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8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.2 Theory and Tools of Embedded Speech Coding . . . . . . . . . . . . . 203

8.2.1 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.2.2 Approximation Theory . . . . . . . . . . . . . . . . . . . . . . . 205

8.2.3 Hierarchical Vector Quantization Methods . . . . . . . . . . . . 208



xii Contents

8.3 Embedded Speech Coding Methods . . . . . . . . . . . . . . . . . . . . 212

8.3.1 Embedded DPCM and ADPCM . . . . . . . . . . . . . . . . . 212

8.3.2 Embedded CELP . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8.3.3 Embedded Extensions of CELP Coders . . . . . . . . . . . . . 216

8.3.4 Embedded Parameter Quantization . . . . . . . . . . . . . . . . 218

8.4 Standardized Embedded Speech Coders . . . . . . . . . . . . . . . . . 219

8.4.1 ITU-T G.711 PCM Codec . . . . . . . . . . . . . . . . . . . . . 219

8.4.2 ITU-T G.727 and G.722 ADPCM Codecs . . . . . . . . . . . . 220

8.4.3 MPEG-4 Scalable Speech Coding . . . . . . . . . . . . . . . . . 220

8.4.4 Embedded Wideband Coding for VoIP: ITU-T G.729.1 . . . . 223

8.5 Network Aspects of Embedded Speech Coding . . . . . . . . . . . . . 232

8.5.1 Implementation and Utilization of Scalability . . . . . . . . . . 232

8.5.2 Unequal Error Protection and Encryption . . . . . . . . . . . . 236

8.6 Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . . 237

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

9 Backwards Compatible Wideband Telephony 249

Peter Jax

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

9.2 From Narrowband Telephony to Wideband Telephony . . . . . . . . . 250

9.3 Stand-Alone Bandwidth Extension . . . . . . . . . . . . . . . . . . . . 254

9.3.1 Estimation of the Wideband Spectral Envelope . . . . . . . . . 255

9.3.2 Extension of the Excitation Signal . . . . . . . . . . . . . . . . 256

9.3.3 Performance and State-of-the-Art . . . . . . . . . . . . . . . . . 257

9.4 Embedded Wideband Coding Using Bandwidth Extension Techniques 257

9.4.1 Transmission of BWE Information . . . . . . . . . . . . . . . . 258

9.4.2 Examples of Embedded Wideband Speech Codecs . . . . . . . 260

9.4.3 Audio Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

9.5 Combination of Bandwidth Extension with Watermarking . . . . . . . 262

9.5.1 Digital Watermarking of Speech Signals . . . . . . . . . . . . . 263

9.5.2 Transmission of BWE Information via Watermarking . . . . . 265



Contents xiii

9.5.3 Challenges and Status . . . . . . . . . . . . . . . . . . . . . . . 266

9.6 Advanced Transmission of Highband Parameters . . . . . . . . . . . . 267

9.6.1 Coding with Side Information . . . . . . . . . . . . . . . . . . . 268

9.6.2 Error Concealment with Side Information . . . . . . . . . . . . 270

9.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

IV Joint Source-Channel Coding 279

10 Parameter Models and Estimators in Soft Decision Source Decoding 281

Tim Fingscheidt

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

10.2 Overview to Soft Decision Source Decoding . . . . . . . . . . . . . . . 283

10.2.1 Source Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 283

10.2.2 Equivalent Channel . . . . . . . . . . . . . . . . . . . . . . . . 284

10.2.3 Hard Decision and Soft Decision Source Decoding . . . . . . . 285

10.3 The Markovian Parameter Model . . . . . . . . . . . . . . . . . . . . . 287

10.3.1 Description of A Priori Knowledge . . . . . . . . . . . . . . . . 287

10.3.2 Quantification of Utilizable Residual Redundancy . . . . . . . . 288

10.3.3 Choice of the Model Order . . . . . . . . . . . . . . . . . . . . 289

10.4 Basic Extrapolative Estimators . . . . . . . . . . . . . . . . . . . . . . 290

10.4.1 Introduction and Simulation Settings . . . . . . . . . . . . . . . 290

10.4.2 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

10.4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 294

10.5 Joint Extrapolative Estimation of Two Different Parameters . . . . . . 298

10.5.1 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

10.5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 299

10.6 Extrapolative Estimation with Repeated Parameter Transmission . . . 301

10.6.1 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

10.6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 303

10.7 Interpolative Estimation of a Parameter . . . . . . . . . . . . . . . . . 304



xiv Contents

10.7.1 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

10.7.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 306

10.8 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 307

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

11 Optimal MMSE Estimation for Vector Sources with Spatially and
Temporally Correlated Elements 311

Stefan Heinen, Marc Adrat

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

11.2 Source Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

11.3 Transmission Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

11.4 Optimal MMSE Parameter Estimator . . . . . . . . . . . . . . . . . . 316

11.5 Near-Optimal MMSE Parameter Estimator . . . . . . . . . . . . . . . 320

11.6 Illustrative Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 323

11.7 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

11.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

12 Source Optimized Channel Codes & Source Controlled Channel
Decoding 329

Stefan Heinen, Thomas Hindelang

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

12.2 The Transmission System Used as Reference . . . . . . . . . . . . . . . 330

12.3 Source Optimized Channel Coding (SOCC) . . . . . . . . . . . . . . . 332

12.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

12.3.2 Decoding of Source Optimized Channel Codes . . . . . . . . . . 334

12.3.3 Design of Source Optimized Channel Codes . . . . . . . . . . . 335

12.3.4 Numerical Aspects of SOCC Design . . . . . . . . . . . . . . . 336

12.3.5 Bit Allocation between Source and Channel Coding . . . . . . 336

12.3.6 Relation to Channel Optimized Vector Quantization . . . . . . 338

12.4 Source Controlled Channel Decoding (SCCD) . . . . . . . . . . . . . . 341

12.4.1 Channel Coding and Decoding in SCCD . . . . . . . . . . . . . 341



Contents xv

12.4.2 A Priori Knowledge in Channel Decoding . . . . . . . . . . . . 345

12.4.3 Channel Decoding Using Intra-Parameter Correlation . . . . . 347

12.4.4 Channel Decoding Using Inter-Frame Correlation . . . . . . . . 349

12.4.5 Channel Decoding Using Intra-Parameter and Inter-Frame
Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

12.4.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 352

12.4.7 Exploiting A Priori Knowledge in Source and/or Channel
Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

12.5 Comparison of SOCC versus SCCD . . . . . . . . . . . . . . . . . . . . 357

12.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

13 Iterative Source-Channel Decoding & Turbo DeCodulation 365

Marc Adrat, Thorsten Clevorn, Laurent Schmalen

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

13.2 The Key of the Turbo Principle: Extrinsic Information . . . . . . . . . 366

13.2.1 Terms of Reliability Information . . . . . . . . . . . . . . . . . 367

13.2.2 Extrinsic Information of Channel Decoding . . . . . . . . . . . 368

13.2.3 Extrinsic Information of Source Decoding . . . . . . . . . . . . 371

13.2.4 Extrinsic Information of Demodulation . . . . . . . . . . . . . . 374

13.2.5 EXIT Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

13.3 Iterative Source-Channel Decoding (ISCD) . . . . . . . . . . . . . . . 379

13.3.1 Transmission System and Algorithm . . . . . . . . . . . . . . . 379

13.3.2 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . 382

13.3.3 Advancements and Optimizations . . . . . . . . . . . . . . . . . 385

13.4 Turbo DeCodulation (TDeC) . . . . . . . . . . . . . . . . . . . . . . . 387

13.4.1 Transmission System and Algorithm . . . . . . . . . . . . . . . 388

13.4.2 Simulation Examples . . . . . . . . . . . . . . . . . . . . . . . . 390

13.4.3 Advancements and Optimizations . . . . . . . . . . . . . . . . . 393

13.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395



xvi Contents

V Speech Processing in Hearing Instruments 399

14 Binaural Signal Processing in Hearing Aids 401

Volkmar Hamacher, Ulrich Kornagel, Thomas Lotter, Henning Puder

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

14.1.1 Monaural Hearing Aids - State of the Art . . . . . . . . . . . . 402

14.1.2 Binaural Hearing Aids . . . . . . . . . . . . . . . . . . . . . . . 404

14.1.3 Organization of this Chapter . . . . . . . . . . . . . . . . . . . 405

14.2 Wireless System for Hearing Aids . . . . . . . . . . . . . . . . . . . . . 405

14.2.1 Comparison of Wireless Systems . . . . . . . . . . . . . . . . . 405

14.2.2 Functional Description of the Wireless System for Hearing Aids 406

14.2.3 Applications of the Wireless System for Hearing Aids . . . . . 409

14.3 Binaural Classification Systems . . . . . . . . . . . . . . . . . . . . . . 410

14.3.1 Motivation and Basic Principle . . . . . . . . . . . . . . . . . . 410

14.3.2 Binaural Classification . . . . . . . . . . . . . . . . . . . . . . . 412

14.4 Binaural Beamformer . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

14.4.1 Dual Channel Input–Output Beamformer Design . . . . . . . . 416

14.4.2 Multichannel Postfilter . . . . . . . . . . . . . . . . . . . . . . . 419

14.4.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 420

14.5 Blind Source Separation (BSS): An Application for a Binaural
Directional Microphone Array in Hearing Aids . . . . . . . . . . . . . 422

14.5.1 Application Scenario . . . . . . . . . . . . . . . . . . . . . . . . 422

14.5.2 Specific Hearing Aid Challenges and Solutions . . . . . . . . . 423

14.5.3 Signal Separation with Hearing Aid Constraints . . . . . . . . 424

14.5.4 Output Signal Selection . . . . . . . . . . . . . . . . . . . . . . 425

14.5.5 Binaural Output Generation . . . . . . . . . . . . . . . . . . . 426

14.5.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 427

14.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428



Contents xvii

15 Auditory-profile-based Physical Evaluation of Multi-microphone Noise
Reduction Techniques in Hearing Instruments 431

Koen Eneman, Arne Leijon, Simon Doclo, Ann Spriet, Marc Moonen, Jan Wouters

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

15.2 Multi-microphone Noise Reduction in Hearing Instruments . . . . . . 434

15.2.1 Classical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 434

15.2.2 Generalized Sidelobe Canceler . . . . . . . . . . . . . . . . . . . 436

15.2.3 Adaptive Two-stage Beamforming Approach . . . . . . . . . . 438

15.2.4 Spatially Preprocessed Speech-distortion-weighted
Multichannel Wiener Filtering . . . . . . . . . . . . . . . . . . 439

15.3 Auditory-profile-based Physical Evaluation . . . . . . . . . . . . . . . 441

15.3.1 Simulation of Hearing-impaired Perception . . . . . . . . . . . 442

15.3.2 Physical Evaluation Measures . . . . . . . . . . . . . . . . . . . 444

15.4 Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

15.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

15.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

15.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

VI Speech Processing for Human–Machine Interfaces 459

16 Automatic Speech Recognition in Adverse Acoustic Conditions 461

Hans-Günter Hirsch

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

16.2 Structure of Speech Recognition Systems . . . . . . . . . . . . . . . . 462

16.2.1 Mel Frequency Cepstral Analysis . . . . . . . . . . . . . . . . . 463

16.2.2 Modeling Speech Units as HMMs . . . . . . . . . . . . . . . . . 466

16.3 Acoustic Scenarios during Speech Input . . . . . . . . . . . . . . . . . 468

16.3.1 Simulation of the Acoustic Environment . . . . . . . . . . . . . 469

16.3.2 Recognition Results for Different Distortion Effects . . . . . . . 473

16.4 Improving the Recognition Performance in Adverse Conditions . . . . 476



xviii Contents

16.4.1 Adapting HMMs to Reverberation . . . . . . . . . . . . . . . . 477

16.4.2 Adaptation of Delta Parameters . . . . . . . . . . . . . . . . . 482

16.4.3 Recognition Experiments on Hands-Free Speech Input . . . . . 485

16.4.4 Combined Adaptation to All Distortion Effects . . . . . . . . . 487

16.4.5 Recognition Experiments on Hands-Free Speech Input in Noisy
Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

16.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

17 Speaker Classification for Next-Generation Voice-Dialog Systems 497

Felix Burkhardt, Florian Metze, Joachim Stegmann

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

17.2 Speaker Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

17.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

17.2.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 499

17.2.3 Classification Algorithms . . . . . . . . . . . . . . . . . . . . . 501

17.2.4 Evaluation of Classifiers . . . . . . . . . . . . . . . . . . . . . . 503

17.3 Detection of Age and Gender . . . . . . . . . . . . . . . . . . . . . . . 505

17.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

17.3.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

17.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

17.4 Detection of Anger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

17.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

17.4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

17.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

17.5 Applications in IVR Systems . . . . . . . . . . . . . . . . . . . . . . . 517

17.5.1 Adaptive Voice-Dialogs . . . . . . . . . . . . . . . . . . . . . . 518

17.5.2 A Voice Portal Based on Age/Gender Detection . . . . . . . . 519

17.5.3 Customer Self-Service Based on Anger Detection . . . . . . . . 521

17.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 523

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525



Contents xix

Index 529

Permissions List 541





List of Contributors

Marc Adrat
Research Establishment for Applied Science (FGAN)
53343 Wachtberg, Germany
adrat@fgan.de

Christiane Antweiler
Institute of Communication Systems and Data Processing
RWTH Aachen University, 52056 Aachen, Germany
antweiler@ind.rwth-aachen.de

Colin Breithaupt
Institute of Communication Acoustics
Ruhr University Bochum, 44780 Bochum, Germany
colin.breithaupt@rub.de

Felix Burkhardt
T-Systems Enterprise Services GmbH
Goslarer Ufer 35, 10589 Berlin, Germany
felix.burkhardt@t-systems.com

Thorsten Clevorn
Infineon Technologies AG
47259 Duisburg, Germany
thorsten.clevorn@infineon.com

Simon Doclo
ESAT-SCD
Katholieke Universiteit Leuven, Belgium
simon.doclo@esat.kuleuven.be



xxii List of Contributors

Koen Eneman
ExpORL, Dept. Neurosciences
Katholieke Universiteit Leuven, Belgium
koen.eneman@med.kuleuven.be

Gerald Enzner
Institute of Communication Acoustics
Ruhr University Bochum, 44780 Bochum, Germany
gerald.enzner@rub.de

Tim Fingscheidt
Institute for Communications Technology
Braunschweig Technical University, 38106 Braunschweig, Germany
t.fingscheidt@tu-bs.de

Bernd Geiser
Institute of Communication Systems and Data Processing
RWTH Aachen University, 52056 Aachen, Germany
geiser@ind.rwth-aachen.de

Volkmar Hamacher
Siemens Audiologische Technik GmbH
Gebbertstrasse 125, 91058 Erlangen, Germany
volkmar.hamacher@siemens.com

Stefan Heinen
Infineon Technologies AG
47259 Duisburg, Germany
stefan.heinen@infineon.com

Ulrich Heute
Institute for Circuit and System Theory
Christian-Albrechts-University of Kiel, 24143 Kiel, Germany
uh@tf.uni-kiel.de



List of Contributors xxiii

Thomas Hindelang
Nokia Siemens Networks GmbH & Co. KG
St.-Martin-Str. 76, 81541 Munich, Germany
hindelang@ieee.org

Hans-Günter Hirsch
Niederrhein University of Applied Sciences
47805 Krefeld, Germany
hans-guenter.hirsch@hs-niederrhein.de

Peter Jax
Deutsche Thomson OHG
30625 Hannover, Germany
peter.jax@thomson.net

Ulrich Kornagel
Siemens Audiologische Technik GmbH
Gebbertstrasse 125, 91058 Erlangen, Germany
ulrich.kornagel@siemens.com

Arne Leijon
Sound and Image Processing Lab
KTH Stockholm, Sweden
arne.leijon@ee.kth.se

Thomas Lotter
Siemens Audiologische Technik GmbH
Gebbertstrasse 125, 91058 Erlangen, Germany
thomas.tl.lotter@siemens.com

Nilesh Madhu
Institute of Communication Acoustics
Ruhr University Bochum, 44780 Bochum, Germany
nilesh.madhu@rub.de



xxiv List of Contributors

Rainer Martin
Institute of Communication Acoustics
Ruhr University Bochum, 44780 Bochum, Germany
rainer.martin@rub.de

Florian Metze
Deutsche Telekom Laboratories
Ernst-Reuter-Platz 7, 10587 Berlin, Germany
florian.metze@telekom.de

Marc Moonen
ESAT-SCD
Katholieke Universiteit Leuven, Belgium
marc.moonen@esat.kuleuven.be

Henning Puder
Siemens Audiologische Technik GmbH
Gebbertstrasse 125, 91058 Erlangen, Germany
henning.puder@siemens.com
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Hervé Taddei
Nokia Siemens Networks GmbH & Co. KG
Otto-Hahn-Ring 6, 81739 Munich, Germany
herve.taddei@ieee.org

Marc Werner
QUALCOMM CDMA Technologies GmbH
90411 Nürnberg, Germany
marc.werner@qualcomm.com

Jan Wouters
ExpORL, Dept. Neurosciences
Katholieke Universiteit Leuven, Belgium
jan.wouters@med.kuleuven.be





Preface

When the book Digital Speech Transmission – Enhancement, Coding and Error Con-
cealment by Peter Vary and Rainer Martin appeared in 2006, it was clear that a
subject of this importance and this range could not be treated in all its details on
600-some pages. Important aspects had to be left out and had to be postponed to a
succeeding volume.

The opportunity for such an extension came when friends, colleagues and former doc-
toral students of Peter Vary decided to launch an edited book on recent developments
in this field – in honor of a man who has contributed significantly to the progress of
digital signal and, especially, speech processing. The edited book is published on the
occasion of his 60th birthday.

The present volume is the result of this effort. It comprises tutorial and research
contributions on recent Advances in Digital Speech Transmission – all of them written
by known experts in the field. This volume thus presents valuable additions and
updates on a broad range of subjects written for graduate students and researchers
in speech communications.

We would like to thank all contributing authors for sharing our enthusiasm and for
the timely delivery of their manuscripts. We would also like to express our gratitude
to the staff of John Wiley & Sons, Ltd, especially to Tiina Ruonamaa, Sarah Hinton,
and Brett Wells for supporting this project in any possible way. Last but not least, the
staff of the editors’ research institutions at the Aachen, Bochum, and Kiel Universities
contributed many reviews and helped with the editing work. Their efforts are sincerely
appreciated.

Bochum Rainer Martin
Kiel Ulrich Heute
Aachen Christiane Antweiler





Chapter 1

Introduction

Rainer Martin, Ulrich Heute, Christiane Antweiler

In the era of mobile communication networks, of Voice over IP (VoiP), and of hands-
free voice interfaces, new opportunities as well as new challenges arise. While tradi-
tional voice services are confined to the rather narrow frequency range below 4 kHz,
new technologies enable the transition to higher bandwidth and thus better qual-
ity speech transmission systems. At the same time, speech communication sys-
tems are increasingly used in adverse acoustic conditions, i.e., noisy and reverber-
ant environments. It turns out that a convincing end-to-end quality improvement
is obtained only when all components of the transmission chain – analog and dig-
ital – are optimized to a comparable level of quality. This entails improved meth-
ods for acoustic front-end processing as well as for speech coding and transmis-
sion. As a consequence, new wideband speech coding systems, new speech enhance-
ment and error concealment algorithms, and new quality assessment methods have
emerged.

Another important application in digital speech transmission is hearing instruments
that comprise increasingly powerful digital processors. Advanced speech processing
algorithms are currently integrated into hearing aids and will result in significant
improvements for hearing-impaired people.

Likewise, the recognition performance of automatic speech recognizers (ASR) can
also be improved dramatically if models of noise and reverberation are integrated.
Furthermore, a satisfying user experience requires these systems to become aware
of who is actually using them and to adapt to the needs of specific users. Many
challenging tasks in the conceptual design and in the signal processing modules of
modern speech transmission systems need to be solved before a uniformly pleasant
user experience is accomplished.

Advances in Digital Speech Transmission Edited by R. Martin, U. Heute and C. Antweiler
c© 2008 John Wiley & Sons, Ltd



2 1 Introduction

The general theme of this book is the presentation and the analysis of solutions for
improved-quality design of speech transmissions under adverse acoustic and hetero-
geneous network conditions. The book is organized into six parts:

I. Speech Quality Assessment
II. Adaptive Algorithms in Acoustic Signal Processing

III. Speech Coding for Heterogeneous Networks
IV. Joint Source-Channel Coding
V. Speech Processing in Hearing Instruments

VI. Speech Processing for Human–Machine Interfaces,

which will be briefly introduced below. Each chapter comes with an extensive list of
references that may serve as a resource for further study.

Intrinsically related to the Advances in Digital Speech Transmission is the question of
how to measure the quality of voice communication systems. This topic is treated in
Part I, Assessment of Speech Quality. In his chapter on Speech-Transmission
Quality: Aspects and Assessment for Wideband vs. Narrowband Signals
Ulrich Heute discusses the impact of increasing the signal bandwidth first on speech
processing algorithms in general and secondly on the methods for quality assessment
in particular. He argues convincingly that the traditional total quality assessment
approach, for instance, in the form of total quality listening tests and mean opinion
scores (MOS) should be succeeded by quality assessment procedures with diagnostic
abilities. Therefore, the task is to find more or less orthogonal descriptors for wideband
speech quality that provide a basis for the computation of total quality scores, and
to develop algorithms for the computational assessment of speech signals. In his
chapter on Parametric Quality Assessment of Narrowband Speech in Mobile
Communication Systems, Marc Werner provides an overview of and insights into
automated non-intrusive quality monitoring for mobile voice communication channels.
His approach is based on mapping measurable system parameters at the receiving end
to speech quality measures. Such parameters are, for instance, the signal power or
the frame-error and the bit-error rate (FER / BER). The quality measure is then
computed via a linear function of these parameters whose coefficients are optimized
in the minimum mean-square error sense. Speech transmissions in the GSM and the
UMTS systems serve as examples.

Part II is dedicated to Adaptive Algorithms in Acoustic Signal Processing.
It begins with Gerald Enzner’s chapter on Kalman Filtering in Acoustic Echo
Control: A Smooth Ride on a Rocky Road , which takes a fresh look at the
acoustic echo control problem and develops a model-based approach. By dropping
the assumption of a deterministic echo-path model and by replacing it with a statis-
tical model, he arrives at a unifying solution to the acoustic echo-control problem.
His solution comprises an echo canceler and a post-filter and turns out to be very
robust to echo-path variations, while at the same time it is conceptually elegant and
simple to implement. The chapter Noise Reduction – Statistical Analysis and
Control of Musical Noise by Colin Breithaupt and Rainer Martin investigates the
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statistical fluctuations in the spectral parameters of state-of-the-art noise reduction
systems. A careful analytic analysis of the most widely used spectral enhancement
approaches explains the emergence of musical noise in these algorithms. It is shown
that the histogram of log-spectral amplitudes provides a good indication of audible
spectral fluctuations. Furthermore, a solution is presented for controlling these fluc-
tuations without impairing the perceived speech quality. In their chapter Acoustic
Source Localization with Microphone Arrays, Nilesh Madhu and Rainer Mar-
tin provide an overview on time delay of arrival (TDOA) and source localization
techniques. This includes the popular generalized cross-correlation (GCC) method
as well as multi-microphone techniques such as steered response power (SRP), mul-
tiple signal classification (MUSIC), and maximum-likelihood (ML) approaches. The
chapter elaborates on the links between these methods and provides simulation exam-
ples highlighting their respective performance. The chapter Multi-Channel System
Identification with Perfect Sequences – Theory and Applications by Chris-
tiane Antweiler explains how sequences with perfect correlation properties can be used
to identify multiple input – single output (MISO) systems. Perfect sequences are a
most elegant tool to be used in conjunction with the normalized least mean-square
(NLMS) algorithm. This chapter extends this method to the real-time identifica-
tion of multiple channels and provides an example in medical technology: the online
assessment of the Eustachian tube.

Part III, Speech Coding for Heterogeneous Networks, is opened by an
overview on Embedded Speech Coding: From G.711 to G.729.1 by Bernd
Geiser, Stéphane Ragot, and Hervé Taddei. The authors review the general theory
and the methods for successive refinement coding of speech. Tree-structured vec-
tor quantization (TSVQ), multi-stage vector quantization (MSVQ), and transform
domain vector quantization with progressive decoding and the application in state-of-
the-art speech coders are discussed in detail. Furthermore, this chapter summarizes
the latest developments in embedded wideband coding for VoiP speech transmission
systems and the network aspects of such schemes. Bandwidth extension (BWE) of
speech signals constitutes another important research area in speech signal process-
ing that currently enjoys renewed and significant interest. In Chap. 9, Backwards
Compatible Wideband Telephony , Peter Jax discusses the implications of this
technology for the migration from narrowband to wideband speech transmission sys-
tems and outlines his approach to this task. He explains solutions that do not need
side-information (stand-alone BWE) and those that make use of information about the
wideband speech envelope. If the side-information is embedded into the speech signal
by means of watermarking technology, the result is a speech signal that can be repro-
duced either on a narrowband or on a wideband terminal.

Part IV, Joint Source-Channel Coding, presents a series of four chapters that
deal with the exploitation of redundancies in speech and channel coding schemes for
improving the quality of the received signal. Tim Fingscheidt’s chapter on Parame-
ter Models and Estimators in Soft Decision Source Decoding first presents
an overview of soft decision source decoding (SDSD) and of modeling techniques for
source parameters. Secondly, it discusses estimators for the recovery of degraded,
received speech parameters by means of extrapolation and interpolation and presents
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simulation results for various transmission scenarios. In Chap. 11, this work is ex-
tended towards a general discussion of Optimal MMSE Estimation for Vector
Sources with Spatially and Temporally Correlated Elements by Stefan Heinen
and Marc Adrat. While the general solution of this task would lead to an overwhelm-
ing computational complexity, the authors tackle this problem by imposing a Markov
property on the speech parameters in the temporal and the vector dimensions. Thus,
they are capable of deriving MMSE and near-optimal MMSE estimators with signif-
icantly reduced computational requirements. Furthermore, they provide simulation
results for digital audio broadcast (DAB) and GSM systems. In their chapter on
Source Optimized Channel Codes & Source Controlled Channel Decoding
Stefan Heinen and Thomas Hindelang establish the link between source and chan-
nel (de-)coding in two competing approaches. In the source-optimized channel coding
(SOCC) system the channel codes are tailored to the source statistics. It thus achieves
an efficient utilization of the available bit rate and a low reconstruction error at the re-
ceiver. The second approach of source-controlled channel decoding (SCCD) improves
the decoding of convolutional codes by exploiting residual redundancies in source pa-
rameters. The authors compare and discuss the merits of both approaches on the
basis of a single, general source and transmission channel model and are thus able
to draw interesting conclusions. Part IV concludes with the chapter on Iterative
Source-Channel Decoding & Turbo DeCodulation by Marc Adrat, Thorsten
Clevorn, and Laurent Schmalen, which builds on the two approaches of the previous
chapter. Here, the authors extend soft source and channel decoding techniques to-
wards iterative methods, also known as turbo-decoding methods. Besides a review
of turbo-techniques, two novel approaches, iterative source-channel decoding (ISCD)
and Turbo DeCodulation (TdeC), are developed and analyzed by means of extrinsic
information transfer (EXIT) charts. It is shown that ISCD outperforms non-iterative
transmission schemes in terms of the signal-to-noise ratio of the reconstructed speech
signal.

An interesting area for research in digital speech transmission is the application of
Speech Processing in Hearing Instruments. Part V is dedicated to this topic.
The first chapter in this part is authored by Volkmar Hamacher, Ulrich Kornagel,
Thomas Lotter, and Henning Puder and discusses Binaural Signal Processing
in Hearing Aids: Technologies and Algorithms. The realization of a wireless
data link between the left ear and the right ear hearing device is a challenge in itself
but also enables the employment of binaural processing schemes. The authors first
describe the design of the wireless link as implemented in a commercial hearing aid.
Then, they discuss the potential that lies in the possibility to exchange data at various
bit rates between the left and the right side. They show that considerable potential
resides in these processing schemes, especially in terms of user comfort. Advanced
signal processing schemes such as binaural beamformers, however, require higher data
rates. Thus, many interesting research questions are still to be answered before such
methods can be applied. In Chap. 15, Auditory-profile-based Physical Evalua-
tion of Multi-microphone Noise Reduction Techniques in Hearing Instru-
ments, by Koen Eneman, Arne Leijon, Simon Doclo, Ann Spriet, Marc Moonen, and
Jan Wouters discusses multi-microphone beamforming approaches for hearing devices
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and introduces an assessment method for noise reduction algorithms that takes the
speech perception capabilities of hearing impaired listeners into account. This evalu-
ation is based on the auditory profile of the listener, i.e., the characterization of the
hearing loss in terms of various measures such as the audiogram. The newly developed
instrumental measures provide a prediction of the usefulness of signal enhancement
algorithms for people with hearing deficiencies. It can be expected that such mea-
sures will reduce the effort that comes with listening tests and thus will facilitate the
development of new and more effective algorithms.

Part VI deals with Speech Processing for Human–Machine Interfaces. Voice
driven human–machine interfaces are typically used in a hands-free mode. Thus,
the automatic speech recognizer (ASR) has to cope with significant levels of noise
and reverberation. In Chap. 16, Hans-Günter Hirsch discusses Automatic Speech
Recognition in Adverse Acoustic Conditions, which entail ambient noise and
reverberation. He gives an overview on state-of-the-art approaches and presents a new
database that was developed to allow the evaluation and comparison of recognition
experiments in noisy and reverberant conditions. Furthermore, he presents a new
model adaptation approach that dramatically improves the recognition performance
in such environments. The topic of the final chapter is Speaker Classification
for Next-Generation Voice-Dialog Systems. In this chapter, Felix Burkhardt,
Florian Metze, and Joachim Stegmann discuss how voice services may be personalized
when the speaker can be classified as belonging to a certain target group. Useful
classification criteria are, for instance, the age and the gender of the caller, or they may
be related to the emotions of the caller when accessing the dialog system. The authors
provide an overview on classification methods and present corresponding algorithms.
They show how these classification criteria can be used in dialog systems and present
evaluation results for their specific approach.

The editors believe that each of these chapters by itself will serve as a valuable resource
and reference for students and researchers and that cross links between these topics
will trigger new ideas and thus contribute to the progress of the field.





I

Speech Quality Assessment





Chapter 2

Speech-Transmission Quality:
Aspects and Assessment for
Wideband vs. Narrowband
Signals

Ulrich Heute

2.1 Introduction

For decades, users of a telephone connection have expected a speech transmission
with a small bandwidth below 4 kHz and a further quality limitation by some dis-
turbances, but sufficient intelligibility. Now, wideband speech transmission up to
7 kHz is being offered in a growing number of services. This yields a more pleasant
sound, and even intelligibility advantages can be shown. But wideband transmis-
sion, coding, and general processing require new features to be taken into account.
An auditory determination of the resulting speech quality follows the same lines as
that for narrowband signals. The results, however, need a new interpretation, and
instrumental quality measures rely even less on a saturated understanding than those
for telephone-band speech. This holds for direct total-quality (i.e., MOS) estimation
and for prediction of single, diagnostic quality attributes (like, e.g., “noisiness”), as
well as for their integration into overall quality. The state of the art, new approaches,
first results of present investigations, and open questions are considered, especially for
wideband speech, with an emphasis on differences in comparison with the telephone-
band case.

Advances in Digital Speech Transmission Edited by R. Martin, U. Heute and C. Antweiler
c© 2008 John Wiley & Sons, Ltd
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2.2 Speech Signals

In the context of this chapter, and as indicated in Fig. 2.1, speech is treated as a
continuous acoustical time function, termed so(t) or s1(t). It may either be created
by a human speaker, or it may leave a loudspeaker, handset, or earphone. In the
latter case, the corresponding electrical signal yo(t) comes from a digital-to-analog
converter (DAC) with succeeding interpolation low-pass filter (Ipo-LP), whose input
is a discrete sequence y(k). That signal comes from a digital system. This device
transmits or, equivalently, stores and thereby, generally, “somehow influences” the
input sequence x(k). These values are samples of the continuous-time signal xo(t).
By xo(t),we denote a filtered version of the microphone signal x̌o(t). The filter provides
a band-limitation and, especially, avoids aliasing in the analog-to-digital conversion
(ADC). So, formally, we have

• the microphone signal x̌o(t) ∼ so(t),

• its filtered version xo(t),

• the system’s input samples x(k) = xo(kTS), k ∈ Z,

• the system’s output samples y(k) = yo(kTS), k ∈ Z, and

• the acoustical output signal s1(t) ∼ yo(t).

Here, TS denotes the sampling interval. It is defined via the sampling frequency
fS which, as is well known, has to be chosen such that the sampling theorem is
fulfilled:

fS =
1
TS

≥ 2 · fc ; (2.1)

fc describes the maximum frequency appearing in xo(t).

Digital
processing /

Storage /
Transmission

AA-
LP

Ipo-
LP

A
D

D
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s0(t)

s1(t)

x0(t) x0(t)

x0(t)

^

x0(kTS )

= x(k)
.

y(k) =

y0(kTS )

fS

fS

fc

fc

Figure 2.1: Speech signals and their electrical and digital counterparts in a process-
ing / storage / transmission scenario
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2.3 Telephone-Band Speech Signals

In our context, the speech signal of interest is transmitted via some telephone con-
nection, with various possibilities of digital encodings. This may be a simple PCM,
with basically a transmission of non-linearly quantized values y(k) = [x(k)]Q, or
any more or less refined compression system, like an ADPCM (Adaptive Differential
Pulse-Code Modulation) or a CELP (Code-Excited Linear Prediction) codec, yielding
a more complex modification of x(k). Also, some signal-enhancement techniques, like
reduction of echoes and noise, may be included.

In classical digital telephony, the sampling rate is fixed to

fS = 8 kHz . (2.2)

This would theoretically allow for a bandwidth of xo(t) with an upper limit at

fc = 4 kHz

according to (2.1). In fact, however, the telephone-speech band is much more lim-
ited: Usually, the pass-band of the telephone band-pass is said to cover frequen-
cies

f ∈ Bn
.= [0.3, 3.4] kHz . (2.3)

Equation (2.3) defines1 so-called telephone-band or narrowband speech. But even in
this narrow frequency range, the spectrum is not too well preserved: Fig. 2.2 shows
the tolerance scheme of the input filter for an ISDN transmission system [ITU G.712
2001]. Obviously, quite strong linear distortions are tolerated within Bn.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8
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1.2

f / kHz

|HLPinput 
|

Figure 2.2: Linear tolerance scheme for the ISDN-system input filter

1The symbol
.
= is used throughout this chapter for definitions.
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2.3.1 Narrowband Speech Intelligibility

The above-named bandwidth complies with early investigations of speech intelligi-
bility [Fletcher, Galt 1950]. Figure 2.3 displays the articulation s depending on
the bandwidth. This term is defined as s

.= 1 − e, and e denotes the probabil-
ity of errors in phoneme understanding. So, s can be interpreted as the rate of
correct phoneme perception. Obviously, a low-pass with upper cut-off frequency
fc = 3.4 kHz already allows some 97% of all sounds to be understood, and the lower
frequency limit due to the telephone high-pass at 300 Hz has an even smaller influ-
ence.

102 103 104
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

f / Hz

s Limitation by high-pass 

Limitation by low-pass 

Figure 2.3: Sound intelligibility s depending on the cut-off frequencies of a low-
pass and a high-pass filter (parabola approximations of measurements in
[Fletcher, Galt 1950])

Thus, sound intelligibility usually seems to be of no concern in telephone-band speech.
The recognition of whole sentences is even better, namely around 99%, unless specifi-
cally difficult words appear, like unknown names, where the human ability of interpo-
lating missing information from surrounding sounds and context fails. This remains
true even when, beyond band limitation, other (small) distortions occur, like quantiza-
tion noise in PCM, non-linearities, or even aliasing components in certain compression
systems (for an overview on present techniques, see, e.g., [Vary et al. 1998], [Heute
2005], [Vary, Martin 2006]. Instead, in our context, quality refers to sound quality,
i.e., the perception of the acoustic signal s1(t) in Fig. 2.1 by a human listener.

2.3.2 Narrowband Speech-Sound Quality

Of course, the shape of s1(t) depends strongly on that of so(t), i.e., on possible
peculiarities of the speaker in terms of, e.g., the average fundamental frequency fo

(the“height”of the voice), the variation of fo (monotony vs. melody), the harmonicity
and clearness (vs. noisiness or hoarseness) of voiced sounds, and the spectral-shaping
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abilities due to the speakers vocal-tract features – in short: on the timbre of the
original speech signal. The analysis of these “voice-quality” aspects (see, e.g., [Laver
1980]) is, however, beyond the scope of this chapter.

Our concern is the influence of the processing system on the sound quality of
s1(t).

Since the quality attributed to the output of a system is the result of a percep-
tion plus a judgment process [Jekosch 2005], quality assessment naturally asks for
the involvement of listening subjects. Before addressing some details of such so-
called subjective quality tests in Sec. 2.5.1, a few general observations will be men-
tioned.

The band limitation of (2.3) will, first of all, lead to the well-known, telephone-
typical impression of “thin” speech, in contrast to a “full” speech sound especially
with the now missing low frequencies. The timbre will also be strongly changed
by a band limitation. This “coloration” [Raake 2006] may even falsify the speaker’s
identity. Beyond, other distortions like losses due to frequency-selective attenuation or
added components like noise or echoes are perceived with their own specific distortion
timbres.

The long-time average speech spectrum is known to have a low-pass character, also
with the very low frequencies being quite weak – which also complies with the choice
of the telephone band in (2.3). Figure 2.4 depicts the measurements of [Dunn, White
1940] in a stylized form, with a linear growth of components below some 250 Hz, a
band of maximum contributions between 250 Hz and 500 Hz, and a spectral decay of
some 9 dB/octave starting at 500 Hz (which is approximately the average first-formant
frequency F1). Later measurements (e.g., [Blomberg, Elenius 1970], [Serafat, Heute
1996]) and approximations (e.g., [French, Steinberg 1947], [ITU P.50 1999]) give, cum
grano salis, the same general impression: Components above 4 kHz are attenuated

−35

−30

−25

−20

−15

−10

−5

0

102 103 104

f / Hz

20
 lo

g 10
 |X

| /
 d

B

Figure 2.4: Stylized long-time average speech spectrum
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by about 30 dB and more. Using the model of Fig. 2.4, a calculation of the power
suppressed by an ideal 3.4 kHz low-pass shows that less than 0.9% (corresponding to
a linear-distortion level of −21 dB) is missing.

However, the telephone high-pass cut-off at 300 Hz, realized ideally, would remove
more than 22% of the total power (corresponding to −6.4 dB), and even a softer
filtering still would lead to relatively high losses. This contradicts the above observa-
tions made from Fig. 2.3: Extending the band Bn of (2.3) should enhance the sound
fidelity.

2.4 Wideband Speech Signals

Wideband speech is defined to cover frequencies

f ∈ Bw
.= [50, 7000] Hz . (2.4)

Then the sampling rate of (2.2) is replaced by

fS = 16 kHz . (2.5)

Figure 2.5 shows the corresponding input-filter tolerance scheme as defined for the first
internationally introduced wideband-coding system [ITU G.722 1993]. Beyond the
larger band width, the reduction of allowed in-band variation is obvious, in comparison
with Fig. 2.2.
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Figure 2.5: Linear tolerance scheme for wideband speech coding with a split-band
ADPCM according to the ITU-T recommendation G.722



2.4 Wideband Speech Signals 15

2.4.1 Wideband-Speech Intelligibility and Sound Quality

Indeed, speech with this more than doubled bandwidth is found to have a much
more natural and full sound. A calculation based on the model spectrum of Fig. 2.4
again shows that, here, only 0.2% of the power is dropped by an ideal 7 kHz
low-pass and 0.11% by an ideal 50 Hz high-pass filter. The equivalent levels of
−26.6 dB and −29.4 dB show a much better match. Moreover, a closer look to
the results in [Fletcher, Galt 1950] reveals that a larger bandwidth is indeed help-
ful also in the sense of intelligibility. In their report, they define an articulation index
as

A = −c · log10(1 − s) = −c · log10(e) .

If ei denotes the understanding-error probability occurring when only the i-th of n
narrow bands are passed, then the error probability when using n bands is found to
be given by

e = e1 · e2 · ... · en ,

i.e.,

A = −c ·
n∑

i=1

log10(ei) = −c ·
n∑

i=1

log10(1 − si) .

Defining the contribution dA of a band df at frequency f to the articulation index
as the importance dA/df

.= D(f) of a certain frequency, an accumulated importance
function is found by integration up to frequency f . Per definitionem, a “flat” 8 kHz-
bandwidth transmission is assumed to yield A = 1.0. For this case, Fig. 2.3 shows that
an articulation s = 0.985 is achieved. Thereby, the constant c = 0.55 is determined
experimentally.

Figure 2.6 shows a simplified replica of the accumulated importance. Obviously, the
components above 3.4 kHz add about 18%, those below 300 Hz ca. 4% important
information, whereas not much is lost outside Bw.

The contradiction between the above statement and that of Sec. 2.3.1 may be re-
solved by a look to specific, not just all possible sounds. Voiced sounds like vow-
els have a short-time spectral envelope with much similarity to the long-time av-
erage low-pass behavior of Fig. 2.4, though with formants and anti-formants as
additional maxima and valleys, respectively; unvoiced sounds tend rather to have
a band-pass character, with less pronounced formants but, especially, the absolute
maximum at higher frequencies – namely, around fc = 3.5 kHz or even higher (see
Fig. 2.7).

Obviously, this essential information is cut off or at least reduced by the narrowband
telephone input filter of Fig. 2.2. Since the absolute power of unvoiced sounds is much
lower than that of voiced ones (by some 15 dB or more, see Fig. 2.7), the loss of the
strongest part is even worse. Thus, the discrimination between two fricatives becomes
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Figure 2.6: Accumulated importance of frequency components to speech articulation
(exponential approximation of measurements in [Fletcher, Galt 1950])

difficult. This explains why the corresponding components are important but do not
increase the average intelligibility too much. An enhanced brightness and clearness
are often stated, describing the improvement in other words.

On the other hand, voiced sounds have line spectra with a spacing fo, where fo is
the fundamental frequency of the short-time periodic sound with period To = 1/fo.
Especially for male voices, fo ∈ (60, 100) Hz may often occur, so that the telephone
high-pass removes or strongly attenuates the first 3–5 harmonics; the fullness of the
voice is thus lost, which (only) for certain dark vowels also increases the risk of con-
fusion. These effects are, of course, less strong for female voices with their higher fo

values.

The perception of speaker-specific features, beyond fo, is also considerably augmented
by the step from Bn to Bw: The third formant is known to be less sound-typical and
variable than the first two, and also to carry some information on the talker identity.
The fourth formant is more or less only speaker-related, and the same holds for higher
formants. For the neutral vocal tract occurring during the “schwa” sound / e/, i.e.,
the acoustic tube between glottis and mouth with an almost uniform cross-section,
the formant frequencies are found to be

Fν = (2ν − 1) · F1 ≈ (2ν − 1) · 500Hz .

So, F3 ≈ 2500 Hz is well within Bn, though possibly somewhat attenuated (see
Fig. 2.2); but F4 ≈ 3500 Hz coincides with the edge of the telephone band, and
F5 = 4500 Hz is outside Bn; these speaker-specific spectral features are strongly
attenuated or even removed, while they are well maintained in wideband-speech sig-
nals.

In total, as said before, naturalness is enhanced if Bw is allowed. In a formal listening
test for this feature, a 4-point increase from 2 to 6 on a 10-point scale was found for
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a) the vowel /æ/
b) the fricative /

∫
/

c) the fricative /s/ spoken by a male speaker

the step from Bn to Bw; even more could be gained for larger bandwidths [Moore,
Tan 2003]. Interestingly, not much naturalness improvement is found by reducing the
lower or increasing the upper cut-off frequency alone. Similarly, from a quality test
in [Krebber 1995], it can be seen that, on a 5-point scale, a decrease of the lower
band edge to 100 Hz alone or the doubling of the upper edge to 7 kHz alone give
improvements of only 0.5 points, while the extension of both sides yields a gain of
1.3 points.

This complies with the generally accepted assumption that a balance of bandwidth
and band position is needed. Although a band extension of only 300 Hz at the lower
end, but some 3500 Hz at the upper end of the frequency axis seems to be quite
unbalanced; a look to the non-linear frequency resolution of the ear [Zwicker 1982] is
helpful: The use of the warped Bark-frequency scale

Θ/Bark = 13 · arctan
(
0.76 · f

Hz
)

+ 3.5 · arctan
(( f

7.5 kHz
)2) (2.6)

reveals that the critical bands with Θ = 1, 2, and 3 are added on one side, Θ = 18, 19,
20 and (partially) 21 on the other side – so, 3 and 3.5 Bark are quite well balanced.
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A comparison test reported in [Voran 1997] says, somewhat in contrast to other re-
sults, that mainly the missing lower frequencies should be added to enhance quality;
even a shift of Bn by about 100 Hz downward would be helpful. A contradicting
result reported in [Raake 2006] says that a band between 200 Hz and 7000 Hz would
have a 0.4-point advantage, on a 5-point total quality scale, over Bw as defined in
(2.4), so that the higher frequencies would be more important. Still, “averaging” all
these observations confirms that the choice of Bw in (2.4) is a good one with strong
improvements over narrowband transmission.

2.4.2 Wideband Speech Transmission and Processing

Talking about speech processing means, of course, that now the sequences x(k) and
y(k) in Fig. 2.1 are considered, rather than the continuous acoustical waves so(t)
and s1(t). Covering Bw instead of Bn necessitates the step from (2.2) to (2.5), i.e.,
doubling the sampling rate. This is, however, not the only change: There are often
special features to be taken care of, when wideband speech is to be handled. This
is essential also because just at the edge of narrowband coverage, between 3 kHz
and 5 kHz, the human ear is very sensitive. In parts, this is counteracted by the
growth of the critical-band widths at higher frequencies, so that certain effects are
less perceivable.

Wideband Speech Coding

An international standard for wideband speech transmission has been available since
1988, in an earlier version of [ITU G.722 1993]. It contains the above input-filter
tolerance scheme as well as the description of a split-band ADPCM. The lower half of
the spectrum, up to 4 kHz, is transmitted by means of a backward-adaptive differential
coding scheme (similar to that of the DECT standard [ITU G.726 1990]), with 8 kHz
sampling rate but with 6 instead of 4 bits/sample, while the upper half undergoes
another ADPCM coding with 8 kHz sampling frequency but only 2 bits/sample. The
increased resolution of the lower, stronger spectral components is needed in order
not to spoil the quality gain due to the larger bandwidth by a now more audible
quantization noise; as the upper frequency components are much smaller, a lower
word-length suffices to cover their dynamic range. The band-splitting and re-synthesis
are realized by quadrature-mirror filter (QMF) pairs in transmitter and receiver. The
total bit rate

fB,WB−ADPCM = 8 · (6 + 2) kbit/s = 64 kbit/s

is identical to that of the narrowband ISDN-standard log-PCM system. It may, how-
ever, be reduced by dropping one or two bits of the lower-band signal; this is allowed
since the adaptations inside the coder and decoder are based, sub-optimally, on the
first four of the maximally six bits in any case. The quality will, of course, suffer in
the lower-rate options, but it is still felt to be considerably better than that of the
narrowband ISDN transmission.
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Nevertheless, there used to be little enthusiasm for the offered “better sound at
the same rate”. The interest in wideband-speech transmission did not grow until
three other developments appeared: the availability of interfaces beyond the clas-
sical hand-set, like head-sets or hands-free terminals, varying-rate coding schemes
for mobile phones, and the virtually unlimited data volumes possible in the Inter-
net.

For the mobile-telephony development after 1980, the data rates of the narrowband
PCM, fB,PCM = 64 kbit/s, and ADPCM, fB,ADPCM = 32 kbit/s, were too high.
Techniques with lower rates and with still similar quality were known from literature,
but were unrealizable with available technology. On the other hand, the well-known
simple LPC vocoder with its low rate of 4 kbit/s would have too poor a quality.
So, a dedicated codec was developed in the ETSI standardization process for GSM,
compressing the speech signal to 13 kbit/s and transmitting it, with a large amount
of redundancy for error protection, at a gross rate of 22.8 kbit/s [ETSI GSM 06.10
1988]. Soon after the GSM start, it was found that either a lower rate at almost the
same quality or a much better quality at 13 kbit/s would be realizable. The latter
idea resulted in the so-called enhanced full-rate (EFR) coder [ETSI GSM 06.60 1996];
it is based on the principles of an algebraic code-excited linear-predictive (ACELP)
system [ITU G.729 1996] developed for speech transmission at 8 kbit/s with a sound
quality close to that of narrowband ADPCM. The same principles turned out also to
be useful for higher as well as for even lower rates, down to about 4 kbit/s. Together
with the realizability of such complex codings, now achievable due to the fast progress
of electronics, the old, plausible idea of a varying data rate became feasible, taking
care of the strongly fluctuating transmission quality of mobile-radio connections. The
net rate for speech and the redundancy added for error protection could be adapted to
the channel conditions in the adaptive multi-rate (AMR) coding scheme [ETSI GSM
06.90 1998] developed for GSM and UMTS. Since for very good channels high rates of
up to more than 20 kbit/s also became available, it was only a logical step to use these
high data flows for speech with a larger bandwidth, as included in the so-called AMR
wideband (AMR-WB) system [ITU G.722.2 2002]. The band up to fc = 6.4 kHz is
transmitted via ACELP with different bit allocations for the codec parameters, and
at the highest rate of 23.85 kbit/s, an additional information about the band between
6.4 kHz and 7 kHz is transmitted.

In Voice (transmission) over (the) Internet Protocol (VoIP), it is not because of fad-
ing effects as in mobile telephony, but due to heavily varying traffic load that the
AMR ideas are also of interest. As in early VoIP implementations there were some
drawbacks concerning link reliability and packet losses, it was attractive to offer a
compensation by a high-quality speech sound. So, wideband coding was applied,
and nowadays AMR-WB is frequently chosen. It also became a common choice in
other applications, like storage of high-quality speech segments for speech-output sys-
tems.

Interestingly, the bands in this new scheme are not just those used in the split-band
ADPCM, which seem to be quite natural a choice, with a lower-half and an upper-
half band, up to and above 4 kHz, respectively. Instead, a coherent wider band with
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fc = 6.4 kHz is covered, and only the small remainder is dealt with separately, as
mentioned above. The reason can be found in several investigations concerning a
much simplified handling of the higher frequencies.

Artificial Bandwidth Extension

In the years between 1985 and 1995, no wideband speech transmission was envisaged
for the near future. On the other hand, there were obvious problems with narrowband
telephone and natural wideband speech occurring together, namely, during broadcast
telephone interviews or in radio or TV programs with “phone-in” speakers. There
were attempts to overcome the quality switching between “full and natural” and “thin
and tinny” by adding higher and lower frequencies without transmitting them [Croll
1972], [Patrick, Xydeas 1981], [Patrick 1983], [Patrick et al. 1983]. The lower fre-
quencies were (re-)generated by a non-linearity arousing sub-harmonics of the higher
fo-multiples present in Bn during voiced segments. In order to really improve the
perceived quality, however, more refined techniques were found to be needed, based
on pitch-detection, i.e., fo measurements. The availability (that is: transmission) of
at least some additional information about the missing components would be helpful.
In order to (re-) generate an upper band, noise modulation via parts of the narrow-
band speech spectrum and band-pass filtering were applied. Also here, some more
refined methods were added, again taking care of the harmonic structure in voiced
segments.

A later study [Carl 1994], [Carl, Heute 1994] applied narrowband (CELP-) coding
techniques to estimate an extrapolated wideband spectral shape from that of the
transmitted narrow band. During the narrowband LPC-code-book training phase,
wideband LPC-envelope descriptions are also stored and then used to create a“shadow
code-book”. In the decoding, the full-band envelopes are then combined, within the
respective bands, with the transmitted telephone-band excitation, spectral lines from
a harmonic-modelling method [Almeida, Silva 1984] in the lowest band (low-frequency
regeneration, LFR), and spectral-folding, i.e., aliasing components from a down- and
up-sampling high-frequency regeneration (HFR) [Makhoul, Berouti 1979] or a refined
variant thereof (see Fig. 2.8). While the exact spectral shape in the upper band proved
to be less critical, the strength of the excitation was found to be crucial; again, some
additional information would be helpful. A very similar approach was followed in
[Epps, Holmes 1998].

In [Jax 2002], the problem was revisited, with a different basis. The history of succeed-
ing speech segments was taken into account by means of a hidden Markov model, a
statistical estimation was applied, and its aim and limitations were formulated via the
information-theoretic concept of the trans-information between the measured narrow-
band signal description and the wideband counterpart to be concluded from it. A con-
siderable quality improvement was reported [Jax, Vary 2002].

Some of the observations found in these studies lead, in [Paulus 1996], [Paulus, Schnit-
zler 1996], to the idea of wideband-speech coding in two bands, though with unequal
bandwidths. The re-creation of correct spectral lines is not only critical in the lowest
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Figure 2.8: Bandwidth expansion within a narrowband-speech transmission system

frequency band below Bn, but also above 4 kHz. The spectral shape becomes less
crucial above 6 kHz, where mainly a gain factor is needed, and only unvoiced sounds
show components at all. These findings, confirmed by investigations in [Paulus 1996],
also comply with the good results of an approach in [Dietrich 1984], where the full
band Bw is transmitted and then augmented by artificial expansion up to 12 kHz.

Still, systems with a bandwidth extension from Bn to Bw are useful, e.g., in cases
of mixed narrowband and wideband transmission systems, and their quality is of
interest.

Wideband Speech Enhancement

Besides a band limitation, non-linear distortions, e.g., due to a codec, echoes due
to room reflections in hands-free situations, and additive background noise have an
impact on the perceived speech-signal quality. While modern, sophisticated coding
systems leave little audible distortion and echoes can be cancelled with a small re-
mainder, noise reduction is critical. On the one hand, it may also be capable of
diminishing residual echoes or small distortions; on the other hand, it may itself
cause signal deformations and / or artifacts, especially the well-known musical noise,
a randomly varying multitude of narrowband, short-time spectral components. Good
compromise solutions are, however, available and even applied in commercial products
[Schmidt 2001].

Mostly, single-channel, i.e., single-microphone techniques have been developed for use
in the telephone band Bn. For more details, the reader is referred to [Vary et al.
1998], [Heute 2006], [Vary, Martin 2006]; here, only the basics are outlined in order
to then point out the special problems occurring in wideband-speech denoising.
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Figure 2.9: Speech enhancement by a Wiener filter modified by an exponent η

The optimum-filter approach, with a minimum mean-square error criterion, leads to
the Wiener filter with a frequency response

H(WF )(ejΩ) = Φxx(ejΩ)/[Φxx(ejΩ) + Φnn(ejΩ)] . (2.7)

Here, Φxx(ejΩ) denotes the power-density spectrum (PDS) of the clean speech signal
x(k) (after band-limitation, sampling, and digitization, see Fig. 2.1), Φnn(ejΩ) is
the PDS of the digital version n(k) of the added noise. Empirically, variants of the
Wiener filter have been found useful, replacing H(WF )(ejΩ) by a modified version
[H(WF )(ejΩ)]η (see Fig. 2.9). In any case, the numerator in (2.7) is unknown, as the
clean signal is not available; so, it has to be replaced by

Φ̂xx(ejΩ) = [Φxx(ejΩ) + Φnn(ejΩ)] − Φ̂nn(ejΩ) , (2.8)

with an estimated noise PDS Φ̂nn(ejΩ). The modified-Wiener-filter output PDS is
thus

Φx̂x̂(ejΩ) = [Φxx(ejΩ) + Φnn(ejΩ)] · G(ejΩ) , (2.9)

with

G(ejΩ) = {1 − Φ̂nn(ejΩ)/[Φxx(ejΩ) + Φnn(ejΩ)]}(2η) . (2.10)

Alternatively, “spectral subtraction” is a standard approach, leaving the noisy-signal
phase untouched and reducing the magnitude spectrum or the PDS according to the
noise contribution. Applied to the power spectrum, it is described by the expres-
sion

Φx̂x̂(ejΩ) = [Φxx(ejΩ) + Φnn(ejΩ)] − Φ̂nn(ejΩ) ,

where Φ̂nn(ejΩ) is the same estimated noise PDS as in (2.8). Also this can be written
as a spectral weighting. The resulting PDS is found to be

Φx̂x̂(ejΩ) = [Φxx(ejΩ) + Φnn(ejΩ)] · G(ejΩ) (2.11)

with

G(ejΩ) = 1 − Φ̂nn(ejΩ)/[Φxx(ejΩ) + Φnn(ejΩ)] . (2.12)

Obviously, with η = 1/2, Eqs. (2.9) and (2.10) are identical to (2.11) and (2.12):
Wiener filtering and spectral subtraction are closely related. The same holds for
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all variants, possibly including further exponentiations within the above expressions,
weighting smaller or larger terms differently [Heute 2006].

So, generally, noise reduction can be explained by a spectral weighting factor

G(ejΩ) = f(Φ̂nn(ejΩ), [Φxx(ejΩ) + Φnn(ejΩ)]) , (2.13)

depending on the measured noisy-speech PDS and the estimated noise PDS. Of course,
also “measurement” means estimation; the difference in the above wordings indicates,
however, that the noisy speech signal is indeed available – in this case, “estimation”
concerns only the necessary short-time computation via a periodogram or with some
filter-bank; in contrast, the noise signal alone is not available during speech activity
but only in speech pauses. Exploiting pauses requires a reliable, noise-robust pause
detection and strong noise stationarity over times of speech activity. In particular the
latter problem caused the development of proposals for noise-PDS updating during
speech. They rely mainly on the idea that always in some narrow frequency bands
(e.g., bins of a sufficiently long FFT) there will be no speech components so that
the noise-PDS can be updated in these bands. The decision on local speech absence
is based on the assumption that small enough components most probably belong
to the disturbance. This technique of “minimum statistics” [Martin 1994], [Martin
2001] has become a standard, with many variants and amendments [Doblinger 1995],
[Martin 2006]. Instead of minima tracking, the deviation from a sliding-average spec-
trum can be applied for a decision, assuming that the short-time speech spectrum
varies much faster than that of (even instationary) noise [Arslan et al. 1995], [Hirsch,
Ehrlicher 1995]. The latter approach was later refined and modified in [Gülzow 1999],
[Gülzow 2001]. A slowly varying noise-PDS shape and an instantaneously varying
gain factor were separated, in order to track faster instationarities of the distur-
bance.

As mentioned above, both required spectra can be found from various spectral analysis
methods, be it a simple periodogram with an underlying FFT, a filter-bank system
with equally or unequally spaced bands, realized by a wavelet-packet / tree-structure
or a polyphase-DFT configuration, or even with adaptive bandwidths [Gülzow et al.
1998], [Gülzow et al. 2003].

The estimations become difficult in the upper frequency region of Bn. Here, the speech
components are some 30 dB below the possible maximum (see Fig. 2.4). Either the
noise components may become relatively large, in cases of wideband or nearly white
disturbances (like wind noise), which makes their separation from speech difficult, or
they may become very small in cases of low-pass type noise (like car noise), which asks
for the computational differentiation between two small entities. Similarly, at very
low frequencies, below the first-formant region, there are small speech components
while especially low-pass noise adds strong disturbances. This is particularly bad
for fricatives with their band-pass spectrum (see Fig. 2.4). All these problems are
strongly aggravated when wideband speech with a bandwidth Bw is dealt with. Novel
considerations and techniques are therefore needed. Figure 2.10 shows examples of
vowel and fricative spectra with and without additive vehicle, factory, and white
noise.
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Figure 2.10: Short-time spectra of a vowel /æ/ and a fricative /s/ without distur-
bance and with additive car, factory, and white noise (SNR=0 dB and
SNR= 5 dB)

All short-time spectral measurements with speech and / or noise signals yield results
with a certain variance, of course; the relative variation becomes especially large,
however, if the expected “true” values are as low as those of speech above 4 kHz.
The above-mentioned instantaneous gain adaptation within the noise-PDS estimation
[Gülzow 2001] relies on the absolutely lowest spectral values per analysis frame. If
this method is simply applied also to wideband noisy speech, the gain will randomly
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fluctuate from frame to frame, causing an unpleasant, fluttering residual noise at
the output. In [Janardhanan, Heute 2005b], this was observed and counteracted by
finding the smallest values within a few predefined, separate frequency bands, and in
[Janardhanan, Heute 2005a], it was shown that an adaptive choice of these sub-bands
gives an even better quality.

Besides the fast-varying gain, a slowly adapting noise-PDS shape is needed in the
above approach. Here, a (linear or non-linear) smoothing over the frequency axis
helps to reduce the spectral variance. This is especially needed for wideband speech.
Smoothing is, however, outperformed [Janardhanan, Heute 2006] by applying a spec-
tral measurement technique relying on a DFT / FFT with not just one fixed window,
but with several, orthogonal windows, namely, discrete prolate spheroidal sequences
and a final averaging [Thomson 1982].

While, for narrowband noise reduction, a broad literature is available, including com-
parisons of different spectral analysis-synthesis techniques, noise estimations, and
rules for the determination of the weighting factor G(ejΩ) in (2.13), similar thor-
ough investigations for the wideband case are still on their way. As indicated above,
and as seen in the above sections on coding and bandwidth extension too, partic-
ular effects and requirements beyond just a doubled sampling frequency are to be
expected.

In this book, more on current enhancement work is to be found in Chap. 5, on coding
with variable rate and possible upper-band transmission in Chap. 8, and on band-
width extensions aspects in Chap. 9.

2.5 Speech-Quality Assessment

As mentioned in the Introduction, the quality of a speech sound can be validly de-
scribed only by a human being, judging after auditory perception according to expec-
tations and experiences. Yet, instrumental measures, mimicking users’ evaluations,
are of interest – and they should be possible since “everything that can be heard must
also be measurable” [Berger 1998]. Both auditory and instrumental assessments will
be briefly explained, as they have been developed and used over years for telephone-
band speech, before, again, the wideband-speech case and its peculiarities are dealt
with.

2.5.1 Auditory Quality Determination

Quality Tests

Test persons, or “subjects”, are asked to “use” a telephone and judge the quality of the
transmission system. This is done in a test laboratory, providing the various systems
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of interest (via hardware or software) and modeling the typical telephone situation
more or less well:

• Conversation tests: Two users talk and listen to each other via real-time systems.

• Listening-only tests (LOT): Test subjects listen to speech signals processed /
influenced by the systems (and possibly pre-stored in the laboratory); there are
two distinct versions:

1. LOT with a pair-comparison between two signal variants, namely,

– between the clean original and the disturbed / processed / influenced
signals, rating degradations,

– between differently processed / influenced signals, rating quality dif-
ferences.

2. LOT with single processed / influenced signals rated for their absolute
quality in comparison with an internal reference of the listeners, i.e., their
experience from everyday telephone use.

Integral and Diagnostic Quality Ratings

In all cases, two types of results can be aimed at:

1. Integral quality grades describe an overall impression of an average user. A
conversation may be good or just fair, a degradation inaudible or annoying, a
system slightly better or much worse than another one, and a single system may
be excellent or bad compared with an average experience. Also other integral
statements may be collected, e.g., concerning the conversational or listening
effort.

2. Diagnostic quality features describe details of the impressions separately. A
conversation may suffer from strong delays while there is only little noise, and
degradations or absolute ratings in LOTs may have been evoked by different
components in our perception; the relevant features are termed dimensions or
attributes.

The integral-quality impression results from a (generally: nonlinear) superposition of
the attributes.

It is obvious that the conclusions to be drawn, by a system evaluator or developer,
from the above tests differ largely. A conversation test models the telephone situation
as closely as possible, and, combined with an attribute analysis, it would give most
detailed information about problems and potentials of a system. An absolute LOT
rating, however, will not even be able to include all disturbing effects; it may still
suffice to rank several systems, but it will not give further insight into particular
weaknesses or strengths. On the other hand, it is clear that the latter test requires
much less time, especially from the test persons, than a thorough conversation test.
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LOT with Absolute Category Rating (ACR) of the Integral Quality

For cost reasons, total-quality LOTs with a five-point ACR scale are most frequently
used: A sufficient number of normal-hearing listeners grade sufficiently many phonem-
ically balanced sentences spoken by several normal-speaking persons and sent through
the systems of interest. An internationally standardized scale [ITU P.800 1996] is ap-
plied, as displayed in Table 2.1.

Table 2.1: Numerical and verbal descriptions for LOT absolute-category quality
ratings

Numerical grade 5 4 3 2 1

Verbal grade excellent good fair poor bad

The integer values given by the users are averaged, giving a real number between
1.0 and 5.0 as the Mean-Opinion Score (MOS). A standard ISDN / log-PCM tele-
phone connection will reach MOS ≈ 4.1 . . . 4.3, if compared with other narrowband-
transmission methods.

Attribute-Oriented LOT

Within the same test scenario as sketched above, listeners may also be asked for
their impression about certain attributes, marked on another suitable scale. A long
list of attributes was proposed by [Voiers 1977], discussed and used in [Quacken-
busch et al. 1988], assuming a discrimination between dimensions concerning the
speech signal and other components. Examples are “dull” signals or “hissing” back-
ground sounds. Other dimensions have been suggested and are a topic of current
research (see Secs. 2.5.2, 2.6.2, and [Heute 2007]). The necessary experimental ef-
fort grows, of course, with the dimensionality – not necessarily only in a linear
way.

2.5.2 Instrumental Quality Determination

Even an integral-quality ACR LOT may be too expensive and time-consuming, espe-
cially during a system-development phase, where many parameter variations should
be checked. Therefore, subject-free measures have been suggested, often termed ob-
jective in contrast to subject-ive, but here referred to as instrumental. A computer
algorithm acts as a measuring instrument, determines a numerical value from the sig-
nal samples, and then maps it to a prediction of a quality term. The prediction should
of course be close to the real, i.e., auditory value; the usual figure of merit describing
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the predictor performance is the correlation coefficient ρ between both results for a
large variety of systems and transmission conditions.

Instrumental Integral-Quality Measures

Usually, the simplest – and poorest – model of the telephone situation, namely, the
ACR-LOT, is the subject of an instrumental replacement. An estimation M̂OS is
calculated for a MOS value that would be found from listening without any direct
comparison. The result M̂OS is based on a computational evaluation of both the clean
and the distorted signal. This means that the “poor” model again is poorly modeled,
namely, by a signal comparison.

Many measures have been proposed and investigated. For details, the reader is re-
ferred to the literature – an overview in [Heute 2007], an early thorough investigation
in [Quackenbusch et al. 1988], in-depth treatments in, e.g., [Hauenstein 1997], [Berger
1998], [Mattila 2001], and derivations of the presently most common technique in
[Beerends, Stemerdink 1994], [Rix, Hollier 2000], [Rix et al. 2001], [Rix et al. 2002],
[Beerends et al. 2002].

The latter technique – as several similar ones – relies on the following steps:

• inclusion of telephone filtering (“hearing situation”),

• level and time alignment,

• equalization of certain linear distortions;

• comparison between input and output signals (i.e., not their difference as a
“distortion signal”),

• comparison of signal segments (i.e., short-time evaluations),

• comparison after auditory transformation

– from frequency in Hz to the inner-ear Bark-scale (see (2.6)),

– from signal power to loudness

– including masking effects and

– an asymmetry in the perception of missing and additional components, and

• averaging of the segmental results at the end.

The international standard PESQ (Perceptual Evaluation of Speech Quality, see [ITU
P.862 2001]), based on this scheme and sketched in Fig. 2.11, differs from the other
mentioned proposals in terms of details within measurements and perceptual model.
The performance of PESQ is expressed by a correlation ρ = 0.935 between estimated
and real MOS values in a benchmarking experiment.
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Figure 2.11: Block diagram of PESQ

Instrumental Diagnostic Quality Measures

Assuming the availability of both input and disturbed signals, one may also mea-
sure different parts of the disturbances separately. First, linear distortions can be
addressed by a measurement of the average frequency response, despite additive and
non-linear effects [Schüssler, Dong 1990]. Furthermore, additive-noise information
may be extracted – e.g., by means of methods known from speech enhancement (see
Sec. 2.4.2), additive artifacts like musical noise can be measured, or missing signal
segments may be detected by means of techniques known from frame or packet-loss
monitoring [Ludwig et al. 2003] and from error concealment (see Sec. 2.6.2 b). With
such information, one may try to predict single auditory attributes, e.g., “dullness” in
the case of suppressed higher frequencies or “hissing background” in the case of wide-
band noise, depending on the dimensions defined before.

In a recent study, the above approach [Heute et al. 2005] has been investigated in
depth. Via a multi-dimensional scaling (MDS) and a succeeding semantic-differential
analysis, the attributes continuity, noisiness, and frequency content and directness
were chosen as orthogonal features to be then determined instrumentally [Wältermann
et al. 2006b], [Scholz et al. 2006a], [Kühnel 2007]; correlations of ρ = 0.927 . . . 0.936
were found between auditorily and instrumentally predicted attributes; more details
will be covered in Sec. 2.6.2.

From the instrumentally described attributes, a total-quality prediction shall be cal-
culated by a suitable combination, so that, finally, both integral and diagnostic infor-
mations are available. An essential advantage of this detour to a quality estimation
via single dimensions is the fact that the attributes are generic, i.e., independent of the
set of systems used for their definition and tool development. A direct total-quality
prediction will, in contrast, always be somewhat tuned to the training data used in
the derivation of the estimator’s parameters.
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2.6 Wideband Speech-Quality Assessment

2.6.1 Integral Quality Determination

Auditory Tests

The “methods for subjective determination of transmission quality” defined in [ITU
P.800 1996] are identical for narrowband and wideband speech; also the scales to be
used in conversation, pair-comparison, or ACR listening-only tests are the same. So,
for a total-quality ACR LOT, Table 2.1 is still valid. Of course, the signals to be
used in a narrow- or wideband LOT differ – not only in terms of their bandwidths
and sampling rates, but also with regard to the type of pre-filtering. For telephone-
band speech, the use of the “send-side intermediate-reference system” (IRSsend) filter
is recommended for the speech recording. The standard IRSsend filter [ITU P.48 1993]
models the anti-aliasing filter together with the send-side characteristics of the classi-
cal hand-sets, while a later, modified version [ITU P.830 1996] disregards the strong
upper band limitation. The speech reproduction is assumed to pass the “receive-side
intermediate reference system”(IRSreceive), for which again a standard and a modified
version are available in the same recommendation. Often, the cascade of both filters is
taken care of within the recorded data, where the modified version is preferred, and no
further output-signal filtering occurs (see Fig. 2.12). For wideband tests, a “flat” fre-
quency response is to be used for components within Bw.
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Figure 2.12: Linear frequency response of a cascade of IRSsend and IRSreceive filters

MOS Results for Wideband vs. Narrowband Speech

As mentioned in Sec. 2.5.1, a standard narrowband ISDN transmission would receive
an average quality grade MOS ≈ 4.1 . . . 4.3 in an ACR LOT comprising only narrow-
band systems. These values indicate a “good” quality with some tendency towards
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“even better”, according to Table 2.1. The remaining space between these scores and
the top value 5.0 .= “excellent” may be explained, partly, by the audible quantization
noise of this 8-bit log-PCM coding.

In [Raake 2006], this system is compared to a clean wideband-speech signal within
Bw without any compression (although digitized by a linear 16-bit ADC, sampling
at a rate fS = 16 kHz). The result is not self-evident. One might expect the log-
PCM to stay at MOS = 4.14 as found in a preceding narrowband test, and the
wideband signal to gain a MOS close to 5.0 then. Instead, the best result for wideband
speech (with a band slightly different from Bw) is MOS = 4.16, while the telephone
speech drops to MOS = 3.21, i.e., is rated as being only “somewhat better than fair”
now.

The reasons are psychological ones. In the narrowband test, the classical handset was
the basis, either by its direct use or by an IRS simulation. If, now, the perception
of the higher quality of a wideband transmission is to be enabled, a better sound
reproduction is needed. In order to still keep the impression of a telephone situation,
a “high-fidelity phone” was devised in [Raake 2006], namely, a hand-set-like monaural
version of a high-quality headphone. Still, this apparatus looks different and therefore
evokes, in a user, the expectation for a sound like that known from a good audio
system. This will limit the quality judgment on a signal which is still band-limited
(though to Bw), and it will even more “de-grade” the quantized narrowband PCM
output.

Furthermore, a general observation is known from many tests: Listeners hesitate to
use the extreme categories “1.0” or “5.0” in Table 2.1 at all. So, a gap will always
appear at both ends. What should be kept in mind, however, is the quality gain of
about 1 MOS by doubling the bandwidth, which confirms the slightly more optimistic
result in [Krebber 1995] mentioned in Sec. 2.4.1.

Extended Quality Scales

As seen in the preceding section, the inclusion of processed wideband-speech sig-
nals into quality comparisons causes that part of the MOS scale which is used for
the included narrowband examples to shrink. So, the discrimination becomes less
fine.

A natural solution seems to be an extension of the scale at its upper end. There
are indeed scales applied in quality assessment with values up to ten or even an
open upper end, in order to avoid the above-mentioned hesitation to give really high
grades. But a straight-forward extension of the MOS scale in Table 2.1 is not suit-
able. The value 5.0 is associated with the term “excellent” – so, at least, the verbal
descriptions would have to be redefined completely if grades higher than 5.0 should
be allowed.

In [Raake 2006], an approach is suggested that stays with the standard 5-point scale
while keeping the fine resolution on an intermediate scale. For this purpose, an ex-
tended R-scale is developed. The term R is the transmission-rating factor described in
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Figure 2.13: Mappings from R to MOS, using the standard scale with Rmax = 100
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[ITU G.107 2005] for narrowband telephony. A perfect narrowband speech transmis-
sion is rated by R = 100, a “very satisfying” one under certain default conditions (as
to circuit noise, loudness, room noise, etc.) receives R = 93.2. From these desirable
values, impairment terms are subtracted, one each for possible speech-simultaneous,
delay, and (coding-) distortion effects. This implies that all impairments have an
additive, i.e., linear, impact on the overall rating. It is assumed, then, that the in-
herent band limitation in telephone speech is also an impairment, so that an ideal
wideband transmission would receive a value Rmax > 100. This new upper limit is
found by an interpolation of R values known from a set of narrowband and mixed
narrowband / wideband tests with their MOS results. In [ITU G.107 2005], their
corresponding narrowband ratings are found, and from the ratios of these numbers, a
linear transformation is derived. Alternatively, from a very large set of MOS results,
a quadratic interpolation is calculated. From both, the end of the R scale is found
to be either Rmax = 112 or Rmax = 138, with a compromise figure of Rmax = 129.
Figure 2.13 shows, for the latter choice, the mapping of the standard and the ex-
tended R-scale to the estimated MOS values. For instance, a standard narrowband
log-PCM transmission would, in a narrowband-system comparison, receive the well-
known MOS ≈ 4.2, while in a comparison including wideband systems it would be
graded by MOS ≈ 3.3 only. A value MOS ≈ 4.2 would now be achieved by a wide-
band system with R > 100, on the extended scale. The observations of Sec. 2.6.1 are
reflected well in this model.

Instrumental Measures

The ITU-standard PESQ was sketched in Sec. 2.5.2 (see Fig. 2.11) as a perceptually
based distance measure with an estimation M̂OS for MOS values of an ACR-LOT.
For use with wideband-speech signals, an extension has also been standardized [ITU
P.862.2 2005]. Wideband PESQ (WB-PESQ) differs from PESQ only in two details.
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Figure 2.14: Estimated M̂OS values vs. auditively found MOS
a) PESQ results from an ETSI test
b) WB-PESQ results from an ITU test

First, the signals are assumed to cover the full band Bw as in (2.4); no IRS filter
is employed. Secondly, the mapping from the raw WB-PESQ distance-measurement
result to the MOS estimate is newly defined, such that the 5-point scale of Table 2.1
is maintained.

In [Takahashi et al. 2005] a study is reported, showing that WB-PESQ estimates
auditory MOS values with a high correlation of ρ ≈ 0.94 for a large number of trans-
missions with varied bandwidths, coding distortions, and packet-loss probabilities in
some VoIP scenarios. The figures in this report, however, show also that some prob-
lems known from PESQ as well as other, similar methods also appear in WB-PESQ –
quite naturally, considering that the modifications are minor. The critical effects are
the following: Two different systems transmitting speech under varying conditions
(as to background noise, bandwidth, frame losses, etc.) may be graded subjectively
with (almost) the same MOS, while the estimates cover a range ∆M̂OS ≈ 1.0. Vice-
versa, in other cases, the true MOS may vary over ∆MOS ≈ 1.0, while the estimates
are (almost) identical. This “ranking problem” was illustrated in [Heute et al. 2005],
and can also be seen in Fig. 2.14, both for a narrowband and a wideband measure-
ment.

Furthermore, systematic tilts or shifts can be observed. Certain systems follow, for
varied conditions, the same tendency but with a constant or growing distance; this
is indicated in a stylized manner in Fig. 2.15, derived from [Takahashi et al. 2005].
Similar observations are reported in [Côté et al. 2006], where also a different estima-
tion performance was found for male and female voices. From detailed analyses, it
was suggested to modify parts of WB-PESQ: The “flat” input filter is, in fact, still
a highpass, attenuating frequencies below 200 Hz, but passing all (also: distortion)
components between 7 kHz and 8 kHz. While the missing lowest frequencies are rather
seen as an advantage, the upper band edge needs a suppression, as recommended for
wideband terminals in [ITU P.341 2005] and as assumed in the definition of Bw in
(2.4). In addition, the compensation of linear distortions and the emphasis of asym-
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Figure 2.15: Stylized demonstration of shifts and tilts in WB-PESQ results

metric error components in the perceptual model inside WB-PESQ are modified, for
an experiment, which does show an amelioration of certain problematic effects but
not a removal.

So, enhanced versions of the available total-quality estimations are desirable. Al-
though (WB-)PESQ and similar techniques are built on a psychoacoustic basis, it
is necessary to include more knowledge especially on the perception of the upper
frequencies. Hints to possible approaches may be found in the special care for
peculiarities needed in wideband-speech coding, processing, and enhancement (see
Sec. 2.4.2).

Beyond, the general problem of all direct integral-quality estimations remains: There
is no diagnostic ability. So, also for the wideband case, the attribute-oriented approach
needs to be revisited.

2.6.2 Attribute-Oriented Quality Determination

Auditory Dimension Analysis

As mentioned in Sec. 2.5.1, lists of numerous plausible quality attributes exist [Voiers
1977], [Quackenbusch et al. 1988]. A smaller set is, however, desirable for different rea-
sons. The use of 10 or more dimensions makes overlaps and redundancy unavoidable,
whereas few orthogonal attributes would give a clearer and more compact information.
Also, the analysis and interpretation effort grows with the size of the set, and espe-
cially the necessary number N of system and condition examples (“stimuli”) increases.
There are two common ways to find a reduced dimensionality, as applied in the project
mentioned in Sec. 2.5.2 [Wältermann et al. 2006b].

a) Multi-Dimensional Scaling (MDS): A variety of N stimuli are prepared. All
N∗(N−1) possible stimuli pairs (both A–B and B–A) are presented to a listener group.
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Table 2.2: Stress S and covered variance R2 for narrowband and wideband MDS-based
dimensionality reduction

Bandwidth n S R2

Narrowband Bn 3 0.232 0.74
Narrowband Bn 4 0.195 0.79
Wideband Bw 3 0.240 0.66
Wideband Bw 4 0.190 0.75

The test persons do not grade the speech quality but, rather, rate the (dis-)similarity
of the two sounds, on a continuous scale between “very similar” and “not similar at
all”. After the test and a subject-related normalization, N ∗ (N − 1) distance values
result. From these, all stimuli can be represented ideally in an (N − 1)-dimensional
space (assuming identical distance measurements for A–B and B–A). As the number
of test signals is chosen to be as large as possible, while the perceptual effects searched
for are hoped to be few, a map with a lower dimensionality n < (N−1) is constructed,
with unavoidable inaccuracies. These are expressed by two common figures of merit.
The“squeezing”of N points onto n dimensions causes a so-called stress term S, which
should be made small; dropping dimensions has the consequence that not all variabil-
ities can be covered in the n-dimensional space – the covered variance R2 should be
made close to 1.0 [Kruskal, Wish 1978]. The necessary space is found stepwise, ob-
serving the decrease of S or / and the growth of R2 when incrementing n. The MDS
within the above-named project was described in [Wältermann et al. 2006b] for the
narrowband case, in [Wältermann et al. 2006a] for wideband tests. Dimensionalities
of n = 3 . . . 4 appeared to be appropriate (see Table 2.2).

The dimensions are, however, abstract in the sense that they can not yet be in-
terpreted as “named attributes”. Such names can now be found with the help of
(system) experts knowing how some processing creates a certain effect on the signal
sound. In a succeeding attribute-oriented LOT (see Sec. 2.5.1), the chosen dimen-
sionality and attributes have to be verified. Such a test can, however, also be directly
applied for the definition of the reduced perceptual space, as outlined in the next
paragraph.

b) Semantic Differential (SD): Listeners are asked to grade the single stimuli on
scales of a highly redundant, large set of predefined descriptors. The list may also
be found in a pre-experiment, asking listeners for their own intuitive descriptions. In
[Wältermann et al. 2006b] and [Wältermann et al. 2006a], as many as 217 and 135
candidate names were found, respectively. They were reduced by inspection to 13 and
28 antonym pairs, respectively, with which the actual LOTs were carried out. Finally,
a principal-component analysis was performed with these reduced groups, leading to
n final attributes.

In the first, narrowband, case, n = 3 still nameless factors F1,2,3 carry a variance
R2 = 0.935. In the second, wideband, case, n = 4 is needed to cover R2 = 0.933;
here, the fourth axis still adds ∆R2 = 0.172.
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Table 2.3: Attributes for narrowband and wideband quality analysis from [Wälter-
mann et al. 2006a], [Wältermann et al. 2006b]

Band- n F1 ∆R2
1 F2 ∆R2

2 F3 ∆R2
3 F4 ∆R2

4

width

Narrow- 3 directness/ 0.427 conti- 0.342 noisi- 0.166 – –
band frequency nuity ness
Bn content

Wide- 4 continuity 0.331 dis- 0.218 lisping 0.212 noisi- 0.172
band tance ness
Bw

Names are then found by rotating the n axes such that high correlations with n of
the pre-defined antonyms appear, and / or by observing the expert interpretations of
the reduced MDS-space results. The names are – naturally – not unique, due to, e.g.,
the redundancy in the predetermined set.

After the above study, the following choices were made (see Table 2.3). As the first
of three narrowband dimensions was linked, by the listeners, with frequency-content
descriptions both in terms of pairs like “dark / bright” and “distant / close”, the
ambiguous term directness and frequency content was selected. The second factor –
as well as the first one for wideband speech – was clearly related to short-time effects
in the signals, appearing either as interruptions or as instantaneous sound insertions;
it was termed continuity. The third attribute in the narrowband, the fourth one in
the wideband case, were found to describe hissing distortions and noisy components;
so the term noisiness is appropriate.

In the wideband-signal results, frequency content and directness seems to have van-
ished. It is, however, actually split up into two well related factors: Distance (vs.
nearness) summarizes the perception of a sound that had to travel some way from
the speaker’s mouth to the microphone, as happens in handsfree telephony. In such
applications, multi-path, i.e., echo and reverberation, effects appear, changing the
spectral shape by comb-filter-type frequency responses; so, “(in-) directness” is al-
most synonymous. Lisping may be explained as an incorrect reproduction of the
higher frequencies, causing, especially in the fricative /s/, a virtual unpleasant ar-
ticulation shift. A relation to “frequency content” can therefore be seen. The am-
biguous double descriptor of the narrowband case is thus split into two separate
terms.

A further analysis will reveal whether such sub-dimensions are helpful, possibly also
for other attributes. Frequency content has to do, on the one hand, with the linearly
transmitted input spectrum, thereby, with the system’s average frequency response
and especially the band-limitations. On the other hand, it also describes further
components, which may be artificially added on purpose or by an incorrectness. Con-
tinuity was said to be affected by real interruptions as well as by short insertions – at
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least two sub-attributes may be appropriate. Noisiness may hint to a hissing speech
reproduction, e.g., due to an overemphasis of higher frequencies in fricatives, as well
as to added noise, which may itself have quite different characteristics in the wideband
case (see Sec. 2.4.2).

Instrumental Attribute Measurement

Following the ideas outlined in Sec. 2.5.2 for narrowband assessment, measurements
are searched for which now characterize the systems’ influences on the attributes
distance (or directness), continuity (or short-time artifacts), lisping (or frequency
content), and noisiness (or hissing sound and added noise). The requirements are
now defined more specifically.

The measurements should yield few parameters. These variables should be chosen
such that they are orthogonal and, beyond, can be directly used to parameterize a
model system. This idealized distorting system should then influence just one single
dimension such that the measured quantities as well as the attribute-LOT result can
be reproduced as closely as possible.

a) Directness and Frequency Content (DFC): For telephone-band speech, it was shown
in [Scholz et al. 2006b] that width and position of the averaged passband of the sys-
tem alone are able to predict DFC-LOT results quite well by a simple linear for-
mula:

D̂FC = −20.5865 + 0.2466 ERB/Bark + 1.873ΘG/ Bark . (2.14)

The passband is described by the equivalent rectangular bandwidth (ERB) and the po-
sition by the center of gravity of the frequency response, after its limitation to a range
(Θ1,Θ2) above relevant thresholds and its transformation to the Bark scale using (2.6).
Denoting this modified response by G(Θ), we have

ERB =

Θ2∫
Θ1

G(Θ) · dΘ

max
Θ∈[Θ1,Θ2]

{G(Θ)} (2.15)

ΘG =

Θ2∫
Θ1

G(Θ) · Θ · dΘ

Θ2∫
Θ1

G(Θ) · dΘ
. (2.16)

The correlation between D̂FC and DFC values is ρ ≈ 0.9635. Although this seems to
say that the estimation (2.14) suffices, it is admitted in [Scholz et al. 2006b] that, in
general, further parameters have to be included – the high correlation being due to
too small a number of systems in the test.

In a wideband scenario, as addressed in Sec. 2.6.2, these additional features are defi-
nitely needed: ERB and ΘG may be able to model a “correct frequency content” (vs.
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Figure 2.16: a) Measured and b) idealized frequency response representations of a
transmission system with bandwidth BW (to be expressed by ERB),
position ΘG, slope β, and a ripple with rate γR and depth γD

lisping); still, an average-slope parameter β of the frequency response inside the pass-
band, i.e., a pre- or de-emphasis behavior, should be explicitly introduced. Directness
needs quantities reflecting distance effects as mentioned in the preceding subsection.
A comb-filter impact is known to create a “rippled” frequency response; so, in [Scholz
et al. 2006b], [Scholz et al. 2006a], a ripple rate γR and a ripple depth γD are proposed
to take care of this.

Figure 2.16 displays a measured frequency response and its idealized representation
by the above parameters. The latter can be used immediately for the realization of
an “idealized system” creating distortions which are equivalent to those of the original
system [Huo et al. 2006].

b) Continuity : Both for narrowband and wideband speech, discontinuities have a
strong impact on the perceived quality. This comes as no surprise. Front clipping
(e.g., by a misadjusted voice-activity driven switch) or, even more, gaps inside the
signal flow (due to lost data blocks, in a frame or packet-based transmission) create
the feeling of an unreliable connection. They may even lead to intelligibility problems
and, especially then, to strong dissatisfaction. A detection and characterization is
needed.

For such drop-outs of longer signal sequences, techniques can be used which were de-
veloped for online monitoring of services by so-called in-service non-intrusive measure-
ment devices (INMD) [ITU P.561 1996], [ITU P.562 2000].
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Lost frames in a block-coding system, with time durations of TF ≈ 10 . . . 20 . . . msec,
may be concealed – in the simplest case by a repetition of the last completely received
frame. This leads to a high correlation between samples at frame distance, which
can be exploited for detection. Erroneous alarms can be avoided by a check of the
fundamental frequency f0, which may, incidentally, lead to similar correlations if
f0 = λ ∗ 1/TF , λ ∈ Z [Ludwig 2003], [Ludwig et al. 2003]. Similarly, simple packet-
loss concealments may be detected.

Unconcealed losses of data blocks, with simply a longer zero sequence inserted into
the signal, can be found from an observation of an energy gradient ∆E(i) [Ludwig
2003]. It is defined as the change of energy between succeeding block numbers (i− 1)
and i:

�E(i) .=
E(i)

E(i − 1)
− 1 . (2.17)

The block energy is calculated from the squared signal samples after appropriate band
limitation to Bn or Bw, or by summation / integration over squared spectral values
within Bn or Bw. Occurrence of E(i) = 0 indicates a lost block. Then, ∆E(i) = −1.0
appears. If the following block is transmitted again, E(i − 1) = 0 and E(i) > 0 lead
to ∆E(i) → ∞; a limitation to Emax = +1 is useful. Then, a sequence ∆E(i) = −1
and ∆E(i + 1) = +1 indicates a single block loss. If more losses happen in a sequel,
E(i) = E(i + 1) = 0 are found, ∆E(i) is set to zero. The first value ∆E(i) = +1
thereafter will indicate the recovered transmission. Figure 2.17 shows an example of a
signal with several single frame losses visible both in the corresponding spectrogram
and in the sequence of energy gradients. The detection potential was evaluated in
[Ludwig 2003], and a reliability of 95% correctly identified losses was stated. A
further refinement was proposed which is also able to deal with a combination of
slowly muted block repetitions and zero sequences.

More carefully concealed losses are less easily identified [Ludwig 2003]. However, the
better the concealment, the less important is its detection. The quality impact will
be correspondingly smaller.

From the detection results, a parametric description can be derived. It should consist
of a loss-probability estimate, first, but also an indication of a (simple) concealment
if applied, and of a statement on the type of losses. They may occur as independent,
single random events as well as in longer bursts of drop-outs, with a certain probability
of burst lengths. Beyond, these descriptors may be constant or time-varying during
a connection. Once suitable parameters are found, an idealized model for this type
of disturbance can be realized relatively simply, dropping or possibly replacing blocks
with appropriate probability. All these approaches are applicable both to narrowband
and to wideband speech.

Other short-time effects include pulse-like disturbances, e.g., those due to bit errors,
which are instantaneous and therefore occupy the whole frequency band, or blocks of
narrowband distortions, like the musical noise created by simple noise-reduction tech-
niques. Figure 2.18 depicts a spectrogram of a corresponding case, with small, rect-
angular spots indicating the insertion of artificial narrowband, almost tonal sounds.
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Figure 2.17: Spectrogram and corresponding energy gradient sequence for a signal
with frame losses without concealment

They may be found obviously by a technical observation of the spectrogram. The so-
called“relative approach”of [Genuit 1996] is a good candidate. It detects“unexpected”
short-time components by a comparison with an averaged Bark-scale and loudness-
transformed spectrogram, the latter describing the “expected”behavior. This method
was also applied to packet-loss concealment [Kettler et al. 2003]; it could therefore be
devised for a combined lost-data and tonal-noise detection.

A proposal due to [Goh et al. 1998] for post-processing of spectral-subtraction results
can also be exploited for the characterization of added short-time spectral contribu-
tions. It monitors the variation over a set of straight lines with different angles in a
time-frequency plane.

Both approaches are worth an investigation for narrowband and wideband signals. In
the latter case, however, additional problems are to be expected due to the small, often
noise-like speech components at higher frequencies (see Sec. 2.4.2).

Even if it is assumed that all discontinuous effects can be reliably found and de-
scribed, further evaluation remains difficult. An estimator Ĉ for a true continuity C
may be derived – once C and its relation to the perceived quality are clear. Hints
may be found from the thorough investigations of relations between quality and loss
statistics in [Raake 2006], especially on the use of impairment terms as intermediate
quantities.

c) Noisiness: From inspection of the examples which are included in the MDS and
SD analysis, it becomes clear that systems with considerable noisiness values on the
negative part of the related dimension scale do not simply suffer from additive white
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Figure 2.18: Spectrogram of a speech signal
a) with additive white noise and
b) after application of a simple de-noising technique showing musical-

noise artifacts

noise. Colored background noise, broadband decoding and output-terminal noise, and
signal-correlated noise appear as well as a noise-like roughness or hoarseness, which
can be identified by a careful signal analysis as very short interruptions (below 5 ms) –
so short that continuity is not concerned. A systematic investigation for narrowband
signals is reported in [Kühnel 2007]. In this case, it is known that background noise
must have passed both the send and receive handset filters (see Fig. 2.12). The system
noise is filtered much less heavily by the receiver only, whereby the signal-correlated
part is limited to fc = 4 kHz.

A possible approach is then to determine background noise NBG inside Bn during
speech pauses, evaluate the band between 3 kHz and 4 kHz in speech periods for cor-
related noise Ncorr, check for higher-frequency system noise NHF above 4 kHz, and
find hoarseness by a suitably modified energy-gradient observation (see (2.17)) of
the short-interruption rate SI. A measurement of higher-frequency parts requires, of
course, that the signal between the actual transmission / processing and the acoustical
output, i.e., y(k) before becoming yo(t) in Fig. 2.1, is sampled with a rate fS > 8 kHz.
From the measured powers within the above bands plus the term SI, a linear su-
perposition formula can be devised [Kühnel 2007]. It is found to be well correlated
with auditory noisiness ratings, according to ρ ≈ 0.8, but with a quite strong speaker-
gender dependency. An equivalent formula with modified parameters is claimed to
yield ρ ≈ 0.93; however, this is still a topic for deeper investigations. The corre-
sponding idealized distortion system is defined easily, on the other hand, inserting
correspondingly filtered noise types and short gaps.
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Table 2.4: Correlations between predicted noisiness and auditory attributes

Dimension Female speakers Male speakers

Noisiness 0.8839 0.7215
Lisping / Frequency Content 0.2075 0.4075

Continuity 0.4715 0.1531
Distance / Directness 0.2772 0.7034

Assuming that the approach, in general, is reasonable, the extension to wideband
speech is straight-forward: Interruptions are found in the same way, background
noise covers 50 Hz up to 7 kHz, signal-correlated noise can be separately seen between
7 kHz and 8 kHz, and the terminal signal has to be sampled with fS > 16 kHz and
analyzed above 8 kHz to find high-frequency noise; the idealized system follows the
above descriptions with these modifications.

Only preliminary results are available. They indicate that other descriptors as well
as varied total-noisiness models have to be investigated, especially in the wideband
case. The sub-dimension idea, however, appears to be very appropriate anyhow again.
Table 2.4 shows that even for wideband signals the correlations between auditory and
instrumental results are not too poor for the present formula with ρ ≈ 0.72 . . . 0.88, for
male and female speakers, respectively, but the orthogonality with other dimensions
is partly violated.

Total-Quality Calculation

As said in the statement about total and diagnostic quality in Sec. 2.5.1 and in the
final paragraph of Sec. 2.5.2, an integral-quality prediction may be constructed from
the single instrumental attribute predictions. If sufficiently verified estimations Ĉ for
the continuity C, F̂C for the frequency content FC (covering lisping in Table 2.3),
D̂ for the distance (or directness) D, and N̂ for the noisiness N are given, it is
an obvious idea to step back to the MDS and SD analysis in the beginning of this
section: The auditively identified four dimensions dim1 = C, dim2 = FC, dim3 = D,
and dim4 = N are able to describe the difference between the systems and conditions
and, thereby, their perceived qualities. In the simplest approach, a linear combination
is used [Wältermann et al. 2006a]:

MOS = const. +
4∑

i=1

bi · dimi . (2.18)

For M̂OS, all dimensions in (2.18) have to be replaced by their estimates Ĉ, F̂C, D̂,
and N̂ . Numerical values for bi are also given in the above report, but they are
certainly preliminary, at least because of the very limited number of stimuli in-
cluded.
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2.6.3 Combined Direct and Attribute-Based Total Quality
Determination

For years, the direct integral-quality estimation on the basis of a Bark-spectral loud-
ness distance by PESQ and similar systems, on the one hand, and, on the other hand,
the search for attributes, their instrumental estimation and their combination into
an integral-quality prediction have been dealt with separately. Since 2005, a conver-
gence can be observed. Within ITU-T, the enhancement of total-quality estimators
by dimension analysis is investigated.

In the present overall measures, some knowledge about specific effects from certain
systems was already exploited to broaden the validity. For example, the “Telecommu-
nications Objective Speech-Quality Assessment” (TOSQA) program of [Berger 1998],
[ITU COM 12-34-E 1997], [ITU COM 12-19-E 2000] contains in its later version
TOSQA2001, beyond a wideband-speech mode, separate modules detecting and eval-
uating noise, interruptions, or non-linearities. Now, decomposed and hopefully or-
thogonal perceptual effects are to be addressed more generally in a new study. This
should lead to improved predictions M̂OS, but, more important, also deliver a quality
diagnosis [Berger 2005].

On the other side, in the present overall-algorithms, some quantities are measured
that are used to emphasize or diminish certain perceptually more or less important
features; the ideas behind these algorithms may be used in a dimension-based analysis
to develop alternative attribute descriptors.

2.7 Concluding Remarks

For telephone-band speech quality, PESQ is claimed to be a world standard [Beerends,
van Vugt 2004] for instrumental quality measurements, predicting the MOS results
of well-defined ACR-LOTs reliably under numerous conditions. Even in the same
context, it is admitted, however, that amendments would be helpful, reducing the
sensitivity towards unknown types of distorting systems, but also adding diagnostic
abilities by a “degradation decomposition”. The way via decomposed attributes first
and a derivation of an overall quality estimation thereafter is also accepted, but no
standard is currently available.

For wideband speech, the auditory analysis is not really different, in contrast to
wideband-speech processing which needs additional care. Both total and diagnos-
tic instrumental approaches, however, pose more and new questions, to which only
partial answers are known. The recent investigations of dimensionality as such and of
“named” attributes or sub-dimensions require a persistent continuation, with a large
variety of stimuli included. Modeling both attribute-specific disturbance generation
and total-quality perception needs more integration of psychoacoustical and system-
theoretical knowledge. A cross-exploitation of internal features from both approaches
is promising.
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For wideband as well as for narrowband speech, other tasks have also to do with
quality assessments. The continuous QoS monitoring of signal features by an INMD
was already mentioned [ITU P.561 1996], [Ludwig 2003]. This is beyond the scope
of this chapter, as well as quality estimation from tabulated, expected impairments
in a compound-network planning phase [ITU G.107 2005], or quality monitoring by
means of in-service transmission-channel observations. The latter field is, however,
dealt with in Chap. 3.

The thoughts and results reported in this chapter reflect, mainly, the author’s per-
sonal view, and the work of the speech-processing group in Kiel is in the focus. Other
work has, naturally, been observed as closely as possible, but necessarily not com-
pletely. An apology is appropriate for this limitation. On the other hand, much of
the contents comes from close and fruitful cooperation with friends and colleagues
elsewhere – too many to list all of them here. As a representative of many, the team
of S. Möller at TUB / T-Labs Berlin is named. The author wishes to express his sin-
cere gratitude to him and his co-workers as well as, especially, to the LNS members
in Kiel.
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cal Bounds, PhD thesis. Aachener Beiträge zu digitalen Nachrichtensystemen, vol. 15,
P. Vary (ed.), RWTH Aachen University.

Jax, P.; Vary, P. (2002). An Upper Bound on the Quality of Artificial Bandwidth Extension
of Narrowband Speech Signals, Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Orlando, USA, pp. 237–240.

Jekosch, U. (2005). Voice and Speech Quality Perception, Springer, Berlin, Germany.



48 2 Speech-Transmission Quality: Wideband vs. Narrowband

Kettler, F.; Gierlich, H. W.; Rosenberger, F. (2003). Application of the Relative Approach
to Optimize Packet-Loss Concealment Implementations, Proceedings of German Annual
Conference on Acoustics (DAGA), Aachen, Germany, pp. 662–663.

Krebber, W. (1995). Speech-Transmission Quality of Telephone Handsets, PhD thesis.
Fortschritts Berichte VDI, vol. 10, no. 357, H.-D. Lüke (ed.), RWTH Aachen University
(in German).

Kruskal, J.; Wish, M. (1978). Multidimensional Scaling, in E. M. Uslaner (ed.), Quantitative
Applications in the Social Sciences, Sage, Newbury Park, USA.

Kühnel, C. (2007). Investigation of Instrumental Measurement and Systematic Variation
of the Speech-Quality Dimension “Noisiness”, Diploma Thesis, University Kiel (in Ger-
man).

Laver, J. (1980). The Phonetic Description of Voice Quality, Cambridge University Press,
UK.

Ludwig, T. (2003). Measurement of Speech Characteristics for Reference-Free Quality Evalu-
ation of Telefone-Band Speech, PhD thesis. Arbeiten über Digitale Signalverarbeitung,
vol. 23, U. Heute (ed.), University Kiel (in German).

Ludwig, T.; Scholz, K.; Heute, U. (2003). Speech-Quality Evaluation in Telephone Networks,
DAGA, Aachen Germany, pp. 718–719.

Makhoul, J.; Berouti, M. (1979). High-Frequency Regeneration in Speech-Coding Systems,
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pp. 428–431.

Martin, R. (1994). Spectral Subtraction Based on Minimum Statistics, Proceedings of the
European Signal Processing Conference (EUSIPCO), Edinburgh, UK, pp. 1182–1185.

Martin, R. (2001). Noise Power-Spectral Density Estimation Based on Optimal Smoothing
and Minimum Statistics, IEEE Transactions on Speech and Audio Processing, vol. 9,
pp. 504–512.

Martin, R. (2006). Bias Compensation Methods for Minimum Statistics Power Spectral
Density Estimation, Signal Processing, vol. 86, pp. 1215–1229.

Mattila, V. (2001). Perceptual Analysis of Speech Quality in Mobile Communication, PhD
thesis, Tampere University of Technology.

Moore, B. C. J.; Tan, C. T. (2003). Perceived Naturalness of Spectrally Distorted Speech
and Music, Journal of the Acoustical Society of America, vol. 114, pp. 408–419.

Patrick, P. J. (1983). Enhancement of Band-Limited Speech Signals, Diss., Loughborough
Univ. of Technology, U.K.

Patrick, P. J.; Steele, R.; Xydeas, C. S. (1983). Frequency Compression of 7.6 kHz Speech into
3.3 kHz Bandwidth, Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Boston, USA, pp. 1304–1307.

Patrick, P. J.; Xydeas, C. (1981). Speech-Quality Enhancement by High-Frequency Band
Generation, International Conference on Digital Processing of Signals in Communica-
tions, pp. 365–373.



Bibliography 49

Paulus, J. (1996). Coding of Wideband Speech Signals at Low Data Rate, PhD thesis. Aach-
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Chapter 3

Parametric Quality Assessment
of Narrowband Speech in
Mobile Communication Systems

Marc Werner

3.1 Introduction

Modern speech and audio transmission systems often employ dedicated digital sig-
nal processing algorithms like advanced speech coding, echo cancellation, and noise
reduction. The effect of these non-linear operations on the resulting speech quality,
especially in combination with transmission errors on the communication link, is dif-
ficult to estimate. However, the perceived speech quality is for many applications and
services the most important criterion for user satisfaction. It is therefore a primary in-
terest of system designers and operators to assess and predict the quality of delivered
speech signals under different conditions. In the domain of digital mobile communi-
cation networks, narrowband speech telephony is still by far the most frequently used
service. In the competitive environment of the cellular business, operators need to
optimize the transmission performance of their networks and to monitor constantly
the resulting speech quality.

This chapter provides a classification of methods for narrowband speech quality assess-
ment, as well as a short overview of the evolution of these techniques. It then focuses
on a specific approach to how efficient automated quality monitoring procedures for
mobile communication systems can be designed. The developed methodology is based
on the evaluation of measurement parameters that are available at the receiver, and
can be applied to any mobile communication system providing such measurements. As
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examples, dedicated speech quality measures are derived for use in GSM and UMTS
networks. The performance of these parametric measures is quantified by comparison
against benchmark quality assessment methods.

3.1.1 Subjective Listening Tests and Classes of Objective Measures

Classically, speech quality assessments have been carried out in subjective tests. These
tests provide excellent accuracy for many assessment scenarios if sufficient effort is
taken in obtaining judgments by a large group of human subjects under standardized
laboratory conditions.

On the other hand, objective speech quality measures have been developed mostly in
the form of computer programs, which allow quite reliable speech quality assessments
for certain applications without expensive subjective tests.

Subjective Listening Tests

The auditive quality of narrowband speech (and thereby the quality of the underlying
processing algorithm or transmission system) can be determined by subjective lis-
tening tests following the procedures standardized by ITU-T in its recommendations
P.800 and P.830 [ITU-T 1996a], [ITU-T 1996c]. High-quality original speech signals
are used to produce a large amount of speech material to be assessed, reflecting the
various transmission or processing conditions that are expected for the system un-
der test. For telephony applications, the speech material is first processed by a filter
representing a typical handset transmit path.

The processed speech signals are usually presented to the test subjects in speech clips
with a duration of 5 s to 10 s . Additionally, speech clips exhibiting certain reference
degradations, as well as the original speech, should be included in the test material.
Speech clips with two male and two female speakers should be used for each testing
condition.

The listening quality of each speech clip is rated by a large number of test persons.
Different types of rating include the ACR (Absolute Category Rating), DCR (Degra-
dation Category Rating), and CCR (Comparison Category Rating). ACR tests are
the most common and the quickest to conduct. For these tests, the listening quality
(LQ) rating is given on a five-point opinion scale reproduced in Table 3.1 [ITU-T
1996a].

The mean rating of all test persons for a certain speech clip (or for all clips describ-
ing a certain speech processing system under test), called the Mean Opinion Score
(MOS), is then calculated to characterize the speech quality of the clip or system.
Because external factors such as the speech laboratory environment can influence
the results of listening tests, the MOS scores are normalized with the help of refer-
ence speech clips exhibiting well-defined distortions (e.g., MNRU, Modulated Noise
Reference Unit) [ITU-T 1996b].
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Table 3.1: Opinion scale used in subjective listening tests

Score Listening quality

5 Excellent

4 Good

3 Fair

2 Poor

1 Bad

Apart from the standardized ACR-LQ subjective testing method recommended in
[ITU-T 1996a], other subjective quality assessment models have been proposed and
used, like the Diagnostic Acceptability Measure (DAM), which aims at categorizing
the perceived distortion according to a larger number of labels [Quackenbush et al.
1988].

Because telephony services are characterized by the interaction of two or more speak-
ers, the listening quality assessments described above reflect only one part of the
overall user’s quality perception. Additional quality attributes of the so-called Con-
versational Quality (CQ) are the talking quality (describing the perception of a user’s
own voice) and the interaction quality (characterizing impairments like delay and
double-talk distortions) [Rix et al. 2006]. Conversational tests are slower and more
expensive than listening tests.

In the field of audio processing and transmission, subjective listening tests like the
recommended ITU-R BS.1116 focus on the assessment of relatively small signal degra-
dations by comparison tests [ITU-R 1998].

Subjective listening tests are time-consuming and expensive. They are therefore
mostly carried out to classify the quality of single components of a speech trans-
mission system such as a newly developed speech codec or noise reduction filter, in a
final selection or decision state.

During the development phase of speech processing algorithms, quicker and cheaper
methods of speech quality assessment are desirable. Other applications, like the au-
tomated monitoring of end-to-end speech quality in cellular communication systems,
also call for more efficient assessment techniques and may in turn allow a larger toler-
ance regarding the accuracy of the quality judgments. For these purposes, the listen-
ing quality can be estimated using objective speech quality measurement algorithms,
introduced in subsequent sections.

Objective Speech Quality Measures

Instrumental or objective speech quality measures are based on algorithms that aim
at the prediction of listening test results in a reproducible way and irrespective of
external factors.
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Intrusive objective measures analyze information from the transmitter and receiver of
the system under test, mostly the transmitted and received speech signals themselves.
They usually contain models of the human auditory and cognitive perception of sound,
and address certain psychoacoustic effects, such as [Zwicker, Fastl 1999], [Beerends,
Stemerdink 1994], [Rix et al. 2001]:

• non-linear transformation of sound pressure level to perceived loudness,

• non-linear transformation of frequency to perceived pitch,

• spectral and temporal masking,

• unequal weighting of new and deleted signal components,

• unequal weighting of distortions depending on their position within the clip
(recency effects).

A comparison of the original and distorted speech signals after a transformation into
the perceptual domain then yields a typically one-dimensional quality score that can
be mapped to MOS values of subjective ACR-LQ tests using some monotonic map-
ping function. The objective measurement of speech quality in speech communi-
cation systems using intrusive methods is only possible by setting up test connec-
tions with well-defined speech material and by thus generating additional network
load.

Non-intrusive models, on the other hand, allow an estimation of the perceived speech
quality by exploiting general system properties and information taken only from the
receiver side of the communication path. This makes them especially useful for quality
assessment during the normal operation of a speech communication system, where the
original speech signals are not available.

Some of these non-intrusive methods are signal-based, and thus analyze the distorted
speech signal itself, making use of the above-mentioned perception models and psy-
choacoustic effects. The absence of a reference signal, however, makes this a difficult
task, and the accuracy of signal-based non-intrusive measures usually falls behind
intrusive models.

Other non-intrusive quality measures do not analyze speech signals but certain param-
eters of the underlying network. Such parametric models have been used for network
planning, where an estimate of the expected general speech quality is made based
on network properties (E-Model, [ITU-T 2002]). But most non-intrusive parametric
measures are designed to assess the quality of individual speech transmissions by an-
alyzing transmission parameters that are available at the receiver. These parameters
usually originate from measurements that are taken at a sufficiently high frequency
(at least several times a second) and reported back to the transmitter for purposes
like link adaptation, radio resource management, or handover. These measures, once
trained to their specific measurement environment, exhibit a low complexity and can
be used for the purpose of automated, efficient and low-cost speech quality monitoring
without creating additional network load.
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The performance of objective speech quality measures is usually characterized by
their correlation with subjective tests. For this purpose, the absolute value of
the correlation coefficient −1 ≤ ρ ≤ 1 is calculated. ρ is a measure of how
well the objective quality scores can be mapped to the reference subjective MOS
scores.

According to a recommended classification scheme [ITU-T 2003a], the reference MOS
values from subjective ACR-LQ tests are termed MOS-LQS (listening quality – sub-
jective), while estimated MOS values delivered by objective quality measures have to
be denoted as MOS-LQO (listening quality – objective). MOS estimates stemming
from the parametric E-Model [ITU-T 2002] for network planning are referred to as
MOS-LQE.

Current state-of-the-art objective measures exhibit very good correlations between
MOS-LQS and MOS-LQO of |ρ| ≥ 0.9 if applied to the measurement conditions for
which they have been designed.

3.1.2 Overview of Objective Speech Quality Measures

In the following sections, a short synopsis of some objective speech quality assessment
models is given. For complementary information, the reader is referred to a recent
overview paper [Rix et al. 2006].

Intrusive Models

The development of intrusive objective speech quality measures was primarily driven
by advances in speech coding where models of speech production are exploited to
obtain high-quality speech compression at low bit rates. For these and other speech
processing applications, the quality of decoded or received speech cannot be charac-
terized sufficiently by simple measures such as the signal-to-noise ratio (SNR), but
the auditory perception of distortions must be accounted for. Modern speech codecs
often exhibit a coding noise that is shaped with the spectrum of the transmitted signal
and therefore reduced in its audibility.

An early quality assessment approach addressing this issue was made 1987 by Bran-
denburg with the Noise-to-Mask Ratio (NMR) [Brandenburg 1987], which quan-
tifies the degree of psychoacoustic masking of noise by the original signal wave-
form.

The transformation of waveforms into the perceptual domain using auditory and
cognitive models was proposed by Karjalainen [Karjalainen 1985]. This concept is now
widely used in speech quality assessment methods [Quackenbush et al. 1988], [Wang et
al. 1992], [Park et al. 2000], [Beerends, Stemerdink 1994], [Rix et al. 2001]. Usually, a
handset-filtered version of the original and distorted speech signal is transformed into
the frequency domain, taking into account the non-linear perception of frequency and
loudness. Effects like spectral and temporal masking and unequal weighting of loud
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and silent signal intervals, are then used in a cognitive model to assess the perceptual
difference of the two signals. These models must be trained by a large amount of test
data from ACR-LQ tests and validated by unknown data.

The Perceptual Speech Quality Measure (PSQM) [Beerends, Stemerdink 1994] was
the first intrusive measure for the quality of narrowband speech to be standardized
by the ITU-T in the recommendation P.861 [ITU-T 1998]. It was based largely on
the above described principles and was especially optimized for the assessment of
speech codecs. However, for the task of estimating distortions found in transmission
networks, certain limitations were identified.

Other recent speech quality assessment algorithms include TOSQA [ITU-T 1997] and
PACE [Juric 1998]. The new and current ITU-T standard P.862 [ITU-T 2001] rec-
ommends the PESQ (Perceptual Evaluation of Speech Quality) algorithm [Rix et al.
2001] for use in a wide range of applications, including communication systems. PESQ
is based on an improved version of PSQM and on the PAMS algorithm (Perceptual
Analysis Measurement System) [Rix, Hollier 2000] and includes, e.g., a dedicated time
alignment procedure to address variable delays found in speech transmission systems.
For the calculation of MOS-LQO values from the PESQ output scores, a dedicated
mapping function was developed [ITU-T 2003b].

An extended version of PESQ was recently introduced for the assessment of wideband
speech [ITU-T 2005].

Signal-based Non-intrusive Models

Signal-based non-intrusive speech quality measures are a relatively new development.
Out of a competition including the ANIQUE model [Kim 2005], the so-called Single-
Ended Assessment Model (SEAM) [Gray et al. 2000] was adopted as ITU-T recom-
mendation P.563 in 2004 [ITU-T 2004]. It includes a speech production model to
identify signal components that cannot be produced by the human vocal tract and
are therefore classified as distortions, as well as an identification of additive noise,
clipping and muting.

Owing to the absence of a reference signal, the performance of signal-based non-
intrusive assessment models is slightly inferior to that of intrusive methods. However,
the current results are promising and this field remains an interesting area of re-
search.

Parametric Non-intrusive Models

Parametric non-intrusive quality assessment models have been derived to characterize
the speech quality in communication networks. In wire-line networks, Broom eval-
uated Voice-over-IP network characteristics to estimate the resulting speech quality
[Broom 2006]. For wireless systems, an approach was made by Gaspard who analyzed
several statistical parameters, all derived from the channel bit error rate measurement
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(RXQUAL) in GSM systems [Gaspard 1994]. The mapping of the parameter space
to MOS-LQS scores from subjective tests was performed using a multidimensional
MMSE fitting technique.

A similar approach was taken by Karlsson et al. who, apart from the bit error
rate, included parameters reflecting decoding erasures of speech frames in the GSM
full-rate codec, and fitted a linear combination of average parameter values to the
MOS-LQS scores [Karlsson et al. 1999]. This approach was extended by Wän-
stedt et al. for the Adaptive Multi-Rate (AMR) speech codec [Wänstedt et al.
2002].

Further refinements in parametric speech quality assessment were proposed with re-
spect to the averaging and mapping procedures of radio transmission parameters of
cellular communication networks to reference quality scores for GSM and UMTS sys-
tems employing the Enhanced Full-Rate (EFR) codec and the AMR codec [Werner
et al. 2003], [Werner et al. 2004], [Werner, Vary 2005].

3.1.3 Development of Parametric Models

The radio transmission is the most critical part of cellular voice communication.
Therefore, an analysis of radio transmission parameters is well suited to describe
the experienced end-to-end speech quality. The development of non-intrusive speech
quality measures for cellular communication systems, based on these parameters, will
be described in detail in the remainder of this chapter.

The presented development procedure maximizes the correlation of quality assessment
results with reference speech quality scores. It is applied to two different cellular
networks: GSM, employing the EFR or AMR codec, and UMTS, using the AMR
codec. The speech quality measurement method can be easily adapted to other digital
cellular systems as long as appropriate transmission measurement parameters are
available. In this chapter, only the listening quality of narrowband (30–3400 Hz)
speech transmissions is considered. Aspects of wideband-speech quality are covered
in Chap. 2.

The optimization of these speech quality measures is based on measurement data
provided by a GSM and UMTS network operator as well as on link-level simulations
of the GSM and UMTS speech transmissions, to be described in Sec. 3.2. These
simulations allow an analysis of the correlation of certain parameters with the resulting
speech quality in terms of MOS-LQO, obtained by the intrusive PESQ measure [Rix
et al. 2001]. Furthermore, an algorithm for the switching of AMR codec modes is
presented.

Section 3.3 covers the techniques of mapping transmission parameter values to speech
quality scores. Methods for improving the quality correlation are described. Then,
the procedures for optimizing parameter-based speech quality measures are applied to
the GSM-EFR, GSM-AMR, and UMTS-AMR systems.
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3.2 Simulations of GSM and UMTS
Speech Transmissions

In all digital cellular communication systems, the network performance is optimized
by dedicated algorithms that are employed to maximize the transmission quality
in speech channels while consuming only a reasonable necessary amount of radio
resources such as bandwidth, transmit power, or spreading codes. These algo-
rithms include speech processing functions like speech coding and error conceal-
ment but also radio-related mechanisms like the so-called radio resource management
(RRM).

Owing to the highly variable nature of the radio channel, transmission impairments
cannot be avoided. Fast fading, for instance, can result in signal level variations in
the range 30 to 40 dB within milliseconds. Even with fast power control mechanisms
as employed in UMTS, residual transmission errors remain after de-interleaving and
channel decoding. The measurement of these transmission errors is vital for the RRM,
which allocates, e.g., the transmit powers, user data rates, and coding/modulation
schemes to the individual users in an economical way to maximize the system capacity
and the overall transmission quality [Werner 2005]. Transmission parameters based
on the received signal and interference power levels, as well as on the frame and bit
error rates (FER/BER) are defined for the RRM and the handover operation in most
current cellular communication systems such as the GSM and the third-generation
UMTS.

For most transmission parameters, an immediate evaluation is of limited suitability
for the purpose of speech quality monitoring. The most common technical parameters
of current cellular systems disregard special features of speech processing elements like
the speech decoder’s unequal sensitivity to different bit error positions, and the effects
of error concealment on the received speech clip.

The practice of many operators to use thresholds of transmission parameters for
statistical speech quality monitoring is therefore inaccurate and does not allow a
detailed analysis of customer satisfaction. For the development of refined paramet-
ric speech quality assessment models, an extensive analysis of transmitted speech
material, together with corresponding transmission parameter progressions, is neces-
sary.

3.2.1 Simulation Environment

To produce speech clips that reflect real-world radio transmission conditions, link-
level simulations of the GSM and UMTS downlink physical speech transmissions can
be used. In the following, the simulation models that were set up within the Sys-
tem Studio software environment [Syn 2004] to derive the parametric speech quality
measures in Sec. 3.3 are described.
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Elements of the Transmission Chain

The simulation models for GSM and UMTS include EFR or AMR speech coding, and
all necessary elements of the equivalent physical baseband transmission chain, e.g.,
multiplexing, channel coding, and interleaving.

In the UMTS simulations, the rate matching, spreading and scrambling procedures
according to the 3GPP standard [3GPP 2000a] are implemented. At the receiver, the
respective inverse algorithms, de-scrambling, de-spreading, and inverse rate matching,
are applied.

In the GSM simulations, a binary error channel is employed that is dynamically
controlled by channel BER measurements recorded in the real network (see Fig. 3.1).
Within each speech frame (20 ms), it is assumed that the channel BER is constant and
the bit errors are randomly distributed. The validity of these assumptions was checked
with a simulation of the Typical Urban (TU) fading channel [ETSI 1999a], producing
typical burst errors that are then broken up by de-interleaving. Figure 3.2 depicts
the distribution of bit error burst lengths after de-interleaving, for different terminal
velocities and an exemplary overall BER of 4.6%. It is shown that, compared with a
purely random and memoryless distribution of bit errors, no (v = 30 km/h) or only
a slight (v = 10 km/h, v = 3 km/h) increase of longer burst errors due to fast fading
remains. However, for a constant overall BER, only a large shift in the burst length
distribution towards long error bursts produces significantly more channel decoding
failures, which may then reduce the perceived speech quality. The approximation
with randomly distributed bit errors per speech frame can thus be regarded as valid
for the purpose of speech quality measurement.

The UMTS simulations are carried out using a channel model that reflects both in-
tracell and intercell interference as well as a slow fading process. This slow fading
may result, e.g., from variations in the assignment of radio resources, and is modeled
by a first-order Markov process reflecting different kinds of channel conditions from
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Figure 3.1: Binary error channel of GSM simulations, controlled by field test mea-
surements
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Figure 3.2: Distribution of error burst lengths in GSM TU channels, after de-
interleaving, for different terminal velocities v (overall BER: 4.6%)

nearly error-free to heavily disturbed transmissions. Taking the correlation proper-
ties of UMTS scrambling codes into account, the intercell interference is modeled as
simple Additive White Gaussian Noise (AWGN), whereas the orthogonality imperfec-
tions of the downlink spreading codes due to multipath propagation are modeled as
Orthogonal Code Noise Sequences (OCNS) [3GPP 2005].

For channel decoding, a Soft-Output Viterbi Algorithm (SOVA) [Hagenauer, Hoeher
1989] is used in both GSM and UMTS simulations. The implemented EFR and AMR
speech decoders employ error concealment: speech frames that did not pass a CRC
check after convolutional decoding are marked by a Bad Frame Indication (BFI). The
BFI flag controls the concealment process, which is based on a state machine with
seven states. Depending on the state, certain parameters of the codec are replaced
by attenuated counterparts from the previous frame or by averaged values [ETSI
1999d].

AMR Mode Switching

The AMR codec can be interpreted as an example of an RRM procedure for speech
channels. It consists of eight independent speech codecs (modes 0. . .7) with data rates
ranging from 4.75 kbit/s to 12.2 kbit/s. The 12.2 kbit/s mode (identical to the EFR
codec) is usually the default codec employed for good transmission channel conditions.
At the expense of a slightly reduced baseline quality of lower modes, the data rate
can be decreased to allow for an increased transmission robustness due to a higher
bit energy and/or better channel coding, while maintaining the same level of other
consumed radio resources.

In GSM, the channel bit rate per user is constant at 22.8 kbit/s. Different channel
coding schemes are used for each AMR mode, filling up the individual net rate to the
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constant gross channel rate. In UMTS, the channel bit rate per user is determined
by the chosen spreading factor and the rate matching algorithm. A constant channel
encoder of rate r = 1/3 is employed for the reference UMTS-AMR speech channel
[3GPP 2002]. Note that the gain in transmission reliability for lower AMR modes
is realized by a higher coding gain in the GSM system but by a larger channel bit
energy in the UMTS system.

It is assumed that in UMTS a preselection of four AMR modes takes place as in
GSM [ETSI 1998] (the selection of modes is not specified in the UMTS standard).
As the characteristics of neighboring AMR modes differ only slightly, the quality
loss induced by the reduction of the number of possible modes from eight to four
is small. On the other hand, a selection of a mode subset allows for a quicker link
adaptation as the step size of the net data rates becomes larger, and also reduces the
number of switching instants. In the UMTS link-level simulations, modes 0, 2, 5, and
7, with the data rates 4.75, 5.9, 7.95, and 12.2 kbit/s, are selected for an optimum
resulting average speech quality under an exemplary, uniformly distributed range of
transmission conditions. For GSM, the modes 0, 5, 6 (10.2 kbit/s), and 7 represent the
best choice under these conditions. The difference in mode selections can be explained
by the different channel coding in UMTS and GSM. The mode preselection in real
networks will also consider the individual expected occurrence of different channel
quality conditions.

The adaptation of AMR modes to changing transmission conditions is crucial for
the performance of the adaptive speech coding. A dedicated AMR mode switching
scheme is introduced in the link-level simulations which optimizes the resulting speech
quality perception by providing a compromise between inherent speech quality and
robustness against interference.

In the downlink, channel degradations must be quickly estimated at the mobile sta-
tion and reported back to the base station, which selects the AMR mode to be used
for subsequent speech frames. These estimates must be taken at a frequency well
above that of the standardized measurement parameters described in Sec. 3.2.2 to
allow for a frame-by-frame switching. In GSM, an SIR estimation method on the
basis of non-binary real (soft) channel values is recommended for this purpose [ETSI
1999c]. A sliding-window FIR lowpass filter with 100 coefficients is applied to these
values to facilitate a sufficiently reliable estimation. The further mapping procedure
of filtered channel values to certain AMR switching thresholds is left open for opti-
mization by manufacturers; an example would be to take the mean value of the 20
most unreliable filtered samples per speech frame and to define appropriate switching
thresholds.

However, the GSM approach cannot be applied to UMTS, where settings of the radio
transmission like the spreading factor and rate matching scheme vary between different
AMR modes or even within one mode, depending on the dynamic RRM procedures.
The relation between soft channel values and transmission quality is variable in this
case.
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Therefore, the dedicated AMR mode switching method employed in the described
GSM and UMTS link-level simulations is based on an analysis of the soft output
bits of the SOVA [Hagenauer, Hoeher 1989] channel decoder. The evaluation of
the SOVA softbits is carried out immediately before the speech decoding and can
therefore correlate better with the resulting speech quality than an evaluation of
channel values.

The dedicated AMR mode switching method offers a significant quality improvement,
compared with the standard method recommended by the GSM specification [ETSI
1999c], especially for bad and medium channels. It reaches up to 0.6 PESQ score
points for certain clips transmitted over a highly variable channel. A more detailed
description of the dedicated AMR mode switching method can be found in [Werner
et al. 2004] and [Werner, Vary 2005].

The general improvement in speech quality by the introduction of the AMR codec,
compared with the EFR codec, is depicted in Fig. 3.3. A selection of GSM transmis-
sion simulations is chosen, which represents a uniform distribution over the speech
clips’ mean channel BER, ranging from 0 to 18%. The quality advantage of the AMR
codec under these conditions is clearly visible in the offset of the cumulative probabil-
ity density function (CDF) of the resulting PESQ scores.

3.2.2 GSM Transmission Parameters

The analysis of GSM transmission parameters regarding their correlation with the
resulting speech quality is based on field test measurement data collected from ap-
proximately 150 hours of GSM-1800 downlink test calls. The measurement data covers
the progression of several physical layer measurement parameters for a variety of radio
propagation conditions:
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RXQUAL: The channel BER is averaged over intervals of 480 ms and mapped to
the logarithmic RXQUAL parameter [ETSI 1999b] with eight BER levels from 0
(BER < 0.2%) to 7 (BER > 12.8%). RXQUAL serves as an estimate of the current
channel quality during an active call, and controls the binary error channel in the GSM
simulations performed. In the GSM system, values below four are desirable, because
at a gross BER of less than 1.6%, nearly all bit errors within the most important
class-I-bits can be corrected by the channel decoder.

RXLEV: The received power level at the mobile station is measured in dBm (rel-
ative to 1 mW) and mapped linearly to an RXLEV index [ETSI 1999b] ranging
from 0 (< −110 dBm) to 63 (> −48 dBm) in 1 dBm steps. The minimum required
value specified in the GSM standard [ETSI 1999a] ranges from −104 to −100 dBm
(RXLEV > 6 . . . 10). Measurements are reported every 480 ms. Among other fac-
tors, the received power level depends on the radio channel in terms of path loss
and slow fading. However, it is not a measure of the signal-to-interference power
ratio (SIR), but only an estimate of the sum of the desired signal plus interfer-
ence.

Using the RXQUAL progressions as input, numerous EFR and AMR transmission
simulations are carried out. The speech source contains a male and a female voice
speaking a German sentence. As a result, several thousands of male and female
speech clips are generated from the measurement data, each having a duration of
approximately 9 s.

Additional transmission parameters that had not been included in the original field
test measurement database are recorded in the simulations:

AMRmode (in the case of AMR transmissions): The four preselected AMR modes
are indexed as {0, 1, 2, 3}. A system with dynamic adaptation of these modes to the
current channel quality as described above is assumed. The presented models for
speech quality assessment in Sec. 3.3 can easily be adapted to a de-activated mode
switching.

The BFI rate, or Frame Erasure Rate (FER), and the BFI distribution within the
speech clip, are of great relevance to the speech quality. Therefore the FER and some
derivations are recorded as transmission parameters as well:

FER: Frame erasures for speech frames,

LFER: Sequence lengths of consecutively erased speech frames in the speech clip,

MxLFER: Maximum sequence length of consecutively erased frames,

MnMxLFER: Mean of four local maximum sequence lengths of erased speech frames
for the first, second, third and fourth quarters of the speech clip. The mean of these
four local maxima will be calculated using LP norms, see (3.1). The maximization
over short clip periods is regarded to be similar to the human perception of severe
signal distortions.

Although the FER is not part of the standard GSM downlink measurement report,
FER values for the uplink are usually stored within the Operation and Maintenance
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Center (OMC) and an OMC function estimating the downlink FER exists in most
cases. This feature depends on the OMC manufacturer.

Note that the progressions of all described parameters are to be averaged by an
appropriate LP norm per speech clip.

3.2.3 UMTS Transmission Parameters

The UMTS transmission parameters available at the receiver and their reporting
frequency depend on the manufacturer’s hard- and software implementation and on
the network configuration. Some parameters specified for measurement reports of the
mobile station and for measurements at the base station are given in Table 3.2 [3GPP
2000b].

Unfortunately, a BER measurement resembling the GSM RXQUAL is available only in
the UMTS uplink. The UMTS outer loop power control measures the uplink received
SIR and compares the measurements with a target value. On the downlink, the block
error rate (BLER) is measured instead. The uplink BLER can also be derived from
BER estimations [Heck et al. 2002].

The UMTS BLER is equivalent to the GSM FER parameter if one AMR speech frame
is transmitted within one TTI (Transmission Time Interval), which is the specified
procedure for the UMTS reference channels of net rate 12.2 kbit/s [3GPP 2002]. The
derived parameters LFER, MnMxLFER and MxLFER are available in UMTS as well.
Additionally, the AMR mode itself is taken into account as a transmission parameter.
A system with dynamic adaptation of AMR modes according to Sec. 3.2.1 is assumed
as in the GSM-AMR case.

Table 3.2: Some UMTS measurement parameters

Quantity Downlink parameter Uplink parameter

Power Received total power, Received total power,
Received CPICH power, Transmitted carrier power,
Transmitted power Transmitted code power

SIR CPICH-Ec/N0 SIR, SIR-error
BER/FER Transport channel BLER Transport channel BER,

Physical channel BER
Data rate AMR mode AMR mode
Physical Spreading factor, Spreading factor,
channel Scrambling code, Scrambling code,
parameters Coding/Puncturing Coding/Puncturing

schemes schemes
(CPICH: UMTS Common Pilot Channel)
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3.3 Speech Quality Measures based on Transmission
Parameters

The parametric speech quality assessment methods described in this chapter are non-
intrusive as they are based only on the above received transmission parameters, usu-
ally reported a number of times per second in current cellular communication sys-
tems.

Earlier approaches [Gaspard 1994], [Karlsson et al. 1999], [Wänstedt et al. 2002]
to use simple combination functions of transmission parameters for the prediction
of the listening quality in cellular networks are extended by additionally including
individually selected, psychoacoustically motivated normalization functions for each
parameter.

In the process of calculating optimized quality prediction functions (see Sec. 3.3), the
PESQ scores Mi, with Mi ∈ [0, 5], are taken as reference speech quality figures. A
transformation function exists [ITU-T 2003b] that maps the PESQ scores to MOS
values. While this procedure poses some restriction on the accuracy of the developed
measures, the intrusive signal-based MOS-LQO quality assessments by PESQ have
been proven as a reliably close approximation of subjective test results in various
experiments [Rix et al. 2001]. Nevertheless, MOS-LQS scores from listening tests
should be preferred as reference if available.

The recorded transmission parameters from field tests and simulations are now ana-
lyzed with respect to their correlation with the resulting speech quality in terms of
PESQ scores. For this purpose, a dedicated LP averaging procedure of parameter
progressions per speech clip, as well as a linearization function, are applied. Speech
quality measures based on single transmission parameters and on parameter combi-
nations are then derived in Sec. 3.3.2.

3.3.1 Correlation Analysis

The parameter progressions ζi(k) with measurement time index k = 1 . . . N of the
parameter ζ ∈ {RXQUAL, FER, LFER, MxLFER, MnMxLFER, AMRmode} are
evaluated for each speech clip i. To compare these parameter progressions with the
single PESQ score Mi, LP norms of ζi(k) are calculated:

LP (ζi(k)) =

[
1
N

N∑
k=1

(ζi(k))P

]1/P

, P > 0 . (3.1)

The L1 norm corresponds to the arithmetic mean and the L2 norm is equivalent
to the quadratic mean of ζi(k). The reason for calculating different LP norms for
each parameter progression is the different psychoacoustic perception of parameter
outliers. Large values of P amplify parameter variations whereas small P -values have
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a smoothing effect. The values P ∈ {1/20, 1/19, . . . , 1/2, 1, 2, . . . , 19, 20} are tested in
the present procedure.

For each parameter and each value of P , the mapping function that fits the LP

norms to the objective PESQ scores Mi, over all speech clips i, is approximated with
respect to a minimum mean-square error using a monotonic polynomial fζ,P of degree
m ≤ 4:

Mi ≈ fζ,P (LP (ζi(k))) ∀ i (3.2)

(the dependency of f on ζ and P will be omitted in the following expressions).

The correlation coefficient ρ(f(LP (ζi(k))), Mi) is calculated after a transformation of
the LP norms to the PESQ domain by the polynomial f . The optimum P -value P̂ ,
which maximizes the correlation, is identified along with the corresponding lineariza-
tion polynomial f̂ for each parameter ζ.

An example of the polynomial fitting and selection of optimal values for P and m is
depicted in Figs. 3.4 and 3.5.

In Fig. 3.4, the effect of linearization is shown. The relation between the resulting
speech quality (PESQ) and the L6 norm of RXQUAL is depicted for a subset of
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Figure 3.4: RXQUAL–PESQ correlation and polynomial linearization: Transforma-
tion of RXQUAL (L6 norms) for GSM-EFR transmissions. c© 2003 IEEE
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GSM-EFR speech clips as a scatter-plot. The distribution of points in the upper
diagram indicates a non-linear dependency and therefore a low linear correlation of
the parameter norms with the PESQ scores.

After the transformation of the L6 norms by the mapping polynomial f (horizontal
axis in the lower diagram of Fig. 3.4), the linear correlation coefficient ρ can be
properly calculated.

Figure 3.5 illustrates the dependency of the resulting correlation ρ(f(LP (ζi(k))), Mi)
on the P -value of the LP norm and on the polynomial degree m, for the parameter
RXQUAL. It can be observed that the highest correlation is obtained for P̂ = 6 and
m̂ = 4. A higher-order polynomial up to m = 6 could not further improve the resulting
correlation under the constraint of monotonicity.

It should be noted that the deterministic linearization function f does not change
the degree of dependency between speech quality and parameter value itself but only
improves the linear correlation measure. On the other hand, the optimization of P
offers a real correlation gain.

The procedure of LP averaging and linearization is applied to the GSM-EFR, GSM-
AMR and UMTS-AMR transmission parameters. The correlation results are given
in Table 3.3. The large optimum P -values for RXQUAL indicate that outliers are
perceived more strongly than is suggested by the numerical value of this parame-
ter. Note that for the FER parameter, L1(FER) = FER, L2(FER) = FER1/2, and
L4(FER) = FER1/4, because the constituent elements are taken from the binary set
{0, 1} (frame either received correctly or erased).
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Table 3.3: Correlation coefficients and optimum LP norms of GSM and UMTS trans-
mission parameters

GSM-EFR GSM-AMR UMTS-AMR

Parameter ζ P̂ ρ(f̂ ,Mi) P̂ ρ(f̂ ,Mi) P̂ ρ(f̂ ,Mi)

RXQUAL 6 0.9419 14 0.9317 – –

RXLEV any < 0.7 any < 0.7 – –

FER 2 0.9633 1 0.9556 4 0.9752

LFER 6 0.8864 20 0.8682 10 0.9239

MxLFER – 0.9088 – 0.8747 – 0.9331

MnMxLFER 1 0.9383 1 0.9282 1 0.9525

AMRmode – – 0.2 0.9259 2 0.8761

3.3.2 Parametric Speech Quality Measures

FER-based Measures

For GSM-EFR, GSM-AMR and UMTS-AMR transmissions, the Frame Erasure Rate
(FER) parameter exhibits an outstanding speech quality correlation of ρ = 0.9633,
ρ = 0.9556, or ρ = 0.9752, respectively. Therefore, an evaluation of this parameter
alone can serve as a good speech quality estimation rule. For the GSM case, the
correlation is depicted in Figs. 3.6 (EFR) and 3.7 (AMR).
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Figure 3.6: GSM: correlation of GFSQM-EFR and PESQ scores
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The GSM FER-based speech quality measures (GFSQM) for EFR and AMR trans-
missions are given by

GFSQM-EFR = fGE0(L2(FER)) (3.3)

and

GFSQM-AMR = fGA0(L1(FER)), (3.4)

with optimum linearization polynomials fGE0(x) and fGA0(x). These polynomials
are identified using a random subset covering half of the available simulation data.
The given correlation coefficients are then calculated using the remaining part of the
data.

By comparing Figs. 3.6 and 3.7, the quality advantage of the AMR over the EFR
transmission, which was already illustrated in Fig. 3.3, can be observed in the distri-
bution of data points. For the examined range of channel conditions, the unsatisfac-
tory speech quality of some EFR clips (PESQ score below 2) is improved in the AMR
transmission (all quality scores above 2).

The FER-based speech quality measure (UFSQM) for UMTS-AMR is given by

UFSQM-AMR = fUA0(L4(FER)), (3.5)
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Figure 3.8: UMTS: correlation of UFSQM-AMR and PESQ scores

where fUA0 represents the optimum linearization polynomial. The correlation of the
UFSQM-AMR measure with PESQ scores is indicated in Fig. 3.8.

Measures Based on Parameter Combinations

To enhance the robustness of the parameter-based quality assessment against measure-
ment errors of single parameters, multiple parameters can be combined into a single
speech quality measure. To find a suitable combination rule, the MSECT (Minimum
Mean Square Error Coordinate Transformation) [Zahorian, Jagharghi 1992] proce-
dure is employed. In the MSECT procedure, multidimensional data in predefined
categories within a source space of dimension D are mapped onto target positions
in a target space of dimension Q < D. The mapping function is optimized with
respect to the minimum mean-square error between the mapping points and the spec-
ified target positions of training datasets. The optimal mapping function is of the
form

c = T · v + o . (3.6)

Source vectors v are mapped in a linear way to target vectors c, i.e., an opti-
mal mapping matrix T and offset vector o are identified by the algorithm. This
procedure is based on training datasets for which the target positions are already
known.

The MSECT method is applied to the given task of mapping parameter vectors to
PESQ scores. In this application, parameter groups resulting in different speech
quality levels are regarded as the categories of the source space. Distinct PESQ
values serve as target positions in the one-dimensional target space. LP norms of the
chosen parameters ζ are linearized by their according polynomial function f before
serving as input vectors.
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Figure 3.9: GSM: correlation of GMSQM-EFR and PESQ scores. c© 2004 IEEE

With regard to a combination of the three GSM-EFR parameters with the highest in-
dividual PESQ correlations, the resulting speech quality measure is

vGE =

 fGE1(L6(RXQUAL))
fGE2(L2(FER))

fGE3(L1(MnMxLFER))

 ,

GMSQM-EFR = TGE · vGE + oGE , (3.7)

with optimized values for TGE and oGE and coefficients of fGEn.

For the GSM-AMR case, a combination of the above parameters, expanded by the
AMR mode, yields

vGA =


fGA1(L14(RXQUAL))

fGA2(L1(FER))
fGA3(L1(MnMxLFER))
fGA4(L0.2(AMRmode))

 ,

GMSQM-AMR = TGA · vGA + oGA . (3.8)

Fifty percent of the available speech clips and PESQ scores are chosen as train-
ing data for the MSECT algorithm. The correlation coefficients of GMSQM-EFR
and GMSQM-AMR are ρ = 0.9517 or ρ = 0.9516, respectively, based only on the
datasets excluding the training data. These correlations are depicted as scatter-plots
in Figs. 3.9 and 3.10.
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For the UMTS-AMR combination measure, the two parameters FER and Mn-
MxLFER, which exhibit the highest PESQ correlation are combined with the AMR
mode:

vUA =

 fUA1(L4(FER))
fUA2(L1(MnMxLFER))
fUA3(L2(AMRmode))

 ,

UMSQM-AMR = TUA · vUA + oUA , (3.9)

with a mapping vector TUA and offset value oUA generated by the MSECT algorithm.
The correlation of the UMSQM-AMR measure with PESQ scores is ρ = 0.9805,
illustrated in Fig. 3.11.
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Figure 3.11: UMTS: correlation of UMSQM and PESQ scores
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3.4 Discussion and Conclusions

It should be noted that the specific coefficients of the linearization polynomials f
as well as the weighting factors in T and offset values in o of the derived measures
depend on the configuration of the cellular network, e.g., the RRM settings and the
employed AMR switching procedure. For each cellular network, they are to be de-
termined individually, e.g., using the described procedure, separately for the uplink
and downlink directions. All measures developed here as examples were established
for the downlink direction.

In general, the approach to expressing the speech quality of voice transmissions in dig-
ital cellular communication networks by evaluating transmission parameters produces
encouraging results. The correlation coefficients of the six presented parameter-based
non-intrusive speech quality measures with reference PESQ scores are all in the range
0.95 ≤ ρ ≤ 0.98 for GSM-EFR, GSM-AMR, and UMTS-AMR systems. These results
motivate the utilization of parameter-based speech quality measures for automated
quality monitoring in any cellular communication network that delivers suitable mea-
surement parameters. It is shown that even the evaluation of one single transmis-
sion parameter (FER) can lead to a reliable speech quality prediction if a dedicated
perception-based averaging method (LP norm) as well as a linearization function are
applied.
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Chapter 4

Kalman Filtering in
Acoustic Echo Control:
A Smooth Ride on a Rocky Road

Gerald Enzner

4.1 Introduction

Acoustic echo occurs in all modern voice communication systems with hands-free
acoustic transducers. It has been recognized that the precise separation of the dis-
turbing echo from the desired near-end speech is a difficult task in adaptive signal
processing. Thus, a lot of work has been devoted to the development of adaptive
filters for acoustic echo cancellation and suppression and to the design of sophisti-
cated control mechanisms to ensure their robustness in adverse conditions. Because
of the heuristic combination of adaptive filters and control mechanisms, however,
the available systems may not satisfy a given optimization criterion. The difficulty
in the design of hands-free voice communication systems has been subsumed in the
metaphorical statement “From Algorithms to Systems - It’s a Rocky Road” [Hänsler
1997]. In this chapter, we will show that the Kalman filter is key to a most elegant
and yet efficient unification of adaptive filtering and adaptation control.

Our presentation of the mainstream in algorithm development for single channel
acoustic echo control is based on the block diagram in Fig. 4.1. The available system
concepts mostly use a combination of adaptive filtering to adjust an echo canceler,
suboptimal control mechanisms, and some kind of post-processing for residual echo
suppression. Nowadays, there is often little or no signal processing at all applied in
receiving direction. Choosing the building blocks of a complete system successfully
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Figure 4.1: Typical building blocks of an acoustic echo controller
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and optimizing their parameters is a time-consuming procedure and requires extensive
practical experience.

Because many specific variants were proposed in literature, this overview section can-
not be complete, but it will help to clarify open problems and the aims of this chapter.
For further reading and extensive bibliography on the history of acoustic echo control,
the following articles and textbooks are recommended: [Hänsler 1992], [Hänsler 1994],
[Breining et al. 1999], [Gay, Benesty 2000], [Benesty et al. 2001], [Hänsler, Schmidt
2004], [Vary, Martin 2006].

4.1.1 Adaptive Filter Structures for Acoustic Echo Control

Voice controlled switching was developed in the 1960s and is still used in many prod-
ucts to suppress the acoustic echo of the far speaker. In most implementations, the
hands-free microphone signal is strongly attenuated, whenever a received signal is
detected from the far speaker side. Alternatively, if near-end speech activity is pre-
dominant, the loudspeaker signal can be attenuated. Voice controlled switches can
be implemented in a very simple way in analog or digital form, but the fundamental
problem is that switching effectively leads to an unacceptable half-duplex transmis-
sion between both ends of the communication system. In particular, the perception of
background noise is very unnatural in this case. Therefore, voice controlled switches
(and other gain functions in sending or receiving direction of the system) are nowadays
implemented in conjunction with comfort noise injection.

In the 1970s and 1980s, the adaptive echo canceler in parallel to the electroacoustic
echo path was identified as a seemingly ideal solution for acoustic echo control [Hänsler
1992], [Hänsler 1994]. The working assumption (to this day) is that the adaptive filter
uses the known loudspeaker signal to generate an exact replica of the acoustic echo.
This echo replica is then subtracted from the microphone signal in order to obtain
the undistorted near-end speech. It has been realized, however, that the fast and
robust tracking of the true time-varying echo path of real acoustic environments is an
extremely difficult issue. Residual echo always remains after the echo canceler. As a
result, it is now widely accepted that an echo canceler alone will not be able to deliver
sufficient echo attenuation [Hänsler, Schmidt 2004], [Vary, Martin 2006].

The most prominent adaptive algorithms for adjusting the echo canceler coefficients
are the NLMS (normalized least mean-square), APA (affine projection), RLS (recur-
sive least-squares), and FDAF (frequency-domain adaptive filter) algorithm. All of
them are based on an iterative update of the filter coefficients, which is controlled by
a stepsize parameter. The NLMS algorithm is definitely the simplest variant, but the
underlying model assumptions are“over-conservative” [Haykin 2002] and therefore the
algorithm is slow in following the true echo path. If the stepsize is chosen to be large,
the NLMS will diverge in the presence of observation noise (near-end speech and back-
ground noise). Unfortunately, the other adaptive algorithms basically suffer from the
same problems. Although APA, RLS, and FDAF incorporate received signal statistics
(far-end speech properties) into the learning process, they still do not consider the
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observation noise and echo path properties, which is a prerequisite for fast and robust
adaptation. The latter deficiency must be attributed to the fact that NLMS, APA,
RLS, FDAF, and their derivatives are all obtained from a similar deterministic opti-
mization criterion, i.e., least-squares, constrained least-squares, or certain variants of
the least-squares criterion [Haykin 2002].

Combinations of echo cancelers and voice controlled switches are often implemented
to improve an insufficient echo attenuation, but the related distortion of the near-end
speech is annoying. Therefore, in the 1990s, the frequency-selective adaptive postfilter
in the sending path of the communication system was proposed to reduce the resid-
ual echo after the echo canceler [Martin, Altenhöner 1995], [Martin 1995], [Martin,
Gustafsson 1996], [Gustafsson et al. 1998]. In principle, the operation of the postfilter
for residual echo suppression is very similar to that of a noise suppression filter and it
was reported that both functionalities can be combined efficiently [Gustafsson et al.
1998], [Le Bouquin Jeannès et al. 2001]. The key to an effective postfilter for residual
echo attenuation is the availability of the power spectral density (PSD) of the residual
echo. However, the residual echo is not a directly measurable signal in the presence of
observation noise and, therefore, the calculation (estimation) of the residual echo PSD
is not trivial [Enzner et al. 2002a], [Enzner et al. 2002b].

It should be noted that, to some extent, even the postfilter for residual echo suppres-
sion will cause distortion of the near-end speech, either by unwanted speech attenua-
tion or by remaining residual echo fragments. Thus, regarding the overall quality, the
adaptive echo canceler should still remove as much echo as possible in order to mini-
mize the distortion related to postfiltering [Enzner, Vary 2005].

4.1.2 Control of Adaptive Filters

Adaptive filters have one fundamental problem in common. On the one hand, the
adaptation must be fast enough to track time-varying acoustic echo paths, on the
other hand, the adaptation must be robust against interfering near-end speech and
background noise. Both requirements are conflicting and, for this reason, sophisti-
cated control mechanisms were designed to enable the fast and robust adaptation of
echo cancelers using the NLMS, APA, RLS, or FDAF algorithm [Mader et al. 2000],
[Benesty et al. 2001], [Haykin 2002], [Hänsler, Schmidt 2004]. In the attempt to satisfy
both requirements, many systems utilize a time-varying adaptive stepsize (or adaptive
memory in case of the RLS algorithm). However, a perfect solution is not available.
In the following, we summarize the most important concepts:

The optimum stepsize for the NLMS algorithm (in the MMSE sense) has been derived
several times, e.g., [Meissner et al. 1980], [Yamamoto, Kitayama 1982], [Frenzel 1992],
[Mader et al. 2000], [Haykin 2002], [Hänsler, Schmidt 2004]. The optimum time- and
frequency-dependent stepsize function for the FDAF and PBFDAF (partitioned block
frequency-domain adaptive filter) has been deduced in [Nitsch 2000]. Unfortunately,
these optimal stepsizes cannot be implemented directly, because the required time-
varying and potentially frequency-dependent system distance (square error) between



4.1 Introduction 83

echo canceler and true echo path is hardly accessible in practice. Thus, suboptimal
control mechanisms have been developed to approximate the optimum stepsize. Some
methods have been designed explicitly to estimate the system distance, others can be
employed either to control the adaptation directly or to facilitate the estimation of
the system distance.

• The popular delay coefficients method computes the system distance from the
leading coefficients of the adaptive filter, provided that the echo path has natural
or artificial zeros at the corresponding index positions [Yamamoto, Kitayama
1982]. It is important to note that the delay coefficients method alone is not
able to deliver a reliable estimate of the system distance. An additional detector
for echo path changes is required to avoid stalling (freezing) of the adaptation
[Frenzel 1992], [Haykin 2002], [Hänsler, Schmidt 2004].

• The famous concept of double talk detection can be used to directly halt the
adaptation of the echo canceler in the presence of near-end speech at the mi-
crophone [Benesty et al. 2001] or, alternatively, to control the estimation of the
system distance [Hänsler, Schmidt 2004]. Double talk detectors are based on
cross-correlation measures, e.g., [Benesty et al. 2000], or simply on the compari-
son of signal powers [Duttweiler 1978]. Remote single talk detection as described
by [Hänsler, Schmidt 2004] is closely related to double talk detection.

• Also the two echo path model [Ochiai et al. 1977] can be utilized in different ways
to control the adaptation (either directly or indirectly through the stepsize).
Basically, the approach models a fast and a slowly changing echo path by a
background and a foreground adaptive filter, respectively. A power comparison
of the two error signals determines the actual control strategy for the foreground
adaptive filter. This technique finds widespread application in cases where its
computational complexity is acceptable.

• Dynamic regularization controls gradient adaptive filters by means of a time-
varying additive quantity in the denominator of the gradient [Haykin 2002],
[Buchner, Kellermann 2002], [Myllylä, Schmidt 2002]. It has been shown in
[Hänsler, Schmidt 2003] that the optimum regularization of the NLMS algorithm
is, theoretically, equivalent to its optimum stepsize control.

Regarding the post-processor or postfilter of the system, there are also several options
how to control a fixed or adaptive, linear or nonlinear, scalar or frequency-dependent
echo attenuation. Post-processing techniques are, however, not so well documented in
the literature as adaptive echo cancellation filters. Byproducts of the control mecha-
nisms for the echo canceler are sometimes used to control the post-processor. Some
practical hints on post-processing can be found, for example, in [Eneroth et al. 2000],
[Benesty et al. 2001, Chap. 7], and [Hänsler, Schmidt 2004].

A mathematical proof of the tight relationship between the optimum statistical adap-
tation of echo canceler and postfilter coefficients has just recently appeared in the lit-
erature [Hänsler, Schmidt 2000], [Schmidt 2001], [Enzner et al. 2002a], [Enzner 2003].
This relationship helps to realize an intelligent interaction of both filters, leading to an
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improved output signal quality of the system. Thanks to the synergy, the joint control
of echo canceler and postfilter can be even simpler than their individual control. This
has been demonstrated by the simple and robust acoustic echo controller proposed by
[Enzner, Vary 2003], which provides the required echo attenuation and also preserves
the full-duplex ability of the system [Enzner et al. 2004].

4.1.3 Open Problems / Organization of this Chapter

The previous two sections could only give hints towards the large variety of system
options for designing acoustic echo controllers. A closer look reveals that each system
component (adaptive echo canceler, control mechanism, or post-processor) is based on
several tuning parameters, e.g., time constants, thresholds, frame lengths, regulariza-
tion parameters, etc., which have to be optimized by the system developer. Extensive
experience is required in order to create a reliable system with full duplex ability and
persistent echo attenuation. In any case, a precise statement regarding the optimality
of the resulting system is not possible.

The variety of system options results from the fact that most researchers have focused
on either the design of adaptive filters, control mechanisms, or post-processing. Thus,
the main objective of this chapter is to create a unified understanding of adaptive
filtering and adaptation control. This requires, first, the definition of an adequate
statistical model of the time-varying acoustic environment of hands-free telephones
and, secondly, the rigorous mathematical derivation of the signal processing solution
that satisfies a given optimization criterion – subject to the model.

In Sec. 4.2.1, we introduce our system model for acoustic echo control. In contrast
to the traditional approach, the acoustic echo path is characterized as a random
process with statistical mean and covariance. The non-zero covariance of the echo
path reflects the uncertainty about the true echo path coefficients. Conversely, the
known echo path input (far-end speech) is modeled as a deterministic signal.

Based on the new system model, Sec. 4.2.2 derives the general nonlinear MMSE
(minimum mean-square error) estimator for the near-end speech components in the
microphone signal. The derivation demonstrates, for the first time, that the general
conditional mean estimator for the speech signal basically maps onto a conditional
mean estimator for the unknown echo path. Moreover, it is proven rigorously that
the general MMSE estimator for the speech signal decomposes into an acoustic echo
canceler (based on the conditional echo path mean) and an MMSE post-processor
(postfilter) for residual echo suppression.

Under the assumption of Gaussianity of the involved random processes, Sec. 4.2.3 ex-
plains that the MMSE post-processor is given by a linear Wiener filter, the key param-
eter of which is the estimation error covariance of the echo path.
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In Sec. 4.3, we will introduce a refinement of the system model. The echo generation
model is formulated in the block frequency-domain in order to facilitate efficient signal
processing and the time evolution of the true echo path is modeled as a first-order
statistical Markov process. Since the echo signal at the microphone is always recorded
in the presence of near-end speech or background noise, the echo path therefore obeys
a general stochastic state-space model. That creates the perspective of utilizing the
Kalman filter for conditional echo path mean and covariance calculation.

Despite the simplicity of the underlying system model, Sec. 4.4 shows that the per-
formance of the resulting adaptive algorithm clearly satisfies the requirements of ad-
vanced hands-free voice terminals with full-duplex ability, though sophisticated adap-
tation control or cumbersome parameter tuning are not needed anymore.

In summary, we shall see in this chapter that:

• the proposed statistical echo path model (stochastic state-space model) is in line
with the real boundary conditions of the acoustic echo control problem;

• the derivation of the MMSE solution for acoustic echo control, based on the new
echo path model, proves the principal coexistence of echo canceler and postfilter
in hands-free voice communication systems;

• the Kalman filter jointly and recursively adjusts the echo canceler and postfil-
ter coefficients and therefore constitutes an outstandingly compact and robust
signal processing solution for acoustic echo control;

• the unification of adaptive filtering and adaptation control through the Kalman
filter simplifies derivation, design, and realization of acoustic echo controllers.

4.2 A Comprehensive Theory of Acoustic Echo Control

The following estimation framework is introduced in the context of the acoustic echo
control problem. However, the basic concept is formulated generally enough, so that
other applications in acoustic signal processing or in communication theory might
profit, especially where channel estimation, channel equalization, or interference can-
cellation is of fundamental interest.

4.2.1 Stochastic Modeling of the Echo Path

We consider the generic signal model of hands-free voice communication systems at
discrete time k as shown in Fig. 4.2. In receiving direction, a possibly processed
version x(k) of the received signal x′(k) is played back by the loudspeaker. In sending
direction, the microphone captures near-end speech s(k) as well as the room reflections
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Figure 4.2: Acoustic front-end of a hands-free voice communication system

(echoes) of the loudspeaker signal x(k). The microphone signal y(k) is thus considered
as an additive mixture of speech s(k) and echo d(k):

y(k) = s(k) + d(k) (4.1)

= s(k) +
N−1∑
n=0

wn x(k − n) . (4.2)

If sufficiently linear electroacoustic transducers are used in the system and if the
significant memory of the echo path is not longer than N samples, then the convolution
based on the impulse response coefficients wn is generally accepted as a realistic model
of the echo generation. Owing to transmission delay, e.g., in mobile networks and
Internet telephony, the acoustic echo d(k) is not tolerated by the far speaker.

In the traditional theory of acoustic echo control, the speech signal s(k) and the
loudspeaker signal x(k) are both modeled as independent random processes, while
the echo path coefficients wn are treated as unknown deterministic parameters. For
these model assumptions, an MMSE optimization of the AEC leads to the classical
Wiener solution, in which the echo canceler duplicates the true echo path in order to
compensate the acoustic echo in the microphone signal.

In contrast to the traditional approach, we consider the echo as the linear convolution
of a measurable, i.e., deterministic loudspeaker signal x(k) with the unknown echo
path coefficients wn. Because of the uncertainty about the fluctuating acoustic echo
path, the coefficients wn are now modeled as independent random processes with
statistical expectations w1,n at index positions n and covariances pij :

w1,n = E{wn} (4.3)

pij = E{wr,i wr,j} . (4.4)
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Here, the mean w1,n represents a systematic (i.e., deterministic) component of the
echo path, while the residual wr,n = wn −w1,n denotes an unpredictable (i.e., purely
random) component. This new system model matches the practical boundary con-
ditions of the echo control problem, in which the echo path coefficients wn are not
directly measurable, while there is indeed no uncertainty about the echo path input
signal x(k). The effect of the proposed system model regarding the MMSE solution
for acoustic echo control will be demonstrated in the following section.

4.2.2 Minimum Mean-Square Error (MMSE) Solution

In the acoustic echo control literature, as mentioned before, the echo canceler is often
considered as the ideal solution to remove the echo of hands-free telephones, while
the widely used post-processor is treated only as an auxiliary part of the system.
Based on the new system model, we will develop an alternative view, which is more
appropriate for the design of acoustic echo controllers.

The full-duplex operation of the hands-free telephone in Fig. 4.2 requires a strong at-
tenuation of the acoustic echo signal d(k) by the acoustic echo controller and, ideally,
an undistorted reproduction of the speech s(k) at the system output ŝ(k). Mathemati-
cally, this signal processing conflict can be expressed as a statistical optimization prob-
lem which aims, e.g., at the MMSE between s(k) and ŝ(k):

ε2 = E
{(

s(k) − ŝ(k)
)2} → min . (4.5)

Not making assumptions on the statistics of the involved signals and not imposing
linearity of the estimator, the system output ŝ(k) according to (4.5) is obtained as the
conditional mean of s(k) = sk, given the observed data y(k) = yk up to and including
the current time instant [Papoulis 1984], [Scharf 1991]:

ŝ(k) = E{sk |yk
−∞} (4.6)

=

∞∫
−∞

sk ps|y(sk |yk
−∞) dsk , (4.7)

where yk
−∞ = (yk, yk−1, . . . , y−∞)T is an example of our vector notation of time-

domain signals and p(·) denotes probability density functions.

With Bayes rule, we can reformulate the integrand in (4.7), obtaining

ŝ(k) =

∞∫
−∞

sk

ps,y|y(sk,yk
k−R+1 |yk−R

−∞ )

py|y(yk
k−R+1 |yk−R

−∞ )
dsk (4.8)

=

∞∫
−∞

sk

py|y,s(yk
k−R+1 |yk−R

−∞ , sk) ps|y(sk |yk−R
−∞ )

py|y(yk
k−R+1 |yk−R

−∞ )
dsk , (4.9)
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for any R ∈ N. Assuming that R is larger than or equal to the span of correlation of
s(k), we have ps|y(sk |yk−R

−∞ )=ps(sk), and thus

ŝ(k) =

∞∫
−∞

sk

py|y,s(yk
k−R+1 |yk−R

−∞ , sk) ps(sk)

py|y(yk
k−R+1 |yk−R

−∞ )
dsk . (4.10)

According to the principal of orthogonality of mean-square estimation [Papoulis 1984],
we can drop the condition yk−R

−∞ , if we rewrite this integral in terms of the mean-
removed signal ek

k−R+1 = yk
k−R+1 −E{yk

k−R+1 |yk−R
−∞ } using the corresponding prob-

ability densities pe(·) and pe|s(·):

ŝ(k) =

∞∫
−∞

sk

pe|s(ek
k−R+1 | sk) ps(sk)
pe(ek

k−R+1)
dsk . (4.11)

Using Bayes rule again, the result is obviously equivalent to a conditional mean esti-
mator based on the finite data set ek

k−R+1, i.e.,

ŝ(k) = E{sk | ek
k−R+1} . (4.12)

Hence, we have a two-stage estimation procedure. At first we have to determine the
vector of mean-removed samples, ek

k−R+1, given the history of observations yk−R
−∞ , and

subsequently we have to determine sk, given this vector ek
k−R+1. In accordance with

(4.2), the mean removal obeys the following expressions:

ek
k−R+1 = yk

k−R+1 − E{yk
k−R+1 |yk−R

−∞ } (4.13)

= yk
k−R+1 − E{sk

k−R+1 |yk−R
−∞ } − E{Xk T

k−N−R+1w |yk−R
−∞ } (4.14)

≈ yk
k−R+1 − Xk T

k−N−R+1 E{w |yk−R
−∞ } (4.15)

= sk
k−R+1 + Xk T

k−N−R+1w − Xk T

k−N−R+1 E{w |yk−R
−∞ } (4.16)

= sk
k−R+1 + Xk T

k−N−R+1wr (4.17)

= sk
k−R+1 + bk

k−R+1 , (4.18)

where w =
(
w0, . . . , wN−1

)T denotes the vector of unknown echo path coefficients,
wr = w−E{w |yk−R

−∞ } the unpredictable, i.e., non-systematic component of the echo
path, Xk

k−N−R+1 =
(
xk

k−N+1, . . . ,x
k−R
k−N−R+1

)
the matrix of shifted echo path input

vectors, and bk
k−R+1 = Xk T

k−N−R+1wr the residual echo vector after mean removal.
The approximation in (4.15) is well justified by the fact that the vector sk

k−R+1 is
hardly predictable from the generally noisy observations yk−R

−∞ of the past.
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Drawing the conclusion from this section, we have proven the separability of the echo
control problem into a system identification task and an optimum filtering problem.

• The system identification task consists of determining a systematic (mean) echo
path component w1 = E{w |yk−R

−∞ }, given the observations yk−R
−∞ . The quantity

w1 is then used for creating an echo replica in order to partially compensate the
echo in the microphone signal according to (4.15). The latter step is referred to
as echo cancellation, e.g., [Sondhi 1967], [Hänsler, Schmidt 2004].

• An MMSE post-processor according to (4.12) has to be applied to attenuate
the unpredictable residual echo b(k) that is still present in the error signal
e(k) = s(k) + b(k) after echo cancellation. Echo attenuation by post-processing
is termed echo suppression [Hänsler, Schmidt 2004], [Vary, Martin 2006].

This separability holds for any probability distribution and is indeed optimal in the
MMSE sense. In contrast to earlier work, the optimal strategies for echo cancellation
and post-processing were derived jointly from the MMSE criterion.

4.2.3 MMSE Processor in the Gaussian Case

Provided that the unknown system (here: the acoustic echo path w) obeys a first-order
Gauss–Markov model, it is known that the Kalman filter performs a recursive calcula-
tion of the conditional mean w1 = E{w|yk−R

−∞ } of the unknown system, given the noisy
observations y(k) of the past [Papoulis 1984], [Scharf 1991].

In the case of Gaussianity of the involved random processes, it is further known that
the conditional mean estimator in (4.12) is equivalent to a minimum phase Wiener
filter w2 with ek

k−R+1, obtained from (4.15), as the input signal vector and ŝ(k) as
the output signal, e.g., [Papoulis 1984], [Scharf 1991]:

ŝ(k) = wT
2 ek

k−R+1 (4.19)

= wT
2 sk

k−R+1 + wT
2 bk

k−R+1 (4.20)

= s̃(k) + b̃(k) , (4.21)

where the symbols s̃(k) and b̃(k) are used to denote post-processed speech and residual
echo components, respectively. Just note, by introducing an appropriate algorithmic
delay into the estimation problem posed in (4.6), we could also have a linear phase
Wiener filter in order to avoid phase distortions.

According to [Papoulis 1984], [Proakis, Manolakis 1996], the Wiener filter is deter-
mined by the normal equations,

Reew2 = ϕse , (4.22)

where Ree = E{ek
k−R+1 ek T

k−R+1} and ϕse = E{sk ek
k−R+1} are the correlation matrix

of e(k) and the cross-correlation vector of s(k) with e(k), respectively. With (4.17) and
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by invoking the independence of s(k) and wr, we arrive at ϕse = ϕss and

Ree = Rss + Xk T

k−N−R+1 pXk
k−N−R+1 . (4.23)

Suppose that the estimation error covariance matrix p = E{wrwT
r } is available. Then

we could calculate the correlation matrix Rss and thus vector rss from (4.23), since
Xk

k−N−R+1 is known and since Ree is measurable from e(k). Hence, the key problem
of postfiltering is to determine the quantity p.

In contrast to deterministic adaptive algorithms, e.g., LMS and RLS, the Kalman filter
calculates the estimation error covariance p = E{wrwT

r } as a byproduct of the statis-
tical estimation procedure for w1 = E{w|yk−R

−∞ }. In that sense, we have to consider
the Kalman filter as a joint conditional mean and covariance estimator that perfectly
fits the requirements of the acoustic echo control problem.

4.3 The Kalman Filter for Conditional Mean and
Covariance Estimation

Despite its potential for optimality, the attempt to use the Kalman filter in acoustic
echo cancellation hardly ever appears in literature. In an early paper [Meissner et al.
1980], the authors compared the NLMS algorithm with a degenerated version of the
Kalman filter (assuming a time-invariant echo path and other significant statistical
simplifications). In [Lippuner, Kälin 1999], the Kalman filter was examined for white
noise input only and in [Lippuner 2002], it was just utilized to derive a model-based
scalar stepsize for the NLMS algorithm.

It seems that the general form of the Kalman filter has been completely avoided in
acoustic echo control. This can be attributed to the high computational complexity
and to the possibility of numerical instability of the exact high-dimensional Kalman
filter. Moreover, an appropriate signal model for the Kalman filter (in the form of
observation and process noise covariance matrices of the underlying state-space model)
has not existed up to now [Hänsler, Schmidt 2004].

In this section, we shall demonstrate that the Kalman filter is indeed the adequate
signal processing tool for acoustic echo control according to the MMSE criterion. The
approach that we pursue uses a blockwise reformulation of the linear convolution
echo path model (4.2) in the DFT domain (Sec. 4.3.1). The time evolution of the
echo path will be described by a first-order statistical Markov model in the transform
domain (Sec. 4.3.2). In this way, we obtain a mathematically tractable stochastic
state-space model of the echo path, which provides at least a minimum of reliable
a priori information for echo path estimation. The model formulated in the block
frequency-domain naturally considers a possible correlation of all input signals.

Based on the system model, we can easily write down the exact Kalman filter for
echo path estimation in the DFT domain (Sec. 4.3.3). Since we have nearly diagonal
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covariance matrices in the transform domain, the aforementioned drawbacks of the ex-
act Kalman filter can be circumvented at the cost of mild approximations. We obtain
a diagonalized version of the exact Kalman filter, which represents a self-contained,
near optimum, and yet workable solution for acoustic echo control (Sec. 4.3.4).

Interestingly, we can show that the diagonalized Kalman filter decomposes into fre-
quently used standard components of adaptive signal processing: gradient-based adap-
tive filtering, optimum stepsize control, and system distance (convergence state) esti-
mation. Conversely, the diagonalized Kalman filter can be understood as a unification
of the classical concepts of adaptive filtering and adaptation control (Sec. 4.3.5).

4.3.1 Linear Echo Path Model in DFT-Matrix Form

Block-processing generally aims at the efficient calculation of output signals from
short-time stationary frames of the input signals. The derivation of a block-processing
algorithm for echo path estimation clearly requires a blockwise formulation of the lin-
ear measurement equation (4.2) for the echo path. Here, this happens by means of the
overlap-save method using the discrete Fourier transform (DFT):

Consider the vector x(κ) = xκR
κR−M+1 at frame-time index κ ∈ Z, which contains the

M latest samples of the loudspeaker signal x(k) in the time-domain, i.e.,

x(κ) =
(
x(κR − M + 1), x(κR − M + 2), . . . , x(κR)

)H
, (4.24)

where R is the frame-shift and superscript H denotes Hermitian transposition. From
x(κ), we construct a complex excitation matrix X(κ) in the DFT domain, i.e.,

X(κ) = diag{FMx(κ)} , (4.25)

where FM is the Fourier matrix of size M×M and diag{ · } produces a diagonal matrix
from its input vector. Note that the elements of X(κ) can be calculated efficiently from
the loudspeaker signal by the fast Fourier transform (FFT).

Next, we define the echo path vector W(κ) in the DFT domain, based on the zero-
padded time-domain coefficients w(κ), assuming that the finite number of model taps
wn(κ) at frame-time κ will cover the length of the echo path (N =M−R):

W(κ) = FM

(
w(κ)

0

)
(4.26)

w(κ) =
(
w0(κ), w1(κ), . . . , wM−R−1(κ)

)H
. (4.27)

Now we can express the linear convolution model in (4.2) by a compact matrix form
using the overlap-save method [Proakis, Manolakis 1996]. The vector of the R latest
samples of the microphone signal, y(κ) = y κR

(κ−1)R+1, is additively composed of the
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near-end speech vector s(κ) = sκR
(κ−1)R+1 and the echo signal vector d(κ) = dκR

(κ−1)R+1,
which in turn stems from linear filtering of the loudspeaker signal:

y(κ) = s(κ) + d(κ) (4.28)

= s(κ) + QHF−1
M X(κ)W(κ) . (4.29)

The projection matrix QH = ( 0 IR ) of size R × M is responsible for the lin-
earization of the cyclic convolution in the DFT domain. IR is the identity matrix
of size R × R. The compact matrix notation implies that W(κ) defines a constant
echo path at frame-time index κ, i.e., for the duration of R samples. That does not
mean a fundamental limitation of the proposed theory, since the R samples usually
correspond to a duration of only a few milliseconds.

A system model entirely in the frequency-domain is obtained when (4.29) is pre-mul-
tiplied by the zero-padding matrix Q = ( 0 IR )H and the Fourier matrix FM :

Y(κ) = FMQy(κ) (4.30)

= FMQs(κ) + FMQQHF−1
M X(κ)W(κ) (4.31)

= S(κ) + C(κ)W(κ) . (4.32)

The abbreviation C(κ) = FMQQHF−1
M X(κ) represents the influence of the known

loudspeaker signal x(k). The sequence of transformed signal vectors S(κ) = FMQs(κ)
is assumed to be independent, zero-mean, uncorrelated, and fully characterized by the
time-varying covariance matrix Ψss(κ), i.e.,

E {S(κ)} = 0 (4.33)

E
{
S(κ)SH(λ)

}
= Ψss(κ) δ(κ − λ) . (4.34)

Here, we used the unit pulse δ(κ) to express the uncorrelatedness, i.e., δ(κ − λ) = 1
for κ = λ and δ(κ − λ) = 0 otherwise. Because of the good decorrelation properties
of the DFT [Gray 2002], the M ×M covariance matrix Ψss(κ) is closely related to a
diagonal matrix that contains the time-varying power spectral density (PSD) Φss(�, κ)
of the speech signal s(k) at discrete frequencies Ω� = 2π�/M , � = 0, 1, . . . ,M − 1,
i.e.,

Ψss(κ) ≈ R · diag {Φss(κ)} (4.35)

Φss(κ) =
(
Φss(0, κ),Φss(1, κ), . . . ,Φss(M − 1, κ)

)H
. (4.36)

The normalization factor R has to be applied to relate magnitude-squared DFT coeffi-
cients to the definition of power spectral densities [Proakis, Manolakis 1996].
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4.3.2 Markov Model of the Time-Varying Echo Path

In order to describe the smooth transition between successive realizations W(κ) and
W(κ + 1) of the time-varying echo path, we consider a first-order Gauss–Markov
model [Haykin 2002] as proposed in [Enzner 2006]:

W(κ + 1) = A · W(κ) + ∆W(κ) . (4.37)

It is assumed that the forgetting factor A is close to but smaller than unity. The
unpredictability of acoustic echo path changes is taken into account by a stationary
sequence of independent and uncorrelated process noise vectors ∆W(κ) with zero-
mean and covariance matrix Ψ∆∆, i.e.,

E
{
∆W(κ)

}
= 0 (4.38)

E
{
∆W(κ)∆WH(λ)

}
= Ψ∆∆ δ(κ − λ) . (4.39)

Owing to the formulation in the DFT domain, the covariance matrix Ψ∆∆ is also
close to a diagonal matrix:

Ψ∆∆ ≈ M · diag{Φ∆∆} . (4.40)

Based on the model equation (4.37) and using the stationarity (time invariance) of
Ψ∆∆ as shown by (4.39), we can evaluate the echo path covariance matrix as fol-
lows:

Ψww = E
{
W(κ)WH(κ)

}
(4.41)

= A2E
{
W(κ − 1)WH(κ − 1)

}
+ E

{
∆W(κ − 1)∆WH(κ − 1)

}
(4.42)

= A2Ψww + Ψ∆∆ . (4.43)

This result can be rearranged to obtain an interesting proportionality between the
covariances of echo path changes and echo path:

Ψ∆∆ = (1 − A2)Ψww . (4.44)

This simple relation can be very useful to determine the usually unknown covariance
of the echo path changes, Ψ∆∆, from the easily measurable echo path covariance
Ψww, given the estimated echo path.

The results of an experimental verification of the Markov model for acoustic echo con-
trol have been reported in [Enzner 2006]. The experiments have shown that the simple
model in (4.37) based on the time- and frequency-independent parameter A is indeed
suitable to approximate the behavior of the echo path in realistic acoustic environ-
ments. For a frame-shift of R = 64 at 8 kHz sampling frequency, it turns out that a
reasonable choice of the parameter A lies in the range 0.99 < A < 0.9999, depending
on the intensity of the echo path variation caused by the near speaker. To illustrate
the corresponding degree of echo path variability, consider a Markov model with the
typical parameter A = 0.999. It can be verified that, in this case, the echo attenuation
of a perfectly adjusted echo canceler would drop to about 0 dB within 2–3 seconds
after the adaptation of the echo canceler is halted.
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4.3.3 Exact Kalman Filter for the Conditional Mean and Covariance

Combining the statistical Markov model in (4.37) and the linear observation model in
(4.32), we obtain a general stochastic state-space model for the unknown echo path
W(κ) in the DFT domain. The two model equations are reproduced here for the
convenience of presentation:

W(κ + 1) = A · W(κ) + ∆W(κ) (4.45)

Y(κ) = S(κ) + C(κ)W(κ) . (4.46)

In the language of state-space modeling of linear dynamical systems [Haykin 2002],
Eqs. (4.45) and (4.46) are often referred to as the state equation and the measurement
equation, respectively. A block diagram of the entire state-space model is depicted in
Fig. 4.3.

According to the state equation (4.45), the echo path W(κ) is regarded as the state
of a linear recursive system. The purely stochastic system input ∆W(κ) is fully char-
acterized by the time-invariant covariance matrix Ψ∆∆.

The measurement equation (4.46) linearly relates the unknown state W(κ) to the
observations Y(κ) by the time-varying observation matrix C(κ). Regarding the com-
munication, the additive vector S(κ) represents the desired speech signal. From the
viewpoint of system identification, however, the unknown vector S(κ) with time-
varying covariance matrix Ψss(κ) is an undesirable observation noise. It has been
reported in [Enzner 2006] that an approximation of Ψss(κ) can be calculated conve-
niently using a decision-directed approach based on the output of the echo canceler
or postfilter.

Given the state-space model of the unknown echo path, it becomes intuitively clear
that the Kalman filter must be the tool for acoustic echo path estimation. In [Haykin
2002], the Kalman filter is derived as the linear MMSE estimator of the state of a
linear dynamical system. In [Scharf 1991], the Kalman filter is developed as the non-
linear MMSE state estimator under the assumption of Gaussianity of independent

A

z−1

S(κ)

Y(κ)

C(κ)

W(κ)∆W(κ)

Figure 4.3: State-space model of the unknown echo path W(κ) in the DFT domain
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process and observation noises. A very intuitive presentation of the Kalman filter
equations can be found, for example, in [Unbehauen 1997]. The original work of
Kalman is documented in [Kalman 1960].

As shown in the time-domain by Sec. 4.2.2 and Sec. 4.2.3, the conditional mean
w1(k) = E{w|yk−R

−∞ } and the estimation error covariance p = E{wrwT
r } of the echo

path are the key parameters of echo canceler and postfilter (the two components of the
MMSE processor for acoustic echo control). The respective conditional mean and co-
variance quantities in the DFT domain can be defined as:

W1(κ) = E{W(κ) |Y(κ − 1),Y(κ − 2), . . . ,Y(−∞)} (4.47)

P(κ) = E{Wr(κ)WH
r (κ)} , (4.48)

where Wr(κ) = W(κ) − W1(κ). The relation between time- and frequency-domain
quantities is given by the discrete Fourier transform as W1 ≈ FM (wT

1 0)T and
P ≈ FM pFH

M . The approximation here is merely due to the frame-oriented organi-
zation and processing of the data in the DFT domain compared with the sample-based
use of the same data in the time-domain.

The Kalman filter jointly and recursively computes the parameters W1(κ) and P(κ)
from the past observations Y(κ − 1),Y(κ − 2), . . . ,Y(−∞). The efficiency that is
related to the recursiveness of the Kalman filter is of great advantage for the realtime
application of acoustic echo control. Following the approach in [Unbehauen 1997], the
computation is accomplished by a set of coupled matrix iteration formulas.

Two equations realize an extrapolation (prediction) step according to the state-
equation (4.45) of the unknown system:

W1(κ + 1) = A · W+
1 (κ) (4.49)

P(κ + 1) = A2 · P+(κ) + Ψ∆∆ . (4.50)

A statistical correction of predicted parameters W1(κ) and P(κ) is performed using
the noisy input data Y(κ):

W+
1 (κ) = W1(κ) + K(κ)

(
Y(κ) − C(κ)W1(κ)

)
(4.51)

P+(κ) =
(
IM − K(κ)C(κ)

)
P(κ) , (4.52)

where the Kalman gain K(κ) is defined as:

K(κ) = P(κ)CH(κ)
(
C(κ)P(κ)CH(κ) + Ψss(κ)

)−1

. (4.53)

At time κ, the order of the execution of the iteration formulas is the following: as
soon as a new data vector Y(κ) becomes available, first the Kalman gain is computed
according to (4.53), then the mean and covariance update is performed according to
(4.51) and (4.52), and, finally, the predictions of the conditional mean and covariance
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for the next frame indexed κ + 1 are computed by (4.49) and (4.50). For the optimal
initialization of this iterative procedure, the following unconditional expectations have
to be chosen at time k = 0:

W1(0) = E{W(0)} (4.54)

P(0) = E
{
(W(0) − W1(0)) (W(0) − W1(0))H}

. (4.55)

In the typical case without a priori knowledge of the initial echo path W(0), we may
simply choose W1(0) = 0. However, to start the recursion, at least some a priori
information must be available about the corresponding estimation error covariance
P(0) = E

{
W(0)WH(0)

}
= Ψww. In the typical situation with strong acoustic cou-

pling between loudspeaker and microphone, we may choose P(0) = IM .

Despite the recursiveness, the exact Kalman filter is not yet suitable for an implemen-
tation. Computational complexity and memory requirements are extremely high due
to the presence of non-diagonal M ×M matrices. In acoustic echo control, the matrix
dimension M could easily range from a few hundred to a few thousand. Furthermore,
the processing of large-scale non-diagonal matrices is subject to a potential numerical
instability, especially the matrix inversion in the Kalman gain. On the other hand,
the covariance matrices in the DFT domain are nearly diagonal, which means that
the signal processing of the exact DFT-based Kalman filter is highly redundant.

4.3.4 Diagonalization of the Kalman Filter

A series of mild approximations will help to rewrite the exact Kalman filter in an
efficient diagonalized form. The approximations are mainly justified by the good
decorrelation and diagonalization properties of the DFT [Gray 2002]. If we make
sure that vector lengths and matrix dimensions cover the span of correlation of the
involved signals [Brillinger 1981], we can consider the following approximations as
“mild” in the sense that the related algorithm degradation will be small compared
with the enormous simplification that is achieved.

• Eqs. (4.53) and (4.50) of the exact Kalman filter can be simplified by exploiting
the diagonal approximation of observation and process noise covariance matrices
according to (4.35) and (4.40), respectively.

• In Eqs. (4.52) and (4.53), the observation matrix C(κ)=FMQQHF−1
M X(κ) can

be approximated by C(κ) ≈ R/M · X(κ). This approximation is justified by
the fact that the main diagonal of the projection matrix G = FMQQHF−1

M is
dominant and that the off-diagonals rapidly decay, so that G is in fact close to a
scaled version of the identity [Benesty et al. 2001, Chap. 8], i.e., G ≈ R/M · IM .

• The expression C(κ)P(κ)CH(κ) in the Kalman gain can be replaced using the
observation that GDGH ≈ R/M ·D, when D is a diagonal matrix. For a better
understanding of this, note that the concatenation of two projections will not
cause more than just one: GGH = G. Assuming the estimation error covariance
P(κ) is diagonal, we thus have C(κ)P(κ)CH(κ) ≈ R/M · X(κ)P(κ)XH(κ).
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We do not apply any approximation to Eq. (4.51) of the exact Kalman filter, because
the correct phase information is very important in the computation of the estimation
error Y(κ) − C(κ)W1(κ). Indeed, we have to substitute the exact definition of the
matrix C(κ) into (4.51) and not a previously shown approximation. Otherwise, the
strictly linear convolution would be replaced by a circular convolution, which might
have a disastrous impact on the echo path identification [Benesty et al. 2001, Chap. 8].
In (4.51), we replace only the noisy observation Y(κ) using its previous definition by
the Fourier transform: Y(κ) = FMQy(κ). In this way, we can incorporate the
data vector y(κ), which contains the original samples of the microphone signal in the
time-domain.

As a result of approximations and modifications, we obtain a simplified version of the
exact Kalman filter, in which the statistical extrapolation step is given by

W1(κ + 1) = A · W+
1 (κ) (4.56)

P(κ + 1) = A2 · P+(κ) + M · diag{Φ∆∆} , (4.57)

the correction step on the basis of the input data y(κ) is performed as

W+
1 (κ) = W1(κ) + K(κ)FMQ

(
y(κ) − QHF−1

M X(κ)W1(κ)
)

(4.58)

P+(κ) =
(
IM − R

M
K(κ)X(κ)

)
P(κ) , (4.59)

and the Kalman gain K(κ) is approximated through

K(κ) = P(κ)XH(κ)
(
X(κ)P(κ)XH(κ) + Mdiag {Φss(κ)}

)−1

. (4.60)

If the initialization P(0) of the iteration is diagonal, then the covariance matrices of
a priori and a posteriori estimation errors, P(κ) and P+(κ), as well as the Kalman
gain, K(κ), automatically become diagonal matrices. So without any further as-
sumptions, the signal processing of the whole Kalman filter now consists of diagonal
matrices – the only exception being Eq. (4.58), which still represents a strictly linear
convolution.

Because of the diagonalized structure of the algorithm, a realization of the proposed
concept merely requires basic vector arithmetics (+/−/·/÷) and FFT/IFFT. This is a
striking feature of our diagonalized Kalman filter, since its computational complexity,
memory requirements, and numerical properties will therefore be comparable to the
known and feasible concepts for acoustic echo control.

Nevertheless, our modifications have not substantially reduced the key advantage of
the Kalman filter, i.e., the fundamental algorithm structure for joint conditional mean
and covariance estimation has been preserved.
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4.3.5 Unification of Adaptive Filtering and Adaptation Control

We have demonstrated that the Kalman filter unifies the two worlds of adaptive echo
cancellation and statistical postfiltering. In this section, we show that the diagonalized
Kalman filter also establishes the optimal relationship between the following (partly
well known) components of advanced systems for acoustic echo control:

• the frequency-domain adaptive filter (FDAF) [Ferrara 1985];

• the optimum stepsize for the FDAF in the MMSE sense [Nitsch 2000]; and

• a simple and robust, model-based statistical estimator of the convergence state
of the adaptive filter, i.e., of the time- and frequency- dependent system distance
between echo canceler and echo path [Enzner, Vary 2003].

Frequency-Domain Adaptive Filter (FDAF)

Based on the diagonal structure of the Kalman gain, we may introduce the following
abbreviation, which defines a vector µ(κ) in accordance with (4.60):

K(κ) = diag{µ(κ)}XH(κ) . (4.61)

Then, we substitute (4.58) and (4.61) into (4.56) and rewrite (4.56) in the form of
a conventional gradient update of W1(κ). The vector e(κ) in the following set of equa-
tions obviously takes the meaning of an error signal in the time-domain:

W1(κ + 1) = A ·
(
W1(κ) + ∆W1(κ)

)
(4.62)

∆W1(κ) = diag{µ(κ)}XH(κ)FMQe(κ) (4.63)

e(κ) = y(κ) − QHF−1
M X(κ)W1(κ) . (4.64)

For A → 1, this algorithm is identical to the unconstrained frequency-domain adap-
tive filter proposed by [Mansour, Gray 1982]. The vector µ(κ) represents a possibly
time- and frequency-dependent stepsize factor. The reason for the qualification un-
constrained is that the resulting filter vector W1(κ) will not necessarily satisfy the
overlap-save constraint in (4.26). A constrained version of the algorithm is obtained
when the update in (4.62) is pre-multiplied by FM (IM −QHQ)F−1

M . That results in
the following constrained update in place of (4.62):

Wc
1(κ + 1) = A ·

(
Wc

1(κ) + FM (IM − QHQ)F−1
M ∆W1(κ)

)
. (4.65)

We consider Wc
1(κ) = FM (IM −QHQ)F−1

M W1(κ) as a constrained conditional expec-
tation of the echo path W(κ) at time κ. For A → 1, the resulting adaptive algorithm is
identical to the constrained FDAF proposed in [Ferrara 1980], [Ferrara 1985]. There, it
was shown that it will converge to the Wiener solution for W1(κ). Note that the“con-
straining”of the unconstrained FDAF will not exactly compensate for approximations
used in the derivation of the diagonalized Kalman filter.
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FDAF has become a first choice in acoustic echo cancellation [Gay, Benesty 2000],
[Benesty et al. 2001], because of its ability to realize high-order adaptive filters with
good convergence properties and moderate computational complexity [Haykin 2002].

Optimum Stepsize for the FDAF

Now we consider Eqs. (4.60) and (4.61). Recalling that all the involved matrices
are diagonal, it can easily be verified that the Kalman filter delivers the following
expression for the stepsize, diag{µ(κ)}, of the FDAF:

diag{µ(κ)} = P(κ)
(
P(κ)X(κ)XH(κ) + Mdiag {Φss(κ)}

)−1

. (4.66)

A frequency-selective optimal stepsize, similar to the Kalman stepsize in (4.66), has
been derived in [Nitsch 2000] by a lengthy mathematical procedure that minimizes
the convergence state P(κ+1) at time κ+1, given the previous value P(κ) at time κ.
One important difference, however, should be noted. Equation (4.66) utilizes the
instantaneous power spectrum X(κ)XH(κ) of the loudspeaker signal x(k), while the
stepsize in [Nitsch 2000] relies on the PSD of x(k) in this place. The difference in
our result can be traced back to the improved system model introduced in Sec. 4.2.1,
in which the loudspeaker input x(k) is modeled as a measurable, i.e., deterministic
signal and not as a random process.

The FDAF in (4.62) and (4.63) combined with the Kalman stepsize in (4.66) can be
considered as a normalized frequency-domain adaptive filter with optimum regular-
ization in the denominator of the gradient ∆W1(κ). Indeed, the observation noise
covariance Φss(κ) represents the optimum regularization quantity according to the
Kalman filter. The balance between the regularization Φss(κ) and the convergence
state P(κ) controls the speed of adaptation and avoids a divergence of the adaptive
filter in the presence of observation noise.

The critical issue regarding the implementation of the optimal stepsize in (4.66) and
the postfilter according to (4.22) is always the uncertainty about the convergence
state P(κ) of the adaptive filter. The convergence state (echo path estimation error
covariance) is not directly measurable and therefore has to be determined, somehow,
from the available signals. We have now reached the key problem of acoustic echo
control and the next section shows that Kalman filtering has an answer for this, too.

A Recursive Statistical Convergence State Estimator

We simply combine Eqs. (4.59) and (4.57) of the Kalman filter and then replace the
Kalman gain K(κ) according to (4.61), obtaining the Riccati difference-equation for
the convergence state P(κ) of the adaptive echo canceler:

P(κ+1) = A2 ·
(
IM − R

M
diag{µ(κ)}XH(κ)X(κ)

)
P(κ)+ M ·diag{Φ∆∆} . (4.67)
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This difference-equation fully describes the dynamic behavior of the FDAF. In the
literature, the convergence behavior of adaptive filters is usually determined by an
explicit convergence analysis, e.g., [Haykin 2002] and references therein. Here, the
difference-equation (4.67) was obtained directly from the Kalman filter.

We observe that the estimation error covariance P(κ) depends on both the echo
path characteristics and the adaptive filter properties. Essentially, (4.67) calculates
a prediction P(κ + 1) of the estimation error covariance on the basis of the cur-
rent stepsize of the adaptive filter, µ(κ), the current estimation error covariance,
P(κ), and the process noise covariance Φ∆∆, which stands for the degree of time-
variability of the echo path. According to (4.66), the stepsize is controlled by the
balance of observation noise and estimation error covariance. Using the prediction
P(κ + 1), the optimal stepsize µ(κ + 1) and a prediction P(κ + 2) can be calculated
at time κ + 1.

4.4 AEC Performance of the Frequency-Domain
Adaptive Kalman Filter

We measure the echo attenuation after echo cancellation and postfiltering in terms of
the echo return loss enhancement ERLEW1 =σ2

d/σ2
b and ERLEW12 =σ2

d/σ2
eb
, respec-

tively. The speech quality is evaluated by means of the resulting signal-to-echo ratio
SERe =σ2

s/σ2
s−e after the echo canceler and SERbs =σ2

s/σ2
s−bs after the postfilter. The

compound of ERLE and SER is a suitable measure to reflect the overall performance
of an acoustic echo controller – including the tracking ability and the robustness of
the adaptive algorithm.

For the performance analysis of the adaptive algorithm, we first consider a time-
varying echo path, which is generated by the Markov model in (4.37). We use the
realistic transition factor A = 0.999 (cf. Sec. 4.3.2), the frame-shift R = 64, the
DFT length M = 512, and we have 8 kHz sampling frequency. The analysis is based
on real speech input in a wide range of input signal-to-echo ratios SERy =σ2

s/σ2
d.

SERy =0dB simulates hard double talk, SERy =−40 dB corresponds to remote single
talk, and SERy =40dB basically represents near-end single talk. The background
noise level is adjusted such that the signal-to-noise ratio of the near-end speech is
10 dB, while the received signal from the far-end can be considered as clean speech –
a situation that stands, for example, for the car acoustic environment.

We obtain the results in Fig. 4.4, if the Kalman filter is matched to the realistic time-
varying echo path model. The ERLEW1 by the echo canceler ranges from 0 to 20 dB
depending on the input SERy. In the remote single talk case, we have a saturation of
ERLEW1 since the echo canceler at time κ is determined by means of the“incomplete”
data up to time κ − 1. The total echo attenuation ERLEW12 by echo canceler and
postfilter ranges from 0 to 50 dB. That complies with the practical requirements for
acoustic echo controllers. During remote single talk, more than 40 dB ERLE is indeed
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Figure 4.4: ERLE and output SER for various input SER. Kalman filter matches the
simulated, realistic time-varying echo path: A = 0.999, R = 64, M = 512.
Speech material consists of eight phonetically balanced sentences

recommended [ITU-T Rec. P.342 2000], [Verband der Automobilindustrie 2002], while
in the other cases less echo attenuation is sufficient.

In addition to that, it can be seen from Fig. 4.4 that the echo attenuation by the echo
canceler results in a direct speech quality improvement. This is shown by the fact that
SERe =SERy +ERLEW1 (in dB). Postfiltering consistently adds improvement to the
speech quality as shown by SERbs > SERe. In the prominent double talk situation,
i.e., for SERy =0dB, we have an instrumental speech quality of SERbs ≈ 14 dB at the
system output. However, due to the psychoacoustic effect of masking, the perceived
quality is even better than indicated by the SERbs. This has been confirmed by
informal subjective listening tests based on a realtime prototype system that builds
on the proposed algorithms [Enzner, Vary 2006].

Concerning a possible model mismatch between the Kalman filter and the true echo
path, we have to distinguish two cases. At first, let us assume that the Kalman filter
is set up for realistic echo path variability, but the echo path remains constant in
time. Compared with Fig. 4.4, the echo attenuation by echo canceler and postfilter
will actually increase, because the time-invariant echo path can be “tracked” easier
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and because the Kalman filter over-estimates the echo path uncertainty (estimation
error covariance). The resulting speech quality after the echo canceler will increase
too, but, since the postfilter attenuation overshoots, the speech quality at the system
output is just comparable to the one in Fig. 4.4.

In contrast to this “good-natured” model mismatch, we also have to expect an echo
path variability stronger than that presumed by the realistic Markov model. This
may happen in the case of untypically strong movements of the near speaker. In
this case, the mismatched Kalman filter might fail in adjusting the echo canceler and
postfilter coefficients fast enough and the echo signal could become audible. Luckily,
strong echo path variations only occur sporadically in realworld applications.

4.5 Discussion and Conclusions

To this day, the optimal Kalman filter for the tracking of time-varying systems has not
received sufficient attention in acoustic echo control. This can be attributed to its high
complexity and its potential for numerical instability. Furthermore, a comprehensive
system model was not available for the Kalman filter [Hänsler, Schmidt 2004].

The solutions deployed for acoustic echo control were mostly based on deterministic
adaptive filters, e.g., LMS or RLS, although the acoustic environment of hands-free
telephones is obviously characterized by statistical uncertainties: the presence of noise
and non-stationary near-end speech, the randomly fluctuating echo path, and its non-
persistent excitation. As a result of the statistical under-modeling of the echo control
problem, the development of sophisticated control mechanisms for adaptive filters,
e.g., double talk detection, has become an art of its own. Nonetheless, the design of
fast and robust algorithms for realistic acoustic environments remained difficult.

It was demonstrated in this chapter, that the echo control problem can be modeled
in a very compact and comprehensive way by a stochastic state-space model of the
time-varying echo path in the DFT domain. It was shown that the corresponding
Kalman filter can be diagonalized efficiently, practically meaning that computational
and numerical drawbacks of the standard Kalman filter are circumvented. Basic
vector arithmetics and FFT/IFFT are indeed sufficient for the implementation of the
proposed concept. Furthermore, we have pointed out the direction for determining
the model parameters of the Kalman filter from the available signals [Enzner 2006].

From the strict mathematical approach in this chapter, we obtained an outstandingly
compact and robust signal processing solution for acoustic echo control. The adaptive
algorithm is inherently robust and does not require additional control mechanisms. In
fact, we observed that Kalman filtering can be understood as a unification of classical
adaptive filtering and adaptation control. Moreover, the Kalman filter is the tool
for jointly and recursively adjusting acoustic echo canceler and postfilter, the two
indispensable components of the MMSE processor for acoustic echo control.
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Hänsler, E. (1992). The Hands-Free Telephone Problem – An Annotated Bibliography, Signal
Processing, Elsevier, vol. 27, no. 3, pp. 259–271.
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Hänsler, E.; Schmidt, G. (2004). Acoustic Echo and Noise Control: A Practical Approach,
John Wiley & Sons, Ltd., New York.

Haykin, S. (2002). Adaptive Filter Theory, 4th edn, Prentice-Hall, Upper Saddle River, NJ.

ITU-T Rec. P.342 (2000). Transmission Characteristics for Telephone Band (300–3400 Hz)
Digital Loudspeaking and Hands-Free Telephony Terminals.

Kalman, R. (1960). A New Approach to Linear Filtering and Prediction Problems, Trans-
actions ASME, Journal of Basic Engineering, vol. 82, March, pp. 35–45.

Le Bouquin Jeannès, R.; Scalart, P.; Faucon, G.; Beaugeant, C. (2001). Combined Noise and
Echo Reduction in Hands-Free Systems: A Survey, IEEE Transactions on Speech and
Audio Processing, vol. 9, no. 8, pp. 808–820.

Lippuner, D. (2002). Model-Based Step-Size Control for Adaptive Filters, PhD thesis, Series
in Signal and Information Processing, Volume 8, Hans-Andrea Loeliger (ed.), Hartung-
Gorre Verlag, Konstanz, ETH Zürich (Diss. No. 14461).
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Chapter 5

Noise Reduction -
Statistical Analysis and Control
of Musical Noise

Colin Breithaupt, Rainer Martin

5.1 Introduction

A key issue of adaptive speech enhancement schemes, especially of those acting in the
spectral domain, is the prevention of unnatural fluctuations in the processed signal.
These fluctuations are perceived as non-stationary artifacts and are often described
as musical noise. In the case of adaptive spectral filters, the annoying fluctuations in
the residual noise are caused by single spectral outliers in the spectral gain function.
This spectral gain is multiplied with the short-term spectrum of noisy speech so that
the product results in an estimate of the clean speech spectrum. Outliers in the
spectral gain result in a clean speech estimate with isolated spectral peaks that excite
the synthesis branch of a spectral analysis–synthesis system thus causing musical
noise. The aim of overcoming musical noise has been the subject of research for over
twenty years. Once this problem is solved, speech enhancement systems based on
adaptive modifications of the short-term signal spectrum provide effective means for
noise reduction.

In the following overview, we give a short description of the different approaches avail-
able in the literature that aim at a reduction of musical noise. Many proposals deal
with the issue of avoiding musical noise in the first place. The basic idea is to reduce
the variability of the adaptive spectral gain function during low SNR conditions. One
common technique is essentially to replace the estimated spectral gain by a constant
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attenuation whenever the estimated SNR is below a threshold. This is frequently
termed as spectral flooring. A drawback of this method is that it limits the amount
of noise reduction [Berouti et al. 1979], [Cappé 1994]. Another way of reducing the
variability of the estimated spectral gain is to smooth the spectral gain function or its
parameters. The smoothing can be done over time [Gustafsson et al. 2001], [Hasan et
al. 2004] or frequency [Fingscheidt et al. 2005]. In [Gülzow et al. 2003] temporal and
spectral smoothing is implicitly combined by reducing the resolution of the spectral
analysis in spectral regions with low SNR. A difficulty that comes with smoothing
methods in general is noise shaping during the presence of speech. Therefore, the de-
gree of smoothing has to be adapted carefully to the temporal evolution of the speech
signal. Finally, the most successful approach of reducing noise with a low amount of
musical noise and a relatively low distortion of the speech signal are the non-linear
estimators presented in [Ephraim, Malah 1984] and [Ephraim, Malah 1985]. They
are extra-ordinarily robust in Gaussian noise conditions. However, their performance
heavily depends on a specific estimation procedure of the a priori SNR. The estima-
tion algorithm proposed in [Ephraim, Malah 1984] avoids musical noise by trading
off fluctuations in the estimate of the a priori SNR against distortions of the speech
signal, especially of the onsets of speech.

While methods of avoiding musical noise work well in quasi-stationary Gaussian noise,
their efficiency in non-stationary noise is limited. As estimation errors are generally
inevitable, it is desirable to design algorithms such that they do not produce musical
noise even if errors occur in the estimation of their controlling parameters. In [Goh
et al. 1998] and [Hansen 1991] post-processing methods are presented for suppressing
musical noise that could not be avoided. In order to suppress spectral fluctuations,
they make use of the difference in the spectro-temporal structure of speech and musical
noise. Like the smoothing techniques, these methods attempt to distinguish between
speech components and spectral outliers of noise, which is difficult to accomplish, for
example, in babble noise. In [Gustafsson et al. 1998] and [Virag 1999] the spectral
masking properties of the human ear have also been exploited. A difficulty that comes
with this approach is that an estimate of the clean speech signal itself is necessary
in order to calculate the masking thresholds. As algorithms for spectral masking
distinguish between noise-like and tone-like maskers, fluctuations in the preliminary
estimate of the clean speech can be misinterpreted as tonal masker which results in
wrong spectral masks.

Summing up this overview, it can be observed that, so far, noise reduction without
musical noise has not been achieved in general. As to the structure of musical noise
it can be said that, if adaptive spectral gain functions are used and if a high noise
reduction is attempted, musical noise appears almost independently of the type of
noise. The subjective annoyance of these artifacts depends on the statistical distri-
bution of outliers versus time and frequency on one side and on the properties of the
human auditory system on the other.

In this chapter, an analysis and an interpretation of the statistics of the residual noise
is presented as it leads to new insights about the origin and counter-measures against
musical noise. First, in order for us to be able to link the empirical distributions
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of processed noise to the enhancement method used, an overview of non-linear clean
speech spectral estimators is given by means of their input–output characteristics.
The focus is on these estimators, because they form the basis of today’s most success-
ful noise reduction systems. Together with the spectral estimators, the algorithm for
estimating the a priori SNR [Ephraim, Malah 1984] is also analyzed, as this estimate
in conjunction with the non-linear estimators plays an important role in the natural-
ness of the residual noise. The discussion of empirical histograms of processed noise
then follows. It demonstrates how specific input–output characteristics lead to spec-
tral outliers in processed noise. Finally, a post-processing method is described that
suppresses outliers in the spectral gain function in such a way that spectral compo-
nents of speech are implicitly protected. This method is thus able to suppress musical
noise without the need to adapt controlling parameters to the temporal evolution of
the speech signal.

5.2 Speech Enhancement in the DFT Domain

In this chapter we consider noisy speech signals y(k) = s(k) + n(k), k ∈ Z, which are
a sum of a speech signal s(k) and a statistically independent noise signal n(k). The
noisy signal y(k) is analyzed by a frame-wise short-term discrete Fourier transform
(DFT) of length M . This results in spectral coefficients Yµ(λ) = Sµ(λ) + Nµ(λ),
where µ = 0 . . . M − 1 denotes the frequency bin index and where λ ∈ Z is the frame
index. Typically, tapered window functions w (τ), τ = 0 . . . M − 1, such as the Hann
window are used in the analysis process.

In order to achieve a high noise reduction and, at the same time, a preservation of
speech components, the analysis–synthesis system has to meet several requirements.
A high spectral resolution that resolves the pitch harmonics allows for suppression of
noise during speech presence. The processing of the highly dynamic speech signal also
requires a high temporal resolution for the proper reproduction of plosives and speech
onsets. In contrast to this quick responsiveness of the filters to temporal changes in
the speech energy, the variance of estimated control quantities, however, must be low
for an artifact-free reproduction of enhanced speech. As a consequence the design of
noise reduction algorithms can be improved, if the trade-off between temporal and
spectral resolution and the variance of spectral parameters is properly controlled.

These partly conflicting requirements can only be satisfied with a signal-adaptive pro-
cessing scheme. Processing in the short-term Fourier domain provides much flexibility
in this sense. However, controlling the temporal dynamics of spectral parameters in-
dependently in all frequency bins is difficult and often leads to the unwanted spectral
artifacts. This is especially true when the disturbing noise is non-stationary.

5.2.1 Optimal Speech Estimators

Typical DFT-based noise reduction algorithms employ a multiplicative gain function
in the DFT-domain [Vary, Martin 2006]. For an estimate Ŝµ(λ) of the clean speech
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spectral coefficient, an adaptive spectral filter gain Gµ(λ) is calculated that is then
applied to the observed spectral coefficients Yµ(λ):

Ŝµ(λ) = Gµ(λ) Yµ(λ) . (5.1)

The result is transformed back into the time domain via the inverse DFT and the
enhanced time signal is synthesized using the overlap-add method and a synthesis
window wsynth (τ), τ = 0 . . . M − 1. If the analysis window is the Hann window
w (τ) = whann (τ) and if adjacent frames are half-overlapping, no synthesis win-
dow is needed, i.e., wsynth (τ) = 1, to achieve perfect reconstruction of the time
signal.

The filter gain Gµ(λ) can be derived for various optimization criteria. Next to the
well-known Wiener filter, we will analyze the short-time spectral amplitude (STSA)
estimator of [Ephraim, Malah 1984] and the log-spectral amplitude (LSA) estimator
of [Ephraim, Malah 1985]. Additionally, the filter of [Martin 2005a] is considered. It
is referred to as the LG filter. Further estimators are presented in [Breithaupt, Martin
2003], [Martin 2002], [Accardi, Cox 1999], [Lotter, Vary 2004], and [You et al. 2005].
All subsequently considered filter gain functions are a function of the a priori SNR
ξµ(λ) and the a posteriori SNR γµ(λ) which are defined as

a priori SNR: ξµ(λ) =
Φss,µ (λ)
Φnn,µ (λ)

,

a posteriori SNR: γµ(λ) =
|Yµ(λ) |2
Φnn,µ (λ)

,

where Φss,µ (λ) = E
{
|Sµ(λ) |2

}
and Φnn,µ (λ) = E

{
|Nµ(λ) |2

}
are the speech power

and the noise power in frequency bin µ, respectively. The filter gains are denoted here
as Gµ(λ) = Gfilter [ξµ(λ) , γµ(λ)]. Note that Gfilter is calculated in each bin µ and for
each frame λ independently. We therefore omit the indices µ and λ whenever quan-
tities are considered that do not depend on previous frames or on adjacent spectral
bins.

The gain functions that are analyzed in this chapter are:

Gwiener [ξ, γ] = Gwiener [ξ] =
ξ

1 + ξ
, (5.2)

G stsa [ξ, γ] =
√

π

2

√
ν

γ
e−

ν
2

(
(1 + ν) I0

(ν

2

)
+ ν I1

(ν

2

))
, (5.3)

with ν =
ξ

1 + ξ
γ ,

G lsa [ξ, γ] =
ξ

1 + ξ
exp

(
1
2

Expint
{

ξ

1 + ξ
γ

})
, (5.4)

G lg [ξ, γ] =
1√
γ

L+ exp(E+) erfc(L+) − L− exp(E−) erfc(L−)
exp(E+) erfc(L+) + exp(E−) erfc(L−)

, (5.5)

with L± = 1/
√

ξ ±√
γ and E± = ±2

√
γ/ξ .
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Figure 5.1: Filter input–output characteristics for the theoretic filter gains Gfilter dur-
ing speech pauses, with ξ = 0.2 = const. The graphs show the normalized
filtered spectral magnitude |Ŝ|/

√
Φnn = Gfilter [ξ, γ]

√
γ

In (5.3), the functions In (·) are the modified Bessel functions of the first kind and order
n. Expint{·} in (5.4) is the exponential integral function with Expint{x} = −Ei{−x},
see [Gradshteyn, Ryzhik 2000, (8.211.1)]. In (5.5), erfc(·) is the complementary error
function.

While the Wiener filter Gwiener, the STSA estimator G stsa, and the LSA estima-
tor G lsa model Sµ(λ) and Nµ(λ) as complex Gaussians, G lg results from the min-
imum mean-square error (MMSE) estimator of the complex clean-speech spectral
coefficients for Laplacian speech and Gaussian noise models [Martin 2005a], [Martin
2005b].

In Fig. 5.1 the normalized value for the filtered spectral magnitude (5.1) is plotted
for filter gains (5.2) to (5.5) with ξ = ξconst = const, i.e.,

|Ŝ|√
Φnn

= Gfilter [ξconst, γ]
|Y |√
Φnn

= Gfilter [ξconst, γ]
√

γ . (5.6)

We refer to this type of plot as the input–output characteristics of the filter. For
the chosen small value of ξconst = 0.2, the input–output characteristics for low SNR
conditions and for speech absence can be analyzed. In this first analysis, it is assumed
that Φnn and ξ were known, i.e., they do not have to be estimated from the observed
signal. For ξ = const, the Wiener gain function Gwiener [ξ] = ξ/(1 + ξ) results in a
constant multiplicative factor. Thus, the input–output characteristics of the Wiener
filter has a constant slope Gwiener [ξconst] in Fig. 5.1. While the LSA estimator ap-
proaches the Wiener solution asymptotically for larger values of

√
γ, output values

Ŝ → 0 theoretically do not occur. The minimum value is (see [Ephraim, Malah 1985,
eqn. (19)]):

|Ŝ|√
Φnn

∣∣∣∣∣
γ=0

= G lsa [ξ, γ]
√

γ
∣∣
γ=0

=
(

ξ

1 + ξ

) 1
2

e−c/2 , (5.7)
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where c = 0.5772 . . . is Euler’s constant [Gradshteyn, Ryzhik 2000, eqn. (9.73)].
Note that the minimum value (5.7) implies G lsa [ξ, γ] → ∞ for γ → 0 and ξ > 0.
The same applies to the gain functions G stsa and the one described in [Lotter, Vary
2004]. These gain functions have a singularity for zero input Yµ(λ) = 0. In practical
implementations, an upper limit Gmax is therefore used for Gfilter. The limit is usually
set to Gmax = lim

ξ→∞
Gfilter [ξ, γ] = 1 (see [Lotter, Vary 2004]). In Fig. 5.1, the influence

of Gmax is visible for values of
√

γ below 0.3.

Finally, the LG filter, as compared with the Wiener filter, emphasizes large input
values, because the supergaussian speech model of this filter attributes large values
of γ to speech rather than to noise.

Note that the filter gain functions Gfilter are all derived under the assumption that
speech is present in the current signal. In order to account for the possibility that
no speech is present in a given bin µ, the speech presence uncertainty is often con-
sidered as the a posteriori probability P (H1|Yµ(λ)) of speech being present in the
current spectral bin µ [Malah et al. 1999], [Cohen 2001]. Here, speech presence in a
spectral bin is denoted as hypothesis H1, speech absence as H0. Depending on the
gain function, this soft-gain modification of the gain function Gfilter may appear as
an additional factor or as an exponent [Cohen 2001] to Gfilter. The resulting weighted
gain function is additionally limited towards lower values by a constant Gmin. This
leaves a noise floor in the processed signal that is used to cover annoying artifacts.
If not stated otherwise, the soft-gain method is not used in this chapter, because in
non-stationary noises – like babble noise – estimators of P (H1|Yµ(λ)) do not provide
a notable benefit.

Parameter Estimation

As the true values of the parameters Φnn, γ, and ξ are not available in real environ-
ments, they have to be replaced by their estimates Φ̂nn, γ̂, and ξ̂. For the estimate
Φ̂nn,µ (λ) of the noise power in each frequency bin µ for each frame λ, methods like
the minimum statistics estimator [Martin 2001] or the IMCRA method [Cohen 2003]
are available.

In order to compensate for estimation errors in Φ̂nn,µ (λ), an over-estimation factor
on ≥ 1 is often considered in the estimate of the a posteriori SNR:

γ̂µ(λ) =
|Yµ(λ) |2

on Φ̂nn,µ (λ)
. (5.8)

In [Malah et al. 1999] it is recommended that one chooses a range on = 1.2 . . . 1.4.
Although an over-estimation on > 1 is helpful to reduce musical noise, it also causes
clipping of low-energy speech components. This effect results from the fact that γµ(λ)
will be under-estimated by γ̂µ(λ), which leads to low values of the gain function even
in the presence of low-energy speech components. As low-energy speech components
mainly appear in higher frequency bins, the processed speech signal therefore sounds
unnecessarily muffled, if an over-estimation on ≥ 1 is used. For the remainder of this
chapter we therefore use on = 1.



5.2 Speech Enhancement in the DFT Domain 113

The decision-directed approach for the a priori SNR estimation

The decision-directed approach by Ephraim and Malah is an established estimator
ξ̂ for the a priori SNR. Originally, it was proposed in the form [Ephraim, Malah
1984]

ξ̂µ(λ) = α Gµ(λ − 1)2 γ̂µ(λ − 1) + (1 − α) max (0, γ̂µ(λ) − 1) . (5.9)

The parameter α controls the trade-off between speech distortion and noise fluctua-
tions [Cappé 1994], [Malah et al. 1999], [Ephraim, Cohen 2005]. A higher value of α
suppresses more musical noise, but it also leads to more clipping of low energy speech
components and speech onsets, resulting in muffled speech, especially in white noise.
Owing to the similarity of this estimator to a recursive averaging system, the constant
α is generally described as the smoothing constant [Cappé 1994]. Typical values of α
are in the range 0.92 to 0.98.

Note that the filter gain function is an integral part of this recursion. As we can see
in Fig. 5.2 it has a profound effect on the smoothing during a speech pause. A strong
smoothing can only be observed for the STSA estimator [Ephraim, Malah 1984] that
was originally proposed in conjunction with (5.9).

In [Ephraim, Malah 1985], it was reported that (5.9) in conjunction with G lsa re-
sults in a lower noise level compared with (5.9) and G stsa. While some of the in-
creased noise attenuation can be attributed to the gain function itself (see Fig. 5.1),
some is due to the averaging recursion (5.9). As can be seen in Fig. 5.2, the mean
value of ξ̂ is lower for the LSA estimator than in the case of the STSA during
speech absence (frames 0 to 24). In order to quantify this effect, the temporal mean
ξ

filter

µ = E
{
ξ̂µ(λ)

∣∣H0, G
filter

}
during speech pauses can be compared. Note that we
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Figure 5.2: Estimate ξ̂µ(λ) of the a priori SNR as obtained by the decision-directed
approach (5.9) with different filter functions Gfilter and α = 0.98. A
sufficiently smooth trajectory results only for the STSA estimator. The
LSA estimator results in less smoothing. For the Wiener and the LG filter,
the estimate ξ̂µ(λ) is not a smoothed version of the a posteriori SNR γ
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can write ξ
filter

without indices, because the estimates are obtained independently
for each spectral bin µ.

During speech absence, an approximation of the mean estimate ξ
filter

of the a priori
SNR in the case of Gaussian noise is (see Appendix 5.8.1)

ξ
stsa ≈ (1 − α)e−1

1 − απ
4

, (5.10)

ξ
lsa ≈ (1 − α)e−1

1 − αe−c < ξ
stsa

, (5.11)

ξ
wiener ≈ (1 − α)e−1 < ξ

lsa
, (5.12)

ξ
lg ≈ ξ

wiener
. (5.13)

As all filter gain functions attenuate the signal more for lower ξ, the mean ξ can be used
to define a noise reduction figure similar to the one introduced in [Vary 1985] in order
to quantify the maximum theoretically possible noise suppression. In order to relate
ξ

filter
to the noise reduction, the mean value of γ during speech pauses, E {γ | H0} =

γ0 = 1, is used to estimate the average gain Gfilter
[
ξ

filter
, γ0

]
in spectral bins with low

SNR. For α = 0.98, Table 5.1 lists the theoretic values for ξ
filter

and Gfilter
[
ξ

filter
, γ0

]
as well as the mean values from a prototypical filter implementation that uses (5.9).
The theoretic approximations are all slightly under-estimating the real values. As
ξ

stsa
and ξ

lsa
are lower limits (see Appendix 5.8.1), this can be expected. For the

Wiener and the LG filter the mean of ξ̂ is slightly higher than the theoretic values,
because their input–output characteristics have a relatively large slope around γ0

compared with the STSA and the LSA estimator, which makes the approximation of
their mean by Gfilter

[
ξ

filter
, γ0

]
inaccurate.

As will become clear in the investigation of the influence of (5.9) on the input–output
characteristics that will be the subject of Sec. 5.3.1, the input–output characteristics

Table 5.1: While the mean value of ξ̂ for α = 0.98 in a prototypical filter implementa-
tion is very close to the theoretic approximation ξ

filter
, the average noise

reduction is significantly over-estimated for the Wiener and the LG filter.
All values are expressed in decibel

STSA LSA Wiener LG

ξ
filter −15.0 −17.9 −21.3 ≈ −21

Filter implementation: mean of ξ̂ −13.7 −16.9 −20.1 −19.5

Gfilter
[

ξ
filter

, E {γ | H0}
]

−16.0 −20.4 −42.7 −42.1
Real noise reduction Gfilter

[
ξ̂, γ̂

]
−14.8 −19.4 −28.6 −26.1
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of the Wiener filter and the LG estimator are severely distorted for values around
γ0 by using ξ̂ of (5.9). Therefore, for the Wiener and the LG gain function, the
substitution γ → γ0 is not admissible for an estimate of the average noise reduction
during low SNR conditions, as it results in large deviations of the theoretical gain
based on the averaged parameters from the empirical noise suppression. This shows
that it is important to incorporate both the filter gain function and the parameter
estimators in an analysis of a noise reduction system.

Regarding the STSA and the LSA estimator, it can be summarized that this analysis
explains the observations made in [Ephraim, Malah 1985] that the LSA estimator
produces the lower residual noise when the a priori SNR estimator (5.9) is used. This
is also easily verified in a listening experiment.

However, the preceding evaluations do not consider the naturalness of the residual
noise. In [Ephraim, Malah 1985] it was also reported that the combination of (5.9)
and G lsa leads to more fluctuations in the residual noise than (5.9) with G stsa. This
observation is confirmed in Fig. 5.2 where the parameter ξ̂ for G lsa fluctuates more
than for G stsa. In the case of the Wiener and the LG filter, ξ̂µ(λ) has even more
peaks of short duration. Here, the a priori SNR estimate ξ̂µ(λ) basically directly
follows γ̂µ(λ) (see Appendix 5.8.1). It is important to notice that the smoothing
property generally attributed to the decision-directed approach is negligible for these
two filters.

To lower the volatility of ξ̂µ(λ) further for the STSA estimator, a lower limit
ξmin ≥ ξ

filter
has been introduced in [Cappé 1994]. This gives rise to reformulate the

decision-directed approach [Cappé 1994], [Ephraim, Cohen 2005]. Including the noise
over-estimation factor on, it can be stated in the form

ξ̂µ(λ) = max
(

α Gµ(λ − 1)2 γ̂µ(λ − 1) + (1 − α)
(

γ̂µ(λ) − 1
on

)
, ξmin

)
. (5.14)

Note that with a sufficiently high value of the lower limit ξmin, i.e., ξmin � ξ
filter

,
the estimate ξ̂ according to (5.14) appears to be similarly smooth for all filter gain
functions in Fig. 5.2, because the resulting estimate will be ξ̂ = ξmin most of the time
during low SNR conditions.

5.3 Measurement and Assessment of Unnatural
Fluctuations

In this section we outline an approach that can be used to assess fluctuations in
the residual noise. We found that this evaluation method shows a strong correlation
with the auditory perception of spectral outliers. We derive an approximation of
the filter input–output characteristics in combination with the parameter estimator
(5.14). As musical noise is a phenomenon that occurs most frequently in processed
noise, it is especially interesting to analyze the behavior of a filter in spectral regions
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with low SNR conditions. By means of the approximated input–output character-
istics the statistical distribution of spectral amplitudes of processed noise can be
explained.

5.3.1 Filter Analysis via Approximated Filter Input–Output
Characteristics

In a first step, the filter input–output characteristics of Fig. 5.1 are discussed again,
but under the condition that the a priori SNR ξ is available only as an estimate ξ̂ from
(5.14). In order to reduce the number of random variables that have an influence on
the estimate, (5.14) is approximated by (see Appendix 5.8.2):

ξ̃µ(λ) = max (bα + (1 − α)γ̂µ(λ) , ξmin) , (5.15)

with constant bias bα = α
[(

Gfilter [ξmin, γ0]
)2

+ 1
]
− 1 .

This approximation of the decision-directed approach (5.14) for on = 1 is valid for
low SNR conditions. In Fig. 5.3 the approximated input–output characteristics are
given that result from substituting ξconst by ξ̃ in (5.6):

|Ŝ|√
Φnn

= Gfilter
[
ξ̃, γ

]√
γ . (5.16)

Owing to the flooring in (5.14), ξ̂µ(λ) takes the constant value ξmin > ξ
filter

for most
of the time in the case of speech absence. Thus, for γ < (ξmin − bα)/(1 − α), i.e.,
when ξ̃ = ξmin, the input–output characteristics of Figs. 5.1 and 5.3 are identical.
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Figure 5.3: The approximated input–output characteristics for ξ̃ according to (5.15)
and for α = 0.94. The lower bound is set to ξmin = 0.2 > ξ

filter
. As

a consequence of estimating ξ with (5.15) or (5.14), the curvature of the
filter functions is increased for γ > (ξmin − bα)/(1− α) as compared with
Fig. 5.1
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Figure 5.4: Bivariate log-histograms of the spectral amplitudes of Gaussian noise that
were processed by prototypical filter implementations using (5.14) with
ξmin = 0.2 and α = 0.94. Their approximation (5.16) (solid line) describes
the principal shapes well

But in the case of outliers in noise and hence outliers in |Yµ(λ) | = |Nµ(λ) |, the
estimate of the a priori SNR is ξ̃µ(λ) > ξmin and is thus a direct function of |Yµ(λ) |2
according to (5.15). This increases the curvature of the input–output characteristics.
As could already be seen in Table 5.1 for the Wiener and the LG filter, bending the
filter function towards higher output values limits the noise reduction, as more input
values are mapped to higher output values. Raising the lower limit ξmin extends the
region where ξ̂ stays constant and where the input–output characteristics are not
distorted.

In order to verify that ξ̃µ(λ) of (5.15) is a valid approximation of ξ̂µ(λ) from (5.14), the
bivariate log-histogram of the spectral amplitudes of noise processed by a prototypical
filter implementation is depicted in Fig. 5.4. The grey-scale of this diagram shows the
log-probability for the pairs consisting of the input values

√
γ and the corresponding

normalized filter outputs Ŝ/
√

Φnn. Ideally, the shape of this histogram should be
identical to the input–output characteristics (5.16). A comparison with the graphs
of (5.16), which are also given in the figures, shows that the principal shapes are
identical. Furthermore, it can be verified in listening experiments that the noise signal
processed by the approximated filter (5.16) leads to the same amount of perceived
musical noise as the noise filtered by the prototypical filter implementation that is
analyzed in Fig. 5.4. The musical noise is a result of bending the input–output
characteristics towards higher values by making ξ̂ a function of the observed signal
γ̂ via the decision-directed approach. Note that this is the only property that (5.15)
and (5.14) have in common. The scatter that is visible in Fig. 5.4 results from the fact
that γµ(λ − 1) in (5.14) is not equal to γ0 most of the time as is assumed in (5.15).
As musical noise is also audible with (5.15), the scatter does not relate to the audible
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fluctuations. The dependency of both the estimate of ξ and the gain Gfilter on the
observation γ̂, that both the approximated filter using (5.15) and the prototypical
filter implementation have in common, is the sole origin of the fluctuations. It is
therefore sufficient to use (5.16) with (5.15) for an evaluation of the naturalness of
the residual noise.

5.3.2 Outlier Statistics

Similarly to [Vary 1985], we use a statistical analysis of processed noise for evaluating
the resulting degree of noise fluctuations. However, because of the non-linear char-
acteristics and the recursive decision-directed SNR estimation, an analytic solution is
not possible.

Figure 5.5 depicts the log-histogram of |Ŝµ(λ) | in the case of white Gaussian noise
processed by the theoretic filter function (5.6). No speech is present in the signal in
order to simulate low SNR conditions as they occur between pitch harmonics and in
spectral bands of low speech energy. For the gain functions Gfilter the parameter ξ
was set to a constant values of ξconst = 0.2 as in Fig. 5.1. The log-histogram considers
all spectral values of all frames λ excluding the DC and Nyquist frequency bin. The
duration of the noise sample is 30 s. The histograms are calculated by dividing the
range of observed magnitudes into 400 equally wide histogram bins. These histograms
are the marginal distribution of bivariate histograms like those shown in Fig. 5.4. For
comparison, the Rayleigh probability density function (pdf) of the scaled magnitude
of Gaussian noise, i.e., |Ŝ| = Gwiener [ξconst] |N | is also given. In the graph, the
filtered spectrum is normalized by the true mean input value

√
Φnn. For the mean

value of the unfiltered noise, whose pdf is not shown in Fig. 5.5, this would give
E {|N |} /

√
Φnn =

√
π/4 in the case of Rayleigh distributed magnitudes |N |. As the

Wiener filter Gwiener is a constant multiplicative factor for ξ = const, the magnitude
of the processed noise is Rayleigh distributed just like that of the scaled signal. In
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Figure 5.5: Log-histogram of processed white Gaussian noise for the filter functions
depicted in Fig. 5.1. The Rayleigh distribution of the scaled input signal,
i.e., |Ŝ| = Gwiener [ξconst] |Y |, coincides with the result for the Wiener filter
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Figure 5.6: Log-histogram of processed Gaussian noise using the approximated a pri-
ori SNR estimate (5.15) and a prototypical filter implementation that
uses (5.14). The histograms exhibit similar tails of outliers that are per-
ceived as unnatural fluctuations. Only the peaks are less pronounced for
the prototypical implementation due to the scatter as seen in Fig. 5.4

the case of the LSA estimator G lsa, input values
√

γ < 2 in Fig. 5.1 are mapped to an
almost constant output value. In Fig. 5.5 the noise processed by the LSA estimator
therefore exhibits a histogram with a peak close to the lower limit (5.7). Note that
the mean value of this histogram is higher than in the case of the Wiener and the
LG filter. For a given value of ξmin the LSA estimator therefore leaves a comparably
high noise floor. The noise processed by the LG filter contains an increased number
of magnitudes greater than the mean value that form a tail in the histogram. They
are caused by the comparably high positive curvature of the filter’s input–output
characteristic (see Fig. 5.1). The observed magnitudes are spread over a wider range
of output values than in the case of the Wiener filter or the LSA estimator. In the
resynthesized time signal, these outliers are perceived as fluctuations in the processed
noise. For the STSA estimator similar conclusions as for the LSA estimator can be
made.

In Fig. 5.6-a the histogram of |Ŝ|/
√

Φnn for white Gaussian noise is given for the
filter input–output characteristics (5.16) that use the approximated a priori SNR
estimate (5.15) and α = 0.94. Compared with Fig. 5.5, the tails of the histograms are
heavier. The processed noise contains more outliers due to the increased curvature of
the mapping function (5.16). From the perceptual point of view, this is perceived as
an increased amount of audible musical noise. Thus, the comparison of the curvature
of the filter functions and the statistical analysis as seen in the histograms give an
indication for musical noise. In addition to listening tests the evaluation of log-
histograms of processed stationary signals is a useful way to assess the amount of
musical noise. Musical noise is a consequence of the principal shape of the input–
output characteristics.
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The practical relevance is demonstrated in Fig. 5.6-b, where the log-histograms
are given as they result from the prototypical filter implementation. These his-
tograms exhibit heavy tails similar to those of the approximated filters in Fig. 5.6-a.
Only their modes are less pronounced due to the scatter that was observed in
Fig. 5.4.

As the perception of the fluctuations in processed noise also depends on the overall
shape of the histogram, it is difficult to compare different filters merely by the size of
the histogram tails. So far, only a comparison of histograms belonging to one certain
filter and different values of its parameters allows for an assessment of the degree of
musical noise. In the following, the LSA estimator is selected for further analysis.
The insights obtained from the LSA case also apply to the other filters introduced in
this chapter.

5.4 Avoidance of Processing Artifacts

With the above analysis of the approximated filter input–output characteristics and
the log-histograms it is now possible to assess different measures for the suppression
of musical noise. An exemplary analysis of the decision-directed approach (5.14) for
estimating the a priori SNR will be given here. It is a well known fact that this
estimator directly links the amount of musical noise and the clipping of low-energy
spectral components of speech through the parameters α and ξmin [Malah et al. 1999],
[Cappé 1994].

Figure 5.7-a depicts the influence of α on the approximated input–output character-
istics (5.16). The corresponding log-histograms of the processed noise are shown in
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Figure 5.7: Filter input–output characteristics of the LSA estimator for different val-
ues of α (Fig. 5.7-a). The lower the value of α, the larger the curvature.
The outliers in the noise are spread over a wider range in the processed
signal. The amount of audible musical noise increases. Accordingly, the
amount of spectral outliers increases in Fig. 5.7-b
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Fig. 5.7-b. For lower values of α, the input–output characteristic is bent upwards (see
Fig. 5.7-a). Therefore, outliers in noise are mapped to higher output values giving
more pronounced fluctuations. At the same time, lowering α also raises the mean
estimate ξ

filter
(see (5.2) to (5.5)) so that the condition ξ̂ > ξmin in (5.14) occurs

more often during low SNR conditions. This additionally increases the amount of
outliers in the processed noise. The increase in musical noise for lower values of α is
reflected in the heavier tails in Fig. 5.7-b.

While increasing α reduces the amount of spectral outliers in the processed noise, at
the same time, low-energy spectral components of speech are also more attenuated
than in the case of smaller α. This is a result of the flatter input–output characteris-
tics for increased values of α. Herein lies the trade-off between speech distortion and
musical noise [Cappé 1994]. For the preservation of speech, the LG filter shows the
best performance. This becomes apparent in Fig. 5.3, where for α = 0.94 spectral
components

√
γ > 2.5 are attenuated least by this filter. In Fig. 5.2 the LG filter

consequently is the one that responds fastest to the signal onset. Nevertheless, in
noise this property of the LG filter also produces the outliers that have the largest
distance from the mean value of the processed noise. This can be seen in Fig. 5.6.
There, the outliers form a relatively heavy tail in the log-histogram of the LG fil-
ter. The analysis of the input–output characteristics and the log-histograms makes
clear that speech distortion and musical noise are interdependent when using the
estimator (5.14).

A way of masking unnatural fluctuations in the residual noise is a higher threshold
ξmin. This is achieved at the price of a reduced noise suppression. Figure 5.8-a
depicts the input–output characteristics of the LSA estimator for α = 0.94 in (5.15)
and different values of ξmin. The resulting log-histograms are shown in Fig. 5.8-b. In
the figures, the values of ξmin are expressed in decibel, i.e., ξmin,dB = 10 log10(ξmin).
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Figure 5.8: Analysis of the LSA estimator for different values of ξmin. The lower the
value of ξmin, the more noise can be suppressed. At the same time, the
tails in Fig. 5.8-b become more pronounced. The amount of fluctuations
in the noise increases
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In the log-histogram of Fig. 5.8-b the mean value is lower for smaller values of ξmin

indicating a better noise suppression. At the same time, outliers are more pronounced,
which is reflected by the fact that the tails are heavier in relation to the mean value for
lower values of ξmin. The processed signal consequently contains more audible musical
noise, if ξmin is lowered. In Fig. 5.8-a the pronunciation of outliers is indicated by the
fact that the region γ ≥ (ξmin − bα)/(1 − α) begins at lower values of

√
γ. The lower

border of this region is marked in Fig. 5.8-a. For values of
√

γ greater than the marked
border, ξ̂ in (5.15) is a function of the input signal γ and the slope of the input–output
characteristics is increased compared with the input–output characteristics of Fig. 5.1.
Furthermore, the increased noise reduction observable in Fig. 5.8-b can be deduced
from the lower output values |Ŝ| for low values of ξmin.

Note that if ξmin corresponds to −25 dB, the log-histogram in Fig. 5.8-b exhibits a
second mode at |Ŝ|/

√
Φnn ≈ 0.15. For a value of α = 0.94 the mean a priori SNR

estimate ξ
lsa

corresponds to −13.3 dB, and thus we have ξ
lsa

> ξmin. Since the
estimate ξ̂ fluctuates around the mean value ξ

lsa
, the hard limit ξmin that causes an

almost constant output |Ŝ| comes into effect less often. As a result, the distribution
of the processed noise contains less spectral values of similar magnitude that form
a peak in the histograms as is the case for ξmin corresponding to −5 dB to −10 dB.
Consequently, the signal sounds more natural. Therefore, the variance of the estimate
ξ̂ that can be observed in Fig. 5.2 during speech absence actually is an advantage for
the perceptual quality of the LSA estimator. It widens the mode of the histogram
around the value related to ξ

lsa
. It has therefore become common practice in recent

implementations to choose a low value of ξmin, for example, a value corresponding to
−25 dB, in order to avoid the accumulation of similar magnitudes in the statistics of
the processed noise that would result in a peaked histogram. The masking of musical
noise that was originally intended by the introduction of ξmin is achieved by applying
an overall limit to the final spectral gain instead:

Gµ(λ) = max
(
Gfilter [ξµ(λ) , γµ(λ)] , Gmin

)
. (5.17)

As this change mainly has an effect on small values of Gfilter, the tails in the histograms
formed by outliers in noise are almost the same as for filters limited by higher values of
ξmin. The amount of the remaining musical noise is comparable whether the limitation
of Gfilter is achieved by a high value of ξmin or by (5.17). However, the naturalness
of the residual noise is improved with (5.17) in the case of the STSA and the LSA
estimator.

Summarizing this section, it can be said that an optimal choice of the three controlling
parameters α, ξmin and Gmin necessarily results in a trade-off between the distortion
of the speech signal, a higher residual noise level, and fluctuations in the residual
noise. Since in most applications a high speech quality is required, it is advisable to
allow for a fast responsiveness of ξ̂ and Gfilter to changes in the speech signal in the
first place. As a consequence, a low value of α needs to be chosen. The degree of noise
reduction is then controlled by ξmin and Gmin. In order to increase the effectiveness of
the filters, low values of ξmin and Gmin are desirable. This combination of parameters
inevitably results in musical noise. Therefore, the suppression of fluctuating peaks
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in the gain function Gµ(λ) can finally be attempted in a post-processing step. The
following section deals with such a post-processing technique. It exploits the fact that
the peaks caused by outliers in noise are spectrally narrow and have a duration much
shorter than the salient spectral features of speech.

5.5 Control of Spectral Fluctuations in the Cepstral
Domain

From the previous discussion it becomes clear that spectral filter gain estimation
based on the decision-directed approach has the tendency to emphasize single bins
randomly due to the increased curvature of the input–output characteristics. For
Gaussian noise these outliers result in musical noise. The duration of such a random
outlier is only one frame. Its spectral width is determined by the spectral resolution
of the analysis–synthesis system and the windowing function w (τ). In the case of
correlated noise, such as babble noise, however, outliers can be more pronounced in
duration and spectral width.

While single musical tones may appear as spontaneously as speech onsets, their energy
is much lower. Additionally, only a narrow band is affected. In a cepstral representa-
tion of the gain function Gµ(λ), this abrupt change in the fine structure of Gµ(λ) is
reflected by a change of the coefficients corresponding to higher quefrencies. Smooth-
ing these higher coefficients flattens out the short spectral peaks of musical noise. A
temporal smoothing of the cepstrum of the gain function Gµ(λ) can therefore be used
to amend a peaked shape of Gµ(λ) caused by outliers in ξ̂µ(λ). Cepstral smoothing
has the advantage that different cepstral bins describe different degrees of detail in
the spectral structure of the gain function. Smoothing the higher cepstral coefficients
affects the fine structure of Gµ(λ). Its temporal dynamics is slowed down. As the nar-
row spectral peaks of single musical tones appear only for a duration of a single frame,
they are strongly affected by such a cepstral smoothing.

A cepstral representation of Gµ(λ) from (5.1) is calculated for each frame λ
as

Gcepst
µ′ (λ) = IDFT {loge(Gµ(λ))}M , µ = 0 . . . (M − 1) , (5.18)

where IDFT is the inverse DFT of length M resulting in quefrency bins
µ′ = 0 . . . (M − 1).

Note that cepstral smoothing would also affect narrow-band quasi-stationary speech
components like pitch harmonics. However, as voiced sounds have high energy, the
cepstral bins corresponding to the pitch frequency are very pronounced and can be
reliably detected. Less smoothing of these cepstral bins can be applied so that pitch
quefrency bins can follow rapid changes. Thus, the formation of the spectral fine
structure for voiced speech onsets is almost unaffected. The spectral contrast of
voiced speech is able to develop within a few frames.
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In the smoothing procedure described in this chapter [Breithaupt et al. 2008], the
smoothing is not applied to low cepstral coefficients at all. This preserves the
temporal evolution of the spectral envelope of the gain function in the case of
speech presence. Thus, speech onsets and broad spectral structures like fricatives
and plosives are not distorted. A smoothed version Gcepst

µ′,smooth (λ) is calculated
as

Gcepst
µ′,smooth (λ) = βµ′ Gcepst

µ′,smooth(λ − 1) + (1 − βµ′) Gcepst
µ′ (λ) . (5.19)

Owing to the symmetry of Gcepst
µ′ (λ), the number of relevant cepstral bins is D =

M/2 + 1. The smoothing is applied to cepstral bins µ′ ∈ {µ′
low, . . . , D − 1}\P′, where

P′ denotes a set of cepstral coefficient indices that is excluded from smoothing. It
consists of the cepstral index µ′

pitch of the pitch and its two neighbors (µ′
pitch −1) and

(µ′
pitch + 1). µ′

pitch is found by taking the quefrency bin with the maximum value of
Gcepst

µ′ (λ) in a range of possible pitch related quefrencies:

µ′
pitch = argmax

µ′

{
Gcepst

µ′ (λ)
∣∣∣µ′ ∈ {µ′

pitch,lower, . . . , µ
′
pitch,upper},H1

}
. (5.20)

The search for µ′
pitch is only meaningful if speech is present. The pitch frequency is

assumed to be in the range fpitch ∈ (70Hz . . . 500Hz). The search interval in terms of
quefrencies is then obtained by considering that a pitch frequency fpitch corresponds
to a pitch quefrency bin µ′

pitch = fS/fpitch, with fS being the sampling rate. For
the cepstral coefficients µ′ ∈ P′ a smoothing similar to (5.19) is used, but with a
smoothing constant βµ′,pitch < βµ′ . Possible choices are βµ′ = 0.8 and βµ′,pitch = 0.4
for a spectral analysis with 16ms frame-shift. P′ is the empty set, when speech
pauses are signaled by a voice activity detector (VAD) [Breithaupt, Martin 2006]. For
µ′ ∈ {0 . . . µ′

low − 1} no smoothing is applied at all, giving Gcepst
µ′,smooth (λ) = Gcepst

µ′ (λ).
A sufficient protection of the speech envelope is achieved with µ′

low = 4 for M = 512
and fS = 16 kHz.

Note that the log-function in (5.18) is not essential for the selective smoothing
procedure just described. Nevertheless, this non-linear transform of Gµ(λ) con-
siderably reduces noise shaping effects caused by (5.19) in stationary Gaussian
noise.

The final smoothed spectral gain function is computed as

Gµ,smooth (λ) = min
(
exp

(
DFT

{
Gcepst

µ′,smooth (λ)
}

M

)
, Gmax

)
, µ′ = 0 . . . (M−1) .

(5.21)

The cepstral bins µ′ ∈ {D . . . M − 1} needed for this transform are available from the
symmetry condition Gcepst

µ′ = Gcepst
M−µ′ . The smoothed spectral gain Gµ,smooth (λ) can

be applied according to (5.1).

Although a VAD is used for finding µ′
pitch, false alarms do not have a large effect. For

background noises or unvoiced sounds, the cepstral bin µ′
pitch, as determined according
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Figure 5.9: Gaussian noise processed by a prototypical filter without and with cep-
stral smoothing. For the a priori SNR estimation, α is 0.94 and ξmin

corresponds to −25 dB. Gmin corresponds to −15 dB. For comparison,
Rayleigh distributions with means ρwiener (graphs “Rayleigh”, “Rayleigh
(Wiener)”) and ρ lsa (graph“Rayleigh (LSA)”) are given. Cepstral smooth-
ing gives almost Rayleigh distributed output signals resulting in natural
sounding residual noise

to (5.20), does not contribute as significantly to the filter output as in the case of voiced
speech. In fact, it is possible to leave out the VAD and do the search (5.20) for every
frame λ without significantly affecting the signal quality.

With the outlier statistics of Sec. 5.3.2 the effectiveness of cepstral smoothing in
avoiding noise fluctuations can be assessed. Figure 5.9 depicts the log-histograms of
Gaussian noise processed by Gµ(λ) and Gµ,smooth (λ), respectively. The a priori SNR
estimation uses α = 0.94. In order to demonstrate the effect of (5.17), the limit ξmin

corresponds to −25 dB in this experiment. The resulting gain is limited to a value
of Gmin corresponding to −15 dB. Note that choosing a higher limit ξmin, as was
demonstrated in the previous sections, gives similar results in terms of the content of
musical noise in the processed signal.

From the log-histograms it is apparent that for all filters except the STSA estimator
the amount of outliers is reduced when cepstral smoothing is applied. Accordingly,
the processed noise sounds like scaled Gaussian noise without musical noise. For
the STSA estimator the smoothing has no effect, because the time constants of the
cepstral smoothing are similar to those of the decision-directed approach for the a
priori SNR estimate ξ̂ (see Fig. 5.2). Thus, fluctuations in the estimate |Ŝ| due to
outliers in noise maintain large amplitudes long enough to overcome the smoothing
effect of (5.19). Note that this is different if the soft-gain method is applied to the
STSA estimator [Ephraim, Malah 1984].

In order to get an impression of the naturalness of the residual noise, the log-histogram
of the scaled undistorted noise is given for comparison. In Fig. 5.9 the scaling was
chosen so that the mean of the scaled noise is equal to the mean of the noise processed
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Figure 5.10: Babble noise processed without and with cepstral smoothing as it results
from a prototypical filter with parameters as in Fig. 5.9. As gray lines,
the log-histograms of scaled undistorted babble noise are given with mean
values identical to the Wiener filter result and the LSA estimator result,
respectively. A comparison shows the high naturalness of the processed
babble noise in case of cepstral smoothing

by the Wiener filter (graphs “Rayleigh” and “Rayleigh (Wiener)”). This mean value is
denoted ρwiener. Correspondingly, for the LSA estimator the mean ρ lsa after process-
ing with the LSA estimator was chosen for the graph “Rayleigh (LSA)” in Fig. 5.9-b.
The processed magnitude of the Gaussian noise has a distribution that is very similar
to the Rayleigh distribution, if cepstral smoothing is used. Listening experiments
confirm the naturalness of the processed noise achieved by cepstral smoothing. In
fact, single musical tones no longer occur.

Note that an analysis of the approximated filter input–output characteristics as in
Sec. 5.3.1 is not possible here, as cepstral smoothing interlinks the gains of all spectral
bins µ.

In order to analyze the suppression of musical noise in non-stationary noise, log-
histograms for babble noise are given in Fig. 5.10. These histograms consider a
spectral band of 160Hz to 1 kHz only, as voiced babble bursts are most numerous
in this frequency range. The reduction of outliers due to cepstral smoothing is clearly
visible. The naturalness of the residual noise is apparent from the comparison of the
histograms of the processed and the scaled noise. Again the scaled noise is given for
ρwiener and ρ lsa. Listening experiments confirm that processing babble noise with
cepstrally smoothed gain functions results in a residual noise that sounds very similar
to attenuated babble without salient tonal artifacts.

In Fig. 5.11 the spectrogram of a speech sample is depicted. The noisy speech signal
is disturbed by babble noise at a segmental SNR of 0 dB. In this experiment the LSA
estimator G lsa is used. In the spectrogram 5.11-b, regions have been marked where
babble bursts occur during speech presence. As babble bursts are narrow-band signals
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Figure 5.11: Spectrograms of clean, noisy, and filtered signals. The sentence is“Surely
this is a reality we all acknowledge”. The noise is babble noise at 0 dB
segmental SNR. With cepstral smoothing many narrow-band fluctua-
tions of the babble noise are smoothed out. At the same time, cepstral
smoothing does not clip speech onsets. Critical babble bursts during
speech presence are marked in the noisy spectrogram. In case of cep-
stral smoothing, the residual babble noise sounds more natural, while
the speech quality is not affected
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Figure 5.12: Filter gains Gµ(λ) and Gµ,smooth (λ) (in dB) of the LSA estimator for
the filtered sample of Fig. 5.11. The parameters are set to α = 0.94
and ξmin = 0.1. Although cepstral smoothing results in a temporally
“smeared” gain, the speech onsets are not clipped. The harmonic fine
structure of voiced speech is also preserved

of short duration they can be effectively suppressed by Glsa
smooth of (5.21) without

affecting the speech. If no cepstral smoothing is applied, the residual noise sounds
unnatural, as single babble noise bursts are more salient than before the filtering. In
the case of the cepstrally smoothed gain function Glsa

smooth the residual babble noise
sounds much more natural while the speech signal sounds identical to the speech
processed without cepstral smoothing. The effect of cepstral smoothing on the gain
function is shown in Fig. 5.12. The variability of G lsa is diminished as the dynamics
of the fine structure is reduced. Nevertheless, broad-band speech onsets and the pitch
harmonics are very well preserved.

5.6 Discussion and Conclusions

In the first part of this chapter the performance of noise reduction filters was an-
alyzed and compared by means of theoretical approximations as well as empirical
outlier distributions of processed noise. For state-of-the-art noise reduction systems
using the decision-directed a priori SNR estimator, the limits of noise reduction were
derived as a function of the decision-directed smoothing parameter α. For low SNR
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conditions, the theoretical approximation of the filter input–output characteristics
describes measurable and perceived properties very well. Moreover, the approximate
input–output characteristics are linked to the empirical distributions as the evaluation
of log-histograms reveals. A relation to the amount of perceived musical noise is also
indicated. In state-of-the-art systems, the residual noise level, speech distortions, and
the appearance of spectral fluctuations are intrinsically linked and not easily mini-
mized. Besides other effects, it could be shown that the intrinsic smoothing property
of the STSA estimator when combined with the decision-directed approach is much
less effective for other frequently used gain functions. It can therefore be concluded
that the excellent perceptual performance of this system in Gaussian noise must be
attributed to the input–output characteristics of the STSA estimator and only to a
lesser extend to the decision-directed approach.

As a result of the linkage between speech distortions and the appearance of spectral
fluctuations we suggest that one selects the smoothing parameters of the decision-
directed approach such that speech is well reproduced. Additional measures such as
smoothing the gain function in the cepstral domain can then be used to control the
residual noise statistics. Smoothing in the cepstral domain is ideally suited for this
purpose as it allows one to apply less smoothing to the salient features of speech while
effectively suppressing random outliers. Furthermore, it does not introduce additional
latency in the signal processing chain.
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5.8 Appendix

5.8.1 Mean a priori SNR for different filter types and low SNR

For the statistical analysis of the original decision-directed approach (5.9), we rein-
terpret ξ̂µ(λ) as the weighted sum of the two random variables γ̂µ(λ − 1) and
zµ(λ) = max (0, γ̂µ(λ) − 1). For the mean values in spectral bins without speech,
we have E { γ̂ | H0} = γ0 = 1 and E {z | H0} = z0 = e−1, if Nµ(λ) is assumed to be
complex Gaussian distributed. For a frame-shift of at least half the frame-length, the
two random variables can be assumed to be independent. The mean a priori SNR
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during speech pauses therefore is

ξ
filter

= E
{

ξ̂µ(λ)
∣∣∣ H0, G

filter
}

= α E

{∣∣∣Gfilter
[
ξ̂µ(λ − 1) , γ̂µ(λ − 1)

]∣∣∣2 γ̂µ(λ − 1)
∣∣∣∣ H0

}
+ (1 − α) E {zµ(λ) | H0} . (5.22)

For the STSA and the LSA estimator, an approximation of the first term of (5.22)
can be found by considering that Gfilter

[
ξ̂µ(λ) , γ̂µ(λ)

]√
γ̂µ(λ) is almost constant for

values of γ̂ around γ0 = 1 and given ξ̂ (see Fig. 5.1). For the STSA estimator , this con-
stant is the lower bound of the output that is obtained for γ̂ = 0:∣∣∣G stsa

[
ξ̂µ(λ) , γ̂µ(λ)

]∣∣∣2 γ̂µ(λ)
∣∣∣∣
bγ=0

=
π

4
ξ̂

1 + ξ̂
≈ π

4
ξ̂ ,

where the approximation is possible for low SNR conditions, when ξ̂ 
 1. This lower
bound can be used to replace the expected value in the first term of (5.22).

The expected value ξ is the stationary value of the recursion (5.22), where zµ(λ) is
considered as the innovation:

ξ = α
π

4
ξ + (1 − α) z0 . (5.23)

For the STSA estimator we thus obtain

ξ
stsa ≈ (1 − α) e−1

1 − α π/4
. (5.24)

For α = 0.98 this gives a value ξ
stsa

equivalent to −14.95 dB, which corresponds to
the value observed in [Cappé 1994].

With (5.22) the analysis can be extended to other filter types. The LSA estimator
gives ∣∣∣G lsa

[
ξ̂µ(λ) , γ̂µ(λ)

]∣∣∣2 γ̂µ(λ)
∣∣∣∣
bγ=0

=
ξ̂

1 + ξ̂
e−c ≈ ξ̂ e−c

and, hence,

ξ
lsa ≈ (1 − α) e−1

1 − α e−c ,

where c is Euler’s constant. For α = 0.98, ξ
lsa

corresponds to −17.86 dB, thus
yielding more noise reduction.

The Wiener filter gain Gwiener is not constant for small ξ̂ (see Fig. 5.1). As it is not a
function of γ either (see (5.2)), substituting Gwiener in (5.22) gives

ξ ≈ α |ξ|2 E { γ̂µ(λ − 1) | H0} + (1 − α)E {zµ(λ) | H0}
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Instead of solving this quadratic equation of ξ , an additional approximation can be
made by considering that α ξ

2
γ0 
 (1 − α) z0 for small ξ. Therefore, in the case of

the Wiener filter and similarly the LG filter, the recursive term in (5.22) does not
contribute significantly. In Fig. 5.2 the estimate ξ̂µ(λ) thus is a scaled version of
zµ(λ): ξ̂ wiener

µ (λ) ≈ (1 − α) zµ(λ). The mean value is

ξ
wiener ≈ (1 − α)e−1,

which corresponds to −21.3 dB for α = 0.98. From Figs. 5.1 and 5.2 it can be con-
cluded that ξ

lg ≈ ξ
wiener

during low SNR conditions. Note that it is difficult to
estimate a mean value from Fig. 5.2 as the ordinate is in logarithmic scale. Never-
theless, the numerical evaluation shown in Table 5.1 confirms the above approxima-
tions.

5.8.2 Approximation of the decision-directed approach for low SNR

The decision-directed a priori SNR estimator (5.14) can be re-written as

ξ̂µ(λ) = max
(

α
∣∣∣Gfilter

[
ξ̂µ(λ − 1) , γ̂µ(λ − 1)

]∣∣∣2 γ̂µ(λ − 1)

+ (1 − α) (γ̂µ(λ) − 1) , ξmin

)
. (5.25)

The overall dependency of |ξ̂µ(λ) | from the current observation γ̂µ(λ) for a low
SNR can be shown by combining all those terms that are not a function of the
current observation γ̂µ(λ). The first term in (5.25) depends only on values of
the previous frame λ − 1. The term γ̂µ(λ − 1) in (5.25) is additionally substi-
tuted by its expected value. For speech pauses (|Yµ(λ) |2 = |Nµ(λ) |2) this is
γ̂µ(λ − 1) ≈ E {γ | H0} = γ0 = 1. If no estimation error occurred, the estimate
of the a priori SNR is ξ̂µ(λ − 1) = ξmin > ξ

filter
. This additionally gives for the first

term:

α
∣∣∣Gfilter

[
ξ̂µ(λ − 1) , γ̂µ(λ − 1)

]∣∣∣2 ≈ α
(
Gfilter [ξmin, γ0]

)2
,

which can be used in (5.25) yielding (5.15).
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Chapter 6

Acoustic Source Localization
with Microphone Arrays

Nilesh Madhu, Rainer Martin

6.1 Introduction

Acoustic source localization using microphone arrays is of paramount importance in
many speech processing applications such as video conferencing, hands-free speech ac-
quisition in cars, and processors for digital hearing aids. Additionally, acoustic source
localization is used in non-speech applications, for example, remote surveillance, fault
analysis of machinery, automotive acoustics, and autonomous robots. It comes as
no surprise, therefore, that this topic has been the subject of significant research ac-
tivity for a long time and still enjoys considerable interest in the signal processing
community.

This chapter aims to give an overview of contemporary localization algorithms. It
will be shown that the most common algorithms depend only on the second or-
der statistics of the microphone signals and fit into a unifying framework that ex-
ploits just the cross-correlation between the signals of the various microphone pairs.
We shall start with a description of the signal model and associated concepts for
source localization, followed by the overview of the localization approaches. To pro-
vide additional insight, we conclude this chapter with an illustration of the perfor-
mance of representative algorithms under various conditions of reverberation and
noise.

Advances in Digital Speech Transmission Edited by R. Martin, U. Heute and C. Antweiler
c© 2008 John Wiley & Sons, Ltd
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6.2 Signal Model

As we are concerned with multichannel approaches to source localization, we shall be
dealing with microphone or sensor1 arrays for sound pickup. Figure 6.1 illustrates the
general situation in two spatial dimensions (spanned by unit vectors ex and ey). We
consider one such array consisting of M microphones at positions rm capturing the
signal emitted from a source at position rs. These signals recorded by the microphones
may then be expressed in the continuous or the discrete time domain, considering the
contribution of all the paths from the source to the individual microphones of the
array.

ex

Direct path
Reflections

ey

rm

rM

r1

rs

Figure 6.1: Acoustic signal paths for a particular microphone in the x–y plane. rs

and rm denote the locations of the source and the mth microphone, re-
spectively. Each path from the source to the microphone m may be rep-
resented by an attenuation and a delay of the source signal. The direct
path possesses the least delay. The sum of all the paths constitutes the
impulse response of the room for the particular source and microphone
position

6.2.1 Continuous Time Model

The signal ỹm(t) received at the mth microphone of the array, located at
rm = (xm, ym, zm)T , due to a source located at rs = (xs, ys, zs)T may be written, in

1Note that the terms channels, microphones, and sensors will be used synonymously throughout
the text.
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continuous time t, as

ỹm(t) = ãm(t) ∗ s̃0(t) + ṽm(t), (6.1)

where s̃0(t) represents the source waveform, ãm(t) represents the room impulse re-
sponse from the source position to the microphone m, the ∗ represents the convolution
operator, and ṽm(t) represents the noise at the microphone. This may be extended
to the general case of Q sources as

ỹm(t) =
Q∑

q=1

ãmq(t) ∗ s̃0q(t) + ṽm(t), (6.2)

where ãmq(t) now represents the room impulse response from the qth source to the
mth microphone.

6.2.2 Discrete Time Representation

Since we shall mostly deal with the digital representations of the microphone and
source signals, the concept of continuous time serves only to clarify some basic ideas.
Consequently, relations (6.1) and (6.2) will now be extended to the discrete time
case. To simplify the discussion, we approximate the room impulse responses by
finite impulse response (FIR) filters of order L−1. For the single source case, we now
have an impulse response vector

am = (am(0), am(1), . . . , am(L − 1))T (6.3)

and the signal at microphone m as

ym(k) = aT
ms0(k) + vm(k) , (6.4)

where k is the discrete time index, s0(k) = (s0(k), s0(k−1), . . . , s0(k−L+1))T , and
vm(k) is the sampled noise signal. For the multi-source scenario we define the impulse
response vectors from source q to microphone m as

amq = (amq(0), amq(1), . . . , amq(L − 1))T (6.5)

and obtain y1(k)
...

yM (k)

 =

 aT
11 · · · aT

1Q
...

. . .
...

aT
M1 · · · aT

MQ


s01(k)

...
s0Q(k)

+ v(k) , (6.6)

where v(k) = (v1(k), v2(k), . . . , vM (k))T is the vector of noise signals.
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6.2.3 Formulation in the Frequency Domain

Equations (6.4) and (6.6) may also be formulated in the frequency domain us-
ing the Fourier transform of discrete signals (FTDS) [Oppenheim, Schafer 1975],
[Vary, Martin 2006, Chap. 3]. Provided that the Fourier transforms of all sig-
nals under consideration exist, we obtain the frequency domain equivalent of (6.4)
as

Ym(Ω) = Am(Ω)S0(Ω) + Vm(Ω), (6.7)

where Ω = 2πf/fS denotes the normalized frequency variable and fS is the sampling
rate. In the multiple source case we obtain with Y(Ω) = (Y1(Ω), Y2(Ω), . . . , YM (Ω))T

and V(Ω) = (V1(Ω), V2(Ω), . . . , VM (Ω))T

Y(Ω) =

A11(Ω) · · · A1Q(Ω)
...

. . .
...

AM1(Ω) · · · AMQ(Ω)


S01(Ω)

...
S0Q(Ω)

+

 V1(Ω)
...

VM (Ω)

 (6.8)

= A(Ω)S0(Ω) + V(Ω) .

6.2.4 Simplified Model for Localization

The localization algorithms to be considered in the next section assume a dominance of
the direct path. Consequently, each Amq(Ω) may be written as

Amq(Ω) = α′
mq(Ω)e− Ωτmq + a′′

mq(Ω) , (6.9)

where |α′
mq| >> |a′′

mq|, α′
mq ∈ R represents the attenuation along the direct path

and a′′
mq ∈ C indicates the net attenuation and phase smearing caused by the reflec-

tions along the indirect paths. τmq represents the absolute time delay of the signal
from source q to the microphone m along the direct path. Then, (6.8) takes the
form

Y(Ω) =

 α′
11(Ω)e− Ωτ11 · · · α′

1Q(Ω)e− Ωτ1Q

...
. . .

...
α′

M1(Ω)e− ΩτM1 · · · α′
MQ(Ω)e− ΩτMQ

S0(Ω)

+

 a′′
11(Ω) · · · a′′

1Q(Ω)
...

. . .
...

a′′
M1(Ω) · · · a′′

MQ(Ω)

S0(Ω) + V(Ω) (6.10)

= A′(Ω)S0(Ω) + A′′(Ω)S0(Ω) + V(Ω) .

The propagation matrix A′(ejΩ) is directly related to the geometric arrangement of
the sources and the sensors and thus is key to solving the localization problem. The
vectors A′′(Ω)S0(Ω) and V(Ω) constitute disturbances. While the former is obviously
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correlated with the source signals, the latter is typically modelled as being statistically
independent from the source signals. To simplify the discussion we will frequently
neglect the contribution A′′(Ω)S0(Ω) of the indirect paths. In this case we have
A(Ω) = A′(Ω).

For convenience, we introduce a reference point r0 that may coincide, for example,
with one of the microphone locations. Then, we define the source signal spectra
Sq(Ω) that are received at this reference point when only the direct path is considered
as

Sq(Ω) = α′
0q(Ω)e− Ωτ0qS0q(Ω) (6.11)

and rewrite (6.10) in terms of the source signal vector

S(Ω) = (S1(Ω), . . . , SQ(Ω))T (6.12)

as

Y(Ω) =


α′

11(Ω)
α′

01(Ω)e
 Ωτ01− Ωτ11 · · · α′

1Q(Ω)

α′
0Q(Ω)e

 Ωτ0Q− Ωτ1Q

...
. . .

...
α′

M1(Ω)
α′

01(Ω) e Ωτ01− ΩτM1 · · · α′
MQ(Ω)

α′
0QΩ) e Ωτ0Q− ΩτMQ

S(Ω)

+

 γ11(Ω) · · · γ1Q(Ω)
...

. . .
...

γM1(Ω) · · · γMQ(Ω)

S(Ω) + V(Ω)

=


α′

11(Ω)
α′

01(Ω)e
 Ω∆τ11 · · · α′

1Q(Ω)

α′
0Q(Ω)e

 Ω∆τ1Q

...
. . .

...
α′

M1(Ω)
α′

01(Ω) e Ω∆τM1 · · · α′
MQ(Ω)

α′
0Q(Ω) e Ω∆τMQ

S(Ω)

+

 γ11(Ω) · · · γ1Q(Ω)
...

. . .
...

γM1(Ω) · · · γMQ(Ω)

S(Ω) + V(Ω) , (6.13)

where γmq = a′′
mq

α′
0qe− Ωτ0q

represents the normalized indirect components. ∆τmq =

τ0q − τmq is the relative time delay or time delay of arrival (TDOA) with respect to
the reference point. If the reference point is close to the array and both, reference
point and array, are in the farfield of the sources we may further simplify (6.13) and
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obtain [Vary, Martin 2006, Chap. 12]

Y(Ω) =

 e Ω∆τ11 · · · e Ω∆τ1Q

...
. . .

...
e Ω∆τM1 · · · e Ω∆τMQ

S(Ω)

+

 γ11(Ω) · · · γ1Q(Ω)
...

. . .
...

γM1(Ω) · · · γMQ(Ω)

S(Ω) + V(Ω) . (6.14)

The direct path contributions in (6.14) encode the spatial positions of the q sources in
terms of TDOAs. The indirect paths and noise contributions constitute a disturbance.
When we consider the qth source only and assume farfield and anechoic conditions
the matrix A(Ω) is a vector, the propagation vector [Vary, Martin 2006, Chap. 12],
which might be parametrized by the source location of the qth source as

A(rq,Ω) =
(
e Ω∆τ1q(rq), . . . , e Ω∆τMq(rq)

)T

. (6.15)

In the case of a single source we may omit the source index q and obtain

A(r,Ω) =
(
e Ω∆τ1(r), . . . , e Ω∆τM (r)

)T

. (6.16)

The farfield scenario is illustrated in two dimensions in Fig. 6.2 for the simple case
of a single microphone pair and anechoic, noiseless transmission. In this case the
difference of TDOAs allows us to infer the direction of arrival (DOA): the angle of
incidence θ and the delay difference T are related as

T = ∆τ1 − ∆τ2 =
d cos θ

c
, (6.17)

where d is the microphone distance and c denotes the speed of sound.

rs

d

y1
~y2

~

ò

c · T

Figure 6.2: TDOA for a microphone pair in the farfield of a source. It can be assumed
that the source signal arrives as plane waves at the microphone array
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6.3 Localization Approach Taxonomy

The multi-channel approaches to acoustic source localization may broadly be divided
into two main classes: indirect and direct. Indirect approaches to source localization
are usually two-step methods: first, the relative time delays ∆τmq for the various mi-
crophone pairs are evaluated and then the source location is found as the intersection
of the corresponding half-hyperboloids centered around the respective microphone
pairs. Direct approaches, on the other hand, generally scan the so-called candidate
source positions and pick the Q most likely candidates – thus performing the local-
ization in a single step.

In the following discussion, we shall start by considering the simple case of two mi-
crophones and a single source. Further, without loss of generality, we shall assume
the source to be in the farfield, with the source wavefront propagating as plane waves
and impinging upon the microphone pair with the corresponding delay T (Fig. 6.2).
The extension to microphone arrays with more than two microphones is the subject
of the later sections. We shall first present the indirect approaches, followed by the
direct ones.

6.4 Indirect Localization Approaches

Indirect approaches explicitly estimate the time delays of arrival (TDOA) before per-
forming the actual localization task. Early approaches [Knapp, Carter 1976], [Etter,
Stearns 1981], [Hertz 1986] to time delay of arrival estimation consider an anechoic,
farfield signal model:

ỹ1(t) = s̃(t + ∆τ1) + ṽ1(t) (6.18)
ỹ2(t) = s̃(t + ∆τ2) + ṽ2(t) .

By means of an LMS-type algorithm the approaches of [Etter, Stearns 1981], [So et al.
1994] then explicitly adapt a time delay T to minimize the mean square error (MSE),
also termed cost function, between the microphone signals, i.e.,

T̂ = argmin
T

E
{
(ỹ1(t) − ỹ2(t + T ))2

}
(6.19)

= argmin
T

E
{
ỹ2
1(t)

}
+ E

{
ỹ2
2(t + T )

}
− 2E {ỹ1(t)ỹ2(t + T )} . (6.20)

Note that the first two terms of (6.20) represent the signal power at the two channels
and, for stationary input signals, are independent of T . Therefore, they do not con-
tribute to the cost function, simplifying the expression to

T̂ = argmax
T

E {ỹ1(t)ỹ2(t + T )} . (6.21)
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Thus, minimizing the mean square error may be seen to be equivalent to maximizing
the cross-correlation between the microphone signals.

However, approaches that explicitly search the optimal time delay in the time domain
suffer from two drawbacks: first, in discrete time systems, the time delay could contain
fractional sample shifts that requires some form of interpolation and leads to more
complicated estimation procedures [Chan et al. 1981]; secondly, the approaches are
based on an overly simplistic signal model.

Further improvements along this direction lead to LMS-type algorithms [Reed et al.
1981] where, instead of a delay parameter T , the microphone signal x̃2(t) is filtered
by a filter h̃(t) such that an approximate solution to

h̃opt(t) = argmin
h̃(t)

E
{

(ỹ1(t) − h̃(t) ∗ ỹ2(t))2
}

(6.22)

is found. In discrete time the update equations for the normalized LMS (see, e.g.,
[Vary, Martin 2006, Chap. 13]) approach may be written as

e(k) = y1(k − TB) − hT (k)y2(k) (6.23)

h(k + 1) = h(k) + ςe(k)
y2(k)

‖y2(k)‖2
,

where ς is the step size and TB > �fSd/c� is an integral sample delay2 required in
order to preserve causality in the case of negative TDOA values. When the direct
path is dominant, an estimate T̂ of the time delay can be obtained as the abscissa of
the largest peak of h̃opt(t).

Besides MSE, other optimization criteria may be used to compute the optimal filter
impulse response h̃(t). These lead to a family of TDOA estimation algorithms that
fit into the general framework presented below.

6.4.1 Generalized Cross-Correlation (GCC)

Generalized cross-correlation (GCC) [Knapp, Carter 1976] is the term given to the
framework that encompasses a wide range of approaches to TDOA estimation. The
block diagram of a generalized cross-correlator is shown in Fig. 6.3.

The optimal time delay estimate T̂ is obtained as

T̂ = argmax
T

E
{(

ỹ1(t) ∗ h̃1(t)
)(

ỹ2(t + T ) ∗ h̃2(t)
)}

(6.24)

= argmax
T

ϕg
ỹ1ỹ2

(T ) ,

2The operator �a� rounds a to the nearest upper integer value.
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s̃0(t)
ã1(t)

ã2(t)

h̃1(t)

h̃2(t)

ỹ1(t)

ỹ2(t)

E {(·)}

Delay T

T̂Peak
detection

Figure 6.3: Block diagram of the generalized cross-correlation (GCC) method for the
estimation of the TDOA

where ϕg
ỹ1ỹ2

(T ) denotes the generalized cross-correlation (GCC) function. The fil-
ters h̃m(t) are chosen according to the particular optimization criterion consid-
ered.

We may also write the generalized cross-correlation function ϕg
ỹ1ỹ2

(T ) in the frequency
domain as

ϕg
ỹ1ỹ2

(T ) =
1
2π

∞∫
−∞

H1(ω)H∗
2 (ω)Φỹ1ỹ2(ω)e ωT dω , (6.25)

where Φỹ1ỹ2(ω) represents the cross-power spectral density of signals ỹ1(t) and ỹ2(t)
and ω represents the continuous frequency variable. Further, defining G(ω) =
H1(ω)H∗

2 (ω) and rewriting (6.25), we obtain:

ϕg
ỹ1ỹ2

(T ) =
1
2π

∞∫
−∞

G(ω)Φỹ1ỹ2(ω)e ωT dω . (6.26)

The GCC-based approaches to TDOA estimation may be summarized in this frame-
work [Knapp, Carter 1976] as in Table 6.1 below. The term Γ(ω) in Table 6.1 repre-
sents the coherence between the microphone signals at frequency ω

Γ(ω) =
Φỹ1ỹ2(ω)√

Φỹ1ỹ1(ω)Φỹ2ỹ2(ω)
. (6.27)

Note that the development so far has assumed perfect knowledge of the cross- and
auto-power spectral density of the source signals and the noise. However, in prac-
tice, these quantities have to be estimated from a fixed time record of observa-
tions.
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Table 6.1: Generalized Cross-Correlation (GCC) weighting functions

Weighting function Approach
G(ω)

1 Regular Cross-Correlation (CC)

1√
Φỹ1ỹ1(ω)Φỹ2ỹ2(ω)

Smoothed Coherence Transform (SCOT)

1
Φỹ2ỹ2(ω) Roth (Wiener–Hopf weighting)

|Γ(ω)|2
1 − |Γ(ω)|2 Hannan–Thomson (Maximum Likelihood estimate)

Φs̃s̃(ω)
Φṽ1ṽ1(ω)Φṽ2ṽ2(ω) Eckart weighting

1
|Φỹ1ỹ2(ω)| Phase Transform (PHAT)

6.4.2 Adaptive Eigenvalue Decomposition (AED)

The adaptive eigenvalue decomposition (AED) and its variants [Benesty 2000], [Doclo,
Moonen 2003] are fairly recent approaches to TDOA estimation. The block diagram
of the basic AED algorithm is shown in Fig. 6.4. In the noiseless case, the signal
model of (6.1) reduces to

ỹ1(t) = ã1(t) ∗ s̃(t) (6.28)
ỹ2(t) = ã2(t) ∗ s̃(t) .

The aim, then, is to find optimal, energy constrained filters h̃m(t), (m ∈ {1, 2}) that
minimize

E
{
ẽ2(t)

}
= E

{
(h̃1(t) ∗ ỹ1(t) − h̃2(t) ∗ ỹ2(t))2

}
. (6.29)

In the light of Wiener–Hopf filtering [Haykin 1996], this can be seen as an attempt to
match the two microphone signals. Under certain conditions [Xu et al. 1995] and using
the commutative property of linear convolution, the signals can be exactly matched
when

h̃1(t) = βã2(t) and (6.30)

h̃2(t) = βã1(t) ,

where β is a scaling factor. The TDOA may then be computed as the difference in the
abscissae of the largest values of the respective optimal filters.
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Figure 6.4: Block diagram of the AED algorithm (in continuous time)

Formulating (6.28) and (6.29) in the discrete time domain as in (6.4), we get

y1(k) = aT
1 s(k) (6.31)

y2(k) = aT
2 s(k) ,

where the room impulse responses am have been modeled as FIR filters of length L.
Rewriting equation (6.29) using (6.31), we obtain

E
{
e2(k)

}
= E

{
(hT

1 y1(k) − hT
2 y2(k))2

}
, (6.32)

where

hm = (hm(0), hm(1), . . . , hm(P − 1))T (6.33)

ym(k) = (ym(k), ym(k − 1), . . . , ym(k − P + 1))T . (6.34)

We shall rewrite equation (6.32) more compactly as

E
{
e2(k)

}
= hT Ryyh , (6.35)

where

h = (hT
1 , −hT

2 )T (6.36)

Ryy =
(

E
{
y1yT

1

}
E
{
y1yT

2

}
E
{
y2yT

1

}
E
{
y2yT

2

}) . (6.37)

It is now easy to see that, when the filter vector h is energy constrained, the optimal
solution hopt to the minimization problem is the eigenvector corresponding to the
zero eigenvalue of Ryy, in the noiseless case, or the eigenvector corresponding to
the smallest eigenvalue, when the microphone noises are spatially and temporally
uncorrelated and independent of the source signals [Strang 1988]. When the filters
am do not have any common zeros, we obtain

h1 = βa2 and (6.38)
h2 = βa1 ,
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provided P = L. The TDOA may then be obtained as explained above. For conve-
nience, the energy of the filter vector is constrained to unity. Thus, the scale factor is
determined and the following adaptive algorithm for the iterative update of the filter
vector h(k) results

h(k + 1) =
h(k) − ςy(k)y(λ)T h(k)
‖h(k) − ςy(k)yT (k)h(k)‖ , (6.39)

where ς denotes the stepsize parameter. Note that if we fix any one filter in (6.29) by,
say, a delta function, we obtain the mean square error criterion of (6.22), which, in the
frequency domain, corresponds to the GCC-Roth weighting.

6.4.3 Information Theoretic Approach to TDOA Estimation

As shown by [Talantzis et al. 2005], the principle of information maximization can be
also used to approach the problem of TDOA estimation. The signal model considered
for this method is the noiseless variant of that in (6.18). The idea is to find the time
delay T that maximizes the mutual information I(ỹ1; ỹ2) between the microphone
signals ỹ1(t) and ỹ2(t + T )

T̂ = argmax
T

I (ỹ1(t); ỹ2(t + T )) . (6.40)

The mutual information between two stochastic random variables a and b is given
by [Cover, Thomas 1991]

I(a; b) = H(a) + H(b) −H(a, b) , (6.41)

where H(a) represents the entropy of the random variable a and H(a, b) the joint en-
tropy of a and b. Assuming that the source signal (and, consequently, the microphone
signals) may be modeled by a zero mean, stationary, stochastic process, we may con-
sider the time evolution of the signals to be realizations of that process. Therefore,
the mutual information between the two microphone signals for a time shift T may
be written as

I (ỹ1(t); ỹ2(t + T )) = H (ỹ1(t)) + H (ỹ2(t + T )) −H (ỹ1(t), ỹ2(t + T )) . (6.42)

The entropy for Gaussian random variables is well known [Cover, Thomas 1991] to
be proportional to its variance. Thus, under the assumptions that the signals have a
Gaussian density,

H (ỹ1(t)) ∝ loge (ϕỹ1ỹ1(0)) (6.43)
H (ỹ2(t + T )) ∝ loge (ϕỹ2ỹ2(0))

H (ỹ1(t), ỹ2(t + T )) ∝ loge (det (Rỹỹ)) ,
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where ỹ(t) = (ỹ1(t), ỹ2(t + T ))T and Rỹỹ is given by

Rỹỹ = E
{
ỹ(t)ỹT (t)

}
(6.44)

=
(

E
{
ỹ2
1(t)

}
E {ỹ1(t)ỹ2(t + T )}

E {ỹ1(t)ỹ2(t + T )} E
{
ỹ2
2(t + T )

} )
=
(

ϕỹ1ỹ1(0) ϕỹ1ỹ2 (T )
ϕỹ1ỹ2 (T ) ϕỹ2ỹ2(0)

)
.

Consequently,

T̂ = argmax
T

I (ỹ1(t); ỹ2(t + T )) (6.45)

= argmin
T

loge (det (Rỹỹ))

= argmax
T

ϕỹ1ỹ2(T ) ,

where the simplifications above follow as the first two terms in (6.42) are indepen-
dent of T according to (6.43). Thus, when the signals are Gaussian distributed,
maximizing the mutual information is equivalent to maximizing the cross-correlation
between the microphone signals. In contrast to GCC, however, the optimization cri-
terion in its general form (6.40) can exploit the non-Gaussian structure of the source
signals.

6.4.4 Extension to Multiple Microphone Pairs

The above sections described various approaches to estimate the TDOA using a pair
of sensors. Obviously, using more than one pair of microphones increases the spatial
diversity afforded to the localization system and, consequently, may be exploited to
localize the source in more than one spatial dimension and to improve the localization
accuracy. The integration of multiple microphone pairs into the existing framework
shall briefly be discussed in this section.

The simplest way to extend the two-channel method to an M channel (M > 2) array
is to obtain the TDOA estimate Tp for all M(M−1)/2 microphone pairs, using any of
the GCC approaches, e.g., the Roth weighted GCC estimate [Dvorkind, Gannot 2005],
simple cross-correlation [Birchfield 2004], the PHAT estimate [Brutti et al. 2005], or
the multi-channel AED approach, where an estimate of the impulse response from the
source to each microphone is first obtained, from which the TDOA between all micro-
phone pairs may be computed as in the AED approach, etc. Once this is done, one
method of obtaining the source position is by solving the non-linear equation relating
the vector of obtained TDOA estimates, the geometry of the array, and the source lo-
cation [Chan, Ho 1994], [Drews 1995], [Huang et al. 2001]

r̂s = F(T1, T2, . . . , TM(M−1)/2) . (6.46)

The methods of [Madhu, Martin 2005], [Bechler, Kroschel 2002], [Bechler, Kroschel
2004] additionally consider weighting the contributions of the TDOA estimates from
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the various pairs according to some optimality criteria, when computing the ‘averaged’
source location – thus improving the location estimate.

Another interesting approach to source localization using multiple microphones is
that suggested in [Chen et al. 2003b], [Chen et al. 2003a], where the concept of
linear prediction is extended to the spatial case. For the two microphone case, the
cost function derived for this approach reduces to that for the information theoretic
approach of Sec. 6.4.3.

Methods to cope with multiple sources are detailed in [Scheuing, Yang 2006],
[Scheuing, Yang 2007] where the distance structure of peaks in the correlation func-
tion and graph-theoretic considerations are exploited. Other approaches project the
cross-correlation function ϕỹ�ỹm

(τ) of all pairs (�,m) onto a common co-ordinate sys-
tem, e.g., a one-dimensional direction of arrival value [Matsuo et al. 2005], or a two-
dimensional grid [Brutti et al. 2005], or the surface of a hemisphere (the accumulative
correlation of [Birchfield 2004]) and so on, creating, in essence, a histogram of like-
lihood values over candidate source locations. The source location then corresponds
to the most likely candidate position.

6.5 Direct Localization Approaches

For the indirect approaches, source localization is the result of a two-step approach.
First, an estimate of the TDOA is obtained (using an array of two or more micro-
phones) and then, based on the knowledge of the geometry of the array and the time
delay estimates, the source position is estimated. Direct approaches, on the other
hand, perform TDOA estimation and source localization in one step. Most direct
algorithms scan a set of candidate source locations (the so-called search space) and
then pick the most likely position as an estimate of the source location. This approach
makes it easier to incorporate multiple microphones in the optimization criterion. As
in the case of the indirect approaches, the algorithms belonging to the direct class
may be formulated in the time or the frequency domain.

We discuss localization algorithms – initially designed for narrowband sources – in the
frequency domain. The extension to the wideband case could be of the straightforward
incoherent kind, where the narrowband location estimates at the center frequency of
each subband are averaged over all the subbands [Krim, Viberg 1996], [Wax, Kailath
1984b], or they could be of the coherent sort, where the data in all the subbands are
collectively used when scanning the candidate locations [Krim, Viberg 1996], [Wang,
Kaveh 1985], [Hung, Kaveh 1988], [Krolik 1991], [Yoon et al. 2006]. We will also de-
velop their link to the GCC framework (when posed in each subband in the frequency
domain, as in Table 6.1). Unless mentioned otherwise, we shall consider a single
source located at rs = (xs, ys, zs)T , in a three-dimensional Cartesian co-ordinate sys-
tem. Further, we shall neglect the effect of reverberation.
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6.5.1 Steered Response Power Beamforming

The steered response power (SRP) beamforming approach [DiBiase et al. 2001],
[Omologo, Svaizer 1994] searches for the candidate source position that maximizes
the output power of a filter-and-sum beamformer steered in that direction. While
the optimization criterion is of the broadband type, it is again instructive to ex-
pand it into a frequency domain formulation. The output power spectral density
of the filter-and-sum beamformer may be written as, see, e.g., [Vary, Martin 2006,
Chap. 12],

Φŝŝ(r,Ω) = E
{
|H(r,Ω)HY(Ω)|2

}
= HH(r,Ω)Φyy(Ω)H(r,Ω) (6.47)

= HH(r,Ω)

Φy1y1(Ω) · · · Φy1yM
(Ω)

...
. . .

...
ΦyM y1(Ω) · · · ΦyM yM

(Ω)

H(r,Ω) ,

where the beam is directed towards r and H(r,Ω) = (H1(r,Ω), . . . ,HM (r,Ω))T

is the corresponding vector of beamforming filter frequency responses. Φy�ym
=

E {Y�(Ω)Y ∗
m(Ω)} denotes the cross-power spectral density of channels � and m. Then,

the source location r̂s is found as

r̂s = argmax
r

1
2π

π∫
−π

Φŝŝ(r,Ω)dΩ . (6.48)

Expanding (6.47) as

Φŝŝ(r,Ω) = HH(r,Ω)Φyy(Ω)H(r,Ω)

=
∑
�,m

H∗
� (r,Ω)Hm(r,Ω)Φy�ym

(Ω)

=
∑
m

|Hm(r,Ω)|2Φymym
(Ω) +

∑
�,m
� �=m

H∗
� (r,Ω)Hm(r,Ω)Φy�ym

(Ω) (6.49)

=
∑
m

Φymym
(Ω) +

∑
�,m
� �=m

e ΩfST�(r)− ΩfSTm(r)Φy�ym
(Ω) ,

where for the last step the delay-and-sum beamformer with

H(r,Ω) = (e− ΩfST1(r), e− ΩfST2(r), . . . , e− ΩfSTM (r))T (6.50)

was assumed. For the delay-and-sum beamformer it may now be seen that the first
term is independent of the source location and the second term sums over the cross-
power spectral density of all M(M−1)/2 microphone pairs.

Similar to the GCC in the case of two channels, the cross-power spectral densities
may be weighted according to the criteria outlined in Table 6.1. Thus, we obtain, for
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instance, the SRP-PHAT approach

r̂s = argmax
r

1
2π

π∫
−π

∑
�,m
� �=m

e ΩfST�(r)− ΩfSTm(r) Φy�ym
(Ω)

|Φy�ym
(Ω)| dΩ , (6.51)

which may be seen as extensions of the GCC to the M microphone case.

Compared with GCC, the SRP method provides additional degrees of freedom that
allows us to smooth over microphone pairs instead over frequency. In fact, the
cost function (6.47) may be evaluated for each frequency separately. Thereby, the
method can be easily extended to multiple sources with disjoint frequency spec-
tra.

6.5.2 Minimum Mean Square (MMSE) Approach

This approach was developed in [Liu et al. 2000] and extended in [Madhu et al.
2006] and is based on the model of (6.14). The idea behind this approach is to
search for appropriate phase compensation factors e ΩfSTm(r) for each channel m
such that the mean-squared error between the phase compensated signals of all pairs
is minimized. Note that from the localization point of view, the phase compensation
factors are parametrized by the candidate source positions. This may be expressed
as

r̂s = argmin
r

∑
�,m
� �=m

E
{∣∣∣Yme ΩfSTm(r) − Y�e

 ΩfST�(r)
∣∣∣2} (6.52)

= argmin
r

∑
m

Φymym
−
∑
�,m
� �=m

e ΩfS(T�(r)−Tm(r))Φy�ym
.

It may be seen that the first term is again independent of any phase compensa-
tion factors and may thus be neglected, leading to the following simplified cost func-
tion

J (r,Ω) = −
∑
�,m
� �=m

e ΩfS(T�(r)−Tm(r))Φy�ym
. (6.53)

Thus, the MMSE approach is fully equivalent to the SRP approach and also falls under
the umbrella of the GCC. Similar to PHAT, it is possible to weight the cross-power
spectral density using various other criteria. One – rather heuristic – weighting, which
gives good results is suggested in [Madhu et al. 2006]:

J (r,Ω) = −
∑
�,m
� �=m

e ΩfS(T�(r)−Tm(r))Φy�ym
|Γ�m(Ω)|2 , (6.54)

where Γ�m(Ω) indicates the coherence between channels � and m at the frequency Ω.
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6.5.3 Practical aspects

In practice, source location estimates are computed on finite time records of the
observed signals using the discrete Fourier transform (DFT) on segmented, windowed
frames of the discrete time signals ym(k). In this case, the expectation is dropped in
favor of an instantaneous estimate for each frame λ or the expectation is computed
by a first-order, temporal recursive smoothing. For the former case, the cost function
may be written in each frequency bin µ as

J (r, µ, λ) = HH(r, µ)Y(µ, λ)YH(µ, λ)H(r, µ) (6.55)

=
∑
�,m

H∗
� (r, µ)Hm(r, µ)Y�(µ, λ)Y ∗

m(µ, λ)

=
∑
m

|Hm(r, µ)|2|Ym(µ, λ)|2+
∑
�,m
� �=m

H∗
� (r, µ)Hm(r, µ)Y�(µ, λ)Y ∗

m(µ, λ)

from which point on, the procedure to localize the source is exactly the same as
outlined in Sec. 6.5.1 and 6.5.2, namely

r̂s(µ, λ) = argmax
r

∑
�,m
� �=m

H∗
� (r, µ)Hm(r, µ)Y�(µ, λ)Y ∗

m(µ, λ) . (6.56)

Note that the cost function may also be weighted as in (6.51) as

r̂s(µ, λ) = argmax
r

∑
�,m
� �=m

H∗
� (r, µ)Hm(r, µ)

Y�(µ, λ)Y ∗
m(µ, λ)

|Y�(µ, λ)||Ym(µ, λ)| (6.57)

or in a manner similar to that in (6.54).

When the signals to be localized are broadband, the computed cost function for each
bin µ as in (6.57) could, additionally, be averaged across all frequencies as in [DiBiase
et al. 2001], [Omologo, Svaizer 1994] yielding an estimate for the source location rs(λ)
per frame λ as

J (r, λ) =
∑

µ

∑
�,m
� �=m

H∗
� (r, µ)Hm(r, µ)

Y�(µ, λ)Y ∗
m(µ, λ)

|Y�(µ, λ))||Ym(µ, λ)| (6.58)

r̂s(λ) = argmax
r

J (r, λ) .

6.5.4 Subspace Based Approaches

The MUltiple SIgnal Classification or the MUSIC algorithm proposed in [Schmidt
1981] is a subspace based approach. It works on the farfield model, but may be
extended to the nearfield case, too. It was originally proposed as a solution to the
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problem of localization of Q narrowband, uncorrelated sources, with Q < M . This
approach can be extended to the wideband scenario in an incoherent [Wax, Kailath
1984b] or a coherent [Wang, Kaveh 1985], [Yoon et al. 2006] manner. In our discussion,
we shall restrict ourselves to the narrowband formulation.

We consider again the frequency domain model as in (6.8),

Y = AS + V , (6.59)

where we drop the frequency variable for convenience. Computing the spectral co-
variance matrix Φyy, we obtain

Φyy = E
{
YYH

}
(6.60)

= AE
{
SSH

}
AH + E

{
VVH

}
= AΦssAH + Φvv (6.61)

= AΦssAH + ΦvvI , (6.62)

where the source signals and the noise are assumed to be independent. The last
step follows when the noise is spatially uncorrelated and with the same variance at
each microphone. The covariance matrix may be decomposed using the eigenvalue
decomposition, yielding

Φyy = U (D + ΦvvI)UH . (6.63)

For Q < M sources, the diagonal matrix D is singular and contains the Q dom-
inant eigenvalues, corresponding to the spectral power of the sources. Therefore,
we may arrange the eigenvalues ρqq of D according to decreasing order of magni-
tude,

ρ11 > ρ22 > . . . > ρQQ > ρQ+1Q+1 = . . . = ρMM = 0 . (6.64)

Correspondingly, the first Q eigenvectors uq span the so-called signal-plus-noise sub-
space, whereas the M − Q eigenvectors uq, Q < q ≤ M span the noise-only sub-
space.

From (6.60) and (6.63) it may be seen that the M −Q eigenvectors of the noise-only
subspace define the null space of A. Consequently, if we define a spatial spectrum
SMUSIC(r) over all candidate source locations r as

SMUSIC(r) =
1

HH(r)UvUH
v H(r)

, (6.65)

where H(r) =
(
e ΩfST1(r), . . . , e ΩfSTM (r)

)T
is a steering vector towards candidate

source location r and Uv is the M × (M − Q) matrix containing the eigenvectors
corresponding to the noise-only subspace, the locations r corresponding to the Q
peaks of the spectrum are the sought source positions

r̂sq
= argmax

r
SMUSIC(r) . (6.66)
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Alternatively, we may obtain the source propagation vectors as

r̂sq
= argmax

r
HH(r)UsUH

s H(r) , (6.67)

where Us is the M ×Q matrix containing the eigenvectors corresponding to Q domi-
nant eigenvalues, spanning the signal-plus-noise subspace.

Single-Frame MUSIC

The traditional MUSIC approach is batch based: it requires the estimation of the
spectral covariance matrix to determine the number of dominant eigenvalues and
corresponding eigenvectors. A simple modification of this approach leads to, what
we term, the single-frame MUSIC approach, which bears a close relation to the SRP
algorithm discussed previously.

The idea behind single-frame MUSIC is as follows. The matrix

Φ̂yy = YYH (6.68)

is of rank one. Thus, an eigenvalue decomposition of this matrix yields one dominant
eigenvalue ρ11 with its corresponding eigenvector u1. The single-frame MUSIC spec-
trum SMUSIC(r) from (6.65) is then computed, where the matrix UvUH

v is obtained
as

UvUH
v = I − u1uH

1 . (6.69)

The maxima of SMUSIC(r) then indicate the propagation vectors.

We shall now discuss the relation of the single-frame MUSIC approach to the SRP
in (6.49) for a single source. In this case, A(rs) simplifies to a column vector and
(6.68) may be rewritten as

Φ̂yy = (A(rs)S + V) (A(rs)S + V)H
. (6.70)

It is easily verified that the dominant eigenvector is

u1 =
A(rs)S + V
‖A(rs)S + V‖ (6.71)

=
Y
‖Y‖ ,

with the corresponding eigenvalue of ρ11 = ‖Y‖2. Maximizing the MUSIC spectrum
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of (6.65) as in (6.66), we have

r̂s = argmax
r

1
H(r)HUvUH

v H(r)
(6.72)

= argmax
r

1
H(r)H

(
I − u1uH

1

)
H(r)

= argmin
r

1
H(r)Hu1uH

1 H(r)

= argmax
r

H(r)Hu1uH
1 H(r) ,

which, combined with (6.71), is closely related to the SRP cost function (6.57).

6.5.5 Maximum Likelihood Estimation (MLE)

The subspace and beamformer based approaches presented in the previous sections
are computationally attractive. However, when multiple partially or fully coherent
sources are present, the performance of these estimators is suboptimal. An alter-
native is to exploit the underlying data model more completely. This leads to the
development of the so-called parametric methods in the frequency domain, of which
maximum likelihood (ML) estimators form an important class. Partial or complete
signal coherence does not pose conceptual problems for the MLE approaches [Krim,
Viberg 1996], [Jaffer 1988], [Böhme 1986]. Moreover, estimates obtained using MLE
approaches can be shown to be asymptotically consistent and attaining the Cramér–
Rao lower bound.

ML approaches require models of the probability density function of the signals under
consideration. In this chapter we consider the deterministic ML approach, where the
source signals are modeled as deterministic and unknown and the noise is assumed to
be stationary and Gaussian distributed. The stochastic ML approach, where both the
source signals and the noise are assumed to be stationary and Gaussian distributed,
with the source signals being independent of the noise, will not be treated here.
We consider again the signal model in the DFT domain where µ and λ denote the
frequency bin index and the frame index, respectively,

Y(µ, λ) = A(µ)S(µ, λ) + V(µ, λ) . (6.73)

The noise is assumed to be spatially white. If this is not the case, the received signals
at the microphones need to be prewhitened (for whitening approaches see, e.g., [Eldar,
Oppenheim 2003]). In what follows, we drop the frequency bin index µ.

If we assume that the source signals are deterministic and unknown and that the noise
is Gaussian distributed and spatially white, we have

E
{
V(λ)VH(λ)

}
= ΦvvI (6.74)

p(Y(λ)|A,S(λ)) =
1

(πΦvv)M
exp

(
−‖Y(λ) − AS(λ)‖2

Φvv

)
, (6.75)
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where p(· | ·) represents the conditional probability density function and ‖·‖ represents
the Euclidean norm. Under the assumption that the measurement at each time frame
is independent, we obtain, for Λ time records

p(YΛ
1 |A,SΛ

1 ) =
Λ∏

λ=1

p(Y(λ)|A,S(λ)) , (6.76)

where YΛ
1 = (Y(1), . . . ,Y(Λ)) and SΛ

1 = (S(1), . . . ,S(Λ)) are the sensor and source
signal matrices, respectively.

The aim of the deterministic ML approach is then to find the optimal parameter
vector

θ = (rT
s1

, rT
s2

, . . . , rT
sQ

,ST (1), . . . ,ST (Λ),Φvv)T

such that we maximize the likelihood function p(YΛ
1 |θ).

For mathematical tractability, often the log-likelihood function defined as
L(θ) = loge

(
p(YΛ

1 |θ)
)

is used. Owing to the monotonicity of the loge function,
the θ that maximizes the log-likelihood function will also maximize the likelihood
function. Thus

L(θ) =
Λ∑

λ=1

loge (p(Y(λ)|θ)) (6.77)

= −MΛ loge(πΦvv) − 1
Φvv

Λ∑
λ=1

‖Y(λ) − AS(λ)‖2 (6.78)

and

θ̂ = argmax
θ

L(θ) (6.79)

= argmin
θ

(
MΛ loge(πΦvv) +

1
Φvv

Λ∑
λ=1

‖Y(λ) − AS(λ)‖2

)
. (6.80)

Minimizing (6.78) with respect to θ we obtain the well known solutions [Wax 1992],
[Chen et al. 2002]

ÂML = argmin
H

∑
λ

YH(λ)P⊥
HY(λ)

= argmax
H

∑
λ

YH(λ)PHY(λ) (6.81)

Φ̂vv =
1

MΛ

∑
λ

YH(λ)P⊥
HY(λ) (6.82)

Ŝ(λ) = Â†
MLY(λ) , (6.83)
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where PH = H
(
HHH

)−1
HH and P⊥

H = I − PH are the projection matrices onto
the columnspace and onto the null-space of H, and Â†

ML = (ÂH
MLÂML)−1ÂH

ML

is the Moore–Penrose pseudoinverse [Strang 1988] of ÂML. Note that H is the
steering vector matrix that is parameterized by the hypothesized source locations.
The optimal H should then provide a good estimate of A and of the source loca-
tions.

For the case of a single source S1, A = A(rs) and the optimal source location is
obtained as the position that maximizes (from (6.81))

r̂s = argmax
r

∑
λ

|HH(r)Y(λ)|2
‖H(r)‖2

(6.84)

= argmax
r

∑
�,m
� �=m

Φ̂y�ym
H∗

� (r)Hm(r) ,

where Φ̂y�ym
= 1

Λ

∑
n Y�(λ)Y ∗

m(λ) is the estimate of the corresponding power spectal
density and H (r) is the steering vector along r. Recognize that (6.84) is simply the
normalized beamformer of (6.49).

6.6 Evaluation of Localization Algorithms

As may be gleaned from the discussions above, most localization approaches utilize
only the second-order statistics of the microphone signals and are closely related.
This section presents the behavior of representative algorithms – for both indirect
and direct methods – in reverberant and noisy situations. While the purpose of
this section is not to perform an exhaustive comparison of the various methods, the
advantages and disadvantages of the algorithms will be mentioned where appropriate.
The algorithms considered are:

indirect methods: GCC-PHAT, CC, LMS, AED
direct methods: SRP-PHAT, MUSIC.

The localization experiments were carried out in a room simulated using the image
method [Allen, Berkley 1979], [Habets 2006]. The room dimensions were 3m× 5m×
4 m. A microphone array with M = 5 microphones was used. The microphones were
placed linearly at distances of 3 cm, 8 cm, 15 cm, and 25 cm, respectively, from the first
microphone and the array center was located at r = (1.5, 2.5, 1.0)T m. The source was
placed at rs = (1.0, 3.366, 1.0)T m, see Fig. 6.5.

Further, the simulations were carried out for three different reverberation times
T60/s ∈ {0.12, 0.3, 0.5} and, for each case, under three different signal-to-noise
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Figure 6.5: Overview of the simulation setup
a) 3-D image of the simulated room
b) Top-view of the simulated room (θ = π/6)

ratios SNR/dB ∈ {−5, 5, 15}. The sampling frequency was fS = 8000Hz. For the
indirect methods, the two outermost microphones were selected, with a resultant
inter-microphone distance of dmax = 25 cm.

For the GCC-PHAT and the simple cross-correlation approach, the required power
spectral densities were estimated in the discrete Fourier domain by first-order recur-
sive, temporal smoothing with a smoothing constant η as

Φy�ym
(µ, λ) = ηΦy�ym

(µ, λ− 1) + (1 − η)Y�(µ, λ)Y ∗
m(µ, λ) �,m ∈ {1, 2} . (6.85)

The generalized cross-correlation function is then obtained for each frame λ by the
inverse discrete Fourier transform of Φy�ym

(µ, λ).

For the direct methods considered, the search grid was defined in two ways: over
the two-dimensional grid defined in the x–y plane and over a one-dimensional grid
computed over the azimuth with respect to the midpoint of the array. For each
case, in the SRP approach, the cost function was computed per frame as detailed
in Sec. 6.5.3. For the MUSIC approach, the spectrum evaluated over the complete
speech signal (5 s duration) was used to build the statistics upon which the estimate of
the noise-only subspace Uv(µ) was computed, for each frequency bin µ. An estimate
for the source location was then obtained over either the 2-D or the 1-D grid in each
bin.

The parameters for the various methods are summarized in Table 6.2.
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Table 6.2: Algorithm parameters used in the simulations

Filter Window type/ DFT Frame
Algorithm length length (ms) length shift ς η

(ms) (ms) (ms)

CC / GCC-PHAT N/A Hamming/64 128 32 N/A 0.90
LMS 128 Rectangular/128 N/A 0.125 0.005 N/A
AED 128 Rectangular/64 N/A 0.125 0.005 N/A
SRP-PHAT N/A Hamming/128 128 64 N/A N/A
MUSIC N/A Hamming/128 128 64 N/A N/A

6.6.1 Performance of the Indirect Methods

With the chosen positions for the array and the source, the time difference of the
direct path between the two outermost microphones corresponds to about three sam-
pling intervals at 8000 Hz. Figure 6.6 depicts the histograms of estimated time delays
of arrival between the microphones for the different simulation conditions. The his-
togram data is accumulated over 120 estimates. The delay axis is limited to the range
of [−5, 5] sampling intervals, as the maximum possible delay for the array configu-
ration was about 5.8 sampling intervals. In all plots, the dotted line indicates the
true time difference between the direct paths, which was obtained from the room
impulse response for each microphone. It may be seen that the performance of the
algorithms increases with an increase in the SNR – which is to be expected. Under
low reverberation conditions, the estimate of the time delay is almost perfect at high
SNRs. However, as the reverberation increases, a spread may be observed about the
true value. Apparently, the AED approach, with two simultaneously adaptable filters
(one for each microphone) converges better to the true delay difference as compared
with the LMS approach as the reverberation increases.

The simple cross-correlator (CC) has the worst performance among the four. This
could be explained as follows: speech signals possess maximum energy at the lower
frequencies. The CC algorithm applies no explicit weighting to the frequency bins
and, thus, implicitly weights each frequency by the energy of the received signal in
that frequency bin. Therefore, low frequencies are emphasized and higher frequency
contributions are damped in this method. Conversely, time delay information is less
accurate at low frequencies, more so in the presence of noise. Additionally, in re-
verberant conditions, it is the reflections at the higher frequencies that are damped
to a greater extent than the lower frequencies. As GCC-PHAT, GCC-Roth, etc.,
on the other hand, remove this emphasis on the lower frequencies, they lead to an
improvement in performance. This is noticeable especially in reverberant environ-
ments [Gustafsson et al. 2003] where the higher frequencies – which are less affected
by reverberation – contribute more to the delay estimate.
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Figure 6.6: Time delay estimates for different reverberation times and SNRs

Another factor affecting the performance of these algorithms is the smoothing fac-
tor η for the (GCC-PHAT/CC) and the step-size ς for the LMS/AED approaches.
We find that increasing η improves the performance of the GCC-PHAT/CC ap-
proaches bringing them – especially GCC-PHAT – close to the performance of the
LMS/AED approaches. Similarly, a lower step-size ς improves the robustness of the
LMS/AED approaches against noise, but the convergence is slower. In general, the
step-size ς and the smoothing parameter η could be made adaptive: one could use
a larger value in high SNR environments and a lower one when the noise level in-
creases.
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6.6.2 Performance of the Direct Methods

This section deals with the behavior of the SRP-PHAT and the MUSIC algorithms
under the same conditions as for the indirect methods except for the number of micro-
phones. The direct approaches use all five microphones of the array. The performance
of the SRP-PHAT algorithm will be discussed first, followed by the MUSIC approach.

SRP Approach

Figure 6.7 depicts the cost function J (r, λ) computed according to (6.58) over the
one-dimensional search grid along the azimuth. The x-axis indicates the candidate
azimuth angles (measured with respect to the array axis), the y-axis indicates the
time frame (in seconds) and the intensity of a point at any co-ordinates is a measure
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of the cost function value for that time-frame and that candidate location. For the
given source-array constellation, the azimuth angle is π/3 (or 60◦). This forms the
‘ground-truth’ for comparison and is indicated by an ↑ along the x-axis in all the
plots. The time-domain signal at the first microphone is also plotted parallel to the
y-axis.

Three trends are clearly perceivable in all the plots: first, the range of the cost function
values increases with the SNR – this is to be expected because, as the noise level
decreases, the cost function depends increasingly upon the incident signal and yields
a high value only at the true azimuth as perfect phase alignment is obtained among
all microphone pairs. When the SNR is low, the SRP cost function gets smeared
due to chance phase alignments at different azimuths, between different microphone
pairs, reducing the range of values. Secondly, the true azimuth is obtainable even at
low SNRs due to the larger spatial diversity available, as compared with the TDE
approaches considered in the previous section. Thirdly, notice the broadening of the
cost function peaks as reverberation increases – this is to be expected as, due to the
multipath propagation, partial phase alignments are possible along a wider range of
search locations. However, in terms of localizing the source, the performance does not
seem to significantly deteriorate with increasing reverberation – as long as the direct
path is dominant.

As an illustration of the capabilities of the SRP algorithm, the cost function is evalu-
ated over a two dimensional grid along the x–y plane and is given in Fig. 6.8 for the
time frame λ. The true position of the source is indicated by +. The grey bar at the
bottom of each plot represents the microphone array.

Physical considerations dictate that, for a linear array with a relatively small aper-
ture, it is difficult to obtain both the range and the azimuth of the source when the
source is in the farfield. This can be seen in the plots. Note that there is a broad
range of co-ordinates with similar cost function values, lying along a half-hyperbola
centered about the array axis. This is sometimes termed the ‘cone of confusion’ –
sources lying anywhere on this cone would generate the same phase deviations at the
microphones in the absence of reverberation and noise and it is difficult to pinpoint
the location of the source on this cone without additional information, e.g., from a
second array mounted perpendicular to the first. The trends with respect to SNR and
reverberation observed in the previous case may be perceived here, too.

MUSIC Approach

As mentioned before, the MUSIC approach first estimates the noise-only subspace in
each frequency bin from the power spectral density matrix. The latter is obtained,
in practice, from a temporal averaging of the signal spectrum. This averaging might
be either recursive (in which case, MUSIC may be used to yield a source location
estimate in each frame λ) or block based (in which case the location estimates are
computed on a batch basis). For the MUSIC approach, the first step lies in determin-
ing the number of signals present in the system. This is done either by comparing
the values of the eigenvectors or by the application of information-theoretic criteria
as described in [Wax, Kailath 1984a]. Once this is done, the identification of the
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Figure 6.8: J (r, λ) estimates for different reverberation times and SNRs

noise-only subspace is performed as described in Sec. 6.5.4. For the simulations, the
Φxx(µ) matrix was obtained as a temporal average over the spectrum of the complete
speech signal. Figure 6.9 showcases the performance of the MUSIC algorithm over
the 1-D search grid.

The plots indicate the MUSIC spectrum values (normalized to a maximum of 1) for
each frequency (plotted along the y-axis). Note the lack of directivity at frequencies
below 200 Hz. In these bands, it is difficult to obtain an estimate of the source
position due to the infinitesimal phase difference between the microphone signals. As
the frequencies increase, the MUSIC spectrum spread narrows down – corresponding
to increasing directivity at higher frequencies. As expected, the performance improves
with an increase in the SNR. Further, as the room becomes more reverberant, the
MUSIC spectrum begins to spread out across the azimuth – again an effect that is to be
expected, due to the correlated multipath propagation.
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Figure 6.9: MUSIC J (θ, µ) estimates for different reverberation times and SNRs

As in the case of the SRP, a more robust estimate of the source location may be
found, for broadband sources, by averaging the normalized MUSIC spectrum along
the source bandwidth and then finding the maximum as

J (θ) =
∑

µ

J (θ, µ)
max (J (θ, µ))

(6.86)

θ̂s = argmax
θ

J (θ) ,
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Figure 6.10: MUSIC J (r) estimates for different reverberation times and SNRs

when evaluating over a one dimensional grid or

J (r) =
∑

µ

J (r, µ)
max (J (r, µ))

(6.87)

r̂s = argmax
r

J (r) ,

over the two dimensional grid, leading to the incoherent MUSIC approach. Alterna-
tively, one may choose to weight the estimates in each frequency band before averag-
ing.

The MUSIC spectrum evaluated over a two-dimensional grid is illustrated in Fig. 6.10.
Notice, again, the “cone of confusion”, and the broadening of this cone with increas-
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ing reverberation. As before, the grey bar at the bottom of each plot indicates the
microphone array and the + the source position.

6.6.3 The Two-Source Case

A last simulation presented here illustrates the performance of the localization algo-
rithms for a multi-source case. In addition to the first source, we consider another
source located at rs2 = (2.0, 3.366, 1.0)T m, with a corresponding time delay of −3
samples or an azimuth of 2π/3. The two sources are simultaneously active. The room
is simulated with a T60 = 0.12 s and the SNR is 35 dB.

From Fig. 6.11 it is evident that the indirect methods as discussed here make a single
source assumption and thus find it difficult to cope with the multi-speaker scenario.
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There are, however, methods that locate multiple speaker time delays by examining
the secondary peaks of the cross-correlation function, e.g., [Bechler, Kroschel 2003],
[Scheuing, Yang 2006], [Scheuing, Yang 2007]. SRP and MUSIC, on the other hand,
can exploit the additional freedom at different frequency bins to localize multiple
speakers even within a single time-frame.

6.7 Conclusions

This chapter has provided an overview of various, contemporary source localization
approaches. These have been classified, for purposes of convenience, into direct ap-
proaches and indirect approaches. Algorithms cataloged under indirect approaches
first estimate the time delay of arrival (TDOA) between various microphone pairs
and then, based on these values and the geometry of the array, estimate the source
positions. Direct approaches, on the other hand, pick the most likely set of source
positions from a given set of candidate locations.

Further, relations between the various approaches were derived and it was shown
that most approaches exploit only the second-order statistics of the observed micro-
phone signals. In general, this second-order dependence comes about as a result of
making Gaussian assumptions regarding the signal and noise statistics. As these as-
sumptions might not be realistic for speech, these are, perhaps, not optimal source
location estimators. Consequently, future research could focus on incorporating a
priori knowledge of the signal/noise statistics as done, for instance, in [Aichner et al.
2006]. One could also retrieve the source location information as byproducts of the
algorithms on Blind Source Separation.

The performance of representative direct and indirect algorithms were also illustrated
for different noise and reverberation scenarios. Generally, the presence of noise and
reverberation degrades the algorithm performance. However, while localization is
still possible under dominance of the direct path and the corresponding simplified
signal model, attempting to model/estimate the source-microphone room impulse
does improve the performance.

Bibliography

Aichner, R.; Buchner, H.; Wehr, S.; Kellermann, W. (2006). Robustness of Acoustic Multiple-
Source Localization in Adverse Environments, Proceedings of the 7th German Informa-
tion Technology Conference on Speech Communication (ITG).

Allen, J. B.; Berkley, D. A. (1979). Image Method for Efficiently Simulating Small Room
Acoustics, Journal of the Acoustical Society of America, vol. 65, no. 4, pp. 943–950.

Bechler, D.; Kroschel, K. (2002). Confidence Scoring of Time Difference of Arrival Estimation
for Speaker Localization with Microphone Arrays, Proceedings of the 13th Conference
“Elektronische Sprachsignalverarbeitung” (ESSV), Dresden, Germany.



Bibliography 167

Bechler, D.; Kroschel, K. (2003). Considering the Second Peak in the GCC Function for
Multi-Source TDOA Estimation with a Microphone Array, Proceedings of the Interna-
tional Workshop on Acoustic Echo and Noise Cancellation (IWAENC), pp. 315–318.

Bechler, D.; Kroschel, K. (2004). Three Different Reliability Criteria for Time Delay
Estimates, Proceedings of the European Signal Processing Conference (EUSIPCO),
pp. 1987–1990.

Benesty, J. (2000). Adaptive Eigenvalue Decomposition Algorithm for Passive Source Local-
ization, Journal of the Acoustical Society of America, vol. 107, no. 1, pp. 384–391.

Birchfield, S. T. (2004). A Unifying Framework for Acoustic Localization, Proceedings of the
European Signal Processing Conference (EUSIPCO).
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Chapter 7

Multi-Channel
System Identification
with Perfect Sequences
– Theory and Applications –

Christiane Antweiler

7.1 Introduction

The fundamental problem of multi-channel system identification given the input and
the output signals of a multiple input – single output (MISO) system arises in many
application areas such as speech enhancement, acoustics, or mobile communication. In
this chapter a new approach is presented, which is based on the normalized least-mean-
square (NLMS) algorithm in combination with a special class of excitation signals, the
so called perfect sequences (PSEQs). It opens up the possibility of uniquely identifying
the true impulse responses of multiple channels with one measurement in a simple
and efficient way for all numbers of channels and all system lengths. Owing to its
fast tracking property, this new approach also allows the real-time acquisition of time-
variant impulse responses. Furthermore, the method allows an identification of each
kind of linear channel, radio or acoustic, and can easily be extended to multiple input –
multiple output (MIMO) (e.g., wireless) transmission.

Several approaches have addressed the problem of measuring linear and time-invariant
(LTI) system responses. In order to characterize a digital linear, time-invariant sys-
tem, the most direct approach is to apply an impulsive excitation to the system and
analyze its response. For many applications, however, we have to deal with system
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inherent noise (e.g., quantization noise due to A/D conversion) and/or environmental
noise, reducing the accuracy of the measurement. To achieve a sufficiently high signal-
to-noise ratio (SNR) the excitation signal must have high energy uniformly spread over
the frequency range of interest. As the maximum amplitude is limited, compared with
an impulse-like excitation a higher energy level of the signal is possible, if addition-
ally the energy is spread over time. Thus, all spectrally dense signals, such as binary
maximum-length sequences (MLS), swept-sine, time-stretched pulses, etc. can be used
as excitation signals for the system under test. The desired impulse response can then
be recovered by digital signal processing techniques.

One of the most common methods in audio and acoustics is the so called MLS tech-
nique first proposed by [Schroeder 1979]. The MLS technique is based on the excita-
tion of the unknown linear system by an MLS, i.e., a binary, periodic, pseudo-noise
sequence of period length N = 2n − 1, n ∈ IN. It can be generated by shift regis-
ters with modulo-feedback taps [Golomb 1982]. MLSs possess an almost perfect , i.e.,
impulse-like, periodic autocorrelation function. The impulse response of the system
under test is obtained by circular cross-correlation between the stimulus MLS and
its system response, which enables impulse response measurements directly in the
time domain. A more detailed analysis of the MLS technique can be found in [Rife,
Vanderkooy 1989], [Vanderkooy 1994].

The MLS technique was refined by speeding up the cross-correlation calculation with
an algorithm adapted from Hadamard spectroscopy [Nelson, Fredman 1970]. In
[Cohn, Lempel 1977] the relationship of MLS to the so called Hadamard transform has
been shown. It allows the correlation of a maximum length sequence to be computed
in a fast algorithm similar to the FFT, called the fast Hadamard transform (FHT) or
fast M-sequence transform (FMT). Since then several authors have proposed different
methods for transfer function measurements based on the MLS technique in combi-
nation with the FHT (e.g., [Alrutz, Schroeder 1983], [Alrutz 1983], [Borish, Angell
1985], [Borish 1985], [Xiang 1991], [Xiang 1992]).

The major problem of the MLS technique resides in the appearance of distortion ar-
tifacts due to non-linearities inherent in the measurement system. These artifacts are
more or less uniformly distributed along the deconvolved impulse response. To achieve
a higher distortion immunity the inverse repeated sequence (IRS) method was intro-
duced by [Ream 1970], [Dunn, Hawksford 1993]. The stimulus sequence (IRS) is gen-
erated by alternating the sign of the MLS in each period. The deconvolution process,
however, is exactly the same as for the MLS technique.

Two years after Schroeder’s proposition, a new method called the time-stretched pulse
technique for the measurements of impulse responses was proposed by [Aoshima 1981]
and further optimized by [Suzuki et al. 1995]. The excitation signal is based on a
computer-generated pulse, which is processed with pulse expansion and compression
techniques to increase the sound power.

Another well established method is the time delay spectrometry (TDS), deriving trans-
fer functions with the help of sweeps, a sinusoid excitation that is swept over the fre-
quency range of interest [Heyser 1967], [Biering, Pedersen 1983]. This basic approach
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has been further developed by [Poletti 1988b], [Poletti 1988a]. In [Farina 2000] the
so-called logarithmic swept-sine technique was introduced to overcome the limitations
encountered by MLS, IRS and time-stretched pulse methods. Employing a sinusoidal
signal with exponentially varied frequency, it is possible to deconvolve simultaneously
the linear impulse response of the system, and separate impulse responses for each har-
monic distortion order. This method is not limited to linear and time-invariant (LTI)
systems, but can also be used to measure strongly non-linear systems as it inherently
provides an analysis of the system non-linearities.

Finally, the following methods deserve to be briefly mentioned:

• stepped sine, i.e., excitation of the system under test with pure tones in steps
of increasing frequency (e.g., [Schoukens et al. 2000]),

• dual-channel FFT-analysis, based on a division of the output spectrum of the
system by the spectrum of the input signal (e.g., [Herlufsen 1984]), [Mateljan,
Ugrinović 2001].

In practice, there is always a certain amount of noise, non-linearity, and time-variance.
For the evaluation of the diverse techniques we have to consider that all of them differ
in their characteristics such as bandwidth, reproducibility, SNR, handling of nonlinear
artifacts, time consumption for the measurement as well as complexity and that the
choice of an “optimal” algorithm depends on its application. A comprehensive com-
parison of the different methods can be studied, e.g., in [Stan et al. 2002], [Mateljan,
Ugrinović 2003], and [Müller, Massarani 2001].

In 1994/95 we introduced an alternative approach for the identification of an un-
known linear system given the input and the output signal ([Antweiler, Antweiler
1995], [Antweiler, Dörbecker 1994], [Antweiler 1995]). This method can be grouped
into the class of cross-correlation based methods. It relies on the well-known normal-
ized least-mean-square (NLMS) algorithm ([Widrow, Hoff 1960], [Vary, Martin 2006])
excited by a so called perfect sequence (PSEQ) [Ipatov 1979], [Lüke 1992]. PSEQs are
special, periodically repeated pseudo-noise signals with a perfect, impulse-like periodic
autocorrelation function. Owing to these correlation properties, PSEQs represent the
optimal excitation signal for the NLMS algorithm. Thus, with a PSEQ excitation the
NLMS algorithm is capable of identifying a linear, noiseless system within one period
of the sequence. The principle of this NLMS-type identification approach is outlined
in Sec. 7.2.

Owing to its simplicity and good properties, we used this technique routinely for a
couple of years in diverse applications. However, so far this concept has been used only
for single-channel transmission systems. In Sec. 7.3 we will generalize the approach
to the multi-channel case in the sense of a multiple input – single output (MISO)
system. The typical problem of multi-channel system identification as needed, e.g.,
in stereophonic acoustic echo cancellation [Sondhi et al. 1995], [Benesty et al. 1995] is
the non-zero cross-correlation between the excitation signals. As a result, the adap-
tive filters often don’t converge on the true system impulse responses or show poor
convergence speed. Given only a single measured reference signal, adequate excita-
tion signals are required to identify the true impulse response of each channel. As
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part of this work we will present the idea of how this class of optimal excitation
signals can be constructed from PSEQs. The theoretical results are verified via sim-
ulations.

The technology of multi-channel system identification has a wide range of possible
applications in mobile communications, acoustics, digital speech processing, and in
the medical community. Finally, in Sec. 7.4 some of our applications will be presented
and discussed.

7.2 System Identification with Perfect Sequences

The discrete time model in Fig. 7.1 depicts a system for the identification of an un-
known linear transmission system by means of an adaptive filter. For simplicity, we
will assume that all signals are digitized with sampling rate fS . In the following,
we do not differentiate between acoustic or analog signals and their digital coun-
terparts. The unknown transmission path is represented by the impulse response
g = (g0, g1, . . . , gN−1)

T of length N . In the first instance, we assume that the un-
known system is linear and time-invariant (LTI). Later on, time-variant systems will
also be studied. The influence of system-inherent or environmental noise on the adap-
tation process can be taken into account by adding a non-zero noise signal n(k) to
the output y(k) of the system under test.

The adaptation of the digital transversal filter is driven by the normalized least-mean-
square (NLMS) algorithm ([Widrow, Hoff 1960], [Vary, Martin 2006]), i.e., the weights
h(k) of the adaptive filter are updated via the recursion

h(k + 1) = h(k) + α
e(k)p(k)
||p(k)||2 (7.1)

with stepsize α and the error signal e(k)

e(k) =
(
g − h(k)

)T
p(k) + n(k) . (7.2)

n(k)

g

e(k)

p(k)

y(k) y(k)^

Unknown system

System 
identification

h(k)

Figure 7.1: Single-channel system identification with PSEQs
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The vectors and the squared vector norm are given by

h(k) =
(
h0(k), h1(k), . . . , hN−1(k)

)T
,

p(k) =
(
p(k), p(k − 1), . . . , p(k − N + 1)

)T
,

||p(k)||2 = pT (k)p(k) ,

where p(k) denotes the excitation signal.

The NLMS algorithm is well known in applications such as acoustic echo control, e.g.,
[Hänsler 1992], [Antweiler 1995], [Hänsler, Schmidt 2004]. In these applications the
adaptation process is normally driven by speech signals, i.e., colored signals, reducing
severely the convergence speed. As we will verify below, a white noise excitation
provides improved but not optimal convergence speed.

The aim of the identification process, however, is to achieve the best possible match
between the adaptive filter with the impulse response h(k) and the system under test
represented by g. The key to our approach is the use of the NLMS algorithm in
combination with its optimal excitation signal. In the next section, we will study the
geometric interpretation of the NLMS algorithm. This interpretation will help us to
formulate requirements for the optimal excitation signal.

7.2.1 Geometric Interpretation of the NLMS Algorithm

The adaptation process of the NLMS algorithm according to (7.1) can be geometrically
interpreted in terms of a vector space representation, e.g., [Claasen, Mecklenbräuker
1981], [Sommen, van Valburg 1989].

For the geometric interpretation we introduce the distance vector

d(k) = g − h(k) , (7.3)

defining the misalignment between the impulse responses g and h(k). The NLMS
algorithm given in (7.1) changes to

d(k + 1) = d(k) − α
e(k)p(k)
||p(k)||2 . (7.4)

Using the distance vector d(k) and n(k) ≡ 0 in (7.2), we obtain for the error signal
e(k) = dT (k)p(k) , leading to

d(k + 1) = d(k) − α
dT (k)p(k)
||p(k)||2 p(k) . (7.5)

According to Fig. 7.2, the distance vector d(k) is decomposed into two compo-
nents

d(k) = d⊥(k) + d‖(k) , (7.6)
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d(k +1)
d(k)

p(k)

- α d||(k)

d||(k)

d (k)_ |

Figure 7.2: Geometric interpretation of the NLMS algorithm
(here: 0 < α < 1, N = 2)

where d⊥(k) is orthogonal and d‖(k) parallel to vector p(k). The parallel component
d‖(k) can be interpreted as an orthogonal projection of the distance vector d(k) onto
the signal vector p(k):

d‖(k) =
dT (k)p(k)
||p(k)||

p(k)
||p(k)|| =

dT (k)p(k)
||p(k)||2 p(k) . (7.7)

Combining (7.5) and (7.7) results in

d(k + 1) = d(k) − αd‖(k) . (7.8)

The geometric interpretation of (7.8) is that the update of the distance vector d(k+1)
is achieved by subtracting a part of d‖(k), i.e., the orthogonal projection of distance
vector d(k) onto excitation vector p(k). Obviously, only the parallel component
d‖(k) contributes to the reduction of the length of vector d(k). Additionally, Fig. 7.2
visualizes that for a reduction the stepsize α has to meet 0 < α < 2 , which rep-
resents the stability criterion of the NLMS algorithm. For the noise free condition
(n(k) ≡ 0) and a choice of α = 1, the parallel component d‖(k) of the distance vector
d(k) can be completely eliminated and the smallest possible length of |d(k + 1)| is
obtained.

This interpretation shows that the convergence properties of the adaptation process
depend amongst others on the angle between consecutive excitation vectors p(k) and
p(k− 1) . This characteristic will now be exploited in the construction of the optimal
excitation signal.

7.2.2 Optimal Excitation of the NLMS Algorithm

Three main factors determine the convergence performance of the NLMS algorithm:
the stepsize α, the filter length N , and the correlation properties of the excitation
signal [Widrow, Hoff 1960], [Antweiler 1995]. As indicated by the geometric inter-
pretation of the NLMS algorithm (Sec. 7.2.1), at one time instant k and with α = 1
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we can completely eliminate the component of distance vector d(k) in direction of
excitation vector p(k). Consequently, all N components of vector d(k) can be can-
celled, if N consecutive vectors p(k), p(k − 1), . . . ,p(k − N + 1) are orthogonal in
the N dimensional vector space. In this special case, the adaptive filter with impulse
response h(k) and the system under test g match exactly after N iterations, i.e., the
system is identified.

For a better understanding let us suppose in a first step that p(k) is a white noise
process and define the consecutive vectors p∗(k), p∗(k − 1), . . . ,p∗(k − N + 1) each
of infinite length. These vectors are orthogonal in the infinite vector space. For the
adaptation process according to Fig. 7.1, however, we use a vector p(k) of length N ,
which represents the projection of p∗(k) onto the N dimensional vector space. For
this projected set of vectors p(k), p(k − 1), . . . ,p(k − N + 1) the orthogonality in
the N dimensional vector space is not given. Compared with a colored excitation like
speech the white noise process represents a quite good – but not optimal – excitation
signal of the NLMS driven algorithm.

The key to the optimal adaptation of h(k) bases on the use of N consecutive excitation
vectors exactly orthogonal to each other. A special class of pseudo-noise sequences,
the so called perfect sequences (PSEQs) fulfill this requirement. PSEQs are time dis-
crete, binary, ternary or polyphase sequences of length N . The distinctive attribute,
however, is that they show an impulse-like periodic autocorrelation function according
to

ϕ̃pp(λ) =
N−1∑
i=0

p(i) p(λ + i) =

{
||p(λ)||2 λ modN = 0
0 otherwise ,

(7.9)

i.e., ϕ̃pp(λ) vanishes for all out-of-phase values. With this property PSEQs have
ideal correlation properties as all N phase-shifted PSEQs are orthogonal in the N
dimensional vector space. For each time instant, with the N consecutive phase-shifted
vectors p(k), p(k − 1) , . . . p(k − N + 1) we obtain a set of orthogonal vectors, i.e.,
the optimal excitation of the NLMS algorithm.

In order to visualize the effect of a PSEQ excitation, the system according to Fig. 7.1
is excited by a spectrally white noise process and a periodically repeated PSEQ. For
the validation of the above conclusions, the simulations are performed in a first step
under the following constraints:

• the unknown system is linear and time-invariant (LTI)
(except for a sudden change at one time instant),

• the system is noiseless, i.e., n(k) ≡ 0,

• the length of h(k) is “sufficiently long” with respect to the unknown system g .

Owing to the nature of our approach, the period of the PSEQ has to match the length
N of the adaptive filter h(k). Note, the choice of the adequate PSEQ represents no
constraint as PSEQs are available for a large variety of lengths. The optimal stepsize
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Figure 7.3: System distance for PSEQ and white noise excitation; g: time-invariant,
except a sudden change at k = 3000; N = 500, n(k) ≡ 0, α = 1

for these conditions amounts to α = 1. With these assumptions the accuracy of the
identification process is limited only by the characteristics of the excitation signal and
the available computational precision.

The performance of the system identification is evaluated in terms of the (logarithmic)
system distance

D(k)
dB

= 10 log10

||g − h(k)||2
||g||2 . (7.10)

Figure 7.3 shows the results for both stimulus signals. Exploiting PSEQs as stimulus
signal for the NLMS takes 2N iterations in the initialization phase for an exact iden-
tification of the unknown system response g. The delay during initialization is caused
by the settling time N of the system g and by N iterations, which are required to
adapt N filter coefficients. In the continuous adaptation process, only N iterations are
needed to achieve perfect reconstruction (i.e., h(k) = g).

The direct comparison with the system distance achieved with a white noise ex-
citation emphasizes how the NLMS benefits from the excitation with determinis-
tic PSEQs. Let us consider, for instance, that we aim at a system distance of
D(k) = −20 dB. At the point where the system distance for a PSEQ excitation meets
−20 dB, the corresponding curve for a white noise stimulation shows only −1.9 dB.
For the white noise excitation the identification process takes 4.6 times longer to reach
−20 dB.

Figure 7.3 thus confirms the expected theoretical results. In practice, however, we
have to deal with time-variant systems, physical impulse responses of infinite length,
and environmental noise n(k) �= 0. As a result, the generated set of coefficients
h(k) does not normally match exactly the actual impulse response g. These aspects
relevant for practical applications are presented in the next section.
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7.2.3 Influence of Environmental Noise, Stepsize, and Period

The influence of the environmental noise n(k) and the stepsize α on the identification
process can be gained from the well-known statistical analysis of the NLMS algorithm.
Applying two white noise processes as input signals n(k) and p(k) for the system given
in Fig. 7.1 and using the so called independence assumption [Haykin 1996], we get for
the steady-state system distance

D∞
dB

= 10 log10

E{n2(i)}
E{y2(i)} + 10 log10

α

2 − α
. (7.11)

It is easy to show that (7.11) holds even if for p(k) a PSEQ is chosen instead of a
white noise process, see [Antweiler 1995].

The first term on the right-hand side in (7.11) shows the degradation of the
performance in the presence of environmental noise n(k). It states that the
achievable steady-state level of identification equals the (logarithmic) power ratio
10 log10(E{n2(i)}/E{y2(i)}) of the system response. This dependency can easily
be verified via simulation. Figure 7.4-a depicts the performance of the NLMS-type
identification algorithm for a PSEQ excitation and various power ratios. Obviously,
the achievable steady-state performance D∞ is limited by the actual power ratio
10 log10(E{n2(i)}/E{y2(i)}). As an example Fig. 7.4-a shows additionally the system
distance in case of a white noise excitation for a power ratio of -20 dB (dashed line).
As expected the steady-state system distance D∞ is limited accordingly, however, the
adaptation process takes longer to reach the -20 dB.

To achieve a higher noise immunity, we make use of a smaller stepsize 0 < α < 1.
This effect is described by the second term of (7.11). The stepsize α determines
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the weighting applied to each coefficient update. The choice of a smaller stepsize
implies averaging and, thus, reduces the interfering influence of n(k). The effect of
the stepsize is visualized in Fig. 7.4-b. The comparison of the curves obtained for
different stepsizes α reflects the improvement due to the averaging effect. However,
besides the gain of steady-state performance, Fig. 7.4-b also illustrates a decreasing
convergence speed.

Note that a similar procedure is applied in the MLS technique to reduce the effects of
distortion [Rife, Vanderkooy 1989], [Xiang 1991]. Here, the system output is averaged
over a number of MLS periods before the periodic impulse response is computed. In
[Antweiler, Dörbecker 1994], [Antweiler 1995] it has been shown that both averaging
procedures are equivalent.

Besides the environmental noise and the stepsize, the length of the impulse response
h(k) and the period of the PSEQ also influence the performance of the identification.
To distinguish between the length of the impulse response g, the length of the adaptive
filter h(k), and the period of the PSEQ, we introduce the constants Ng, Nh, and Np,
respectively.

Owing to the nature of the approach, the period Np of the PSEQ has to match the
length Nh of the impulse response h(k), i.e.,

Nh = Np . (7.12)

For the choice of a smaller period length (Nh > Np) not all directions of the distance
vector d(k) in the N dimensional vector space can be excited resulting in a limited
system distance D∞. In the other case, with Nh < Np we obtain similar conditions
as with a white noise excitation. Thus, the convergence speed degrades significantly.
Figure 7.5 reflects these two effects in terms of the dashed curves. For an actual
realization the condition (7.12) can easily be satisfied. As PSEQs are available for
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Figure 7.5: System distance for different lengths Ng, Nh, and Np

α = 1, n(k) ≡ 0, g: RIR, Ng = 1022, Nh and Np: 510, 1022, 1524
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a sufficient number of lengths, the choice of the adequate PSEQ with Np = Nh

represents no constraint. For this reason, we will assume below that N = Nh = Np,
if not specified otherwise.

As known from the theory in Sec. 7.2.2, optimal performance is obtained for Ng = N
assuming α = 1 and n(k) ≡ 0 (see also Fig. 7.3 and Fig. 7.5). In most applications,
e.g., in acoustics, the systems are of infinite length and the condition Ng = N is
difficult to meet. A restriction in the length N inevitably leads to a limitation of
the attainable system distance. Figure 7.5 confirms the behavior to be expected from
the geometric interpretation. For α = 1 and n(k) ≡ 0 the identification of the filter
coefficients is given by

hk mod N (k) = δ(k mod N) ∗ ĝk ; with ĝk =
{

gk k < Ng

0 k ≥ Ng , k < 0 ,
(7.13)

where δ(k) denotes the unit impulse and ∗ the convolution operator. In order to stop
the impulse response h(k) from wrapping back on itself and causing an error known
as time aliasing , the adaptive filter must be long enough so that the system under
test decays to a negligible value.

For the parametrization of our system in a new application we either estimate the-
oretically the length Ng to be expected or perform initial test measurements with
definitely oversized PSEQs. On this basis the length of N is chosen keeping in mind
that the choice of N always represents a compromise between convergence speed and
time aliasing effects.

7.2.4 Odd-Perfect Sequences

There exist different classes of PSEQs [Lüke 1992]. PSEQs might take two, three,
or more amplitudes and differ in their construction method, availability of lengths or
energy efficiency

η =

N−1∑
κ=0

|p(κ)|2

N max
κ

|p(κ)|2 . (7.14)

Hence, they have different effects on the process of system identification. For most
applications the sequences should exhibit a high energy efficiency. Therefore, and
for ease of implementation, binary sequences are most preferable. Unfortunately, no
perfect binary sequence of length N > 4 is known. For this reason, we use ternary
sequences, most frequently the so called Ipatov sequences [Ipatov 1979] and odd-perfect
sequences [Lüke, Schotten 1995].

Ipatov sequences are symmetric ternary sequences with a perfect periodic autocorrela-
tion function according to (7.9). A construction is possible for all lengths

N =
qw·r + 1
qw + 1

with q > 2 prime, w ∈ IN and r ≥ 1 , odd. (7.15)
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Ipatov sequences represent one class of sequences with a generally high energy effi-
ciency.

The orthogonal requirements, however, can also be met with sequences possessing a
periodic odd autocorrelation function of the form

ϕ̂pp(λ) =
N−1∑
i=0

p(i) p(λ + i) =

 ‖p(λ)‖2 λ mod 2N = 0
−‖p(λ)‖2 λ mod 2N = N

0 otherwise .
(7.16)

In [Lüke, Schotten 1995] a construction method of such sequences is presented. These
so called odd-perfect sequences are symmetrical, quasi-binary sequences, which, except
for a (leading) zero, only take two amplitudes p(κ) ∈ {+a, −a}, κ = 1, 2, . . . N − 1.
The odd-perfect sequence of length N = 6, e.g., is

p(κ) = {0, a, a, a, −a, a} . (7.17)

For the system identification approach the odd-perfect sequence is periodically applied
in an odd-cyclic manner, i.e., the sign is alternated in each period. The example of
(7.17) would lead to the periodic excitation signal

p(k) = {0, a, a, a, −a, a, 0, −a, −a, −a, +a, −a, 0, a, a, . . . } . (7.18)

According to Sec. 7.2.2, also for odd-perfect sequences optimal identification of the
unknown LTI system is achieved, as the periodic odd autocorrelation function ϕ̂pp(λ)
vanishes, like the periodic autocorrelation function ϕ̃pp(λ) of PSEQs, for all out-of-
phase values λ = 1, ..., N − 1.

As the period length must be adapted to the length of the adaptive filter, it
is of particular advantage that odd-perfect sequences can be generated for every
length

N = qw + 1 with q > 2 prime, w ∈ IN. (7.19)

In Fig. 7.6 the lengths of all possible Ipatov and odd-perfect sequences up to 1000
are depicted. In this range in total 185 odd-perfect sequences can be constructed,
whereas only 15 Ipatov sequences exist.

Odd−perfect sequences

Ipatov sequences

100 200 300 400 500 600 700 800 900 10000

Possible lengths N

Figure 7.6: Lengths of all possible Ipatov and odd-perfect sequences, N < 1000
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As odd-perfect sequences contain for all possible lengths only one single zero, the
resulting energy efficiency

η =
N − 1

N
(7.20)

is even higher than for Ipatov sequences. One example of the impact of the energy
efficiency is given in [Antweiler, Antweiler 1995]. Simply the use of an odd-perfect
sequence (N = 122) instead of an Ipatov sequence (N = 121) already results in an im-
provement of ∆D∞ = 1.7 dB (α = 1, n(k): white noise).

Owing to the theoretic analogy of perfect and odd-perfect sequences, in this applica-
tion we will not distinguish between the two classes of sequences. All the following
discussions hold for perfect and odd-perfect sequences.

7.2.5 Tracking of Time-Variant Systems

So far the system identification approach with PSEQ excitation was examined under
the assumption that the impulse response under study g is not a function of time. In
practice, however, we normally have to deal with time-variant systems g(k). Reasons
for time variations are, e.g., persons in a room, fading in mobile radio channels, or
slow heating of a loudspeaker voice coil.

In [van de Kerkhof, Kitzen 1992] the tracking properties of an NLMS-type adaptive
filter in the application of modelling an unknown time-variant system were studied.
It was shown that the NLMS driven algorithm with a white noise excitation is unable
to track time-variant changes fast enough.

In contrast to these investigations, our proposal benefits from the use of the opti-
mal excitation signal, i.e., the PSEQ. Owing to the special correlation properties of
PSEQs, the NLMS algorithm is capable of identifying an unknown impulse response
within N iterations and to keep track of changes in this scale. Furthermore, the most
state-of-the-art measuring systems employ typically blockwise oriented methods, e.g.,
[Alrutz, Schroeder 1983], i.e., a completely new set of filter coefficients is obtained
only every N iterations. The NLMS driven approach, however, operates iteratively.
In each time instant k a new set of coefficients is available, i.e., hi(k) �= hi(k + 1),
∀ i ∈ {0, 1, . . . N − 1}.

To visualize the tracking properties of the proposed identification algorithm,
a synthetic time varying model g(k) is considered, i.e., gi(k) �= gi(k + 1),
∀ i ∈ {0, 1, . . . Ng − 1}. In Fig. 7.7 the time fluctuation of one coefficient gi(k) is
depicted. The results of two identification processes are shown: one with a PSEQ
excitation and one with a white noise excitation signal. The three curves show that
the PSEQ results in a significantly improved tracking.
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(g(k): time-variant, Ng = N = 500, α = 1, n(k) ≡ 0)

As expected the identification with a PSEQ cannot track the synthetic coefficient
instantaneously. Obviously, the identified coefficient lags behind to a certain degree
(< N), but the tendency of the curves does match very well. The comparison with
the results obtained for the white noise excitation shows the benefits of the PSEQ.

As a result of its tracking properties, the identification algorithm with PSEQs provides
in every single iteration step a close approximation of the actual unknown system.
Owing to this capability we use the NLMS-type identification process even to track the
changes of slowly varying systems, e.g., to measure time-variant transmission links in
medical applications or to reproducibly simulate the fluctuations of RIRs, see Sec. 7.4
for more details.

7.2.6 Complexity

The system identification process is based on the well-known NLMS algorithm. Nor-
mally, in each time instant N multiply and add operations are required for filtering
and coefficient update, respectively. In order to store the filter states and coefficients,
2N storage locations are needed.

However, due to the use of ternary sequences of the form p(κ) ∈ {0, +a, −a},
κ = 0, 1, . . . N − 1, the multiply operations for the coefficient update as well as the
storage locations for the filter states, i.e., the PSEQ, can be significantly reduced.
Thus, in the case of an odd-perfect sequence excitation the NLMS adaptation accord-
ing to (7.1) simplifies to

hi(k + 1) =

{
hi(k) i mod N = k

hi(k) ± β · e(k) otherwise ,
(7.21)
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where the factor

β =
α

(N − 1) · a (7.22)

is a constant for all coefficients i and all time-instants k. The multiplication β ·e(k) has
only to be performed once for each time-instant. Therefore, the NLMS-type identifica-
tion approach is an extremely efficient tracking algorithm.

So far we focused on a system identification algorithm for one single channel. Besides
the theoretical background of the approach we discussed its properties and perfor-
mance. Simulations visualized the various effects. In the following section we will
show how to adapt this concept to a multi-channel system in the sense of a multiple
input – single output (MISO) system.

7.3 Multi-Channel System Identification

As multi-channel system identification is of interest for many applications, in this
section we generalize the basic concept of the NLMS-type identification approach to
the multi-channel case.

The typical problem of multi-channel system identification is the non-zero cross-
correlation between the excitation signals. The adaptive filters either do not converge
on the true impulse responses or converge extremely slowly. As we have only one
single measured reference signal for all observed channels we need an adequate exci-
tation signal to identify all parallel channels simultaneously. In this section we will
present the idea of how a class of optimal excitation signals can be constructed from
PSEQs. First, we will introduce the main idea of the approach and derive an algorithm
for the dual-channel case and, in a second step, we will expand it to multi-channel
systems.

7.3.1 The Dual-Channel Case

For the dual-channel case we consider the system according to Fig. 7.8. The task is
to uniquely identify the true impulse responses g(1) and g(2) by adapting the digital
filters h(1)(k) and h(2)(k), given only the error signal e(k).

The dual-channel NLMS algorithm [Benesty et al. 1995] is given by

h(1)(k + 1) = h(1)(k) +
α e(k)p(1)(k)

||p(1)(k)||2 + ||p(2)(k)||2
(7.23)

h(2)(k + 1) = h(2)(k) +
α e(k)p(2)(k)

||p(1)(k)||2 + ||p(2)(k)||2
(7.24)

with all vectors of length N . The two input signals are denoted by p(1)(k) and
p(2)(k) and have still to be defined. The indices (1) and (2) denote the signals
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Figure 7.8: Dual-channel system identification with PSEQs

and systems of the first and second channel, respectively. The error signal results
in

e(k) =
(
g(1) − h(1)(k)

)T

· p(1)(k) +
(
g(2) − h(2)(k)

)T

· p(2)(k) + n(k) . (7.25)

In order to obtain the optimal excitation signals p(1)(k) and p(2)(k) for the dual-
channel NLMS algorithm, we introduce the PSEQ p̌(k) with period length 2N . For
the first channel we periodically apply p̌(k) as an excitation signal. For the second
channel an N -shifted version of the same periodic excitation signal is applied according
to

p(1)(k) = p̌(k) (7.26)

p(2)(k) = p̌(k − N) . (7.27)

Thus, the period length (2N) of the PSEQ and the length of the adaptive filters (N)
do not match. Below the ‘ ˇ ’ sign will indicate that the marked signal or vector is
based on a PSEQ of period length 2N .

The equations for the NLMS recursion according to (7.23) and (7.24) change to

h(1)(k + 1) = h(1)(k) +
α e(k) p̌(k)

||p̌(k)||2 + ||p̌(k − N)||2
(7.28)

h(2)(k + 1) = h(2)(k) +
α e(k) p̌(k − N)

||p̌(k)||2 + ||p̌(k − N)||2
. (7.29)

Note that all vectors are still of dimension N . Thus, the excitation vectors p̌(k) and
p̌(k −N) contain only half of the underlying PSEQ, i.e.,

p̌(k) =
(
p̌(k), p̌(k − 1), . . . , p̌(k − N + 1)

)T (7.30)

p̌(k − N) =
(
p̌(k − N), p̌(k − N − 1), . . . , p̌(k − 2N + 1)

)T
. (7.31)
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Figure 7.9: Equivalent dual-channel system – serial structure

In order to prove that p(1)(k) and p(2)(k) as defined in (7.26) and (7.27) fulfill the
requirements of optimal excitation signals for a dual-channel system, we introduce an
equivalent model in serial structure. For this reason, we define new combined vectors
with

g|2N =
(
g(1), g(2)

)T

(7.32)

h(k)|2N =
(
h(1)(k), h(2)(k)

)T

(7.33)

p̌(k)|2N = (p̌(k), p̌(k − N))T (7.34)

each of length 2N . Thus, p̌(k)|2N includes the complete PSEQ of period length 2N .
The system reactions y(k) and ŷ(k) can be rewritten as

y(k) = g(1)T · p(1)(k) + g(2)T · p(2)(k)

=
(
g(1)T

,g(2)T
)
·
(

p(1)(k)
p(2)(k)

)
= gT

|2N · p̌(k)|2N (7.35)

ŷ(k) = hT (k)|2N · p̌(k)|2N . (7.36)

Exploiting (7.32)–(7.36), we transform the parallel filter structure of Fig. 7.8 into a
serial structure according to Fig. 7.9, assuming that the transmission systems g(1)

and g(2) can be modelled by a direct form FIR filter. In this reorganized system the
identification process is defined by

h(k + 1)|2N = h(k)|2N +
α e(k) p̌(k)|2N

||p̌(k)|2N ||2
(7.37)

e(k) =
(
g|2N − h(k)|2N

)T · p̌(k)|2N + n(k) . (7.38)
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Except for the initialization phase, the systems of Fig. 7.8 and Fig. 7.9 are equivalent
due to the shift between the two input signals according to (7.26) and (7.27). While
in the system given in Fig. 7.8, N iterations are needed to fill all filter states, in the
serialized system (Fig. 7.9), 2N iterations are required. As we use the serialized system
only to prove whether the shifted PSEQ excitation permits optimal performance or
not, the difference during the initialization is irrelevant.

With the reorganization of the system we reduced the dual-channel case to the known
single-channel problem with all dimensions twice as long. As this problem has been
solved in Sec. 7.2, we can also conclude that with a choice of p(1)(k) and p(2)(k)
according to (7.26) and (7.27) optimal excitation signals for the dual-channel case can
easily be generated. Thus, with these special excitation signals the NLMS algorithm
is capable of uniquely identifying the true impulse responses g(1) and g(2) within one
period (2N).

7.3.2 Simulation Results

In order to verify the above conclusions, we investigate different excitation strategies
for the dual-channel system of Fig. 7.8. Considering the assumptions according to
Sec. 7.2 we compare the results for a PSEQ and a white noise excitation. Figure 7.10
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Figure 7.10: System distance of both channels for PSEQ and white noise excitation;
g(1),g(2): time-invariant, except sudden change at k = 3000;
Ng = N = 511, n(k) ≡ 0, α = 1
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illustrates the system distances

D(1)(k)
dB

= 10 log10

||g(1) − h(1)(k)||2
||g(1)||2 and (7.39)

D(2)(k)
dB

= 10 log10

||g(2) − h(2)(k)||2
||g(2)||2 , (7.40)

i.e., two objective measures to evaluate the quality of the system identification for
each channel. Obviously, the algorithm is capable of perfectly separating and iden-
tifying the true impulse responses of both channels within computational precision,
which is due to the ideal autocorrelation function of p(1)(k) and p(2)(k), and the
zero cross-correlation between the two signals. The only deficit in comparison with
Fig. 7.3 is the deceleration of convergence speed due to the need for longer PSEQ
periods.

The comparison with the results obtained for white noise reflects the benefits of the
PSEQs. Note that for white noise the slope of the corresponding system distances in
Fig. 7.10-a,b are less steep than in Fig. 7.3, as the short-term cross-correlation between
the white noise signals of both channels is not zero.

Finally, we will have a look on the influence of the environmental noise and the av-
eraging effect of a smaller stepsize 0 < α < 1 for the dual-channel system. Following
Sec. 7.2.3, we perform computer simulations for different levels of environmental noise
n(k) and different stepsize parameters α. The results are reproduced in Fig. 7.11.
Apparently, the curves of the two system distances D(1)(k) and D(2)(k) are close to
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each other for all conditions. For the computer simulations in Fig. 7.4 and Fig. 7.11 we
chose N = 510 and 511, i.e., adaptive filters with comparable lengths. Note, however,
that the periods of the applied PSEQs differ with Np = 510 and Np = 1022 for the
single- and the dual-channel case, respectively. The comparison of the corresponding
curves demonstrates the same steady-state performance for the single- and the dual-
channel case according to (7.11). However, between the single- and dual-channel case
differences might occur during the settling phase that are caused by the need for
different PSEQs lengths Np.

As before in Fig. 7.4 we illustrate in Fig. 7.11-a the steady-state performance for
a white noise excitation for a power ratio of −20 dB (dashed line). In principle we
obtain similar results as in the single-channel case. However, noticeable are the strong
fluctuations of D(1)(k) and D(2)(k) around the −20 dB line, which are caused by the
non-perfect short-term cross-correlation between the white noise signals of the two
channels.

In the next section, the dual-channel system identification approach is extended to
an arbitrary number of channels.

7.3.3 Generalization to the Multi-Channel Case

The generalization to multiple channels is performed along the principles presented
in Sec. 7.3.1. In the case of ν channels a PSEQ with period length νN is chosen
and submitted to the first channel. All other channels are excited with phase-shifted
versions according to

p(1)(k) = p̌(k) (7.41)

p(2)(k) = p̌(k − N) (7.42)
...

p(ν)(k) = p̌(k − (ν − 1)N) . (7.43)

This set of excitation signals generated out of one PSEQ represents the optimal excita-
tion for the ν channels, as all considerations of Sec. 7.3.1 also hold for ν ≥ 2.

So far, we focused on the identification of multiple input – single output (MISO)
systems. It should be emphasized that the approach allows the identification of
various kinds of linear systems such as radio or acoustic channels. Furthermore,
the concept can easily be extended to multiple input – multiple output (MIMO)
systems. Note that the introduction of further microphones only increases the
computational complexity, but does not introduce any further fundamental prob-
lems.
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7.4 Applications

The technology of the identification/measurement of one (or more) linear system(s)
by means of an adaptive filter has a wide range of possible applications. Various uses
for such measuring systems can be found in room acoustics. In the investigation of
existing auditoria, for instance, concert halls, theaters, a system for measuring room
impulse responses (RIRs) have a practical use [Xiang 1992]. Another application lies
in the room-acoustic model technique [Allen, Berkley 1979] for predicting acoustic
qualities (e.g., the room reverberation) of a planned acoustic space. Moreover, in
present-day audio applications (that is, virtual reality, auralization, spatialization
of sounds) the importance of measuring binaural RIRs with a very high signal-to-
noise ratio becomes more and more evident [Xiang 1991]. Other possible applications
are loudspeaker testing, speech reverberation cancellation, measurement systems for
hearing-aid characterization [Schneider, Jamieson 1993], and the realization of virtual
musical instruments [Farina et al. 1995]. In the context of mobile communications,
correlation-based identification algorithms are used for radio channel estimation and
fast start-up equalization in synchronous digital communication systems [Milewski
1983], [Molina, Fannin 1993], [Chen et al. 1995].

Owing to its simplicity and generality, the NLMS-based approach with PSEQ excita-
tion has also been used routinely for a couple of years beyond its“classical”application,
i.e., the measurement of acoustic transfer functions. As a result of its convergence
speed, we use the approach, for instance, to track the fluctuations of time-variant im-
pulse responses. Consecutive impulse responses can be used to simulate reproducibly
a real, time-variant transmission link. In [Antweiler, Symanzik 1995] we showed how
to simulate time-variant RIRs for the research and design of acoustic echo cancellation
algorithms. This concept can now be generalized to, e.g., stereophonic echo cancella-
tion. In a medical application we used the measured time-variant impulse responses
to investigate the dynamic behavior of the Eustachian tube function [Antweiler et
al. 2006b], [Antweiler et al. 2006a]. With a measurement prototype we can visualize
the transmission link between the nose and the ear as a function of time – a new
method, which opens up entirely new possibilities in otological diagnostics. These
two examples will be discussed in the following sections.

7.4.1 Simulation of Time-Variant RIRs for Stereophonic Echo
Control

For applications such as acoustic echo compensation, adaptive noise reduction and
acoustic feedback control it is very interesting to reproducibly simulate a real, time-
variant RIR and simultaneously allow an objective measurement of the obtained re-
sults. For this reason, the principle of the NLMS-based identification with PSEQs
has been used for the simulation of time-variant RIRs in the context of acoustic echo
cancellation [Antweiler, Symanzik 1995]. This idea can now be extended to a new
dual-channel simulation concept for stereophonic echo cancellation, as depicted in
Fig. 7.12.
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Figure 7.12: Simulation of time-variant RIRs for stereophonic echo cancellation

The complete set-up can be grouped into four blocks.

Off-line recording
The real unknown system, e.g., an office room or a car interior, is excited via loud-
speakers with the shifted PSEQs p(1)(k) and p(2)(k). Its reaction m(k) is syn-
chronously recorded and stored on hard disk. These files serve as input signals for
the identification process within the simulation package.

Identification of RIRs
The identification algorithm provides in every time instant two sets of coefficients
h(1)(k) and h(2)(k). As a result of its convergence speed both sets represent a close
approximation of the actual acoustic RIRs g(1) and g(2). During the run time of
the simulation the instantaneous sets of coefficients are transferred to the simulation
unit for the time-variant RIRs. The on-line identification can be performed without
the necessity of storing large amounts of data: by storing only the reaction of the
unknown dual-channel system instead of all sets of filter coefficients for all time-
instants k.

Simulation of time-variant RIRs
The convolution of the stereo signals from the far-end x(1)(k) and x(2)(k) with h(1)(k)
and h(2)(k), respectively, and their addition to the near-end signal s(k) provides a
close approximation of an actual room scenario, even taking its time-variance into
account.

Stereo echo cancellation
This set-up can now be used for the design and optimization of a stereophonic echo
cancellation concept under test. Besides the reproducibility of computer simulations,
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objective measures, such as the system distance

D̃(1)(k)
dB

= 10 log10

||h(1)(k) − c(1)(k)||2
||h(1)(k)||2 and (7.44)

D̃(2)(k)
dB

= 10 log10

||h(2)(k) − c(2)(k)||2
||h(2)(k)||2 (7.45)

can be evaluated for time-variant conditions in order to enable an objective assess-
ment.

In practice, for time-variant echo paths and n(k) �= 0 the generated sets of coefficients
do not exactly match the actual RIRs, i.e., h(1)(k) ≈ g(1), h(2)(k) ≈ g(2). However,
the crucial point is that the convergence properties of the left and the right block
of the simulation set-up given in Fig. 7.12 differ significantly. Owing to the PSEQ
excitation the identification process (left block) is capable of efficiently tracking the
fluctuations of a time-variant system within much smaller time constants than the
echo canceler (right block). In other words, the echo canceler works so slowly that
from its point of view h(1)(k) and h(2)(k) represent time-variant RIRs that are close
to reality.

Figure 7.13 gives a simulation example for different extents of time variance. The
variations resulted from a person moving in the acoustic space. For simplicity, the
identification was performed only for one channel (x(2)(k) ≡ 0), as here the focus
lies on the impact of the time-variant RIR. These simulations clearly indicate the
degradation of the echo canceler’s performance under time-variant conditions.

In order to simulate a full-duplex stereophonic teleconference system another micro-
phone and the corresponding signal processing blocks have to be added. It should be
noted that the introduction of a second microphone doubles the complexity but does
not introduce any new or unsolved problem.
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Figure 7.13: System distance for different extents of time variance. c© 1995 IEEE

Identification: N = 2801, n(k) �= 0, x(2)(k) ≡ 0, α = 1
Simulation: N = 553, s(k) ≡ 0, x(2)(k) ≡ 0, α(k) adaptive
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7.4.2 Acoustic Tube Endoscopy

In [Antweiler et al. 2006b], [Antweiler et al. 2006a] we introduced a new concept for
the sonotubometric assessment of the Eustachian tube function – in particular its
dynamic behavior.

In a novel real-time acoustic measurement prototype for otological diagnostics the
Eustachian tube is treated as a linear transmission system (see Fig. 7.14). We apply
a PSEQ in the nasal cavity and record simultaneously the reaction of the nose/ear
system using a microphone located in the ear. Its impulse response is obtained by a
subsequent NLMS-type system identification.

With digital signal processing algorithms we extract two different features according
to Fig. 7.14:

1. The fluctuations of the sound level intensity in the outer ear indicate activity
of the Eustachian tube provoked by, e.g., yawning or swallowing. They are
mapped with the quadratic norm of the impulse response.

2. Based on techniques known from speech processing such as the acoustic tube
model and the Levinson–Durbin algorithm [Vary, Martin 2006], a novel virtual
model of the nose/ear transmission link can be built. The dynamic opening
and closing process of the tube is visualized by an animation of the virtual tube
model over time. By means of this model, a virtual acoustic tube endoscopy can
be carried out.

As a result, the acoustic measurement system allows real-time monitoring of the Eu-
stachian tube activity under physiological conditions. New insights into the dynamics
of the Eustachian tube function can be gained. Future work will aim at a dual-channel
measurement prototype to visualize the transmission links between the two nostrils
and the ear as a function of time.
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Impulse response
of nose/ear 
transmission link

System
identification

PSEQ

+

Trans-
mission
link

Nose

Ear

Digital signal
 processing Tube model
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Figure 7.14: Acoustic measurement system for otological diagnostics
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7.5 Discussion and Conclusions

High quality videoconferencing systems or multi-media applications increasingly re-
quire multi-channel signal processing. Knowledge about the nature of these channels is
needed for the research, design, and development of relevant algorithms.

As part of this work we introduced a new concept for multi-channel system identi-
fication. The approach relies on the NLMS algorithm excited by a set of optimal
excitation signals, each signal featuring a perfect autocorrelation and a zero cross-
correlation to any other signal out of the set. We introduced a simple technique to
generate such sets of optimal excitation signals in terms of shifted PSEQs. It is of
importance that PSEQs are available for a sufficient variety of lengths. Applying a set
of shifted PSEQs to the inputs of a MISO system opens up the possibility of identify-
ing a linear, time-invariant, and noiseless multi-channel system within computational
precision. In other words, with one simultaneous measurement of an arbitrary number
of channels the approach allows the identification and separation of all unknown sys-
tems in parallel. Furthermore, the concept can easily be extended to MIMO systems,
as the consideration of further output reference signals, and thus further channels in
parallel, would only increase the effort, but does not introduce additional algorithmic
problems.

In practice, the advantageous properties of the presented approach permit broadband
measurements with an excellent noise tolerance for systems that are reasonably linear
and time-invariant. Further notable features are the adjustable sampling frequency,
adjustable length of the adaptive filter, ease of implementation, and low computational
complexity.

Beyond the possibility to apply the novel approach as a measurement technique for
unknown multi-channel systems, it can be used – due to its generality and simplicity –
for many other applications. As a result of its convergence speed, we can even use the
identification algorithm to track the fluctuations of time-variant impulse responses.
Therefore, consecutive sets of coefficients can be used to simulate reproducibly real,
time-variant transmission links, e.g., RIRs, for the design of stereophonic echo cancel-
lation algorithms. In a medical application, we use the novel approach to investigate
the dynamic behavior of the Eustachian tube function. With a measurement proto-
type we visualize the transmission link between the nose and the ear as a function of
time. Furthermore, the new identification approach opens up the possibility of extend-
ing the acoustic tube endoscopy to a dual-channel system.
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Review, vol. 1/2.

Heyser, R. C. (1967). Acoustical Measurements by Time Delay Spectrometry, Journal of the
Audio Engineering Society, vol. 15, pp. 370–382.

Ipatov, V. (1979). Ternary Sequences with Ideal Periodic Autocorrelation Properties, Radio
Engineering Electronics and Physics, vol. 24, pp. 75–79.
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Chapter 8

Embedded Speech Coding:
From G.711 to G.729.1

Bernd Geiser, Stéphane Ragot, Hervé Taddei

8.1 Introduction

Speech coding aims at representing speech signals in a format that is suitable for dig-
ital communication. Traditionally, the emphasis has been on compression efficiency,
i.e., to minimize bit rate subject to some quality requirements. However, in practice,
the design of real-world speech coders is mainly governed by application needs and
constraints. This chapter considers a special case of speech coding called “embedded
speech coding”. The underlying concept is illustrated by an example in Fig. 8.1. The
encoder generates a bitstream that has a three-layer structure with one core layer
and two enhancement layers stacked on top of each other. It is assumed that this
structure is hierarchical in the sense that a given layer can only be decoded if under-
lying layers have been received as well. During transmission, a rate adaptation unit
allows one to adaptively reduce the number of bitstream layers according, for exam-
ple, to network conditions or receiver capability. Decoding a downsized bitstream can
be viewed as using nested or embedded decoding algorithms. If only the core layer
is received, the decoder outputs a decoded signal with a basic quality. As soon as
enhancement layers are received, the decoder produces a signal of enhanced quality.
Similarly, the encoding algorithm can be viewed as a core encoder nested in enhanced
encoders. The key feature of embedded speech coding is scalability [Hiwasaki et al.
2004]. Indeed, enhancement layers can bring any kind of functionality, such as au-
dio quality improvement (also called signal-to-noise ratio (SNR) scalability), acoustic
bandwidth extension or mono to stereo extension, in addition to the core functional-
ity. The number of layers and the respective bit rate increments between the layers
define the so-called coding granularity.

Advances in Digital Speech Transmission Edited by R. Martin, U. Heute and C. Antweiler
c© 2008 John Wiley & Sons, Ltd
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Figure 8.1: Principle of embedded speech coding

There are two main motivations for developing embedded speech coders. First, em-
bedded coding is a possible solution to cope with the heterogeneity and variability
in communication systems. Indeed, in real-world applications, links having differ-
ent capacities and terminals with various capabilities may coexist, and their char-
acteristics may not be known in advance at the transmitter side or may vary over
time. For example, users may be connected to a service through a mix of mo-
bile/wireless links (e.g., GSM/GPRS, HSPA, Wi-Fi, Bluetooth) and fixed links (e.g.,
dial-up modems, DSL, optical fiber access). The scalability of embedded codecs allows
one to adapt certain coding attributes, in particular the instantaneous bit rate, in a
flexible and efficient way by simple bitstream truncation, i.e., without re-encoding,
using an asynchronous bit rate adaptation mechanism that is transparent to the en-
coder.

Secondly, nowadays a variety of speech coders is deployed in specific networks and
applications. An example is the interconnection of circuit switched and Voice over
IP (VoIP) networks, which often implement incompatible speech coders, for instance
3GPP AMR in GSM, 3GPP2 EVRC-A/B in cdma2000, ITU-T G.729 and G.711 in
VoIP, and G.711 in PSTN. Hence, format conversion (or transcoding) in the respective
gateways is inevitable to ensure interoperability. In this context, an“embedded exten-
sion” of a widely used core coder (e.g., G.729 or G.711) is a very attractive solution to
deploy a new “enhanced coder” while minimizing the required transcoding overhead
and ensuring interoperability and backwards compatibility with existing infrastruc-
ture and terminals. Note that next generation networks (NGN) will presumably be
entirely based on packet-switched techniques, with the possibility for terminals to
negotiate which coder to use. The need for transcoding is then virtually eliminated
and the bitstream scalability can be exploited to adapt the quality and type of service
(e.g., narrowband/wideband, mono/stereo) according to the user settings and other
characteristics.

The objective of this chapter is to give a comprehensive overview of embedded speech
coding, i.e., from theory to practice, with a focus on conversational applications.
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Note that the terminology of embedded coding may be slightly confusing as the re-
lated literature alternatively refers to this concept as embedded, hierarchical, scalable,
progressive, multi-resolution, successively refinable, or bit-droppable. Hereafter, the
terms“embedded”and“hierarchical”will be primarily used. In the following, first, the
underlying theory and fundamental coding tools are summarized (Sec. 8.2). Then, rel-
evant work on the design and development of embedded speech coders is reviewed and
popular methods are outlined (Sec. 8.3). In addition, the most important embedded
speech coding standards are analyzed (Sec. 8.4). Among others, the ITU-T G.729.1
Voice over IP codec is addressed in particular. To give a more concrete and compre-
hensive treatment of the subject, the chapter concludes with a discussion on network
related aspects of embedded speech coding (Sec. 8.5).

8.2 Theory and Tools of Embedded Speech Coding

The purpose of embedded coding techniques is to facilitate the decoding of partially
received messages. For speech transmission applications, this corresponds to a speech
reconstruction based on a partially received bitstream. The decoder in Fig. 8.1 is, for
instance, able to produce a meaningful output signal if only the “core layer” of the
hierarchically structured bitstream has been received.

The multi-layer bitstream structure from Fig. 8.1 suggests that the embedded decoder
may operate only at the three pre-specified bit rates, but this constraint is actually
not essential for partial decoding. As a matter of fact, virtually every source de-
coder can be modified to feature embedded decoding capabilities. It is, for instance,
possible to estimate missing source parameters based on the received bits. A suit-
able tool for such an estimation is the computation of a conditional expectation, e.g.,
[Vary, Martin 2006, Chap. 5]. However, the conventional “monolithic” encoding con-
cepts usually lead to a clearly sub-optimum performance of the respective embedded
decoder. Therefore, this section introduces encoding concepts that have been particu-
larly designed to facilitate embedded decoding. Consequently, decoded reproductions
that are based on partially received bitstreams can be expected to exhibit an improved
quality.

8.2.1 Basic Principles

Early speech coding methods such as PCM and ADPCM rely solely on the encoding
of the speech waveform. By contrast, today’s most efficient speech coders extract
certain parameters that give a relevant and compact description of the input signal.
These parameters are then quantized [Vary, Martin 2006, Chap. 7] and transmitted to
the corresponding decoder. An important example are linear predictive speech coders
which decompose the input speech signal into a spectral envelope and a residual signal,
cf. [Vary, Martin 2006, Chap. 6]. The residual signal may be further parameterized,
for example, by its pitch period.

Based on the notion of “quantized parameters”, an embedded coding property can in
principle be achieved in two different ways:
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1. The decoder may receive only a part of the quantized parameters. Hence, it can
produce an output signal of intermediate quality. This approach can be termed
“parameter dropping”.

2. On the other hand, a certain parameter or parameter vector may be quan-
tized in a hierarchical fashion. This means that the quantized representation
of the parameter can be reconstructed with different resolutions depending on
the amount of bits received. Such a property is achieved with so-called hierar-
chical (vector-)quantization techniques that — by design — facilitate embedded
decoding.

An example of embedded coding by “parameter dropping” is given in Fig. 8.2-a. The
decoder may either receive only the spectral envelope and gain/pitch information (rate
R1) or, in addition, the coded residual signal (rate R2 = R1 + Rres). In the former
case, the decoder acts as a simple vocoder, while in the latter case, the availability
of a coded residual signal turns the scheme into a typical hybrid speech coder [Vary,
Martin 2006, Chap. 8]. More elaborate methods for embedded speech coding using
“parameter dropping”are introduced in Secs. 8.3 and 8.4.

The second method for embedded coding, the “hierarchical quantization”, is in fact
also applicable to waveform coders. Figure 8.2-b illustrates a very simple example: the
so-called “bit plane coding” of PCM samples. The full PCM resolution is achieved by
quantizing the individual speech samples with, for instance, 16 bits (rate RN ). Lower
bit rates (RN−1, RN−2, . . . , R1) can be obtained by successively omitting the least sig-
nificant bits (LSBs). This scheme incurs a loss in terms of signal-to-quantization-noise
ratio of approximately 6 dB per omitted bit plane. In fact, there are numerous other
advanced possibilities for hierarchical quantization. But before introducing such meth-
ods, the information theoretic perspectives and the resulting performance limits with
respect to practical implementations will be pointed out.
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8.2.2 Approximation Theory

When designing a hierarchical quantizer, one may ask whether or under what cir-
cumstances is it possible to realize hierarchical quantization without loss of “opti-
mality”. An “optimal” hierarchical quantizer offers exactly the same rate-distortion
performance [Berger 1971] at each of its intermediate bit rates as the best monolithic
quantizer for the same rate. In information theory, this problem is usually referred to
as “successive refinement” [Equitz, Cover 1991] although it has already been formally
studied by [Koshelev 1980] as “hierarchical coding”.

It is known that optimal embedded coding, or successive refinement, can only be
achieved for signal sources that obey certain statistics. Consider the simple example
of a uniformly distributed signal versus a signal with Gaussian probability density
function (PDF). The decision levels xi and the corresponding reconstruction values
x̂i of the optimal scalar quantizer with w bit per sample satisfy the Lloyd–Max
conditions, e.g., [Vary, Martin 2006, Chap. 7]. Table 8.1 lists the respective values of
xi for both sources with w ∈ {1, 2, 3}. As a matter of fact, the optimal scalar quantizer
for the uniformly distributed source is already hierarchically structured, because its
decision levels for a given w are contained within the set of optimal decision levels for
all w′ > w. In contrast, such a relationship can obviously not be established for the
Gaussian source1. The observations for the scalar case can be generalized to higher
dimensions d. A source can be hierarchically quantized in an optimal fashion if the
d − 1 dimensional quantization cell boundaries of the optimal quantizer with w bit
per vector form a subset of the cell boundaries for the optimal w′ > w bit quantizer.
These conditions actually define tree-structured quantizers, which are described in
more detail in Sec. 8.2.3.

This rather intuitive interpretation of optimal embedded coding for finite vector di-
mensions corresponds to the formal conditions for successive refinement that have
been established by [Equitz, Cover 1991] and [Rimoldi 1994] based on the theory of
[El Gamal, Cover 1982]. It is shown for high vector dimensions that the “coarsely”
quantized description X̂1, the “refined” description X̂2, and the actual source X need
to form a Markov chain X → X̂2 → X̂1 if both descriptions X̂1 and X̂2 are required
to be optimal in a rate-distortion sense. The Markov property is formally defined by
a specific factorization of the joint PDF p(x̂1, x̂2, x):

p(x̂1, x̂2, x) = P (x̂1|x̂2) · P (x̂2|x) · p(x) ⇔ P (x̂1|x̂2, x) = P (x̂1|x̂2) . (8.1)

In fact, this means that X̂1 needs to be entirely determined by X̂2, i.e., no further
knowledge about the source X is required in order to produce X̂1. It is also concluded
that a coding scheme to realize successive refinement exhibits a tree-structure. In the
following, the most important practical approaches for tree-structured quantization
are introduced (see Sec. 8.2.3). But first, several theoretical constraints that apply to
any practical implementation will be addressed.

1A modified design algorithm for scalar quantizers that enforces this property has been proposed
by [Tzou 1986]. Naturally, optimality at all intermediate bit rates is abandoned in this case, i.e.,
the Lloyd–Max conditions may no longer be satisfied for all w.
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Table 8.1: Optimal quantizer decision levels for the uniform and the Gaussian source
using scalar quantization with 1, 2, and 3 bit

Uniform PDF Gaussian PDF
w [bit/sample]

px(u) = 0.5 for |u| ≤ 1 and 0 else px(u) = N (0, 1)

1 0 0
2 0,±0.5 0,±0.98
3 0,±0.25,±0.5,±0.75 0,±0.5,±1.05,±1.75

Feasibility of Successive Refinement Coding

As shown, rigorous restrictions apply both to signal sources and to the respective
coders in order to achieve true successive refinement. In general, when compared
with the theoretical rate-distortion bound for monolithic quantizers, practical imple-
mentations of hierarchical quantizers either exhibit a certain quality loss (increased
distortion) for a given bit rate or, if the quality is to be maintained, they require
a somewhat higher bit rate (“bit rate penalty”). Figure 8.3-a addresses both cases.
An ideal embedded source coder should ensure that the quality of the decoded signal
at every intermediate bit rate is equal (or at least close) to the quality of a mono-
lithic coder that has been particularly designed for this specific bit rate. Figure 8.3-b
illustrates an exemplary comparison of a three-stage hierarchical quantizer with its
(asymptotically optimum) monolithic counterparts.

An important question is, what penalty arises if the source does not follow the Markov
condition from (8.1). For large vector dimensions the answer has been given by
[Lastras, Berger 2001] where “near-successive refinement” is found to be achievable for
virtually all sources. Hence, the minimum achievable bit rate penalty in hierarchical
coding is upper-bounded. For a two stage coder, it is in particular no more than
either 0.5 or 1 bit/sample, depending on which quantizer stage shall be optimum.
For the mean square error there is an even tighter bound as shown by [Feng, Effros
2003].

Another limitation for practical implementations is found in the coding/decoding
scheme for successive refinement: The generic tree-structured codebooks demanded
by [Equitz, Cover 1991] are sometimes difficult to handle and require a lot of memory.
Actually, the operation of the decoder that is associated with the nth layer of the
quantization tree does, in general, depend on the input of all previous tree layers. The
complexity can be greatly reduced if the individual decoding operations are chosen
to be independent from all preceding stages. A very popular scheme is the addition
of a “refinement” signal to a “base layer” signal. This approach is often called “Multi-
Stage” coding (see Sec. 8.2.3). [Tuncel, Rose 2003] and [Feng, Effros 2003] found that,
using such an additive reconstruction scheme, successive refinement is achievable in
many practically relevant cases.
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Figure 8.3: a) Illustration of “Quality loss” and “Bit rate penalty”
b) Example for a 3-stage coder with constant bit rate increments ∆R

All previously discussed analyses have been conducted in the spirit of rate-distortion
theory (i.e., in the limit of large vector dimensions) and thus exhibit a limited signifi-
cance for practical implementations that typically employ small dimensions. A finite
dimension will in general lead to an additional bit rate penalty or, alternatively, to an
increased distortion at each coder stage. This has been studied by [Voronov, Feder
2000] and [Yang, Zhang 2004] where the redundancy of successive refinement codes
in finite dimensions d is investigated. In fact, there is an additional accumulative dis-
tortion with each coder stage that scales with log(d)/2d.

It can be concluded from the previous discussion that the inevitable bit rate penalty
or performance loss for a practical hierarchical quantizer is determined by several
factors as follows.

1. Source properties — Many relevant sources and their respective optimum quan-
tizers do not follow the Markov property from (8.1). This leads to a certain
(bounded) performance loss.

2. Memory and complexity constraints — Optimal tree-structured codebooks are
not feasible in certain applications.

3. Delay and complexity constraints — Actual implementations only allow for a
finite vector dimension. This induces an accumulative loss for each stage of the
hierarchical coder.

To finally complement the survey of approximation theory, it shall be noted that
there are investigations of hierarchical quantization of a source X for the case that
a second correlated source is available, e.g., [Viswanathan, Berger 2000], [Steinberg,
Merhav 2004], and [Tian, Diggavi 2006]. Potential applications for such methods are
embedded multi-channel extensions to existing coders.
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8.2.3 Hierarchical Vector Quantization Methods

It can be seen from the previous section that the “optimum” hierarchical quantizer
exhibits a tree structure. Other realizations, such as multi-stage quantization, of-
ten turn out to be variants of the tree-structured approach. This section introduces
and discusses several hierarchical quantization methods that are commonly encoun-
tered.

a) Tree-Structured Vector Quantization (TSVQ)

A simple example for a tree-structured vector quantizer with a rate of up to 3 bits
per vector and bit-level granularity is depicted in Fig. 8.4. The quantization of the
vector x is realized according to a binary tree structure. (In general, a granularity of
nbits per stage requires a 2n-ary quantization tree.) For the case of “zero” bit rate
(no bits are transmitted), the reproduction vector is simply the centroid x̂0,0 of the
probability distribution of x. To obtain the first transmitted bit, x is compared with
the codevectors that are associated with the nodes on the first tree level, i.e., x̂1,0

and x̂1,1. The vector that has the smallest distance to x, i.e., the one yielding the
minimum distortion, is chosen. The outcome may be x̂1,0 for instance. Then, in a
second step, x is compared with the vectors that are associated with the respective
child nodes on the second tree level. Again, the closer one is chosen, e.g., x̂2,1. Having
arrived at a leaf of the quantization tree, the quantizer index i is obtained by following
all vertices that define the path to this leaf. For the vector x̂3,2 this would be the bit
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Figure 8.4: Example for Tree-Structured Vector Quantization (TSVQ)
a) Quantization tree for up to 3 bit/vector with bit-level granularity
b) Exemplary PDF of a 2-dimensional random variable x = (x1, x2)T

and graphical representation of the respective quantization tree — the
resulting Voronoi partitioning is shown with dashed lines
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Figure 8.5: Successive reduction of a 3 bit VQ according to [Riskin et al. 1994]. The
embedded index assignments with 3, 2, and 1 bit are shown for each cen-
troid. c© 1994 IEEE

pattern i = (101)2. The obtained quantizer index i offers embedded decoding. Higher
tree layers, i.e., trailing bits of i, may be removed to achieve lower bit rates while
sacrificing as little performance as possible. This scheme obviously corresponds to the
“bit plane coding”from Fig. 8.2-b. Removing the LSB of i = (101)2 leads to the coarser
approximation x̂2,1 from the second tree level. It is apparent that TSVQ requires a
dedicated reproduction codebook for each tree layer. Hence, the storage requirements
are rather demanding. However, the encoding complexity of TSVQ only grows linearly
with the number of bits. In contrast, a fixed rate full search VQ has exponential
complexity. In fact, TSVQ is, in addition to being a hierarchical quantizer, also
attractive for its low computational complexity.

The design of tree-structured quantizers is usually carried out in a greedy fashion. For
bit-level granularity all training vectors x that are associated with the current tree
node are split into two groups (1 bit). This is commonly achieved with well known
VQ design algorithms, e.g., [Linde et al. 1980]. Then, both groups of vectors are split
further until the desired tree depth (i.e., bit rate) is reached. However, this procedure
does not necessarily yield the best TSVQ possible. In fact, only the first stage is
guaranteed to be equivalent to a single stage VQ of the same bit rate. In contrast
to the greedy method, [Riskin et al. 1994] design embedded tree-structured index
assignments for given codebooks. Here, the encoding is performed using the leaf-
layer codebook only,2 which leads to exponential encoding complexity. The lower tree
layers are then formed by successively joining the Voronoi cells of the fine quantizer.
This method, which is illustrated in Fig. 8.5, obviously defines a quantization tree, but
optimality is now achieved for the highest bit rate. In fact, there are numerous other
(usually weighted) “optimality” criteria for TSVQ design as introduced and discussed
by [Effros, Dugatkin 2004]. Further theoretical analysis of TSVQ and its performance
has been conducted by [Neuhoff, Lee 1991]. Also, some generalized schemes are
presented in [Chou et al. 1989] where the quantization tree is optimally pruned to
allow variable rate coding.

2In fact, the quantization process could also proceed as usual, i.e., beginning with the first stage.
However, the quantizers associated with lower tree layers exhibit irregular cell boundaries and
can no longer be realized as “nearest neighbor” quantizers (see Fig. 8.5).
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b) Multi-Stage Vector Quantization (MSVQ)

The MSVQ principle was originally proposed by [Juang, Gray 1982] as a computa-
tionally very efficient VQ method. A simple example with two quantization stages
is depicted in Fig. 8.6-a. In particular, MSVQ is based on a requantization of the
previously obtained quantization error. The coarse (first stage) approximation is
given by x̂1 = Q1 (x) while the fine (second stage) approximation is computed as
x̂2 = Q2 (x − x̂1)+x̂1. Generalization to more than two stages is straightforward. An
upper bound for the performance penalty of this basic MSVQ scheme has been found
by [Erdmann, Vary 2004]. Yet, as indicated in Sec. 8.2.2, MSVQ is a realization of the
specific additive successive refinement problem from [Tuncel, Rose 2003]. There, true
successive refinement has been shown to be achievable for many relevant sources, i.e.,
the elimination of the penalty should in principle be possible. An important idea in
this context has already been proposed by [Lee et al. 1991]. The performance of plain
MSVQ can be improved by applying specific orthogonal transformations to the error
vector x− x̂1 before the quantization with Q2 is carried out. The respective system is
shown in Fig. 8.6-b. With a given transformation matrix Ai, the quantized vector x̂2

of the second MSVQ stage is then computed as follows:

x̂2 = A−1
i · Q2 (Ai · (x − x̂1)) + x̂1 . (8.2)

In general, an individual matrix Ai has to be designed for each quantization cell
of the first stage quantizer Q1. This technique, labeled cell-conditioning, actually
“equalizes” the probability density of the residual error, thus enabling a more effective
second stage quantization. A simple example for a two-dimensional Gaussian source
and a 1 bit quantizer Q1 is given in Fig. 8.6-b. In this example, the transformation
A0 is a rotation by an angle of π while A1 is the identity matrix. In practice, even
a simple scaling factor ai instead of the matrix Ai can yield good results. [Lee et al.
1991] further show that, using (8.2), MSVQ can even reach the performance of single
stage VQ under asymptotic conditions.

As an alternative to cell-conditioned MSVQ according to (8.2), the possibility of suc-
cessively orthogonalized MSVQ stages has been used, e.g., [Moreau, Dymarski 1992].
Here, the contribution of the second stage quantizer is (adaptively) orthogonalized
to the previous reproduction vector: (x̂2 − x̂1) ⊥ x̂1. The underlying assumption
is that the orthogonalized components can be individually optimized while retain-
ing a global “near-optimality”. The scheme is of particular interest if the individ-
ual quantization stages are realized as gain-shape quantizers [Vary, Martin 2006,
Chap. 7]. In this case, it is ensured that the gain factor for a certain component
does not impact all other orthogonalized components. This idea is further discussed
in Sec. 8.3.2.

Another aspect of MSVQ ensues when investigating its application to correlated
sources [Erdmann, Vary 2004]. It turns out that most of the source’s correlation
is already exploited by the first MSVQ stage. Hence, subsequent quantization stages
are often far less efficient than the first one. This observation provides a plausible
explanation for the fact that practical MSVQ schemes usually do not have more than
three stages.
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Figure 8.6: a) Multi-Stage Vector Quantization (MSVQ) with two stages
b) Cell-Conditioned MSVQ with a 1 bit quantizer Q1 (index i ∈ {0, 1}).

The probability density of the quantization error (x− x̂1) depends on
the chosen quantizer index i. The orthogonal transformations Ai are
designed to equalize the error densities as much as possible

c) Transform-Domain Vector Quantization with Progressive Decoding

Instead of applying successive orthogonalizations in each coder stage as described
above for MSVQ, such an operation can also be carried out in advance. Popular
examples for the decomposition of the input signal into orthogonal components are
spectral transformations like the DFT or DCT, sub-band decompositions through
generic digital filterbanks, and wavelet decompositions [Mallat 1999]. A hierarchical
quantization is then naturally obtained by computing a suitable bit allocation and by
applying individual (vector) quantizers to the transformed signal components. Hier-
archical decoding usually proceeds in the order of ascending importance, for instance
from low to high frequencies or from most to least energetic components. This idea
has been introduced as Pyramid Vector Quantization for embedded image coding
[Burt, Adelson 1983]. The approach can, however, not be directly transferred to the
speech and audio coding domain since a time-varying acoustical bandwidth is usually
not considered acceptable. As a solution, missing frequency components can be filled
with an intermediate, possibly artificial, signal (see Sec. 8.3.2 and Sec. 8.4.4). An elab-
orate discussion of a specific scheme with an octave band QMF-tree decomposition is
provided in [Erdmann 2005]. It is concluded that an important advantage over MSVQ
is the rather explicit control over the granularity of the hierarchical bitstream. Actu-
ally such schemes are very attractive if a fairly fine bitstream granularity is required
while a larger vector dimension (increased delay) is allowed. In such a configuration,
a comparatively large number of hierarchical layers (corresponding to the frequency
subbands) can be realized.
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8.3 Embedded Speech Coding Methods

This section provides an overview of research conducted in the area of embedded
speech coding. Interestingly, embedded variants have been investigated and proposed
for almost all relevant speech coding models. This observation emphasizes the evident
interest in embedded coding and stresses its practical relevance. Some proposals have
led to new coding standards; the most prominent standardized embedded codecs are
described in Sec. 8.4.

8.3.1 Embedded DPCM and ADPCM

Differential Pulse Code Modulation (DPCM) and Adaptive DPCM (ADPCM) are
sampled-based waveform coding techniques that are discussed in [Jayant, Noll 1984,
Sec. 6], [Vary, Martin 2006, Sec. 8.3]. The idea of developing embedded DPCM and
ADPCM schemes was first proposed in [Ching 1973]. Figure 8.7 depicts the DPCM
structure with a hierarchical quantizer (Sec. 8.2.3) that is applied to the prediction
error. The prediction has to be computed based on a signal available to both the
encoder and decoder. This requirement can be fulfilled with only the signal recon-
structed from the core layer in error-free condition. Hence, in embedded DPCM, the
enhancement bits are stripped before the prediction is computed. A similar approach
is described in [Wassel et al. 1988] for the special case of embedded delta modulation.
This technique avoids desynchronization between encoder and decoder as well as noise
accumulation in the decoder when the local and distant decoders do not use the same
quantized error. The performance penalty of embedded DPCM (compared with the
non-embedded version) has been analyzed in [Goodman 1980] and was found to be
less than 1 dB in terms of signal-to-noise ratio if the data rate of the core layer is at
least 2 bits per sample.
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Figure 8.7: Embedded DPCM according to [Goodman 1980]. The (adaptive) linear
predictor is represented by its transfer function A(z)
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An alternative realization of embedded DPCM explicitly encodes the DPCM recon-
struction noise by plain PCM to generate enhancement layers [Jayant 1983], [Zhang,
Lockhart 1991], [Zhang, Lockhart 1995]. With some encoding delay, it is even possible
to use an adaptive bit allocation; no side information is needed to inform the decoder
if this bit allocation is based on the past decoded signal.

8.3.2 Embedded CELP

Code excited linear prediction (CELP) [Schroeder, Atal 1985], [Kleijn, Paliwal 1995,
Chap. 3] is regarded as the most bit rate efficient solution for high-quality speech
coding. Owing to the popularity of this model, many studies have been devoted to
embedded CELP coding. In the following, the notational conventions of [Vary, Martin
2006, Chap. 8] are adopted. Furthermore, the CELP excitation is viewed as the sum
of scaled adaptive and fixed codevectors.3

a) Embedded Multi-Stage CELP

CELP coding, which is based on codebooks of excitation sequences, is essentially a
form of gain-shape vector quantization (VQ) with a time-varying distortion measure.
This technique has, in general, large computation requirements, and a great deal
of research has been devoted to finding codebook structures that allow for efficient
search. In particular, in multi-stage CELP [Davidson, Gersho 1988], the fixed part of
the excitation sequence is defined as a linear combination of weighted contributions
from M different fixed codebooks:

M−1∑
m=0

g
[m]
f · c[m]

im
(λ) for λ ∈ {0, . . . , L − 1} , (8.3)

where g
[m]
f is the gain applied to the fixed codevector c

[m]
im

(λ) of index im in the
mth fixed codebook. Therefore, the excitation sequence of length L is constructed
by a form of closed-loop multi-stage vector quantization (MSVQ, Sec. 8.2.3-b). An
important variant of multi-stage CELP coding is vector sum excited linear predic-
tion (VSELP) coding introduced in [Gerson, Jasiuk 1990]. Such techniques are de-
signed to reach a good performance/complexity trade-off at a given fixed bit rate,
which explains that the codebook gains g

[m]
f are typically jointly optimized and quan-

tized.

In multi-stage CELP, the problem of selecting optimal codevectors c
[m]
im

(λ) and gains
g
[m]
f in a least-squares sense can be solved by orthogonalizing each codebook contribu-

tion with previous ones [Dymarski et al. 1990]; the modified Gram–Schmidt algorithm,
Cholesky decomposition, or the Householder transform may be used for this purpose.
In particular, the orthogonalization of adaptive and fixed codebooks is described in
[Taniguchi et al. 1990] and [Johnson, Taniguchi 1990].
3An equivalent model defines the CELP excitation as a scaled fixed codevector filtered through a

cascade of long-term and short-term predictive filters.
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The first realization of an embedded multi-stage CELP codec has been proposed in
[De Iacovo, Sereno 1991]. This narrowband coder operates at 6.4, 8 and 9.6 kbit/s
using M = 3 fixed codebooks. If only the adaptive and first innovation codebooks
are considered, this approach is identical to a classical CELP coder. With one or
two additional fixed codebook contributions, the speech quality is gradually im-
proved. The fundamental differences compared with [Davidson, Gersho 1988] are
as follows.

• Fixed codebook gains are quantized separately to allow for parameter dropping.

• The adaptive codebook is updated using only the first fixed codebook contribu-
tion, which modifies long-term prediction (LTP) in a way similar to the idea of
bit stripping prior to ADPCM prediction (see Sec. 8.3.1).

• The so-called ringing (or zero-impulse response) of the perceptually weighted
LPC synthesis filter is adjusted with only the information available at the lowest
(core) bit rate.

These constraints result in a performance degradation at higher bit rates compared
with non-embedded multi-stage CELP coding. This degradation is evaluated in [De
Iacovo, Sereno 1991] to 0.5 and 1 dB at 8 and 9.6 kbit/s, respectively, in terms of
segmental signal-to-noise ratio. Figure 8.8 shows an example of sequential multi-
stage CELP search similar to [De Iacovo, Sereno 1991] with one adaptive codebook
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Figure 8.8: Embedded multi-stage CELP encoder with one enhancement layer (two
fixed codebooks). A(z) is the transfer function of the linear predictor;
W (z) is the transfer function of the perceptual weighting filter. A common
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(ACB) and only M = 2 fixed codebooks (FCBs). The CELP excitation is constructed
as follows:

u′(λ) = ga · uj(λ) +
M−1∑
m=0

g
[m]
f · c[m]

im
(λ) for λ ∈ {0, . . . , L − 1} , (8.4)

where uj(λ) is the adaptive codevector associated with the pitch index j, ga is the
adaptive codebook gain and the latter term is identical to (8.3). Typically, adaptive
and fixed codebooks are searched sequentially. In this case, the criteria that are mini-
mized for the adaptive and mth fixed codebook search are:

Ea(j, ga) =
L−1∑
λ=0

|v(λ) − v̂j(λ)|2 (8.5)

and

Efm(im, g
[m]
f ) =

L−1∑
λ=0

|v[m](λ) − v̂
[m]
im

(λ)|2. (8.6)

Note that, in Fig. 8.8, the signal x̃
[m]
0 (λ) corresponds to the ringing of W (z)/(1−A(z))

for m = 0 and a ringing adjustment term for m = 1.

Several later investigations have shown that codebook orthogonalization (Sec. 8.2.3-b)
is well suited for embedded multi-stage coding; one important property of orthogonal-
ized codebooks is that separate codebook gain quantization is equivalent to (optimal)
joint quantization [Johnson, Taniguchi 1990]. In [Le Guyader et al. 1992], the or-
thogonalization of [Dymarski et al. 1990] and [Moreau, Dymarski 1992] for CELP is
adapted and it is shown that it is possible to orthogonalize while keeping fast search
algorithms and producing embedded codes. Furthermore, it is worth noting that the
coder described in [Le Guyader et al. 1992] is the first realization of a wideband em-
bedded multi-stage CELP coder. In [Le Guyader et al. 1995], more general and faster
algorithms have been developed.

Interestingly, embedded multi-stage variants of other types of analysis-by-synthesis
coders, namely multi-pulse LPC (MPLPC) and regular pulse excitation (RPE), have
been proposed, too — see, for instance, [Singhal, Atal 1989], [Nomura et al. 1998] and
[Zhang, Lockhart 1997].

b) Pyramid CELP

The so-called “Pyramid CELP” concept as introduced by [Erdmann, Vary 2002] and
[Erdmann 2005] can be viewed as a further specialization of multi-stage CELP with
orthogonalized excitation contributions. Here, the core layer of the coder comprises,
similar to [De Iacovo, Sereno 1991], an adaptive codebook and a first fixed codebook.
Thereafter, a number of subsequent coding stages refine the CELP excitation. In
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contrast to [Le Guyader et al. 1995], the respective individual contributions are or-
thogonal in the sense that they represent distinct frequency subbands of the excitation
signal. In fact, the successive addition of higher frequency bands is called pyramid
coding, a term which has been adopted from the image coding domain [Burt, Adelson
1983]. Yet, this method results in a varying bandwidth that is not acceptable for audio
signals. Thus, at intermediate bit rates, missing excitation components can be filled
with an artificial signal in order to provide a constant acoustic bandwidth. Specifi-
cally, [Erdmann, Vary 2002] use an octave band decomposition of the excitation signal.
Missing spectral components of the excitation signal are generated by a spectral fold-
ing of the respective lowpass version. The advantage of this specific realization is that
both the octave band decomposition and the spectral folding can be seamlessly inte-
grated with the very popular and efficient ACELP codebooks as, e.g., implemented
in [ITU-T Rec. G.729 1996], see also [Erdmann 2005].

c) Subband CELP

The embedded subband CELP method in [Kataoka et al. 1997] is a wideband cod-
ing scheme that splits the input speech signal into low band (0–4 kHz) and high
band (4–8 kHz) signals by means of a QMF filterbank [Vary, Martin 2006, Chap. 4].
The subband signals are then encoded separately with specifically designed CELP
coders. Thereby, the low band coder can also be compatible with a widely de-
ployed standard (e.g., G.729). In the high band, a modified “pitch-less” CELP coder
may be used due to the reduced tonality of speech signals for frequencies above
4 kHz.

8.3.3 Embedded Extensions of CELP Coders

Within present speech communication networks, increased quality demands and the
practical need for interoperability with legacy equipment can only be satisfied simul-
taneously by deploying “add-on” coders on top of existing solutions. These “add-ons”
are, in general, designed to introduce new functionality such as, for example, an ex-
tended acoustic bandwidth or an improved quality for music signals. The respective
techniques can, nevertheless, also be applicable to “from scratch”designs of embedded
speech codecs. In fact, already the Subband CELP scheme from Sec. 8.3.2-c can be
interpreted as an embedded extension of a given coder. A further selection of such
methods is presented in this section.

a) CELP Enhanced by Bandwidth Extension

Being highly bit rate efficient, techniques for an “artificial extension” of the acoustic
bandwidth of speech signals [Larsen, Aarts 2004], [Vary, Martin 2006, Chap. 10] have
attracted considerable attention in the past. A comprehensive overview of the respec-
tive methods and use cases is presented in Chap. 9. In general, they can be roughly
categorized as “bandwidth extension (BWE) without side information” and “BWE
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with side information”, where the latter is closely related to parametric speech cod-
ing. In the context of an embedded speech coder, especially the application of BWE
schemes to conversational CELP codecs is of interest.

The initial motivation for the integration of BWE techniques into wideband CELP
coding (50–7000 Hz) was the increased coding efficiency and also the decreased com-
plexity [Paulus, Schnitzler 1996], [Schnitzler 1998]. It was found sufficient to encode
frequencies above 6 kHz using a parametric model instead of the CELP method, which
is used to encode the lower frequencies. This split band concept has been adopted in
the AMR-WB codec [3GPP TS 26.190 2001], [Bessette et al. 2002], where frequencies
between 6.4 and 7 kHz are artificially regenerated without the use of any side informa-
tion. Only for the highest codec mode, i.e., at 23.85 kbit/s, the gain of the 6.4–7 kHz
band is transmitted. In addition to the increased coding efficiency and decreased
complexity, a further major advantage of using BWE methods in wideband speech
coding is the possibility of enhancing widely deployed narrowband (300–3400 Hz) cod-
ing standards while preserving interoperability with legacy equipment. In this case,
the narrowband coder constitutes the core layer in an embedded coding framework,
whereas the coded BWE side information forms an enhancement layer and is in gen-
eral used to suitably shape an artificial high band “excitation” signal. There are
numerous realizations of this specific setup in the literature such as [McCree 2000],
[McCree et al. 2001], [Taori et al. 2000], [Valin, Lefebvre 2000], and [Krishnan et al.
2007] with additional bit rates between 0.5 and 2.3 kbit/s.4 In particular, the BWE
method described in [Jax et al. 2006a] and [Geiser et al. 2007] has been standardized
in the embedded ITU-T G.729.1 codec, which is described in Sec. 8.4.4. Furthermore,
there are also extended parametric coding models that can perform a BWE of general
audio or music signals for frequencies above 8 kHz, e.g., [Dietz et al. 2002], [3GPP
TS 26.404 2004]. Of course, compared with the speech-specific solutions, this benefit
usually comes at the cost of an increased delay and possibly a slightly ”buzzy” sound
character for speech signals.

In the literature, there are also proposals that perform a parametric bandwidth exten-
sion in the frequency domain. For example, [Oshikiri et al. 2007] implements a BWE
in the modified discrete cosine transform (MDCT) domain with a very low additional
bit rate (800 bit/s). This concept has also been applied to extend speech signals be-
yond the usual wideband range to so-called super-wideband speech with frequencies up
to 15 kHz [Oshikiri et al. 2002], [Oshikiri et al. 2004]. Alternatively, also a full-fledged
transform coding of high frequencies may be used to extend the signal bandwidth.
A scalable narrowband/wideband coder following this concept has been proposed by
[Jung et al. 2004]. Here, the input wideband signal is split in two bands by a QMF
filterbank, the low band is coded by multi-stage CELP with a ITU-T G.723.1 [ITU-T
Rec. G.723.1 1996] core coder and the high band is encoded in the MDCT domain.
A similar approach is taken by [Hiwasaki et al. 2006] based on ITU-T G.711 as the
low band coder. In addition to the bandwidth extension application, the transform
coding concept can also be employed to encode the residual error of CELP coders.
This issue is addressed in the following.
4Meanwhile, even lower bit rates have been reported to deliver adequate quality, cf. Chap. 9 for the

related algorithmic details.
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b) CELP Enhanced by Transform Coding

The link between embedded CELP coding and transform coding can be found in
[Lozach 1993] where the so-called CELP target signal is progressively modelled by
orthogonal vectors resulting from an adaptive transform. However this approach still
suffers from CELP limitations: The encoding of non-speech signals (e.g., music) usu-
ally leads to insufficient quality. [Ramprashad 1999] has clearly described the problems
encountered by LPC-based codecs and the advantages of using embedded coding with
a different non-LPC based paradigm to enhance an LPC-based core codec. For generic
audio signals it is usually better to use codecs based on transform coding concepts.
Yet, such techniques are not adapted to the application of speech coding at low bit
rates. The combination of a CELP codec with transform coding in an embedded cod-
ing framework promises good speech quality at low bit rates (around 8 to 16 kbit/s)
as well as good music quality at higher bit rates.

The most direct approach is to encode the difference between the original signal and
the CELP decoded signal in the transform domain. Often, the difference signal is
coded jointly with high frequencies for scalability in bit rate and bandwidth. This
approach is pursued by [Taddei et al. 1999], where the core coder is ITU-T G.729 en-
hanced by a second CELP layer based on G.729 Annex E. The transform coding part
is based on the modified discrete cosine transform (MDCT), with masking threshold
estimation and bit allocation according to the noise-to-mask ratio per frequency sub-
band. This proposal was modified and improved by [Kövesi et al. 2004], using ITU-T
G.723.1 as a core coder. A similar standardized solution is detailed in Sec. 8.4.3-c.
Moreover, instead of the MDCT transform, the use of a gammatone filterbank was
proposed in [Kim et al. 2002], with G.729 Annex E as a core coder.

Still, CELP and transform coding usually rely on different optimization criteria. One
way to harmonize these two models is to apply a linear-predictive perceptual weighting
filter to the CELP error signal prior to transform coding, and then to encode transform
coefficients with respect to the mean-square error (MSE) criterion. This predictive
transform approach is proposed for instance by [Ragot et al. 2006]. A similar realiza-
tion is further described in Sec. 8.4.4. Note that an embedded predictive transform
coder is already described in [Ramprashad 2000], whereby embedded transform coding
is directly applied after perceptual weighting filtering.

8.3.4 Embedded Parameter Quantization

The embedded coding concept can not only be applied to a speech codec as a whole
but also to individual parameters thereof. An example of embedded coding on the
parameter level is given by the bandwidth scalable LPC coding of [Nomura et al.
1998], [Koishida et al. 2000], and [Ehara et al. 2007]. Here, wideband speech signals
(sampled at 16 kHz) are coded using an embedded codec that is based on a narrow-
band core coder operating at 8 kHz. The narrowband spectral envelope parameters
(LPC coefficients) are quantized in the core coder while the respective wideband pa-
rameters are transmitted in an enhancement layer. Thereby, the decoded narrowband
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parameters are extended in dimension to differentially code the wideband parameters.
Embedded spectral envelope coding is also used in [Aguilar et al. 2000] as part of a
general embedded subband sinusoidal coder. Also note that embedded coding of spec-
tral envelopes is related to “bandwidth extension with side information” as described
in Sec. 8.3.3-a.

8.4 Standardized Embedded Speech Coders

In this section, several embedded speech codecs are summarized that have been stan-
dardized within the “International Telecommunication Union - Telecommunication
Standardization Sector” (ITU-T) and the “Moving Pictures Expert Group” of the “In-
ternational Organization for Standardization”(ISO/MPEG).

8.4.1 ITU-T G.711 PCM Codec

ITU-T G.711 describes a companded (non-uniform) quantization method for speech
signals at 64 kbit/s [Jayant, Noll 1984, Sec. 5.3], [Vary, Martin 2006, Chap. 7]. It
encodes linear PCM signals (16 bits, sampled at 8 kHz) to 8-bit codewords according
to the A-law or µ-law compression characteristic.

In the standard [ITU-T Rec. G.711 1972], the logarithmic compression characteris-
tics are actually approximated by piecewise linear functions. Thus, the 8 bits of a
G.711 codeword specify (in that order): the sign, 3 bits for the segment number of the
approximated compression characteristic, and 4 bits for the position on the selected
segment. Clearly, the resulting bits are ordered by their importance (most to least
significant bit) such that a bit plane coding scheme can be applied. This principle has
already been sketched for linear PCM in the introductory example from Fig. 8.2-b
in Sec. 8.2.1. When keeping the number of bits being “stolen” rather low, e.g., 1 or
2 least significant bits (LSBs) per sample, the introduction of objectionable artifacts
can mostly be avoided.5 Thus, employing bit plane coding and assuming an appro-
priate bit reordering before packetization, G.711 can actually be seen as an embedded
speech codec. In fact, there are international standards that make use of G.711 at
bit rates of 56 kbit/s [ITU-T Rec. H.320 2004] and even 48 kbit/s [ITU-T Rec. H.242
1999].

Apart from embedded coding, a further application of G.711“bit stealing” is signaling,
where one or two LSBs (possibly only for every nth sample) are replaced by signaling
data. An interesting example is the ETSI standard for “Tandem Free Operation”
(TFO) [ETSI GSM 08.62 2000], which replaces the LSBs of G.711 with the bitstream
of another speech codec. The intention here is to establish a virtually transparent
digital channel between two mobile phones while the core network is not aware of the
modified G.711 stream.
5Yet, for the A-law characteristic, which effectively resembles a midrise quantizer [Vary, Martin

2006, Fig. 7.3], inferior performance in coding silence (speech pauses) can be expected.
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8.4.2 ITU-T G.727 and G.722 ADPCM Codecs

ITU-T defined several ADPCM recommendations. First, G.721 was adopted for
32 kbit/s ADPCM encoding of signals sampled at 8 kHz. This recommendation has
been later extended to 24 and 40 kbit/s bit rates in G.723. Finally, these two stan-
dards were superseded by G.726, which is a multi-rate narrowband ADPCM codec
at 16, 24, 32, and 40 kbit/s. G.726 is the standard codec used in DECT wireless
systems [ETSI EN 300 175-8 2005].

Later on, an embedded Adaptive Differential Pulse Code Modulation version of G.726
was adopted under the name ITU-T G.727 [ITU-T Rec. G.727 1990] with the same
bit rates. The underlying principle was introduced in Sec. 8.3.1. From the technical
viewpoint, on the encoder side a prediction error signal is obtained by subtracting
the predicted input signal from the input signal itself based on the output of the
inverse quantizer fed by the core bits. Then, the prediction error is quantized by
an embedded 4-, 8-, 16-, 32-level quantizer. Depending on the chosen bit rate, it is
possible to define the number of bits used for the core quantization. This number
varies between 2 and 4. As a result, the number of enhancement bits varies between 0
and 3 for a codec with a total bit rate between 16 and 40 kbit/s. More details of this
specific standard can be found in [Sherif et al. 1993]. A use case for ATM networks
is described in [Kondo, Ohno 1994].

An embedded wideband ADPCM codec is defined in [ITU-T Rec. G.722 1988] for
encoding wideband signals (50–7000 Hz) at 48, 56, and 64 kbit/s. It is based on the
SB/ADPCM (Sub-Band Adaptive Differential Pulse Code Modulation) model [Maitre
1988], [Mermelstein 1988]. In G.722, a QMF filterbank provides one sample for the low
band (0–4 kHz) and one sample for the high band (4–8 kHz), given two wideband input
samples. The obtained critically downsampled signals are then separately encoded.
The low band is encoded using an embedded ADPCM scheme as in G.727 with 6 bits
per sample. Owing to the embedded property of the quantizer, 1 or 2 bits can be
stolen. The high band is quantized with 2 bits per sample. Hence, the bit rate is 32, 40,
or 48 kbit/s for the low band and 16 kbit/s for the high band. For wideband output,
the total core bit rate is 48 kbit/s. Two low band enhancement layers of 8 kbit/s can
be added. Though, decoding for example the 32 kbit/s of information from the low
band only, G.722 can in fact also be seen as a bandwidth scalable embedded coder. An
application of bit stealing with G.722 is speech-data multiplexing [Mermelstein 1988].
G.722 is also the mandatory codec for wideband speech coding in New Generation
DECT systems [ETSI TS 102 527-1 2007].

8.4.3 MPEG-4 Scalable Speech Coding

The audio coding tools of the MPEG-4 standard [ISO/IEC 14496-3 2005] comprise
several solutions for embedded speech coding. The respective codecs are described in
the following.
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a) MPEG-4 Scalable CELP

MPEG standardized an embedded speech coder [Nomura et al. 1998], the MPEG-4
CELP, which operates in narrowband or in wideband mode (8 or 16 kHz sampling
frequency). The CELP excitation sequence is either constructed via “multi-pulse”
excitation (MPE, cf. [Vary, Martin 2006, Sec. 8.5.4.1]) or “regular pulse” excitation
(RPE, cf. [Vary, Martin 2006, Sec. 8.5.4.2]) with various possibilities for the total bit
rate. A further flexibility of this coder is the support of frame lengths between 10 and
40 ms, depending on the chosen bit rate. An overview of the available configurations
is given in Table 8.2.

The embedded coding feature, i.e., the “bitstream scalability” of the MPEG-4 CELP
codec is restricted to the MPE mode for wide- and narrowband signals. Two kinds
of enhancement layers can be added to the narrowband or wideband CELP core,
which either enhance the quality of the signal or, for a narrowband core, extend the
bandwidth to wideband.

The quality enhancement layers enrich the CELP excitation by encoding additional
MPE contributions. Thereby, the pulse positions are adaptively controlled so that
none of them coincides with a position used in the core encoder. Furthermore, the
enhancement contributions are not considered for the adaptive codebook of the core
CELP. Up to three of these enhancement layers (with 2 kbit/s for narrowband en-
hancement and 4 kbit/s for wideband enhancement) can be added to each base con-
figuration of the MPEG-4 CELP.

The bit rate of the bandwidth enhancement layer is 9–15 kbit/s depending on the
chosen narrowband coder. The transmitted information comprises, again, additional
pulses that complete the (upsampled) MPE excitation and also a refined pitch delay.
In addition, the narrowband spectral envelope needs to be extended to a wideband
representation. Therefore, a predictive scheme (see Sec. 8.3.4) is used where the ob-
tained prediction error is encoded and used in the decoder to reconstruct the quantized
wideband spectral envelope (line spectrum pairs, LSPs).

Table 8.2: Basic configurations of the MPEG-4 CELP codec

Narrowband Wideband
(8 kHz sampling) (16 kHz sampling)

bit rate 3.85–12.2 kbit/s 10.9–23.8 kbit/sMPE mode
frame length 40, 30, 20, or 10 ms 20 or 10 ms

bit rate 14.4–22.533 kbit/sRPE mode
frame length

—
15 or 10 ms
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b) MPEG-4 HVXC Coding

The MPEG-4 HVXC narrowband coder [Nishiguchi et al. 1999] operates at very low
bit rates of 2 and 4 kbit/s. Thereby, the 4 kbit/s version is obtained by an optional
2 kbit/s enhancement layer, hence, HVXC constitutes an embedded codec. Techni-
cally, such very low bit rates can be achieved by making the operation of the coder
dependent on a binary voiced/unvoiced decision. In particular, first, conventional
LPC analysis is performed. Then, the LPC residual in unvoiced frames is coded by
“vector excitation coding” (VXC) which is basically a form of CELP coding with a
fixed codebook only. The residual in voiced frames is treated by pitch estimation
and vector quantization of the harmonic magnitude structure. The 2 kbit/s enhance-
ment layer of HVXC comprises refinements of the spectral envelope (LSPs), of the
harmonic magnitudes (for voiced frames), and of the VXC excitation (for unvoiced
frames). All of these refinement contributions are obtained by multi-stage vector
quantization (Sec. 8.2.3-b).

c) MPEG-4 Combined Scalable CELP and AAC

This variant of the MPEG-4 standard extends the MPEG embedded CELP codec with
a combination of scalable CELP and Advanced Audio Coding (AAC) tools [Grill 1997].
The latter is basically a state-of-the-art transform coder for general audio or music
signals. Such a constellation, i.e., a conversational CELP coder that is combined with
a transform coder, is quite advantageous as shown in Sec. 8.3.3-b. The signal flow
of the encoder is illustrated in Fig. 8.9. Here, the CELP core codec operates at a
lower sampling rate (8 kHz) than the AAC enhancement coder and provides a locally
decoded output that is upsampled to the original sampling rate (up to 48 kHz). The
perceptual AAC coder encodes the residual signal, which is calculated by subtracting
the MDCT spectrum of the core layer signal from the MDCT spectrum of the original
signal. As a result, there are three types of spectrum coefficients available: the low
band core encoded coefficients X̂LB(µ), the low band difference coefficients ∆XLB(µ),
and the low band original coefficients XLB(µ). In the high band, only the original
coefficients XHB(µ) have to be considered. In some cases, when the core codec in the
low band does not encode the low band signal very well, the difference signal ∆XLB(µ)
turns out to be even more difficult to encode than the original signal X̂LB(µ). In these
cases, a bank of switches (inside the “Frequency Selective Switch” module) can be set
such that the original spectrum is directly encoded instead of the difference spectrum.
Finally, the high band frequencies (of the original signal spectrum) are joined with
this combined spectrum and passed to the quantization and entropy coding module
of the AAC coder.

Within this structure, besides the MPEG-4 CELP (Sec.8.4.3-a), several other codecs
have been tested [Grill 1997] as core codecs such as [ITU-T Rec. G.723.1 1996] or [ITU-
T Rec. G.729 1996].
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8.4.4 Embedded Wideband Coding for VoIP: ITU-T G.729.1

The G.729.1 standard is an 8–32 kbit/s embedded speech and audio coder providing
bitstream interoperability with G.729 [ITU-T Rec. G.729 1996], [ITU-T Rec. G.729
Annex A 1996], and [ITU-T Rec. G.729 Annex B 1996]. This coder has been designed
to provide better quality and more flexibility than the existing ITU-T G.729 speech
coding standard, which is widely used in wireline speech communication, e.g., Voice
over IP (VoIP). In fact, G.729.1 offers several kinds of flexibility:

• scalability in bit rate, bandwidth, and complexity,

• support of both 8 and 16 kHz input/output sampling frequency,

• backwards compatibility with G.729/G.729B bitstream format, and

• an option for reduced algorithmic delay at certain bit rates.

Here, “G.729.1” in general refers to the main body of the standard, which is imple-
mented in fixed-point arithmetic. In addition, G.729.1 Annex A defines the associated
payload format for transmission in IP based networks with the Real-time Transport
Protocol (RTP), as well as signaling parameters in H.323 communication sessions
[Hersent et al. 2005]. Finally, G.729.1 Annex B defines an alternative implementation
using floating-point arithmetic. A more detailed algorithmic description of this codec
can be found in [ITU-T Rec. G.729.1 2006] and [Ragot et al. 2007].
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a) Design Philosophy

G.729.1 has been developed in the context of large scale VoIP deployment on high
speed Internet access (e.g., xDSL). Compared with legacy circuit switched telephony
(such as PSTN), VoIP represents a major technology shift that requires new service in-
frastructures and new terminals. VoIP gives the opportunity to improve audio quality
greatly by migrating quickly to wideband speech (50–7000 Hz) instead of narrowband
(300–3400 Hz). Indeed, the wideband feature is a strong differentiating factor to dis-
criminate VoIP from PSTN.

The standardization of a G.729-based embedded coder for wideband VoIP has been
motivated mainly by the fact that G.729 (with its Annexes A and B) is widely used
in VoIP networks and terminals, especially in corporate infrastructure. An embedded
extension of G.729(AB) can then allow one to migrate services smoothly from nar-
rowband to wideband while keeping interoperability with existing VoIP infrastructure
and terminals using G.729(A/AB).

Based on market needs and foreseen applications, the following constraints and re-
quirements have been defined for G.729.1:

• bitstream scalability with an 8 kbit/s core coder which is interoperable with
ITU-T G.729 and its Annexes A and B,

• bit rates from 8 to 32 kbit/s, with narrowband output (at least 300–3400 Hz) at
8 and 12 kbit/s and wideband output (50–7000 Hz) from 14 to 32 kbit/s,

• fine bit rate granularity above 14 kbit/s for maximal flexibility in rate adapta-
tion; byte-level granularity was seen as a desired feature, eventually the bit rate
steps have been set to 2 kbit/s,

• improved narrowband quality at 12 kbit/s compared with ITU-T G.729 as a
reference,

• good clean and noisy speech quality at 24 kbit/s, and

• good music quality at 32 kbit/s.

b) Encoder and Decoder

The G.729.1 encoder and decoder are illustrated in Figs. 8.10 and 8.11. The coder
operates on 20 ms frames. By default, both input and output signals are sampled
at 16 kHz. The encoder normally operates at the maximal bit rate of 32 kbit/s,
however the RTP payload format of G.729.1 allows one to specify a lower encod-
ing bit rate through the Maximum Bit Rate Supported (MBS) field [IETF RFC
4749 2006]. After encoding, the instantaneous bit rate can be adapted in the range
8, 12, 14, 16, . . ., 32 kbit/s by truncating the bitstream on a 20 ms frame basis.
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Figure 8.10: Block diagram of the G.729.1 encoder. c© 2007 IEEE

At the encoder, the wideband input signal is decomposed into two subbands us-
ing a quadrature mirror filterbank (QMF). The low band (0–4 kHz) is pre-processed
by a 50 Hz high pass (HP) filter and encoded by a cascaded CELP coder [Mas-
saloux et al. 2007] (cf. Sec. 8.3.2). The waveform indices of the CELP enhance-
ment layer are searched within an orthogonalization process that allows for a fast
ACELP codebook search [Lee et al. 2003]. This process is actually a special case
of embedded ACELP/VSELP coding as described by [Le Guyader et al. 1995]. The
embedded CELP coder is based on a structure similar to Fig. 8.8 (see Sec. 8.3.2-
a). The main difference to Fig. 8.8 is that, in G.729.1, filtered fixed codevectors
v̂
[m]
im

, λ ∈ {0, . . . , L − 1} are orthogonalized to the filtered adaptive codevector
v̂j(λ), λ ∈ {0, . . . , L − 1}. To be specific, it can be shown that the orthogonalized
filtered fixed codebooks are defined as:

v̂
[m]
im,⊥(λ) = v̂

[m]
im

(λ) −

L−1∑
λ=0

v̂
[m]
im

(λ) · v̂j(λ)

L−1∑
λ=0

v̂j(λ)2
· v̂j(λ) for λ ∈ {0, . . . , L − 1} . (8.7)

Then, the CELP criterion that is minimized for the fixed codebook search is given
by [Le Guyader et al. 1995, Eqs. (23) and (18)]. The orthogonalization process im-
plies only a slight modification in the autocorrelation term of the ”standard” CELP
criterion, see [Massaloux et al. 2007, Sec. 3.1] for details.

The high band components of the G.729.1 input signal (4–8 kHz) are pre-processed by
spectral folding and a 3 kHz low pass (LP) filter. They are encoded by a parametric
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method, which is called “time-domain bandwidth extension” (TDBWE) [Geiser et al.
2007] (cf. Sec. 8.3.3-a). Then, the residual error in the low band and the (original)
high band signal are jointly encoded by the so called “time-domain aliasing cancel-
lation” (TDAC) encoder, which is a transform coder based on the modified discrete
cosine transform (MDCT) [Ragot et al. 2006]. To improve the resilience and recov-
ery of the decoder in case of frame erasures, parameters that are useful for frame
erasure concealment (FEC) — consisting of signal class (voiced, unvoiced, onset, or
voiced/unvoiced transition), phase and energy information — are transmitted by the
FEC encoder based on available low band information [Vaillancourt et al. 2007].

The decoder of G.729.1 operates in an embedded manner depending on the received
bit rate. At 8 and 12 kbit/s the cascaded CELP decoder reconstructs a low band
signal (50 – 4000 Hz), which is then post-filtered in a way similar to G.729; the result
is upsampled to 16 kHz using the QMF synthesis filterbank. At 14 kbit/s, the TDBWE
decoder reconstructs a high band signal that is combined with the 12 kbit/s synthesis
in order to extend the output bandwidth to 50–7000 Hz. From 16 to 32 kbit/s, the
TDAC stage decodes both the low band difference and the high band signals, which are
then post-processed to reduce pre-/post-echo artifacts that stem from the transform
coding module. The resulting low band signal is added to the CELP output, while
the resulting high band synthesis is used instead of the TDBWE output.

The G.729.1 decoder operates at narrowband bit rates (8 and 12 kbit/s) and wideband
bit rates (14 kbit/s and above). Without any appropriate method, a fast switching
between these two sets of bit rates would result in audible artifacts. To avoid this, the
decoder includes a cross-fading inside the low band postfilter as well as a slow fade-in
(1 second) of the high band in case of narrowband to wideband transition.
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Additionally, in the case of lost frames, a frame erasure concealment is performed at
the decoder that makes use of the transmitted concealment/recovery parameters and
exploits the extra frame delay at the decoder. Efficient concealment and recovery
techniques are used including glottal pulse resynchronization, energy control, and
artificial onset reconstruction [Vaillancourt et al. 2007].

c) Hierarchical Bitstream Structure

To emphasize the embedded nature of G.729.1, its hierarchical bitstream structure is
illustrated in Fig. 8.12.

The respective bitstream layers correspond to the encoder and decoder modules that
have been introduced in the previous section. In total, the bitstream comprises 12
hierarchical layers:

• the core layer (Layer 1) is interoperable with ITU-T G.729;

• Layer 2 (at 12 kbit/s) is a narrowband enhancement layer consisting of cas-
caded CELP parameters and signal class information (voiced, unvoiced, onset,
or voiced/unvoiced transition);

2 narrowband layers
(8 and 12 kbit/s)

10 wideband layers
(from 14 to 32 kbit/s
with 2 kbit/s steps)

FEC (7)
FEC (5)

FE
C 

(1
)

FE
C 

(1
)

G.729 core (160)

Embedded
CELP
(19)

Embedded
CELP
(19)

TDBWE (33)
TDAC1 (35)

TDAC2 (40)
TDAC3 (40)

TDAC9 (40)

Figure 8.12: G.729.1 bitstream structure of a given 20 ms frame (numbers in parenthe-
ses specify the number of bits within the respective part of the bitstream)
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• Layer 3 (at 14 kbit/s) is a wideband extension layer, comprising time-domain
bandwidth extension (TDBWE) parameters and phase information for FEC;

• Layers 4 to 12 (above 14 kbit/s) are wideband enhancement layers, comprising
energy information and transform coding parameters, which are referred to as
time-domain aliasing cancellation (TDAC) parameters.

d) Delay, Quality, and Complexity

An evaluation of the G.729.1 codec in terms of delay, obtained speech and music
quality as well as algorithmic complexity is presented here based on the ITU-T char-
acterization.

The maximum algorithmic delay of G.729.1 is 48.9375 ms. The contributions to this
delay are 40 ms due to the MDCT windowing used in the TDAC coder (current
frame plus one frame of lookahead), 5 ms for the G.729 lookahead, and 3.9375 ms for
the QMF analysis and synthesis. However, this delay can be reduced depending on
the selected encoder and decoder modes. For instance, for input and output signals
sampled at 8 kHz and for the low delay decoder mode, the algorithmic delay of G.729.1
is reduced to 25 ms.

The characterization test results of ITU-T G.729.1 [ITU-T TD258 2006] are summa-
rized in Fig. 8.13-a, -b, and Fig. 8.14 for narrowband clean speech, wideband clean
speech and wideband music signals, respectively. The obtained speech and audio
quality is compared with selected reference coders of the same acoustical bandwidth.
These results are expressed in terms of “mean opinion scores” (MOS) [ITU-T Rec.
P.800 1996] with a 95% confidence interval. In the experiments, a residual uncer-
tainty of about ±0.1 MOS was obtained.

According to these results, G.729.1 is better than G.729 Annex A [ITU-T Rec. G.729
Annex A 1996] at 8 kbit/s and equivalent to G.729 Annex E for clean speech at
12 kbit/s. At 14 kbit/s, G.729.1 has a quality similar to AMR-WB [3GPP TS 26.190
2001] at 12.65 kbit/s for clean speech. At 24 and 32 kbit/s, it is similar to AMR-WB
at 23.85 kbit/s for clean speech. Furthermore, music quality at 32 kbit/s is good for
a conversational coder (close to G.722 [ITU-T Rec. G.722 1988] at 64 kbit/s). In
addition, G.729.1 is more robust against frame errors (i.e., packet losses) than the
reference coders.

The computational complexity of G.729.1 is scalable with the bit rate as shown in
Fig. 8.15. At 32 kbit/s, the total encoder and decoder complexity is around 35.8
weighted million operations per second (WMOPS). Memory requirements (RAM and
ROM) are tabulated in [ITU-T Rec. G.729.1 2006].
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e) Application Example: Wideband Telephony with G.729.1

Figure 8.16 shows an example on how an embedded speech coder, here G.729.1, can be
used in a heterogeneous VoIP environment for telephony services. Various terminals
are used (e.g., Wi-Fi phones, analog phones and soft clients). Depending on hardware
capabilities as well as on the capacity of the respective transmission links, a call agent
— managing the quality of service — can decide on the transmitted bit rates. The
encoder does not need to be made aware of the decision. The call agent will just
“tailor” the bitstream to convey the highest quality that is achievable within the given
capacity and complexity constraints.

Figure 8.16: Enterprise wideband VoIP based on ITU-T G.729.1

With G.729.1, being an embedded extension of G.729, narrowband terminals based
on G.729 are still supported. Furthermore, the interconnection with PSTN involves
transcoding between G.729.1 and G.711 in a dedicated gateway. In the example
application, G.729.1 at 12 kbit/s can be used instead of G.729/G.729.1 at 8 kbit/s to
improve the VoIP/PSTN interconnection quality.

G.729.1 is endorsed as a Korean standard [TTAE.IT-G.729.1 2006] and is the broad-
band convergence network (BcN) 6 quality reference wideband coder for telephony ser-
vices in Korea. G.729.1 is also an optional codec for wideband speech coding in New
Generation DECT systems [ETSI TS 102 527-1 2007].

6Broadband convergence Network (BcN) is the name for Next Generation Network (NGN) in Korea.
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8.5 Network Aspects of Embedded Speech Coding

So far, the theory, the design as well as standardized solutions for embedded speech
coding have been reviewed. In order to complete the discussion of embedded speech
coding, this section addresses the practical issues that are encountered when network
entities utilize the embedded bitstream property of the respective codecs.

8.5.1 Implementation and Utilization of Scalability

Embedded speech codecs offer very attractive features. Yet, the actual utilization of
their respective properties in the network is not necessarily trivial. In fact, a packet
switched communication network that will take full advantage of an embedded speech
codec is required to packetize the coded bits into a suitable format, and provide a
mechanism that supports the dropping of bitstream layers.

a) Packetization

In speech communication over packet switched networks, the so-called payload, i.e.,
the coded bits, are arranged in data packets with associated header information.
Thereby, one packet may contain a single or even multiple speech frames. The use
of an embedded codec requires the payload to be organized such that the individual
codec layers can be easily removed. A simple possibility is to generate one packet for
each individual layer as the dropping of whole packets is easily implemented. Yet, this
can be very inefficient because of a large overhead that is due to the size of the header
(e.g., for the IPv4 or IPv6 protocols). A way to reduce the overhead is to pack a high
number of speech frames into one packet at the cost of delay and a higher sensitivity
to packet loss. For conversational applications, the number of speech frames in an
IP packet has to be kept low to avoid a high end-to-end delay, and particularly for
embedded bitstreams, it is preferable to gather all embedded layers in the same data
packet. Typically, one speech frame per packet is the preferred number if the frame
size is about 20–30 ms. Possibly, a rearrangement of the coded bits is necessary
such that the codec layers appear as continuous blocks within the packet. This is, for
example, the case for the hierarchically quantized prediction error of the ITU-T G.727
codec (see Sec. 8.4.2). The respective method is specified in [ITU-T Rec. G.764 1990],
which defines a protocol for the transport of packetized speech and a way to handle
the scalable bitstream of G.727, where the payload header indicates the number of
blocks that can be dropped from the packet.

b) Transport Issues

Apart from the bitstream organization, the respective transport protocols in packet
switched networks need to explicitly support the embedded coding features. First,
as shown in the previous section, a precise description of the bitstream format is
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mandatory. Secondly, the protocols must provide a mechanism to drop certain blocks
from a single data packet. In this case, it is also necessary to modify the packet
and/or payload header accordingly. For instance, the indicated size and structure of
the payload needs to be updated and, possibly, a checksum must be recomputed.

For the application of (embedded) speech transmission it is beneficial to implement a
packet prioritization to ensure a certain “Quality of Service” (QoS). In fact, a speech
payload can be considered more important than pure data for which a retransmission is
in principle possible. As an example, [Kaye, Zhang 1994] focused on the transmission
of voice and data over so-called Frame-Relay networks and studied means to apply
congestion control mechanisms. First, the speech packets are labeled (classified). As
a result, different mechanisms can be applied to the different packet classes. For the
particular case of embedded bitstreams, a second classification can distinguish bits
of high importance (core layer bits) from the bits of low importance (enhancement
layer bits) within the payload. Then, a rate adaptation unit, located anywhere in the
network, can drop packets or blocks that are labeled as being of lower importance.

In fact, data labeling is already available within IPv4 or IPv6 (Internet Protocol ver-
sions 4 and 6) through the so-called “Differentiated Services” (DiffServ) [IETF RFC
2474 1998]. Here, any involved network node conforming to this standard can decide
to get rid of bitstream layers of low importance according to the traffic conditions in
the network. To do so, the IP packets have to be organized such that the different
bitstream layers are packetized in different IP packets. The DiffServ labelling protocol
applies to a full IP packet and not to parts of it. As IP packets have a considerable
protocol overhead (40–60 bytes) and as a speech codec payload is usually small (about
80 bytes for a frame of G.729.1 at 32 kbit/s), it is more efficient to pack many speech
codec frames together. As a result, this method is better suited to audio streaming
applications. In particular, the transmission of scalable MPEG-4 audio/video streams
(without using the respective MPEG-4 method) is possible with [IETF RFC 3016
2000]. First, the audio/video data is multiplexed by “Low-overhead MPEG-4 Audio
Transport Multiplex” (LATM) and then each audio/video multiplexed layer is pack-
etized into different “Real Time Protocol” (RTP) packets, allowing for the different
layers to be treated differently at the IP level, for example, via DiffServ.

c) Rate Adaptation Strategies

In addition to the packetization and protocol issues discussed above, a communi-
cation network that works with embedded bitstreams needs to implement so-called
“Rate Adaptation Units” that perform the actual removal of embedded bitstream lay-
ers. Thereby, an adequate adaptation strategy is required in order to decide which
bitstream needs to be reduced. The respective decision is usually based on a few basic
characteristics, as below.

• The importance of the layers within a packet (codec features) — For instance, a
classification of the embedded bitstream into high and lower importance layers
enables the rate adaptation units to exploit this “tag”.
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• Network traffic conditions — For example in wireless networks, a permanent
monitoring can be performed and a network-aware wireless gateway (Wi-Fi ac-
cess point) can adapt the instantaneous bit rate according to the current network
capacity [Mathieu et al. 2005].

• Terminal capabilities — Low cost devices may, e.g., only be capable of decoding
the core layer of the bitstream. Hence, all enhancement layers can be stripped.

• User/Customer preferences —“Premium”users could be preferred over“normal”
users and thus receive a higher bit rate and hence, a higher quality.

In MPEG, a way to adapt the content of the scalable codec bitstreams to the end ter-
minal, to the access network capabilities as well as the user preferences was specified in
the MPEG-21 standard [ISO/IEC 21000-07 2004] through the “Digital Item Adapta-
tion” (DIA) technologies. A new language based on“XML Schema”, called“Bitstream
Syntax Description Language” (BSDL) describes the syntax of a particular coding for-
mat. These “schemas” can be used by a generic processor to automatically parse a
bitstream and generate its description, and vice-versa. The BSDL concept requires
a resource adaptation engine to be aware of the codec specific schema in order to
parse the BSD and generate the corresponding (adapted) bitstreams. As this is not
always desired, a second concept was defined in which a “generic Bitstream Syntax”
(gBS) which enables the “codec-agnostic” description of the bitstream by describing
syntactical bitstream units in a hierarchical fashion. It also provides semantic handles
to sections of the bitstream that facilitate semantic-based manipulation or removal of
bitstream portions (e.g., to reduce the bit rate of an embedded codec). The (g)BSD of
a stream needs to be known for the adaptation process and can be either transmitted
as metadata with the codec bitstream or made available off-line. More information on
BSD and bitstream adaptation with an application to video transmission is available
in [Panis et al. 2003]. Naturally, MPEG-21 can also be applied to streaming of audio
content as, e.g., described by [Feiten et al. 2005].

d) Application Example: Embedded Speech Coding for Conferencing

The implementation and utilization of scalability can be illustrated with the example
of multi-party audio conferencing. Signaling (i.e., how to initiate, modify and termi-
nate sessions) is not discussed here, however it may be implemented, for instance, us-
ing the Session Initiation Protocol (SIP) [IETF RFC 3261 2002].

Figure 8.17 shows an example of centralized architecture comprising a central unit,
known as the conference bridge, and end points, which are terminals. All partic-
ipants in the conference are interconnected through the bridge, which may either
mix, multiplex or replicate media streams, depending on the type of bridge. Media
streams are typically transported using the RTP/UDP/IP protocol stack [IETF RFC
3550 2003]. For the scenario under consideration, the audio codec is typically nego-
tiated between the end points and bridge through the Session Description Protocol
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Figure 8.17: Centralized audio conferencing with bit rate adaptation in the bridge.
Two IP terminals access the conference through an IP branch exchange
(IPBX)

(SDP) [IETF RFC 4566 2006]. The bridge centralizes all information about negoti-
ated audio codecs and other system characteristics. There are two typical problems
in the conferencing system shown in Fig. 8.17:

1. how to handle heterogeneous capabilities, i.e., allow conferences between parti-
cipants with various transmission or computation capacities, without forcing all
participants to a default low bit rate mode;

2. how to adapt to variation of link capacities (including congestion) to keep con-
tinuous data stream and avoid packet losses.

These problems may be addressed using embedded coding for up- and down-streams,
and implementing bit rate adaptation (i.e., bitstream truncation) in the conference
bridge [Deléam et al. 2005]. In particular the adaptation decision can be based on
static link capacities given by SDP, or dynamic link capacities estimated by the Real
Time Control Protocol (RTCP). Other factors, such as the importance (or priority)
of each embedded layer or terminal, may also be included in the decision. The main
advantage of embedded coding is to be able to solve the problems mentioned above
through simple bitstream manipulation. Still, if the bridge is acting as a mixer,
decoding, mixing and re-encoding is needed. Though, in this case, embedded coding
can still be beneficial using the concept of partial mixing [Hiwasaki et al. 2006].

If audio streams are encoded by ITU-T G.729.1, several important issues for the
transmission of such embedded bitstreams are addressed in the the RTP payload
format specification [IETF RFC 4749 2006]. This standard explicitly allows one to
adapt bit rate, possibly in a dynamic way during a session, taking into account service
requirements and network constraints.
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8.5.2 Unequal Error Protection and Encryption

Unequal error protection (UEP) is often implemented for speech transmission in a
mobile environment, for example, in the GSM cellular network between a base sta-
tion (BS) and the mobile station (MS). The basic idea of UEP is to apply a robust
channel coding over the bits of high importance and almost no channel protection
to bits that are less sensitive to bit errors. As a result, the impact of bit errors is
minimized.

UEP is easily applicable to scalable codecs as their layered structure already indicates
which bits are important. For example, it is clear that most of the bits from the core
codec should be well protected. The easiest solution would be to protect each bit-
stream layer with a dedicated channel code. But still, some bits from the enhancement
layers can also be considered as important as the core. In order to ensure an opti-
mal quality, one must conduct a bit error sensitivity analysis to evaluate the relative
importance of the bits. This was, for example, applied to the Multi-Mode Transform
Predictive Coding scheme in [Taddei et al. 2002]. Here, according to the bit error
sensitivity, bits were ranked and grouped in different classes with their associated
channel protections. The sensitivity values have mainly been obtained through infor-
mal listening tests and segmental SNR measurements. As a further example, [Bernard
et al. 2002] applied UEP to the embedded ITU-T G.727 codec (Sec. 8.4.2) using rate-
compatible punctured convolutional codes (RCPC) and rate-compatible punctured
trellis codes (RCPT) for channel coding.

When transmitting Voice over IP, it is possible to use IP security (IPsec) in order to
encrypt the voice data. IPsec can be run either in transport mode or in tunnel mode.
Transport mode is used to help protect end-to-end communications. In this mode,
the IP payload is encrypted and the original headers are left intact. Tunnel mode
is most commonly used to encrypt site-to-site traffic and traffic between networks.
When IPsec tunnel mode is used, a new IP packet encapsulates the entire original IP
that is then protected by one of the IPsec protocol formats. Then, it becomes difficult
to profit from the scalability feature of the codec bitstream in the network as either
the payload (no access to the data) or the IP headers are encrypted (no possibility to
detect the type of content).

Nevertheless, there have been some studies on how to encrypt the payload that can
be applied to have secured communications without using IPsec. A first idea is to en-
crypt the core bitstream and to leave the other layers untouched [Gibson et al. 2004].
Yet, this method is not really designed for safe communications as unencrypted higher
codec layers potentially suffice to regenerate a coarse (intelligible) speech signal. An-
other solution, [Hofbauer et al. 2006], proposed an encryption scheme that preserves
the bitstream scalability in the encrypted domain. In this case, enhancement layers
can be simply dropped by any equipment in the network that is aware of the structure
of such an encrypted stream.
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8.6 Conclusions and Perspectives

Embedded speech coding is in essence reflected by its layered bitstream format that
renders the decoding of partially received data possible. This feature, which is often
called bitstream scalability, can be exploited in many ways to cope efficiently with the
heterogeneity of network capacity and terminal capability, or to adapt to time-varying
conditions such as network congestion.

Recently, embedded speech coding techniques have become the subject of intense
research, and the need for embedded speech coding has been clearly recognized by
the industry, resulting in new standardization activities. Indeed, bitstream scalability
facilitates the deployment of new codecs that are built as embedded extensions of
widely deployed codecs such as [ITU-T Rec. G.729 1996] or [ITU-T Rec. G.711 1972].
For this reason, ITU-T Study Group 16 (SG16) has standardized G.729.1 [Ragot et
al. 2007] which is an 8–32 kbit/s embedded coder providing bitstream interoperability
with G.729 and its Annexes A and B. Also, a wideband extension of G.711 called
G.711WB is being developed within ITU-T (cf. [Hiwasaki et al. 2006]), targeting
audio conferencing applications on optical fiber access and interoperability with the
public switched telephone network (PSTN). In parallel, ITU-T SG16 is developing
a coder called “Embedded Variable Bit Rate” (EV-VBR) [Gibbs 2006], which has
attributes similar to G.729.1. EV-VBR is a narrowband/wideband coder operating
at 8, 12, 16, 24, and 32 kbit/s with a 20 ms frame length. However, its core coder
has no bitstream interoperability constraint. The emphasis of EV-VBR is on high
quality and robustness against packet losses with relaxed complexity constraints, and
its foreseen applications are 4th generation (4G) mobile communications. Besides,
super-wideband (50–14000 Hz) and stereo extensions of both G.729.1 and EV-VBR
are under study in ITU-T which will extend the operating bit rates of both coders to
8–64 kbit/s.

The bitstream of an embedded coder is normally hierarchical in the sense that en-
hancement layers are meaningful only if the underlying layers are also received. Then,
bit rate adaptation boils down to simple bitstream truncation. There are some cases
where the constraint of layer hierarchy can be partially relaxed to allow more flex-
ible bitstream configurations [Hiwasaki et al. 2006]. For instance in G.711WB, the
bitstream at the maximum rate (96 kbit/s) consists of a 64 kbit/s narrowband G.711
core layer, one 16 kbit/s low band (50–4000 Hz) enhancement layer, and one 16 kbit/s
high band (4000–7000 Hz) enhancement layer. At 80 kbit/s, the bitstream can be
formed by adding either the low band enhancement or the high band enhancement to
the core layer, which violates the strict layer hierarchy but provides more flexibility.
A similar idea is pursued in the super-wideband and stereo extension of EV-VBR,
wherein super-wideband and stereo capabilities are associated with different enhance-
ment layers and it is allowed to drop intermediate layers to obtain more flexible modes:
super-wideband mono, wideband stereo, or super-wideband stereo. Finally, as shown,
embedded coding techniques are often used to enhance the quality of present trans-
mission systems. The approach of adding “enhancement layers” to the standardized
bitstream ensures interoperability with legacy equipment meaning that the additional
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bits can be discarded if necessary. However, there may be situations that require a
true backwards compatibility. This means that any modification of the bitstream for-
mat is prohibited. Consequently, conventional embedded coding techniques can not be
applied anymore as additional bitstream layers are disallowed. A solution to provide
an enhanced quality despite such strong restrictions is the use of data hiding tech-
niques or steganography. A respective transmission system “hides” the enhancement
bits in the core layer signal by inserting a so-called “watermark” signal. For exam-
ple in real-time speech transmission, the data hiding mechanism can be efficiently
integrated with the speech encoder [Geiser, Vary 2007] and the hidden data can be
used for bandwidth extension purposes. This idea is discussed in more detail in the
following chapter.

Interestingly, the basic tools of embedded coding as introduced in Sec. 8.2 are quite
generic and fundamental, and the applications of embedded coding are by far not lim-
ited to real-time speech transmission. In fact, embedded audio, image and video cod-
ing have been studied extensively. Examples of embedded audio coders are MPEG-4
“Bit Sliced Arithmetic Coding” (BSAC) [Park et al. 1997], which is based on the idea
of bit plane coding, and the MPEG Surround standard [Herre et al. 2007]. Exam-
ples of embedded image and video coders are JPEG2000 [Taubman 2000] and the
joint ITU/MPEG-4 standard for Scalable Video Coding (SVC) [ITU-T Rec. H.264
Amd. 3 2007]. In particular, embedded coding is also very interesting for multimedia
streaming or storage applications since bitstream scalability provides an efficient way
to support a variety of bit rates and device capabilities without the need for multiple
re-encodings.
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Hofbauer, H.; Stütz, T.; Uhl, A. (2006). Selective Encryption for Hierarchical MPEG, Pro-
ceedings of the 10th IFIP International CMS 2006 Conference, pp. 151–160.

IETF RFC 2474 (1998). Definition of the Differentiated Services Field (DS Field) in the
IPv4 and IPv6 Headers), Internet Engineering Task Force (IETF).

IETF RFC 3016 (2000). RTP Payload Format for MPEG-4 Audio/Visual Streams, Internet
Engineering Task Force (IETF).

IETF RFC 3261 (2002). SIP: Session Initiation Protocol, Internet Engineering Task Force
(IETF).

IETF RFC 3550 (2003). RTP: A Transport Protocol for Real-Time Applications, Internet
Engineering Task Force (IETF).

IETF RFC 4566 (2006). SDP: Session Description Protocol, Internet Engineering Task Force
(IETF).

IETF RFC 4749 (2006). RTP Payload Format for G.729.1, Internet Engineering Task Force
(IETF).

ISO/IEC 14496-3 (2005). Information technology – Coding of Audio-Visual Objects – Part
3: Audio, ISO/IEC JTC1/SC29/WG11 MPEG.

ISO/IEC 21000-07 (2004). Information Technology – Multimedia Framework (MPEG-21) –
Part 7: Digital Item Adaptation, ISO/IEC JTC1/SC29/WG11 MPEG.

ITU-T Rec. G.711 (1972). Pulse Code Modulation (PCM) of Voice Frequencies, International
Telecommunication Union (ITU).

ITU-T Rec. G.722 (1988). 7 kHz Audio-Coding within 64 kbit/s, International Telecommu-
nication Union (ITU).

ITU-T Rec. G.723.1 (1996). Dual Rate Speech Coder for Multimedia Communications Trans-
mitting at 5.3 and 6.3 kbit/s, International Telecommunication Union (ITU).

ITU-T Rec. G.727 (1990). 5-, 4-, 3- and 2-bits Sample Embedded Adaptive Differential Pulse
Code Modulation (ADPCM), International Telecommunication Union (ITU).

ITU-T Rec. G.729 (1996). Coding of Speech at 8 kbit/s Using Conjugate Structure Algebraic-
Code-Excited Linear-Prediction (CS-ACELP), International Telecommunication Union
(ITU).

ITU-T Rec. G.729 Annex A (1996). Reduced Complexity 8 kbit/s CS-ACELP Speech Codec,
International Telecommunication Union (ITU).

ITU-T Rec. G.729 Annex B (1996). A Silence Compression Scheme for G.729 Optimized
for Terminals Conforming to Recommendation V.70, International Telecommunication
Union (ITU).

ITU-T Rec. G.729.1 (2006). An 8-32 kbit/s Scalable Wideband Coder Bitstream Interoperable
with G.729, International Telecommunication Union (ITU).



242 8 Embedded Speech Coding: From G.711 to G.729.1

ITU-T Rec. G.764 (1990). Voice Packetization - Packetized Voice Protocols, International
Telecommunication Union (ITU).

ITU-T Rec. H.242 (1999). System for Establishing Communication between Audiovisual
Terminals Using Digital Channels up to 2 Mbit/s, International Telecommunication
Union (ITU).

ITU-T Rec. H.264 Amd. 3 (2007). Advanced Video Coding for Generic Audiovisual Services:
Scalable Video Coding, International Telecommunication Union (ITU).

ITU-T Rec. H.320 (2004). Narrow-Band Visual Telephone Systems and Terminal Equipment,
International Telecommunication Union (ITU).

ITU-T Rec. P.800 (1996). Methods for Subjective Determination of Transmission Quality,
International Telecommunication Union (ITU).

ITU-T TD258 (2006). Executive Summary of G729.1 Characterisation Step 2 – Experiments
1, 2 & 3, TD-258-GEN/16 Attachment 2 (Source: Q7/12 Rapporteurs).

Jax, P.; Geiser, B.; Schandl, S.; Taddei, H.; Vary, P. (2006). An Embedded Scalable Wide-
band Codec Based on the GSM EFR Codec, Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Toulouse, France,
pp. 5–8.

Jayant, N. (1983). Variable rate ADPCM Based on Explicit Noise Coding, Proceedings of
the IEEE Global Telecommunications Conference (GLOBECOM), San Diego, CA, USA,
pp. 657–677.

Jayant, N.; Noll, P. (1984). Digital Coding of Waveforms: Principles and Applications to
Speech and Video, Prentice Hall, Englewood Cliffs, NJ, USA.

Johnson, M.; Taniguchi, T. (1990). Pitch-Orthogonal Code-Excited LPC, Proceedings of
the IEEE Global Telecommunications Conference (GLOBECOM), Dallas, TX, USA,
pp. 542–546.

Juang, B.-H.; Gray, A. H. (1982). Multiple Stage Vector Quantization for Speech Coding,
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Paris, France, pp. 597–600.

Jung, S.-K.; Kini, K.-T.; Kang, H.-G. (2004). A Bit-Rate/Bandwidth Scalable Speech Coder
Based on ITU-T G.723.1 Standard, Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), Montreal, QC, Canada, pp. 285–
288.

Kataoka, A.; Kurihara, S.; Sasaki, S.; Hayashi, S. (1997). A 16-kbit/s Wideband Speech
Codec Scalable with G.729, Proceedings of the European Conference on Speech Com-
munication and Technology (EUROSPEECH), Rhodes, Greece, pp. 1491–1494.

Kaye, A. R.; Zhang, S. (1994). Congestion Control in Integrated Voice-Data Frame Relay
Networks and the Case for Embedded Coding, Proceedings of the IEEE Global Telecom-
munications Conference (GLOBECOM), San Francisco, CA, USA, pp. 1565–1570.

Kim, K.-T.; Jung, S.-K.; Clark, Y.-C.; Youn, D. (2002). A New Bandwidth Scalable Wide-
band Speech/Audio Coder, Proceedings of the IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), Orlando, FL, USA, pp. 657–660.



Bibliography 243

Kleijn, W. B.; Paliwal, K. K. (eds.) (1995). Speech Coding and Synthesis, Elsevier Science
Inc., New York, NY, USA.

Koishida, K.; Cuperman, V.; Gersho, A. (2000). A 16 kbit/s Bandwidth Scalable Audio
Coder Based on the G.729 Standard, Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), Istanbul, Turkey, pp. 1149–1152.

Kondo, K.; Ohno, M. (1994). Packet Speech Transmission on ATM Networks Using a Variable
Rate Embedded ADPCM Coding Scheme, IEEE Transactions on Communications,
vol. 42, February, pp. 243–247.

Koshelev, V. N. (1980). Hierarchical Coding of Discrete Sources, Problemy Peredachi Infor-
matsii, vol. 16, no. 3, pp. 31–49.

Krishnan, V.; Rajendran, V.; Kandhadai, A.; Manjunath, S. (2007). EVRC-Wideband:
The New 3GPP2 Wideband Vocoder Standard, Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, HI, USA,
pp. 333–336.
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Chapter 9

Backwards Compatible
Wideband Telephony

Peter Jax

9.1 Introduction

The limited frequency range of about 300 Hz to 3.4 kHz of today’s narrowband (NB)
telephone networks leads to restricted audio quality compared with wideband (WB)
telephony (50 Hz to 7 kHz). Wideband speech codecs have been standardized and are
ready to be used, providing significant improvements in terms of speech intelligibility
and naturalness. However, the conversion from NB to WB telephony requires invest-
ments by operators and customers. In the transition period NB and WB terminals
will coexist for a long time, and compatibility of operation is a mandatory require-
ment. Therefore, each WB terminal has to be equipped with an NB codec to allow
interoperability with any far-end NB terminal. The WB mode can only be used if the
far-end terminal, the network, and the near-end terminal all have the improved WB
capabilities.

In this chapter we will focus on techniques for extending the capabilities of existing
NB voice communication systems to provide WB speech quality. In particular, we
concentrate on embedded, hierarchical codecs that make use of bandwidth extension
(BWE) techniques. Several such parametric BWE schemes have been published re-
cently; they show that the step from NB quality to acceptable WB quality requires
only a low to moderate additional data rate on top of the NB bit stream.

Such backwards compatible WB speech transmission techniques target at cost-efficient
implementation of the encoder and decoder algorithms based on existing systems.
Furthermore, network operators have to modify their infrastructure only moderately
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or, for some approaches, not at all. It is possible to deploy WB speech services step-by-
step, starting with new terminals. It is inherently guaranteed that the new terminals
will interoperate seamlessly with existing NB terminals.

We will start this chapter by discussing the major application scenarios in Sec. 9.2. We
introduce the principles of state-of-the-art stand-alone BWE approaches in Sec. 9.3,
and in Sec. 9.4 further describe how BWE techniques with transmission of BWE
information can be used as part of a WB speech codec. In Sec. 9.5 a very recent
proposal of embedding the stream of BWE information in the NB speech signal will
be discussed. Finally, some advanced encoding schemes for the BWE information will
be described in Sec. 9.6.

Major parts of Sec. 9.2 and 9.3 have been previously published in [Jax, Vary
2006].1

9.2 From Narrowband Telephony to Wideband
Telephony

As a matter of fact, the limited quality of narrowband telephone speech is widely
accepted. However, in certain situations we clearly become aware of the impacts of
the bandwidth limitation. For example, the limited intelligibility of syllables becomes
apparent when we try to understand unfamiliar words or names on the phone. In these
cases, we often need a spelling alphabet, especially to distinguish certain unvoiced
or plosive phones, such as /s/ and /f/ or /p/ and /t/. Another drawback is that
many speaker-specific characteristics are not retained transparently in the narrowband
speech signal. Therefore, it is sometimes difficult to distinguish similar-sounding
speakers on the phone.

The bandwidth of wideband transmission is comparable to that of AM radio transmis-
sion, and it allows for excellent speech intelligibility and very good speech quality. An
example of a speech signal with significant frequency content beyond 3.4 kHz is given
in Fig. 9.1, which shows a series of short-term spectrograms of natural speech with an
indication of the limited frequency bands covered by the narrowband and wideband
versions. A closer look at Fig. 9.1 reveals that narrowband speech may lack significant
parts of the spectrum, especially for unvoiced sounds. Even the difference between
wideband speech and original speech is still considerable.

The introduction of wideband transmission in a telephone network requires at least
new terminals with better electro-acoustic front ends, improved analog-to-digital con-
verters, and new speech codecs. In addition, signaling procedures are needed for

1Portions reprinted, with permission, from P. Jax, P. Vary, “Bandwidth Extension of Speech Signals:
A Catalyst for the Introduction of Wideband Speech Coding?”, IEEE Communications Magazine,
44(5), May 2006. c©2006 IEEE.
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Figure 9.1: Example short-term spectrogram of the sentence “to administer medicine
to animals” spoken by a female voice. Dark regions indicate a strong
short-term power spectrum

detection and activation of the wideband capability. In cellular radio networks, ex-
pensive modifications are necessary, since error protection (speech codec specific chan-
nel coding) is implemented in the base stations and not in the centralized switching
centers.

Several wideband speech codecs have been standardized in the past. In 1985, a first
wideband speech codec (G.722) was specified by CCITT (now ITU-T) for ISDN and
teleconferencing with bit rates of 64, 56 and 48 kbit/s. It is mainly applied in the
context of radio broadcast stations by external reporters using special terminals and
ISDN connections from outside to the studio. In 1999, a second wideband codec
(G.722.1) was introduced by ITU-T that produces almost comparable speech qual-
ity at reduced bit rates of 32 and 24 kbit/s. Most recently, the adaptive multi-rate
wideband (AMR-WB) speech codec was specified by ETSI and 3GPP for CDMA cel-
lular networks such as UMTS. The AMR-WB codec has also been adopted for fixed
network applications by ITU-T (G.722.2). By the AMR-WB standard a family of
wideband codecs with data rate modes between 6.6 and 23.85 kbit/s is defined to-
gether with control mechanisms to adapt the codec mode to channel conditions. A
further extension, the AMR-WB+ codec, supports general audio in mono/stereo with
frequency bandwidths from 7 to more than 16 kHz and bit rates of between 6.6 and
32 kbit/s. For an overview of recent work in wideband speech standards see [de Cam-
pos Neto, Järvinen 2006] and the related technical papers in the same issue of the
journal.

Even if cellular phones are replaced by new models much more often than fixed line
telephones, there will be a long transitional period with narrowband and wideband ter-
minals in mixed use in both cellular and fixed networks. During this transition period
different technical solutions may be employed, as illustrated in Fig. 9.2. All of these
solutions produce WB speech at the near-end terminal.
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Figure 9.2: Steps from narrowband to wideband telephony (and beyond). c© 2006 IEEE

a) Narrowband transmission and bandwidth extension in the receiver
b) Narrowband transmitter and bandwidth extension in the network
c) Transmission of parallel BWE information for bandwidth extension
d) Embedding of BWE information into narrowband signal
e) Speech transmission using true wideband coding
f) Wideband transmission plus bandwidth extension for “super-

wideband” speech quality

There may be a narrowband terminal at the far end and narrowband transmission over
the network, while the electro-acoustic front end of the near-end terminal has already
got wideband capabilities, see Fig. 9.2-a. Owing to the increased audio bandwidth of
the near-end terminal (sampling rate 16 kHz), BWE can be applied to enhance the
received speech signal. This produces more natural sounding speech, and the user
can benefit from the improved wideband capabilities of the terminal. This approach
does not require any modification of the sending terminal and the network. The
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implementation of BWE is particularly attractive for manufacturers with respect to
the competition on the terminal market. For reasons of compatibility, the narrowband
encoder has to be used in the WB terminal for the reverse direction.

Alternatively, the BWE processing can be placed within the core network, as illus-
trated in Fig. 9.2-b. With this setup, the network operator can offer connections with
improved quality at any time to any customer using a wideband terminal, i.e., even
if the far-end terminal provides only NB capabilities. During call setup the network
can detect mixed connections between NB and WB terminals. Then, it can route the
connection via a transcoding unit located inside the core network. The transcoding
unit consists of a NB decoder, bandwidth extension, and WB encoder. The near-end
terminal does not have to implement any BWE algorithms itself.

Many other setups are imaginable for which BWE in the network is reasonable, es-
pecially if a heterogeneous mixture of NB and WB terminals is involved. Examples
include multi-party conference bridges, or mechanisms to prevent temporary switching
from WB to NB, e.g., in the case of inter-cell handovers in cellular networks.

A third solution is shown in Fig. 9.2-c, which provides a significantly improved quality
in comparison to the approaches of Fig. 9.2-a,b. At the far end some BWE informa-
tion is determined and communicated to the near-end terminal in parallel with the
narrowband speech signal. The BWE information allows decoding of the wideband
speech signal on top of the already decoded narrowband speech. Accordingly, in
certain cases, this approach can be interpreted as a variant of layered or embedded
speech coding. In layered speech coding the bitstream consists of several layers built
on each other. At the receiver the base layer of the bitstream is sufficient to decode
an acceptable speech signal. With each additional layer that is received, the speech
quality is improved successively.

A promising new approach is to embed the side information into the NB speech signal
as a digital watermark message before encoding, see Fig. 9.2-d. The proper water-
marking method makes this BWE system inherently backwards-compatible without
the need for any signaling procedure: if the watermarked speech signal is presented
to a human listener by a conventional NB receiver, he or she will not perceive any
difference to the encoded original NB speech. If both sides support the BWE side
information transmission, the receiver can produce wideband speech with very good
quality, almost comparable to that of true wideband codecs. If, on the other hand, the
BWE-receiver does not detect the embedded watermark in the NB speech, a stand-
alone BWE approach (Fig. 9.2-a) can still be activated.

Finally, the true wideband connection, as shown in Fig. 9.2-e, requires modifications
to the transmitter, possibly the network, and the receiver by introducing new encoders
and decoders. This solution can obviously provide the best speech quality.

Even if wideband coding (50 Hz to 7 kHz) has already been implemented in the net-
work, wideband extension beyond 7 kHz can be applied in addition to produce a
super-wideband speech signal, e.g., with frequency components up to 15 kHz. This
situation is depicted in Fig. 9.2-f. It is obvious from Fig. 9.1 that the subjective
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speech quality can be further improved compared with the transmitted wideband
speech. Naturally, all of the schemes described above to take the step from NB to
WB quality can be applied again to realize efficient transmission of super-wideband
speech based on a WB codec.

9.3 Stand-Alone Bandwidth Extension

To assess the prospects and limitations of BWE techniques it is necessary to under-
stand the underlying principles. From Nyquist’s theorem it is evident that it would be
virtually impossible to perform non-trivial bandwidth extension for arbitrary signals
directly and solely in the signal domain. Frequency components beyond half of the
sampling frequency cannot be directly recovered. If a mathematical model of the sig-
nal generation process could be assumed, on the other hand, BWE becomes feasible
indirectly via the parameters of this model. Knowing that both the NB signal and the
WB signal are governed by the same source model, we can estimate the source param-
eters from the NB signal, and then use these estimates to produce a corresponding
WB speech signal.

Here, we restrict our view to speech signals. Therefore, we can make use of the
well-known source-filter model of speech production. The human speech production
process can be divided into two parts. A periodic, noise-like, or mixed excitation
signal is produced by the vocal chords (glottis), or by constrictions of the vocal tract.
Then, the sound is shaped by the acoustic resonances of the vocal tract cavities.

Excitation
generation

Synthesis
filter

u s

Parameters

Figure 9.3: Signal processing model of the speech production process. c© 2006 IEEE

The modeling is shown in Fig. 9.3. In analogy to the human physiology, the mathe-
matical source–filter model of speech production consists of two parts: a signal gener-
ator producing a spectrally flat2excitation signal u, and a synthesis filter shaping the
spectral envelope of the speech signal s. This source–filter model has been used ex-
tensively in many areas of speech signal processing, e.g., for speech synthesis, coding,
recognition, and enhancement.

2Strictly speaking, the glottis signal is not spectrally flat due to the shape of the glottis pulses.
However, the shape of the glottis pulse can be modeled by a glottis filter with a spectrally flat
excitation u. In practice the glottis filter is merged into the synthesis filter.
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Almost all state-of-the-art approaches to bandwidth extension of speech signals are
built on this simple source–filter model. Following the two-stage structure of the
model, the bandwidth extension is performed separately for the excitation signal u
and for the spectral envelope of the speech signal [Carl, Heute 1994], [Cheng et al.
1994]. These two constituent parts of the speech signal can be assumed to be mutually
independent to a certain extent, such that more or less separate optimization of the
two parts of the algorithm is possible. In Fig. 9.4 a generic block diagram of this
concept is shown.

9.3.1 Estimation of the Wideband Spectral Envelope

The bandwidth extension algorithm starts with the estimation of the spectral envelope
of the wideband speech signal; see the lower signal path in Fig. 9.4. This block
is shown in more detail in Fig. 9.5. In most adaptive BWE algorithms, statistical
estimation methods are used that are to some extent similar to approaches from
pattern recognition or speech recognition. The estimation scheme is based on a vector
bnb of features that is extracted from each frame of the narrowband input signal snb.
Typically, this feature vector is composed of information on the spectral envelope of
the narrowband speech signal (for example, LSF or reflection coefficients, [Carl, Heute
1994]) plus, in addition, features reflecting voiced/unvoiced attributes of the speech
(for example short-term power, zero crossing rate, etc. [Jax, Vary 2000]).
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Figure 9.5: Estimation of the spectral envelope in stand-alone BWE. c© 2006 IEEE
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Many different schemes have been proposed in the literature for estimating the wide-
band spectral envelope. The most important basic techniques include:

• codebook mapping [Carl, Heute 1994],

• linear or piece-wise linear mapping [Nakatoh et al. 1997], and

• Bayesian estimation based on Gaussian mixture models (GMMs) [Park, Kim
2000] or hidden Markov models (HMMs) [Jax, Vary 2000].

Within any estimation scheme, a priori knowledge on the joint behavior of the obser-
vation (feature vector) and the estimated quantity is needed. This a priori knowledge
is contained in a statistical model, whose form depends on the employed estimation
method. For example, in the case of codebook mapping the statistical model is com-
posed of two vector quantizer codebooks for the LP or LSF coefficients, both for
the narrowband and wideband speech. The statistical model has to be acquired and
stored during an off-line training phase using a database of representative wideband
speech signals.

The result of the estimation block is the wideband spectral envelope of the speech
frame, represented by the filter coefficient vector â of the linear predictor (LP) syn-
thesis filter.

9.3.2 Extension of the Excitation Signal

The next step in the BWE system consists of substituting the missing frequency
components in the excitation signal. Owing to the assumed spectral flatness of the
excitation signal u, and because of the fact that the human ear is quite insensitive
to variations of the spectral fine structure at high frequencies, the extension can be
realized very efficiently.

The basic functional principle of most algorithms can be described by Fig. 9.6. After
interpolation of the sampling rate from 8 kHz to 16 kHz, the narrowband excitation
ûnb is estimated by applying the interpolated signal s̃nb to the wideband LP anal-
ysis filter 1 − Â(z). The actual extension is performed in the blocks labeled HFR
(high frequency re-synthesis, beyond 3.4 kHz) and LFR (low frequency re-synthesis,
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8     16 kHz

LP analysis

HFR
&

LFR

uwbunbsnb
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snb
~

^
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Figure 9.6: Extension of the excitation signal. c© 2006 IEEE
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below 300 Hz). The techniques typically used for extension of the excitation signal
are (see, e.g., [Fuemmeler et al. 2001], [Jax 2004], [Chan, Hui 1996] for more details)

• mirroring, shifting or frequency scaling of the NB spectral components,

• generation of harmonics by non-linear distortion and filtering, or

• synthetic generation of the new frequency components.

The extended frequency components are added to the estimated narrowband exci-
tation. The output signal ûwb is the desired estimate of the wideband excitation
signal. Listening tests have shown that the extension of the excitation signal has
much less influence on the quality of the enhanced speech than the estimation of the
WB spectral envelope. Many of the listed techniques produce output signals with
similar quality.

9.3.3 Performance and State-of-the-Art

Stand-alone bandwidth extension algorithms for speech have reached a stable baseline
quality: the artificial wideband output of a BWE system is in general preferred to
narrowband telephone speech, even for a speaker- and language-independent setup.
Results of many informal listening tests have been reported in research papers (for
example, [Fuemmeler et al. 2001], [Chan, Hui 1996]) that consistently indicate this
preference. To our knowledge, formal listening tests of stand-alone BWE algorithms
have not been performed to date.

The best results have been obtained for systems trained for a specific language, or,
even better, for an individual speaker. Nevertheless, in any case the quality of the
enhanced speech does not reach the quality of the original wideband speech. This
observation is supported by theoretical investigations on the amount of mutual in-
formation between the set of features of the NB speech that is typically used for
BWE and the envelope parameters of the highband signal components [Nilsson et al.
2000], [Nilsson et al. 2002], [Jax, Vary 2002]. The mutual information is only about
1–2.5 bit/frame (depending on the set of NB features), which has been shown to be
lower than that required for high-quality wideband speech representation [Jax, Vary
2002].

For more details on stand-alone bandwidth extension of telephone speech signals the
reader is referred to [Jax 2004], [Vary, Martin 2006] and to the references therein.

9.4 Embedded Wideband Coding Using Bandwidth
Extension Techniques

As explained above, most of the BWE algorithms proposed in literature are based
on the source–filter model of speech production. The extension of the source signal
(excitation) and of the frequency response of the synthesis filter (spectral envelope)
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can be treated separately. The former is less challenging because the ear is fairly
insensitive with respect to coarse quantization or approximation of the excitation
signal. It is much more important to find a good approximation of the spectral
envelope.

Therefore, BWE can be implemented with great success if information on the complete
(wideband) spectral envelope is transmitted, while the extension of the excitation is
performed at the receiver without additional information. In fact, some very special
and effective variants of bandwidth extension techniques have been used as an integral
part of various speech codecs for many years. A very prominent early example in this
respect is the GSM full-rate codec (cf. [Vary, Martin 2006]).

More recently, BWE techniques have been applied in the context of wideband speech
coding, e.g., in the 3GPP/ETSI AMR-WB standard. In this codec, code excited
linear predictive (CELP) coding is applied to the speech components up to 6.4 kHz,
and artificial bandwidth extension is used to synthesize a supplementary signal for the
narrow frequency range from 6.4 to 7 kHz. The extension is supported by transmitting
side information, which controls the spectral envelope and the level of noise excitation
in the extension band. A more flexible version of this approach is used in the AMR-
WB+ codec, which produces spectral components up to 16 kHz.

In this section, we will focus on embedded wideband speech codecs, i.e., we assume
that an existing narrowband speech codec is used for transmission of the low fre-
quency range from 0 Hz up to 4 kHz at most. In this setup, BWE techniques are used
to synthesize the high signal components between maximally 4 kHz up to a cutoff
frequency of about 7 kHz. Compared with the aforementioned AMR-WB codec this
task is more challenging because the frequency gap to be filled with BWE techniques
is broader.

Besides the parametric techniques described below, other approaches have been taken
to realize embedded WB speech coding on top of existing NB speech codecs, for
example, analysis-by-synthesis coding of the highband signal components [Kataoka et
al. 1997], [Nomura et al. 1998], [Koishida et al. 2000].

9.4.1 Transmission of BWE Information

The generic signal processing concept of a typical approach to this challenge is shown
in Figs. 9.7 and 9.8. Figure 9.7 shows the encoder. First, the wideband input speech
signal swb (sample rate 16 kHz) is split into two sub-band signals using a pair of
low-pass and high-pass filters. The lowband signal snb is decimated to a sample
rate of 8 kHz and fed into the encoder of the embedded narrowband codec standard.
The narrowband encoder produces the embedded bit stream, labeled “NB info” in
the Fig. 9.7. This information is self-contained and can be decoded by any existing
standard-conform narrowband decoder.

The highband signal shb is input to a BWE encoder module. This block analyzes the
spectral envelope and time envelope structure of the highband signal and determines a
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Figure 9.7: Principle of embedded wideband encoding. c© 2006 IEEE

set of corresponding parameters. We will denote these parameters by the term BWE
parameters in the sequel. As indicated by the dashed arrow in Fig. 9.7, information on
the spectral envelope may be used for extracting characteristics of the time envelope.
In particular, often the time envelope of a prediction residual (where the predictor is
based on the highband spectral envelope information) is transmitted rather than the
time envelope of the original highband signal shb.

The BWE parameters are quantized and the obtained set of quantizer indices forms
the extension bit stream, labeled “BWE info” in the figure. For quantizing the BWE
parameters, features of the narrowband speech signal can optionally be used as side
information in order to increase the quantizer’s efficiency, cf. Sec. 9.6.1. Typically,
such side information can be extracted from the available NB codec parameters, such
as LP coefficients, gain factors, etc.

Figure 9.8 shows the corresponding decoder of a wideband embedded speech codec.
The embedded bit stream of the narrowband codec is used to decode the narrowband
speech signal snb at a sample rate of 8 kHz. To allow for the later addition of the
highband signal components, this signal is interpolated to the target sample rate of
16 kHz.

Generation of the highband signal components is shown in the lower signal process-
ing branch of Fig. 9.8. The BWE parameters are decoded from the hierarchical bit
stream and applied in a three-step procedure to synthesize the highband speech com-
ponents shb. First, an excitation signal is generated. In the simplest case, this excita-
tion can be a plain noise signal, but more sophisticated schemes have been proposed
that make use of decoded parameters from the narrowband decoder. In a second step,
gain factors are applied in order to shape the time envelope of the excitation. Finally,
a time-variant filter is applied to form the spectral envelope of the synthetic highband
signal.
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Typically, the BWE decoder closely follows the well-established linear prediction cod-
ing (LPC) paradigm, motivated by the (simplified) source-filter model of speech pro-
duction, cf. Sec. 9.3. Then, the excitation is a mixture of noise and pulse contributions.
The time envelope of the excitation signal is formed with a sub-frame resolution. Fi-
nally, shaping of the frequency envelope is performed by an all-pole, LP synthesis
filter.

9.4.2 Examples of Embedded Wideband Speech Codecs

Maybe the first proposal of a wideband embedded speech codec was made in 1983
by Patrick [Patrick 1983]. This proposal was based on the observation that in stand-
alone bandwidth extension some specific fricatives, especially /s/ sounds, are difficult
to distinguish by analyzing the narrowband speech signal. Hence, Patrick proposed
transmitting one bit per frame in addition to the narrowband signal in order to signal
/s/ sounds to the BWE algorithm at the receiver side.

A decade later, in 1993, McElroy et al. published an experimental wideband speech
codec with an embedded proprietary narrowband CELP codec [McElroy et al. 1993].
For the highband signal the quantized coefficients of a second-order linear prediction
filter and one gain factor per frame are transmitted at a data rate of only 640 bit/s.

By 2000, wideband embedded speech coding with parametric transmission of the
highband signal components had gained much interest in the research community, and
several approaches were developed independently [Taori et al. 2000], [McCree 2000],
[Valin, Lefebvre 2000], [Epps 2000], [Aguilar et al. 2000]. In all of these proposals, a
linear prediction synthesis filter is applied for shaping the spectral envelope, and gain
factors are transmitted for each signal frame or for sub-frames. The gross data rates
for the BWE information are in the range 500 bit/s up to 3.2 kbit/s.
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In [Taori et al. 2000] and [McCree 2000] embedding of a standardized narrowband
speech codec was investigated for the first time. In both publications strong emphasis
is put on concise reconstruction of the time envelope of the synthetic highband signal.
To achieve this target, McCree proposed modulating white noise, the raw excitation
signal, with the time envelope of the 3–4 kHz sub-band components of the decoded
narrowband speech signal [McCree 2000]. This method produces a pitch-dependent
time envelope contour in the highband signal, and it consistently reduces the noisy
sound characteristic that is produced when plain white noise is used as the excitation
signal. McCree’s codec is based on the G.729 Annex E narrowband codec (data rate
11.8 kbit/s) and achieves with 2.2 kbit/s of additional BWE information (gross data
rate of 14 kbit/s) a subjective speech quality that is between that of G.722 at 48 and
56 kbit/s.

In contrast, Taori et al. applied explicit transmission of the highband time envelope
with high temporal resolution [Taori et al. 2000]. Gain factors for the excitation
signal are determined every 1–2.5 ms. Thus, similar to McCree’s approach described
above, the pitch-dependent time envelope contour can be reproduced by the BWE
system. Combining gain factors with a time resolution of 1 ms and spectral envelope
information (LP coefficients) with a time resolution of 10 ms, the BWE information
results in a data rate of 3.8 kbit/s. On top of the GSM enhanced full-rate (EFR) codec
(data rate 12.2 kbit/s), this approach uses a gross data rate of 16 kbit/s. It achieves a
subjective quality that is equivalent to G.722 at 48 kbit/s.

McCree et al. later modified their approach to include the GSM adaptive multi-rate
(AMR) codec as the embedded narrowband codec [McCree et al. 2001]. The proposed
wideband codec comprises several data rates in the range 8.05 kbit/s to 31.8 kbit/s.
For the low data rates (8.05–15.95 kbit/s) the BWE information uses only 1.35 kbit/s
and for the higher data rates 2.3 kbit/s are applied. In addition to the increased
flexibility in terms of data rate, in comparison with [McCree 2000], the BWE algorithm
has been specifically tailored in order to improve the quality of the wideband codec
in background noise conditions.

Another wideband embedded speech coding approach was proposed in [Jax et al.
2006a], [Geiser et al. 2007]. Compared with previous approaches, this method dif-
fers mainly in the spectral envelope shaping technique: instead of the typical auto-
regressive LP synthesis filter, a linear-phase FIR filter-bank equalizer is applied here.
The adaption of the filter coefficients is performed by the decoder every 10 ms. This
adaptation is based on a comparison between a target spectral envelope, transmitted
by the BWE encoder, and the measured spectral envelope of the excitation signal.
The excitation signal is synthesized according to excitation parameters (like codebook
gains and adaptive codebook lag) taken from the NB speech decoder. In addition, the
target time envelope of the highband signal components is transmitted with a high
time resolution of 1.25 ms. This BWE algorithm recently was standardized by ITU-T
as part of the hierarchical G.729.1 speech and audio codec [ITU G.729.1 2006].

Figure 9.9 shows exemplary results of an informal subjective listening test from [Jax
et al. 2006b]. Here, the bandwidth extension scheme is based on an embedded GSM
EFR speech codec. Three different data rates, 300, 600 and 1500 bit/s, were used
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Figure 9.9: Results of a MUSHRA-style subjective listening tests for GSM EFR codec
plus BWE information [Jax et al. 2006b]. c© 2006 IEEE

for transmitting the BWE information. The subjective speech quality was compared
with the GSM EFR base layer and with two reference codecs, the AMR-WB codec
at 12.65 kbit/s and the G.722 codec at 64 kbit/s.

9.4.3 Audio Coding

Somewhat related approaches to wideband speech transmission with BWE techniques
have been introduced in the context of MPEG general audio coding as spectral band
replication (SBR). Basic differences to the techniques applied for speech signals are
that SBR for audio signals cannot rely on a signal model, and that the extension
starts with an audio signal that already has quite a high cutoff frequency, e.g., of
8 kHz. The psycho-acoustic characteristics of the human ear can be exploited, espe-
cially the reduced resolution at higher frequencies. SBR has successfully been used
to enhance the low-rate coding efficiency of the MPEG-1/2 layer 3 codec (MP3, the
extended version has been named MP3pro) and MPEG-2/4 Advanced Audio Coding
(AAC, extended versions AACplus and HE-AAC). Further information can be found
in [Dietz et al. 2002], [Wolters et al. 2003].

9.5 Combination of Bandwidth Extension with
Watermarking

A significant step towards a truly backwards-compatible wideband voice communica-
tion system may be taken by combining informed bandwidth extension, as introduced
in the previous section, with digital watermarking technology. This promising combi-
nation has emerged only very recently in literature [Ding 2004], [Chen, Leung 2005],
[Geiser et al. 2005], [Sagi, Malah 2007].
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The appeal of this approach lies in the fact that transmission of the BWE information,
including all signaling between encoder and decoder, is performed“hidden”within the
narrowband speech signal. The BWE information becomes almost intrinsically tied to
the narrowband speech signal. The voice transmission system need not be aware of the
hidden communication channel, and, therefore, the approach is capable of transport-
ing wideband speech via many existing legacy narrowband voice transmission systems.
A prerequisite for this target is that the BWE information survives modification of the
watermarked narrowband signal as, e.g., produced by tandem coding, transmission
errors, DA/AD conversion, or additive noise.

9.5.1 Digital Watermarking of Speech Signals

Digital watermarking technology provides a “hidden” communication channel that is
inherently linked to a certain host signal. The watermarking encoder (embedder)
modifies specific signal components of the host signal in such a manner that the sig-
nal modification is imperceptible to a human listener. The watermarking decoder
(detector), however, can reconstruct the hidden message by analyzing the signal mix-
ture.

Digital watermarking is still a young technology. The first work on digital water-
marking of multimedia content was published at the beginning of the 1990s. About
ten years ago in the mid-1990s the first practical systems were proposed, especially
for image and video watermarking. Today, watermarking systems have been designed
and deployed for a large variety of applications, including forensics, copyright protec-
tion, audience metering among many others [Hartung, Kutter 1999]. In the sequel,
we will concentrate on the basic principles of watermarking for speech signals, e.g.,
[Cheng, Sorensen 2001], [Sagi, Malah 2004].

Designing a watermarking system is a unique discipline because the hidden communi-
cation has to be mixed with an existing, much stronger host signal. In general, a trade-
off between at least three imperatives has to be found.

1. Inaudibility – Typically, the difference between the raw host signal and the signal
mixture of host-plus-watermark shall not be perceptible by a human listener.
In some specific applications, a certain audibility may be acceptable.

2. Robustness – In general, the watermark message shall remain detectable even
if the host plus watermark signal is modified. Potential signal modifications
include manipulation by a malicious “attacker” (not to be expected for trans-
mission of BWE information) or any degradation of the host plus watermark
signal, e.g., by channel distortions or transmission errors.

3. Data rate – Depending on the application, a certain fixed or minimum data rate
shall be communicated via the watermarking channel.
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In addition to these watermarking-specific constraints, additional implementation as-
pects may play a role, e.g., computational complexity, algorithmic latency, etc. Cor-
responding to the wide area of watermarking applications there is not a single optimal
tradeoff, but an individual tradeoff has to be found for each particular application.

Designing the watermarking approach for a specific application involves the basic
modulation scheme, but it may include further essential aspects of a digital communi-
cation system such as synchronization, forward error correction, channel estimation,
error concealment, etc.

The watermarking process can be described mathematically by addition of a water-
mark signal w(k) to the host signal s(k)

s̃(k) = s(k) + w(k;m, s(k)) , (9.1)

where m is the message to be embedded, and s(k) denotes the set (frame) of samples
adjacent to the kth sample s(k). The dependency of the watermark signal w(k)
from the host signal s(k) is necessary for two reasons: first, knowledge of s(k) is
required to render the hidden signal w(k) inaudible, and, second, knowledge of the
host signal can be utilized in order to limit or even completely remove interferences
of the watermark with the host signal in the watermark detector [Costa 1983], [Chen,
Wornell 2001].

The algorithms to determine the watermark signal w(k) in general can be split into
two blocks. A perceptual analysis is performed first in order to determine the masking
properties of the current segment of the host signal. This analysis can explicitly make
use of a psycho-acoustic masking model [Sagi, Malah 2004]. Alternatively, a more
heuristic approach can be taken, e.g., using linear prediction based noise shaping
techniques [Geiser et al. 2005]. The result of the perceptual analysis controls the
modulation of the watermark signal. The additive signal w(k) can be shaped so
that its frequency components lie beneath the masking threshold defined by the host
signal s(k).

A variety of basic modulation techniques for audio and speech watermarking have been
devised. The most important methods are spread spectrum and dither modulation
techniques.

Spread spectrum modulation [Cheng, Sorensen 2001] has the advantage that the de-
coding can be done by applying a simple correlation detector. The detection results
are very consistent over wide ranges of channel conditions. However, in the simple
correlation detection the watermark sequence interferes with the much stronger host
signal. Therefore, the maximum achievable data rate is limited according to the local
statistical properties of the host signal.

In contrast, dither modulation takes interferences with the host signal into account
already in the embedding process [Chen, Wornell 2001]. The maximum achievable
data rate is not constrained by the host signal but only by distortions and attacks
of the watermarked signal. The vector version of dither modulation combines the
capacity of dither modulation with the consistency and reliability of spread spectrum
modulation [Fischer et al. 2004], [Geiser et al. 2005].
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9.5.2 Transmission of BWE Information via Watermarking

The system architecture for embedded wideband speech transmission using water-
marking techniques is shown in Fig. 9.10. In the upper branch of the encoder,
Fig. 9.10-a, the wideband input signal is low-pass filtered and decimated to a sample
rate of 8 kHz. The resulting speech signal snb will be the host signal for the digital wa-
termark. In parallel, the wideband voice signal is fed into a BWE encoder, which pro-
duces a continuous stream of BWE information, cf. Sec. 9.4.

The BWE information constitutes the message that is input to the watermarking
embedder in order to be transmitted via the “hidden” watermark channel to the de-
coder. The watermarking embedder uses knowledge of the narrowband host signal in
order to optimize modulation and frequency shaping of the watermark signal w(k).
The watermarked signal s̃nb(k) = snb(k) + w(k) is finally input to the narrowband
encoder.

Using a well-designed watermarking scheme, the transmitted signal s̃nb should be
subjectively indistinguishable from the original host signal snb. This is one key to
providing the best possible backwards-compatibility, because a narrowband speech
decoder will produce subjectively identical results as if it were connected with any
legacy speech encoder.

Narrowband
encoding

Decimation
16     8 kHz

Watermark
embedding

snb
NB info

BWE info

Low-pass
filter

BWE
encoding

swb

Narrowband
decoding

Interpolation
8     16 kHz

Watermark
detector

snb

shb

swb

NB info

BWE
decoder

a)

b)

snb
~

~

Figure 9.10: Principle of embedded wideband speech transmission with watermarking
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Because the narrowband speech encoder is positioned behind the watermark embed-
der, the non-linear coding distortions introduced by the voice codec already contribute
to the channel distortions that will be seen by the watermark detector at the receiver
site of the communication link.

The receiver, shown in Fig. 9.10-b, first has to decode the narrowband voice signal.
The narrowband speech components are interpolated to a sample rate of 16 kHz. In
parallel, the watermarked narrowband signal is fed into the watermark detector that
recovers the BWE information. The BWE algorithm decodes the BWE information
and produces the highband signal components shb, which are finally added to snb to
produce the full wideband output signal swb of the decoder. The same BWE decoding
principles as described in Sec. 9.4 can be applied.

Again, the decoder can easily be designed to be fully backwards-compatible to plain
NB communication links. If no watermark is being detected, i.e., if no BWE en-
coder has been used at the transmitter or the watermark information has been de-
stroyed by modification of the watermarked signal, the bandwidth extension can ei-
ther be completely deactivated, or a stand-alone BWE algorithm can be applied,
see Sec. 9.3. In Sec. 9.6 we will describe two algorithms that inherently switch
between stand-alone BWE and utilization of the watermark information, if avail-
able.

9.5.3 Challenges and Status

The above described concept produces high demands for both the watermarking sys-
tem and the BWE algorithm. The BWE information is produced frame-by-frame
and requires a transmission data rate of at least 100–300 bit/s for consistent results,
the more the better. It is a strong challenge for a watermarking system to provide
this capacity continuously and with low latency, while guaranteeing that the wa-
termark is virtually inaudible. Furthermore, typical transmission channels for voice
communication, with their low-rate speech codecs and radio transmission, may in-
troduce strong signal distortion that, in turn, requires a very robust watermarking
scheme.

On the other hand, the concept introduced in this section also requires sophisticated
BWE techniques that produce consistent wideband speech signals with the little avail-
able capacity of the hidden watermarking channel. As an example, the maximum data
rate has been reported by [Sagi, Malah 2007] to be 600 bit/s with a bit error rate of
about 1 . . . 5 · 10−4 in typical analog telephony AWGN channel models (SNR 35 dB)
and with µ-law quantization. For channels including state-of-the-art low bit rate
speech codecs the data rate achievable by watermark communication can be expected
to be even lower. Besides the limited data rate, the BWE decoder must be capable
of addressing varying channel conditions as to be expected if the watermarked signal
is significantly degraded. It is still an open research topic how to make best use of
this very limited and time-varying capacity of the watermarking channel. Some first
approaches to this problem will be described in Sec. 9.6.
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Nevertheless, several experimental BWE plus watermarking systems have already
been proposed recently [Ding 2004], [Chen, Leung 2005], [Geiser et al. 2005], [Sagi,
Malah 2007], [Geiser, Vary 2007]. In these papers it was reported that the resulting
subjective quality of the decoded wideband voice signals is consistently better than
that of their narrowband pendants. Furthermore, it was found in [Geiser et al. 2005],
[Chen, Leung 2005] that a BWE plus watermarking system consistently outperforms
a stand-alone BWE algorithm.

Before BWE plus watermarking systems can be deployed in practice, some challenges
remain to be addressed. In particular, a complete system approach has to be speci-
fied and tested, including algorithms for synchronization, signaling, etc. Maybe the
schemes that are nearest to practical applications are those that embed the BWE
information directly into the bit stream information of a narrowband speech codec
[Chétry, Davies 2006], [Geiser, Vary 2007]. However, also for these approaches im-
portant questions that arise in practice remain to be answered, e.g., to what ex-
tent does such bit stream watermarking survive transcoding in the transmission net-
work.

9.6 Advanced Transmission of Highband Parameters

Besides the signal processing approaches described in the previous sections, specific
quantization and source (de)coding methods have been developed that make use of
the inherent hierarchical structure of embedded wideband speech codecs. Using these
technologies the mutual information between highband parameters and parameters of
the narrowband speech signal can be exploited in order to improve the fidelity of BWE
information that is transmitted with a certain data rate.

According to independent investigations, the amount of mutual information to be
exploited is in the order of about 1–2.5 bit/frame, corresponding to about 50–
250 bit/second at a typical frame rate of 50 frames/second [Nilsson et al. 2000], [Nils-
son et al. 2002], [Jax, Vary 2002]. At first sight these values appear rather low, but
they have to be seen in relation to the typical data rates of only 300–3000 bit/s that
have been applied for signaling of BWE information in literature (see Sec. 9.4 and
9.5). In comparison, the exploitable mutual information is not negligible and may
allow for significant performance improvements, particularly for low-rate applications
such as watermark embedding of BWE information.

Two variants to exploit side information from the narrowband signal in order to
improve transmission of BWE information are described in this section. The first
variant, Sec. 9.6.1, explicitly uses the side information in both the encoder and decoder
in order to improve the performance of the BWE information quantizer. The second
variant, Sec. 9.6.2, exploits side information extracted from the narrowband speech
in order to apply sophisticated error concealment of the BWE information at the
receiver only.
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9.6.1 Coding with Side Information

The term side information is used here to denote any information that is extracted
from the narrowband speech signal, or from parameters of the narrowband codec,
which can be utilized to improve the performance of the quantization of the BWE
information. The principle is illustrated in Fig. 9.11. The same side information bnb

is used in the transmitter and receiver in order to control encoding and decoding of
the BWE parameters.

This may lead to problems if the narrowband signal is subject to distortion in the
transmission system. Then, the BWE decoder uses different side information from
the BWE encoder which may produce substantial distortion of the decoded BWE
parameters as well. Therefore, the coding with side information approach is restricted
to scenarios in which no or negligible distortion of the narrowband parameters is to
be expected.
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Figure 9.11: Coding with side information in order to improve the performance of
transmission of the BWE information

Conditional Quantization

The basic idea of conditional quantization is to modify the quantization of the BWE
information a depending on the observed side information bnb. Normally, i.e., without
using side information, quantization of the BWE parameters a would be performed
by searching a codebook Ca for the candidate representative âi that minimizes a
distortion criterion d(a, âi)

Q(a) = arg min
âi∈Ca

d(a, âi) . (9.2)

The index i of the found representative codebook entry is transmitted to the BWE
decoder, which can reconstruct the corresponding representative âi. Normally, the
quantizer codebook Ca is globally optimized to minimize the average distortion of the
quantizer

Ca = arg min
C

Ep(a)

{
d(a, Q(a))

}
. (9.3)
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For this purpose, for example, the well-known LBG training algorithm can be used in
combination with a sufficiently large data base of training vectors.

Now, in order to utilize the side information bnb to improve the quantizer performance
further, an individual codebook Ca|bnb can be used that is optimized for the conditional
probability density function (PDF) p(a|bnb) instead of the unconditional PDF p(a)
applied above

Ca|bnb = arg min
C

Ep(a|bnb)

{
d(a, Q(a))|bnb

}
. (9.4)

Without resource limitations this would mean training an individual quantizer code-
book Ca|bnb for each value of the side information bnb. Naturally, this is not possible
in practice due to constraints on memory consumption and a lack of training mate-
rial.

For practical systems, it has been proposed that one clusters the side information data
bnb into a limited number of classes, e.g., up to 16, and stores one conditional code-
book Ca|bnb for each class. Then, for each signal segment both encoder and decoder
classify the side information data to select the quantizer codebook to be used for quan-
tizing the BWE information a [Epps 2000], [Epps, Holmes 2001], [Agiomyrgiannakis,
Stylianou 2004], [Agiomyrgiannakis, Stylianou 2007].

Quantization of a Prediction Residual

An alternative approach to coding with side information is based on prediction tech-
niques, for example, [Nomura et al. 1998]. The side information bnb is used to calcu-
late a prediction E{a|bnb} of the measured BWE parameters a, which is subtracted
from the true parameters to form the prediction residual e

e = a − E
{
a|bnb

}
. (9.5)

The prediction residual is quantized, encoded and transmitted to the BWE receiver.
The decoder has to determine the same prediction as the encoder to reconstruct the
quantized BWE parameter set â

â = E
{
a|bnb

}
+ Q(e) . (9.6)

If side information bnb and BWE information a share mutual information
I(a;bnb) > 0, then the prediction residual will have a lower differential entropy h(e)
than the original BWE information. In general, h(a) − I(a;bnb) ≤ h(e) ≤ h(a).
Therefore, as compared with direct quantization of a, less data rate is required to en-
code and transmit a BWE parameter set with a specific fidelity.

The functionality of the prediction in (9.5) and (9.6) is more or less identical to that of
the parameter estimation applied in stand-alone bandwidth extension, see Sec. 9.3.1.
Similar approaches can be taken. This property allows an elegant fall-back strategy
in case the transmission of the encoded prediction residual fails, e.g., in the case of
frame erasures for packet-oriented networks or if a watermarking channel is severely
degraded. Then it is sufficient to replace the decoded residual Q(e) in (9.6) with zero
to obtain a conventional stand-alone BWE system.
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9.6.2 Error Concealment with Side Information

One of the major applications for embedded speech coding is transmission of the
individual bit streams over channels with unequal error behavior. An example is
packet-oriented transmission, e.g., voice over IP, where the narrowband base layer bit
stream may be better protected against packet loss than the BWE information, e.g.,
by forward error correction or quality of service mechanisms. Another application may
be radio transmission with unequal error protection, i.e., with stronger forward error
protection for the narrowband base layer and less error protection for the enhancement
layer(s).

Erroneous decoding or even loss of the BWE information might lead to short-term
switchings between narrowband decoding and wideband decoding. Such alternate nar-
rowband and wideband characteristics of the decoded speech signal is very annoying
to a listener and, thus, the subjective quality of the codec may drop significantly, even
below that of the embedded narrowband codec. In order to provide graceful degrada-
tion characteristics in such scenarios, it is mandatory to perform error concealment
at the receiver. In this section we will present a suitable error concealment technique
that is tailored to the specific application of embedded wideband speech coding with
parametric BWE information [Geiser et al. 2005].

In the sequel, we will use the notation from [Vary, Martin 2006, Chap. 10.3.2]. The
system setup is depicted in Fig. 9.12. The lowest branch results in the original set
of BWE parameters a, which can be directly calculated from the original wideband
speech signal swb.

The upper branch illustrates how these BWE parameters can be estimated from
features bnb of the narrowband speech signal, as applied in stand-alone bandwidth
extension, see Sec. 9.3.
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Figure 9.12: System model of parallel implicit and explicit transmission of BWE in-
formation
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The middle branch in Fig. 9.12 shows explicit transmission of the BWE information
via a watermarking channel, cf. Sec. 9.5. Here, the BWE decoder has to estimate
the parameters from the output bwm of the watermarking detector. We assume that
the watermark detector produces “soft information” such that it is possible to de-
rive the likelihood values p(bwm|a) required for error concealment [Fingscheidt, Vary
2001].

The BWE information is effectively transmitted via two channels: explicitly as part of
the hierarchical bit stream, and implicitly through the characteristics of the narrow-
band speech signal. This can be interpreted as a kind of diversity transmission. In the
error concealment scheme, both parallel information paths will be taken into account.
Nevertheless, for comprehensibility we will start below with the definition of typical
statistical estimation rules for a single information path.

Estimation from One Information Path

As an example, we will describe statistical estimation of the BWE parameters a from
the set of narrowband features bnb. This case corresponds to stand-alone BWE,
cf. Sec. 9.3.1. The derivations for the estimator in the parallel branch in Fig. 9.12
are the same, but bnb has to be exchanged with the channel output bwm from the
watermark detector.

A very common estimation criterion targets at minimization of the mean square error
(MMSE) E{(a−a)T(a−a)}. The optimal estimate is [Vary, Martin 2006]

âmmse =
∫
Rn

a p(a|bnb) da . (9.7)

Alternatively, maximum a posteriori (MAP) detection can be applied in order to
find that coefficient vector a that has the largest conditional probability given the
observation vector bnb

âmap = arg max
a

p(a|bnb) . (9.8)

The common key ingredient of these two estimators is the a posteriori PDF p(a|bnb)
of the desired coefficient vector a, given the observation vector bnb. Since the a
posteriori PDF is not readily available in practice, it has to be split into measurable
components using Bayes’ rule

p(a|bnb) =
p(bnb|a) p(a)

p(bnb)
(9.9)

=
p(bnb|a) p(a)∫

Rn

p(bnb|a) p(a) da
. (9.10)

Both the observation probability p(bnb|a) and the probability density p(a) can be
modeled, with the model parameters trained off-line and stored for later use by the es-
timator. Accordingly, it is possible with (9.10) to compute the a posteriori PDF from
the observation vector bnb. Subsequently, any a posteriori based estimation rule can
be applied, e.g., one of the variants from (9.7) and (9.8).
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Error Concealment Using Two Information Paths

The example estimators derived above shall now be modified for two parallel input
observations. The target is to define a single estimation rule that makes best use of
both available information paths. For the application of embedded wideband speech
coding with BWE techniques, we have explicit signaling of the BWE information in
the watermark message m leading to the channel output bwm, and implicit information
in the narrowband speech signal via the observation vector bnb. Therefore, we have
to replace the a posteriori PDF p(a|bnb) in the example estimation rules (9.7) and
(9.8) by the a posteriori PDF p(a|bwm,bnb) that is conditioned on both available
information paths.

Before applying Bayes’ rule, we introduce the assumption that the two observations
bwm and bnb are independent under the condition of a fixed value of a. That is, we
assume

p(bwm,bnb|a) ≈ p(bwm|a) · p(bnb|a) . (9.11)

The basis for this assumption is that for a given BWE parameter vector a the distri-
bution p(bwm|a) depends on stochastic channel perturbations affecting explicit trans-
mission of the BWE information, while the observation probability p(bnb|a) depends
on dependencies between the BWE parameters and the narrowband speech signal.

Applying Bayes’ rule for this case of two information paths and using the above
assumption leads to the modified a posteriori PDF

p(a|bwm,bnb) =
p(bwm,bnb|a) p(a)

p(bwm,bnb)
(9.12)

≈ p(bwm|a) p(bnb|a) p(a)
p(bwm,bnb)

(9.13)

≈ p(bwm|a) p(bnb|a) p(a)∫
Rn

p(bwm|a) p(bnb|a) p(a) da
. (9.14)

This formulation of the a posteriori PDF allows for statistical estimation of the BWE
parameter set a using both information sources, bnb and bwm. It is, however, nec-
essary to have certain a priori knowledge. For watermarking channels the likelihood
values p(bwm|a) can be derived from an AWGN model of the equivalent watermark
transmission path [Geiser et al. 2005]. For this purpose an estimate of the effective
distortion of the watermarking channel has to be determined at the receiver. The a
priori knowledge required to determine p(a) and p(bnb|a) has to be trained off-line,
as for stand-alone BWE, see above and Sec. 9.3.1.

The signal flow of the joint estimation rule is illustrated in Fig. 9.13. For more details
and an application example for this joint estimation rule the reader is referred to
[Geiser et al. 2005].

The derivation of the a posteriori PDFs and the two example estimators has been
shown above for the case of continuous PDFs. The same procedure can be applied
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Figure 9.13: Joint estimation of the BWE parameters a from both available informa-
tion paths, the output bwm of the watermark channel and the features
bnb of the NB speech signal

for discrete probability functions, or for a mixture of discrete and continuous quan-
tities using the mixed form of Bayes’ rule. Furthermore, the same methodology
can be applied with more sophisticated source models, e.g., with a hidden Markov
model.

Fall-back Behavior

The a posteriori PDF (9.14) has been derived in order to exploit both available in-
formation sources. What happens if the information from one of the two paths is de-
graded? In the extreme case one of the two information paths may get completely lost.
Then, the mutual information of the channel output and the original parameter set de-
grades to zero. That is, if, for example, the watermark channel is lost, I(a;bwm) = 0,
and the corresponding likelihood can be approximated as

p(bwm|a) ≈ p(bwm) . (9.15)

Thereby, the a posteriori PDF is reduced to

p(a|bwm,bnb) =
p(bwm|a) p(bnb|a) p(a)∫

Rn

p(bwm|a) p(bnb|a) p(a) da
(9.16)

≈ p(bwm)
p(bwm)

· p(bnb|a) p(a)∫
Rn

p(bnb|a) p(a) da
(9.17)

=
p(bnb|a) p(a)∫

Rn

p(bnb|a) p(a) da
. (9.18)

The result (9.18) is identical to the a posteriori PDF for the case of only one obser-
vation source, cf. (9.10). This means that, if one information source gets lost, the
joint estimator will gracefully fall back to exploit only the single remaining observa-
tion.
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9.7 Conclusions

All of the described concepts and codecs share a common core technology: parametric
representation of the highband signal components by a set of BWE parameters. The
difference is in the questions of if and how this set of parameters is transmitted via the
speech communication system. These questions are the major key to both backwards-
compatibility and achievable wideband speech quality. The larger the data rate of
explicitly transmitted BWE information, the better the wideband speech quality that
can be obtained, and the greater the effort required to integrate the approach with
existing narrowband speech communication systems.

Although bandwidth extension is a rather young technology, some BWE techniques
have already found their way into speech coding standards. Other, more sophisticated
approaches need further research and testing to become mature enough for deployment
in practical systems.

Bandwidth extension and “true” wideband speech coding should not be regarded as
alternatives. In fact, there are several applications for which the two techniques
complement each other. In particular for embedded wideband speech coding, es-
timation and coding techniques need to go hand in hand in order to provide ro-
bust and high-quality speech communication services over adverse transmission chan-
nels.
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Chapter 10

Parameter Models
and Estimators in
Soft Decision Source Decoding

Tim Fingscheidt

10.1 Introduction

The typical goals of transmission system design such as high capacity, but also high
signal quality and robustness usually contradict each other. Thanks to Shannon’s
landmark contribution to information theory [Shannon 1948] one can treat the issues
of bit rate reduction (source coding) and error protection (channel coding) separately.
This however in principle presumes unlimited computational power and delay. In real-
time conversational and streaming services for speech, audio, and video transmission
in particular these assumptions are of course not met. To guarantee a limited delay
and to achieve a certain level of robustness, frame-based transmission is employed,
which limits the ability to remove interframe correlations. In virtually all source
coders, this fact is practically observed in terms of residual redundancy in the bit
stream.

In the very same publication [Shannon 1948], Shannon mentioned further: “However,
any redundancy in the source will usually help if it is utilized at the receiving point.
In particular, if the source already has a certain redundancy and no attempt is made
to eliminate it in matching the channel, this redundancy will help combat noise.” In
the last twenty years this led to a remarkable interest in joint source and channel
coding. The common idea of many of the proposed approaches is the exploitation of
this residual redundancy in the channel decoder and/or in the source decoder. This is
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often performed in conjunction with the use of so-called soft values through parts of
the receiver processing chain equalizer and demodulator, channel decoder, and source
decoder.

Previous work on joint source channel coding can roughly be grouped as follows. First,
there are approaches that do not touch conventionally designed transmission systems
except the receiver. These can be further subdivided into proposals where the conven-
tional system design does not require additional explicit redundancy for channel en-
coding, e.g., [Gerlach 1993], [Phamdo, Farvardin 1994], [Fingscheidt, Vary 1996], and
those where some explicit redundancy is used in the system, e.g., [Hagenauer 1995],
[Weiss et al. 1996], [Alajaji et al. 1996], [Fazel, Fuja 2000].

Secondly, there are approaches that allow a redesign of the encoder. Well-known
schemes without adding explicit redundancy for channel coding are channel-optimized
codebooks and index assignments for vector quantization [Farvardin, Vaishampayan
1987], [Farvardin 1990], [Farvardin, Vaishampayan 1991], [Sayood, Borkenhagen
1991], [Knagenhjelm 1993], [Cuperman et al. 1994], [Skoglund, Hedelin 1999]. Finally,
one can think of course as well of a full system optimization with modified source en-
coding, channel encoding, and receiver-sided functions.

Chapter 10 and Chap. 11 deal The first two chapters of this part of the book have dealt
with system-compatible improvements to existing transmission systems where in prin-
ciple no explicit redundancy for channel coding is required (although allowed!). The
technique presented will exploit residual redundancy in the decoder and is called Soft
Decision Source Decoding (SDSD). The later chapters of this part of the book com-
prise typical channel coding schemes as well and show possibilities for a better total
system design in the sense of joint source channel coding.

The mere SDSD technique is presented in this chapter. It can be seen as an ad-
vanced error concealment scheme [Fingscheidt, Vary 1996], [Fingscheidt, Vary 1997a],
[Fingscheidt, Vary 2001]. Besides the modification of the source decoder, SDSD only
requires the availability of soft information at the channel decoder’s output. As an
introduction to this chapter and also the following chapters we will briefly revise the
principle of SDSD in Sec. 10.2 – in the fashion in which it was first published [Fing-
scheidt, Vary 1996]. In Sec. 10.3 we will then introduce some basics to Markovian
parameter modelling, a prerequisite to the estimators presented in the subsequent
sections. Basic extrapolative estimators for different Markov model orders will be
discussed in Sec. 10.4. Sections 10.5 and 10.6 will introduce two closely related types
of estimators: The first exploiting statistical dependencies between two different pa-
rameters, the second making use of the redundancy that occurs in a repeated param-
eter transmission. Techniques of interpolative parameter estimation are discussed in
Sec. 10.7.
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10.2 Overview to Soft Decision Source Decoding

10.2.1 Source Encoding

In the following we are interested in robust transmission of so-called parameters. These
parameters could be, for example, gray values of pixels in an image or samples of a
speech signal. In practice, of course, image and speech signals are subject to source
coding before being transmitted. Such source encoders can follow quite different
coding philosophies such as waveform coding, parametric coding, or hybrid coding.
Any of these coding paradigms generates one or more parameters in a certain period of
time or per frame. In the case of hybrid speech coding, examples of these parameters
are spectral coefficients, gain factors, and pitch values.

In the following, we will regard a parameter that is typically a vector of scalar param-
eter components ṽk = (ṽ1,k, . . . , ṽm,k, . . . , ṽM,k) with M being the vector dimension,
and k being the frame index. We shall assume real-valued parameters, i.e., ṽm,k ∈ R.
In the context of hybrid speech coders, ṽm,k may represent a gain factor or a spectral
coefficient, for example. A typical M = 2 case is the vector quantization of an alge-
braic codebook gain and an adaptive codebook gain (see, e.g., [3GPP-AMR 1999]).

As shown in Fig. 10.1, we assume this parameter is subject to a (vector) quantizer Q
yielding vk ∈ V, with V being a codebook with a number of 2w (vectorial) codebook
entries v(i), i = 0, 1, . . . , 2w − 1. A bit mapping scheme (BM) chooses the respective
bit pattern xk = (xk(1), . . . , xk(κ), . . . , xk(w)) = x(i) ∈ X that will be transmitted
via a so-called equivalent channel. The bit index κ is in the range κ = 1, . . . , w. X is
called the codebook of bit patterns, and it can be addressed by the index i to yield a
specific bit pattern x(i).

Source encoder

Source decoder

ṽk
Q

vk
BM

xk

Equivalent
channel

x̂kLookup
table

v̂k

Figure 10.1: Conventional Hard Decision (HD) transmission system
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10.2.2 Equivalent Channel

The equivalent channel may comprise channel coding, modulation, the physical chan-
nel itself, and also synchronization, demodulation, equalization, and channel decoding.
In this chapter we are interested only in the output of such an equivalent channel,
which classically consists of a received bit pattern x̂k. The simplest channel we can
imagine is a Binary Symmetric Channel (BSC) that merely assigns a received bit
x̂k(κ) to a transmitted bit xk(κ). The bits transmitted over the BSC are subject
to errors with a certain bit error probability 0 ≤ pk(κ) ≤ 1, which may be time-
varying. As shown in Fig. 10.2 we expect the equivalent channel not only to yield the
received bit pattern x̂k, but also to provide an estimate of the instantaneous bit error
probabilities pk = (pk(1), . . . , pk(w)).

A more powerful yet simple model of an equivalent channel is given if we assume
transmission over a Binary Phase Shift Keying (BPSK) modulated Additive White
Gaussian Noise (AWGN) or Rayleigh fading channel with coherent demodulation.
Postulating bipolar bits with xk(κ) ∈ {−1,+1}, we can express the real-valued de-
modulator output as

zk(κ) = ak(κ) · xk(κ) + nk(κ), zk(κ) ∈ R, (10.1)

with ak(κ) ∈ R+ being the fading factor (ak(κ) = 1 for AWGN) and nk(κ) ∈ R being
a sample of the additive white Gaussian noise with variance N0/2. The respective
output bit of the equivalent channel is then

x̂k(κ) = sign(zk(κ)). (10.2)

Utilizing this model of an equivalent channel, however, yields much more information
than the received bit alone. If the fading factor ak(κ) is known (at least in average)

Source encoder

Soft decision
source decoder

ṽk Q
vk

BM
xk

Equivalent
channel

x̂k

pk
Transition
probabilities

A posteriori
probabilities

A priori probabilities

Estimator
v̂k

P (x(i)
k |x̂k, . . .) P (x̂k|x(i)

k )

Figure 10.2: SDSD transmission system
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and also the noise variance N0/2, this equivalent channel also yields estimates for the
instantaneous bit error probability

pk(κ) = (1 + exp |L(xk(κ))|)−1 (10.3)

with

L(xk(κ)) = 4ak(κ) · Es

N0
· zk(κ) (10.4)

being a so-called log-likelihood ratio L(xk(κ)) ∈ R of the transmitted bit xk(κ). The
BPSK symbol energy will hold Es = 1, the expectation value E{a2} = 1.

So far, this simple channel model is very suitable for the evaluation of the SDSD
approach. In practice, however, error correction means are employed and are part
of the equivalent channel. It is important to note that, in this case, the equiva-
lent channel can also be designed to yield (estimations of) bit error probabilities
along with the received bits. We expect the channel decoder then to be a soft-input
and soft-output algorithm, like, e.g., the Soft-Output Viterbi Algorithm (SOVA) as
a sequence estimator [Battail 1987], [Hagenauer, Höher 1989], [Huber, Rüppel 1990].
While the SOVA is a computationally efficient suboptimal algorithm, the channel de-
coder by Bahl et al. [Bahl et al. 1974] is the optimal symbol-by-symbol estimator.
All these algorithms (can be implemented in a way that they) deliver log-likelihood
ratios L(xk(κ)) ∈ R that can directly be converted into bit error probabilities by
(10.3).

10.2.3 Hard Decision and Soft Decision Source Decoding

In Fig. 10.1 a conventional transmission scheme is shown. Any possible error cor-
rection capability is completely dedicated to the functions of the equivalent chan-
nel. Therefore, no log-likelihood ratios or bit error probabilities are passed to the
source decoder. Consequently, decoding of the parameter v̂k is simply performed by
a table lookup. Henceforth, we will call this principle Hard Decision (HD) decod-
ing.

In Fig. 10.2 the concept of Soft Decision (SD) source decoding is shown: Along
with the received bit pattern x̂k the vector of instantaneous bit error probabilities
pk is delivered by the equivalent channel. In a first step, SDSD computes so-called
transition probabilities

P (x̂k|x(i)
k ) =

w∏
κ=1

P (x̂k(κ)|x(i)
k (κ)), i = 0, 1, . . . , 2w − 1, (10.5)

exploiting the bit error probability vector by

P (x̂k(κ)|x(i)
k (κ)) =

{
1 − pk(κ) if x̂k(κ) = x

(i)
k (κ)

pk(κ) if x̂k(κ) �= x
(i)
k (κ).

(10.6)
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The transition probabilities are an important statistical entity for the further process-
ing within the SDSD framework, since they are assumed to describe the equivalent
channel fully. It becomes clear at this point that regardless what functionalities the
equivalent channel may comprise, it is modeled as memoryless by SDSD. It is im-
portant to note that this has been found not to be a problem even in the case of
equivalent channels with a lot of memory as is the case if convolutional coders are
used [Fingscheidt, Scheufen 1997].

For each received parameter x̂k coded by w bits, a number of 2w transition proba-
bilities P (x̂k|x(i)

k ) are available now that yield the likelihood of the observation x̂k

under the assumption that x(i)
k has been transmitted (i = 0, 1, . . . , 2w −1). The exact

transmitted bit pattern xk is of course not known.

The parameter (vector) is now to be modeled as a Markov process of order N .
This model decides to which extent residual redundancy that is present in the bit
stream is exploited in the SDSD computation. The parameter models are used
as a priori knowledge, i.e., as statistical information that is available about the
bit pattern xk without knowledge of the received sequence of bit patterns x̂k

1 =
{x̂1, . . . , x̂k}. In Sec. 10.3 we will analyze the process of Markov modeling in more
detail.

After the transition probabilities are available, the next computational step is the
derivation of a posteriori probabilities P (x(i)

k |x̂k, . . .), where “. . .” stands for further
(past) received bit patterns. Here the residual redundancy is exploited. It requires
the stored parameter model, i.e., the a priori knowledge.

Having available the a posteriori probabilities, one can perform the final step in SDSD:
The estimation of the parameter vector vk according to a given error criterion. In
[Melsa, Cohn 1978] and for SDSD in [Fingscheidt, Vary 1997b] the interested reader
finds advice on how to design estimators. In this chapter we assume that the Min-
imum Mean Square Error (MMSE) with its error criterion E{||v̂k − vk||2} → min
is appropriate. Hence the optimal SDSD estimator as we use it in the following is
simply

v̂k =
2w−1∑
i=0

v(i) · P (x(i)
k |x̂k, . . .). (10.7)

The presentation of new but simple MMSE estimators in the context of SDSD will
be the main goal of Secs. 10.4 through 10.7.

Note that although the MMSE estimator minimizes the mean squared Euclidean dis-
tance to the (unknown) true quantized and transmitted parameter vector vk, we
should evaluate the performance of such an estimator always including the distortion
due to quantization. For a scalar parameter ṽ1,k = ṽk transmitted over any of the sys-
tems in Figs. 10.1 or 10.2, an appropriate measure of quality is therefore the parameter
Signal-to-Noise Ratio, or briefly parameter SNR

parameter SNR = 10 log10

E{ṽ2}
E{(v̂ − ṽ)2} dB . (10.8)
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10.3 The Markovian Parameter Model

10.3.1 Description of A Priori Knowledge

When developing new estimators in this chapter we can either work with w bit quan-
tized parameter vectors vk with frame index k, or, alternatively, with their respective
bit patterns xk. Similar to Sec. 10.1 we augment it by the quantization table index i

according to xk = x(i)
k whenever needed.

If one sample (parameter vector) vk taken from a discrete-time (vectorial) random
process V at time k does not depend on all, but only on the previous sample param-
eter vk−1, we say this process has the Markov property (see for example, [Papoulis
1965]).

Denoting the probability of occurrence of the quantized parameter vector vk (of the
bit pattern xk, respectively) at time k by P (vk) = P (xk), one can characterize a
Markov process as follows:

P (xk|xk−1,xk−2, . . .) = P (xk|xk−1) . (10.9)

In the following, the transition from xk−1 to xk is assumed to be stationary, i.e.,
the probabilities P (xk|xk−1) depend only on the bit patterns xk and xk−1, but
not on the absolute index of time k. This property is usually called homogeneity
[Cox, Miller 1965]. The question of whether a certain parameter can be modeled
as taken from an homogeneous Markov process is to be decided on a case-by-case
basis.

In general we cannot assume that, e.g., a quantized speech codec parameter ful-
fills (10.9). Therefore, in the following we will use a more generalized definition
of a Markov process. Let us define a Markov process of order N by [Takàcs
1968]:

P (xk|xk−1, . . . ,xk−N ,xk−N−1, . . .) = P (xk|xk−1, . . . ,xk−N ) . (10.10)

The property classically denoted as Markov property is characterized in this notation
as Markov property of 1st order. Moreover, the special case of statistically inde-
pendent parameters is also covered, using the term Markov process of 0th order:
P (xk|xk−1, . . .) = P (xk).

The statistical knowledge about a homogeneous generalized Markov process of order
N is given by the joint probabilities P (xk,xk−1, . . . ,xk−N ). In some cases the condi-
tional probabilities P (xk|xk−1, . . . ,xk−N ) are sufficient. In the following, both terms
will be called a priori knowledge or a priori probabilities of the respective parame-
ter.

Assuming homogeneity, the a priori probabilities can be measured in the form of the
joint probabilities P (xk,xk−1, . . . ,xk−N ) by processing a large database through the
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source encoder and generating statistics of the sequences of parameters (i.e., bit pat-
terns). The conditional a priori probabilities P (xk|xk−1, . . . ,xk−N ) can be computed
from the measured joint a priori probabilities by

P (xk | xk−1, . . . ,xk−N ) =
P (xk,xk−1, . . . ,xk−N )

2w−1∑
i=0

P (x(i)
k ,xk−1, . . . ,xk−N )

. (10.11)

The step from the joint a priori probabilities to the conditional a priori probabilities
in (10.11) can be interpreted as a normalization of the joint a priori probabilities over
their first dimension xk, since we always require

2w−1∑
i=0

P (x(i)
k | xk−1, . . . ,xk−N ) = 1 . (10.12)

10.3.2 Quantification of Utilizable Residual Redundancy

Once we have a priori probabilities of order N available, we would like to know how
much residual redundancy (in bits!) is captured by this model order and is therefore
utilizable for SDSD. For this reason we express the conditional entropy in generalized
form as [Gallager 1968]

H(xk | xk−1, . . . ,xk−N ) =

−
2w−1∑
i=0

2w−1∑
j=0

. . .

2w−1∑
l=0

P (x(i)
k ,x(j)

k−1, . . . ,x
(l)
k−N ) · log2 P (x(i)

k | x(j)
k−1, . . . ,x

(l)
k−N ) .

(10.13)

In analogy to the generalized definition of the Markov property we will call the expres-
sion in (10.13) conditional entropy of order N . The conditional entropy can be inter-
preted as the required information to specify xk, averaged over all permutations of bit
patterns x(i)

k , . . . ,x(l)
k−N , if xk−1, . . . ,xk−N are already known.

The simplest case is the conditional entropy of order 0, usually called simply entropy
(the frame index k can be omitted here):

H(x) = −
2w−1∑
i=0

P (x(i)) log2 P (x(i)) . (10.14)

The residual redundancy ∆R that can be utilized in a SDSD with Markov modeling
of order N can be written as

∆R = H0 − H(xk | xk−1, . . . ,xk−N ), (10.15)

since the a priori knowledge according to Sec. 10.3.1 is captured by the conditional
entropy of (10.13). H0 = w is called the perfect information content of the respective
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quantized parameter. ∆R with the unit [bit] denotes the potential to reduce the bit
rate1 of the respective parameter from R = w bit down to R = w − ∆R bit without
changing the quantizer. In principle, this could be done by using a Huffman or a Fano
code [Hamming 1986], [Fano 1961].

The residual redundancy given in (10.15) that can be utilized for SDSD depends in
general on the distribution P (x) of the quantized parameter and also on its temporal
statistical dependencies. Both contributions to the utilizable residual redundancy are
additive according to

∆R = ∆Rd + ∆Rc . (10.16)

The utilizable, distribution-dependent residual redundancy ∆Rd is given by the differ-
ence of the perfect information content and the entropy (index“d”denotes distribution-
dependent)

∆Rd = H0 − H(x) . (10.17)

The utilizable, correlation-dependent residual redundancy ∆Rc equals the difference
between the entropy and the respective conditional entropy (index “c” stands for
correlation-dependent)

∆Rc = H(x) − H(xk | xk−1, . . . ,xk−N ) . (10.18)

In the literature ∆Rc is often denoted as mutual information I(xk;xk−1, . . . ,xk−N )
between H(xk) and H(xk−1, . . . ,xk−N ) and is alternatively given as [Gallager 1968]

∆Rc = I(xk;xk−1, . . . ,xk−N ) = H(xk) − H(xk|xk−1, . . . ,xk−N ) =
2w−1∑
i=0

2w−1∑
j=0

. . .

2w−1∑
l=0

P (x(i)
k ,x(j)

k−1, . . . ,x
(l)
k−N ) · log2

P (x(i)
k ,x(j)

k−1, . . . ,x
(l)
k−N )

P (x(i)
k ) · P (x(j)

k−1, . . . ,x
(l)
k−N )

.

(10.19)

10.3.3 Choice of the Model Order

When deciding about the optimal Markov model order N a useful theorem states that
the conditional entropy is a monotonically decreasing function with increasing order
N [Gallager 1968]. In addition, the conditional entropy is always less than or equal
to the perfect information content. This leads to

H0 ≥ H(x) ≥ H(xk | xk−1, . . . ,xk−N )
≥ H(xk | xk−1, . . . ,xk−(N+ν)) for all N, ν = 0, 1, 2, . . . .

(10.20)

1In the following the term bit rate is related to the number of bits that are used for the transmission
of a single (source codec) parameter vector x. For simplification we use the unit [bit] instead of
the correct unit [bit/parameter] for R, w, H0, H, as well as for all measures of residual redundancy.
This also follows the common terminology of rate distortion theory.
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The identity H0 = H(x) holds only in the case of a uniformly distributed quantized
parameter with P (x) = 2−w. Given a tolerable loss ε of utilizable residual redundancy,
using inequality (10.20), the Markov model order N can be estimated as the lowest
value N for which we have

H(xk | xk−1, . . . ,xk−N ) − H(xk | xk−1, . . . ,xk−(N+ν)) ≤ ε for all ν ≥ 0 .
(10.21)

If x has the exact Nth order Markov property, equality is achieved even for ε = 0 for
all ν ≥ 0.

Storage of the Nth order a priori probabilities of a parameter quantized by w bits
requires 2w·(N+1) words of memory. Particularly for parameters with high bit rate w
the trade-off between Markov model order N (and therefore memory) and utilizable
residual redundancy ∆R should be kept in mind, and actually often decides in practice
on an appropriate choice of N .

10.4 Basic Extrapolative Estimators

10.4.1 Introduction and Simulation Settings

We are interested now in formulations of concrete MMSE parameter vector estimators.
The degrees of freedom we have are the Markov model order N , and the question
whether estimation should be extrapolative (here in the sense that no additional
delay is used) or interpolative (including lookahead frames). If there are correlations
between two parameter vectors of the same frame, it is advantageous to estimate
them in common. Finally, we can also think of soft decoding of a parameter vector
that has been transmitted twice. It is important to note that in all cases (10.7) can
be used to perform the actual MMSE estimation. Therefore, in this section we can
focus fully on the respective computation of the a posteriori probabilities P (x(i)

k | . . .)
which in some cases will be marginal distributions of higher dimensional a posteriori
probabilities.

In this chapter, we are mainly interested in simple estimators, and also the simulations
we present refer to parameters drawn from simple statistical processes. Without loss
of generality we have simulated only scalar parameters which allows us to easily use
(10.8) for evaluation. All other formulae in this chapter can also be used directly for
vector quantized parameters.

We assume the parameter ṽk to be a parameter of a zero mean and unit variance
autoregressive Gaussian process of order N̄ ∈ {0, 1, 2}, named the AR(N̄) process.
Note that N̄ must not necessarily be equal to the Markov model order N as used in the
SDSD. The auto-correlation coefficients of the AR(N̄) process ρ = ρ(1) (and ρ(2) for
N̄ = 2) are given wherever reasonable. The unquantized parameter is subject to scalar
Lloyd–Max quantization with 2w quantization levels coded by w bits. The bit mapping
in Figs. 10.1 and 10.2 is done according to the Natural Binary Code (NBC) [Jayant,
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Noll 1984]. NBC actually corresponds to the binary representation of the codebook
index i, if the negative codebook entry with largest amplitude refers to x(0), and the
largest positive codebook entry is represented by x(2w−1).

The equivalent channel used in the simulations of this chapter is AWGN and thus
we have ak(κ) = 1 in (10.1) and (10.3). We assume bit-individual availability of
the error probability according to (10.3) with Es/N0 being constant and perfectly
known. All SDSD simulations are performed with an MMSE estimator according to
(10.7).

10.4.2 Estimators

Parameter estimation without any algorithmic delay is possible if the a posteriori
probabilities P (x(i)

k | . . .) are computed only for the current frame k and no future
received bit patterns x̂k+K with K > 0 are required. Therefore, the transition prob-
abilities P (x̂k|x(i)

k ) must be known only for frames 1, . . . , k. We are interested in the
a posteriori probabilities

P (x(i)
k | . . .) = P (x(i)

k |x̂k, . . . , x̂1) = P (x(i)
k |x̂k

1) (10.22)

given the full history of received bit patterns x̂k
1 = {x̂1, . . . , x̂k}.

Applying the chain rule [Papoulis 1965] we can write (10.22) as

P (x(i)
k |x̂k

1) = P (x(i)
k |x̂k, x̂k−1

1 ) =
P (x(i)

k , x̂k | x̂k−1
1 )

P (x̂k | x̂k−1
1 )

=
1
C

· P (x(i)
k , x̂k | x̂k−1

1 )

(10.23)

with the probability C = P (x̂k | x̂k−1
1 ) being invariant w.r.t. the indices i = 0, 1, . . . ,

2w−1. In practice, the computation of this constant is done by ensuring that

2w−1∑
i=0

P (x(i)
k | x̂k, x̂k−1

1 ) = 1 . (10.24)

As a direct consequence we get2

C =
2w−1∑
i=0

P (x(i)
k , x̂k | x̂k−1

1 ) . (10.25)

Using the memoryless property of the equivalent channel as pointed out in Sec. 10.2.3
the a posteriori probabilities we look for can be expressed as

P (x(i)
k | x̂k, x̂k−1

1 ) =
1
C

· P (x̂k|x(i)
k ) · P (x(i)

k | x̂k−1
1 ) . (10.26)

2In the following, the constant C is always used in a way that the sum of all probabilities on the
left hand side of the equation is normalized to one. The absolute values of C may differ among
the following equations.
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The transition probabilities P (x̂k | x(i)
k ) are known from the first computational step

of SDSD, Eq. (10.5). Only the so-called prediction probabilities P (x(i)
k | x̂k−1

1 ) are still
to be computed. They represent the receiver-sided information on the transmitted bit
pattern xk, before the bit pattern x̂k has become known.

The computation of the prediction probabilities depends on the modeling of the
parameter and on the known history of transition probabilities P (x̂k−1 | x(j)

k−1),

P (x̂k−2 | x(l)
k−2), . . . The remainder of Sec. 10.4.2 is now concerned with solutions

of the prediction probability term in (10.26).

Looking for the solution of (10.26), the modeling of the parameter as a Markov process
of Nth order requires the interpretation of the prediction probability as marginal
distribution

P (x(i)
k | x̂k−1

1 ) =
2w−1∑
j=0

· · ·
2w−1∑
h=0

P (x(i)
k ,x(j)

k−1, . . . ,x
(h)
k−N+1 | x̂k−1

1 ) . (10.27)

As shown in [Fingscheidt 1998], the term P (x(i)
k ,x(j)

k−1, . . . ,x
(h)
k−N+1 | x̂k−1

1 ) can be
computed recursively according to

P (x(i)
k ,x(j)

k−1, . . . ,x
(h)
k−N+1 | x̂k−1

1 )

=
1
C

· P (x̂k−1 | x(j)
k−1) · . . . · P (x̂k−N+1 | x(h)

k−N+1)

·
2w−1∑
l=0

P (x(i)
k | x(j)

k−1, . . . ,x
(l)
k−N ) ·

∑
...

. . .

·
2w−1∑
m=0

P (x(h)
k−N+1 | x(l)

k−N , . . . ,x(m)
k−2N+1)

· P (x̂k−N | x(l)
k−N ) · P (x(l)

k−N , . . . ,x(m)
k−2N+1 | x̂k−N−1

1 ) . (10.28)

The prediction probabilities in (10.27) are obviously a one-dimensional marginal distri-
bution of an N -dimensional joint probability term, which can be computed recursively
according to (10.28) from the joint probability term computed N frames earlier. The
recursion comprises the a priori knowledge terms P (xk | xk−1, . . . ,xk−N ) as well as
the transition probabilities P (x̂k−1 | x(j)

k−1) through P (x̂k−N | x(l)
k−N ) representing the

last N received bit patterns and their reliability. To probe further on higher order
Markov models in SDSD, the interested reader is also referred to [Lahouti, Khandani
2004].

With a Markov model of order N = 0 the computation of the marginal distribution
in (10.27) becomes superfluous. The missing temporal correlations lead to a simplifi-
cation of the a priori knowledge P (xk | xk−1, . . . ,xk−N ) = P (xk). The recursion and
consequently the prediction probability are then simply

P (x(i)
k | x̂k−1

1 ) = P (x(i)
k ) . (SD/AK0) (10.29)
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If the a posteriori probabilities are computed according to (10.26) and (10.29), we refer
to this approach in the following as “SD/AK0” for SDSD with a priori knowledge of
0th order.

In case no a priori knowledge at all is available about the parameter, the prediction
probabilities result in a uniform distribution according to

P (x(i)
k | x̂k−1

1 ) = 2−w (SD/NAK) (10.30)

and will be named“SD/NAK”for SDSD, no a priori knowledge.

Since in the computation of the marginal distribution N − 1 nested summations are
performed, a Markov model of order N = 1 does not yet require the computation of
(10.27). The recursion (10.28) however leads to the (forward) prediction probabili-
ties

P (x(i)
k | x̂k−1

1 ) =
1
C

·
2w−1∑
j=0

P (x(i)
k | x(j)

k−1) · P (x̂k−1 | x(j)
k−1) · P (x(j)

k−1 | x̂k−2
1 ).

(10.31)

In the special case of a 1st order Markov model (10.26) can also be written directly
as recursion

P (x(i)
k | x̂k, x̂k−1

1 ) =
1
C

· P (x̂k|x(i)
k ) ·

2w−1∑
j=0

P (x(i)
k | x(j)

k−1) · P (x(j)
k−1 | x̂k−1, x̂k−2

1 )

(10.32)

and will consequently be denoted by “SD/AK1”. An expression such as (10.32)
also occurs in the context of channel decoding with symbol decision [Bahl et al.
1974], called the forward recursion. Beyond that, it has also been reported for de-
tection of Markov sources over discrete, memoryless channels [Phamdo, Farvardin
1994].

In the case of a Markov model of order N = 2, however, both (10.27) and (10.28)
must be evaluated separately. We then get

P (x(i)
k | x̂k−1

1 ) =
2w−1∑
j=0

P (x(i)
k ,x(j)

k−1 | x̂k−1
1 ) (SD/AK2) (10.33)

with

P (x(i)
k ,x(j)

k−1 | x̂k−1
1 ) =

1
C

· P (x̂k−1 | x(j)
k−1) ·

2w−1∑
l=0

P (x(i)
k | x(j)

k−1,x
(l)
k−2)

·
2w−1∑
m=0

P (x(j)
k−1 | x(l)

k−2,x
(m)
k−3) · P (x̂k−2 | x(l)

k−2) · P (x(l)
k−2,x

(m)
k−3 | x̂k−3

1 ) .

(10.34)
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Storage of the Nth order a priori knowledge requires 2w(N+1) words of memory.
The computational complexity to compute the a posteriori probabilities via (10.28),
(10.27), and (10.26), is of order O(22wN ) (multiply and/or accumulate) opera-
tions without normalization. This holds also for N = 1 and the use of recursion
(10.32).

10.4.3 Simulation Results

Influence of Estimation Order and Bit Rate

At first we want to investigate the influence of the bit rate w and of the Markov
model of order N as used in the MMSE estimator. We use a highly correlated AR(1)
Gaussian parameter (i.e., N̄ = 1) with ρ = 0.9.

As we can see in Fig. 10.3, HD decoding reveals the worst SNR values for w = 1 as
well as for w = 4. SDSD on the other hand shows slightly improved performance
if no a priori knowledge is used (SD/NAK). The reason for this improvement can
be found in the exploitation of the bit error probabilities from the equivalent chan-
nel.

A further performance gain occurs for w ≥ 2 bit with the (SD/AK0) approach. In
the case of 1 bit quantization both quantizer table entries i = 0, 1 are equiprobable,
therefore (10.30) and (10.29) lead to the same formulation. This is also confirmed
by simulations, since the (SD/NAK) and (SD/AK0) curves in Fig. 10.3-a are identi-
cal.
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Figure 10.3: Transmission of a w bit quantized Gaussian AR(1) parameter with
ρ = 0.9
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As expected, the largest performance gain is achievable when the temporal correla-
tion of parameters is exploited in the SDSD process. Independently of w we observe a
graceful degradation of SNR performance towards low channel qualities. The choice
of N = 2 > N̄ = 1 (i.e., AK2) allows the exploitation of further correlation-dependent
residual redundancy, as we can see from the slightly better estimation results of the
AK2 curve compared with the AK1 curve in Fig. 10.3-a. For the bit rate w = 4 bit in
Fig. 10.3-b we observe that an estimation order N > N̄ does not lead to measurable
additional gains. For high bit rates this is expected from theory, since for N = N̄
one can show that the utilizable correlation-dependent residual redundancy ∆Rc ap-
proximately equals the total correlation-dependent residual redundancy ∆R′

c. The
total correlation-dependent residual redundancy for a Gaussian AR(1) parameter is
given from rate distortion theory [Berger 1971], [Jayant, Noll 1984] for a not too large
correlation ρ (or alternatively: for high bit rate w) by

∆R′
c = −1

2
log2(1 − ρ2) . (10.35)

For a correlation ρ = 0.9, the bit rate w = 4 bit can be considered as high, so (10.35) is
applicable and results in ∆R′

c = 1.2 bit of correlation-dependent residual redundancy
if scalar quantization is employed.

Estimation of Parameters of Higher Markov Order

Let us now consider a parameter of order N̄ = 2, i.e., an AR(2) parameter. Figure 10.4
shows simulation results for an AR(2) parameter taken from a bandpass process with
ρ = ρ(1) = 0 and ρ(2) = 0.81. Consecutive parameter values ṽk, ṽk+1 are uncorre-
lated, while ṽk, ṽk+2 show clear statistical dependencies.
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ρ(1) = 0.0, ρ(2) = 0.81
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As expected, the (SD/AK0) and the (SD/AK1) scheme achieve the same estimation
performance, since consecutive parameters are uncorrelated. A further gain by SDSD
is only achievable using the (SD/AK2) scheme as given in (10.33).

Influence of Correlation and Bit Rate

The influence of different correlations of a w = 3 bit scalar quantized Gaussian AR(1)
parameter on the performance of the (SD/AK1) scheme is shown in Fig. 10.5-a. It
turns out that, depending on the amount of correlation, good or even very good
estimation results are achieved.

Figure 10.5-b shows the performance of the (SD/AK1) scheme for a highly correlated
parameter (ρ = 0.9) for the bit rates w = 1, 2, 3, 4, 5 bit. With increasing bit rate the
curves degrade faster for HD as well as for SD decoding. In very bad channels it turns
out that hard decoding of high rate quantizers may lead to slightly worse results than
hard decoding of lower rate quantizers. This effect is not observed with SDSD: The
estimation quality for higher bit rates is always better than the SD performance for
lower rates.
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Influence of the Parameter Probability Density Function

Since not all real-world parameters are well described by a Gaussian Probability
Density Function (PDF), we also investigate the performance of SDSD for param-
eters with Laplacian and with uniform PDF. Figure 10.6-a shows the results for
uncorrelated parameters, Fig. 10.6-b for correlated parameters. For the genera-
tion of AR(1) parameters with Laplacian PDF the reader is referred to [Fingscheidt
1998].
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As we know already from the 1 bit quantization of the Gaussian parameter, we can
expect that if the quantization indices are equiprobable, the (SD/NAK) and the
(SD/AK0) approach lead to identical results. This is true for a parameter with uni-
form distribution independent of the bit rate w, as can be seen in the simulation
in Fig. 10.6-a and the w = 4 bit case. Furthermore, we find in Fig. 10.6-a that the
SDSD estimation gain of (SD/AK0) is significantly greater for a Laplacian distributed
parameter as for a Gaussian distributed parameter. The advantage of the (SD/AK0)
approach is therefore greater, the more the respective parameter PDF deviates from
the uniform PDF. Lloyd–Max quantization of Laplacian parameters leads to a high
degree of utilizable, distribution-dependent residual redundancy ∆Rd = w − H(x),
which directly results in a better performance of SDSD.

Figure 10.6-b also shows the SDSD performances for a Laplacian and a Gaussian dis-
tributed parameter for the (SD/AK1) case. With the chosen correlation coefficient
ρ=0.9 the influence of the correlation-dependent residual redundancy is dominant.
Hence, the curves of both PDFs assume similar shapes, however, fixed to their indi-
vidual basic quality at error-free channels.

Concerning the SNR of SDSD with the MMSE estimator in [Fingscheidt 1998] it has
been shown that

SNRSD/AK0 ≥ 0 dB (10.36)

as well as

SNRSD/AK0 ≥ SNRHD . (10.37)

Figure 10.7 presents the simulations of Fig. 10.6-a extended towards very bad channel
conditions. An effect that can be seen for all SDSD approaches is that in the case of
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very bad transmission the SNR tends towards zero. The reason for this behavior is
that SDSD decodes the mean value of the parameter v if no reasonable information is
available from the channel. In our simulations however the mean value of all simulated
parameters equals zero. Therefore, we have v̂ = 0 and as a consequence from (10.8)
we achieve an SNR of 0 dB. Note that this effect may be highly desirable, e.g., if gain
factors of zero mean parameters are transmitted, as in the case of very bad channel
conditions SDSD performs inherent muting.

The curves in Fig. 10.7 also confirm (10.36), which means that the SNR of the
(SD/AK0) scheme with MMSE estimation will never become negative. On the other
hand, the (SD/NAK) curve of the Laplacian parameter shows that without the ex-
ploitation of a priori knowledge a positive SNR cannot be guaranteed.

Finally, the validity of (10.37) is shown by simulation even for the simplest scheme of
SDSD, which is (SD/NAK). Here we find that SDSD using the MMSE estimator –
independent of the amount of a priori knowledge used – will never lead to a weaker
SNR than hard decoding does.

10.5 Joint Extrapolative Estimation of Two Different
Parameters

10.5.1 Estimators

The concept of SDSD can easily be extended to a number of different parameters
that reveal correlations among each other. An example in the context of fS = 8 kHz
speech coding are the Line Spectral Frequency (LSF) parameters where 10 different
but highly correlated parameters are transmitted per frame [Lahouti, Khandani 2001],
[Fingscheidt et al. 2002]. A more general treatment of this so-called intra-frame cor-
relation will be given in Chap. 11.
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Here, we want to focus on simple estimators, i.e., we consider only two different
parameters, one represented by the bit pattern xk with wx bits, the second one rep-
resented by yk with wy bits. Similar to (10.26) the a posteriori probabilities for each
of these parameters can be computed as the respective marginal distribution of the
joint a posteriori probability

P (x(i)
k ,y(j)

k | x̂k
1 , ŷk

1) =
1
C

· P (x̂k, ŷk | x(i)
k ,y(j)

k ) · P (x(i)
k ,y(j)

k | x̂k−1
1 , ŷk−1

1 )

=
1
C
·P (x̂k | x(i)

k ) · P (ŷk | y(j)
k ) · P (x(i)

k ,y(j)
k | x̂k−1

1 , ŷk−1
1 ) .

(10.38)

The joint prediction probability terms occurring in the formula above can be given
in general form in analogy to (10.27) and (10.28). More details can be found in
[Fingscheidt 1998].

Modeling both parameters as 0th order Markov processes, the joint prediction prob-
abilities in (10.38) become

P (x(i)
k ,y(j)

k | x̂k−1
1 , ŷk−1

1 ) = P (x(i)
k ,y(j)

k ) (SD/JAK0) (10.39)

with the joint a priori knowledge P (x(i)
k ,y(j)

k ). In analogy to (10.32), a 1st order
Markov model of both parameters leads to the recursion

P (x(i)
k ,y(j)

k | x̂k
1 , ŷk

1) =
1
C

· P (x̂k|x(i)
k ) · P (ŷk|y(j)

k ) (SD/JAK1)

·
2wx−1∑

l=0

2wy−1∑
m=0

P (x(i)
k ,y(j)

k | x(l)
k−1,y

(m)
k−1) · P (x(l)

k−1,y
(m)
k−1 | x̂k−1

1 , ŷk−1
1 )

(10.40)

with the joint a priori knowledge P (x(i)
k ,y(j)

k | x(l)
k−1,y

(m)
k−1). Assuming wx = wy = w,

we observe that the memory requirements for the a priori knowledge in compar-
ison with a separate (SD/AKN) estimation has been increased from 2 · 2w(N+1)

to 22w(N+1) words. Therefore a practical application of this scheme will only
be possible for low bit rate parameters and low Markov model order N . The
computational complexity for the a posteriori probabilities without normalization
for (SD/JAK0) amounts to 22w+1 operations and for (SD/JAK1) to 24w+1 opera-
tions.

10.5.2 Simulation Results

In the following, the joint extrapolation of two different but mutually correlated pa-
rameters ũ, ṽ shall be investigated. Parameter ũ has been taken from a zero-mean
unit-variance white Gaussian noise process, while parameter ṽ has been generated in
a way that both parameters reveal a (normalized) cross-correlation factor [Papoulis
1965] of δ ∈ {0.5, 0.9}.
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Figure 10.8: Transmission of two Gaussian parameters with cross-correlation
coefficient δ. Quantization of both parameters with w = 3 bit

The simulations we conducted will give an impression of the performance of the
(SD/JAK0) scheme exploiting joint a priori knowledge, especially compared with
separate SDSD of both parameters by (SD/AK0). Note that ũ is an uncorrelated pa-
rameter, while ṽ exhibits correlation3 ρ = δ, which, however, is not exploited by any of
the simulated schemes. Figure 10.8-a presents the results for a weak cross-correlation
δ = 0.5, while Fig. 10.8-b documents the curves for a high cross-correlation δ = 0.9
of both parameters.

It has to be noted that all curves in Fig. 10.8 are valid for each of the two param-
eters. As known from previous sections, the parameter individual SDSD with 0th
order a priori knowledge leads to performance gains over HD or SD without a priori
knowledge. The best results in both subfigures are achieved by joint extrapolation
(SD/JAK0) using (10.39). The performance gains are impressive, especially in the
case of a high cross-correlation between both parameters. Note that possible temporal
correlations of the parameters have not even been exploited. If they exist, in addition
further significant performance gains can be achieved if they are exploited by SDSD.
It is instructive to compare the (SD/JAK0) curve in Fig. 10.8-b with the (SD/AK1)
performance for w = 3 bit in Fig. 10.5-b. In the first case a cross-correlation δ is
exploited, while in the latter case a temporal correlation ρ = δ is exploited. In this
direct comparison the (SD/AK1) scheme performs slightly better (for parameter ṽ),
which is due to the fact that the actual a posteriori probabilities P (x(i)

k ,y(j)
k | x̂k, ŷk)

in (10.38) for (SD/JAK0) are unable to exploit cross-correlations δ in a recursive
manner as (10.32) does for the temporal correlation ρ.

3In this chapter and the subsequent chapters in this part of the book, δ denotes a cross-correlation
instead of a unit impulse response.
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10.6 Extrapolative Estimation with Repeated
Parameter Transmission

10.6.1 Estimators

Now we apply the case of two different correlated parameters as discussed in Sec. 10.5
to a situation where the bit pattern of a single parameter xk is always received twice.
In this case the formerly two separate parameters are not only mutually correlated,
but they are identical. In practical systems we can find this situation in the case
where a repeated transmission of the same bit pattern xk is performed. Alterna-
tively, the bit pattern xk may be transmitted only once but received twice, e.g.,
with a receiver that allows receive diversity over two different transmission chan-
nels.

While in the first case we assume a memoryless channel as usual, in the latter case
we additionally have to postulate the statistical independence of both transmission
paths. In both cases we then have xk = yk and w = wx = wy. On the receiver side,
however, we have to deal in general with two different received bit patterns x̂k and
ŷk, along with their individual bit error probabilities.

For the derivation of a posteriori probabilities for an estimator, both cases can be
treated together. Without loss of generality w.r.t. the two application cases we call the
scheme “SD/RPT” standing for SDSD with Repeated Parameter Transmission. The a
posteriori probabilities for an extrapolative estimation of a single parameter that has
been received twice can be given in analogy to (10.26) as

P (x(i)
k | x̂k

1 , ŷk
1) =

1
C

· P (x̂k, ŷk | x(i)
k ) · P (x(i)

k | x̂k−1
1 , ŷk−1

1 )

=
1
C

· P (x̂k | x(i)
k ) · P (ŷk | y(i)

k ) · P (x(i)
k | x̂k−1

1 , ŷk−1
1 ) , (10.41)

with x̂k
1 being the sequence of bit patterns that was received first, and ŷk

1 being the
sequence of bit patterns that was received second.

For a 0th order Markov model we get prediction probabilities in analogy to (10.39)

P (x(i)
k | x̂k−1

1 , ŷk−1
1 ) = P (x(i)

k ) , (SD/AK0/RPT) (10.42)

while the a posteriori probabilities for a 1st order Markov model are given as a recur-
sion in analogy to (10.40) as

P (x(i)
k | x̂k

1 , ŷk
1) =

1
C

· P (x̂k|x(i)
k ) · P (ŷk|y(i)

k ) (SD/AK1/RPT)

·
2w−1∑
j=0

P (x(i)
k | x(j)

k−1) · P (x(j)
k−1 | x̂k−1

1 , ŷk−1
1 ) . (10.43)
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Since both transmitted bit patterns are equal, instead of the joint a priori knowledge
(JAKN) we get the simple a priori knowledge terms (AKN) of the respective pa-
rameter again, as was the case in the discussion of a single transmitted and received
parameter in Sec. 10.4.2.

Independently of the Markov model order the bit error probabilities of both re-
ceived bit patterns x̂0 and ŷ0 are separately used to compute the two transition
probability terms P (x̂k|x(i)

k ) and P (ŷk|y(i)
k ). As can be seen in (10.41) both tran-

sition probabilities can be multiplied yielding a single transition probability term
P (x̂k, ŷk | x(i)

k ).

As mentioned before, the assumption of a memoryless equivalent channel in (10.41) al-
lows the repeated parameter transmission to be interpreted alternatively as transmis-
sion over two statistically independent diversity channels of the same quality. In trans-
mission systems with diversity reception an important issue is the receiver-located ap-
proaches for signal combination [Jakes 1974], [Parsons, Gardiner 1989], [Papen 1996].
Assuming the availability of log-likelihood ratios (L-values) L(xk(κ)) and L(yk(κ)) to
each received bit x̂k(κ) and ŷk(κ), the received bits of both diversity paths can be
combined to a new (bipolar) bit ẑk(κ) = sign[L(xk(κ))] or ẑk(κ) = sign[L(yk(κ))], de-
pending on which L-value determined the modulus of the combined L-value L(zk(κ)),
where [Papen 1996]

|L(zk(κ))| = max (|L(xk(κ))|, |L(yk(κ))|) . (10.44)

This signal combination technique is commonly called Selection Combining (SC). It
always selects the received bit from the channel with the currently lower bit error
probability (i.e., the higher L-value magnitude).

In general a lower error probability pk(κ) = (1+exp|L(zk(κ))|)−1 of the combined bit
ẑk(κ) can be achieved by applying the Maximal Ratio Combining (MRC) approach,
which simply performs a summation of the L-values according to [Kahn 1954], [Papen
1996]

L(zk(κ)) = L(xk(κ)) + L(yk(κ)) . (10.45)

In the case of two diversity channels and bit-individual combination schemes following
(10.44) or (10.45), SC and MRC always yield the same received bit ẑk(κ). However,
the MRC bit error probability pk(κ) resulting from L(zk(κ)) using (10.3) is in general
closer to reality.

Computing the transition probabilities P (ẑk|x(i)
k ) based on the MRC log-likelihood

values L(zk(κ)), κ=1, . . . , w, using (10.3), (10.6), and (10.5), one can prove that these
are – apart from a constant factor – equal to the product of the parameter transition
probabilities in (10.41) [Fingscheidt 1998]:

P (ẑk|x(i)
k )

∣∣∣∣
MRC

=
1
C

· P (x̂k, ŷk | x(i)
k ) . (10.46)

As a consequence we can state that SDSD with repeated parameter transmission
(or, equivalently, with diversity reception) (SD/RPT) performs a combination of the
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received signals according to the maximal ratio combining principle, before a priori
knowledge is used for even better decoding of the parameter.

Looking back to Sec. 10.5 the multiplication of the transition probabilities of differ-
ent parameters with in general different bit rates resulting in a new joint transition
probability

P (x̂k, ŷk|x(i)
k ,y(j)

k ) = P (x̂k|x(i)
k ) · P (ŷk|y(j)

k ) (10.47)

can be interpreted as a combination of signals in the sense of a generalized MRC.

10.6.2 Simulation Results

RPT of two parameters each with bit rate R or, equivalently, diversity reception over
two channels, is a special case for SDSD. The utilizable residual redundancy amounts
to R + ∆Rd + ∆Rc. Therefore, we expect high gains even in the case of a temporally
uncorrelated parameter.

Figure 10.9 shows the performance of the (SD/AK0/RPT) approach with repeated
transmission of a w = 2 bit quantized Gaussian parameter. The gains of the
(SD/AK0/RPT) scheme amount to about 3 dB with respect to Es/N0, which is
not a surprise, since the total transmitter power has been doubled. As outlined in
Sec. 10.6.1, the performance of the (SD/AK0/RPT) curve can be reached as well in a
transmission system with 2-channel diversity reception, if both signal paths are statis-
tically independent, if signal combination is performed by MRC following (10.45), and
if SDSD is performed using the (SD/AK0) scheme. Note that in this case transmitter
power has not been doubled!
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Figure 10.9: Transmission of a w = 2 bit quantized Gaussian AR(0) parameter
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With these results a comparison with channel coding schemes adding explicit redun-
dancy becomes possible. Instead of a conventional Forward Error Correction (FEC)
with, e.g., rate r = 1/2 convolutional channel coding, one can compare the per-
formance at equal transmitter power and equal SNR for error-free channels to the
scheme with repeated parameter transmission and SDSD by joint extrapolation. In
comparison with channel coding approaches, the loss of quality in terms of SNR will
of course start already at higher Es/N0 ratios for (SD/RPT), but it will exhibit a
much more graceful degradation than the FEC scheme towards further decreasing
channel quality [Fingscheidt 1998]. Instead of repeating the parameter transmission
one could think of adding parity bits yk as explicit redundancy to the transmit-
ted parameter bit pattern xk, and to exploit the parity bits in the context of a
(SD/JAKN) scheme. Depending on the parity code the a priori knowledge then re-
veals a number of zero entries. The question whether to employ SDSD with any of the
discussed alternatives or to use FEC depends on many issues. To probe further, the
interested reader is referred to [Fingscheidt et al. 1999], and to Chap. 12, Sec. 12.3,
where this approach is further developed to so-called Source Optimized Channel Codes
(SOCC).

10.7 Interpolative Estimation of a Parameter

10.7.1 Estimators

In this remaining section we will assume that when estimating the parameter v̂k a
number of K future bit patterns x̂k+K

k+1 = x̂k+1, . . . , x̂k+K of the respective parameter
have already been received and can be used for the estimation. For K ≥ 1 the decoding
scheme becomes interpolative resulting in additional decoding delay. Looking a bit
deeper into common hybrid speech coders, one finds that they often operate in frame
and subframe structures. With the exception of the last subframe in each frame, in
principle such a frame structure allows interpolative decoding of subframe parameters
without introducing additional algorithmic delay.4

The a posteriori probabilities we are interested in can be given in analogy to (10.26)
as

P (x(i)
k | x̂k+K

k+1 , x̂k, x̂k−1
1 ) =

1
C

· P (x̂k,x(i)
k | x̂k+K

k+1 , x̂k−1
1 )

=
1
C

· P (x̂k|x(i)
k ) · P (x(i)

k | x̂k+K
k+1 , x̂k−1

1 ) . (10.48)

The prediction probabilities P (x(i)
k | x̂k+K

k+1 , x̂k−1
1 ) can be divided into backward

joint prediction probabilities, forward joint prediction probabilities, and a residual
probability term. A general solution is given in [Bahl et al. 1974], [Fingscheidt
1998].

4An extrapolative decoding scheme is to be applied only in the last subframe of each frame in order
to prevent additional algorithmic decoding delay.
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Here, we just want to focus on the case N = 1, which is the interpolation under
the assumption of a 1st order Markov parameter. At first, we assume that only a
single future bit pattern is known to SDSD (K = 1). The prediction probabilities are
then

P (x(i)
k | x̂k+1, x̂k−1

1 ) =
1
C

· P (x̂k+1 | x(i)
k ) · P (x(i)

k | x̂k−1
1 ) (10.49)

with P (x(i)
k | x̂k−1

1 ) being the already discussed forward prediction probabilities (see
(10.31)) and the backward prediction probabilities being

P (x̂k+1 | x(i)
k ) =

2w−1∑
h=0

P (x̂k+1,x
(h)
k+1 | x(i)

k )

=
2w−1∑
h=0

P (x̂k+1 | x(h)
k+1) · P (x(h)

k+1 | x(i)
k ) . (10.50)

The two multiplicative probability terms in (10.49) represent the contribution of the
future and the past to the total prediction probabilities, respectively.

As already discussed, in some practical applications interpolative estimation and ex-
trapolative estimation have to be chosen depending on the time index k (here: sub-
frame parameters). It is therefore advisable to apply the recursion (10.32) to compute
the extrapolative a posteriori probabilities P (x(i)

k | x̂k, x̂k−1
1 ). In the desired case with

N = K = 1, they can easily be augmented with the backward prediction probabilities
(10.50) to yield the interpolative a posteriori probabilities

P (x(i)
k | x̂k+1, x̂k, x̂k−1

1 ) =
1
C

· P (x̂k+1 | x(i)
k ) · P (x(i)

k | x̂k, x̂k−1
1 ) (SD/AK1/INT1) .

(10.51)

This approach will be referred to as “SD/AK1/INT1”, since 1st order a priori prob-
abilities are used and one future received bit pattern is exploited for interpola-
tion.

If two future received bit patterns are available for SDSD, (10.51) will change
to

P (x(i)
k | x̂k+2, x̂k+1, x̂k, x̂k−1

1 )

=
1
C

· P (x̂k+2, x̂k+1 | x(i)
k ) · P (x(i)

k | x̂k, x̂k−1
1 ) (SD/AK1/INT2)

(10.52)

with the new backward prediction probabilities

P (x̂k+2, x̂k+1 | x(i)
k ) =

2w−1∑
g=0

P (x̂k+2 | x(g)
k+2) ·

2w−1∑
h=0

P (x(g)
k+2 | x(h)

k+1)

· P (x̂k+1 | x(h)
k+1) · P (x(h)

k+1 | x(i)
k ) . (10.53)
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The additional computational load required for (SD/AK1/INTK) as compared with
the extrapolation (SD/AK1) with (10.32) is due to the backward prediction probabili-
ties, e.g., as in (10.50) or (10.53). As a consequence the interpolative (SD/AK1/INTK)
approach has a total computational complexity of order O(22w) operations for extra-
polation plus about O(2w+wK) operations for the backward prediction probabilities.
In the case of K = 1 the complexity turns out to be just twice as high as that with
extrapolation.

10.7.2 Simulation Results

As Fig. 10.3-b did for extrapolative SDSD, Fig. 10.10 shows the results for interpola-
tive SDSD for a w = 4 bit quantized, highly correlated parameter (ρ = 0.9). The high
amount of residual redundancy leads to good performance gains of the (SD/AK1)
approach when compared with the (SD/AK0) scheme.

If even a future received bit pattern x̂k+1 can be used for SDSD with (10.51), i.e.,
(SD/AK1/INT1), further significant gains of about 1 dB are found in terms of Es/N0.
The reason for higher gains through interpolation in the case of a 1st order Markov
parameter is that the past and the future bit pattern are not exactly known. The ex-
ploitation of even more future received bit patterns leads to further slight performance
improvements, as shown with the (SD/AK1/INT2) approach using (10.52). The ad-
ditional gain increases with decreasing channel quality. In analogy to the Viterbi
decoding of convolutional codes [Johannesson, Zigangirov 1999] we can expect that
with increasing K the SNR performance will be saturated in the case of N = N̄ , as
soon as K equals a multiple of the order N̄ of the Markovian parameter, which is
then related to a multiple of the constraint length.
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10.8 Discussion and Conclusions

In this chapter we have given a concise summary of the principle of SDSD as the means
for bit and frame error concealment. Without introducing changes to the encoder,
this technique can be employed at the decoder side to perform robust source decod-
ing, if some reliability information about the received bits is available. In practice,
such reliability information stems from the demodulator, or from soft output values
of a channel decoder. The most attractive application of SDSD is in the context
of mobile communications, e.g., mobile speech telephony with low bit rate parame-
ters. In many communication systems the standards allow manufacturer-dependent
implementations of error concealment schemes.

We have discussed the modeling of the transmitted signal or parameters as Markov
process of order N , and have introduced extrapolative techniques to estimate them
assuming a certain model order. Depending on the correlation, significant gains could
be achieved compared with conventional HD decoding. Diversity reception in the
SDSD framework was shown to provide further gains.

Then we have investigated the joint extrapolation of two parameters, which turns out
to support the decoding process even if no significant temporal correlation is available,
but if two parameters in the same frame are correlated instead. The issue of joint ex-
trapolation of an arbitrary number of parameters including the exploitation of tempo-
ral correlations will be the main topic of the next chapter.

Finally we have presented the technique of interpolative soft decision source decoding.
Whenever a parameter reveals measurable correlations and at least one frame of delay
is available for improved decoding, considerable gains can be achieved. This is often
the case in real-time streaming services.
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(ABDN), edited by P. Vary, vol. 4, ISBN 3-86073-433-4, RWTH Aachen University
(in German).

Papoulis, A. (1965). Probability, Random Variables, and Stochastic Processes, McGraw-Hill,
New York.

Parsons, J. D.; Gardiner, J. G. (1989). Mobile Communication Systems, Blackie, Glasgow,
London.



310 10 Parameter Models and Estimators in Soft Decision Source Decoding

Phamdo, N.; Farvardin, N. (1994). Optimal Detection of Discrete Markov Sources Over
Discrete Memoryless Channels – Applications to Combined Source-Channel Coding,
IEEE Transactions on Information Theory, vol. 40, no. 1, pp. 186–193.

Sayood, K.; Borkenhagen, J. (1991). Use of Residual Redundancy in the Design of
Joint Source/Channel Coders, IEEE Transactions on Communications, vol. 39, no. 6,
pp. 838–846.

Shannon, C. (1948). A Mathematical Theory of Communication, Bell Systems Technical
Journal, vol. 27, pp. 379–423.

Skoglund, M.; Hedelin, P. (1999). Hadamard Based Soft-Decoding for Vector Quantiza-
tion Over Noisy Channels, IEEE Transactions on Information Theory, vol. 45, no. 2,
pp. 515–532.
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Chapter 11

Optimal MMSE Estimation for
Vector Sources with
Spatially and Temporally
Correlated Elements

Stefan Heinen, Marc Adrat

11.1 Introduction

Originally, Soft Decision Source Decoding (SDSD) was proposed for scalar sources [Fin-
gscheidt, Vary 1997], [Fingscheidt 1998], [Fingscheidt, Vary 2001]. As already stated
in Chap. 10, modern source codecs usually make use of several parameters that not
only exhibit residual temporal correlation but also spatial correlation, i.e., they are
mutually correlated. Typical examples are parameters describing the spectral enve-
lope of a source signal. On the one hand, subsequent realizations of a spectral envelope
do not change abruptly: This leads to temporal correlation. On the other hand, a
realization of the envelope is usually smooth, which means that the amplitudes of
neighboring frequency bins are correlated as well.

In principle, extending SDSD from scalar to vector context is straightforward and
was shown in Chap. 10 for the example of parameter tuples. The SDSD decoder
of Chap. 10 was formulated as a vector MMSE estimator performing the estimation
jointly for the elements of the parameter vector and actually handles the vector in the
same way as one single composite parameter. However, the drawback of this ad-hoc
approach is obvious; the estimation complexity grows exponentially with the number
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c© 2008 John Wiley & Sons, Ltd
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of parameters jointly estimated. A practical implementation based on this approach
would be extremely costly if not impossible.

Inspired by the famous algorithm of Bahl et al. [Bahl et al. 1974], we approach the
solution to the complexity problem by claiming a Markov property for the vector
elements. While SDSD is already doing this in the time direction, we add another
Markov property for the spatial (mutual) correlation of the vector elements. Based on
this key idea we derive an optimal MMSE estimator in the presence of Additive White
Gaussian Noise (AWGN), whose complexity grows only linearly with the parameter
vector length. As this optimal estimator is still computationally demanding, we also
develop an approximation for practical applications.

The present chapter is structured as follows. In Sec. 11.2 we develop a model of a
vector source with the mentioned two-fold Markov property and determine its corre-
lation properties. Section 11.3 describes the assumed transmission channel. Based on
these prerequisites, the optimal MMSE estimator is derived in Sec. 11.4. The approxi-
mation with further reduced complexity but with comparable estimation performance
is presented in Sec. 11.5. Both approaches are compared and evaluated in Sec. 11.6.
Finally, in order to predict the estimation enhancement for a real system, we em-
ulate the statistical properties of important codec parameters of the Digital Audio
Broadcast (DAB) [ETSI, Standard ETS 300 401 1997] system as well as of the Global
System for Mobile communication (GSM) [ETSI TC-SMG 1999] and we measure the
resulting parameter SNR gain.

11.2 Source Model

The source model makes use of the fact that the sum of two random variables is
statistically dependent of the summands. Temporal and spatial correlation can thus be
established by adding up delayed realizations of the same parameter and neighboring
parameters.

Figure 11.1 depicts the source model in detail. A parameter at position m and time
instant k, denoted by ṽm,k, is emitted from a time discrete, white, zero mean, unit
variance scalar prototype source with Probability Density Function (PDF) pv̆, which is
added to the scaled value of the spatial predecessor ṽm−1,k (except for ṽ1,k, which will
be explained later). In this way the spatial correlation is established. Furthermore,
the subsequent one tap IIR filter (Infinite Impulse Response) gives rise to temporal
correlation by adding the scaled temporal predecessor value ṽm,k−1. Variance and
correlation properties of the parameters result from the choice of the scaling constants
a, b, and c.

The continuous parameter values ṽm,k are individually quantized by Qm yielding
value-discrete parameters vm,k, which take values in the reproduction sets

vm,k ∈ Vm = {v(0)
m , . . . , v(Vm−1)

m } , (11.1)
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Figure 11.1: Model of a source encoder generating temporally and spatially correlated
parameters (Qm: quantizer, BMm: index assignment and bit mapping)

with Vm denoting the number of reproduction values of quantizer Qm. To each re-
production level a unique bit combination

xm,k ∈ Xm = {x(0)
m , . . . ,x(Vm−1)

m } (11.2)

is assigned by the bit mapping unit BMm. The multiplexer composes the bit codes
xm,k to a bit vector xk, where

xk ∈ X = {x(0), . . . ,x(V̆ −1)}, V̆ =
M∏

m=1
Vm . (11.3)

In order to abbreviate sequences of scalars or vectors, we introduce the notation
vm
1,k

·= (v1,k, . . . , vm,k) and vk
1

·= (v1, . . . , vk), respectively. To keep equations short,
we further use the notation P (xk) ·= Pr{Xk = xk}. Similarly, we omit the index of
PDFs, i.e., p(ṽk) ·= pṽk

(ṽk), unless the more detailed notation is required to avoid
ambiguity.

Thanks to the particular layout of the source in Fig. 11.1, the components vm,k exhibit
the wanted Markov property

p(ṽm,k | ṽm−1
1,k , ṽk−1

1 ) = p(ṽm,k | ṽm−1,k, ṽm,k−1) . (11.4)

Hence, to predict ṽm,k the knowledge of the values ṽm−1,k and ṽm,k−1 is sufficient.
Taking further past values into consideration does not enhance a prediction, where
“past”here means both preceding in time k and position m.

If the applied quantizer Qm has sufficient precision the same is valid for the quantized
parameters vm,k and simultaneously for the bit combinations xm,k. Representing the
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source output at time k and position m by the discrete random variable Xm,k and
the complete vector at time k by Xk, we get

P (Xm,k |Xk−1
1 ,Xm−1

1,k ) = P ({Xm,k |Xm,k−1,Xm−1,k) . (11.5)

In order to quantify the correlation properties of the model parameters generated by
the source in Fig. 11.1, it is required to determine the auto- and cross-correlation
series

ϕṽmṽm
(λ) = E{ vm,k · vm,k+λ } and ϕṽmṽm+1(µ) = E{ vm,k · vm+1,k+µ } . (11.6)

The above equations indicate that the correlation properties depend on the index m.
The reason is that there is no contribution from a predecessor at m = 1. However,
this “boundary effect” vanishes with increasing m, which can be shown by proving the
existence of the limits

lim
m→∞ϕṽmṽm

(λ) = ρ(λ) and lim
m→∞ϕṽmṽm+1(µ) = δ(µ) , (11.7)

in the following referred to as auto- and cross-correlation coefficients1, respectively.
In [Heinen 2001a] an in-depth analysis of the correlation properties is given and the
conditions of convergence are determined. Under consideration of the convergence cri-
terion c2 < (1−a)2/b2 we can now easily determine some important correlation proper-
ties. For large m the approximation ϕṽmṽm

≈ ϕṽm+1ṽm+1 becomes arbitrarily accurate.
For m → ∞ even identity holds. By applying the Wiener–Khintchine theorem this re-
lation can be transformed into the frequency domain. Considering that the prototype
sources are white and have unit power σ2

v̆ = 1 we obtain[
1 + b2 Φṽṽ(Ω)

]
·
∣∣∣∣ 1
1 − a e−jΩ

∣∣∣∣2 c2 = Φṽṽ(Ω) . (11.8)

Solving (11.8) for Φṽṽ(Ω) yields the power spectral density (PSD) for m → ∞. The
auto-correlation coefficient for λ = 0 is given by Parseval’s theorem

ρ(0) =
1
2π

π∫
−π

Φṽṽ(Ω)e−j 0·Ω dΩ =
c2√

((1 − a)2 − c2b2)((1 + a)2 − c2b2)
. (11.9)

Without loss of generality we define the power of the model parameters ṽm to ρ(0) = 1.
This allows us to express c as a function of a and b

c =
1 − a2√

b2(1 + a2) +
√

4b4a2 + (1 − a2)2
. (11.10)

In analogy to (11.9) the 1st order auto-correlation coefficient can be determined
to

ρ(1) =
1
2π

π∫
−π

Φṽmṽm
(Ω) e−j 1·Ω dΩ =

1 + a2 − c2(1 + b2)
2a

. (11.11)

1Note that in the context of this chapter and related literature the symbol δ specifies cross-
correlation coefficients rather than the Dirac pulse.
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Figure 11.2: Contour plot of auto-correlation ρ(1) and cross-correlation δ(0) coeffi-
cients

Finally, for the cross-correlation coefficient δ(0) it can be shown [Heinen 2001a]
that

δ(0) =
1
bc

(ρ(0) − aρ(1) − c2) =
1 − a2 + c2(b2 − 1)

2bc
(11.12)

holds. The inverse functions allow us to compute a and b for a given tuple ρ(1), δ(0)

a =
ρ(1)(1 − δ2(0))
1 − ρ2(1)δ2(0)

, b =
(1 − ρ2(1))δ(0)√

(1 − ρ2(1)δ2(0))(1 + ρ2(1)δ2(0) − ρ2(1) − δ2(0))
.

(11.13)

With the quantities ρ(1) and δ(0) we have now two essential correlation proper-
ties that allow to classify a real codec and align our model with it. Figure 11.2
shows a contour plot of the relation between a, b and ρ(1), δ(0), which allows us to
determine the coefficient tuple a, b graphically for a given correlation constellation
ρ(1), δ(0). Two prominent examples of source codecs are also mapped into the dia-
gram.
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11.3 Transmission Channel

Figure 11.3 depicts the considered transmission model. We assume a transmission,
which can be modeled by a stationary memoryless additive noise process n described
by the PDF

p(n) =
∏
m

p(nm) . (11.14)

Hence, we can uniquely characterize the transmission channel by the conditional
PDF p(x̂k |xk) = pn(x̂k − xk). The received soft decision vectors (in the sense
of Chap. 10) x̂k are processed by the MMSE estimator to get the optimal esti-
mates v̂k.

MMSE
parameter
estimator

xk x̂k v̂k

n

Figure 11.3: Transmission model

11.4 Optimal MMSE Parameter Estimator

The task of the parameter estimator in Fig. 11.3 is to determine MMSE optimal
estimates v̂k from the noisy observation vector x̂k [Heinen 2001a], [Heinen 2001b].
Since the source is not white an optimal estimator has to take into account the entire
history v̂k = v̂k(x̂1, . . . , x̂k) to obtain an estimate2 v̂k. The mean square error is given
by the expectation of ‖vk − v̂k‖2 over all involved random variables. With the total
number of bits W =

∑M
m=1 wm per transmission xk the expectation can be written

as

E
{
‖vk − v̂k‖2

}
=

∫
x̂1∈RW

· · ·
∫

x̂k∈RW

∫
ṽk∈RM

‖ṽk−v̂k‖2 p(ṽk, x̂k
1) dṽk dx̂k · · · dx̂1 . (11.15)

From estimation theory it is known [Melsa, Cohn 1978], [Cover, Thomas 1991] that
minimizing the mean square error (11.15) leads to a conditional expectation. Applying
this to a single parameter vm,k, we obtain

v̂m,k =
1

p(x̂k
1)

∞∫
ṽm,k=−∞

ṽm,k p(ṽm,k, x̂k
1) dṽm,k . (11.16)

2Actually, it also depends on future observation vectors. However, to exploit these dependencies,
additional delay would be necessary, which is usually prohibitive in many practical applications.
For this reason we do not consider dependencies on future observations here, yet the extension of
the presented algorithm to this case is straightforward. Note that in Chap. 10 the exploitation
of past and future observations was discussed for a scalar parameter.
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Without loss of generality we assume that the quantizer reproduction values v
(i)
m are

centroids of their respective cells. Then, the optimal estimator is given by

v̂m,k =
1

p(x̂k
1)

2wm−1∑
i=0

v(i)
m p(x(i)

m , x̂k
1) , (11.17)

which is already also known from Chap. 10. Note that due to the deterministic bit
mapping there is a one-to-one correspondence between v

(i)
m and x(i)

m . The challenging
part of (11.17) is the marginal PDF p(x(i)

m , x̂k
1), which has to be computed for each

realization v
(i)
m . Therefore, in the following an algorithm for an efficient computation

of this PDF will be derived.

The formal solution

p(x(i)
m , x̂k

1) =
V̆ −1∑
�1=0

· · ·
V̆ −1∑

�k−1=0

V�k,1−1∑
�k,1=0

· · ·
V�k,m−1−1∑
�k,m−1=0

V�k,m+1−1∑
�k,m+1=0

· · ·
V�k,M

−1∑
�k,M=0

p(x(�1), . . . ,x(�k−1),x(�k,1), . . . ,x(�k,m−1),x(i)
m ,x(�k,m+1)

m , . . . ,x(�k,M )
m , x̂k

1)
(11.18)

is by far too complex for direct evaluation. Therefore, our aim is to develop a re-
cursion formula that reduces the number of required operations significantly. To
enhance readability of equations, instead of using explicit limits as in (11.18) we
apply the notation

∑
∀x1

p(x1, . . . ,xk) = p(x2, . . . ,xk) to express a marginal distri-
bution.

In a first step we split the joint PDF p(xk
1 , x̂k

1) at time k and position m in order to
exploit the Markov properties of the source

p(xk
1 , x̂k

1) = p(xM
m+1,k, x̂M

m+1,k |xm
1,k,xk−1

1 , x̂m
1,k, x̂k−1

1 )

· p(xm,k, x̂m,k |xm−1
1,k ,xk−1

1 , x̂m−1
1,k , x̂k−1

1 )

· p(xm−1
1,k , x̂m−1

1,k |xk−1
1 , x̂k−1

1 ) · p(xk−1
1 , x̂k−1

1 ) . (11.19)

Making use of the assumption of a memoryless channel and the Markov properties of
the source allows us to simplify (11.19) significantly. Figure 11.4 illustrates how the
source properties can be exploited. Each of the three diagrams a), b) and c) represents
one of the conditional PDFs in (11.19). Terms left of the conditional symbol “|” are
marked with grey boxes, while terms right of the conditional symbol are framed by
a black line. Owing to the spatial and temporal Markov property of the source it
turns out that only terms corresponding to the filled bullets are relevant. Therefore,
all other terms can be omitted, which leads to

p(xk
1 , x̂k

1) = p(xM
m+1,k, x̂M

m+1,k |xM
m+1,k−1,xm,k)

· p(xm,k, x̂m,k |xm,k−1,xm−1,k)

· p(xm−1
1,k , x̂m−1

1,k |xm−1
1,k−1) · p(xk−1

1 , x̂k−1
1 ) . (11.20)
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Figure 11.4: Graphical representation of the relevant terms in (11.19)

The second factor can be factorized to

p(xm,k, x̂m,k |xm,k−1,xm−1,k) = p(x̂m,k |xm,k)P (xm,k |xm,k−1,xm−1,k) (11.21)

and it describes the channel and source properties.

In the next step we consider the last factor of (11.20), which has the same form
as on the left hand side of (11.20), but with a decremented time index k − 1,
i.e.,

p(xk−1, x̂
k−1
1 ) =

∑
∀x1

· · ·
∑

∀xk−2

p(x1, . . . ,xk−1, x̂
k−1
1 ) , (11.22)

and can be interpreted as the basis for recursion step k. Substituting (11.22)
into (11.18) we see that the sums up to time instant k−2 have already been evaluated
by the time recursion. Provided that this time recursion exists, we can therefore now
focus on p(xk−1, x̂

k−1
1 ). By splitting this term in a similar way as above but now with

respect to the position m we get

p(xk−1, x̂
k−1
1 ) = P (xM

m+1,k−1 |xm,k−1, x̂k−1
1 )

· P (xm,k−1 |xm−1,k−1, x̂k−1
1 ) p(xm−1

1,k−1, x̂
k−1
1 ) . (11.23)

The second factor can be expressed by

P (xm,k−1 |xm−1,k−1, x̂k−1
1 ) =

p(xm,k−1,xm−1,k−1, x̂k−1
1 )

p(xm−1,k−1, x̂k−1
1 )

(11.24)

where the denominator is given by the marginal distribution of a single parameter
and is therefore a direct product of the recursion step k − 1. The numerator is a
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joint marginal distribution of two spatially adjacent parameters, which can easily be
computed as a side-product, as we will see a bit later.

Before substituting (11.20)–(11.23) into (11.18), we define the following abbreviations
to simplify notation

αm−1(xm−1,k,xm−1,k−1)
·=
∑

∀xm−2
1,k

∑
∀xm−2

1,k−1

p(xm−1
1,k , x̂m−1

1,k |xm−1
1,k−1) p(xm−1

1,k−1, x̂
k−1
1 )

(11.25)

βm(xm,k,xm,k−1)
·=

∑
∀xM

m+1,k

∑
∀xM

m+1,k−1

p(xM
m+1,k, x̂M

m+1,k |xM
m+1,k−1,xm,k)

· P (xM
m+1,k−1 |xm,k−1, x̂k−1

1 ) . (11.26)

This allows us to rewrite our starting point, the marginal distribution (11.18) in a
compact way as

p(x(i)
m , x̂k

1) =
∑

∀xm,k−1

αm(x(i)
m ,xm,k−1) · βm(x(i)

m ,xm,k−1) . (11.27)

Matching (11.20) and (11.23) with the definitions of α and β shows that multiplying
αm−1 by

γm(xm,k,xm−1,k,xm,k−1,xm−1,k−1)
·=

p(xm,k, x̂m,k |xm,k−1,xm−1,k)P (xm,k−1 |xm−1,k−1, x̂k−1
1 ) (11.28)

and summing up over all xm−1,k and xm−1,k−1 yields the next recursion step αm.
Similarly, a recursion step in the opposite direction can be identified for βm−1. Thus,
we obtain the recursion formulas

αm+1(xm+1,k,xm+1,k−1) =
∑

∀xm,k

∑
∀xm,k−1

γm+1(xm+1,k,xm,k,xm+1,k−1,xm,k−1)

· αm(xm,k,xm,k−1) (11.29)

βm−1(xm−1,k,xm−1,k−1) =
∑

∀xm,k

∑
∀xm,k−1

γm(xm,k,xm−1,k,xm,k−1,xm−1,k−1)

· βm(xm,k,xm,k−1) . (11.30)

The analysis of the boundary conditions for m = 1 and m = M shows that the
recursions have to be initialized by

α1(x1,k,x1,k−1) = p(x1,k−1, x̂k−1
1 ) · p(x̂1,k |x1,k)P (x1,k |x1,k−1) (11.31)

βM (xM,k,xM,k−1) = 1 . (11.32)
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Finally, to establish a complete recursion we have to provide the marginal distribution
in the numerator of (11.24), which is given by

p(xm,k−1,xm−1,k−1, x̂k−1
1 ) =

∑
∀xm,k−1

∑
∀xm−1,k−1

αm−1(xm−1,k,xm−1,k−1)

· βm(xm,k,xm,k−1) γm(xm,k,xm−1,k,xm,k−1,xm−1,k−1) . (11.33)

To summarize, we give the entire algorithm at a glance in Table 11.1 [Heinen
2001b].

Table 11.1: MMSE-optimal estimation algorithm for vector sources with spatially and
temporally correlated elements

1) Compute P (xm,1 | x̂1) and P (xm,1,xm−1,1 | x̂1) (forward/backward recursion).
2) k ← k + 1 .
3) Initialize α1 and βM according to (11.31) and (11.32).
4) Forward/backward recursion according to (11.29), (11.30).
5) Compute p(x(i)

m , x̂k
1) according to (11.27).

6) Determine P (xm,k−1 |xm−1,k−1, x̂k−1
1 ) by (11.33) and (11.24).

7) Compute estimates according to (11.17).
8) Return to 2) and process the next received vector x̂k.

11.5 Near-Optimal MMSE Parameter Estimator

The optimal MMSE estimation rule introduced in the preceding section exploits the
spatial and temporal Markov property jointly via the conditional probability mass
function P (xm,k|xm,k−1,xm−1,k) (see, e.g., (11.21)). Even if the efficient forward–
backward algorithm (11.29), (11.30) is applied, the computation of the marginal dis-
tribution p(x(i)

m , x̂k
1) according to (11.27) is still computationally demanding. Further

complexity savings become possible by exploiting the auto- and cross-correlation sep-
arately via independent probability distributions P (xm,k|xm,k−1) (temporal Markov
property) and P (xm,k|xm−1,k) (spatial Markov property).

A couple of solutions for such near-optimal MMSE parameter estimators have been
proposed in the literature, e.g., [Adrat et al. 2000], [Lahouti, Khandani 2001], [Kliewer,
Görtz 2001], [Hindelang 2001], [Fingscheidt et al. 2002], [Adrat 2003], [Adrat et al.
2004]. While most of these approaches exhibit comparable complexity, they reveal dif-
ferent performances. The most capable approach, which was first introduced in [Hin-
delang 2001], [Fingscheidt et al. 2002] and afterwards analyzed in detail in [Adrat
2003], [Adrat et al. 2004], will be reviewed next.

Again, the formal solution (11.18) for the computation of the marginal distribu-
tion p(x(i)

m , x̂K
1 ) serves as starting point. Notice, in the following considerations a
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look-ahead of K future frames x̂k+1, . . . , x̂k+K is assumed to be acceptable. If the
resulting additional delay of K frames is not tolerable in a real-world application
(see also Footnote 2 on page 316 as well as Sec. 10.7), it can be avoided by setting
K = 0.

In contrast to (11.19), the factorization of the overall joint PDF p(xK
1 , x̂K

1 ) is realized
on complete frames xk,

p(xK
1 , x̂K

1 ) = p(xK
k+1, x̂

K
k+1 |xk, x̂k,xk−1

1 , x̂k−1
1 )

· p(xk, x̂k |xk−1
1 , x̂k−1

1 ) · p(xk−1
1 , x̂k−1

1 ) . (11.34)

Similarly to (11.20), assuming a memoryless transmission channel and a 1st order
Markov property on frames xk permits us to simplify (11.34) to

p(xK
1 , x̂K

1 ) = p(xK
k+1, x̂

K
k+1 |xk) · p(xk, x̂k |xk−1) · p(xk−1

1 , x̂k−1
1 ) . (11.35)

Substituting (11.35) into (11.18) allows us to reorganize the nested summations of the
marginal distribution as

p(xm,k, x̂K
1 ) =

∑
∀xm−1

1,k

∑
∀xM

m+1,k

{( ∑
∀xK

k+1

p(xK
k+1, x̂

K
k+1 |xk)

)
·
∑

∀xk−1

[
p(xk, x̂k |xk−1) ·

( ∑
∀xk−2

1

p(xk−1
1 , x̂k−1

1 )
)]}

. (11.36)

Both summations in the parentheses denote forward, respectively backward recursions
on frames xk, which can efficiently be calculated by

αk−1(xk−1)
·=
∑

∀xk−2
1

p(xk−1
1 , x̂k−1

1 )

=
∑

∀xk−2

p(xk−1, x̂k−1 |xk−2) · αk−2(xk−2)
(11.37)

and

βk(xk) ·=
∑

∀xK
k+1

p(xK
k+1, x̂

K
k+1 |xk)

=
∑

∀xk+1

p(xk+1, x̂k+1 |xk) · βk+1(xk+1) .
(11.38)

The only unknown term in (11.36), (11.37), and (11.38) is the innovation p(xk, x̂k|xk−1).
It can be factorized according to the contributions of the preceding xm−1

1,k , the present
xm,k and the succeeding bit patterns xM

m+1,k in the spatial direction m

γk(xk,xk−1)
·= p(xk, x̂k |xk−1)

= p(xM
m+1,k, x̂M

m+1,k |xm
1,k, x̂m

1,k,xk−1)

· p(xm−1
1,k , x̂m−1

1,k |xm,k, x̂m,k,xk−1) · p(xm,k, x̂m,k |xk−1) .

(11.39)
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Taking a 1st order Markov property in the spatial dimension into account as well
as the clear separation of the temporal and spatial dependencies P (xm,k|xm,k−1)
(temporal Markov property) and P (xm,k|xm−1,k) (spatial Markov property) results
in

γk(xk,xk−1) =

temporal dependencies of xm,k︷ ︸︸ ︷
p(xm,k, x̂m,k |xm,k−1)

· p(xM
m+1,k, x̂M

m+1,k |xm,k) · p(xm−1
1,k , x̂m−1

1,k |xm,k)︸ ︷︷ ︸
spatial dependencies of xm,k

. (11.40)

The term in the first line of (11.40) considers temporal dependencies of bit pat-
terns xm,k and the terms in the second line the respective spatial dependencies.
Inserting (11.37), (11.38), and (11.40) into (11.36) and rearranging the summations
yields

p(xm,k, x̂K
1 ) =

∑
∀xm,k−1

[
p(xm,k, x̂m,k |xm,k−1) ·

∑
∀xm−1

1,k−1

∑
∀xM

m+1,k−1

αk−1(xk−1)
]

·
∑

∀xm−1
1,k

∑
∀xM

m+1,k

[
βk(xk) · p(xM

m+1,k, x̂M
m+1,k |xm,k) · p(xm−1

1,k , x̂m−1
1,k |xm,k)

]
.

(11.41)

Some parts of the nested structure of (11.36) have been resolved. The first line
of (11.41) exhibits information about the impact of past frames xk−1

1 on xm,k. The
second line comprises knowledge of some possibly given future frames xK

k+1 via the
backward recursion βk(xk) as well as of bit patterns in adjacent positions xm−1

1,k ,
xM

m+1,k.

In order to enhance the readability and comprehensibility we define

α[TIM]

k (xm,k) ·=
∑

∀xm−1
1,k

∑
∀xM

m+1,k

αk(xk)

=
∑

∀xM
m+1,k

p(xM
m+1,k, x̂M

m+1,k |xm,k) ·
∑

∀xm−1
1,k

p(xm−1
1,k , x̂m−1

1,k |xm,k)

·
∑

∀xm,k−1

[
p(xm,k, x̂m,k |xm,k−1) · α[TIM]

k−1 (xm,k−1)
]

= α[POS]
m (xm,k) · β[POS]

m (xm,k)

·
∑

∀xm,k−1

p(xm,k, x̂m,k |xm,k−1) · α[TIM]

k−1 (xm,k−1)

(11.42)

and

β[TIM]

k (xm,k) ·=
∑

∀xm,k+1

α[POS]
m (xm,k+1) · β[POS]

m (xm,k+1)

· p(xm,k+1, x̂m,k+1 |xm,k) · β[TIM]

k+1 (xm,k+1) (11.43)
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with

α[POS]
m (xm,k) ·=

∑
∀xm−1,k

p(xm−1,k, x̂m−1,k |xm,k) · α[POS]
m−1(xm−1,k) (11.44)

β[POS]
m (xm,k) ·=

∑
∀xm+1,k

p(xm+1,k, x̂m+1,k |xm,k) · β[POS]
m+1 (xm+1,k) . (11.45)

The upper index in squared brackets indicates whether the main contribution to the
reliability p(xm,k, x̂K

1 ) results from spatial “POS” or temporal “TIM” dependencies.
For initialization serve α[TIM]

k (xm,k) = P (xm,k), β[TIM]

k (xm,k) = 1, α[POS]
m (xm,k) = 1,

and β[POS]
m (xm,k) = 1.

Finally, with respect to (11.42) to (11.45) near-optimal MMSE parameter estimation
(11.17) can be realized with

p(x(i)
m , x̂K

1 ) = β[TIM]

k (x(i)
m ) · α[POS]

m (x(i)
m ) · β[POS]

m (x(i)
m )

·
2wm−1∑

j=0

p(x(i)
m , x̂m,k |x(j)

m ) · α[TIM]

k−1 (x(j)
m ) . (11.46)

11.6 Illustrative Comparison

A “jigsaw puzzle” illustration helps one to understand the key differences between the
optimal and near-optimal MMSE parameters estimators. Figure 11.5 shows such a
comparison [Adrat et al. 2004].
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Figure 11.5: “Jigsaw Puzzle” representation of
a) optimal exploitation of temporal dependencies (SD/AK1)
b) optimal exploitation of temporal and spatial dependencies
c) near-optimal exploitation of temporal and spatial dependencies
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(SD/AK1) Estimator

The left-most subplot depicts the jigsaw puzzle for the basic extrapolative estimator
“(SD/AK1)” introduced in Chap. 10 (see (10.32)). The (SD/AK1) estimator exploits
a 1st order Markov property in the time dimension only. Some possibly given spa-
tial dependencies cannot be utilized. The joint PDF p(xm,k, x̂k

1) can be determined
from (10.32) as

p(xm,k, x̂k
1) =

∑
∀xm,k−1

p(xm,k, x̂m,k|xm,k−1) · αk−1(xm,k−1) . (11.47)

Past received patterns x̂k−1
1 are evaluated in terms of a forward recursion αk−1(xm,k−1)

(medium gray puzzle piece) while present information is exploited in terms of the in-
novation p(xm,k, x̂m,k|xm,k−1) (dark gray puzzle piece). The interlocking element of
both terms is the bit pattern xm,k−1, which is indicated by the specific forms of the
two puzzle pieces (see “tabs” and “blanks”). The “tab” of the dark gray puzzle piece
(innovation) perfectly fits into the “blank” of the medium gray puzzle piece (forward
recursion).

The complexity demands of the (SD/AK1) estimator can also roughly be estimated
from (11.47). The number of arithmetic operations (MULT, ADD, MAC, etc.) is
mainly determined by the sum over all possible Vm realizations of xm,k−1. This
summation has to be carried out for each xm,k = x(i)

m with i = 0, . . . , Vm − 1. The
data memory demands are mainly characterized by the storage demand for the a pri-
ori parameter statistics P (xm,k|xm,k−1). In consequence, both terms of complexity
(arithmetic operations as well as memory) exhibit demands of the order O(V 2

m).

Optimal MMSE Estimator

The joint PDF p(xm,k, x̂k
1) of the optimal MMSE parameter estimator of Sec. 11.4

can be summarized by

p(xm,k, x̂k
1) =

∑
∀xm,k−1

{
βm(xm,k,xm,k−1)·

∑
∀xm−1,k

∑
∀xm−1,k−1

(
p(xm,k, x̂m,k|xm,k−1,xm−1,k)·

P (xm,k−1|xm−1,k−1, x̂k−1
1 ) · αm−1(xm−1,k,xm−1,k−1)

)}
. (11.48)

This equation consists of mainly four parts. The term p(xm,k, x̂m,k|xm,k−1,xm−1,k)
is represented by the dark gray puzzle piece in the center subplot of Fig. 11.5. The bit
pattern xm,k under consideration depends on the immediately preceding elements in
time xm,k−1 and position xm−1,k. Both dependencies are taken into account by the
shape of the puzzle piece (see “tabs” and “blanks”). The medium gray puzzle piece
to the left represents P (xm,k−1|xm−1,k−1, x̂k−1

1 ). The medium gray and light gray
puzzle pieces to the top stand for αm−1(xm−1,k,xm−1,k−1) and the elements to the
bottom for βm(xm,k,xm,k−1). The thorough interlocking of all puzzle pieces provides
a very robust system.
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The number of arithmetic operations of optimal MMSE parameter estimation accord-
ing to (11.48) is mainly determined by the nested summations. For each xm,k = x(i)

m

with i = 0, . . . , Vm − 1 the nested summation runs over all combinations of xm,k−1

and xm−1,k. Similarly, the a priori knowledge P (xm,k|xm,k−1,xm−1,k) needs to be
stored in a table. Thus, the optimal MMSE parameter estimator exhibits complexity
demands of the order O(V 3

m) (assuming that Vm−1 ≈ Vm).

Near-Optimal MMSE Estimator

The respective determination rule for the joint PDF of the near-optimal MMSE pa-
rameter estimator of Sec. 11.5 reads

p(xm,k, x̂K
1 ) = β[TIM]

k (xm,k) · α[POS]
m (xm,k) · β[POS]

m (xm,k)

·
∑

∀xm,k−1

p(xm,k, x̂m,k |xm,k−1) · α[TIM]

k−1 (xm,k−1) . (11.49)

This equation consists of mainly five parts that can be interpreted as follows. In
the right subplot of Fig. 11.5 the dark gray puzzle piece depicts again the inno-
vation p(xm,k, x̂m,k |xm,k−1) for the bit pattern xm,k under consideration. Notice
that p(xm,k, x̂m,k |xm,k−1) is only conditioned on xm,k−1 which is precedent in time.
Therefore, the puzzle piece has only one “tab”. All the other four elements of (11.49)
provide extra information for xm,k from each direction. α[POS]

m (xm,k) represents the
medium gray puzzle pieces to the top and β[POS]

m (xm,k) the respective medium gray
puzzle pieces to the bottom. The term α[TIM]

k−1 (xm,k−1) stands for all medium gray
and light gray puzzle pieces to the left while some possibly given future bit pat-
terns are exploited by β[POS]

m (xm,k) (medium gray and light gray puzzle pieces to the
right).

Obviously, if compared with the optimal MMSE parameter estimator, some neighbor-
ing puzzle pieces are not connected anymore. This results from the fact that the 1st
order Markov properties in time P (xm,k|xm,k−1) and in position P (xm,k|xm−1,k) are
exploited separately. From this it follows that some robustness of the system might
get lost.

Owing to the separate evaluation of the 1st order Markov properties, significant com-
plexity savings become possible. The nested summations of the optimal MMSE pa-
rameter estimation process can be resolved, and (11.49) can be considered as a
straightforward extension of (11.47). Thus, the complexity demands for both, arith-
metic operations and memory, are of the same order O(V 2

m) as for the (SD/AK1)
approach. Of course, this complexity needs to be spent for each of the forward–
backward recursions in time and position.

11.7 Simulation Results

The benefits of the (near-)optimal MMSE estimators over the basic extrapolative
estimators introduced in Sec. 10.4.2 for vector sources with spatially and tempo-
rally correlated sources will be demonstrated by simulation. For this purpose, the
generic source model depicted in Fig. 11.1 is used. The design parameters a and b of
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this source allow one to adjust auto- and cross-correlation ρ(1) and δ(0) properties
that resemble those of real-world source encoders. Correlation measurements have
shown [Heinen 2001b], [Adrat 2003] that the scale factors of audio transform codes
as applied in the Digital Audio Broadcasting (DAB) system exhibit correlation of
ρ(1) = 0.95 and δ(0) = 0.8. Differentially encoded Line Spectral Frequencies (LSFs)
of speech codecs as applied in the Global System for Mobile communication (GSM,
Adaptive Multirate Codec (AMR)) exhibit a residual correlation of ρ(1) = 0.6 and
δ(0) = 0.75.

For the simulations, the number of parameters vm,k per frame vk is set to M = 10.
After scalar quantization of each parameter by a Vm = 16-level Lloyd–Max quantizer
an MMSE optimized index assignment is used [Heinen, Vary 2000], [Heinen 2001b]
(see also Chap. 12, Sec. 12.3). A transmission channel serves AWGN with known
Es/N0.

Figure 11.6 depicts the corresponding simulation results. On the left, the results
for the DAB-like settings are shown and, on the right, the results for the GSM-like
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Figure 11.6: Simulation results for
a) DAB-like settings: auto-corr. ρ(1) = 0.95, cross-corr. δ(0) = 0.8
b) GSM-like settings: auto-corr. ρ(1) = 0.6, cross-corr. δ(0) = 0.75
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settings. It can be seen that both the optimal (OPT) and the near-optimal (N-OPT)
MMSE parameter estimator reveal significant improvements in the parameter SNR
if compared with the basic estimators hard decision by table lookup, soft decision
source decoding (SDSD) with 0th order a priori knowledge (SD/AK0), 1st order a
priori knowledge (SD/AK1), respectively. In the case of the DAB-like settings the
maximum parameter SNR gain of OPT over (SD/AK1) is ∆SNR = 1.72 dB; in the case
of the GSM-like settings ∆SNR = 2.66 dB. The maximum loss of N-OPT if compared
with OPT is ∆SNR = 0.21 dB (DAB-like), respectively ∆SNR = 0.24 dB (GSM-like),
which can be considered as negligibly small.

11.8 Conclusions

In this chapter, we extended the basic concept of soft decision source decoding (SDSD).
While the basic extrapolative estimators presented in Sec. 10.4, are optimal in the
MMSE sense for parameters with temporal correlation, the two new MMSE parameter
estimators detailed in this chapter are optimal for vector sources that exhibit temporal
and spatial correlation. The respective source model has been introduced and efficient
forward–backward algorithms for the optimal (OPT) and the near-optimal (N-OPT)
MMSE parameter estimation have been derived. The key difference between OPT and
N-OPT is the utilization of source redundancy. On the one hand, spatial and temporal
correlation are exploited jointly (OPT). On the other, both terms of redundancy are
utilized separately (N-OPT). The latter solution offers the potential for significant
complexity savings. It has been demonstrated by simulation that both approaches
reveal substantial parameter SNR gains over the basic extrapolative estimators. The
loss of N-OPT compared with OPT is negligibly small.

In the next chapter, it will be shown that the error correcting capabilities of all SDSD
approaches introduced in Chaps. 10 and 11 can be enhanced further if they are used in
combination with so called source optimized channel codes (SOCC).
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Chapter 12

Source Optimized Channel
Codes & Source Controlled
Channel Decoding

Stefan Heinen, Thomas Hindelang

12.1 Introduction

Speech, audio, image or video signals are highly correlated and source coding is an
essential means to remove redundancy and achieve a high bandwidth efficiency. How-
ever, since the source encoder always underlies complexity and delay constraints,
redundancy in general can only be imperfectly eliminated. Chapters 10 and 11 coped
with the utilization of residual redundancy in the course of source decoding. Channel
coding, which has so far been hidden as a black box in the equivalent channel, is now
highlighted. We present two approaches exploiting residual redundancy in channel
(de)coding.

First we introduce so-called Source Optimized Channel Coding (SOCC). Other than
classical channel coding, which primarily aims at a minimum residual bit error rate,
the fundamental idea of SOCC is to tailor channel codes entirely with respect to the
needs of the source, i.e., to take into account the statistical properties of the source as
well as a source-related optimization criterion such as the maximization of the param-
eter Signal-to-Noise Ratio (SNR) after decoding. We will demonstrate in the following
that this new design paradigm leads to a new class of powerful non-linear block codes.
Related work has been carried out by Zeger and Gersho [Zeger, Gersho 1990] who
proposed an algorithm for optimization of non-redundant index assignments and by
Skoglund who developed Channel Constrained Vector Quantization [Skoglund 1999].

Advances in Digital Speech Transmission Edited by R. Martin, U. Heute and C. Antweiler
c© 2008 John Wiley & Sons, Ltd
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Farvardin’s Channel Optimized Vector Quantization (COVQ) [Farvardin, Vaisham-
payan 1987], [Farvardin, Vaishampayan 1991], [Farvardin 1990] will be an issue later
in this chapter.

The second approach considered here is Source Controlled Channel Decoding (SCCD)
published by Hagenauer in 1995 [Hagenauer 1995]. This work describes how con-
volutional channel decoding can be improved by exploiting residual redundancy (in
terms of a priori information) of single parameter bits. Owing to the memory of
the channel code not only the parameter itself, and the bits originating from the
parameter contribute to the estimation but also the neighboring bits of other param-
eters. In contrast to SDSD shown in Chap. 10, here an additional diversity gain can
be achieved that allows one to improve the quality of parameters without residual
redundancy if their bits are placed close to bits of redundant parameters by a respec-
tive interleaver. To improve the quality of signals further, Unequal Error Protection
(UEP), suitable bit-mapping, and interleaving are applied, which take advantage of
the properties of the source or the source code and also of the channel. The start-
ing point for investigations in SCCD were channel decoding algorithms, which deliv-
ered a reliability of each decoded symbol – so-called Soft-Input/Soft-Output decoders
[Bahl et al. 1974], [Battail 1987], [Hagenauer, Höher 1989]. Many publications fo-
cused on channel decoding exploiting source statistics to reduce the residual path,
symbol, or bit error rate [Boudreau, Dubuc 1998], [Alajaji et al. 1996], [Fazel, Fuja
2000].

In both approaches discussed in this chapter, channel and source decoding are con-
sidered under the constraint of typical communication systems where typically delay
and complexity constraints limit the length of frames.

This chapter is structured as follows. In Sec. 12.2 we extend the transmission system
from Chap. 10 to a system that additionally includes a channel encoder and decoder.
Section 12.3 is devoted to the definition, design and analysis of SOCC and a brief
comparison with COVQ. In Sec. 12.4 the SCCD approach is presented and extended
to operate on parameters (bit groups) rather than single bits. Finally, in Sec. 12.5,
the two techniques are compared by applying them to a representative model of a
transmission system.

12.2 The Transmission System Used as Reference

Source

Let us assume a speech or an image signal s being source coded on a frame-by-frame
basis. The source coder usually generates codec parameters, e.g., pitch, spectral co-
efficients, etc. In the following, we focus on a parameter vector ṽ ∈ RM generated
every frame k as depicted in Fig. 12.1. The M different dimensions of ṽ can basi-
cally contain different types of codec parameters (such as, for example, stochastic
or adaptive codebook gain factors after source coding), or they can simply describe
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Figure 12.1: A transmission system with a set of Gaussian distributed and temporally
correlated parameters used as reference

the same physical signal at different times (e.g., a PCM signal where a definite num-
ber M of samples is combined to a frame). If we consider only one arbitrary frame
k, we neglect the index k and speak of the parameter vector ṽ, which contains M
parameters ṽm.

In this reference transmission system we assume all parameters ṽm of the parame-
ter vector ṽ to be samples of a zero mean and unit variance autoregressive Gaussian
process of order N̄ ∈ {0, 1}, named the AR(N̄) process of 0th or 1st order as intro-
duced in Sec. 10.4. The parameters are independent of each other (ṽm �= f(ṽi) for
i = 1, . . . , m − 1,m + 1, . . . , M).

Source Coding

Each value continuous parameter ṽm is quantized, where we denote the discrete set of
values of one quantized parameter with vm. Each parameter vm can take Vm levels,
which could be represented in binary notation with wm bits. For the SCCD approach
we assume the number of levels Vm being a power of 2 and the same number Vm

of levels and thus the same number wm = w of bits for all parameters. This is not
mandatory and especially for the SOCC approach an arbitrary number of levels Vm

is applied depending on the respective code design.

Coding and Decoding

The mapping of each quantized parameter vm onto a bit vector xm and also the
following multiplexing and coding depends on the chosen approach – SOCC or SCCD –
and will be shown in the respective sections.
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Also the decoding and the exploitation of a priori knowledge differs between the two
approaches and will be explained later on. For the SOCC approach even the blocks
“Utilization of Residual Redundancy”, “Demultiplexer”, and “Channel Decoding” can
not be seen separately.

Equivalent Channel

The transmission of the channel bits vector y, which comprises a second interleaver,
a modulator, a physical channel, a soft demodulation, and a second de-interleaver is
described by an equivalent lowpass channel in the same way as in Sec. 10.2.2. However,
in between the index assignment and the equivalent channel there is a multiplexing
and channel coding unit. For the further decoding approach we assume that the
channel delivers – in addition to the received sequence zk – the reliability information
about each received bit either in the form of bit error probabilities as in (10.3) or in
the form of log-likelihood ratios [Hagenauer 1995], which allow one to obtain so-called
transition probabilities P (zk(κ)|yk(κ)).

Parameter Estimation and Evaluation

As long as it is not stated otherwise, the estimated parameter after source decoding is
simply the most probable index vector xm for each parameter v̂m:

v̂m = M−1(arg max
xm∈{0,1}w

Pd(xm)) , (12.1)

where Pd denotes the decoding probabilities that will be explained in Sec. 12.4.1 and
M−1 is found by a table look up, which was introduced as hard decision decoding in
Sec. 10.2.3.

For evaluation, two performance measurements are applied. On the one hand we use
the bit error rate (BER) after channel decoding and on the other hand we exploit the
parameter SNR according to (10.8).

12.3 Source Optimized Channel Coding (SOCC)

Classical forward error correction coding in general is applied to protect streams of
bits and aims at minimizing the residual bit error rate. In contrast, Source Optimized
Channel Coding (SOCC) deals with signal or parameter values rather than bits. The
key innovation with SOCC is that channel codes are tailored in such a way that the
transmission quality is maximized. Owing to its practical relevance, but without loss
of generality, we use here the parameter SNR as a quality measure. As informal
quality assessments show, the SNR of the codec parameters often corresponds well
with perceived quality.
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12.3.1 Definition

To introduce Source Optimized Channel Codes let us briefly recapitulate the con-
sidered transmission chain. As a model of the source encoder, we assume a source
producing M -dimensional real-valued vectors ṽ. The vector elements are either indi-
vidually or jointly (in terms of a vector quantization) quantized to V̆ reproduction
values v ∈ V having distribution P (v). The reproduction values are mapped to bi-
nary code vectors y = Γ(v) and transmitted over a memoryless channel z=Ξ(y),
which is described by a probabilistic transfer function pz|y(z|y). Finally, the de-
coder recovers the parameter sets v̂= f(z) from the disturbed received bit vectors
z.

Given this model of a transmission system, we define a Source Optimized Channel
Code C∗ as the set of codewords

C∗ = {y |y = Γ(v), v ∈ V } = {y(0), . . . ,y(V̆ −1) } , (12.2)

which results from solving the optimization problem

min
Γ

E{D[ v, f ◦ Ξ ◦ Γ(v) ] } , (12.3)

where the symbol “◦” denotes concatenation of the involved functions and D some
quality measure. In particular, as we aim at maximizing the SNR we get

min
Γ

E
{
‖v − f ◦ Ξ ◦ Γ(v)‖2

}
. (12.4)

As long as a SOCC is a true subset of the set Y = {0, 1}B of all possible bit combina-
tions of length B =

∑M−1
m=0 wm, i.e., C∗ ⊂ Y the mapping Γ is redundancy increasing.

In the case of C∗ = Y (12.2) degenerates to a non-redundancy increasing index as-
signment.

We do not impose any constraints concerning the structure of the code, so in general
the code will not be linear, i.e., it will not fulfill the formal condition

y(i) ⊕ y(j) ∈ C∗ ∀ y(i),y(j) ∈ C∗ , (12.5)

where “⊕” denotes bit-wise modulo-2 addition.

In contrast to binary linear codes, whose number of codewords is always a power of
two, the code size V̆ of a SOCC and thus the number of quantizer reproduction values
can freely be chosen, e.g., to satisfy a given minimum quality requirement. As will be
discussed later in detail, the code size V̆ is in fact one of the key parameters in SOCC
design, which allows us to trade-off quantization accuracy against error-protecting
redundancy at a fine level of granularity.
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12.3.2 Decoding of Source Optimized Channel Codes

The objective of this section is to derive the optimum decoding algorithm for SOCCs.
In the course of the derivation we will notice many similarities with Soft Decision
Source Decoding (SDSD), which allows us to reuse some of the results from Chap. 10.
For this reason we restrict the derivation here to the case of a memoryless parameter
source. The extension to the case of correlated sources can straightly be transferred
from SDSD to SOCC decoding.

A SOCC decoder is not a channel decoder in the traditional sense. There are no
path metrics, error correction or similar. SOCC decoding in fact means estimation
of a parameter set v̂ from the noisy observation z, i.e., v̂ = f(z). Since we equated
quality with a high SNR, the optimal estimator should minimize the mean square
error E

{
‖ṽ − v̂‖2

}
. According to estimation theory this estimator is formally given

by [Melsa, Cohn 1978]

v̂ = E{ ṽ | z } =
1

p(z)

∫
RM

ṽ p(ṽ, z) dṽ , (12.6)

where RM represents the M -dimensional real-valued space. We expand the joint PDF
in (12.6) to

p(ṽ, z) =
V̆ −1∑
i=0

p(z | ṽ
/
, v(i))P (v(i) | ṽ) p(ṽ) , (12.7)

where ṽ can be omitted in the conditional PDF as knowledge of the quantized pa-
rameter set v(i) is a sufficient condition. Furthermore, since the channel encoder
mapping y = Γ(v) is deterministic, the equivalence p(z | v(i)) = p(z |y(i)) holds.
Thus, we have expressed the first term of the sum by the known channel statis-
tics.

Let us now consider the remaining two terms. The given quantizer Q establishes
the partitioning RM = Q1 ∪ Q2 ∪ · · · ∪ QV̆ , ṽ ∈ RM with the quantization regions
Qi, and without loss of generality we assume that the reproduction values v(i) are
centroids of their respective quantization cells. Considering that the partitioning
implies

P (v(i) | ṽ) =

{
1 ṽ ∈ Qi

0 else
(12.8)

and by substituting (12.7) back into (12.6), we obtain

v̂ =
1

p(z)

V̆ −1∑
i=0

p(z |y(i))
∫

ṽ∈Qi

ṽ p(ṽ) dṽ . (12.9)
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By comparison with the definition of centroids

v(i) = E{ ṽ | ṽ ∈ Qi } =

∫
ṽ∈Qi

ṽ p(ṽ) dṽ

P (v(i))
(12.10)

we can express the remaining integral term by known quantities and finally get the
optimum decoder function

v̂ = f(z) =
1

p(z)

V̆ −1∑
i=0

v(i) p(z |y(i))P (v(i)) . (12.11)

12.3.3 Design of Source Optimized Channel Codes

We now return to the initial optimization problem (12.3). So far we have considered
the estimator function f(z) and found an optimal solution with respect to the overall
optimization criterion. Our actual task, the optimization of the channel encoder Γ,
is still pending. The idea of solving it by an exhaustive search over all possible en-
coder mapping only works out for codeword lengths up to four bits, since there are
quite a lot of possibilities of mapping V̆ reproduction values to bit vectors of length
B =

∑M−1
m=0 wm with 2B combinations. To be precise, in total 2B !/(2B − V̆ )! map-

pings exist. Let’s give an example: for V̆ = 16 and B = 5 we have about 1.26 · 1022.
For comparison, a 32-bit integer can represent numbers up to 4.3 · 109. Even though
from the coding point of view some of the mappings are equivalent (e.g., to each map-
ping there exists a bit-inverted mapping with the same coding properties) the number
is still huge.

Therefore, we apply for the design of SOCCs a suboptimal search algorithm, which
delivers at least a good local optimum in reasonable time. A powerful means to
optimize the encoder mapping is the Binary Switching Algorithm (BSA) proposed by
Zeger and Gersho [Zeger, Gersho 1990]. This algorithm iteratively approaches a local
minimum of (12.4) by repeatedly swapping the code words assigned to a selected pair
of reproduction values v(�), v(j). Let Γ and Γ′ represent the mapping before and after
a swap, then one swap iteration is characterized by

Γ′(v(i)) =


Γ(v(i)) i �= �, i �= j

Γ(v(�)) i = j

Γ(v(j)) i = � .

(12.12)

Note that swapping a code word y(k) ∈ C with some element from the pool of unused
bit combinations y ∈ Y\C is allowed as well, which enables modifications not only of
the mapping Γ but also of the code C.
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12.3.4 Numerical Aspects of SOCC Design

During the search with the BSA the major computational burden is generated by
evaluation of the target function (12.4). Hence, it is crucial to bring it into a form
that can be computed with low effort. We substitute the optimum decoder func-
tion (12.11) into the expectation (12.4) and obtain after some transformations [Heinen,
Vary 2000]

min
Γ

E
{
‖v − f ◦ Ξ ◦ Γ(v)‖2

}
=

V̆ −1∑
i=0

‖v(i)‖2 P (v(i))−
∫

z∈RB

‖f(z)‖2 p(z) dz . (12.13)

As the sum in (12.13) does not depend on Γ, a sufficient condition for the optimality
of a SOCC is the maximization of the integral term. The integration in (12.13)
can be approximated1 by a sum over a discretized version of z. A closer analysis
shows [Heinen 2001] that the error due to this approximation has only a little impact
on the performance of the search algorithm. In fact, two discrete levels per vector
element of z are sufficient to achieve maximum performance. This is due to the BSA’s
property to select a mapping Γ by relative comparisons. Although the absolute value
of the target function (12.3) is changed by the quantization, the relative relations
remain almost the same.

Let z̄ ∈ {z̄(1), . . . , z̄(2B)} be the set of discretized reception vectors with elements
z̄ ∈ {−1,+1}. Then, the optimization criterion (12.3) can be reformulated in the
numerically evaluable form

max
Γ

2B−1∑
j=0

‖f(z̄(j))‖2 P (z̄(j)) = max
Γ

2B−1∑
j=0

‖
V̆ −1∑
i=0

v(i) P (z̄(j) |y(i))P (v(i))‖2

P (z̄(j))
. (12.14)

However, evaluation of (12.14) is still computationally demanding. Since the BSA
modifies in each iteration only a small part of the entire mapping Γ, reevaluation
of (12.14) each time from scratch wastes computing power. Instead, an update-
oriented computation can be applied, which leads to the efficient realization of a
SOCC design algorithm proposed in [Heinen, Vary 2000].

12.3.5 Bit Allocation between Source and Channel Coding

The optimization (12.4) determines an optimal SOCC C∗ and the corresponding map-
ping Γ for a given operating point, which is characterized by the number of repro-
duction values V̆ , the transmission rate A=B/M (number of channel bits in a trans-
mission block / number of parameters per set) and the Es/N0 on the channel. In this
case V̆ is a fix constraint for the optimization.
1Note that this approximation is only necessary for the code search. For the actual estimation at

the receiver it is not required as the estimator can cope with continuous z.
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However, as mentioned earlier, we can also interpret V̆ as an additional design pa-
rameter, which is optimized together with C∗ and Γ subject to the criterion (12.4).
Then we can write

V̆ ∗ = arg min
V̆

[
min
Γ

E{ ‖ṽ − v̂‖ }
]

. (12.15)

Figure 12.2 shows the optimization results for the example of a scalar Gaussian dis-
tributed parameter ṽ encoded by codewords of lengths B ∈ {4, 6, 8}. The figures next
to the different considered operating points represent the optimum number of repro-
duction values / codewords found by (12.15). Without changing the effective code
rate, a further SNR improvement can be achieved if two or more parameters are en-
coded together by one single SOCC. For example B=12 and M =2 would also result
in a transmission rate of A = 6/1 bits per parameter. But simulations prove that
in this case of a joint coding a better SNR can be achieved than with parameter-
individual coding as in the middle curve in Fig. 12.2, which results from the improved
error protection of the longer channel code. For details refer to [Heinen 2001].

As an interesting side-effect the optimization (12.15) implicitly determines the opti-
mum bit allocation between source and channel coding, since log2 V̆ ∗ bits are assigned
to the source coding while the remaining B − log2 V̆ ∗ bits contribute to the channel
coding. Figure 12.3 displays the resulting coding rates log2 V̆ ∗/B as a function of



338 12 SOCC & SCCD

−2 0 2 4 6 8
0.4

0.5

0.6

0.7

0.8

0.9

1

Es/N0 in dB

C
od

in
g

ra
te

lo
g 2

V̆
∗ /

B

B=4 bit

B=6 bit

B=8 bit

Channel capacity
in bits

channel use

Figure 12.3: SOCC coding rates as function of Es/N0; individual code design for
each simulation point; white Gaussian parameter source, σ2
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Es/N0. For reference, the capacity C of the AWGN channel is also plotted, which
corresponds to the coding rate of the optimum channel code in the information the-
oretic sense. It can be observed that with increasing code length the coding rate
shrinks, which means that the more bits per parameter transmission are available the
more of them are “invested” in error protection to achieve the maximum SNR. At
Es/N0 = 3 dB, for example, about 13.5% of the bit rate is used for error protection if
the code length is B = 4, while for code length B = 8 roughly 34% is consumed.

By protecting several source parameters jointly with one SOCC the coding rate can be
increased compared with a single-parameter SOCC, since channel coding with longer
code words is more effective. According to the coding theorem it must even be possible
to transmit error-free at a coding rate equal to the channel capacity. However, this
would require very long SOCCs.

12.3.6 Relation to Channel Optimized Vector Quantization

A related approach to SOCC is Channel Optimized Vector Quantization (COVQ)
as proposed by Farvardin et al. [Farvardin, Vaishampayan 1987], [Farvardin 1990].
COVQ and SOCC are both based on the idea of optimizing source and channel cod-
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ing jointly2. But in contrast to SOCC, COVQ does no explicit channel coding. In-
stead, the source encoder is directly optimized with respect to the conditions on the
disturbed transmission channel. The error protecting capability of COVQ is a re-
sult of shaping the quantizer regions such that an implicit redundancy increase is
achieved.

From an engineering point of view the merging of source and channel coding might be
seen as a drawback of COVQ. If a source codec based on COVQ has to be adapted to
different transmission channels, the quantization scheme has to be changed each time.
With SOCC the separation of source and channel codec is preserved, which means that
the source codec quantizers can be trained independently from the channel statistics.
When adapting to another channel only the SOCC and its encoder mapping Γ has to
be redesigned.

Before comparing SOCC and COVQ performance experimentally, we briefly discuss
the differences between both approaches in terms of their optimization criteria. The
COVQ criterion is given by

min
Q,V̆ ,Γ

E
{
‖ṽ − v̂‖2

}
, (12.16)

i.e., it is a true joint optimization of the parameter quantizer Q, the number of re-
production values V̆ and the mapping Γ. Denoting the COVQ centroids by v we can
decompose (12.16) to

min
Q,V̆ ,Γ

[
E
{
‖ṽ − v‖2

}
+ E

{
‖v − v̂‖2

} ]
. (12.17)

With SOCC, the total MSE for a given number of reproduction values V̆ is

min
Q

E
{
‖ṽ − v‖2

}
+ min

Γ
E
{
‖v − v̂‖2

}
. (12.18)

If we consider V̆ as a design parameter the bit allocation between source and channel
coding is explicitly determined by a second optimization step

min
V̆

[
min
Q

E
{
‖ṽ − v‖2

}
+ min

Γ
E
{
‖v − v̂‖2

} ]
. (12.19)

Since min[E{ · } + E{ · }] ≤ min E{ · } + min E{ · } we conclude that only the COVQ
criterion ensures a minimization of the total MSE, while the independent design of Q
and Γ in the case of SOCC does not necessarily guarantee this.

2The joint optimization approach at first glance seems to be questionable against the background
of Shannon’s separation theorem. But in fact there is no contradiction, since the separation
theorem is valid for optimum channel and source coding from the information theoretic point of
view. In practical transmission systems block lengths and computational complexity of coding
algorithms are limited, which leads to suboptimality. In this practical case joint optimization has
its justification.
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ṽ =1; AWGN channel.
c© 2005 IEEE

To see how the two approaches compare in practice we trained COVQ codebooks for
A = 4 and A = 8 and a different Es/N0 by applying the original design algorithm
proposed by Farvardin [Farvardin 1990]. As our communication model employs a
continuous output AWGN channel, the update equations for COVQ training contain
integrals over the conditional channel PDF, which cannot be solved analytically. We
coped with this by approximating the integrals by sums over a pre-computed set of
channel noise realizations. For the highest Es/N0 under consideration the COVQ
training algorithm was initialized by a source optimized codebook trained with the
split-LBG algorithm [Linde et al. 1980]. Then, proceeding towards lower Es/N0, the
COVQ codebook of the previous optimization was applied each time as initialization.

Figure 12.4 shows the comparison of COVQ and SOCC performances. In many cases
SOCC slightly outperforms COVQ, which indicates that the applied COVQ training
algorithm got stuck in a local optimum. With more sophisticated training meth-
ods such as simulated annealing it should be possible to achieve at least the SOCC
performance.

However, a noteworthy result is that SOCC despite the independent optimization of
quantizer and channel encoder provides a performance close to that of COVQ. This
means that SOCC allows us to optimize the source encoder independently of the
channel without relevant performance loss.
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12.4 Source Controlled Channel Decoding (SCCD)

In [Hagenauer 1995] a simple approach was introduced for exploiting a priori knowl-
edge on the bit level. Some more details on this can be found in [Hindelang 2001].
Additionally there have been publications where channel decoding with a priori knowl-
edge has been applied to audio, image, or video coding. Besides convolutional codes,
other codes, such as Turbo codes or Low Density Parity Check (LDPC) codes, can be
used, but they are not the subject of the investigations of this section.

In the following we will exploit a priori knowledge on the symbol level in channel
decoding. The a priori probabilities are obtained from the unequal distribution of pa-
rameters and from the temporal correlation. It can be extended to the correlation of
parameters within one frame by exploiting the results from Chap. 11.

12.4.1 Channel Coding and Decoding in SCCD

The Source Controlled Channel Decoding (SCCD) approach can be applied to any
channel decoding approach if a decoder that supports soft-in soft-out decoding is used.
In the following we consider linear convolutional codes with rate r = 1/Υ.

Figure 12.5 shows the SCCD approach in detail. Each quantized parameter vm,k is
mapped to a bit vector xm,k consisting of the bits (xm,k(1), xm,k(2), . . . , xm,k(w)).
Note that, within this section we use the same number w of bits for each bit vector
xm,k and we speak of bit mapping instead of index assignment. Once all M parame-
ters belonging to a frame k are quantized and mapped to the respective bit vectors,
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Figure 12.5: Coding and decoding for the SCCD approach
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their bits are multiplexed building a frame of w · M source bits denoted as vector
xk ∈ {0, 1}w·M with the bits xk(κ) and κ = 1, 2, . . . , w·M .

The block“Channel Coding” from Fig. 12.1 is split into an interleaver and the convolu-
tional encoder. The interleaving is needed to separate bits belonging to one parameter
from each other. This will be explained in detail in Sec. 12.4.5. After interleaving we
obtain the bit vector x′

k again with a length of w ·M bits.

Convolutional Coding

After interleaving the bit stream x′ of each frame k is subject to convolutional encod-
ing with rate r. In this chapter we consider only rate r = 1/Υ codes, i.e., for every bit
x′(κ) we obtain Υ channel bits y(κ) = (y((κ − 1)Υ + 1), . . . , y((κ − 1)Υ + Υ)) with
κ = 1, . . . , w ·M . We introduce convolutional coding using an example and follow the
notation of [Johannesson, Zigangirov 1999].

The information digits x′(κ) from the sequence x′ are fed into a shift register with ν
stages (in Fig. 12.6, ν = 2). According to [Proakis 2000] the constraint length3 is then
defined as L = ν + 1. The encoder in Fig. 12.6 has Υ = 2 linear output sequences
y(1), y(3), . . . , y((wM − 1)Υ + 1) and y(2), y(4), . . . , y((wM − 1)Υ + Υ). These are
serialized to form a single output sequence y = (y(1),y(2), . . .) of length w · M · Υ.
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Figure 12.6: An encoder for a binary convolutional code with rate r = 1/2

It is convenient to express the coding sequence in terms of the delay operator D.
Looking at the example in Fig. 12.6, we obtain for the upper part G1(D) = (1 +
D2) and for the lower part G2(D) = (1 + D + D2) where Gi, i ∈ {1, . . . ,Υ} is
called a generator polynomial and determines one of the Υ outputs of a convolutional
encoder. The individual Υ generator polynomials are merged into one generator
matrix

G(D) =
(
1 + D2 , 1 + D + D2

)
. (12.20)

The output y(κ) is obtained from the generator polynomials by adding the differ-
ent input bits with the respective delay where the power of the delay operator D

3In some books, e.g., [Johannesson, Zigangirov 1999], the overall constraint length of a code is
defined as the number of stages or shift registers needed to obtain all elements of the output
sequence which equals in the case of rate 1/Υ codes the memory ν.
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denotes the delay. For the used example with the generator matrix from (12.20) we
obtain

y(κ) = ( y((κ − 1) · Υ + 1) , y((κ − 1) · Υ + Υ) )
= (x′(κ) + x′(κ − 2) , x′(κ) + x′(κ − 1) + x′(κ − 2) ) , (12.21)

where Υ = 2 (see Fig. 12.6) and a predefined value, typically zero, is used in the case
of an index i ≤ 0 for the bits x′(i).

The above example is a non-systematic, non-recursive encoding matrix. If the in-
put sequence x′ is mapped onto one, e.g., the upper output sequence, we speak
of a systematic encoder and if there is a feedback from the shift registers back to
the first stage we speak of a recursive encoder in analogy to a recursive filter. For
simplification the generator matrix is often written in octal notation merging three
delays in one octal number starting with the lowest one as the most significant bit,
e.g.,

G(D) =
(

1 + D + D3
)

=
(
1 + 1 · D + 0 · D2 + 1 · D3

)
= (15)8 . (12.22)

For the example from (12.20) we obtain G = (5, 7)8.

Without going into details, the following properties of convolutional codes will be
used in this section.

• Every convolutional generator matrix is equivalent to a recursive systematic en-
coding matrix. This means that the same output sequences or code words y
are obtained, even if the mapping of x′ to the possible output sequences may be
different. The proof can be found in [Johannesson, Zigangirov 1999].

• Although the distance spectrum of the code and thus the probability of decoding
errors is the same, these decoding errors lead to a lower number of bit errors in
the case of the equivalent recursive systematic encoding matrix, especially under
weak channel conditions.

Considering the generator matrix from (12.20) its equivalent recursive systematic gen-
erator matrix can be denoted as

G[RSC](D) =
(

1 ,
1 + D + D2

1 + D2

)
G[RSC] = ( 1 , 7

5 )8 . (12.23)

Before channel coding tail bits can be added to terminate the convolutional code which
increases the overall code rate a little. After channel coding bits can be punctured
or repeated to obtain a desired overall code rate or the necessary number of bits per
frame.



344 12 SOCC & SCCD

Decoding

We utilize a Soft-Input/Soft-Output (SISO) channel decoder. In the following sections
we use the BCJR algorithm [Bahl et al. 1974], which is explained in more detail in
Sec. 13.2.2. It delivers the optimal symbol-by-symbol MAP probability as input for the
next decoding stage. Additionally, the channel decoder will make use of the available
a priori knowledge marked by the arrow from the block “a priori probabilities” to the
SISO channel decoding block in Fig. 12.5.

In contrast to the SDSD approach in Fig. 10.2 where the transition probabilities were
introduced as input to the source decoder, in SCCD the transition probabilities are
the input to the channel decoder. After channel decoding and de-interleaving, the reli-
ability information Pd(xm(κ)) of each bit of a bit vector is obtained where Pd denotes
the decoding probability after channel decoding and its content depends on the ex-
ploited algorithm. Therefore, we explain Pd in the respective section, in the optimum
case it is the MAP probability. As long as every bit is assumed to be statistically in-
dependent of the other bits belonging to one parameter, we can derive the probability
of each value of the index vector xm in one frame k by

Pd(xm,k) =
w∏

κ=1

Pd(xm,k(κ)) , (12.24)

which serves as input to the source decoder and gives a likelihood for every possibly
transmitted bit vector xm,k similar to the transition probabilities in (10.5). Even
though convolutional coding usually yields burst-like errors (path errors), we assume
the cascade of channel coder, equivalent channel, and channel decoder to be memory-
less. This can be achieved by separating the bits of one bit vector xm,k(κ) by at
least five times the constraint length of the code. The closer the bits of one bit
vector are placed the less exact (12.24) becomes. The interleaver in Fig. 12.5 should
therefore be designed such that it complies with this requirement (c.f. [Vary, Martin
2006]).

Example of the Applied Transmission System

To perform simulations for SCCD a concretely defined transmission system on the
basis of Figs. 12.1 and 12.5 is used. Each of a set of M = 20 Gaussian dis-
tributed parameters having AR(1) property with a temporal correlation ρ = 0.8
is Lloyd–Max quantized with V = 8 levels. The levels are mapped onto a bit vec-
tor xm,k with length w = 3 bits. We apply folded binary mapping since it leads
to a higher parameter SNR in the case of erroneous transmissions [Hindelang 2001]
than the natural binary mapping that was introduced in Sec. 10.4. The quantized
values, the assigned bit vectors, and the probabilities for each value are shown in
Table 12.1.

After multiplexing we obtain a bit vector xk of length M · w = 60 bits. The in-
terleaver places the most significant bits (MSBs) xm,k(1) onto positions 1 to 20,
the second significant bits (SSBs) xm,k(2) onto positions 21 to 40, and finally the
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Table 12.1: Folded binary mapping for V = 8 levels

vm,k −2.152 −1.344 −0.756 −0.245 0.245 0.756 1.344 2.152

xm,k (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 1, 1) (1, 1, 0) (1, 0, 1) (1, 0, 0)

P (xm,k) 0.0401 0.1071 0.1619 0.1909 0.1909 0.1619 0.1071 0.0401

least significant bits (LSBs) xm,k(3) onto positions 41 to 60 leading to the bit vec-
tor x′

k.

Owing to the defined initial state of the convolutional encoder the beginning of each
decoded bit stream is less error-prone. The MSBs are therefore located at these
better protected positions since they have a larger influence on the quality after source
decoding. On the other hand the LSBs are placed at the end of the stream since the
error rate of convolutional codes increases to the end of the code due to the truncation
of the coding. It has to be mentioned that the effect of truncation can be compensated
for by adding so-called tail bits before channel coding. However, due to the different
significance of the bits of a quantized symbol the effect of the starting point and the
truncation of convolutional codes is used as a scheme for unequal error protection
(UEP). To achieve UEP in general, code repetition or puncturing is applied, which
will not be considered within this section.

For convolutional coding we use the rate r = 1/2, memory ν = 6 recursive systematic
convolutional (RSC) encoder with the generator matrix

G(D) =
(

1 ,
1 + D2 + D3 + D5 + D6

1 + D + D2 + D3 + D6

)
G = ( 1 , 133

171 )8

leading to B = w · M · Υ = 120 channel coded bits.

12.4.2 A Priori Knowledge in Channel Decoding

From Chap. 10 it is known that the redundancy after source coding can be used on
the symbol level for source decoding. In the following, the exploitation of a priori
knowledge on the symbol level for channel decoding is shown. However, as we use
binary convolutional codes with rate 1/Υ each stage of the convolutional code belongs
to one bit and for this reason we have to convert the prediction probabilities to the
bit level.

In Fig. 12.7 we show possible realizations of the channel decoder, where AK0 in the
upper right box means a priori knowledge of 0th order according to a Markov model
of 0th order (see Sec. 10.3) and the unequal distribution is exploited. Similarly, AK1
in the lower right box stands for a priori knowledge of 1st order and the temporal
correlation is exploited. We use the same notation as in Fig. 12.5. The sequence
zk is the whole received sequence of one frame k from the channel. Furthermore,
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Figure 12.7: Channel decoding using a priori knowledge. c© 2000 IEEE; c© 2002 IEEE

zk
1 = (z1, z2, . . . , zk) denotes the complete history of frames. For simplification of

Fig. 12.7 we do not show the interleaving and multiplexing units that have to be
placed before and after the channel decoding modules. They convert the bit vectors
xm,k from the index assignment to the input x′

k of the channel decoder and vice-
versa, which is a simple transformation. Therefore, we show the input z from the
channel and the different probabilities of the bit vectors xm,k. In the following each
parameter ṽm,k and its bit vector xm,k is considered separately. Thus, we neglect the
index m and we speak of the bit vector xk = (xk(1), xk(2), . . . , xk(w)) with its bits
xk(κ), which stands for one arbitrary xm,k. Finally, we introduce the residual bit
vector

xk(\κ) = (xk(1), xk(2), . . . , xk(κ − 1), xk(κ + 1), . . . , xk(w)) (12.25)

denoting the bit vector xk without the κth bit.

In order to get a notation that is independent of the a priori knowledge exploited in
the channel decoder, we define the decoding probability Pd(xk(κ)) which denotes the
reliability of a bit xk(κ) at the channel decoder’s output and can be used as interface
to the source decoder. We will see in the following sections that different types of a
priori knowledge exploited by the channel decoder lead to different interpretations of
Pd(xk(κ)).

If both switches in Fig. 12.7 are in “off” position, conventional channel decoding is
carried out. If we additionally assume that all source bits are statistically independent
and equally distributed, i.e., P (xk(κ) = 0) = P (xk(κ) = 1) = 0.5, then no a priori
knowledge can be used. We speak of channel decoding using no a priori knowledge
“CD/NAK” and we get the probabilities

Pd(xk(κ)) = P (xk(κ)|zk) , (12.26)

i.e., in this case, the decoding probability can be interpreted as a posteriori probability
to the respective source bits.
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12.4.3 Channel Decoding Using Intra-Parameter Correlation

In general, the bits of one bit vector xk are statistically dependent if the quantized pa-
rameter vk has a non uniform distribution (see Table 12.1). Therefore, the probability
P (xk(κ)) denoting the source statistics of a bit being 0 or 1 is dependent on the other
bits x(\κ). Since we consider in the following only the unequal distribution of param-
eters, we call it channel decoding using a priori knowledge of 0th order“CD/AK0” fol-
lowing the definition of a Markov model of order N = 0.

Without loss of generality we can write

P (xk(κ)|zk) = f(xk(\κ), zk) , (12.27)

indicating that in addition to the dependence on the received channel values there
is a dependence on the other bits of a vector belonging to one parameter. Within
this section the symbol f states that there is some kind of dependence but it does
not mean that these are the only dependencies. Since all probabilities depend on the
channel values zk, we speak of a posteriori probabilities. For simplification we neglect
the index k since we consider only the current frame.

To exploit this dependence we extend the a posteriori probability P (x(κ)|z) by
using the symbol a posteriori probabilities and sum over all residual bit vectors
x(\κ):

P (x(κ) | z) =
2w−1−1∑

i=0

P (x(i)(\κ), x(κ) | z) . (12.28)

For the following derivation we have to separate the received channel sequence into
two parts: z = (z[a], z[b]) assuming that z[a] does depend on x(κ) but not on x(\κ),
and z[b] does depend on x(\κ) but not on x(κ). This assumption is fulfilled for non-
recursive codes if we separate the bits of one bit vector within the frame by at least the
overall constraint length of the code. For recursive encoders, however, the bits belong-
ing to one bit vector have to be separated by more than five times the memory ν of the
convolutional code, since the feedback in the encoder increases the dependence of bits.
With a separation of two times ν the degradation due to the violation of the above
assumption is negligible. To separate the bits in such a way as to fulfill the above as-
sumptions an interleaver is placed before channel coding.

By applying z = (z[a], z[b]) to (12.28) we obtain

P (x(κ)|z) =
2w−1−1∑

i=0

P (x(i)(\κ), x(κ) | z[a], z[b]) , (12.29)

which can be transformed to

P (x(κ)|z) =
1
C

·P (z[a]|x(κ)) ·
2w−1−1∑

i=0

(
P (x(κ)|x(i)(\κ)) ·P (x(i)(\κ)|z[b])

)
(12.30)
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using Bayes’ rule. The term P (z[a]|x(κ)) denotes the transition probabilities according
to (10.5). Owing to convolutional coding they are obtained in the channel decoding
by mapping the channel probabilities P (z((κ−1) ·Υ + i)|y((κ−1) ·Υ + i)), i = 1 . . . Υ
to the respective transitions in the convolutional decoder, see, e.g., [Bahl et al. 1974].
The constant C is introduced in Sec. 10.4 and applied here in the same way. The
detailed derivation can be found in [Hindelang 2001].

Applying (12.30) directly in channel decoding increases the complexity exponentially
with each correlated parameter. This is obvious, because the a posteriori proba-
bilities P (x(κ)|z) depend directly on P (x(\κ)|z[b]), which are typically not known
at the decoder. This can be solved by parallel paths within the transitions of,
e.g., the BCJR algorithm, where the paths denote the different conditional proba-
bilities P (x(κ)|x(\κ)). However, with every bit of each parameter the number of
paths doubles until the last bit of one bit vector is reached within the convolutional
code.

To solve now (12.30) in a practicable way, the two-step approach shown in Fig. 12.7
is applied. If the upper branch is switched on and the lower one is switched off, then
correlations within the bit vector x belonging to one parameter are exploited in terms
of a priori knowledge about one bit x(κ) given the w − 1 other bits x(\κ). Therefore
we call it intra-parameter correlation.

The computations are as follows: A first preliminary decoding step is performed as
shown in Fig. 12.7, which yields the estimate

P (x(\κ)|z[b]) =
w∏

i=1,i�=κ

P (x(i)|z[b]) =
w∏

i=1,i�=κ

Pd(x(i)) (12.31)

with P (x(i)|z[b]) according to (CD/NAK) (see Sec. 12.4.2). The next step is to calcu-
late the sum from (12.30), the so-called prediction probability

Pp0(x(κ)|z[b]) =
2w−1−1∑

i=0

P (x(κ)|x(i)(\κ)) · P (x(i)(\κ)|z[b]) , (12.32)

where the index p0 denotes the fact that a priori knowledge of 0th order is exploited.
The first part of the sum is given by the source statistics while the second part stems
from the first decoding step according to (12.31). In general, a prediction probability
denotes some reliability of a symbol or here a bit x based on a part of the received
sequence, e.g., z[b] (see (12.32)) or zk−1

1 (see Sec. 10.4.2) which exists only due to some
a priori knowledge (e.g., P (x(κ)|x(\κ)) or P (xk|xk−1). The exact derivation depends
on the modelling of the source parameter, in (12.32) we assumed a Markov model of
order N = 0.

The prediction probabilities Pp0 are now used together with the channel information
in the main channel decoder. We obtain decoding probabilities Pd(x(κ)) ≈ P (x(κ)|z)
according to (12.30) depending only on the currently received frame z. Note that,
although these probabilities are formally the same as those delivered by (CD/NAK),
they yield in general the better approximation. Now, not only one part z[a] of the
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received sequence from the channel but also a second part z[b] depending on the
other bits of one bit vector is exploited. The approximation is given by the fact
that we can not apply (12.30) and thus, we split it into a two-step solution. The
a priori knowledge given as P (x(κ)|x(\κ)) can, e.g., be stored in w tables of size
2w−1, which represent a mixed form of bit and bit group level a priori knowledge
P (x(κ)|x(\κ)). These tables can be employed directly in (12.32). Alternatively,
P (x(κ)|x(\κ)) can easily be calculated if the distribution of one parameter v and
therefore the distribution of the respective bit vector x is known. By applying Bayes’
rule we obtain

P (x(κ)|x(\κ)) =
P (x(\κ), x(κ))

P (x(\κ), x(κ) = 0) + P (x(\κ), x(κ) = 1)
, (12.33)

where each (x(\κ), x(κ)) leads to one defined bit vector x, and we have to store the
distribution P (x) (see, e.g., Table 12.1) with a size of 2w values and employ (12.33)
in (12.32).

12.4.4 Channel Decoding Using Inter-Frame Correlation

In Sec. 12.4.3 the distribution of parameters was considered in the calculation of
the prediction probability. In the following, the temporal correlation of symbols is
evaluated and converted to the bit level for convolutional decoding. This we call
channel decoding using a priori knowledge of 1st order “CD/AK1”. The principle can
be seen in Fig. 12.7 if the lower branch is turned on. Within one frame there may
be several parameters vm,k that are correlated to their respective parameters vm,k−1

in the previous frame. Again (cf. Sec. 12.4.3) we neglect the index m. The temporal
correlation can be expressed in a common way

P (xk) = f(xk−1) . (12.34)

In the same manner as in (12.27) we extend (12.34) to a posteriori probabilities after
channel decoding and convert it to the bit level

P (xk(κ)|zk
1) = f(xk−1, zk−1

1 ) , (12.35)

where P (xk(κ)|zk
1) denotes the dependence of one bit at frame k on the complete

history of received frames 0, 1, . . . , k.

To exploit (12.35) we split the complete history of received channel values zk
1 into the

values of the current frame zk and all other frames zk−1
1 . In Sec. 10.4 the symbol a

posteriori probabilities were derived. For the special case of a 1st order Markov model
we modify (10.32), convert it to the bit level, move the prediction probability into a
separate part, and obtain

Pd(xk(κ)) = P (xk(κ)|zk, zk−1
1 ) =

1
C

· P (zk|xk(κ)) · Pp1(xk(κ)|zk−1
1 ) . (12.36)
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As stated before, we assume a memoryless channel. Again, the bit transition proba-
bilities P (zk|xk(κ)) are given by the equivalent channel. Looking for the prediction
probabilities, we obtain

Pp1(xk(κ)|zk−1
1 ) =

2w−1∑
i=0

P (xk(κ)|x(i)
k−1) · P (x(i)

k−1|zk−1, z
k−2
1 ) (12.37)

by considering a Markov model of 1st order. The index p1 denotes the prediction
probability of 1st order (see Fig. 12.7), which is used together with the current
sequence zk in channel decoding. The a posteriori probability P (xk−1|zk−1, z

k−2
1 )

is obtained after the channel decoding of the previous frame on the bit level as
Pd(xk−1(κ)) = P (xk−1(κ)|zk−1

1 ). We assume that these bit level probabilities are
statistically independent and apply (12.24). Thus, we obtain the symbol probabili-
ties. Equations (12.36) and (12.37) can be solved in a recursion with one delay element
T (see Fig. 12.7). In contrast to (CD/NAK) and (CD/AK) the decoding probability
Pd(xk(κ)) depends on the history of received frames zk

1 .

Since Pd(xk−1) is known from the decoding of the previous frame the prediction proba-
bilities can be calculated before convolutional decoding. The complexity is very low in
comparison with that of convolutional decoding and can be almost neglected. For each
parameter quantized with w bits, we have to store the probabilities P (xk(κ)|xk−1),
which gives a number of w · 2w elements.

12.4.5 Channel Decoding Using Intra-Parameter
and Inter-Frame Correlation

In (SD/AK1) according to Chap. 10 the a priori knowledge given by the unequal
distribution (SD/AK0) is included. In SCCD, however, the dependence of xk(κ) on
the other bits xk(\κ) is not included in the (CD/AK1) approach due to the con-
version to the bit level. Thus, the (CD/AK0) and the (CD/AK1) approaches have
to be combined, meaning that both switches in Fig. 12.7 are in the “on” position.
We write the prediction probabilities as Pp01(xk(κ)|zk

1) = Pp01(xk(κ)|z[b]
k , zk−1

1 ) with
the index p01 denoting the influence of a priori knowledge of 0th and 1st order. If
we assume that z[b]

k and zk−1
1 are statistically independent the computation is sim-

ple because now the (CD/AK1) part according to (12.37) and the (CD/AK0) part
according to (12.32) can be calculated separately and multiplied afterwards. We ob-
tain

Pp01(xk(κ)|z[b]
k , zk−1

1 ) =
Pp0(xk(κ)|z[b]

k ) · Pp1(xk(κ)|zk−1
1 )

P (xk(κ))
. (12.38)

The term in the denominator is the unconditioned bit probability given by the unequal
distribution of the bit xk(κ) itself. This correction term has to be applied since this
probability is considered twice in Pp0 and in Pp1.
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Although the channel itself is memoryless, we have a dependence of zk and zk−1 given
by the source statistics and thus (12.38) is an approximation. Below we derive the
exact solution. Note that for a memoryless channel

P (zk|xk, zk−1) = P (zk|xk) (12.39)

holds, since the dependence of zk (or the interesting part z[b]
k ) on zk−1 is completely

given by the dependence on the source xk. This fact was used for the derivation of Pp1

and we use it in this section likewise. We extend (12.29) to the exploitation of temporal
correlation as in (12.37) to obtain the a posteriori probabilities for channel decoding
using 0th and 1st order a priori knowledge “CD/AK0+1”

Pd(xk(κ)) = P (xk(κ)|z[a]
k , z[b]

k , zk−1
1 )

=
2w−1∑
i=0

2w−1−1∑
j=0

P (xk(κ),x(j)
k (\κ),x(i)

k−1|z
[a]
k , z[b]

k , zk−1
1 )

=
1
C

· P (z[a]
k |xk(κ)) · Pp01(xk(κ)|z[b]

k , zk−1
1 ). (12.40)

The exact prediction probability Pp01 is now a two-dimensional sum over all possible
values of xk(\κ) and xk−1 and is given by

Pp01(xk(κ)|z[b]
k , zk−1

1 ) = (12.41)
2w−1∑
i=0

2w−1−1∑
j=0

(
P (x(j)

k (\κ)|z[b]
k ) · P (x(i)

k−1|zk−1
1 ) ·

P (xk(κ),x(j)
k (\κ),x(i)

k−1)

P (x(j)
k (\κ)) · P (x(i)

k−1)

)
.

The last part of (12.41), which considers only the dependence of the parameters due
to the source statistics can be converted to

P (xk(κ),xk(\κ),xk−1)
P (xk(\κ)) · P (xk−1)

=
P (xk|xk−1)
P (xk(\κ))

(12.42)

by merging xk(κ) and xk(\κ) into xk (cf. (12.25)) and applying Bayes’ rule. If we
compare the exact solution to the approximation in (12.38) it can be shown that they
deliver the same result if we assume independence of the two parameters x at frames k
and k+1, which is a contradiction to the assumption of temporal correlation. Finally,
it has to be mentioned that adapting (10.32) to SCCD and building the sum over the
residual bit vector xk(\κ) leads exactly to the result in (12.41). This summation
reflects the conversion to the bit level for one bit xk(κ).
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12.4.6 Simulation Results

In Sec. 10.3.2 the residual redundancy was introduced as a measure for the gain in
source decoding. These redundancies are converted to the bit level and are split into
the redundancy of each bit itself and into the mutual information between each bit
and the rest of the bit vector. The first can be derived from (10.17) introducing the
index b for the bit level

∆Rb(κ) = H0 − H(x(κ)) = 1 +
1∑

i=0

P (x(κ) = i) · log2(P (x(κ) = i)) , (12.43)

while the latter can be derived from (10.19) by substituting the history of bit vectors
with the dependence to the other bits of the bit vector

∆Rd(κ) = I(x(κ);x(\κ)) (12.44)

=
1∑

i=0

2w−1−1∑
j=0

P (x(i)(κ),x(j)(\κ)) · log2

P (x(i)(κ),x(j)(\κ)
P (x(i)(κ)) · P (x(j)(\κ))

.

In the same way the bit level residual redundancy ∆Rc(κ) due to temporal correlation
can be derived by converting ∆Rc from (10.19) to the bit level and reducing it to 1st
order. In Table 12.2 we show the residual redundancies of the three bits from the
exemplary transmission system.

In Fig. 12.8 the bit error rate depending on the bit position is shown for the different
approaches of exploiting a priori knowledge using the simulation settings of the exam-
ple in Sec. 12.4.1. Concerning the application of AK0 only, one can see a medium gain
for the SSB x(2) interleaved to positions 21 to 40. Comparing the redundancies and
the results one can see that the gain of the SSBs x(2) using AK0 can be connected
to the redundancies Rb(κ) and Rd(κ). Note, although there are no redundancies
Rb(κ) and Rd(κ) for the MSB x(1) one can see a gain for them (positions 1 . . . 20)
due to the mutual influence of bits in convolutional decoding. The reduced bit error
rate of the SSBs due to a priori knowledge improves the error rate of the MSBs as
well.

Table 12.2: Residual redundancies of the three different bits for a 3 bit Lloyd–Max
quantizer of a 1st order Gaussian distributed AR(1) process with temporal
correlation ρ = 0.8 applying folded binary bit mapping

Bit number ∆Rb(κ) ∆Rd(κ) ∆Rc(κ)

MSB x(1) 0.0 0.0 0.373

SSB x(2) 0.125 0.022 0.174

LSB x(3) 0.027 0.022 0.015
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Figure 12.8: BER dependent on the bit position for an AWGN channel at Es/N0 of
−3 dB exploiting the different approaches for a priori knowledge on the
symbol level

Looking at AK1 there is a large gain for the MSB x(1) and the SSB x(2) due to the
exploitation of Rb(κ) and Rc(κ) while the extension to AK0+1 gives only a small
additional gain due to the relatively small Rd(κ).

Owing to the conversion to the bit level the bit mapping plays a central role concerning
the residual redundancy and thus different bit mappings lead to different bit error
rates. A very interesting fact is that the a priori information due to ∆Rc(κ) (given by
temporal correlation) and the a priori information due to Rb(κ) and Rd(κ) (both given
by unequal distribution) can be converted to some extent to each other. It is possible
to find bit mappings that deliver, e.g., a high Rd(κ) by reducing the other redundancies
Rb(κ) and Rc(κ). Some more details of the bit mapping together with SCCD can be
found in [Hindelang 2001], [Hindelang et al. 2000b].

In a combined source and channel coding system the bit error rate is not that sig-
nificant. A measure that determines the quality of parameters after source decoding
is needed. The parameter SNR as introduced in Sec. 10.1 will be used in the follow-
ing. Figure 12.9 shows the parameter SNR for the different exploitations of a priori
knowledge. For parameter estimation a conventional HD source decoding is used as
depicted in Fig. 10.1. Summarizing the results of the reference system, there is a
large gain by exploiting AK1 since the error rate of the MSBs is mainly reduced by
applying the (CD/AK1) approach (compare also to the high Rc(κ) in Table 12.2)
and errors in the MSBs have the most negative impact on the parameter SNR. A
further small gain is obtained with AK0+1, but then two channel decoding steps are
necessary. Within this section results have only been shown for the folded binary
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Figure 12.9: Parameter SNR dependent on the Es/N0 exploiting the different ap-
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mapping. In general, the results depend strongly on the bit mapping since the pa-
rameter SNR may vary for different bit mappings even if the bit error rate is the
same.

Thus, in SCCD the bit mapping has influence on both the quality after source decoding
(e.g., the parameter SNR) and the channel decoding gain due to residual redundancy
(e.g., measurable by the bit error rate) which complicates the search for an optimal
bit mapping. The same challenge exists for the iterative source-channel decoding
approach as we will see in Chap. 13. In [Hindelang 2001] details on the bit mapping
can be found and it turns out that the folded binary mapping is a very good solution for
SCCD in the case of Gaussian distributed AR(1) parameters with temporal correlation
ρ ∈ 0.5 . . . 0.9. It is of interest that many parameters in typical speech coding systems
have similar properties.

12.4.7 Exploiting A Priori Knowledge in Source and/or
Channel Decoding

The previous section has shown the gain of exploiting a priori knowledge in chan-
nel decoding. In the following, we will show the advantages of exploiting a priori
knowledge in channel decoding and compare it with SDSD from Chap. 10. Chan-
nel decoding suffers from the conversion down to the bit level, but then it gains from
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of −3 dB for one correlated parameter in comparison to 20 correlated
parameters and the gain due to the influence of the other parameters

the properties of the channel codes that lead – by applying respective interleavers –
to an interdependence of different parameters (see e.g., the gain of the MSBs with
(CD/AK0) in Fig. 12.8).

In Fig. 12.10 the dashed curve shows the gain of applying (CD/AK0+1) to a system
where only one parameter stems from a Gauss–Markov source of 1st order. The
three bits are placed at positions 11, 31, and 51. All other parameters are equally
distributed and uncorrelated. Nevertheless, they gain a little in the bit error rate,
especially if they are placed close to the considered parameter, e.g., positions 10
and 12. If we look at the curve with 20 correlated parameters a large gain can be
obtained due to the mutual influence of the bits of each parameter, e.g., the bit
error rate for the MSB at position 11 is reduced from about 0.042 to less than 0.02.
For comparison the gain that stems from the influence of the other 19 parameters
to the respective bit of one parameter at each position is shown (dash–dotted line).
There, the a posteriori probability after channel decoding is divided by the prediction
probabilities of each bit. Thus, only the gain due to the a priori knowledge of all other
parameters is utilized. We will come back to this so-called gain by extrinsic influence
later.

Finally, different approaches exploiting a priori knowledge either in source or in chan-
nel decoding are compared. For a fair comparison we use the MMSE estimator accord-
ing to (10.7) where simple (SD/NAK) denotes a MMSE estimation without making
use of the source statistics of the Gauss–Markov parameter. Looking at Fig. 12.11
the dashed and dash–dotted curves show that due to the conversion to the bit level in
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channel decoding the application of a priori knowledge in source decoding performs
better in most cases. However, if there are 20 correlated parameters the (CD/AK0+1)
approach (see dotted line with pentagons) outperforms the (SD/AK1) approach due
to the mutual influence of the parameters in convolutional decoding. This mutual
influence can not be exploited by the SDSD approach.

Summarizing the results we see that (SD/AK1) gains from the symbol level and
the (CD/AK0+1) gains from the mutual influence within convolutional decoding.
The question that arises is: can we take advantage of both effects and use a priori
knowledge in source and channel decoding? To answer this question we have to ensure
that the same a priori knowledge is not used twice. Therefore, we have already shown
in Fig. 12.10 the gain by parameters other than those considered and in Sec. 13.2 the
so-called extrinsic information is introduced in detail. Here, we show only a first
result, called (CD/AK1 extr., SD/AK1), where (CD/AK1 extr.) denotes that only
the gain due to the extrinsic influence is exploited in (CD/AK1). It delivers a better
performance than the (CD/AK0+1, SD/NAK) curve. Note that the complex channel
decoding is performed once, if only (CD/AK1) is used. In other simulations it turned
out that this low complex approach gains especially if the channel code is weaker,
e.g., if a convolutional code with ν = 3 instead of ν = 6 is applied. The application
of (CD/AK0+1 extr.) together with (SD/AK1), which makes use of the full a priori
knowledge both in channel and source decoding, would improve the result further by
up to 0.3 dB.
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Summarizing the SCCD approach, it has to be mentioned that it can be applied
straight forwardly to each standardized system, e.g., video, audio and speech trans-
mission, where residual redundancy is left after source encoding and where a channel
coding approach that leads to a dependence between different source bits or symbols
is applied, e.g., as in GSM or UMTS. Additionally, the SCCD approach leaves a lot of
room for optimization, like quantization of parameters, bit mapping, interleaving, or
unequal error protection, to design a system that is well adapted to both the source
and the channel still keeping the state-of-the-art source coding (e.g., ACELP) or chan-
nel coding (e.g., convolutional codes). The capability and efficiency of SCCD has been
shown at the example of the ANSI-136 standard and its modification [Hindelang et
al. 2000a].

12.5 Comparison of SOCC versus SCCD

The SOCC and the SCCD approaches were developed between 1998 and 2000 in
a scientific competition between the Institute of Communication Systems and Data
Processing (IND) at RWTH Aachen University and the Institute for Communications
Engineering (LNT) at Munich University of Technology (TUM). The question to be
answered was, “Is it better to exploit the source a priori knowledge in channel decod-
ing or in source decoding?” The Munich team investigated source-controlled channel
decoding (SCCD) and the Aachen team investigated soft decision source decoding
(SDSD) with the extension to source-optimized channel codes (SOCC). To allow a
comparison a reference system was devised which will be shown in the following. Af-
terwards, the approaches from Secs. 12.3 and 12.4 will be compared.

System Configuration

The communication model that is mandatory for both was introduced in Sec. 12.2.
The source model is designed to approximate the characteristics of the source param-
eters generated by block based speech coding schemes, such as those used in GSM or
UMTS. Therefore, the source produces time discrete vectors ṽ of M elements ṽm ∈ R
where each parameter ṽm is modeled by an individual Gauss–Markov process of order
one as shown in Sec. 10.2.1. The elements ṽm are quantized, mapped and channel
coded to M · A-dimensional bit vectors y. The decoder receives the channel soft-
output vector z ∈ R(M ·A) to estimate sample vectors v̂ ∈ RM , which are delivered to
the sink.

To cover different possible system configurations we vary the following parameters of
our source model:

• Correlation ρ ∈ {0, 0.75, 0.9}
• Maximum allowed bit rate on the channel: A ∈ {4, 6, 8} bits/parameter

• Required source codec quality defined as the parameter SNR(v̂) under noise-free
conditions according to Table 12.3.
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Table 12.3: SNR requirements

Bit rate A in bits/parameter 4 6 8

Parameter SNR (v̂) in dB 9 13 17

The number of bits transmitted per vector z will be fixed at B = M · A = 120, thus
the number of dimensions in ṽ takes the values M ∈ {30, 20, 15}.

Results

Applying the SCCD approach we employ the transmission system described in
Sec. 12.4.1 with the difference that we now quantize each parameter for the three
bit rates A (see Table 12.3) with w = 2, 3, 4 respectively leading to a block length of
M · w = 60 for all three cases. The interleaver maps the MSBs of each parameter
index to the first part of the input vector x′ for the convolutional encoder, then the
SSBs and so on up to the fourth bit. Unequal error protection is achieved simply by
not terminating the convolutional code. For short block lengths (M · w < 100) this
turned out to be a good scheme for UEP. Owing to the applied code rate r = 1/2 in
the channel encoder we obtain B = 120 transmitted bits. The channel decoder ex-
ploits (CD/AK0+1) according to (12.41) and the parameter estimation is made using
the MMSE criterion without making use of the source statistics of the Gauss–Markov
parameters (SD/NAK).

The SOCC-based transmission model operates at 4 bits per parameter with a
two-dimensional (L̃ = 2, i.e., pairs of parameters are jointly coded) SOCC with
V̆ = 36 levels out of 256 possible bit combinations. Therefore, the code
rate is log2(V̆ )/(4 · L̃) = log2(36)/8 ≈ 0.65. With 6 bits per parameter again
a two-dimensional SOCC with V̆ = 144 levels is applied. The code rate is
log2(V̆ )/(6 · L̃) = log2(144)/12 = 0.60. Finally, for complexity reasons with 8 bits
a one-dimensional (L̃=1, i.e., all parameters individually coded) SOCC with V̆ = 20
is applied, which leads to a code rate of log2(V̆ )/(8 · L̃) = log2(20)/8 = 0.54. In all
cases the SOCC was optimized for Es/N0 = −1 dB.

Figures 12.12–12.14 depict the simulation results for the given correlation factors ρ
and transmission rates. By exploiting a priori knowledge either in source-optimized
channel codes (SOCC) or in source-controlled channel decoding (SCCD) a remarkable
enhancement of the parameter SNR is achieved for reasonably correlated sources. In
Fig. 12.12 the SOCC approach is compared with SCCD for a transmission rate of
A = 4 bits per parameter. While with ρ ≤ 0.75 there is an SNR range where SOCC
performs slightly worse than the SCCD scheme, SOCC outperforms SCCD for all
channel conditions if ρ=0.9; a gain in parameter SNR of 1 to 3 dB can be observed.
With 6 bits per dimension (Fig. 12.13) the SNR range where SCCD performs better
increases. The simulation results for 8 bits are shown in Fig. 12.14. SCCD shows a
good performance at a wide range of channel conditions that can be explained by the
low SOCC dimension of 1. Nevertheless, SOCCs still achieve gains under very bad
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Figure 12.12: SCCD vs. SOCC, transmission with 4 bits per parameter
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Figure 12.14: SCCD vs. SOCC, transmission with 8 bits per parameter

and very good channel conditions, which raises the question of how to evaluate the
total performance of both systems.

Complexity Aspects

The complexity of the SOCC decoder is not shown in detail. Applying a scalar
quantizer with V̆ reproduction levels and L̃-dimensional SOCCs, a straightforward
implementation of the decoder has a complexity of

CX =
V̆ · L̃ · M

L̃

[(
M · A · L̃

M
+V̆ · L̃+2

)
· M+(V̆ · L̃+1) · A

]
, (12.45)

where A denotes additions and M denotes multiplications. For a detailed analysis of
the complexity of the SOCC decoder see [Heinen 2001]. In Table 12.4 the decoder
complexities are listed for the three coding rates. The MOPS column is calculated
under the assumption that a parameter block has to be transmitted within 20 ms as
it is in speech frames of, e.g., GSM or UMTS.

In the SCCD approach we consider the BCJR algorithm [Bahl et al. 1974] for decoding
of convolutional codes. Its complexity is given by

CXBCJR = (4 · 2ν+1 + 2Υ+1 · Υ) · M · w · M
+
(
2 · 2ν + (2ν − 1) · 2

)
· M · w · A , (12.46)



12.5 Comparison of SOCC versus SCCD 361

Table 12.4: SOCC decoding complexities for one block of 120 transmitted bits

Bits/parameter Add. Mult. Total op’s MOPS

4 19980 24840 44820 2.24

6 208800 227520 436320 21

8 6300 9000 15300 0.765

which can be obtained by summarizing over the calculation of the transition proba-
bilities, the forward and the backward recursion, and the decoding probabilities (for
details see [Hindelang 2001]). With the used settings M · w = 60 the memory ν = 6,
and rate r = 1/Υ = 1/2 we obtain M = 31680 and A = 15240. Additionally, there is
some complexity needed for the calculation of the prediction probabilities Pp01 and the
MMSE source parameter estimation that contributes with less than 10% compared
with two times convolutional decoding with the BCJR algorithm. The exact numbers
without their derivation are shown in Table 12.5.

Table 12.5 shows that the complexity increases moderately with the number of quan-
tization bits because the main term in the complexity is the one required for decoding
the convolutional code. If only AK1 is used, which leads to a very small loss in perfor-
mance for the folded binary mapping (see Fig. 12.9), the complexity is reduced to less
than one half (bottom line in Table 12.5) because convolutional decoding is done only
once per block. As a further step to reduce complexity, the BCJR algorithm could
be replaced by the simpler soft-output Viterbi algorithm (SOVA). The complexity of
SCCD decoding can then be reduced again by one half with only a little performance
degradation.

In summary, the complexity of the two approaches is in the same range for the trans-
mission with 4 bits per parameter and a two-dimensional SOCC. With 6 bits the
SOCCs become much more complex in the two-dimensional case while they are less
complex in the one-dimensional case, which was used for the scheme with 8 bits per
parameter.

Table 12.5: The complexity of the SCCD approach using (CD/AK0+1) or (CD/AK1)
(bottom line)

Bits/parameter Add. Mult. Total op’s MOPS

4 31440 64320 95760 4.79

6 33360 66240 99600 4.98

8 40080 72960 113040 5.65

(CD/AK1) only, 8 18120 34560 52680 2.63
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Summary

Both approaches, SOCC and SCCD, were evaluated in detailed simulations. It turned
out that the SCCD approach performs better for a higher number of quantization
levels, because of the very complex design of SOCCs for a higher number of bits
per parameter. The SCCD approach gains up to 3 dB in the parameter SNR at
8 bits per parameter and ρ = 0.0 (Fig. 12.14). The SOCC approach performs bet-
ter for a higher correlation of parameters since the correlation can be used com-
pletely on the symbol level. At 4 bits per parameter and a correlation ρ = 0.9
in particular the SOCC approach outperforms the SCCD approach over the whole
range of channel SNRs (Fig. 12.12). For all considered transmission rates the SOCC
performed better than the SCCD, under very bad and very good channel condi-
tions.

12.6 Conclusions

In this chapter we presented two approaches, Source Optimized Channel Coding
(SOCC) and Source Controlled Channel Decoding (SCCD), which combine the pa-
rameter estimation of Chap. 10 with channel coding.

SOCC is based on a new class of non-linear block codes, which are tailored for opti-
mizing the parameter SNR at the receiver. The code optimization takes into account
the source quantization as well as source and channel statistics. An interesting aspect
of SOCC is that source and channel coding can be optimized separately. Despite
this the performance of SOCC is comparable to the “true” joint optimization using
COVQ.

SCCD on the other hand takes standard channel codes and makes use of the source
statistics in the encoder by applying UEP, bit-mapping, and interleaving and in
the decoder by exploiting the residual redundancy in terms of a priori probabili-
ties.

Both approaches perform best if residual redundancy is left, either in terms of un-
equal distribution, temporal and also spatial correlation as demonstrated in this chap-
ter and Chap. 11. The benchmarking unveiled that both approaches have their
strengths and weaknesses depending on the particular operating point and hence
the competition of Sec. 12.5 ended with a tie. A very promising option would
be the combination of SOCC and SCCD, e.g., in terms of an adaptive multi-rate
scheme.

In Sec. 12.4.7 it is shown that SCCD can be combined with SDSD and that a priori
knowledge can be used twice under some circumstances. This was the starting point
for further investigations of source and channel decoding using a priori knowledge
and will be presented in Chap. 13.
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Chapter 13

Iterative Source-Channel Decoding
& Turbo DeCodulation

Marc Adrat, Thorsten Clevorn, Laurent Schmalen

13.1 Introduction

In 1993, the Turbo principle was devised by C. Berrou, A. Glavieux, and P. Thiti-
majshima for near Shannon limit error correcting decoding [Berrou et al. 1993] with
reasonable computational complexity. The key novelty of the Turbo principle was
the iterative exchange of so-called extrinsic information between two (or more) de-
coders, which are concatenated by a large bit interleaver [Hagenauer et al. 1996].
Efficient coding close to the Shannon limit also makes the Turbo principle attrac-
tive for many other fields of digital signal processing. Two examples are: Itera-
tive Source-Channel Decoding (ISCD) and Turbo DeCodulation (TDeC). The con-
vergence behavior of Turbo processes can be understood and visualized by applying
so-called EXtrinsic Information Transfer (EXIT) charts [ten Brink 1999], [ten Brink
2001].

In Sec. 12.4.7 a joint source-channel coding scheme (CD/AK1, SD/AK1, extr.) was
outlined that combines the concepts of Source Controlled Channel Decoding (SCCD)
and of Soft Decision Source Decoding (SDSD). A closer look reveals that this combi-
nation exhibits some relationships to the Turbo principle. Such a scheme resembles
the iterative evaluation of channel code redundancy and natural residual source re-
dundancy. The main channel decoder (of Fig. 12.7) exploits some kind of extrinsic
information, which is gained from the 0th/1st order a priori knowledge (AK0/AK1),
in order to enhance the soft-outputs of the preliminary first channel decoder [Hage-
nauer 1995], [Hindelang 2001], [Hindelang et al. 2007]. These enhanced soft-outputs
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are provided to a subsequent main source decoder. Thus, the overall scheme is similar
to a Turbo process with two iterations.

However, in the combined scheme of SCCD and SDSD some features or components
of a Turbo scheme are missing or used in a different sense, e.g., the bit interleaver is
primarily designed for unequal error protection and decorrelating errors. In a Turbo
scheme the decorrelation of the exchange of extrinsic information is the new essential
task of the bit interleaver. Moreover, in a (in some suitable sense) properly designed
system even more than only two iterations might be profitable. Thus, it is advisable to
strictly apply all basic prerequisites of the Turbo principle to the joint source-channel
coding problem. This leads to an Iterative Source-Channel Decoding (ISCD) system,
e.g., [Hindelang et al. 2000], [Görtz 2000], [Adrat et al. 2001] which is the main topic
of the first part of the present chapter. The benefits of ISCD have already been
demonstrated for the GSM system [Perkert et al. 2001].

Besides a detailed treatment of the relevant terms of extrinsic information, the EXIT
chart analysis tool is applied to ISCD [Adrat 2003], [Adrat et al. 2003], [Adrat,
Vary 2005]. On the one hand, some limiting factors of ISCD schemes can be iden-
tified [Adrat et al. 2005a], [Adrat et al. 2006b]. On the other hand, some design
guidelines for highly capable ISCD scheme can be derived [Adrat, Vary 2004], [Adrat
et al. 2006a], [Adrat et al. 2005b].

Finally, the ISCD scheme will be extended by a third component, namely the demod-
ulator, to incorporate the iterative demodulation scheme Bit-Interleaved Coded Mod-
ulation with Iterative Decoding (BICM-ID) [Li et al. 2002], [Hanzo et al. 2002]. Such
a multiple Turbo process is called Turbo DeCodulation (TDeC) [Clevorn et al. 2005b],
[Clevorn et al. 2005a], [Clevorn 2006]. TDeC systems and the respective advancements
are analyzed in the second part of this chapter.

13.2 The Key of the Turbo Principle:
Extrinsic Information

The key element of all decoding processes according to the Turbo principle is the
iterative exchange of so-called extrinsic information between the constituent de-
coders [Berrou et al. 1993], [Hagenauer et al. 1996]. Extrinsic information can usually
be extracted from the a posteriori output of a Soft-Input/Soft-Output (SISO) de-
coder. Considering this extrinsic information as additional a priori input for the
other constituent decoder(s) permits stepwise performance improvements. After sev-
eral iterations the system converges to a steady state. The maximum number of
profitable iterations depends on the properties of the constituent decoders as well
as the independence of their extractable extrinsic information. The latter side con-
straint can usually be omitted by placing a properly designed interleaver between
the constituent decoders. The overall convergence behavior becomes predictable with
the EXtrinsic Information Transfer (EXIT) chart analysis tool [ten Brink 1999], [ten
Brink 2001].
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In Sec. 13.2.1 we will briefly review different terms of reliability information. Af-
terwards, we will discuss in more detail the extrinsic terms of information for SISO
channel decoding, SDSD, and Soft Demodulation (SDM) in Secs. 13.2.2 to 13.2.4.
We will introduce the EXIT chart analysis tool in Sec. 13.2.5. All these considera-
tions are of relevance for the ISCD and TDeC schemes being introduced in Secs. 13.3
and 13.4.

13.2.1 Terms of Reliability Information

In Turbo decoding schemes reliability information for single data bits x is processed
in several stages of a receiver. Such reliability information can either be expressed
in terms of probabilities P (·) or in log-likelihood ratios L(·) (or short: L-values).
An L-value is the natural logarithm of the probabilities ratio of both alternative
realizations of x ∈ {+1,−1}. For instance, the a posteriori L-value is [Hagenauer et
al. 1996]

L(x|z) = loge

P (x = +1|z)
P (x = −1|z)

. (13.1)

For the use of x and z see also Sec. 10.2.2. The sign of an L-value yields the hard
decision, x̂ = sign{L(·)}, and the magnitude |L(·)| represents the reliability of this
decision. The L-value in (13.1) is called the a posteriori L-value because at the
receiver it allows us to decide on the most probably sent bit x given the received
sequence z.

Applying Bayes’ theorem in mixed form and assuming a memoryless transmission
channel allows us to separate the a posteriori L-value in several additive terms [Ha-
genauer et al. 1996],

L(x|z) = loge

p(z|x = +1) · P (x = +1)
p(z|x = −1) · P (x = −1)

= loge

p(z|x = +1) · P (x = +1) · p(z[ext]|x = +1)
p(z|x = −1) · P (x = −1) · p(z[ext]|x = −1)

= L(z|x)︸ ︷︷ ︸
transmission related

information

+ L(x)︸︷︷︸
a priori

information

+ L[ext](x) + . . .︸ ︷︷ ︸
different terms of

extrinsic information

. (13.2)

P (·) denotes a discrete probability and p(·) a probability density function. The term
z[ext] comprises the same elements as the received sequence z, except the particular
received value z for the data bit x under consideration. Note that, to emphasize the
extrinsic nature of z[ext], we use the superscript [ext] instead of the notation introduced
in (12.25).

The first term L(z|x) represents transmission related reliability information. It spec-
ifies the L-value for receiving a real-valued z ∈ R given that x ∈ {+1,−1} has orig-
inally been sent. In the case of a transmission channel with Rayleigh fading (fading
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coefficient a) as well as Additive White Gaussian Noise (AWGN) with known Es/N0,
L(z|x) can be expressed by [Hagenauer et al. 1996]

L(z|x) = 4 · a · Es/N0 · z . (13.3)

The second term L(x) in (13.2) denotes bitwise a priori information for bit x,

L(x) = loge

P (x = +1)
P (x = −1)

. (13.4)

Both terms of reliability information, L(z|x) and L(x), represent so-called intrinsic in-
formation about data bit x. Neither of these values is influenced by one of the other el-
ements in the sent sequence x or its received counterpart z.

An additional term can generally be extracted from L(x|z) for any SISO decoder
involved in a Turbo process. This extra term is called extrinsic information because it
describes the impact of the other elements z[ext] of z (i.e., the elements of the received
sequence z excluding z) on the bit x under consideration,

L[ext](x) = L(z[ext]|x) . (13.5)

This impact results either from artificial mutual dependencies that are introduced be-
tween the bits x of x (e.g., by channel coding) or from natural redundancies between
the data bits x of the originally transmitted sequence x of bit patterns. The dots in
(13.2) indicate that several of such terms of extrinsic information exist in a Turbo pro-
cess where multiple constituent decoders are concatenated.

13.2.2 Extrinsic Information of Channel Decoding

Channel coding introduces artificial dependencies. The inputs and outputs of a SISO
channel decoder are depicted in Fig. 13.1. The most popular linear channel coding
concept is binary convolutional encoding. A convolutional code can be described by
a trellis diagram. In this trellis diagram nodes represent encoder states and branches
represent state transitions. If the single data bits x ∈ {+1,−1} of x are encoded one
after another, the binary input x at time λ causes a state transition from encoder

L
[ext]
BCJR(y)

L
[ext]
BCJR(x)L[input](x)

L[input](y)

SISO
channel
decoding

Figure 13.1: Soft-inputs/-outputs of block SISO channel decoding
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S(0) S(1) S(λ − 1) S(λ) S(N)
S(0)(·) = (+,+)

S(1)(·) = (−,+)

S(2)(·) = (+,−)

S(3)(·) = (−,−)

(−,−)

(−
,−

)

(+
,−)

(+
,−

)

(+,+
)

y = (+,+)

(−,+)

(−,+)

αλ−1(+,+)
αλ−1(−,+)
αλ−1(+,−)
αλ−1(−,−)

βλ(+,+)
βλ(−,+)
βλ(+,−)
βλ(−,−)

x = +1 x = −1 y(2) = +1 y(2) = −1

L
[ext]
BCJR(y)L

[ext]
BCJR(x)

Figure 13.2: Illustration of the extrinsic information of a data bit x resulting from
channel encoding (solid: x = +1, dashed: x = −1)

state S(λ − 1) to S(λ). Each state transition is labeled with the specific code word
y being transmitted. The length Υ of y = (y(1), . . . , y(Υ)) determines the code rate
r = 1/Υ.

The upper part of Fig. 13.2 depicts an example of a memory ν = 2 (constraint
length L = ν + 1, see also Sec. 12.4.1) convolutional code (recursive systematic
convolutional code with generator polynomial G =

(
1, 5

7

)
8
, compared to (12.23)).

If, for instance, the encoder is in state S(2)(λ − 1) = (+,−) then the next trans-
mitted code word can either be y = (+,+) if x = +1 (solid line) or y = (−,−)
if x = −1 (dashed line). The code words (+,−) and (−,+) can not follow the
state S(2)(λ − 1).

After channel transmission the decoding algorithm at the receiver tries to estimate
the transmitted bits x from the noisy received sequence z of y. Owing to the artificial
dependencies introduced by channel encoding, the trellis paths to the right and to the
left of the bit x under consideration have an influence on x. The reliability gain due
to this influence is called extrinsic information.

For instance, if the receiver knows the left neighboring state S(2)(λ − 1) = (+,−)
and the right neighboring state S(1)(λ) = (−,+), it can conclude from this kind
of extrinsic information on x̂ = +1 resp. ŷ = (+,+) (solid line) regardless of any
intrinsic information given by the received pattern z.
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The extrinsic information resulting from the neighborhood can efficiently be deter-
mined using Bahl’s et al. symbol-by-symbol Maximum A Posteriori (MAP) decoder.
With deference to the inventors it is also called the BCJR decoder [Bahl et al.
1974]. The BCJR algorithm is based on a forward–backward recursive determina-
tion rule,

αλ(S(j)(λ)) =
2ν−1∑
i=0

γλ(S(i)(λ − 1),S(j)(λ)) · αλ−1(S(i)(λ − 1)) (13.6)

βλ(S(i)(λ)) =
2ν−1∑
j=0

γλ+1(S(i)(λ),S(j)(λ + 1)) · βλ+1(S(j)(λ + 1)) . (13.7)

Equations (13.6) and (13.7) specify the reliability of the encoder state S(λ) result-
ing from preceding resp. succeeding trellis stages. If the convolutional encoder starts
in state S(i)(0), i = 0, . . . , 2ν − 1, (13.6) is initialized with α0(S(i)(0)) = 1 and
α0(S(j)(0)) = 0 for j = 0, . . . , 2ν − 1, j �= i. The backward recursion (13.7) is ini-
tialized similarly. The innovation of each state transition (branch) is introduced
by

γλ(S(λ−1),S(λ)) = exp
(x

2
· L[input](x)

)
·exp

 Υ∑
i=1

i�=isys

y(i)
2

· L[input](y(i))

 . (13.8)

At each trellis stage λ = 1, . . . , N the innovation (13.8) needs to be determined for
each of the valid 2ν · 2 state transitions from S(λ − 1) to S(λ). If there is no direct
connection between S(λ − 1) and S(λ) then γλ(S(λ − 1),S(λ)) = 0. The innovation
considers the soft-input L-values for both L[input](x) for the data bits x as well as
L[input](y(i)) for the parity check bits y(i), i = 1, . . . ,Υ of y. The meaning and usage
of these input and output L-values will be explained in detail in Sec. 13.3.1. Note that,
if a systematic channel code is used, i.e., if x is explicitly part of y, the addend for
i = isys is excluded from the summation in (13.8), because we consider it to be already
included in L[input](x). In general, L[input](x) shall contain the systematic information
from the channel as well as the a priori information on the bit x originating from
possible other decoder components.

Finally, using (13.8) to compute the forward–backward algorithm (13.6) and (13.7) per-
mits to determine the extrinsic L-value of BCJR channel decoding,

L
[ext]
BCJR(x) = (13.9)

loge

2ν−1∑
j=0

βλ(S(j)(λ)) ·
2ν−1∑
i=0

γ
[ext]
λ (S(i)(λ − 1),S(j)(λ)|x = +1) · αλ−1(S(i)(λ − 1))

2ν−1∑
j=0

βλ(S(j)(λ)) ·
2ν−1∑
i=0

γ
[ext]
λ (S(i)(λ − 1),S(j)(λ)|x = −1) · αλ−1(S(i)(λ − 1))

.
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For the specific trellis stage with the desired bit x under consideration a reduced
extrinsic innovation

γ
[ext]
λ (S(λ − 1),S(λ)|x) = exp

 Υ∑
i=1

i�=isys

y(i)
2

· L[input](y(i))

 (13.10)

is taken into account. This reduced extrinsic innovation splits the overall set of state
transitions of size 2ν · 2 into two subsets of size 2ν , each for a given x = ±1 (compare
to the lower part on the left of Fig. 13.2). Moreover, it excludes all soft-input L-values
L[input](x) for the specific bit x under consideration.

In the same way as described by (13.9) and (13.10) extrinsic information L
[ext]
BCJR(y)

for every code bit y can be determined. For this purpose, in the formulas already
mentioned, the term x needs to be replaced by y. The modified separation into the
subsets for y = +1 (numerator of modified (13.9)) and y = −1 (denominator of
modified (13.9)) is illustrated for y(i = 2) in the lower part on the right of Fig. 13.2.
For the modified reduced extrinsic innovation γ

[ext]
λ (S(λ − 1),S(λ)|y) the addend for

the specific y(i) = y under test has to be excluded.

13.2.3 Extrinsic Information of Source Decoding

In the case of source decoding the mutual dependencies between bits x result from
the natural residual redundancy of the bit patterns x representing a codec parameter
v. Such natural residual source redundancy typically remains in the bit stream after
source encoding due to complexity and delay constraints in the encoding process.
The dependencies can be measured in terms of a non-uniform probability distribution
P (x) or in terms of P (xk|xk−1) if mutual dependencies in time exist. The inputs and
output of a SDSD are depicted in Fig. 13.3.

P (x) or P (xk|xk−1)

L
[ext]
SDSD(x)L[input](x)

Utilization of
residual

redundancy

Figure 13.3: Soft-inputs/-outputs of block utilization of residual redundancy
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Non-Uniform Probability Distribution PPP (x)

Let us illustrate the origin of the extrinsic information of SDSD with a comprehen-
sible example. For this purpose, we restrict our first basic considerations to the case
where the bit patterns x exhibit a non-uniform distribution only. In Fig. 13.4-a the
probability mass function P (x) of a Gaussian distributed codec parameter v that has
been quantized to 2w = 8 levels is depicted. Furthermore, we assume that the equally
likely bit x under test (left-most bit) is not known, but all the other bits x[ext] of x
(two right-most bits) are communicated without any error, i.e., z[ext] = x[ext]. In this
case, (13.5) can be approximated by

L
[ext]
SDSD,P (x),perf.(x) = loge

P (z[ext]|x = +1)
P (z[ext]|x = −1)

= loge

P (x[ext], x = +1)
P (x[ext], x = −1)

. (13.11)

If the two right-most bits of x are supposed to be given as x[ext] = (+,+), we can
conclude from the probability mass function P (x) that for the left-most bit the real-
ization x = −1 is more likely than x = +1. As a consequence, the extrinsic L-value
given by (13.11) will be negative.

Notice, in this example both terms of intrinsic information are zero: L(z|x) = 0 be-
cause bit x is unknown and L(x) = 0 because the realizations of the bit x under test are
assumed to be equiprobable. Anyhow, a non-zero extrinsic resp. a posteriori L-value
exists due to the mutual dependencies between x and x[ext].

In practice, the right-most bits are usually not perfectly known and, therefore, the
terms in the numerator and denominator of (13.11) need to be replaced by a weighted

x

a) b)

(+,+,+) (−,+,+)

P (x)

x x[ext]

x

αk−1(xk−1)

βk(xk) x[ext]
k

xk−1

Figure 13.4: Illustrations for the extrinsic information of a data bit x
a) Explanation for non-uniform parameter distribution P (x)
b) Explanation for redundancies in time P (xk|xk−1)
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sum over all 2w−1 possible permutations of x[ext],

L
[ext]
SDSD,P (x)(x) = loge

2w−1−1∑
i=0

P (x[ext](i), x = +1) · θ(x[ext](i))

2w−1−1∑
i=0

P (x[ext](i), x = −1) · θ(x[ext](i))
. (13.12)

In the example, the 2w−1 = 4 permutations for the two right-most bits x[ext](i)(κ),
κ = 1, . . . , w − 1 are x[ext](i) ∈ {(−,−), (−,+), (+,−), (+,+)}. The weights

θ(x[ext]) = exp

(
w−1∑
κ=1

x[ext](κ)
2

· L[input](x[ext](κ))

)
(13.13)

are functions of the soft-input L-values L[input](x[ext](κ)).

Mutual Dependencies in Time PPP (xk|xk−1)

Besides the non-uniform parameter distribution P (x), source codec parameters de-
termined by real-world source encoders often exhibit mutual dependencies in time k.
Such dependencies can be measured in terms of a conditional probability function
P (xk|xk−1). The generalized determination rule for the extrinsic information result-
ing from P (xk|xk−1) reads [Adrat 2003], [Adrat, Vary 2005]

L
[ext]
SDSD(x) = (13.14)

loge

2w−1−1∑
i=0

βk(x[ext](i)
k , x = +1) ·

2w−1∑
j=0

γ
[ext]
k (x[ext](i)

k ,x(j)
k−1|x = +1) · αk−1(x

(j)
k−1)

2w−1−1∑
i=0

βk(x[ext](i)
k , x = −1) ·

2w−1∑
j=0

γ
[ext]
k (x[ext](i)

k ,x(j)
k−1|x = −1) · αk−1(x

(j)
k−1)

.

Equation (13.14) for determining the extrinsic L-value of SDSD exhibits many analo-
gies to (13.9) for measuring the L

[ext]
BCJR(x) of channel decoding. The impact of past and

some possibly given future bit patterns (see Fig. 13.4-b) can efficiently be considered
by a forward–backward algorithm,

αk(x(j)
k ) =

2w−1∑
i=0

γk(x(j)
k ,x(i)

k−1) · αk−1(x
(i)
k−1) (13.15)

βk(x(i)
k ) =

2w−1∑
j=0

γk+1(x
(j)
k+1,x

(i)
k ) · βk+1(x

(j)
k+1) (13.16)

with the innovation

γk(xk,xk−1) = P (xk|xk−1) · exp

(
w∑

κ=1

xk(κ)
2

· L[input](xk(κ))

)
. (13.17)
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Table 13.1: Key differences in the determination rules for L
[ext]
BCJR(x) and L

[ext]
SDSD(x)

Parameter BCJR SDSD
• Forward–backward algorithm (13.6), (13.7) (13.15), (13.16)

• recursions on (“nodes”) states S(λ) bit patterns xk

• Innovation (13.8) (13.17)

• number of branches 2ν · 2 2w · 2w

(“state transitions”) (from every S(λ) (from every xk−1

via x = ±1) to every xk)

• branches labeled with data bit x parameter vk

code word y bit pattern xk

• branch specific x · L(x) P (xk|xk−1)
a priori information (2 values (2w · 2w values

for x = ±1) for pairs xk,xk−1)

In the forward–backward algorithm (13.15), (13.16) the sequence of bit patterns xk

resembles the sequence of states S(λ) (i.e., the path through the trellis diagram). The
key difference is that in the innovation (13.17) “state transitions” from every xk−1 to
every xk are possible. Each of these 2w · 2w “state transitions” exhibits a specific
probability P (xk|xk−1).

Similar to (13.10) the particular innovation for the time k under consideration needs to
be reduced by all soft-input information for data bit x. For this purpose, P (xk|xk−1)
is divided by the bitwise probability P (x) and the specific addend for κ = κx (i.e., the
position of the bit x under consideration in xk) in the sum of (13.17) is eliminated.
The reduced innovation is

γ
[ext]
k (x[ext]

k ,xk−1|x) =
P (xk|xk−1)

P (x)
· exp

 w∑
κ=1
κ�=κx

xk(κ)
2

· L[input](xk(κ))

 . (13.18)

Some of the key differences in the determination rules for L
[ext]
BCJR(x) and L

[ext]
SDSD(x)

are summarized in Table 13.1.

13.2.4 Extrinsic Information of Demodulation

In the case of Soft Demodulation (SDM) the dependencies that can be used to gener-
ate extrinsic information are artificially introduced in the modulator by the symbol
mapping. The inputs and output of a soft demodulator are depicted in Fig. 13.5.



13.2 The Key of the Turbo Principle: Extrinsic Information 375

û

L
[ext]
SDM(y)L[input](y)

Demodulator
/ demapper

Figure 13.5: Soft-inputs/-outputs of the block demodulator / demapper

For this purpose, the channel encoded sequence y is first partitioned into bit pat-
terns y = (y(1), . . . , y(J)) of J encoded bits and then mapped to the transmitted
modulated symbols u. The extrinsic L-value L

[ext]
SDM(y(j)) of the demodulator for the

encoded bit y(j) at position j of a bit pattern y can be computed by [Li et al. 2002],
[Schreckenbach et al. 2003], [Clevorn 2006]

L
[ext]
SDM(y(j)) = loge

∑
ǔ∈Uy(j)=+1

p(û|ǔ) · exp

 J∑
i=1
i�=j

y̌(i)
2 · L[input](y̌(i))


∑

ǔ∈Uy(j)=−1

p(û|ǔ) · exp

 J∑
i=1
i�=j

y̌(i)
2 · L[input](y̌(i))

 , (13.19)

with ǔ representing the bit pattern y̌ under consideration after symbol mapping.
Furthermore, the a priori L-values L[input](y̌(i)) of the other encoded bits, i.e., i �= j,
and the received value û from the channel are used, both for the respective bit pattern
y̌ under consideration. For each j, the set U of the 2J possible modulated symbols ǔ
is divided into the two equally sized subsets Uy(j)=+1 and Uy(j)=−1, which contain the
modulated symbols u whose jth bit of the corresponding bit pattern y̌ is y̌(j) = +1 or
y̌(j) = −1, respectively. Thus, the identical exponential term in the nominator and the
denominator (which can be considered as a priori knowledge or innovation) is weighted
by the two channel related conditional probability density functions p(û|ǔ) for the two
modulated symbols ǔ ∈ Uy(j)=+1 and ǔ ∈ Uy(j)=−1.

The benefit of a priori information for the extrinsic L-value is visualized in Fig. 13.6
using the first bit y̌(1) of a Gray symbol mapping for an 8PSK signal constellation
set as example. Without a priori information, i.e., L[input](y̌(i)) = 0, all distances
between û and all 2J possible ǔ are considered in (13.19) via p(û|ǔ). With per-
fect a priori information, i.e., L[input](y̌(i)) ∈ {±∞}, the only remaining distances
are the ones to both symbols ǔ, whose bit patterns y̌ match the exemplary a pri-
ori information L[input](y̌(2)) → +∞ and L[input](y̌(3)) → −∞. This results in an
improved extrinsic L-value L

[ext]
SDM(y(j)). For example, the shortest dashed distance

in Fig. 13.6-a does not affect the computation of (13.19) any more in the case of
Fig. 13.6-b.
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Figure 13.6: Illustrations for the extrinsic information of an encoded bit y
a) Decision distances without a priori information, L[input](y(i)) = 0
b) Remaining decision distances with perfect a priori information,

L[input](y(2)) → +∞ and L[input](y(3)) → −∞

13.2.5 EXIT Charts

As shown in the previous sections, the determination rules for the extrinsic informa-
tion of BCJR channel decoding L

[ext]
BCJR(x), of SDSD L

[ext]
SDSD(x), and of SDM L

[ext]
SDM(x)

are functions of soft-input L-values L[input](x). In each decoding approach accord-
ing to the Turbo principle these soft-input L-values L[input](x) contain the extrinsic
L-value(s) of the other constituent decoder(s) as additive term(s). This is indicated
in Figs. 13.8 and 13.13 and will be explained in more detail in Sec. 13.3.1 for It-
erative Source-Channel Decoding (ISCD) and in Sec. 13.4.1 for Turbo DeCodulation
(TDeC).

EXIT Characteristics

The transfer of extrinsic information from the input L
[ext]
In (x) to the output L

[ext]
Out (x)

is specific for each soft-input/soft-output decoding component. The left block in
Fig. 13.7-a depicts a generalization of such a block, which represents either BCJR,
SDSD, or SDM.

S. ten Brink has shown that this specific transfer can be visualized by an EXtrinsic
Information Transfer (EXIT) characteristic [ten Brink 1999], [ten Brink 2001]. Such
an EXIT characteristic depicts the mutual information

I [ext] between the originally transmitted bit x ∈ {+1,−1} and the corresponding
extrinsic L-value L

[ext]
Out (x) at the output as a function of the mutual information

I [apri] between x and the extrinsic L-value L
[ext]
In (x) at the input.

The mutual information measure specifies the amount of information that one random
variable contains on average about another random variable [Cover, Thomas 2006].
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Figure 13.7: Illustrations for the EXIT charts of soft-input/soft-output decoders
a) Modeling of the extrinsic input L

[ext]
In (x) by a Gaussian process

b) EXIT characteristics of a convolutional code for four different Es/N0

c) EXIT chart of two serially concatenated convolutional codes

It can be computed by [ten Brink 2001]

I [·] =
∑

x={+1,−1}
P (x)

∞∫
−∞

p
(
L[ext](x)|x

)
log2

p
(
L[ext](x)|x

)∑
x̌={+1,−1}

p
(
L[ext](x̌)|x̌

)
P (x̌)

dL[ext](x)

(13.20)

with L[ext] being either L
[ext]
In for the calculation of I [apri] or L

[ext]
Out for I [ext]. The bit-

wise a priori probability P (x) can easily be determined by the marginal distribution of
the non-uniform probability mass function P (x). Moreover, ten Brink has observed
that for the channel model resulting in (13.3) the conditional probability density
p(L[ext]

In (x)|x) at the input can be approximated by a Gaussian distribution with vari-
ance σ2 and mean µ = σ2/2a·x [ten Brink 1999], [ten Brink 2001]. Figure 13.7-a illus-
trates two examples for different values of σ2 with σ2

� < σ2
�.

With P (x) and the Gaussian approximation of p
(
L

[ext]
In (x)|x

)
the mutual information

I [apri] at the input of the decoder can be determined. If σ2 = 0, then I [apri] = 0 bit.
In contrast, if σ2→∞, then I [apri] approaches the entropy of x.
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The probability density p
(
L

[ext]
Out (x)|x

)
, which is required to determine I [ext], is most

conveniently determined by Monte Carlo simulations [ten Brink 2001]. For this pur-
pose, the extrinsic input L

[ext]
In (x) is modeled by a Gaussian process with variance σ2

and mean µ. The other elements contributing to the overall soft-input L[input](x)
(e.g., some possibly given channel related information L(z|x)) are generated similarly
as in the respective transmission schemes (see Secs. 13.3.1 and 13.4.1). The L-values
L

[ext]
Out at the output are collected in histograms to approximate the probability den-

sity p
(
L

[ext]
Out (x)|x

)
.

Each combination of σ2 (for L
[ext]
In (x)) and Es/N0 (for L(z|x)) permits us to de-

termine a specific point in the I [apri], I [ext] plot. Figure 13.7-b shows examples
for a memory ν = 3, rate r = 1/2, recursive, systematic convolutional code with
G = (1, 13

15 )8. The variance σ2 increases from the left to the right (e.g., � →�) and
the channel quality Es/N0 increases from the bottom to the top (with increasing
gray scale value: Es/N0 ∈ {−5.0,−3.8,−3.0,−2.0} dB). A continuous curve T (·) for
the entire range 0 ≤ σ2 < ∞ (i.e., 0 ≤ I [apri] ≤ 1) is called the EXIT characteris-
tic.

Recently, alternative methods to determine EXIT characteristics analytically, i.e.,
without histogram measurements, have been proposed [Ashikhmin et al. 2004], [Adrat
et al. 2005a], [Kliewer et al. 2006].

EXIT Charts

In a Turbo process the extrinsic output L
[ext]
Out (x) of the one decoder serves as ad-

ditional input L
[ext]
In (x) for the other one and vice versa. From this it follows that

the EXIT characteristics of both constituent decoders can be plotted in the same
diagram, but with swapped axes. Such a plot is called an EXIT chart. It allows us
to analyze the convergence behavior. Figure 13.7-c shows an example where two
of the above mentioned convolutional codes are serially concatenated. The solid
curves T (BCJR1) represent the first code while the dashed curve T (BCJR2) de-
scribes the second code. Note that only the characteristics of the first code de-
pend on the channel quality Es/N0 (for details, see also Sec. 13.3.1 and [ten Brink
1999]).

The area in between both EXIT characteristics T (BCJR1) and T (BCJR2) describes
the attainable region for the I [apri], I [ext] pairs. The step-curves in Fig. 13.7-c are
called decoding trajectories and they visualize the increase in mutual information by
the iterations. Each step represents a single iteration. From the example it can be
seen that for Es/N0 = −3 dB the decoding trajectory can reach the upper right corner
after n = 3 iterations (steps). Thus, perfect reconstruction of the data bits x becomes
possible just by knowing the extrinsic output L

[ext]
Out (x) resp. input L

[ext]
In (x). However,

for Es/N0 = −3.8 dB there is a stopping intersection of the EXIT characteristics. This
intersection limits the error correcting capability. More than n = 2 iterations cannot
provide any further gain in the mutual information.
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Detailed analyses for the EXIT characteristics and EXIT charts can be found in [ten
Brink 2001], [Ashikhmin et al. 2004], [Adrat et al. 2005a], [Kliewer et al. 2006],
[Clevorn 2006], [Schmalen et al. 2007].

13.3 Iterative Source-Channel Decoding (ISCD)

Iterative Source-Channel Decoding (ISCD) denotes a Turbo like solution for the joint
source-channel decoding problem [Hindelang et al. 2000], [Görtz 2000], [Adrat et al.
2001]. In this solution, the extrinsic terms of information resulting from artificial
mutual dependencies due to channel coding (Sec. 13.2.2) as well as natural residual
redundancies remaining after source encoding (Sec. 13.2.3) are exchanged iteratively
according to the Turbo principle.

In Sec. 13.3.1, we will describe the baseband transmission system for ISCD. This
description includes details of the Turbo like decoding algorithm. In Sec. 13.3.2,
we will present some simulation results as well as the corresponding convergence
analysis using EXIT charts. Finally, we will discuss some of the key advancements to
ISCD that have recently been proposed in the literature to further improve the error
robustness [Adrat, Vary 2005], [Adrat et al. 2005b].

13.3.1 Transmission System and Algorithm

The baseband transmission system for ISCD is shown in Fig. 13.8.

Transmitter

At time k, a parametric source encoder for speech, audio or video signals extracts a
set ṽk of M scalar source codec parameters ṽk,m ∈ R, m = 1, . . . , M , from the input
signal sk. For notational convenience we skip the index m in the following. The
M codec parameters are individually quantized to vk ∈ V = {v(i), i = 0, . . . , 2w − 1}.
The scalar quantizer codebook contains 2w reproduction levels v(i). To each real-
ization of vk a unique bit pattern xk ∈ {x(i), i = 0, . . . , 2w − 1} is assigned. The
bit pattern xk consists of w data bits xk(κ) ∈ {±1}, κ = 1, . . . , w. A multiplexer
merges the M patterns xk representing the input frame sk to a sequence of bit pat-
terns xk.

Before channel encoding, the sequence xk of bit patterns is scrambled by a bit inter-
leaver. Therewith, the single data bits (xk(1), . . . , xk(w)) dedicated to a specific bit
pattern xk are spread far apart from each other over the interleaved sequence of bits.
Channel encoding of code rate r expands the sequence xk of bits xk by a factor of
1/r to a sequence y

k
of code bits yk.
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Figure 13.8: Block diagram, model and symbol definitions
a) Transmitter: Serially concatenated source and channel encoding
b) Turbo like receiver: Iterative source-channel decoding

Receiver

The aim of the receiver is to minimize the adverse effects of transmission errors on the
perceived quality of the reconstructed signal ŝk. To make such an optimization process
feasible, the blocks parameter analysis and signal synthesis are generally excluded from
this process. It is most convenient to apply an appropriate quality criterion on the
source codec parameters ṽk. Often, the parameter Signal-to-Noise Ratio (SNR) as
defined in (10.8) serves as such a quality criterion, i.e.,

parameter SNR = 10 · log10

E{ṽ2}
E{(ṽ − v̂)2}

dB . (13.21)

If the Minimum Mean Squared Error (MMSE) is the optimization criterion of the
reconstruction process, the individual estimates are determined by [Melsa, Cohn 1978],
[Fingscheidt, Vary 2001], [Vary, Martin 2006] (cf. (11.17))

v̂k =
2w−1∑
i=0

v(i) · P (x(i)|z) . (13.22)
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Equation (13.22) is a weighted sum over all 2w quantizer reproduction levels v(i). The
weights are the parameter based a posteriori probabilities P (x(i)|z) for a specific bit
pattern x(i) given the entire received sequence z. The parameter based a posteriori
probabilities can either be determined by the product of (13.15) and (13.16), or ap-
proximated by bit based a posteriori L-values L(x(κ)|z)

P (x(i)|z) = C1 · αk(x(i)) · βk(x(i)) (13.23)

≈ C2 · exp

(
w∑

κ=1

xk(κ)
2

· L(xk(κ)|z)

)
. (13.24)

The constant factors C ensure that the total probability theorem
∑2w−1

i=0 P (x(i)|z) = 1
is fulfilled. Equation (13.24) is an approximation of (13.23) because independence of
the bits xk(κ), κ = 1, . . . , w is assumed. According to (13.2), the bit based a posteriori
L-value can be separated into (up to) four additive terms

L(xk(κ)|z) = L(z|xk(κ)) + L(xk(κ)) + L
[ext]
BCJR(xk(κ)) + L

[ext]
SDSD(xk(κ)) . (13.25)

The transmission related L-value L(z|xk(κ)) can only be separated if a systematic
channel code is used. Otherwise, if a non-systematic code is considered, L(z|xk(κ))=0
constantly. Both terms of extrinsic information are re-calculated iteratively in a Turbo
like decoding process.

Turbo like Decoding Algorithm

In the Turbo like decoding process n represents the iteration counter. Before the initial
iteration, n = 1, all extrinsic L-values of SDSD are set to L

[ext],n−1=0
SDSD (xk(κ)) = 0 and

the transmission related L-values L(z|y) for every sent code bit y resp. L(z|xk(κ)) for
data bits xk(κ) are determined according to (13.3).

Next, the inner decoding step is carried out by computing L
[ext],n
BCJR (xk(κ)) according

to (13.9) with the soft-inputs (see (13.8), (13.10))

L
[input],n
BCJR (y) = L(z|y) (13.26)

L
[input],n
BCJR (xk(κ)) = L(z|xk(κ)) + L(xk(κ)) + L

[ext],n−1
SDSD (xk(κ)) . (13.27)

The result for L
[ext],n
BCJR (xk(κ)) is considered in the outer decoding step as additional a

priori input information. In this outer decoding step L
[ext],n
SDSD (xk(κ)) is determined ac-

cording to (13.14) with the soft-input (see (13.17), (13.18))

L
[input],n
SDSD (xk(κ)) = L(z|xk(κ)) + L(xk(κ)) + L

[ext],n
BCJR (xk(κ)) . (13.28)

Usually, the determined L
[ext],n
SDSD (xk(κ)) differ considerably from the initial values

L
[ext],n−1=0
SDSD (xk(κ)) = 0. Thus, it makes sense to repeat the inner decoding step,

i.e., to perform iteration n = n + 1, where these new extrinsic L-values are applied
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in (13.27). Iteratively executing the inner and outer decoding steps permits us to
increase the reliability of both terms of extrinsic information step-by-step.

Reliability improvements are achievable as long as both terms of extrinsic infor-
mation can be considered as being independent of each other. Therefore, a large
(de)interleaver is placed between both constituent en-/decoders. Because SDSD gains
its extrinsic information for bit xk(κ) mainly from the other bits x[ext]

k of the same bit
pattern xk and of some immediately preceding xk−1 resp. succeeding patterns xk+1,
those bits need to be spread far apart from each other before BCJR channel decod-
ing. Owing to the iterative interaction, both terms of extrinsic information become
mutually dependent and thus the iterative process converges to a steady state.

13.3.2 Simulation Examples

For reproducibility matters, instead of using any real-world speech, audio, or video
codec with an application specific parameter analysis method (see Fig. 13.8) a generic
source model for the source codec parameters ṽk is used (see Sec. 11.2). For this
purpose, each of the M codec parameters ṽk is individually modeled by a first order
Gauss–Markov process with mean zero and unit variance. The filter coefficient ρ
allows us to adjust time dependencies.

In the following, we will present results for two different simulation settings. A com-
parison of both settings is shown in Table 13.2.

In Configuration A, the codec parameters ṽk are at first individually quantized to
one out of eight quantizer reproduction levels vk ∈ V = {v(i), i = 0, . . . , 7} using a
scalar Lloyd–Max Quantizer (LMQ). Afterwards, each vk is mapped one-to-one to a
unique bit pattern xk of length wA = 3 bit/pattern using the natural binary index
assignment. The sequence xk of bit patterns is scrambled by a pseudo-random bit
interleaver of size wA ·M . Finally, the interleaved bit sequence is channel encoded by
a memory ν = 3, rate rA = 1/2 Recursive Systematic Convolutional (RSC) code with
generator polynomial GA = (1, 13

15 )8.

Table 13.2: Simulation settings

Configuration A B

Quantizer LMQ LMQ
Codebook size |V| 8 8
Length w of bit pattern xk 3 6
Index assignment Natural binary EXIT optimized
Channel code RSC RNSC
Generator matrix G (1, 13

15 )8 ( 10
17 )8

Code rate r 1/2 1
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Figure 13.9: Simulation results for ρ = 0.9 and M = 250

In Configuration B, the same LMQ with codebook size |V| = 8 is used in combina-
tion with a redundant EXIT optimized index assignment1. The bit patterns xk are of
length wB = 6 bit/pattern. After, pseudo-random bit interleaving of size wB ·M chan-
nel encoding is realized by a memory ν = 3, rate rB = 1 Recursive Non-Systematic
Convolutional (RNSC) code with generator polynomial GB = (10

17 )8.

Notice, the gross bit rate w · M/r on the transmission channel is the same for both
settings. Joint source-channel decoding by ISCD is done as described in Sec. 13.3.1.
Figure 13.9 depicts the simulation results for the two examples. In addition, the
conventional decoding approach (for Configuration A) with BCJR channel decoding
and non-iterative source decoding by hard decision and table lookup is shown as a
reference.

The dashed curves show the simulation results with nA = 1, 2, 5, 10, 25 iterations for
Configuration A. If compared with the reference, already the first iteration reveals
considerable improvements in the end-to-end transmission quality thanks to the extra
reliability gain due to SDSD. An additional remarkable parameter SNR gain can be
observed for the second iteration. Such a system resembles the SCCD scheme as
described in Sec. 12.4. The improvements for higher numbers of iterations are only
small.
1The indices i = 0, . . . , 7 of v(i) are mapped to x ∈ {52, 10, 17, 04, 77, 27, 01, 40}8, i.e., starting with

i = 0 �→ x = 528 = (101010)2 up to i = 7 �→ x = 408 = (100000)2.
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Figure 13.10: EXIT charts for ρ = 0.9 and M = 250 at Es/N0 = −4.0 dB
a) Configuration A
b) Configuration B

This quick convergence behavior can be confirmed by an EXIT chart analysis de-
picted in Fig. 13.10. Figure 13.10-a shows the EXIT chart for Configuration A at
Es/N0 = −4.0 dB. It can be seen that the decoding trajectory reaches the intersec-
tion of the EXIT characteristics of BCJR channel decoding and SDSD quite closely
after nA = 3 iterations. Higher numbers of iterations cannot provide any noteworthy
reliability gain.

The solid curves in Fig. 13.9 show the corresponding simulation results for Configura-
tion B. In the initial iterations, substantial quality degradations have to be accepted.
But, for numbers of iterations above nB = 5 remarkable gains can be observed in
the most interesting range of channel conditions. This range is characterized by the
fact that the reconstruction quality starts to drop below its maximum of parame-
ter SNR= 14.4 dB. Up to nB = 25 iterations reveal additional parameter SNR gains.
The maximum parameter SNR can (nearly) be guaranteed down to Es/N0 ≈ −4.0 dB.
For lower Es/N0 values the reconstruction quality decreases rapidly in a waterfall like
manner.

The EXIT chart in Fig. 13.10-b confirms the excellent performance of Configura-
tion B. The ISCD approach is not limited by an intersection of the EXIT characteris-
tics and the decoding trajectory can pass through a tunnel up to the upper right corner.
Therewith, perfect reconstruction becomes possible.

The theoretical limit of an ISCD system can be determined by combining the chan-
nel capacity and the rate distortion function to the so-called Optimum Performance
Theoretically Attainable (OPTA) limit [Shannon 1959a], [Clevorn et al. 2006b]. When
additionally considering the Sphere Packing Bound (SPB) [Shannon 1959b] to incor-
porate the inevitable losses due to a finite block length the OPTA-SPB limit depicted
in Fig. 13.9 is obtained. We can observe that we can very closely approach this
theoretical bound with Configuration B.
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13.3.3 Advancements and Optimizations

The design of first ISCD approaches [Hindelang et al. 2000], [Görtz 2000], [Görtz
2001], [Adrat et al. 2001], [Perkert et al. 2001] resembles those of Configuration A.
That means that, e.g., classical index assignments like natural binary or folded bi-
nary [Jayant, Noll 1984] as well as convolutional codes with optimal error correcting
capability were used. In recent years, several competing concepts have been investi-
gated in order to improve the error robustness of ISCD systems. A breakthrough was
reached when the EXIT chart analysis tool [ten Brink 2001] was applied to the ISCD
problem [Adrat et al. 2003], [Adrat 2003], [Adrat, Vary 2005]. The EXIT chart analy-
sis revealed several new design guidelines that ended up in an ISCD system according
to Configuration B.

Figure 13.11-a is a copy of the EXIT chart of Fig. 13.10-a. Obviously, the limiting
factor of an ISCD system according to Configuration A is the stopping intersection of
the EXIT characteristics of BCJR and SDSD at (0.45, 0.60). An ISCD system with
improved error robustness can be expected by moving the stopping intersection to the
upper right corner of the EXIT chart.

In order to move the stopping intersection most optimizations for the source coding
component focus on the anchor point of the EXIT characteristic of SDSD at the upper
border of the EXIT chart. Such an anchor point is generally given for EXIT character-
istics of SDSD when the bit patterns x being assigned to the full quantizer codebook
exhibit a minimal Hamming distance dHam = 1 [Adrat et al. 2005a]. Figure 13.11-b
shows an example where only the index assignment has been modified. The spe-
cific index assignment that maximizes the anchor point in this case to (0.80, 1.0) is
called EXIT optimized [Adrat, Vary 2005]. The quantizer reproduction levels can be
optimized in a similar way [Adrat et al. 2006a].

The EXIT chart in Fig. 13.11-c shows an example for an optimized channel coding
component. It has been demonstrated for instance in [Adrat, Vary 2005] that Recur-
sive Non-Systematic Convolutional (RNSC) codes are favorable over Recursive Sys-
tematic Convolutional (RSC) ones. Notice, changing the channel code from a system-
atic to non-systematic form also has an impact on the EXIT characteristic of SDSD
because the channel related L-value is not given any more (i.e., L(z|xk(κ)) = 0 in
(13.28)). Anyhow, the stopping intersection can be improved to (0.75, 0.96).

Best performance improvements are achievable if the concepts of EXIT optimized
index assignment and the RNSC codes are combined with an optimized bit rate
allocation between source and channel coding. As first shown by [Ashikhmin et
al. 2004] the inner component of a serially concatenated Turbo scheme will be of
rate r = 1. As a consequence, in an ISCD scheme the full bit budget can be as-
signed to source coding [Adrat, Vary 2004], [Adrat et al. 2005b]. With this, the
anchor point does not have to be a limiting factor for the EXIT characteristic of
SDSD any more because bit patterns x can be assigned to the quantizer codebook
such that dHam > 1. This constraint for the dHam is in accordance with the find-
ings in [Benedetto et al. 1998]. Figure 13.11-d shows the corresponding EXIT chart.
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Figure 13.11: EXIT charts at Es/N0 = −4.0 dB
a) Nat. bin. index assignment and rA = 1/2 RSC code (Config. A)
b) EXIT opt. index assignment and rA = 1/2 RSC code
c) EXIT opt. index assignment and r = 1/2 RNSC code
d) EXIT opt. index assignment and rB = 1 RNSC code (Config. B)

Obviously, a stopping intersection can be avoided and error free decoding becomes
possible.

An ISCD system design according to Configuration B is the basis for a particularily
efficient adaptive multi-mode system [Adrat et al. 2005b]. As mentioned above, when
using a channel code of rate r = 1, the full bit budget can be assigned to source coding.
Here it can be exploited either by the quantizer to reduce the quantization noise or
to improve the error robustness by the redundant index assignment (in principle a
non-linear block code). Obviously, in order to obtain the highest overall parameter
SNR it is beneficial to increase the robustness in bad channel conditions and to reduce
the quantization noise in good conditions. The best trade-off can be reached by an
adaptive mode switching according to the Es/N0 resulting in a multi-mode envelope
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Figure 13.12: Simulation results for multi-mode ISCD with ρ = 0.9 and M = 250

as shown in Fig. 13.12. This figure depicts a simulation example for a selection of
quantizer codebook sizes |V| ranging from 2 to 32. The size wB = 6 of bit patterns x
after index assignment as well as the channel code with G( 10

17 )8, (r = 1) are fixed for
all cases.

13.4 Turbo DeCodulation (TDeC)

Turbo DeCodulation (TDeC) [Clevorn et al. 2005b], [Clevorn et al. 2005a], [Clevorn
2006] extends ISCD to higher order modulation schemes. TDeC is a multiple Turbo
process that comprises the iterative processing of the demodulator, the channel de-
coder, and the soft decision source decoder. The terminology DeCodulation refers
to the joint decoding and demodulation [Anderson, Lesh 1981]. Basically, TDeC
can be considered as a combination of ISCD introduced in Sec. 13.3 and the itera-
tive demodulation scheme BICM-ID [Li et al. 2002], [Hanzo et al. 2002]. Thus, the
iterative refinement of the extrinsic information available by artificial mutual depen-
dencies due to the symbol mapping of the modulation (Sec. 13.2.4) and channel coding
(Sec. 13.2.2) as well as natural residual redundancies remaining after source encoding
(Sec. 13.2.3) is accomplished by TDeC.

In the following, the extension of the ISCD baseband transmission system in Sec. 13.3.1
to a TDeC system will be described in Sec. 13.4.1. In Sec. 13.4.2, we will present some
simulation results including the EXIT chart based convergence analysis. Finally, in
Sec. 13.4.3, we present recent advancements proposed in the literature.
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13.4.1 Transmission System and Algorithm

The baseband transmission system for TDeC is shown in Fig. 13.13.

Transmitter

The first part of the transmitter up to the channel decoder is identical to the
ISCD transmitter detailed in Sec. 13.3.1. M scalar source codec parameters ṽk

are extracted at time k from the input signal sk and assigned to bit patterns
xk. After outer interleaving the channel encoder generates a sequence y

k
of code

bits yk(κ).

Before modulation, the code bits yk(κ) are scrambled by a different inner interleaver.
In the modulator bit patterns y = (y(1), . . . , y(J)) of J code bits are mapped to the
transmitted modulated symbol u in the complex signal space, u ∈ U, by the symbol
mapping.

a)

b)
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Figure 13.13: Block diagram, model and symbol definitions
a) Transmitter: Serially concatenated source and channel encoding and

modulation
b) Turbo like receiver: Interaction of ISCD and BICM-ID
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Receiver

The receiver of TDeC resembles a multiple Turbo process that evaluates three types of
extrinsic information, originating from the three components. The basic structure can
be considered as a serial concatenation of an ISCD scheme and a BICM-ID scheme via
a common channel decoder. In the Turbo process of a BICM-ID receiver the extrinsic
information L

[ext]
SDM(yk(j)) (see Sec. 13.2.4) and L

[ext]
BCJR(yk(j)) (see Sec. 13.2.2) on the

code bits yk(j) provided by demodulator and channel decoder is refined in an iterative
manner. More details on the ISCD receiver can be found in Sec. 13.3.1. Note, the
ISCD Turbo process works on the data bits x while the BICM-ID Turbo process works
on the code bits y.

One advantage of TDeC is that in the case of a systematic channel code extrin-
sic information on the systematic bits can be exchanged between the demodulator
and the SDSD [Clevorn 2006], [Clevorn et al. 2005a]. Owing to the demodulation
this potentially available additional extrinsic information L

[ext],n
SDM (xk(κ)) replaces the

transmission related L-value L(z|xk(κ)) in the ISCD Turbo loop, transforming (13.27)
and (13.28) to

L
[input],n
BCJR (xk(κ)) = L(xk(κ)) + L

[ext],n
SDM (xk(κ)) + L

[ext],n−1
SDSD (xk(κ)) (13.29)

L
[input],n
SDSD (xk(κ)) = L(xk(κ)) + L

[ext],n
SDM (xk(κ)) + L

[ext],n
BCJR (xk(κ)) . (13.30)

For the BICM-ID Turbo loop we obtain, respectively,

L
[input],n
BCJR (yk(j)) = L

[ext],n
SDM (yk(j)) (13.31)

L
[input],n
SDM (yk(j)) = L

[ext],n−1
BCJR (yk(j)) + L

[ext],n−1
SDSD (yk(j)) (13.32)

and the a posteriori L-value in the parameter estimation (see (13.25)) be-
comes

L(xk(κ)|z) = L(xk(κ)) + L
[ext]
SDM(xk(κ)) + L

[ext]
BCJR(xk(κ)) + L

[ext]
SDSD(xk(κ)) . (13.33)

When a non-systematic channel code is used, no extrinsic information can be
exchanged between the demodulator and the SDSD, i.e., L

[ext],n
SDM (xk(κ)) = 0 and

L
[ext],n−1
SDSD (yk(j)) = 0 in (13.29)–(13.33) and in Fig. 13.13.

With three components taking part in the Turbo process the order of their execution
is of high importance. For example, doing all iterations of the BICM-ID loop first and
then executing the iterations of the ISCD loop would not fully exploit the potential
of the TDeC scheme. The demodulator cannot profit from the extrinsic information
refinement of the SDSD since it is not activated any more when the ISCD processing
started. The sequential processing of demodulator, channel decoder and SDSD with
wrap around has been proven to be quite beneficial [Clevorn 2006]. This corresponds
to an alternating processing of the two Turbo loops with a joint channel decoder call.
The iteration indices in (13.29)–(13.32) reflect this execution order and it will be used
in the following simulation example.
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13.4.2 Simulation Examples

For the TDeC simulation example we use the same generic source and source encod-
ing as for ISCD in Sec. 13.3.2. Depending on the configuration, either the natural
binary or the EXIT optimized index assignment is applied. A Recursive Systematic
Convolutional (RSC) code with rate r = 1/2, memory ν = 3, and generator polyno-
mial G = (1, 13

15 )8 serves as channel coding scheme for all configurations, again taken
from Sec. 13.3.2. In the modulator an 8PSK signal constellation set as depicted in
Fig. 13.6 is used, i.e., a unique bit pattern y consisting of J = 3 code bits is mapped
to each different modulated symbol u. The options for the symbol mapping are the
Gray (see Fig. 13.6) and the set-partitioning symbol mapping [Caire et al. 1998], [Li
et al. 2002].

Table 13.3 gives an overview of the different settings described in the following.

Configuration A′ represents a setup for a classic non-iterative system. As seen in
Sec. 13.3.2 the natural binary index assignment yields good results in the first iteration,
i.e., in a non-iterative system, but it can provide only a limited improvement when
Turbo processing with several iterations is applied. The same holds for the Gray sym-
bol mapping, which is the optimum symbol mapping in the non-iterative case [Caire et
al. 1998]. However, Gray symbol mapping is not suited for iterative demodulation, be-
cause the possible gain in extrinsic information due to increased decision distances (see
Sec. 13.2.4) is rather small [Li et al. 2002], [Clevorn 2006].

In Configuration B′ the index assignment and the symbol mapping are adapted to
the Turbo processing. The EXIT optimized index assignment, which has shown a
good performance with ISCD (see 13.3.2), is applied and set-partitioning serves as
symbol mapping. Set-partitioning symbol mapping can provide a significant gain in
schemes with iterative demodulation. Note, set-partitioning may not be the optimum
symbol mapping in a pure BICM-ID system that uses the bit error rate as a quality
measure. Here, symbol mappings with an even better asymptotic performance can be
designed [Li et al. 2002], [Schreckenbach et al. 2003], [Clevorn et al. 2004], [Clevorn

Table 13.3: Simulation settings

Configuration A′ B′ BICM-ID ISCD
Quantizer LMQ LMQ LMQ LMQ
Codebook size |V| 8 8 8 8
Length w of bit pattern xk 3 3 3 3
Index assignment Nat. bin. EXIT opt. Nat. bin. EXIT opt.
Channel code RSC RSC RSC RSC
Generator matrix G (1, 13

15 )8 (1, 13
15 )8 (1, 13

15 )8 (1, 13
15 )8

Code rate r 1/2 1/2 1/2 1/2
Signal constellation set U 8PSK 8PSK 8PSK 8PSK
Symbol mapping Gray Set-part. Set-part. Gray
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Figure 13.14: Simulation results for ρ = 0.9, M = 250, and 8PSK modulation

2006]. Nevertheless, set-partitioning symbol mapping yields the best parameter SNR
results in the investigated TDeC system. To enhance the comparability and emphasize
the effects of using two Turbo loops the channel code is not changed. Of course,
as shown in Sec. 13.4.3 many more possible optimizations exist, including all the
optimizations for ISCD described in Sec. 13.3.3.

For comparison we additionally define a BICM-ID and an ISCD configuration. These
configurations apply Turbo processing only to the respective iterative loop. The index
assignments and the symbol mappings are chosen such that they match Configuration
A′ or B′, depending on whether the respective component takes part in the Turbo
processing or not.

Figure 13.14 depicts the simulation results for the different configurations and the con-
ventional approach with soft demodulation, BCJR channel decoding and non-iterative
source decoding by hard decision and table lookup. Compared with this reference, all
investigated configurations show a significant improvement.

The dashed curves show the simulation results for the TDeC Configuration A′ with
nA′ = 1 and nA′ = 10 iterations. A noticeable gain can be observed. However, at high
parameter SNRs the BICM-ID and the ISCD system outperform Configuration A′,
despite performing Turbo processing only in a single loop. BICM-ID and ISCD use
an optimized component in their respective iterative loop, yielding their superior
performance.

When examining the simulation results for Configuration B′ we observe a very poor
performance in the first iteration, nB′ = 1. Nevertheless, with nB′ = 10 iterations,
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TDeC with Configuration B′ exhibits a steep slope and shows an impressive perfor-
mance in the interesting range of the parameter SNR. The gain in Es/N0 with respect
to the best non-iterative system (Configuration A′ with nA′ = 1) often exceeds the
sum of the respective gains of BICM-ID and ISCD, whose serial concatenation forms
the structural basis of TDeC.

With its two Turbo loops allowing the exploitation of redundancy in source coding,
channel coding, as well as in modulation, TDeC can operate quite close to the theo-
retical bound for this scenario, the OPTA-SPB limit [Clevorn 2006], [Clevorn et al.
2006b] (see also Sec. 13.3.2).

EXIT Chart Analysis

Despite having three Turbo components a TDeC system obeys the Turbo princi-
ple of exchanging and refining extrinsic information. Thus, EXIT charts can still
serve as an excellent tool for the analysis and optimization. However, with three
Turbo components taking part in the Turbo process, the EXIT charts have to
be three-dimensional [Clevorn 2006], [Clevorn et al. 2005a]. In Fig. 13.15, EXIT
charts for Configurations A′ and B′ of the simulation results in Fig. 13.14 are de-
picted.

The areas in Fig. 13.15 are the multi-dimensional EXIT characteristics T of the
Turbo components. Note that the EXIT characteristic of the SDSD is only out-
lined but not drawn between the two other EXIT characteristics to allow the view
on the decoding trajectory. With the utilized systematic channel code, all Turbo
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components have two types of a priori information available. Thus, each EXIT
characteristic depends on the extrinsic information provided by both other compo-
nents.

The EXIT characteristics can be determined again by the histogram method. But,
when the two types of a priori information refer to the same input port of the Turbo
component under consideration, which is the case for the SDSD and the SDM, the
EXIT characteristic can also be interpolated with good accuracy. Combined a priori
information can be computed using mutual information combining [Land et al. 2005],
[Clevorn et al. 2005a], [Clevorn 2006].

When comparing Configurations A′ and B′ in Fig. 13.15 it can be observed that with
Configuration B′ the decoding tunnel under T (SDSD) and between T (BCJR) and
T (SDM) is narrower than for Configuration A′. But, the final stopping intersection
occurs at significantly higher values of I [ext]

SDM, I [ext]
BCJR, and I [ext]

SDSD. This is similar to
the comparison of the classic Configuration A and the optimized Configuration B
in the ISCD example in Sec. 13.3.2. The decoding trajectories in Fig. 13.15, which
now of course are also three-dimensional, demonstrate that the TDeC systems fully
exploit the decoding tunnel. They first advance along the I [ext]

SDM axis, followed by the
I [ext]

BCJR axis and then the I [ext]
SDSD axis, which complies with the iterative processing

order outlined in Sec. 13.4.1.

13.4.3 Advancements and Optimizations

There are a manifold of possibilities for the optimization of TDeC. Since TDeC can
be considered to be a combination of BICM-ID and ISCD, obviously most of the
advancements for these subsystems can be directly applied to TDeC. Amongst oth-
ers, these comprise the optimizations for ISCD presented in Sec. 13.3.3 as well as
the various optimized symbol mappings for BICM-ID proposed, for example, in [Li
et al. 2002], [Schreckenbach et al. 2003], [Clevorn et al. 2004]. However, as men-
tioned before, the effect of a modification on the joint TDeC system has to be studied
carefully to avoid an overall degradation by a resulting impairment on the remaining
parts.

A particularly interesting interpretation of the TDeC paradigm, iterative joint source-
channel decoding and demodulation, is the so-called block coded TDeC proposed
in [Clevorn et al. 2006a], [Clevorn 2006]. Figure 13.16 compares the transmitter
structures of the so far discussed convolutional coded TDeC and this block coded
TDeC. The transmitter of convolutional coded TDeC follows the typical design of
today’s communications systems.

In contrast, block coded TDeC consequently implements the ideas of some recent
optimizations of the ISCD and BICM-ID subsystems. This results in the removal
of a dedicated channel code. Instead, the channel coding task of adding artifi-
cial redundancy is split and integrated into the source coding and the modula-
tion.
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Figure 13.16: Comparison of TDeC transmitter structures

a) Convolutional coded TDeC
b) Block coded TDeC

For the index assignment in the source coding block the optimized bit rate allo-
cation scheme presented in Sec. 13.3.3 (Configuration B′ of the ISCD example) is
applied. Instead of the EXIT optimized redundant index assignments of Sec. 13.3.3
(dHam > 1), the block coded index assignments proposed in [Clevorn et al. 2006a],
[Clevorn 2006] can be used. Then, the index assignment is based on a simple and
short block code.

The modulation is extended to a multi-dimensional modulation [Wei 1987], [Simoens
et al. 2004]. A joint symbol mapping to several modulated symbols is applied based
on a short r = 1 block precoder. This increases the signal space diversity to more
than the two dimensions of a single modulated symbol, which improves the iterative
demodulation.

Simulation experiments have shown a comparable performance of the two variants of
TDeC [Clevorn et al. 2006a], [Clevorn 2006] despite block coded TDeC possessing only
a single Turbo loop. The parallel usage of the small block codes allows a high degree
of parallelization, which might be advantageous for implementation. Furthermore,
the adaptive multi-mode extension suggested for ISCD [Adrat et al. 2005b] can easily
be applied to block coded TDeC [Clevorn et al. 2006a].

13.5 Conclusions

In this chapter, the concepts of Source Controlled Channel Decoding (SCCD) presented
in Sec. 12.4 and the Turbo principle have been combined to Iterative Source-Channel
Decoding (ISCD). ISCD describes the iterative evaluation of natural residual source
redundancy and artificial channel coding redundancy. It turns out that ISCD outper-
forms conventional non-iterative transmission schemes with respect to the signal-to-
noise ratio between the original and the reconstructed signal.
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On the one hand, the EXIT chart analysis allows us to analyze the convergence
behavior of ISCD and, on the other, it reveals some design guidelines to improve
the overall system performance. It has been demonstrated that the inner chan-
nel coding component should be recursive, non-systematic, and of rate r = 1. In
addition, by a proper adjustment of the SDSD EXIT characteristic, the quantiza-
tion and the (redundant) index assignment of the source encoder can be optimized.
The combination of both results in a powerful and highly flexible multi-mode ISCD
scheme.

Turbo DeCodulation (TDeC) combines the ideas of ISCD and the iterative demodu-
lation scheme Bit Interleaved Coded Modulation with Iterative Decoding (BICM-ID)
to a single system, where all three receiver components, i.e., soft demodulator, BCJR
channel decoder, and SDSD, act jointly. It has been shown that the performance gain
of TDeC can be higher than the sum of the gains of the sub-systems BICM-ID and
ISCD. EXIT charts, which are extended to three dimensions in this case, can again
serve for analysis and optimization.
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Chapter 14

Binaural Signal Processing
in Hearing Aids:
Technologies and Algorithms

Volkmar Hamacher, Ulrich Kornagel, Thomas Lotter, Henning Puder

14.1 Introduction

The history of electronic hearing aids begins with analog systems, which mainly pro-
vided a rudimentary concept of hearing loss compensation. These systems only offered
a limited degree of freedom to account for the various types of individual hearing loss.
A critical breakthrough was the transition from analog to digital systems. The pri-
mary advantage of digital systems is their high flexibility. With some limitations,
they can be programmed like a computer and thus digital signal processing methods
can be integrated. This is the prerequisite for many algorithms that are tailored to
the requirements of hearing aid wearers.

Usually, hearing aids are worn bilaterally, i.e., one hearing aid on each ear. One
further breakthrough was the introduction of a wireless link which exchanges data
between both hearing aids. It offers an additional degree of freedom to develop more
powerful algorithms since it is possible to make use of additional spatial information
and synchronize state information. Thus, the development of binaural algorithms
became possible and a pair of hearing aids that are connected by the binaural link
can be seen as one binaural system. The technology of the binaural link and the
algorithms utilizing it are the subject of this chapter.

To give an impression of how modern monaural hearing aids (i.e., hearing aids with-
out a binaural link) work, Sec. 14.1.1 introduces the algorithms that are usually
applied. Section 14.1.2 then shows how several algorithms can profit from a bin-
aural link. Finally, Sec. 14.1.3 describes how the remainder of this chapter is orga-
nized.

Advances in Digital Speech Transmission Edited by R. Martin, U. Heute and C. Antweiler
c© 2008 John Wiley & Sons, Ltd
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14.1.1 Monaural Hearing Aids - State of the Art

The signal processing components of a modern digital hearing aid system can be
divided into two principal categories:

• algorithms that fulfill audiological purposes, and

• algorithms and modules with technical motivation.

Figure 14.1 shows the signal processing modules and the binaural extension that will
be explained in Sec. 14.1.2.
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Figure 14.1: Processing stages of a high-end hearing aid. The three input signals
are analysed by three separate analysis-filterbanks with usually eight to
twenty frequency bands each. The subsequent module can be a classic
directional microphone, a binaural beamformer or a blind source sepa-
ration algorithm. All the following modules, the feedback-cancellation
module, the single channel noise reduction module and the amplifica-
tion and compression module, work in frequency bands, as well. As the
last step in the signal processing chain, the resulting band signals are
summed up by means of the synthesis-filterbank. The classification sys-
tem as a superordinated system controls all signal processing modules.
The binaural link provides the wireless connection to the other hearing
aid and the remote control
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Audiological Algorithms

The audiological algorithms have the goal of compensating for the hearing loss with
the main focus on speech intelligibility. The most prominent examples are the fre-
quency dependent amplification concept and the compression algorithm, which com-
pensate for the increased hearing threshold. Further examples are single channel noise
reduction algorithms and directional microphone algorithms.

The compression algorithm is needed to compensate for the recruitment phenomenon
which is typically observed as a by-product of sensorineural hearing loss [Dillon 2001].
This phenomenon can roughly be described as follows. Low level sounds are inaudible
because of the increased hearing threshold, while louder sounds are nearly normally
perceived. That is, the application of linear gain is not completely effective. Instead,
a level dependent gain has to be applied, which compresses the dynamic range of
the input signal. At low signal levels, more gain is necessary than at higher signal
levels. Since the recruitment phenomenon is frequency dependent, it is advantageous
to apply a compression system within a subband concept.

These compression systems are called automatic gain control (AGC). The major com-
ponent of AGC is a level meter with different release and attack time constants. AGC
with time constants of the order of seconds are often referred to as automatic volume
control (AVC). The resulting gain is then able to adapt to varying listening envi-
ronments. AGC with time constants of the order of milliseconds are called “syllabic
compression” as they are able to follow the temporal level changes of vowels and con-
sonants within a syllable. Combinations of both types of AGC are known as “dual
compression” AGC.

Single channel noise reduction algorithms use the signal of only one input source,
e.g., one microphone. The separation of the desired signal from the noisy mixture
is done based on a priori knowledge of both the desired signal and the noise signal.
One example of a priori knowledge is the stationarity behavior of speech (desired
signal) and noise: It is assumed that noise is more stationary than speech. Examples
of single channel noise reduction algorithms are the long-term smoothed modula-
tion frequency-based noise reduction, Wiener-filter-based short-term smoothed noise
reduction methods and Ephraim–Malah-based short-term smoothed noise reduction
methods [Hamacher et al. 2005].

Another noise reduction approach based on more than one microphone uses the spatial
distribution of the desired signal and the noise signals. Often, one can assume that
the desired signal comes from the front direction, and any signal that does not fall in
some front-angle range is defined as noise. This spatial separation can be achieved
via directional microphone algorithms. Modern hearing aids are designed with up to
three microphones per device to capture the desired front signal.

Technical Algorithms

One very prominent example that falls into this category is the feedback cancellation
system. The underlying problem is caused by the acoustic feedback path from the
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hearing aid receiver back to the microphone (or microphones, if a directional micro-
phone exits). In combination with the forward amplification path of the hearing aid,
the feedback path completes a closed loop. If the amplification of the loop exceeds
a certain value, the system becomes unstable and feedback (whistling) occurs. One
possible solution to this problem is the reduction of the loop gain exactly at the
frequency of the feedback. A more powerful approach is related to the echo compen-
sation approach in hands-free equipment. The acoustic feedback path is estimated
and inversely mimicked within the digital hearing aid to compensate for the acoustic
feedback. [Hamacher et al. 2006] explains this algorithm in more detail.

Another example of technically motivated algorithms is the classification system. It is
desirable since most algorithms have specific optimized parameter settings for different
listening situations in everyday life. The system analyses the acoustic environment
and switches to the most appropriate setting.

14.1.2 Binaural Hearing Aids

The binaural link has two impacts on hearing aid algorithms and concepts. On the one
hand, it allows the extension and improvement of existing monaural algorithms, as
summarized in Sec. 14.1.1. On the other hand, it allows the realization of completely
new algorithms and concepts. Many of these must wait for future implementation
because they cannot be realized due to the high demand of computational power and
data rate of the binaural link. But some of them are already implemented in modern
binaural high-end hearing aids.

The technical constraints of a binaural link within hearing aids are very challenging.
The analog components have to be as small as possible to accommodate space re-
quirements in hearing aids. Additionally, the power consumption has to be very low.
Depending on the application, the binaural link may need to be active at all times.
The only power source available is a small battery within the hearing aid, which needs
to power the binaural link as well as all other components for at least a day.

One application of a low data rate binaural link addresses the ease of use of bilaterally
worn hearing aids. Examples are the volume control and the program switch, which
can be manipulated at only one hearing aid. The synchronization of the other hearing
aid is done via the binaural link, which transmits the control information. Another
currently existing application is the binaural classification system. Since modern
hearing aids adapt to the current hearing situation, it is important that both hearing
aids maintain uniform classification on both sides. Again, this demands a binaural
link, which exchanges the respective information.

More demanding for the data rate of the binaural link is the binaural beamformer.
We see the beginning approach in the monaural use at the directional microphone.
Additionally, the assemblage of microphones of both hearing aids must be viewed as a
large microphone array. Since there is only one algorithm computing all microphone
signals, the binaural link has to transmit the microphone inputs at full sampling
frequency.
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A further expansion and enhancement of the beamformer concept is the blind source
separation (BSS) approach. This offers a more flexible and intelligent choice of desired
source. With this approach all sound sources are initially captured, regardless of being
desired sources or noise sources. The choice of the desired source can be determined in
a separate step by means of an intelligent algorithm or a hearing aid wearer command.
The selected source has to be presented binaurally, for the relevant binaural cues for
localization to be reconstructed. Since the BSS algorithm processes the microphone
signals of both hearing aids and produces a stereo signal, again, a binaural link with
high data rate becomes a mandatory component.

14.1.3 Organization of this Chapter

In Sec. 14.2 we introduce the physical and technical aspects of the binaural link. As
outlined, it is the prerequisite for all binaural applications. The concepts that increase
the ease of use are described at the end of Sec. 14.2, and the binaural classification
system is explained in Sec. 14.3. The two applications that need a high data rate
for binaural link are the binaural beamformer, as addressed in Sec. 14.4, and the
blind source separation as explained in Sec. 14.5. Finally, conclusions are given in
Sec. 14.6.

14.2 Wireless System for Hearing Aids

People with hearing loss can benefit from the introduction of a wireless system into
their hearing aids in various ways. The usability of the hearing aid can be improved
by synchronizing the hearing aids and introducing a wireless remote control. Addi-
tionally, speech intelligibility can be raised in difficult acoustic situations by applying
a wireless interconnection between the binaural hearings aids. However, the unique
requirements of the hearing aid world call for a wireless connection system specific for
hearing instruments. Siemens introduced a wireless system for hearing aids in 2004.
In the following, background about this system is given.

14.2.1 Comparison of Wireless Systems

Wireless systems like GSM, UMTS and Personal Area Network (PAN) systems like
Bluetooth or WLAN are to date ubiquitous. However, they are not suitable for
integration into a hearing aid. The power consumption requirements of the hearing aid
are significantly more strict than those of a mobile communication device, especially
due to the limited space for the battery. This impedes the use of high transmission
frequencies in the area of 1 GHz as used for many mobile communication systems, as
the corresponding analog and digital parts of the transceivers consume far too much
power. Also, for hearing instrument applications, a transmission range covering the
distance between the ears is sufficient.
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Table 14.1: Comparison of properties of different wireless systems

GSM, UMTS PANs RFID (HF) Hearing aid

Frequency 900/1800/1900 MHz 2.4 GHz 13.56 Mhz 120 kHz
Near/Far field limit 2–5 cm 2 cm 3.5 m 400 m

Range up to 35 km 10–100 m up to 150 cm 25 cm

The comparably high range of mobile communication systems or PANs is reached by
electromagnetic transmission with the receiver being positioned in the far field of the
transmitter. Assuming free space propagation, the field strengths, e.g., the magnetic
field strength HEM, can be considered as decaying in proportion to the distance d
between receiver and transmitter:

HEM ∼ d−1 . (14.1)

The digital wireless system realized in the Siemens hearing aids is realized at a much
lower transmission frequency and lower transmission range. This is achieved by an
inductive transmission system, in which the receiver is positioned in the near field of
the transmitter. The term near field means that the receiver is placed at a distance
from the transmitter that is small compared with the transmitted wavelength λ,
i.e.,

d <<
λ

2π
=

c

2πftrans
. (14.2)

In the near field, the magnetic field strength at the receiver position decays by

HMAG ∼ d−3 . (14.3)

Table 14.1 gives an overview of transmission ranges and frequencies of the wireless
inductive system for the Siemens hearing aids compared with other well known wireless
systems.

Given the lower transmission frequency of the digital hearing aids, the digital parts
of the transceivers can be realized with significantly less power consumption compared
with other wireless systems due to the much lower system clock.

14.2.2 Functional Description of the Wireless System
for Hearing Aids

Each of the binaural hearing aids may operate as both transmitter and receiver. In ad-
dition to the hearing aids, a remote control may act as wireless transceiver. Figure 14.2
shows a block diagram of the wireless system transmitter and receiver.
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On the transmitter side, the digital data symbols are protected by channel coding
and are split into bits, which are transmitted via Frequency Shift Keying (FSK)
modulation. An external resonance circuit of resonance frequency f = 120 kHz is
applied, which consists of a wireless coil (inductivity) and a capacitor. The FSK
modulation is then realized by changing the resonance frequency with the respective
data bit by switching an integrated capacitor on or off. As only control sequences are
exchanged between the hearing aids, the overall data rate of the currently realized
system is quite low, i.e., 200 bit/s, which allows the system to operate with very little
power.

On the receiver side, the signal is captured using the same resonance circuit and
is processed in the analog world via pre-amplification and bandpass filtering. The
bandpass filtering improves the SNR by attenuating out-of-band noises. In-band
noises that potentially disturb the hearing aid receiver are primarily emissions from
digital circuits in close proximity to the hearing aid. After bandpass filtering, the
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Figure 14.3: Wireless receiver coil inside hearing aid

received signals are digitized in the FSK demodulator and channel decoded to extract
the transmitted data symbol.

To reach the transmission range of the binaural hearing aids, i.e., 25 cm, the design of
wireless transceiver coil is crucial to the performance of the system.

Figure 14.3 shows the wireless coil used in the Siemens hearing CIC (completely-
in-the-canal) hearing aids compared with a 1 cent coin. The wireless coil is com-
posed of several hundred windings at a very small diameter. The coil inductiv-
ity needs to be very accurate to exactly match the resonance frequency of the cir-
cuit.

Table 14.2 provides an overview of the properties of the wireless system for Siemens
hearing aids.

Table 14.2: Properties of the Siemens wireless system for hearing aids

Transmission frequency 120 kHz
Modulation mechanism FSK
Data rate 200 bit/s
Power consumption 90µW
Transmission range from hearing aid 25 cm
Transmission range from remote control 100 cm
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The power consumption is below 10 % of the typical power consumption of the whole
hearing aid. Compared with other wireless systems like, e.g., Bluetooth, the hear-
ing aids’ wireless system consumes less than 1 % of the power. The overall data
rate is limited to 200 bit/s, which allows the applications described in the following
sections.

14.2.3 Applications of the Wireless System for Hearing Aids

Figure 14.4 shows an overview of the applications provided by the wireless system.
The two hearing aids interchange low rate data between the ears, while the external
remote control can be applied to control functional states of the hearing aids or
to read out and display functional states to the end-user in an integrated display.
The range of the interconnection between the hearing aids is limited to the distance
between the two ears. The transmitting range of the remote control must be 100 cm
to accommodate arm length and this is possible due to the higher battery capacity in
the remote control. For applications, in which the remote control acts as receiver, the
application is limited to the 25 cm transmission range.
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Figure 14.4: Applications of the wireless system for hearing aids

Binaural Interaction

The applications of the binaurally interacting hearing aids can be classified in techni-
cally motivated functions and usability motivated functions. The technical functions
aim at optimizing the speech intelligibility in noisy environments. For that purpose,
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the classification units of both hearing aids are synchronized via the wireless data ex-
change to avoid consequences of detection of different hearing situations as described
later in detail. Usability comfort concepts comprise the synchronization of the hearing
programs at both ears and the volume controls of the two hearing aids. It is sufficient
to change the program or volume via only one hearing aid as the other device will
immediately follow this program or volume switch. The synchronization also enables
the building of smaller binaural hearing aids, as control elements can be omitted from
the second device or distributed between the two hearing aids. The left hearing aid
can, e.g., include a volume control element while the right hearing aid includes a
program change switch.

Remote Control

The remote control can operate all the wireless functionalities of the hearing aid,
such as switching hearing programs or volume controls and may also reset the state
of the hearing aids. Moreover, it enables one to read out the functional states of
the hearing aids and displays these to the customer: besides hearing programs or
volume setting, this includes the battery charge status as indication when the pri-
mary hearing aid cell must be exchanged or the secondary cell must be recharged
again.

14.3 Binaural Classification Systems

14.3.1 Motivation and Basic Principle

Modern hearing aids offer a variety of signal processing algorithms and specialized
parameter configurations to cope with the different listening situations in everyday life.
Most algorithms and their parameter configurations were designed to address specific
acoustic situations, in which they are beneficial for the hearing aid users. However,
these settings would have no or even negative effects in the other conditions. For
example, the single channel noise reduction algorithms described in Sec. 14.1.1, which
suppress stationary background noise efficiently would worsen the sound quality of
music and, therefore, should be disabled here. Even if the optimal signal processing
algorithms for any relevant situation were available, the problem would remain of
activating them specifically as well as reliably. However, many hearing aid users are
not willing or even able to monitor the acoustic environment continuously, recognize
the specific acoustic scenes and activate the related set of algorithms and parameter
configurations (“hearing aid programs”). Moreover, elderly people often do not have
the manual dexterity to easily use the miniature push buttons of the hearing aids to
switch between the different programs. As shown in the results of a previous field
study [Cord et al. 2002], the manual activation of a simple directional microphone
is already a severe problem for many hearing aid users. Consequently, the proper
activation of the different algorithms is a fundamental requirement needed to change
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the technical capabilities into the substantial hearing improvement that is expected
by the hearing aid users in their everyday lives.

A solution to this problem is a superordinated classification-based control systems as
depicted in Fig. 14.1. These systems continuously analyze and classify the acoustic
listening environment and activate the appropriate hearing aid processing automat-
ically [Powers, Hamacher 2002], [Buechler et al. 2000], [Kates 1995], [Ostendorf et
al. 1998]. Such classification-based control systems are already key elements in to-
day’s hearing aids and they will become even more important in the future, since
they facilitate the beneficial application of the growing portfolio of highly specialized
algorithms without overextending the dexterity and mental capabilities of the hearing
aid users.

The classification-based control systems of today’s hearing aids are able to detect
classes of situation such as “speech in quiet”, “speech in noise”, “noise” and “music”
[Powers, Hamacher 2002], [Buechler et al. 2000]. As depicted in Fig. 14.1, they mainly
control all major blocks of the hearing aid processing, such as the amplification and
dynamic compression, the noise-reduction and directional microphone algorithms, as
well as the feedback reduction. Today’s systems comprise different functional stages.
First, “features”are extracted from the microphone signal. A feature is a certain prop-
erty of the signal that is as different as possible for the different situation classes. In the
literature, several spectral and temporal features have been proposed, e.g., the profile
and temporal changes of the frequency spectrum [Buechler et al. 2000], [Kates 1995],
[Feldbusch 1998], the statistical distribution of signal amplitudes, and the modulation
frequencies of the signal envelope [Ostendorf et al. 1998].

The adaption of the hearing aid signal processing to the detected situation is divided
into two steps. The stage “selection of algorithm and parameters” contains an “action
matrix”, which defines the appropriate algorithms and parameter configurations for
each situation class. The action matrix is derived empirically from perceptual studies
with hearing impaired subjects in which the effect of each particular algorithm and
configuration in the different situations was systematically investigated. The follow-
ing stage generates the “on/off”-control signals. Since sudden switches of the signal
processing components between “off” and “on” can be irritating, appropriate fading
mechanisms are applied, for example, by simple low-pass filtering of the control sig-
nals. In this way, a smooth transition between successive operation states of the
hearing aid processing is ensured.

As described in [Hamacher et al. 2006], detection rates in the range of 75–90 % for the
situation classes given above can be achieved. These rates turn out to be sufficient
for the reliable and beneficial control of the various hearing aid signal processing
algorithms. The impact of the misdetections are reduced to a negligible level by
nonlinear temporal averaging of the classification results. In addition, the smooth
transition described above conceals misdetections, as long as their duration is shorter
than the time constant of the transition process.



412 14 Binaural Signal Processing in Hearing Aids

14.3.2 Binaural Classification

Since a hearing loss normally affects both ears, hearing aids are fitted bilaterally
in most cases. If hearing aids with classification-based control are used, the problem
must be considered that different situation classes can be detected in the left and right
hearing aid resulting in significantly different processing schemes. Such differences in
classification results are mainly caused by head shading effects in asymmetrical hear-
ing situations. For example, a music source on one side of the head of the hearing aid
user and a speech source on the other side could lead to local classification decisions
dominated by the ipsilateral source. The contralateral source is shaded, i.e., attenu-
ated, by the head. Figure 14.5 shows the result of real-life evaluations with a KEMAR
and bilaterally fitted Siemens Acuris BTE instruments. In 43 different hearing sit-
uations of everyday-life, the classification results of both hearing aids were recorded
and the temporal percentage of asymmetrical decisions was calculated. Obviously, in
nearly 50 % of the encountered hearing situations, the two classification systems came
to different results more than 15 % of the time.

Processing differences between both hearing aids, e.g., if the directional microphone
is activated only on one side, can temporarily reduce the sound quality as well as
the speech intelligibility. An example for the effect on speech understanding is the
study of Hornsby and Ricketts [Hornsby, Ricketts 2007]. They tested speech under-
standing of 16 hearing impaired subjects in a complex condition with speech arriving
from the front and interfered by babble noise provided by five uncorrelated sources,
spatially arranged as illustrated in Fig. 14.6-a. The subjects were bilaterally fit-
ted with advanced hearing aids offering omnidirectional and directional microphone
modes. The speech understanding was measured with the directional microphone
activated in both instruments (D/D) and additionally in two mixed conditions, in
which only one instrument was in directional mode and the other in omnidirec-
tional mode (D/O, O/D). For each of the three conditions, the directional benefit
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Figure 14.5: Temporal percentage of asymmetrical classification results in 43 different
hearing situations
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and standard deviation for three different microphone modes

was averaged across the subjects (Fig. 14.6-b). It can be seen that both asymmetrical
fittings (D/O, O/D) cause a significant degradation in speech understanding perfor-
mance compared with the symmetrical condition with both instruments in directional
mode (D/D).

In addition to that, different signal processing schemes in both hearing aids can intro-
duce artificial interaural time and level differences, reducing the localization ability of
the hearing impaired listener, which is mainly based on analyzing these signal cues.
An example of this effect is described by Keidser et al. [Keidser et al. 2006], who in-
vestigated the impact of compression, noise reduction, and the directional microphone
on the localization performance of 24 bilaterally fitted hearing aid wearers. The tests
regarding the impact of the microphone mode were performed in two symmetrical
and two asymmetrical conditions: 1) symmetrical with both hearing aids in omni-
directional mode (O/O), 2) symmetrical with both hearing aids in cardioid-directional
mode (DC/DC), 3) asymmetrical with one hearing aid in figure-8 directional mode
and the other in cardioid directional mode (D8/DC), 4) asymmetrical with one hearing
aid cardioid-directional and the other omni-directional (DC/O). Details on the impact
of each microphone setting on the interaural time- and level-difference cues can be
found in [Keidser et al. 2006]. The results of the localization tests performed after
two weeks wearing time and two months wearing time are given in Fig. 14.7. It can
be seen that the average localization error is significantly larger in both asymmetrical
conditions than in the symmetrical conditions. Therefore, asymmetrical microphone
settings should be avoided.
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formance in hearing aid users [Keidser et al. 2006]

As an efficient solution for the described problems, a binaural synchronization of
the classification systems based on the bidirectional wireless link described in the
previous chapter has recently been introduced. In this realization, both hearing aids
first analyze the sound field independently and then exchange information about the
local classification results (Fig. 14.8). With this information they then follow exactly
the same rules in parallel to determine the global “binaural” class. These rules are
defined by the “binaural decision matrix”. An example of this matrix is shown in
Fig. 14.8-b. The decision matrix is defined empirically based on extensive analysis of
the classification system and the processing settings preferred by hearing aid wearers
in numerous real-life situations. Finally, both hearing aids are adapted synchronously
to the signal processing and parameter settings prescribed for the common class.
Doing so, the above mentioned disadvantages in asymmetrical hearing situations are
avoided.

The current classification systems rely only on statistical information derived from
one microphone signal. However, spatial information has not been incorporated into
the classification process up to now. Since spatial attributes would provide a more
accurate description of the “acoustic scene” they will be a major key to providing
larger and more specific sets of classes in future hearing aid generations. Addition-
ally, any knowledge about the spatial distribution of the sound sources will increase
the consistency between the decisions of the classification system and the hearing aid
user regarding the desired source. For example, in ambiguous situations, e.g., con-
versation in a music cafe, the classification system can decide in favor of the source
to which the user is turning his or her head, which is probably the desired source.
Consequently, the further-development of the classification systems for hearing aids
will be strongly connected to the availability and performance of localization algo-
rithms.
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Figure 14.8: Binaural classification system
a) Basic principle
b) Example of a binaural decision matrix

14.4 Binaural Beamformer

By transmitting the actual audio signals between the hearing aids instead of low bit-
rate data, binaural algorithms can be applied to improve the speech intelligibility
of the hearing aid wearer. Binaural beamformers are candidate algorithms for that
purpose.

Speech enhancement by beamforming uses spatial diversity of desired speech and
interfering speech or noise sources by combining multiple noisy input signals. Beam-
former realizations can be classified into fixed and adaptive. A fixed beamformer
combines the noisy signals of multiple microphones by a time-invariant filter-and-sum
operation. The combining filters can be designed to achieve constructive superpo-
sition towards a desired direction (delay-and-sum beamformer) or to maximize the
SNR improvement (superdirective beamformer), e.g., [Bitzer, Simmer 2001]. Adap-
tive beamformers commonly consist of a fixed beamformer steered towards a desired
direction and a time varying branch that adaptively steers spatial nulls towards inter-
fering sources. Among various adaptive beamformers, the Griffiths–Jim beamformer
[Griffiths, Jim 1982], or extensions of it, e.g., [Hoshuyama, Sugiyama 2001] are more
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widely known.

While classic beamformer applications output one enhanced signal given multiple
noisy observations, a binaural speech enhancement system, e.g., [Wittkop et al. 1997],
must deliver a dual channel output signal, preferably without modification of the inter-
aural amplitude and phase differences to maintain the original spatial impression. In
this section, a fullband, binaural input–output array is presented that applies the well-
known superdirective beamformer as core structure [Lotter 2004]. The dual-channel
system thus comprises the advantages of a fixed beamformer, i.e., computational sim-
plicity and low risk of target cancellation.

To deliver a stereo enhanced signal instead of a mono output, an adaptive spectral
weight calculation is introduced, in which the desired signal is passed unfiltered and
which does not modify the perceptually important interaural amplitude and phase
differences of the target and residual noise signal. To increase the performance further,
the well-known Wiener postfilter is also adapted for the binaural application under
consideration of the same requirements.

The microphone signals at the left and right ear not only differ in their phases depend-
ing on the position of the source relative to the head, but also in their intensity caused
by the shadowing effect of the head. At discrete Fourier transform (DFT) frequencies
ωµ with frequency bin index µ, given the DFT spectrum S(ωµ) of a source, the left
and right ear signal spectra are given by

Yl(ωµ) = Dl(ωµ)S(ωµ) and Yr(ωµ) = Dr(ωµ)S(ωµ) . (14.4)

The shadowing effect of the head might be described for a source impinging from
an angle θS in the horizontal plane by angle and frequency-dependent amplitude
factors αl(µ, θS), αr(µ, θS) for the left and right ear sides, respectively time delays
τl(θS), τr(θS) characterize the propagation time from the source to the left and right
ear:

DDD(µ, θS) = [αl(µ, θS)e−jωµτl(θS), αr(µ, θS)e−jωµτr(θS)]T . (14.5)

14.4.1 Dual Channel Input–Output Beamformer Design

As a special case of the general superdirective beamformer, the binaural beamformer
can be realized by summing the input DFT coefficients after complex multiplication
with superdirective coefficients,

Z(µ) = W ∗
l (µ)Yl(µ) + W ∗

r (µ)Yr(µ) . (14.6)

The objective of the superdirective design of the weight vector WWW is to maximize
the output SNR. This can be achieved by minimizing the output energy with the
constraint of an unfiltered signal from the desired direction leading to the design
rule

W(µ, θS) =
ΦΦΦ−1

22 (µ)DDD(µ, θS)
DDDH(µ, θS)ΦΦΦ−1

22 (µ)DDD(µ, θS)
. (14.7)
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Figure 14.9: Superdirective binaural input–output beamformer

The 2 × 2 cross power spectral density matrix ΦΦΦ22(µ) can be calculated using the
head related coherence function obtained from measurements from a binaural signal
model.

A beamformer that outputs a monaural signal would, however, be unacceptable, be-
cause the benefit in terms of noise reduction is consumed by the loss of spatial hearing.
Therefore, the beamformer output is used for the calculation of spectral weights. Fig-
ure 14.9 shows a block diagram of the proposed superdirective binaural input–output
beamformer in the frequency domain.

The enhanced Fourier coefficients Z(µ) can serve as reference for the calculation of
weight factors G(µ), which output binaural enhanced spectra Ŝl(µ), Ŝr(µ) via multipli-
cation with the input spectra Yl(µ), Yr(µ). Regarding the weight calculation method,
it is advantageous to determine a single real-valued gain for both left and right ear
spectral coefficients. By doing so, the interaural time and amplitude differences will
be preserved in the enhanced signal. Consequently, distortions of the spatial impres-
sion will be minimized in the output signal. Real-valued weight factors Gsuper(µ)
are desirable in order to minimize distortions from the frequency domain filter. In
addition, a distortionless response for the desired direction should be guaranteed, i.e.,
Gsuper(µ, θS) != 1.

To fulfill the demand of just one weight for both the left and right ear sides, the weights
are calculated by comparing the spectral amplitudes of the beamformer output with
the sum of both input spectral amplitudes,

Gsuper(µ) =
|Z(µ)|

|Yl(µ)| + |Yr(µ)| . (14.8)
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To fulfil the distortionless response of the desired signal with (14.8) the following
beamformer design rule is applied:

W(µ, θS) = (αl(µ, θS) + αr(µ, θS)) · (ΦΦΦ−1
22 (µ))DDD(µ, θS)

DDDH(µ, θS)(ΦΦΦ−1
22 (µ))DDD(µ, θS)

. (14.9)

Directivity Evaluation

The performance of the dual-channel beamformer can be illustrated with the directiv-
ity pattern Ψ(µ, θs, θ), which is defined as the squared magnitude transfer function for
a signal that arrives from a certain spatial direction θ if the beamformer is designed
for angle θs.

Figure 14.10 shows the directivity pattern for the desired direction θs = 0◦, where
θS = 0◦ corresponds to a broadside look direction. The achieved directivity is compa-
rably low at low frequencies. At higher frequencies, the phase difference generated by
a lateral source becomes significant and leads to a higher degree of directivity. Fig-
ure 14.11 shows the directivity for θS = −60◦. The directivity increases especially for
low frequencies and the main lobe becomes more narrow as the amplitude differences
become more important.
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Figure 14.10: Beam pattern Ψ(µ, θs = 0◦, θ) of superdirective binaural input–output
beamformer for DFT bins µ corresponding to f = 300 Hz, f = 1000 Hz
and f = 3000 Hz
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Figure 14.11: Beam pattern Ψ(µ, θs = −60◦, θ) of superdirective binaural input–
output beamformer for DFT bins µ corresponding to f = 300 Hz,
f = 1000 Hz and f = 3000 Hz

14.4.2 Multichannel Postfilter

The superdirective beamformer produces the best possible signal-to-noise ratio for
a narrowband input by minimizing the noise power subject to the constraint of a
distortionless response for a desired direction [Monzingo, Miller 1980]. It can be
shown [Simmer et al. 2001] that the best possible estimate in the minimum mean
square error (MMSE) sense is the multi-channel Wiener filter, which can be factor-
ized into the superdirective beamformer followed by a single-channel Wiener postfil-
ter.

The dual-channel input–output beamformer can be extended by also adapting the
formulation of the multichannel Wiener postfilter according to [Simmer et al. 2001]
into the spectral weighting framework. Again, only one postfilter weight for both left
and right ear spectral coefficients is applied to maintain the original spatial impression,
i.e., the interaural amplitude and phase differences. Secondly, a source from a desired
direction θS should pass unfiltered, i.e., the spectral postfilter weight for a signal from
that direction should be one.

In analogy to the optimal MMSE estimate, postfilter weights Gpost(µ) are multiplica-
tively combined with the beamformer weights Gsuper(µ) according to (14.8) to the
resulting weights G(µ)

G(µ) = Gsuper(µ) · Gpost(µ) . (14.10)
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Figure 14.12: Superdirective input–output beamformer with postfiltering

The condition Gpost(µ) = 1 from a source impinging from θS gives

Gpost(µ) =
|Z(µ)|2

|Yl(µ)|2 + |Yr(µ)|2 · (αl(µ, θS))2 + (αr(µ, θS))2

(αl(µ, θS) + αr(µ, θS))2
. (14.11)

Figure 14.12 shows a block diagram of the resulting system with the stereo input–
output beamformer plus Wiener postfilter in the DFT domain. After the dual chan-
nel beamformer processing, the postfilter weights are calculated according to (14.11)
and are multiplicatively combined with the beamformer gains according to (14.10).
The dual-channel output spectral coefficients Ŝl(µ), Ŝr(µ) are generated by a mul-
tiplication of left and right side input coefficients Yl(µ), Yr(µ) with the same final
weight G(µ).

14.4.3 Performance Evaluation

The performance of the dual channel input–output beamformer with postfilter is
evaluated in a multi-talker situation in a conference room (reverberation time T60 ≈
800ms) with a dummy head wearing binaural hearing aids. In the experiments, a de-
sired speech source s1 arrives from angle θS1 towards which the beamformer is steered
and an interfering speech signal s2 arrives from angle θS2 . To judge the benefit of
the frequency dependent noise reduction, a speech intelligibility weighted noise reduc-
tion gain is applied, which measures the attenuation of the unwanted source relative
to the desired source frequency weighted with the intelligibility contribution of the
respective frequency band as given in [ANSI-S3.5 1997].

Figure 14.13 plots the performance of the superdirective binaural input–output beam-
former in terms of the speech intelligibility weighted gain for a desired speech source
from 0◦ and speech interferers from variable directions.
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For θS1 = 0, the binaural input–output superdirective beamformer delivers about
1 dB intelligibility weighted improvement, which is further improved by 0.5 dB with
the postfilter.

Higher directivity gains can be achieved for lateral directions. Figure 14.14 plots
the performance of the superdirective binaural input–output beamformer when the
desired signal arrives from θS1 = −60◦. Here, the algorithm delivers up to 4.5 dB
gain, depending on the position of the interfering source.
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14.5 Blind Source Separation (BSS):
An Application for a Binaural Directional Microphone
Array in Hearing Aids

14.5.1 Application Scenario

Currently, directional microphone processing is still the predominant approach to in-
crease the signal-to-noise ratio (SNR) in noisy environments and to enhance speech
intelligibility for normal hearing as well as for people with hearing impairment. There-
fore, research effort is continuously invested to further enhance the current methods,
especially for hearing aids.

These current solutions typically exhibit differential processing methods of monaural,
small aperture arrays with two or three microphones. Differential processing methods
are appropriate since spatial aliasing is not relevant for such small microphone distance
settings. However, these approaches suffer from a strong microphone noise gain that
increases with decreasing microphone distance and with an increasing number of array
microphones.

The physical limitations of such approaches are the motivation to develop alternatives,
especially binaural approaches. The targets of these approaches are to outperform
current monaural solutions and to offer possibilities for completely new applications
such as directional microphone processing for small In-The-Ear (ITE) custom hear-
ing aid devices. Here, due to space limitations in these small custom devices, only
one microphone can be integrated. Currently, directional processing has yet to be
integrated in such binaural systems. One solution of a binaural beamformer has been
described in Sec. 14.4. This beamformer has to be designed for a certain direction of
the desired source, which has to be assumed. However, as described there, especially
for the desired sources arriving from the front direction (0◦ azimuth) the gain in SNR
is rather limited, even when only one competing signal is present. The limits of classic
binaural beamformers are therefore the limited gain of the SNR and the required a
priori knowledge of the desired source.

Approaches for Blind Source Separation (BSS) as described in publications of Buchner
and Makino [Buchner et al. 2005], [Makino 2003] have the potential to overcome these
limits. These blind approaches are especially attractive because they do not require
a priori knowledge such as the position of the array microphones or the location
of sources. This is advantageous for binaural microphone applications since, due to
different head widths, the microphone positions and their distance from the input,
respectively, are not a priori known. Additionally, the desired signal sources are not
required to be directly in front of the listener. This offers more degrees of freedom for
the beam pattern design.

Theoretical aspects of BSS with the classic application scenario and free field micro-
phones have been described in detail in [Buchner et al. 2005], [Makino 2003]. Here, we
will focus on hearing aid applications for BSS and the specific problems and solutions
required.
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14.5.2 Specific Hearing Aid Challenges and Solutions

Specific problems arise for the classic signal separation task mainly due to the specific
hearing aid setup, i.e., head shading and head movements. Head shading occurs due to
the microphone positioning next to the head. Head movements require fast adaptation
procedures to cope with the tracking of moving sources.

Additionally, solutions are required to select the desired output since blind separation
methods provide all separated signals. People with BSS integrated in their hearing
aids should be relieved from the task of selecting their desired source. An intelligent
system has to cope with this task.

Also, a solution has to be found for providing the hearing aid user with a binaural
output. One approach has been presented in [Takatami et al. 2005]. BSS methods
provide only monaural output signals for each separated source signal. The desired
monaural source signal has to be further processed for generating the desired binaural
output, which allows the hearing aid user to localize the source position correctly
within the acoustic environment.

These three tasks are illustrated in Fig. 14.15 and have already been discussed [Puder
2005]. It is shown that for hearing aid applications, the signal separation stage has to
be followed by the source selection algorithm and a procedure for generating binaural
output signals.
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2) Desired source selection

+

+

Desired source
selection based
on a selected

strategy

x1(k)

x2(k)

W11

W12

W21

W22

Bi1

Bi2

y1(k)

y2(k)

y1(k)
y2(k)

Wij

yi(k) xi, left(k)

xi, right(k)

Figure 14.15: Three stages are necessary for an integration of BSS in hearing aids.
Here, Wij and Bij with i, j ∈ {1, 2} denote the frequency vector of
the filters, i.e., Wij = [Wij(0),Wij(1), . . . ,Wij(µ), . . . , Wij(M − 1), ]T

where M is the number of frequency bins
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14.5.3 Signal Separation with Hearing Aid Constraints

Whatever the different approaches for solving the BSS problem, all of them are the-
oretically able to separate a number of sound sources in the acoustic environment
equivalent to the number of microphones used.

For the above described binaural hearing aid setup, using one microphone on each
side of the head, two sources can be separated. Consequently, the classic BSS question
arises for the hearing aid applications. How robust is the system in the case of the
presence of more environmental sources or even in the case of diffuse background
noise? Here, the BSS systems for hearing aids have to provide answers just like other
BSS applications.

Therefore, we would like to focus on specific problems occurring for the hearing aid
application:

• head shading,

• head movements, and

• own voice presence.

Head shading describes the effects when microphones are positioned next to the head
and not in free-field. For sources arriving from the opposite side from the head,
the shadowed microphone signal is more attenuated compared with the microphone
turned towards the signal source. The BSS system has to compensate for this effect.
Experiments in real applications showed that BSS approaches, already proven in free-
field, can cope with this problem and separate the signals comparably in the presence
of head shading.

Head movements challenge the tracking performance of BSS algorithms since the
entire array is completely repositioned, not only the position of single sources. The
result of vast experiments is that BSS is generally able to continuously track head
movements and suppress non-desired sources. However, in a specific setup, tracking
may fail. Where there are two sources in a certain angle from the listener who wears
the BSS system, and who alternates focus between these sources. After several head
movements, the system is no longer able to separate the sources. The system freezes
in a local optimum.

In one approach to overcoming this problem successful results were obtained by im-
plementing a “shadow” system in parallel with the normal system with shorter filters
to reduce the computational effort [Wehr et al. 2007]. Its output signals are only cal-
culated for comparing the signal separation performance of the shadow filter system
with the actual system. In order to avoid freezing of the shadow system, its filter
coefficients are periodically reset. Comparing the signal separation performance of
both BSS systems continuously, a freezing of the actual system can be detected. In
this case, the filter coefficients of the shadow filter system are copied to the current
system and the freezing is released.
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The own voice problem describes the setup that in addition to the desired and non-
desired external sources the lister’s own voice is present as a third source which can
disturb the adaptation of the system. Since one’s voice is rather symmetric for both
hearing aids, its signal properties are comparable to external sources located in the
front direction. Thus, the real three source problem only occurs in the case when none
of the external sources are located in the front direction.

14.5.4 Output Signal Selection

Referring to Fig. 14.15, the second stage for the BSS application in hearing aids
is the stage for the desired source selection. So that the listener does not need
to select the desired source manually, an automatic system should perform this
task according to a certain strategy. Here, several different approaches are envis-
aged.

The most obvious one is to select the signal arriving from the front direction as desired
or the signal closest to the direction of sight. In this case BSS, would work comparably
to classic directional microphone systems.

However, this approach would not completely utilize the potential offered by BSS,
especially to track sources during head movements.

The following approaches are useful:

• selecting only speech signals and excluding other signals from the selection,
independent of their location;

• prioritizing signals of known speakers;

• prioritizing signals with the closest distance to the listener; and

• allowing the listener to track sources selected with a hold button, independent
of their location.

The first two options consider the signal content. First, only those signals from
speech are considered, and secondly, only preferred speakers are selected. Here, of
course, combinations with speech classification systems or speaker recognition sys-
tems, respectively, are required. In the second case, this includes training to specific
characteristics of the selected speakers.

The third approach also considers the distance to the sources. Here, the idea is to
estimate the distance between the listener and the separated sources by estimating
the amount of reverberation of these signals, which is related to the distance: The
greater the distance, the smaller is the relation of the direct signal path to the rever-
beration components of the signal. The aim is to select the signal with the shortest
distance.

The fourth method takes user interaction into account. Once the system has selected
a specific signal, then the user can decide to track this source independently of the
future location by pressing a “hold” button on the hearing instrument or the remote



426 14 Binaural Signal Processing in Hearing Aids

control. The source will then be tracked until a “release” button is pressed, a certain
time passed, or the system loses the tracking ability, e.g., because the source has
completely disappeared.

14.5.5 Binaural Output Generation

Finally, the third stage required for BSS in hearing aids is a unit for the generation of
a binaural signal in order to allow the hearing impaired to localize the source signal
positions correctly within the acoustic environment.

Here, from among different possibilities, one based on the filters which were identi-
fied within the BSS system, Wij , is described. The BSS method determines these
filters Wij such that the matrix equation (14.12) is fulfilled in each frequency bin
µ, i.e., the cross-correlation at the output is minimized and the signals are sepa-
rated.

Figure 14.16 shows a more general setup compared with Fig. 14.15. Here the signal
propagation model from the sources to the microphones is included. However, no
signal selection stage is shown. Instead, to be more general, a binaural output is
generated for both of the separated sources[

Y1(µ)
Y2(µ)

]
=
[

W11(µ) W12(µ)
W21(µ) W22(µ)

]
·
[

H11(µ) H12(µ)
H21(µ) H22(µ)

]
·
[

S1(µ)
S2(µ)

]
!=
[

c1(µ) 0
0 c2(µ)

]
·
[

S1(µ)
S2(µ)

]
. (14.12)

The target for determining the filters Bij(µ) is that for each source two output signals
Yl(µ)Bij(µ) are generated that correspond to the components of the respective signals
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Figure 14.16: BSS system including the signal propagation model
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at each microphone Sl(µ)Hij(µ), i.e., include the propagation path of the acoustic
environment Hij(µ). Based on (14.12) these filters can be determined as given in
(14.13)–(14.16). The beneficial property of this approach is that the unknown transfer
functions ci(Ω), which are degrees of freedom for the BSS system, are eliminated in this
setup. Therefore, no undesired signal distortion provoked by these unknown transfer
functions should be present at the binaural output

S1(µ)H11(µ) != Y1(µ)B11(µ) =
Y1(µ)W22(µ)

W11(µ)W22(µ) − W21(µ)W12(µ)
(14.13)

S1(µ)H21(µ) != Y1(µ)B12(µ) =
Y1(µ)W21(µ)

W21(µ)W12(µ) − W11(µ)W22(µ)
(14.14)

S2(µ)H12(µ) != Y2(µ)B21(µ) =
Y2(µ)W12(µ)

W21(µ)W12(µ) − W11(µ)W22(µ)
(14.15)

S2(µ)H22(µ) != Y2(µ)B22(µ) =
Y2(µ)W11(µ)

W11(µ)W22(µ) − W21(µ)W12(µ)
. (14.16)

14.5.6 Concluding Remarks

In this section, a solution for a binaural directional microphone for hearing aids has
been described based on Blind Source Separation. It has been shown that for a
complete solution applicable for hearing aids, besides the classic and often described
signal separation stage, additional stages for signal selection and for the generation
of a binaural output are necessary.

For each of the three stages, the requirements were described, showing specific prop-
erties and constellations of hearing aids and different solution approaches were pre-
sented.

Surely, all of the described methods represent first steps for an application in hearing
aids. To obtain solutions that perform robust and reliably in daily life environments,
considerably work remains to be done.

14.6 Conclusions

This chapter dealt with the design of the binaural link technology for hearing aids and
its impact on hearing aid algorithms and concepts. It was shown that the binaural
link allows the extension and improvement of current monaural algorithms. In this
context, the binaural classification system was explained as a low data rate application
that already exists in modern hearing aids. It guarantees that both hearing aids work
synchronously and adapt to the current hearing situation.

Another low data rate feature discussed addresses the ease of use of bilaterally worn
hearing aids. With these, the binaural link allows adjustment of the volume control
and the program switch by only one hearing aid.
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More demanding for the data rate of the binaural link is the binaural beamformer
that is applied to an assemblage of microphones for both hearing aids. As outlined,
this approach uses spatial diversity of the input signals to capture the desired signal.
The extension of this idea leads to the blind source separation approach, which again
requires a high data rate link. As explained, it can be seen as a binaural adaptive
beamformer which is flexible in choosing a desired source.

Since both the power of hearing aid processors and the efficiency of the binaural link
will increase in the future, more powerful signal processing features for digital hearing
aids can be expected over time.
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Chapter 15

Auditory-profile-based Physical
Evaluation of Multi-microphone
Noise Reduction Techniques in
Hearing Instruments

Koen Eneman, Arne Leijon, Simon Doclo, Ann Spriet, Marc Moonen,
Jan Wouters

15.1 Introduction

During recent years significant progress has been made in the design of hearing aid
and cochlear implant devices thanks to the incorporation of digital signal processing
techniques. Development has among other things been concentrated on the design of
multi-microphone solutions with advanced signal enhancement capabilities, such as
noise reduction and feedback cancellation. Thanks to these novel features, hearing
impaired people show improved abilities to function and to interact in formerly adverse
listening conditions such as conversations on a street corner, in a restaurant, or during
a cocktail party.

Of the many digital signal enhancement techniques that have been proposed during
the past decades, only a limited number have been effectively implemented and in-
tegrated in commercial hearing instruments. In fact, the customization of a signal
processing scheme towards the implementation in a hearing aid or cochlear implant
device makes strong demands in terms of computational complexity and processing
delay, and requires a profound performance assessment through physical and per-
ceptual validation tests. For the perceptual evaluation, typically, a large number of
time-consuming listening tests with hearing-impaired subjects are required.

Advances in Digital Speech Transmission Edited by R. Martin, U. Heute and C. Antweiler
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In the frame of the European HearCom1 project a number of representative signal
enhancement schemes are evaluated for future usage in hearing instrument devices.
Through advanced physical evaluation based on speech-intelligibility-weighted perfor-
mance measures incorporating the auditory profile of the hearing aid user, a better
performance assessment of the algorithms can be made solely based on simulation
experiments. In this way the number of subjective listening tests can be restricted.
In this chapter the proposed physical performance measures are presented and, by
way of illustration, they are applied to a state-of-the-art as well as to a more recently
developed multi-microphone noise cancellation approach.

Subjective Performance Assessment

As part of the HearCom project several advanced state-of-the-art and novel signal en-
hancement solutions are studied and implemented on a common real-time hardware
platform. With a view to the integration of these techniques in future hearing aid de-
vices a profound evaluation of the proposed schemes is required under various realistic
test conditions. To limit the number of listening tests with normal hearing and hearing
impaired subjects a set of physical performance measures has been defined to quantify
the expected speech distortion and speech intelligibility improvement offered by the
different algorithmic approaches. These measures build upon a functional auditory
model that incorporates several aspects of normal and hearing impaired listening that
are included in the so-called auditory profile of the hearing aid user. The auditory
profile has been defined within the HearCom project to be able to characterize the
auditory impairment profile of an individual in a comparable way across Europe. The
auditory profile includes results on a number of diagnostic tests assessing audibility,
loudness perception, frequency resolution, and temporal acuity, speech perception in
noise, spatial listening, subjective judgments and communication, listening effort, and
cognitive abilities.

Performance assessment of the envisaged signal enhancement approaches using the
proposed evaluation measures allows reliable benchmarking between different algo-
rithms and makes it possible to perform initial parameter tuning entirely through
simulation. In this way the number of time-consuming subjective listening tests can
be limited.

Computational Complexity

Apart from a profound performance assessment focusing on speech intelligibility
and signal distortion, the designer also needs to keep an eye on other, more im-
plementation related parameters such as the computational complexity of the algo-
rithm.
1The work presented in this chapter has been supported by grants from the European Union FP6

Project 004171 HearCom. The information in this document is provided as is and no guarantee
or warranty is given that the information is fit for any particular purpose. The user thereof uses
the information at its sole risk and liability.



15.1 Introduction 433

Hearing aid instruments are battery-powered devices mostly relying on 1.4-V zinc–air
batteries. To ensure sufficiently long battery autonomy hearing aid devices operate at
a low voltage (around 1 V) and run at low clock frequencies. Hence, if the integration
in a commercial hearing aid device is aimed at, the algorithm complexity figures need
to be carefully monitored and the required number of operations per second should
not exceed the computational capabilities of typical current or near-future hearing
aid processor technology.

Finally, one should realize that the signal enhancement module taking care, e.g., of
the noise suppression is just one of the many functional blocks in the signal processing
chain, and can therefore claim only a (small) part of the available execution time and
power consumption.

Memory Requirements

To operate properly, signal enhancement algorithms require a certain amount of mem-
ory, which is needed to store both the intermediate algorithm results and the algorithm
program code. As memory banks occupy relatively large silicon areas and consume a
non-negligible part of the scarcely available power, dedicated hardware devices such
as hearing aids typically dispose of a limited amount of memory. As a consequence,
the amount of memory that is directly available to the algorithm is often consider-
ably restricted. The algorithm might therefore need to undergo structural changes,
which, as a side effect, could increase the overall computational complexity of the
approach.

Signal Delay

Finally, also the total signal delay that is introduced by the hearing aid process-
ing needs to be carefully monitored. The total signal delay typically is a combi-
nation of an interface delay (due to A/D and D/A conversion), a delay caused by
the block processing (a technique used by many signal processing algorithms) and
a group delay introduced on purpose inside the signal enhancement approach it-
self.

Most hearing-instrument users receive processed sound together with unprocessed
sound leaking directly into the ear canal. At low frequencies these components may
have similar amplitudes. Interference then may cause noticeable effects if the pro-
cessed signal is delayed more than about 5–10 ms with respect to the unprocessed
sound [Dillon 2001]. Listeners with a severe hearing loss hardly perceive the unpro-
cessed sound leaking directly into the ear canal. However, they might suffer from
the asynchrony between the perceived speech sounds and visual information such as
lip movements. In that case, delays of up to a few tens of milliseconds are accept-
able. Similar results were obtained through subjective disturbance assessment tests
in [Stone, Moore 2005].
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Often there is a trade-off between delay and computational complexity. For exam-
ple, several algorithm approaches can be equivalently implemented in the frequency
domain, leading to solutions that are computationally more efficient than the corre-
sponding time-domain realizations, however typically at the cost of a longer signal
delay [Shynk 1992].

Organization of the Chapter

The chapter is organized as follows. In Sec. 15.2 an overview is given of selected
multi-microphone noise reduction techniques that are suited for hearing instrument
applications. Classical state-of-the-art as well as novel schemes are reviewed. Section
15.3 defines a number of perceptually weighted performance measures that incorpo-
rate aspects of normal and impaired human hearing. These measures are intended
to simulate perceptual evaluation with different types of signal enhancement algo-
rithms under realistic test conditions. By way of illustration two multi-microphone
noise reduction algorithms are compared based on the proposed performance mea-
sures. The selected test conditions are described in Sec. 15.4. Sections 15.5 and 15.6
present and discuss the simulation results. Finally, some conclusions are formulated
in Sec. 15.7.

15.2 Multi-microphone Noise Reduction in Hearing
Instruments

15.2.1 Classical Solutions

Classical, analog single-microphone devices have dominated the hearing aid market
for several decades, solely providing basic functionalities such as frequency-dependent
amplification and compression according to the auditory profile of the hearing aid
user. The first fully digital hearing aids were introduced in the mid-1990s. Following
the exponential growth in silicon and microprocessor technology digital hearing aid
solutions now systematically replace classical analog devices. Moreover, through the
use of digital signal processing techniques an increased number of functionalities can
be offered to the end user for a given amount of power consumption. Additionally,
more advanced functions can be provided that are much harder to realize with classical
analog technology.

Hardware Directional Microphone

In the early 1970s hardware directional microphones were brought to market. Thanks
to their angle-dependent sensitivity, hardware directional microphones can reduce un-
wanted background noise, resulting in an improvement in signal-to-noise ratio (SNR),
up to several dBs in the case where the jammer sounds are spatially separated from
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the frontal look direction. This typically leads to a clearly noticeable increase in
speech intelligibility. In that respect, it was found that a rise of 1 dB in signal-to-
noise ratio roughly offers an increase of about 10% in speech understanding [Dillon
2001].

Disadvantages of hardware directional (pressure gradient) microphone technology are
the inherent highpass response [Eargle 2001] and the larger component size compared
to omnidirectional solutions. The highpass characteristic can however be compensated
for by using analog lowpass filtering techniques, typically at the expense of extra noise
insertion in the low and mid-frequency range and additional hardware requirements
for the lowpass filter implementation.

Software Directional Microphone

Through an electrical combination of outputs from several (omnidirectional) micro-
phones mounted in the same device a software controllable angular response can
be obtained, leading to the software directional microphone. Software directional
microphones offer more flexibility than their hardware directional counterparts as
they can selectively be activated depending on the listening situation, providing noise
suppression in noisy environments and offering an omnidirectional response under
less challenging noise conditions. Unfortunately, software directional microphones
are sensitive to changes in microphone characteristics and microphone placement,
and are therefore typically less robust than mechanical hardware directional micro-
phones.

Acoustic Beamforming

The idea of combining signals coming from several microphones is a well-known ap-
proach commonly referred to as acoustic beamforming. By using several microphones
the sound field around the hearing aid can in fact be sampled in the spatial domain,
making it possible to process signals not only in the spectral domain, but also in a di-
rection or position dependent way. This principle forms the basis for multi-microphone
signal enhancement techniques such as noise suppression, dereverberation, and source
separation.

As far as acoustic beamforming is concerned, different kinds of realization can be
distinguished. In its most simple form microphone signals are delayed and summed
together, leading to the delay-and-sum beamformer structure. If the delays are appro-
priately set, noise can be reduced as the desired speech components in the microphone
signals will be added in phase, whereas noise contributions fail to be added in phase,
and are hence attenuated. More advanced topologies first perform a filtering opera-
tion on each of the microphone channels and then sum all channels together, realizing
a so-called filter-and-sum beamformer. Owing to the small size of the hearing aid
device beamforming techniques appear to be most effective in the higher range of



436 15 Multi-microphone Noise Reduction Techniques in Hearing Instruments

the audio spectrum. For a more detailed discussion on beamforming read [Van Veen,
Buckley 1988] or Chap. 12 in [Vary, Martin 2006].

Standard beamforming solutions use fixed filter or delay settings and are therefore
data independent. As a consequence, they offer limited performance and flexibil-
ity. Nevertheless, often significant improvements in speech understanding can be
achieved. This was shown by [Luts et al. 2004] and [van der Beek et al. 2007], who
evaluated a commercial hearing instrument device that is based on beamforming tech-
nology.

Digital hearing aid technology not only paved the way for the integration of powerful
multi-microphone signal enhancement techniques into commercial hearing aid devices,
but also offered a platform to realize single-microphone noise reduction schemes such
as the Wiener filter or spectral subtraction based methods that are described in [Vary,
Martin 2006], Chap. 11. Whereas single-microphone noise suppression techniques are
ideally suited to combat diffuse noise, multi-microphone techniques utilize the spa-
tial diversity of the setup and are therefore good candidates to suppress point-like
noise sources. As they use angular-dependent discrimination techniques to “zoom in”
on the desired source the expected noise suppression will decrease if the reverbera-
tion time of the recording room increases. Indeed, signals that come from a desired
or a competing source reach the hearing aid basically from all directions. Hence,
discrimination based on the direction of arrival is no longer reliable. Nevertheless,
multi-microphone techniques are also capable of reducing diffuse noise, albeit to a
lesser extent. To further reduce the residual noise in diffuse and highly reverberating
environments single-microphone noise suppression techniques are often employed as a
postprocessing stage acting on the output of a multi-microphone algorithm [Simmer
et al. 2001].

15.2.2 Generalized Sidelobe Canceler

Through the incorporation of adaptivity the performance of classical fixed beamform-
ing based solutions can be improved. In this way, additional noise suppression can be
obtained and the algorithm is given the ability to adapt its settings to a specific envi-
ronmental scenario. The first solution of this type has been presented by [Frost 1972].
Later on, Griffiths and Jim proposed an improved scheme that is known nowadays as
the Generalized Sidelobe Canceler (GSC) [Griffiths, Jim 1982]. In fact, many state-
of-the-art multi-microphone noise suppression techniques that are used in hearing
instruments nowadays are based on this principle.

The Generalized Sidelobe Canceler (GSC) consists of a fixed spatial preprocessor, i.e.,
a fixed beamformer with blocking matrix, and an adaptive stage, as shown in Fig. 15.1.
The fixed beamformer, which in the most general case acts as a multichannel filter
A(k), creates a so-called speech reference y0(k) = x0(k)+v0(k), where x0(k) and v0(k)
are the speech and noise components, in y0(k), respectively. Similarly, the blocking
matrix B(k) creates M − 1 noise references ym(k) = xm(k) + vm(k), m = 1 : M − 1,
where M is the number of microphones. In general, it holds that with M − 1 noise
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Figure 15.1: Structure of the Generalized Sidelobe Canceler (GSC)

references M − 1 noise sources can be removed. The noise references are created
by spatially suppressing sounds arriving from the direction from where the desired
speaker sound is assumed to be coming. One thereby assumes that the speaker is in
front of the microphone array (broadside direction) or in the direction along the axis
of the array (endfire direction). In many practical realizations both A(k) and B(k)
are (low-order) multichannel FIR filters.

The goal of the adaptive stage is to make an estimate of the noise component v0(k)
in the speech reference y0(k) and to subtract this noise from y0(k) to create an en-
hanced output signal z(k). To estimate the noise component optimal filter weights
w1, . . . ,wM−1 are computed that minimize the cost function

JGSC(w(k)) = E
{
|v0(k − ∆) − wT (k)v(k)|2

}
, (15.1)

with

w(k) =
(
wT

1 (k) , . . . ,wT
M−1(k)

)T
,

v(k) =
(
vT

1 (k) , . . . ,vT
M−1(k)

)T
,

vm(k) =
(
vm(k) , . . . , vm(k − L + 1])

)T
.

Parameter L is the length of the adaptive filters wm(k) and E{·} symbolizes the
expectation operator. Observe that the cost function minimizes the residual noise
energy, so that the Generalized Sidelobe Canceler is primarily focused on noise sup-
pression only. Typically, the minimum of the cost function is computed online using
adaptive filtering techniques [Widrow, Stearns 1985]. For proper convergence the
filters are adapted during speech pauses only. During speech periods the filters are
kept constant, assuming that the environmental conditions do not significantly change
meanwhile. Speech pauses can be identified using a voice activity detector (VAD).

Thanks to the adaptivity of the approach the filter coefficients are data dependent,
giving the Generalized Sidelobe Canceler an environmentally specific spatial sensitiv-
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ity, and self-learning and noise tracking capabilities. In this way, better noise sup-
pression and more flexibility can be obtained than with classical, fixed beamforming
solutions.

Unfortunately, the proper operation of the Generalized Sidelobe Canceler relies on
some assumptions that are often violated in practice. As indicated above, it is assumed
that the desired speaker sound arrives from a specific direction with respect to the
array. In this way, noise references can be created that solely contain contributions
of the undesired background noise. In practice however, the position of the speaker
varies slightly and the characteristics of the microphones tend to deviate from their
ideal values. On top of that, in a highly reverberating environment signals arrive
at the array basically from any direction. As a consequence, the noise references
do contain contributions of the desired speech, which eventually distorts the desired
speech signal. This phenomenon is called speech leakage. Hence, whereas in general
high noise suppression figures can be obtained with the Generalized Sidelobe Canceler,
the quality of the desired signal can be severely compromised. Performance is further
reduced if the voice activity detection fails, as then the adaptive filters fail to converge
to the desired solution. More information about the Generalized Sidelobe Canceler
can be found in [Vary, Martin 2006], Sec. 12.8.

Many extensions to the Generalized Sidelobe Canceler have been proposed, such
as [Nordebo et al. 1994], [Herbordt, Kellermann 2003] and [Gannot et al. 2001].
Also in the HearCom project two variants on the Generalized Sidelobe Canceler
have been considered: the adaptive two-stage beamforming (A2B) approach and the
spatially preprocessed speech-distortion-weighted multichannel Wiener filter (SDW-
MWF). Both solutions will be briefly discussed in Sec. 15.2.3 and 15.2.4, respectively.
More detailed information on the algorithms can be found in the references that are
given in these sections.

15.2.3 Adaptive Two-stage Beamforming Approach

A first multi-microphone noise cancellation algorithm that has been evaluated in the
frame of the HearCom project is the Adaptive Two-stage Beamforming (A2B) ap-
proach [Wouters, Vanden Berghe 2001] [Wouters et al. 2002] [Maj et al. 2004] [Maj
2004]. This two-microphone adaptive noise cancellation algorithm can be considered
as a special case of the Generalized Sidelobe Canceler (GSC). Algorithmic variants of
this approach have recently been integrated in commercial hearing instruments [Spriet
et al. 2007].

It is observed that the A2B adaptive noise canceler of Fig. 15.2 consists of three stages.
First, the outputs of two omnidirectional microphones are combined to create a soft-
ware directional microphone. Then, the second microphone output has to be appro-
priately delayed with respect to the first microphone signal. Next comes a fixed first
beamforming stage, which is implemented using a 10-taps FIR filter. The first stage
creates a speech and a noise reference that are input into an adaptive second stage.
The 30-taps adaptive filter makes use of normalized least-means squares (NLMS)
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Figure 15.2: Structure of the Adaptive Two-stage Beamforming (A2B) approach

optimization [Widrow, Stearns 1985] [Vary, Martin 2006], and is controlled by an
energy-based voice activity detector (VAD) [Maj 2004].

The A2B algorithm uses rather small filter lengths to be able to fit in standard hearing
aid processors. The A2B scheme has been included in our evaluation to act as a
reference for state-of-the-art multi-microphone noise suppression technology that is
currently used in commercial hearing instruments.

15.2.4 Spatially Preprocessed Speech-distortion-weighted
Multichannel Wiener Filtering

A more recently derived variant of the Generalized Sidelobe Canceler is the spa-
tially preprocessed speech-distortion-weighted multichannel Wiener filtering algo-
rithm (SDWMWF), which is based on work described in [Doclo et al. 2004] [Do-
clo et al. 2005] [Spriet et al. 2005] [Spriet et al. 2004] [Spriet 2004]. The struc-
ture of the SDWMWF approach is shown in Fig. 15.3. Observe that the algorithm
perfectly copies the structure of the Generalized Sidelobe Canceler, the main dif-
ference being in the adaptation of the second-stage filters w1 , . . . ,wM−1. In the
SDWMWF approach the optimal filter weights w1, . . . ,wM−1 are computed by min-
imizing

JSDWMWF(w(k)) = E
{
|v0(k − ∆) − wT (k)v(k)|2

}
+

1
µ

E
{
|wT (k)x(k)|2

}
, (15.2)

where

x(k) =
(
xT

1 (k) , . . . ,xT
M−1(k)

)T
,

xm(k) =
(
xm(k) , . . . , xm(k − L + 1)

)T
.

Observe that the cost function minimizes the weighted sum of the residual noise
energy and the speech distortion energy. Parameter µ ∈ [0,∞[ provides a trade-
off between noise reduction and speech distortion. If µ → ∞ speech distortion is
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completely ignored and the algorithm approaches the Generalized Sidelobe Canceler
(GSC) (compare (15.2) with (15.1)). The SDWMWF algorithm can therefore be con-
sidered as an extension of the GSC. Thanks to the extra term in the cost function the
SDWMWF makes a trade-off between noise suppression and speech distortion, mak-
ing the algorithm more robust against speech leakage than the standard Generalized
Sidelobe Canceler [Spriet et al. 2004].

Assuming that the speech and noise components are independent, the solution to the
cost function (15.2) can be expressed as

w(k) = R(k)−1 · E {v(k) v0(k − ∆)} , (15.3)

with

R(k) = E
{
v(k)vT (k)

}
+

1
µ

(
E
{
y(k)yT (k)

}
− E

{
v(k)vT (k)

})
, (15.4)

and y(k) defined similarly to x(k). Hence, w(k) can be computed based on the
noise correlation matrix E

{
v(k)vT (k)

}
, which is updated during noise-only-periods,

and the speech correlation matrix E
{
y(k)yT (k)

}
, which is adapted during speech

periods. To make a distinction between speech and noise periods the SDWMWF
algorithm is complemented with a log-energy-based voice activity detector [Van Ger-
ven, Xie 1997]. Efficient stochastic-gradient algorithms have been derived to up-
date the filter weights (15.3) in an efficient way [Spriet et al. 2005] [Doclo et al.
2005].

In the evaluation (Sec. 15.5) a three-microphone version of the algorithm is consid-
ered that relies on a frequency-domain variant of cost function (15.2) and uses effi-
cient correlation matrix updating. The first, non-adaptive stage consists of 48-taps
FIR filters. Block length L in the Wiener filtering stage is set to 32 and trade-off
parameter 1/µ is set to 0.5. In this way, compared with the standard Generalized
Sidelobe Canceler, more emphasis is put on signal distortion at the expense of less
noise suppression.
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15.3 Auditory-profile-based Physical Evaluation

For a proper validation of signal enhancement algorithms in a hearing aid context ded-
icated evaluation measures are required that can accurately predict algorithm perfor-
mance for a number of representative hearing loss profiles. However, a reliable perfor-
mance assessment would require intensive speech intelligibility testing, listening effort
assessment and quality scoring with a large number of test subjects under several real-
istic environmental conditions. This type of procedure is very time consuming, needs a
dedicated and well equipped test site and requires access to a large number of hearing-
impaired subjects with different hearing loss profiles.

Owing to the lack of familiarity of many algorithm designers with the testing of
hearing-impaired listeners, and the huge amount of time that is required to set up
and perform such tests, many novel signal enhancement approaches are solely eval-
uated under rather academic conditions. In that respect, often, merely a number of
signal theoretic performance measures are applied, which typically fail to incorpo-
rate important aspects of normal and impaired human hearing. As a consequence,
many promising signal enhancement algorithms eventually fail to be competitive with
existing solutions once they are evaluated in a hearing aid context under real-life
conditions. Furthermore, they often exceed the computational and memory capabil-
ities of the hardware or cannot meet the delay constraints imposed by the applica-
tion.

Taking this into account, there is clearly a need for advanced physical evaluation
measures that incorporate aspects of human hearing and that can reliably predict
algorithm performance through simulation experiments only. In a first phase of our
research we relied on a number of physical evaluation measures that incorporate basic
aspects of normal human hearing, such as the intelligibility-weighted signal-to-noise
ratio (SNR), the segmental intelligibility-weighted SNR, the segmental SNR and a
frequency-weighted log-spectral signal distortion measure. However, given the hear-
ing aid application we have in mind, more advanced evaluation measures need to
be derived that take into account aspects of impaired hearing as well. With this
aim, a number of physical performance measures have been proposed that assess
various aspects of user-perceived signal quality, such as speech intelligibility, signal
distortion, and relative loudness of desired and undesired signal components. In
order to evaluate algorithm performance across different auditory profiles the pro-
posed measures make use of an auditory functional model that takes into account
aspects of normal as well as impaired hearing. The auditory functional model and
the physical evaluation measures will be presented in Sec. 15.3.1 and 15.3.2, respec-
tively.

Of course, no physical performance measure can perfectly predict performance in
real life, in particular with hearing-impaired users. Although the established mea-
sures that will be presented in Sec. 15.3.2 relate to some important aspects of
user-perceived signal quality they have to be used with this restriction in mind.
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15.3.1 Simulation of Hearing-impaired Perception

In this section an auditory functional model is proposed that accounts for some of
the most fundamental aspects of normal and impaired hearing. The auditory model is
used for the performance measures that will be presented in Sec. 15.3.2.

Functional Auditory Model

The functional auditory model on which the objective performance measures are based
accounts for normal auditory functions and for some fundamental effects of hearing
impairment, as there are loss of audibility at low input levels, loudness recruitment
(i.e., reduced dynamic range caused by loss of normal non-linear, compressive outer-
hair-cell amplification at low input levels), reduced frequency resolution (also caused
by dysfunction of outer hair cells) and reduced ability to extract supra-threshold
speech cues for speech recognition.

The simulation includes the following main steps. First, the (unprocessed or algorithm-
processed) input signal is segmented and transformed into a sequence of short-time
power spectra, where the time resolution can vary between evaluation measures. Each
short-time spectrum is then modified by the head-related transfer function for frontal
incidence, by the simulated hearing-aid insertion-gain frequency response, and by the
middle-ear transmission gain (which was assumed to be normal, because all the sim-
ulated auditory profiles include only sensorineural loss). The resulting input spectra
are then transformed by filtering and compression to simulate effects of inner-ear
processing, as described below, for each auditory profile. All inner-ear processing is
simulated in the frequency domain.

Our functional auditory model, which is explained in more detail in [Leijon 2007],
closely corresponds to that of [Moore et al. 1997] and [Moore, Glasberg 2004], who
used much earlier established principles from [Fletcher, Munson 1937] and [Zwicker
1958]. The core function of the model is to transform the sound pressure at the input
of the ear into a two-dimensional auditory excitation pattern E(z, t) as a function of
time t and of place (position) z along the basilar membrane in the cochlea (inner ear).
The excitation E is a power-like quantity representing the output from the non-linear
auditory filtering process. The excitation at each position z is assumed to cause af-
ferent neural activity in auditory neurons tonotopically connected at that position
along the array of inner hair cells on the basilar membrane. Furthermore, the exci-
tation pattern E(z, t) always includes a minimal spontaneous excitation representing
internal physiological noise.

Neurons are most sensitive to input frequencies near the center frequency of an au-
ditory bandpass filter that is associated with the position of the neurons along the
basilar membrane. The auditory filtering is the result of interaction between at least
two physiological mechanisms: 1) passive mechanical filtering of the traveling wave
along the inner-ear basilar membrane, and 2) active mechanical processes involving
outer hair cells. The passive filtering is approximately linear, i.e., independent of input
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signal, whereas the outer hair cell contribution is known to be non-linear and compres-
sive. Outer hair cells provide high gain at low levels and no gain at high levels, and this
amplification is effective only for input frequencies in a narrow frequency range near
the center frequency of the auditory bandpass filter that is associated with the position
of the outer hair cells along the basilar membrane.

The auditory filter bandwidth is related to the traditional concept of auditory Critical
Bands (CB). However, extensive masking experiments have revealed that the Equiv-
alent Rectangular Bandwidths (ERB) of auditory filters [Moore, Glasberg 2004] are
slightly smaller than CB bandwidths [Zwicker, Terhardt 1980]. Therefore, we used
the ERB estimates in our model. In this way, the auditory place scale z of the model
[Moore, Glasberg 2004], is very similar, but not identical to the traditional Bark scale
[Zwicker, Terhardt 1980].

The obtained excitation pattern can be used to predict the loudness of a sound in a
quiet background and the partial loudness of a sound that is partially masked by an-
other simultaneous sound. The difference between logarithms of excitation patterns
for two sounds is used to predict the listener’s ability to discriminate between the
sounds. Similarly, the difference between the log-excitation pattern caused by an ex-
ternal sound and the spontaneous log-excitation pattern determines the detectability
of a sound in quiet.

The discrimination ability is limited by the inherent random variability in the neu-
ral data reaching the brain and in the brain’s decision processes. Signal-detection
theory defines a discrimination index d′ indicating the effective perceptual “dis-
tance” between two sounds with stationary excitation patterns E1(z) and E2(z),
as

d′ =

√√√√√ ∞∫
0

(log E1(z) − log E2(z))2

σ2
L(∆)

dz . (15.5)

Here, ∆ is the duration of the sound, and σ2
L(∆) represents the total underly-

ing variance in the auditory process of observing log-excitation patterns and us-
ing them for detection or discrimination. The log-excitation domain is used here,
because then the variance can be approximated simply as a level-independent con-
stant

σ2
L(∆) = c/min(∆,∆max) , (15.6)

where constant c is chosen to reproduce empirical results on intensity discrimina-
tion for broadband noise. Discrimination improves with stimulus durations up to an
approximate maximal duration ∆max=0.2 s .

The implemented model includes the following transformation steps, just like [Moore
et al. 1997] and [Moore, Glasberg 2004]: 1) a fixed filter for the transfer from a
specified sound field to the eardrum, 2) a fixed filter representing middle-ear trans-
mission, and 3) linear and non-linear filtering at the outer hair cells level to mimic
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auditory frequency resolution. The present implementation deviates slightly from
that of [Moore et al. 1997], but was verified to be at least as much in agree-
ment with empirical loudness-balance data as the version validated by [Moore et
al. 1997].

It should be noted however that the model attempts to simulate only the most fun-
damental and reasonably well-known effects of auditory processing. In particular,
temporal masking effects and specific deficits in the binaural integration are not in-
cluded in the model.

Model-simulated Auditory Profiles

For the evaluation of the signal enhancement algorithms presented in Sec. 15.5 typi-
cal auditory profiles have been selected based on a broad study of audiometric data
from a large number of hearing impaired listeners including individual pure-tone air-
conduction thresholds, speech recognition, and results of categorical loudness judg-
ments. In this way six common categories ranging from mild over moderate to severe
hearing loss have been considered. The audiograms of the selected auditory pro-
files are shown in Fig. 15.4. Normal hearing was also added as a seventh reference
profile.

Hearing-aid Amplification and Spectral Shaping

In addition to the special signal enhancement methods that are to be evaluated,
any hearing aid also presents all sounds with amplification and spectral shaping,
individually adjusted for each user. In practice, the hearing aid settings are fine-
tuned according to individual listener preferences. In this work, to allow full automatic
evaluation we relied on the NAL-RP prescription rule [Byrne, Dillon 1986] [Byrne et al.
1990] [Byrne et al. 1991] to set the amplification and spectral shaping for each profile.
The NAL-RP prescription rule defines a single non-adaptive frequency response, which
simulates a hearing aid with slow automatic gain control (AGC) that adjusts the
frequency response to the acoustic sound environment, but does not adapt rapidly to
every short segment in the input signal.

15.3.2 Physical Evaluation Measures

In this section four physical evaluation measures are introduced that take into ac-
count aspects of normal and impaired hearing. They are intended to be used to
assess the performance of signal enhancement algorithms for hearing aid applica-
tions.

The performance measures require separate estimates of the desired signal (speech)
component and of the competing signal (noise) component at the input and the out-
put of the algorithm. The separation of the single-channel output signal into a speech
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Figure 15.4: Audiograms for the selected auditory profiles, showing audiometric pure-
tone air-conduction hearing threshold loss (unmarked dashed curves)
and corresponding detection thresholds (at d′ = 1) for the auditory
model (marked with circles). Audiometric levels of discomfort (dash–
dot curves) may be compared with model pure-tone levels yielding a
calculated loudness of 64 sone (unmarked solid curves). 0 dB HL on the
vertical scales represents the normal hearing threshold
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and a noise component can only be meaningfully defined if the algorithm signal pro-
cessing is approximately linear in a short-time sense. Regardless of implementation
details, the algorithm processing must be equivalent to an adaptive linear filter that
varies relatively slowly, i.e., does not change considerably within the duration of the
impulse response of the filter. This requirement is approximately fulfilled for many
signal enhancement algorithms. Of course this does not exclude the algorithm us-
ing highly non-linear operations to determine the characteristics of the adaptive fil-
ter.

In practice, the two separate output signal components are obtained by shadow-
filtering. This means that first the adaptation of the algorithm is determined by
the combined (desired + competing) input signal, and that then the same pro-
cessing is separately applied to the desired and to the competing input signal.
This method is most convenient in algorithm simulations where the internal de-
tails of the processing are available to the experimenter. [Hagerman, Olofsson
2004] proposed another method that can be applied to evaluate black-box sys-
tems.

Speech Intelligibility Index

The Speech Intelligibility Index (SII) is standardized and commonly used to predict
speech intelligibility in non-fluctuating noise [ANSI-S3.5 1997]. For broadband exter-
nal noise that exceeds the hearing threshold at all frequencies, the SII is based on
the frequency-weighted SNR (in dB), calculated using long-term average speech and
noise power spectra. Once the SII is computed both for the unprocessed signal (SIIin)
and the processed signal (SIIout), the SII improvement can be determined, which is
achieved by the algorithm:

∆ SII = SIIout − SIIin . (15.7)

The SII is always a number between 0 and 1. For normal-hearing listeners, this range
corresponds to SNR values from −15 dB to +15 dB. Therefore, an SII improvement
of 0.1 corresponds to a real SNR improvement of 3 dB.

It is well known that the standard SII overestimates the speech-recognition perfor-
mance of hearing-impaired listeners, especially in noisy environments. Various modifi-
cations of the SII have been proposed to account for additional suprathreshold deficits
in impaired ears [Pavlovic et al. 1986] [Ching et al. 1998]. Our present implementa-
tion uses “desensitization factors” proposed and validated for noisy environments by
[Pavlovic et al. 1986] and [Magnusson 1996].

Segmental Speech Intelligibility Index

The SII standard does not claim to account for the effects of fluctuating noise. Addi-
tionally, the frequency-weighted long-term SNR may obscure some segmental effects
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introduced by the noise reduction algorithms. Therefore, a slightly modified proce-
dure is used to derive a segmental SII measure (segSII). The SII is first calculated
for each short-time segment of 50 ms, and is then averaged over the full duration of
the test signal. The segSII measure has not been empirically validated and is used
here tentatively as a complement to the SII measure. If an algorithm improves only
the SII, but not the segSII, it is questionable whether the algorithm will effectively
improve real speech recognition.

Signal-to-noise Loudness Level Difference

Using the auditory excitation model for each simulated hearing loss, the partial loud-
ness of both speech and competing signals can be calculated, including the masking
effect of noise on the speech loudness, and vice versa. A large number of different
loudness estimation procedures were evaluated by [Skovenborg, Nielsen 2004], but
these procedures did not include the effects of impaired hearing. Therefore, the par-
tial loudness values for the desired (speech) and the competing (noise) signal have
been computed in a similar way as in [Moore et al. 1997] and [Moore, Glasberg
2004].

Preliminary instantaneous partial loudness density patterns N ′
ps(z, t) for the desired

signal, and N ′
pn(z, t) for the competing signal, are calculated as

N ′
ps(z, t) = N0

(
(Es(z, t) + En(z, t) + Ea(z))α − (En(z, t) + Ea(z))α

)
(15.8)

N ′
pn(z, t) = N0

(
(En(z, t) + Es(z, t) + Ea(z))α − (Es(z, t) + Ea(z))α

)
, (15.9)

where z is the auditory place scale along the basilar membrane and t denotes the
block index of the analyzed signal segment. Es(z, t) and En(z, t) are the stimulus-
related excitation components for the desired and the competing signal, respectively,
Ea(z) is the fixed internal spontaneous excitation, and α is the loudness-growth ex-
ponent, adapted to provide a 16-fold increase of loudness for a 1000 Hz tone when
the presentation level is increased from 40 to 80 dB SPL. N0 is a scale factor set to
give a final loudness value of 1 sone for a 1000 Hz tone at 40 dB SPL for normal-
hearing listeners. To represent the reduced partial loudness of speech in the presence
of noise, and vice versa, the loudness density is further reduced smoothly towards
zero, as

ps(z, t) =
N ′

ps(z, t)
N ′

ps(z, t) + N ′
pn(z, t)

(15.10)

N ′
s(z, t) = N ′

ps(z, t)
(
ps(z, t)(2 − ps(z, t))

)β
, (15.11)

with symmetric expressions for N ′
n(z, t). This operation makes a considerable differ-

ence only when one of the signal components is much weaker than the other. This
method is slightly different from the procedure suggested by [Moore et al. 1997]. The
exponent was set to β = 2 to achieve agreement with empirical data. The instanta-
neous loudness function is then calculated by numerical integration over the auditory
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place scale z along the basilar membrane:

Ns(t) =

zmax∫
0

N ′
s(z, t) dz . (15.12)

Finally, the partial-loudness estimates Ns and Nn are calculated by three steps of non-
linear smoothing of the instantaneous loudness functions Ns(t) and Nn(t) [Glasberg,
Moore 2002].

Loudness levels (in phon) of the desired and competing signal are calculated from the
loudness in sone simply as

LLs = max(0, 40 + 10 log2 Ns) (15.13)
LLn = max(0, 40 + 10 log2 Nn) . (15.14)

The loudness-level difference between desired and competing signal is obtained as

SNLL = LLs − LLn . (15.15)

Thus, if the loudness Nn of the competing signal is very small, the SNLL can never
exceed the loudness level of the desired signal alone.

Signal Excitation-level Distortion (SED)

The Signal Excitation-level Distortion (SED) is a measure of the spectral deviation
between the unprocessed and processed desired signal. This measure is calculated as
a root-mean-square average of excitation-level differences between the desired signal
component in the unprocessed sound (Es,in(z, t)) and the desired signal component
in the processed sound (Es,out(z, t)):

SED =

√√√√√Tm

∆
1

n(TSN )

∑
t∈TSN

zmax∫
0

w(z, t)
(log Es,in(z, t) − log Es,out(z, t))2

σ2
L(∆)

dz , (15.16)

where

w(z, t) =

{
1 if Es,in(z,t)

En,in(z,t) ≥ δE ∨ Es,out(z,t)
En,out(z,t) ≥ δE

0 otherwise .
(15.17)

En,in(z, t) and En,out(z, t) represent the signal excitation patterns corresponding to
the competing signal component in the unprocessed and the processed sound, respec-
tively. To avoid the influence of speech pauses in the test material, signal segments are
included in the calculation only if the segmental power signal-to-noise ratio is larger
than −15 dB for either the unprocessed or the processed signal. Indices of these signal
segments are included in the set TSN , containing n(TSN ) index elements. Further-
more, to avoid including distortion elements that are completely masked by noise, the
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binary-valued function w(z, t) allows non-zero contributions only at those auditory
places z and time segment indices t where the signal-to-noise excitation ratios exceed
δE . This parameter is set to correspond to an SNR of −10 dB in normal hearing. At
lower signal-to-noise excitation-level differences, any spectral deviations in the desired
signal are assumed to be masked by the noise.

The SED is closely related to the discrimination index d′ for auditory spectral and
intensity discrimination, defined in (15.5). The index value is calculated using the in-
ternal perceptual variance σ2

L(∆) of the log-excitation, estimated to predict empirical
intensity discrimination, as shown in Sec. 15.3.1. This variance represents the audi-
tory discrimination limit for each short sound segment. The segment duration was
∆ = 0.02 s in these calculations. However, the listener can remember signal features
and improve discrimination by accumulating evidence by “multiple looks” over many
segments. Therefore, the final result is scaled to give the average discrimination index
for an integration time constant Tm, regardless of the actual duration of the test sound
or the duration of signal segments. This time constant represents the memory span
for which the listener can effectively accumulate perceptual information. The value
has been set to Tm = 1 s, somewhat arbitrarily. The exact value is not critical, as
this constant is merely a scale factor that does not change the qualitative comparison
across different auditory profiles.

15.4 Test Conditions

Apart from the perceptually and intelligibility-weighted performance measures that
were presented in Sec. 15.3 realistic acoustic test conditions need to be defined for a
reliable performance assessment.

Recording Database

To simulate realistic acoustic test conditions we relied on a database with real-life
audio recordings provided by Siemens Audiologische Technik, Erlangen, Germany for
use in the HearCom project. The database contains recordings with different kinds
of audio signals in a number of representative recording rooms. All test material
was recorded by small microphones mounted in a behind-the-ear hearing aid case
that was placed on an artificial head-and-torso manikin. The distance between the
three microphones of the hearing aid device was about 10 mm. All signals were
simultaneously recorded at a sampling rate of 16 kHz.

Environmental Conditions

Two representative recording rooms have been selected as follows.

Living room. The reverberation time T60 of this room ranges from about 0.3 s to 0.4 s.
A music (classical piano concerto) point source was presented with azimuth angle
60 degrees at 150 cm distance from the recording manikin, where azimuth angle
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+90 degrees refers to a signal source directly pointing to the right ear of the
recording manikin.

Cafeteria. This large cafeteria has a reverberation time T60 of about 2 s between 250
and 2000 Hz. The competing source in this scenario was the natural diffuse
noise that was recorded at lunch time, consisting of fairly stable babble sounds
and other background noise in the cafeteria.

We remark that the selected subset of test material includes both point-source material
and diffuse-like jammer sounds. In all cases the desired speech signal was coming from
the frontal direction, corresponding to 0 degrees.

Several other environmental conditions were considered during a more profound analy-
sis, such as a low-reverberant room, a car cabin, and a street corner.

Test Signals

The actual test signals are generated by additive mixing of the desired (speech) signal
with the competing signals at specified signal-to-noise ratios (SNR). The desired signal
and the competing signal are thus always separately available. In all test conditions
the overall long-term sound pressure level of the desired (speech) signal is fixed at
70 dB SPL, and the level of the competing signal is varied to achieve the desired SNR
value. Nominal presentation levels and SNRs are defined by long-term equivalent
levels of electrical signals recorded by the most frontal microphone of the hearing aid.
This frontal microphone signal is used during the computation of the evaluation mea-
sures as the reference representing unprocessed sound.

15.5 Simulation Results

In this section simulation results are presented that have been obtained with the
multi-microphone noise suppression algorithms of Secs. 15.2.3 and 15.2.4 under the
test conditions specified in Sec. 15.4. All test conditions have been evaluated for
six SNR ratios: −5, 0, 5, 10, 15, and 20 dB. Furthermore, for every test condition four
simulations were performed, each time with a different speaker (two male German,
a female German and a female American English speaker). Afterwards, the results
were averaged over these four test runs.

For the simulations with the SDWMWF algorithm of Sec. 15.2.4 all three micro-
phone channels were input to the algorithm. The test results obtained with the A2B
approach of Sec. 15.2.3 were obtained based on the front and the rear microphone
signal of the three-microphone hearing aid device, as this combination was expected
to deliver highest performance.

Both algorithms were evaluated with the functional-auditory-model-based perfor-
mance measures of Sec. 15.3.2, for the six different auditory profiles shown in Fig. 15.4
and for the normal-hearing profile. For each simulation the algorithm started from
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Figure 15.5: Living room with music source at 60◦: A2B performance for a number
of representative hearing loss profiles
a) Speech Intelligibility Index improvement (∆ SII)
b) Segmental Speech Intelligibility Index improvement (∆ segSII)
c) Signal-to-Noise Loudness Level difference improvement (∆ SNLL)
d) Signal Excitation-level Distortion (SED)

its default state and was then allowed to adapt and converge for 29 seconds. The
performance measures were computed based on the output over the last 20 sec-
onds.

The simulation results obtained with the A2B algorithm in the living room and in
the cafeteria are presented in Fig. 15.5 and Fig. 15.6, respectively. The corresponding
figures for the SDWMWF algorithm are Fig. 15.7 and Fig. 15.8. Each figure consists
of four subplots, which show the speech intelligibility index improvement (∆ SII),
the segmental speech intelligibility index improvement (∆ segSII), the improvement
in signal-to-noise loudness level difference (∆ SNLL) and the signal excitation-level
distortion (SED), respectively. Note that improvements are shown with respect to
the reference microphone (front hearing aid microphone), rather than the absolute
(seg)SII or SNLL values.
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Figure 15.6: Cafeteria with diffuse babble noise: A2B performance for a number of
representative hearing loss profiles
a) Speech Intelligibility Index improvement (∆ SII)
b) Segmental Speech Intelligibility Index improvement (∆ segSII)
c) Signal-to-Noise Loudness Level difference improvement (∆ SNLL)
d) Signal Excitation-level Distortion (SED)

15.6 Discussion

Based on Figs. 15.5–15.8 a number of conclusions can be drawn with respect to the ex-
pected improvement in intelligibility and speech distortion for each algorithm. In this
way, the different algorithm variants can easily be compared.

A first observation that follows from an inspection of Figs. 15.5–15.8 is that for a
given hearing profile in general a clear trade-off occurs between noise suppression
and speech distortion: higher noise suppression implies higher speech distortion. For
the SDWMWF algorithm this trade-off is even one of the key design parameters, as
explained in Sec. 15.2.4: More emphasis can be put on either speech distortion or
noise suppression by means of trade-off parameter 1/µ.
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Figure 15.7: Living room with music source at 60◦: SDWMWF performance for a
number of representative hearing loss profiles
a) Speech Intelligibility Index improvement (∆ SII)
b) Segmental Speech Intelligibility Index improvement (∆ segSII)
c) Signal-to-Noise Loudness Level difference improvement (∆ SNLL)
d) Signal Excitation-level Distortion (SED)

The A2B approach, unlike the SDWMWF algorithm, does not explicitly take speech
distortion into account, and leads to (slightly) higher (seg)SII and SNLL improve-
ments, but more speech distortion than the SDWMWF algorithm. The high distor-
tion figures that are observed for the A2B approach are partly due to the presence of
a software directional microphone in the signal flow graph (see Fig. 15.2), which acts
as a highpass filter, and considerably distorts the speech. It can hence be concluded
that the SDWMWF algorithm provides comparable SNR improvements as the A2B
approach, but a significantly lower distortion.

Also note that for some hearing profiles at high SNR ratios, the A2B algorithm shows
negative SII and segmental SII improvements, a phenomenon which is much less
prominent in the case of the SDWMWF algorithm.
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Figure 15.8: Cafeteria room with diffuse babble noise: SDWMWF performance for a
number of representative hearing loss profiles
a) Speech Intelligibility Index improvement (∆ SII)
b) Segmental Speech Intelligibility Index improvement (∆ segSII)
c) Signal-to-Noise Loudness Level difference improvement (∆ SNLL)
d) Signal Excitation-level Distortion (SED)

The effect of the room is also clearly noticeable. Generalized Sidelobe Canceler based
solutions are expected to show high noise suppression in low-reverberant rooms due to
the directionality of the sources and the limited amount of reverberation. However, in
more highly reverberating rooms with a point source disturbance, such as the living
room environment (see Figs. 15.5 and 15.7), SII scores are clearly reduced. The cafete-
ria scenario is most difficult as the algorithms have to cope with diffuse jammer sources
like babble noise, and experience even more reverberation. In this more challeng-
ing environment the SDWMWF algorithm offers slightly better SII and segmentally-
weighted SII figures than the A2B approach thanks to the longer filters that are used
and the additional microphone that is available.

As far as the influence of the input SNR is concerned, it is observed that the in-
telligibility improvement (∆ SII and ∆ segSII) generally decreases with increasing
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signal-to-noise ratio, especially in the higher SNR range. This can be understood as
follows: The higher the input SNR, the more difficult it is to obtain additional en-
hancement, leading to moderate or low SNR improvements and hence reduced ∆ SII
and ∆ segSII values at high input SNRs.

As far as the different auditory profiles are concerned, the normal hearing profile
gives the highest SII and segmental SII improvements, followed by profiles 4, 3, 1,
5 and 2. Profile 6 (severe loss) is clearly worst. As a conclusion, it can be stated
that the algorithms are expected to improve speech intelligibility for all hearing pro-
files, except for severe hearing loss, as long as the input SNR is lower than about
15 dB.

Both algorithms have also been evaluated based on another widely used hearing aid
prescription, the ConstSL rule. The same tendencies and dependencies were observed
as with the NAL-RP rule. Nevertheless, corresponding performance numbers some-
times differed significantly. It is therefore worthwhile putting sufficient effort into
choosing the right hearing aid and defining appropriate device settings.

Furthermore, more profound comparison tests have been performed in a car cabin
and street environment and in a low-reverberant room. The results obtained under
these acoustic conditions are not included in this chapter. It was observed that the
SDWMWF algorithm in general shows better performance than the A2B approach,
especially in more realistic, complex scenarios, introducing less speech distortion, and
typically offering similar or even higher segmental intelligibility improvements. The
A2B algorithm however uses only two microphones and shorter filters, and therefore
has a smaller computational complexity and introduces less delay than the SDWMWF
algorithm.

15.7 Conclusions

In an attempt to meet the increasing demand for improved listening comfort in adverse
listening conditions such as speech understanding amidst disturbances and environ-
mental noise (cocktail-party effect), modern digital hearing aid and cochlear implant
devices now standardly make use of advanced signal processing schemes such as multi-
microphone noise suppression techniques.

Given the increased complexity of the proposed algorithmic solutions profound a pri-
ori testing is required before an integration onto a real-time hearing aid hardware
platform can be taken into consideration. Owing to the inherent time-consuming
character of subjective listening tests there is a great demand for automated quanti-
tative test procedures to assess algorithm performance. Through the incorporation of
fundamental aspects of normal and impaired human hearing, a number of perceptually
meaningful evaluation measures have been obtained to quantify speech intelligibility
improvement and speech distortion introduced by signal enhancement algorithms,
and this for a number of representative hearing profile groups. The effectiveness of
the proposed measures has been illustrated through the evaluation of a representative
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state-of-the-art and a recently developed multi-microphone noise reduction algorithm.
By following this procedure major trends and dependencies can be highlighted from
simulation results only, as shown by Figs. 15.5–15.8. In this way, promising algorithms
variants can be ranked and selected and rough parameter tuning can be performed
through simulation, which reduces the number of time-consuming perceptual tests
with hearing-impaired subjects. Some of these results are now being validated with
psychophysical speech reception tests.
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Chapter 16

Automatic Speech Recognition
in Adverse Acoustic Conditions

Hans-Günter Hirsch

16.1 Introduction

Automatic recognition of speech can be applied in a lot of practical application scenar-
ios. However, the recognition performance of most recognition systems deteriorates
considerably in the presence of adverse acoustic conditions such as noise and reverber-
ation. The improvement of recognition rates in the case of adverse acoustic conditions
is still one of the major research topics in this area [Junqua 2000], [Peinado, Segura
2006].

To approach this subject, a short overview of the signal processing and pattern match-
ing techniques in the field of speech recognition is given. Most of today’s speech
recognition systems are based on a cepstral analysis scheme for representing short-
term spectral speech features. Furthermore, the statistical approach of modeling
speech units by Hidden Markov Models (HMMs) and the application of the Viterbi
algorithm are state-of-the-art for pattern recognition in this field [Rabiner, Juang
1993], [Jelinek 1998].

The acoustic conditions will be analyzed as they occur during the speech input in
practical applications. The major effects that influence the characteristics of speech
will be discussed.

To investigate the influence of different distortion effects, noisy speech data are needed
that have been either recorded in noisy situations or have been artificially created.
We will present a signal processing tool that allows the simulation of various acoustic
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conditions. A new database has been created with this simulation tool. Further-
more a set of recognition experiments has been defined for the new data. Both are
publicly available [Hirsch, Pearce 2006]. This database allows investigations on the
same task so that the achieved recognition performance can be compared with other
approaches.

The quantitative deterioration in the presence of different distortion effects is shown
in Sec. 16.3.2. This allows a rating of different distortion effects with respect to the
degree of performance degradation.

The existing approaches for improving the recognition performance can be roughly
separated into techniques that determine robust acoustic features as part of the front-
end processing and techniques that modify the pattern recognition process, e.g., by
adapting the parameters of the reference patterns. As representative of the front-end
processing approach we briefly describe a few details of a robust feature extraction
scheme as it has been standardized by ETSI (European Telecommunication Standards
Institute) [ETSI 2003a]. We present a new method for adapting certain HMM pa-
rameters in adverse conditions. This new approach can be especially used to adapt to
the condition of a hands-free speech input in a room. Furthermore, it is shown that
this technique can be combined with an adaptation to stationary background noise
and unknown frequency characteristics. We demonstrate the efficiency of the new
approaches by evaluating the results for recognizing the distorted data in the newly
created database.

16.2 Structure of Speech Recognition Systems

The principal structure of a speech recognition system is shown in Fig. 16.1. The
speech signal is analyzed by a short-term spectral analysis method, which is usually
called feature extraction or front-end processing. The output is a set of acoustic
features. The set of features is taken to build the components of a vector. Usu-
ally, about 100 feature vectors per second are created as the output of the analysis
stage.

Training Reference
patterns

Pattern
recognition

Recognition
result

Feature
extraction

Speech
signal

Figure 16.1: Structure of speech recognition system
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During a training phase the stream of feature vectors is used to estimate the param-
eters of the reference patterns. A reference pattern can model a whole word, a single
phoneme or some other speech unit. Depending on the recognition task the training
consists of a more or less complex processing. For speaker dependent recognition
there might be only a single or a few utterances for each word to be trained. But
in the case of speaker independent recognition there are usually thousands of utter-
ances that contain the signal of the desired reference pattern. These utterances are
usually part of a speech database that has been collected in advance. Extracting the
representative features and building a reference model can be a time consuming and
complex task.

During recognition, the sequence of feature vectors is compared with the reference
patterns. The likelihood is calculated that the vector sequence can be represented
by a reference pattern or a sequence of reference patterns. Most often some type of
Viterbi algorithm is applied for an efficient calculation of the likelihoods [Jelinek 1998].
The pattern or the sequence of patterns with the highest likelihood are presented as
recognition result.

Nowadays, most often some type of Mel filterbank in combination with a transfor-
mation of the Mel spectrum to the cepstral domain is used as the feature extraction
scheme. This type of processing will be explained in the next section. A processing
scheme will be described that has been standardized by ETSI as a front-end technique
[ETSI 2003b]. Hidden Markov Models (HMMs) are used most often as reference pat-
terns. The characteristics are presented in Sec. 16.2.2. Furthermore a method is
shown to visualize the acoustic features that define an HMM. The visualization is
performed in the spectral domain.

16.2.1 Mel Frequency Cepstral Analysis

The block diagram of the feature extraction scheme is shown in Fig. 16.2 as standard-
ized by ETSI [ETSI 2003b]. This technique can be seen as a typical representative for
an extraction of the so called Mel frequency cepstral coefficients (MFCCs) [Rabiner,
Juang 1993]. The speech signal is filtered with a high-pass filter at a very low cut-off
frequency to remove any DC offset that might have been introduced by an Analog-
to-Digital converter. This filtering is especially needed to realize a correct framewise
calculation of the short-term energy. Then, the signal is segmented into frames of
25 ms duration. The energy as well as the cepstral parameters are calculated every
dshift = 10 ms by shifting the frame window. Since humans perceive loudness on a
non-linear scale, the logarithm of the energy is calculated. The logarithmic frame
energy is taken as one component of the feature vector.

A further high-pass filtering is applied as a so called preemphasis to enhance the com-
ponents in the higher frequency region where speech has less energy. The short-term
spectrum is calculated by weighting the samples of each frame with a Hamming win-
dow and by applying a Fast Fourier Transformation (FFT). The magnitude spectrum
is taken because the short-term phase does not contain useful information about the
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Figure 16.2: Block diagram of the cepstral analysis scheme as standardized by ETSI

contents of speech. Derived from the knowledge that the human auditory system
accumulates the energies in critical bands, a so called Mel-scale filterbank is applied
[Zwicker, Fastl 1999]. The filterbank consists of 23 subbands. The spectral FFT
components are weighted with a triangular function and accumulated in the desired
frequency region of a specific subband to form a Mel spectral component. The width
of the frequency regions increases for increasing frequency according to the relation of
linear and Mel frequency. As for the energy the logarithm of the Mel spectrum is cal-
culated. Neighboring Mel frequency components are fairly correlated. To get feature
components that are statistically more independent of each other, a Discrete Cosine
Transformation (DCT) is applied to the logarithmic Mel spectrum. This statistical
independence is of advantage for modeling the speech characteristics in the reference
models and calculating the likelihoods in the pattern matching process.

In the case of the front-end as standardized by ETSI, 13 cepstral coefficients are
calculated including the zeroth cepstral coefficient. The zeroth cepstral coefficient
represents the mean of the logarithmic Mel spectrum. Thus, this value is closely re-
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lated to the frame energy. Usually either the logarithmic frame energy as calculated
from the time signal or the zeroth cepstral coefficient is used as a parameter in the
recognition process. The feature vectors for the recognition often contain the logarith-
mic frame energy and the 12 cepstral coefficients C1 to C12. To apply the adaptation
techniques that are presented in Sec. 16.4, we also need the zeroth cepstral coefficient
C0. Therefore C0 is especially extracted for the training data so that C0 becomes
an HMM parameter. Thus, the set of cepstral coefficients in the reference patterns
can be transformed back to the Mel spectrum. But C0 is not used for the pattern
recognition.

The acoustic parameters mentioned so far are called static parameters because they
are calculated only from the speech signal of a short 25 ms frame. It turned out that
the recognition performance can be increased by adding further dynamic features.
This is often realized by looking at the contour of each static parameter over time
and calculating the derivative of this contour. The parameters calculated this way
are called delta coefficients. The first derivative ∆Ci(k) of the cepstral coefficient Ci

is estimated according to

∆Ci(k) =

N∆∑
j=1

j · [Ci(k + j) − Ci(k − j)]

2 ·
N∆∑
j=1

j2

. (16.1)

This approach is used in many speech recognition systems, e.g., in the software package
HTK [Young, et. al. 2005]. A value of 3 is a typical choice for N∆. In this case the
delta coefficients are calculated from seven frames. Thus, they contain information
about the dynamic behavior in a segment of about 85 ms. In the same way the
second derivative can be estimated by applying (16.1) to the contour of the first
derivative. These parameters are called delta–delta coefficients. Usually the time
span for calculating the second derivative is less than the one for estimating the first
derivative. In total the delta–delta coefficients are calculated from a segment of about
150 ms. The delta and delta–delta coefficients are added to the static parameters to
form the final feature vector. Thus, the typical feature vector will consist of 39
components including the logarithmic frame energy and the 12 cepstral coefficients
C1 to C12 as static parameters.

Another feature extraction scheme has been standardized by ETSI [ETSI 2003a], [Ma-
choa et al. 2002], [Peinado, Segura 2006]. This is an extension of the front-end shown
in Fig. 16.2. Two further processing blocks are added as visualized in Fig. 16.3. This
scheme aims at an extraction of acoustic features that are robust in the presence of
background noise and unknown transfer function. The noise reduction consists of a
two-stage Wiener filter that is applied to the noisy speech signal. The characteristics
of the Wiener filter is estimated in the frequency domain. The filtering itself is done in
the time domain after transforming back the smoothed estimated filter characteristic
to the time domain. A further SNR dependent waveform processing is applied to the
filtered signal. The noise reduced signal is taken as the input signal to a cepstral anal-
ysis scheme as described before. The output of the cepstral analysis stage are again
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Figure 16.3: Block diagram of the robust ETSI feature extraction scheme

13 cepstral coefficients including the zeroth coefficient and one logarithmic energy co-
efficient per frame. To compensate for the influence of an unknown transfer function
a further processing block has been introduced. This contains a blind equalization
scheme that is based on a comparison of the speech spectra with a “flat” spectrum
and applying the LMS (least mean square) algorithm for adapting an equalization
filter [Mauuary 1998].

16.2.2 Modeling Speech Units as HMMs

Most speech recognition systems are based on modeling speech segments as Hidden
Markov Models (HMMs). A segment can be, e.g., a whole word or a phoneme. An
HMM consists of a chain of states as shown in Fig. 16.4 for the word“six”. The transi-
tions between the states are defined in a simple left-to-right topology derived from the
natural behavior of uttering the speech segments one after each other along time. The
transition to a succeeding state or the remaining in a certain state are described by
transition probabilities. The probability to remain in a state contains the information
about the average duration of a speech segment.

In the simple example shown in Fig. 16.4 each state is related to a phoneme whereas
in practical implementations each phoneme is usually modeled by a sequence of at
least three states. Each state contains a set of parameters that mainly describe the
spectral and energy characteristics of the corresponding segment. In the simple case
of a speaker dependent model the set of parameters can correspond to the vector of
features. The components of this vector can be estimated, e.g., as the average of all
feature vectors that are mapped on this HMM state during the training procedure.
In the more complex case of a speaker independent recognition each state contains
information about the statistical distribution of each acoustic parameter. Modeling
the spectral and energy characteristics by means of a distribution function accounts
for the effect that the pronunciation of a speech segment varies for different speakers.

“s” “i” “k” “s”

S1 S2 S3 S4

Figure 16.4: Structure of an HMM in speech recognition
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Based on the assumption of statistically independent acoustic features each parameter
can be described by an individual one-dimensional distribution function. Usually a
Gaussian distribution or a weighted mixture of Gaussian distributions is taken. The
characteristics of these distribution functions are estimated in the training phase by
a large number of utterances from different speakers.

For research purposes it is of interest to visualize the spectral characteristics that
are contained in an HMM. Furthermore, we are interested in visualizing the spectral
modifications that are introduced by the adaptation of HMMs. Therefore, for each
HMM state Sn the vector C̄(Sn) of static MFCCs is transformed back to the linear
Mel spectral domain according to (16.2). This is based on the availability of the
zeroth cepstral coefficient as described in the previous section. The output is the
vector |X̄(Sn)| containing the magnitude Mel spectrum in Kmel bands. A typical
value for Kmel is 24. The Mel spectrum |X̄(Sn)| represents the spectral information
of the speech segment as modeled by HMM state Sn

C̄(Sn) =⇒
IDCT

loge(|X̄(Sn)|) =⇒exp |X̄(Sn)| for all states Sn . (16.2)

The MFCCs of vector C̄(Sn) are the means of individual Gaussian distribution func-
tions in the case of modeling with a single distribution only. When modeling with
a mixture of distributions, vector C̄(Sn) represents the weighted average over the
means of all Nmix distribution functions. The weighted average C̄i(Sn) of a single
cepstral coefficient is calculated according to

C̄i(Sn) =
Nmix∑
j=1

wj · Ci(Sn, j),
Nmix∑
j=1

wj = 1 (16.3)

applying the mixture weight wj to the cepstral coefficient Ci(Sn, j) of the Gaussian
distribution with index j. Besides the spectral characteristics of the speech segment
we need the temporal information at which point in time it occurs and how long the
segment is. The average duration d(Sn) of a speech segment can be estimated from
the conditional probability p(Sn|Sn) of remaining in the corresponding HMM state Sn

according to (16.4). dshift describes the time shift of the analysis window as applied
during feature extraction

d(Sn) =
1

1 − p(Sn|Sn)
· dshift . (16.4)

Then, the Mel spectrum |X(Sn)| of HMM state Sn can be positioned with respect to
its point in time t(Sn) at the middle of each segment

t(Sn) =
n−1∑
j=1

d(Sj) +
d(Sn)

2
. (16.5)

Furthermore, a spline interpolation is individually applied to the contour of the mag-
nitude spectral values in each Mel band. Thus, the magnitude Mel spectrum is recre-
ated at a frame rate as it is defined by the window shift in the feature extraction



468 16 Automatic Speech Recognition in Adverse Acoustic Conditions

0

200

400
0

1000
2000

3000
f/Hz

t/ms

0

200

400

600 0
1000

2000
3000

(a) (b)
t/ms

f/Hz

sixzero

Figure 16.5: 3-D visualization of the spectrograms derived from two HMMs

process. Two spectrograms that have been derived as described before are visual-
ized in a three-dimensional representation in Fig. 16.5. They represent the char-
acteristics of the HMMs for the words “zero” and “six” where the HMMs are the
result of training with the male training subset of the TIDigits data [Leonard 1984].

The spectrogram for the word “zero” in Fig. 16.5-a contains components at higher
frequencies that exist at the beginning of the word due to the fricative. Furthermore,
the characteristics of the vowel“e”become visible with a second formant at a frequency
of about 2 kHz. The formants of the vowel “o” at lower frequencies are visible towards
the end of the word. Figure 16.5-b contains the formant spectrum of the vowel in the
middle for the word “six” as well as the spectral components at higher frequencies due
to the fricatives at the beginning and at the end. The valley between the vowel and
the fricative at the end is due to the plosive “k” that manifests as a short pause in the
spectrum.

16.3 Acoustic Scenarios during Speech Input

An overview of the distortion effects as they occur in practical applications of speech
recognition systems is given in Fig. 16.6.

The application of automatic speech recognition makes especially sense in situa-
tions where the user does not have his or her hands available for controlling a de-
vice by keyboard input or mouse movements. In many cases it would be desirable
to allow speech input to a recognition system without the need to wear a close-
talking microphone. But this hands-free speech input leads to a modification of the
speech signal due to multiple reflections of the sound inside a room, i.e., reverbera-
tion.
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Figure 16.6: Acoustic scenarios at the speech input to a recognition system

Besides reverberation, background noise is present in almost all applications. The
presence of noise leads to a superposition of speech and noise signals. Noise can be
classified into two categories when considering its influence on speech recognition.
It can be a stationary signal such as the noise of an engine or a fan or it can be
non-stationary such as a knocking at a door. In most applications both types are
present. The worst case is the presence of speech or music in the background because
it leads to the task of separating a desired speech signal from a competing speech
signal.

Furthermore, in a lot of applications the recognizer is not at the same location as
the microphone. Most information retrieval systems are located at a remote position
somewhere in a telephone or data network. In this case the speech signal has to be
transmitted over an analog or digital telephone line or a digital data line. The trans-
mission can take place over a fixed or a mobile network. The speech signal is encoded
before the transmission and decoded later on. This causes a minor degradation of
the speech signal dependent on the type of speech coding [Hirsch 2002]. Additional
distortion is introduced in mobile networks when the speech is transmitted over a
noisy cellular channel.

16.3.1 Simulation of the Acoustic Environment

The focus of this work is on situations as they are of interest for practical applications
of speech recognition systems. Three situations are considered as being of great
interest:

1. Hands-free speech input while driving a car;

2. Hands-free speech input at a desk in an office with the intention of controlling
the phone itself or using it for information retrieval from a remote system; and

3. Hands-free speech input in a living room with the intention of controlling, e.g.,
audio or video devices.
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Figure 16.7: Processing scheme for the simulation of acoustic environments

In this section we describe a processing scheme to simulate the different acoustic sce-
narios as they might occur during speech input to a recognition system. An overview
about the processing options is given in Fig. 16.7.

We model the hands-free speech input by convolving the speech signal with an impulse
response reflecting the transmission between the speaker’s mouth and the microphone
in the desired acoustic environment. In practice the impulse response is usually a time
variant function when the speaker moves in the room or the room configuration is
modified by, e.g., opening or closing doors or windows. A time-invariant response is
used assuming stationary conditions during an individual utterance as speech input
to the recognition system. However, the given impulse responses can be modified
dependent on the desired reverberation time T60. Thus, we can model slight changes
of the acoustic environment. We artificially created impulse responses for the two
room conditions while taking a measured impulse response for modeling hands-free
communication in a car.

The presence of noise in the background can be simulated by adding a recorded noise
signal to the speech signal at a desired SNR. The estimation of speech and noise lev-
els is done according to ITU recommendation P.56 [ITU 1993]. The same approach
was applied in earlier investigations where noisy speech data were generated for the
evaluations inside the ETSI working group AURORA [Hirsch, Pearce 2000]. The
speech and noise signals are filtered with the G.712 telephone frequency character-
istic [Campos-Neto 1999] to estimate their levels. Thus, the SNR is related to the
energy of the signals in the perceptually important frequency range from about 300
to 3400 Hz.

Certain frequency characteristics can be applied to simulate the recording with a tele-
phone device and the transmission over telephone networks. The applied frequency



16.3 Acoustic Scenarios during Speech Input 471

responses have been defined by ITU [Campos-Neto 1999] and are known by their ab-
breviations G.712, IRS and MIRS. In all cases frequency components below 300 Hz
and above 3400 Hz are considerably attenuated. The G.712 filtering has a flat charac-
teristic in the range between 300 and 3400 Hz, whereas the frequency responses of IRS
and MIRS show an increasing trend in this range with a slightly higher attenuation
at low frequencies.

The usage of mobile phones is a typical scenario while accessing a speech dialog sys-
tem for information retrieval. The encoding and decoding of the speech as well as
the transmission over the noisy cellular channel degrade the speech signal [Vary, Mar-
tin 2006]. The influence of these distortions could be avoided by the approach of
a distributed speech recognition system where the acoustic features are extracted in
the terminal and transmitted as digital data with high error protection. However,
so far this approach is not seen in practical applications. Thus, it seems to be use-
ful to simulate the transmission over voice channels in cellular networks. Here, the
AMR (adaptive multi rate) coding schemes are applied for considering the influence of
speech encoding and decoding [ETSI 2000]. These schemes are mainly used for speech
transmission in GSM and UMTS networks. There are two sets of coding schemes,
one for encoding speech in the narrow-band frequency range up to about 3.4 kHz and
one in the wide-band range up to about 7 kHz. The AMR-NB (narrow-band) codec
includes eight coding modes with data rates between 4.75 and 12.2 kBit/s. The AMR-
WB (wide-band) coding scheme includes nine coding modes with data rates between
6.6 and 23.85 kBit/s.

The influence of the transmission over GSM and UMTS channels is simulated by ap-
plying bit error patterns to the data stream between speech encoding and decoding.
These error patterns have been derived by simulating channel encoding and decoding
together with the typical error patterns that are applied between channel encoding
and decoding. Error patterns exist for different transmission scenarios as, e.g., driv-
ing in a car. An advantage of creating versions of the typical bit error patterns that
can be directly applied to the data stream after speech encoding, is that no channel
encoding and decoding blocks are needed in the simulation tool. In the case of GSM
transmission, error patterns exist for all AMR coding modes that are designated for
their usage in GSM networks. For each speech coding mode there are patterns for
different C/I (carrier-to-interference) ratios. The value of the C/I in dB describes the
quality of the cellular channel. For example, a value of 4 dB describes the communica-
tion at the border of a radio cell whereas a value of 16 dB describes the situation in the
center of the radio cell. In the case of CDMA based transmission in UMTS networks
the quality of the cellular channel is defined by the frame error rate that describes
the percentage of erroneous frames. Error patterns are available for all AMR coding
modes and frame error rates of 0.5 %, 1 %, and 3 %.

A graphical user interface is available in the World Wide Web as access to this tool.
It allows the definition of a desired speech input scenario and can be used to upload
and process speech files [Finster 2005].

A noisy speech database has been created by means of the simulation tool for simulat-
ing the influence of different distortion effects. This database has been made publicly



472 16 Automatic Speech Recognition in Adverse Acoustic Conditions

available by distributing it via the European Languages Resource Association ELRA
under the name “Aurora-5”. Thus, it can be used by researchers and developers to
determine the recognition performance of their own algorithms and compare their re-
sults with others. The principal setup is similar to the one of the “Aurora-2” database
that was created some time ago as a first approach for comparative investigations in
the field of robust recognition.

The well known TIDigits speech database [Leonard 1984] is the basis for the creation
of noisy data where the “clean” TIDigits data have been downsampled to a sampling
frequency of 8 kHz. Only the recordings of the adult American speakers are used.
These contain sequences of English digits with a maximum of 7 digits per utterance.
The data are separated into two sets. One has been designated for training a recog-
nition system and the other one can be used for testing.

All available 8700 test utterances with a total of about 8700 digits are used to create
test sets for different acoustic conditions. We focus on the two scenarios of applying
a speech recognition system:

1. Inside a car to control devices in the car or to retrieve information from a remote
speech server somewhere in a telephone network;

2. Inside a room to enable the hands-free control of telephone, audio or video
equipment.

For the car environment we created test sets at SNRs of 0 to 15 dB by:

• adding car noise only,

• simulating a hands-free speech input and adding car noise,

• simulating a hands-free speech input, adding car noise and simulating a trans-
mission over the GSM network.

This set-up allows the comparison of different speech input and transmission condi-
tions.

To investigate the influence of a speech input in a noisy room environment we created
test sets at SNRs of 0 to 15 dB by:

• adding interior noise only,

• simulating the hands-free speech input in an office room and adding interior
noise,

• simulating the hands-free speech input in a living room and adding interior
noise.

This enables the comparison of a close-talk and a hands-free input in noisy condi-
tions.

We used a set of different noise recordings for the creation of a single test set. These
recordings reflect the desired condition of the test set. For the Aurora-2 experiment
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only a single recording was taken. Thus, we increase the variance of noise character-
istics within each test set in comparison with Aurora-2. As for Aurora-2, we defined
experiments for training a recognition system and investigating the speaker indepen-
dent recognition of connected digits with the freely available software package HTK
[Young, et. al. 2005].

Recognition results on this new database will be presented in Sec. 16.4.5 after intro-
ducing different techniques for improving the robustness of recognition systems.

16.3.2 Recognition Results for Different Distortion Effects

With the availability of the simulation tool we study the influence of different distor-
tion effects on the performance of a recognition system. The goal is a comparative
rating of the different effects with respect to the deterioration of the recognition per-
formance.

As for the creation of the new database, the speaker independent recognition of con-
nected English digits is considered by creating modified versions of the TIDigits. The
robust analysis scheme as described in Sec. 16.2.1 is taken for the extraction of acous-
tic features [ETSI 2003a]. We use this front-end here because it can be considered
as representing a state-of-the-art feature extraction as applied in most recognition
systems today. It includes a certain robustness against noise. The processing scheme
provides twelve cepstral coefficients and one energy coefficient as acoustic parameters
for describing a short speech segment of 25 ms duration. A feature vectors contains 39
components including the corresponding delta and delta–delta coefficients. A feature
vector is determined every 10 ms.

The training of the recognition system is done with clean data only. The corresponding
tools of HTK are applied for training and recognition [Young, et. al. 2005]. The
training set of the TIDigits is taken for the training of whole word HMMs. Gender
dependent models are determined for the 11 digits including the two versions “zero”
and “oh” for the digit “0”. Each digit HMM consists of 16 states where each acoustic
parameter is modeled with a mixture of two Gaussian distributions. A further one
state model with a mixture of eight Gaussian distributions is trained as representation
of the speech pauses. We achieve a word error rate of 0.69 % on the recognition of the
clean TIDigits test data including deletion and insertion errors. This value represents
the baseline performance for this recognition task.

The word error rates are shown in Fig. 16.8-a for recognizing the TIDigits after apply-
ing a simulation where the speech data are recorded in hands-free mode.

Word error rates are presented for the two rooms as they were defined in the simu-
lation tool. We refer to them as “office” and “living” room. Furthermore we vary the
reverberation time in a certain range. Error rates are shown for a variation of the
reverberation time of between 0.2 and 0.9 seconds. Error rates considerably increase
for increasing reverberation time. Another result is plotted as a star in Fig. 16.8-a.
It was achieved by applying the measured impulse response inside a real room used



474 16 Automatic Speech Recognition in Adverse Acoustic Conditions

0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40
Recognition of TIDigits

Office room
Living room
Clean

0 5 10 15 20
0

5

10

15

20

25

30

35

40
Recognition of noisy TIDigits

Multimedia room

Reverberation t/s SNR/dB

W
or

d 
er

ro
r r

at
e/

%

W
or

d 
er

ro
r r

at
e/

%

Car
Subway
Train station
Entry hall
Restaurant

a) b)

Figure 16.8: Word error rates applying the robust ETSI front-end for speech input in
hands-free mode and in the presence of background noise

for multi-media presentations. This room has a reverberation time of about 0.4 s.
The result is very close to the results achieved with the simulated rooms, providing
evidence that the room simulation is reasonably realistic.

In an additional experiment we investigated the hands-free speech input in a car.
Compared with the clean and anechoic speech we observed an increase in the error
rate by about a factor of five from 0.69 % to 3.16 %. As expected, the deterioration
is much less than in the rooms.

We study the presence of background noise as another distortion effect. Word er-
ror rates are shown in Fig. 16.8-b for the recording in five different noise scenarios.
Noise signals have been added at SNRs in the range 0 to 20 dB. The results for these
five noises represent a typical range of word error rates. The general characteristic of
increasing error rates for lower SNRs is well known from many investigations. The dif-
ference between the noise signals is due to the characteristics of the individual noise
scenarios. It depends on the presence and the length of non-stationary segments,
where the noise level and the spectrum of the noise signals changes. The curve with
the lowest error rates is achieved for the recording inside a car, where the noise is fairly
stationary. Results are worst for the recording in a restaurant with music and people
chatting in the background. One has to keep in mind that a robust feature extrac-
tion scheme is applied. This scheme contains a processing block for the reduction of
stationary noise. Error rates would be much higher in the case of applying, e.g., a stan-
dard cepstral analysis scheme as described in Sec. 16.2.1.

Word error rates are listed in Table 16.1 showing the performance in the presence of a
fixed spectral weighting as occurs in telephony. The digit recordings are filtered with
typical telephone frequency characteristics as they have been defined by ITU and as
they are available in the simulation tool.
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Table 16.1: Word error rates of TIDigits data for different filter characteristics

Filter characteristic No filter G.712 MIRS IRS

Word error rate/% 0.69 0.72 0.79 1.07

Only a small deterioration of the recognition performance can be seen when compar-
ing this type of distortion with the effect of reverberation or background noise. This is
due to the processing block of the feature extraction scheme that performs a blind es-
timation and equalization of unknown frequency characteristics. Without such a com-
pensation scheme the influence of an unknown frequency characteristic is much higher.
This was a major problem in older recognition systems.

The use of a mobile phone for accessing a recognition system is studied as the last
distortion effect. The word error rates are listed in Table 16.2 for the eight coding
modes of the AMR scheme [ETSI 2000].

Table 16.2: Word error rates of TIDigits data for AMR speech en(de)coding

AMR-mode (kBit/s) No coding 12.2 10.2 7.95 7.4 6.7 5.9 5.15 4.75

Word error rate/% 0.69 0.98 1.01 1.23 1.32 1.38 1.34 1.84 1.82

We can see that the error rate increases for coding modes with a lower data rate. But
the deterioration is relatively small in comparison with the other distortion effects.
The word error rates shown in Fig. 16.9 also take into account the transmission over
the noisy cellular channel of a GSM network.

0 5 10 15
0

10

20

30

40

50

60

70

80

C/I / dB

Recognition of TIDigits over GSM

12.2 kBit/s
10.2 kBit/s
7.95 kBit/s
7.4 kBit/s
6.7 kBit/s
5.9 kBit/s

5.15 kBit/s
4.75 kBit/s

W
or

d 
er

ro
r r

at
e/

%

Figure 16.9: Word error rates of TIDigits data after transmission over GSM networks
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The curves show a higher deterioration for coding modes with a higher date rate at
low values of C/I because the higher data rate for the source coding comes along with
a lower data rate for the channel coding. The lower data rate for the channel coding
causes a lower percentage of detectable and correctable errors, which results in a lower
quality of speech. The AMR coding schemes have been introduced to improve the
speech quality in mobile communication by switching to a mode with a lower data
rate in case of a bad cellular channel. Keeping this in mind, the influence of using
a mobile phone as speech input to a recognition system is also relatively small in
comparison with the influences of reverberation or background noise.

As a conclusion of these investigations it turns out that reverberation and background
noise are the effects that cause major deterioration of recognition performance. Tech-
niques should be introduced to compensate for the influence of background noise and
reverberation.

16.4 Improving the Recognition Performance in
Adverse Conditions

The existing approaches for improving the recognition performance in adverse condi-
tions can be roughly separated into two classes as visualized in Fig. 16.10.

One class contains the techniques to extract robust features from the speech signal
that should be independent of the acoustic input conditions. We presented an example
of a robust front-end in Sec. 16.2.1.
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Figure 16.10: Approaches for improving the recognition performance in adverse con-
ditions
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The second class consists of methods to modify the pattern recognition process de-
pendent on the acoustic conditions. This can be done in different ways. As a first
approach the recognition system can be trained on data that have been recorded in
adverse conditions. In most cases the highest performance can be achieved when
applying reference patterns that have been trained on data recorded in exactly the
same conditions as in the recognition phase. But the conditions have to be known
in advance. Therefore, the performance deteriorates as soon as the conditions during
testing become different from the ones used for training. As a compromise, the refer-
ence patterns can be trained on data from all the expected acoustic input conditions.
The term “multi-condition” is used for this type of training. However, again the con-
ditions have to be known in advance, and it needs a great deal of effort in recording
or artificially creating data for all conditions.

Besides the training of reference patterns on adverse conditions the recognition process
can be modified by omitting speech segments or, more precisely, certain spectral
regions of these segments that are marked as unreliable. This approach is known as
the“missing feature”technique [Cooke et al. 2001]. The assessment of speech segments
or spectral regions as unreliable can be, for example, based on the estimation of the
local SNR in the corresponding spectral regions. In the case of estimating a low SNR,
these spectral regions are not used at all or get a lower weight for the calculation
of the probabilities in the pattern recognition process. The probabilities describe
the likelihood that the sequence of feature vectors can be modelled by an HMM
or a sequence of HMMs. A disadvantage of the missing feature technique so far is
its restriction to the use of spectral features so that it can not easily be applied to
recognition systems that are based on cepstral features.

A third possibility of modifying the pattern recognition is an adaptation of the refer-
ences based on an estimation of the acoustic conditions. This is indicated in Fig. 16.10.
There are different approaches to realizing the adaptation, e.g., [Leggeter, Woodland
1995], [Woodland 2001], [Gauvain, Lee 1994], [Sankar, Lee 1996], [Gales, Young 1996]
and [Minami, Furui 1996]. We will present our approach to adapting the energy and
spectral parameters as they are contained in HMMs to a reverberant environment.
Furthermore, we introduce a new approach for adapting the delta and delta–delta
coefficients. Recognition results are presented for the recognition of reverberant sig-
nals. Then, we show how this adaptation technique can be combined with an adap-
tation to background noise and unknown frequency characteristics. The efficiency
of the adaptation scheme is demonstrated by presenting results on the recognition
of the distorted data from the new database “Aurora-5”, which was described in
Sec. 16.3.1.

16.4.1 Adapting HMMs to Reverberation

To derive the approach for adapting the HMMs, we first analyze the modifications that
are introduced by reverberation with respect to the usage of a cepstral analysis scheme
and the modelling with HMMs as applied in the field of speech recognition. Based on
the results of this analysis we present the new method with its mathematical details
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for adapting the static parameters of HMMs to the reverberant signals of a hands-free
speech input. The only parameter that is needed for performing the adaptation is an
estimate of the reverberation time T60.

Modeling the Influence of a Hands-free Speech Input

Ideally, the multiple reflections of sound in a room can be described by an exponential
decay of the acoustic energy, which has been the result of early investigations in room
acoustics [Kuttruff 2000]. This leads to a room impulse response (RIR) h(t) with an
exponentially decaying envelope according to

h2(t) ∼ e−
6·ln(10)

T60
·t . (16.6)

The only parameter for defining the exponential decay is the reverberation time T60,
which takes values in the range of about 0.2 to 0.4 seconds for smaller rooms and
of about 0.4 to 0.8 seconds for larger rooms. It can take values above 1 second
for very large rooms such as naves. The reverberation time depends on the in-
terior equipment in the room and the individual absorption characteristics of the
walls.

The RIR can be transformed to the room transfer function by means of a Fourier trans-
form. The room transfer function has a contour that changes very fast with frequency.
Usually only the envelope of the room transfer function is of interest when looking at
the filterbank approaches that are applied for extracting acoustic features in speech
recognition. This effect can be covered by an adaptation to an unknown frequency
characteristic. More important for the frame-based analysis in speech recognition is
the influence on the contour of the short-term energy over time. The energy contours
of a speech signal are shown in Fig. 16.11-a before and after the transmission in a
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room. The energy is usually estimated as short-term energy in frames of about 25 ms
duration. It can be seen that the reverberation leads to an extension of each sound
contribution. This extension occurs as the so called reverberation tail with the expo-
nentially decaying envelope of the RIR. The same effect can also be seen when looking
at the energy contours in single subbands of a Mel-scale filterbank, which is usually
applied in the front-end of a speech recognition system.

Transforming such energy contours to the so called modulation spectrum by means of
a Fourier transform leads to the estimation of the modulation transfer function m(F )
[Houtgast et al. 1980], which can be mathematically described by

m(F ) =
1√

1 + (2 · π · F · T60
6·ln(10) )

2
. (16.7)

Fig. 16.11-b shows the low pass characteristic of the modulation transfer function for
different values of T60. The cut-off frequency of the low pass characteristic shifts to
lower values of the modulation frequency for increasing values of T60. This corre-
sponds to longer reverberation tails for higher values of T60. The extension of sound
contributions can lead to masking in the acoustic parameters of low energy sounds by
the parameters of a preceding sound with higher energy.

Adaptation of Static Parameters

In reverberant conditions it can be expected that the acoustic excitation described
by the parameters of a single state will also occur in succeeding states with some
attenuation when clean speech HMMs are used. Figure 16.12 visualizes this effect.
Each state Sn of an HMM describes a speech segment with a certain average dura-
tion. This duration d(Sn) can be derived according to (16.4) from the probability of
remaining in this state. The speech segment contains a certain acoustic excitation
with a defined energy. Owing to the reverberation with its exponentially decaying
RIR, this energy will be spread over time. Looking at the visualization in Fig. 16.12
an energy contribution due to the excitation in state S1 will also appear in state S3.
The factor αn,1 describing the energy contribution in a succeeding state Sn due to
the excitation in state S1 can be calculated according to

αn,1 =

te(Sn)∫
ts(Sn)

h2(t) dt

∞∫
0

h2(t) dt

with ts(Sn) =
n−1∑
j=1

d(Sj) (16.8)

te(Sn) = ts(Sn) + d(Sn) .

Given an estimate of the reverberation time T60, the contribution factors can be
individually calculated for all states of all HMMs.
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The mean of the energy parameter at an individual state Sn can be adapted by
adding the energy contributions of the state itself and the preceding states according
to

Ẽ(Sn, j) = αn,n · E(Sn, j) + αn,n−1 · Ē(Sn−1) + αn,n−2 · Ē(Sn−2) + . . . (16.9)

= αn,n · E(Sn, j) +
n−1∑
l=1

αn,l · Ē(Sl), 1 ≤ j ≤ Nmix , (16.10)

where Nmix denotes the number of mixture components. The adaptation is individ-
ually applied to each mixture component with index j. For the preceding states Ē
denotes the weighted average that is calculated over the mixture of Gaussians in the
same way as defined for the cepstral coefficients in (16.3).

In the same way the means of the power spectral density can be adapted. When using
MFCCs, the cepstral coefficients have to be transformed back to the spectral domain
according to (16.2). The power spectral density value at state Sn in the Mel bin with
index µ can be adapted by adding the contributions of the preceding states according
to

|X̃µ(Sn, j)|2 = αn,n · |Xµ(Sn, j)|2 +
n−1∑
l=1

αn,l · |X̄µ(Sl)|2, 1 ≤ µ ≤ Kmel . (16.11)
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The adapted spectra have to be transformed to the cepstral domain according
to

|X̃(Sn, j)|2 =⇒
sqrt&log

loge(|X̃(Sn, j)|) =⇒
DCT

C̃(Sn, j) . (16.12)

In practice, mainly two to three preceding HMM states have an influence on the
current state. This depends on the reverberation time and on the average durations
of the HMM states.

The variances of the HMM are not adapted. It turned out in earlier investigations that
the modification of the variances has only a minor influence on the improvement of
the recognition performance [Gales 1995], [Hirsch 2001].

The effects of this adaptation approach are visualized in Fig. 16.13 in the spectral
domain by comparing the spectral characteristics as they can be derived for three dif-
ferent HMMs, which was described in Sec. 16.2.2. The three plots show different HMM
versions of the word “six”. The spectrogram of the clean HMM is shown in Fig. 16.13-
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Figure 16.14: Estimation of T60 by an iterative search of the maximum likelihood

a as it was trained with the utterances of the TIDigits database. Only the utterances
containing a single digit were taken for the training. The contributions of the frica-
tives at the end can be clearly seen in the high frequency region while the formants
of the vowel are visible in the middle of the word. The spectrogram in Fig. 16.13-b
represents the HMM that was trained on the TIDigits data after applying an artificial
reverberation to the training utterances. The reverberation tails can be clearly seen
when looking at the contours of individual Mel bands. The spectrogram in Fig. 16.13-
c represents the HMM after adapting the clean HMM with the new approach. A fixed
value is chosen for the reverberation time T60. The reverberation tails can also be
seen in this figure. Comparing it with the spectrogram trained on reverberated data,
many similarities are visible. This provides evidence that the new approach allows an
adaptation of the static parameters that is comparable to training the HMM on data
that have been recorded under reverberant conditions.

The estimated reverberation time T60 is the only parameter that is needed for the
adaptation. The recognition of an utterance is achieved with a set of adapted HMMs
where the applied value of T60 has been estimated from the recognition of the previous
utterance. T60 is estimated after the recognition of an utterance by a search for this set
of adapted HMMs that leads to a maximum likelihood for another forced recognition of
the already recognized sequence of HMMs. The restriction to the forced recognition
of the already recognized HMM sequence is introduced to limit the computational
costs. This iterative process is visualized in Fig. 16.14.

16.4.2 Adaptation of Delta Parameters

Comparing the contours of the clean and the reverberant HMM at individual Mel bins
it becomes obvious that the delta and delta–delta parameters as time derivatives of
the static parameters are also modified by the influence of the hands-free speech input.
This can be seen, for example, in Fig. 16.13-a where a “valley” is visible between the
vowel and the succeeding phoneme for the clean HMM. This “valley” is filled by the
reverberation tails for the reverberant HMM versions. This indicates that the time
derivatives will also be different in this region. The calculation of the delta parameters
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in the feature extraction is described in Sec. 16.2.1. We estimate the delta parameters
of the reverberant speech by looking at the contours of the adapted static parameters
from all HMM states. The average logarithmic frame energies of all states are con-
sidered. A spline interpolation according to (16.13) is applied to recreate the average
energy contour at the frame rate of the feature extraction

{loge Ēada(S1), . . . , loge Ēada(Sn−1), loge Ēada(Sn), loge Ēada(Sn+1), . . .} =⇒
Spline

{loge Ēada(0), . . . , loge Ēada[(k − 1) · dshift], loge Ēada[k · dshift],
loge Ēada[(k + 1) · dshift], . . .} . (16.13)

In the same way an interpolated version of the average energy contour can be calcu-
lated for the average frame energies of the clean speech HMM. Applying (16.1) we get
a set of average logarithmic delta energies ∆ loge Ēclean[k ·dshift] for the clean HMM as
well as the set ∆ loge Ēada[k·dshift] for the adapted HMM. The number of energy values
is dependent on the total length as modeled by the individual HMM. But the number
is equal for the clean and the adapted HMM. Thus the differences between the clean
and the adapted delta energies can be calculated with

∆ loge Ēdiff[k · dshift] = ∆ loge Ēada[k · dshift] − ∆loge Ēclean[k · dshift] (16.14)

for all k and each frame at time k ·dshift. These values describe the average differences
between the delta logarithmic energies of the adapted and the clean HMM at each
frame. By means of a spline interpolation the average differences are calculated for
all HMM states according to

{∆loge Ēdiff(0), . . . ,∆loge Ēdiff[(k − 1) · dshift],∆loge Ēdiff[k · dshift],
∆loge Ēdiff[(k + 1) · dshift], . . .} =⇒

Spline

{∆loge Ēdiff(S1), . . . ,∆loge Ēdiff(Sn−1) , ∆loge Ēdiff(Sn),
∆loge Ēdiff(Sn+1), . . .} . (16.15)

A weighted version of these average differences is added to the corresponding delta
parameters as contained in the clean HMM to create a set of adapted delta parameters
according to

∆ loge Ẽ[Sn, j] = ∆ loge Eclean[Sn, j]+β ·∆loge Ēdiff[Sn], 1 ≤ j ≤ Nmix . (16.16)

This is done individually for each state Sn and for each mixture component with
index j. A factor β is introduced for the weighted summation of the differences.
During recognition experiments we found a value of 0.7 for β to achieve the highest
performance.

The delta cepstral parameters can be adapted in the same way. The average loga-
rithmic Mel spectral values are taken as the basis as they can be calculated by (16.2)



484 16 Automatic Speech Recognition in Adverse Acoustic Conditions

from the average cepstral coefficients for each HMM state. The spline interpola-
tion

{loge |X̄µ(S1)|, . . . , loge |X̄µ(Sn−1)|, loge |X̄µ(Sn)|, loge |X̄µ(Sn+1)|, . . .} =⇒
Spline

{loge |X̄µ(0)|, . . . , loge |X̄µ[(k − 1) · dshift]|, loge |X̄µ[k · dshift]|,
loge |X̄µ[(k + 1) · dshift]|, . . .}, 1 ≤ µ ≤ Kmel (16.17)

is applied to recreate the contour of the logarithmic Mel magnitude spectral compo-
nents loge |X̄µ[k ·dshift]| in each Mel bin µ and for each frame with index k at the frame
rate of the feature extraction. The logarithmic spectral domain seems to be the right
domain for applying the spline interpolation even though the interpolation could also
be immediately applied to the average cepstral parameters. The interpolated average
logarithmic spectrum loge(|X̄[k · dshift] is transformed to the cepstral domain for each
frame with index k

loge(|X̄[k · dshift]|) =⇒
DCT

C̄[k · dshift] . (16.18)

The delta coefficients ∆C̄[k · dshift] are calculated for the contour of each individual
average cepstral coefficient C̄i and all frames. This is repeated for the clean as well
as for the adapted HMM so that the difference between these two versions can be
estimated

∆C̄diff[k · dshift] = ∆C̄ada[k · dshift] − ∆C̄clean[k · dshift] for all k . (16.19)

These values describe the average differences between the delta cepstral coefficients of
the adapted and the clean HMM at each frame. By means of a spline interpolation the
average differences are calculated individually for each cepstral coefficient C̄diffi

(Sn)
for all HMM states according to

{∆C̄diffi
(0), . . . ,∆C̄diffi

[(k − 1) · dshift],∆C̄diffi
[k · dshift],

∆C̄diffi
[(k + 1) · dshift], . . .} =⇒

Spline

{∆C̄diffi
(S1), . . . ,∆C̄diffi

(Sn−1),∆C̄diffi
(Sn),∆C̄diffi

(Sn+1), . . .} . (16.20)

The adapted cepstral coefficients can be estimated by adding the differences as con-
tained in vector ∆C̄diff[Sn, j] to the delta coefficients of the clean HMM according
to

∆C̃[Sn, j] = ∆Cclean[Sn, j] + β · ∆C̄diff[Sn], 1 ≤ j ≤ Nmix . (16.21)

This can be done individually for each HMM state Sn and each mixture component
with index j. The value of β is the same as in (16.16) for the adaptation of the energy
coefficients.

The delta–delta parameters can be adapted in the same way as the delta parameters.
As described in Sec. 16.2.1 the delta–delta parameters are calculated from the delta
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parameters in the same way the delta parameters are determined from the static
parameters. Thus the average delta–delta parameters can be calculated from the
average delta energy and the average cepstral coefficients as they are determined
in (16.13) and (16.18). Otherwise the adaptation of the delta–delta parameters is
achieved as described by (16.14)–(16.16) and (16.19)–(16.21) just by substituting delta
by delta–delta.

16.4.3 Recognition Experiments on Hands-Free Speech Input

Recognition experiments have been performed to validate the applicability of the new
adaptation approaches and to quantify the improvements that can be achieved. A
cepstral analysis scheme is applied that is similar to the one described in Sec. 16.2.1.
Each feature vector contains the 13 cepstral coefficients C0 to C12 and the logarithm of
the energy parameter. C0 is only needed to transform back the cepstral coefficients to
the spectral domain as part of the adaptation process. C0 is not used for the recogni-
tion. Furthermore, the delta and delta–delta parameters of C1 to C12 and the energy
are part of each feature vector. The TIDigits database is considered again. Gender
dependent HMMs are trained for each word as described in Sec. 16.3.2. The adapta-
tion is individually applied to each speech utterance when detecting the beginning of
speech. The applied VAD (voice activity detector) is based on a detection of changes
in the Mel magnitude spectrum [Hirsch, Ehrlicher 1995].

The word error rates are shown in Fig. 16.15 for the recognition of the clean TIDigits as
well as two further versions where the recording in two rooms has been simulated. The
results are presented for four conditions that differ in the type of feature extraction
or the adaptation mode. The first condition is based on the application of the robust
ETSI front-end [ETSI 2003a]. The cepstral analysis scheme as described before is
applied for the three other conditions in combination with and without adaptation.
Word error rates are presented for the three cases where the recognition is done:

• without any adaptation, or

• with adaptation of the static parameters only, or

• with adaptation of the static and the delta and delta–delta parameters.

The error rates for the robust ETSI front-end are higher in comparison to ap-
plying the cepstral analysis scheme without any adaptation. For the condition
of a hands-free speech input in reverberant environments it looks as if the ETSI
front-end does not work as efficiently as it does in the presence of background
noise.

The application of the proposed adaptation methods leads to a considerable reduction
of the error rates compared with the ETSI front-end as well as compared with the
cepstral analysis scheme. As mentioned before, the adaptation is individually applied
to each utterance when detecting the beginning of speech in this utterance. We
observe that the additional adaptation of the delta parameters is very efficient and
results in a further gain in recognition performance.
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Figure 16.15: Word error rates for the recognition of the TIDigits in hands-free mode

The experiments include the recognition of utterances containing single digits and
utterances containing sequences of digits. For the case of recognizing isolated words
the adaptation approach as described in the previous section is correct and applicable
without restrictions. But for the recognition of connected words the adaptation will
not be perfect when the words are uttered without pauses between words. In this
case the acoustic information at the beginning of a word is modified by the acoustic
information at the end of the preceding word due to the reverberation. These “inter-
word” modifications occur especially when sequences of words are spoken fluently
with coarticulation effects. Looking at the sequences of the TIDigits the speaking
rate varies considerably between speakers. Analyzing the recognition errors in more
detail, it turns out that about half of the errors are due to deletions when recogniz-
ing the living room data with adaptation. In this case the adaptation of the first
states of an HMM would need a knowledge of the acoustic information contained
in the final states of the preceding word. But knowledge about the preceding word
is not available in advance when recognizing sequences of digits. Because of this
our approach as described in the previous section does not cover these “inter-word”
interference.

Thinking about a phoneme based recognition using triphone models, some knowledge
about the preceding phoneme model is available due to the property of triphones
to model a phoneme dependent on the preceding and the succeeding phoneme. In
this case the adaptation of a phoneme model can also include acoustic knowledge
about the preceding and the succeeding phoneme. We could show by some further
experiments that the modified adaptation can be successfully applied to the phoneme
based recognition with triphone models.
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16.4.4 Combined Adaptation to All Distortion Effects

The hands-free speech input in a room comes along with the recording of background
noise as it is present in almost all applications of speech recognition systems. Fur-
thermore, the spectrum of the speech is modified by the frequency characteristics of
the microphone and of an additional transmission channel, e.g., when transmitting
the speech via telephone to a remote recognition system. This creates the need to
compensate also for these distortion effects. We developed an adaptation scheme
[Hirsch 2001] that is based on the well known PMC (parallel model combination)
approach [Gales, Young 1996]. This scheme consists of an adaptation of the static
Mel frequency cepstral coefficients. The cepstral coefficients are transformed back to
the Mel spectral domain where the adaptation can be realized by a multiplication
with a frequency weighting function as an estimate for the frequency characteristics
and by adding the estimated noise spectrum. The cepstral coefficients of all HMMs
are individually adapted for each speech utterance when the beginning of speech is
detected. Furthermore, the energy parameter can be adapted with an estimate of
the noise energy. We present a short overview of the techniques for estimating the
spectrum of the background noise and the frequency weighting function in the next
section. Having obtained these estimates as well as an estimation of T60, it will be
shown that the earlier adaptation approach can be combined with the new method
of adapting the spectra to a hands-free speech input.

Estimation of Distortion Parameters

The Mel spectrum of the background noise is estimated by looking at a smoothed
version of the Mel magnitude spectrum X(k · dshift) as calculated for the frame with
index k in the feature extraction. The contour of the spectral magnitude values is
smoothed in each Mel subband by applying a first order recursive filtering according
to

|Xsmooth(k · dshift)| = (1−α) · |X(k · dshift)|+α · |Xsmooth((k− 1) · dshift)| . (16.22)

α takes a value of 0.7 in our realization. A VAD (voice activity detector) is ap-
plied that takes the Mel spectra X(k · dshift) as input. The onset of speech is de-
tected when the estimated signal-to-noise ratios exceed an adaptive threshold in
several subbands for a certain number of frames [Hirsch, Ehrlicher 1995], [Hirsch
2001]. When the start of speech is detected the noise spectrum is estimated as the
smoothed spectrum of the last analysis frame with index klast that is marked as a
pause frame

|N̂| = |Xsmooth(klast · dshift)| . (16.23)

Furthermore, the energy of the noise is estimated as the energy of the last pause
frame

Ênoise = E(klast · dshift) . (16.24)
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The detection of speech onsets also triggers the adaptation of all HMMs. For the
simulation experiments we take the acoustic parameters of all frames from a recorded
utterance as input for the Viterbi recognition. For the real-time version of the recog-
nizer as it is applied in a speech dialog system, we start the recognition process five
frames before the first frame marked as speech. Thus, the Viterbi calculation can run
almost in parallel with the feature extraction.

The frequency weighting function is estimated after the recognition of an utterance. It
is applied for the recognition of the next utterance. This is based on the assumption
that the frequency characteristics of the transmission from the speaker’s mouth to
the input of the recognizer will not change rapidly. Usually the microphone and
the other transmission conditions do not change during a recognition session. The
weighting function is estimated by comparing the long-term spectra of the noisy input
speech with that of the clean speech. The sequence of HMM states is considered as
it is available after the Viterbi match by backtracking the path with the highest
likelihood. The long-term spectrum Xlong of the noisy input speech is calculated for
all Kspeech analysis frames that are mapped on speech HMMs excluding the frames
that are mapped on the pause model

|Xlong| =
1

Kspeech
·

∑
speech frames

|X(k · dshift)| . (16.25)

In a similar way the long-term spectrum of the clean speech is estimated by looking
at the spectral information contained in the HMM states on the path with highest
likelihood. A set of adapted HMMs is used for the recognition. But for the estimation
of the clean spectrum the spectral information is extracted from the corresponding
clean HMMs. The cepstral coefficients of the corresponding clean HMM states are
transformed back to the Mel spectral domain according to (16.2). In the case of
HMMs with multiple mixture components, the spectrum of this mixture component
with the smallest spectral distance to the corresponding spectrum of the input signal
is taken. The long-term spectrum of the clean speech is estimated as the sum of
all Kspeech clean Mel spectra |Ŝ(j)| from the corresponding HMM states on the best
path

|Ŝlong| =

 1
Kspeech

·
∑

best path

|Ŝ(j)|

− |Nsil| . (16.26)

|Nsil| is the Mel spectrum that can be derived from the single state pause model. It
contains the spectral information of the background noise that was present during the
recording of the training data. In the case of clean training data, the spectrum |Nsil|
takes only small values. It is subtracted here to compensate for its presence in the
spectral parameters of all HMMs. In the rare case of getting a negative value after the
subtraction the result is set to a fixed small positive value.

Subtracting the estimated noise spectrum |N̂| as determined in (16.23) from the long-
term spectrum of the noisy input speech, the frequency weighting function can be
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estimated by comparing the noise reduced input spectrum with the estimated clean
spectrum as defined by

W =
|Xlong| − |N̂|

|Ŝlong|
. (16.27)

It turned out in earlier investigations that this way of estimating the spectral difference
between the input signal and the clean HMMs works well [Hirsch 2001]. By comparing
the spectral information from the input signal and the clean HMMs, the weighting
function not only contains the spectral characteristics of the recording equipment and
the transmission line but also the frequency characteristics of the individual speaker
to some extent.

In the same way the difference between the energy contours of the input speech and
the best HMM sequence can be calculated. A weighting factor can be calculated
that describes the average energy difference between the input signal and the energies
contained in the sequence of HMM states on the best path. This factor contains
information about the loudness of the individual speaker in comparison with the
average energy contained in the HMMs.

Combined Adaptation Scheme

Having estimates for the noise spectrum, the frequency weighting function and the
reverberation time, the Mel spectra of the clean HMMs are adapted as shown in
Fig. 16.16.

Adapted HMMs

Noise spectrum |Nk|

DCT
log

log
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exp
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Figure 16.16: Scheme for adapting HMMs to all distortion effects
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Figure 16.17: Spectral characteristics of the clean and the adapted HMMs for the
word “six”

The cepstral coefficients of each state and mixture component are transformed back
to the linear Mel spectrum for all clean HMMs. The Mel spectra are adapted to the
estimated reverberation condition as described in Sec. 16.4.1. The estimated weighting
function and the estimated noise spectrum are applied for further adaptation. This
is done for each state Sn and each mixture component

|X̂(Sn, j)| = W · |X̃(Sn, j)| + |N̂| . (16.28)

The adapted Mel spectra X̂(Sn, j) are transformed to the cepstral domain again.
In the same way the energy parameter is adapted to reverberation first. Then it is
adapted to the loudness of the individual speaker and the noise energy of the acoustic
environment.

The adaptation to reverberation and noise is visualized by the three-dimensional
spectral plots in Fig. 16.17 representing the spectral characteristics as they can be
derived from two HMMs. The spectra shown in Fig. 16.17-a are calculated from the
HMM of the word “six” trained on clean data. In Fig. 16.17-b the adapted version of
this HMM is visualized. The adapted HMM was extracted during the recognition of
artificially distorted TIDigits data. These data have been created from a simulation
of the hands-free recording in a noisy living room environment. The noise spectrum
as it is estimated for the individual input utterance becomes visible as a shift of the
complete spectrogram. The reverberation tails can also be seen when looking at the
contours along time in individual subbands.

16.4.5 Recognition Experiments on Hands-Free Speech Input in
Noisy Environments

The new database “Aurora-5” as described in Sec. 16.3.1 is used for the evaluation
of the combined adaptation approach. This database has been designed to contain
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the combinations of distortion effects as they might occur in practical applications.
Thus it is well suited for investigations on the efficiency of the combined adaptation
to several distortion effects. The results with and without the application of the
adaptation are compared against the results when applying the robust ETSI front-
end instead or when applying the well known MLLR (maximum likelihood linear
regression) approach as alternative adaptation technique [Leggeter, Woodland 1995].
MLLR estimates a set of transformations for the mean and variance parameters of
HMMs based on the availability of adaptation data. The goal is to obtain a reduction
of the mismatch between an initial HMM set and the adaptation data. We apply
the MLLR technique here in a similar way to that in our own adaptation method.
This means that only the preceding utterance or several preceding utterances are
applied for an unsupervised adaptation where it is not known what has been spo-
ken.

The cepstral analysis scheme and gender dependent HMMs are applied as described
in Sec. 16.4.3. The word error rates are presented in Fig. 16.18 for the three different
versions containing car noise.

Looking at the condition with additive noise only, shown in Fig. 16.18-a, the expected
improvement can be seen when comparing the results for the robust ETSI front-end
against the results for a conventional cepstral analysis. Further small improvements
are achieved when adapting the HMMs to all distortion effects. Furthermore, the error
rates are shown for the unsupervised HMM adaptation with MLLR as it is available
as part of the HTK Viterbi recognizer. An incremental MLLR is performed after each
utterance. We observed a worse recognition performance when applying MLLR every
two or more utterances. The adaptation is performed on the HMMs containing the
features of the cepstral analysis so that the results can be immediately compared with
the new adaptation approach. The error rates for MLLR are only a little bit worse
when looking at the condition of additive noise only.

The improvement, comparing the new adaptation approach against the ETSI front-
end, is greater when looking at the condition of a hands-free speech input in the
noisy car environment. This is shown in Fig. 16.18-b. The reverberation time is
fairly small in a car in comparison with rooms. The major impact of the hands-free
recording inside a car is a modification of the frequency characteristics. The MLLR
adaptation seems to compensate for these effects to a higher extent than the robust
feature extraction except for the low SNR of 0 dB. The error rates for MLLR are again
slightly worse.

The adaptation scheme shows its usability also for the case of an additional transmis-
sion over the GSM cellular network as shown by the results in Fig. 16.18-c. In this
case the speech is further modified by the encoding and decoding and the transmission
errors on the cellular channel. The adaptation technique seems to cover this type of
distortion considerably better than the robust ETSI front-end. The performance of
MLLR is extremely low for the SNR of 0 dB. This has been observed in several ex-
periments where the performance without adaptation was already quite low. MLLR
seems to be unable to find the right feature mapping in such cases and it seems to
adapt the features in the wrong direction.
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The cases with car noise do not include the major effects of a hands-free speech input
in a reverberant room environment. The word error rates presented in Fig. 16.19 do
include such effects. These experiments investigate recordings of speech inside a noisy
room environment.

In the case of additive noise only, shown in Fig. 16.19-a, the new adaptation scheme
leads to similar error rates to those for the robust front-end. In general the recognition
performance is lower in comparison with the case with car noise because the interior
noise signals contain more non-stationary segments. A considerable improvement is
observed when comparing the new adaptation technique against the robust front-end
for the cases of a hands-free speech input in an office or a living room as shown in
Fig. 16.19-b and Fig. 16.19-c. The additional adaptation to reverberation causes this
improvement.

MLLR adaptation leads to worse results, especially for SNRs below 15 dB. It looks as
if the mapping on the basis of a linear regression is not able to completely compensate
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Figure 16.18: Word error rates for different recording conditions inside a car
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Figure 16.19: Word error rates for different recording conditions inside rooms

for the sum of spectral modifications caused by background noise and reverberation.
While additive noise and a frequency weighting can be modeled as a stationary modi-
fication of each frame, reverberation includes modifications along the time axis. Both
effects can not be completely compensated for with a linear mapping. As already
observed for the car noise conditions, MLLR seems to adapt into the wrong direction
in the case of a low performance without adaptation.

16.5 Conclusions

The problem of achieving a high recognition performance in adverse conditions has
been addressed in this chapter. The speech input scenarios have been analyzed where
speech recognition systems are applied. A simulation tool has been developed to
simulate the different acoustic input conditions. The tool was used to create a new
database for performing comparative recognition experiments on data that contain the
distortion effects of realistic input scenarios. After a short overview about the existing
approaches for improving the robustness a new method has been introduced that is
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based on an adaptation of HMMs. Especially new is the adaptation to a speech input
in reverberant conditions. The static spectral and energy parameters can be adapted
as well as the corresponding delta and delta–delta parameters. The new technique can
be applied to the case of a hands-free speech input in rooms as well as to a combined
occurrence of different distortion effects. An estimate of the stationary background
noise, of the unknown frequency characteristic as well as of the reverberation time are
needed as adaptation parameters. The background noise is estimated from the pause
segment before the speech onset whereas some type of blind estimation techniques are
used for the two other parameters. We could demonstrate with several recognition
experiments on data from the newly created database that the recognition can be
improved with this technique in comparison to applying a widely used robust feature
extraction scheme. We could verify our results on artificially distorted data by running
further experiments on data that have been recorded under noisy conditions, e.g., in
hands-free mode in a reverberant environment.
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Chapter 17

Speaker Classification
for Next-Generation
Voice-Dialog Systems

Felix Burkhardt, Florian Metze, Joachim Stegmann

17.1 Introduction

Customer Relationship Management (CRM) is a growing business factor for medium
and large enterprises. For cost reduction, the automation of business processes in
call centers based on Interactive-Voice-Response (IVR) systems has been introduced
in many companies. In state-of-the-art IVR systems automation based on auto-
matic speech recognition (ASR) is mainly used for pre-qualifying of customers’ re-
quests with subsequent skill-based routing to a human agent or complete automa-
tion of simple business processes such as checking of account balances or tariff
changes.

These automated voice-dialog systems are currently not adapted to the preferences or
needs of specific user groups. For market success of new voice-controlled value-added
services as well as for increased usability and efficiency in process automation, it is
important to divide customers into specific target groups with a tailored adaptation
of the respective voice dialogs. However, personalization of voice dialogs in state-
of-the-art IVR systems can be performed only if the caller is known and has been
authenticated by the system. In many applications and services, the information
about the identity of the caller is not available. Additionally, time-variant features
such as the emotional state of the caller are not known and can not be utilized by the
system.

Advances in Digital Speech Transmission Edited by R. Martin, U. Heute and C. Antweiler
c© 2008 John Wiley & Sons, Ltd
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One solution is to introduce automatic speaker classification into voice-dialog sys-
tems. In a first step, time-invariant or slowly time-varying features such as gender
and age can be detected from the first utterances of the caller in a voice dialog.
This information can then be used to assign the caller to a specific target group and
switch the dialog parameters accordingly. Additionally, time-varying features of the
caller such as anger can be monitored during the entire dialog. In the case of any
problems within the dialog, the system can help the customer by either offering the
assistance of human operators or trying to react with appropriate de-escalating dialog
strategies.

This chapter is organized as follows: Section 17.2 explains the basics of speaker clas-
sification, gives an overview of the relevant classification algorithms, and describes
methods for their evaluation. Then, Sec. 17.3 discusses the classification of age and
gender in detail, while Sec. 17.4 focuses on anger detection. In Sec. 17.5 examples
for applications in the area of telecommunications are described and results of corre-
sponding usability evaluations are discussed. Finally, Sec. 17.6 gives a conclusion and
shows possible directions for future work.

17.2 Speaker Classification

17.2.1 Overview

Speaker classification is concerned with assigning every test speaker to a given class
or group of speakers. In our case, the decision is taken on the basis of sample acoustic
data [Müller, Schötz 2007]. To support the decision, knowledge about the character-
istics of different classes needs to be learned from training data and compiled into
rules or models.

Similar problems are given by the task of speaker identification, which tries to iden-
tify an individual single speaker (and not only assign him or her to a group of
speakers), while speaker verification tries to ascertain a given individual’s identity
[Reynolds 2002]. These techniques, although important in practice, will not be dis-
cussed here.

As the aim of this chapter is to demonstrate the most important principles of speaker
classification, we content ourselves with providing pointers to other related work such
as the automatic detection of stress and fraud [Board for Professional and Occupa-
tional Regulation 2003], intoxicated speech [Tanner, Tanner 2004], or multi-lingual
speech technologies [Schultz, Kirchhoff 2006].

Figure 17.1 shows example criteria employed for speaker classification and attempts
to structure them according to the degree of variability over time: the result of a
classification can be time-invariant, constant within a dialog, or variable within a
dialog.

Speaker classification as the task of assigning measurements of speaker characteristics
to a class can therefore be seen as a pattern recognition problem: following [Duda et al.
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Speaker classification

Time-invariant features Time-variant features

Gender Constant with dialog Variable over dialog 

Age

Language

Emotions / moodNative language 

…

…

Joy

Mourning

Anger

…

Dialect

Health state 

Figure 17.1: Taxonomy of classification criteria for speaker classification: speaker
properties can be immutable (e.g., gender), constant within an inter-
action (e.g., age), or change rapidly (e.g., emotion)

2000], this necessitates the steps of 1) data collection, 2) feature selection, 3) model
selection, 4) training, and 5) evaluation. Section 17.2.2 will therefore discuss data
collection and particularly feature selection, Sec. 17.2.3 will present the most relevant
model selection and training algorithms, and Sec. 17.2.4 will give an overview on
techniques allowing us to compare or evaluate systems.

17.2.2 Feature Extraction

Algorithms are usually based on the transformation of the digital input signal into a
parametric representation that is better suited for classic machine learning techniques
than a digitized wave-form.

Following [Reynolds et al. 2003], the features used to describe speech signals can be
looked at from different levels of abstraction if one follows a development of longer
temporal segments and higher linguistic abstraction as in the following list: acoustic –
prosodic – phonotactic – idiolectal – dialogic – semantic.

Of course, some categories are better suited for certain classifications than others; for
example, [Shafran et al. 2003] report that, in contrast to emotion detection, gender,
age and dialect detection was not enhanced by regarding word-based features, while
acoustic- and pitch-based features were useful.

Generally spoken, these features can be used in two ways: On the one hand in com-
parison with a “world model”, i.e., a classifier trained with samples from the desired
groups, on the other hand as a deviation from an assumed “neutral” state deter-
mined from the user beforehand. The latter possibility, of course, only makes sense
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for time-variant criteria such as, for example, emotional state, and assumes that the
speaker is known beforehand. For unknown speakers comparison with a dialog situa-
tion where the user is supposed to be neutral, e.g., the beginning of a dialog, can be
used.

Acoustic features: The basis of computing acoustic features is usually the com-
putation of the Mel frequency cepstral coefficients (MFCCs), which are primarily
known as the basis for automatic speech recognition. A MFCC vector encodes the
spectral properties, computed by a fast Fourier transformation (FFT), of a small
frame of speech (about 10–20 ms) and translated to the Mel frequency scale in
order to account for the near logarithmic resolution of human hearing [Rabiner
1978].

The acoustic features can be measured on a sub-phonemic level and measure dif-
ferent features such as, for example, jitter (the micro variation of fundamental fre-
quency), and shimmer (the micro variation of amplitude or the Harmonics-to-Noise
ratio (HNR), which gives the proportion between harmonic and random signal parts
[Müller 2005]). Also measures connected with the position of formants fall into that
category.

Prosodic features: On a higher level, pitch, duration, and intensity features can be
subsumed as prosodic because they are related to the rhythmic and melodic structure
of the speech. Just like the acoustic features, they can be the basis for global values
such as the mean, maximum, minimum, or standard deviation. Also values that
describe their contour, such as regression coefficients or the position of a maximum
or a minimum on the time axis, are used. If no phonetic analysis is done, duration
measures are often computed for successive voiced respectively, unvoiced parts of
speech. One example is the work described in [Burkhardt et al. 2005a] where the
anger detector is based primarily on prosodic features.

Phonotactic features: A phonotactic analysis presupposes a phonetic classification.
Based on that the probability of the speech sample belonging to the phonetic set as
well as pronunciation variants can be computed. These set of features are primarily
known to be used with language or dialect detection for obvious reasons but might also
be useful for other criteria like, e.g., emotion detection where a change in articulation
is a known effect [Kienast et al. 1999].

Idiolectal features: These features are based on word recognition and can make pre-
dictions on the use of certain words by speaker groups. Although they are obviously
used by humans in order to assign a speaker to a certain age or social group, automatic
detection is difficult because a very-large-vocabulary speaker-independent speech rec-
ognizer is not yet realistic.

An example for the analysis of idiolectal features given a limited vocabulary is de-
scribed by [Lee, Narayanan 2005]. The reported computation of the “emotional
salience”of each recognized word helped emotion detection in that case.

Dialogic features: On the dialogic level, features regarding the interaction between
human and machine can be measured, e.g., the average length of turn, the frequency
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of interruption, or even dialog specific issues such as the use of help mechanisms, etc.
Such features are described extensively in [Walker et al. 2002].

Semantic features: Semantic models, finally, are used to detect what the speaker’s
intention is. The features of this layer may also be used to support speaker classifica-
tion. In the context of an automated voice portal, a scenario for the use of semantic
features would be, for example, to take an interest in a certain product as input for
the classifier. Another example is described in [Ang et al. 2002]. In this study, one
of the features under investigation consisted of the number of requests for repetition
during a dialog.

17.2.3 Classification Algorithms

A classifier can formally be described as a set of discriminant functions gi(x),
i = 1, . . . , c, with c being the number of classes [Duda et al. 2000]. A classifier x �→ c(x)
can then be described as a network in which c discriminant functions are being eval-
uated and the input vector x is being assigned to the class i resulting in the highest
discriminant function:

x �→ argmax
i

gi(x) . (17.1)

The“Bayes error”is the lowest possible probability of a misclassification and is reached
by an optimal classifier. Virtually all current approaches use data-driven approaches,
in which training data is used to first build a statistical model for the domain (train-
ing phase). The model is then used to classify unknown data into one of the target
classes (test or evaluation phase). In many cases, a successful approach will rely on a
combination of individual classifiers on different features. To classify men and women,
one would collect labeled speech data from both sexes, train independent classifiers on
several features that can be extracted from the speech signal, for example F0 (funda-
mental frequency) and the harmonics-to-noise ratio, and then train a “meta-classifier”
to combine the decision of the individual classifiers into a final decision on a held-out
data set. For most applications, this is easier and more flexible than training a single
multi-dimensional classifier.

Classifiers can be defined for items of fixed length (e.g., the fundamental frequency
value for a given point in time) or of variable length (e.g., a whole utterance). In
the latter case, the overall decision can be reached either by computing some sta-
tistical derivative of the observation (e.g., the mean) over the duration of the utter-
ance, or by using more elaborate classifiers, which take into account interdependen-
cies of individual measurements (classifications), for example, temporal or sequential
structures. Only if observations are known to be independent, can they be com-
bined using a naive Bayes classifier [Domingos, Pazzani 1997]. In this chapter, we
shall restrict ourselves to presenting algorithms using the following types of classi-
fiers.

Principal Component Analysis (PCA) and Linear Discriminant Analysis [Fukunaga
1990] are frequently used for simple problems, or as a pre-processing step for more
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elaborate classifiers, as they improve the separation of classes without significant
extra cost during recognition, for example, by rotating the input vectors so that their
components become linearly independent. This improves the “separability” for other
classification algorithms, by aligning the class separation or “decision boundary” with
the model’s assumptions.

k-Nearest Neighbor (kNN) classifiers [Fukunaga 1990]: An input vector x is assigned to
class c if c is the most frequent class label among the k training samples nearest to the
incoming data sample x. While simple to realize, this algorithm is often impractical,
because it requires the storage of a large number of individual training samples, instead
of compacting them into some kind of statistical model.

Gaussian Mixture Model (GMMs) [Redner, Walker 1984] classifiers build a statistical
model for the data using mixtures of Gaussian probability density functions (PDFs).
The advantage is that one does not need to store a large selection of data points as
with kNN, but only a statistical model of the data. This usually generalizes better
than kNN but, of course, the model has to be learned during the training phase. A
decision is taken by computing the class-specific PDFs on a test vector and assigning
the sample vector to the class with the highest probability, possibly also taking into
account a prior distribution over the classes.

Artificial Neural Networks (ANNs) [Duda et al. 2000], for example, Multi-Layer Per-
ceptrons (MLPs), can be used for classification just as for GMMs, but they offer a
variety of training methods inspired by nature, which can incorporate discriminative
information very efficiently. As some of the training procedures can learn and enhance
discriminative features, ANNs are a very powerful tool. Neural networks are often
used to combine individual, simpler classifiers and the resulting structure is sometimes
referred to as a “hierarchy of experts”.

Support Vector Machines (SVMs) [Schölkopf, Smola 2002] have recently gained much
interest as a powerful type of classifiers using “kernel” functions to allow one to use
virtually unconstrained decision boundaries for classification. Kernel functions pro-
vide for a non-linear mapping of the training data into a higher-dimensional feature
space, in which it is possible to separate the data using simple classifiers, e.g., a simple
linear hyperplane.

Classification and Regression Trees (CART) can be applied to individual features or
for combining classifiers [Breiman et al. 1984]. Basically, classification trees define
a tree structure in which questions about properties are asked and the answers are
used to put the input data into bins. This frequently also allows for visual analysis of
dependencies between features and diagnosis of problems.

(Continuous Density) Hidden Markov Models ((CD-)HMMs) [Rabiner 1989] provide
for an appropriate stochastic model, if the individual measurements form a time series
with well-defined transition probabilities between individual states of the sequence.
They offer a principled approach to model dependencies between specific states.
Derivatives thereof, namely phoneme-recognition-based classifiers, e.g., Parallel Phone
Recognizers (PPRs), are usually used in combination with Viterbi decoding [Jelinek
1998]. These allow one to model individual data points (for example using GMMs as
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“continuous densities”) together with their temporal or physical structure as a series
of stochastic events with defined transition probabilities.

Dynamic Bayesian Networks (DBNs) are a standard approach to model dependen-
cies between certain observations in the decision process in a principled way and have
been used successfully in many speech-related applications [Zweig, Russell 1998]. The
approach is to explicitly model known or learned assumptions about feature depen-
dencies instead of assuming features to be independent.

The best choice of classifier(s) for a given problem depends on the maximum amount
of training data available, the time and memory available during evaluation of data
sets, and the experience of the experimenter.

17.2.4 Evaluation of Classifiers

For evaluation purposes, independent test data from the same domain, i.e., additional
data that was collected under identical conditions as the training data and processed
identically, needs to be available. In some cases, particularly for classifier combination
approaches, if test data were used to optimize certain parameters of the classification,
the true performance of the system can only be determined on a cross-validation set,
which is entirely independent of all the other sets.

Experimental results can be tabulated in a confusion matrix. The confusion matrix
is a full table of all possible outcomes of an experiment. It contains all information
on how many items of each input category were assigned to what output category.
As an example, the diagonal elements in Table 17.1 contain the “good” results (hits),
while the off-diagonal elements contain confusions. Good classifiers have low counts
in the off-diagonal elements.

In the literature, classification performance is often given as recall and precision values.
The recall RecA of a class A means the ratio of correctly identified occurrences CA to
the number of instances TA in the reference, while the precision is given as the ratio
of the number of correctly predicted cases CA to the total number PA of occurrences
predicted. If the experiment is set so that ΣiTi = ΣiPi := N and ΣiCi := C,

Table 17.1: An example confusion matrix: all four lemons are correctly identified,
while one pear and three apples are mis-classified as lemons

Reference Hypothesis Sum
Apple Pear Lemon

Apple 10 5 3 18
Pear 2 8 1 11
Lemon 0 0 4 4
Sum 12 13 8
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the overall ratio of correctly identified cases to the number of experiments is usually
referred to as the accuracy Acc:

RecA =
CA

TA
(17.2)

PrecA =
CA

PA
(17.3)

Acc =
C

N
. (17.4)

In the above example,

PrecApple = 10/(10 + 5 + 3) = 0.56 , (17.5)

while

RecApple =
10

10 + 2 + 0
= 0.83 . (17.6)

The overall accuracy of the classifier is given by

Acc =
10 + 8 + 4
12 + 13 + 8

=
10 + 8 + 4
18 + 11 + 4

= 0.67 (17.7)

for i ∈ {Apple,Pear,Lemon}. This number, however, may not be very meaningful if
rare classes need to be detected reliably as well.

To express precision and recall as a single number or figure of merit, the so-called
F -measure [van Rijsbergen 1979] can be employed. It corresponds to the weighted
harmonic mean of precision and recall, and is defined as

Fα = (1 + α)
PrecA · RecA

α · PrecA + Reca
(17.8)

for α > 0. We then have Fα ∈ [0, 1]. If α = 1, this number is known as the traditional
F -measure or balanced F -score. This is also known as the F1 measure, because recall
and precision are evenly weighted. Two other commonly used F measures are the
F2 measure, which weights recall twice as much as precision, and the F0.5 measure,
which weights precision twice as much as recall. α �= 1 will be used, if different types
of error are differently severe or “expensive”. For example, it may be more acceptable
to classify an adult as a child and connect him or her to an operator, than to admit
a child to adult-only services.

Depending on the amount of context (visual information, semantic information, etc.)
available, age and gender classification based on acoustic information alone can be
very challenging for people, too. For the work presented in this chapter, the annota-
tion of data can therefore be a difficult problem on its own: inter-labeler agreement
(i.e., the degree to which the annotation achieved by one individual will be repro-
duced by another annotator) can be low and the Human baseline for a task can have
a significant error rate, too. Section 17.3 provides a comparison of Human perfor-
mance with automatic performance on the age/ gender task. In this case, ground
truth was established by asking the speakers during data collection for their age and
gender.
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17.3 Detection of Age and Gender

17.3.1 Background

This section will give an overview about age and gender classification algorithms that
can be used in telephony-based applications, present two different approaches to classi-
fication of age and gender using Human speech over telephone channels, evaluate them,
and compare their performance with a Human baseline.

While research on the general influence of speaker age on voice characteristics has been
carried out since the late 1950s [Mysak 1959], [Linville 2001], the first systems that
could automatically estimate the age and gender of a speaker have been developed
only recently [Müller et al. 2003], [Minematsu et al. 2002], [Shafran et al. 2003], [Schötz
2004]. The quality of these systems is difficult to compare, however, as the type of
speech material used as well as the age classes considered are not consistent in the
literature.

As studies show that the dialog strategies employed in IVR systems can be adapted
to age and gender of the caller [Hempel 2006], there is currently increasing interest in
these algorithms in order to improve overall service quality.

The results presented in this section were achieved in an evaluation experiment that
used controlled procedures in order to compare several approaches to age and gender
recognition under fair conditions [Metze et al. 2007]. The numbers reported were
achieved after the systems were optimized on common training and development test
data sets in a one month time window.

The systems use the following seven age and gender groups and labels:

• children: ≤ 13 years (C),

• young people: 14–19 years, male (YM) and female (YF),

• adults: 20–64 years, male (AM) and female (AF),

• seniors: ≥ 65 years, male (SM) and female (SF).

While somewhat arbitrary, these classes stem from an IVR application currently un-
der development. Data were taken from the German SpeechDat II corpus [Höge et
al. 1999], which is annotated with age and gender labels as given by callers at the
time of recording. This database consists of 4000 native German speakers, who called
a recording system over the telephone and read a set of numbers, words and sen-
tences. For each age/gender group, the data of about 80 individuals were selected for
training and about 20 for testing purpose. Children and senior groups where slightly
under-represented but all in all a weighted age and gender structure was achieved.
Training data consisted of the whole utterance set of each person, up to 44 utter-
ances.
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For further analysis, the test set was partitioned into a sub-set of short utter-
ances “SpeechDat short” (SpeechDat II corpus identifiers “a” and “o”: command
words and city names) and another set of longer sentences “SpeechDat long” (identi-
fier “s”).

17.3.2 Algorithms

While many different types of algorithms have been tried on the task of detection of age
and gender, we choose to present two exemplary algorithms because they performed
best in the above-mentioned evaluation and also because they demonstrate how similar
results can be achieved using very different approaches.

Segment-based approach

This system was derived from an existing approach to age and gender classification
with an overall development effort of approximately three years. The system archi-
tecture is shown in Fig. 17.2.

For classification of audio data, a 17-dimensional feature vector is computed on whole
segments of speech. The parameters included in this vector are 1) jitter (micro-
variations of the F0 frequency); 2) shimmer (micro-variations of the F0 ampli-
tude), for each of which multiple algorithms were used including the Relative Av-
erage Perturbation (RAP) and the Period Perturbation Quotient (PPQ) for jitter as
well as the three-, five- and eleven-point Amplitude Perturbation Quotient (APQ)
for shimmer [Baken, Orlikoff 2000]; 3) the mean and the standard deviation of the

Sample data
(1 segment)

Features
(3 different

combinations)
Score

(1 per classifier)

Category
decision

GENDER
classifier

AGE
classifier

(for MALE)

AGE
classifier

(for FEMALE)

Feature
extraction

Dynamic
Bayesian
network

(2nd level
classifier)

Figure 17.2: Example age/gender detection system based on segmental features and
a Dynamic Bayesian Network to combine individual decisions
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harmonics-to-noise-ratio [Ferrand 2002]; 4) several statistical derivatives of the
fundamental frequency (F0) including mean, standard deviation, and mean aver-
age slope (MAS).

A 17-dimensional Gaussian model was trained for each individual class and the re-
sulting distributions were analyzed manually to rate their respective discriminative
power. On the basis of this analysis, three classifiers were constructed that could
determine

• the gender (male or female) of the speaker,

• the age class under the assumption that the speaker is male, and

• the age class under the assumption that the speaker is female.

These classifiers C1, C2, C3 constitute the first layer of a two-level structure and were
each trained on a different combination of initial features. Multi-layer Perceptron
Networks (MLPs) with one hidden layer and sigmoid activation functions were used.
The number of hidden units N corresponded to N = (f + c + 1)/2, where f is the
number of input units (features) and c is the number of output units (classes) [Müller
2005].

The second layer performs post processing on the initial classification results using
Dynamic Bayesian Networks (DBNs).

The DBN is primarily used to model the classification-inherent uncertainty by intro-
ducing: 1) three observable nodes O1, O2, O3, representing the result of one classifier
Ci with states corresponding to the classes (e.g., male and female); 2) the nodes age
and gender representing the actual speaker class; 3) the links between O1, O2, O3 and
age/ gender representing a causal relationship. In this structure, the uncertainty
of that relationship is modeled in terms of the conditional probability table (CPT)
attached to the nodes Oi. The CPT-values were optimized on a cross-validation set
of the respective classifier Ci.

At the same time, the DBN fuses the results of the classifiers by letting the nodes
age and gender both be parents of each Oi. Appropriate CPTs then provide the
precedence of one age classifier over the other depending on the result of the gender
classifier.

In real-life applications, the third function of the second-layer DBN is to succes-
sively improve the model when sequentially processing multiple utterances of the same
speaker. This is provided by 1 : 1 transitions from agen−1 and gendern−1 to agen

and gendern nodes. This feature, however, could not be employed in the experiment
presented here, as no speaker IDs were available to the system.

Frame-based approach

The underlying system was originally developed for Automatic Speech Recogni-
tion (ASR) and automatic acoustic Language Identification (LID). It is based on
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Figure 17.3: Example age/gender system based on Parallel Phoneme Recognizers
(PPR) for three categories, e.g., the“frame-based”approach. The“MIN”
decision selects the category pertaining to the phoneme recognizer yield-
ing the best (lowest) score

Parallel Phoneme Recognizers (PPR) using Continuous Density Hidden Markov Mod-
els (CD-HMMs) and phoneme bi-grams to model the transition probabilities between
individual states of the HMM. Feature extraction consists of the computation of Mel
frequency cepstral coefficients (MFCCs) and a linear transformation based on Linear
Discriminant Analysis (LDA), retaining 24 components for the final feature vectors.
Figure 17.3 explains the system architecture.

During recognizer development, a specific phoneme recognizer for each of the seven
age/gender categories with class-specific HMM and phoneme bi-gram was trained
on the respective sub-set of the training data. To build the PPR system, we first
created category-specific mono-phone HMMs using maximum likelihood estimation
as used for standard ASR system generation. For the following LDA, the category
specific mono-phone HMM states served as the LDA classes. Based on the retained
LDA matrix optimized for age/ gender classification, the final category specific mono-
phone HMMs were built. In a final step the phoneme recognizers were applied to the
training material to estimate category-specific phoneme bi-grams also based on the
maximum likelihood criterion.

During recognition, negative log-likelihood scores for each category are computed us-
ing a Viterbi decoder. In a final step, the classified category is determined by choosing
the category with the minimum score once all the frames have been evaluated. This
structure is shown in Fig. 17.3.
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17.3.3 Results

The results reached with these approaches in our evaluation are shown in Table 17.2.
Accuracy on SpeechDat II ranges between 40 % and 54 % when distinguishing all
seven classes, while recall is between 52 % and 55 %.

The “frame-based” recognizer using class-specific phone recognizers reaches the best
performance and also shows the most balanced confusion matrix. Performance, how-
ever, drops for the “short” utterances, presumably due to the temporal structure
realized in the phone bi-grams. The approach based on a combination of features,
on the other hand, is based on multiple prosodic features computed on the entire
segment, and its accuracy shows very little dependence on the length of the utter-
ance.

The results of a baseline experiment involving Human listeners labeling the data using
the same classes are shown in Table 17.3. For this experiment, over 54 members of
five different speech research laboratories listened to 100 randomly chosen audio files
each over headphones and annotated them, covering about 85 % of the evaluation
corpus.

The overall classification accuracy on the (near complete) SpeechDat II evaluation set
is 55 %, with a precision of 69 % (see Table 17.2). Comparing automatic and Human
results, the performance of the best automatic system is not too far behind the Human
performance, although the recall is significantly lower. The difference between long
and short sentences also exists for Human labelers, although Human labelers do not
perform that much worse on short sentences. The F -measure for the Human baseline
experiment is F1 = 0.61, while the automatic approaches reach F1,Segment = 0.45 and
F1,Frame = 0.54.

Assuming that age estimation should be robust across languages [Braun, Cerrato
1999], these results can be compared with other results on telephony speech [Cerrato
et al. 2000], and the same “centralization” trend for the perceived age and a similar
performance of our Human labelers on longer utterances can be found, even though
the average sentence length of SpeechDat long utterances is below the 40 s measured
in [Cerrato et al. 2000].

Table 17.2: Precision (left) and recall (right) on the different data sets for the in-
dividual systems. The “frame-based” system is based on CD-HMMs and
Parallel Phone Recognizers, while the“segment-based”system uses a Neu-
ral Network to combine several segment-level features

Approach SpeechDat II SD short SD long
Frame-based 54 % 55 % 45 % 46 % 61 % 61 %
Segment-based 40 % 52 % 38 % 51 % 42 % 62 %
Human baseline 55 % 69 % 51 % 67 % 60 % 73 %
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Table 17.3: Confusion matrix of Human comparison experiment on SpeechDat II.
Class symbols are defined in Sec. 17.3.1; columns contain hypothesized
(estimated) classes, rows contain reference (true) classes

Reference Hypothesis Sum
C YM YF AM AF SM SF

C 164 69 139 33 44 2 1 452
YM 5 295 2 411 12 4 3 732
YF 38 34 413 4 238 0 5 732
AM 0 31 0 631 1 59 0 722
AF 5 2 33 4 658 0 54 756
SM 0 10 0 342 4 268 5 629
SF 2 2 13 10 538 5 287 857
Sum 214 443 600 1435 1495 338 355

A “majority voting” combination approach did not improve the performance on
SpeechDat II data. This may be an indication that, despite the different approaches
implemented, the systems’ errors are highly correlated, resulting in similar confu-
sion matrices. However, the segment-based approach can be improved by adding
more individual features, and initial experiments in that direction show promising
results.

17.4 Detection of Anger

17.4.1 Background

Emotion-aware voice portals are one of the most prominent application ideas for
the monitoring of emotional speech. Voice portals could use detection of negative
feelings such as anger to appease the users by mirroring their expressions or to collect
statistical data for quality measurement [Burkhardt et al. 2005a], [Yacoub et al. 2003],
[Shafran et al. 2003]. In the context of customer care voice portals, it can be helpful
to detect potential problems that arise from an unsatisfactory course of interaction
in order to help the customer by either offering the assistance of a human operator
or trying to react with appropriate dialog strategies. Some of these strategies are
described in [Burkhardt et al. 2005a].

The number of studies that deal with emotional speech detection has increased signif-
icantly in the last few years. Despite the general progress in human–machine dialog
systems, studies that deal with real-life telephone data, which is the typical outcome of
automated human–machine voice portal dialogs, are still rare.
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[Petrushin 1999] investigated 56 voice messages containing acted emotional expression
spoken by 18 people. With an Artificial Neural Network (ANN) trained on acoustic
features such as pitch, formants, energy and duration, he achieved about 23 % error
rate for binary classification (agitated vs. calm).

[Devillers et al. 2002] reported on explorations based on about 5000 turns from
customer-agent dialogs from a stock-service voice portal, i.e., they didn’t use human–
computer dialogs but human–human interaction. They investigated the separation
of the utterances into four emotion related states solely based on words with a uni-
gram topic tracker classification algorithm, which had originally been developed to
see whether a document concerned a specified topic. They achieved a, comparably
with the literature, low error rate of 32 % for the four target emotions and the neutral
state, which can be partially explained by the fact that the labeling as well as the
classification was based solely on spoken words, i.e.: the use of key words triggered
the emotion detection.

[Ang et al. 2002] reported an investigation based on data coming from a faked air-
travel arrangement system. The data consisted of 830 dialogs with more than 20000
turns, 75 % of which was used for training and 25 % for validation. They investigated
three classes of features: acoustic-features (duration based on phonemes, spectral tilt,
F0, energy), words based on automatic speech recognition (ASR), and a manually
labeled “speaking-style” distinguishing between “hyper-articulating”, “pausing” and
“raised voice”. It is not very surprising that classification of the material based on
speaking style resulted in a low error rate. The use of a Classification And Regression
Tree (CART) approach resulted in about 15 % error rate for a binary decision (nega-
tive/else), and about 30 % error rate for ternary (annoyed, frustrated, else) decisions
based solely on the acoustic features. The classification based on words resulted in
about a 25 % error rate.

[Walker et al. 2002] used, like many other investigations, a subset of AT&T’s How-
May-I-help-You (HMIHY) database. The noteworthiness of this study is that they are
not interested in the classification of a single utterance but in the detection of whole
dialogs. Specific emotions were not specified: dialogs were divided into “problem-
atic” vs. “non-problematic” dialogs. The classification algorithm is based on features
derivable from ASR such as words, duration and number of words per utterance.
Furthermore they investigated features such as dialog specific task-description (15
different), data coming from the dialog manager (e.g., prompt, prompt, confirmation,
...) and manually labeled features like words, age, or gender of the speaker. They
achieved error rates of about 20 % for a binary decision (problematic vs. normal) after
the first two utterances.

[Shafran et al. 2003] studied, beneath gender, age and dialect, the automatic classifi-
cation of emotional expression again on a subset of AT&T’s HMIHY database. After
collapsing originally seven discrete emotion labels down to two (negative vs. posi-
tive/neutral), a Hidden Markov Model (HMM)-based classifier resulted in an error
rate of about 31 %, based on cepstral features, additional pitch information did not
result in a significant increase.
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[Yacoub et al. 2003] explored a database with about 2000 utterances performed by
eight actors displaying 15 emotions uniformly distributed. They compared several
classification approaches, namely ANNs, Support Vector Machines (SVMs), k-Nearest
Neighbor (kNN), and CARTs. They investigated 39 prosodic and acoustic features,
e.g., for pitch, energy and duration: minimum, maximum and mean, respectively,
first derivative of the slope, jitter, shimmer, and ratio of audible vs. inaudible parts.
The use of only the 19 best performing ones deteriorated the results by about 5 %.
The results for a binary exploration(anger/neutral) showed that the ANN performed
best with an error rate of about 10 % whereas CARTs and KNN resulted in a 20–
30 % error rate. The SVM approach performed a little better under sparse data
conditions.

[Lee, Narayanan 2005] investigated data coming from a flight-reservation applica-
tion and looked at about 1200 dialogs with 7200 turns. Besides taking acoustic and
prosodic features like F0, duration, energy and formants into account, they utilized
a word content-based feature called “emotional salience”. Furthermore features based
on discourse got regarded for by the manual assignment of the turns to so-called
”speech acts”. A PCA reduces the feature set and therefore the complexity of the
computation but does not result in an error reduction. A comparison between GMMs
with KNN resulted in error rates of about 20 % for binary decision (negative vs.
non-negative).

[Liscombe et al. 2005] also operated on a subset of the HMIHY data. They look
at five different sets of features: 1) prosodic features like energy, pitch or duration
based on voice/unvoiced frames, 2) lexical features like words and interjections that
were manually labeled, 3) a semiautomatic extraction of phones and pauses, 4) man-
ually labeled HMIHY Dialog Acts and 5), as context features the deviation from one
to the next turn. A classifier called the BoosTexter (boosting algorithm for combin-
ing results of weak learner decisions) results in error rates of about 20 % when all
features were combined and for a binary classification between negative and non-
negative.

Training data

The compilation of training data for emotion classification mainly faces two prob-
lems. On the one hand, getting data that contains a sufficient quantity of emotional
expression (recording), and on the other hand, deciding which emotion is expressed
on the data (labeling). The state of emotion recognition in general still suffers from
the prevalence of acted laboratory speech as the object of investigation. The high
recognition rates of up to 100 % reported for such corpora cannot be transferred onto
realistic, spontaneous data. For realistic databases, the performance for a two-class
problem is typically < 80 %, for a four-class problem < 60 % as reported in the lit-
erature review of this chapter. Larger databases, i.e., more training data, seem to
be a must but are difficult to obtain because the reference (ground truth, i.e., the
phenomena that have to be recognized) cannot easily be obtained. For word recogni-
tion, a simple transliteration will suffice; for emotion recognition, manual annotation
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is normally necessary, time-consuming and costly, especially as emotion-related states
are in no way a clearly defined issue.

The manual annotation is frequently done by a group of experienced listeners in
order to avoid too much personal bias in the judgments. An important measure
in this context is the inter-labeler agreement that tells how much the labelers are
of the same opinion. As a way to measure the inter-labeler agreement the kappa-
statistics K have often been used (e.g., [Lee, Narayanan 2005]); this sets the per-
centage of agreement in relation to the agreement expected by chance, as shown
in (17.9),

K =
P (A) − P (E)

P (E)
(17.9)

where P (A) stands for the average time the labelers agreed and P (E) for the time
they’d have agreed on a chance level. A value of 0 means no agreement, values
between 0.4 and 0.7 are usually regarded as fair agreement and values above 0.7 denote
excellent agreement. [Burkhardt et al. 2006] reported results based on three labelers.
Two of them agreed nicely with a kappa value of 0.79 while the third disagreed quite
often.

The agreement reported in [Burkhardt et al. 2006] was actually much higher then
frequently reported in experiments dealing with emotional speech [Lee, Narayanan
2005], [Steidl et al. 2005] (about 0.45). The automatic classification (K = 0.38)
resulted in a similarity comparable to the literature and to the human labelers, an
outcome that was also reported in [Steidl et al. 2005].

In order to reuse data from different voice-portal applications, work on a set of stan-
dardized dialog tasks as well as a standardized way of emotional labeling is desir-
able.

17.4.2 Algorithm

The classifier used in [Burkhardt et al. 2005a] and [Burkhardt et al. 2006] is at its
heart based on an acoustic-prosodic analysis of the speech signal, namely pitch-related
features, energy features and duration. As a first step a voiced/unvoiced decision is
used as a starting point for a frame-based pitch detection algorithm based on dynamic
programming which is an advancement of the algorithm described in [Kompe 1989].
The pitch values are then transformed to semitones in order for the later comparisons
to operate on relative intervals rather than absolute pitch values. The duration-related
values are computed with respect to vowel vs. non-vowel phases in the speech. A
small-scale phoneme recognizer is applied, which is based on a MFCC/HMM-based
approach.

From these pitch, intensity and duration values, 31 prosodic features are extracted
such as e.g., mean, minimum, standard deviation, regression coefficients etc., which
are listed in detail in [Burkhardt et al. 2005a]. The feature vector is then classi-
fied into one of two classes using an algorithm based on Gaussian Mixture Models
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(GMM). A score for every class gets calculated, which is the minimum of all negative
logarithms from the evaluation of the corresponding densities. Then, those two scores
are normalized as shown in (17.10).

S′
not angry =

min(scores)
Snot angry

S′
angry =

min(scores)
Sangry

min(scores) = min(Snot angry, Sangry) . (17.10)

As a result, one of the two scores S′
not angry and S′

angry always has the value 1.0.
Afterwards, the easiest way to classify is to decide the class that belongs to the score
with the value 1.0, but, as we end up with separate probabilities for angry and non-
angry speech, on a downstream stage a threshold filter can be applied, i.e., the caller
only gets classified as angry if the non-anger probability is higher than a specified
threshold. This is very important for online voice portal applications in which the
dialog strategy should be more conservative in nature.

17.4.3 Results

Collecting training data

The emotion detection technology was used in several pilot voice portal implemen-
tations. Starting with a classifier trained on acted anger a group of about 50 re-
searchers was instructed to call a voice portal and get angry with it. In a later
phase, students were paid to call a fake hot-line that often failed in order to provoke
anger, but of course the situation was still very artificial. Later, recordings from a
pilot voice-portal with real customers were used, which provided for 18500 turns in
2300 dialogs, about 22 hours of data altogether. As this amount of data could no
longer be labeled manually, it was pre-classified based on a training set of “faked
anger” data gained in the above mentioned earlier phases of the project [Burkhardt
et al. 2006] and only a subset containing 2232 turns in 167 dialogs was labeled man-
ually.

Interestingly, most mis-classifications occurred because the classifier tended to mis-
classify the neutral turns. This is probably caused by the fact that the faked
data was performed under good audio conditions and contained clearly distinguish-
able emotional expression, while the real data was highly distorted and differ-
ences between anger and non-anger are often very small. It shows once more that
training sets from laboratory data are not easily applicable for real world prob-
lems.
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Working with thresholds

To adjust thresholds, several experiments with different training- and test sets from
the pilot voice portal with real customer dialogs were performed. The following results
are based on a disjunct test- and training set based on the decisions of one labeler
alone, containing (randomly selected) 10 minutes anger out of 48 in the training and
6.5 minutes anger out of 28 in the test set. Because the distinction between low
and high anger did not work well, the classifier was trained with only two classes:
anger and non-anger. As reported [Burkhardt et al. 2005b], the trade-off between
false acceptance and false rejection was controlled by means of thresholds, i.e., if one
wants to avoid situations where users are accused of being angry although they were
not, the anger value was disregarded in favor of anger only, if the non-anger value was
lower than a certain threshold.

Recall and precision values for non-anger and anger detection as well as the over-
all accuracy (the total percentage of correctly identified cases) depending on the
threshold for non-anger (left hand side) and anger (right hand side) are shown in
Fig. 17.4.

Note that because the values are normalized it makes no sense to display results for
both thresholds at the same time, as one value will always be 1. The anger recall rises
with the increase of the non-angry threshold, as less and less samples get classified
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Figure 17.4: Recall and precision values in dependence of thresholds (see text), results
from real data. n: non-angry, a: angry, r: recall, p: precision, acc:
accuracy
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as non-angry. As soon as the non-anger threshold reaches its limit and the anger
threshold is lowered, the anger recall keeps on rising until it reaches its maximum of
1, at which point the decision will always be for “anger”, irrespective of the classifier’s
outcome. The rise is monotonous, because the less the turns are classified as non-
angry the more get classified as angry. At the same time, of course, the recall value for
the non-angry turns drops, because more and more of them are misclassified as anger.
The non-angry precision rises with the neutral-threshold because the less the turns
get classified as non-angry the higher the percentage of correctly identified ones. The
angry precision in contrast does not depend on the neutral threshold and therefore
the curve is not monotonous in the left hand side.

All these statements get reversed on the right hand side of the figure, which displays
recall and precision depending on the anger-threshold. The fact that the overall
accuracy falls is a result of the by far greater number of non-angry turns, i.e., the
accuracy is influenced mostly by the non-angry recall.

The optimal threshold to be used in a specific application depends, as mentioned
earlier, on the scenario. If false accusations of being angry are to be avoided as is
the case with a classifier that influences the dialog course of a customer voice por-
tal, one will want to use a low threshold for the non-anger decision. This would
be the case in region A of Fig. 17.4. On the other hand, someone who is primarily
interested in identifying all the angry turns, e.g., with an offline statistical evalua-
tion in mind, might opt for a lower anger-threshold like that given in region B of
Fig. 17.4.

Experiments were also conducted on the so called“delta-features”. This means that we
not only compared the test sample with the models gained from the training database,
but calculated the deviation of the features from the first turn, where the caller is
assumed to be in a non-angry state. Taken alone, these delta features yielded worse
results than the “world model”, but taken in addition they resulted in slightly better
results although the enhancement was not significant.

Conclusion

Anger detection via speech analysis is far from being an easy task, as was shown.
Beginning with the collection of data, labeling it and training the classifier and imple-
menting adequate dialog strategies many problems have to be solved. Although the
acoustic classifier performed significantly worse under real conditions than with “lab-
oratory” data, it still gives results well above the level of chance. As anger detection
from short command-style utterance under low audio quality conditions will always
be a problem and the occurrence of false alarms can not be excluded, the resulting
dialog strategies will have to be conservative in nature.

The availability of high quality training data is an important issue. Therefore, in
order to reuse data from different voice-portal applications work on a set of stan-
dardized dialog tasks as well as a standard way of emotional labeling would be desir-
able.
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17.5 Applications in IVR Systems

This section envisages some applications that utilize speaker classification in a telecom-
munication scenario. Typical application fields are:

• dispatching of callers to trained agents

• market analysis of target groups

• call center quality management

• adaptive voice dialogs in IVR systems

• gaming and entertainment applications

Some of them have been repeatedly described in the scientific literature, others have
already been mentioned in the public media, and few have even been deployed as real-
world applications. [Burkhardt et al. 2005a] discusses several applications based on
emotion recognition that stand for a family of related ideas.

[Batliner et al. 2006] introduces a taxonomy for emotion-aware applications, which can
also be applied to speaker characterization in general. This taxonomy categorizes ap-
plications on the basis of the following four functional criteria.

Online/offline means the difference between whether the speaker classification is per-
formed directly while the interaction is happening, as, for example, in an age detection
system to enable age-specific dialog strategies, or later, as is the case with a statistical
evaluation tool, for market research.

Mirroring/non-mirroring differentiates between applications where the classification
is primarily used to give the user feedback, as exemplified by a language acquisition
software that monitors the user’s accent, in contrast to applications where the user is
not directly aware of the classification process.

Impersonating/non-impersonating, originally called “emotional” vs. “non-emotional”,
classifies systems that simulate the characteristics of a certain speaker group, e.g.,
a dialog system that uses a youthful persona design because it detected a young
customer calling.

Critical/non-critical means the differentiation between applications that depend
strongly on a correct classification for each single instance, as, for example, in anger
detection that triggers pacification strategies, versus a statistical reporting where the
sum of classification results suffices for a general trend statement.

Of course the distinction based on that taxonomy is often not sharp, but it can be
very useful to create new possible applications that utilize speaker classification by
the inclusion or exclusion of certain features.

In the remaining part of this section, adaptive voice-dialogs in IVR systems are dis-
cussed in more detail.
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17.5.1 Adaptive Voice-Dialogs

In automated voice portals dialog design becomes an important issue. State-of-the-art
technology in language understanding and artificial intelligence does not yet allow for
totally free and open dialogs in human–computer interaction. Dialog design comprises
the way that the call flow is designed, i.e., which grammars are activated, which
prompts will be played, which choices can be made by the user, and which feedback
strategies are implemented.

In the case of static speaker classification such as age or gender, one possible applica-
tion in this context would be to implement several designs and activate the one that
best fits the current user profile. This might consist of very subtle changes, so that a
misclassification would not lead to a perceptible difficulty for the callers. On the other
hand a dynamic speaker classification such as anger detection could be used to adapt
the dialog dynamically to a change in the user’s state.

For the selection of appropriate dialog strategies it is important to reflect the inter-
action capabilities of the callers in order to avoid overcharge. The most important
design criteria in this case are:

• balance between mixed initiative and directed dialogs

• explicit or implicit feedback strategies of the system

• design of menu trees (depth and width)

• design of audio prompts (volume, speed and pauses)

• usage of keypad input as an alternative to speech input

In a second step the designers of voice-dialogs have to care about the fulfillment of
the expectations and needs of the callers. This is especially important for customer
satisfaction and user acceptance of the service. The dialog adaptation should then be
based on the following design parameters:

• design of the system’s voice (persona design)

• order of presenting the menu entries

• usage of technical terms and colloquial speech in audio prompts

• introduction of music

• presentation of teasers and advertisements (e.g., in a waiting queue)

• offering of assistance from a human operator

Detailed information about the design of voice-dialogs can be found in [Balentine,
Morgan 1999]. In this section, the feasibility and the advantages of adaptive voice-
dialogs in two prototype voice applications of Deutsche Telekom are investigated. In
the following these applications are described in detail and the results of corresponding
usability and acceptability tests are shown.



17.5 Applications in IVR Systems 519

17.5.2 A Voice Portal Based on Age/Gender Detection

Based on a prototype implementation of an adaptive voice portal the feasibility and
advantages of adaptive voice-dialogs based on age and gender detection were analyzed.
The basic application was similar to a voice portal that was deployed at Deutsche
Telekom for the pre-qualifying of customers’ requests (in German). After dialing
the number, the caller enters a voice-dialog system that offers assistance for specific
questions about, for example, the caller’s subscriber line, tariffs, devices, and bills.
In a first step the caller’s requests are specified within the voice-dialog system. After
that, the call is transferred to the next available human operator with matching
skills.

This basic voice portal was extended by the integration of adaptive voice-dialogs
based on automatic age and gender detection. The algorithms used are described in
detail in Sec. 17.3, but to limit complexity in dialog design the number of classes was
reduced by simply collapsing the classifier’s output. The following four classes were
used:

1. class C: Children / juveniles (age 0–19), male and female

2. class AM: Adults male (age 20–64)

3. class AF: Adults female (age 20–64)

4. class S: Seniors (age 65+), male and female

For each class, a specific voice-dialog was designed. The dialog designs differed from
each other in the following parameters:

• persona design (age, gender and wording of prompts)

• speed of playing out prompts

• ASR timeout (the amount of time the ASR is waiting for speech input)

• the use of technical terms in prompts

• the level of detail for pre-qualifying the customer’s request (depth of menu tree)

• assumptions on callers’ preferences for telecommunication products

• escalation strategies: number of dialog loops with re-prompting after the ASR
has detected the first invalid user input (after that, the call is transferred to a
human agent)

• advertisement and teasers in waiting queue

• background music in waiting queue
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Table 17.4: Proposed dialog design parameters for different classes

AM AF C S
Persona design AM AF C (female) S (male)
Speed of prompts Normal Normal Normal Slow
ASR timeouts Normal Normal Normal Long
Technical terms Used Avoided Avoided Avoided
Details of Additional Necessary Necessary Necessary
pre-qualifying information information information information
Assumptions on Internet Mobile Mobile Fixed
preferences products phones phones network
Escalation strategies 2–3 loops 2–3 loops 1 loop 1 loop
Advertisement in DSL Mobile Mobile Fixed
waiting queue products phones tariffs network
Music Rock Pop Hip-Hop Big band

After the system’s welcome prompt the caller was asked for his or her specific re-
quest. In this first prompt the dialog design for class AM was used. Then, the
first utterance of the caller was analyzed by the classifier and an assignment to
one of the four classes was made. After that, the system continued with the cor-
responding dialog design. The details of the respective dialog designs are listed in
Table 17.4.

In order to assess the proposed dialog designs for the four selected classes a usability
test was performed in cooperation with Siemens AG [Hempel 2006].

For this usability test 25 native German participants were recruited. They were di-
vided into five groups: children (male and female), adults male, adults female, seniors
male and seniors female, each group consisting of five people. All the participants had
to perform a set of tasks in the voice-dialog system and had to answer a question-
naire. In principal, the test was designed to find answers to the following two main
questions.

1. How do users value the usability of adaptive dialogs within an information portal
designed for their target group?

2. Which additional preferences do different user groups have regarding wording
style, gender and age of persona, background music and interaction style?

In general, the test results proved many of the proposed dialog design rules defined
in Table 17.4. However, there were some findings that will lead to changes in fu-
ture designs. The main results of the usability test are summarized in the following
overview.

• The assumptions from Table 17.4 for the persona design were not fully con-
firmed. According to the test results the system’s voice should not be younger
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than 20 and not be older than 60 years. Therefore, it is recommended to use
persona AF also for class C and persona AM also for class S.

• For most of the dialog design criteria (dialog strategies, feedback strategies, es-
calation strategies, the structuring of dialog trees, the degree of automation, the
wording and the presentation of content) the age is the dominating parameter,
especially a rough differentiation between young and old people.

• But there is a significant difference in the assessments between male and female
seniors. In general, female seniors showed much more problems interacting with
a voice-dialog system than all other groups.

• In this context, the proposed differentiation into three age classes seems to be
sufficient. However, it may be advantageous to introduce an additional differ-
entiation between male and female seniors. Thus, the five classes C, AM, AF,
SM, SF should be considered in future.

• Background music and jingles are a polarizing factor, primarily depending on
the age of the user. In order to meet the preferences of the user it is necessary
to make a finer differentiation or to make more discrete selections.

• Besides the user’s age the usage frequency is the most important factor for dialog
design criteria such as dialog strategies and feedback strategies.

• It was not possible to derive a valuable statement for preferred products in the
waiting queue for the different classes because all groups refused advertisements.
In order to find out preferences for specific product groups market surveys have
to be made.

In general, it is important to notice that the context of the application, e.g., telecom-
munication, banking or entertainment, is also a dominating factor for an appropriate
dialog design. The recommendations given in this section should therefore not be
transferred to other application fields without validation.

17.5.3 Customer Self-Service Based on Anger Detection

In a second step, the feasibility and possible advantages of anger detection for opti-
mizing voice-controlled customer self service applications were evaluated. The pro-
totype application implemented for this evaluation was an automated voice-dialog
(in German) for selecting a new mobile phone according to the customer’s personal
preferences.

After the system’s welcome prompt the customer can say the product name of the
desired mobile phone or can ask for assistance in selecting an appropriate model. For
example, it is possible to say a combination of desired features like MP3 player, radio,
camera, or to specify a price limit, and the system offers a set of suitable products for
further selection. After making a decision for a particular model the user can receive
detailed information about the product by fax or email (if an email address has been
pre-specified with the user’s account).
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In order to detect potential problems that arise from an unsatisfactory course of
interaction, automatic anger detection was introduced into the system. The ob-
jective was to help the customer by either offering the assistance of a human op-
erator or trying to react with appropriate dialog strategies. The algorithm used
for anger detection is described in Sec. 17.4. After an angry user utterance had
been detected the system randomly chose one of the following two alternative ap-
proaches.

1. The wording of the prompts is slightly changed to calm down the user in order
to continue the voice-dialog.

2. The system offers the transfer of the call to a human operator to complete the
task.

This voice application was evaluated at T-Systems in an acceptability test with 200
test users (52 % female, 48 % male, aged in the range 18 to 65 years, average age 40
years). For most of them this was a first experience of voice controlled systems. The
test users had to call the system in order to complete a set of tasks. One of the tasks
was assigned to the assessment of the system’s reaction in the case of detected anger.
For this task the system was manipulated in order to give incorrect answers after the
first user input in order to induce anger.

59 % of the test users admitted that they got angry after this incorrect system re-
action, 56 % of them confirmed that they had really answered with an angry voice.
60 % of these callers (in total 40 people) noticed a corresponding system reaction
to their angry utterance. These test users then had to answer the following ques-
tion:

• “How did you experience the system’s reaction to your angry utterance?”

Figure 17.5 shows the results of the assessment of the test users for the system’s reac-
tion to angry utterances. Around 70 % perceived the system’s reaction as appropriate
while only 56 % confirmed that it was helpful to complete the task. The difference

helpfulappropriate

partly agree
totally agree

partly disagree
disagree

100 %

80 %

60 %

40 %

20 %

0 %

Figure 17.5: User experience of system reaction in case of detected anger
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inexperienced
experienced

very useful

useful

less useful

useless

60 %40 %20 %0 %

Figure 17.6: General assessment of anger detection in voice applications

between these results can be explained after looking at the different dialog strategies
that were applied in the respective voice-dialogs. The test users, who were offered to
be transferred to a human agent, were more successful at completing the task than
those who continued the voice-dialog with a slightly changed, de-escalating wording
of the prompts.

In a second step all participants in the acceptability test were asked to assess the
introduction of anger detection in voice-controlled customer self service applications
in general. The following question was asked.

• “How do you assess the introduction of anger detection in voice applications?”

Figure 17.6 shows the results of this general assessment of anger detection. The
results differentiate between the users who perceived the system’s reaction to angry
utterances and those who did not have this experience. 72 % of the users with and 60 %
of the users without experience confirmed that the introduction of anger detection in
voice applications is very useful or useful. It is remarkable that the share of users
that had the experience with the system and found it very useful is about 15 % higher
than the share of those without such experience.

17.6 Discussion and Conclusion

As discussed in the previous sections, there is a growing interest in determining non-
verbal information from the speech signal. In the absence of certain information about
the speaker’s identity, the goal is to detect side information about the speaker from
the speech signal in order to improve automatic voice-dialog systems, for example by
adapting the dialog design to pre-specified target groups. The algorithms for speaker
classification described in this chapter focus on two types of parameters: age and
gender recognition, and the detection of anger.
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In the case of age and gender recognition it was shown that state-of-the-art algorithms
can reach an accuracy that is high above the chance level and gets close to human
performance. However, the age intervals defined are still quite coarse and the classi-
fication results are far from being reliable. Although it can be expected that further
algorithmic research will lead to an additional increase in performance in the near
future, significant error rates with respect to automatic age recognition will remain.
Thus, the applications that benefit from speaker classification will be restricted to
“non-secure” applications. This means that applications that are based on a reliable
check of the caller’s age, for example, for the prevention of fraud from minors, can not
be considered in this case. However, most applications can be improved on a statis-
tical basis, e.g., the increase of average user satisfaction, if the following two criteria
are reflected in the corresponding application designs.

• The proposed dialog-design parameters for the pre-defined age and gender
classes should be validated and adapted within the application itself. This
means that the behavior of the callers in the application should be monitored
and evaluated permanently and lead to an update of relevant design parameters
within regular time intervals. Additionally, usability tests should accompany
and justify these system updates.

• The negative effects of a misclassification should be minimized within the ap-
plication. Thus, the dialog design assigned to a specific target group should not
annoy or frustrate callers of another target group that have been assigned to
the wrong group.

In the case of anger detection the situation is similar, but some significant differences
have to be considered. The perception of anger in a caller’s voice is a subjective
impression of the listener within a specific application context. Thus, there is no
reliable reference or set of training data that can be used for optimization of the anger-
detection algorithm and substantial error rates have to be considered. It is therefore
proposed to tune the thresholds of the anger-detection algorithm in a way that only
the utterances where most of the labelers agreed on angry speech are assigned to the
class “angry” with respective dialog strategies. The advantage is that the angriest
customers are filtered out while non-angry customers are not disturbed during the
interaction with the system. Another important issue for systems based on anger
detection is that the classifier, usually trained on laboratory data, should be optimized
based on speech data from the application itself.

In an industrial real-world deployment of an application based on speaker classifica-
tion, a set of additional requirements have to be considered.

• The algorithm for speaker classification must integrate into the existing archi-
tecture of the overall voice platform.

• The delay caused by the processing of the classifier must not obstruct the dialog
flow.

• The algorithm must be able to work on short one-word commands and poor
audio conditions.
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combined adaptation, 489
delta parameters, 482
maximum likelihood linear regression,

491
reverberation, 477

Hierarchical
bitstream, 227
vector quantization, 204, 208

Histogram, 113
HMM, see Hidden Markov model
Hoarseness, 12
Homogeneity, 287

I
Idealized system, 37, 38, 41
Idiolectal feature, 500
Impairment, 32, 40
Impulsive excitation, 171

In-service non-intrusive measurement device,
38, 44

Independence assumption, 179
Index assignment, 282, 333

block coded, 394
EXIT optimized, 383, 385, 390
natural binary, 382, 390
redundant, 386

Information
a priori, 368
combining, 393
extrinsic, 366
intrinsic, 368, 372
reliability, 367

INMD, see In-service non-intrusive measure-
ment device

Input–output characteristics, 113
Instantaneous bit error probability, 284
Instrumental

assessment, 25
quality, 43
speech quality measure, 53

Integral quality, 26, 30, 34, 42, 43
Intelligibility, 249, 403
Inter-labeler agreement, 504, 513
Interactive-voice-response system, 497
Interleaving, 331, 383, 388
Intermediate reference system, 30
International telecommunication union - tele-

communication standardization
sector, 219

Interpolative estimation, 304
Intrinsic information, 368, 372
Intrusive speech quality measure, 54, 55
Inverse repeated sequence, 172
IP security, 236
Ipatov sequence, 181
IPsec, see IP security
IRS, see Intermediate reference system, see

Inverse repeated sequence
ISCD, see Iterative source-channel decoding
Iterative source-channel decoding, 365, 379,

389
ITU-T, see International telecommunication

union - telecommunication
standardization sector

IVR, see Interactive-voice-response system

J
Jigsaw puzzle, 323
Jitter, 500, 506
Joint

conditional mean and covariance estima-
tor, 90

control of echo canceler and postfilter,
84

source and channel coding, 281
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K
Kalman filter, 85, 90, 95, 102

DFT-based, 96
diagonalized, 97

Kappa value, 513
kNN, see k-nearest neighbor
Knowledge

a priori, 256, 286

L
L-value, 367

a posteriori, 367
a priori, 367
extrinsic, 367

LBG algorithm, see Lindo-Buzo-Gray
algorithm

LDA, see Linear discriminant analysis
Least significant bit, 344
Likelihood function, 155
Lindo-Buzo-Gray algorithm, 340
Line spectral frequency, 255, 298
Linear discriminant analysis, 501, 508
Link

binaural, 404
wireless, 401

Lisping, 36
Listening quality, 52
Listening-only test, 26, 30
Lloyd–Max quantizer, 382
LMQ, see Lloyd–Max quantizer
Localization, 413
Log-likelihood ratio, 285, 367
Logarithmic swept-sine technique, 173
Long-time average speech spectrum, 13
LOT, see Listening-only test
Loudness, 28
LQ, see Listening quality
LSB, see Least significant bit
LSF, see Line spectral frequency
LTI system, 173

M
MAP, see Maximum a posteriori
Mapping

bit, 283, 353
symbol, 375

Markov
chain, 205
model, 93, 100

hidden, 466
order, 295
property, 287

spatial, 317, 320
temporal, 317, 320

Masking, 28
threshold, 218, 264

Maximum
-length sequence, 172

-length sequence technique, 172, 180
a posteriori, 271

decoder, 370
likelihood estimation, 154
ratio combining, 302

MDCT, see Modified discrete cosine trans-
form

MDS, see Multi-dimensional scaling
Mean opinion score, 27, 52

MOS-LQE, 55
MOS-LQO, 55
MOS-LQS, 55

Measurement equation, 94
Mel frequency

cepstral analysis, 463
cepstral coefficient, 500

Memory requirements, 433
MFCC, see Mel frequency cepstral coefficient
Microphone array, 135
MIMO system, see Multiple input – multiple

output system
Minimum mean square error, 271, 286, 334

coordinate transformation, 70
estimator, 84
parameter estimator

near-optimal, 320
optimal, 316

Minimum statistics, 23
Misalignment, 175
MISO system, see Multiple input – single out-

put system
MLE, see Maximum likelihood estimation
MLP, see Multi-layer perceptron
MLS, see Maximum-length sequence
MMSE, see Minimum mean square error
MNRU, see Modulated noise reference unit
Mobile communication system, 51, 406
Mobile telephony, 19
Model

source-filter, 254
Modified discrete cosine transform, 218, 222,

226
Modulated noise reference unit, 52
Modulation

dither, 264
higher order, 387
multi-dimensional, 394
spread spectrum, 264

Moore–Penrose pseudoinverse, 156
MOS, see Mean opinion score
Most significant bit, 344
Moving pictures expert group, 219, 262

MPEG-21, 234
MPEG-4

HVXC, 222
scalable speech coding, 220

MPEG, see Moving pictures expert group
MPLPC, see Multi-pulse LPC
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MRC, see Maximum ratio combining
MSB, see Most significant bit
MSECT, see Minimum mean square error

coordinate transformation
MSVQ, see Multi-stage vector quantization
Multi-channel

system identification, 171, 173, 185
Multi-dimensional

EXIT characteristic, 392
modulation, 394
scaling, 29, 34

Multi-layer perceptron, 507
Multi-mode

envelope, 386
system, 386

Multi-pulse
excitation, 221
LPC, 215

Multi-stage
CELP, 213
coding, 206
vector quantization, 210

Multiple input
– multiple output system, 190
– single output system, 171, 173, 185

Multiple signal classification, 151, 156, 161
Multiple Turbo process, 387, 389
MUSIC, see Multiple signal classification
Musical noise, 21, 39

measurement of, 115
suppression of, 123

Muting, 298
Mutual information, 146, 267, 289, 376, 377

combining, 393

N
N-OPT, see Near-optimal minimum mean square

error estimator
Narrowband speech, 11, 51, 249
Natural binary

code, 290, 344
index assignment, 382, 390

Naturalness, 16, 249
NBC, see Natural binary code
Near field, 406
Near-optimal

minimum mean square error
estimator, 325, 327
parameter estimator, 320

Network traffic, 234
New generation DECT system, 220, 231
New standardization activity, 237
Next generation network, 231
NGN, see Next generation network
NLMS, see Normalized-least-mean-square

algorithm
NMR, see Noise-to-mask ratio
Noise reduction, 21, 109

Noise-to-mask ratio, 55
Noisiness, 12, 29, 36, 40
Non-intrusive speech quality measure, 54, 56
Normalized

frequency-domain adaptive filter, 99
least-mean-square algorithm, 142, 156,

171, 174

O
Objective speech quality measure, 52, 53
Odd-perfect sequence, 181
OPT, see Optimal minimum mean square

error estimator
OPTA, see Optimum performance theoreti-

cally attainable
Optimal

estimator, 317
excitation, 174, 176, 185, 190
minimum mean square error

estimator, 324, 327
parameter estimator, 316

Optimized bit rate allocation, 385
Optimum performance theoretically attain-

able, 384
Orthogonalization, 225

of adaptive codebook, 213
of fixed codebook, 213

Orthogonalized multi-stage vector quantiza-
tion, 210

Out-of-phase value, 177
Outlier statistics, 113
Overlap-save method, 91

P
PACE, 56
Packet loss concealment, 39
Packet switched communication network, 232
PAMS, see Perceptual analysis measurement

system
Parallel phoneme recognizer, 508
Parameter

analysis, 380
dropping, 204
signal-to-noise ratio, 286, 380
SNR, see Parameter signal-to-noise

ratio
vector, 311, 331

Parametric speech
coding, 217
quality measure, 52, 65, 68

Parity bit, 304
Pattern

directivity, 418
Payload, 232

header, 232
PCA, see Principal component analysis
PDF, see Probability density function
Perceptual
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analysis measurement system, 56
evaluation of speech quality, 28, 43, 56

wideband, 32
model, 28, 34
speech quality measure, 56

Perfect
information content, 288
sequence, 171, 177

phase shifted, 177, 190
Periodic

autocorrelation function, 172, 181
odd autocorrelation function, 182

PESQ, see Perceptual evaluation of speech
quality

Phase-shifted perfect sequence, 177, 190
Phonotactic feature, 500
Post-echo, 226
Postfilter, 82

Wiener, 416, 419, 420
Pre-echo, 226
Precision, 503
Prediction, 269

probability, 292, 348
Principal component analysis, 501
Principal of orthogonality, 88
Probability

a posteriori, 271, 286
density function, 296
prediction, 292, 348
transition, 285, 332, 348

Process
Gauss–Markov, 382

Progressive decoding, 211
Propagation vector, 140
Prosodic feature, 500
PRP, see Parallel phoneme recognizer
PSEQ, see Perfect sequence
PSQM, see Perceptual speech quality

measure
Pyramid

code excited linear prediction, 215
coding, 216
vector quantization, 211

Q
QoS, see Quality of service
Quality

attribute, 26, 34
diagnostic, 26, 29
dimension, 26
instrumental, 43
integral, 30, 34, 42, 43
loss, 206
objective, 27
of service, 231, 233
prediction function, 65
subjective, 27

Quantization, 331

conditional, 268
hierachical vector, 208
multi-stage vector, 210
pyramid vector, 211
transform-domain vector, 211
tree-structured vector, 208
vector, 282

Quantizer
Lloyd–Max, 382
reproduction value, 333

Quasi-binary sequence, 182

R
Radio resource management, 54, 58
Rate adaptation, 233

unit, 201, 233
Rate-distortion performance, 205
Recall, 503
Receiver, 406
Reception

diversity, 302
Recruitment, 403
Recursion

forward, 293
forward–backward, 370, 373

Recursive convolutional encoding, 343
Redundancy

artificial, 393
residual, 281, 288, 352, 371

Redundant index assignment, 386
Reference system, 330
Regular pulse excitation, 215, 221
Reliability information, 367
Remote control, 410
Repeated parameter transmission, 301
Residual

bit vector, 346
redundancy, 281, 288, 352, 371

Riccati difference-equation, 99
RIR, see Room impulse response
Robust feature extraction, 466
Room impulse response, 191
Roughness, 41
RPE, see Regular pulse excitation
RPT, see Repeated parameter transmission
RRM, see Radio resource management
RXLEV, 63
RXQUAL, 63

S
SB/ADPCM, see Subband adaptive differen-

tial pulse code modulation
SC, see Selection combining
Scalability, 201
SCCD, see Source controlled channel decod-

ing
Schwa sound, 16
SD, see Soft decision
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SD/AK1 estimator, 324
SDM, see Soft demodulation
SDSD, see Soft decision source decoding
SEAM, see Single-ended assessment model
Second significant bit, 344
SED, see Signal excitation-level distortion
Selection combining, 302
Semantic

differential, 35
feature, 501

Sequence
binary, 181
excitation, 171
inverse repeated, 172
Ipatov, 181
odd-perfect, 181
perfect, 171
quasi-binary, 182
ternary, 181

Set-partitioning symbol mapping, 390
Shadow filtering, 446
Shimmer, 500, 506
Short-time spectrum, 17, 24
Side information, 267
Signal

constellation
8PSK, 375, 390
Gray, 375, 390
set-partitioning, 390

excitation, 254
excitation-level distortion, 448
space diversity, 394
synthesis, 380

Signal-plus-noise subspace, 153
Signal-to-noise loudness level difference, 448
Signal-to-noise ratio, 172

a priori estimation, 113
parameter, 286, 380

SII, see Speech intelligibility index
Single-ended assessment model, 56
Sinusoid excitation, 172
Sinusoidal coder, 219
SISO, see Soft-input/soft-output
SNLL, see Signal-to-noise loudness level dif-

ference
SNR, see Signal-to-noise ratio
SOCC, see Source optimized channel coding
Soft decision, 285

source decoding, 281, 285, 334
Soft demodulation, 374
Soft-input/soft-output decoder, 344, 366
Soft-output Viterbi algorithm, 60, 285
Softbit, 62
Sound

level intensity, 194
quality, 12
schwa, 16
unvoiced, 15

voiced, 15
Source controlled channel decoding, 341
Source decoding

extrinsic information, 371
soft decision, 281, 285

Source localization, 135
Source model, 312

generic, 382
Source optimized channel

codes
decoding, 334
definition, 333
design, 335
exhaustive search, 335

coding, 332
quality measure, 332

Source separation
blind, 422, 424, 425

Source-channel decoding
iterative, 365, 379

Source-filter model, 254
SOVA, see Soft-output Viterbi algorithm
Spatial

correlation, 311, 327
Markov property, 317, 320

Spatially preprocessed speech-distortion-
weighted multichannel Wiener
filtering, 439

SPB, see Sphere packing bound
Speaker

classification, 498
identification, 498
verification, 498

Spectral
coefficient, 283
envelope, 254
subtraction, 22

Speech
narrowband, 11, 249
super-wideband, 253
telephone-band, 11, 43
transmission over GSM, 471
wideband, 14, 30, 249

Speech coding
wideband, 251

Speech enhancement, 109
Speech input

acoustic scenarios, 468
background noise, 470
hands-free, 469

Speech intelligibility, 12, 15
index, 446

segmental, 447
Speech quality, 30, 51

assessment, 25, 30, 51
end-to-end, 53, 57
in GSM, 58
in UMTS, 58
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measure, 52
instrumental, 53
intrusive, 54, 55
non-intrusive, 54, 56
objective, 52, 53
parametric, 52, 65, 68
perceptual, 56

monitoring, 51
perceptual evaluation of, 56

Speech recognition, 461, 462
adaptation, 461
adverse conditions, 462

Sphere packing bound, 384
Split-band ADPCM, 18, 19
Spread spectrum

modulation, 264
SRP, see Steered response power beamform-

ing
SSB, see Second significant bit
Stand-alone bandwidth extension, 254
State equation, 94
Steered response power beamforming, 149

SRP-PHAT, 160
Steganography, 238
Stepped sine, 173
Stepsize, 174, 179, 189
Stereophonic

acoustic echo cancellation, 173
echo control, 191

Stochastic state-space model, 85, 94
Stopping intersection, 378
Sub-dimension, 36, 42
Subband

adaptive differential pulse code modula-
tion, 220

code excited linear prediction, 216
Subjective

listening test, 52
quality test, 13

Successive refinement, 205
Super-wideband speech, 253
Support vector machine, 502
SVM, see Support vector machine
Sweeps, 172
Symbol mapping, 375

8PSK, 375, 390
Gray, 375, 390
set-partitioning, 390

System
distance, 178

steady-state, 179
identification, 89
multi-mode, 386
multiple input – multiple output, 190
multiple input – single output, 171, 173,

185
Systematic convolutional encoding, 343

T
Talker identity, 16
Talking quality, 53
Tandem free operation, 219
TDAC, see Time-domain aliasing cancella-

tion
TDBWE, see Time-domain bandwidth exten-

sion
TDeC, see Turbo DeCodulation
TDOA, see Time delay of arrival
TDS, see Time delay spectrometry
Telephone

band-pass, 11
high-pass, 14, 16

Telephone-band speech, 11, 43
Temporal

correlation, 311, 327, 349
Markov property, 317, 320

Ternary sequence, 181
TFO, see Tandem free operation
Time delay

of arrival, 139, 141
spectrometry, 172

Time-domain
aliasing cancellation, 226
bandwidth extension, 226

Time-stretched pulse technique, 172
Time-varying echo path, 100
TOSQA, 56
Trajectory

decoding, 378
Transform coding, 218, 222
Transform-domain vector quantization, 211
Transition probability, 285, 332, 348
Transmission

parameter, 58, 62
rating, 31

Transmission system
example, 344
ISCD (baseband), 379
reference, 330

SOCC and SCCD, 357
TDeC (baseband), 387

Transmitter, 406
Transport protocol, 232
Tree-structured vector quantization, 208
Trellis diagram, 368
TSVQ, see Tree-structured vector quantiza-

tion
Turbo

DeCodulation, 365, 387
block coded, 393

principle, 366
process, 366, 368

multiple, 387, 389
Two echo path model, 83
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U
UEP, see Unequal error protection
Unconstrained frequency-domain adaptive

filter, 98
Unequal error protection, 236, 345, 358
Unvoiced sound, 15
Usability test, 520
User acceptance, 518

V
VAD, see Voice activity detector
Vector

excitation coding, 222
quantization, 282

Virtual tube model, 194
Viterbi algorithm

soft-output, 285
Voice

activity detector, 437–439
over internet protocol, 19, 223, 231
quality, 13

Voice-dialog system, 497, 519
Voiced sound, 15
VoIP, see Voice over internet protocol
VXC, see Vector excitation coding

W
Watermarking

digital, 262
Wideband

coding
embedded, 257

perceptual evaluation of speech quality,
32

speech, 14, 30
coding, 18, 20, 34, 251
enhancement, 21, 34
processing, 18, 34
transmission, 18, 20

Wiener
filter, 22, 89, 110, 403, 439
postfilter, 416, 419, 420
solution, 86

Wireless link, 401
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