.3 The counting process {N(¢), ¢t = 0} is said to be a Poisson
process having rate 4, A > 0, if

(i) N(@) = 0.

(i) The process has stationary and independent increments.
(iii) P{N(h) = 1} = Ah + o(h).
(iv) P{N(h) = 2} = o(h).

Theorem 5.1 Definitions 5.1 and 5.3 are equivalent.

Proof We first show that Definition 5.3 implies Definition 5.1. To do
this, let
P,(t) = P{N(t) = n}

We derive a differential equation for Py(¢) in the following manner:
Pyt + h) = P{N( + h) = 0}
= P{N(t) = 0, N(t + h) — N(@) = 0}
= P{N(t) = O}P{N(t + h) — N(t) = 0}
= Py(O[1 — Ah + o(h)]

where the final two equations follow from assumption (ii) plus the fact that
assumptions (iii) and (iv) imply that P{N(h) = 0} = 1 — Ah + o(h). Hence,

Pyt + h) — Pyt h
ot + ;)l 0()=—}.P0(t)+?2

h
Now, letting A = 0 we obtain
Py(2) = —AP(t)
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or, equivalently,
Pyt) _
Py()

which implies, by integration, that

log Po(t) = —At + ¢

or
Py(t) = Ke™
Since Py(0) = P{N(0) = 0} = 1, we arrive at
Py(t) = e™ (5.10)

Similarly, for n > 0,
Pt + h) = P{N(t + h) = n}
= P{N(t) = n, N(t + h) — N() = 0}
+ PjN(t) =n—-1,N@t+ h) - Nt) =1}

+ Y P{N(t) =n — k,N({t + h) — N(t) = k}
k=2

However, by assumption (iv), the last term in the preceding is o(k); hence,
by using assumption (ii), we obtain

Py(t + h) = P()Py(h) + Py ()Py(h) + o(h)
= (1 — AR)P,(t) + AhP,_,(t) + o(h)

Thus,
B+ h=BO _ _p @+ ap ) + 20
h h
and letting # — 0 yields
Pp(t) = —AP,(t) + AP,_1(?)
or equivalently,
eNIP(1) + AP, (1)] = AeMP,_y()
Hence,
d
7 (MP,(1)) = AeMP,_ (1) (5.1

Now, by Equation (5.10), we have

d o _
E(e P() =4
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or
Py(t) = (At + c)e™

which, since P;(0) = 0, yields
P(t) = Me™

To show that P,(f) = e ™(A#)"/n!, we use mathematical induction and
hence first assume it for n — 1. Then by Equation (5.11),

d A
7€ ) = @
or
eMP,(t) = ('1:') +c

which implies the result [since P,(0) = 0]. This proves that Definition 5.3
implies Definition 5.1.
We shall leave it to the reader to prove the reverse. 4

Remarks (i) The result that N(¢) has a Poisson distribution is a conse-
quence of the Poisson approximation to the binomial distribution (see
Section 2.2.4). To see this subdivide the interval [0, ¢] into k equal parts
where k is very large (Figure 5.1). Now it can be shown using axiom (iv)
of Definition 5.3 that as k increases to o the probability of having two
or more events in any of the k subintervals goes to 0. Hence, N(¢) will
(with a probability going to 1) just equal the number of subintervals in
which an event occurs. However, by stationary and independent increments
this number will have a binomial distribution with parameters k¥ and
p = At/k + o(t/k). Hence, by the Poisson approximation to the binomial
we see by letting k approach < that N(f) will have a Poisson distribution
with mean equal to

lim k[ Aé + 0(1)} C i+ fim ROWR

koo k k- t/k
= At

by using the definition of o(k) and the fact that ¢#/k — 0 as k — co.

-

Figure 5.1.
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(ii) The explicit assumption that the process has stationary increments can
be eliminated from Definition 5.3 provided that we change assumptions (iii)
and (iv) to require that for any ¢ the probability of one event in the interval
(t,t + h) is Ak + o(h) and the probability of two or more events in that
interval is o(#). That is, assumptions (ii), (iii), and (iv) of Definition 5.3 can
be replaced by

(ii) The process has independent increments.
(iii) PIN(t + h) — N(®) = 1} = Ah + o(h).
@iv) P{N(@ + h) — N(@t) = 2} = o(h).

5.3.3. Interarrival and Waiting Time Distributions

Consider a Poisson process, and let us denote the time of the first event by
T; . Further, for n > 1, let 7, denote the elapsed time between the (n — 1)st
and the nth event. The sequence {7, n = 1, 2, ...} is called the sequence of
interarrival times. For instance, if T; = 5 and T; = 10, then the first event
of the Poisson process would have occurred at time 5 and the second at time
15.

We shall now determine the distribution of the 7;,. To do so, we first note
that the event {7; > ¢t} takes place if and only if no events of the Poisson
process occur in the interval [0, #] and thus,

P{T, > t} = P{N(t) = 0} = ™™
Hence, 7; has an exponential distribution with mean 1/1. Now,
P{T, > t} = E[P(T, > t| T}]
However,
P{T, > t|T; = s} = P{0 events in (5,5 + ]| T; = s}
= P{0 events in (s, s + ¢]}
=e™ (5.12)

where the last two equations followed from independent and stationary
increments. Therefore, from Equation (5.12) we conclude that T; is also an
exponential random variable with mean 1/4, and furthermore, that 7, is
independent of T;. Repeating the same argument yields the following.

Proposition5.1 7,,n=1,2,..., are independent identically distributed
exponential random variables having mean 1/4.
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Remarks The proposition should not surprise us. The assumption of
stationary and independent increments is basically equivalent to asserting
that, at any point in time, the process probabilistically restarts itself. That
is, the process from any point on is independent of all that has previously
occurred (by independent increments), and also has the same distribution as
the original process (by stationary increments). In other words, the process
has no memory, and hence exponential interarrival times are to be expected.

Another quantity of interest is S,, the arrival time of the nth event, also
called the waiting time until the nth event. It is easily seen that

i=1

and hence from Proposition 5.1 and the results of Section 2.2 it follows that
S, has a gamma distribution with parameters n and A. That is, the
probability density of S, is given by

L)
n-nr
Equation (5.13) may also have been derived by noting that the nth event will

occur prior to or at time ¢ if and only if the number of events occurring by
time ¢ is at least n. That is,

NO)yzneoe S, st

Js,(8) = Ae t=0 (5.13)

and hence,
ot (At)
Fg (1) = P{S, = t} = P{N(t) =z n} = Z e

which, upon differentiation, yields
STt R 1)

= A A

fs,(0 ==L e+ X AT
V¢ S-SV 1) vy 1)
=AM T AT
3 ot (At)"-l
=T D

Example 5.9 Suppose that people immigrate into a territory at a Poisson
rate A = 1 per day.

(a) What is the expected time until the tenth immigrant arrives?
(b) What is the probability that the elapsed time between the tenth and the
eleventh arrival exceeds two days?
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Solution:

@) E[S;o] = 10/4 = 10 days.
) P{T;; >2)=eP?=¢e%2=0.133. &

Proposition 5.1 also gives us another way of defining a Poisson process.
Suppose we start with a sequence {T,, n = 1} of independent identically
distributed exponential random variables each having mean 1/4. Now let us
define a counting process by saying that the nth event of this process occurs
at time

Se=Ti+ T+ +T,

The resultant counting process {N(t), ¢ = 0}* will be Poisson with rate A.

Remark Another way of obtaining the density function of S, is to note
that since S, is the time of the nth event, it follows that

Pit< S,<t+ h}=P{N({)=n—1,oneeventin (¢, + h)] + o(h)
= P{N(t) = n — 1}P{one event in (¢, t + h)} + o(h)

n—1
_ e-“((n—’“_)T)! [Ah + o(k)] + o(k)

e !
=leM———h+ o
-t
where the first equality uses the fact that the probability of 2 or more events
in (¢, t + h) is o(h). If we now divide both sides of the preceding equation
by h and then let 2 — 0, we obtain

e A1

fs, () =24e P

5.3.4. Further Properties of Poisson Processes

Consider a Poisson process {N(f), t = 0} having rate A, and suppose that
each time an event occurs it is classified as either a type I or a type II event.
Suppose further that each event is classified as a type I event with
probability p and a type II event with probability 1 — p independently of
all other events. For example, suppose that customers arrive at a store
in accordance with a Poisson process having rate A; and suppose that each

* A formal definition of N(f) is given by N(f) = max{n: S, < ¢} where S, = 0.
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arrival is male with probability + and female with probability 4. Then a
type I event would correspond to a male arrival and a type II event to a
female arrival.

Let N,(¢) and N,(¢) denote respectively the number of type I and type II
events occurring in [0, t]. Note that N(¢) = N,(f) + N, (7).

Proposition 5.2 {N,(t), 1 = 0} and {N,(t), ¢t = 0] are both Poisson
processes having respective rates Ap and A(1 — p). Furthermore, the two
processes are independent.

Proof Let us calculate the joint probability P{N,(¢) = n, N,(t) = m}.
To do this, we first condition on N(¢) to obtain
P{Ny(t) = n, Ny(t) = m}
= kioP{Nl(t) = n, Ny(t) = m|N@) = kK}P{N(t) = k}

Now, in order for there to have been » type I events and m type II events
there must have been a total of n + m events occurring in [0, ¢]. That is,
PIN,({t) = n,N,(t) = m|N@t) =k} =0 whenk#n+m

Hence,
P{Ny(t) = n, Ny(t) = m]}
= P{N,(t) = n, Ny(t) = m|N(t) = n + m}P{N(t) = n + m}

e (At)'H-m

= P{Ny(t) = n,Ny(t) = m|N(t) = n + mje (n + m)!

However, given that n + m events occurred, since each event has prob-
ability p of being a type I event and probability 1 — p of being a type 11
event, it follows that the probability that n of them will be type I and m of
them type II events is just the binomial probability

n+my\ .. om
( . >p(1 )"

n+m\ L Ary*+m
< n >p(1 pe (n+ m)!

Thus,

P{N\(t) = n, Ny(t) = m]

= e_Mp (ltp)" e"“(l“” (At(l - p))m
m!

(5.149)
n!
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Hence,
P{Ny(t) = n} = ¥ P{Ny(t) = n,Ny(t) = m}
m=0
- e._)\tp (Atp)n f: e~)‘;(1_p) (At(l —p))m
n! .o m!
—Ntp (Atp)
n!

That is, {N,(?), ¢ = 0} is a Poisson process having rate Ap. (How do we know
that the other conditions of Definition 5.1 are satisfied? Argue it out!)
Similarly,

At(l — p)”
PNy(t) = m) = eva-n GAZD)
m!
and so (N,(?), ¢ = 0} is a Poisson process having rate A(1 — p). Finally,
it follows from Equation (5.14) that the two processes are independent
(since the joint distribution factors). @

Remark It is not surprising that {N,(#), ¢ = 0} and {N,(?), ¢t = 0} are
Poisson processes. What is somewhat surprising is the fact that they are
independent. For assume that customers arrive at a bank at a Poisson rate
of A = 1 per hour and suppose that each customer is a man with probability
1 and a woman with probability 3. Now suppose that 100 men arrived in the
first 10 hours. Then how many women would we expect to have arrived in
that time? One might argue that as the number of male arrivals is 100 and
as each arrival is male with probability %, then the expected number of total
arrivals should be 200 and hence the expected number of female arrivals
should also be 100. But, as shown by the previous proposition, such
reasoning is spurious and the expected number of female arrivals in the first
10 hours is five, independent of the number of male arrivals in that period.

To obtain an intuition as to why Proposition 5.2 is true reason as follows:
If we divide the interval (0, 7) into n subintervals of equal length #/n, where
n is very large, then (neglecting events having probability ““little 0”’) each
subinterval will have a small probability Az/n of containing a single event.
As each event has probability p of being of type I, it follows that each of the
n subintervals will have either no events, a type I event, a type II event with
respective probabilities

At At At
1 - —, — D ""(1 _p)
n n n
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Hence from the result which gives the Poisson as the limit of binomials, we
can immediately conclude that N,(¢) and N,(¢) are Poisson distributed with
respective means Afp and Af(1 — p). To see that they are independent,
suppose, for instance, that N;(¢) = k. Then of the n subintervals, k& will
contain a type I event, and thus the other n — k will each contain a type II
event with probability

“t/n)1 - p)
1 - (At/n)p

At t
= —n“(l -p)+ 0(;)

Hence, as n — k will still be a very large number, we see again from the
Poisson limit theorem that, given N,(¢) = k, N,(¢) will be Poisson with mean
lim, ., [(n — k)At(1 — p)/n] = A1 — p), and so independence is established.

Pftype I |no type I} =

Example 5.10 If immigrants to area A arrive at a Poisson rate of ten
per week, and if each immigrant is of English descent with probability 4,
then what is the probability that no people of English descent will emigrate
to area A during the month of February?

Solution: By the previous proposition it follows that the number of
Englishmen emigrating to area 4 during the month of February is Poisson
distributed with mean 4 - 10 -+ = 4&. Hence the desired probability
ise’ 13, @

It follows from Proposition 5.2 that if each of a Poisson number of
individuals is independently classified into one of two possible groups with
respective probabilities p and 1 — p, then the number of individuals in each
of the two groups will be independent Poisson random variables. As this
result easily generalizes to the case where the classification is into any one
of r possible groups, we have the following application to a model of
employees moving about in an organization.

Example 5.11 Consider a system in which individuals at any time are
classified as being in one of r possible states, and assume that an individual
changes states in accordance with a Markov chain having transition
probabilities Py, i,j = 1, ..., r. That is, if an individual is in state i during
a time period then, independently of its previous states, it will be in state j
during the next time period with probability P;. The individuals are
assumed to move through the system independently of each other. Suppose
that the numbers of people initially in states 1,2, ...,r are independent
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Poisson random variables with respective means 4,,4,,...,4,. We are
interested in determining the joint distribution of the numbers of
individuals in states 1, 2, ..., r at some time n.

Solution: For fixed i, let N;(i),j =1, ..., r, denote the number of those
individuals, initially in state /, that are in state j at time n. Now each of
the (Poisson distributed) number of people initially in state i will,
independently of each other, be in state j at time n with probability Pj,
where Pj is the n-stage transition probability for the Markov chain
having transition probabilities P;. Hence, the N;(i),j = 1, ..., r, will be
independent Poisson random variables with respective means AP,
j =1, ..., r. As the sum of independent Poisson random variables is itself
a Poisson random variable, it follows that the number of individuals in
state j at time n—namely Yj.,N;(i)—will be independent Poisson

n

random variables with respective means ¥;A,Pj, forj =1,...,r. @

Example 5.12 (The Coupon Collecting Problem): There are m different
types of coupons. Each time a person collects a couponit is, independently of
ones previously obtained, a type j coupon with probability p;, X, p; = 1.
Let N denote the number of coupons one needs to collect in order to have
a complete collection of at least one of each type. Find E[N].

Solution: If we let N; denote the number one must collect to obtain a
type j coupon, then we can express N as
N= max N,
1sjsm
However, even though each N; is geometric with parameter p;, the
foregoing representation of N is not that useful, because the random
variables -N; are not independent.

We can, however, transform the problem into one of determining the
expected value of the maximum of independent random variables. To do
so, suppose that coupons are collected at times chosen according to a
Poisson process with rate 1 = 1. Say that an event of this Poisson process
is of type j, 1 < j < m, if the coupon obtained at that time is a type j
coupon. If we now let N;(¢) denote the number of type j coupons
collected by time ¢, then it follows from Proposition 5.2 that {N;(?),
t=0},j=1,...,m, are independent Poisson processes with respective
rates Ap;(=p;). Let X; denote the time of the first event of the jth
process, and let

X = max X

1sj<m
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denote the time at which a complete collection is amassed. Since the X;
are independent exponential random variables with respective rates p;, it
follows that

P{X < t} = P{max X; < 1)

=PiX;<tforj=1,...,m]

=T a-e?
j=1

Therefore,

o

E[X] = S P{X > t}dt
0

L m
= S {1 - a- e"’f')} dt (5.15)
0 j=1

It remains to relate E[X], the expected time until one has a complete set,
to E[N], the expected number of coupons it takes. This can be done by
letting 7; denote the ith interarrival time of the Poisson process that
counts the number of coupons obtained. Then it is easy to see that

N
X=XT
i=1
Since the T; are independent exponentials with rate 1, and N is inde-
pendent of the T;, we see that

E[X|N]1= NE[T] =N
Therefore,
E[X] = E[N]

and so E[N] is as given in Equation (5.15). @

The next probability calculation related to Poisson processes that we shall
determine is the probability that n events occur in one Poisson process
before m events have occurred in a second and independent Poisson
process. More formally let {N;(¢), ¢ = 0} and {N,(¢), ¢t = 0} be two indepen-
dent Poisson processes having respective rates A, and 4, . Also, let S, denote
the time of the nth event of the first process, and S2 the time of the mth
event of the second process. We seek

P{S,) < SA}
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Before attempting to calculate this for general #» and m, let us consider
the special case n = m = 1. Since S;, the time of the first event of the
N,(t) process, and S7, the time of the first event of the N,(f) process, are
both exponentially distributed random variables (by Proposition 5.1) with
respective means 1/4, and 1/4,, it follows from Section 5.2.3 that

1 2 A‘l

Pi{S; < 8¢} = L+ (5.16)
Let us now consider the probability that two events occur in the N,(¢)
process before a single event has occurred in the N,(#) process. That is,
P{S} < §2}. To calculate this we reason as follows: In order for the N,(¢)
process to have two events before a single event occurs in the N,(¢) process,
it is first necessary that the initial event that occurs must be an event of the
N;(¢) process [and this occurs, by Equation (5.16), with probability
Ai/(A; + A,)]. Now given that the initial event is from the N,(¢) process, the
next thing that must occur for S; to be less than S is for the second event
also to be an event of the N,(f) process. However, when the first event
occurs both processes start all over again (by the memoryless property
of Poisson processes) and hence this conditional probability is also
A/(4; + 1), and hence the desired probability is given by

1 2 '11 2
Pis} < sh = (5
1 2,

In fact this reasoning shows that each event that occurs is going to be an
event of the N,(t) process with probability 1,/(A, + A,) and an event of the
N,(t) process with probability A,/(A, + A,), independent of all that has
previously occurred. In other words, the probability that the N,(¢) process
reaches n before the N,(¢) process reaches m is just the probability that n
heads will appear before m tails if one flips a coin having probability
p = A /(A; + A,) of a head appearing. But by noting that this event will
occur if and only if the first n + m — 1 tosses result in #» or more heads we
see that our desired probability is given by

n+m-1 +m-—-1 A k A n+m-1-k
et (1)) ()
[ ) ,,g,, k A+ A/ \A + A,

5.3.5. Conditional Distribution of the Arrival Times

Suppose we are told that exactly one event of a Poisson process has taken
place by time ¢, and we are asked to determine the distribution of the time
at which the event occurred. Now, since a Poisson process possesses
stationary and independent increments it seems reasonable that each
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interval in [0, #] of equal length should have the same probability of
containing the event. In other words, the time of the event should be
uniformly distributed over [0, ¢]. This is easily checked since, for s < 7,
P{T; < s,N(t) = 1}
P{N(@) = 1}
P{1 event in [0, 5), 0 events in [s, #)}
PIN(f) = 1)
_ P{1 event in [0, 5)}P{0 events in [s, #)}
- PIN(t) = 1)

—)\se—)\(t—s)

P{T, < s|N@t) = 1} =

Ase
Ate™

fi
~ 10

This result may be generalized, but before doing so we need to introduce the
concept of order statistics.

Let Y;, Y5, ..., Y, be n random variables. We say that Y, Y, ..., Y
are the order statistics corresponding to Y;, Y3, ..., Y, if Y, is the kth
smallest value among Y,,...,Y,, k= 1,2,...,n. For instance if n =3
and ¥; =4, ¥, =5, Y, =1then Y3, =1, Y5 =4, Y53 =5. If the Y;
i=1,...,n, are independent identically distributed continuous random
variables with probability density f, then the joint density of the order
statistics Yy, Y, ..., Y is given by

n
TO1s Y2y eos ) = 0V I] FOD)s VI <Yy < or < Yy
i=1
The preceding follows since

(i) (),(1)3 Y’(Z), ey ),(n)) Win equal (y19y2! "'9yn) if (}’1’ Y'29 ey Y;l) is
equal to any of the n! permutations of (¥, Y2, -+, Yn);
and

(ii) the probability density that (¥;, 13, ..., ¥,) is equal to y; , ..., y; is
Ij=:1/(;) = Ij=1./(y;) when iy, ..., i, is a permutationof 1,2, ..., n.

J

Ifthe Y;,i=1, ..., n, are uniformly distributed over (0, #), then we obtain
from the preceding that the joint density function of the order statistics
Yy, Yoy, oo Ymy 18

n!
f(ylayZ!'--,yn)=t—n, 0<y1<y2<”.<yn<t

We are now ready for the following useful theorem.
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Theorem 5.2 Given that N(¢) = n, the n arrival times S,, ..., S, have
the same distribution as the order statistics corresponding to n independent
random variables uniformly distributed on the interval (0, £).

Proof To obtain the conditional density of Sy, ..., S, given that N(f) = n
note that for 0 < s; < --- < rthe event that S; = 5,, S, = 55, ..., S, = Sy,
N(?) = n is equivalent to the event that the first n + 1 interarrival times
satisfy Ty = 81, T, = 83 — S1y«oes Iy = Sp = Spo1» Tnyy >t — 5, Hence,
using Proposition 5.1, we have that the conditional joint density of
S, ..., S, given that N(t) = n is as follows:

J(Syy oeey S5 1)

f(sla'-'!snln)'_‘ P[N(t)=n}

A’e—)\sl Ae')‘(”'s‘) . A.e_)\(s"_s"_l)e_)\(t—s")
e NN /n!

=— 0<s8 < - <8<t

which proves the result. 4

Remark The preceding result is usually paraphrased as stating that, under
the condition that n events have occurred in (0, f), the times S, ..., S,
at which events occur, considered as unordered random variables, are
distributed independently and uniformly in the interval (0, ?).

Application of Theorem 5.2 (Sampling a Poisson Process)
In Proposition 5.2 we showed that if each event of a Poisson process is
independently classified as a type I event with probability p and as a type II
event with probability 1 — p then the counting processes of type I and type
II events are independent Poisson processes with respective rates Ap and
A1 — p). Suppose now, however, that there are k possible types of events
and that the probability that an event is classified as a type i event,
i=1,..., k, depends on the time the event occurs. Specifically, suppose
that if an event occurs at time y then it will be classified as a type i event,
independently of anything that has previously occurred, with probability
P(y),i=1,..., k where Y% 1 P,(») = 1. Upon using Theorem 5.2 we can
prove the following useful proposition.
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Proposition 5.3 If N;(¢), i = 1, ..., k, represents the number of type i
events occurring by time ¢ then N;(¢), i = 1, ..., k, are independent Poisson
random variables having means

t

E[N;(0)] = lj P(s) ds
0

Before proving this proposition, let us first illustrate its use.

Example 5.13 (An Infinite Server Queue): Suppose that customers
arrive at a service station in accordance with a Poisson process with rate A.
Upon arrival the customer is immediately served by one of an infinite
number of possible servers, and the service times are assumed to be
independent with a common distribution G. What is the distribution of
X(t), the number of customers that have completed service by time ¢?
What is the distribution of Y(¢), the number of customers that are being
served at time £?

To answer the preceding questions let us agree to call an entering
customer a type I customer if he completes his service by time ¢ and a
type II customer if he does not complete his service by time ¢. Now, if the
customer enters at time s, s < ¢, then he will be a type I customer if his
service time is less than ¢ — s. Since the service time distribution is G, the
probability of this will be G(¢ — s). Similarly, a customer entering at time s,
s < t, will be a type II customer with probability G(t — s) = 1 — G(t — s).
Hence, from Proposition 5.3 we obtain that the distribution of X(¢), the
number of customers that have completed service by time ¢, is Poisson
distributed with mean

E[X@®} = 4 SIG(t —8ds=4 th(y) dy (5.17)
0 0

Similarly, the distribution of Y(¢), the number of customers being served at
time ¢ is Poisson with mean

EYDl =121 St(_}(t —8)ds =4 Sté(y) dy (5.18)
0

0

Furthermore, X(¢) and Y{(¢) are independent.

Suppose now that we are interested in computing the joint distribution of
Y(¢) and Y(¢ + s)—that is the joint distribution of the number in the system
at time ¢ and at time ¢ + s. To accomplish this, say that an arrival is
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type 1: if he arrives before time ¢ and completes service between ¢ and
t+ s,

type 2: if he arrives before 7 and completes service after ¢ + s,

type 3: if he arrives between fand f + s and completes service after £ + s,
type 4: otherwise.

Hence an arrival at time y will be type i with probability () given by

P(y) = G(t+s—y) — G-y, ify<t
1= 0, otherwise
Gt +s -y, ify<t
P.(y) =
20) {0, otherwise
(Gt +s- ) ift<y<t+s
P = {0, otherwise

P(y)=1-P((y - Py(y) — Py(y)

Hence, if N; = Ni(s + 1), i = 1,2, 3, denotes the number of type i events
that occur, then from Proposition 5.3, N, i =1, 2,3, are independent
Poisson random variables with respective means

t+s

E[N;} = AS P(ydy, i=12,3
0

As
Y(t) = Ny + Ny,
Yt +8) =N, + N,

it is now an easy matter to compute the joint distribution of Y{(f) and
Y(t + s). For instance,

Cov[Y(®), Y(t + s)]
= COV(NI + Nz,Nz + N3)
= Cov(N,, N,) by independence of N;, N,, N;

= Var(N,)

t t
=A§ (_}(t+s—y)dy=/1g G(u + s)du
o

0
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where the last equality follows since the variance of a Poisson random
variable equals its mean, and from the substitution u = ¢ — y. Also, the
joint distribution of Y(¢) and Y(¢ + s) is as follows:

PY(#) =, Yt + ) =j} = P{N; + N, =i, N, + N; = j}
min(i, j)
= Y PN,;=LN=i-I,N;=j-1)
=0
min(, j)
= Y PIN,=l)PINy=i-I}P(Ny=j-1] &
=0

Example 5.14 (Minimizing the Number of Encounters): Suppose that
cars enter a one-way highway in accordance with a Poisson process with
rate A. The cars enter at point @ and depart at point b (see Figure 5.2). Each
car travels at a constant speed that is randomly determined, independently
from car to car, from the distribution G. When a faster car encounters a
slower one, it passes it with no time being lost. If your car enters the
highway at time s and you are able to choose your speed, what speed
minimizes the expected number of encounters you will have with other cars,
where we say that an encounter occurs each time your car either passes or
is passed by another car?

Solution: We will show that for large s the speed that minimizes the
expected number of encounters is the median of the speed distribution G.
To see this, suppose that the speed x is chosen. Let d = b — a denote the
length of the road. Upon choosing the speed x, it follows that your car
will enter the road at time s and will depart at time s + ty, where t, = d/x
is the travel time.

Now, the other cars enter the road according to a Poisson process with
rate 4. Each of them chooses a speed X according to the distribution G,
and this results in a travel time T = d/X. Let F denote the distribution of
travel time 7. That is,

F)=P{T=t}=Pld/X <t} =P(X=d/t}] = Gd/1)

Figure 5.2. Cars enter at point @ and depart at b.
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Let us say that an event occurs at time ¢ if a car enters the highway at
time 7. Also, say that the event is a type 1 event if it results in an encounter
with your car. Now, your car will enter the road at time s and will exit at
time s + f,. Hence, a car will encounter your car if it enters before s and
exits after s + t, (in which case your car will pass it on the road) or if it
enters after s but exits before s + f, (in which case it will pass your car).
As a result, a car that enters the road at time ¢ will encounter your car if
its travel time T is such that

t+T>s+t, Iift<s
t+T<s+1t, ifs<t<s+ i

From the preceding, we see that an event at time ¢ will, independently
of other events, be a type 1 event with probability p(#) given by
Pit+T>s+t)=Fs+t,-1, ift<s
pt)= (Pt + T<s+t)=Fls+1t—1), ifs<t<s+1iy
0, ift>s+1
Since events (that is, cars entering the road) are occurring according to a

Poisson process it follows, upon applying Proposition 5.3, that the total
number of type 1 events that ever occurs is Poisson with mean

L s s+1g
)LS p(t)dt=ASF’(s+to—t)dt+AS F(s + ty, — t)ydt
0

(4] 5
s+ip _ )
= lg F(y)dy + lg F(y)dy
1o 0

To choose the value of ¢, that minimizes the preceding quantity, we
differentiate. This gives

a4 {A r p() dt} = ME(s + tg) — F(ty) + F(t)}
dt, 0

Setting this equal to 0, and using that F(s + t;) = 0 when sis large, we se¢
that the optimal travel time #, is such that

F(to) — F(tp) = 0
or
F(t)) = [1 — F(t))) = 0
or
F(to) = %
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That is, the optimal travel time is the median of the travel time distribution.
Since the speed X is equal to the distance d divided by the travel time T, it
follows that the optimal speed x, = d/t, is such that

Fd/xy) = %
Since
F(d/x,) = G(xo)

we see that G(x,) = 4, and so the optimal speed is the median of the
distribution of speeds.

Summing up, we have shown that for any speed x the number of
encounters with other cars will be a Poisson random variable, and the mean
of this Poisson will be smallest when the speed x is taken to be the median
of the distribution G. @

Example 5.15 (Tracking the Number of HIV Infections): There is a
relatively long incubation period from the time when an individual becomes
infected with the HIV virus, which causes AIDS, until the symptoms of the
disease appear. As a result, it is difficult for public health officials to be
certain of the number of members of the population that are infected at any
given time. We will now present a first approximation model for this
phenomenon, which can be used to obtain a rough estimate of the number
of infected individuals.

Let us suppose that individuals contract the HIV virus in accordance with
a Poisson process whose rate A is unknown. Suppose that the time from
when an individual becomes infected until symptoms of the disease appear
is a random variable having a known distribution G. Suppose also that the
incubation times of different infected individuals are independent.

Let N,(?) denote the number of individuals that have shown symptoms of
the disease by time 7. Also, let N,(¢) denote the number that are HIV
positive but have not yet shown any symptoms by time ¢. Now, since an
individual that contracts the virus at time s will have symptoms by time ¢
with probability G(t — s) and will not with probability G(¢ — s), it follows
from Proposition 5.3 that N,(#) and N,(¢) are independent Poisson random
variables with respective means

t t

G(t — s)ds = Ai G(y)dy
0

E[N,(0)] = ij

0
and

t t
E[N,()] = lj G(t — s)ds = Aj G(y) dy
0 0
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Now, if we knew A, then we could use it to estimate N,(f), the number of
individuals infected but without any outward symptoms at time ¢, by its
mean value E [N,(#)]. However, since 4 is unknown, we must first estimate
it. Now, we will presumably know the value of N,(#), and so we can use its
known value as an estimate of its mean E[N,(¢)]. That is, if the number of
individuals that have exhibited symptoms by time ¢ is n,, then we can

estimate that
t

ny = E[Ny(8)] = A So G(y) dy

Therefore, we can estimate A by the quantity 1 given by
t
A= nl/g G(y)dy
0

Using this estimate of 4, we can estimate the number of infected but
symptomless individuals at time ¢ by

t
estimate of N,(f) = 4 S G(y)dy
0
_ml GOy dy
fo G(») dy

For example, suppose that G is exponential with mean u. Then
G(y) =e” /¢ and a simple integration gives that

nu(l = e

estimate of N,(f) = t—_m

If we suppose that ¢ = 16 years, u = 10 years, and n; = 220 thousand, then
the estimate of the number of infected but symptomless individuals at
time 16 is

220001 — e~ 1%
16 — 10(1 — e %)

estimate = = 218.96

That is, if we suppose that the foregoing model is approximately correct
(and we should be aware that the assumption of a constant infection rate A
that is unchanging over time is almost certainly a weak point of the model),
then if the incubation period is exponential with mean 10 years and if
the total number of individuals that have exhibited AIDS symptoms during
the first 16 years of the epidemic is 220 thousand, then we can expect
that approximately 219 thousand individuals are HIV positive though
symptomless at time 16. @
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Proof of Proposition 5.3 Let us compute the joint probability
P{Ni(t) = n;, i =1, ..., k}. To do so note first that in order for there to
have been n; type i events for i = 1, ..., k there must have been a total of
Y¥_. n; events. Hence, conditioning on N(¢) yields

P{N\(t) = ny, ..., Ni(8) = ni}

k
= P{Nl(t) =Ny, .. Ne(f) = i IN(@W) = L ”i}

i=1

k
X P{N(t) =Y n,}
i=1
Now consider an arbitrary event that occurred in the interval [0, ¢]. If it had
occurred at time s, then the probability that it would be a type i event would
be P;(s). Hence, since by Theorem 5.2 this event will have occurred at some
time uniformly distributed on (0, ¢), it follows that the probability that this
event will be a type / event is .

l t
P=- j Py(s)ds
t Jo
independently of the other events. Hence,
k
P{N,-(t) =n,i=1,..,k|IN®)= Y n,}

i=1

will just equal the multinomial probability of n; type i outcomes for
i=1,...,k when each of Y¥_,n; independent trials results in outcome i
with probability P, i = 1, ..., k. That is,

d (Z:';lni)! n n
Pi{Ny(t) = ny, ..., Ne(t) = i [IN() = ¥ == Pl Pt
i=1 n] .t nk.
Consequently,
Pi{N((t) = ny, ..., Ni(t) = ny}
— (El nl)! ny My ~N\ (At)zi"i
—”1!‘“’11:!})1 Fite (Xin)!
k

I1 e ™ AtP)"/n;!

i=1

and the proof is complete. ¢

We now present some additional examples of the usefulness of
Theorem 5.2.
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Example 5.16 (An Electronic Counter): Suppose that electrical pulses
having random amplitude arrive at a counter in accordance with a Poisson
process with rate 1. The amplitudes of a pulse is assumed to decrease with
time at an exponential rate. That is, we suppose that if a pulse has an
amplitude of A4 units upon arrival, then its amplitude at a time ¢ units later
will be Ae~*. We further suppose that the initial amplitudes of the pulses
are independent and have a common distribution F.
LetS,, S,, ... be the arrival times of the pulses andlet A,, 4,, ... be their

respective amplitudes. Then

N®

A@t) = L Aet®

i=1
represents the total amplitude at time 7. We can determine the expected
value of A(f) by conditioning on N(f), the number of pulses to arrive by
time ¢. This yields

ElA®M) = ¥ E[A@®|N(@) = nle

n=0

© e (A,t)n
n!

Now, conditioned on N(f) = n, the unordered arrival times (S;, ..., S,) are
distributed as independent uniform (0, #) random variables. Hence, given
N(t) = n, A(?) has the same distribution as L}_;4;e™¢"*?, where Y},
j=1,...,n, are independent and uniformly distributed on (0, ¢). Thus,

E[A()|N@) = n] = E[ i Aje—a(t—}'j)]
j=1

= nE[A]E[e **" )]

where E[A] is the mean initial amplitude of a pulse, and Y is a uniform
(0, t) random variable. Hence,

t
E[e-a(t-Y)] = S e-a(t—y)ﬂ
0 t

_ e—ateuy y=t
ot y=0
B 1 _ e—ozt
h ot
and thus,
1_ —at
E[AG)|N(@) = n] = nE[A](——&j—-—)
or

(1-e)
ot

E[A@)|N(1)] = N(EIA]
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Taking expectations and using the fact that E[N(#)] = Af, we have

E[A@)] = %ﬂ(l —e) &

Example 5.17 (An Optimization Example): Suppose that items arrive
at a processing plant in accordance with a Poisson process with rate 4. At
a fixed time T, all items are dispatched from the system. The problem is to
choose an intermediate time, ¢ € (0, T), at which all items in the system are
dispatched, so as to minimize the total expected wait of all items.

If we dispatch at time ¢, 0 < ¢t < T, then the expected total wait of all
items will be

A MT - t)?
2 7T 2

To see why the above is true, we reason as follows: The expected number of
arrivals in (0, ¢) is A¢, and each arrival is uniformly distributed on (0, ), and
hence has expected wait ¢/2. Thus, the expected total wait of items arriving
in (0, t) is A72/2. Similar reasoning holds for arrivals in (¢, T'), and the above
follows. To minimize this quantity, we differentiate with respect to ¢
to obtain

dl[ . 2 (T - t)?
dt

A+t A—|=At- T -1t
3 3 ] T-1
and equating to 0 shows that the dispatch time that minimizes the expected
total wait is 1 = 7/2. @

We end this section with a result, quite similar in spirit to Theorem 5.2,
which states that given §,, the time of the nth event, then the first n — 1
event times are distributed as the ordered values of a set of » — 1 random
variables uniformly distributed on (0, S,).

Proposition 5.4 Given that S, = ¢, the set S, ..., S,_; has the distri-
bution of a set of » — 1 independent uniform (0, #) random variables.

Proof We can prove the above in the same manner as we did Theorem
5.2, or we can argue more loosely as follows:
Sl’ reey S,,_IIS,, =1~ Sl’ evey Sn—l |S" = t,N(t_) =n-1
~ 8y, Sl ING)Y=n -1

where ~ means ‘‘has the same distribution as” and ¢~ is infinitesimally
smaller than 7. The result now follows from Theorem 5.2. 4
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5.3.6. Estimating Software Reliability

When a new computer software package is developed, a testing procedure
is often put into effect to eliminate the faults, or bugs, in the package. One
common procedure is to try the package on a set of well-known problems
to see if any errors result. This goes on for some fixed time, with all
resulting errors being noted. Then the testing stops and the package is
carefully checked to determine the specific bugs that were responsible for
the observed errors. The package is then altered to remove these bugs.
As we cannot be certain that all the bugs in the package have been
eliminated, however, a problem of great importance is the estimation of the
error rate of the revised software package.

To model the preceding, let us suppose that initially the package
contains an unknown number, m, of bugs, which we will refer to as bug 1,
bug 2, ..., bug m. Suppose also that bug i will cause errors to occur in
accordance with a Poisson process having an unknownrate 4;,i=1,...,m.
Then, for instance, the number of errors due to bug i that occur in any §
units of operating time is Poisson distributed with mean 4;s. Also suppose
that these Poisson processes caused by bugs i,i=1,...,mare independent.
In addition, suppose that the package is to be run for ¢ time units with all
resulting errors being noted. At the end of this time a careful check of the
package is made to determine the specific bugs that caused the errors (that
is, a debugging, takes place). These bugs are removed, and the problem is
then to determine the error rate for the revised package.

If we let

1, if bug i has not caused an error by ¢
v () = .
0, otherwise

then the quantity we wish to estimate is
A@) = Z:. Aiwi(®)
the error rate of the final package. To start, note that
E[A@)] = ; AE[w: ()]
=Y Le ™ (5.19)
i
Now each of the bugs that is discovered would have been responsible for a

certain number of errors. Let us denote by M;(¢) the number of bugs that
were responsible for j errors, j = 1. That is, M,(¢) is the number of bugs
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that caused exactly 1 error, M,(¢) is the number that caused 2 errors, and so
on, with ¥ ; jM;(t) equaling the total number of errors that resulted. To
compute E[M;(?)], let us define the indicator variables, I;(¢), i = 1, by

1, bug i causes exactly 1 error
0, otherwise

L) = {

Then,
M) = ¥ L)

and so
EIM,0] = ¥ EU®] = L Lize™ (5.20)

Thus, from (5.19) and (5.20) we obtain the intriguing result that
Mt
E[A(t) - ——’t(—z] =0 (5.21)

This suggests the possible use of M,(¢)/t as an estimate of A(f). To
determine whether or not M,(f)/t constitutes a ‘‘good’’ estimate of A(f)
we shall look at how far apart these two quantities tend to be. That is, we
will compute

2
E[ <A(t) - Ml(t)) ] = Var<A(t) - M#) from (5.21)

t

2 1
= Var(A(?)) — ;Cov(A(t), M) + ?Var(Ml(t))

Now, -
Var(A() = L A7 Var(yi (1) = ¥ el — e,

i

Var(My(1) = T Vary(1) = T Ate ™1 — A;te7™),

i

Cov(A®), My(®)) = Cov<Z_ PRAGE) 1,-(r)>
i J

= T L Cov(d,ui(t), ;)
tJ

T 4, Coviyi(t), Li(®)

- E Aie_)""/l,-te_)“t
i
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where the last two equalities follow since w;(f) and I;(¢) are independent
when i # j as they refer to different Poisson processes and w;()1;(¢) = 0.
Hence we obtain that

2
E[ (A(t) - M———lt(t)> ] =X AZe™Nt 4 % )X AN

_ EIM(1) + 2M,(0)]
= p

where the last equality follows from (5.20) and the identity (which we leave
as an exercise)

EMy0)] = 3 L (uty’e™ (5-22)

Thus, we can estimate the average square of the difference between A(f)
and M,(¢)/t by the observed value of M,(f) + 2M,(t) divided by 12

Example 5.18 Suppose that in 100 units of operating time 20 bugs are
discovered of which two resulted in exactly one, and three resulted in
exactly two, errors. Then we would estimate that A(100) is something akin
to the value of a random variable whose mean is equal to 1/50 and whose
variance is equal to 8/10,000. @

5.4. Generalizations of the Poisson Process

5.4.1. Nonhomogeneous Poisson Process

In this section we consider two generalizations of the Poisson process. The
first of these is the nonhomogeneous, also called the nonstationary, Poisson
process, which is obtained by allowing the arrival rate at time ¢ to be a
function of ¢.

Definition 5.4 The counting process {N(#), ¢ = 0} is said to be a
nonhomogeneous Poisson process with intensity function A(t), t = 0, if

(i) N©) = 0.

(ii) {N(?), t = 0} has independent increments.
(i) P{N(t + h) — N(@) = 2} = o(h).
(iv) P{N(t + h) — N(@) = 1} = A()h + o(h).
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If we let m(f) = { A(s) ds, then it can be shown that

P{N(t + 5) — N(t) = n}

= o m+9-m] [m( + s) — m@)]"

ol s n=0 (5.23)

Or, in other words, N(t + s) — N(¢) is Poisson distributed with mean
m(t + s) — m(t). Thus, for instance, N(¢) is Poisson distributed with mean
m(t), and for this reason m(¢) is called the mean value function of the
process. Note that if A(z) = A (that is, if we have a Poisson process), then
m(t) = At and so Equation (5.23) reduces to the fact that for a Poisson
process N(¢ + s) — N(¢) is Poisson distributed with mean As.

The proof of Equation (5.23) follows along the lines of the proof of
Theorem 5.1 with a slight modification. That is, we fix ¢ and define

P,(s) = P{N(t + 5) — N(f) = n}
Now,

Pys + h) = P[N(t + s+ h) — N(t) = 0}
= P{0 eventsin (¢, + s), O eventsin [t + 5, t + s + h]}
= P{0eventsin (¢, ¢ + s)}P{O events in [t + s, ¢ + 5 + A]}
= Py($)[1 — A(¢ + $Hh + o(h)]
where the last two equations follow from independent increments plus
the fact that (iii) and (iv) imply that P{N(t + s + h) — N(t + 5) = 0] =
1 — At + s)h + o(h). Hence,

Po(s + h) — Py(s) _
; =

—A(t + SPy(s) + ‘—)ihh—)

letting & — O yields
Py(s) = =A@t + $Py(s)

or
t+s

log Py(s) = —j: At + wdu = —S A(y)dy

t
or

Py(s) = e~ Im@+9)—-m@)]

The remainder of the verification of equation (5.23) follows similarly and is
left as an exercise.
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The importance of the nonhomogeneous Poisson process resides in the
fact that we no longer require the condition of stationary increments. Thus
we now allow for the possibility that events may be more likely to occur at
certain times of the day than during other times.

Example 5.19 Siegbert runs a hot dog stand which opens at 8 A.m.
From 8 until 11 A.M. customers seem to arrive, on the average, at a steadily
increasing rate that starts with an initial rate of 5 customers per hour at
8 o.M. and reaches a maximum of 20 customers per hour at 11 A.M. From
11 a.M. until 1p.M. the (average) rate seems to remain constant at 20
customers per hour. However, the (average) arrival rate then drops steadily
from 1p.M. until closing time at 5Pp.M. at which time it has the value of
12 customers per hour. If we assume that the number of customers arriving
at Siegbert’s stand during disjoint time periods is independent, then what is
a good probability model for the above? What is the probability that no
customers arrive between 8:30 A.M. and 9:30 A.M. on Monday morning?
What is the expected number of arrivals in this period?

Solution: A good model for the above would be to assume that arrivals
constitute a nonhomogeneous Poisson process with intensity function
A(?) given by

5 + 5t 0<t=<3

A(t) = § 20, 3J<t=S5

20 — 2(t - 95), S=t=<9

and
A=At -9) fort>9

Note that N(¢) represents the number of arrivals during the first ¢ hours
that the store is open. That is, we do not count the hours between 5 p.M.
and 8 a.M. If for some reason we wanted N(?) to represent the number of
arrivals during the first # hours regardless of whether the store was open
or not, then, assuming that the process begins at midnight we would let

0, 0=<t<8
5+ 5(t - 8), 8=<st=<11
AQ) = § 20, 1l1=s¢t=<13
20 — 2(¢t - 13), B=<t=17
0, 17 <t <24
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and
A(t) = A(t — 29) for t > 24

As the number of arrivals between 8:30 A.M. and 9:30 .M. will be
Poisson with mean m(3) — m(Z) in the first representation (and
mE) — m(&D) in the second representation), we have that the probability
that this number is zero is

3/2
exp{—g G + 50) dt} =e 10

172

and the mean number of arrivals is

372
S (5 +50)dt=10 &
172

When the intensity function A(f) is bounded, we can think of the
nonhomogeneous process as being a random sample from a homogeneous
Poisson process. Specifically, let A be such that

A=A forallz=0

and consider a Poisson process with rate 1. Now if we suppose that an
event of the Poisson process that occurs at time # is counted with probability
A(t)/ A, then the process of counted events is a nonhomogeneous Poisson
process with intensity function A(z). This last statement easily follows from
definition 5.4. For instance (i), (ii), and (iii) follow since thay are also true
for the homogeneous Poisson process. Axiom (iv) follows since

A
Pione counted event in (¢, ¢ + h)} = P{one event in (¢, ¢ + h)‘}—(}:t2 + o(h)

PYRU)
= 2 ==+ oh)

= A + o(h)

Example 5.20 [The Output Process of an Infinite Server Poisson
Queue (M/G/)]: It turns out that the output process of the M/G/»
queue—that is, of the infinite server queue having Poisson arrivals and
general service distribution G—is a nonhomogeneous Poisson process
having intensity function A(f) = AG(¢). To prove this claim, note first that
the (joint) probability (density) that a customer arrives at time s and departs
at time ¢ is equal to A, the probability (intensity) of an arrival at time s,
multiplied by g(¢ — s), the probability (density) that its service time is £ — s.
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(and is thus presently being repaired), i, the second most recent, and so on.
Because there are k! possible orderings for a fixed set of k failed components

and (Z) choices of that set, it follows that there are

r(n n n! |
k! = —— =n! —
k§0<k> k2=:0 (n-K)! iz:ol!
possible states.

The balance equations for the limiting probabilities are as follows:

<u,-, + 0¥ Ai>P(i1,...,ik) = Y Plivsor it + Plig, .oorihy s
i#i I#IJ
ji= .

J
j=1,...,k f=1,...,k

n n
T 4P@) = L POk 6.23)
1= i=
where ¢ is the state when all components are working. The preceding
equations follow because state i;, ..., iy can be left either by a failure of any
of the additional components or by arepair completion of component i, . Also
that state can be entered either by a repair completion of component i when
the state is i, #;, ..., i, or by a failure of component i; when the state is
By ey dp.
However, if we take

A Ao oee A
Piy, ..., i) = —2=2—_"k p(g) (6.24)
i Mi, = Hi
then it is easily seen that Equations (6.23) are satisfied. Hence, by uniqueness
these must be the limiting probabilities with P(¢) determined to make their
sum equal 1. That is,

i -1
P@=|1+ § it ""1"]

i iy, enpiy Hip 20 Hig
As an illustration, suppose n = 2 and so there are 5 states ¢, 1, 2, 12, 21.
Then from the preceding we would have
[ A Ay, 24,4,
P(¢) = 1+—‘+—2+——‘—2]
Hy M2 Myl

s

A
P(1) = 2L P(#),
131

PQ2) = igP(<25),
U

Ads

142

P(1,2) = P(2,1) = P(¢)
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where {N(?), t = 0} is a Poisson process, and {Y;, i = ¢t} is a family of
independent and identically distributed random variables which are also
independent of {N(¢), ¢ = 0}. The random variable X{(¢) is said to be a
compound Poisson random variable.

Examples of Compound Poisson Processes

(i) If Y; = 1, then X(¢) = N(¢), and so we have the usual Poisson process.
(ii) Suppose that buses arrive at a sporting event in accordance with a
Poisson process, and suppose that the numbers of customers in each bus are
assumed to be independent and identically distributed. Then {X(¢), ¢t = 0} is
a compound Poisson process where X(7) denotes the number of customers
who have arrived by ¢. In Equation (5.24) Y; represents the number of
customers in the ith bus.

(iii) Suppose customers leave a supermarket in accordance with a Poisson
process. If Y;, the amount spent by the ith customer, i = 1,2, ..., are
independent and identically distributed, then {X(¢), ¢t = 0} is a compound
Poisson process when X(f) denotes the total amount of money spent by
time t. @

Let us calculate the mean and variance of X(¢). To calculate E[X(#)], we
first condition on N(¢) to obtain

E[X(1)] = EE[X()|N®)))

Now

N
Y YING) = n]
i=1

~

EX®|IN@®) =n =E

i
ool
™=

Y;IN(@) = n]

| i=1

_E ]
Li=1

= nE[Y)]

LN ao k]
=

where we have used the assumed independence of the Y;’s and N(7). Hence,

E[X()|N(] = N(OE[Y)] (5.25)
and therefore
E[X(1)] = AME[Y;] (5.26)
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the probability that » machines will not be in use, is given by
1
1+ M IMAM = DA (M — n + DA/u"]
1
1+ Y2 (A/u)'M!/(M - n)!

p = (A/W)"M\/(M — n)!
"1+ LN/ MY/M - )t

P0=

n=0,1,....M

Hence, the average number of machines not in use is given by

T np, = Zn=oMMY/M — n)))@/p)"
P01+ B (/uMY/(M ~ n)

(6.22)

To obtain the long-run proportion of time that a given machine is working
we will compute the equivalent limiting probability of its working. To do
so, we condition the number of machines that are not working to obtain

M
P{machine is working} = Y} P{machine is working|» not working}P,
n=0
_ g M-n (since if n are not working,
T .2, M "  then M — n are working!)
M
P
=1-Y el
M

0

where T3 nP, is given by Equation (6.22). ¢

Example 6.14 (The M/M/1 Queue): In the M/M/1 queue A, = A,
4, = u and thus, from Equation (6.20),

@A/w"
b+ Eoo@/p)”

<i>n(1 — Au), n=0
u

provided that A/u < 1. It is intuitive that A must be less than u for limiting
probabilities to exist. Customers arrive at rate A and are served at rate u,
and thus if A > u, then they arrive at a faster rate than they can be served
and the queue size will go to infinity. The case A = u behaves much like the
symmetric random walk of Section 4.3, which is null recurrent and thus has
no limiting probabilities. ¢

P, =
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Example 5.22 (Busy Periods in Single-Server Poisson Arrival Queues):
Consider a single-server service station in which customers arrive according
to a Poisson process having rate A. An arriving customer is immediately
served if the server is free; if not, the customer waits in line (that is, he or
she joins the queue). The successive service times are independent with a
common distribution.

Such a system will alternate between idle periods when there are no
customers in the system, so the server is idle, and busy periods when there
are customers in the system, so the server is busy. A busy period will begin
when an arrival finds the system empty, and because of the memoryless
property of the Poisson arrivals it follows that the distribution of the length
of a busy period will be the same for each such period. Let B denote the
length of a busy period. We will compute its mean and variance.

To begin, let S denote the service time of the first customer in the busy
period and let N(S) denote the number of arrivals during that time. Now,
if N(S) = 0 then the busy period will end when the initial customer
completes his service, and so B will equal S in this case. Now, suppose that
one customer arrives during the service time of the initial customer. Then,
at time S there will be a single customer in the system who is just about to
enter service. As the arrival stream from time S on will still be a Poisson
process with rate A, it thus follows that the additional time from S until the
system becomes empty will have the same distribution as a busy period.
That is, if N(S) = 1 then

B=S+B1

where B, is independent of S and has the same distribution as B.

Now, consider the general case where N(S) = n, so there will be n
customers waiting when the server finishes his initial service. To determine
the distribution of remaining time in the busy period note that the order in
which customers are served will not affect the remaining time. Hence, let us
suppose that the n arrivals, call them C,, ..., C,, during the initial service
period are served as follows. Customer C, is served first, but C, is not
served until the only customers in the system are C,, ..., C,. For instance,
any customers arriving during C,’s service time will be served before C,.
Similarly, C, is not served until the system is free of all customers but
Cs,...,C,, and so on. A little thought reveals that the times between
the beginnings of service of customers C; and C;,;, i=1,...,n — 1, and
the time from the beginning of service of C, until there are no customers
in the system, are independent random variables, each distributed as a
busy period.

It follows from the preceding that if we let By, B,, ... be a sequence of
independent random variables, each distributed as a busy period, then we
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By adding to each equation the equation preceding it, we obtain

AoPy = uy Py,
MPy = u, P,

APy = u3 Py,

AnPrn = Uni1Pryy, nz0

Solving in terms of P, yields

A
P, = —QPO’
Hy
A Al
P, = -1P1 == OPo,
Uy Halby
A Ay A A
P, =f2p _M2/a OPo,
H3 M3ty
P,, — An—l Pn—l — An—l/ln—Z AIAOPO
Hy Hnplp_1 - Mol

And by using the fact that ¥';_, P, = 1, we obtain
v An-1vAido

1=P,+ P,
° °n§1 Hn ++* Halhy
or
1
P0= >
1+ 3 AgAy - A,y
n=1 Milz ** Uy
and so
0/1* Ap-a
Uiy o gl 1+ —>
1 n( ngl Myl oo Uy

nz=1

(6.20)

The foregoing equations also show us what condition is necessary for these
limiting probabilities to exist. Namely, it is necessary that

o Aodi - Aay
n=1 M1l -+ Uy

This condition also may be shown to be sufficient.

< ©

(6.21)
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There is a very nice representation of the compound Poisson process
when the set of possible values of the Y; is finite or countably infinite. So let
us suppose that there are numbers «;, j = 1, such that

PtY, = o) = pj, ij=1
J

Now, a compound Poisson process arises when events occur according to a
Poisson process and each event results in a random amount Y being added
to the cumulative sum. Let us say that the event is a type j event whenever
it results in adding the amount «;, j = 1. That is, the ith event of the
Poisson process is a type j event if ¥; = o;. If we let N;(?) denote the
number of type j events by time £, then it follows from Proposition 5.2 that
the random variables N;(f), j = 1, are independent Poisson random
variables with respective means

E[N;@®)] = Ap;t

Since, for each j, the amount «; is added to the cumulative sum a total of
N;(t) times by time ¢, it follows that the cumulative sum at time ¢ can be
expressed as

X(0) = ¥ aN;(0) (5.30)

J

As a check of Equation (5.30), let us use it to compute the mean and
variance of X(¢). This yields

E[X()] = E[ Z a,-N,-(t)]
J
= T oEIN;()]
J
= Z ajlpjt
J
= ME[Yj]
Also,
Var[X(?)] = Var[ Y aij(t)]
j

= Z of Var[N;(f)] by the independence of the
J N;(0),j =1

J

= ME[YH
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6.5. Limiting Probabilities

In analogy with a basic result in discrete-time Markov chains, the prob-
ability that a continuous-time Markov chain will be in state j at time ¢ often
converges to a limiting value which is independent of the initial state. That
is, if we call this value P;, then

P; = lim P;(¢)
j Sud- -]

where we are assuming that the limit exists and is independent of the initial
state i.

To derive a set of equations for the P;, consider first the set of forward
equations

P;t) = kE.ijPik(t) - v;P;(1) 6.17)
#J

Now, if we let ¢ approach oo, then assuming that we can interchange limit
and summation, we obtain

Ui oo pxj
= Y qPe — v;P;
k#j

However, as P;(¢) is a bounded function (being a probability it is always
between 0 and 1), it follows that if P};(t) converges, then it must converge
to 0 (why is this?). Hence, we must have that
0= Y qyP: — v;P
k#j
or

UjIJj = Z qu-Pk, all Statesj (6.18)

k=j

The preceding set of equations, along with this equation

YP=1 6.19)
J
can be used to solve for the limiting probabilities.

Remarks (i) We have assumed that the limiting probabilities P; exist.
A sufficient condition for this is that

(a) all states of the Markov chain communicate in the sense that starting
in state i there is a positive probability of ever being in state j, for all i, j
and
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2. Consider a post office with two clerks. Three people, A, B, and C,
enter simultaneously. 4 and B go directly to the clerks, and C waits until
either A4 or B leaves before he begins service. What is the probability that
A is still in the post office after the other two have left when

(a) the service time for each clerk is exactly (nonrandom) ten minutes?

(b) the service times are i with probability §, i = 1,2, 3?

(c) the service times are exponential with mean 1/u?
3. The lifetime of a radio is exponentially distributed with a mean of ten
years. If Jones buys a ten-year-old radio, what is the probability that it will
be working after an additional ten years?

4. In Example 5.2 if server i serves at an exponential rate 4;, i = 1,2,

show that
. . A'l 2 12 2
P{Smith t last} = +
{Smith is not last]} (/11 n lz> </11 M

*5. If X, and X, are independent nonnegative continuous random
variables, show that

. ri(?)
P(X, < X, |min(X;,X;) =t} = ———=
Xy < X |min(X;, X) = 1) = =0
where r;(¢) is the failure rate function of X;.

6. Show that the failure rate function of a gamma distribution with
parameters n and A is increasing when n = 1.

7. Norb and Nat enter a barbershop simultaneously—Norb to get a shave
and Nat a haircut. If the amount of time it takes to receive a haircut (shave)
is exponentially distributed with mean 20 (15) minutes, and if Norb and Nat
are immediately served, what is the probability that Nat finishes before
Norb?

*8. If X and Y are independent exponential random variables with
respective means 1/, and 1/4,, then

(a) use the lack of memory property of the exponential to intuitively
explain why Z = min(X, Y) is exponential.

(b) what is the conditional distribution of Z given that Z = X?

(c) give a heuristic argument that the conditional distributionof Y — Z,
given that Z = X, is exponential with mean 1/4,.
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which finally yields, by setting ¢ = 0 and using the fact that Py,(0) = 1,

Poolt) = —— e~V 4 E

u+ A u+ 2
From Equation (6.12), this also implies that
H u — (N
Pio(t) = — e ¥V
10(6) u+iA u+i €

Hence, our desired probability Py,(10) equals

A %
Py(10) = ——— 7106+ 4
0o(10) = 77 e PEw i

Another set of differential equations, different from the backward equa-
tions, may also be derived. This set of equations, known as Kolmogorov’s
forward equations is derived as follows. From the Chapman-Kolmogorov
equations (Lemma 6.2), we have

Pyt + h) — Py(1)

kf_:o Py ()Py;(h) — Py(t)

X Py(O)P(h) — [1 — Py(W]IP;(1)

k#j
and thus
. Pyt+ ) - Py@) Py _|1-F®)
i U0 < i 7 o B[

and, assuming that we can interchange limit with summation, we obtain
from Lemma 6.1

Pj(t) = Y G Puc(t) — v;Py(2)
K#j

Unfortunately, we cannot always justify the interchange of limit and
summation and thus the above is not always valid. However, they do hold
in most models, including all birth and death processes and all finite state
models. We thus have the following.

Theorem 6.2 (Kolmogorov’s Forward Equations). Under suitable
regularity conditions,

Pi(t) = Y qiPalt) — v;P;(1) (6.13)
k#j
We shall now attempt to solve the forward equations for the pure birth
process. For this process, Equation (6.13) reduces to
Pj(t) = A;_yP; j_,(t) — A;P;(2)
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15. In a certain system, a customer must first be served by server 1 and
then by server 2. The service times at server i are exponential with rate y;,
i = 1, 2. An arrival finding server 1 busy waits in line for that server. Upon
completion of service at server 1, a customer either enters service with server
2 if that server is free or else remains with server 1 (blocking any other
customer from entering service) until server 2 is free. Customers depart the
system after being served by server 2. Suppose that when you arrive there is
one customer in the system and that customer is being served by server 1.
What is the expected total time you spend in the system?

16. Suppose in Exercise 15 you arrive to find two others in the system, one
being served by server 1 and one by server 2. What is the expected time you
spend in the system? Recall that if server 1 finishes before server 2, then
server 1’s customer will remain with him (thus blocking your entrance) until
server 2 becomes free.

*17. A flashlight needs two batteries to be operational. Consider such a
flashlight along with a set of n functional batteries—battery 1, battery 2, ...,
battery n. Initially, battery 1 and 2 are installed. Whenever a battery fails,
it is immediately replaced by the lowest numbered functional battery that
has not yet been put in use. Suppose that the lifetimes of the different
batteries are independent exponential random variables each having rate u.
At a random time, call it 7, a battery will fail and our stockpile will
be empty. At that moment exactly one of the batteries—which we call
battery X—will not yet have failed.

(a) What is P{X = n}?

(b) What is P{X = 1}?

(c) What is P{X = i}?

(d) Find E[T].

(¢) What is the distribution of 7'?

18. Let X and Y be independent exponential random variables having
respective rates A and u. Let 7, independent of X, Y, be such that

I, with probability - ’:

. - A
0, with probability g
and define Z by

X, ifI=1

Z={—x ifI=0
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Now assuming that we can interchange the limit and the summation in the
preceding and applying Lemma 6.1, we obtain
Pj(t) = ¥ qucPy(t) — viPy(0)
k#i

1t turns out that this interchange can indeed be justified and, hence, we have
the following theorem.

Theorem 6.1 (Kolmogorov’s Backward Equations). For all states i, j,
and times ¢ = O,

P;(t) = kE Qi Py (1) — v;P;(7)
=i

Example 6.9 The backward equations for the pure birth process
become

Py(t) = 1iPiyy () = LiPy(t) #

Example 6.10 The backward equations for the birth and death process
become

Pyi(t) = Ao Pyj(t) — AgPy;(t),

.Pi+1,j(t) + —El_Px—l,j(t)il - (A'l + tul)PlJ(t)

A
PL.(t) = (A, Y| —
(1) = ( '+“')[A,~+ﬂ, R

or equivalently
Py () = AolPy;(t) — Py (7)), 6.9
Pji(t) = APy, ;@) + ui Py () = (4; + )Py 1), i>0 &

Example 6.11 (A Continuous-Time Markov Chain Consisting of Two
States): Consider a machine that works for an exponential amount of time
having mean 1/A before breaking down; and suppose that it takes an
exponential amount of time having mean 1/u to repair the machine. If the
machine is in working condition at time 0, then what is the probability that
it will be working at time ¢ = 10?

To answer this question, we note that the process is a birth and death
process (with state 0 meaning that the machine is working and state 1 that
it is being repaired) having parameters

A’O=A' .l‘l]=lu
Ai=0,i¢0,v /1,=0,l;é1
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25. Let X;,..., X, be independent exponential random variables, each
having rate A. Also, let X;, be the ith smallest of these values, i = 1, ..., n.
Find

(a) E[X(I)X(Z)]
(®) ElXXesn)
©) EXupXpli<J
26. Arguethatif A;,i=1,..., n are distinct positive numbers then
| A |
IV eyl

i=1 7" j=i A’j - ’11'
Hint: Relate this problem to Section 5.2.4.

27. Show that Definition 5.1 of a Poisson process implies Definition 5.3.

*28. Show that assumption (iv) of Definition 5.3 follows from assump-
tions (ii) and (iii).

Hint: Derive a functional equation for g(¢) = P{N(¢) = 0}.

29. Cars cross a certain point in the highway in accordance with a Poisson
process with rate 4 = 3 per minute. If Reb blindly runs across the highway,
then what is the probability that she will be uninjured if the amount of
time that it takes her to cross the road is s seconds? (Assume that if she
is on the highway when a car passes by, then she will be injured.) Do it for
s=2,5, 10, 20.

30. Suppose in Exercise 29 that Reb is agile enough to escape from a
single car, but if she encounters two or more cars while attempting to cross
the road, then she will be injured. What is the probability that she will be
unhurt if it takes her s seconds to cross. Do it for s = 5, 10, 20, 30.

*31. Show that if {N;(?), t = 0} are independent Poisson processes with
rate A;, i = 1,2, then [N(?), t = 0} is a Poisson process with rate 1, + 4,
where N(t) = Ny(t) + Ny(1).

32. In Exercise 31 what is the probability that the first event of the
combined process is from the N, process?

33. Let {N(), t = 0] be a Poisson process with rate 1. Let S, denote the
time of the nth event. Find

(3) E[S,]

(b) E[S,|N() = 2)
(©) EIN@) - N@)|NQ) = 3]



316 6 Continuous-Time Markov Chains

[We could, of course, have used Proposition 6.1 to immediately obtain an
equation for P;(?), rather than just using it for Py;(¢), but the algebra that
would have then been needed to show the equivalence of the resulting
expression to the preceding result is somewhat involved.] @

We shall now attempt to derive a set of differential equations that the
transition probabilities P;() satisfy in a general continuous-time Markov
chain. However, first we need a definition and a pair of lemmas.

For any pair of states i and j, let

qi; = viPy

Since v; is the rate at which the process makes a transition when in state i
and P is the probability that this transition is into state j, it follows that g;;
is the rate, when in state i, at which the process makes a transition into
state j. The quantities g;; are called the instantaneous transition rates. Since

Vi = ZviPij= Equ
J J
and
q_ij - 4ij
Vi Yiai

it follows that specifying the instantaneous transition rates determines the
parameters of the continuous-time Markov chain.

i

Lemma 6.1
(@) lim L'_f& =y
: =0 h
(b) ’llin}) i) = gy when i # j

Proof We first note that since the amount of time until a transition
occurs is exponentially distributed it follows that the probability of two or
more transitions in a time A is o(k). Thus, 1 — P,;(h), the probability that a
process_in state { at time O will not be in state i at time %, equals the
probability that a transition occurs within time 4 plus something small
compared to A. Therefore,

1 = Py(h) = v;h + o(h)

and part (a) is proven. To prove part (b), we note that P;(k), the probability
that the process goes from state i to statej in a time 4, equals the probability
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*40. Events occur according to a Poisson process with rate i = 2
per hour.

(a) What is the probability that no event occurs between 8 p.M. and
9p.M.7

(b) Starting at noon, what is the expected time at which the fourth event
occurs?

(c) What is the probability that two or more events occur between 6 .M.
and 8 p.M.? ‘

41. Pulses arrive at a Geiger counter in accordance with a Poisson process
at a rate of three arrivals per minute. Each particle arriving at the counter
has a probability £ of being recorded. Let X{(f) denote the number of pulses
recorded by time ¢ minutes.

(@) PIX(#) =0} =17
(®) E[X(0] =?

42. Cars pass a point on the highway at a Poisson rate of one per minute,
If 5 percent of the cars on the road are vans, then

(a) what is the probability that at least one van passes by during an hour?
(b) given that ten vans have passed by in an hour, what is the expected
number of cars to have passed by in that time?

(c) if 50 cars have passed by in an hour, what is the probability that five
of them were vans?

*43. Customers arrive at a bank at a Poisson rate A. Suppose two
customers arrived during the first hour. What is the probability that

(a) both arrived during the first 20 minutes?
(b) at least one arrived during the first 20 minutes?

44, A system has a random number of flaws that we will suppose is
Poisson distributed with mean c¢. Each of these flaws will, independently,
cause the system to fail at a random time having distribution G. When
a system failure occurs, suppose that the flaw causing the failure is
immediately located and fixed.

(a) What is the distribution of the number of failures by time #?

(b) What is the distribution of the number of flaws that remain in the
system at time ¢?

(c) Are the random variables in parts (a) and (b) dependent or
independent?
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We can explicitly determine P;(¢) in the case of a pure birth process
having distinct birth rates. For such a process, let X, denote the time the
process spends in state k before making a transition into state k + 1, k = 1.
Suppose that the process is presently in state /, and let j > i. Then, as X; is
the time it spends in state i before moving to state i + 1, and X, , is the time
it then spends in state i + 1 before moving to state i + 2, and so on, it
follows that ¥47' X is the time it takes until the process enters state J.
Now, if the process has not yet entered state j by time ¢, then its state at time
t is smaller than J, and vice versa. That is,

X(t)<_]¢>X,+ "'+Xti__1>t.
Therefore, for i < j, we have for a pure birth process that

J

-1
P{X(®) <j|X©0) =i} = P{ X, > t}
k=i

However, since Xj, ..., X;_; are independent exponential random variables
with respective rates A,,...,4;_;, we obtain from the preceding and
Equation (5.9), which gives the tail distribution function of E{;‘i X, that

Jj-1 Jj-1 i
PX) <jlXO0)=i}= Y e™ ]I r
k=i rekreifr — Ak

Replacing j by j + 1 in the preceding gives that

PIX(t) <j+ 1] X(0) = i} = ie-w fl
R

=i reEk,r=1i Ar - Ak
Since

PIX(r) = j| X(0) = i} = PIX() <Jj + 1]|X(0) = i}
- P{X(1) <J|X(©0) =i}

and since P;(f) = P{X; > t} = e, we have shown the following.

Proposition 6.1 For a pure birth process having 4; # A; when i # j

J J )
I)ij(t) = Z e—)\kt H r
koi

i r;ék,r=ilr—' A’k

j-1 Jj-1 A
S e
=i

s
rek,r=i 'lr - Ak

i<j

Py(r) = e™™
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49. A cable car starts off with 7 riders. The times between successive stops
of the car are independent exponential random variables with rate 1. At
each stop one rider gets off. This takes no time, and no additional riders get
on. After a rider gets off the car, he or she walks home. Independently of
all else, the walk takes an exponential time with rate u.

(a) What is the distribution of the time at which the last rider departs
the car?

(b) Suppose the last rider departs the car at time f. What is the
probability that all the other riders are home at that time?

50. Shocks occur according to a Poisson process with rate A, and each
shock independently causes a certain system to fail with probability p. Let
T denote the time at which the system fails and let N denote the number of
shocks that it takes.

(a) Find the conditional distribution of T given that N = n.

(b) Calculate the conditional distribution of N, given that T = t, and
notice that it is distributed as 1 plus a Poisson random variable with mean
Al = p)t.

(c) Explain how the result in part (b) could have been obtained without
any calculations.

51. The number of missing items in a certain location, call it X , is a
Poisson random variable with mean A. When searching the location, each
item will independently be found after an exponentially distributed time
with rate u. A reward of R is received for each item found, and a searching
cost of C per unit of search time is incurred. Suppose that you search for a
fixed time ¢ and then stop.

(a) Find your total expected return.

(b) Find the value of ¢ that maximizes the total expected return.

(c) The policy of searching for a fixed time is a static policy. Would a
dynamic policy which allows the decision as to whether to stop at each
time ¢ depend on the number already found by ¢ be beneficial?

Hint: How does the distribution of the number of items not yet found
by time ¢ depend on the number already found by that time?

52. Suppose that the times between successive arrivals of customers at a
single-server station are independent random variables having a common
distribution F. Suppose that when a customer arrives, he or she either
immediately enters service if the server is free or else joins the end of the
waiting line if the server is busy with another customer. When the server
completes work on a customer that customer leaves the system and the next
waiting customer, if there are any, enters service. Let X, . denote the number
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and, in general,

2 i
=i (3 o 3]
_ 1 - (#/l)i+l

-4 s i=0

The expected time to reach state j, starting at state k, k < J, is
Jj—1
E[time to go from k to j] = Y, E[T;]
i=k

_J—k AT = (/AR
TA-u  A-u 1 - u/A
The foregoing assumes that 4 # u. If A = u, then

i+1

A' b

JG+ 1) —kk+1)
27

E[T;] =

E[time to go from k to j] = L 2

We can also compute the variance of the time to go from 0 to i + 1 by
utilizing the conditional variance formula (see Exercise 37 of Chapter 3).
First note that Equation (6.3) can be written as

E[T|1] =

7t b~ WET + EITD

SO
Var(E[T;| [;])) = (ET;-,] + E[T;])* Var(J;)
Uil
(4 + A;)

where Var(Z;) is as shown since I; is a Bernoulli random variable with
parameter p = A;/(A; + ;). Also, note that if we let X; denote the time
until the transition from i occurs, then

Var(T;|I; = 1) = Var(X;|I; = 1)
= Var(X;)

1
B A + )

where the preceding uses the fact that the time until transition is independent

= (E[T;,) + EIT})) 6.4

(6.5)
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59. (a) Let {N(?), t = 0} be a nonhomogeneous Poisson process with
mean value function m(f). Given N(¢) = n, show that the unordered set of
arrival times has the same distribution as » independent and identically
distributed random variables having distribution function

E(_x.). x<t
Fx) = { m(t)’ B
1, x>t

(b) Suppose that workmen incur accidents in accordance with a
nonhomogeneous Poisson process with mean value function m(¢). Suppose
further that each injured man is out of work for a random amount of time
having distribution F. Let X{(¢) be the number of workers who are out of
work at time ¢. By using part (a), find E[X(?)].

60. Suppose that events occur according to a nonhomogeneous Poisson
process with intensity function A(#), ¢ = 0. Suppose that, independently of
anything that has previously occurred, an event at time s will be counted
with probability p(s), s = 0. Let N_(¢) denote the number of counted events
by time ¢.

(a) What type of process if {N_(¢), ¢t = 0}?
(b) Prove your answer to part (a).

61. Suppose that {Ny(¢), ¢t = 0} is a Poisson process with rate 1 = 1.
Let A(¢) denote a nonnegative function of ¢, and let

t
m(t) = j A(S) ds
0

Define N(¢) by
N(t) = No(m(1))

Argue that {N(r), ¢ = 0} is a nonhomogeneous Poisson process with
intensity function A(?), ¢ = 0.

Hint: Make use of the identity
m(t + h) — m@t) = m'(Oh + o(h)

*62. Let X;,X,,... be independent and identically distributed non-
negative continuous random variables having density function f(x). We say
that a record occurs at time # if X, is larger than each of the previous values
Xy, ..., X,_1. (A record automatically occurs at time 1.) If a record occurs
at time n, then X, is called a record value. In other words, a record occurs
whenever a new high is reached, and that new high is called the record value.
Let N(t) denote the number of record values that are less than or equal to z.
Characterize the process {N(¢), t = 0} when
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The preceding is known as the M/M/1 queueing system. The first M
refers to the fact that the interarrival process is Markovian (since it is a
Poisson process) and the second to the fact that the service distribution is
exponential (and, hence, Markovian). The 1 refers to the fact that there is
a single server.

If we let X(¢) denote the number in the system at time ¢ then {X(¢), t = 0}
is a birth and death process with

Uy = U, n=1
A=A, n=0 &

Example 6.6 (A Multiserver Exponential Queueing System): Consider
an exponential queueing system in which there are s servers available. An
entering customer first waits in line and then goes to the first free server.
This is a birth and death process with parameters

_ \nu, l=snss
" s, n>s

An = A, nz=z0

To see why this is true, reason as follows: If there are n customers in the
system, where n < s, then n servers will be busy. Since each of these servers
works at a rate u, the total departure rate will be nu. On the other hand, if
there are n customers in the system, where n > s, then all s of the servers
will be busy, and thus the total departure rate will be su. This is known as
an M/M/s queueing model (why?). @

Consider now a general birth and death process with birth rates {4,]} and
death rates {u,}, where y, = 0, and let T; denote the time, starting from
state i, it takes for the process to enter state i + 1, i = 0. We will recursively
compute E[T;], i = 0, by starting with / = 0. Since Tj is exponential with
rate Ay, we have that

1
EIT] = -
0

For i > 0, we condition whether the first transition takes the process into
state / — 1 or i + 1. That is, let

1, if the first transition from i isto i + 1
I,- = . . .. . .
0, if the first transition from i istoi — 1
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68. In Exercise 67 show that X; and X, both have exponential
distributions.

*69. Let X;,X,,...,X, be independent and identically distributed
exponential random variables. Show that the probability that the largest
of them is greater than the sum of the others is n/2""!. That is if

M = max X;
J

then show

P{M>f; Xi—M} =

= a1
Hint: What is P{X; > ¥, X;}?

70. Prove Equation (5.22).

71. Prove that

(a) max(X;, X;) = X; + X, — min(X;, X,) and, in general,

(b) max(X;, ..., X,) = iX,- - Y ¥ min(X;, X))
1

i<j
+ Y ¥ ¥ min(X;, X;, X)) + -+
i<j<k
+ (=D min(X;, X5, ..., X,)

Show by defining appropriate random variables X;, i = 1, ..., n, and by
taking expectations in (b) how to obtain the well-known formula

P<L':)A,-> = L P@) - L T PAA)

i<j
e (<1TIPA, e Ay)

(c) Consider n independent Poisson processes—the ith having rate ;.
Derive an expression for the expected time until an event has occurred in
all n processes.

72. A two-dimensional Poisson process is a process of randomly occurring
events in the plane such that

(i) for any region of area 4 the number of events in that region has a
Poisson distribution with mean A4 and
(ii) the number of events in nonoverlapping regions are independent.
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Let X(¢) denote the population size at time 7. Suppose that X(0) = i and
let

M) = E[X()]

We will determine M(¢) by deriving and then solving a differential equation
that it satisfies.

We start by deriving an equation for M(¢ + h) by conditioning on X(¢).
This yields

M(t + h) = E[X(t + h)]
= E[E[X( + h)| X ()]

Now, given the size of the population at time ¢ then, ignoring events whose
probability is o(h), the population at time 7 + A will either increase in size
by 1 if a birth or an immigration occurs in (¢, £ + h), or decrease by 1 if a
death occurs in this interval, or remain the same if neither of these two
possibilities occurs. That is, given X(¢),

X+ h)

X))+ 1, with probability [ + X(¢)Alh + o(h)

={X@) -1, with probability X(¢)uh + o(h)

X(), with probability 1 — [6 + X(#)A + X(¢)ulh + o(h)

Therefore,
E[X(t + B X®] = X(?) + [0 + X()A — X(O)ulh + o(h)
Taking expectations yields
M@E+ h) =M@+ (A - wWM(@)h + 6h + o(h)

or, equivalently,

M(t+h’)1_M(t)=()L—u)M(t)+ 9+9%h—)

Taking the limit as 2 — 0 yields the differential equation
M@)=0Q—wM@) +6 6.1)
If we now define the function A(¢) by
h(t) = QA — pM@) + 0
then
h(@)= @A - wM'(t)
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need to know which chair he was presently in. Hence, an appropriate state
space might consist of the three states 0, 1, and 2 where the states have the
following interpretation:

State Interpretation
0 system is empty
1 a customer is in chair 1
2 a customer is in chair 2

We leave it as an exercise for the reader to verify that
vo = 4, Uy = Uy, Uy = U,

Py =Py =Py =1 \ 4

6.3. Birth and Death Processes

Consider a system whose state at any time is represented by the number of
people in the system at that time. Suppose that whenever there are » people
in the system, then (i) new arrivals enter the system at an exponential rate
A, and (ii) people leave the system at an exponential rate y,,. That is, when-
ever there are n persons in the system, then the time until the next arrival is
exponentially distributed with mean 1/4, and is independent of the time
until the next departure which is itself exponentially distributed with mean
1/u,. Such a system is called a birth and death process. The parameters
{Adn—o and {u,);-, are called respectively the arrival (or birth) and
departure (or death) rates.

Thus, a birth and death process is a continuous-time Markov chain with
states {0, 1, ...} for which transitions from state » may go only to either
state n — 1 or state n + 1. The relationships between the birth and death
rates and the state transition rates and probabilities are

v,-=l,~+,u,—, l>0

POl"l»

A; .
Pi,i+1=,1.+’y; i>0
H 1

Hi .
P, = . >0
VT i+ l

The preceding follows, since when there are / in the system, then the next
state will be i + 1 if a birth occurs before a death; and the probability that
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differential equations—the forward and backward equations—which
describe the probability laws for the system. The material in Section 6.5
is concerned with determining the limiting (or long-run) probabilities
connected with a continuous-time Markov chain. In Section 6.6 we consider
the topic of time reversibility. We show that all birth and death processes
are time reversible, and then illustrate the importance of this observation to
queueing systems. In the final section we show how to ‘‘uniformize’’
Markov chains, a technique useful for numerical computations.

6.2. Continuous-Time Markov Chains

Suppose we have a continuous-time stochastic process {X(¢), ¢ = 0} taking
on values in the set of nonnegative integers. In analogy with the definition
of a discrete-time Markov chain, given in Chapter 4, we say that the process
{X(¢), t = 0} is a continuous-time Markov chain if for all 5, t = 0 and
nonnegative integers i, j, x(u), 0 < u < s

PX(t+s)=jlX(@) =i Xu) = x(u), 0 < u<s)
= P(X(t + 5) = j| X(s) = i}

In other words, a continuous-time Markov chain is a stochastic process
having the Markovian property that the conditional distribution of the
future X (¢ + s) given the present X(s) and the past X(u), 0 < u < s,
depends only on the present and is independent of the past. If, in addition,

P{X(t + s) =j|X(s) = i}

is independent of s, then the continuous-time Markov chain is said to have
stationary or homogeneous transition probabilities.

All Markov chains considered in this text will be assumed to have
stationary transition probabilities.

Suppose that a continuous-time Markov chain enters state i at some
time, say, time 0, and suppose that the process does not leave state / (that
is, a transition does not occur) during the next ten minutes. What is the
probability that the process will not leave state i during the following five
minutes? Now since the process is in state / at time 10 it follows, by the
Markovian property, that the probability that it remains in that state during
the interval [10, 15] is just the (unconditional) probability that it stays in
state i for at least five minutes. That is, if we let 7; denote the amount of
time that the process stays in state i before making a transition into a
different state, then

P{T, > 15|T; > 10} = P{T; > 5}
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differential equations—the forward and backward equations—which
describe the probability laws for the system. The material in Section 6.5
is concerned with determining the limiting (or long-run) probabilities
connected with a continuous-time Markov chain. In Section 6.6 we consider
the topic of time reversibility. We show that all birth and death processes
are time reversible, and then illustrate the importance of this observation to
queueing systems. In the final section we show how to ‘‘uniformize”’
Markov chains, a technique useful for numerical computations.

6.2. Continuous-Time Markov Chains

Suppose we have a continuous-time stochastic process {X(¢), ¢ = 0} taking
on values in the set of nonnegative integers. In analogy with the definition
of a discrete-time Markov chain, given in Chapter 4, we say that the process
{X(t), t = 0} is a continuous-time Markov chain if for all s, = 0 and
nonnegative integers 7, j, x(u), 0 < u < s

PIX(t +5) =j|X(©) =i, Xu) = x(u), 0 < u < s}
= PX(t + ) = jX(s) = i)

In other words, a continuous-time Markov chain is a stochastic process
having the Markovian property that the conditional distribution of the
future X(z + s) given the present X(s) and the past X(u), 0 < u < s,
depends only on the present and is independent of the past. If, in addition,

P{X(t + s5) = j| X(s) = i}

is independent of s, then the continuous-time Markov chain is said to have
stationary or homogeneous transition probabilities.

All Markov chains considered in this text will be assumed to have
stationary transition probabilities.

Suppose that a continuous-time Markov chain enters state i at some
time, say, time 0, and suppose that the process does not leave state i (that
is, a transition does not occur) during the next ten minutes. What is the
probability that the process will not leave state i during the following five
minutes? Now since the process is in state i at time 10 it follows, by the
Markovian property, that the probability that it remains in that state during
the interval [10, 15] is just the (unconditional) probability that it stays in
state i for at least five minutes. That is, if we let 7; denote the amount of
time that the process stays in state i/ before making a transition into a
different state, then

P{T; > 15|T; > 10} = P{T, > 5)



306 6 Continuous-Time Markov Chains

need to know which chair he was presently in. Hence, an appropriate state
space might consist of the three states 0, 1, and 2 where the states have the
following interpretation:

State Interpretation
0 system is empty
1 a customer is in chair 1
2 a customer is in chair 2

We leave it as an exercise for the reader to verify that

vo = 4, Uy = Uy Uy = Uz
Py =Py =Py =1 L 4

6.3. Birth and Death Processes

Consider a system whose state at any time is represented by the number of
people in the system at that time. Suppose that whenever there are n people
in the system, then (i) new arrivals enter the system at an exponential rate
A, and (ii) people leave the system at an exponential rate u,,. That is, when-
ever there are n persons in the system, then the time until the next arrival is
exponentially distributed with mean 1/4, and is independent of the time
until the next departure which is itself exponentially distributed with mean
1/u,. Such a system is called a birth and death process. The parameters
{Axdn=0 and {u,);-, are called respectively the arrival (or birth) and
departure (or death) rates.

Thus, a birth and death process is a continuous-time Markov chain with
states {0, 1, ...} for which transitions from state n may go only to either
state n — 1 or state n + 1. The relationships between the birth and death
rates and the state transition rates and probabilities are

Uo = A.o,

v,-=/1,~+/1is i>0

P01= 1,

A .
P""'”:A..;.'M.’ i>0
1 H

Hi .
e = , >0
PR A+ !

The preceding follows, since when there are / in the system, then the next
state will be i + 1 if a birth occurs before a death; and the probability that
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Let X(¢) denote the population size at time ¢. Suppose that X(0) = i and
let

M) = E[X(0)]

We will determine M(¢) by deriving and then solving a differential equation
that it satisfies.

We start by deriving an equation for M(¢ + %) by conditioning on X(¢).
This yields

M(t + k) = E[X(t + h)]
= E[E[X( + )| X(®D]]

Now, given the size of the population at time ¢ then, ignoring events whose
probability is o(4), the population at time ¢ + & will either increase in size
by 1 if a birth or an immigration occurs in (¢, ¢ + k), or decrease by 1 if a
death occurs in this interval, or remain the same if neither of these two
possibilities occurs. That is, given X(¢),

X+ h)

X@) + 1, with probability [@ + X(£)A]1h + o(h)

= X(@#) -1, with probability X(¢)uh + o(h)

X(), with probability 1 — [§ + X(t)A + X(¢)ulh + o(h)

Therefore,
E[X( + B)|X(@®)] = X(t) + [6 + X(O)A — X(O)ulh + o(h)
Taking expectations yields
M+ h) = M@#)+ (A - wM(@)h + 6h + o(h)

or, equivalently,

M(t+h})l_M(t)=(A—u)M(t)+0+?—(]?

Taking the limit as # — O yields the differential equation
M@)=Q4 - M)+ 6 6.1)
If we now define the function A(r) by
W) =G — wM@) + 0
then
h'() =@ — mM'(t)
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68. In Exercise 67 show that X; and X, both have exponential
distributions.

*69. Let X, X,,...,X, be independent and identically distributed
exponential random variables. Show that the probability that the largest
of them is greater than the sum of the others is n/2""!. That is if

M = max X,
J

then show

P{M> ) X,-—M} =2""_1
i=1
Hint: What is P{X, > ¥Y7., X;)?
70. Prove Equation (5.22).
71. Prove that

(a) max(X;, X,) = X; + X, — min(X;, X,) and, in general,

(b) max(Xl,...,X,,) = EXi_ Z Emln(Xl’Xl)
1

i<j
+ Y Y Y min(X;, X;, X;) + -+
i<j<k
+ (=D 'min(X;, X3, ..., X))

Show by defining appropriate random variables X;, i = 1, ..., n, and by
taking expectations in (b) how to obtain the well-known formula

P<L:)Ai> = gP(Ai) - X ¥ PAA4)

i<j
+ o+ (D)PA - Ay)

(¢c) Consider n independent Poisson processes—the ith having rate ;.
Derive an expression for the expected time until an event has occurred in
all n processes.

72. A two-dimensional Poisson process is a process of randomly occurring
events in the plane such that

(i) for any region of area A the number of events in that region has a
Poisson distribution with mean A4 and
(ii) the number of events in nonoverlapping regions are independent.
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The preceding is known as the M/M/1 queueing system. The first M
refers to the fact that the interarrival process is Markovian (since it is a
Poisson process) and the second to the fact that the service distribution is
exponential (and, hence, Markovian). The 1 refers to the fact that there is
a single server.

If we let X(¢) denote the number in the system at time ¢ then {X(¢), ¢ = 0}
is a birth and death process with

Un = U, nz=l
An =4, n=0 @&

Example 6.6 (A Multiserver Exponential Queueing System): Consider
an exponential queueing system in which there are s servers available. An
entering customer first waits in line and then goes to the first free server.
This is a birth and death process with parameters

_ \nu, l=n=<s
Hn= Su, n>s

An =4, nzo0

To see why this is true, reason as follows: If there are n customers in the
system, where n < s, then n servers will be busy. Since each of these servers
works at a rate u, the total departure rate will be nu. On the other hand, if
there are n customers in the system, where n > s, then all s of the servers
will be busy, and thus the total departure rate will be su. This is known as
an M/M/s queueing model (why?). 4

Consider now a general birth and death process with birth rates {4,} and
death rates {u,}, where u, = 0, and let 7; denote the time, starting from
state i, it takes for the process to enter state i + 1, i = 0. We will recursively
compute E[T;], i = 0, by starting with i = 0. Since T, is exponential with
rate i,, we have that

1
EIT) = 1
0

For i > 0, we condition whether the first transition takes the process into
state i — 1 or i + 1. That is, let

I 1, if the first transition from /i isto i + 1
! 0, if the first transition from i istoi — 1
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59. (a) Let {N(z), t = 0} be a nonhomogeneous Poisson process with
mean value function m(¢). Given N(t) = n, show that the unordered set of
arrival times has the same distribution as » independent and identically
distributed random variables having distribution function

m(x)

_, x=<1t
F(x) = { m(t)

1, x>t

(b) Suppose that workmen incur accidents in accordance with a
nonhomogeneous Poisson process with mean value function m(¢). Suppose
further that each injured man is out of work for a random amount of time
having distribution F. Let X(¢) be the number of workers who are out of
work at time ¢. By using part (a), find E[X(?)].

60. Suppose that events occur according to a nonhomogeneous Poisson
process with intensity function A(¢), ¢ = 0. Suppose that, independently of
anything that has previously occurred, an event at time s will be counted
with probability p(s), s = 0. Let N_(¢) denote the number of counted events
by time .

(a) What type of process if {N,.(2), t = 0}?
(b) Prove your answer to part (a).

61. Suppose that {Ny(?), t = 0} is a Poisson process with rate 1 = 1.
Let A(¢) denote a nonnegative function of ¢, and let

t
m(t) = j A(S) ds

Define N(¢) by °
N(t) = No(m(1))

Argue that {N(r), ¢t = 0} is a nonhomogeneous Poisson process with
intensity function A(z), ¢ = 0.

Hint: Make use of the identity
m(t + h) — m(t) = m'(t)h + o(h)

*62. Let X;,X,,... be independent and identically distributed non-
negative continuous random variables having density function f(x). We say
that a record occurs at time # if X, is larger than each of the previous values
X, ..., Xp_1. (A record automatically occurs at time 1.) If a record occurs
at time n, then X, is called a record value. In other words, a record occurs
whenever a new high is reached, and that new high is called the record value.
Let N(t) denote the number of record values that are less than or equal to 7.
Characterize the process {N(¢f), t = 0} when
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and, in general,

2 i
it 0+ 0]
_ 1 - (ﬂ/l)i+l

=0
A-u !

The expected time to reach state j, starting at state k, Kk < j, is
Jj-1
Etime to go from k to j]1 = Y, E[T;]
i=k

_J-k W/ 11 = (u/Ay ]
TA-u  A-u 1 — u/A
The foregoing assumes that 4 # u. If 1 = g, then

S

==,

JG+ 1) - k(k + 1)
22

E[T}]

E[time to go from k to j] = 2

We can also compute the variance of the time to go from 0 to i + 1 by
utilizing the conditional variance formula (see Exercise 37 of Chapter 3).
First note that Equation (6.3) can be written as

E[T|L] =

P + (1 = L)EIT,.,] + E[TD

so
Var(E[T;|I,]) = (EIT;_4] + E[T;))* Var(Zy)
Uik
(i + Ai)°
where Var(J;) is as shown since J; is a Bernoulli random variable with

parameter p = 4;/(A; + ;). Also, note that if we let X; denote the time
until the transition from i occurs, then

Var(T;|1; = 1) = Var(X;|; = 1)
= Var(X;)
1
Tty

where the preceding uses the fact that the time until transition is independent

= (EIT;_4] + EIT)? 6.4

6.5)



296 5 The Exponential Distribution and the Poisson Process

49. A cable car starts off with # riders. The times between successive stops
of the car are independent exponential random variables with rate 1. At
each stop one rider gets off. This takes no time, and no additional riders get
on. After a rider gets off the car, he or she walks home. Independently of
all else, the walk takes an exponential time with rate u.

(a) What is the distribution of the time at which the last rider departs
the car?

(b) Suppose the last rider departs the car at time f. What is the
probability that all the other riders are home at that time?

50. Shocks occur according to a Poisson process with rate 1, and each
shock independently causes a certain system to fail with probability p. Let
T denote the time at which the system fails and let N denote the number of
shocks that it takes.

(2) Find the conditional distribution of T given that N = n.

(b) Calculate the conditional distribution of N, given that 7 = ¢, and
notice that it is distributed as 1 plus a Poisson random variable with mean
Al - pht.

() Explain how the result in part (b) could have been obtained without
any calculations.

51. The number of missing items in a certain location, call it X, is a
Poisson random variable with mean 1. When searching the location, each
item will independently be found after an exponentially distributed time
with rate u. A reward of R is received for each item found, and a searching
cost of C per unit of search time is incurred. Suppose that you search for a
fixed time ¢ and then stop.

(a) Find your total expected return.

(b) Find the value of ¢ that maximizes the total expected return.

(c) The policy of searching for a fixed time is a static policy. Would a
dynamic policy which allows the decision as to whether to stop at each
time ¢ depend on the number already found by ¢ be beneficial?

Hint: How does the distribution of the number of items not yet found
by time ¢ depend on the number already found by that time?

52. Suppose that the times between successive arrivals of customers at a
single-server station are independent random variables having a common
distribution F. Suppose that when a customer arrives, he or she either
immediately enters service if the server is free or else joins the end of the
waiting line if the server is busy with another customer. When the server
completes work on a customer that customer leaves the system and the next
waiting customer, if there are any, enters service. Let X, denote the number
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We can explicitly determine P;(f) in the case of a pure birth process
having distinct birth rates. For such a process, let X, denote the time the
process spends in state kK before making a transition into state k + 1, k = 1.
Suppose that the process is presently in state /, and let j > i. Then, as X is
the time it spends in state i before moving to state i + 1, and Xj., is the time
it then spends in state i + 1 before moving to state i + 2, and so on, it
follows that E{;‘i X, is the time it takes until the process enters state J-
Now, if the process has not yet entered state j by time 7, then its state at time
t is smaller than j, and vice versa. That is,

X<je X+ -+ X >t
Therefore, for i < j, we have for a pure birth process that
j-1
PIXt) <jlX©0) =i} = P{ X, > t}
k=i

However, since Xj, ..., X;_, are independent exponential random variables
with respective rates 4;,...,4;_;, we obtain from the prqceding and
Equation (5.9), which gives the tail distribution function of ):{(;1,. X, that

Jj-1 Jj-1 i
PX(@) <jlx©0)=i)= Y e™ ]I r
k=i f#k,r:ilr_ik

Replacing j by j + 1 in the preceding gives that

J j 1
PXt)<j+1|X0)=i}= Y e™ ] r
k=i r#k,r:ikr—lk

Since

PX(t) = j| X(0) = i} = P(X() <j + 1| X(0) = i}
- PX() <JjlX(©0) =i}

and since P;(t) = P{X; > t} = e~ ™', we have shown the following.

Proposition 6.1 For a pure birth process having 4; # 4; when / # J

J =Nt / }“r & =Nt = 'lr : :
Py = L e Il o= - Le™ I =5, 1<
k=i rek,r=i’*r k k=i r#k, r=i ©r k

Py(t) = e
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*40. Events occur according to a Poisson process with rate A =2
per hour.

(a) What is the probability that no event occurs between 8 p.M. and
9p.M.7

(b) Starting at noon, what is the expected time at which the fourth event
occurs?

(c) What is the probability that two or more events occur between 6 P.M.
and 8 p.M.? ‘

41. Pulses arrive at a Geiger counter in accordance with a Poisson process
at a rate of three arrivals per minute. Each particle arriving at the counter
has a probability £ of being recorded. Let X{(¢) denote the number of pulses
recorded by time ¢ minutes.

(a) P{X(t) = 0} = ?
(b) E[X(@)] =?

42. Cars pass a point on the highway at a Poisson rate of one per minute,
If 5 percent of the cars on the road are vans, then

(a) what is the probability that at least one van passes by during an hour?
(b) given that ten vans have passed by in an hour, what is the expected
number of cars to have passed by in that time?

(c) if 50 cars have passed by in an hour, what is the probability that five
of them were vans?

*43. Customers arrive at a bank at a Poisson rate A. Suppose two
customers arrived during the first hour. What is the probability that

(a) both arrived during the first 20 minutes?
(b) at least one arrived during the first 20 minutes?

44. A system has a random number of flaws that we will suppose is
Poisson distributed with mean c¢. Each of these flaws will, independently,
cause the system to fail at a random time having distribution G. When
a system failure occurs, suppose that the flaw causing the failure is
immediately located and fixed.

(a) What is the distribution of the number of failures by time #?

(b) What is the distribution of the number of flaws that remain in the
system at time #7?

(c) Are the random variables in parts (a) and (b) dependent or
independent?
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[We could, of course, have used Proposition 6.1 to immediately obtain an
equation for P;(¢), rather than just using it for P;(?), but the algebra that
would have then been needed to show the equivalence of the resulting
expression to the preceding result is somewhat involved.] 4

We shall now attempt to derive a set of differential equations that the
transition probabilities P;(¢) satisfy in a general continuous-time Markov
chain. However, first we need a definition and a pair of lemmas.

For any pair of states i and j, let

g = viF;

Since v; is the rate at which the process makes a transition when in state i
and P; is the probability that this transition is into state j, it follows that g;;
is the rate, when in state i, at which the process makes a transition into
state j. The quantities g;; are called the instantaneous transition rates. Since

Vi = EViPij= EQij
J J
and
P;= 9y _ 9y
vi L4y
it follows that specifying the instantaneous transition rates determines the
parameters of the continuous-time Markov chain.

Lemma 6.1
(a) lim —-—-—1 — Puh) =y
: r=0 h
() tim F2®) _ g; whenizj
r0 h

Proof We first note that since the amount of time until a transition
occurs is exponentially distributed it follows that the probability of two or
more transitions in a time 4 is o(k). Thus, 1 — P;(h), the probability that a
process in state i at time O will not be in state i at time A, equals the
probability that a transition occurs within time 4 plus something small
compared to i#. Therefore,

1 — Py(h) = vih + o(h)

and part (a) is proven. To prove part (b), we note that P;(), the probability
that the process goes from state i to statej in a time 4, equals the probability
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25. Let X,,..., X, be independent exponential random variables, each
having rate 4. Also, let X;, be the ith smallest of these values, i = 1, ..., n.
Find

(@ E [X(I)X(Z)]

(b) E[X(i)X(i+1)]_ _
© EXuXpl i<y

26. Argue thatif A;, i =1, ..., n are distinct positive numbers then
o

i=1Ai jei Aj

|
Ai i§1 Ai
Hint: Relate this problem to Section 5.2.4.

27. Show that Definition 5.1 of a Poisson process implies Definition 5.3.

*28. Show that assumption (iv) of Definition 5.3 follows from assump-
tions (ii) and (iii).

Hint: Derive a functional equation for g(f) = P{N(¢) = 0}.

29, Cars cross a certain point in the highway in accordance with a Poisson
process with rate 1 = 3 per minute. If Reb blindly runs across the highway,
then what is the probability that she will be uninjured if the amount of
time that it takes her to cross the road is s seconds? (Assume that if she
is on the highway when a car passes by, then she will be injured.) Do it for
s=2,5,10, 20.

30. Suppose in Exercise 29 that Reb is agile enough to escape from a
single car, but if she encounters two or more cars while attempting to cross
the road, then she will be injured. What is the probability that she will be
unhurt if it takes her s seconds to cross. Do it for s = 5, 10, 20, 30.

*31. Show that if {N;(?), t = 0} are independent Poisson processes with
rate A;, i = 1,2, then {N(?), t = 0} is a Poisson process with rate A, + A,
where N(#) = N;(#) + Ny(0).

32. In Exercise 31 what is the probability that the first event of the
combined process is from the N; process?

33. Let {N(?), t = 0} be a Poisson process with rate A. Let S, denote the
time of the nth event. Find

(@) E[S,]
(b) E[S,|N(Q) = 2]
(©) EIN@) - N©2)|N(1) = 3]
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Now assuming that we can interchange the limit and the summation in the
preceding and applying Lemma 6.1, we obtain

Pi(t) = Y quPr(t) = viPy(1)

k#i

It turns out that this interchange can indeed be justified and, hence, we have
the following theorem.

Theorem 6.1 (Kolmogorov’s Backward Equations). For all states i, j,
and times ¢ = 0,

Pi@) = Y quPii(t) — viPy(0)

k=i

Example 6.9 The backward equations for the pure birth process
become

Py(t) = AiPis1,j(t) — LiPy(t) @

Example 6.10 The backward equations for the birth and death process
become

Pg;(t) = AgPyi(t) — AoPo;(1),

ﬂ.
_Pi+1,j(f) + -

' Ai
Po =G| 725 K+ i

Pi—l,j(t)] — (A + u))Py(1)
or equivalently
Pyi(t) = AglPy (1) — Po; ()]
Pj(t) = AiPpyy, ;) + Py, j(t) — (A + )Py (), i>0 &

6.9

Example 6.11 (A Continuous-Time Markov Chain Consisting of Two
States): Consider a machine that works for an exponential amount of time
having mean 1/A before breaking down; and suppose that it takes an
exponential amount of time having mean 1/u to repair the machine. If the
machine is in working condition at time 0, then what is the probability that
it will be working at time ¢ = 10?

To answer this question, we note that the process is a birth and death
process (with state 0 meaning that the machine is working and state 1 that
it is being repaired) having parameters

Ao = b= 4
A=0,i#0,  u=0i#1
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15. In a certain system, a customer must first be served by server 1 and
then by server 2. The service times at server i are exponential with rate y;,
i = 1, 2. An arrival finding server 1 busy waits in line for that server. Upon
completion of service at server 1, a customer either enters service with server
2 if that server is free or else remains with server 1 (blocking any other
customer from entering service) until server 2 is free. Customers depart the
system after being served by server 2. Suppose that when you arrive there is
one customer in the system and that customer is being served by server 1.
What is the expected total time you spend in the system?

16. Suppose in Exercise 15 you arrive to find two others in the system, one
being served by server 1 and one by server 2. What is the expected time you
spend in the system? Recall that if server 1 finishes before server 2, then
server 1’s customer will remain with him (thus blocking your entrance) until
server 2 becomes free.

*17. A flashlight needs two batteries to be operational. Consider such a
flashlight along with a set of # functional batteries—battery 1, battery 2, ...,
battery #. Initially, battery 1 and 2 are installed. Whenever a battery fails,
it is immediately replaced by the lowest numbered functional battery that
has not yet been put in use. Suppose that the lifetimes of the different
batteries are independent exponential random variables each having rate u.
At a random time, call it 7, a battery will fail and our stockpile will
be empty. At that moment exactly one of the batteries—which we call
battery X—will not yet have failed.

(a) What is P{X = n}?

(b) What is P{X = 1}?

(c) What is P{X = i}?

(d) Find E[T]).

(¢) What is the distribution of T'?

18. Let X and Y be independent exponential random variables having
respective rates A and u. Let 7, independent of X, Y, be such that

. - u
1, h lity ———
with probability Tt

A
ith -
0, with probability puray
and define Z by
X, ifI=1

Z= {—Y, if I=0
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which finally yields, by setting ¢ = 0 and using the fact that Pyy(0) = 1,

—@+Nt U
e 4+ —
u+ i U+ A

Pyo(t) =
From Equation (6.12), this also implies that

u u
P..(1) = - @+N?
10(t) u+i u+ i ¢
Hence, our desired probability Py,(10) equals

A U
P,(10) = —— 710G+ 4 T
00(10) u+,le u+ A ¢

Another set of differential equations, different from the backward equa-
tions, may also be derived. This set of equations, known as Kolmogorov’s
forward equations is derived as follows. From the Chapman~Kolmogorov
equations (Lemma 6.2), we have

Py(t + h) — Py(t) = kgo Py (t)Py;(h) — Py(t)

= Z P, (1)Py;(h) — [1- ij(h)]Pij(t)

k#j
and thus
Pyt + B - Py) . Py [1 - Py
= i - P,
ok H{E,-P"‘(’) h PR R

and, assuming that we can interchange limit with summation, we obtain
from Lemma 6.1
Pj(t) = ¥ qiiPult) — v;Py(1)
k]

Unfortunately, we cannot always justify the interchange of limit and
summation and thus the above is not always valid. However, they do hold
in most models, including all birth and death processes and all finite state
models. We thus have the following.

Theorem 6.2 (Kolmogorov’s Forward Equations). Under suitable
regularity conditions,

Pi(t) = Y qijPu(t) — v;Py(t) (6.13)
k#j
We shall now attempt to solve the forward equations for the pure birth
process. For this process, Equation (6.13) reduces to
Pj(t) = Aj Py j_1(t) — A;P;(2)
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2. Consider a post office with two clerks. Three people, A, B, and C,
enter simultaneously. A and B go directly to the clerks, and C waits until
either A or B leaves before he begins service. What is the probability that
A is still in the post office after the other two have left when

(a) the service time for each clerk is exactly (nonrandom) ten minutes?

(b) the service times are i with probability 4, i = 1,2, 3?

(c) the service times are exponential with mean 1/u?
3. The lifetime of a radio is exponentially distributed with a mean of ten
years. If Jones buys a ten-year-old radio, what is the probability that it will
be working after an additional ten years?

4. In Example 5.2 if server / serves at an exponential rate 4;, i = 1, 2,

show that
. . A’l 2 12 :
P{Smith is not last} = <11 " iz) + <M " /12)

*5. If X; and X, are independent nonnegative continuous random
variables, show that

. ry()
PlX, < X, |min(X,,X;) =t} = —————
D < X minX,, X0) = 1) = —o2 2
where r;(¢) is the failure rate function of Xj.

6. Show that the failure rate function of a gamma distribution with
parameters n and A is increasing when n = 1.

7. Norb and Nat enter a barbershop simultaneously—Norb to get a shave
and Nat a haircut. If the amount of time it takes to receive a haircut (shave)
is exponentially distributed with mean 20 (15) minutes, and if Norb and Nat
are immediately served, what is the probability that Nat finishes before
Norb?

*8. If X and Y are independent exponential random variables with
respective means 1/4, and 1/4,, then

(a) use the lack of memory property of the exponential to intuitively
explain why Z = min(X, Y) is exponential.

(b) what is the conditional distribution of Z given that Z = X?

(c) give a heuristic argument that the conditional distribution of Y — Z,
given that Z = X, is exponential with mean 1/4,.
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6.5. Limiting Probabilities

In analogy with a basic result in discrete-time Markov chains, the prob-
ability that a continuous-time Markov chain will be in state j at time ¢ often
converges to a limiting value which is independent of the initial state. That
is, if we call this value P;, then

P, = lim P,(t)
t— o

where we are assuming that the limit exists and is independent of the initial
state i.

To derive a set of equations for the P;, consider first the set of forward
equations

Pi(t) = Y qijPu(t) — v;Py(t) 6.17)
K=

Now, if we let ¢ approach o, then assuming that we can interchange limit
and summation, we obtain

t—co t—co k#j
=Y QrjPr — V;P;
k#j

However, as P;;(¢) is a bounded function (being a probability it is always
between 0 and 1), it follows that if P;(#) converges, then it must converge
to 0 (why is this?). Hence, we must have that
0= Y qiP - v;P;
k#j
or

v, Py = kE.qijk, all states j (6.18)
=j

The preceding set of equations, along with this equation

YP=1 (6.19)
J
can be used to solve for the limiting probabilities.

Remarks (i) We have assumed that the limiting probabilities P; exist.
A sufficient condition for this is that

(a) all states of the Markov chain communicate in the sense that starting
in state i there is a positive probability of ever being in state j, for all i, j
and
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There is a very nice representation of the compound Poisson process
when the set of possible values of the ¥; is finite or countably infinite. So let
us suppose that there are numbers o;, j = 1, such that

PYy=a)=p;, Lp=1
J

Now, a compound Poisson process arises when events occur according to a
Poisson process and each event results in a random amount Y being added
to the cumulative sum. Let us say that the event is a type j event whenever
it results in adding the amount «;, j = 1. That is, the ith event of the
Poisson process is a type j event if Y; = «;. If we let N;(¢) denote the
number of type j events by time ¢, then it follows from Proposition 5.2 that
the random variables N;(f), j = 1, are independent Poisson random
variables with respective means

E[N;()] = Ap;t

Since, for each j, the amount o; is added to the cumulative sum a total of
N;(¢) times by time ¢, it follows that the cumulative sum at time ¢ can be
expressed as

X0 = T a;N;(0) (5.30)
J

As a check of Equation (5.30), let us use it to compute the mean and
variance of X(¢). This yields

E[X(®)] = E[ ) aij(t)]
J
= T BN,
J
J

= ME[Y]
Also,
Var[X(?)] = Var[ E a_,-IVj(t)]
J
= Y of Var[N;(0)] by the independence of the
S Ni(),j=z1
J

= ME[Y?]
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By adding to each equation the equation preceding it, we obtain

APy = u Py,
MPy =1, P,
APy = u3 Py,

AnPn =.un+an+l’ nz0

Solving in terms of P, yields

A
Pl =—QP0,
1
A AA
P2=—1'P1= ! OPo,
7 Mol
A Ay A A
P3=_2P2= 224 OPo,
H3 Mty
A, YDy N B |
P"_:nlpn_l:nlAnZ IOPO
Un Hplin_1 2 Halhy
And by using the fact that Y5 -, P, = 1, we obtain
il N B |
1=Py+ Py } 221120
n=1 Hp' ' W2l
or
1
P0= o
1+ Z AOA’l'"A'n—l
n=1 M1l Up
and so
P, = bl
Hillp -+ U 1+ 0_1”_.._";1.>
1 "< nz=:1 MHily - Uy

n=z1

(6.20)

The foregoing equations also show us what condition is necessary for these
limiting probabilities to exist. Namely, it is necessary that

 Aoh1 Ay
n=1 Hi1M2** lUp

This condition also may be shown to be sufficient.

< o

(6.21)
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Example 5.22 (Busy Periods in Single-Server Poisson Arrival Queues):
Consider a single-server service station in which customers arrive according
to a Poisson process having rate A. An arriving customer is immediately
served if the server is free; if not, the customer waits in line (that is, he or
she joins the queue). The successive service times are independent with a
common distribution.

Such a system will alternate between idle periods when there are no
customers in the system, so the server is idle, and busy periods when there
are customers in the system, so the server is busy. A busy period will begin
when an arrival finds the system empty, and because of the memoryless
property of the Poisson arrivals it follows that the distribution of the length
of a busy period will be the same for each such period. Let B denote the
length of a busy period. We will compute its mean and variance.

To begin, let S denote the service time of the first customer in the busy
period and let N(S) denote the number of arrivals during that time. Now,
if N(S) = O then the busy period will end when the initial customer
completes his service, and so B will equal S in this case. Now, suppose that
one customer arrives during the service time of the initial customer. Then,
at time S there will be a single customer in the system who is just about to
enter service. As the arrival stream from time S on will still be a Poisson
process with rate A, it thus follows that the additional time from S until the
system becomes empty will have the same distribution as a busy period.
That is, if N(S) = 1 then

B=S+B1

where B, is independent of S and has the same distribution as B.

Now, consider the general case where N(S) = n, so there will be n
customers waiting when the server finishes his initial service. To determine
the distribution of remaining time in the busy period note that the order in
which customers are served will not affect the remaining time. Hence, let us
suppose that the n arrivals, call them C, ..., C,, during the initial service
period are served as follows. Customer C, is served first, but C, is not
served until the only customers in the system are C,, ..., C,. For instance,
any customers arriving during C,’s service time will be served before C,.
Similarly, C; is not served until the system is free of all customers but
Cs, ..., C,, and so on. A little thought reveals that the times between
the beginnings of service of customers C; and C;,,, i=1,...,n — 1, and
the time from the beginning of service of C, until there are no customers
in the system, are independent random variables, each distributed as a
busy period.

It follows from the preceding that if we let By, B,, ... be a sequence of
independent random variables, each distributed as a busy period, then we
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the probability that » machines will not be in use, is given by

1
Po=17 YM IMAM - DA - (M - n + DA/u"

1
1+ S (A/uy'MI/(M — n)l

_ A/W)"MV/(M — n)! _
P=13 Y™ MU M -’ T 0.1,...M

Hence, the average number of machines not in use is given by

M Mo n(M /(M — m))A/u)"

P =
ngon "1+ TR (/) MY/(M - n)!

(6.22)

To obtain the long-run proportion of time that a given machine is working
we will compute the equivalent limiting probability of its working. To do
s0, we condition the number of machines that are not working to obtain

M
P{machine is working} = ). P{machine is working|n not working}P,
n=0
_ A{: M-n P (since if n are not working,
oo M T then M — n are working!)
=1- gnP,,
M

0

where T nP, is given by Equation (6.22). 4

Example 6.14 (The M/M/1 Queue): In the M/M/1 queue A, = A,
u, = u and thus, from Equation (6.20),

(A/u)"
1+ X1 (/)"

(i>n(1 — A, n=0
u

provided that A/u < 1. It is intuitive that A must be less than g for limiting
probabilities to exist. Customers arrive at rate A and are served at rate u,
and thus if A > u, then they arrive at a faster rate than they can be served
and the queue size will go to infinity. The case A = u behaves much like the
symmetric random walk of Section 4.3, which is null recurrent and thus has
no limiting probabilities. ¢

P, =
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where {N(?), t = 0} is a Poisson process, and {Y;, i = ¢t} is a family of
independent and identically distributed random variables which are also
independent of {MN(f), ¢t = 0}. The random variable X(¢) is said to be a
compound Poisson random variable.

Examples of Compound Poisson Processes

() If ¥; = 1, then X(#) = N(¢), and so we have the usual Poisson process.
(i) Suppose that buses arrive at a sporting event in accordance with a
Poisson process, and suppose that the numbers of customers in each bus are
assumed to be independent and identically distributed. Then {X(¢), ¢ = 0} is
a compound Poisson process where X(¢) denotes the number of customers
who have arrived by ¢. In Equation (5.24) ¥; represents the number of
customers in the ith bus.

(iii) Suppose customers leave a supermarket in accordance with a Poisson
process. If Y;, the amount spent by the ith customer, i = 1,2, ..., are
independent and identically distributed, then {X(¢), ¢ = 0} is a compound
Poisson process when X(f) denotes the total amount of money spent by
timer. @

Let us calculate the mean and variance of X(¢). To calculate E[X(f)], we
first condition on N(¢) to obtain
E[X()] = EE[X@®)|N®OD
Now

E[X@®)IN@) =n} = E| ¥ Y|N@) = n]

= nE[Y)]
where we have used the assumed independence of the Y;’s and N(f). Hence,
E[X()|N(®)] = N(E[Y,] (5.25)
and therefore
E[X(t)] = AE[Y]] (5.26)
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(and is thus presently being repaired), i, the second most recent, and so on.
Because there are k! possible orderings for a fixed set of & failed components

and <Z> choices of that set, it follows that there are

o (n = n! o1
k! = —— = n! —
kz=:o<k> kz=:o (n— k) igo”
possible states.
The balance equations for the limiting probabilities are as follows:

<,ui1+ ) Ai>P(i1’-'-9ik)= Y PG iy, iu + Py, .. il
i#ij
J i=1,..,k

n n
L 1:P@) = L POw (6.23)
= i=
where ¢ is the state when all components are working. The preceding
equations follow because state i, ..., i can be left either by a failure of any
of the additional components or by a repair completion of component i, . Also
that state can be entered either by a repair completion of component i when
the state is 7, i;, ..., i, or by a failure of component /; when the state is
iz g ey ik .
However, if we take

Py, ..y iy) = ihy Ay gy (6.24)
My Mgy om0 My,
then it is easily seen that Equations (6.23) are satisfied. Hence, by uniqueness
these must be the limiting probabilities with P(¢) determined to make their
sum equal 1. That is,

- -1
P@)=|1+ Y ih__/_l_'&]

L i1y eepiy Miy o0t Hiy,
As an illustration, suppose n = 2 and so there are 5 states ¢, 1, 2, 12, 21.
Then from the preceding we would have

Ay Ay 244,
P($) = 1+—1+—2+——‘—2] ,
B M2 1237203

A
P(1) = = P(¢),
My

)
PQ)==P
@ = P@,

Ay

142

P(1,2) = P@2,1) = P(¢)
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and
A(t) = At — 24) for t > 24

As the number of arrivals between 8:30 A.M. and 9:30 A.M. will be
Poisson with mean m(3) — m(@) in the first representation (and
m) — m(4D) in the second representation), we have that the probability
that this number is zero is

372
exp{—s G + 50 dt} =10

172

and the mean number of arrivals is

32
K G+50)dt=10 &

172

When the intensity function A(¢f) is bounded, we can think of the
nonhomogeneous process as being a random sample from a homogeneous
Poisson process. Specifically, let A be such that

A=A forallt=0

and consider a Poisson process with rate A. Now if we suppose that an
event of the Poisson process that occurs at time ¢ is counted with probability
A(#)/A, then the process of counted events is a nonhomogeneous Poisson
process with intensity function A(¢). This last statement easily follows from
definition 5.4. For instance (i), (ii), and (iii) follow since thay are also true
for the homogeneous Poisson process. Axiom (iv) follows since

Pfone counted event in (¢, ¢ + h)} = P{one event in (¢, ¢ + h) }% + o(h)

= Ahl—(;—) + o(h)

= A(Dh + o(h)

Example 5.20 [The Output Process of an Infinite Server Poisson
Queue (M/G/»)]: It turns out that the output process of the M/G/
queue—that is, of the infinite server queue having Poisson arrivals and
general service distribution G—is a nonhomogeneous Poisson process
having intensity function A(f) = AG(#). To prove this claim, note first that
the (joint) probability (density) that a customer arrives at time s and departs
at time ¢ is equal to A, the probability (intensity) of an arrival at time s,
multiplied by g(¢ — s), the probability (density) that its service time is  — s.
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we trace the process going backward in time. To determine the probability
structure of this reversed process, we first note that given we are in state i
at some time—say, t—the probability that we have been in this state for an
amount of time greater than s is just e %, This is so, since

Pfprocess is in state / throughout [¢ — s, t]| X(¢) = i}
_ Pf{process is in state i throughout [r — s, t]}
- PIX(t) = i)
_PIX(t - ) = i)™
T PIX(0) =1

- e—UiS

since for ¢ large P{X(t — s5) = i} = P{X(¢) = i} = P,.

In other words, going backward in time, the amount of time the process
spends in state i is also exponentially distributed with rate v;. In addition,
as was shown in Section 4.8, the sequence of states visited by the reversed
process constitutes a discrete-time Markov chain with transition probabilities
Q,; given by

T

Hence, we see from the preceding that the reversed process is a continuous-
time Markov chain with the same transition rates as the forward-time
process and with one-stage transition probabilities Q;;. Therefore, the
continuous-time Markov chain will be time reversible, in the sense that the
process reversed in time has the same probabilistic structure as the original
process, if the embedded chain is time reversible. That is, if

7T,Pu = anji’ for all i,j

Now using the fact that P; = (n;/v;)/(X; n;/v;), we see that the preceding
condition is equivalent to

quu = })qul’ fOI‘ all i,j (6.26)

Since P; is the proportion of time in state / and qy; is the rate when in state
i that the process goes to j, the condition of time reversibility is that the rate
at which the process goes directly from state i to state j is equal to the rate
at which it goes directly from j to i. It should be noted that this is exactly
the same condition needed for an ergodic discrete-time Markov chain to be
time reversible (see Section 4.8).

An application of the preceding condition for time reversibility yields the
following proposition concerning birth and death processes.
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Proposition 6.3 An ergodic birth and death process is time reversible.

Proof We must show that the rate at which a birth and death process
goes from state i to state i + 1 is equal to the rate at which it goes from
i + 1to i. Now in any length of time ¢ the number of transitions from i to
i + 1 must equal to within 1 the number from i + 1to i (since between each
transition from i to i + 1 the process must return to i, and this can only
occur through i + 1, and vice versa). Hence, as the number of such tran-
sitions goes to infinity as ¢ — oo, it follows that the rate of transitions from
i to i+ 1equals the rate fromi + 1toi. @

Proposition 6.3 can be used to prove the important result that the
output process of an M/M/s queue is a Poisson process. We state this as a
corollary.

Corollary 6.4 Consider an M/M/s queue in which customers arrive in
accordance with a Poisson process having rate 4 and are served by any
one of s servers—each having an exponentially distributed service time
with rate u. If 1 < su, then the output process of customers departing is,
after the process has been in operation for a long time, a Poisson process
with rate A.

Proof Let X(¢) denote the number of customers in the system at time ¢.
Since the M/M/s process is a birth and death process, it follows from
Proposition 6.3 that {X(¢), ¢ = 0} is time reversible. Now going forward in
time, the time points at which X(¢) increases by 1 constitute a Poisson
process since these are just the arrival times of customers. Hence, by time
reversibility the time points at which the X(¢) increases by 1 when we go
backward in time also constitute a Poisson process. But these latter points
are exactly the points of time when customers depart. (See Figure 6.1.)
Hence, the departure times constitute a Poisson process with rate . 4

X1

- ’
x = times at which going backward in time, X(¢) increases
= times at which going forward in time, X(¢) decreases

Figure 6.1.
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We have shown that a process is time reversible if and only if
P'qU = quﬂ fOl’ all l #j
Analogous to the result for discrete-time Markov chains, if one can find
a probability vector P that satisfies the preceding then the Markov chain is
time reversible and the P;’s are the long-run probabilities. That is, we have
the following proposition.
Proposition 6.5 If for some set {P;}
YP=1 P=0
i
and
P,q;; = P;g; foralli #j 6.27)
then the continuous-time Markov chain is time reversible and P; represents

the limiting probability of being in state i.

Proof For fixed i we obtain upon summing Equation (6.27) over all

Jij#Ei
) Pigy = x P;q;;
J=i ii
or, since ¥;.; q; = v;,
vuP= Y P;q;
i=i

Hence, the P;’s satisfy the balance equations and thus represent the limiting
probabilities. Because Equation (6.27) holds, the chain is time reversible. ¢

Example 6.17 Consider a set of #» machines and a single repair facility
to service them. Suppose that when machine i, i = 1, ..., n, goes down it
requires an exponentially distributed amount of work with rate u; to get it
back up. The repair facility divides its efforts equally among all down
components in the sense that whenever there are k down machines
1 < k < n each receives work at a rate of 1/k per unit time. Finally,
suppose that each time machine i goes back up it remains up for an
exponentially distributed time with rate 4;.

The preceding can be analyzed as a continuous-time Markov chain having
2" states where the state at any time corresponds to the set of machines that
are down at that time. Thus, for instance, the state will be (14035 ..., i) When



6.6. Time Reversibility 333

machines i,, ..., ix are down and all the others are up. The instantaneous
transition rates are as follows:

Aiys..rix=)s Graeenrind = Ai,‘,
Gy, ennsin), Gy onnie—)) = ﬂ.‘k/k

where iy, ..., i, are all distinct. This follows since the failure rate of
machine i, is always 4;, and the repair rate of machine i, when there are k
failed machines is u; /k.

Hence the time reversible equations (6.27) are

P(il, ""ik)”ik/k = P(il, ""ik—-l)A'ik

or

. . kA; , ,
P(iy, ..oy i) = =2 Pliy, .0y ig_y)

I

ki; (k= DA,
= i S_#u P, ...,0i_3) upon iterating
Hi, Hi,

k
kt T1 Gy /1 )P(@)
j=1

where ¢ is the state in which all components are working. Because

P(o) + ZP(il, e i) =1
we see that
k -1
P(¢) = [l + Z k! H (l,-j/,u,-j):l (6.28)
iy J=1

where the above sum is over all the 2" — 1 nonempty subsets {i;, ..., i} of
{1,2, ..., n}. Hence as the time reversible equations are satisfied for this
choice of probability vector it follows from Proposition 6.5 that the chain
is time reversible and

k
Py, ..., i) = k! [T (Ay/u;)P($)
j=1

with P(¢) being given by (6.28).
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For instance, suppose there are two machines. Then, from the preceding
we would have

1
i) = U+ Ay/uy + Ap/py + 2A1 A0/ "
PQ) = A/
1+ A/ + Ap/uy + 220 Ay iy’
Ay
PQ2) = ,
@ U+ Ay/uy + Ap/py + 24125/ ity
A
P(1,2) = 24,4,

B[l + Ay/py + Ap/py + 24145/ )

Consider a continuous-time Markov chain whose state space is S. We say
that the Markov chain is truncated to the set A C S if qgy; is changed to O for
alli € A,/ ¢ A. That is, transitions out of the class 4 are no longer allowed,
whereas ones in A continue at the same rates as before. A useful result is
that if the chain is time reversible, then so is the truncated one.

Proposition 6.6 A time reversible chain with limiting probabilities P,
J € 8§, that is truncated to the set 4 C S and remains irreducible is also time
reversible and has limiting probabilities Pj‘ given by
Pf = 5 ,
/ Ei €A R
Proof By Proposition 6.5 we need to show that, with PJA as given,
RAqu=})quﬂ foriEA,jeA

JeA

or, equivalently,
P,g;; = Piq; forieAd,jeA

But this follows since the original chain is, by assumption, time reversible. ¢

Example 6.18 Consider an M/M/1 queue in which arrivals finding N
in the system do not enter. This finite capacity system can be regarded as a
truncation of the M/M/1 queue to the set of states 4 = {0, 1, ..., N}. Since
the number in the system in the M/M/1 queue is time reversible and has
limiting probabilities P; = (A/u)y’(1 = A/y) it follows from Proposition 6.6
that the finite capacity model is also time reversible and has limiting
probabilities given by

*/wy’

= —,  j=0,1,...N &
Iy Gy
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6.7. Uniformization

Consider a continuous-time Markov chain in which the mean time spent in
a state is the same for all states. That is, suppose that v; = v, for all states i.
In this case since the amount of time spent in each state during a visit is
exponentially distributed with rate v, it follows that if we let N(¢) denote the
number of state transitions by time ¢, then {N(¢), f = 0} will be a Poisson
process with rate v.

To compute the transition probabilities P;;(¢), we can condition on N(?):

Py(t) = PIX(t) = j| X(0) = i}

L PIX() = jIX(©0) = i, N(t) = n}P{N(t) = n| X(0) = i}
0

n=

d . . —oe (U1)"
Y PX(t) = j|X(0) = i, N@t) = nje™" ~—~
n=0 n!

Now the fact that there have been n transitions by time ¢ tells us something
about the amounts of time spent in each of the first n states visited, but
since the distribution of time spent in each state is the same for all states, it
follows that knowing that N(¢) = n gives us no information about which
states were visited. Hence,

PIX(t) = j|X(©0) = i, N(t) = n} = P}

where Pj is just the n-stage transition probability associated with the
discrete-time Markov chain with transition probabilities P;;; and so when
vy=Ev

o t n
Pyt = ¥ Pper )
n=0 n!

(6.29)

Equation (6.29) is quite useful from a computational point of view since
it enables us to approximate P;(f) by taking a partial sum and then com-
puting (by matrix multiplication of the transition probability matrix) the
relevant n stage probabilities Pj;.

Whereas the applicability of Equation (6.29) would appear to be quite
limited since it supposes that v; = v, it turns out that most Markov chains
can be put in that form by the trick of allowing fictitious transitions from
a state to itself. To see how this works, consider any Markov chain for
which the v; are bounded, and let v be any number such that

v, < v, for all i (6.30)

Now when in state i, the process actually leaves at rate v;; but this is
equivalent to supposing that transitions occur at rate v, but only the



336 6 Continuous-Time Markov Chains

fraction v;/v of transitions are real ones (and thus real transitions occur at
rate v;) and the remaining fraction 1 — v,/v are fictitious transitions which
leave the process in state /. In other words, any Markov chain satisfying
condition (6.30) can be thought of as being a process that spends an
exponential amount of time with rate v in state / and then makes a transi-
tion to j with probability Pjj, where

P = (6.31)
v; .
;’P,-j, VER

Hence, from Equation (6.29) we have that the transition probabilities can
be computed by

-] . (vt)n
Py0)= T Pyle =

where P} are the n-stage transition probabilities corresponding to Equation
(6.31). This technique of uniformizing the rate in which a transition occurs
from each state by introducing transitions from a state to itself is known as
uniformization.

Example 6.19 Let us reconsider Example 6.11, which models the
workings of a machine—either on or off—as a two-state continuous-time
Markov chain with

Pyy =Py =1,
v = 4, uLL=u

Letting v = 4 + u, the uniformized version of the preceding is to consider
it a continuous-time Markov chain with

U
= =1-p,
00 A+/,l 01
u
Py, = =1-P,,
10 /1+u 11

v,=A+u, i=1,2

As Py = Py, it follows that the probability of a transition into state 0 is
equal to u/(A + u) no matter what the present state. Because a similar result
is true for state 1, it follows that the n-stage transition probabilities are
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Hence,

Similarly,

Poo(t) = Y, P
n=0
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= s =1,i=0,1
T2+ u
A )
h=gsa nELI=OI

—(A+p)t [(A' + ,Ll)t]"
e —_—
n!

A+ u n!

n=1

e—()\+p.)t + E < M >e_()\+“)t [(/1 + ,U)t]n
— p— e +[1 - -+t U
¢ [h-e ]/1 +u

= 'u -+ A e_()‘+ﬂ)t
A+u A+u

e (LR 0L
P(t) = ,E'o Ple O\H)t_ﬁ—

= e QM - e_()‘+")t] A

A+u

= A + —ﬂ e_o\“”ﬂ)t
A+u A+u

The remaining probabilities are

A
Py (t) =1 = Py(t) = m[l — e~ Mwry

PIO(t) =1- Pll(t) = [l — e—0+ﬂ)t] ’

A+ u

Example 6.20 Consider the two-state chain of Example 6.19 and
suppose that the initial state is state 0. Let O(¢) denote the total amount of
time that the process is in state 0 during the interval (0, #). The random
variable O(7) is often called the occupation time. We will now compute

its mean.
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If we let

(1, ifX(@)=0
I(s)_zo, if X(s) = 1

then we can represent the occupation time by

t

o) = S I(s)ds
0

Taking expectations and using the fact that we can take the expectation
inside the integral sign (since an integral is basically a sum), we obtain

t

E[OM)] = g E[I(s)] ds
0
= S P{X(s) = 0}ds
0

= ,‘ Pyy(s) ds
0

u A —O+w)t
= t 1 - s
e Tarpplte )

where the final equality follows by integrating
A
A+u A+u
(For another derivation of E[O(2)], see Exercise 38.) 4

Pyols) = e~ Orms

6.8. Computing the Transition Probabilities

For any pair of states / and j, let
ry = s
-v;, ifi=j
Using this notation, we can rewrite the Kolmogorov backward equations

Pj(t) = ¥ quPy(t) — v, Py(t)

k#i

and the forward equations

Pj(t) = kZ.ijPik(t) = v Py(t)
=j
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as follows:
Pl_,](t) = Z r,'kij(t) (baCkWard)
k

Pj(t) = ¥ iy Py (t) (forward)
k

This representation is especially revealing when we introduce matrix
notation. Define the matrices R, P(f), and P'(¢) by letting the element in
row i, column j of these matrices be, respectively, rys Py(t), and Pj(¢).
Since the backward equations say that the element in row i, column j of the
matrix P'(¢) can be obtained by multiplying the ith row of the matrix R by
the jth column of the matrix P(¢), it is equivalent to the matrix equation

P'(t) = RP(?) (6.32)
Similarly, the forward equations can be written as
P'(z) = P(H)R (6.33)

Now, just as the solution of the scalar differential equation
S'(@) = cf(t)
(or, equivalent, f'(¢) = f(¢)¢) is

@) = f (0"

it can be shown that the solution of the matrix differential Equations (6.32)
and (6.33) is given by

P(t) = P(0)e™
Since P(0) = I (the identity matrix), this yields that
P(t) = & (6.34)
where the matrix e® is defined by
n t"

o (6.35)

R = Y R
n=0
with R" being the (matrix) multiplication of R by itself # times.

The direct use of Equation (6.35) to compute P(¢) turns out to be very
inefficient for two reasons. First, since the matrix R contains both positive
and negative elements (remember the off-diagonal elements are the q;; while
the ith diagonal element is —v;), there is the problem of computer round-off
error when we compute the powers of R. Second, we often have to compute
many of the terms in the infinite sum (6.35) to arrive at a good approxi-
mation. However, there are certain indirect ways that we can utilize the
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relation (6.34) to efficiently approximate the matrix P(¢). We now present
two of these methods.

Approximation Method 1 Rather than using (6.35) to compute e/,
we can use the matrix equivalent of the identity

¢ = lim (1 + f)
n— oo n

t n
e® = lim (1 + R—>
n—o n

Thus, if we let n be a power of 2, say, n = 2, then we can approximate
P(¢) by raising the matrix M = I + R¢/n to the nth power, which can be
accomplished by k matrix multiplications (by first multiplying M by itself
to obtain M? and then multiplying that by itself to obtain M* and so on).
In addition, since only the diagonal elements of R are negative (and the
diagonal elements of the identity matrix I are equal to 1) by choosing n large
enough, we can guarantee that the matrix I + R#/n has all nonnegative
elements.

which states that

Approximation Method 2 A second approach to approximating e®

uses the identity
t n
e ® = lim <1 - R—>
n—w n

t n
= <I - R;) for n large

_re_ [y _ i\
P(t)=¢ ~<1 Rn>

ey

Hence, if we again choose n to be a large power of 2, say n = 2% we can
approximate P(¢) by first computing the inverse of the matrix I — Rt/n
and then raising that matrix to the nth power (by utilizing k¥ matrix multi-
plications). It can be shown that the matrix (I — R¢/n)~! will have only
nonnegative elements.

and thus

Remark Both of the above computational approaches for approximating
P(¢) have probabilistic interpretations (see Exercises 41 and 42).
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Exercises

1. A population of organisms consists of both male and female members.
In a small colony any particular male is likely to mate with any particular
fernale in any time interval of length A, with probability A# + o(h). Each
mating immediately produces one offspring, equally likely to be male or
female. Let N,(¢) and N,(¢) denote the number of males and females in the
population at ¢. Derive the parameters of the continuous-time Markov
chain {N,(¢), N,(t)}, i.e., the v;, P; of Section 6.2.

*2. Suppose that a one-celled organism can be in one of two states—either
A or B. An individual in state 4 will change to state B at an exponential
rate o; an individual in state B divides into two new individuals of type 4
at an exponential rate §. Define an appropriate continuous-time Markov
chain for a population of such organisms and determine the appropriate
parameters for this model.

3. Consider two machines that are maintained by a single repairman.
Machine i/ functions for an exponential time with rate y; before breaking
down, i = 1, 2. The repair times (for either machine) are exponential with
rate 4. Can we analyze this as a birth and death process? If so, what are the
parameters? If not, how can we analyze it?

*4. Potential customers arrive at a single-server station in accordance
with a Poisson process with rate . However, if the arrival finds # customers
already in the station, then he will enter the system with probability o,.
Assuming an exponential service rate u, set this up as a birth and death
process and determine the birth and death rates.

5. There are N individuals in a population, some of whom have a certain
infection that spreads as follows. Contacts between two members of this
population occur in accordance with a Poisson process having rate . When

N .
a contact occurs, it is equally likely to involve any of the ( 2) pairs of

individuals in the population. If a contact involves an infected and a
noninfected individual, then with probability p the noninfected individual
becomes infected. Once infected, an individual remains infected throughout.
Let X(¢) denote the number of infected members of the population at time ¢.

(a) Is {X(¢), t = 0} a continuous-time Markov chain?

(b) Specify the type of stochastic process.

(c) Starting with a single infected individual, what is the expected time
until all members are infected?
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6. Consider a birth and death process with birth rates A, = (i + 1)4,
i = 0, and death rates u; = iu, i = 0.

(a) Determine the expected time to go from state O to state 4.

(b) Determine the expected time to go from state 2 to state 5.

(¢) Determine the variances in parts (a) and (b).

*7. Individuals join a club in accordance with a Poisson process with
rate 4. Each new member must pass through k consecutive stages to become
a full member of the club. The time it takes to pass through each stage
is exponentially distributed with rate u. Let N;(¢) denote the number of
club members at time ¢ that have passed through exactly i stages, i =
1,..., k - 1. Also, let N(f) = (N,(), No(2), ..., Np_1(2)).

(a) Is {N(®), ¢t = 0} a continuous-time Markov chain?

(b) If so, give the infinitesimal transition rates. That is, for any state
n = (n,,..., nx_,) give the possible next states along with their infinitesi-
mal rates.

8. Consider two machines, both of which have an exponential lifetime
with mean 1/A1. There is a single repairman that can service machines at an
exponential rate u. Set up the Kolmogorov backward equations; you need
not solve them.

9. The birth and death process with parameters A, = Oand uy, = u,n > 0
is called a pure death process. Find Py (?).

10. Consider two machines. Machine i operates for an exponential time
with rate A; and then fails; its repair time is exponential with rate y;, i = 1, 2.
The machines act independently of each other. Define a four-state
continuous-time Markov chain which jointly describes the condition of the
two machines. Use the assumed independence to compute the transition
probabilities for this chain and then verify that these transition probabilities
satisfy the forward and backward equations.

*11. Consider a Yule process starting with a single individual—that is,
suppose X(0) = 1. Let T; denote the time it takes the process to go from a
population of size i to one of size i + 1.

(@) Argue that T;, i=1,...,j, are independent exponentials with
respective rates iA.

(b) Let X;, ..., X; denote independent exponential random variables
each having rate A, and interpret X; as the lifetime of component i. Argue
that max (X, ..., X;) can be expressed as

max(Xl,...,Xj) = €& + & + - + aj
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where ¢, &,, ..., £; are independent exponentials with respective rates ji,
U-=-DA, ..., A

Hint: Interpret ¢; as the time between the i — 1 and the ith failure.

(¢) Using (a) and (b) argue that
P{T,+ - +T<t}=(1-e™y
(d) Use (c) to obtain that
Pyt) = (1 —e™™y ™t — (1 —e™M)Y =eN(1 - e My

and hence, given X(0) = 1, X(¢) has a geometric distribution with
parameter p = e M.
(e) Now conclude that

Pu(t) = ({: ;>e—)\tl’(l _ e—)\t)j—i

12. Each individual in a biological population is assumed to give birth at
an exponential rate A, and to die at an exponential rate 4. In addition, there
is an exponential rate of increase § due to immigration. However, immi-
gration is not allowed when the population size is N or larger.

(a) Set this up as a birth and death model.
®) If N=3,1= 0= A, u=2, determine the proportion of time that
immigration is restricted.

13. A small barbershop, operated by a single barber, has room for at
most two customers. Potential customers arrive at a Poisson rate of three
per hour, and the successive service times are independent exponential
random variables with mean 4 hour. What is

(a) the average number of customers in the shop?

(b) the proportion of potential customers that enter the shop?

(c) If the barber could work twice as fast, how much more business
would he do?

14. Potential customers arrive at a full-service, one-pump gas station at a
Poisson rate of 20 cars per hour. However, customers will only enter the
station for gas if there are no more than two cars (including the one
currently being attended to) at the pump. Suppose the amount of time
required to service a car is exponentially distributed with a mean of five
minutes.
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(a) What fraction of the attendant’s time will be spent servicing cars?
(b) What fraction of potential customers are lost?

15. A service center consists of two servers, each working at an exponential
rate of two services per hour. If customers arrive at a Poisson rate of three
per hour, then, assuming a system capacity of at most three customers,

(a) what fraction of potential customers enter the system?
(b) what would the value of part (a) be if there was only a single server,
and his rate was twice as fast (that is, u = 4)?

*16. The following problem arises in molecular biology. The surface
of a bacterium is supposed to consist of several sites at which foreign
molecules—some acceptable and some not—become attached. We consider
a particular site and assume that molecules arrive at the site according to a
Poisson process with parameter . Among these molecules a proportion «
is acceptable. Unacceptable molecules stay at the site for a length of time
which is exponentially distributed with parameter 4, , whereas an acceptable
molecule remains at the site for an exponential time with rate u,. An
arriving molecule will become attached only if the site is free of other
molecules. What percentage of time is the site occupied with an acceptable
(unacceptable) molecule?

17. Each time a machine is repaired it remains up for an exponentially
distributed time with rate 1. It then fails, and its failure is either of two
types. If it is a type 1 failure, then the time to repair the machine is
exponential with rate u,; if it is a type 2 failure, then the repair time is
exponential with rate u,. Each failure is, independently of the time it took
the machine to fail, a type 1 failure with probability p and a type 2 failure
with probability 1 — p. What proportion of time is the machine down due
to a type 1 failure? What proportion of time is it down due to a type 2
failure? What proportion of time is it up?

18. After being repaired, a machine functions for an exponential time
with rate A and then fails. Upon failure, a repair process begins. The repair
process proceeds sequentially through k distinct phases. First a phase 1
repair must be performed, then a phase 2, and so on. The times to complete
these phases are independent, with phase i taking an exponential time with
ratey;, i=1,..., k.

(a) What proportion of time is the machine undergoing a phase i repair?
(b) What proportion of time is the machine working?

*19. A single repairperson looks after both machines 1 and 2. Each time
it is repaired, machine i stays up for an exponential time with rate 4;,



Exercises 345

i =1,2. When machine / fails, it requires an exponentially distributed
amount of work with rate u; to complete its repair. The repairperson will
always service machine 1 when it is down. For instance, if machine 1 fails
while 2 is being repaired, then the repairperson will immediately stop work
on machine 2 and start on 1. What proportion of time is machine 2 down?

20. There are two machines, one of which is used as a spare. A working
machine will function for an exponential time with rate A and will then fail.
Upon failure, it is immediately replaced by the other machine if that one
is in working order, and it goes to the repair facility. The repair facility
consists of a single person who takes an exponential time with rate u to
repair a failed machine. At the repair facility, the newly failed machine
enters service if the repairperson is free. If the repairperson is busy, it waits
until the other machine is fixed. At that time, the newly repaired machine
is put in service and repair begins on the other one. Starting with both
machines in working condition, find

(a) the expected value and
(b) the variance

of the time until both are in the repair facility.
(c) In the long run, what proportion of time is there a working machine?

21. Suppose that when both machines are down in Exercise 20 a second
repairperson is called in to work on the newly failed one. Suppose all repair
times remain exponential with rate 4. Now find the proportion of time at
least one machine is working, and compare your answer with the one
obtained in Exercise 20.

22. Customers arrive at a single server-queue in accordance with a Poisson
process having rate . However, an arrival that finds » customers already in
the system will only join the system with probability 1/(n + 1). That is, with
probability n/(n + 1) such an arrival will not join the system. Show that the
limiting distribution of the number of customers in the system is Poisson
with mean A/u.

23. A job shop consists of three machines and two repairmen. The
amount of time a machine works before breaking down is exponentially
distributed with mean 10. If the amount of time it takes a single repairman
to fix a machine is exponentially distributed with mean 8, then

(a) what is the average number of machines not in use?
(b) what proportion of time are both repairmen busy?
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*24. Consider a taxi station where taxis and customers arrive in
accordance with Poisson processes with respective rates of one and two per
minute. A taxi will wait no matter how many other taxis are present.
However, if an arriving customer does not find a taxi waiting, he leaves.
Find

(a) the average number of taxis waiting, and
(b) the proportion of arriving customers that get taxis.

25. Customers arrive at a service station, manned by a single server who
serves at an exponential rate u,, at a Poisson rate A. After completion of
service the customer then joins a second system where the server serves at an
exponential rate y, . Such a system is called a tandem or sequential queueing
system. Assuming that A < y;, i = 1,2, determine the limiting probabilities.

Hint: Try a solution of the form P, ,, = Ca"B™, and determine C, o, §.

26. Consider an ergodic M/M/s queue in steady state (that is, after a long
time) and argue that the number presently in the system is independent of
the sequence of past departure times. That is, for instance, knowing that
there have been departures 2, 3, 5, and 10 time units ago does not affect the
distribution of the number presently in the system.

27. In the M/M/s queue if you allow the service rate to depend on the
number in the system (but in such a way so that it is ergodic), what can you
say about the output process? What can you say when the service rate u
remains unchanged but A > su?

*28. If (X(¢)} and {Y(¢)} are independent continuous-time Markov chains,
both of which are time reversible, show that the process {X (), Y ()} is also
a time reversible Markov chain.

29. Consider a set of # machines and a single repair facility to service
these machines. Suppose that when machine i, i = 1, ..., n, fails it requires
an exponentially distributed amount of work with rate y; to repair it. The
repair facility divides its efforts equally among all failed machines in the
sense that whenever there are & failed machines each one receives work at a
rate of 1/k per unit time. If there are a total of r working machines,
including machine #, then i fails at an instantaneous rate 4;/r.

(@) Define an appropriate state space so as to be able to analyze the
above system as a continuous-time Markov chain.

(b) Give the instantaneous transition rates (that is, give the g;;).

(c) Write the time reversibility equations.

(d) Find the limiting probabilities and show that the process is time
reversible.
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30. Consider a graph with nodes 1,2,...,n and the <;> arcs (i,J),

i#j,i,j,=1,...,n. (See Section 3.6.2 for appropriate definitions.)
Suppose that a particle moves along this graph as follows: Events occur
along the arcs (i, j) according to independent Poisson processes with rates
Ay;. An event along arc (/,/) causes that arc to become excited. If the
particle is at node / at the moment that (i, /) becomes excited, it instan-
taneously moves to node j; i,/ = 1, ..., n. Let P; denote the proportion of
time that the particle is at node j. Show that

Hint: Use time reversibility.

31. A total of N customers move about among r servers in the following
manner. When a customer is served by server /, he then goes over to server
J»J # i, with probability 1/(r — 1). If the server he goes to is free, then the
customer enters service; otherwise he joins the queue. The service times are
all independent, with the service times at server i being exponential with rate
ui, i =1, ..., r. Let the state at any time be the vector (n,, ..., n,), where n;
is the number of customers presently at server i, i = 1, ...,r, ¥;n; = N.

(a) Argue that if X(¢) is the state at time ¢, then {X(¢), = 0] is a
continuous-time Markov chain.

(b) Give the infinitesimal rates of this chain. .

(c) Show that this chain is time reversible, and find the limiting
probabilities.

32. Customers arrive at a two-server station in accordance with a Poisson
process having rate 1. Upon arriving, they join a single queue. Whenever a
server completes a service, the person first in line enters service. The service
times of server / are exponential with rate u;, i = 1, 2, where y; + u, > A.
An arrival finding both servers free is equally likely to go to either one.
Define an appropriate continuous-time Markov chain for this model, show
it is time reversible, and find the limiting probabilities.

*33. Consider two M/M/1 queues with respective parameters A;, u;,
i =1,2. Suppose they share a common waiting room that can hold at
most 3 customers. That is, whenever an arrival finds his server busy and 3
customers in the waiting room, then he goes away. Find the limiting
probability that there will be #» queue 1 customers and m queue 2 customers
in the system.

Hint: Use the results of Exercise 28 together with the concept of
truncation.
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34. Four workers share an office that contains four telephones. At any
time, each worker is either ‘“working”’ or ‘‘on the phone.”” Each ‘‘working”’
period of worker i lasts for an exponentially distributed time with rate 4;,
and each ““on the phone’’ period lasts for an exponentially distributed time
with rate y;, i = 1,2, 3, 4.

(a) What proportion of time are all workers ‘‘working’’?

Let X;(t) equal 1 if worker i is working at time ¢, and let it be 0 otherwise.
Let X(¢) = (X;(2), X2(2), X;5(1), X4(1))-

(b) Argue that {X(¢), ¢ = 0} is a continuous-time Markov chain and give
its infinitesimal rates.
(c) Is {X(#)] time reversible? Why or why not?

Suppose now that one of the phones has broken down. Suppose that a
worker who is about to use a phone but finds them all being used begins a
new ‘““working’’ period.

(d) What proportion of time are all workers ‘‘working’’?

35. Consider a time reversible continuous-time Markov chain having
infinitesimal transition rates ¢;; and limiting probabilities {#;}. Let A denote
a set of states for this chain, and consider a new continuous-time Markov
chain with transition rates ¢;; given by

x _ §Cdijs ified,j¢A
9 = Qijs otherwise

where c is an arbitrary positive number. Show that this chain remains time
reversible, and find its limiting probabilities.

36. Consider a system of n components such that the working times of
component i, i = 1, ..., n, are exponentially distributed with rate A;. When
failed, however, the repair rate of component / depends on how many other
components are down. Specifically, suppose that the instantaneous repair
rate of component i, i = 1,...,n, when there are a total of k failed
components, is a*y;.

(a) Explain how we can analyze the preceding as a continuous-time
Markov chain. Define the states and give the parameters of the chain.
(b) Show that, in steady state, the chain is time reversible and compute
the limiting probabilities.

37. For the continuous-time Markov chain of Exercise 3 present a
uniformized version.
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38. In Example 6.20, we computed m(t) = E[O(t)], the expected occupa-
tion time in state 0 by time ¢ for the two-state continuous-time Markov
chain starting in state 0. Another way of obtaining this quantity is by
deriving a differential equation for it.

(a) Show that
m(t + h) = m(t) + Pyo(t)h + o(h)

(b) Show that

H Ao
1) = +— g
m'(t) A+u A+ue

(c) Solve for m(t).

39. Let O(t) be the occupation time for state 0 in the two-state continuous-
time Markov chain. Find E{O(¢)| X (0) = 1].

40. Consider the two-state continuous-time Markov chain. Starting in
state 0, find Cov[X(s), X(1)].

41. Let Y denote an exponential random variable with rate A that is
independent of the continuous-time Markov chain {X(¢)} and let

Py = P{X(Y) = j| X(0) = i}
(a) Show that

— 1 -
v Ui+1§qlk ki v; + A

Jyj

where d;; is 1 when i = j and 0 when i # j.
(b) Show that the solution of the preceding set of equations is given by

P=(1-R/A)"!

where P is the matrix of elements 13,~j I is the identity matrix, and R the
matrix specified in Section 6.8.

(¢) Suppose now that Y;, ..., ¥, are independent exponentials with rate 1
that are independent of {X(¢)}. Show that

PX(Y; + - + X)) = j|X(0) = i}

is equal to the element in row i, column j of the matrix P".
(d) Explain the relationship of the preceding to Approximation 2 of
Section 6.8.
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*42. (a) Show that Approximation 1 of Section 6.8 is equivalent to
uniformizing the continuous-time Markov chain with a value v such that
vt = n and then approximating P;(¢) by P}".

(b) Explain why the preceding should make a good approximation.

Hint: What is the standard deviation of a Poisson random variable with
mean n?
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Chapter 7

Renewal Theory and
Its Applications

v

7.1. Introduction

We have seen that a Poisson process is a counting process for which the
times between successive events are independent and identically distributed
exponential random variables. One possible generalization is to consider a
counting process for which the times between successive events are inde-
pendent and identically distributed with an arbitrary distribution. Such a
counting process is called a renewal process.

Let {N(¢), t > 0} be a counting process and let X, denote the time
between the (n — 1)st and the nth event of this process, n = 1.

Definition 7.1 If the sequence of nonnegative random variables
{X1 X, ...} is independent and identically distributed, then the counting
process {N(¥), ¢ = 0} is said to be a renewal process.

Thus, a renewal process is a counting process such that the time until the
first event occurs has some distribution F, the time between the first and
second event has, independently of the time of the first event, the same
distribution F, and so on. When an event occurs, we say that a renewal has
taken place.

For an example of a renewal process, suppose that we have an infinite
supply of lightbulbs whose lifetimes are independent and identically dis-
tributed. Suppose also that we use a single lightbulb at a time, and when it
fails we immediately replace it with a new one. Under these conditions,

351
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X —— Ny X3
o] S, S, Sy Time

Figure 7.1.

[N(), t = 0} is a renewal process when N(t) represents the number of
lightbulbs that have failed by time ¢.
For a renewal process having interarrival times X, X5, ..., let

n
So =0, S,= Y X, nx=1
i=1

That is, §; = X is the time of the first renewal; S, = X; + X, is the time
until the first renewal plus the time between the first and second renewal,
that is, S, is the time of the second renewal. In general, S, denotes the time
of the nth renewal (see Figure 7.1).

We shall let F denote the interarrival distribution and to avoid trivialities,
we assume that F(0) = P{X, = 0} < 1. Furthermore, we let

u=E[X,], nz1

be the mean time between successive renewals. It follows from the
nonnegativity of X, and the fact that X, is not identically O that u > 0.
The first question we shall attempt to answer is whether an infinite
number of renewals can occur in a finite amount of time. That is, can N(¥)
be infinite for some (finite) value of #? To show that this cannot occur, we
first note that, as S, is the time of the nth renewal, N(¢) may be written as

N(@) = max{n:S, < t} 7.1

To understand why Equation (7.1) is valid, suppose, for instance, that
S, = t but S; > t. Hence, the fourth renewal had occurred by time ¢ but the
fifth renewal occurred after time ¢; or in other words, N(¢), the number of
renewals that occurred by time ¢, must equal 4. Now by the strong law of
large numbers it follows that, with probability 1,

== as n — o
n u
But since # > 0 this means that S, must be going to infinity as # goes to
infinity. Thus, S, can be less than or equal to ¢ for at most a finite number
of values of n, and hence by Equation (7.1), N(¢) must be finite.
However, though N(#) < o« for each ¢, it is true that, with probability 1,

N(e0) = tlim N@) =
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This follows since the only way in which N(e), the total number of
renewals that occur, can be finite is for one of the interarrival times to be
infinite. Therefore,

P{N(x) < o} = P{X, = = for some n}

=P{O{X,, =oo}}

n=1

L PlX, = «}

n=1

0

A

7.2. Distribution of N(t)

The distribution of N(¢) can be obtained, at least in theory, by first noting
the important relationship that the number of renewals by time t is greater
than or equal to n if and only if the nth renewal occurs before or at time t.
That is,

N)zne S, =<t (7.2)
From Equation (7.2) we obtain
P{N(t) = n} = PIN(t) = n} — P{N(t) =z n + 1}
=P{S,<t] - P{S,,; <] (7.3)

Now since the random variables X;, i = 1, are independent and have a
common distribution F, it follows that S, = Y7_; X; is distributed as F,,
the n-fold convolution of F with itself (Section 2.5). Therefore, from
Equation (7.3) we obtain

P{N(t) = n} = F,(t) — F,..1(t)

Example 7.1 Suppose that P{X, = i} = p(1 — p)""!, i = 1. That is,
suppose that the interarrival distribution is geometric. Now S; = X; may be
interpreted as the number of trials necessary to get a single success when
each trial is independent and has a probability p of being a success.
Similarly, S, may be interpreted as the number of trials necessary to attain
n successes, and hence has the negative binomial distribution

k-1
"1 — p)**, k=n
P{S, = k} = <n— 1>p( 2

0, k<n
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Thus, from Equation (7.3) we have that

MW (k-1
PIN(t) =n}= ¥ < >p"(1 -pf

k=n \N — 1
[7] -1
-— E <k >pn+l(1 _ p)k—n—l
k=n+1 n

Equivalently, since an event independently occurs with probability p at each
of the times 1,2, ...

P{N(t) = n} = <[:,]>p"(l -p e

By using Equation (7.2) we can calculate m(t), the mean value of N(¢), as
m(t) = E[N()]

E PIN@) = n)
1

n

i
18

P(S, < 1}
1

Y F

n=1

n

where we have used the fact that if X is nonnegative and integer valued, then
LS k

E[X] E kPIX=kli= Y Y PX=k)
k=

1 k=1n=1

Y L PX=K=F PX=n)

n=1k=n n=1

The function m(z) is known as the mean-value or the renewal function.
It can be shown that the mean-value function m(¢) uniquely determines
the renewal process. Specifically, there is a one-to-one correspondence
between the interarrival distributions F and the mean-value functions m(?).

Example 7.2 Suppose we have a renewal process whose mean-value
function is given by
m(t) = 2t, t=0

What is the distribution of the number of renewals occurring by time 10?

Solution: Since m(t) = 2¢ is the mean-value function of a Poisson
process with rate 2, it follows, by the one-to-one correspondence of
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interarrival distributions F and mean-value functions m(¢), that F must
be exponential with mean 4. Thus, the renewal process is a Poisson
process with rate 2 and hence

~20 20"

P{N(10) =n} =e P

, n=0 &

Another interesting result that we state without proof is that

m(t) < for all t < e

Remarks (i) Since m(z) uniquely determines the interarrival distribu-
tion, it follows that the Poisson process is the only renewal process having
a linear mean-value function.

(ii) Some readers might think that the finiteness of m(¢) should follow
directly from the fact that, with probability 1, N(¢) is finite. However, such
reasoning is not valid; consider the following: Let Y be a random variable
having the following probability distribution

Y = 2" with probability ()", n=1
Now,
PlY<wl= Y PlY=29= ¥ @) =1
n=1 n=1

But

E[Y]= L 2"P(Y=2= Y 2"3)" =

n=1 n=1

Hence, even when Y is finite, it can still be true that E[Y] = .

An integral equation satisfied by the renewal function can be obtained by
conditioning on the time of the first renewal. Assuming that the interarrival
distribution F is continuous with density function f this yields

m(t) = E[N()] = X EIN@®)| X, = x1f(x) dx (7.4)
0

Now suppose that the first renewal occurs at a time x that is less than ¢.
Then, using the fact that a renewal process probabilistically starts over
when a renewal occurs, it follows that the number of renewals by time ¢
would have the same distribution as 1 plus the number of renewals in the
first ¢+ — x time units. Therefore,

EING)|X,=x1 =1+ E[N(¢t -x] ifx<t
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Since, clearly
' EIN(t)|X; =x] =0  whenx>1¢

we obtain from Equation (7.4) that

t

m(t) = g [1+ m@ - x)]f(x)dx
0

t

= F(t) + j m(t — x)f(x) dx (7.5)

0

Equation (7.5) is called the renewal equation and can sometimes be solved
to obtain the renewal function.

Example 7.3 One instance in which the renewal equation can be solved
is when the interarrival distribution is uniform—say, uniform on (0, 1). We
will now present a solution in this case when ¢ < 1. For such values of ¢, the
renewal function becomes

m(t)

t
t+j m(t — x)dx
1]

t
t+ j m(y)dy by the substitution y = t — x
0

Differentiating the preceding equation yields
m'(t) =1+ m@)

Letting A(t) = 1 + m(t), we obtain

h'(t) = k(1)
or
logh(t) =t + C
or
h(t) = Ke'
or
m(t) = Ke' — 1

Since m(0) = 0, we see that K = 1, and so we obtain

m(t) = é' — 1, O<str=<1 &
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7.3. Limit Theorems and Their Applications

We have shown previously that, with probability 1, N(#) goes to infinity as
t goes to infinity. However, it would be nice to know the rate at which N(r)
goes to infinity. That is, we would like to be able to say someting about
lim,_ , N(t)/t.

As a prelude to determining the rate at which N(¢) grows, let us first
consider the random variable Sy, . In words, just what does this random
variable represent? Proceeding inductively suppose, for instance, that
N(t) = 3. Then Sy, = S; represents the time of the third event. Since there
are only three events that have occurred by time ¢, S; also represents the
time of the last event prior to (or at) time ¢. This is, in fact, what Sy,
represents—namely, the time of the last renewal prior to or at time t.
Similar reasoning leads to the conclusion that Sy, represents the time of
the first renewal after time ¢ (see Figure 7.2). We now are ready to prove
the following.

Proposition 7.1 With probability 1,

as t — o

Proof Since Sy, is the time of the last renewal prior to or at time #, and
Sn+1 is the time of the first renewal after time ¢, we have

Sney =t < Syw+1
or

Svey .t _ Snwer
N@t) ~ N@)  N@)

(7.6)

However, since Syq/N(t) = L9 X;/N(t) is the average of N(#) inde-
pendent and identically distributed random variables, if follows by the
strong law of large numbers that Sy¢)/N(f) = u as N(t) — . But since
N(t) = o when ¢t — oo, we obtain

SN

hnd t
No H BT

o] S, Time

Nt SNU)«»\

Figure 7.2.
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Furthermore, writing

Sn@y+1 - Snin+1 \(N@) + 1>
N@) N@) + 1 N@)

we have that Sy.,/(N(t) + 1) = u by the same reasoning as before and

M_l -1 as f — o
N@)
Hence,
SN(:)+1
NGO ->u ast —

The result now follows by Equation (7.6) since ¢#/N(t) is between two
numbers, each of which converges toy ast > . @

Remarks (i) The preceding propositions are true even when y, the mean
time between renewals, is infinite. In this case, we interpret 1/u to be 0.
(i) The number 1/4 is called the rate of the renewal process.

Proposition 7.1 says that the average renewal rate up to time ¢ will, with
probability 1, converge to 1/u as ¢ = «. What about the expected average
renewal rate? Is it true that m(z)/t also converges to 1/u? This result,
known as the elementary renewal theorem, will be stated without proof.

Elementary Renewal Theorem
m@) 1

—t—"’— ast — o

As before, 1/u is interpreted as 0 when y = .

Remark At first glance it might seem that the elementary renewal
theorem should be a simple consequence of Proposition 7.1. That is, since
the average renewal rate will, with probability 1, converge to 1/u, should
this not imply that the expected average renewal rate also converges to 1/u?
We must, however, be careful; consider the next example.

Example 7.4 Let U be a random variable which is uniformly distributed
on (0. 1); and define the random variables Y,, n = 1, by

¥ - 0, if U> 1/n
"~ n, ifU=<1/n
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Now, since, with probability 1, U will be greater than 0, it follows that Y,
will equal O for all sufficiently large n. That is, ¥, will equal O for all n large
enough so that 1/n < U. Hence, with probability 1,

Y,—0 asn — oo
However,

1 1
E[Y)] = nP{Us—} =n—=1

n n
Therefore, even though the sequence of random variables Y, converges to 0,
the expected values of the Y, are all identically 1. 4

Example 7.5 Beverly has a radio which works on a single battery. As
soon as the battery in use fails, Beverly immediately replaces it with a new
battery. If the lifetime of a battery (in hours) is distributed uniformly over
the interval (30, 60), then at what rate does Beverly have to change batteries?

Solution: If we let N(t) denote the number of batteries that have failed
by time ¢, we have by Proposition 7.1 that the rate at which Beverly
replaces batteries is given by

Nt 1 1

1' = - = —
e u %

That is, in the long run, Beverly will have to replace one battery every
45 hours. @

Example 7.6 Suppose in Example 7.5 that Beverly does not keep any
surplus batteries on hand, and so each time a failure occurs she must go and
buy a new battery. If the amount of time it takes for her to get a new battery
is uniformly distributed over (0, 1), then what is the average rate that
Beverly changes batteries?

Solution: In this case the mean time between renewals is given by
u = EU, + EU,
where U, is uniform over (30, 60) and U, is uniform over (0, 1). Hence,
pu=45+1 =45

and so in the long run, Beverly will be putting in a new battery at the rate
of &. That is, she will put in two new batteries every 91 hours.
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Example 7.7 Suppose that potential customers arrive at a single-server
bank in accordance with a Poisson process having rate 1. However, suppose
that the potential customer only will enter the bank if the server is free when
he arrives. That is, if there is already a customer in the bank, then our
arrivee, rather than entering the bank, will go home. If we assume that the
amount of time spent in the bank by an entering customer is a random
variable having a distribution G, then

(a) what is the rate at which customers enter the bank?
(b) what proportion of potential customers actually enter the bank?

Solution: In answering these questions, let us suppose that at time 0 a
customer has just entered the bank. (That is, we define the process to
start when the first customer enters the bank.) If we let us denote the
mean service time, then, by the memoryless property of the Poisson
process, it follows that the mean time between entering customers is

1
= + —
U= Ug 2
Hence, the rate at which customers enter the bank will be given by
1 A
w1+ Al

On the other hand, since potential customers will be arriving at a rate A,
it follows that the proportion of them entering the bank will be given by

A+ dug) 1
A B 1+ A.‘uo

In particular if A = 2 (in hours) and ug = 2, then only one customer out
of five will actually enter the system. 4

A somewhat unusual application of Proposition 7.1 is provided by our
next example.

Example 7.8 A sequence of independent trials, each of which results in
outcome number / with probability P;, i = 1,...,n, Y} P, = 1, is observed
until the same outcome occurs k times in a row; this outcome then is
declared to be the winner of the game. For instance, if kK = 2 and the
sequence of outcomes is 1, 2,4, 3,5, 2, 1, 3, 3, then we stop after 9 trials
and. declare outcome number 3 the winner. What is the probability that i
wins, i = 1, ..., n, and what is the expected number of trials?
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Solution: We begin by computing the expected number of coin tosses,
called in E[T], until a run of k successive heads occurs when the tosses are
independent and each lands on heads with probability p. By conditioning
on the time of the first nonhead, we obtain

k
E[T1= Y (1 - p)p/'(j + E[T)) + kp*
=1

Solving this for E[T] yields

1-p) & .
EIT] =k + o2 § i
p Jj=1
Upon simplifying, we obtain
1+p+ -+ p*!
E[T] = I3
p
_a-p9
p (1 - p)

Now, let us return to our example, and let us suppose that as soon as
the winner of a game has been determined we immediately begin playing
another game. For each / let us determine the rate at which outcome i
wins. Now, every time / wins, everything starts over again and thus wins
by i constitute renewals. Hence, from Proposition 7.1, the

(1.7

Rate at which i wins = ———
E[N;]

where N; denotes the number of trials played between successive wins of
outcome i. Hence, from Equation (7.7) we see that

Pf(1 - P)

Rate at which i/ wins = _(I—-—P,'?)_

(7.8)
Hence, the long-run proportion of games which are won by number i is
given by
rate at which / wins
¥ -1 rate at which j wins
___PFI-P)YQ-PH
i1 (PF( - P)/(1 — PY))

However, it follows from the strong law of large numbers that the
long-run proportion of games that i wins will, with probability 1, be

proportion of games / wins =
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equal to the probability that i wins any given game. Hence,

PfQ - P)/(1 - PY)
T7-1(PF(1 = P)/Q - Pf))

P{i wins} =

To compute the expected time of a game, we first note that the

«©

rate at which games end = Y, rate at which / wins

i=1

" PF(1 - P,
_ g AP

= a—PH [from Equation (7.8)]
i=1 (1 =B

Now, as everything starts over when a game ends, it follows by Proposition
7.1 that the rate at which games end is equal to the reciprocal of the mean
time of a game. Hence,

1

E[time of a game} = :
[ & } rate at which games end

i

=T Pya-y ¢

A key element in the proof of the elementary renewal theorem, which is
also of independent interest, is the establishment of a relationship between
m(t), the mean number of renewals by time ¢, and E[Sxn . 1], the expected
time of the first renewal after 7. Letting

&) = E[Sngy+1]

we will derive an integral equation, similar to the renewal equation, for g(z)
by conditioning on the time of the first renewal. This yields

gt) = L E[Sngy+1] X1 = x1f(x) dx

where we have supposed that the interarrival times are continuous with
density f. Now if the first renewal occurs at time x and x > ¢, then clearly
the time of the first renewal after ¢ is x. On the other hand, if the first
renewal occurs at a time x < ¢, then by regarding x as the new origin,
it follows that the expected time, from this origin, of the first renewal
occurring after a time ¢ — x from this origin is g(¢ — x). That is, we see that

gt — x) + x, ifx<t

E[Sngy+11 Xy = x] = {x, ifx>1t
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Substituting this into the preceding equation gives

-]

g(t) = St(g(t - x) + x)f(x)dx + S xf(x) dx
V] t
= Stg(t - x)f(x)dx + waf(x) dx
V] ]

or
t

g)=u+ S gt — x)f(x)dx
0

which is quite similar to the renewal equation

t

m(t) = F(t) + g m(t — x)f(x)ds
0

Indeed, if we let

&) = 'g'(t_) -1
u
we see that
g@)y+1=1+ X [g.(t — x) + 1]f(x) dx
0
or

a(t) = F@t) + So &t - x)f(x)dx

363

That is, g,(t) = E[Snqy+1)/# — 1 satisfies the renewal equation and thus,
by uniqueness, must be equal to m(¢). We have thus proven the following.

Proposition 7.2
E[Sney+1] = ulm(t) + 1]

A second derivation of Proposition 7.2 is given in Exercises 12 and 13.
To see how Proposition 7.2 can be used to establish the elementary renewal
theorem, let Y(¢) denote the time from ¢ until the next renewal. Y (¢) is called
the excess, or residual life, at ¢. As the first renewal after ¢ will occur at time

t + Y(t), we see that
Snew+1 =1+ Y (@)
Taking expectations and utilizing Proposition 7.2 yields
ulm(t) + 11 =t + E[Y(#)]
which implies that
m@) 1 1 + E[Y ()]
t u ot tu

(7.9)
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The elementary renewal theorem can now be proven by showing that
E[Y(
lim [Y(®)] _

t—eo t

0

(see Exercise 13).
The relation (7.9) shows that if one can determine E[Y(¢)], the mean
excess at 7, then one can compute m(¢) and vice versa.

Example 7.9 Consider the renewal process whose interarrival distribu-
tion is the convolution of two exponentials; that is,

F=F1*F29 Whereﬂ(t)=l_e_ﬂit’i=1’2

We will determine the renewal function by first determining E[Y (¢)]. To
obtain the mean excess at ¢, imagine that each renewal corresponds to a
new machine being put in use, and suppose that each machine has two
components—initially component 1 is employed and this lasts an expo-
nential time with rate u,, and then component 2, which functions for an
exponential time with rate u,, is employed. When component 2 fails, a new
machine is put in use (that is, a renewal occurs). Now consider the process
{X(t), t = 0} where X(¢) is i if a type i component is in use at time ¢. 1t is
easy to see that {X(¢), ¢t = 0} is a two-state continuous-time Markov chain,
and so, using the results of Example 6.11, its transition probabilities are

Py(t) = L e
by + Uy b+

"o compute the remaining life of the machine in use at time ¢, we condition
on whether it is using its first or second component: for if it is still using its
first component, then its remaining life is 1/u, + 1/u,, whereasif it is already
using its second component, then its remaining life is 1/u,. Hence, letting
p(t) denote the probability that the machine in use at time ¢ is using its first
component, we have that

E[Y()] = <l + l>p(t) 4 1-p0)
1 M2 H2
_ 1 p0)
U 31

But, since at time O the first machine is utilizing its first component, it
follows that p(t) = P,,(t), and so, upon using the preceding expression of
P;,(), we obtain

1
E[Y@®)] = —+ ;e""‘l"“” + o

. (7.10)
Uy py + Uy uy(uy + )
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Now it follows from Equation (7.9) that

m(t) + 1 _ L, EYOl (7.11)
U u

where u, the mean interarrival time, is given in this case by

1 1 +
p=—t—=trh
U 1Y)

Substituting Equation (7.10) and the preceding equation into (7.11) yields,
after simplifying,

Lt Lor BUPR [t Yaz}
py+py (u+

m(t) = 7 1 - e ®*'] &

Remark Using the relationship of Equation (7.11) and results from
the two-state continuous-time Markov chain, the renewal function can also
be obtained in the same manner as in Example 7.9 for the interarrival
distributions

F(@t) = pFi(t) + (1 - PR
and

F(t) = pFi(t) + (1 — p)F * F)({)
when Fi(t) =1 - e #,t>0,i=1,2.

An important limit theorem is the central limit theorem for renewal
processes. This states that, for large ¢, N(¢) is approximately normally
distributed with mean #/u and variance to?/u’, where u and o are, respec-
tively, the mean and variance of the interarrival distribution. That is, we
have the following theorem which we state without proof.

Central Limit Theorem for Renewal Processes

, N(t) - t/u } 1 S 2
lim P{———=— < X{ = —— e " dx
t-oo { \/10'2/,[13 V27 -

In addition, as might be expected from the central limit theorem for
renewal processes, it can be shown that Var(N(#))/¢ converges to o/l
That is, it can be shown that

Var(N()) _ 2

lim o*/u? (7.12)

t-oo t
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7.4. Renewal Reward Processes

A large number of probability models are special cases of the following
model. Consider a renewal process {N(¢), ¢ = 0} having interarrival times
X,, n=1, and suppose that each time a renewal occurs we receive a
reward. We denote by R,,, the reward earned at the time of the nth renewal.
We shall assume that the R,, n = 1, are independent and identically
distributed. However, we do allow for the possibility that R, may (and
usually will) depend on X,,, the length of the nth renewal interval. If we let
N®

R(@) = E R,

n=1
then R(¢) represents the total reward earned by time 7. Let
E[R] = E[R,], E[X]=EI[X,]

Proposition 7.3 If E[R] < « and E[X] < <, then

(a) with probability 1, }Eﬁ@ = jEE"[[g
E[R®)] _ EIR]
(b) et EX]

Proof We give the proof for (a) only. To prove this, write

R(t)  TVOR, _ (IFG R\ (N®)
t t  \_N@ t

By the strong law of large numbers we obtain

E_Lv.g)l—" - E[R] ast — o
N@)
and by Proposition 7.1
ﬁ(_t_) - L as t - 00
t E[X]

The result thus follows. ¢

If we say that a cycle is completed every time a renewal occurs then
Proposition 7.3 states that in the long-run average reward is just the expected
reward earned during a cycle divided by the expected length of a cycle.

Example 7.10 In Example 7.7 if we suppose that the amounts that
the successive customers deposit in the bank are independent random
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variables having a common distribution H, then the rate at which deposits
accumulate—that is, lim,_,,, (total deposits by time ¢)/¢—is given by
E[deposits during a cycle] Ug
E[time of cycle] Ug + 1/4

where ug + 1/A is the mean time of a cycle, and uy is the mean of the
distribution H. ¢

Example 7.11 (A Car Buying Model): The lifetime of a car is a con-
tinuous random variable having a distribution H and probability density 4.
Mr. Brown has a policy that he buys a new car as soon as his old one either
breaks down or reaches the age of T years. Suppose that a new car costs C;
dollars and also that an additional cost of C, dollars is incurred whenever
Mr. Brown’s car breaks down. Under the assumption that a used car has no
resale value, what is Mr. Brown’s long-run average cost?

If we say that a cycle is complete every time Mr. Brown gets a new car,
then it follows from Proposition 7.3 (with costs replacing rewards) that his
long-run average cost equals

E[cost incurred during a cycle]
E[length of a cycle]

Now letting X be the lifetime of Mr. Brown’s car during an arbitrary cycle,
then the cost incurred during that cycle will be given by

C,, fX>T
C, + G, ifX=T
so the expected cost incurred over a cycle is
CiPIX>T}+(C,+ G)PIX=<T}=C, + CGH(T)
Also, the length of the cycle is
X, ifX=sT
T, fX>T

and so the expected length of a cycle is
T o T
S xh(x) dx + j Th(x)dx = S xh(xydx + T[1 — H(T)]
o T 0

Therefore, Mr. Brown’s long-run average cost will be

C, + C,H(T)
fo xh(x)dx + T[1 — H(T)]

(7.13)
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Now, suppose that the lifetime of a car (in years) is uniformly distributed
over (0, 10), and suppose that C; is 3 (thousand) dollars and C, is 1
(thousand) dollars. What value of 7 minimizes Mr. Brown’s long-run
average cost?

If Mr. Brown uses the value 7, T < 10, then from Equation (7.13) his
long-run average cost equals

3 + 4(1710) B 3+ T/20
[T(x/10)dx + T(1 — T/10)  T?%/20 + (10T — T?/10
60+ T
T 20T -T2

We can now minimize this by using the calculus. Toward this end, let

60 + T
&(T) = 0T — T2
then
(20T — T? — (60 + T)(20 — 27)

(20T — T%?

g'(T) =

Equating to 0 yields
207 ~ T? = (60 + T)(20 — 27)

or, equivalently,
T? + 1207 - 1200 = 0

which yields the solutions
T =9.25 and T = —-129.25

Since 7 < 10, it follows that the optimal policy for Mr. Brown would be to
purchase a new car whenever his old car reaches the age of 9.25 years. €

Example 7.12 (Dispatching a Train): Suppose that customers arrive at
a train depot in accordance with a renewal process having a mean inter-
arrival time u. Whenever there are N customers waiting in the depot, a train
leaves. If the depot incurs a cost at the rate of nc dollars per unit time
whenever there are n customers waiting, what is the average cost incurred by
the depot?

If we say that a cycle is completed whenever a train leaves, then the
preceding is a renewal reward process. The expected length of a cycle is the
expected time required for N customers to arrive and, since the mean
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interarrival time is u, this equals
Elength of cycle] = Nu

If we let T, denote the time between the nth and (n + 1)st arrival in a cycle,
then the expected cost of a cycle may be expressed as

E[cost of a cycle] = E[cT; + 2¢T, + -+ + (N — 1)eTy_q]
which, since E[T,] = u, equals

N
CHE(N— 1)

Hence, the average cost incurred by the depot is

cuN(N-1) N-1)
2Nu 2

Suppose now that each time a train leaves the depot incurs a cost of six
units. What value of N minimizes the depot’s long-run average cost when
c=2,u=1?

In this case, we have that the average cost per unit time when the depot
uses N is

6 + cus N(N - 1) 6
=N-1+—
Nu N N

By treating this as a continuous function of N and using the calculus, we
obtain that the minimal value of N is

N = V6 = 2.45

Hence, the optimal integral value of N is either 2 which yields a value 4, or
3 which also yields the value 4. Hence, either N = 2 or N = 3 minimizes the
depot’s average cost. 4

Example 7.13 Consider a manufacturing process that sequentially
produces items, each of which is either defective or acceptable. The follow-
ing type of sampling scheme is often employed in an attempt to detect and
eliminate most of the defective items. Initially, each item is inspected and
this continues until there are k consecutive items that are acceptable. At this
point 100% inspection ends and each successive item is independently
inspected with probability «. This partial inspection continues until a defec-
tive item is encountered, at which time 100% inspection is reinstituted, and
the process begins anew. If each item is, independently, defective with
probability g,



370 7 Renewal Theory and its Applications

(a) what proportion of items are inspected?
(b) if defective items are removed when detected, what proportion of the
remaining items are defective?

Remark Before starting our analysis, note that the above inspection
scheme was devised for situations in which the probability of producing a
defective item changed over time. It was hoped that 100% inspection would
correlate with times at which the defect probability was large and partial
inspection when it was small. However, it is still important to see how such
a scheme would work in the extreme case where the defect probability
remains constant throughout.

Solution: We begin our analysis by noting that we can treat the above
as a renewal reward process with a new cycle starting each time 100%
inspection is instituted. We then have

E[number inspected in a cycle]

roportion of items inspected = -
prop b E[number produced in a cycle]

Let N, denote the number of items inspected until there are k consecutive
acceptable items. Once partial inspection begins—that is, after N, items
have been produced—since each inspected item will be defective with
probability g, it follows that the expected number that will have to be
inspected to find a defective item is 1/q. Hence,

1
E[number inspected in a cycle] = E[N,]} + E

In addition, since at partial inspection each item produced will,
independently, be inspected and found to be defective with probability
ag, it follows that the number of items produced until one is inspected
and found to be defective is 1/ag, and so

1
E[number produced in a cycle] = E[N,] + a_q

Also, as E[N,] is the expected number of trials needed to obtain k
acceptable items in a row when each item is acceptable with probability
p =1 - g, it follows from Example 3.14 that
1 1 1 W/pF-1
EIN]l=—-4+S+ o + =222
“Tp Pt s q
Hence we obtain

(1/p)*
A/p)* -1 + 1/«

Py = proportion of items that are inspected =
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To answer (b), note first that since each item produced is defective with
probability ¢ it follows that the proportion of items that are both
inspected and found to be defective is gP;. Hence, for N large, out of the
first N items produced there will be (approximately) NgP; that are
discovered to be defective and thus removed. As the first N items will
contain (approximately) Ng defective items, it follows that there will be
Ng — NgP; defective items not discovered. Hence,

Ng(1 - P))
N1 - gPy)
As the approximation becomes exact as N — o, we see that

q(1 — Pp)
(- gqPy

Example 7.14 (The Average Age of a Renewal Process): Consider a
renewal process having interarrival distribution F and define A(¢) to be the
time at ¢ since the last renewal. If renewals represent old items failing and
being replaced by new ones, then A(?) represents the age of the item in use
at time #. Since Sy, represents the time of the last event prior to or at time ¢,
we have that

proportion of the non-removed items that are defective =

proportion of the non-removed items that are defective =

A(t) =t - Sng
We are interested in the average value of the age—that is, in
o A() dt
lim 040 g)

§—®

To determine the above quantity, we use renewal reward theory in the
following way: Let us assume that any time we are being paid money at a
rate equal to the age of the renewal process at that time. That is, at time ¢,
we are being paid at rate A(r), and so {3 A(?) dtf represents our total earnings
by time s. As everything starts over again when a renewal occurs, it follows
that

§6A) dt . E[reward during a renewal cycle]
s E[time of a renewal cycle]

Now since the age of the renewal process a time ¢ into a renewal cycle is just
t, we have
X

reward during a renewal cycle = S tdt
0
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where X is the time of the renewal cycle. Hence, we have that

o A(r) dt
average value of age = lim M—-—

s S

_E[X}
T 2FE[X]

(7.14)

where X is an interarrival time having distribution function F. 4

Example 7.15 (The Average Excess of a Renewal Process): Another
quantity associated with a renewal process is Y(¢), the excess of residual
time at time #. Y(¢) is defined to equal the time from 7 until the next renewal
and, as such, represents the remaining (or residual) life of the item in use at
time ¢. The average value of the excess, namely,

lim fo Y(0) dt

§— oo

also can be easily obtained by renewal reward theory. To do so, suppose

that we are paid at time f at a rate equal to Y(¢). Then our average reward
per unit time will, by renewal reward theory, be given by

o Y(H)dt

average value of excess = lim Si—-g-)—-

§—

_ Ef[reward during a cycle]
" EJlength of a cycle]

Now, letting X denote the length of a renewal cycle, we have that

X

reward during a cycle = E X -10dt
0

and thus the average value of the excess is

E[X3
2E[X]

average value of excess =

which was the same result obtained for the average value of the age of
renewal process. ¢
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7.5. Regenerative Processes

Consider a stochastic process {X(¢), ¢ = 0} with state space 0, 1,2, ...,
having the property that there exist time points at which the process
(probabilistically) restarts itself. That is, suppose that with probability one,
there exists a time 77, such that the continuation of the process beyond T;
is a probabilistic replica of the whole process starting at 0. Note that this
property implies the existence of further times 7, 73, ..., having the same
property as T; . Such a stochastic process is known as a regenerative process.

From the above, it follows that 73, T;, ..., constitute the arrival times of
a renewal process, and we shall say that a cycle is completed every time a
renewal occurs.

Examples (1) A renewal process is regenerative, and T; represents the
time of the first renewal.

(2) A recurrent Markov chain is regenerative, and 7; represents the time
of the first transition into the initial state.

We are interested in determining the long-run proportion of time that a
regenerative process spends in state j. To obtain this quantity, let us imagine
that we earn a reward at a rate 1 per unit time when the process is in state j
and at rate 0 otherwise. That is, if I(s) represents the rate at which we earn

at time s, then
1, if X(s) =/
I(s) =
© {o, if X(s) % j

and
t

total reward earned by ¢ = j I(s)ds
) (V]

As the preceding is clearly a renewal reward process which starts over again
at the cycle time 7, we see from Proposition 7.3 that

E[reward by time T;]

average reward per unit time =
E[Ti]

However, the average reward per unit is just equal to the proportion of time
that the process is in state j. That is, we have the following.
Proposition 7.4 For a regenerative process, the long-run

E[amount of time in j during a cycle}]
E[time of a cycle]

proportion of time in state j =
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Remark If the cycle time T; is a continuous random variable, then it can
be shown by using an advanced theorem called the ‘‘key renewal theorem®’
that the above is equal also to the limiting probability that the system is in
state j at time ¢. That is, if 7] is continuous, then

E[amount of time in j during a cycle]
E[time of a cycle]

lim P{X(¢) = j} =

Example 7.16 (Markov Chains): Consider a positive recurrent Markov
chain which is initially in state /. By the Markovian property each time the
process reenters state i, it starts over again. Thus returns to state i are
renewals and constitute the beginnings of a new cycle. By Proposition 7.4,
it follows that the long-run

E[amount of time in j during an i — i cycle]
Hii

where u;; represents the mean time to return to state i, If we take j to equal
i, then we obtain

proportion of time in state j =

. . S VA
proportion of time in state i = — @

Hi;

Example 7.17 (A Queueing System with Renewal Arrivals): Consider a
waiting time system in which customers arrive in accordance with an
arbitrary renewal process and are served one at a time by a single server
having an arbitrary service distribution. If we suppose that at time 0 the
initial customer has just arrived, then {X(¢), ¢ = 0} is a regenerative process,
where X(f) denotes the number of customers in the system at time ¢.

The process regenerates each time a customer arrives and finds the server
free. @

7.5.1. Alternating Renewal Processes

Another example of a regenerative process is provided by what is known as
an alternating renewal process, which considers a system that can be in one
of two states: on or off. Initially it is on, and it remains on for a time Z,;
it then goes off and remains off for a time Y] . It then goes on for a time Z, ;
then off for a time Y,; then on, and so on.

We suppose that the random vectors (Z,,, Y,), n = 1 are independent and
identically distributed. That is, both the sequence of random variables {Z,}
and the sequence {Y,} are independent and identically distributed; but we
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allow Z, and Y, to be dependent. In other words, each time the process goes
on, everything starts over again, but when it then goes off, we allow the
length of the off time to depend on the previous on time.

Let E[Z] = E[Z,] and E[Y] = E[Y,] denote respectively the mean
lengths of an on and off period.

We are concerned with P,;, the long-run proportion of time that the
system is on. If we let

X,=Y,+2Z,, n=z1l

then at time X, the process starts over again. That is, the process starts over
again after a complete cycle consisting of an on and an off interval. In other
words, a renewal occurs whenever a cycle is completed. Therefore, we
obtain from Proposition 7.4 that

_ E[Z]
" E[Y] + E[Z)

_ Efon)
" E[on] + E[off]

Pon

(7.15)

Also, if we let P, denote the long-run proportion of time that the sysyem
is off, then

Py=1-PF,

__ Eloff] (7.16)

Efon] + EJoff]
Example 7.18 (A Production Process): One example of an alternating
renewal process is a production process (or a machine) which works for a
time Z,, then breaks down and has to be repaired (which takes a time Y)),
then works for a time Z,, then is down for a time Y,, and so on. If we
suppose that the process is as good as new after each repair, then this
constitutes an alternating renewal process. It is worthwhile to note that
in this example it makes sense to suppose that the repair time will depend
on the amount of time the process had been working before breaking
down. &

Example 7.19 (The Age of a Renewal Process): Suppose we are
interested in determining the proportion of time that the age of a renewal
process is less than some constant ¢. To do so, let a cycle correspond to a
renewal, and say that the system is ““on”’ at time # if the age at 7 is less than
or equal to ¢, and say it is ‘‘off*’ if the age at ¢ is greater than c¢. In other
words, the system is ‘““on’’ the first ¢ time units of a renewal interval,
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and ‘“‘off’’ the remaining time. Hence, letting X denote a renewal interval,
we have, from Equation (7.15),

E[min(X, c)]
E[X]
_ Jo P{min(X, ¢) > x} dx
B E[X]
_ §oP{X > x}dx
- EX]

_ o1 = Flx))dx
- E[X]

proportion of time age is less than ¢ =

(7.17)

where F is the distribution function of X and where we have used the
identity that for a nonnegative random variable Y

)

E[Y] =S P{Y> x}dx &
0

Example 7.20 (The Excess of a Renewal Process): Let us now consider
the long run proportion of time that the excess of a renewal process is
less than c. To determine this quantity, let a cycle correspond to a renewal
interval and say that the system is on whenever the excess of the renewal
process is greater than or equal to ¢ and that it is off otherwise. In other
words, whenever a renewal occurs the process goes on and stays on until the
last ¢ time units of the renewal interval when it goes off. Clearly this is an
alternating renewal process, and so we obtain from Equation (7.16) that

E[off time in cycle]

long run proportion of time the excess is less than ¢ = :
g prop E[cycle time}

Now, if X is the length of a renewal interval, then since the system is off the

last ¢ time units of this interval, it follows that the off time in the cycle will

equal min{X, ¢). Thus,

E[min(X, ¢)]
E[x]

_ 1501 - Foy) dx
E[X]

long run proportion of time the excess is less than ¢ =

where the final equality follows from Equation (7.17). Thus, we see from
the result of Example 7.19 that the long run proportion of time that the
excess is less than ¢ and the long run proportion of time that the age is less
than c¢ are equal. One way to understand this equivalence is to consider a
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—Yit) -
t
first renewal after ¢
—A(t)—
t
last renewal before t

v

Figure 7.3. Arrowheads indicate direction of time.

renewal process that has been in operation for a long time and then observe
it going backwards in time. In doing so, we observe a counting process
where the times between successive events are independent random
variables having distribution F. That is, when we observe a renewal process
going backwards in time we again observe a renewal process having the
same probability structure as the original. Since the excess (age) at any time
for the backwards process corresponds to the age (excess) at that time for
the original renewal process (see Figure 7.3), it follows that all long run
properties of the age and the excess must be equal. ¢

Example 7.21 (An Inventory Example): Suppose that customers arrive
at a specified store in accordance with a renewal process having interarrival
distribution F. Suppose that the store stocks a single type of item and that
each arriving customer desires a random amount of this commodity, with
the amounts desired by the different customers being independent random
variables having the common distribution G. The store uses the following
(s, S) ordering policy: If its inventory level falls below s then it orders
enough to bring its inventory up to S. That is, if the inventory after serving
a customer is x, then the amount ordered is

S—-x ifx<s
0 ifx=s

The order is assumed to be instantaneously filled.

For a fixed value y, s <y < S, suppose that we are interested in
determining the long run proportion of time that the inventory on hand is
at least as large as y. To determine this quantity, let us say that the system
is “‘on’” whenever the inventory level is at least y and is ‘‘off’’ otherwise.
With these definitions, the system will go on each time that a customer’s
demand causes the store to place an order that results in its inventory level
returning to S. Since whenever this occurs a customer must have just arrived
it follows that the times until succeeding customers arrive will constitute a
renewal process with interarrival distribution F; that is, the process will start
over each time the system goes back on. Thus, the on and off periods so
defined constitute an alternating renewal process, and from Equation (7.15)
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we have that
Efon time in a cycle]
E[cycle time]

long run proportion of time inventory = y = (7.18)

Now, if we let D;, D,, ... denote the successive customer demands, and let
N,=min(n:D; + - + D, > S — X) (7.19)

then it is the N, customer in the cycle that causes the inventory level to fall
below y, and it is the N, customer that ends the cycle. As a result, if we let
X;, i = 1, denote the interarrival times of customers, then

N,

on time in a cycle = Ey X; (7.20)
i=1
Ny

cycle time = ¥ X; (7.21)
i=1

Assuming that the interarrival times are independent of the successive
demands, we have that

e £ x| -] x|

= E[N,E[X]]
= E[XIEIN,).
Similarly, )

N,
E[ )X Xi] = E[X]E[N;]
i=1

Therefore, from Equations (7.18), (7.20), and (7.21) we see that
E|IN,]
E[N;]
However, as the D;, i = 1, are independent and identically distributed non-
negative random variables with distribution G, it follows from Equation
(7.19) that N, has the same distribution as the index of the first event to
occur after time S — x of a renewal process having interarrival distribution
G. That is, N, — 1 would be the number of renewals by time S — x of this
process. Hence, we see that

EIN1=m(S -y + 1

E[N] = m(S - s) + 1

long run proportion of time inventory = y = (7.22)

where

m0) = T G0
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From Equation (7.22), we arrive at

mS—-y+1

mS—-s)+1’°
For instance, if the customer demands are exponentially distributed with

mean 1/u, then

long run proportion of time inventory = y = ssy=<S$S

S -y +1

long run proportion of time inventory = y = —————
g prop yzy S5 +1

s<y<S &

7.6. Semi-Markov Processes

Consider a process that can be in either state 1 or state 2 or state 3. It is
initially in state 1 where it remains for a random amount of time having
mean 4,, then it goes to state 2 where it remains for a random amount of
time having mean 4,, then it goes to state 3 where it remains for a mean
time u;, then back to state 1, and so on. What proportion of time is the
process in state i, i = 1, 2, 3?

If we say that a cycle is completed each time the process returns to
state 1, and if we let the reward be the amount of time we spend in state i
during that cycle, then the above is a renewal reward process. Hence, from
Proposition 7.3 we obtain that B;, the proportion of time that the process
is in state i, is given by
I .

Myt iy + oy’

Similarly, if we had a process which could be in any of N states
1,2,...,N and which moved from state 1 22 —>3—> ... 5 N~ 1>
N = 1, then the long-run proportion of time that the process spends in
state 7 is

i=1,2,3

i

P = H; ,

My + sy + e+ Uy :

where u; is the expected amount of time the process spends in state i during

each visit.

Let us now generalize the above to the following situation. Suppose that

a process can be in any one of N states 1,2, ..., N, and that each time

it enters state / it remains there for a random amount of time having mean

4; and then makes a transition into state j with probability P;. Such a

process is called a semi-Markov process. Note that if the amount of time

that the process spends in each state before making a transition is identically
1, then the semi-Markov process is just a Markov chain.

Let us calculate P, for a semi-Markov process. To do so, we first consider

; the proportion of transitions that take the process into state i. Now if

i=1,2,....N
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we let X, denote the state of the process after the nth transition, then {X,,,
n = 0} is a Markov chain with transition probabilities P;, i,/ = 1, 2, ..., N.
Hence, m; will just be the limiting (or stationary) probabilities for this
Markov chain (Section 4.4). That is, n; will be the unique nonnegative

solution of

N
Lm=1,
i=1
N
m= Y mPy, i=1,2,.. N* (7.23)
i=1

Now since the process spends an expected time y; in state / whenever it visits
that state, it seems intuitive that P, should be a weighted average of the 7;
where 7; is weighted proportionately to y;. That is,

_ Tl
===,
Yi=1 Ml

where the m; are given as the solution to Equation (7.23).

P, i=1,2,...,N (7.24)

Example 7.22 Consider a machine that can be in one of three states:
good condition, fair condition, or broken down. Suppose that a machine
in good condition will remain this way for a mean time y4; and then will
go to either the fair condition or the broken condition with respective
probabilities 2 and 1. A machine in fair condition will remain that way
for a mean time u, and then will break down. A broken machine will
be repaired, which takes a mean time u;, and when repaired will be in
good condition with probability £ and fair condition with probability 1.
What proportion of time is the machine in each state?

Solution: Letting the states be 1, 2, 3, we have by Equation (7.23) that
the 7; satisfy

T+ M, + =1,
n, = %ns,
my = 37 + 375,
my=4my — 7wy
The solution is
7[1=—145_’ 7I2=%, 7[3'_‘%

* We shall assume that there exists a solution of Equation (7.23). That is, we assume that all
of the states in the Markov chain communicate.
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Hence, from Equation (7.24) we obtain that P,, the proportion of time
the machine is in state i, is given by

p__:L
Y Ay + Suy + 6uy’

p= M
27 duy + Suy + 6uy”

p—__ S
P duy + Su, + 6u,

For instance, if u; = S, 4, = 2, u; = 1, then the machine will be in good
condition § of the time, in fair condition 75 of the time, in broken
condition ¢ of the time. ¢

Remark When the distributions of the amount of time spent in each
state during a visit are continuous, then P; also represents the limiting
(as t = o) probability that the process will be in state i at time ¢.

Example 7.23 Consider a renewal process in which the interarrival
distribution is discrete and is such that

P{X =i} = p,, iz1

where X represents an interarrival random variable. Let L(¥) denote the
length of the renewal interval that contains the point ¢ (that is, if N(¢) is the
number of renewals by time ¢ and X, the nth interarrival time, then
L(?) = Xngy+1)- If we think of each renewal as corresponding to the failure
of a lightbulb (which is then replaced at the beginning of the next period by
a new bulb), then L(¢) will equal / is the bulb in use at time ¢ dies in its /th
period of use.

It is easy to see that L(¢) is a semi-Markov process. To determine the
proportion of time that L(f) = j, note that each time a transition occurs—
that is, each time a renewal occurs—the next state will be j with probability
p;. That is, the transition probabilities of the embedded Markov chain
are P; = p;. Hence, the limiting probabilities of this embedded chain are
given by

Tj=Pj
and, since the mean time the semi-Markov process spends in state j before
a transition occurs is /, it follows that the long-run proportion of time the
state is j is
_ JD; P
Liip;

J
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7.7. The Inspection Paradox

Suppose that a piece of equipment, say a battery, is installed and serves
until it breaks down. Upon failure it is instantly replaced by a like battery,
and this process continues without interruption. Letting N(¢f) denote the
number of batteries that have failed by time ¢, we have that {N(z), t = 0} is
a renewal process.

Suppose further that the distribution F of the lifetime of a battery is not
known and is to be estimated by the following sampling inspection scheme.
We fix some time ¢ and observe the total lifetime of the battery that is in use
at time ¢. Since F is the distribution of the lifetime for all batteries, it seems
reasonable that it should be the distribution for this battery. However, this
is the inspection paradox for it turns out that the battery in use at time t
tends to have a larger lifetime than an ordinary battery.

To understand the preceding so-called paradox, we reason as follows. In
renewal theoretic terms what we are interested in is the length of the renewal
interval containing the point z. That is, we are interested in X1 =
Snw+1 — Sne (see Figure 7.2). To calculate the distribution of Xy).; we
condition on the time of the last renewal prior to (or at) time #. That is,

P{Xnwp+1 > X} = E[P{Xng+1 > X|SN(r) =1 -]

where we recall (Figure 7.2) that Sy, is the time of the last renewal prior to
(or at) t. Since there are no renewals between ¢ — s and ¢, it follows that
Xn@+1 must be larger than x if s > x. That is,

P{XN(t)+l > xlSN(t) =1 - s} =1 ifs>x (7.25)

On the other hand, suppose that s < x. As before, we know that a renewal
occurred at time ¢ — s and no additional renewals occurred between £ — §
and ¢, and we ask for the probability that no renewals occur for an
additional time x — s. That is, we are asking for the probability that an
interarrival time will be greater than x given that it is greater than s. There-
fore, for s < x,

P{Xnw+1 > x| Sy =1t — 8

P{interarrival time > x| interarrival time > s}

Pfinterarrival time > x}/Pf{interarrival time > s}

_1-Fx
"1 - F(s)
=1 - F(x) (7.26)
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Hence, from Equations (7.25) and (7.26) we see that, for all s,
P Xnws1 > X|Snp =t — s} = 1 — F(x)
Taking expectations on both sides yields that
P{Xnps1 > X} 2 1 — F(x) (7.27)

However, 1 — F(x) is the probability that an ordinary renewal interval is
larger than x, that is, 1 — F(x) = P{X, > x}, and thus Equation (7.27) is a
statement of the inspection paradox that the length of the renewal interval
containing the point ¢ tends to be larger than an ordinary renewal interval.

Remark To obtain an intuitive feel for the so-called inspection paradox,
reason as follows. We think of the whole line being covered by renewal
intervals, one of which covers the point 7. It is not more likely that a larger
interval, as opposed to a shorter interval, covers the point #?

We can actually calculate the distribution of Xy,,; when the renewal
process is a Poisson process. [Note that, in the general case, we did not need
to calculate explicitly P{X .1 > x} to show that it was at least as large as
1 — F(x).] To do so we write

Xne+1 = A@) + Y(0)

where A(¢) denotes the time from 7 since the last renewal, and Y(¢) denotes
the time from ¢ until the next renewal (see Figure 7.4). A(¢) is the age of the
process at time ¢ (in our example it would be the age at time ¢ of the battery
in use at time #), and Y(?) is the excess life of the process at time ¢ (it is the
additional time from ¢ until the battery fails). Of course, it is true that
A(t) =1 - SN(X)’ and Y(t) = SN(t)+1 - 1.

To calculate the distribution of Xy, we first note the important fact
that, for a Poisson process, A(f) and Y(?) are independent. This follows
since by the memoryless property of the Poisson process, the time from ¢
until the next renewal will be exponentially distributed and will be indepen-
dent of all that has previously occurred [including, in particular, A(#)]. In
fact, this shows that if {N(¢), ¢ = 0} is a Poisson process with rate A, then

PY)sxj=1—-¢e™ (7.28)

Al — — Y

/ T Time

Figure 7.4.
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The distribution of A(f) may be obtained as follows

P{0 renewals in [t — x, 1]}, ifx<t

PlA(@) > x] = {

0, ifx>t
_ e™, ifx=<t
~{o, ifx>t
or, equivalently,
1—e™ xX=<t
PlA() = x} = ’ 7.29
{A@) = x} {1’ >t (7.29)

Hence, by the independence of Y(f) and A(¢) the distribution of Xp1 is
just the convolution of the exponential distribution equation (7.28) and the
distribution equation (7.5). It is interesting to note that for f large, A(f)
approximately has an exponential distribution. Thus, for ¢ large, X +1
has the distribution of the convolution of two identically distributed
exponential random variables, which by Section 5.2.3, is the gamma
distribution with parameters (2, 1). In particular, for ¢ large, the expected
length of the renewal interval containing the point ¢ is approximately twice
the expected length of an ordinary renewal interval.

7.8. Computing the Renewal Function

The difficulty with attempting to use the identity

m(t) = ¥ Fy(t)
n=1

to compute the renewal function is that the determination of F,(f) =
P{X; + +-- + X,, = t} requires the computation of an n-dimensional
integral. We present below an effective algorithm which requires as inputs
only one-dimensional integrals.

Let Y be an exponential random variable having rate A, and suppose that
Y is independent of the renewal process {N(¢), ¢t = 0}. We start by deter-
mining E[N(Y)], the expected number of renewals by the random time Y.
To do so, we first condition on X, the time of the first renewal. This yields

EINY)] = S E[NY)| X, = x1f(x) dx (7.30)
0
where f is the interarrival density. To determine E[N(Y)|X; = x], we now

condition on whether or not Y exceeds x. Now, if ¥ < x, then as the first
renewal occurs at time x, it follows that the number of renewals by time Y
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is equal to 0. On the other hand, if we are given thatx < Y, then the number
of renewals by time Y will equal 1 (the one at x) plus the number of
additional renewals between x and Y. But, but the memoryless property of
exponential random variables, it follows that, given that ¥ > x, the amount
by which it exceeds x is also exponential with rate 4, and so giventhat ¥ > x
the number of renewals between x and Y will have the same distribution as
N(). Hence,

EIN)| X, =x,Y<x] =0,
EINY)| X, =x,Y>x] =1+ E[N(Y)]
and so,
EIN(Y)| X, = x] = EIN®)| X, = x, Y < x]P{Y < x| X; = X}
+ EINY)|X; = x, Y > x]P{Y > x| X; = X}
= E[NY)| X, = x, Y > x]P{Y > x}
since Y and X, are independent
= (1 + EIN®)De™
Substituting this into Equation (7.30) gives

o«

EINY)l=(1+E [N(Y)])g e Mf(x) dx
0

or

E -\
EINO] = - e ]

= (7.31)

where X has the renewal interarrival distribution.

If we let A = 1/¢, then Equation (7.31) presents an expression for the
expected number of renewals (not by time ¢, but) by a random exponentially
distributed time with mean ¢. However, as such a random variable need not
be close to its mean (its variance is %), Equation (7.31) need not be
particularly close to m(z). To obtain an accurate approximation suppose
that Y;, Y5, ..., Y, are independent exponentials with rate 1 and suppose
they are also independent of the renewal process. Let, forr=1,...,n,

m, = E[N(Y; + --- + Y]
To compute an expression for m,, we again start by conditioning on X, , the

time of the first renewal.

m, = E E[N(Y; + - + Y)| X, = x1f(x) dx (7.32)
0
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To determine the foregoing conditional expectation, we now condition on
the number of partial sums Y/_,¥, j=1,...,r, that are less than x.
Now, if all r partial sums are less than x—that is, if ¥i_; Y; < x—then
clearly the number of renewals by time Y;_, Y; is 0. On the other hand,
given that k, k < r, of these partial sums are less than Xx, it follows from the
lack of memory property of the exponential that the number of renewals by
time Y;_,Y; will have the same distribution as 1 plus N(Y;,; + -+ + Y)).
Hence,

E[N(Y1 + -+ Y) | X; = x, k of the sums Z 7 are less than x]

i=1

_ {0, ifk=r
h 1+ m,_, ifk<r

To determine the distribution of the number of the partial sums that are less
than x, note that the successive values of these partial sums Y4_, Y;,
J=1,...,r, have the same distribution as the first r event times of a
Poisson process with rate A (since each successive partial sum is the previous
sum plus an independent exponential with rate 1). Hence, it follows that,
fork<r,

(7.33)

{k of the partial sums Z ; are less than x

i=1

X,—x}

NI 3
_eTY(Ax)
= (7.34)
Upon substitution of Equations (7.33) and (7.34) into Equation (7.32),
we obtain

o r—-1 k
m, = L Tas ¥ i
or, equivalently,

Tich (1 + m,_)E[X*e ™™ 1(A*/k!) + E[e™™]

1 - E[e™™]

If we set A = n/t, then starting with m, given by Equation (7.31), we
can use Equation (7.35) to recursively compute m,, ..., m,. The approxi-
mation of m(¢) = E[N(#)] is given by m, = E[N(Y; + --- + Y;)]. Since
Y, + .-+ + Y, is the sum of n independent exponential random variables
each with mean #/n, it follows that it is (zamma) distributed with mean ¢
and variance nt>/n* = r*/n. Hence, by choosing n large, Y7_, ¥, will be a
random variable having most of its probability concentrated about t, and
so E[N(Yi., Y)] should be quite close to E[N(?)]. [Indeed, if m(t) is
continuous at ¢, it can be shown that these approximations converge to m(?)
as n goes to infinity.]

m, = (7.35)
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Table 7.1

F, Exact Approximation

i t m(t) n=1 n=13 n=10 n=25 n=>50
i 1 0.2838 0.3333 0.3040 0.2903 0.2865 0.2852
1 2 0.7546 0.8000 0.7697 0.7586 0.7561 0.7553
1 5 2.250 2.273 2.253 2.250 2.250 2.250

1 10 4.75 4,762 4,751 4.750 4.750 4.750

2 0.1 0.1733 0.1681 0.1687 0.1689 0.1690 —

2 0.3 0.5111 0.4964 0.4997 0.5010 0.5014 —

2 0.5 0.8404 0.8182 0.8245 0.8273 0.8281 0.8283
2 1 1.6400 1.6087 1.6205 1.6261 1.6277 1.6283
2 3 4.7389 4.7143 4.7294 4.7350 4.7363 4.7367
2 10 15.5089 15.5000 15.5081 15.5089 15.5089 15.5089
3 0.1 0.2819 0.2692 0.2772 0.2804 0.2813 —

3 0.3 0.7638 0.7105 0.7421 0.7567 0.7609 —

3 1 2.0890 2.0000 2.0556 2.0789 2.0850 2.0870
3 3 5.4444 5.4000 5.4375 5.4437 5.4442 5.4443

Example 7.24 Table 7.1 compares the approximation with the exact
value for the distributions F; with densities f;, i = 1, 2, 3, which are given by

fik) = xe™,
1 — F(x) = 0.3¢7* + 0.7e™%,
1 - F(x) =05+ 0.5¢ &

7.9. Applications to Patterns

A counting process with independent interarrival times X, X;, ... is said to
be a delayed or general renewal process if X, has a different distribution
from the identically distributed random variables X,, X3, .... That is, a
delayed renewal process is a renewal process in which the first interarrival
time has a different distribution than the others. Delayed renewal processes
often arise in practice and it is important to note that all of the limiting
theorems about N(f), the number of events by time ¢, remain valid. For
instance, it remains true that

EING) 1
t Iz

and 3 ast— o

Var(N(?)) - g2/
7 u

where u and o? are the expected value and variance of the interarrivals X;,
i>1.
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7.9.1. Patterns of Discrete Random Variables

Let X, X,, ... be independent with P{X; = j} = p(j), j= 0, and let T
denote the first time the pattern xy, ..., X, occurs. If we say that a renewal
occurs at time n, n = r, if (X,_,415 ---5 Xp) = (i1, ..., i), then N(n), n = 1,
is a delayed renewal process, where N(n) denotes the number of renewals by
time n. It follows that

EIN(] _

1 as n — o (7.36)
n M
2
Var(N(n)) 59 as n = o (7.37)
n ll3

where u and o are, respectively, the mean and standard deviation of the
time between successive renewals. Whereas, in Example 4.20, we showed
how to use Markov chain theory to compute the expected value of T, we will
now show how to use renewal theory results to compute both its mean and
its variance.

To begin, let I(i) equal 1 if there is a renewal at time / and let it be 0
otherwise, i = r. Also, let p = []j., p(x;). Since,

PUGE) = 1} = PIX;_,y =iy Xy =i} =p

it follows that I(i), i = r, are Bernoulli random variables with parameter p.
Now,

N = X 16)
SO

EINm) = ¥ EU®D] = (n—r+ p

i=r
Dividing by n and then letting » = o gives, from Equation (7.36),
u=1/p (7.38)

That is, the mean time between successive occurrences of the pattern is
equal to 1/p. Also,

n n-1
Ya®WeD) _ 1y varain + 2T F Covlttd), IG))
n n;_,; Ny nzj>i
_ 1 2 n-1
= f___r'_;_i'___p(l -p)+ = ¥ )) Cov(I(}), 1(j))

i=r i<jsmin(@i+r-1,n)
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where the final equality used the fact that I({) and I(j) are independent,
and thus have zero covariance, when |i — j| = r. Letting n — o, and using
the fact that Cov(I(i), I(j)) depends on / and j only through |j — il, gives
Var(N(n ) .
Vel p1 ~ pp + 2 T Covt), I + )

Jj=1
Therefore, using Equations (7.37) and (7.38), we see that

r—1
a*=p7*(1 —p)+2p3 ¥ Covl(), I(r + J)) (7.39)
j=1
Let us now consider the amount of ‘‘overlap’’ in the pattern. The overlap,
equal to the number of values at the end of one pattern that can be used as
the beginning part of the next pattern, is said to be of size k, k > 0, if

k= max{j < r:(i_jiis.eesip) = (15 eoes i)

and is of size 0 if for all k = 1, ..., 7 = 1, (r_pts e-s i) & (15 o ovs i)
Thus, for instance, the pattern 0,0, 1,1 has overlap 0, whereas 0,0,1,0,0
has overlap 2. We consider two cases.

Case 1. The Pattern Has Overlap 0

In this case, N(n), n = 1, is an ordinary renewal process and T is distributed
as an interarrival time with mean u and variance o2. Hence, we have the
following from Equation (7.38):

1
ET|=p=- 7.40
(T]=u E (7.40)

Also, since two patterns cannot occur within a distance less than r of each
other, it follows that I(r)I(r + j) = 0 when 1 < j < r — 1. Hence,

Cov((n), Ir + j)) = —EUMIEI( + j)l = -p%, iflsj=sr-1
Hence, from Equation (7.39), we obtain

Var(T)= o’ =p Y1 —p) =20 - D =p 2~ @r—-Hp~' (7.41)

Remark In cases of ‘‘rare’’ patterns, if the pattern hasn’t yet occurred
by some time 7, then it would seem that we would have no reason to believe
that the remaining time would be much less than if we were just beginning
from scratch. That is, it would seem that the distribution is approximately
memoryless and would thus be approximately exponentially distributed.
Thus, since the variance of an exponential is equal to its mean squared,
we would expect when y is large that Var(T') = E?[T], and this is borne out
by the preceding, which states that Var(7T) = E 2IT] — (2r — DE[T].
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Example 7.25 Suppose we are interested in the number of times that a
fair coin needs to be flipped before the pattern A, A, ¢, h, t occurs. For this
pattern, r = 5, p = 35, and the overlap is 0. Hence, from Equations (7.40)
and (7.41)
E[T] =32, Var(T) = (32)* - 9x 32 = 736,
and
Var(T)/E*[T] = 0.71875

On the other hand, if p(i) = .i, i = 1, 2, 3, 4 and the pattern is 1,2, 1, 4,
1,3,2 then r = 7, p = 3/625,000, and the overlap is 0. Thus, again from
Equations (7.40) and (7.41), we see that in this case

E[T] = 208,333.33,  Var(T) = 4.34 X 10"°,
Var(T)/E*[T] = 0.99994 &

Case 2. The Overlap Is of Size k

In this case,
T=T,. ,+T*

where T;  ; is the time until the pattern iy, ..., appears and T*,
distributed as an interarrival time of the renewal process, is the additional
time that it takes, starting with i, ..., iy, to obtain the pattern i, ..., .
Because these random variables are independent, we have

E[T] = E[T,,,...,;,] + E[T*] (7.42)
Var(T) = Va(T;, . ;) + Var(T*) (7.43)

Now, from Equation (7.38)
E[T*|=u=p’! (7.44)

Also, since no two renewals can occur within a distance r — k — 1 of each
other, it follows that I(NI(r + j) = 0if 1 = j < r — k — 1. Therefore, from
Equation (7.39), we see that

r—1
Var(T*) = 0> = p™(1 - p) + 2p"3< Y EUMIC+)] - ¢~ 1)p2>

Jj=r—k

r-1
=pt-Qr-Dpt+2p* ¥ EUDIr+ )] (7.45)
j=r—k
The quantities E[I(r)I(r + j)] in Equation (7.45) can be calculated by
considering the particular pattern. To complete the calculation of the first
two moments of 7, we then compute the mean and variance of T; | ;, by
repeating the same method.
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Example 7.26 Suppose that we want to determine the number of flips
of a fair coin until the pattern A, h, t, h, h occurs. For this pattern, r = 5,
D = 35, and the overlap parameter is kK = 2. Because

E[I(5)I(8)] = P{h,h,t,h,h,t,h, h} = 3¢
EU(5)I9)] = Pth,h,t,h,h, h,t,h, b} = 5l5
we see from Equations (7.44) and (7.45) that
E[T*] =32
Var(T*) = (32)* — 9(32) + 2(32)’Gdg + 352) = 1120
Hence, from Equations (7.42) and (7.43) we obtain
E[T] = E[T, 41 + 32, Var(T) = Var(T} ) + 1120

Now, consider the pattern A, k. It has r = 2, p = 4, and overlap parameter 1.
Since, for this pattern, E[I(2)I(3)] = 4, we obtain, as in the preceding, that

E[T,4] = EIT;] + 4,
Var(T, ;) = Var(T) + 16 — 3x 4 + 2x § = Var(T) + 20

Finally, for the pattern h, which has r = 1, p = 4, we see from Equations
(7.40) and (7.41) that

E[T,1 =2, Vai(T)=2
Putting it all together gives
E[T] = 38, Var(T) = 1142, Var(T)/E*[T] = 0.79086 *
Example 7.27 Suppose that P{X, = i} = p;, and consider the pattern

0,1,2,0,1,3,0,1. Then p = p3pip,ps, r = 8, and the overlap parameter
is k = 2. Since

E[I(8)I(14)] = p; pi P P
E[I®I(15] =0
we see from Equations (7.42) and (7.44) that
E[T) = E[T ;] + p™*
and from Equations (7.43) and (7.45) that
Var(T) = Var(T ;) + p~ = 15p7" + 2p7 (pop)) ™
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Now, the r and p values of the pattern 0, 1 are r(0, 1) = 2, p(0, 1) = pypy,
and this pattern has overlap 0. Hence, from Equations (7.40) and (7.41),

E[Ty1] = (popy) ™', Var(Ty1) = (pop))™> — 3(pop)™
For instance, if p; = 0.2, i = 0, 1, 2, 3 then
E[T] = 25 + 5% = 390,650
Var(T) = 625 — 75 + 56 — 35 x 5% = 1.525742 x 10!

Var(T)/E*[T] = 0.99978 @

Remark It can be shown that T is a type of discrete random variable
called new better than used (NBU), which loosely means that if the pattern
has not yet occurred by some time 7 then the additional time until it occurs
tends to be less than the time it would take the pattern to occur if one started
all over at that point. Such a random variable is known to satisfy (see
Proposition 9.6.1 of Ref. [4])

Var(T) < E*[T] - E[T] < E*[T]

Now, suppose that there are s patterns, A(1), ..., A(s) and that we are
interested in the mean time until one of these patterns occurs, as well as the
probability mass function of the one that occurs first. Let us assume,
without any loss of generality, that none of the patterns is contained in
any of the others. [That is, we rule out such trivial cases as A(1) = &, A
and A(2) = h, h, t.] To determine the quantities of interest, let 7(i) denote
the time until pattern A(i) occurs, i = 1, ..., s, and let T(i,j) denote the
additional time, starting with the occurrence of pattern A(i), until pattern
A(J) occurs, i # j. Start by computing the expected values of these random
variables. We have already shown how to compute E[T()], i=1,...,s.
To compute E[T(i, j)], use the same approach, taking into account any
‘“‘overlap’’ between the latter part of A(/) and the beginning part of A(Jj).
For instance, suppose A(1) = 0,0, 1, 2,0, 3, and AQ2) = 2,0, 3,2, 0. Then

TQ2) = 05 + T(1,2)
where T, , ; is the time to obtain the pattern 2, 0, 3. Hence,
E[T(1,2)] = E[T(2)] - E[T,,,5]

= (P3P5p3) ™ + (PoP2) ™! — (P2Dop3) ™!
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So, suppose now that all of the quantities E[7(i)] and E[T(, j)] have been
computed. Let

M = min T(i)
and let
P@) = PIM = T(i)}, i=1,...,8

That is, P(i) is the probability that pattern A(7) is the first pattern to occur.
Now, for each j we will derive an equation that E[TY()] satisfies as follows:

E[T(j)] = EIM] + E[T(J) — M]
= EM] + Y E[TGOPG), Jj=1,..5s (7.46)

IR
where the final equality is obtained by conditioning on which pattern occurs
first. But the Equations (7.46) along with the equation

; P@i)=1
i=1

constitute a set of s + 1 equations in the s + 1 unknowns E[M], P(i),
i=1,...,5 Solving them yields the desired quantities.

Example 7.28 Suppose that we continually flip a fair coin. With
AQ) = h,t,t,h, hand AQ2) = h, h, t, h, t, we have
E[T(1)] = 32 + E[T;,] = 34
E[T(2)] = 32
E[T(1,2)] = E[TQ2)] - ElT;,} = 32 — (4 + E[T;]) = 26
E[T2, )] = E[T(1)} - E[T;,,] = 34 — 4 = 30
Hence, we need solve the equations
34 = E[M] + 30P(2)
32 = E[M]} + 26P(1)
1 = P(1) + P(2)
These equations are easily solved, and yield the values
P(l) = PQ2) = 4, EM] =19

Note that although the mean time for pattern A(2) is less than that for A(1),
each has the same chance of occurring first. 4
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Equations (7.46) are easy to solve when there are no overlaps in any of the
patterns. In this case, for all i = j

E[TG, /)] = E[T()]
so Equations (7.46) reduce to

E[T())] = EM] + (1 — P()EIT()]
or

P(j) = E[M]/E[T())]

Summing the preceding over all j yields

1
E = 7.47
M = S ETO) (7.47)
P(j) = —ETU (7.48)

Lj=1 VVE[T())]

In our next example we use the preceding to reanalyze the model of
Example 7.8.

Example 7.29 Suppose that each play of a game is, independently of
the outcomes of previous plays, won by player i with probability p;,
i=1,...,5 Suppose further that there are specified numbers n(l), ..., n(s)
such that the first player i to win n(i) consecutive plays is declared the
winner of the match. Find the expected number of plays until there is a
winner, and also the probability that the winneris i, i =1,...,s.

Solution: Letting A({), for i =1,...,s, denote the pattern of n;
consecutive values of i, this problem asks for P(i), the probability that

pattern A(i) occurs first, and for E[M]. Because
n(i) n@)-1 1 - pf®
E[T()] = (1/p; + (1/p)"~ e+ 1/ = 57—
[ (l)] ( pz) ( pz) + + Di p;:(x)(l __pi)

we obtain, from Equations (7.47) and (7.48), that
1
i 2790 - ppy/( - pj9)]

P01 - p)/Qa - pi9)
i1 [2}00 - pp/(1 = pfO]

E[M] =

P(i) = *
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7.9.2. The Expected Time to a Maximal Run
of Distinct Values

Let X;, i = 1 be independent and identically distributed random variables
that are equally likely to take on any of the values 1, 2, ..., m. Suppose that
these random variables are observed sequentially, and let T denote the first
time that a run of m consecutive values includes all the values 1, ..., m.
That is,

T = min{n : X,_,,41, ---» X, are all distinct]

To compute E[T], define a renewal process by letting the first renewal occur
at time 7. At this point start over and, without using any of the data values
up to T, let the next renewal occur the next time a run of m consecutive
values are all distinct, and so on. For instance, if m = 3 and the data are

1,3,3,2,1,2,3,2, 1,3, ..., (7.49)

then there are two renewals by time 10, with the renewals occurring at times
5 and 9. We call the sequence of m distinct values that constitutes a renewal
a renewal run.

Let us now transform the renewal process into a delayed renewal reward
process by supposing that a reward of 1 is earned at time n, n = m, if the
values X, _m41s -..» X, are all distinct. That is, a reward is earned each
time the previous m data values are all distinct. For instance, if m = 3
and the data values are as in (7.49) then unit rewards are earned at times
5,7, 9, and 10. If we let R; denote the reward earned at time i/, then by
Proposition 7.3,

n )
i EIZE=1 R _ EIR]
n n E[T]
where R is the reward earned between renewal epochs. Now, with A4; equal

to the set of the first i data values of a renewal run, and B; to the set of the
first i values following this renewal run, we have the following:

(7.50)

m-1

1 + Y Ef[reward earned a time i after a renewal]
i=1

EIR]

m-1
1+ Y P{4;= B}

i=1

m-—1 il

i=1m
il

£ o (7.51)
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Hence, since for i = m

!

mm

E[R]] = P{X;_41, ..., X; are all distinct} =

it follows from Equation (7.50) that

m! _ EIR)

m™  E[T]
Thus from Equation (7.51) we obtain

mm-1

E[T] = '—”m—' itm'
¢ i=0

The preceding delayed renewal reward process approach also gives us
another way of computing the expected time until a specified pattern
appears. We illustrate by the following example.

Example 7.30 Compute E[T], the expected time until the pattern
h, h, h, t, h, h, h appears, when a coin that comes up heads with probability
p and tails with probability ¢ = 1 — p is continually flipped.

Solution: Define a renewal process by letting the first renewal occur
when the pattern first appears, and then start over. Also, say that a
reward of 1 is earned whenever the pattern appears. If R is the reward
earned between renewal epochs, we have

6
1 + ), Efreward earned i units after a renewal]

i=1

E[R]

1+0+0+0+ gp®+ pgp® + p*qp?

Hence, since the expected reward earned at time i is E[R;] = pq, we
obtain the following from the renewal reward theorem:

L+ap’+ap* +ap®
E[T]

or

EiTl=qp*+p*+p?2+p!' @
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7.9.3. Increasing Runs of Continuous Random Variables

Let X;, X,, ... be a sequence of independent and identically distributed
continuous random variables, and let T denote the first time that there is a
string of r consecutive increasing values. That is,

T=min{n =r: X, ;1,1 < Xpersz < -+ < X,

To compute E[T], define a renewal process as follows. Let the first renewal
occur at 7. Then, using only the data values after T, say that the next renewal
occurs when there is again a string of r consecutive increasing values, and
continue in this fashion. For instance, if r = 3 and the first 15 data values are

12, 20, 22, 28, 43, 18, 24, 33,60, 4, 16, 8, 12, 15, 18

then 3 renewals would have occurred by time 15, namely, at times 3, 8, and
14. If we let N(n) denote the number of renewals by time #n, then by the
elementary renewal theorem

E[Nm)] | 1
n E[T]

To compute E[N(n)], define a stochastic process whose state at time &, call
it S, is equal to the number of consecutive increasing values at time k. That
is,forl=sj=<k

Sk =j lf Xk—j > Xk—j+1 < e < Xk—l < Xk

where X, = . Note that a renewal will occur at time & if and only if
S, = ir for some i = 1. For instance, if r = 3 and

Xs> Xg < X7 < Xy < Xy < X9 < Xy
then
Se=1, S;,=2, S=3, S5=4, Sp=35, S1=6
and renewals occur at times 8 and 11. Now, for k > j
P{Sy =j) = P(Xy_j > Xi—ju1 < »++ < Xpoy < X
= P{Xy_js1 < o+ < Xpoy < Xy
— P(Xy_; < Xpjur1 <+ < Xpoq < X}
1 1

I TRNCES
G+
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where the next to last equality follows since all possible orderings of the
random variables are equally likely.
From the preceding, we see that

o«

,31_{1010 P{a renewal occurs at time k} = 21}2 E, P(S, = ir) = El = -z’-r 5

However,
n

E[N(n)] = Y P{a renewal occurs at time k}
k=1

Because we can show that for any numbers a;, k = 1 for which lim, _, . a,
exists

we obtain from the preceding, upon using the elementary renewal theorem,

1
T ir/(ir + 1!

E[T] =

Exercises

1. Isittrue that
(a) N(t) < nifand onlyif S, > ¢?
(b) N(t) = nifandonlyif S, = #?
(¢) N(t) > nifandonlyif S, < ¢?

2. Suppose that the interarrival distribution for a renewal process is
Poisson distributed with mean 4. That is, suppose

k
PiX, =k = e"‘%, k=0,1,...

(a) Find the distribution of S,,.
(b) Calculate P{N(¢) = n).

*3. If the mean-value function of the renewal process {N(¢), ¢ = 0) is given
by m(t) = t/2,t = 0, then what is P{N(5) = 0}?

4. Let {N((®), t = 0} and {N,(7), ¢ = 0} be independent renewal processes.
Let N(#) = Ny(t) + Ny(o).
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(a) Are the interarrival times of {N(¢), ¢ = 0} independent?
(b) Are they identically distributed?
(¢) Is {N(?), t = 0} a renewal process?

5. Let U;, U,, ... be independent uniform (0, 1) random variables, and
define N by

N=minfn: U, + U, + --- + U, > 1}
What is E[N]?

*6. Consider a renewal process {N(¢), ¢ = 0} having a gamma (r, 1)
interarrival distribution. That is, the interarrival density is

_ Ae™™(Ux)!
f(x)——————-(r_l)! , x>0

(a) Show that

© -\ i

PNO = = ¥ S0
(b) Show that

> [i]e™Mary
mit) = ,.);:,H i

where [i/r] is the largest integer less than or equal to i/r.

Hint: Use the relationship between the gamma (7, 1) distribution and
the sum of r independent exponentials with rate A, to define N(¢) in terms
of a Poisson process with rate A.

7. Mr. Smith works on a temporary basis. The mean length of each job he
gets is three months. If the amount of time he spends between jobs is

exponentially distributed with mean 2, then at what rate does Mr. Smith
get new jobs?

*8. A machine in use is replaced by a new machine either when it fails or
when it reaches the age of T years. If the lifetimes of successive machines
are independent with a common distribution F having density f, show that

(a) the long-run rate at which machines are replaced equals
T -1
[ y xfx)dx + T(1 - F(T))]
0
(b) the long-run rate at which machines in use fail equals

KT)
[Exfedx + T[1 — F(T)]
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9. A worker sequentially works on jobs. Each time a job is completed, a
new one is begun. Each job, independently, takes a random amount of time
having distribution F to complete. However, independently of this, shocks
occur according to a Poisson process with rate 1. Whenever a shock occurs,
the worker discontinues working on the present job and starts a new one. In
the long run, at what rate are jobs completed?

10. Consider a renewal process with mean interarrival time u. Suppose
that each event of this process is independently “‘counted’’ with probability
P. Let N¢(¢) denote the number of counted events by time ¢, ¢ > 0.

(@) Is Nc(t), t = 0 a renewal process?
(b) What is lim,_, ,Nc(t)/t?

11. A renewal process for which the time until the initial renewal has a
different distribution than the remaining interarrival times is called a
delayed (or a general) renewal process. Prove that Proposition 7.1 remains
valid for a delayed renewal process. (In general, it can be shown that all of
the limit theorems for a renewal process remain valid for a delayed renewal
process provided that the time until the first renewal has a finite mean.)

12. Let X;,X;, ... be a sequence of independent random variables. The
nonnegative integer valued random variable N is said to be a stopping time
for the sequence if the event {N = n} is independent of Xni1s Xnszs eons
the idea being that the X; are observed one at a time—first X, 1> then X, , and
so on—and N represents the number observed when we stop. Hence, the
event {N = n} corresponds to stopping after having observed D. T, ¢
and thus must be independent of the values of random variables yet to
come, namely, X, 1, Xp,2,....

(a) Let X, X,, ... be independent with
PiX;=1}=p=1- P{X; = 0], i=z1
Define
Ny =min{fn: X; + - + X, = 5}

3, ifX, =0

N, =
2 {5, if X, =1
3, ifX,=0

N, =
: {2, if X, = 1

Which of the N; are stopping times for the sequence Xi5...7 An
important result, known as Wald’s equation states that if X 19 X325 een
are independent and identically distributed and have a finite mean E(X),
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and if N is a stopping time for this sequence having a finite mean, then

N .
E[ ) X,-:l = E[N]E[X]

i=1

To prove Wald’s equation, let us define the indicator variables I;, i = 1
by
. {1, ifisN
! 0, ifi>N
(b) Show that

From part (b) we see that

E[ 1{: Xi] = E[ingiI,]

i=1
= ) ElX1]
i=1

where the last equality assumes that the expectation can be brought inside
the summation (as indeed can be rigorously proven in this case).
(c) Argue that X; and I; are independent.

Hint: 7,equals 0 or 1 depending on whether or not we have yet stopped
after observing which random variables?

(d) From part (c) we have
N ©
E[ ) Xi:l = Y E[XIE[L)
i=1 i=1

Complete the proof of Wald’s equation.
(e) What does Wald’s equation tell us about the stopping times in
part (a)?

13. Wald’s equation can be used as the basis of a proof of the elementary
renewal theorem. Let X, X,, ... denote the interarrival times of a renewal
process and let N(f) be the number of renewals by time ¢.

(a) Show that whereas N(¢) is not a stopping time, N(¢) + 1 is.
Hint: Note that

Nt)y=ne X+ - +X,<t and X;+ -+ Xy >t
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(b) Argue that

N@®+1
E[ )) X,] = ulm(@®) + 1]

i=1

(c) Suppose that the X; are bounded random variables. That is, suppose
there is a constant M such that P{X; < M} = 1. Argue that

N(@)+1
t< Y X;<t+M
i=1

1=

(d) Use the previous parts to prove the elementary renewal theorem when
the interarrival times are bounded.

14. Consider a miner trapped in a room which contains three doors. Door
1 leads him to freedom after two days of travel; door 2 returns him to his
room after a four-day journey; and door 3 returns him to his room after a
six-day journey. Suppose at all times he is equally likely to choose any of the
three doors, and let T denote the time it takes the miner to become free.

(a) Define a sequence of independent and identically distributed random
variables X, X,, ... and a stopping time N such that

N
T = E Xi
i=1
Note: You may have to imagine that the miner continues to
randomly choose doors even after he reaches safety.

(b) Use Wald’s equation to find E[T].

(c) Compute E[LN ,X;|N = n] and note that it is not equal to
E[Y!., X))

(d) Use part (c) for a second derivation of E[T].

15. A deck of 52 playing cards is shuffled and the cards are then turned
face up one at a time. Let X; equal 1 if the ith card turned over is an ace,
and let it be 0 otherwise, i = 1, ..., 52. Also, let N denote the number of
cards that need be turned over until all 4 aces appear. That is, the final ace
appears on the Nth card to be turned over. Is the equation

N
E[ ) Xi] = E[N]E[X;]

i=1

valid? If not, why is Wald’s equation not applicable?
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16. In Example 7.7, suppose that potential customers arrive in accordance
with a renewal process having interarrival distribution F. Would the
number of events by time ¢ constitute a (possible delayed) renewal process
if an event corresponds to a customer

(a) entering the bank?
(b) leaving the bank?

What if F were exponential?

*17. Compute the renewal function when the interarrival distribution F
is such that

1~ F(t) = pe™™' + (1 — p)e™'

18. For the renewal process whose interarrival times are uniformly
distributed over (0, 1), determine the expected time from ¢ = 1 until the
next renewal.

19. For a renewal reward process consider

_Ri+R,+ - +R,
n_X1+X2+"‘+Xn

where W, represents the average reward earned during the first n cycles.
Show that W, — E[R]/E[X] as n = co.

20. Consider a single-server bank for which customers arrive in accord-
ance with a Poisson process with rate A. If a customer will only enter the
bank if the server is free when he arrives, and if the service time of a
customer has the distribution G, then what proportion of time is the
server busy?

*21. The lifetime of a car has a distribution A and probability density 4.
Ms. Jones buys a new car as soon as her old car either breaks down or
reaches the age of T years. A new car costs C, dollars and an additional cost
of C, dollars is incurred whenever a car breaks down. Assuming that a
T-year-old car in working order has an expected resale value R(7"), what is
Ms. Jones’ long-run average cost?

22. 1If H is the uniform distribution over (2, 8) andif C; = 4, C, = 1, and
R(T) = 4 — (7/2), then what value of T minimizes Ms. Jones’ long-run
average cost in Exercise 21?

23. In Exercise 21 suppose that H is exponentially distributed with mean
5, Cy=3, C, =%, R(T) = 0. What value of T minimizes Ms. Jones’
long-run average cost?
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24. Consider a train station to which customers arrive in accordance with
a Poisson process having rate A. A train is summoned whenever there are N
customers waiting in the station, but it takes K units of time for the train to
arrive at the station. When it arrives, it picks up all waiting customers.
Assuming that the train station incurs a cost at a rate of nc per unit time
whenever there are n customers present, find the long-run average cost.

25. In Example 7.13, what proportion of the defective items produced is
discovered?

26. Consider a single-server queueing system in which customers arrive in
accordance with a renewal process. Each customer brings in a random
amount of work, chosen independently according to the distribution G. The
server serves one customer at a time. However, the server processes work at
rate i per unit time whenever there are i customers in the system. For
instance, if a customer with workload 8 enters service when there are 3 other
customers waiting in line, then if no one else arrives that customer will
spend 2 units of time in service. If another customer arrives after 1 unit of
time, then our customer will spend a total of 1.8 units of time in service
provided no one else arrives.

Let W; denote the amount of time customer / spends in the system. Also,
define E[W1] by

EW] = lim W, + - + W,)/n

and so E[W] is the average amount of time a customer spends in the system.
Let N denote the number of customers that arrive in a busy period.

(a) Argue that
E[W] = E[W, + - + WyI/E[N]

Let L; denote the amount of work customer i brings into the system; and
so the L;, i = 1, are independent random variables having distribution G.

(b) Argue that at any time #, the sum of the times spent in the system by
all arrivals prior to ¢ is equal to the total amount of work processed by
time £.

Hint: Consider the rate at which the server processes work.

(c) Argue that
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(d) Use Wald’s equation (see Exercise 12) to conclude that
EW]=u

where u is the mean of the distribution G. That is, the average time that
customers spend in the system is equal to the average work they bring to
the system.

*27. For a renewal process, let A(z) be the age at time ¢. Prove that if
U < oo, then with probability 1
A(D)

— -0 ast — o

28. 1If A(¢) and Y{(¢) are respectively the age and the excess at time 7 of a
renewal process having an interarrival distribution F, calculate

P{Y(t) > x| A(@®) = s}
29. Determine the long run proportion of time that X, N+ < C.

*30. Satellites are launched according to a Poisson process with rate A.
Each satellite will, independently, orbit the earth for a random time having
distribution F. Let X(#) denote the number of satellites orbiting at time ¢.

(a) Determine P{X(t) = k}.
Hint: Relate this to the M/G/» queue.

(b) If at least one satellite is orbiting, then messages can be transmitted
and we say that the system is functional. If the first satellite is orbited at
time f = 0, determine the expected time that the system remains
functional.

Hint: Make use of part (a) when k = 0.

31. Each of n skiers continually, and independently, climbs up and then
skis down a particular slope. The time it takes skier / to climb up has
distribution F;, and it is independent of her time to ski down, which has
distribution H;, i = 1, ..., n. Let N(f) denote the total number of times
members of this group have skied down the slope by time ¢. Also, let U(#)
denote the number of skiers climbing up the hill at time 7.

(a) What is lim,_, , N(#)/¢?

(b) Find lim,_ . E[U(@®)].

(c) If all F; are exponential with rate A and all G; are exponential with
rate u, what is P{U(t) = k}?
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32. Three marksmen take turns shooting at a target. Marksman 1 shoots
until he misses, then marksman 2 begins shooting until he misses, then
marksman 3 until he misses, and then back to marksman 1, and so on. Each
time marksman 1 fires he hits the target, independently of the past, with
probability P, i = 1, 2, 3. Determine the proportion of time, in the long
run, that each marksman shoots.

33. Each time a certain machine breaks down it is replaced by a new one
of the same type. In the long run, what percentage of time is the machine
in use less than one year old if the life distribution of a machine is

(a) uniformly distributed over (0, 2)?
(b) exponentially distributed with mean 1?

*34. For an interarrival distribution F having mean u, we define the
equilibrium distribution of F, denoted F,, by

1 x
Fe(x) = — S 1 - F(n)ldy
" Jo

(a) Show that if F is an exponential distribution, then F = F,.
(b) If for some constant c,

Fox) = {0, x<c

1, xXzc

show that F, is the uniform distribution on (0, ¢). That is, if interarrival
times are identically equal to ¢, then the equilibrium distribution is the
uniform distribution on the interval (0, ¢).

(c) The city of Berkeley, California, allows for two hours parking at all
nonmetered locations within one mile of the University of California.
Parking officials regularly tour around, passing the same point every two
hours. When an official encounters a car he or she marks it with chalk.
If the same car is there on the official’s return two hours later, then a
parking ticket is written. If you park your car in Berkeley and return after
3 hours, what is the probability you will have received a ticket?

35. Consider a system which can be in either state 1 or 2 or 3. Each time
the system enters state / it remains there for a random amount of time
having mean u; and then makes a transition into state j with probability P;.
Suppose

P, =1, P21=P23='2L’ Py =1
(a) What proportion of transitions take the system into state 1?

M) If u; =1, u, = 2, uy = 3, then what proportion of time does the
system spend in each state?
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36. Consider a semi-Markov process in which the amount of time that the
process spends in each state before making a transition into a different state
is exponentially distributed. What kind of a process is this?

37. In a semi-Markov process, let t; denote the conditional expected time
that the process spends in state i given that the next state is j,

(a) Present an equation relating 4; to the ¢;;.
(b) Show that the proportion of time the process is in i and will next
enter j is equal to PP;t;/u;.

Hint: Say that a cycle begins each time state i is entered. Imagine
that you receive a reward at a rate of 1 per unit time whenever the
process is in / and heading for j. What is the average reward per unit
time?

38. A taxi alternates between three different locations. Whenever it
reaches location /, it stops and spends a random time having mean #; before
obtaining another passenger, i = 1,2, 3. A passenger entering the cab at
location i will want to go to location j with probability P;. The time to
travel from i toj is a random variable with mean m;;. Suppose that ¢, = 1,
th=2,13=4,P,=1,Py3=1,P;; =% =1— Py, my = 10, my; = 20,
msy, = 15, ms, = 25. Define an appropriate semi-Markov process and
determine

(a) the proportion of time the taxi is waiting at location i, and
(b) the proportion of time the taxi is on the road from i to j, i,
Jj=1,2,3.

*39. Consider a renewal process having the gamma (n, 1) interarrival
distribution, and let Y(¢) denote the time from ¢ until the next renewal. Use
the theory of semi-Markov processes to show that

tlijn PiY)< x} = ! E Gi ()

; i=1
where G; \(x) is the gamma (i, 1) distribution function.
40. To prove Equation (7.24), define the following notation:

X/

time spent in state / on the jth visit to this state;

N;(m) = number of visits to state / in the first m transitions
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In terms of this notation, write expressions for

(a) the amount of time during the first m transitions that the process is in
state i

(b) the proportion of time during the first 7 transitions that the process
is in state i.

Argue that, with probability 1,

N%m) X/
(c oo as m — o
) Ny

(d) N;(m)/m = m; as m = .
(e) Combine parts (a), (b), (c), and (d) to prove Equation (7.24).

41. Let X;,i=1,2,..., be the interarrival times of the renewal process
{N()}, and let Y, independent of the X, be exponential with rate A.

(a) Use the lack of memory property of the exponential to argue that
PX|+--+ X, <Y}]=(PX<Y])"

{b) Use Part (a) to show that

E _“
E[N(Y)] = %{e‘l"]

where X has the interarrival distribution.

42, Write a program to approximate m(¢) for the interarrival distribution
F*G, where F is exponential with mean 1 and G is exponential with
mean 3.

43. Let X;, i = 1, be independent random variables with p; = P{X = j},
Jj=1.Ifp;=.j,j=1,2,3,4, find the expected time and the variance of
the number of variables that need be observed until the pattern 1, 2, 3,1, 2
occurs.

44. A cointhat comes up heads with probability 0.6 is continually flipped.
Find the expected number of flips until either the sequence thht or the
sequence ¢ ¢ t occurs, and find the probability that 7 ¢ ¢ occurs first.

45. Random digits, each of which is equally likely to be any of the digits
0 through 9, are observed in sequence.

(a) Find the expected time until a run of 10 distinct values occurs.
(b) Find the expected time until a run of § distinct values occurs.-
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Chapter 8
Queueing Theory

v

8.1. Introduction

In this chapter we will study a class of models in which customers arrive in
some random manner at a service facility. Upon arrival they are made to
wait in queue until it is their turn to be served. Once served they are
generally assumed to leave the system. For such models we will be interested
in determining, among other things, such quantities as the average number
of customers in the system (or in the queue) and the average time a customer
spends in the system (or spends waiting in the queue).

In Section 8.2 we derive a series of basic queueing identities which are of
great use in analyzing queueing models. We also introduce three different
sets of limiting probabilities which correspond to what an arrival sees, what
a departure sees, and what an outside observer would see.

In Section 8.3 we deal with queueing systems in which all of the defining
probability distributions are assumed to be exponential. For instance,
the simplest such model is to assume that customers arrive in accordance
with a Poisson process (and thus the interarrival times are exponentially
distributed) and are served one at a time by a single server who takes an
exponentially distributed length of time for each service. These exponential
queueing models are special examples of continuous-time Markov chains
and so can be analyzed as in Chapter 6. However, at the cost of a (very)
slight amount of repetition we shall not assume the reader to be familiar
with the material of Chapter 6, but rather we shall redevelop any needed
material. Specifically we shall derive anew (by a heuristic argument) the
formula for the limiting probabilities.

411



412 8 Queueing Theory

In Section 8.4 we consider models in which customers move randomly
among a network of servers. The model of Section 8.4.1 is an open system
in which customers are allowed to enter and depart the system, whereas the
one studied in Section 8.4.2 is closed in the sense that the set of customers
in the system is constant over time.

In Section 8.5 we study the model M/G/1, which while assuming Poisson
arrivals, allows the service distribution to be arbitrary. To analyze this
model we first introduce in Section 8.5.1 the concept of work, and then use
this concept in Section 8.5.2 to help analyze this system. In Section 8.5.3 we
derive the average amount of time that a server remains busy between idle
periods.

In Section 8.6 we consider some variations of the model M/G/1. In
particular in Section 8.6.1 we suppose that bus loads of customers arrive
according to a Poisson process and that each bus contains a random
number of customers. In Section 8.6.2 we suppose that there are two
different classes of customers—with type 1 customers receiving service
priority over type 2.

In Section 8.7 we consider a model with exponential service times but
where the interarrival times between customers is allowed to have an
arbitrary distribution. We analyze this model by use of an appropriately
defined Markov chain. We also derive the mean length of a busy period and
of an idle period for this model.

In the final section of the chapter we talk about multiservers systems. We
start with loss systems, in which arrivals, finding all servers busy, are
assumed to depart and as such are lost to the system. This leads to the
famous result known as Erlang’s loss formula, which presents a simple
formula for the number of busy servers in such a model when the arrival
process in Poisson and the service distribution is general. We then discuss
multiserver systems in which queues are allowed. However, except in the
case where exponential service times are assumed, there are very few explicit
formulas for these models. We end by presenting an approximation for the
average time a customer waits in queue in a k-server model which assumes
Poisson arrivals but allows for a general service distribution.

8.2. Preliminaries

In this section we will derive certain identities which are valid in the great
majority of queueing models.

8.2.1. Cost Equations

Some fundamental quantities of interest for queueing models are
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L, the average number of customers in the system;

Lq, the average number of customers waiting in queue;

W, the average amount of time a customer spends in the system;
W4, the average amount of time a customer spends waiting in queue.

A large number of interesting and useful relationships between the
proceding and other quantities of interest can be obtained by making use of
the following idea: Imagine that entering customers are forced to pay
money (according to some rule) to the system. We would then have the
following basic cost identity

average rate at which the system earns

= A, X average amount an entering customer pays 8.1)

where A, is defined to be average arrival rate of entering customers. That is,
if N(¢) denotes the number of customer arrivals by time ¢, then

Ay = limN—(Q
teo I

We now present an heuristic proof of Equation (8.1).

Heuristic Proof of Equation (8.1) Let T be a fixed large number. In
two different ways, we will compute the average amount of money the
system has earned by time 7. One one hand, this quantity approximately
can be obtained by multiplying the average rate at which the system earns
by the length of time 7. On the other hand, we can approximately compute
it by multiplying the average amount paid by an entering customer by the
average number of customers entering by time T (and this latter factor is
approximately 1, 7). Hence, both sides of Equation (8.1) when multiplied
by T are approximately equal to the average amount earned by 7. The
result then follows by letting 7 — oo *

By choosing appropriate cost rules, many useful formulas can be
obtained as special cases of Equation (8.1). For instance, by supposing that
each customer pays $1 per unit time while in the system, Equation 8.1)
yields the so-called Little’s formula,

L=1W (8.2)
* This can be made into a rigorous proof provided we assume that the queueing process is

regenerative in the sense of Section 7.5. Most models, including all the ones in this chapter,
satisfy this condition.
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This follows since, under this cost rule, the rate at which the system earns
is just the number in the system, and the amount a customer pays is just
equal to its time in the system.

Similarly if we suppose that each customer pays $1 per unit time while in
queue, then Equation (8.1) yields

Lo = AWy 8.3)

By supposing the cost rule that each customer pays $1 per unit time while in
service we obtain from Equation (8.1) that the

average number of customers in service = 1,E[S] (8.4)

where E[S] is defined as the average amount of time a customer spends in
service.

It should be emphasized that Equations (8.1) through (8.4) are valid for
almost all queueing models regardless of the arrival process, the number of
servers, or queue discipline.

8.2.2. Steady-State Probabilities

Let X(¢) denote the number of customers in the system at time ¢ and define
P,,n=0,by

P, = lim P{X(?) = nj}
[ Radl ]

where we assume the above limit exists. In other words, P, is the limiting
or long-run probability that there will be exactly # customers in the system.
It is sometimes referred to as the steady-state probability of exactly n
customers in the system. It also usually turns out that P, equals the (long-
run) proportion of time that the system contains exactly n customers. For
example, if P, = 0.3, then in the long-run, the system will be empty of
customers for 30 percent of the time. Similarly, P, = 0.2 would imply that
for 20 percent of the time the system would contain exactly one customer.*

Two other sets of limiting probabilities are {a,, n = 0} and {d,, n = 0},
where

a, = proportion of customers that find n

in the system when they arrive, and
d, = proportion of customers leaving behind n
in the system when the depart

* A sufficient condition for the validity of the dual interpretation of P, is that the queueing
process be regenerative.
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That is, P, is the proportion of time during which there are 7 in the system;
a, is the proportion of arrivals that find n; and d, is the proportion of
departures that leave behind »n. That these quantities need not always be
equal is illustrated by the following example.

Example 8.1 Consider a queueing model in which all customers have
service times equal to 1, and where the times between successive customers
are always greater than 1 [for instance, the interarrival times could be
uniformly distributed over (1, 2)]. Hence, as every arrival finds the system
empty and every departure leaves it empty, we have

ao = do = 1
However,
Py#=1

as the system is not always empty of customers. @

It was, however, no accident that a, equaled d, in the previous example.
That arrivals and departures always see the same number of customers is
always true as is shown in the next proposition.

Proposition 8.1 In any system in which customers arrive one at a time
and are served one at a time

a, =d,, nz0

Proof An arrival will see 7 in the system whenever the number in the
system goes from n to n + 1; similarly, a departure will leave behind n
whenever the number in the system goes from n + 1 to n. Now in any
interval of time T the number of transitions from n to » + 1 must equal to
within 1 the number from n + 1 to n. [For instance, if transitions from 2 to
3 occur 10 times, then 10 times there must have been a transition back to 2
from a higher state (namely, 3).] Hence, the rate of transitions from » to
n + 1 equals the rate from n + 1 to n; or, equivalently, the rate at which
arrivals find n equals the rate at which departures leave n. The result now
follows since the overall arrival rate must equal the overall departure rate
(what goes in eventually goes out.) ¢

Hence, on the average, arrivals and departures always see the same
number of customers. However, as Example 8.1 illustrates, they do not, in
general, see the time averages. One important exception where they do is in
the case of Poisson arrivals.
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Proposition 8.2 Poisson arrivals always see time averages. In
particular, for Poisson arrivals,

P, =a,

To understand why Poisson arrivals always see time averages, consider an
arbitrary Poisson arrival. If we knew that it arrived at time ¢, then the
conditional distribution of what it sees upon arrival is the same as the
unconditional distribution of the system state at time ¢. For knowing that an
arrival occurs at time ¢ gives us no information about what occurred prior
to £. (Since the Poisson process has independent increments, knowing that
an event occurred at time 7 does not affect the distribution of what occurred
prior to ¢.) Hence, an arrival would just see the system according to the
limiting probabilities.

Contrast the foregoing with the situation of Example 8.1 where knowing
that an arrival occurred at time / tells us a great deal about the past; in
particular it tells us that there have been no arrivals in (¢ — 1, #). Thus, in
this case, we cannot conclude that the distribution of what an arrival at time
t observes is the same as the distribution of the system state at time ¢.

For a second argument as to why Poisson arrivals see time averages, note
that the total time the system is in state n by time T is (roughly) P, T. Hence,
as Poisson arrivals always arrive at rate A no matter what the system state,
it follows that the number of arrivals in [0, T'] that find the system in state
n is (roughly) AP, T. In the long run, therefore, the rate at which arrivals
find the system in state n is AP, and, as A is the overall arrival rate, it follows
that AP,/A = P, is the proportion of arrivals that find the system in state n.

8.3. Exponential Models
8.3.1. A Single-Server Exponential Queueing System

Suppose that customers arrive at a single-server service station in accord-
ance with a Poisson process having rate A. That is, the times between
successive arrivals are independent exponential random variables having
mean 1/1. Each customer, upon arrival, goes directly into service if the
server is free and, if not, the customer joins the queue. When the server
finishes serving a customer, the customer leaves the system, and the next
customer in line, if there is any, enters service. The successive service
times are assumed to be independent exponential random variables having
mean 1/u.

The above is called the M/M/1 queue. The two M’s refer to the fact that
both the interarrival and service distributions are exponential (and thus
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memoryless, or Markovian), and the 1 to the fact that there is a single
server. To analyze it, we shall begin by determining the limiting prob-
abilities P,, for n = 0,1, .... To do so, think along the following lines.
Suppose that we have an infinite number of rooms numbered 0, 1, 2, ...,
and suppose that we instruct an individual to enter room n whenever there
are n customers in the system. That is, he would be in room 2 whenever
there are two customers in the system; and if another were to arrive, then he
would leave room 2 and enter room 3. Similarly, if a service would take
place he would leave room 2 and enter room 1 (as there would now be only
one customer in the system).

Now suppose that in the long-run our individual is seen to have entered
room 1 at the rate of ten times an hour. Then at what rate must he have left
room 1? Clearly, at this same rate of ten times an hour. For the total
number of times that he enters room 1 must be equal to (or one greater
than) the total number of times he leaves room 1. This sort of argument
thus yields the general principle which will enable us to determine the state
probabilities. Namely, for each n = 0, the rate at which the process enters
state n equals the rate at which it leaves state n. Let us now determine these
rates. Consider first state 0. When in state 0 the process can leave only by
an arrival as clearly there cannot be a departure when the system is empty.
Since the arrival rate is A and the proportion of time that the process is in
state 0 is P, it follows that the rate at which the process leaves state 0 is
AP,. On the other hand, state O can only be reached from state 1 via a
departure. ‘That is, if there is a single customer in the system and he
completes sérviee,\\then the system becomes empty. Since the service rate is
4 and the proportion-of time that the system has exactly one customer is P, ,
it follows that the rate at which the process enters state 0 is uP; .

Hence, from our rate-equality principle we get our first equation,

APy = pPy

Now consider state 1. The process can leave this state either by an arrival
(which occurs at rate A) or a departure (which occurs at rate u). Hence,
when in state 1, the process will leave this state at a rate of A + u.* Since the
proportion of time the process is in state 1 is P,, the rate at which the
process leaves state 1 is (A + u)P;. On the other hand, state 1 can be entered
either from state 0 via an arrival or from state 2 via a departure. Hence, the
rate at which the process enters state 1 is AP, + uP,. Because the reasoning

* If one event occurs at rate A and another occurs at rate u, then the total rate at which either
event occurs is A + u. Suppose one man earns $2 per hour and another earns $3 per hour; then
together they clearly earn $5 per hour.
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for other states is similar, we obtain the following set of equations:

State Rate at which the process leaves = rate at which it enters
0 A.Po - ﬂPI
nnz=1 A+ WP, = AP,_; + uP, 8.5)

The set of Equations (8.5) which balances the rate at which the process

enters each state with the rate at which it leaves that state is known as
balance equations.

In order to solve Equations (8.5), we rewrite them to obtain

A
Pl=;P0,

A A
Pn+l=;Pn+<Pn—;Pn—1>, nzl

Solving in terms of P, yields

P0=Po,
A
Pl_—"/—lPo,

P £P+<P—AP>—£P—<£>2P
2 1 1 ‘uO #1 u 0>
A A A (l>3
Pi=-P+ |(P,~~P |=—P,={-) P,
3 uz <2 'u]> ”2 u 0
A A A AN
Po=~P+ (P, ——-P)=-P;=|-)P,,
tne (n- i) <t (Y
A

l l y) n+1
Po==P,+(P,-=P_,)==P,=(=) P
+1 u < U l> U n (ﬂ) 0

To determine P, we use the fact that the P, must sum to 1, and thus

i o A\ P,
1= P = - = e—

LB n§o<u>P" 1= A/u
or

a=(2f(1-3). =i 6
u u
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Notice that for the preceding equations to make sense, it is necessary for
A/u to be less than 1. For otherwise Yo (4/1)" would be infinite and all
the P, would be 0. Hence, we shall assume that A/u < 1. Note that it is quite
intuitive that there would be no limiting probabilities if A > u. For suppose
that A > u. Since customers arrive at a Poisson rate A, it follows that the
expected total number of arrivals by time 7 is Az. On the other hand, what
is the expected number of customers served by time ¢? If there were always
customers present, then the number of customers served would be a Poisson
process having rate u since the time between successive services would be
independent exponentials having mean 1/u. Hence, the expected number of
customers served by time ¢ is no greater than uz; and, therefore, the
expected number in the system at time ¢ is at least

At — ut = (A — uy

Now if 4 > u, then the above number goes to infinity at ¢ becomes large.
That is, A/u > 1, the queue size increases without limit and there will be no
limiting probabilities. Note also that the condition A/u < 1 is equivalent to
the condition that the mean service time be less than the mean time between
successive arrivals. This is the general condition that must be satisfied for
limited probabilities to exist in most single-server queueing systems.

Now let us attempt to express the quantities L, Ly, W, and Wy in terms
of the limiting probabilities P,. Since P, is the long-run probability that the
system contains exactly n customers, the average number of customers in
the system clearly is given by

L= Y nP,

= e (8.7
where the last equation followed upon application of the algebraic identity

no_ X
P e

The quantities W, Wy, and Ly now can be obtained with the help of
Equations (8.2) and (8.3). That is, since 4, = 4, we have from Equation (8.7)
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that

A
I
I
|
o
)

I
I
|
:

Cou(u—2)’
,12
= — (8.8)
u(u — 2)
Example 8.2 Suppose that customers arrive at a Poisson rate of one per

every 12 minutes, and that the service time is exponential at a rate of one
service per 8 minutes. What are L and W?

Solution: Since 4 = {5, 4 = §, we have
L =2, W =24

Hence, the average number of customers in the system is two, and the
average time a customer spends in the system is 24 minutes.
Now suppose that the arrival rate increases 20 percent to A = 5. What
is the corresponding change in L and W? Again using Equations (8.7),
we get
L=4, W=240
Hence, an increase of 20 percent in the arrival rate doubled the average

number of customers in the system.
To understand this better, write Equations (8.7) as

Alu
L= 1 - A’
1/u
W=—"—
1~ A/u

From these equations we can see that when A/u is near 1, a slight increase
in A/u will lead to a large increase in L and W. @
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A Technical Remark We have used the fact that if one event occurs at
an exponential rate A, and another independent event at an exponential rate
u, then together they occur at an exponential rate 1 + u. To check this
formally, let T; be the time at which the first event occurs, and 7, the time
at which the second event occurs. Then

P{T;<t}=1-¢M,
P, <t}=1—¢e*

Now if we are interested in the time until either 7; or 7, occurs, then we are
interested in T = min(7;, 75). Now

P{T<t}=1-P{T>1t)
=1~ P{min(T}, T5) > ¢}

However, min(7;, T;) > ¢ if and only if both T; and T, are greater than f;
hence,

PiT=1}=1-P{T,>1,T,>1)
— 1 - P(T; > t}P\T, > 1]
=1-e M
=1 — g O+t

Thus, 7 has an exponential distribution with rate A + u, and we are
justified in adding the rates. €

Let W* denote the amount of time an arbitrary customer spends in the
system. To obtain the distribution of W*, we condition on the number in
the system when the customer arrives. This yields

P{W* < a) = ¥ P{W* < a|n in the system when he arrives}
n=0

X P{n in the system when he arrives} (8.9)

Now consider the amount of time that our customer must spend in the
system if there are already »n customers present when he arrives. If n = 0,
then his time in the system will just be his service time. When n = 1, there
will be one customer in service and n — 1 waiting in line ahead of our
arrival. The customer in service might have been in service for some time,
but due to the lack of memory of the exponential distribution (see Section
5.2), it follows that our arrival would have to wait an exponential amount
of time with rate u for this customer to complete service. As he also would
have to wait an exponential amount of time for each of the other n — 1
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customers in line, it follows, upon adding his own service time, that the
amount of time that a customer must spend in the system if there are
already n customers present when he arrives is the sum of #» + 1 independent
and identically distributed exponential random variables with rate 4. But it
is known (see Section 5.2.3) that such a random variable has a gamma
distribution with parameters (n + 1, y). That is,

P{W* < a|n in the system when he arrives}

a n
—ue (U0)
- ut
= L ue pr dt

Because
Pin in the system when he arrives} = P, (since Poisson arrivals)

¢

we have from Equation (8.9) and the preceding that

PW*<a= ¥ jaﬂe—w (_‘i’_')fd,<i>"<1 _ i)
n=0 J0 n: u u

‘ e w A . .
(u— Ne ™ ¥ Tdt (by interchanging)
0 n=0 .

= § (u — Ve MeMdt
0

X (u — Ve~ ¢ Mgy
0

=1 g M

In other words, W*, the amount of time a customer spends in the system,
is an exponential random variable with rate 4 — A. (As a check, we note
that E[W*]| = 1/(u — A) which checks with Equation (8.8) since
W = E[W*].)

Remark Another argument as to why W* is exponential with rate u — A
is as follows. If we let N denote the number of customers in the system as
seen by an arrival, then this arrival will spend N + 1 service times in the
system before departing. Now,

PIN+1=j}=PN=j-1=@W/w'Ad-iw, jz1
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In words, the number of services that have to be completed before our
arrival departs is a geometric random variable with parameter 1 — 1/u.
Therefore, after each service completion our customer will be the one
departing with probability 1 — A/u. Thus, no matter how long the customer
has already spent in the system, the probability he will depart in the next
h time units is uh + o(h), the probability that a service ends in that time,
multiplied by 1 — A/u. That is, the customer will depart in the next 4 time
units with probability (4 — A)k + o(h); which says that the hazard rate
function of W* is the constant u — A. But only the exponential has a
constant hazard rate, and so we can conclude that W* is exponential with
rate u — A.

8.3.2. A Single-Server Exponential Queueing System
Having Finite Capacity

In the previous model, we assumed that there was no limit on the number
of customers that could be in the system at the same time. However, in
reality there is always a finite system capacity N, in the sense that there can
be no more than N customers in the system at any time. By this, we mean
that if an arriving customers finds that there are already N customers
present, then he does not enter the system.

As before, we let P,, 0 < n < N, denote the limiting probability that
there are n customers in the system. The rate-equality principle yields the
following set of balance equations:

State Rate at which the process leaves = rate at which it enters
0 AP, = uP,
l=n=N-1 A+ WP, = AP,_| + uP, .,
N uPy = APyn_y

The argument for state 0 is exactly as before. Namely, when in state O,
the process will leave only via an arrival (which occurs at rate 1) and hence
the rate at which the process leaves state 0 is AP,. On the other hand, the
process can enter state 0 only from state 1 via a departure; hence, the rate
at which the process enters state 0 is 4P, . The equation for states n, where
1 < n < N, is the same as before. The equation for state N is different
because now state N can only be left via a departure since an arriving
customer will not enter the system when it is in state N; also, state NV can
now only be entered from state N — 1 (as there is no longer a state N + 1)
via an arrival.
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To solve, we again rewrite the preceding system of equations:

A

Pl =;P0,
A A

Pn+l=;Pn+ Pn_;Pn_l . l=n<N-1

A

PN=;PN—1

which, solving in terms of P,, yields

A

PI _;P09
A

By using the fact that Y7'_, P, = 1, we obtain

N /1)"
=P =
o nz=:0 <.u

_ N+1

-p 1 — (A

1 - A/u

or
_ -

[ 1 _ (A'/'u)N+l

and hence from Equation (8.10) we obtain

_ G/~ My

Pn—W—, I‘l=0,1,...,N

(8.10)

(8.11)

Note that in this case, there is no need to impose the condition that AMu<l.
The queue size is, by definition, bounded so there is no possibility of its

increasing indefinitely.
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As before, L may be expressed in terms of P, to yield

N
L= Y nP,

n=0

a-uw Ny
ST ™ n§0"<u>

which after some algebra yields

_ AL+ NA/w™M = (N + DA/
- (u — DA = @/uy™)

In deriving W, the expected amount of time a customer spends in the
system, we must be a little careful about what we mean by a customer.
Specifically, are we including those ‘‘customers’ who arrive to find the
system full and thus do not spend any time in the system? Or, do we just
want the expected time spent in the system by a customer that actually
entered the system? The two questions lead, of course, to different answers.
In the first case, we have A, = A; whereas in the second case, since the
fraction of arrivals that actually enter the system is 1 — Py, it follows that
Aa = A(1 — Py). Once it is clear what we mean by a customer, W can be
obtained from

L

(8.12)

L
w==
Aa

Example 8.3 Suppose that it costs cu dollars per hour to provide service
at a rate u. Suppose also that we incur a gross profit of A dollars for each
customer served. If the system has a capacity N, what service rate u
maximizes our total profit?

Solution: To solve this, suppose that we use rate u. Let us determine
the amount of money coming in per hour and subtract from this the
amount going out each hour. This will give us our profit per hour, and we
can choose u so as to maximize this.

Now, potential customers arrive at a rate A. However, a certain
proportion of them do not join the system; namely, those who arrive
when there are N customers already in the system. Hence, since Py is the
proportion of time that the system is full, it follows that entering
customers arrive at a rate of A(1 — Py). Since each customer pays $4, it
follows that money comes in at an hourly rate of A(1 — Py)A and since
it goes out at an hourly rate of cu, it follows that our total profit per
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hour is given by

Profit per hour = A(1 — P\)A — cu

_ W - Ap)
_ 240 - G/
- 1- (A./[l)N+l

For instance if N=2,1 =1, 4 = 10, ¢ = 1, then

10[1 — (1/u)?
Profit per hour = M -

1 - (1/p)
_ ot~
u-1

in order to maximize profit we differentiate to obtain
Q' =32 + 1)
(- 1)

The value of u that maximizes our profit now can be obtained by
equating to zero and solving numerically. ¢

d
~— [Profit per hour] = 10 1
du

In the previous two models, it has been quite easy to define the state of
the system. Namely, it was defined as the number of people in the system.
Now we shall consider some examples where a more detailed state space is
necessary.

8.3.3. A Shoeshine Shop

Consider a shoeshine shop consisting of two chairs. Suppose that an
entering customer first will go to chair 1. When his work is completed in
chair 1, he will go either to chair 2 if that chair is empty or else wait in
chair 1 until chair 2 becomes empty. Suppose that a potential customer will
enter this shop as long as chair 1 is empty. (Thus, for instance, a potential
customer might enter even if there is a customer in chair 2).

If we suppose that potential customers arrive in accordance with a
Poisson process at rate A, and that the service times for the two chairs are
independent and have respective exponential rates of u, and y,, then

(a) what proportion of potential customers enters the system?
(b) what is the mean number of customers in the system?
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(c) what is the average amount of time that an entering customer spends
in the system?

To begin we must first decide upon an appropriate state space. It is clear
that the state of the system must include more information than merely the
number of customers in the system. For instance, it would not be enough to
specify that there is one customer in the system as we would also have to
know which chair he was in. Further, if we only know that there are two
customers in the system, then we would not know if the man in chair 1 is
still being served or if he is just waiting for the person in chair 2 to finish.
To account for these points, the following state space, consisting of the five
states, (0, 0), (1, 0), (0, 1), (1, 1), and (b, 1), will be used. The states have the
following interpretation:

State Interpretation

(0,0) There are no customers in the system.

(1,0) There is one customer in the system, and he is in chair 1.

(0, 1) There is one customer in the system, and he is in chair 2.

(1,1) There are two customers in the system, and both are
presently being served.

(b, 1) There are two customers in the system, but the customer in
the first chair has completed his work in that chair and is
waiting for the second chair to become free.

It should be noted that when the system is in state (b, 1), the person in
chair 1, though not being served, is nevertheless ‘‘blocking’’ potential
arrivals from entering the system.

As a prelude to writing down the balance equations, it is usually worth-
while to make a transition diagram. This is done by first drawing a circle for
each state and then drawing an arrow labeled by the rate at which the
process goes from one state to another. The transition diagram for this
model is shown in Figure 8.1. The explanation for the diagram is as follows:

The arrow from state (0, 0) to state (1, 0) which is labeled A means that
when the process is in state (0, 0), that is, when the system is empty, then it
goes to state (1, 0) at a rate A, that is via an arrival. The arrow from (0, 1)
to (1, 1) is similarly explained.

When the process is in state (1, 0), it will go to state (0, 1) when the
customer in chair 1 is finished and this occurs at a rate u, ; hence the arrow
from (1, 0) to (0, 1) labeled u,. The arrow from (1, 1) to (b, 1) is similarly
explained.

When in state (b, 1) the process will go to state (0, 1) when the customer
in chair 2 completes his service (which occurs at rate u,); hence the arrow
from (b, 1) to (0, 1) labeled u,. Also when in state (1, 1) the process will
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Figure 8.1. A transition diagram.

go to state (1, 0) when the man in chair 2 finishes and hence the arrow from
(1,1) to (1, 0) labeled u, . Finally, if the process is in state (0, 1), then it will
go to state (0, 0) when the man in chair 2 completes his service, hence the
arrow from (0, 1) to (0, 0) labeled u,.

Because there are no other possible transitions, this completes the
transition diagram.

To write the balance equations we equate the sum of the arrows
(multiplied by the probability of the states where they originate) coming
into a state with the sum of the arrows (multiplied by the probability of the
state) going out of that state. This gives

State Rate that the process leaves = rate that it enters

0,0) APy = pi3 Py,

1,0 M1 Py = APgo + U Py
o, 1 (A + WPy, = p1 Pyo + p2 Py
14,1 (11 + Uz)Pry = APy,

%, 1) Uz Pyy = puy Py

These along with the equation
P00+P10+P01+P11+Pb1=1

may be solved to determine the limiting probabilities. Though it is easy to
solve the preceding equations, the resulting solutions are quite involved and
hence will not be explicitly presented. However, it is easy to answer our
questions in terms of these limiting probabilities. First, since a potential
customer will enter the system when the state is either (0, 0) or (0, 1), it
follows that the proportion of customers entering the system is Pyy + Py, -
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Secondly, since there is one customer in the system whenever the state is
(0, 1) or (1, 0) and two customers in the system whenever the state is (1, 1)
or (b, 1), it follows that L, the average number in the system, is given by

L =Py, +Py+ 2P, + Py

To derive the average amount of time that an entering customer spends in
the system, we use the relationship W = L/1,. Since a potential customer
will enter the system when in state (0,0) or (0, 1), it follows that
Aa = A(Pyy + Py,) and hence

Py, + Py + 2Py + Pyy)
APy + Pyy)

W:

Example 8.4 (a)If A =1, u, = 1, u, = 2, then calculate the preceding
quantities of interest.
M®) If A =1, u, =2, u, = 1, then calculate the preceding.
Solution: (a) Solving the balance equations yields
Poo=%a P10=J3%-, P11=-3%, P01=§67‘, Pbl='317'

Hence,
— — 28
L= %";Ls W= %

(b) Solving the balance equations yields

1 Pb1='121_r P01=‘131'

'H

Poo='131‘: P10=‘121‘: P, =

]

Hence,

8.3.4. A Queueing System with Bulk Service

In this model, we consider a single-server exponential queueing system in
which the server is able to serve two customers at the same time. Whenever
the server completes a service, he then serves the next two customers at
the same time. However, if there is only one customer in line, then he
serves that customer by himself. We shall assume that his service time is
exponential at rate 4 whether he is serving one or two customers. As usual,
we suppose that customers arrive at an exponential rate A. One example of
such a system might be an elevator or a cable car which can take at most two
passengers at any time.

It would seem that the state of the system would have to tell us not only
how many customers there are in the system, but also whether one or two
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@00 -

are presently being served. However, it turns out that we can solve the
problem easier not by concentrating on the number of customers in the
system, but rather on the number in queue. So let us define the state as
the number of customers waiting in queue, with two states when there is no

one in queue. That is, let us have as a state space 0', 0, 1, 2, ..., with the
interpretation
State Interpretation
0’ No one in service
0 Server busy; no one waiting
n,n>0 n customers waiting

~The transition diagram is shown in Figure 8.2 and the balance equations are

State Rate at which the process leaves = rate at which it enters
o APy = uP,
0 (A + WPy = APy + pP, + uP,
nn=1 A+ P, =AP,_, + ubP,,,

Now the set of equations
A+ wP, = AP,_, + uP,,, n=12,... (8.13)
has a solution of the form
B, = "R,
To see this, substitute the preceding in Equation (8.13) to obtain

A + wa"Py = Aa™ Py + pa™t?P,
or
A +wa=21+ua?

Solving this for « yields the three roots:

-1 -1+ 4A/u
a=1, a = 3 . and

-1+ 1 +4i/u
o =
2
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As the first two are clearly not possible, it follows that

N1 +4A/u— 1
o = —
2
Hence,
P" = anP(),
u
PO' =IP0

where the bottom equation follows from the first balance equation. (We can
ignore the second balance equation as one of these equations is always
redundant.) To obtain P,, we use

P0+Po!+ ZPn=1

n=1
or
Po[l + 24 Za"] =1
A n=1
or
1 U
- 1
Po[l o + A:I
or
Al -a)
Po=77 u(l — o)
and thus
= oz",l(l—a), n=0
A+ul - @
(8.14)
__ud-0a)
T A+ ull - a)
where
N1 +44/p -1
B 2

Note that for the preceding to be valid we need @ < 1, or equivalently
A/u < 2, which is intuitive since the maximum service rate is 2u, which must
be larger than the arrival rate A to avoid overloading the system.

All the relevant quantities of interest now can be determined. For
instance, to determine the proportion of customers that are served alone,
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we first note that the rate at which customers are served alone is
APy + uP;, since when the system is empty a customer will be served alone
upon the next arrival and when there is one customer in queue he will be
served alone upon a departure. As the rate at which customers are served is
A, it follows that

AP, + uP,
proportion of customers that are served alone = —0_/1#—_1
u
= PO' + IPI
Also,
Ly= Y nP,
Al - o
o +(u(1 f)a),,= na"  from Equation (8.14)
- o by algebraic identity E no = —2%
(1 -+ u(l - )] 1 T
and
L N
Wo = -5
W= W, + 1
Q u ’
L=iw

8.4. Network of Queues
8.4.1. Open Systems

Consider a two-server system in which customers arrive at a Poisson rate A
at server 1. After being served by server 1 they then join the queue in front
of server 2. We suppose there is infinite waiting space at both servers. Each
SErver serves one customer at a time with server / taking an exponential
time with rate y; for a service, i = 1,2. Such a system is called a tandem or
sequential system (see Figure 8.3).

To analyze this system we need to keep track of the number of customers
at server 1 and the number at server 2. So let us define the state by the pair
(n, m)—meaning that there are n customers at server 1 and m at server 2.
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Server Server
! 2 _\
leoves
system
Figure 8.3. A tandem queue.
The balance equations are
State Rate that the process leaves = rate that it enters
0,0 APy o = U Py 1
n,0;n>0 (A + udPyo = p2Pny + APy 0
0,m;m>0 (A + u)Po,m = 2Py ms1 + U1 Py
n, m;nm >0 A +p+ .uz)Pn,m = tuZPn,m+l + ﬂan+l,m-—l
+ APy i m (8.15)

Rather than directly attempting to solve these (along with the equation
Y n,mPam = 1) we shall guess at a solution and then verify that it indeed
satisfies the preceding., We first note that the situation at server 1 is just as
in an M/M/1 model. Similarly, as it was shown in Section 6.6 that the
departure process of an M/M/1 queue is a Poisson process with rate 4, it
follows that what server 2 faces is also an M/M/1 queue. Hence, the
probability that there are n customers at server 1 is

Pin at server 1} = <—£> < - i)
My Uy
" A

P{m at server 2} = <—é—> <1 - ——>
27} )

Now if the numbers of customers at servers 1 and 2 were independent
random variables, then it would follow that

i
My My \M2 M

To verify that P, , is indeed equal to the preceding (and thus that the
number of customers at server 1 is independent of the number at server 2),
all we need do is verify that the preceding satisfies the set of Equations
(8.15)—this suffices since we know that the P, ,, are the unique solution of
Equations (8.15). Now, for instance, if we consider the first equation of
(8.15), we need to show that

(-5)0-5) (-2 -2)

and, similarly,
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which is easily verified. We leave it as an exercise to show that the P, ,,, as
given by Equation (8.16), satisfy all of the Equations (8.15), and are thus
the limiting probabilities.

From the preceding we see that L, the average number of customers in the
system, is given by

L

Y (n+ mP,,

n,m

() () vz (- )

Remarks (i) The result (Equation 8.15) could have been obtained as a
direct consequence of the time reversibility of an M/M/1 (see Section 6.6).
For not only does time reversibility imply that the output from server 1 is a
Poisson process, but it also implies (Exercise 26 of Chapter 6) that the
number of customers at server 1 is independent of the past departure times
from server 1. As these past departure times constitute the arrival process to
server 2, the independence of the numbers of customers in the two systems
follows.

(ii) Since a Poisson arrival sees time averages, it follows that in a tandem
queue the numbers of customers an arrival (to server 1) sees at the two servers
are independent random variables. However, it should be noted that this does
not imply that the waiting times of a given customer at the two servers are
independent. For a counter example suppose that 4 is very small with respect
to 4, = y,; and thus almost all customers have zero wait in queue at both

“servers. However, given that the wait in queue of a customer at server 1 is
positive, his wait in queue at server 2 also will be positive with probability
at least as large as 3 (why?). Hence, the waiting times in queue are not
independent. Remarkably enough, however, it turns out that the total times
(that is, service time plus wait in queue) that an arrival spends at the two
servers are indeed independent random variables.

The preceding result can be substantially generalized. To do so, consider a
system of k servers. Customers arrive from outside the system to server i,
i=1,..., k,in accordance with independent Poisson process at rate r;; they
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then join the queue at i until their turn at service comes. Once a customer is
served by server i, he then joins the queue in front of server j, j = 1,...,k,
with probability P;. Hence, ¥ }‘= 1Py;<1,and 1 -% }‘= 1 P; represents
the probability that a customer departs the system after being served by
server i.

If we let 4; denote the total arrival rate of customers to server J, then the
A; can be obtained as the solution of

k

A.J=rj+ Ell})lj’ i=1,...,k (8.17)
i=1

Equation (8.17) follows since 7; is the arrival rate of customers to j coming
from outside the system and, as A; is the rate at which customers depart
server i (rate in must equal rate out), A,P; is the arrival rate to j of those
coming from server i.
It turns out that the number of customers at each of the servers is
independent and of the form
. A\ A
P{n customers at server j} = (—’> (1 - J) , n=l1
7 Y
where u; is the exponential service rate at server j and the 4; are the solution
to Equation (8.17). Of course, it is necessary that Ai/u; < 1 for all j.
To prove this, we first note that it is equivalent to asserting that the limiting
probabilities P(n,, n,, ..., ng) = Pin;at server j, j = 1, ..., k} are given by

k n; )
P(ny,ngy,...,ne) = [1 (—)1> <1 - le) (8.18)

i=1\H 4

which can be verified by showing that it satisfies the balance equations for
this model.
The average number of customers in the system is

k

Y average number at server j
Jj=1

vy 4

=il — A

L

The average time a customer spends in the system can be obtained from
L = AW with A = £5_,r;. (Why not 4 = Lj_; 4;?) This yields

- Z}=l’1j/(ﬂj - Aj)
Zf::lrj

W
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Remarks The result embodied in Equation (8.18) is rather remarkable
in that it says that the distribution of the number of customers at server i
is the same as in an M/M/1 system with rates A; and y;. What is
remarkable is that in the network model the arrival process at node i/ need
not be a Poisson process. For if there is a possibility that a customer
may visit a server more than once (a situation called feedback), then the
arrival process will not be Poisson. An easy example illustrating this is to
suppose that there is a single server whose service rate is very large with
respect to the arrival rate from outside. Suppose also that with probability
p = 0.9 a customer upon completion of service is fed back into the system.
Hence, at an arrival time epoch there is a large probability of another
arrival in a short time (namely, the feedback arrival); whereas at an
arbitrary time point there will be only a very slight chance of an arrival
occurring shortly (since A is so very small). Hence, the arrival process does
not possess independent increments and so cannot be Poisson. In fact even
though it is straightforward to verify Equation (8.18) there does
not appear to be, at present, any simple explanation as to why it is, in
fact, true.

Thus, we see that when feedback is allowed the steady-state probabilities
of the number of customers at any given station have the same distribution
as in an M/M/1 model even though the model is not M/M/1. (Presumably
such quantities as the joint distribution of the number at the station at two
different time points will not be the same as for an M/M/1.)

Example 8.5 Consider a system of two servers where customers from
outside the system arrive at server 1 at a Poisson rate 4 and at server 2
at a Poisson rate 5. The service rates of 1 and 2 are respectively 8 and 10.
A customer upon completion of service at server 1 is equally likely to go to
server 2 or to leave the system (i.e., P;; = 0, P, = 1); whereas a departure
from server 2 will go 25 percent of the time to server 1 and will depart
the system otherwise (i.e., P,; = %, P,, = 0). Determine the limiting
probabilities, L, and W.

Solution: The total arrival rates to servers 1 and 2—call them A, and
A,—can be obtained from Equation (8.17). That is, we have
A’l = 4 + %‘Az,

}.2 = 5 + %A’l
implying that
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Hence,
P{n at server 1, m at server 2} = (3)"}+(})"}
= 73"
and
6 8
L=3"¢*1w0-3""
L 7
W = —9' = § L

8.4.2. Closed Systems

The queueing systems described in Section 8.4.1 are called open systems
since customers are able to enter and depart the system. A system in which
new customers never enter and existing ones never depart is called a closed
system.

Let us suppose that we have m customers moving among a system of k
servers. When a customer completes service at server i, she then joins the
queue in front of server j, j = 1, ..., k, with probability P;, where we now
suppose that ¥ ,’-‘= 1Pj=1foralli=1,..., k. Thatis, P = [P;] is Markov
transition probability matrix, which we shall assume is irreducible. Let
n = (n,, ..., M) denote the stationary probabilities for this Markov chain;
that is, = is the unique positive solution of

k
nj = Z ni})ij ’
. =t (8.19)

j=1
If we denote the average arrival rate (or equivalently the average service

completion rate) at server j by A,(J), j =1, ..., k then, analogous to
Equation (8.17), the A,,(/) satisfy

k
A’m(]) = E A’m(l)})u
i=1
Hence, from (8.19) we can conclude that
Am(J) = Apm;,  j=1,2,...,k (8.20)

where

k
In= T An() (8.21)
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From Equation (8.21), we see that 4,, is the average service completion rate
of the entire system, that is, it is the system throughput rate.*
If we let P, (n,, n,, ..., n;) denote the limiting probabilities
P, (ny,ny, ..., ny) = P{n; customers at server j, j = 1, ..., k}

then, by verifying that they satisfy the balance equation, it can be shown
that

k k
Km H (A'm(./)/.u ')nj, if E hy=m
Ba(ny,ny,...om) = Jj=1 ! Jj=1 !
0, otherwise

But from Equation (8.20) we thus obtain that

k k
Co Il ®j7u)y, i L nj=m
Jj=1 Jj=1

B.(ny,ny,...,n) = (8.22)
0, otherwise
where
k ~1
Cn = Y I @y (8.23)
ni_;,nj;t:’,: Jj=1

Equation (8.22) is not as useful as one might suppose, for in order to utilize
it we must determine the normalizing constant C,, given by Equation (8.23)
which requires summing the products H};, (m;/u;)" over all the feasible

m
vectors this is only computationally feasible for relatively small values
of m and k.

We will now present an approach that will enable us to determine
recursively many of the quantities of interest in this model without first
computing the normalizing constants. To begin, consider a customer who
has just left server / and is headed to server j, and let us determine the
probability of the system as seen by this customer. In particular, let us
determine the probability that this customer observes, at that moment,
n, customers at server /, /=1,...,k, ¥¥ ,n =m —~ 1. This is done

. m+ k-1
vectors (ng, ..., ng): E};lnj = m. Hence, since there are < )

* We are using the notation of A,,(/) and A, to indicate the dependence on the number
of customers in the closed system. This will be used in recursive relations we will develop.
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as follows:
P{customer observes n; at server /,
1=1,...,k|customer goes from i to j}

_ Pfstate is (ny, ..., m; + 1,...,n;, ..., ng), customer goes from i to j}
B P{customer goes from i to j}

_ P,,,(nl,...,n,-+l,...,n_,-,...,nk)/l,-P,j
Logn=m—1Fm(fys oo + Lo m)uPy

_ @®i/u) 51 (/)
K

k
= C Il (/up™
j=1

from (8.22)

where C does not depend on n,,...,n,. But because the above is a
probability density on the set of vectors (ny, ..., ny), ZJ’-‘=1 nj=m-—1,
it follows from (8.22) that it must equal P,_,(n,, ..., n,). Hence,

P{customer observes n; at server /,

=1, ..., k|customer goes from i to j}

k
= m-—l(nl,---ank)s E n,=m-— 1 (8.24)
i=1
As (8.24) is true for all i, we thus have proven the following proposition,
known as the arrival theorem.

Proposition 8.3 (The Arrival Theorem). In the closed network system
with m customers, the system as seen by arrivals to server j is distributed as
the stationary distribution in the same network system when there are only
m — 1 customers.

Denote by L,,(j) and W,,(j) the average number of customers and the
average time a customer spends at server j when there are m customers in
the network. Upon conditioning on the number of customers found at
server j by an arrival to that server, it follows that

1 + E,,[number at server j as seen by an arrival]
Uy

Wal)) =

_ 1+ L) (8.25)

Hy
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where the last equality follows from the arrival theorem. Now when there
are m — 1 customers in the system, then, from Equation (8.20), 4,,_;(/),
the average arrival rate to server j;, satisfies

Amo1(J) = Aoy

Now, applying the basic cost identity Equation (8.1) with the cost rule being
that each customer in the network system of m — 1 customers pays one unit
time while at server j, we obtain

Lypr(J) = Ay W1 (J) (8.26)
Using Equation (8.25), this yields
1+ 'lm—-lanm-l(j)
Hj
Also using the fact that E}‘:lL,,,_l( Jj) = m — 1 (why?) we obtain, from
Equation (8.26):

Wn()) = (8.27)

k
m-—1=2,_ Z iWn-1(J)
or a
Am-1 = —k—m—:l— (8.28)
Tis1 iWn_ ()
Hence, from Equation (8.27), we obtain the recursion
W) = ~ + 22 DT W1 () (8.29)

B W Ef=1 ;W1 (i)

Starting with the stationary probabilities n;, j = 1, ..., k, and W{(j) = 1/4;
we can now use Equation (8.29) to determine recursively W,(j),
Wi(J)), ..., W,(Jj). We can then determine the throughput rate 1,, by using
Equation (8.28), and this will determine L,,(/) by Equation (8.26). This
recursive approach is called mean value analysis.

Example 8.6 Consider a k-server network in which the customers move
in a cyclic permutation. That is,

Bia,=1 i=12,...,k-1, By =1

Let us determine the average number of customers at server j when there
are two customers in the system. Now, for this network

n; = 1/k, i=1,...,k
and as

. 1
wi(Jj) =—
H;
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we obtain from Equation (8.29) that

1 (1701 /w;)
W(Jj) = y + W TF L (/R
1 1

= + ——
Hj /1} f=1 VYV
Hence, from Equation (8.28),

2 2k

2= E T E 1
- Wil — Y ——
Igl k 0 !gl <H1 uiLioy 1/#i>

and finally, using Equation (8.26),

L,(J)

1 ,
Ay E Wa(j)

o5+ e )
_ 1] #12' Yo/ *

i <1 N 1 >
=1 \M #12 Ef=1 1/y;

Another approach to learning about the stationary probabilities specified
by Equation (8.22), which finesses the computational difficulties of
computing the constant C,,, is to use the Gibbs sampler of Section 4.9 to
generate a Markov chain having these stationary probabilities. To begin,
note that since there are always a total of m customers in the system,
Equation (8.22) may equivalently be written as a joint mass function of the
numbers of customers at each of the servers 1, ..., k — 1, as follows:

k-1

Pp(ny, ooy ie_y) = Cru(m/ue)™ 2" 11 (/0"
j=1

k-1

k-1
=K [I (@™, Y n<m
j=1 j=1

where a; = (m;ue)/(mepty), j=1,...,k — 1. Now, if N =Ny, ..., Ne_y)
has the preceding joint mass function then,
P{N;=n|Ny=ny,...;N;_1 = ny_1, Nig1 = Ry ooy Ny = gy}
- P.(ny,...,ni_ys Ny Nipqy oy Ng_y)
Eer(nh T IS FY FS PR nk—l)

=Cal!, n=m- Y n;
Jji
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It follows from the preceding that we may use the Gibbs sampler to
generate the values of a Markov chain whose limiting probability mass
function is P, (n,, ..., n,_,) as follows:

1. Let (ny, ..., ng_;) be arbitrary nonnegative integers satisfying
izin < m.

2. Generate a random variable 7 that is equally likely to be any of
1,..., k-1,

3. If I'=1i, set s=m — Y;.;n;, and generate the value of a random
variable X having probability mass function

P{X = n} = Ca}, n=0,...,s
4. Let n; = X and go to step 2.

The successive values of the state vector (ny,...,n,_,,m — E}‘;} n;)
constitute the sequence of states of a Markov chain with the limiting
distribution P, . All quantities of interest can be estimated from this
sequence. For instance, the average of the values of the jth coordinate of
these vectors will converge to the mean number of individuals at station Js
the proportion of vectors whose jth coordinate is less than r will converge
to the limiting probability that the number of individuals at station j is less
than r, and so on. :

8.5. The System M/G/1

8.5.1. Preliminaries: Work and Another Cost Identity

For an arbitrary queueing system, let us define the work in the system at any
time ¢ to be the sum of the remaining service times of all customers in the
system at time ¢. For instance, suppose there are three customers in the
system—the one in service having been there for three of his required five
units of service time, and both people in queue having service times of six
units. Then the work at that time is 2 + 6 + 6 = 14, Let V denote the
(time) average work in the system.
Now recall the fundamental cost Equation (8.1), which states that the

average rate at which the system earns

= A, X average amount a customer pays
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and consider the following cost rule: Each customer pays at a rate of
y/unit time when his remaining service time is y, whether he is in queue or
in service. Thus, the rate at which the system earns is just the work in the
system; so the basic identity yields that

V = A,E[amount paid by a customer]

Now, let S and Wg denote respectively the service time and the time a given
customer spends waiting in queue. Then, since the customer pays at a con-
stant rate of S per unit time while he waits in queue and at a rate of § — x
after spending an amount of time x in service, we have

s
E[amount paid by a customer] = E [ SWg + j S -x dx]
0

and thus
A.E[S?]

V= LEISW] + =~

(8.30)

It should be noted that the preceding is a basic queueing identity [like
Equations (8.2)-(8.4)] and as such valid in almost all models. In addition,
if a customer’s service time is independent of his wait in queue (as is usually,
but not always the case),! then we have from Equation (8.30) that

A E[S7]

V= LEISIWg + ==

(8.31)

8.5.2. Application of Work to M/G/1

The M/G/1 model assumes (i) Poisson arrivals at rate A; (ii) a general
service distribution; and (iii) a single server. In addition, we will suppose
that customers are served in the order of their arrival.

Now, for an arbitrary customer in an M/G/1 system,

Customer’s wait in queue = work in the system when he arrives (8.32)

this follows since there is only a single server (think about it!). Taking
expectations of both sides of Equation (8.32) yields

Wq = average work as seen by an arrival

But, due to Poisson arrivals, the average work as seen by an arrival will
equal V, the time average work in the system. Hence, for the model M/G/1 .

! For an example where it is not true, see Section 8.6.2.
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The preceding in conjunction with the identity
AE[SY]
2
yields the so-called Pollaczek-Khintchine formula,

_ AE[S?]
2(1 — AE[S])

where E[S] and E[S?] are the first two moments of the service distribution.
The quantities L, Ly, and W can be obtained from Equation (8.33) as

V = AE[S]W, +

A (8.33)

3 _ AE[SY

fo= e = i uEs)’
B _ AE[S%

W= Wo + EIS] = 55— mres + EIS], (8.34)
_ ... AEISY

L= }.W—m—]—)‘*'AE[S]

Remarks (i) For the preceding quantities to be finite, we need
AE[S] < 1. This condition is intutitive since we know from renewal theory
that if the server was always busy, then the departure rate would be 1/E[S]
(see Section 7.3), which must be larger than the arrival rate A to keep things
finite.

(ii) Since E[S?] = Var(S) + (E[S])?, we see from Equations (8.33) and
(8.34) that, for fixed mean service time, L, Lo, W, and Wy all increase as
the variance of the service distribution increases.

(iii) Another approach to obtain Wy, is presented in Exercise 34.

8.5.3. Busy Periods

The system alternates between idle periods (when there are no customers in
the system, and so the server is idle) and busy periods (when there is at least
one customer in the system, and so the server is busy).

Let us denote by I, and B,,, respectively, the lengths of the nth idle and
the nth busy period, n = 1. Hence, in the first ¥ 7., (I; + B;) time units the
server will be idle for a time Y 7., [;, and so the proportion of time that the
server will be idle, which of course is just P,, can be expressed as

P, = proportion of idle time

. L+ +1,
= lim
n—'w11+"'+IH+B1+"'+Bn
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Now it is easy to see that the I}, I,, ... are independent and identically
distributed as are the B, B,, .... Hence, by dividing the numerator and the
denominator of the right side of the above by n, and then applying the
strong law of large numbers, we obtain

P = lim Iy + - + L)/n
O mew (U + -+ 1)/n+ (B + - + B)/n

_ ElN
" E[I] + E[B]

where I and B represent idle and busy time random variables.

Now I represents the time from when a customer departs and leaves the
system empty until the next arrival. Hence, from Poisson arrivals, it follows
that 7 is exponential with rate A, and so

1
E[Il = - (8.36)
A
To compute Py, we note from Equation (8.4) (obtained from the funda-
mental cost equation by supposing that a customer pays at a rate of one per
unit time while in service) that

(8.35)

average number of busy servers = 1E[S]
However, as the left-hand side of the above equals 1 ~ P, (why?), we have
Py=1- AE[S] (8.37)
and, from Equations (8.35)-(8.37),

1/
1-AE[S]= ————
IS1 1/A + E[B]
or

E[S]

1 - AE[S]

Another quantity of interest is C, the number of customers served in a
busy period. The mean of C can be computed by noting that, on the
average, for every E[C] arrivals exactly one will find the system empty
(namely, the first customer in the busy period). Hence,

_ 1

~ E[C]

and, as @, = Py = 1 — AE[S] because of Poisson arrivals, we see that
1

1 — AEI[S]

E[B] =

ao

E[C] =
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8.6. Variations on the M/G/1
8.6.1. The M/G/1 with Random-Sized Batch Arrivals

Suppose that, as in the M/G/1, arrivals occur in accordance with a Poisson
process having rate 4. But now suppose that each arrival consists not of a
single customer but of a random number of customers. As before there is a
single server whose service times have distribution G.

Let us denote by «;, j = 1, the probability that an arbitrary batch consists
of j customers; and let N denote a random variable representing the size of
a batch and so P{N = j} = a;. Since 4, = AE(N), the basic formula for
work [Equation (8.31)] becomes

(8.38)

2
V= /IE[N][E(S)WQ + 26 )}

2

To obtain a second equation relating V to Wq, consider an average
customer. We have that

his wait in queue = work in system when he arrives
+ his waiting time due to those in his batch

Taking expectations and using the fact that Poisson arrivals see time
averages yields

Wq = V + E[waiting time due to those in his batch]
=V + E[Wg] (8.39)

Now, E(Wp) can be computed by conditioning on the number in the batch,
but we must be careful. For the probability that our average customer
comes from a batch of size j is not «;. For «; is the proportion of batches
which are of size j, and if we pick a customer at random, it is more likely
that he comes from a larger rather than a smaller batch. (For instance,
suppose a; = o909 = %, then half the batches are of size 1 but 100/101 of
the customers will come from a batch of size 100!)

To determine the probability that our average customer came from a
batch of size j we reason as follows: Let M be a large number. Then of the
first M batches approximately Mq; will be of size j, j = 1, and thus there
would have been approximately jMc; customers that arrived in a batch of
size j. Hence, the proportion of arrivals in the first M batches that were
from batches of size j is approximately jMa;/} ; jMe;. This proportion
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becomes exact as M — o, and so we see that
jaj

;A

proportion of customers from batches of size j =

_ Joj
~ E[N]

447

We are now ready to compute E(Wy), the expected wait in queue due to

others in the batch:
jaj
E[N]

E[W3] = ¥ E[Wjg| batch of size j)
J

(8.40)

Now if there are j customers in his batch, then our customer would have to
wait for i — 1 of them to be served if he was ith in line among his batch
members. As he is equally likely to be either 1st, 2nd, ..., or jth in line

we see that

J 1
E[Wjg | batch is of size j] = ¥ (i — 1)E(S);
i=1

j-1
=——UF
2 [S]
Substituting this in Equation (8.40) yields
E[S] ) )
= —— -_— .
EWs] = 5507 £ U = Dig

_ E[SIEIN?] — EIN])
h 2E[N]

and from Equations (8.38) and (8.39) we obtain

w. _ EISIE [N — E[N1)/2E[N] + AE[N]E[S?)/2
Q- 1 — AE[N]E[S]

Remarks (i) Note that the condition for Wy to be finite is that

1
AE(N) < E_[Si

which again says that the arrival rate must be less than the service rate

(when the server is busy).
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(ii) For fixed value of E[N], Wy is increasing in Var[/V], again indicating
that “‘single-server queues do not like variation.”’
(iii) The other quantities L, Ly, and W can be obtained by using

W = Wy + EIS],
L = A, W = AEIN]W,
Lo = AEIN]W,

8.6.2. Priority Queues

Priority queuing systems are ones in which customers are classified into
types and then given service priority according to their type. Consider the
situation where there are two types of customers, which arrive according to
independent Poisson processes with respective rates A, and A,, and have
service distributions G; and G,. We suppose that type 1 customers are given
service priority, in that service will never begin on a type 2 customer if a type
1 is waiting. However, if a type 2 is being served and a type 1 arrives, we
assume that the service of the type 2 is continued until completion. That is,
there is no preemption once service has begun.

Let Wé denote the average wait in queue of a type / customer, i=1,2.
Our objective is to compute the Wy,

First, note that the total work in the system at any time would be exactly
the same no matter what priority rule was employed (as long as the server
is always busy whenever there are customers in the system). This is so since
the work will always decrease at a rate of one per unit time when the
server is busy (no matter who is in service) and will always jump by the
service time of an arrival. Hence, the work in the system is exactly as
it would be if there was no priority rule but rather a first-come, first-served
(called FIFO) ordering. However, under FIFO the above model is just
M/G/1 with

A=A+ 4
A A,
Ge = 3G + 3 Go) (8.41)

which follows since the combination of two independent Poisson processes
is itself a Poisson process whose rate is the sum of the rates of the
component processes. The service distribution G can be obtained by
conditioning on which priority class the arrival is from—as is done in
Equation (8.41).
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Hence, from the results of Section 8.5, it follows that V, the average work
in the priority queueing system, is given by

_ AE[S}
" 2(1 - AE[S))

_ M(AL/AEISH + (A/AEIS3)
T 2[1 — A((A/AE[S] + (A2/AE[S)]
ME[SH + A,E[S]]

= 8.42
20 — LES] - LEISD (8.42)

vV

where S; has distribution G;, i = 1, 2.

Continuing in our quest for Wé, let us note that S and W§, the service
and wait in queue of an arbitrary customer, are not independent in the
priority model since knowledge about S gives us information as to the type
of customer which in turn gives us information about W§. To get around
this we will compute separately the average amount of type 1 and type 2
work in the system. Denoting V' as the average amount of type i work we
have, exactly as in Section 8.5.1,

ME[S?]

Vi= LE[SIW§ + B

i=12 (8.43)

If we define
Ve = ME[SIWE,

Vi= ;L,.Ez[s,?]

then we may interpret Vé as the average amount of type i work in queue,
and V{ as the average amount of type / work in service (why?).

Now we are ready to compute Wé . To do so, consider an arbitrary type
1 arrival. Then

his delay = amount of type 1 work in the system when he arrives
+ amounts of type 2 work in service when he arrives

Taking expectations and using the fact that Poisson arrivals see time
averages yields

Wi=v'+ v

MEIS]] + A,E[S7]

= LE[S{I1W§ + 3 5

(8.44)
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or
W = ME[S}] + 2, E[S3]
2(1 - LE[S1D
To obtain W3 we first note that since ¥ = V! + V2, we have from
Equations (8.42) and (8.43) that
MEISH + A, E[S7]
2(1 - L,E[S,] — AL, E[S,])

(8.45)

= LE[SIWg + ME[S,]W]

MEISH  AE[SAH
tTn Tt

= Wo+ LE[S]W§  [from Equation (8.44)]

Now, using Equation (8.45), we obtain

2 ME[SH + A,E[S7] 1 _ 1
L EIS:IWq = 2 1 LES] - LES,]  1-ALEBS]

or
w2 — AIE[SIZ] + AzElszzl
Q7 2(1 - MEIS)] - LEIS)( - A4,E[S,])

(8.46)

Remarks (i) Note that from Equation (8.45), the condition for W4 to
be finite is that A, E[S;] < 1, which is independent of the type 2 parameters.
(Is this intuitive?) For Wé to be finite, we need, from Equation (8.46), that

ME[S)] + L,E[S;) < 1

Since the arrival rate of all customers is A = A4, + A,, and the average
service time of a customer is (1,/4)E[S,] + (4,/A)E[S,], the preceding
condition is just that the average arrival rate be less than the average
service rate.

(ii) If there are n types of customers, we can solve for V7, j = 1,...,n;
in a similar fashion. First, note that the total amount of work in the system
of customers of types 1, ...,/ is independent of the internal priority rule
concerning types 1, ..., j and only depends on the fact that each of them is
given priority over any customers of types j + 1,...,n. (Why is this?
Reason it out!) Hence, V! + ... + V7 is the same as it would be if types
1,...,j were considered as a single type 1 priority class and types
J + 1,...,n as a single type II priority class. Now, from Equations (8.43)
and (8.45),

1_ MEI[SE] + AMARE[SIE[SE]

V
2(1 = LE[S:]D)
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where
A’I=A'1 + - +Aj,

A’II = Aj+l + e+ 'ln,

J A
E[S] = ; A_;E[Si]’

2 J A’i 2
ElSf1= ¥ I’E[Si]a
i=17"1

2 o g2
ElSfl= Y TE[Si]
i=j+1 1

Hence, as V! = V! + ... + V/, we have an expression for V' + .-+ + V7,
for each j=1,...,n, which then can be solved for the individual
V1, V2, ...,V". Wenow can obtain W} from Equation (8.43). The result of
all this (which we leave for an exercise) is that

_ ME[SH] + -+ + A,E[S]
2Toi 1 ~ MES] - - — LEIS)’

w4 i=1,...,n (8.47)

8.7. The Model G/M/1

The model G/M/1 assumes that the times between successive arrivals have
an arbitrary distribution G. The service times are exponentially distributed
with rate u and there is a single server.

The immediate difficulty in analyzing this model stems from the fact that
the number of customers in the system is not informative enough to serve as
a state space. For in summarizing what has occurred up to the present we
would need to know not only the number in the system, but also the amount
of time that has elapsed since the last arrival (since G is not memoryless).
(Why need we not be concerned with the amount of time the person being
served has already spent in service?) To get around this problem we shall
only look at the system when a customer arrives; and so let us define X,,,
nz1,by

X, = the number in the system as seen by the nth arrival

It is easy to see that the process {X,, n = 1} is a Markov chain. To
compute the transition probabilities P; for this Markov chain let us first
note that, as long as there are customers to be served, the number of services
in any length of time ¢ is a Poisson random variable with mean ut. This is
true since the time between successive services is exponential and, as we
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know, this implies that the number of services thus constitutes a Poisson
process. Hence,
«© f j
Biv1-j= j e_"tgdG(t), J=0,1,...,i
0 J:
which follows since if an arrival finds / in the system, then the next arrival
will find 7 + 1 minus the number served, and the probability that j will be
served is easily seen to equal the right side of the above (by conditioning on
the time between the successive arrivals).
The formula for Py is a little different (it is the probability that at least
i + 1 Poisson events occur in a random length of time having distribution
G) and can be obtained from
i
Po=1- % B iv1-j
j=0
The limiting probabilities 7;, kK = 0, 1, ..., can be obtained as the unique
solution of
My = E niPik: k=0

i

Ym=1

k

which, in this case, reduce to

© © i+1-k
[ g
1

7Ik=.E i oe 6—_*-—1—_—k)'dG(t), k=1

(8.48)
Y =1
0
(We have not included the equation 7, = ¥ ;P since one of the equations
is always redundant.)

To solve the above, let us try a solution of the form 7, = cf*. Substi-
tution into Equation (8.48) leads to

© © i+1-k
C‘ﬂk = C‘ E lﬂi jo e"“(i(f—ti_——];)—?dG(t)

© ot k1 © (ﬂﬂt)i+l_k
CL e B i=§-1 —(i 1= R daa(t) (8.49)

However,

v _(BuyF 2 (Bury
i=k-1G+1 -k = Jj!

— eﬁut
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and thus Equation (8.49) reduces to

-]

ﬂk = ﬂk—l S e—ut(l-ﬁ) dG(t)

0

or
B= S e M09 4G(r) (8.50)

1]
The constant ¢ can be obtained from ¥, 7, = 1, which implies that

cY pr=1

0

or

c=1-§

As the 7, is the unique solution to Equation (8.48), and m, = (1 — B)B*
satisfies, it follows that

m=0-8BK k=01,..

where £ is the solution of Equation (8.50). [It can be shown that if the mean
of G is greater than the mean service time 1/u, then there is a unique value
of B satisfying Equation (8.50) which is between 0 and 1.] The exact value
of B usually can only be obtained by numerical methods.

As 7, is the limiting probability that an arrival sees k customers, it is just
the a, as defined in Section 8.2. Hence,

a=0-pp k=0 (8.51)

We can obtain W by conditioning on the number in the system when a
customer arrives. This yields

W = Y, E[time in system | arrival sees k](1 — 8)8*
k

-y k+1 a - BB (Since if an arrival sees k, then he spends
- k + 1 service periods in the system.)
1 it x
=— by using Y kx* = ———)
u(l — B) ( % a-x?
and
1 B
Wo=W = ,
@ uo (1= B)
L=1W= _r (8.52)
ul - By’ '
AB
Lq = AW,y
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where 4 is the reciprocal of the mean interarrival time. That is,

o

= jw x dG(x)
0

In fact, in exactly the same manner as shown for the M/M/1 in Section
8.3.1 and Exercise 4 we can show that

W* is exponential with rate u(1 — ),

W = 0 with probability 1 — 8
~ { exponential with rate u(1 — B) with probability g

where W* and W§ are the amounts of time that a customer spends in
system and queue, respectively (their means are W and wo).

Whereas a;, = (1 — B)B* is the probability that an arrival sees k in the
system, it is not equal to the proportion of time during which there are k in
the system (since the arrival process is not Poisson). To obtain the P, we
first note that the rate at which the number in the system changes from
k — 1to k must equal the rate at which it changes from k to k — 1 (why?).
Now the rate at which it changes from k — 1 to k is equal to the arrival rate
A multiplied by the proportion of arrivals finding £ — 1 in the system.
That is,

rate number in system goes from k — 1 to k = Aa,_,

Similarly, the rate at which the number in the system changes from k to
k — 1 is equal to the proportion of time during which there are k in the
system multiplied by the (constant) service rate. That is,

rate number in system goes from kto k — 1 = P u

Equating these rates yields

A
P, = ;ak-l’ k=1
and so, from Equation (8.51),
P, = 2(1 “B, k=1

and, as Py =1 - Y7_, P, we obtain

Py=1-%



8.7. The Model G/M/1 455

Remark In the foregoing analysis we guessed at a solution of the
stationary probabilities of the Markov chain of the form =, = cf*, then
verified such a solution by substituting in the stationary Equation (8.48).
However, it could have been argued directly that the stationary probabilities
of the Markov chain are of this form. To do so, define f; to be the expected
number of times that state i + 1 is visited in the Markov chain between two
successive visits to state i, i = 0. Now it is not difficult to see (and we will
let the reader argue it out for him or herself) that

ﬂo=ﬁl=ﬂ2= o= p
Now it can be shown by using renewal reward processes that

E[number of visits to state / + 1 in an i — i cycle]
E[number of transitions in an i — i cycle]

_ b

a 1/7[,'

Miv1 =

and so,
Tiv1 = Bim; = Bmy, iz0

implying, since Yg m; = 1, that

m=p1-p, iz0

8.7.1. The G/M/1 Busy and Idle Periods

Suppose that an arrival has just found the system empty—and so initiates a
busy period—and let N denote the number of customers served in that busy
period. Since the Nth arrival (after the initiator of the busy period) will also
find the system empty, it follows that N is the number of transitions for the
Markov chain (of Section 8.7) to go from state O to state 0. Hence, 1/E[N]
is the proportion of transitions that take the Markov chain into state 0; or
equivalently, it is the proportion of arrivals that find the system empty.
Therefore,

1 1
E[N]=—=——
(V] %" 1-F
Also, as the next busy period begins after the Nth interarrival, it follows
that the cycle time (that is, the sum of a busy and idle period) is equal to the
time until the Nth interarrival. In other words, the sum of a busy and idle
period can be expressed as the sum of N interarrival times. Thus, if T; is the
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ith interarrival time after the busy period begins, then
N
E[Busy] + E[lIdle] = E [ Y T}jl
i=1

= E[N]E|[T] (by Wald’s equation)
= ;
A1 - B)

For a second relation between E[Busy] and E[Idle], we can use the same
argument as in Section 8.5.3 to conclude that

E[Busy}
Ef{ldle] + E[Busy]

(8.53)

1—P0=

and since P, = 1 — A/u, we obtain, upon combining this with (8.53), that

1
BT )
- A
EWd] = 2 py

8.8. Multiserver Queues

By and large, systems that have more than one server are much more
difficult to analyze than those with a single server. In Section 8.8.1 we start
first with a Poisson arrival system in which no queue is allowed, and then
consider in Section 8.8.2 the infinite capacity M/M/k system. For both of
these models we are able to present the limiting probabilities. In Section
8.8.3 we consider the model G/M/k. The analysis here is similar to that of
the G/M/1 (Section 7) except that in place of a single quantity f given as the
solution of an integral equation, we have k such quantities. We end in
Section 8.8.4 with the model M/G/k for which unfortunately our previous
technique (used in M/G/1) no longer enables us to derive Woy, and we
content ourselves with an approximation.

8.8.1. Erlang’s Loss System

A loss system is a queueing system in which arrivals that find all servers
busy do not enter but rather are lost to the system. The simplest such system
is the M/M/k loss system in which customers arrive according to a Poisson
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l_‘Po
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EBwl =y
u-—A
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1
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busy do not enter but rather are lost to the system. The simplest such system
is the M/M/k loss system in which customers arrive according to a Poisson
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process having rate A, enter the system if at least one of the k servers is free,
and then spend an exponential amount of time with rate u being served.
The balance equations for this system are

State Rate leave = rate enter
0 APO = ﬂPl
2 (A + 2u)P, = 3uPy + AP,
i,0<i<k A+ )P, = (i + DuP,, + AP,
k k/.lPk = A'Pk-l
Rewriting gives
APy = uPy,
AP, = 2uP,,
A,Pz = 3[1P3,
A'Pk—l = k,qu
or
A
Pl = ;Po
A (A/u)?
P2 = ‘2';P1 = 2 Po,
A A/u)?
_ A,
P, = E;Pk—l Xl Py
and using L& P, = 1, we obtain
irit.
R———(M— i=0,1,..,k

T Lo Wiy

Since E[S] = 1/u, where E[S] is the mean service time, the preceding can
be written as
(AE[S])/i!

P = E}‘-_-o(}»E[S])j/j!’ i=0,1,...,k . (8.54)
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Consider now the same system except that the service distribution is
general—that is, consider the M/G/k with no queue allowed. This model is
sometimes called the Erlang loss system. It can be shown (though the proof
is advanced) that Equation (8.54) (which is called Erlang’s loss formula)
remains valid for this more general system.

8.8.2. The M/M/k Queue

The M/M/k infinite capacity queue can be analyzed by the balance equation
technique. We leave it for the reader to verify that

(A/u)’
i!
k-1 i k is k
p=|7 A/w) + AW ku
P=4 & T kU kg1
k, ik
Wit >

We see from the preceding that we need to impose the condition A < ku.

8.8.3. The G/M/k Queue

In this model we again suppose that there are k servers, each of which
serves at an exponential rate 4. However, we now allow the time between
successive arrivals to have an arbitrary distribution G. To ensure that
a steady-state (or limiting) distribution exists, we assume the condition
1/uG < ku where ug is the mean of G.*

The analysis for this model is similar to that presented in Section 8.7 for
the case k = 1. Namely, to avoid having to keep track of the time since the
last arrival, we look at the system only at arrival epochs. Once again, if we
define X, as the number in the system at the moment of the nth arrival, then
{X,, n = 0} is a Markov chain.

To derive the transition probabilities of the Markov chain, it helps to first
note the relationship

Xpo1 =X, +1-Y,, n=z=0
* It follows from renewal theory (Proposition 7.1) that customers arrive at rate 1/ug, and

as the maximum service rate is ku, we clearly need that 1/pg < ku for limiting probabilities
to exist.
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where Y, denotes the number of departures during the interarrival time
between the nth and (n + 1)st arrival. The transition probabilities P; can
now be calculated as follows:

Case (i) j>i+1.
In this case it easily follows that P; = 0.

Case (i) j=i+ 1=k

In this case if an arrival finds / in the system, then as i < k the new arrival
will also immediately enter service. Hence, the next arrival will find j if of
the i + 1 services exactly i + 1 — j are completed during the interarrival
time. Conditioning on the length of this interarrival time yields

P;=P{i + 1 —j of i + 1 services are completed in an interarrival time}

= S P{i + 1 — j of i + 1 are completed | interarrival time is ¢} dG(¢)
0

= SQ <i j 1>(1 — e M)+ ey dG(r)

0

where the last equality follows since the number of service completions in a
time ¢ will have a binomial distribution.

Case (iii) i+1=z/j=zk

To evaluate P,; in this case we first note that when all servers are busy, the
departure process is a Poisson process with rate ku (why?). Hence, again
conditioning on the interarrival time we have

P; = P{i + 1 — j departures}

= S P{i + 1 — j departures in time ¢} dG(¢)
0

© i+1—j
_ j P UL o

0 i+1-=-j

Case(iv) i+1zk>j

In this case since when all servers are busy the departure process is a
Poisson process, it follows that the length of time until there will only be k
in the system will have a gamma distribution with parameters i + 1 — k, ku
(the time until i + 1 — k event of a Poisson process with rate ku occur is
gamma distributed with parameters i + 1 — k, ku). Conditioning first on
the interarrival time and then on the time until there are only & in the system
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(call this latter random variable 7;) yields

P;= j P{i + 1 — j departures in time ¢} dG(t)
o

o (t . X ( ”s)t ~k
= P{i + 1 — j departures in t| T, = s}kue™*** (1 ol ————dsdG(f)
[ (1]

> (k —r(t~ SNk —j¢ ,—p(t—sNJj —ks(m
So L <J>(1 ¢ ) e Ykue -k

where the last equality follows since of the k people in service at time s the

number whose service will end by time ¢ is binomial with parameters k and
1- e-u(t—S)

d s dG(t)

We now can verify either by a direct substitution into the equations
m; = Y;n;P;, or by the same argument as presented in the remark at the
end of Section 8.7, that the limiting probabilities of this Markov chain are
of the form

Mh14j = By, j=0,1,....

Substitution into any of the equations m; = Y; n;P; when j > k yields that
B is given as the solution of

B = j e~ 1= dG(r)
0
The values 7y, 7, ..., 74_,, can be obtained by recursively solving the first
k —1of the steady-state equations, and ¢ can then be computed by using
Yo m;
If we let W3 denote the amount of time that a customer spends in queue,
then in exactly the same manner as in G/M/1 we can show that

k-1 Cﬁ
0, with probability Y} ;=1 -
) 1-8
wa = )
Exp(ku(l — B)), with probability Y =#; = 1 b 5
- _

where Exp(ku(1 — #)) is an exponential random variable with rate ku(l - 8).

8.8.4. The M/G/k Queue

In this section we consider the M/G/k system in which customers arrive at
a Poisson rate A and are served by any of k servers, each of whom has the
service distribution G. If we attempt to mimic the analysis presented in
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Section 8.5 for the M/G/1 system, then we would start with the basic identity
V = AE[SIW, + AE[S%/2 (8.55)

and then attempt to derive a second equation relating V" and W,.
Now if we consider an arbitrary arrival, then we have the following
identity:
work in system when customer arrives
=k X time customer spends in queue + R (8.56)

where R is the sum of the remaining service times of all other customers in
service at the moment when our arrival enters service.

The foregoing follows since while the arrival is waiting in queue, work is
being processed at a rate k per unit time (since all servers are busy). Thus,
an amount of work k X time in queue is processed while he waits in queue.
Now, all of this work was present when he arrived and in addition the
remaining work on those still being served when he enters service was also
present when he arrived—so we obtain Equation (8.56). For an illustration,
suppose that there are three servers all of whom are busy when the customer
arrives. Suppose, in addition, that there are no other customers in the
system and also that the remaining service times of the three people in
service are 3, 6, and 7. Hence, the work seen by the arrival is
3 + 6 + 7 = 16. Now the arrival will spend 3 time units in queue, and at the
moment he enters service, the remaining times of the other two customers
are 6 —3=3and 7- 3 =4. Hence, R=3 + 4 =7 and as a check of
Equation (8.56) we see that 16 = 3x3 + 7.

Taking expectations of Equation (8.55) and using the fact that Poisson
arrivals see time averages, we obtain

V = kWy + E[R]

which, along with Equation (8.55), would enable us to solve for Wy if we
could compute E[R]. However there is no known method for computing
E[R] and in fact, there is no known exact formula for Wg. The following
approximation for W, was obtained in Reference 6 by using the foregoing
approach and then approximating E[R}:
W AE[SYE[S) !
Q= k-1 n &
(AEIS]) (AETS])
2(k — DIk — AE[S])?
( M 15D l:ngo n! (k — DIk — AE[S]D

(8.57)
The preceding approximation has been shown to be quite close to the Wy,
when the service distribution is gamma. It is also exact when G is
exponential.
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Exercises

1. For the M/M/1 queue, compute

(a) the expected number of arrivals during a service period and
(b) the probability that no customers arrive during a service period.

Hint: ‘‘Condition.”’

*2. Machines in a factory break down at an exponential rate of six per
hour. There is a single repairman who fixes machines at an exponential rate
of eight per hour. The cost incurred in lost production when machines are
out of service is $10 per hour per machine. What is the average cost rate
incurred due to failed machines?

3. The manager of a market can hire either Mary or Alice. Mary, who
gives service at an exponential rate of 20 customers per hour, can be hired
at a rate of $3 per hour. Alice, who gives service at an exponential rate of
30 customers per hour, can be hired at a rate of $C per hour. The manager
estimates that, on the average, each customer’s time is worth $1 per hour
and should be accounted for in the model. If customers arrive at a Poisson
rate of 10 per hour, then

(@) what is the average cost per hour if Mary is hired? if Alice is hired?
(b) find C if the average cost per hour is the same for Mary and Alice.

4. For the M/M/1 queue, show that the probability that a customer
spends an amount of time x or less in queue is given by

l—é, ifx=0
u

1- “ + é(1 -V ifx>0
uou

5. Two customers move about among three servers. Upon completion
of service at server i, the customer leaves that server and enters service at
whichever of the other two servers is free. (Therefore, there are always two
busy servers.) If the service times at server i are exponential with rate y;,
i =1, 2, 3, what proportion of time is server / idle?

*6. Show that W is smaller in an M/M/1 model having arrivals at
rate A and service at rate 2u than it is in a two-server M/M/2 model with
arrivals at rate A and with each server at rate 4. Can you give an intuitive
explanation for this result? Would it also be true for Wy?
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7. A group of n customers moves around among two servers. Upon
completion of service, the served customer then joins the queue (or enters
service if the server is free) at the other server. All service times are
exponential with rate u. Find the proportion of time that there are j
customers at server 1, j =0, ..., n.

8. A facility produces items according to a Poisson process with rate A.
However, it has shelf space for only & items and so it shuts down production
whenever k items are present. Customers arrive at the facility according
to a Poisson process with rate u. Each customer wants one item and will
immediately depart either with the item or empty handed if there is no item
available.

(a) Find the proportion of customers that go away empty handed.
(b) Find the ayerage time that an item is on the shelf.
(¢) Find the average number of items on the shelf.

Suppose now that when a customer does not find any available items it joins
the “‘customers’ queue’’ as long as there are no more than n — 1 other
customers waiting at that time. If there are n waiting customers then the
new arrival departs without an item.

(d) Set up the balance equations.
(e) Interms of the solution of the balance equations, what is the average
number of customers in the system.

9. A group of m customers frequents a single-server station in the
following manner. When a customer arrives, he or she either enters service
if the server is free or joins the queue otherwise. Upon completing service
the customer departs the system, but then returns after an exponential time
with rate 6. All service times are exponentially distributed with rate u.

(a) Define states and set up the balance equations.
In terms of the solution of the balance equations, find

(b) the average rate at which customers enter the station.
(c) the average time that a customer spends in the station per visit.

10. Consider a single-server queue with Poisson arrivals and exponential
service times having the following variation: Whenever a service is
completed a departure occurs only with probability a. With probability
1 — « the customer, instead of leaving, joins the end of the queue. Note
that a customer may be serviced more than once.

(a) Set up the balance equations and solve for the steady-state
probabilities, stating conditions for it to exist.
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(b) Find the expected waiting time of a customer from the time he arrives
until he enters service for the first time.

(c) What is the probability that a customer enters service exactly n times,
forn=1,2,...7

(d) What is the expected amount of time that a customer spends in
service (which does not include the time he spends waiting in line)?

Hint: Use (¢).

(e) What is the distribution of the total length of time a customer spends
being served?

Hint: Is it memoryless?

*11. A supermarket has two exponential checkout counters, each
operating at rate . Arrivals are Poisson at rate 1. The counters operate in
the following way:

(i) One queue feeds both counters.

(i) One counter is operated by a permanent checker and the other by a
stock clerk who instantaneously begins checking whenever there are two
or more customers in the system. The clerk returns to stocking whenever
he completes a service, and there are fewer than two customers in the
system.

(a) Let P, = proportion of time there are n in the system. Set up
equations for P, and solve.

(b) At what rate does the number in the system go from 0 to 1? from 2
to 17

(c) What proportion of time is the stock clerk checking?

Hint: Be a little careful when there is one in the system.

12. Customers arrive at a single-service facility at a Poisson rate of 40 per
hour. When two or fewer customers are present, a single attendant operates
the facility, and the service time for each customer is exponentually
distributed with a mean value of two minutes. However, when there are
three or more customers at the facility, the attendant is joined by an
assistant and, working together, they reduce the mean service time to one
minute. Assuming a system capacity of four customers,

(a) what proportion of time are both servers free?

(b) each man is to receive a salary proportional to the amount of time he
is actually at work servicing customers, the rate being the same for both.
If together they earn $100 per day, how should this money be split?
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13. Consider a sequential-service system consisting of two servers, 4 and
B. Arriving customers will enter this system only if server 4 is free. If a
customer does enter, then he is immediately served by server 4. When his
service by A4 is completed, he then goes to B if B is free, or if B is busy, he
leaves the system. Upon completion of service at server B, the customer
departs. Assuming that the (Poisson) arrival rate is two customers an hour,
and that 4 and B serve at respective (exponential) rates of four and two
customers an hour,

(a) what proportion of customers enter the system?

(b) what proportion of entering customers receive service from B?

(c) what is the average number of customers in the system?

(d) what is the average amount of time that an entering customer spends
in the system?

14. Customers arrive at a two-server system according to a Poisson
process having rate A = 5. An arrival finding server 1 free will begin service
with that server. An arrival finding server 1 busy and server 2 free will enter
service with server 2. An arrival finding both servers busy goes away. Once
a customer is served by either server, he departs the system. The service
times at server / are exponential with rates u;, where u, = 4, u, = 2.

(a) What is the average time an entering customer spends in the system?
(b) What proportion of time is server 2 busy?

15. Customers arrive at a two-server station in accordance with a Poisson
process with a rate of two per hour. Arrivals finding server 1 free begin
service with that server. Arrivals finding server 1 busy and server 2 free begin
service with server 2. Arrivals finding both servers busy are lost. When a
customer is served by server 1, she then either enters service with server 2 if
2 is free or departs the system if 2 is busy. A customer completing service at
server 2 departs the system. The service times at server 1 and server 2 are
exponential random variables with respective rates of four and six per hour.

(a) What fraction of customers do not enter the system?

(b) What is the average amount of time that an entering customer spends
in the system?

(c) What fraction of entering customers receive service from server 1?

16. Customers arrive at a two-server system at a Poisson rate A. An
arrival finding the system empty is equally likely to enter service with either
server. An arrival finding one customer in the system will enter service with
the idle server. An arrival finding two others in the system will wait in line
for the first free server. An arrival finding three in the system will not enter.
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All service times are exponential with rate u, and once a customer is served
(by either server), he departs the system.

(a) Define the states.

(b) Find the long-run probabilities.

(c) Suppose a customer arrives and finds two others in the system. What
is the expected time he spends in the system?

(d) What proportion of customers enter the system?

(¢) What is the average time an entering customer spends in the system?

17. There are two types of customers. Type / customers arrive in accord-
ance with independent Poisson processes with respective rate A, and 4,.
There are two servers. A type 1 arrival will enter service with server 1 if that
server is free; if server 1 is busy and server 2 is free, then the type 1 arrival
will enter service with server 2. If both servers are busy, then the type 1
arrival will go away. A type 2 customer can only be served by server 2; if
server 2 is free when a type 2 customer arrives, then the customer enters
service with that server. If server 2 is busy when a type 2 arrives, then that
customer goes away. Once a customer is served by either server, he departs
the system. Service times at server / are exponential with rate u;, i = 1, 2.

Suppose we want to find the average number of customers in the system.

(a) Define states.
(b) Give the balance equations. Do not attempt to solve them.

In terms of the long-run probabilities, what is

(¢) the average number of customers in the system?
(d) the average time a customer spends in the system?

*18. Suppose in Exercise 17 we want to find out the proportion of time
there is a type 1 customer with server 2. In terms of the long-run
probabilities given in Exercise 17, what is

(a) the rate at which a type 1 customer enters service with server 2?
(b) the rate at which a type 2 customer enters service with server 2?
(c) the fraction of server 2’s customers that are type 1?

(d) the proportion of time that a type 1 customer is with server 2?

19. Customers arrive at a single-server station in accordance with a Poisson
process with rate A. All arrivals that find the server free immediately enter
service. All service times are exponentially distributed with rate u. An
arrival that finds the server busy will leave the system and roam around *‘in
orbit’’ for an exponential time with rate 8 at which time it will then return.
If the server is busy when an orbiting customer returns, then that customer
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returns to orbit for another exponential time with rate 6 before returning
again. An arrival that finds the server busy and N other customers in orbit
will depart and not return. That is, N is the maximum number of customers
in orbit.

(a) Define states.
(b) Give the balance equations.

In terms of the solution of the balance equations, find.

(c) the proportion of all customers that are eventually served.
(d) the average time that a served customer spends waiting in orbit.

20. Consider the M/M/1 system in which customers arrive at rate A and
the server serves at rate u. However, suppose that in any interval of length
h in which the server is busy there is a probability ah + o(h) that the server
will experience a breakdown, which causes the system to shut down. All
customers that are in the system depart, and no additional arrivals are
allowed to enter until the breakdown is fixed. The time to fix a breakdown
is exponentially distributed with rate 8.

(a) Define appropriate states.
(b) Give the balance equations.

In terms of the long-run probabilities,

(c) what is the average amount of time that an entering customer spends
in the system?

(d) what proportion of entering customers complete their service?

(e) what proportion of customers arrive during a breakdown?

*21. Reconsider Exercise 20, but this time suppose that a customer that is
in the system when a breakdown occurs remains there while the server is
being fixed. In addition, suppose that new arrivals during a breakdown
period are allowed to enter the system. What is the average time a customer
spends in the system?

22. Poisson (4) arrivals join a queue in front of two parallel servers A and
B, having exponential service rates u4 and ug. When the system is empty,
arrivals go into server A with probability « and into B with probability
1 — a. Otherwise, the head of the queue takes the first free server.

@&

Figure 8.4.
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(a) Define states and set up the balance equations. Do not solve.

(b) In terms of the probabilities in part (a), what is the average number
in the system? Average number of servers idle?

(c) In terms of the probabilities in part (a), what is the probability that
an arbitrary arrival will get serviced in A?

23. In a queue with unlimited waiting space, arrivals are Poisson
(parameter A) and service times are exponentially distributed (parameter u).
However, the server waits until K people are present before beginning
service on the first customer; thereafter, he services one at a time until all K
units, and all subsequent arrivals, are serviced. The server is then ‘‘idle”’
until X' new arrivals have occurred.

(a) Define an appropriate state space, draw the transition diagram, and
set up the balance equations.

(b) In terms of the limiting probabilities, what is the average time a
customer spends in queue?

(¢) What conditions on A and u are necessary?

24, Consider a single-server exponential system in which ordinary
customers arrive at a rate A and have service rate u. In addition, there is a
special customer who has a service rate u, . Whenever this special customer
arrives, it goes directly into service (if anyone else is in service, then this
person is bumped back into queue). When the special customer is not being
serviced, the customer spends an exponential amount of time (with mean
1/6) out of the system.

(a) What is the average arrival rate of the special customer?
(b) Define an appropriate state space and set up balance equations.
(c) Find the probability that an ordinary customer is bumped » time.

*25. Let D denote the time between successive departures in a stationary
M/M/1 queue with A < u. Show, by conditioning on whether or not a
departure has left the system empty, that D is exponential with rate A.

Hint: By conditioning on whether or not the departure has left the
system empty we see that

_ { Exponential (u), with probability A/u
~ ( Exponential (1) * Exponential (x), with probability 1 — A/u

where Exponential (1) * Exponential (u) represents the sum of two inde-
pendent exponential random variables having rates 4 and A. Now use
moment-generating functions to show that D has the required distribution.
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Note that the above does not prove that the departure process is Poisson.
To prove this we need show not only that the interdeparture times are all
exponential with rate A, but also that they are independent.

26. For the tandem queue model verify that

Bom = /)" (1 = A )R/ )™ (1 — A/ )
satisfies the balance equation (8.15).

27. Verify Equation (8.18) for a system of two servers by showing that it
satisfies the balance equations for this model.

28. Consider a network of three stations. Customers arrive at stations 1,
2, 3 in accordance with Poisson processes having respective rates 5, 10, 15.
The service times at the three stations are exponential with respective rates
10, 50, 100. A customer completing service at station 1 is equally likely to
(a) go to station 2, (b) go to station 3, or (c) leave the system. A customer
departing service at station 2 always goes to station 3. A departure from
service at station 3 is equally likely to either go to station 2 or leave the
system.

(i) What is the average number of customers in the system (consisting of
all three stations)?
(ii) What is the average time a customer spends in the system?

29. Consider a closed queueing network consisting of two customers
moving among two servers, and suppose that after each service completion
the customer is equally likely to go to either server—that is, P ,=P, =14
Let u; denote the exponential service rate at server i, i = 1, 2.

(2) Determine the average number of customers at each server.
(b) Determine the service completion rate for each server.

30. State and prove the equivalent of the arrival theorem for open
queueing networks.

31. Customers arrive at a single-server station in accordance with a
Poisson process having rate A. Each customer has a value. The successive
values of customers are independent and come from a uniform distribution
on (0, 1). The service time of a customer having value x is a random variable
with mean 3 + 4x and variance 5.

(a) What is the average time a customer spends in the system?
(b) What is the average time a customer having value x spends in the
system?
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*32. Compare the M/G/1 system for first-come, first-served queue
discipline with one of last-come, first-served (for instance, in which units
for service are taken from the top of a stack). Would you think that the
queue size, waiting time, and busy-period distribution differ? What about
their means? What if the queue discipline was always to choose at random
among those waiting? Intuitively which discipline would result in the
smallest variance in the waiting time distribution?

33. In an M/G/1 queue,

(a) what proportion of departures leave behind 0 work?
(b) what is the average work in the system as seen by a departure?

34. For the M/G/1 queue, let X, denote the number in the system left
behind by the nth departure.

(@) If
X X,—-1+4+Y%,, if X,=1
=1y, if X,=0
what does Y, represent?
(b) Rewrite the preceding as
Xp1=X,-1+Y,+9, (8.58)
where

s (L ifX,=0
"o, ifx,=1

Take expectations and let # — c in Equation (8.58) to obtain
E[d.] = 1 — AE[S]

(c) Square both sides of Equation (8.58), takes expectations, and then let
n — co to obtain

A2E[S?
E[Xw]=2 [S7]

20 - AE[5]) + AE[S]

(d) Argue that E[X_], the average number as seen by a departure, is
equal to L.

*35. Consider an M/G/1 system in which the first customer in a busy
period has service distribution G, and all others have distribution G,. Let
C denote the number of customers in a busy period, and let S denote the
service time of a customer chosen at random.
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Argue that

(@) ap = P, =1 — AE[S].

(b) E[S] = aoE[S)] + (1 — ap)E[S,] where S; has distribution G;.

(¢) Use (a) and (b) to show that E[B], the expected length of a busy
period, is given by

E[S]

ElBl = 1— AE[S;]

(d) Find E[C].
36. Consider a M/G/1 system with AE[S] < 1.

(a) Suppose that service is about to begin at a moment when there are n
customers in the system.

(i) Argue that the additional time until there are only n — 1 customers

in the system has the same distribution as a busy period.

(i) What is the expected additional time until the system is empty?
(b) Suppose that the work in the system at some moment is 4. We are
interested in the expected additional time until the system is empty—
callit E[T]. Let N denote the number of arrivals during the first A4 units
of time.

(i) Compute E[T|N].

(ii) Compute E[T].

37. Carloads of customers arrive at a single-server station in accord-
ance to a Poisson process with rate 4 per hour. The service times are
exponentially distributed with rate 20 per hour. If each carload contains
either 1, 2, or 3 customers with respective probabilities 4, 4, 1, compute the
average customer delay in queue.

38. In the two-class priority queueing model of Section 8.6.2, what is
Wq? Show that W, is less than it would be under FIFO if E[S,] < E[S,]
and greater than under FIFO if E[S,] > E[S,].

39. In a two-class priority queueing model suppose that a cost of C;
per unit time is incurred for each type i customer that waits in queue,
i = 1,2. Show that type 1 customers should be given priority over type 2
(as opposed to the reverse) if

EIS\] _ ElS,]
(O G,
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40. Consider the priority queuing model of Section 8.6.2 but now suppose
that if a type 2 customer is being served when a type 1 arrives then the type
2 customer is bumped out of service. This is called the preemptive case.
Suppose that when a bumped type 2 customer goes back in service his
service begins at the point where it left off when he was bumped.

(a) Argue that the work in the system at any time is the same as in the
nonpreemptive case.
(b) Derive Wy.

Hint: How do type 2 customers affect type 1’s?
(c) Why is it not true that
V5 = LE[S;IW3

(d) Argue that the work seen by a type 2 arrival is the same as in the
nonpreemptive case, and so

W& = Wl(nonpreemptive) + E[extra time]

where the extra time is due to the fact that he may be bumped.
(e) Let N denote the number of times a type 2 customer is bumped.
Why is

NE[S,]
1 - L,E[S,]
Hint: When a type 2 is bumped, relate the time until he gets back in
service to a ‘‘busy period.”’

(f) Let S, denote the service time of a type 2. What is E[N|S,]?
(g) Combine the preceding to obtain

E[extra time | N] =

ME[SIIE[S,]

1 - A.IE [Sl]

*41. Calculate explicitly (not in terms of limiting probabilities) the
average time a customer spends in the system in Exercise 21.

42. In the G/M/1 model if G is exponential with rate A show that
B = A/u.

43. Verify Erlang’s loss formula, Equation (8.54), when k = 1.

44. Verify the formula given for the P, of the M/M/k.

45. In the Erlang loss system suppose the Poisson arrival rate is A = 2,
and suppose there are three servers each of whom has a service distribution
that is uniformly distributed over (0, 2). What proportion of potential
customers is lost?

W3 = Wi(nonpreemptive) +
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46. In the M/M/k system,

(a) what is the probability that a customer will have to wait in queue?
(b) determine L and W.

47. Verify the formula for the distribution of W§ given for the G/M/k
model.

*48. Consider a system where the interarrival times have an arbitrary
distribution F, and there is a single server whose service distribution is G.
Let D, denote the amount of time the nth customers spends waiting in
queue. Interpret S,, 7, so that

D - D,+S,-1,, iftD,+8,-T,=20
"1, ifD,+8,-T, <0

49. Consider a model in which the interarrival times have an arbitrary
distribution F, and there are k servers each having service distribution G.
What condition on F and G do you think would be necessary for there to
exist limiting probabilities?
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Chapter 9
Reliability Theory

v

9.1. Introduction

Reliability theory is concerned with determining the probability that a
system, possibly consisting of many components, will function. We shall
suppose that whether or not the system functions is determined solely from
a knowledge of which components are functioning. For instance, a series
system will function if and only if all of its components are functioning,
while a parallel system will function if and only if at least one of its
components is functioning. In Section 9.2, we explore the possible ways in
which the functioning of the system may depend upon the functioning of its
components. In Section 9.3, we suppose that each component will function
with some known probability (independently of each other) and show how
to obtain the probability that the system will function. As this probability
often is difficult to explicitly compute, we also present useful upper and
lower bounds in Section 9.4. In Section 9.5 we look at a system dynamically
over time by supposing that each component initially functions and does so
for a random length of time at which it fails. We then discuss the relation-
ship between the distribution of the amount of time that a system functions
and the distributions of the component lifetimes. In particular, it turns out
that if the amount of time that a component functions has an increasing
Jailure rate on the average (IFRA) distribution, then so does the distribution
of system lifetime. In Section 9.6 we consider the problem of obtaining the
mean lifetime of a system. In the final section we analyze the system when
failed components are subjected to repair.

475
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9.2. Structure Functions

Consider a system consisting of n components, and suppose that each
component is either functioning or has failed. To indicate whether or not
the ith component is functioning, we define the indicator variable x; by

1, if the ith component is functioning
X; = .
0, if the ith component has failed

The vector x = (x;, ..., X,) is called the state vector. It indicates which of
the components are functlonmg and which have failed.

We further suppose that whether or not the system as a whole is
functioning is completely determined by the state vector x. Specifically, it is
supposed that there exists a function ¢(x) such that

1, if the system is functioning when the state vector is x
0, if the system has failed when the state vector is x

#(x) = {
The function ¢(x) is called the structure function of the system.

Example 9.1 (The Series Structure): A series system functions if and
only if all of its components are functioning. Hence, its structure function
is given by

¢(X) = min(xl ’ ...,X,,) = H Xi
i=1
We shall find it useful to represent the structure of a system in terms of a
diagram. The relevant diagram for the series structure is shown in Figure
9.1. The idea is that if a signal is initiated at the left end of the diagram then
in order for it to successfully reach the right end, it must pass through all of
the components; hence, they must all be functioning. 4

| 2 n

Figure 9.1.

Example 9.2 (The Parallel Structure): A paraliel system functions if
and only if at least one of its components is functioning. Hence its structure
function is given by

é(X) = max(xy, ..., Xp)

A parallel structure may be pictorially illustrated by Figure 9.2. This follows
since a signal at the left end can successfully reach the right end as long as
at least one component is functioning. 4
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n-\

n

Figure 9.2.

Example 9.3 (The k-Out-of-n Structure): The series and parallel
systems are both special cases of a k-out-of-n system. Such a system
functions if and only if at least k of the » components are functioning.
As Y7_,Xx; equals the number of functioning components, the structure
function of a k-out-of-n system is given by

o(x) =
0, if Yx<k

i=1

Series and parallel systems are respectively n-out-of-n and 1-out-of-n
system.
The two-out-of-three system may be diagramed as shown in Figure 9.3. ¢

1 2
2 3
1 3
Figure 9.3.

Example 9.4 (A Four-Component Structure): Consider a system con-
sisting of four components, and suppose that the system functions if and
only if components 1 and 2 both function and at least one of components
3 and 4 function. Its structure function is given by

&(X) = X1 X, max(x;, X,)

Pictorially, the system is as shown in Figure 9.4. A useful identity, easily
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4

Figure 9.4.

checked, is that for binary variables,* x;, i =1, ..., n,
n

max(x;,....,x,) =1 - [[ (1 - x)
i=1

When n = 2, this yields
max(x;, X)) = 1 — (1 — x)(1 —x;) = x; + X, — X1,
Hence, the structure function in the example may be written as

O(X) = X1 X003 + X5 — X3%;) @

It is natural to assume that replacing a failed component by a functioning
one will never lead to a deterioration of the system. In other words, it is
natural to assume that the structure function ¢(x) is an increasing function
of x, that is, if x; = y;, i = 1, ..., n, then ¢(x) < ¢(y). Such an assumption
shall be made in this chapter and the system will be called monotone.

9.2.1. Minimal Path and Minimal Cut Sets

In this section, we show how any system can be represented both as a series
arrangement of parallel structures and as a parallel arrangement of series
structures. As a preliminary, we need the following concepts.

A state vector x is called a path vector if ¢(x) = 1. If, in addition,
o(y) = 0 for all y < x, then x is said to be a minimal path vector.! If xis a
minimal path vector, then the set A = {i: x; = 1} is called a minimal path
set. In other words, a minimal path set is a minimal set of components
whose functioning ensures the functioning of the system.

Example 9.5 Consider a five-component system whose structure is
illustrated by Figure 9.5. Its structure function equals

o(x)

max(x; , X,) max(x; x4, Xs)
(1 + X3 — X1 X)(X3 X4 + X5 — X3X4X5)
There are four minimal path sets, namely, {1, 3,4}, {2, 3,4}, {1, 5}, {2,5}). @

* A binary variable is one which assumes either the value 0 or 1.
' We say that y < x ify,sx,i=1,...,n, with y; < x; for some i.

Il
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Figure 9.5.

Example 9.6 In a k-out-of-n system, there are (Z) minimal path sets,

namely, all of the sets consisting of exactly k components. ¢

LetA,, ..., A, denote the minimal path sets of a given system. We define
a;(x), the indicator function of the jth minimal path set, by

@) 1, if all the components of A; are functioning
a. = .
4 0, otherwise
= Il x
i EAj

By definition, it follows that the system will function if all the components
of at least one minimal path set are functioning. That is, if a;(x) = 1 for
some j. On the other hand, if the system functions, then the set of function-
ing components must include a minimal path set. Therefore, a system will
JSunction if and only if all the components of at least one minimal path set
are functioning. Hence,

1, if a;(x) = 1 for some j

¢(X) = {0, if aj(x) = 0 for all j

or equivalently

$(x) = max a;(x)
J
9.1
=max [[ x; ©-1
7 ied;
Since a;(x) is a series structure function of the components of the jth
minimal path set, Equation (9.1) expresses an arbitrary system as a parallel

arrangement of series systems.

Example 9.7 Consider the system of Example 9.5. Because its minimal
path sets are A, = {1, 3,4}, 4, = {2,3,4}, A; = {1, 5}, and A, = {2, 5}, we
have by Equation (9.1) that

o(x)

Max{X; X3 Xy, X2X3X4, X1 X5, X3 Xs}

1 — (0 = x:1x3x)(1 = X223 )(1 = x,%5)(1 = x,%5)
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2 3 4

1 S

2 5
Figure 9.6.

The reader should verify that this equals the value of ¢(x) given in Example
9.5. (Make use of the fact that, since x; equals 0 or 1, x? = x;.) This
representation may be pictured as shown in Figure 9.6. €

Figure 9.7.

Example 9.8 The system whose structure is as pictured in Figure 9.7 is
called the bridge system. Its minimal path sets are {1, 4}, {1, 3, 5}, {2, 5],
and {2, 3,4]). Hence, by Equation (9.1), its structure function may be
expressed as

$(x) = maxfx; Xy, X;X3Xs, X3 X5, X X3X4)
=1 - (1 = x1x)(1 = x1x3%5)(1 = Xx5)(1 — X2X3%,)

This representation ¢(x) is diagramed as shown in Figure 9.8. @

Figure 9.8.

A state vector x is called a cut vector if ¢(x) = 0. If, in addition, ¢(y) = 1
for all y > x, then x is said to be a minimal cut vector. If x is a minimal cut
vector, then the set C = {i: x; = 0} is called a minimal cut set. In other
words, a minimal cut set is a minimal set of components whose failure
ensures the failure of the system.
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Let C,, ..., C denote the minimal cut sets of a given system. We defined
B;(x), the indicator function of the jth minimal cut set, by

1, if at least one component of the jth minimal
cut set is functioning

ﬂj(x) =

0, if all of the components of the jth minimal
cut set are not functioning
= mMax X;
ie Cj
Since a system is not functioning if and only if all the components of at least
one minimal cut set are not functioning, it follows that

k k
ox) = [I B;(x) = [] maxx; (9.2)
j=1 i=1i€G
Since B;(x) is a parallel structure function of the components of the jth
minimal cut set, Equation (9.2) represents an arbitrary system as a series
arrangement of parallel systems.

Figure 9.9.

Example 9.9 The minimal cut sets of the bridge structure shown in
Figure 9.9 are {1, 2}, {1, 3, 5}, {2, 3, 4}, and {4, 5}. Hence, from Equation
(9.2), we may express ¢(x) by

#(x)

max(x; , X) max(x;, X3, Xs) max(x, , X3, Xs) Max(x,, Xs)

[1 -1 -x)0=x)1 = (= x)(d = x3)(1 = x5)]

X [1 = (1 = x)(1 = x3)(1 = x)I[1 = (@ — x )1 — x5)]
This representation of ¢(x) is pictorially expressed as Figure 9.10. 4

Il

] 1 2 . q
3 3 |
2 5 4 5

Figure 9.10.



482 9 Reliability Theory

9.3. Reliability of Systems of Independent Components

In this section, we suppose that X;, the state of the ith component, is a
random variable such that

P{X;=1 =p;=1-PlX; =0}

The value p;, which equals the probability that the ith component is
functioning, is called the reliability of the ith component. If we define r by

r = P{¢(X) = 1}, where X = (X, ..., X})

then r is called the reliability of the system. When the components, that is,
the random variables X;, i = 1, ..., n, are independent, we may express r as
a function of the component reliabilities. That is,

r = r(p), where p = (D4, ..., Pn)
The function r(p) is called the reliability function. We shall assume through-
out the remainder of this chapter that the components are independent.

Example 9.10 (The Series System): The reliability function of the series
system of n independent components is given by

r(p) = P(p(X) = 1}
=P{X;=1foralli=1,...,n}

= Hpi 2
i=1

Example 9.11 (The Parallel System): The reliability function of the
parallel system of n independent components is given by

(@) = Plo(X) = 1)
= P{X;=1forsomei=1,...,n}

1 -P{X;=0foralli=1,...,n}

1- .I:Il(l -p) ®

Example 9.12 (The k-out-of-n System with Equal Probabilities): Con-
sider a k-out-of-n system. If p, = p for all i = 1, ..., n, then the reliability
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9.3. Reliability of Systems of Independent Components
In this section, we suppose that X;, the state of the ith component, is a
random variable such that

PX;=1}=p; =1~ PiX; = 0}

The value p;, which equals the probability that the i/th component is
functioning, is called the reliability of the ith component. If we define r by

r = P{¢(X) = 1}, where X = (X, ..., X,)

then r is called the reliability of the system. When the components, that is,
the random variables X;, i = 1, ..., n, are independent, we may express r as
a function of the component reliabilities. That is,

r=r(p), wherep=(p,,...,p,)
The function r(p) is called the reliability function. We shall assume through-
out the remainder of this chapter that the components are independent.
Example 9.10 (The Series System): The reliability function of the series
system of n independent components is given by
r(p) = P{¢(X) = 1}
=PX;=1foralli=1,...,n}

= Hpi ¢
i=1

Example 9.11 (The Parallel System): The reliability function of the
parallel system of n independent components is given by

r(p) = P6(X) = 1)

= P{X;=1forsomei=1,...,n]

]

l1-PX,=0foralli=1,...,n}

1- _1_]1(1 -p) @&

H

Example 9.12 (The k-out-of-n System with Equal Probabilities): Con-
sider a k-out-of-n system. If p; = p foralli = 1, ..., n, then the reliability
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In this section, we suppose that X;, the state of the ith component, is a
random variable such that

PX;=1=p;=1- PX;=0}

The value p;, which equals the probability that the ith component is
functioning, is called the reliability of the ith component. If we define r by

r = P{o(X) = 1}, where X = (X}, ..., X,)

then r is called the reliability of the system. When the components, that is,
the random variables X;, i = 1, ..., n, are independent, we may express r as
a function of the component reliabilities. That is,

r = r(p), where p = (py, ..., D,

The function r(p) is called the reliability function. We shall assume through-
out the remainder of this chapter that the components are independent.

Example 9.10 (The Series System): The reliability function of the series
system of n independent components is given by

r(®) = P{¢(X) = 1}
=P{X;=1foralli=1,...,n}

= Hpi L 4
i=1

Example 9.11 (The Parallel System): The reliability function of the
parallel system of n independent components is given by

r(p) = P{¢(X) = 1}
= P{X;=1forsomei=1,...,n}
=1-P{X;=0foralli=1,...,n

1- 'I_]l(l -p) &

Example 9.12 (The k-out-of-n System with Equal Probabilities): Con-
sider a k-out-of-n system. If p; = p for alli = 1, ..., n, then the reliability
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function is given by

= P{é:l X; = k}
- ¥ <',.'>p"(1 -y e

i=k

Example 9.13 (The Two-out-of-Three System): The reliability function
of a two-out-of-three system is given by

r(p) = P{¢(X) = 1j
=PX=(,1,1)}+PX=(,10) +PX=(,0,1)}
+ P(X = (0,1, 1)}
= ppP3 + D121 — p3) + pi(1 — p)ps + (1 — pOP2py
= p1Dy + D1P3 + DDy — 2P1P2Ps @

Example 9.14 (The Three-out-of-Four System): The reliability function
of a three-out-of-four system is given by
rp) =PX=(,1,,1)} + PX=(1,1,1,0 + PX=(1,1,0,1)}
+PX=(,0,1,D}+ PX=(0,1,1, 1)}
= P1P2P3Ps + P1P2P5(1 — Pa) + P1D2(1 — P3)Ps
+ p1(1 = pIP3ps + (1 — p1)P2D3Ps
= D1D2P3s + P1P2Ds + P1D3Ps + P2P3Da — 301P2P3Ps @
Example 9.15 (A Five-Component System): Consider a five-component

system that functions if an only if component 1, component 2, and at least
one of the remaining components function. Its reliability function is given by

r(p) = P{X, = 1, X, = 1, max(X;, X, X5) = 1}
= P{X; = 1JP{X, = 1}P{max(X;, Xy, X5) = 1}
= pipall = (= p)(1 = P — ps)] @
Since ¢(X) is a 0 — 1 (that is, a Bernoulli) random variable, we may also
compute r(p) by taking its expectation. That is,
r(p) = P{¢(X) = 1}
= E[¢(X)]
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Example 9.16 (A Four-Component System): A four-component system
that functions when both components 1, 4, and at least one of the other
components function has its structure function given by

&(X) = x; X, max(x;, x;)
Hence,
r(p) = E[¢(X)]
= E[X,1 X,(1 - (1 — X,)(1 — X3))]

=p1o41 — (1 = p)(1 — py)] @

An important and intuitive property of the reliability function r(p) is
given by the following proposition.

Proposition 9.1 If r(p) is the reliability function of a system of inde-
pendent components, then r(p) is an increasing function of p.

Proof By conditioning on X; and using the independence of the com-
ponents, we obtain

r(p) = E[¢(X)]
= PE[6X)| X, = 1] + (1 - p)E[6(X)| X; = 0]
= PiE[$(1;, X)] + (1 ~ pE[S(O;, X)]
where
(1:, X) = (X15 oo, Xigy L, Xigys o005 X0,
0;,X) =(X1,..., Xi_1,0, Xi11, ..., X,)
Thus,
r(p) = p;E[6(1;, X) — 6(0;, X)] + E[¢(0;, X)]
However, since ¢ is an increasing function, it follows that
E[¢(1;, X) - $(0;, X)] = 0

and so the preceding is increasing in p; for all i. Hence the result is
proven. ¢

Let us now consider the following situation: A system consisting of n
different components is to be built from a stockpile containing exactly two
of each type of component. How should we use the stock-pile so as to
maximize our probability of attaining a functioning system? In particular,
should we build two separate systems, in which case the probability of



9.3. Reliability of Systems of iIndependent Components 485

attaining a functioning one would be

Pf{at least one of the two systems function)}
1 — Pineither of the systems function}
1-[A - rend - r@e))]

where p;(p}) is the probability that the first (second) number i component
functions; or should we build a single system whose ith component func-
tions if at least one of the number i components function? In this latter
case, the probability that the system will function equals

ril -1 -p) - p')l

since 1 — (1 — p;)(1 — p}) equals the probability that the ith component
in the single system will function.* We now show that replication at the
component level is more effective than replication at the system level.

Theorem 9.1 For any reliability function r and vectors p, p’,
rM-a-p@a-p=1-101-r@ll - r@E)l
Proof Let X,,...,X,, Xi,...,X, be mutually independent 0 — 1
random variables with
pi=PX;=1, pi=PX =1
Since P{max(X;, X{) = 1} = 1 — (1 — p;))(1 — pi), it follows that
ri1 — 1 - p)d - p")] = E(¢[max(X, X")])

However, by the monotonicity of ¢, we have that ¢[max(X, X')] is greater
than or equal to both ¢(X) and ¢(X') and hence is at least as large as
max[¢(X), ¢(X")]. Hence, from the preceding we have that

ril - (1 - p)A - p)] = E[max(é(X), 6(X' )]
= P{max[$(X), $(X')] = 1}
=1 - P{$(X) = 0, 6(X') = 0}
1-[1 - r@Il - ()]

where the first equality follows from the fact that max[¢(X), #(X')] is a
0 — 1 random variable and hence its expectation equals the probability of
its equaling 1. @

*Notation: If X =(x;,..., X%, ¥ = (V1,--s7), then xy = (x;y;,...,X,¥,). Also,
max(x, y) = (max(x;, y), ..., max(x,, y,)) and min(x, y) = (minx;, y), -.., min(x,, y,))-
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As an illustration of the preceding theorem, suppose that we want to
build a series system of two different types of components from a stockpile
consisting of two of each of the kinds of components. Suppose that the
reliability of each component is 4. If we use the stockpile to build two
separate systems, then the probability of attaining a working system is

1-@ =%
while if we build a single system, replicating components, then the prob-
ability of attaining a working system is
@ =1
Hence, replicating components leads to a higher reliability than replicating
systems (as, of course, it must by Theorem 9.1).

9.4. Bounds on the Reliability Function
Consider the bridge system of Example 9.8, which is represented by Figure
9.11. Using the minimal path representation, we have that
6(x) = 1 = (1 — x1x)(1 = X1 X%3x5)(1 = x,x5)(1 — X,x3%,)
Hence,
() =1-E[(1 - X, X)(1 - X; X3 X5)(1 — X, X5)(1 — X, X3X,)]

However, since the minimal path sets overlap (that is, they have components
in common), the random variables (1 — X, X,), (1 — X1 X3X5), (1 — X, X5),
and (1 - X,.X;X,) are not independent, and thus the expected value of
their product is not equal to the product of their expected values. Therefore,
in order to compute r(p), we must first multiply the four random variables
and take the expected value. Doing so, we obtain

r®) = ELX, X, + X X5 + X, X Xs + X X3 Xy — X, X, X, X,
= X\ X0 X3 X5 — X, X, X, Xs — X, Xy Xo Xs — X, X3 X, X,
+ 2X,X, X3 X, Xs]
=DP1Ps + P2Ps + P1P3Ps + PaD3Ps — P1P2P3Ps — P1D2D3Ds
T P1P2PaPs — P1P3PsPs — P2P3PsPs + 2D\ D2 P3DaPs

Figure 9.11.
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As can be seen by the above example, it is often quite tedious to evaluate
r(p), and thus it would be useful if we had a simple way of obtaining
bounds. We now consider two methods for this.

9.4.1. Method of Inclusion and Exclusion

The following is a well-known formula for the probability of the union of
the events E|, E,, ..., E,:

H(UE) = £ P - ST PEE) + LITPEEED

= i<j i<j<k
-+ (—1)”“P(E1E2 ...E) 9.3)
A result, not as well known, is the following set of inequalities:

P(OE.-) < ¥ PE),
1

i=

P(Lj)E,-) EP(E) - Y P(EE),

i<j

P(L"JE;) EP(E) - LY P(EE) + LYY P(EEE)),

1 i<j i<j<k

v

<. (9.4)

where the inequality always changes direction as we add an additional term
of expansion of P(U}. E;).

The equality (9.3) is usually proven by induction on the number of events.
However, let us now present another approach that will not only prove
Equation (9.3) but also establish the inequalities (9.4).

To begin, define the indicator variables [, j = 1, ..., n, by
7 = 1, if E; occurs
77 o, otherwise
Letting
n
N=Y I

i=1
then NV denotes the number of the E;, 1 <j < n, that occur. Also, let

I 1, ifN>0
“lo, ifN=0
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Then, as
1-I=(1-1DV
we obtain, upon application of the binomial theorem, that

1-1= % (N)(—l)"

i=0 \ !

() a() s

We now make use of the following combinatorial identity (which is easily
established by induction on #):

C)-Gr)e=()-(ol)=o i=n

The preceding thus implies that

(1:,) ) <z‘ f1> T @) =0 ©.6)

From Equations (9.5) and (9.6) we obtain
I =< N, by letting i = 2 in (9.6)

or

I=N- <N>, by letting i = 3 in (9.6)
9.7

and so on. Now, since N < » and (i > = 0 whenever i > m, we can rewrite
Equation (9.5) as

I- % <N>(—1)"“ 9.8)

t=1 \!

The equality (9.3) and inequalities (9.4) now follow upon taking expecta-
tions of (9.7) and (9.8). This is the case since

E[I] = P{N > 0} = P{at least one of the E; occurs} = P<UEj> ,
1

E[N] = E[ ) 1,.] = ¥ P(E)
Jj=1 Jj=1
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Also,

E [(IZ):I = E[number of pairs of the E; that occur]

= E[EZ I,-Ij]

i<j
= EZ P(EiEj)
i<j
and, in general

N
E[( i >] = E[number of sets of size i that occur]

o 52 L 15,1

J1<J2 <<y

EZ E P(Elefz'”Eji)

J1<Jz <+ <Ji

The bounds expressed in Equation (9.4) are commonly called the
inclusion-exclusion bounds. To apply them in order to obtain bounds on
the reliability function, let 4,, A4,, ..., A, denote the minimal path sets of
a given structure ¢, and define the events E;, E,, ..., E; by

E; = {all components in A; function}

Now, since the system functions if and only if at least one of the events E;
occurs, we have

"

Applying (9.4) yields the desired bounds on r(p). The terms in the summa-
tion are computed thusly:

P(E) = H Dis
led;
P(E,E)) = H Dy
’EA;UAJ'
PEEE) = ][I D
leA;UA;UA,

and so forth for intersections of more than three of the events. (The
preceding follows since, for instance, in order for the event E,E; to occur,
all of the components in 4, and all of them in 4; must function; or, in other
words, all components in 4; U A; must function.)
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When the p;’s are small the probabilities of the intersection of many of
the events E; should be quite small and the convergence should be relatively
rapid.

Example 9.17 Consider the bridge structure with identical component
probabilities. That is, take p; to equal p for all i. Letting 4, = {1, 4},
A; =1{1,3,5}, A; = (2,5}, and A, = {2, 3, 4] denote the minimal path
sets, we have that

P(E)) = P(E;) = p*,
P(E) = P(E) = p°

4 .
Also, because exactly five of the six = <2> unions of A; and A; contain

four components (the exception being A, U A, which contains all five
components), we have

P(E,\E) = P(E\E;) = P(E\E,) = P(EyE;) = P(E3Ey) = .D4,
P(E,E,) = p°
Hence, the first two inclusion-exclusion bounds yield
200* + p)) - 5p* - P’ = r(p) < 2(p* + P
where r(p) = r(p, p, p, p, p). For instance, when p = 0.4, we have
0.3098 < r(0.4) < 0.448

and, when p = 0.3,
0.191 = r(0.3) < 0.234 &

Just as we can define events in terms of the minimal path sets whose
union is the event that the system functions, so can we define events in terms
of the minimal cut sets whose union is the event that the system fails.
Let C,,G;, ..., C, denote the minimal cut sets and define the events
Fy,...,F by

F; = {all components in C; are failed}

Now, because the system is failed if and only if all of the components of at
least one minimal cut set are failed, we have that

1 -rp) = P(LIJF:),

1-rp) s I P,
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1-rp) = L PE) - I T PEF),

i<j
1-rp)< £ PE) - L LPEF) + L ¥ T PERF),
i i<j i<j<

and so on. As
PFE)=I1 A -p),

leC;

PEF)= JI a-p
1eCUG;
PEFRF)= I (0 -p)

le CUCUC

the convergence should be relatively rapid when the p;’s are large.

Example 9.18 (A Random Graph): Let us recall from Section 3.6.2
that a graph consists of a set N of nodes and a set A of pairs of nodes,
called arcs. For any two nodes i and j we say that the sequence of arcs
G, i)y, i), --., (i, Jj) constitutes an i — j path. If there is an i — j path

n
between all the » pairs of nodes i and j, i # j, then the graph is said

to be connected. If we think of the nodes of a graph as representing
geographical locations and the arcs as representing direct communication
links between the nodes, then the graph will be connected if any two nodes
can communicate with each other—if not directly, then at least through the
use of intermediary nodes.

A graph can always be subdivided into nonoverlapping connected
subgraphs called components. For instance, the graph in Figure 9.12 with
nodes N = {1,2, 3,4, 5,6}and arcs A = {(1, 2), (1, 3), (2, 3), (4, 5)} consists
of three components (a graph consisting of a single node is considered to be
connected).

Consider now the random graph having nodes 1, 2, ..., n which is such
that there is an arc from node i to node j with probability P;. Assume in
addition that the occurrences of these arcs constitute independent events.

®

Figure 9.12.
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n . . .
That is, assume that the (2) random variables X;, i # j, are independent
where

X = 1, if (4, /) is an arc
Y7 lo, otherwise

We are interested in the probability that this graph will be connected.
We can think of the preceding as being a reliability system of (;)

components—each component corresponding to a potential arc. The
component is said to work if the corresponding arc is indeed an arc of the
network, and the system is said to work if the corresponding graph is
connected. As the addition of an arc to a connected graph cannot discon-
nect the graph, it follows that the structure so defined is monotone.

Let us start by determining the minimal path and minimal cut sets. It is
easy to see that a graph will not be connected if and only if the sets of arcs
can be partitioned into two nonempty subsets X and X° in such a way that
there is no arc connecting a node from X with one from X*. For instance,
if there are six nodes and if there are no arcs connecting any of the nodes
1, 2, 3, 4 with either 5 or 6, then clearly the graph will not be connected.
Thus, we see that any partition of the nodes into two nonempty subsets X
and X* corresponds to the minimal cut set defined by

G,/)ieX,je X

s there are 2"~! — 1 such partitions (there are 2" — 2 ways of choosing a
nonempty proper subset X and, as the partition X, X is the same as X°, X,
we must divide by 2) there are therefore this number of minimal cut sets.

To determine the minimal path sets, we must characterize a minimal set
of arcs which result in a connected graph. Now the graph in Figure 9.13 is
connected but it would remain connected if any one of the arcs from the
cycle shown in Figure 9.14 were removed. In fact it is not difficult to see
that the minimal path sets are exactly those sets of arcs which result in a
graph being connected but not having any cycles (a cycle being a path from
a node to itself). Such sets of arcs are called spanning trees (Figure 9.15),

Figure 9.13. Figure 9.14,
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n . . . .
That 