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Foreword

Recognition and understanding of spontane-
ous unrehearsed speech remains an elusive goal. To understand speech, a human considers
not only the specific information conveyed to the ear, but also the context in which the in-
formation is being discussed. For this reason, people can understand spoken language even
when the speech signa is corrupted by noise. However, understanding the context of speech
is, in turn, based on a broad knowledge of the world. And this has been the source of the
difficulty and over forty years of research.

It isdifficult to develop computer programs that are sufficiently sophisticated to under-
stand continuous speech by a random speaker. Only when programmers simplify the prob-
lem—by isolating words, limiting the vocabulary or number of speakers, or constraining the
way in which sentences may be formed—is speech recognition by computer possible.

Since the early 1970s, researchersat ATT, BBN, CMU, IBM, Lincoln Labs, MIT, and
SRI have made major contributions in Spoken Language Understanding Research. In 1971,
the Defense Advanced Research Projects Agency (Darpa) initiated an ambitious five-year,
$15 million, multisite effort to develop speech-understanding systems. The goals were to
develop systems that would accept continuous speech from many speakers, with minimal
speaker adaptation, and operate on a 1000-word vocabulary, artificial syntax, and a con-
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strained task domain. Two of the systems, Harpy and Hearsay-11, both developed at Came-
gie-Méellon University, achieved the original goals and in some instances surpassed them.

During the last three decades | have been at Carnegie Mellon, | have been very fortu-
nate to be able to work with many brilliant students and researchers. Xuedong Huang, Alex
Acero and Hsiao-Wuen Hon were arguably among the outstanding researchers in the speech
group at CMU. Since then they have moved to Microsoft and have put together a world-class
team at Microsoft Research. Over the years, they have contributed with standards for build-
ing spoken language understanding systems with Microsoft’s SAPI/SDK family of products,
and pushed the technologies forward with the rest of the community. Today, they continue to
play apremier leadership role in both the research community and in industry.

The new book “ Spoken Language Processing” by Huang, Acero and Hon represents a
welcome addition to the technical literature on this increasingly important emerging area of
Information Technology. As we move from desktop PCs to personal digital assistants
(PDAS), wearable computers, and Internet cell phones, speech becomes a central, if not the
only, means of communication between the human and machine! Huang, Acero, and Hon
have undertaken a commendable task of creating a comprehensive reference manuscript cov-
ering theoretical, algorithmic and systems aspects of spoken language tasks of recognition,
synthesis and understanding.

The task of spoken language communication requires a system to recognize, interpret,
execute and respond to a spoken query. This task is complicated by the fact that the speech
signal is corrupted by many sources. noise in the background, characteristics of the micro-
phone, vocal tract characteristics of the speakers, and differences in pronunciation. In addi-
tion the system has to cope with non-grammaticality of spoken communication and ambigu-
ity of language. To solve the problem, an effective system must strive to utilize all the avail-
able sources of knowledge, i.e., acoustics, phonetics and phonology, lexical, syntactic and
semantic structure of language, and task specific context dependent information.

Speech is based on a sequence of discrete sound segments that are linked in time.
These segments, called phonemes, are assumed to have unique articulatory and acoustic
characteristics. While the human voca apparatus can produce an almost infinite number of
articulatory gestures, the number of phonemes is limited. English as spoken in the United
States, for example, contains 16 vowel and 24 consonant sounds. Each phoneme has distin-
guishable acoustic characteristics and, in combination with other phonemes, forms larger
units such as syllables and words. Knowledge about the acoustic differences among these
sound unitsis essential to distinguish one word from another, say “bit” from “pit.”

When speech sounds are connected to form larger linguistic units, the acoustic charac-
teristics of a given phoneme will change as a function of its immediate phonetic environment
because of the interaction among various anatomical structures (such as the tongue, lips, and
voca chords) and their different degrees of sluggishness. The result is an overlap of phone-
mic information in the acoustic signal from one segment to the other. For example, the same
underlying phoneme “t” can have drasticaly different acoustic characteristics in different
words, say, in “tea,” “tree,” “city,” “beaten.” and “steep.” This effect, known as coarticula-
tion, can occur within a given word or across a word boundary. Thus, the word “this” will
have very different acoustic properties in phrases such as “this car” and “this ship.”
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This manuscript is self-contained for those who wish to familiarize themselves with the
current state of spoken language systems technology. However aresearcher or a professional
in the field will benefit from a thorough grounding in a number of disciplines such as:

[J signal processing: Fourier Transforms, DFT, and FFT.

[1 acoustics: Physics of sounds and speech, models of vocal tract.
[J pattern recognition: clustering and pattern matching techniques.
0

artificial intelligence: knowledge representation and search, natural language
processing.

[J computer science: hardware, parallel systems, algorithm optimization.
[ statistics: probability theory, hidden Morkov models, dynamic programming and
U linguistics: acoustic phonetics, lexical representation, syntax, and semantics.

A newcomer to this field, easily overwhelmed by the vast number of different algo-
rithms scattered across many conference proceedings, can find in this book a set of tech-
niques that the Huang, Acero and Hon have found to work well in practice. This book is
unique in that it includes both the theory and implementation details necessary to build spo-
ken language systems. If you were able to assemble al of the individual material that are
covered in the book and put it on a shelf it would be several times larger than this volume,
and yet you would be missing vital information. You would not have the material that isin
this book that threads it al into one story, one context. If you need additional resources, the
authors include references to get that additional detail. This makesit very appealing both as a
textbook as well as a reference book for practicing engineers. Some readers familiar with
some topic may decide to skip a few chapters; others may want to focus in other chapters. As
such, this is not a book that you will pick up and read from cover to cover, but one you will
keep near you aslong as you work in thisfield.

Raj Reddy



PREFACE

Our primary motivation in writing this book
is to share our working experience to bridge the gap between the knowledge of industry gu-
rus and newcomers to the spoken language processing community. Many powerful tech-
nigues hide in conference proceedings and academic papers for years before becoming
widely recognized by the research community or the industry. We spent many years pursuing
spoken language technology research at Carnegie Mellon University before we started spo-
ken language R&D at Microsoft. We fully understand that it is by no means a small under-
taking to transfer a state of the art spoken language research system into a commercially vi-
able product that can truly help people improve their productivity. Our experience in both
industry and academia is reflected in the context of this book, which presents a contemporary
and comprehensive description of both theoretic and practical issues in spoken language
processing. This book is intended for people of diverse academic and practical backgrounds.
Speech scientists, computer scientists, linguists, engineers, physicists and psychologists all
have a unique perspective to spoken language processing. This book will be useful to all of
these specia interest groups.

Spoken language processing is a diverse subject that relies on knowledge of many lev-
s, including acoustics, phonology, phonetics, linguistics, semantics, pragmatics, and dis-
course. The diverse nature of spoken language processing requires knowledge in computer
science, electrical engineering, mathematics, syntax, and psychology. There are a number of
excellent books on the sub-fields of spoken language processing, including speech recogni-
tion, text to speech conversion, and spoken language understanding, but there is no single
book that covers both theoretical and practical aspects of these sub-fields and spoken lan-
guage interface design. We devote many chapters systematically introducing fundamental
theories needed to understand how speech recognition, text to speech synthesis, and spoken
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language understanding work. Even more important is the fact that the book highlights what
works well in practice, which isinvaluable if you want to build a practical speech recognizer,
a practical text to speech synthesizer, or a practical spoken language system. Using humer-
ous real examples in developing Microsoft’s spoken language systems, we concentrate on
showing how the fundamental theories can be applied to solve real problems in spoken lan-
guage processing.

We would like to thank many people who helped us during our spoken language proc-
essing R&D careers. We are particularly indebted to Professor Rgj Reddy at the School of
Computer Science, Carnegie Mellon University. Under his leadership, Carnegie Mellon Uni-
versity has become a center of research excellence on spoken language processing. Today’s
computer industry and academia benefited tremendously from his leadership and contribu-
tions.

Specia thanks are due to Microsoft for its encouragement of spoken language R&D.
The management team at Microsoft has been extremely generous to our. We are particularly
grateful to Bill Gates, Nathan Myhrvold, Rick Rashid, Dan Ling, and Jack Breese for the
great environment they created for us at Microsoft Research.

Scott Meredith helped us writing a number of chaptersin this book and deserves to be
a co-author. His insight and experience to text to speech synthesis enriched this book a great
deal. We also owe gratitude to many colleagues we worked with in the speech technology
group of Microsoft Research. In aphabetic order, Bruno Alabiso, Fil Alleva, Ciprian
Chelba, James Droppo, Doug Duchene, Li Deng, Joshua Goodman, Mei-Y uh Hwang, Derek
Jacoby, Y.C. Ju, Li Jiang, Ricky Loynd, Milind Mahajan, Peter Mau, Salman Mughal, Mike
Plumpe, Scott Quinn, Mike Rozak, Gina Venolia, Kuansan Wang, and Ye-Yi Wang, not
only developed many agorithms and systems described in this book, but aso helped to
shape our thoughts from the very beginning.

In addition to those people, we want to thank Les Atlas, Alan Black, Jeff Bilmes,
David Caulton, Eric Chang, Phil Chou, Dinei Florencio, Allen Gersho, Francisco Gimenez-
Galanes, Hynek Hermansky, Kai-Fu Lee, Henrique Malvar, Mari Ostendorf, Joseph Pen-
theroudakis, Tandy Trower, Wayne Ward, and Charles Wayne. They provided us with many
wonderful comments to refine this book. Tim Moore and Russ Hall at Prentice Hall helped
us finish this book in afinite amount of time.

Finally, writing this book was a marathon that could not have been finished without the
support of our spouses Yingzhi, Donna, and Phen, during the many evenings and weekends
we spent on this project.

Redmond, WA Xuedong Huang
October 2000 Algjandro Acero
Hsiao-Wuen Hon



CHAPTER 1

I ntroduction

From human prehistory to the new media of
the future, speech communication has been and will be the dominant mode of human social
bonding and information exchange. The spoken word is now extended, through technologi-
cal mediation such as telephony, movies, radio, television, and the Internet. This trend re-
flects the primacy of spoken communication in human psychol ogy.

In addition to human-human interaction, this human preference for spoken language
communication finds a reflection in human-machine interaction as well. Most computers
currently utilize a graphical user interface (GUI), based on graphically represented interface
objects and functions such as windows, icons, menus, and pointers. Most computer operating
systems and applications also depend on a user’s keyboard strokes and mouse clicks, with a
display monitor for feedback. Today's computers lack the fundamental human abilities to
speak, listen, understand, and learn. Speech, supported by other natural modalities, will be
one of the primary means of interfacing with computers. And, even before speech-based in-
teraction reaches full maturity, applications in home, mobile, and office segments are incor-
porating spoken language technology to change the way we live and work.
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A spoken language system needs to have both speech recognition and speech synthesis
capabilities. However, those two components by themselves are not sufficient to build a use-
ful spoken language system. An understanding and dialog component is required to manage
interactions with the user; and domain knowledge must be provided to guide the system’s
interpretation of speech and alow it to determine the appropriate action. For al these com-
ponents, significant challenges exist, including robustness, flexibility, ease of integration,
and engineering efficiency. The goal of building commercially viable spoken language sys-
tems has long attracted the attention of scientists and engineers al over the world. The pur-
pose of this book is to share our working experience in developing advanced spoken lan-
guage processing systems with both our colleagues and newcomers. We devote many chap-
ters to systematically introducing fundamental theories and to highlighting what works well
based on numerous lessons we learned in devel oping Microsoft’ s spoken language systems.

1.1. MOTIVATIONS

What motivates the integration of spoken language as the primary interface modality? We
present a number of scenarios, roughly in order of expected degree of technical challenges
and expected time to full deployment.

1.11. Spoken Language I nterface

There are generally two categories of users who can benefit from adoption of speech as a
control modality in parallel with others, such as the mouse, keyboard, touch-screen, and joy-
stick. For novice users, functions that are conceptually simple should be directly accessible.
For example, raising the voice output volume under software control on the desktop speak-
ers, a conceptually simple operation, in some GUI systems of today regquires opening one or
more windows or menus, and manipulating sliders, check-boxes or other graphical elements.
This requires some knowledge of the system’s interface conventions and structures. For the
novice user, to be able to say raise the volume would be more direct and natural. For expert
users, the GUI paradigm is sometimes perceived as an obstacle or nuisance and shortcuts are
sought. Frequently these shortcuts allow the power user’s hands to remain on the keyboard or
mouse while mixing content creation with system commands. For example, an operator of a
graphic design system for CAD/CAM might wish to specify a text formatting command
while keeping the pointer device in position over a selected screen element.

Speech has the potential to accomplish these functions more powerfully than keyboard
and mouse clicks. Speech becomes more powerful when supplemented by information
streams encoding other dynamic aspects of user and system status, which can be resolved by
the semantic component of a complete multi-modal interface. We expect such multimodal
interactions to proceed based on more complete user modeling, including speech, visua ori-
entation, natural and device-based gestures, and facia expression, and these will be coordi-
nated with detailed system profiles of typical user tasks and activity patterns.
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In some situations you must rely on speech as an input or output medium. For example,
with wearable computers, it may be impossible to incorporate a large keyboard. When driv-
ing, safety is compromised by any visua distraction, and hands are required for controlling
the vehicle. The ultimate speech-only device, the telephone, is far more widespread than the
PC. Certain manual tasks may also require full visual attention to the focus of the work. Fi-
nally, spoken language interfaces offer obvious benefits for individuals challenged with a
variety of physical disabilities, such as loss of sight or limitations in physica motion and
motor skills. Chapter 18 contains detailed discussion on spoken language applications.

112 Speech-to-speech Trandation

Speech-to-speech trandation has been depicted for decades in science fiction stories. Imag-
ine guestioning a Chinese-speaking conversational partner by speaking English into an unob-
trusive device, and hearing real-time replies you can understand. This scenario, like the spo-
ken language interface, requires both speech recognition and speech synthesis technology. In
addition, sophisticated multilingual spoken language understanding is needed. This high-
lights the need for tightly coupled advances in speech recognition, synthesis, and understand-
ing systems, a point emphasized throughout this book.

113 Knowledge Partners

The ability of computers to process spoken language as proficient as humans will be a land-
mark to signal the arrival of truly intelligent machines. Alan Turing [29] introduced his fa
mous Turing test. He suggested a game, in which a computer’s use of language would form
the criterion for intelligence. If the machine could win the game, it would be judged intelli-
gent. In Turing's game, you play the role of an interrogator. By asking a series of questions
via ateletype, you must determine the identity of the other two participants: a machine and a
person. The task of the machine isto fool you into believing it is a person by responding as a
person to your questions. The task of the other person is to convince you the other partici-
pant is the machine. The critical issue for Turing was that using language as humans do is
sufficient as an operational test for intelligence.

The ultimate use of spoken language is to pass the Turing test in alowing future ex-
tremely intelligent systems to interact with human beings as knowledge partners in al as-
pects of life. This has been a staple of science fiction, but its day will come. Such systems
require reasoning capabilities and extensive world knowledge embedded in sophisticated
search, communication, and inference tools that are beyond the scope of this book. We ex-
pect that spoken language technologies described in this book will form the essential ena-
bling mechanism to pass the Turing test.
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1.2. SPOKEN LANGUAGE SYSTEM ARCHITECTURE

Sooken language processing refers to technologies related to speech recognition, text-to-
speech, and spoken language understanding. A spoken language system has at least one of
the following three subsystems:. a speech recognition system that converts speech into words,
a text-to-speech system that conveys spoken information, and a spoken language understand-
ing system that maps words into actions and that plans system-initiated actions

There is considerable overlap in the fundamental technologies for these three subareas.
Manually created rules have been developed for spoken language systems with limited suc-
cess. But, in recent decades, data-driven statistical approaches have achieved encouraging
results, which are usually based on modeling the speech signal using well-defined statistical
agorithms that can automatically extract knowledge from the data. The data-driven approach
can be viewed fundamentally as a pattern recognition problem. In fact, speech recognition,
text-to-speech conversion, and spoken language understanding can all be regarded as pattern
recognition problems. The patterns are either recognized during the runtime operation of the
system or identified during system construction to form the basis of runtime generative mod-
els such as prosodic templates needed for text to speech synthesis. While we use and advo-
cate a dtatistical approach, we by no means exclude the knowledge engineering approach
from consideration. If we have a good set of rulesin a given problem area, there is no need
to use a statistical approach at all. The problem isthat, at time of thiswriting, we do not have
enough knowledge to produce a complete set of high-quality rules. As scientific and theo-
retical generalizations are made from data collected to construct data-driven systems, better
rules may be constructed. Therefore, the rule-based and statistical approaches are best
viewed as complementary.

121. Automatic Speech Recognition

A source-channel mathematical model described in Chapter 3 is often used to formulate
speech recognition problems. As illustrated in Figure 1.1, the speaker’s mind decides the
source word sequence W that is delivered through his/her text generator. The source is
passed through a noisy communication channel that consists of the speaker’s vocal apparatus
to produce the speech waveform and the speech signal processing component of the speech
recognizer. Finally, the speech decoder aims to decode the acoustic signal X into a word

sequence W, which is hopefully close to the original word sequence W.

A typical practical speech recognition system consists of basic components shown in
the dotted box of Figure 1.2. Applications interface with the decoder to get recognition re-
sults that may be used to adapt other components in the system. Acoustic models include the
representation of knowledge about acoustics, phonetics, microphone and environment vari-
ability, gender and dialect differences among speakers, etc. Language models refer to a sys
tem’s knowledge of what constitutes a possible word, what words are likely to co-occur, and
in what sequence. The semantics and functions related to an operation a user may wish to
perform may also be necessary for the language model. Many uncertainties exist in these



Spoken Language System Architecture

areas, associated with speaker characteristics, speech style and rate, recognition of basic
speech segments, possible words, likely words, unknown words, grammatical variation, noise
interference, nonnative accents, and confidence scoring of results. A successful speech rec-
ognition system must contend with all of these uncertainties. But that is only the beginning.
The acoustic uncertainties of the different accents and speaking styles of individual speakers
are compounded by the lexical and grammatical complexity and variations of spoken lan-
guage, which are all represented in the lanauace model.
Communication Channel

Text E Speech W > Signd Speech _>
Generator | Generator Processing |: Decoder
: s W

Speech Recognizer

Figure 1.1 A source-channel model for a speech recognition system [15].

The speech signal is processed in the signal processing module that extracts salient
feature vectors for the decoder. The decoder uses both acoustic and language models to gen-
erate the word sequence that has the maximum posterior probability for the input feature
vectors. It can also provide information needed for the adaptation component to modify ei-
ther the acoustic or language models so that improved performance can be obtained.

uoieoljddy
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Figure 1.2 Basic system architecture of a speech recognition system [12].
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122 Text-to-Speech Conversion

The term text-to-speech, often abbreviated as TTS, is easily understood. The task of a text-
to-speech system can be viewed as speech recognition in reverse — a process of building a
machinery system that can generate human-like speech from any text input to mimic human
speakers. TTS is sometimes called speech synthesis, particularly in the engineering commu-
nity.

The conversion of words in written form into speech is nontrivial. Even if we can store
a huge dictionary for most common words in English; the TTS system still needs to deal with
millions of names and acronyms. Moreover, in order to sound natural, the intonation of the
sentences must be appropriately generated.

The development of TTS synthesis can be traced back to the 1930s when Dudley’'s
Voder, developed by Bell Laboratories, was demonstrated at the World's Fair [18]. Taking
the advantage of increasing computation power and storage technology, TTS researchers
have been able to generate high quality commercial multilingual text-to-speech systems, al-
though the quality isinferior to human speech for general-purpose applications.

The basic components in a TTS system are shown in Figure 1.3. The text analysis
component normalizes the text to the appropriate form so that it becomes speakable. The
input can be either raw text or tagged. These tags can be used to assist text, phonetic, and
prosodic analysis. The phonetic analysis component converts the processed text into the cor-
responding phonetic sequence, which is followed by prosodic analysis to attach appropriate
pitch and duration information to the phonetic sequence. Finally, the speech synthesis com-
ponent takes the parameters from the fully tagged phonetic sequence to generate the corre-
sponding speech waveform.

Various applications have different degrees of knowledge about the structure and con-
tent of the text that they wish to speak so some of the basic components shown in Figure 1.3
can be skipped. For example, some applications may have certain broad requirements such
as rate and pitch. These requirements can be indicated with simple command tags appropri-
ately located in the text. Many TTS systems provide a set of markups (tags), so the text pro-
ducer can better express their semantic intention. An application may know a lot about the
structure and content of the text to be spoken to greatly improve speech output quality. For
engines providing such support, the text analysis phase can be skipped, in whole or in part. If
the system developer knows the orthographic form, the phonetic analysis module can be
skipped as well. The prosodic analysis module assigns a humeric duration to every phonetic
symbol and calculates an appropriate pitch contour for the utterance or paragraph. In some
cases, an application may have prosodic contours precalculated by some other process. This
situation might arise when TTS is being used primarily for compression, or the prosody is
transplanted from a real speaker’s utterance. In these cases, the quantitative prosodic con-
trols can be treated as special tagged field and sent directly along with the phonetic stream to
speech synthesis for voice rendition.
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TTSEngine
Text Analysis
Document Structure Detection
Raw text P Text Normalization
or tagged text Linguistic Analysis

tagged text i

Phonetic Analysis
Grapheme-to-Phoneme Conversion

tagged phones i

Prosodic Analysis
Pitch & Duration Attachment

controls i

Speech Synthesis
Voice Rendering

Figure 1.3 Basic system architecture of a TTS system.

1.2.3. Spoken L anguage Under standing

Whether a speaker is inquiring about flights to Seattle, reserving a table at a Pittsburgh res-
taurant, dictating an article in Chinese, or making a stock trade, a spoken language under-
standing system is heeded to interpret utterances in context and carry out appropriate actions.
lexical, syntactic, and semantic knowledge must be applied in a manner that permits coopera-
tive interaction among the various levels of acoustic, phonetic, linguistic, and application
knowledge in minimizing uncertainty. Knowledge of the characteristic vocabulary, typical
syntactic patterns, and possible actions in any given application context for both interpreta-
tion of user utterances and planning system activity are the heart and soul of any spoken lan-
guage understanding system.

A schematic of the typical spoken language understanding systems is shown in Figure
1.4. Such a system typically has a speech recognizer and a speech synthesizer for basic
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speech input and output, sentence interpretation component to parse the speech recognition
results into semantic forms, which often needs discourse analysis to track context and re-
solve ambiguities. Dialog Manager is the central component that communicates with appli-
cations and the spoken language understanding modules such as discourse analysis, sentence
interpretation, and message generation.

While most components of the system may be partly or wholly generic, the dialog
manager controls the flow of conversation tied to the action. The dialog manager is respon-
sible for providing status needed for formulating responses, and maintaining the system’s
idea of the state of the discourse. The discourse state records the current transaction, dialog
goals that motivated the current transaction, current objects in focus (temporary center of
attention), the object history list for resolving dependent references, and other status infor-
mation. The discourse information is crucia for semantic interpretation to interpret utter-
ances in context. Various systems may ater the flow of information implied in Figure 1.4.
For example, the dialog manager or the semantic interpretation module may be able to sup-
ply contextual discourse information or pragmatic inferences, as feedback to guide the rec-
ognizer's evaluation of hypotheses at the earliest level of search. Another optimization might
be achieved by providing for shared grammatical resources between the message generation
and semantic inter pretation components.

— Y
[ Application

[ Discourse Analysis ]<—>[ Dialog Manager ]d—b[ Dialog Strategy ]

[ Response Generation ] [Sentencelnterpretation

v 4

Text-To-Speech ] [ Speech Recognizer

Figure 1.4 Basic system architecture of a spoken language understanding system.
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1.3. Book ORGANIZATION

We attempt to present a comprehensive introduction to spoken language processing, which
includes not only fundamentals but also a practical guide to build a working system that re-
quires knowledge in speech signal processing, recognition, text-to-speech, spoken language
understating, and application integration. Since there is considerable overlap in the funda-
mental spoken language processing technologies, we have devoted Part | to the foundations
needed. Part | contains background on speech production and perception, probability and
information theory, and pattern recognition. Parts Il, IIl, 1V, and V include chapters on
speech processing, speech recognition, speech synthesis, and spoken language systems, re-
spectively. A reader with sufficient background can skip Part I, referring back to it later as
needed. For example, the discussion of speech recognition in Part 111 relies on the pattern
recognition algorithms presented in Part 1. Algorithms that are used in severa chapters
within Part 111 are also included in Parts | and I1. Since the field is still evolving, at the end
of each chapter we provide a historical perspective and list further readings to facilitate fu-
ture research.

1.3.1. Part |: Fundamental Theory

Chapters 2 to 4 provide readers with a basic theoretic foundation to better understand tech-
niques that are widely used in modern spoken language systems. These theories include the
essence of linguistics, phonetics, probability theory, information theory, and pattern recogni-
tion. These chapters prepare you fully to understand the rest of the book.

Chapter 2 discusses the basic structure of spoken language including speech science,
phonetics, and linguistics. Chapter 3 covers probability theory and information theory, which
form the foundation of modern pattern recognition. Many important algorithms and princi-
ples in pattern recognition and speech coding are derived based on these theories. Chapter 4
introduces basic pattern recognition, including decision theory, estimation theory, and a
number of algorithms widely used in speech recognition. Pattern recognition forms the core
of most of the algorithms used in spoken language processing.

132 Part 11: Speech Processing

Part 1l provides you with necessary speech signal processing knowledge that is critical to
spoken language processing. Most of what discuss here is traditionally the subject of electri-
cal engineering.

Chapters 5 and 6 focus on how to extract useful information from the speech signal.
The basic principles of digital signal processing are reviewed and a number of useful repre-
sentations for the speech signal are discussed. Chapter 7 covers how to compress these rep-
resentations for efficient transmission and storage.
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1.3.3. Part 111: Speech Recognition

Chapters 8 to 13 provide you with an in-depth look at modern speech recognition systems.
We highlight techniques that have been proven to work well in building real systems and
explain in detail how and why these techniques work from both theoretic and practical per-
spectives.

Chapter 8 introduces hidden Markov models, the most prominent technique used in
modern speech recognition systems. Chapters 9 and 11 deal with acoustic modeling and lan-
guage modeling respectively. Because environment robustness is critical to the success of
practical systems, we devote Chapter 10 to discussing how to make systems less affected by
environment noises. Chapters 12 and 13 deal in detail how to efficiently implement the de-
coder for speech recognition. Chapter 12 discusses a number of basic search algorithms, and
Chapter 13 covers large vocabulary speech recognition. Throughout our discussion, Micro-
soft’s Whisper speech recognizer is used as a case study to illustrate the methods introduced
in these chapters.

1.3.4. Part 1V: Text-to-Speech Systems

In Chapters 14 through 16, we discuss proven techniques in building text-to-speech systems.
The synthesis system consists of major components found in speech recognition systems,
except that they arein the reverse order.

Chapters 14 covers the analysis of written documents and the text needed to support
spoken rendition, including the interpretation of audio markup commands, interpretation of
numbers and other symbols, and conversion from orthographic to phonetic symbols. Chapter
15 focuses on the generation of pitch and duration controls for linguistic and emotional ef-
fect. Chapter 16 discusses the implementation of the synthetic voice, and presents algorithms
to manipulate a limited voice data set to support awide variety of pitch and duration controls
required by the text analysis. We highlight the importance of trainable synthesis, with Micro-
soft’s Whistler TTS system as an example.

135 Part V: Spoken Language Systems

As discussed in Section 1.1, spoken language applications motivate spoken language R&D.
The central component is the spoken language understanding system. Since it is closely re-
|ated to applications, we group it together with application and interface design.

Chapter 17 covers spoken language understanding. The output of the recognizer re-
quires interpretation and action in a particular application context. This chapter details useful
strategies for dialog management, and the coordination of all the speech and system re-
sources to accomplish atask for a user. Chapter 18 concludes the book with a discussion of
important principles for building spoken language interfaces and applications, including gen-
eral human interface design goals, and interaction with nonspeech interface modalities in



Target Audiences 11

specific application contexts. Microsoft's MiPad is used as a case study to illustrate a num-
ber of issuesin devel oping spoken language applications.

1.4. TARGET AUDIENCES

This book can serve avariety of audiences:

Integration engineers:. Software engineers who want to build spoken language sys
tems, but who do not want to learn al about speech technology internals, will find plentiful
relevant material, including application design and software interfaces. Anyone with a pro-
fessional interest in aspects of speech applications, integration, and interfaces can aso
achieve enough understanding of how the core technologies work, to allow them to take full
advantage of state-of-the-art capabilities.

Speech technology engineers. Engineers and researchers working on various subspe-
cialties within the speech field will find this book a useful guide to understanding related
technologies in sufficient depth to help them gain insight on where their own approaches
overlap with, or diverge from, their neighbors’ common practice.

Graduate students: This book can serve as a primary textbook in a graduate or ad-
vanced undergraduate speech analysis or language engineering course. It can serve as a sup-
plementary textbook in some applied linguistics, digital signal processing, computer science,
artificial intelligence, and possibly psycholinguistics course.

Linguists: As the practice of linguistics increasingly shifts to empirical analysis of
real-world data, students and professional practitioners alike should find a comprehensive
introduction to the technical foundations of computer processing of spoken language helpful.
The book can be read at different levels and through different paths, for readers with differ-
ing technical skills and background knowledge.

Speech Scientists: Researchers engaged in professional work on issues related to nor-
mal or pathological speech may find this complete exposition of the state-of-the-art in com-
puter modeling of generation and perception of speech interesting.

Business planners. Increasingly, business and management functions require some
level of insight into the vocabulary and common practices of technology development. While
not the primary audience, managers, marketers and others with planning responsibilities and
sufficient technical background will find portions of this book useful in evaluating competing
proposals, and in making buy-or-devel op business decisions related to the speech technology
components.

1.5. HISTORICAL PERSPECTIVE AND FURTHER READING

Spoken language processing is a diverse field that relies on knowledge of language at the
levels of signal processing, acoustics, phonology, phonetics, syntax, semantics, pragmatics,
and discourse. The foundations of spoken language processing lie in computer science, elec-
trical engineering, linguistics, and psychology. In the 1970s an ambitious speech understand-
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ing project was funded by DARPA, which led to many seminal systems and technologies
[17]. A number of human language technology projects funded by DARPA in the 1980s and
‘90s further accelerated the progress, as evidenced by many papers published in The Pro-
ceedings of the DARPA Speech and Natural Language/Human Language Workshop. The
field is still rapidly progressing and there are a number of excellent review articles and intro-
ductory books. We provide a brief list here. More detailed references can be found within
each chapter of this book. Gold and Morgan’s Speech and Audio Signal Processing [10] has
astrong historical perspective on spoken language processing.

Hyde [14] and Reddy [24] provided an excellent review of early speech recognition
work in the 1970s. Some of the principles are still applicable to today’s speech recognition
research. Waibel and Lee assembled many seminal papers in Readings in Speech Recogni-
tion Speech Recognition [31]. There are a number of excellent books on modern speech rec-
ognition [1, 13, 15, 22, 23].

Where does the state of the art speech recognition system stand today? A number of
different recognition tasks can be used to compare the recognition error rate of people vs.
machines. Table 1.1 shows five recognition tasks with vocabularies ranging from 10 to 5,000
words speaker-independent continuous speech recognition. The Wall Street Journal Dicta-
tion (WSJ) Task has 5000-word vocabulary as a continuous dictation application for the
WSJ articles. In Table 1.1, the error rate for machines is based on state of the art speech rec-
ognizers such as systems described in Chapter 9, and the error rate of humans is based a
range of subjects tested on the similar task. We can see the error rate of humansis at least 5
times smaller than machines except for the sentences that are generated from a trigrm lan-
guage model, where the sentences have the perfect match between humans and machines so
humans cannot use high-level knowledge that is not used in machines'.

Table 1.1 Word error rate comparisons between human and machines on similar tasks.

Tasks Vocabulary | Humans Machines
Connected digits 10 0.009% 0.72%
Alphabet |etters 26 1% 5%
Spontaneous tel ephone speech 2000 3.8% 36.7%
WSJ with clean speech 5000 0.9% 4.5%
WSJ with noisy speech (10-db SNR) 5000 1.1% 8.6%
Clean speech based on trigram sentences | 20,000 7.6% 4.4%

We can see that humans are far more robust than machines for normal tasks. The error
rate for machine spontaneous conversational telephone speech recognition is above 35%,
more than a factor 10 higher than humans on the similar task. In addition, the error rate of
humans does not increase as dramatic as machines when the environment becomes noisy
(from quite to 10-db SNR environments on the WSJ task). The relative error rate of humans

! Some of these experiments were conducted at Microsoft with only a small number of human
subjects (3-5 people), which is not statisticaly significant. Nevertheless, it sheds some interesting
insight on the performance between humans and machines.
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increases from 0.9% to 1.1% (1.2 times), while the error rate of CSR systems increases from
4.5% to 8.6% (1.9 times). One interesting experiment is that when we generated sentences
using the WSJ trigram language model (cf Chapter 11), the difference between humans and
machines disappears (the last row in Table 1.1). In fact, the error rate of humans is even
higher than machines. This is because both humans and machines have the same high-level
syntactic and semantic models. The test sentences are somewhat random to humans but per-
fect to machines that used the same trigram model for decoding. This experiment indicates
humans make more effective use of semantic and syntactic constraints for improved speech
recognition in meaningful conversation. In addition, machines don't have attention problems
as humans on random sentences.

Fant [7] gave an excellent introduction to speech production. Early reviews of text-to-
speech synthesis can be found in [3, 8, 9]. Sagisaka[26] and Carlson [6] provide more recent
reviews of progressin speech synthesis. A more detailed treatment can be found in [19, 30].

Where does the state of the art text to speech system stand today? Unfortunately, like
speech recognition, this is not a solved problem either. Although machine storage capabili-
ties are improving, the quality remains a challenge for many researchers if we want to pass
the Turing test.

Spoken language understanding is deeply rooted in speech recognition research. There
are a number of good books on spoken language understanding [2, 5, 16]. Manning and
Schutz [20] focuses on statistical methods for language understanding. Like Waibel and Lee,
Grosz et al. assembled many foundational papers in Readingsin Natural Language Process-
ing [11]. More recent reviews of progress in spoken language understanding can be found in
[25, 28]. Related spoken language interface design issues can be found in [4, 21, 27, 32].

In comparison to speech recognition and text to speech, spoken language understand-
ing is further away from approaching the level of humans, especially for general-purpose
spoken language applications.

A number of good conference proceedings and journals report the latest progressin the
field. Major results on spoken language processing are presented at the International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), International Conference on
Sooken Language Processing (ICSLP), Eurospeech Conference, the DARPA Speech and
Human Language Technology Workshops, and many workshops organized by the European
Speech Communications Associations (ESCA) and |EEE Signal Processing Society. Journals
include |EEE Transactions on Speech and Audio Processing, |EEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), Computer Speech and Language, Speech Com-
munications, and Journal of Acoustical Society of America (JASA). Research results can also
be found at computational linguistics conferences such as the Association for Computational
Linguistics (ACL), International Conference on Computational Linguistics (COLING), and
Applied Natural Language Processing (ANLP). The journals Computational Linguistics and
Natural Language Engineering cover both theoretical and practical applications of language
research. Speech Recognition Update published by TMA Associates is an excellent industry
newsl etter on spoken language applications.
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CHAPTER 2

Spoken Language Structure

S)oken language is used to communicate in-
formation from a speaker to a listener. Speech production and perception are both important
components of the speech chain. Speech begins with a thought and intent to communicate in
the brain, which activates muscular movements to produce speech sounds. A listener re-
ceivesit in the auditory system, processing it for conversion to neurological signals the brain
can understand. The speaker continuously monitors and controls the vocal organs by receiv-
ing his or her own speech as feedback.

Considering the universal components of speech communication as shown in Figure
2.1, the fabric of spoken interaction is woven from many distinct elements. The speech
production process starts with the semantic message in a person’s mind to be transmitted to
the listener via speech. The computer counterpart to the process of message formulation is
the application semantics that creates the concept to be expressed. After the message is
created, the next step isto convert the message into a sequence of words. Each word consists
of a sequence of phonemes that corresponds to the pronunciation of the words. Each
sentence also contains a prosodic pattern that denotes the duration of each phoneme,
intonation of the sentence, and loudness of the sounds. Once the language system finishes

19
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sentence, and loudness of the sounds. Once the language system finishes the mapping, the
talker executes a series of neuromuscular signals. The neuromuscular commands perform
articulatory mapping to control the vocal cords, lips, jaw, tongue, and velum, thereby pro-
ducing the sound sequence as the final output. The speech understanding process works in
reverse order. First the signal is passed to the cochlea in the inner ear, which performs fre-
quency analysis as a filter bank. A neural transduction process follows and converts the
spectral signal into activity signals on the auditory nerve, corresponding roughly to a feature
extraction component. Currently, it is unclear how neural activity is mapped into the lan-
guage system and how message comprehension is achieved in the brain.

Speech Generation Speech Understanding
- /,\\
// \\
M essage Formulation Application semantics, actions ::> M essage Comprehension
2SN ———s

!
Phonemes, words, prosody :
Language System Language System
) I 7
Feature extraction .
‘ :> Neural Transduction

Neuromuscular Mapping

Articulatory parameter / y

Vocal Tract System
2 gl = =
ge?e?;citlm "‘WWW* ’""“"“MM’“ analysis

Figure 2.1 The underlying determinants of speech generation and understanding. The gray
boxes indicate the corresponding computer system components for spoken language process-
ing.

Speech signals are composed of analog sound patterns that serve as the basis for a dis-
crete, symbolic representation of the spoken language — phonemes, syllables, and words.
The production and interpretation of these sounds are governed by the syntax and semantics
of the language spoken. In this chapter, we take a bottom up approach to introduce the basic
concepts from sound to phonetics and phonology. Syllables and words are followed by syn-
tax and semantics, which forms the structure of spoken language processing. The examples
in this book are drawn primarily from English, though they are relevant to other languages.
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2.1. SOUND AND HUMAN SPEECH SYSTEMS

In this Section, we briefly review human speech production and perception systems. We
hope spoken language research will enable us to build a computer system that is as good as
or better than our own speech production and understanding system.

2.1.1. Sound

Sound is a longitudinal pressure wave formed of compressions and rarefactions of air mole-
cules, in a direction parallel to that of the application of energy. Compressions are zones
where air molecules have been forced by the application of energy into a tighter-than-usual
configuration, and rarefactions are zones where air molecules are less tightly packed. The
aternating configurations of compression and rarefaction of air molecules along the path of
an energy source are sometimes described by the graph of a sine wave as shown in Figure
2.2. In this representation, crests of the sine curve correspond to moments of maximal com-
pression and troughs to moments of maximal rarefaction.

\

Amplitude

Wavelength

Figure 2.2 Application of sound energy causes aternating compression/refraction of air mole-
cules, described by a sine wave. There are two important parameters, amplitude and wave-
length, to describe a sine wave. Fregquency [cycles/second measured in Hertz (Hz)] is also used
to measure of the waveform.

The use of the sine graph in Figure 2.2 is only a notational convenience for charting
local pressure variations over time, since sound does not form a transverse wave, and the air
particles are just oscillating in place along the line of application of energy. The speed of a
sound pressure wave in air is approximately 331.5+0.6T.m/s, where T, is the Celsius tem-

perature.

The amount of work done to generate the energy that sets the air molecules in motion
is reflected in the amount of displacement of the molecules from their resting position. This
degree of displacement is measured as the amplitude of a sound as shown in Figure 2.2. Be-
cause of the wide range, it is convenient to measure sound amplitude on a logarithmic scale
in decibels (dB). A decibel scaleisactually a means for comparing two sounds:
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10log,, (P1/P2) (2.1)

where B, and P, are the two power levels.
Sound pressure level (SPL) isameasure of absolute sound pressure P in dB:

SPL(dB) = 20l0g,, {;] 2.2)

0

where the reference 0 dB corresponds to the threshold of hearing, which is
R, =0.0002ubar for atone of 1kHz. The speech conversation level at 3 feet is about 60 dB

SPL, and a jackhammer’s level is about 120 dB SPL. Alternatively, watts/meter? units are
often used to indicate intensity. We can bracket the limits of human hearing as shown in
Table 2.1. On the low end, the human ear is quite sensitive. A typical person can detect
sound waves having an intensity of 102 W/m? (the threshold of hearing or TOH). This in-
tensity corresponds to a pressure wave affecting a given region by only one-billionth of a
centimeter of molecular motion. On the other end, the most intense sound that can be safely
detected without suffering physical damage is one billion times more intense than the TOH.
0 dB begins with the TOH and advances logarithmically. The faintest audible sound is arbi-
trarily assigned a value of 0 dB, and the loudest sounds that the human ear can tolerate are
about 120 dB.

Table 2.1 Intensity and decibel levels of various sounds.

Sound dBLevel | Times>TOH
Threshold of hearing (TOH: 1072W/ /m?) 0 10°
Light whisper 10 10
Quiet living room 20 10°
Quiet conversation 40 10°
Average office 50 10°
Normal conversation 60 10°
Busy city street 70 10’
Acoustic guitar — 1 ft. away 80 10°
Heavy truck traffic 90 10°
Subway from platform 100 10"
Power tools 110 10"
Pain threshold of ear 120 10"
Airport runway 130 107
Sonic boom 140 10™
Permanent damage to hearing 150 10"
Jet engine, close up 160 10™
Rocket engine 180 10%®
Twelve feet. from artillery cannon muzzle (10°W / m?) 220 107
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The absolute threshold of hearing is the maximum amount of energy of a pure tone
that cannot be detected by a listener in a noise free environment. The absolute threshold of
hearing is a function of frequency that can be approximated by

T, (f) =3.64(f /1000)°® -6.5e°%119%039° +102(f /1000)* (dB SPL) (2.3)

and is plotted in Figure 2.3.
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Figure 2.3 The sound pressure level (SPL) level in dB of the absolute threshold of hearing as a
function of frequency. Sounds below this level are inaudible. Note that below 100 Hz and
above 10 kHz this level rises very rapidly. Frequency goes from 20 Hz to 20 kHz and is plotted
in alogarithmic scale from Eq. (2.3).

Let’s compute how the pressure level varies with distance for a sound wave emitted by
a point source located a distance r away. Assuming no energy absorption or reflection, the
sound wave of a point source is propagated in a spherical front, such that the energy is the
same for the sphere’'s surface at al radius r. Since the surface of a sphere of radiusr is
47mr? | the sound’s energy is inversely proportional to r?, so that every time the distance is
doubled, the sound pressure level decreases by 6 dB. For the point sound source, the energy
(E) transported by a wave is proportional to the square of the amplitude (A) of the wave and
the distance (r) between the sound source and the listener:

2
enA (2.4)

rZ

The typical sound intensity of a speech signal one inch away (close-talking micro-
phone) from the talker is 1 Pascal = 10ubar, which corresponds to 94 dB SPL. The typical
sound intensity 10 inches away from a talker is 0.1 Pascal = 1pbar, which corresponds to
74dB SPL.
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2.1.2. Speech Production

We review here basic human speech production systems, which have influenced research on
speech coding, synthesis, and recognition.

2.1.2.1. Articulators

Speech is produced by air-pressure waves emanating from the mouth and the nostrils of a
speaker. In most of the world’s languages, the inventory of phonemes, as discussed in Sec-
tion 2.2.1, can be split into two basic classes:

[ consonants - articulated in the presence of constrictions in the throat or obstruc-
tionsin the mouth (tongue, teeth, lips) as we speak.

11 vowels - articulated without major constrictions and obstructions.

Tooth-ridge(alveolar): Nasal Cavity

back part
front-part Hard Palate
Upper Teeth -
/ Velum
Upper Lip \ Nasal Passage
Lower Lip \ Tongue:
back
Lower Teeth \ middle
front
Jaw tip

Voeal Cords \

PRENTN

Figure 2.4 A schematic diagram of the human speech production apparatus.

The sounds can be further partitioned into subgroups based on certain articulatory
properties. These properties derive from the anatomy of a handful of important articulators
and the places where they touch the boundaries of the human vocal tract. Additionally, a
large number of muscles contribute to articulator positioning and motion. We restrict our-
selves to a schematic view of only the major articulators, as diagrammed in Figure 2.4. The
gross components of the speech production apparatus are the lungs, trachea, larynx (organ of
voice production), pharyngeal cavity (throat), oral and nasal cavity. The pharyngeal and oral
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cavities are typically referred to as the vocal tract, and the nasal cavity as the nasal tract. As
illustrated in Figure 2.4, the human speech production apparatus consists of:

2122

Lungs: source of air during speech.

Vocal cords (larynx): when the vocal folds are held close together and oscillate
against one another during a speech sound, the sound is said to be voiced. When
the folds are too slack or tense to vibrate periodically, the sound is said to be un-
voiced. The place where the vocal folds come together is called the glottis.

Velum (Soft Palate): operates as a valve, opening to alow passage of air (and
thus resonance) through the nasal cavity. Sounds produced with the flap open
include mand n.

Hard palate: a long relatively hard surface at the roof inside the mouth, which,
when the tongue is placed against it, enables consonant articulation.

Tongue: flexible articulator, shaped away from the palate for vowels, placed
closeto or on the palate or other hard surfaces for consonant articulation.

Teeth: another place of articulation used to brace the tongue for certain conso-
nants.

Lips: can be rounded or spread to affect vowel quality, and closed completely to
stop the oral air flow in certain consonants (p, b, m).

TheVoicing Mechanism

The most fundamental distinction between sound types in speech is the voiced/voiceless
digtinction. Voiced sounds, including vowels, have in their time and frequency structure a
roughly regular pattern that voiceless sounds, such as consonants like s, lack. Voiced sounds
typically have more energy as shown in Figure 2.5. We see here the waveform of the word
sees, which consists of three phonemes: an unvoiced consonant /s/, a vowel /iy/ and, a
voiced consonant /z/.

SRR prontam el

s(/9) ee (liyl) s(/Z))

Figure 2.5 Waveform of sees, showing a voiceless phoneme /s, followed by a voiced sound,
the vowel /iy/. The final sound, /Z/, is atype of voiced consonant.

What in the speech production mechanism creates this fundamental distinction? When
the vocal folds vibrate during phoneme articulation, the phoneme is considered voiced; oth-
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erwise it is unvoiced. Vowels are voiced throughout their duration. The distinct vowel tim-
bres are created by using the tongue and lips to shape the main oral resonance cavity in dif-
ferent ways. The vocal folds vibrate at slower or faster rates, from as low as 60 cycles per
second (Hz) for alarge man, to as high as 300 Hz or higher for a small woman or child. The
rate of cycling (opening and closing) of the vocal folds in the larynx during phonation of
voiced sounds is called the fundamental frequency. Thisis because it sets the periodic base-
line for al higher-frequency harmonics contributed by the pharyngeal and oral resonance
cavities above. The fundamental frequency also contributes more than any other single fac-
tor to the perception of pitch (the semi-musical rising and falling of voice tones) in speech.

| | | |
= PN

@ )

Figure 2.6 Vocal fold cycling at the larynx. (a) Closed with sub-glottal pressure buildup; (b)
trans-glottal pressure differential causing folds to blow apart; (c) pressure equalization and tis-
sue elasticity forcing temporary reclosure of voca folds, ready to begin next cycle.

<4 c- »

500 Open

100

Airflow (cm%s)

I T T I T
8 16 24

Time
Figure 2.7 Waveform showing air flow during laryngeal cycle.

The glottal cycleisillustrated in Figure 2.6. At stage (a), the vocal folds are closed and
the air stream from the lungs isindicated by the arrow. At some point, the air pressure on the
underside of the barrier formed by the vocal folds increases until it overcomes the resistance
of the vocal fold closure and the higher air pressure below blows them apart (b). However,
the tissues and muscles of the larynx and the vocal folds have a natural elasticity which
tends to make them fall back into place rapidly, once air pressure is temporarily equalized
(c). The successive airbursts resulting from this process are the source of energy for all
voiced sounds. The time for a single open-close cycle depends on the stiffness and size of
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the vocal folds and the amount of subglottal air pressure. These factors can be controlled by
a speaker to raise and lower the perceived frequency or pitch of avoiced sound.

The waveform of air pressure variations created by this process can be described as a
periodic flow, in cubic centimeters per second (after [15]). As shown in Figure 2.7, during
the time bracketed as one cycle, there isno air flow during the initial closed portion. Then as
the glottis opens (open phase), the volume of air flow becomes greater. After a short peak,
the folds begin to resume their original position and the air flow declines until complete clo-
sure is attained, beginning the next cycle. A common measure is the number of such cycles
per second (Hz), or the fundamental frequency (FO0). Thus the fundamental frequency for the
waveformin Figure 2.7 is about 120 Hz.

21.23. Spectrograms and For mants

Since the glottal wave is periodic, consisting of fundamental frequency (FO) and a number
of harmonics (integral multiples of FO), it can be analyzed as a sum of sine waves as dis-
cussed in Chapter 5. The resonances of the vocal tract (above the glottis) are excited by the
glottal energy. Suppose, for simplicity, we regard the vocal tract as a straight tube of uni-
form cross-sectional area, closed at the glottal end, open at the lips. When the shape of the
vocal tract changes, the resonances change also. Harmonics near the resonances are empha-
sized, and, in speech, the resonances of the cavities that are typical of particular articulator
configurations (e.g., the different vowel timbres) are called formants. The vowels in an ac-
tual speech waveform can be viewed from a number of different perspectives, emphasizing
either a cross-sectional view of the harmonic responses at a single moment, or alonger-term
view of the formant track evolution over time. The actual spectral analysis of a vowel at a
single time-point, as shown in Figure 2.8, gives an idea of the uneven distribution of energy
in resonances for the vowel /iy/ in the waveform for see, which is shown in Figure 2.5.

A00 oo 15000 2000 2500 3000 35000 40000 4500 5000

Figure 2.8 A spectral analysis of the vowel /iy/, showing characteristically uneven distribution
of energy at different frequencies.
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Another view of sees of Figure 2.5, called a spectrogram, is displayed in the lower part
of Figure 2.9. It shows a long-term frequency analysis, comparable to a complete series of
single time-point cross sections (such as that in Figure 2.8) ranged alongside one another in
time and viewed from above.
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Figure 2.9 The spectrogram representation of the speech waveform sees (approximate phone
boundaries are indicated with heavy vertical lines).

In the spectrogram of Figure 2.9, the darkness or lightness of a band indicates the rela-
tive amplitude or energy present at a given frequency. The dark horizontal bands show the
formants, which are harmonics of the fundamental at natural resonances of the vocal tract
cavity position for the vowel /iy/ in see. The mathematical methods for deriving analyses
and representations such as those illustrated above are covered in Chapters 5 and 6.

2.1.3. Speech Perception

There are two major components in the auditory perception system: the peripheral auditory
organs (ears) and the auditory nervous system (brain). The ear processes an acoustic pres-
sure signal by first transforming it into a mechanical vibration pattern on the basilar mem-
brane, and then representing the pattern by a series of pulses to be transmitted by the audi-
tory nerve. Perceptual information is extracted at various stages of the auditory nervous sys-
tem. In this section we focus mainly on the auditory organs.
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21.3.1. Physiology of the Ear

The human ear, as shown in Figure 2.10, has three sections:. the outer ear, the middle ear and
the inner ear. The outer ear consists of the external visible part and the external auditory
canal that forms a tube along which sound travels. Thistube is about 2.5 cmlong and is cov-
ered by the eardrum at the far end. When air pressure variations reach the eardrum from the
outside, it vibrates, and transmits the vibrations to bones adjacent to its opposite side. The
vibration of the eardrum is at the same frequency (alternating compression and rarefaction)
as the incoming sound pressure wave. The middle ear is an air-filled space or cavity about
1.3 cm across, and about 6 cm® volume. The air travels to the middle ear cavity along the
tube (when opened) that connects the cavity with the nose and throat. The oval window
shown in Figure 2.10 is a small membrane at the bony interface to the inner ear (cochlea).
Since the cochlear walls are bony, the energy is transferred by mechanical action of the sta-
pes into an impression on the membrane stretching over the oval window.

Figure 2.10 The structure of the peripheral auditory system with the outer, middle, and inner
ear (after Lindsey and Norman [26]).

The relevant structure of the inner ear for sound perception is the cochlea, which
communicates directly with the auditory nerve, conducting a representation of sound to the
brain. The cochleais a spiral tube about 3.5 cm long, which coils about 2.6 times. The spiral
is divided, primarily by the basilar membrane running lengthwise, into two fluid-filled
chambers. The cochlea can be roughly regarded as a filter bank, whose outputs are ordered
by location, so that a frequency-to-place transformation is accomplished. The filters closest
to the cochlear base respond to the higher frequencies, and those closest to its apex respond
to the lower.
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2132 Physical vs Perceptual Attributes

In psychoacoustics, a basic distinction is made between the perceptual attributes of a sound,
especially a speech sound, and the measurable physical properties that characterize it. Each
of the perceptual attributes, as listed in Table 2.2, seems to have a strong correlation with
one main physical property, but the connection is complex, because other physical proper-
ties of the sound may affect perception in complex ways.

Table 2.2 Relation between perceptua and physical attributes of sound.

Physical Quantity Per ceptual Quality
Intensity Loudness
Fundamental frequency Pitch
Spectral shape Timbre
Onset/offset time Timing
Phase difference in binaural hearing Location
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Figure 2.11 Equal-loudness curves indicate that the response of the human hearing mechanism
isafunction of frequency and loudness levels. This relationship again illustrates the difference
between physical dimensions and psychological experience (after 1SO 226).

Although sounds with a greater intensity level usually sound louder, the sensitivity of
the ear varies with the frequency and the quality of the sound. One fundamental divergence
between physical and perceptual qualitiesis the phenomenon of non-uniform equal loudness
perception of tones of varying frequencies. In general, tones of differing pitch have different
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inherent perceived loudness. The sensitivity of the ear varies with the frequency and the
quality of the sound. The graph of equal loudness contours adopted by 1SO is shown in
Figure 2.11. These curves demonstrate the relative insensitivity of the ear to sounds of low
frequency at moderate to low intensity levels. Hearing sensitivity reaches a maximum
around 4000 Hz, which is near the first resonance frequency of the outer ear canal, and
peaks again around 13 kHz, the frequency of the second resonance [38].

Pitch isindeed most closaly related to the fundamental frequency. The higher the fun-
damental frequency, the higher the pitch we perceive. However, discrimination between two
pitches depends on the frequency of the lower pitch. Perceived pitch will change as intensity
isincreased and frequency is kept constant.

In another example of the non-identity of acoustic and perceptual effects, it has been
observed experimentally that when the ear is exposed to two or more different tones, it is a
common experience that one tone may mask the others. Masking is probably best explained
as an upward shift in the hearing threshold of the weaker tone by the louder tone. Pure tones,
complex sounds, narrow and broad bands of noise all show differences in their ability to
mask other sounds. In general, pure tones close together in frequency mask each other more
than tones widely separated in frequency. A pure tone masks tones of higher frequency more
effectively than tones of lower frequency. The greater the intensity of the masking tone, the
broader the range of the frequenciesit can mask [18, 31].

Binaural listening greatly enhances our ability to sense the direction of the sound
source. The sense of localization attention is mostly focused on side-to-side discrimination
or lateralization. Time and intensity cues have different impacts for low frequency and high
frequency, respectively. Low-frequency sounds are lateralized mainly on the basis of inte-
raural time difference, whereas high-frequency sounds are localized mainly on the basis of
interaural intensity differences[5].

Finaly, an interesting perceptual issue is the question of distinctive voice quality.
Speech from different people sounds different. Partially this is due to obvious factors, such
as differences in characteristic fundamental frequency caused by, for example, the greater
mass and length of adult male vocal folds as opposed to female. But there are more subtle
effects as well. In psychoacoustics, the concept of timbre (of a sound or instrument) is de-
fined as that attribute of auditory sensation by which a subject can judge that two sounds
similarly presented and having the same loudness and pitch are dissimilar. In other words,
when all the easily measured differences are controlled, the remaining perception of differ-
ence is ascribed to timbre. This is heard most easily in music, where the same note in the
same octave played for the same duration on a violin sounds different from a flute. The tim-
bre of a sound depends on many physical variables including a sound’s spectral power dis-
tribution, its temporal envelope, rate and depth of amplitude or frequency modulation, and
the degree of inharmonicity of its harmonics.

2.1.33. Frequency Analysis
Researchers have undertaken psychoacoustic experimental work to derive frequency scales

that attempt to model the natural response of the human perceptual system, since the cochlea
of the inner ear acts as a spectrum analyzer. The complex mechanism of the inner ear and
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auditory nerve implies that the perceptual attributes of sounds at different frequencies may
not be entirely simple or linear in nature. It is well known that the western musical pitch is
described in octaves' and semi-tones’. The perceived musical pitch of complex tones is basi-
cally proportional to the logarithm of frequency. For complex tones, the just noticeable dif-
ference for frequency is essentially constant on the octave/semi-tone scale. Musical pitch
scales are used in prosodic research (on speech intonation contour generation).

Table 2.3 The Bark frequency scale.

Bark Band # Edge (Hz) Center (Hz)
1 100 50
2 200 150
3 300 250
4 400 350
5 510 450
6 630 570
7 770 700
8 920 840
9 1080 1000
10 1270 1170
11 1480 1370
12 1720 1600
13 2000 1850
14 2320 2150
15 2700 2500
16 3150 2900
17 3700 3400
18 4400 4000
19 5300 4800
20 6400 5800
21 7700 7000
22 9500 8500
23 12000 10500
24 15500 13500

AT&T Bell Labs has contributed many influential discoveries in hearing, such as critical
band and articulation index, since the turn of the 20th century [3]. Fletcher's work [14]
pointed to the existence of critical bands in the cochlear response. Critical bands are of great
importance in understanding many auditory phenomena such as perception of loudness,
pitch, and timbre. The auditory system performs frequency analysis of sounds into their

! A tone of frequency f, issaid to be an octave above atone with frequency f, if andonly if f, =2f,.
2 There are 12 semitones in one octave, so a tone of frequency f, is said to be a semitone above a tone with fre-

quency f, if andonlyif f, =2"?f, =1.05946f, .
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component frequencies. The cochlea acts as if it were made up of overlapping filters having
bandwidths equal to the critical bandwidth. One class of critical band scales is called Bark
frequency scale. It is hoped that by treating spectral energy over the Bark scale, a more natu-
ral fit with spectral information processing in the ear can be achieved. The Bark scale ranges
from 1 to 24 Barks, corresponding to 24 critical bands of hearing as shown in Table 2.3. As
shown in Figure 2.12, the perceptua resolution isfiner in the lower frequencies. It should be
noted that the ear’'s critical bands are continuous, and a tone of any audible frequency al-
ways finds a critical band centered on it. The Bark frequency b can be expressed in terms of
the linear frequency (in Hz) by

b(f) =13arctan(0.00076 ) +3.5* arctan(( f /7500)*)  (Bark) (2.5)
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Figure 2.12 The center frequency of 24 Bark frequency filters asillustrated in Table 2.3.

Another such perceptually motivated scale is the mel frequency scale [41], which is
linear below 1 kHz, and logarithmic above, with equal numbers of samples taken below and
above 1 kHz. The mel scale is based on experiments with simple tones (sinusoids) in which
subjects were required to divide given frequency ranges into four perceptualy equal inter-
vals or to adjust the frequency of a stimulus tone to be half as high as that of a comparison
tone. One mel is defined as one thousandth of the pitch of a 1 kHz tone. As with all such
attempts, it is hoped that the mel scale more closely models the sensitivity of the human ear
than a purely linear scale and provides for greater discriminatory capability between speech
segments. Mel-scale frequency analysis has been widely used in modern speech recognition
systems. It can be approximated by:

B(f) =1125In(1+ f /700) (2.6)

The mel scale is plotted in Figure 2.13 together with the Bark scale and the bilinear trans-
form (see Chapter 6).
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Figure 2.13 Frequency warping according to the Bark scale, ERB scale, mel-scale and bilinear
transform for a = 0.6 : linear frequency in the x-axis and normalized frequency in the y-axis.

A number of techniques in the modern spoken language system, such as cepstra
analysis, and dynamic feature, have benefited tremendously from perceptual research as
discussed throughout this book.

2.1.3.4. Masking

Frequency masking is a phenomenon under which one sound cannot be perceived if another
sound close in frequency has a high enough level. The first sound masks the other one. Fre-
guency-masking levels have been determined empirically, with complicated models that
take into account whether the masker is a tone or noise, the masker’s level, and other con-
siderations.

We now describe a phenomenon known as tone-masking noise. It has been determined
empirically that noise with energy E, (dB) masks a tone at bark frequency b if the tone's

energy is below the threshold
T, (b) = E, —6.025-0.275 +S,(b) (dB SPL) 2.7)

where K has been typically set between 3 and 5 dB, and where the spread-of-masking func-
tion S, (b) isgiven by

S, (b) =15.81+7.5(b +0.474) -17.5\/1 +(b +0.474)> (dB) (2.8)
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We now describe a phenomenon known as noise-masking tone. It has been determined
empirically that a tone at critical band number i with energy E, (dB) masks noise at bark

frequency b if the noise energy is below the threshold
T, (b)=E, -2.025-0.175i +S,(b) (dB SPL) (2.9)

Masking thresholds are commonly referred to in the literature as Bark scale functions
of just noticeable distortion (JND). Equation (2.8) can be approximated by a triangular
spreading function that has slopes of +25 and —10 dB per Bark, as shown in Figure 2.14.

20log S, (b)

|
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|

b Frequency (Barks)
Figure 2.14 Contribution of frequency bin i to the masked threshold S, (b) .

In Figure 2.15 we show both the threshold of hearing and the masked threshold of a
tone at 1 kHz with a 69 dB SPL. The combined masked threshold is the sum of the two in
the linear domain

T(f)=10l0g,, (10°™" +10° (") (2.10)

which is approximately the largest of the two.
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Figure 2.15 Absolute Threshold of Hearing and Spread of Masking threshold for a 1 kHz
sinewave masker with a69 dB SPL. The overall masked threshold is approximately the largest
of the two thresholds.
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In addition to frequency masking, there is a phenomenon called temporal masking by
which a sound too close in time to another sound cannot be perceived. Whereas premasking
tendsto last about 5 ms, postmasking can last from 50 to 300 ms. Temporal masking level of
amasker with auniform level starting at 0 ms and lasting 200 msis shown in Figure 2.16.
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Figure 2.16 Tempora masking level of a masker with a uniform level starting at 0 ms and
lasting 200 ms.

2.2. PHONETICSAND PHONOLOGY

We now discuss basic phonetics and phonology needed for spoken language processing.
Phonetics refers to the study of speech sounds and their production, classification, and tran-
scription. Phonology is the study of the distribution and patterning of speech sounds in a
language and of the tacit rules governing pronunciation.

22.1. Phonemes

Linguist Ferdinand de Saussere (1857-1913) is credited with the observation that the relation
between a sign and the object signified by it is arbitrary. The same concept, a certain yellow
and black flying social insect, has the sign honeybee in English and mitsubachi in Japanese.
There is no particular relation between the various pronunciations and the meaning, nor do
these pronunciations per se describe the bee's characteristics in any detail. For phonetics,
this means that the speech sounds described in this chapter have no inherent meaning, and
should be randomly distributed across the lexicon, except as affected by extraneous histori-
cal or etymological considerations. The sounds are just a set of arbitrary effects made avail-
able by human vocal anatomy. You might wonder about this theory when you observe, for
example, the number of words beginning with sn that have to do with nasal functions in
English: sneeze, snort, sniff, snot, snore, snuffle, etc. But Saussere’s observation is generally
true, except for obvious onomatopoetic (sound) words like buzz.
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Like fingerprints, every speaker’s vocal anatomy is unique, and this makes for unique
vocalizations of speech sounds. Yet language communication is based on commonality of
form at the perceptua level. To allow discussion of the commonalities, researchers have
identified certain gross characteristics of speech sounds that are adequate for description and
classification of words in dictionaries. They have also adopted various systems of notation
to represent the subset of phonetic phenomenathat are crucia for meaning.

As an analogy, consider the system of computer coding of text characters. In such sys-
tems, the character is an abstraction, e.g. the Unicode character U+0041. The identifying
property of this character isits Unicode name LATIN CAPITAL LETTER A. Thisis a genu-
ine abstraction; no particular realization is necessarily specified. As the Unicode 2.1 stan-
dard [1] states:

The Unicode Standard does not define glyph images. The standard defines how char-
acters are interpreted, not how glyphs are rendered. The software or hardware-rendering
engine of a computer is responsible for the appearance of the characters on the screen. The
Unicode Standard does not specify the size, shape, nor orientation of on-screen characters.

Thus, the U+0041 character can be realized differently for different purposes, and in
different sizes with different fonts:

U+0041> A, L] A A, ...

The redlizations of the character U+0041 are called glyphs, and there is no distin-
guished uniquely correct glyph for U+0041. In speech science, the term phoneme is used to
denote any of the minimal units of speech sound in a language that can serve to distinguish
one word from another. We conventionally use the term phone to denote a phoneme's
acoudtic realization. In the example given above, U+0041 corresponds to a phoneme and the
various fonts correspond to the phone. For example, English phoneme /t/ have two very dif-
ferent acoustic realizations in the words sat and meter. Y ou had better treat them as two dif-
ferent phones if you want to build a spoken language system. We will use the terms phone
or phoneme interchangeably to refer to the speaker-independent and context-independent
units of meaningful sound contrast. Table 2.4 shows a complete list of phonemes used in
American English. The set of phonemes will differ in realization across individual speakers.
But phonemes will always function systematically to differentiate meaning in words, just as
the phoneme /p/ signals the word pat as opposed to the similar-sounding but distinct bat.
The important contrast distinguishing this pair of wordsis/p/ vs. /b/.

In this section we concentrate on the basic qualities that define and differentiate ab-
stract phonemes. In Section 2.2.1.3 below we consider why and how phonemes vary in their
actual realizations by different speakers and in different contexts.
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Table 2.4 English phonemes used for typical spoken language systems.

Phonemes Word Examples Description
ih fill, hit, lid front close unrounded (lax)
ae at, carry, gas front open unrounded (tense)
aa father, ah, car back open unrounded
ah cut, bud, up open-mid back unrounded
ao dog, lawn, caught open-mid back round
ay tie, ice, hite diphthong with quality: aa+ih
ax ago, comply central close mid (schwa)
ey ate, day, tape front close-mid unrounded (tense)
eh pet, berry, ten front open-mid unrounded
er turn, fur, meter central open-mid unrounded rhoti-
ow go, own, tone back close-mid rounded
aw foul, how, our diphthong with quality: aa+ uh
oy toy, coin, oil diphthong with quality: ao + ih
uh book, pull, good back close-mid unrounded (lax)
uw tool, crew, moo back close round
b big, able, tab voiced bilabial plosive
put, open, tap voiceless bilabia plosive
dig, idea, wad voiced alveolar plosive
talk, sat voiceless alveolar plosive &
meter aveolar flap
gut, angle, tag voiced velar plosive
cut, ken, take voiceless velar plosive
fork, after, if voiceless labiodental fricative
vat, over, have voiced labiodental fricative
sit, cast, toss voiceless alveolar fricative
zap, lazy, haze voiced alveolar fricative

thin, nothing, truth
Then, father, scythe
she, cushion, wash
genre, azure

lid

€elbow, sail

red, part, far

yacht, yard

with, away

help, ahead, hotel
mat, amid, aim

no, end, pan

sing, anger

chin, archer, march
joy, agile, edge

voiceless denta fricative
voiced dental fricative
voiceless postalveolar fricative
voiced postalveolar fricative
alveolar lateral approximant
velar lateral approximant
retroflex approximant

palatal sonorant glide
labiovelar sonorant glide
voiceless glottal fricative
bilabial nasal

alveolar nasd

velar nasal

voiceless alveolar affricate: t + sh
voiced alveolar affricate: d + zh
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22.1.1. Vowels

The tongue shape and positioning in the oral cavity do not form a major constriction of air
flow during vowel articulation. However, variations of tongue placement give each vowel its
distinct character by changing the resonance, just as different sizes and shapes of bottles
give rise to different acoustic effects when struck. The primary energy entering the pharyn-
geal and oral cavitiesin vowel production vibrates at the fundamental frequency. The major
resonances of the oral and pharyngeal cavities for vowels are called F1 and F2 - the first and
second formants, respectively. They are determined by tongue placement and ora tract
shape in vowels, and they determine the characteristic timbre or quality of the vowel.

The relationship of F1 and F2 to one another can be used to describe the English vow-
els. While the shape of the complete vocal tract determines the spectral outcome in a com-
plex, nonlinear fashion, generally F1 corresponds to the back or pharyngeal portion of the
cavity, while F2 is determined more by the size and shape of the oral portion, forward of the
major tongue extrusion. This makes intuitive sense - the cavity from the glottis to the tongue
extrusion is longer than the forward part of the oral cavity, thus we would expect its reso-
nance to be lower. In the vowel of see, for example, the tongue extrusion is far forward in
the mouth, creating an exceptionally long rear cavity, and correspondingly low F1. The for-
ward part of the oral cavity, at the same time, is extremely short, contributing to higher F2.
This accounts for the wide separation of the two lowest dark horizontal bands in Figure 2.9,
corresponding to F1 and F2, respectively. Rounding the lips has the effect of extending the
front-of-tongue cavity, thus lowering F2. Typical values of F1 and F2 of American English
vowels arelisted in Table 2.5.

Table 2.5 Phoneme labels and typical formant values for vowels of English.
Vowel Labels Mean F1 (Hz) Mean F2 (H2)

iy (fedl) 300 2300
ih (fill) 360 2100
ae (gas) 750 1750
aa (father) 680 1100
ah (cut) 720 1240
ao (dog) 600 900
ax (comply) 720 1240
eh (pet) 570 1970
er (turn) 580 1380
ow (tone) 600 900
uh (good) 380 950
uw (tool) 300 940

The characteristic F1 and F2 values for vowels are sometimes called formant targets,
which are ideal locations for perception. Sometimes, due to fast speaking or other limitations
on performance, the speaker cannot quite attain an ideal target before the articulators begin
shifting to targets for the following phoneme, which is phonetic context dependent. Addi-
tionally, there is a specia class of vowels that combine two distinct sets of FL/F2 targets.
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These are called diphthongs. As the articulators move, the initial vowel targets glide
smoothly to the final configuration. Since the articulators are working faster in production of
adiphthong, sometimes the ideal formant target values of the component values are not fully
attained. Typical diphthongs of American English are listed in Table 2.6.

Table 2.6 The diphthongs of English.
Diphthong L abels Components

ay (tie) laal 2 iyl
ey (ate) lehl = liyl
oy (coin) laol =2 liyl
aw (foul) laal = luw/

Figure 2.17 shows the first two formants for a number of typical vowels.
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Vowel Phonemes

Figure 2.17 F1 and F2 values for articulations of some English vowels.

The major articulator for English vowels is the middle to rear portion of the tongue.
The position of the tongue's surface is manipulated by large and powerful muscles in its
root, which move it as a whole within the mouth. The linguistically important dimensions of
movement are generally the ranges [front <> back] and [high < low]. You can fed this
movement easily. Say mentally, or whisper, the sound /iy/ (as in see) and then /aa/ (as in
father). Do it repeatedly, and you will get a clear perception of the tongue movement from
high to low. Now try /iy/ and then /uw/ (as in blue), repeating a few times. You will get a
clear perception of place of articulation from front /iy/ to back /uw/. Figure 2.18 shows a
schematic characterization of English vowelsin terms of relative tongue positions. There are
two kinds of vowels: those in which tongue height is represented as a point and those in
which it is represented as a vector.

Though the tongue hump is the major actor in vowel articulation, other articulators
come into play as well. The most important secondary vowel mechanism for English and
many other languages is lip rounding. Repeat the exercise above, moving from the /iy/ (see)
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to the /uw/ (blue) position. Now rather than noticing the tongue movement, pay attention to
your lip shape. When you say /iy/, your lips will be flat, slightly open, and somewhat spread.
As you move to /uw/, they begin to round out, ending in a more puckered position. This
lengthens the oral cavity during /uw/, and affects the spectrum in other ways.

high

back

low

Figure 2.18 Relative tongue positions of English vowels[24].

Though there is always some controversy, linguistic study of phonetic abstractions,
called phonology, has largely converged on the five binary features: +/- high, +/- low, +/-
front, +/-back, and +/-round, plus the phonetically ambiguous but phonologically useful fea-
ture +/- tense, as adequate to uniquely characterize the major vowel distinctions of Standard
English (and many other languages). Obviously, such a system is a little bit too free with
logically contradictory specifications, such as [+high, +low], but these are excluded from
real-world use. These features can be seenin Table 2.7.

Table 2.7 Phonological (abstract) feature decomposition of basic English vowels.

Vowel high low front back round tense
+

iy - + - - +
ih + - + - - -
ae - + + - - +
aa - + - - - +
ah - - - - - +
ao - + - + +
aX - - - - - -
eh - - + - - -
ow - - - + + +
uh + - - + - -
uw + - - + - +
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Thiskind of abstract analysis allows researchers to make convenient statements about
classes of vowels that behave similarly under certain conditions. For example, one may
speak simply of the high vowels to indicate the set /iy, ih, uh, uw/.

2.2.1.2. Consonants

Consonants, as opposed to vowels, are characterized by significant constriction or obstruc-
tion in the pharyngeal and/or oral cavities. Some consonants are voiced; others are not.
Many consonants occur in pairs, that is, they share the same configuration of articulators,
and one member of the pair additionally has voicing which the other lacks. One such pair is
/s, ZI, and the voicing property that distinguishes them shows up in the non-periodic noise of
theinitial segment /s/ in Figure 2.5 as opposed to the voiced consonant end-phone, /z/. Man-
ner of articulation refers to the articulation mechanism of a consonant. The major distinc-
tionsin manner of articulation are listed in Table 2.8.

Table 2.8 Consonant manner of articulation.

Manner Sample Example M echanism
Phone Words
Plosive Ipl tat, tap Closurein ora cavity
Nasa /m/ team, meet | Closure of nasal cavity
Fricative /s sick, kiss | Turbulent airstream noise
Retroflex liquid Irl rat, tar Vowel-like, tongue high and curled back
Lateral liquid N lean, kneel | Vowel-like, tongue central, side airstream
Glide Iyl il yes, well Vowel-like

The English phones that typically have voicing without complete obstruction or nar-
rowing of the vocal tract are called semivowels and include /I, r/, the liquid group, and /y, w/,
the glide group. Liquids, glides, and vowels are all sonorant, meaning they have continuous
voicing. Liquids /l/ and /r/ are quite vowel-like and in fact may become syllabic or act en-
tirely as vowels in certain positions, such as the | at the end of edible. In /I/, the airstream
flows around the sides of the tongue, leading to the descriptive term lateral. In /r/, the tip of
the tongue is curled back dlightly, leading to the descriptive term retroflex. Figure 2.19
shows some semivowels.

Glides /ly, w/ are basically vowels /iy, uw/ whose initial position within the syllable re-
quire them to be a little shorter and to lack the ability to be stressed, rendering them just
different enough from true vowels that they are classed as a specia category of consonant.
Pre-vocalic glides that share the syllable-initial position with another consonant, such as the
Iyl in the second syllable of computer /k uh m. py uw .t er/, or the /w/ in quick /k wih K/,
are sometimes called on-glides. The semivowels, as a class, are sometimes called approxi-
mants, meaning that the tongue approaches the top of the oral cavity, but does not com-
pletely contact so asto obstruct the air flow.

Even the non-sonorant consonants that require complete or close-to-complete obstruc-
tion may still maintain some voicing before or during the obstruction, until the pressure dif-
ferential across the glottis starts to disappear, due to the closure. Such voiced consonants
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include /b,d,qg, z, zh, vi. They have a set of counterparts that differ only in their characteristic
lack of voicing: /p,t,k, s, sh, f/.
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Iyl leh N ex/

Figure 2.19 Spectrogram for the word yeller, showing semivowels /y/, /l/, ler/ (approximate
phone boundaries shown with vertical lines).

Nasal consonants /m,n/ are a mixed bag: the oral cavity has significant constriction (by
the tongue or lips), yet the voicing is continuous, like that of the sonorants, because, with the
velar flap open, air passes freely through the nasal cavity, maintaining a pressure differential
across the glottis.

A consonant that involves complete blockage of the oral cavity is called an obstruent
stop, or plosive consonant. These may be voiced throughout if the trans-glottal pressure drop
can be maintained long enough, perhaps through expansion of the wall of the oral cavity. In
any case, there can be voicing for the early sections of stops. Voiced, unvoiced pairs of stops
include: /b,p/, /d,t/, and /g,k/. In viewing the waveform of a stop, a period of silence corre-
sponding to the oral closure can generally be observed. When the closure is removed (by
opening the constrictor, which may be lips or tongue), the trapped air rushes out in a more or
less sudden manner. When the upper oral cavity is unimpeded, the closure of the vocal folds
themselves can act as the initia blocking mechanism for a type of stop heard at the very
beginning of vowel articulation in vowel-initial words like atrophy. This is called a glottal
stop. Voiceless plosive consonants in particular exhibit a characteristic aperiodic burst of
energy at the (articulatory) point of closure as shown in Figure 2.20 just prior to /i/. By com-
parison, the voicing of voiced plosive consonants may not always be obvious in a spectro-
gram.
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Figure 2.20 Spectrogram: stop release burst of /p/ in the word pin.

A consonant that involves nearly complete blockage of some position in the oral cav-
ity creates a narrow stream of turbulent air. The friction of this air stream creates a non-
periodic hiss-like effect. Sounds with this property are called fricatives and include /s, z/.
There is no voicing during the production of s, while there can be voicing (in addition to the
frication noise), during the production of z, as discussed above. /s, Z' have a common place
of articulation, as explained below, and thus form a natural similarity class. Though contro-
versial, /h/ can also be thought of as a (glottal) fricative. /s/ in word-initial position and /Z/ in
word-final position are exemplified in Figure 2.5.

Some sounds are complex combinations of manners of articulation. For example, the
affricates consist of a stop (e.g., /t/), followed by a fricative [e.g., /sh/) combining to make a
unified sound with rapid phases of closure and continuancy (e.g., {t + sh) = ch asin church).
The affricates in English are the voiced/unvoiced pairs. /j/ (d + zh) and /ch/ (t + sh). The
complete consonant inventory of Englishiis shown in Table 2.9.

Consider the set /m/, /n/, Ing/ from Table 2.9. They are al voiced nasal consonants, yet
they sound distinct to us. The difference lies in the location of the major constriction along
the top of the oral cavity (from lipsto velar areq) that gives each consonant its unique qual-
ity. The articulator used to touch or approximate the given location is usually some spot
along the length of the tongue. As shown in Figure 2.21, the combination of articulator and
place of articulation gives each consonant its characteristic sound:

(1 The labial consonants have their major constriction at the lips. Thisincludes /p/,
/bl (these two differ only by manner of articulation) and /mv and /w/.
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members of these groups differ in manner, not place).

0 Alveolar consonants bring the front part of the tongue, called the tip or the part
behind the tip called the blade, into contact or approximation to the alveolar
ridge, rising semi-vertically above and behind the teeth. Theseinclude /t, d, n, s,
z, r, I/. The members of this set again differ in manner of articulation (voicing,

continuity, nasality), rather than place.

0 Palatal consonants have approximation or constriction on or near the roof of the

mouth, called the palate. The membersinclude /sh, zh, y/.

0 Velar consonants bring the articulator (generally the back of the tongue), up to
the rearmost top area of the oral cavity, near the velar flap. Velar consonantsin

(1 The class of dental or labio-dental consonants includes /f, v/ and /th, dh/ (the

Englishinclude /k, g/ (differing by voicing) and the nasal continuant /ng/.

Table 2.9 Manner of articulation of English consonants.

Consonant Labels  Consonant Examples
big, able, tab
put, open, tap
dig, idea, wad

talk, sat
gut, angle, tag
cut, oaken, take
vat, over, have
fork, after, if
zap, lazy, haze
Sit, cast, toss
then, father, scythe
thin, nothing, truth
genre, azure, beige
she, cushion, wash
joy, agile, edge
chin, archer, march
lid, elbow, sail
red, part, far
yacht, onion, yard
with, away
help, ahead, hotel
mat, amid, aim
no, end, pan
sing, anger, drink
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M anner
plosive
plosive
plosive
plosive
plosive
plosive

fricative

fricative
fricative
fricative
fricative
fricative
fricative
fricative
affricate
affricate
latera
retroflex
glide
glide
fricative
nasal
nasal
nasal
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With the place terminology, we can complete the descriptive inventory of English
consonants, arranged by manner (rows), place (columns) and voiceless/voiced (pairs in

cells) asillustrated in Table 2.10.
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Alveolar: Paatal:
tdnszrl gy
Labial:
m, p, b, w
Figure 2.21 The major places of consonant articulation with respect to human mouth.
Table 2.10 The consonants of English arranged by place (columns) and manner (rows).
Labial Labio- | Dental | Alveolar | Palatal | Velar Glottal
dental
Plosive pb td kg ?
Nasal m n ng
Fricative fv thdh Sz sh zh h
Retroflex r
Sonorant
Lateral I
sonorant
Glide w y
2213 Phonetic Typology

The oral, nasal, pharyngeal, and glottal mechanisms actually make available a much wider
range of effects than English happens to use. So, it is expected that other languages would
utilize other vocal mechanisms, in an internally consistent but essentially arbitrary fashion,
to represent their lexicons. In addition, often a vocal effect that is part of the systematic lin-
guistic phonetics of one language is present in othersin aless codified, but still perceptible,
form. For example, Japanese vowels have a characteristic distinction of length that can be
hard for non-natives to perceive and to use when learning the language. The words kado
(corner) and kaado (card) are spectrally identical, differing only in that kado is much shorter
in all contexts. The existence of such minimally-contrasting pairs is taken as conclusive evi-
dence that length is phonemically distinctive for Japanese. As noted above, what is linguisti-
cally digtinctive in any one language is generally present as a less meaningful signaling di-
mension in other languages. Thus, vowel length can be manipulated in any English word as
well, but this occurs either consciously for emphasis or humorous effect, or unconsciously
and very predictably at clause and sentence end positions, rather than to signal lexical iden-
tity in all contexts, as in Japanese.

Other interesting sounds that the English language makes no linguistic use of include
the trilled r sound and the implosive. The trilled r sound is found in Spanish, distinguishing
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(for example) the words pero (but) and perro (dog). Thistrill could be found in times past as
anon-lexical sound used for emphasis and interest by American circus ringmasters and other
showpersons.

While the world’ s languages have al the variety of manner of articulation exemplified
above and a great deal more, the primary dimension lacking in English that is exploited by a
large subset of the world’s languages is pitch variation. Many of the huge language families
of Asiaand Africaare tonal, including all varieties of Chinese. A large number of other lan-
guages are not considered strictly tonal by linguistics, yet they make systematic use of pitch
contrasts. These include Japanese and Swedish. To be considered tonal, a language should
have lexical meaning contrasts cued by pitch, just as the lexical meaning contrast between
pig and big is cued by a voicing distinction in English. For example, Mandarin Chinese has
four primary tones (tones can have minor context-dependent variants just like ordinary
phones, as well):

Table 2.11 The contrastive tones of Mandarin Chinese.

Tone Shape Example Chinese M eaning
1 High level ma 1 mother
2 High rising ma K numb
3 Low rising ma ) horse
4 High faling ma k= to scold

Though English does not make systematic use of pitch in its inventory of word con-
trasts, nevertheless, as we aways see with any possible phonetic effect, pitch is systemati-
caly varied in English to signal a speaker’s emotions, intentions, and attitudes, and it has
some linguistic function in signaling grammatical structure as well. Pitch variation in Eng-
lish will be considered in more detail in Chapter 15.

2.2.2. The Allophone: Sound and Context

The vowel and consonant charts provide abstract symbols for the phonemes - major sound
distinctions. Phonemic units should be correlated with potential meaning distinctions. For
example, the change created by holding the tongue high and front (/iy/) vs. directly down
from the (frontal) position for /eh/, in the consonant context /m _ n/, corresponds to an im-
portant meaning distinction in the lexicon of English: mean /miy n/ vs. men /m eh n/. This
meaning contrast, conditioned by a pair of rather similar sounds, in an identical context,
justifies the inclusion of /iy/ and /eh/ aslogically separate distinctions.

However, one of the fundamental, meaning-distinguishing sounds is often modified in
some systematic way by its phonetic neighbors. The process by which neighboring sounds
influence one another is called coarticulation. Sometimes, when the variations resulting
from coarticulatory processes can be consciously perceived, the modified phonemes are
called allophones. Allophonic differences are always categorical, that is, they can be under-
stood and denoted by means of a small, bounded number of symbols or diacritics on the
basic phoneme symbols.
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As an experiment, say the word like to yourself. Feel the front of the tongue touching
the alveolar ridge (cf. Figure 2.21) when realizing the initial phoneme /I/. This is one alo-
phone of /I/, the so-called light or clear /I/. Now say kill. In this word, most English speakers
will no longer fedl the front part of the tongue touch the alveolar ridge. Rather, the /I/ isreal-
ized by stiffening the broad mid section of the tongue in the rear part of the mouth while the
continuant airstream escapes laterally. This is another alophone of /I/, conditioned by its
syllable-final position, called the dark /I/. Predictable contextual effects on the realization of
phones can be viewed as a nuisance for speech recognition, as will be discussed in Chapter
9. On the other hand, such variation, because it is systematic, could also serve as a cue to the
syllable, word, and prosodic structure of speech.

Now experiment with the sound /p/ by holding a piece of tissue in front of your mouth
while saying the word pin in a normal voice. Now repeat this experiment with spin. For
most English speakers, the word pin produces a noticeable puff of air, called aspiration. But
the same phoneme, /p/, embedded in the consonant cluster /sp/ loses its aspiration (burst, see
the lines bracketing the /p/ release in pin and spin in Figure 2.22), and because these two
types of /p/ are in complementary distribution (completely determined by phonetic and syl-
|abic context), the differenceis considered allophonic.
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Figure 2.22 Spectrogram: bursts of pin and spin. The relative duration of a p-burst in different
phonetic contexts is shown by the differing width of the area between the vertical lines.

Try to speak the word bat in a framing phrase say bat again. Now speak say bad
again. Can you fed the length difference in the vowel /ae/? A vowel before a voiced conso-
nant e.g., /d/, seemstypically longer than the same vowel before the unvoiced counterpart, in
this case /t/.
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A sound phonemicized as /t/ or /d/, that is, a stop made with the front part of the
tongue, may be reduced to a quick tongue tap that has a different sound than either /t/ or /d/
in fuller contexts. This process is called flapping. It occurs when /t/ or /d/ closes a stressed
vowel (coda position) followed by an unstressed vowel, as in: bitter, batter, murder,
quarter, humidity, and can even occur across words as long as the preconditions are met, as
in you can say that again. Sometimes the velar flap opens too soon (anticipation), giving a
characteristically nasal quality to some pre-nasal vowels such as /ae/ in ham vs. had. We
have a more detailed discussion on allophonesin Chapter 9.

2.2.3. Speech Rate and Coarticulation

In addition to allophones, there are other variations in speech for which no small set of es-
tablished categories of variation can be established. These are gradient, existing along a
scale for each relevant dimension, with speakers scattered widely. In generadl, it is harder to
become consciously aware of coarticulation effects than of allophonic alternatives.

Individual speakers may vary their rates according to the content and setting of their
speech, and there may be great inter-speaker differences as well. Some speakers may pause
between every word, while others may speak hundreds of words per minute with barely a
pause between sentences. At the faster rates, formant targets are less likely to be fully
achieved. In addition, individual allophones may merge.

For example [20], consider the utterance Did you hit it to Tom? The pronunciation of
this utteranceis/dihdy uw hih tih tt uwt aa m/. However, aredlistic, casual rendition of
this sentence would appear as /d ih jh ax hh ih dx ih t ix t aa nV, where /ix/ is a reduced
schwa /ax/ that is short and often unvoiced, and /dx/ is a kind of shortened, indistinct stop,
intermediate between /d/ and /t/. The following five phonologic rules have operated on alter-
ing the pronunciation in the example:

[ Palatalization of /d/ before /y/ in did you

71 Reduction of unstressed /u/ to schwain you

[ Flapping of intervocalic /t/ in hit it

[ Reduction of schwa and devoicing of /u/ into

71 Reduction of geminate (double consonant) /t/ init to

There are also coarticulatory influences in the spectral appearance of speech sounds,
which can only be understood at the level of spectral analysis. For example, in vowels, con-
sonant neighbors can have a big effect on formant trajectories near the boundary. Consider
the differencesin F1 and F2 in the vowel /eh/ as realized in words with different initial con-
sonants bet, debt, and get, corresponding to the three major places of articulation (labial,
alveolar, and velar), illustrated in Figure 2.23. You can see the different relative spreads of
F1 and F2 following the initial stop consonants.
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Figure 2.23 Spectrogram: bet, debt, and get (separated by vertical lines). Note different rela-
tive spreads of F1 and F2 following theinitial stop consonantsin each word.

Frequency (Hz)

Now let’s see different consonants following the same vowel, ebb, head, and egg. In
Figure 2.23, the coarticulatory effect is perseverance; i.e., in the early part of the vowel the
articulators are till somewhat set from redlization of the initial consonant. In the ebb, head,
and egg examples shown in Figure 2.24, the coarticulatory effect is anticipation; i.e., in the
latter part of the vowel the articulators are moving to prepare for the upcoming consonant
articulation. You can see the increasing relative spread of F1 and F2 at the final vowel-
consonant transition in each word.

2.3. SYLLABLESAND WORDS

Phonemes are small building blocks. To contribute to language meaning, they must be or-
ganized into longer cohesive spans, and the units so formed must be combined in character-
istic patterns to be meaningful, such as syllables and words in the English language.
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Figure 2.24 Spectrogram: ebb, head, and egg. Note the increasing relative spread of F1 and F2
at the final vowel-consonant transition in each word.

231 Syllables

An intermediate unit, the syllable, is sometimes thought to interpose between the phones and
the word level. The syllable is a dlippery concept, with implications for both production and
perception. Here we will treat it as a perceptual unit. Syllables are generally centered around
vowels in English, giving two perceived syllables in a word like tomcat: /tOm-cAt/. To
completely parse a word into syllables requires making judgments of consonant affiliation
(with the syllable peak vowels). The question of whether such judgments should be based on
articulatory or perceptual criteria, and how they can be rigorously applied, remains unre-
solved.

Syllable centers can be thought of as peaks in sonority (high-amplitude, periodic sec-
tions of the speech waveform). These sonority peaks have affiliated shoulders of strictly
non-increasing sonority. A scale of sonority can be used, ranking consonants along a contin-
uum of stops, affricates, fricatives, and approximants. So, in a word like verbal, the syllabi-
fication would be ver-bal, or verb-al, but not ve-rbal, because putting the approximant /r/
before the stop /b/ in the second syllable would violate the non-decreasing sonority require-
ment heading into the syllable.
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As long as the sonority conditions are met, the exact affiliation of a given consonant
that could theoretically affiliate on either side can be ambiguous, unless determined by
higher-order considerations of word structure, which may block affiliation. For example, in
aword like beekeeper, an abstract boundary in the compound between the component words
bee and keeper keeps us from accepting the syllable parse: beek-eeper, based on lexical in-
terpretation. However, the same phonetic sequence in beaker could, depending on one's
theory of syllabicity, permit affiliation of the k: beak-er. In general, the syllable is a unit that
has intuitive plausibility but remains difficult to pin down precisely.

Syllable

Onset Rime

Nucleus Coda

str eh nxths

Figure 2.25 The word/syllable strengths (/st r eh nx th &) isalongest syllable of English.

Syllables are thought (by linguistic theorists) to have internal structure, and the terms
used are worth knowing. Consider a big syllable such as strengths /st r eh nx th §/. This con-
sists of a vowel peak, called the nucleus, surrounded by the other sounds in characteristic
positions. The onset consists of initia consonants if any, and the rime is the nucleus with
trailing consonants (the part of the syllable that matters in determining poetic rhyme). The
coda consists of consonants in the rime following the nucleus (in some treatments, the last
consonant in afina cluster would belong to an appendix). This can be diagrammed as a syl-
|able parse tree as shown in Figure 2.25. The syllable is sometimes thought to be the primary
domain of coarticulation, that is, sounds within a syllable influence one another’s realization
more than the same sounds separated by a syllable boundary.

2.3.2. Words

The concept of words seems intuitively obvious to most speakers of Indo-European lan-
guages. It can be loosely defined as a lexical item, with an agreed-upon meaning in a given
speech community, that has the freedom of syntactic combination allowed by its type (noun,
verb, etc.).
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In spoken language, there is a segmentation problem: words run together unless af-
fected by a disfluency (unintended speech production problem) or by the deliberate place-
ment of a pause (silence) for some structural or communicative reason. Thisis surprising to
many people, because literacy has conditioned speakers/readers of Indo-European languages
to expect a blank space between words on the printed page. But in speech, only a few true
pauses (the aural equivalent of a blank space) may be present. So, what appears to the read-
ing eye as never give all the heart, for love would appear to the ear, if we simply use letters
to stand for their corresponding English speech sounds, as nevergivealltheheart forlove or,
inphonemes, asnehver gihvahl dhaxhaart\faor | ahv. The\\ symbol marksalin-
guistically motivated pause, and the units so formed are sometimes caled intonation
phrases, as explained in Chapter 15.

Certain facts about word structure and combinatorial possibilities are evident to most
native speakers and have been confirmed by decades of linguistic research. Some of these
facts describe relations among words when considered in isolation, or concern groups of
related words that seem intuitively similar along some dimension of form or meaning - these
properties are paradigmatic. Paradigmatic properties of words include part-of-speech, in-
flectional and derivational morphology, and compound structure. Other properties of words
concern their behavior and distribution when combined for communicative purposesin fully
functioning utterances — these properties are syntagmatic.

23.2.1. Lexical Part-of-Speech

Lexical part-of-speech (POS) is a primitive form of linguistic theory that posits a restricted
inventory of word-type categories, which capture generalizations of word forms and distri-
butions. Assignment of a given POS specification to aword isaway of summarizing certain
facts about its potential for syntagmatic combination. Additionally, paradigms of word for-
mation processes are often similar within POS types and subtypes as well. The word proper-
ties upon which POS category assignments are based may include affixation behavior, very
abstract semantic typologies, distributional patterns, compounding behavior, historical de-
velopment, productivity and generalizabilty, and others.

A typical set of POS categories would include noun, verb, adjective, adverb, interjec-
tion, conjunction, determiner, preposition, and pronoun. Of these, we can observe that cer-
tain classes of words consist of infinitely large membership. This means new members can
be added at any time. For example, the category of noun is constantly expanded to accom-
modate new inventions, such as Velcro or Spandex. New individuals are constantly being
born, and their names are a type of noun called proper noun. The proliferation of words us-
ing the descriptive prefix cyber is another recent set of examples: cyberscofflaw, cybersex,
and even cyberia illustrate the infinite creativity of humans in manipulating word structure
to express new shades of meaning, frequently by analogy with, and using fragments of, ex-
isting vocabulary. Another example is the neologism sheeple, a noun combining the forms
and meanings of sheep and people to refer to large masses of people who lack the capacity
or willingness to take independent action. We can create new words whenever we like, but
they had best fall within the predictable paradigmatic and syntagmatic patterns of use sum-
marized by the existing POS generalizations, or there will be little hope of their adoption by
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any other speaker. These open POS categories are listed in Table 2.12. Nouns are inherently
referential. They refer to persons, places, and things. Verbs are predicative; they indicate
relations between entities and properties of entities, including participation in events. Adjec-
tives typically describe and more completely specify noun reference, while adverbs describe,
intensify and more completely specify verbal relations. Open-class words are sometimes
called content words, for their referential properties.

In contrast to the open-class categories, certain other categories of words only rarely
and very dowly admit new members over the history of English development. These closed
POS categories are shown in Table 2.13. The closed-category words are fairly stable over
time. Conjunctions are used to join larger syntactically complete phrases. Determiners help
to narrow noun reference possibilities. Prepositions denote common spatial and temporal
relations of objects and actions to one another. Pronouns provide a convenient substitute for
noun phrases that are fully understood from context. These words denote grammatical rela-
tions of other words to one another and fundamental properties of the world and how hu-
mans understand it. They can, of course, change sowly; for example, the Middle English
pronoun thee is no longer in common use. The closed-class words are sometimes called
function words.

Table 2.12 Open POS categories.

Tag Description Function Example
N Noun Names entity cat
\% Verb Names event or condition forget
Adj Adjective Descriptive yellow
Adv Adverb Manner of action quickly
Interj Interjection Reaction oh!
Table 2.13 Closed POS categories.
Tag Description Function Example
Conj Conjunction Coordinates phrases and
Det Determiner Indicates definiteness the
Prep Preposition Relations of time, space, direction from
Pron Pronoun Simplified reference she

The set of POS categories can be extended indefinitely. Examples can be drawn from
the Penn Treebank project (http://www.cis.upenn.edu/ldc) as shown in Table 2.14, where
you can find the proliferation of sub-categories, such as Verb, base form and Verb, past
tense. These categories incorporate morphological attributes of words into the POS label
system discussed in Section 2.3.2.2.

POS tagging is the process of assigning a part-of-speech or other lexical class marker
to each word in a corpus. There are many algorithms exist to automatically tag input sen-
tences into a set of tags. Rule-based methods [45], hidden Markov models (see Chapter 8)
[23, 29, 46], and machine-learning methods [6] are used for this purpose.
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23.2.2.

Morphology is about the subparts of words, i.e., the patterns of word formation including
inflection, derivation, and the formation of compounds. English mainly uses prefixes and

M or phology

suffixes to express inflection and derivational morphology.

Table 2.14 Treebank POS categories — an expanded inventory.

String | Description Example

CcC Coordinating conjunction and

CD Cardinal number two

DT Determiner the

EX Existential there there (There was an old lady)
FW Foreign word omerta

IN Preposition, subord. conjunction over, but

JJ Adjective yellow

JIR Adjective, comparative better

JIS Adjective, superlative best

LS List item marker

MD Modal might

NN Noun, singular or mass rock, water

NNS Noun, plural rocks

NNP Proper noun, singular Joe

NNPS | Proper noun, plural Red Guards

PDT Predeterminer al (all the girls)

POS Possessive ending ‘s

PRP Personal pronoun I

PRP$ Possessive pronoun mine

RB Adverb quickly

RBR Adverb, comparative higher (shares closed higher.)
RBS Adverb, superlative highest (he jJumped highest of all.)
RP Particle up ( take up the cause)

TO to to

UH Interjection hey!

VB Verb, base form choose

VBD Verb, past tense chose

VBG Verb, gerund or present participle choosing

VBN Verb, past participle chosen

VBP Verb, non-third person sing. present | jump

VBZ Verb, third person singular present jumps

WDT Wh-determiner which

WP Wh-pronoun who

WP$ Possessive wh-pronoun whose

WRB Wh-adverb when (When he came, it was late.)
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Inflectional morphology deals with variations in word form that reflect the contextual
situation of a word in phrase or sentence syntax, and that rarely have direct effect on inter-
pretation of the fundamental meaning expressed by the word. English inflectional morphol-
ogy is relatively simple and includes person and number agreement and tense markings
only. The variation in cats (vs. cat) is an example. The plural form is used to refer to an in-
definite number of cats greater than one, depending on a particular situation. But the basic
POS category (noun) and the basic meaning (felis domesticus) are not substantially affected.
Words related to a common lemma via inflectional morphology are said to belong to a
common paradigm, with a single POS category assignment. In English, common paradigm
types include the verbal set of affixes (pieces of words): -s, -ed, -ing, the noun set: -s, and
the adjectival -er, -est. Note that sometimes the base form may change spelling under affixa-
tion, complicating the job of automatic textual analysis methods. For historical reasons, cer-
tain paradigms may consist of highly idiosyncratic irregular variation as well, e.g., go, go-
ing, went, gone or child, children. Furthermore, some words may belong to defective para-
digms, where only the singular (noun: equipment) or the plural (noun: scissors) is provided
for.

In derivational morphology, a given root word may serve as the source for wholly new
words, often with POS changes as illustrated in Table 2.15. For example, the terms racial
and racist, though presumably based on a single root word race, have different POS possi-
bilities (adjective vs. noun-adjective) and meanings. Derivational processes may induce pro-
nunciation change or stress shift (e.g., electric vs. electricity). In English, typical deriva-
tional affixes (pieces of words) that are highly productive include prefixes and suffixes: re-,
pre-, -ial, -ism, -ish, -ity, -tion, -ness, -ment, -ious, -ify, -ize, and others. In many cases, these
can be added successively to create a complex layered form.

Table 2.15 Examples of stems and their related forms across POS categories.

Noun Verb Adjective Adverb
criticism criticize critical critically
fool fool foolish foolishly
industry, industrialization industrialize  |industrial,industrious |industriously
employ, employee, employer |employ employable employably
certification certify certifiable certifiably

Generally, word formation operates in layers, according to a kind of word syntax: (de-
riv-prefix)* root (root)* (deriv-suffix)* (infl-suffix). This means that one or more roots can
be compounded in the inner layer, with one or more optional derivational prefixes, followed
by any number of optional derivational suffixes, capped off with no more than one inflec-
tional suffix. There are, of course, limits on word formation, deriving both from semantics of
the component words and simple lack of imagination. An example of a nearly maximal word
in English might be autocyberconceptualizations, meaning (perhaps!) multiple instances of
automatically creating computer-related concepts. This word lacks only compounding to be
truly maximal. Thisword has a derivational prefix auto-, two root forms compounded (cyber
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and concept, though some may prefer to analyze cyber- as a prefix), three derivational suf-
fixes (-ual, ize, -ation), and is capped off with the plural inflectional suffix for nouns, -s.

2.3.2.3. Word Classes

POS classes are based on traditional grammatical and lexical analysis. With improved com-
putational resources, it has become possible to examine words in context and assign words
to groups according to their actual behavior in real text and speech from a statistical point of
view. These kinds of classifications can be used in language modeling experiments for
speech recognition, text analysis for text-to-speech synthesis, and other purposes.

One of the main advantages of word classification is its potential to derive more re-
fined classes than traditional POS, while only rarely actualy crossing traditional POS group
boundaries. Such a system may group words automatically according to the similarity of
usage with respect to their word neighbors. Consider classes automatically found by the
classification algorithms of Brown et al. [7]:

{Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends}
{great big vast sudden mere sheer gigantic lifelong scant colossal}

{ down backwards ashore sideways southward northward overboard al oft adrift}
{ mother wife father son husband brother daughter sister boss uncle}

{ John George James Bob Robert Paul William Jim David Mike}

{feet miles pounds degrees inches barrels tons acres meters bytes}

Y ou can see that words are grouped together based on the semantic meaning, which is
different from word classes created purely from syntactic point of view. Other types of clas-
sification are also possible, some of which can identify semantic relatedness across tradi-
tional POS categories. Some of the groups derived from this approach may include follows:

{ problems problem solution solve analyzed solved solving}
{write writes writing written wrote pen}

{ question questions asking answer answers answering}

{ published publication author publish writer titled}

2.4, SYNTAX AND SEMANTICS

Syntax is the study of the patterns of formation of sentences and phrases from words and the
rules for the formation of grammatical sentences. Semantics is another branch of linguistics
dealing with the study of meaning, including the ways meaning is structured in language and
changes in meaning and form over time.
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24.1. Syntactic Constituents

Constituents represent the way a sentence can be divided into its grammatical subparts as
constrained by common grammatical patterns (which implicitly incorporate normative
judgments on acceptability). Syntactic constituents at least respect, and at best explain, the
linear order of words in utterances and text. In this discussion, we will not strictly follow
any of the many theories of syntax but will instead bring out a few basic ideas common to
many approaches. We will not attempt anything like a compl ete presentation of the grammar
of English but instead focus on a few simple phenomena.

Most work in syntactic theory has adopted machinery from traditional grammatical
work on written language. Rather than analyze toy sentences, let's consider what kinds of
superficial syntactic patterns are lurking in a random chunk of serious English text, ex-
cerpted from David Thoreau's essay Civil Disobedience [43]:

The authority of government, even such as | am willing to submit to - for | will cheer-
fully obey those who know and can do better than |, and in many things even those who nei-
ther know nor can do so well - is still an impure one: to be strictly just, it must have the
sanction and consent of the governed. It can have no pure right over my person and prop-
erty but what | concede to it. The progress from an absolute to a limited monarchy, from a
limited monarchy to a democracy, is a progress toward a true respect for the individual.

24.1.1. Phrase Schemata

Words may be combined to form phrases that have internal structure and unity. We use gen-
eralized schemata to describe the phrase structure. The goal is to create a simple, uniform
template that is independent of POS category.

Let's first consider nouns, a fundamental category referring to persons, places, and
things in the world. The noun and its immediate modifiers form a constituent called the noun
phrase (NP). To generalize this, we consider a word of arbitrary category, say category X
(which could be a noun N or a verb V.). The generalized rule for a phrase XP is XP =
(modifiers) X-head (post-modifiers), where X is the head, since it dominates the configura-
tion and names the phrase. Elements preceding the head in its phrase are premodifiers and
elements following the head are postmodifiers. XP, the culminating phrase node, is called a
maximal projection of category X. We call the whole structure an x-template. Maximal pro-
jections, XP, are the primary currency of basic syntactic processes. The post-modifiers are
usually maximal projections (another head, with its own post-modifiers forming an XP on its
own) and are sometimes termed complements, because they are often required by the lexical
properties of the head for a complete meaning to be expressed (e.g. when X is a preposition
or verb). Complements are typically noun phrases (NP), prepositional phrases (PP), verb
phrases (VP), or sentence/clause (S), which make an essential contribution to the head’ s ref-
erence or meaning, and which the head requires for semantic completeness. Premodifiers are
likely to be adverbs, adjectives, quantifiers, and determiners, i.e., words that help to specify
the meaning of the head but may not be essential for completing the meaning. With minor
variations, the XP template serves for most phrasal types, based on the POS of the head (N,
V, ADJ, etc.).
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For NP, we thus have NP = (det) (modifier) head-noun (post-modifier). This rule
describes an NP (noun phrase - left side of arrow) in terms of its optional and required inter-
nal contents (right side of the arrow). Det is a word like the or a that helps to resolve the
reference to a specific or an unknown instance of the noun. The modifier gives further in-
formation about the noun. The head of the phrase, and the only mandatory element, is the
noun itself. Post-modifiers also give further information, usually in a more elaborate syntac-
tic form than the simpler pre-modifiers, such as a relative clause or a prepositional phrase
(covered below). The noun phrases of the passage above can be parsed as shown in Table
2.16. The head nouns may be personal pronouns (I, it), demonstrative and relative pronouns
(those), coordinated nouns (sanction and consent), or common nouns (individual). The
modifiers are mostly adjectives (impure, pure) or verbal forms functioning as adjectives
(limited). The post-modifiers are interesting, in that, unlike the (pre-)modifiers, they are
typicaly full phrases themselves, rather than isolated words. They include relative clauses
(which are a kind of dependent sentence, e.g., [those] who know and can do better than 1),
aswell as prepositional phrases (of the governed).

Table 2.16 NP’s of the sample passage.

Np | Det | Mod Head Noun Post-M od

1 the authority of government

2 even such as | am willing to submit to

3 I

4 those who know and can do better than |

5 many things

6 even those who neither know nor can do so well
7 an | impure | one

8 it

9 the sanction and consent | of the governed

10 | no | pure right over my person ... concedeto it.

11 | the progress from an absol ute to a limited monarchy
12 | an | absolute | [monarchy]

13 | a limited | monarchy

14 |a democr acy

15 |a progress

16 | a true r espect for the individual

17 | the individual

Prepositions express spatial and temporal relations, among others. These are also said
to project according to the X-template, but usually lack a pre-modifier. Some examples from
the sample passage are listed in Table 2.17. The complements of PP are generally NP's,
which may be simple head nouns like government. However, other complement types, such
asthe verb phrase in after discussing it with Jo, are also possible.

For verb phrases, the postmodifier (or complement) of a head verb would typically be
one or more NP (noun phrase) maximal projections, which might, for example, function as a
direct object in a VP like pet the cat. The complement may or may not be optional, depend-
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ing on characteristics of the head. We can now make some language-specific generalizations
about English. Some verbs, such as give, may take more than one kind of complement. So
an appropriate template for a VP maximal projection in English would appear abstractly as
VP = (modifier) verb (modifier) (Complementl, Complement2 ComplementN). Comple-
ments are usually regarded as maximal projections, such as NP, ADJP, etc., and are enumer-
ated in the template above, to cover possible multi-object verbs, such as give, which take
both direct and indirect objects. Certain types of adverbs (really, quickly, smoothly, etc.)
could be considered fillers for the VP modifier dots (before and after the head). In the sam-
ple passage, we find the following verb phrases as shown in Table 2.18.

Table 2.17 PP’ s of the sample passage.

Head Prep Complement (Postmodifier)
of Government

as | am willing to submit to
than I

in many things

of the governed

over my person and property

to it

from an absolute [monarchy]

to alimited monarchy

to a democracy

toward atrue respect [for the individual]
for the individual

Table 2.18 VP's of the sample passage.

Pre-mod Verb Head | Post-mod | Complement
submit to [the authority of government]
cheerfully | obey those who know and can do better than |
is still an impure one
be strictly just
have the sanction
have no pure right
concede toit
is aprogress

VP presents some interesting issues. First, notice the multi-word verb submit to. Multi-
word verbs such as look after and put up with are common. We also observe a number of
auxiliary elements clustering before the verb in sentences of the sample passage: am willing
to submit to, will cheerfully obey, and can do better. Rather than considering these as smple
modifiers of the verbal head, they can be taken to have scope over the VP as awhole, which
implies they are outside the VP. Since they are outside the VP, we can assume them to be
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heads in their own right, of phrases which require a VP as their complement. These elements
mainly express tense (time or duration of verbal action) and modality (likelihood or prob-
ability of verbal action). In a full sentence, the VP has explicit or implicit inflection (pro-
jected from its verbal head) and indicates the person, number and other context-dependent
features of the verb in relation to its arguments. In English, the person (first, second, third)
and number (singular, plural) attributes, collectively called agreement features, of subject
and verb must match. For simplicity, we will lump all these considerations together as in-
flectional elements, and posit yet another phrase type, the Inflectional Phrase (IP): IP =
premodifier head VP-complement.

The premodifier slot (sometimes called the specifier position in linguistic theory) of an
IP is often filled by the subject of the sentence (typically a noun or NP). Since the IP unites
the subject of a sentence with a VP, IP can also be considered simply as the sentence cate-
gory, often written as Sin speech grammars.

2.4.1.2. Clauses and Sentences

The subject of a sentence is what the sentence is mainly about. A clause is any phrase with
both a subject and a VP (predicate in traditional grammars) that has potentially independent
interpretation — thus, for us, a clause is an IP, a kind of sentence. A phrase is a constituent
lacking either subject, predicate, or both. We have reviewed a number of phrase types
above. There are also various types of clauses and sentences.

Even though clauses are sentences from an internal point of view (having subject and
predicate), they often function as simpler phrases or words would, e.g., as modifiers (adjec-
tive and adverbs) or nouns and noun phrases. Clauses may appear as post-modifiers for
nouns (so-called relative clauses), basically a kind of adjective clause, sharing their subjects
with the containing sentence. Some clauses function as NP's in their own right. One com-
mon clause type substitutes a wh-word like who or what for a direct object of a verb in the
embedded clause, to create a questioned noun phrase or indirect question: (I don’t know who
Jo saw.). In these clauses, it appears to syntacticians that the questioned object of the verb
[VP saw who] has been extracted or moved to a new surface position (following the main
clause verb know). This is sometimes shown in the phrase-structure diagram by co-indexing
an empty ghost or trace constituent at the original position of the question pronoun with the
question-NP appearing at the surface site:

I don’t Know [ neovi [IP [nei Who] Jo saw [nei 111

[npsuti [1p Whoever wins the game]] is our hero.

There are various characteristic types of sentences. Some typical typesinclude:

[ Declarative: | gave her a book.

0 Yes-no question: Did you give her a book ?

0 Wh-question: What did you give her?

0 Alternatives question: Did you give her a book, a scarf, or a knife?
[0 Tag question: You gave it to her, didn’t you?

[ Passive: She was given a book.
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0 Cleft: It must have been a book that she got.
[ Exclamative: Hasn't this been a great birthday!
0 Imperative: Give me the book.

24.1.3. Par se Tree Representations

Sentences can be diagrammed in parse trees to indicate phrase-internal structure and linear
precedence and immediate dominance among phrases. A typical phrase-structure tree for
part of an embedded sentence isillustrated in Figure 2.26.

IP(S
%\
NP Inflection VP
S TTT—
N Vv NP
/N
Det Pre-mod N Post-Mod (PP)
| |

It can have no pure right over my person

Figure 2.26 A simplified phrase-structure diagram.

For brevity, the same information illustrated in the tree can be represented as a brack-
eted string as follows:
e[ v [ nIt]ndne [ can ]y [we [v have ]y [ne NO pure right [pp over my person

] PP] NP] VP] 1P
With such a bracketed representation, almost every type of syntactic constituent can be

coordinated or joined with another of itstype, and usually a new phrase node of the common
type is added to subsume the constituents such as NP: We have [ NP [NP tasty berries] and
[NP tart juiced]], IP/S [IP [IP Many have come] and [IP most have remained]], PP: We
went [PP [PP over the river] and [PP into the treeq]], and VP: We want to [ VP [VP climb
the mountains] and [ VP sail the seag]].
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24.2. Semantic Roles

In traditional syntax, grammatical roles are used to describe the direction or control of action
relative to the verb in a sentence. Examples include the ideas of subject, object, indirect ob-
ject, etc. Semantic roles, sometimes called case relations, seem similar but dig deeper. They
are used to make sense of the participants in an event, and they provide a vocabulary for us
to answer the basic question who did what to whom. As developed by [13] and others, the
theory of semantic roles posits a limited number of universal roles. Each basic meaning of
each verb in our mental dictionary is tagged for the obligatory and optional semantic roles
used to convey the particular meaning. A typical inventory of caserolesis given below:

Agent cause or initiator of action, often intentional
Patient/Theme undergoer of the action

I nstrument how action is accomplished

Goal to whom action is directed

Result result of action

Location location of action

These can be realized under various syntactic identities, and can be assigned to both
required complement and optional adjuncts. A noun phrase in the Agentive role might be the
surface subject of a sentence, or the object of the preposition by in a passive. For example,
the verb put can be considered a process that has, in one of its senses, the case role specifica
tions shown in Table 2.19.

Table 2.19 Andysis of a sentence with put.

Analysis Example

Kim put the book on the table.
Grammatical Subject (NP) Predicate (VP) | Object (NP) | Adverbial
functions (ADVP)
Semanticroles | Agent Instrument Theme Location

Now consider this passive-tense example, where the semantic roles align with differ-
ent grammatical roles shown in Table 2.20. Words that look and sound identical can have
different meaning or different senses as shownin

Table 2.21. The sporting sense of put (asin the sport of shot-put), illustrates the mean-
ing/sense-dependent nature of the role patterns, because in this sense the Locative case is no
longer obligatory, asitisinthe original senseillustrated in Table 2.19 and Table 2.20.

Table 2.20 Analysis of passive sentence with put.

Analysis Example

The book was put on the table
Grammatical Subject (NP) Predicate (VP) Adverbial (ADVP)
functions
Semantic roles Agent I nstrument Location
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Table 2.21 Anadysis of adifferent pattern of put.

Analysis Example

Kim put the shot.
Grammatical Subject (NP) Predicate (VP) | Object (NP)
functions
Semantic Roles | Agent Instrument Theme

The lexical meaning of a verb can be further decomposed into primitive semantic rela-
tions such as CAUSE, CHANGE, and BE. The verb open might appear as
CAUSE(NP1,PHYSI CAL-CHANGE(NP2,NOT-OPEN,OPEN)). This says that for an agent
(NP1) to open atheme (NP2) is to cause the patient to change from a not-opened state to an
opened state. Such systems can be arbitrarily detailed and exhaustive, as the application re-
quires.

2.4.3. Lexical Semantics

The specification of particular meaning templates for individual senses of particular wordsis
caled lexical semantics. When words combine, they may take on propositional meanings
resulting from the composition of their meanings in isolation. We could imagine that a
speaker starts with a proposition in mind (logical form as will be discussed in the next sec-
tion), creating a need for particular words to express the idea (lexical semantics); the propo-
sition is then linearized (syntactic form) and spoken (phonological/phonetic form). Lexical
semantics is the level of meaning before words are composed into phrases and sentences,
and it may heavily influence the possibilities for combination.

Words can be defined in alarge number of ways including by relations to other words,
in terms of decomposition semantic primitives, and in terms of non-linguistic cognitive con-
structs, such as perception, action, and emotion. There are hierarchical and non-hierarchical
relations. The main hierarchical relations would be familiar to most object-oriented pro-
grammers. One is is-a taxonomies (a crow is-a bird), which have transitivity of properties
from type to subtype (inheritance). Another is has-a relations (a car has-a windshield),
which are of several differing qualities, including process/subprocess (teaching has-a sub-
process giving exams), and arbitrary or natural subdivisions of part-whole relations (bread
has-a division into slices, meter has-a division into centimeters). Then there are non-
branching hierarchies (no fancy name) that essentially form scales of degree, such as fro-
zen = cold = lukewarm = hot = burning. Non-hierarchical relations include synonyms,
such as big/large, and antonyms such as good/bad.

Words seem to have natural affinities and disaffinitiesin the semantic relations among
the concepts they express. Because these affinities could potentially be exploited by future
language understanding systems, researchers have used the generalizations above in an at-
tempt to tease out a parsimonious and specific set of basic relations under which to group
entire lexicons of words. A comprehensive listing of the families and subtypes of possible
semantic relations has been presented in [10]. In Table 2.22, the leftmost column shows
names for families of proposed relations, the middle column differentiates subtypes within
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each family, and the rightmost column provides examples of word pairs that participate in
the proposed relation. Note that case roles have been modified for inclusion as a type of se-
mantic relation within the lexicon.

Table 2.22 Semantic relations.

Family Subtype Example
Contrasts Contrary old-young
Contradictory alive-dead
Reverse buy-sell
Directional front-back
Incompatible happy-morbid
Asymmetric contrary hot-cool
Attribute similar rake-fork
Similars Synonymity car-auto
Dimensional similar smile-laugh
Necessary attribute bachelor-unmarried
Invited attribute food-tasty
Action subordinate talk-lecture
ClassInclusion Perceptual subord. animal-horse
Functional subord. furniture-chair
State subord. disease-polio
Activity subord. game-chess
Geographic subord. country-Russia
Place Germany-Hamburg
Case Relations Agent-action artist-paint
Agent-instrument farmer-tractor
Agent-object baker-bread
Action-recipient sit-chair
Action-instrument cut-knife
Part-Whole Functional object engine-car
Collection forest-tree
Group choir-singer
Ingredient table-wood
Functional location kitchen-stove
Organization college-admissions
Measure mile-yard

We can see from Table 2.22 that a single word could participate in multiple relations
of different kinds. For example, knife appears in the examples for Smilars: invited attribute
(i.e., adesired and expected property) as. knife-sharp, and also under Case Relations: ac-
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tion-instrument, which would label the relation of knife to the action cut in He cut the bread
with a knife. This suggests that an entire lexicon could be viewed as a graph of semantic
relations, with words or idioms as nodes and connecting edges between them representing
semantic relations as listed above. Thereisarich tradition of research in thisvein.

The biggest practical problem of lexical semantics is the context-dependent resolution
of senses of words — so-called polysemy. A classic example is bank - bank of the stream as
opposed to money in the bank. While lexicographerstry to identify distinct senses when they
write dictionary entries, it has been generally difficult to rigorously quantify exactly what
counts as a discrete sense of a word and to disambiguate the senses in practical contexts.
Therefore, designers of practical speech understanding systems generally avoid the problem
by limiting the domain of discourse. For example, in a financia application, generaly only
the sense of bank as afiduciary ingtitution is accessible, and others are assumed not to exist.
It is sometimes difficult to make a principled argument as to how many distinct senses a
word has, because at some level of depth and abstraction, what might appears as separate
senses seem to be similar or related, as face could be face of a clock or face of person.

Senses are usually distinguished within a given part-of-speech (POS) category. Thus,
when an occurrence of bank has been identified as a verb, the shore sense might be auto-
matically eliminated, though depending on the sophistication of the system’s lexicon and
goals, there can be sense differences for many English verbs as well. Within a POS cate-
gory, often the words that occur near a given ambiguous form in the utterance or discourse
are clues to interpretation, where links can be established using semantic relations as de-
scribed above. Mutual information measures as discussed in Chapter 3 can sometimes pro-
vide hints. In a context of dialog where other, less ambiguous financial terms come up fre-
quently, the sense of bank as fiduciary ingtitution is more likely. Finally, when al else fails,
often senses can be ranked in terms of their a priori likelihood of occurrence. It should al-
ways be borne in mind that language is not static; it can change form under a given analysis
at any time. For example, the stable English form spinster, a somewhat pejorative term for
an older, never-married female, has recently taken on a new morphologically complex form,
with the new sense of a high political official, or media spokesperson, employed to provide
bland disinformation (spin) on a given topic.

244 Logical Form

Because of all the lexical, syntactic, and semantic ambiguity in language, some of which
requires external context for resolution, it is desirable to have a metalanguage in which to
concretely and succinctly express al linguistically possible meanings of an utterance before
discourse and world knowledge are applied to choose the most likely interpretation. The
favored metalanguage for this purpose is called the predicate logic, used to represent the
logical form, or context-independent meaning, of an utterance. The semantic component of
many SLU architectures builds on a substrate of two-valued, first-order, logic. To distin-
guish shades of meaning beyond truth and falsity requires more powerful formalisms for
knowledge representation.

In atypical first-order system, predicates correspond to events or conditions denoted
by verbs (such as Believe or Like), states of identity (such as being a Dog or Cat), and prop-
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erties of varying degrees of permanence (Happy). In this form of logical notation, predicates
have open places, filled by arguments, as in a programming language subroutine definition.
Since individuals may have identical names, subscripting can be used to preserve unique
reference. In the simplest systems, predication ranges over individuals rather than higher-
order entities such as properties and relations.

Predicates with filled argument slots map onto sets of individuals (constants) in the
universe of discourse, in particular those individuals possessing the properties, or participat-
ing in the relation, named by the predicate. One-place predicates like Soldier, Happy, or
Seeps range over sets of individuals from the universe of discourse. Two-place predicates,
like transitive verbs such as loves, range over a set consisting of ordered pairs of individual
members (constants) of the universe of discourse. For example, we can consider the universe
of discourse to be U = {Romeo, Juliet, Paris, Rosaline, Tybalt}, people as characters in a
play. They do things with and to one another, such as loving and killing. Then we could
imagine the relation Loves interpreted as the set of ordered pairs: { <Romeo, Juliet>, <Juliet,
Romeo>, <Tybalt, Tybalt>, <Paris, Juliet>}, a subset of the Cartesian product of theoreti-
cally possible love matches U xU . So, for any ordered pair x, y in U, Loves(x, y) is true iff
the ordered pair <x,y> is a member of the extension of the Loves predicate as defined, e.g.,
Romeo loves Juliet, Juliet loves Romeo, etc.. Typical formal properties of relations are some-
times specialy marked by grammar, such as the reflexive relation Loves(Tybalt, Tybalt),
which can rendered in natural language as Tybalt loves himself. Not every possibility is pre-
sent; for instance in our example, the individual Rosaline does not happen to participate at
al in this extensional definition of Loves over U, as her omission from the pairs list indi-
cates. Notice that the subset of Loves(x, y) of ordered pairs involving both Romeo and Juliet
is symmetric, also marked by grammar, asin Romeo and Juliet love each other. This general
approach extends to predicates with any arbitrary number of arguments, such as intransitive
verbslike give.

Just as in ordinary propositional logic, connectives such as negation, conjunction, dis-
junction, and entailment are admitted, and can be used with predicates to denote common
natural language meanings.

Romeo isn't happy = “Happy(Romeo)

Romeo isn't happy, but Tybalt is (happy) = “Happy(Romeo) & & Happy(Tybalt)
Either Romeo or Tybalt is happy = Happy(Romeo) || Happy(Tybalt)

If Romeo is happy, Juliet is happy = Happy(Romeo) =» Happy(Juliet)

Formulae, such as those above, are also said to bear a binary truth value, true or false,
with respect to a world of individuals and relations. The determination of the truth value is
compositional, in the sense that the truth value of the whole depends on the truth value of
the parts. This is a simplistic but formally tractable view of the relation between language
and meaning.

Predicate logic can also be used to denote quantified noun phrases. Consider a ssmple
case such as Someone killed Tybalt, predicated over our same U = { Romeo, Juliet, Paris,
Rosaline, Tybalt}. We can now add an existential quantifier, , standing for there exists or
there is at least one. This quantifier will bind a variable over individuals in U, and will at-
tach to a proposition to create a new, quantified proposition in logical form. The use of vari-
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ables in propositions such as killed(x, y) creates open propositions. Binding the variables
with a quantifier over them closes the proposition. The quantifier is prefixed to the original
proposition:

X Killed(x, Tybalt)

To establish atruth (semantic) value for the quantified proposition, we have to satisfy
the digunction of propositions in U: Killed(Romeo, Tybalt) V Killed(Juliet, Tybalt) V
Killed(Paris, Tybalt) V Killed(Rosaline, Tybalt) V Killed(Tybalt, Tybalt). The set of all such
bindings of the variable x is the space that determines the truth or falsity of the proposition.
In this case, the binding of x = Romeo is sufficient to assign a value true to the existential
proposition.

2.5. HISTORICAL PERSPECTIVE AND FURTHER READING

Motivated to improve speech quality over the telephone, AT&T Bell Labs has contributed
many influential discoveries in speech hearing, including the critical band and articulation
index [2, 3]. The Auditory Demonstration CD prepared by Houtsma, Rossing, and
Wagenaars [18] has a number of very interesting examples on psychoacoustics and its ex-
planations. Speech, Language, and Communication [30] and Speech Communication - Hu-
man and Machines [32] are two good books that provide modern introductions to the struc-
ture of spoken language. Many speech perception experiments were conducted by exploring
how phonetic information is distributed in the time or frequency domain. In addition to the
formant structures for vowels, frequency importance function [12] has been developed to
study how features related to phonetic categories are stored at various frequencies. In the
time domain, it has been observed [16, 19, 42] that salient perceptual cues may not be
evenly distributed over the speech segments and that certain perceptual critical points exist.

As intimate as speech and acoustic perception may be, there are also strong evidences
that lexical and linguistic effects on speech perception are not always consistent with acous-
tic ones. For instance, it has long been observed that humans exhibit difficulties in distin-
guishing non-native phonemes. Human subjects also carry out categorical goodness differ-
ence assimilation based on their mother tongue [34], and such perceptual mechanism can be
observed as early as in six-month-old infants [22]. On the other hand, hearing-impaired lis-
teners are able to effortlessly overcome their acoustical disabilities for speech perception [8].
Speech perception is not simply an auditory matter. McGurk and MacDonald (1976) [27,
28] dramatically demonstrated this when they created a video tape on which the auditory
information (phonemes) did not match the visual speech information. The effect of this
mismatch between the auditory signal and the visual signal was to create a third phoneme
different from both the original auditory and visual speech signals. An example is dubbing
the phoneme /ba/ to the visual speech movements /ga/. This mismatch results in hearing the
phoneme /da/. Even when subjects know of the effect, they report the McGurk effect per-
cept. The McGurk effect has been demonstrated for consonants, vowels, words, and sen-
tences.

The earliest scientific work on phonology and grammars goes back to Panini, a San-
skrit grammarian of the fifth century B.C. (estimated), who created a comprehensive and
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scientific theory of phonetics, phonology, and morphology, based on data from Sanskrit (the
classical literary language of the ancient Hindus). Panini created formal production rules and
definitions to describe Sanskrit grammar, including phenomena such as construction of sen-
tences, compound nouns, etc. Panini’s formalisms function as ordered rules operating on
underlying structures in a manner analogous to modern linguistic theory. Panini's phono-
logical rules are equivalent in formal power to Backus-Nauer form (BNF). A genera intro-
duction to this pioneering scientist is Cardona[9].

An excellent introduction to all aspects of phoneticsis A Course in Phonetics [24]. A
good treatment of the acoustic structure of English speech sounds and a through introduction
and comparison of theories of speech perception is to be found in [33]. The basics of pho-
nology as part of linguistic theory are treated in Understanding Phonology [17]. An interest-
ing treatment of word structure (morphology) from a computational point of view can be
found in Morphology and Computation [40]. A comprehensive yet readable treatment of
English syntax and grammar can be found in English Syntax [4] and A Comprehensive
Grammar of the English Language [36]. Syntactic theory has traditionally been the heart of
linguistics, and has been an exciting and controversial area of research since the 1950s. Be
aware that almost any work in this area will adopt and promote a particular viewpoint, often
to the exclusion or minimization of others. A reasonable place to begin with syntactic theory
is Syntax: A Minimalist Introduction [37]. An introductory textbook on syntactic and seman-
tic theory that smoothly introduces computational issues is Syntactic Theory: A Formal In-
troduction [39]. For a philosophical and entertaining overview of various aspects of linguis-
tic theory, see Rhyme and Reason: An Introduction to Minimalist Syntax [44]. A good and
fairly concise treatment of basic semantics is Introduction to Natural Language Semantics
[11]. Deeper issues are covered in greater detail and at a more advanced level in The Hand-
book of Contemporary Semantic Theory [25]). The intriguing area of lexical semantics (the-
ory of word meanings) is comprehensively presented in The Generative Lexicon [35]. Con-
cise History of the Language ciences [21] is a good edited book if you are interested in the
history of linguistics.
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CHAPTER 3

Probability, Statistics, and Information Theory

Randomness and uncertainty play an impor-
tant role in science and engineering. Most spoken language processing problems can be
characterized in a probabilistic framework. Probability theory and statistics provide the
mathematical language to describe and analyze such systems.

The criteria and methods used to estimate the unknown probabilities and probability
densities form the basis for estimation theory. Estimation theory forms the basics for pa
rameter learning in pattern recognition. In this chapter, three widely used estimation meth-
ods are discussed. They are minimum mean squared error estimation (MMSE), maximum
likelihood estimation (MLE), and maximum posterior probability estimation (MAP).

Significance testing is aso important in statistics, which deals with the confidence of
statistical inference, such as knowing whether the estimation of some parameter can be ac-
cepted with confidence. In pattern recognition, significance testing is extremely important
for determining whether the observed difference between two different classifiersisreal. In
our coverage of significance testing, we describe various methods that are used in pattern
recognition discussed in. Chapter 4.

73
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Information theory was originally developed for efficient and reliable communication
systems. It has evolved into a mathematical theory concerned with the very essence of the
communication process. It provides a framework for the study of fundamental issues, such
as the efficiency of information representation and the limitations in reliable transmission of
information over a communication channel. Many of these problems are fundamental to
spoken language processing.

3.1 PROBABILITY THEORY

Probability theory deals with the averages of mass phenomena occurring sequentially or
simultaneously. We often use probabilistic expressions in our day-to-day lives, such as when
saying, It isvery likely that the Dow (Dow Jones Industrial index) will hit 12,000 points next
month, or, The chance of scattered showers in Seattle this weekend is high. Each of these
expressions is based upon the concept of the probability, or the likelihood, which some spe-
cific event will occur.

Probability can be used to represent the degree of confidence in the outcome of some
actions (observations), which are not definite. In probability theory, the term sample space,
S isused to refer to the collection (set) of all possible outcomes. An event refers to a subset
of the sample space or a collection of outcomes. The probability of event A denoted as
P(A), can beinterpreted as the relative frequency with which the event A would occur if the

process were repeated a large number of times under similar conditions. Based on this inter-
pretation, P(A) can be computed simply by counting the total number, Ng, of all observa-

tions and the number of observations N, whose outcome belongs to the event A. That is,

P(A) = % (3.1

P(A) isbounded between zero and one, i.e.,
0<P(A) <1 fordl A (3.2

The lower bound of probability P(A) is zero when the event set A is an empty set. On the
other hand, the upper bound of probability P(A) is one when the event set A happens to be
S

If therearenevents A, A,,--- A inSsuchthat A, A,,--- A aredigoint and UA =S,
i=1
events A, A,,--- A, aresaid to form apartition of S The following obvious equation forms a
fundamental axiom for probability theory.

P(AOAD ..AD iP(AF) 1 (3.3
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Based on the definition in Eq. (3.1), the joint probability of event A and event B occurring
concurrently is denoted as P(AB) and can be calculated as:

P(AB) = ':IAB

(3.4)

S

3.1.1. Conditional Probability And Bayes Rule

It is useful to study the way in which the probability of an event A changes after it has been
learned that some other event B has occurred. This new probability denoted as P(A|B) is

called the conditional probability of event A given that event B has occurred. Since the set of
those outcomes in B that also result in the occurrence of A isexactly the set AB asillustrated
in Figure 3.1, it is natural to define the conditional probability as the proportion of the total

probability P(B) that is represented by the joint probability P(AB) . This leads to the fol-
lowing definition:

P(AB) _ N,o/Nq

PAIB) = @)~ N, /N,

(3.5)

S

Figure 3.1 Theintersection AB represents where the joint event A and B occurs concurrently.

Based on the definition of conditional probability, the following expressions can be
easily derived.

P(AB) = P(A|B)P(B) =P(B| A)P(A) (3.6)
Equation (3.6) is the simple version of the chain rule. The chain rule, which can specify a
joint probability in terms of multiplication of several cascaded conditiona probabilities, is

often used to decompose a complicated joint probabilistic problem into a sequence of step-
wise conditional probabilistic problems. Eq. (3.6) can be converted to such a general chain:

P(AA--A)=P(A |A--AL)--P(A|A)P(A) 3.7
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When two events, A and B, are independent of each other, in the sense that the occur-
rence or of either of them has no relation to and no influence on the occurrence of the other,

it is obvious that the conditional probability P(B| A) equals to the unconditional probability
P(B). It follows that the joint probability P(AB) issimply the product of P(A) and P(B)
if A and B, are independent.

If thenevents A, A,,--- A formapartition of Sand B isany event in Sasillustrated in

Figure 3.2, theevents AB, A,B,--- A,B form a partition of B. Thus, we can rewrite:
B=ABOAB & AB (3.8
Since AB,AB,---A B aredigoint,

P(B) =3 P(AB) 39

P

A

|

Figure 3.2 Theintersections of B with partition events A, A,,--- A, .

Equation (3.9) is caled the marginal probability of event B, where the probability of
event B is computed from the sum of joint probabilities.

According to the chain rule, Eq. (3.6), P(AB) = P(A)P(B| A), it follows that

P(B)= > P(AIP(BIA) (310

Combining Egs. (3.5) and (3.10), we get the well-known Bayes rule:
P(AB) _ P(B|A)P(A)

P(A|B)= :
R WCIVICS

(3.12)

Bayes ruleisthe basis for pattern recognition that is described in Chapter 4.
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3.1.2. Random Variables

Elements in a sample space may be numbered and referred to by the numbers given. A vari-
able X that specifies the numerical quantity in a sample space is called a random variable.
Therefore, arandom variable X is a function that maps each possible outcome s in the sam-
ple space S onto real numbers X(s) . Since each event is a subset of the sample space, an

event is represented as a set of {s} which satisfies {s | X(s) = x} . We use capital |ettersto
denote random variables and lower-case |etters to denote fixed values of the random vari-
able. Thus, the probability that X = x isdenoted as:
P(X =x)=P(s | X(s) =x) (312
A random variable X is a discrete random variable, or X has a discrete distribution, if
X can take only a finite number n of different values x,x,,---, X, , or a most, an infinite se-

quence of different values x;, x,,---. If the random variable X is a discrete random variable,

the probability function (p.f.) or probability mass function (p.m.f.) of X is defined to be the
function p such that for any real number x,

py (X) = P(X =x) (3.13)

For the cases in which there is no confusion, we drop the subscription X for p, (x) . The
sum of probability mass over all values of the random variable is equal to unity.

Y px) = P(X =x) =1 (3.14)

The marginal probability, chain rule and Bayes rule can also be rewritten with respect
to random variables.

Pe(X) =P(X =X) =3 P(X =x.Y =) =3 P(X =X |Y =y )P(Y =) (319

P(X, =%, X, =%,) =

(3.16)
P(Xn =X, | Xl :Xu"'axn—l :Xn—l)"'P(Xz =% | Xl :X:L)P(Xl :Xl)

PX=x,Y=y) _ P =y[X =x)P(X =X)

P(X=x]Y=y)= = -
PY=Y) SRy =y[X =x)P(X =x,)

(3.17)

In asimilar manner, if the random variables X and Y are statistically independent, they
can be represented as:

P(X'=x,Y =y;) =P(X =x)P(Y =y;)=py (X)r,(y;) Ddliand] (3.18)
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A random variable X is a continuous random variable, or X has a continuous distribu-
tion, if there exists a nonnegative function f, defined on the real line, such that for an interval
A!

P(X OAE jA f. (X)dx (3.19)

Thefunction f, iscalled the probability density function (abbreviated p.d.f.) of X. We drop
the subscript X for f, if there is no ambiguity. As illustrated in Figure 3.3, the area of
shaded region isequa to the value of P(a< X <b)

A (%

>

X

Figure 3.3 An example of p.d.f. The area of the shaded region is equa to the value of
P(a< X <h).

Every p.d.f must satisfy the following two requirements.

f(xX)=0for-o < x< 00 and
f f(x)dx =1

The marginal probability, chain rule, and Bayes' rule can a so be rewritten with respect
to continuous random variables:

0= [ fe 0oy = [ fy (XIW) F, (y)dy (3.21)

(3.20)

fxl,---,xn (Xl!"'!xn) = an|X1,---,Xn_1(Xn |X1!"'1Xn—1)"' fx2|x1(xz |X1) fxl(xl) (3-22)

B () _ A (Y19 F ()

(3.23)
ROY [ (D) i ()

oy (XY) =
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The distribution function or cumulative distribution function F of a discrete or con-
tinuous random variable X is a function defined for all real number x as follows:

F(X)=P(X £x) for —co<x<o (3.24)

For continuous random variables, It follows that:

F(x) = fw ., (x)dx (3.25)
f (X) = ) (3.26)
dx
3.1.3. Mean and Variance

Suppose that a discrete random variable X has a p.f. f(x); the expectation or mean of X is
defined as follows:

E(X) =D xf(x) (3.27)

Similarly, if a continuous random variable X has a p.d.f. f, the expectation or mean of
Xisdefined asfollows:

E(X) = J““ xf (x)dx (3.28)

In physics, the mean is regarded as the center of mass of the probability distribution.
The expectation can also be defined for any function of the random variable X. If X isa con-
tinuous random variable with p.d.f. f, then the expectation of any function g(X) can be

defined as follows:
E[g(X)] = [ g(x) f ()dx (3.29)
The expectation of arandom variableis alinear operator. That is, it satisfies both addi-
tivity and homogeneity properties:
E(aX, ++a,X, +b) =3 E(X,) + +a,E(X,) +b (3.30)

where a,,---,a,,b are constants
Equation (3.30) is valid regardless of whether or not the random variables X,,---, X,

are independent.
Suppose that X is a random variable with mean = E(X) . The variance of X denoted

as Var (X) isdefined asfollows:
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Var(X)=0” =E[ (X ~)*] (3.31)

where o, the nonnegative square root of the variance is known as the standard deviation of

random variable X. Therefore, the variance is also often denoted as .
The variance of a distribution provides a measure of the spread or dispersion of the
distribution around its mean . A small value of the variance indicates that the probability

distribution is tightly concentrated around 4, and a large value of the variance typically
indicates the probability distribution has a wide spread around L . Figure 3.4 illustrates

three different Gaussian distributions® with the same mean, but different variances.
The variance of random variable X can be computed in the following way:

Var (X) = E(X?) -[E(X)]* (3.32)

In physics, the expectation E(X*) is called the k" moment of X for any random vari-

able X and any positive integer k. Therefore, the variance is ssmply the difference between
the second moment and the square of the first moment.

The variance satisfies the following additivity property, if random variables X and Y
are independent:

Var (X +Y) =Var (X) +Var(Y) (3.33)
However, it does not satisfy the homogeneity property. Instead for constant a,

Var (aX) = a®Var (X) (3.39)
Since it is clear that Var(b) =0 for any constant b, we have an equation similar to Eq.
(3.30) if random variables X,,---, X,, are independent.

Var(a X, +---+a X, +b) =a’Var(X,) +-- +a’Var(X,) (3.39)

Conditional expectation can also be defined in asimilar way. Suppose that X and Y are
discrete random variables and let f(y|Xx) denote the conditional p.f. of Y given X =x,
then the conditional expectation E(Y | X) is defined to be the function of X whose value
E(Y |x) when X =x is

Evx (YIX =X) =D ¥y (Y1) (3:36)

For continuous random variables X and Y with f,,, (y|x) asthe conditional p.d.f. of Y
given X = x, the conditional expectation E(Y | X) isdefined to be the function of X whose
value E(Y |x) when X =x is

1 We describe Gaussian distributionsin Section 3.1.7
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Enx (Y1X=X) = [ yi (yIx)dy (3.37)

08r
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Figure 3.4 Three Gaussian distributions with same mean , but different variances, 0.5, 1.0
,and 2.0, respectively. The distribution with a large value of the variance has a wide spread
around the mean (/.

Since E(Y | X) isafunction of random variable X, it itself is a random variable whose
probability distribution can be derived from the distribution of X. It can be shown that

Ex [ Evx (Y1 X) ] = Exy (Y) (3.38)

More generaly, suppose that X and Y have a continuous joint distribution and that
a(x,y) isany arbitrary function of X and Y. The conditional expectation E[g(X,Y)|X] is

defined to be the function of X whose value E[g(X,Y)|x| when X =x is

Enx [0 1X =X = [ g0xy) e (v [y (3.39)
Equation (3.38) can aso be generalized into the following equation:
E{ B [90X V) [ X]} = B¢ [a(X,Y)] (3.40)

Findly, it is worthwhile to introduce median and mode. A median of the distribution
of X is defined to be a point m, such that P(X <m)=1/2and P(X 2m)=1/2. Thus, the
median m divides the total probability into two equal parts, i.e., the probability to the left of
m and the probability to the right of m are exactly 1/2.
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Suppose a random variable X has either a discrete distribution with p.f. p(x) or con-
tinuous p.d.f. f(x); apoint @ is caled the mode of the distribution if p(x) or f(x) at-
tains the maximum value at the point . A distribution can have more than one modes.

3.1.3.1 The Law of Large Numbers

The concept of sample mean and sample variance is important in statistics because most
statistical experiments involve sampling. Suppose that the random variables X,,---, X, form

arandom sample of size n from some distribution for which the mean is ¢ and the variance
is g®. In other words, the random variables X,,---, X, are independent identically distrib-
uted (often abbreviated by i.i.d.) and each has mean y and variance o?. Now if we denote
)?n as the arithmetic average of the n observations in the sample, then

X, = 2(X, 40 +X,) (3.41)
n

X_ isarandom variable and is referred to as sample mean. The mean and variance of

n

X, can be easily derived based on the definition.

2

E(X.)=p and Var(X,) :% (3.42)

Equation (3.42) states that the mean of sample mean is equal to mean of the distribution,
while the variance of sample mean is only 1/n times the variance of the distribution. In
other words, the distribution of X, will be more concentrated around the mean y than was
the original distribution. Thus, the sample mean is closer to y than is the value of just a
single observation X; from the given distribution.

The law of large numbers is one of most important theorems in probability theory.
Formaly, it states that the sample mean )?n convergesto the mean u in probability, that is,

lim P(| X, —uk 5) =1 for any given number £ >0 (343

The law of large numbers basically implies that the sample mean is an excellent estimate of
the unknown mean of the distribution when the sample size nislarge.
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3.14. Covariance and Correlation

Let X and Y be random variables having a specific joint distribution, and E(X) = 4,
E(Y)=4,, Var(X)=0%, and Var(Y)=0?. The covariance of X and Y, denoted as
Cov(X,Y), isdefined as follows:

Cov(X,Y) = E[(X = )(Y =44,)] =Cov(Y,X) (3.44)
In addition, the correlation coefficient of X and Y, denoted as p,, , is defined as fol-
lows:
Cov(X,Y
Py = Cov(X.Y) (3.45)
UX UY

It can be shown that p(X,Y) should be bound within [-1...1] , that is,
~1< p(X,Y) €1 (3.46)

X and Y are said to be positively correlated if p,, >0, negatively correlated if p,, <O,
and uncorrelated if p,, =0. It can aso be shown that Cov(X,Y) and p,, must have the
same sign; that is, both are positive, negative, or zero at the same time. When E(XY) =0,

the two random variables are called orthogonal.
There are several theorems pertaining to the basic properties of covariance and corre-
lation. We list here the most important ones:

Theorem 1 For any random variables X and Y

Cov(X,Y) = E(XY) —E(X)E(Y) (3.47)
Theorem 2 If X and Y are independent random variables, then

Cov(X,Y)=p,, =0

Theorem 3 Suppose X is arandom variable and Y is alinear function of X in the
form of Y =aX +bfor some constant a and b, where a#0. If a>0, then
Py =1.1f a<0,then p,, =-1. Sometimes, p,, isreferred to as the amount
of linear dependency between random variables X and Y.

Theorem 4 For any random variables X and Y,

Var (X +Y) =Var (X) +Var (Y) +2Cov(X,Y) (3.48)

Theorem 51f X,,---, X,, arerandom variables, then
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Var(zn: X)) = ZH:Var(xi) +2Zn‘liic:ov(xi JX,) (3.49)
i=1 i=1 i=l j=1
3.15. Random Vectorsand Multivariate Distributions

When arandom variable is a vector rather than a scalar, it is called a random vector and we
often use boldface variable like X =(X,,---,X,,) toindicate that it is a random vector. It is
said that n random variables X,,---, X, have a discrete joint distribution if the random vec-
tor X =(X,,---,X,) can have only afinite number or an infinite sequence of different val-
ues (x,--+,X%,) in R". Thejoint p.f. of X,,---, X,, isdefined to be the function f, such that

n

for any point (x,---,x,)OR",
fx (%0 %) = P(Xp =%, X, =X) (3.50)

Similarly, it is said that n random variables X,,---, X,, have a continuous joint distri-
bution if there is a nonnegative function f defined on R" such that for any subset A0 R",

The joint distribution function can also be defined similarly for n random variables
X+, X,, asfollows:

Fe (4 %,) = P(X =0, X, < X,) (352

The concept of mean and variance for a random vector can be generalized into mean
vector and covariance matrix. Supposed that X is an n-dimensional random vector with
components X,,---, X,,, under matrix representation, we have

X=| (3.53)

The expectation (mean) vector E(X) of random vector X is an n-dimensional vector whose
components are the expectations of the individual components of X, that is,

E(X))
EX)=| (3.54)
E(X,)
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The covariance matrix Cov(X) of random vector X is defined to be an nxn matrix
such that the element in the i"" row and | columnis Cov(X;,Y,) , that is,

Cov(X,, X;) -+ Cov(X, X,)
Cov(X) = : : =E[[x ~EC][x ~E(X]']  (359)
Cov(X,,X,) -+ Cov(X,,X,)

It should be emphasized that the n diagonal elements of the covariance matrix Cov(X) are
actually the variances of X,,---, X, . Furthermore, since covariance is symmetric, i.e,
Cov(X;, X;) =Cov(X,, X;), the covariance matrix Cov(X) must be a symmetric matrix.

There is an important theorem regarding the mean vector and covariance matrix for a
linear transformation of the random vector X. Suppose X is an n-dimensional vector as
specified by Eq. (3.53), with mean vector E(X) and covariance matrix Cov(X). Now, as-

sume Y is a mdimensional random vector which is a linear transform of random vector X
by therelation: Y = AX +B, where A isa mxn transformation matrix whose elements are
constants, and B is a m-dimensional constant vector. Then we have the following two equa-
tions:

E(Y) = AE(X) +B (3.56)

Cov(Y) = ACov(X)A! (357)

3.1.6. Some Useful Distributions

In the following two sections, we will introduce several useful distributions that are widely
used in applications of probability and statistics, particularly in spoken language systems.

3.1.6.1 Uniform Distributions
The simplest distribution is uniform distribution where the p.f. or p.d.f. is a constant func-

tion. For uniform discrete random variable X, which only takes possible values from
{x11<i<n},thepf. for Xis

P(Xz)g):% 1<i <n (3.58)

For uniform continuous random variable X, which only takes possible values from real
interval [a,b] , the p.df. for Xis
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E

f(x) = as<xs<b (3.59)
b-a
A

f(X)

Al _ _

b-a H H
[} [}
[} [}
[} [}
[} ! '
a b X

Figure 3.5 A uniform distribution for p.d.f. in Eq. (3.59)

3.1.6.2. Binomial Distributions

The binomial distribution is used to describe binary-decision events. For example, suppose
that a single coin toss will produce the head with probability p and produce the tail with
probability 1- p. Now, if we toss the same coin n times and let X denote the number of

heads observed, then the random variable X has the following binomial p.f.:

n
P(X =x) = f(x|n, p) 2( Jlox(l—lo)"_X (3.60)
X
0.35
= p=0.2
0.30 oo Sig:i
o e
0.25
0.20 *
0.15 .
0.10 '::' (D * S *
=R :
0.05
m S
o * S -
o 1 2 3 a 5 6 10

X

Figure 3.6 Three binomial distributions with p=0.2, 0.3 and 0.4.

It can be shown that the mean and variance of abinomial distribution are:
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E(X)=np (3.61)

Var (X) =np(1-p) (3.62)
Figure 3.6 illustrates three binomial distributions with p = 0.2, 0.3 and 0.4.

3.1.6.3. Geometric Distributions

The geometric distribution is related to the binomial distribution. Asin the independent coin
toss example, the head-up has a probability p and the tail-up has a probability 1- p. The

geometric distribution is to model the time until a tail-up appears. Let the random variable X
be the time (the number of tosses) until the first tail-up is shown. The p.d.f. of X isin the
following form:

P(X=x)=f(x|p)=p"@A-p) x=12,... and0<p <1 (3.63)
The mean and variance of a geometric distribution are given by:
1

=1
(1-p)°
One example for the geometric distribution is the distribution of the state duration for

a hidden Markov model, as described in Chapter 8. Figure 3.7 illustrates three geometric
distributions with p = 0.2, 0.3 and 0.4.

Var (X) (3.65)

0.9
[ = I S ¥
0.8 T © p=.4
Aot =7
0.7

&0
o

= =2
7 9 10

af
o

X

Figure 3.7 Three geometric distributions with different parameter p.
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3.1.6.4. Multinomial Distributions

Suppose that a bag contains balls of k different colors, where the proportion of the balls of

coloriis p..Thus, p >0fori =1,...,k and Zik:lp, =1. Now suppose that n balls are ran-

domly selected from the bag and there are enough balls (> n) of each color. Let X; denote

the number of selected balls that are of color i. The random vector X =(X,,...,X,) issad

to have a multinomial distribution with parameters n and p =(p,,... p,) . For a vector
X = (X,...X.) , thep.f. of X hasthe following form:

n!
X! X!
P(X=x)=f(x|n,p) = andx +---+% =n
0 otherwise

pt,...p¢ wherex 200F 1,...,k

(3.66)

10

Figure 3.8 A multinomia distribution with n=10, p, =0.2 and p, =0.3

It can be shown that the mean, variance and covariance of the multinomial distribution
are:

E(X,)=np and Var(X,)=np(@-p) O=1...,k (3.67)
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Cov(X;, X;) = -np,p; (3.68)

Figure 3.8 shows a multinomia distribution with n = 10, p, =0.2 and p, =0.3.
Since there are only two free parameters x, and X, , the graph is illustrated only using x
and x, asaxis. Multinomial distributions are typically used with the y* test that is one of

the most widely used goodness-of-fit hypotheses testing procedures described in Section
3.3.3.

3.1.6.5. Poisson Distributions

Another popular discrete distribution is Poisson distribution. The random variable X has a
Poisson distribution with mean A (A > 0) if the p.f. of X hasthe following form:
-A 1x

P(X = x) = f (x| 1) = | &4

for x=0,1,2,... (3.69)
0 otherwise

The mean and variance of a Poisson distribution are the same and equal A :

E(X) =Var(X) =4 (3.70)
0.451
=8 lambda= 1
0.4 H ’ fo © lambda= 2
m ] FOR— +* lambda= 4
0.351
0.3F
0.251
02t / ke
015§ Py
01f " e
0.05F . BL. *e
= O Hey
0 ) — Sy - ey
0 1 2 3 4 5 6 7 8 9 10
X

Figure 3.9 Three Poisson distributionswith A =1, 2, and 4.

Figure 3.9 illustrates three Poisson distributions with A =1, 2, and 4. The Poisson dis-
tribution is typically used in queuing theory, where x is the total number of occurrences of
some phenomenon during a fixed period of time or within a fixed region of space. Examples
include the number of telephone calls received at a switchboard during a fixed period of
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time. In speech recognition, the Poisson distribution is used to model the duration for a pho-
neme.

3.1.6.6. Gamma Distributions

A continuous random variable X is said to have a gamma distribution with parameters a
and B (a>0and g >0) if X hasacontinuous p.d.f. of the following form:

ﬁ Xa—l —-Bx X>0
f(x|a,B) =1 [(a) (3.71)
0 x<0
where
ra)= J: X e dx (3.72)
It can be shown that the function I isafactoria function when a isa positive integer.
n-1)! n=23,...
r(n)= (n=1) (3.73)
1 n=1

Figure 3.10 Three Gammadistributionswith 8 =1.0 and a = 2.0, 3.0, and 4.0.

The mean and variance of a gamma distribution are:

E(X) :% and Var(X) :% (3.74)
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Figure 3.10 illustrates three gamma distributions with 8=1.0 and a =2.0, 3.0, and
4.0. There is an interesting theorem associated with gamma distributions. If the random
variables X,,..., X, are independent and each random variable X, has a gamma distribu-
tion with parameters a; and [, then the sum X, +---+ X, aso has a gamma distribution
with parameters a, +--- +a, and S.

A specia case of gamma distribution is called exponential distribution. A continuous
random variable X is said to have an exponential distribution with parameters 8 (S >0) if

X has a continuous p.d.f. of the following form:
Be” x>0

f(XIﬁ)={ 0 x<0 (3.75)

It is clear that the exponential distribution is a gamma distribution with a =1. The mean
and variance of the exponential distribution are:

E(X) :% and Var(X) :% (3.76)

Figure 3.11 Three exponential distributionswith 8 = 1.0, 0.6 and 0.3.

Figure 3.11 shows three exponentia distributions with 8 =1.0, 0.6, and 0.3. The ex-

ponential distribution is often used in queuing theory for the distributions of the duration of
aservice or the inter-arrival time of customers. It is also used to approximate the distribution
of the life of a mechanical component.
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3.1.7. Gaussian Distributions

Gaussian distribution is by far the most important probability distribution mainly because
many scientists have observed that the random variables studied in various physical experi-
ments (including speech signals), often have distributions that are approximately Gaussian.
The Gaussian distribution is also referred to as normal distribution. A continuous random
variable X is said to have a Gaussian distribution with mean y and variance o (o >0) if

X has a continuous p.d.f. in the following form:

f(x| 1, 0?) = N(u,0?) :\/zi%aexp{—%} (3.77)

It can be shown that i and o areindeed the mean and the variance for the Gaussian

distribution. Some examples of Gaussian can be found in Figure 3.4.

The use of Gaussian distributions is justified by the Central Limit Theorem, which
states that observable events considered to be a consequence of many unrelated causes with
no single cause predominating over the others, tend to follow the Gaussian distribution [6].

It can be shown from Eq. (3.77) that the Gaussian f (x| 4,0?) is symmetric with re-
spect to x = . Therefore, y is both the mean and the median of the distribution. More-

over, u isalsothe mode of the distribution, i.e., the p.d.f. f(x|u,0?) attainsits maximum
at the mean point x=u .
Several Gaussian p.d.f.”swith the same mean p , but different variances areillustrated

in Figure 3.4. Readers can see that the curve has a bell shape. The Gaussian p.d.f. with a
small variance has a high peak and is very concentrated around the mean u, whereas the

Gaussian p.d.f., with alarge variance, is relatively flat and is spread out more widely over
the x-axis.

If the random variable X is a Gaussian distribution with mean y and variance o2,

then any linear function of X also has a Gaussian distribution. That is, if Y =aX +b, where
aand b are constants and a # 0, Y has a Gaussian distribution with mean ag+b and vari-

ance a’c?. Similarly, the sum X, +---+ X, of independent random variables X,,..., X,
where each random variable X, has a Gaussian distribution, is also a Gaussian distribution.

3.1.7.1. Standard Gaussian Distributions

The Gaussian distribution with mean 0 and variance 1, denoted as N(0,1), is caled the
standard Gaussian distribution or unit Gaussian distribution. Since the linear transformation
of a Gaussian distribution is still a Gaussian distribution, the behavior of a Gaussian distri-
bution can be solely described using a standard Gaussian distribution. If the random variable
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X isa Gaussian distribution with mean x and variance o2, that is, X ~ N(u,0?) , it can be
shown that

z=2"H N2 (3.79)
ag

Based on Eg. (3.78), the following property can be shown:
P(IX -u|gko) =P(| Z|<k) (3.79)

Equation (3.79) demonstrates that every Gaussian distribution contains the same total
amount of probability within any fixed number of standard deviations of its mean.

3.1.7.2. The Central Limit Theorem

If random variables X,,..., X, arei.i.d. according to a common distribution function with

mean y and variance ¢, then as the random sample size n approaches o , the following
random variable has a distribution converging to the standard Gaussian distribution:

Y, = nXo— 4 N(0,1) (3.80)
Jno?
where X, isthe sample mean of random variables X,,..., X, asdefined in Eq. (3.41).

Based on Eq. (3.80), the sample mean random variable X, can be approximated by a
Gaussian distribution with mean g and variance ¢ /n.

The central limit theorem above is applied to i.i.d. random variables X,,..., X, . A.
Liapounov in 1901 derived another central limit theorem for independent but not necessarily
identically distributed random variables X,,..., X, . Suppose X,,...,X, ae independent
random variables and E(| X, — 4 ') <o for 1<i <n; the following random variable will
converge to standard Gaussian distribution when n - o,

n n n 1/2

Y, =2 X —Zm/[chfj (381)
i=1 i=1 i=1

In other words, the sum of random variables X,,..., X, can be approximated by a

n n 1/2
Gaussian distribution with mean »” 1 and variance (Z aﬁj .
i=1 i=1
Both central limit theorems essentially state that regardless of their original individual
distributions, the sum of many independent random variables (effects) tends to be distributed
like a Gaussian distribution as the number of random variables (effects) becomes large.
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3.1.7.3. Multivariate Mixture Gaussian Distributions

When X =(X,...,X,) is an n-dimensional continuous random vector, the multivariate
Gaussian p.d.f. has the following form:

X=X D) =N D) =k e S| (@e2
(271)"" || 2

where p isthe n-dimensional mean vector, £ isthe nxn covariance matrix, and |2‘.| isthe
determinant of the covariance matrix X .

n=E(x) (3.83)
E=E[(x-m)(x-n)'] (384)

More specifically, thei-j"™ element aij2 of covariance matrix X can be specified asfol-
lows:

ar =E[(x )X ~4,)] (3.85)

0 o

% "

Figure 3.12 A two-dimensional multivariate Gaussian distribution with independent random
variables x, and x, that have the same variance.
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If X,,...,X, areindependent random variables, the covariance matrix X is reduced

to diagonal covariance where al the off-diagonal entries are zero. The distribution can be
regarded as n independent scalar Gaussian distributions. The joint p.d.f. is the product of all
the individual scaar Gaussian p.d.f.. Figure 3.12 shows a two-dimensional multivariate
Gaussian distribution with independent random varisbles x, and x, with the same variance.
Figure 3.13 shows another two-dimensional multivariate Gaussian distribution with inde-
pendent random variables x, and x, that have different variances.

Although Gaussian distributions are unimodal,> more complex distributions with mul-
tiple local maxima can be approximated by Gaussian mixtures:

f00 =Y 6N (GR ) (3.86)

where ¢, the mixture weight associated with kth Gaussian component are subject to the
following constraint;

K
¢ 20and Y =1
k=1
Gaussian mixtures with enough mixture components can approximate any distribution.

Throughout this book, most continuous probability density functions are modeled with
Gaussian mixtures.

0.03
0.06
0.04

0.0Z

-10

Figure 3.13 Another two-dimensional multivariate Gaussian distribution with independent

2 A unimodal distribution has a single maximum (bump) for the distribution. For Gaussian distribution, the maxi-
mum occurs at the mean.
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random variable X, and X, which have different variances.

3.1.7.4. x? Distributions

A gamma distribution with parameters a and g is defined in Eq. (3.71). For any given
positive integer n, the gamma distribution for which @ =n/2 and =1/2 iscaled the x?

distribution with n degrees of freedom. It follows from Eq. (3.71) that the p.d.f. for the x?
distribution is

_ 7 1 X(n/2)—1e—></2 x>0
f(x|n)={ 2"r(n/2) (3.87)

0 x<0

x? distributions are important in statistics because they are closely related to random

samples of Gaussian distribution. They are widely applied in many important problems of
statistical inference and hypothesis testing. Specifically, if the random variables X,,..., X,

are independent and identically distributed, and if each of these variables has a standard
Gaussian distribution, then the sum of square X7 +...+ X2 can be proved to have a x*
distribution with n degree of freedom. Figure 3.14 illustrates three x? distributions with
n=2,3and 4.

0.5

S5 S

0.45

nomnn
A WN

0.4

=]
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0.3
025F
o2t /
015/
o1p /
00sF/

Figure3.14 Three x? distributionswith n=2, 3, and 4.

The mean and variance for the y? distribution are
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E(X) =nand Var(X) =2n (3.88)

Following the additivity property of the gamma distribution, the x? distribution also
has the additivity property. That is, if the random variables X,,..., X, are independent and
if X, hasa x? distribution with k degrees of freedom, the sum X, +...+X_ hasa x°
distribution with k; +... +k, degrees of freedom.

3.1.75. L og-Normal Distribution

Let X, be a Gaussian random variable with mean 4, and standard deviation o, , then
y=¢* (3.89)

follows alog-normal distribution

-1 _(ny-p)*

shown in Figure 3.15, and whose mean is given by
x 1 (X=44)°
=Ky} =E{e} =| ex ———expy — X1 dx
p, = E(y} =E{e} = [ exp{% o, p{ 207

= EO(-Z'XD{/JX +0X2/% \/5'[0 exp{_(x_(ﬁzlxa':axz)z}dx :(.:.X[;){yX +Uf/%

where we have rearranged the quadratic form of x and made use of the fact that the total
probability mass of a Gaussian is 1. Similarly, the second order moment of y is given by

(3.92)

E{y}—j‘“exp{zy}J_ exp{ (1)’ }dx

(3.92)

20

X

1 (X—(/J +207)° 3
= | exp{2u, +20° exps — x x_Ldx =exp{2u, +20.
[ exp{2p, +20}) N p{ > p{2u, +203
and thus the variance of y is given by

= E{y*} - (E{y)’ = 2 (exp{o?} 1) (399
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0.35 ' E
std=3
std=1
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4.5 5

Figure 3.15 Lognorma distribution for x4, =0 and o, =3, 1 and 0.5 according to Eg. (3.90).

Similarly, if x is a Gaussian random vector with mean p, and covariance matrix X, ,
then random vector y = €* islog-normal with mean and covariance matrix [8] given by

w[i] = exp{p,[i] +X,[i,i]/ 2}
00, i1 =m[ilm, [ (exp{Z, 0. i} -1)

using asimilar derivation asin Egs. (3.91) to (3.93).

(3.94)

3.2. ESTIMATION THEORY

Estimation theory and significance testing are two most important theories and methods of
statistical inference. In this section, we describe estimation theory while significance testing
is covered in the next section. A problem of statistical inference is one in which data gener-
ated in accordance with some unknown probability distribution must be analyzed, and some
type of inference about the unknown distribution must be made. In a problem of statistical
inference, any characteristic of the distribution generating the experimental data, such asthe
mean u and variance o of a Gaussian distribution, is called a parameter of the distribu-
tion. The set Q of al possible values of a parameter ® or a group of parameters
P, D,,..., 0, iscaled the parameter space. In this section we focus on how to estimate the
parameter @ from sample data.

Before we describe various estimation methods, we introduce the concept and nature
of the estimation problems. Suppose that a set of random variables X ={X,, X,,..., X, } is
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i.i.d. according to ap.d.f. p(x|®) where the value of the parameter @ is unknown. Now,
suppose aso that the value of @ must be estimated from the observed values in the sample.
An estimator of the parameter @ , based on the random variables X,, X,,..., X, isarea-

valued function 8(X,, X,,..., X)) that specifies the estimated value of ® for each possible
set of valuesof X, X,,..., X, . Thatis, if the sample valuesof X, X,,..., X, turn out to be
X, Xy, X, , then the estimated value of @ will be 8(x,X,,...,X,) .

We need to distinguish between estimator, estimate, and estimation. An estimator
6(X,, X,,...,X,) isafunction of the random variables, whose probability distribution can

be derived from the joint distribution of X, X,,..., X, . On the other hand, an estimate is a
specific value 8(x,X%,,...,X,) of the estimator that is determined by using some specific
sample values x,X,,...,X,. Estimation is usually used to indicate the process of obtaining
such an estimator for the set of random variables or an estimate for the set of specific sample
values. If we use the notation X ={X,, X,,..., X,} to represent the vector of random vari-
ables and x ={x,X,,...,x,} to represent the vector of sample values, an estimator can be
denoted as 6(X) and an estimate 6(x) . Sometimes we abbreviate an estimator 6(X) by

just the symbol 6.

In the following four sections we describe and compare three different estimators (es-
timation methods). They are minimum mean square estimator, maximum likelihood estima-
tor, and Bayes estimator. The first one is often used to estimate the random variable itself,
while the latter two are used to estimate the parameters of the distribution of the random
variables.

3.2.1. Minimum/Least Mean Squared Error Estimation

Minimum mean squared error (MM SE) estimation and least squared error (LSE) estimation
are important methods for random variable since the goal (minimize the squared error) is an
intuitive one. In general, two random variables X and Y are i.i.d. according to some p.d.f.
fy v (X, y) . Suppose that we perform a series of experiments and observe the value of X. We
want to find a transformation Y = g(X) such that we can predict the value of the random
variable Y. The following quantity can measure the goodness of such a transformation.

E(Y -Y)? = E(Y —g(X))? (3.95)

This quantity is called mean squared error (MSE) because it is the mean of the
squared error of the predictor g(X) . The criterion of minimizing the mean squared error is
agood one for picking the predictor g(X) . Of course, we usualy specify the class of func-
tion G, from which g(X) may be selected. In general, there is a parameter vector ® asso-
ciated with the function g(X) , so the function can be expressed as g(X,®) . The processto



100 Probability, Statistics, and Information Theory

find the parameter vector <i>MME that minimizes the mean of the squared error is called

minimum mean squared error estimation and <i>MME is caled the minimum mean squared
error estimator. That is,

D, :argq[nin[E[(Y —g(x,m))zﬂ (3.96)

Sometimes, the joint distribution of random variables X and Y is not known. Instead,
samples of (x,y) pairs may be observable. In this case, the following criterion can be used
instead,

D =ar9q[nini[yi -g9(x.,®)f (3.97)

The argument of the minimization in Eq. (3.97) is caled sum-of-squared-error (SSE) and
the process of finding the parameter vector @, - , which satisfies the criterion is called least

squared error estimation or minimum sguared error estimation. LSE is a powerful mecha
nism for curve fitting, where the function g(x,®) describes the observation pairs (x,V.) . In

general, there are more points (n) than the number of free parametersin function g(x,®),

so the fitting is over-determined. Therefore, no exact solution exists, and LSE fitting be-
COmes necessary.

It should be emphasized that MM SE and L SE are actually very similar and share simi-
lar properties. The quantity in Eq. (3.97) is actually n times the sample mean of the squared
error. Based on the law of large numbers, when the joint probability f, \ (X,y) isuniform

or the number of samples approaches to infinity, MM SE and L SE are equivalent.

For the class of functions, we consider the following three cases:

[ Constant functions, i.e.,

G, ={9(x) =c,cOR} (3.98)
U Linear functions, i.e.,

G ={g(x) =ax+b, abOR} (3.99)

[0 Other non-linear functions G,

3.2.1.1. MM SE/L SE for Constant Functions

When Y = g(x) =c, Eq. (3.95) becomes

E(Y -Y)? = E(Y -c)? (3.100)
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To find the MM SE estimate for ¢, we take the derivatives of both sidesin Eq. (3.100)
with respect to ¢ and equate it to 0. The MM SE estimate ¢, iSgivenas

Cume = E(Y) (3.101)
and the minimum mean squared error is exactly the variance of Y, Var(Y) .
For the L SE estimate of c, the quantity in Eq. (3.97) becomes
min> [y, -¢* (3.102)
i=1

Similarly, the L SE estimate ¢, o can be obtained as follows:

1 n
Ce = ;Z Y, (3.103)
i=1

The quantity in Eq. (3.103) is the sample mean.
3.2.1.2. MM SE and L SE For Linear Functions

When Y = g(x) =ax +b, Eq. (3.95) becomes
e(a,b) = E(Y —\?)2 =E(Y —ax -b)® (3.104)
To find the MM SE estimate of a and b, we can first set

% _4 ad -0 (3.105)
oa db

and solve the two linear equations. Thus, we can obtain

_cov(X,Y) _ g,
N 0g P (3.106)
b= E(Y) —pXYZ—YE(X) (3.107)

X
For LSE estimation, we assume that the sample x is a d-dimensional vector for gener-
dity. Assuming we have n sample-vectors (x;, ;) = (X, %%,---,x*,¥;), i =1..n, a linear
function can be represented as
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Y=XAor|"?|= 1 : (3.108)

yn 1 X, X, ad
The sum of squared error can then be represented as
~ n 2
eA) =V =Y IF=d (A% ) (3.109)
i=1

A closed-form solution of the LSE estimate of A can be obtained by taking the gradi-
ent of e(A),

Oe(AE Zn:Z(A‘xi— y)x= 2X'(XA- Y) (3.110)

i=1
and equating it to zero. This yields the following equation:
X'XA =XY (3.1112)

Thusthe LSE estimate A, will be of the following form:
Alg =(XX)*XY (3.112)

(X'X)™X" in Eq. (3.112) is aso refereed to as the pseudo-inverse of X and is sometimes

denoted as X" .

When X'X issingular or some boundary conditions cause the L SE estimation in Eq.
(3.112) to be unattainable, some numeric methods can be used to find an approximate solu-
tion. Instead of minimizing the quantity in Eq. (3.109), one can minimize the following
quantity:

e(A) =l XA =Y | +a || X |P (3.113)

Following a similar procedure, one can obtain the LSE estimate to minimize the quan-
tity above in the following form.

Alg =(X'X+al)?X'Y (3.114)

The LSE solution in Eqg. (3.112) can be used for polynomial functions too. In the prob-
lem of polynomial curve fitting using the least square criterion, we are aiming to find the

coefficients A =(a,,a,,a,,--+,8,)" that minimize the following quantity:

min = E(Y -Y)? (3.115)

8,8,8,
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d

where Y = a, +ax +a,X’ +-- +a,X
To obtain the LSE estimate of coefficients A =(a,,a,a,,":-,a,)', Ssimply change the
formation of matrix X in Eq. (3.108) to the following:

d

e d
x=|t % % (3.116)

Note that x’ in Eq. (3.108) means the j-th dimension of sample x, , while x’ in Eq.
(3.116) means j-th order of value x . Therefore, the LSE estimate of polynomial coefficients
A =(3,a,3,,a,)" hasthesameformasEq. (3.112).

3.2.1.3. MM SE/L SE For Nonlinear Functions

Asthe most general case, consider solving the following minimization problem:
. 2
min E[Y - a(X)] (3.117)

Since we need to deal with all possible nonlinear functions, taking a derivative does
not work here. Instead, we use the property of conditional expectation to solve this minimi-
zation problem. By applying Eq. (3.38) to (3.117), we get

B [Y - 900]" = E{Enu[[Y -90x)* 1% =x]}
=[ B [[Y‘g(x)]2 IX :XJ f (x)dx (3.118)
= [ Ewm [[Y—@J(x)]2 IX :xJ f, (x)ax

Since the integrand is nonnegative in Eq. (3.118), the quantity in Eq. (3.117) will be
minimized at the same time the following equation is minimized.

min Ey [[Y ~g° X = x} (3.119)

g(x)OR

Since g(x) is aconstant in the calculation of the conditiona expectation above, the

MMSE estimate can be obtained in the same way as the constant functions in Section
3.2.1.1. Thus, the MM SE estimate should take the following form:

Y = e (X) = By (Y [ X) (3.120)
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If the value X =x is observed and the value E(Y | X = x) is used to predict Y, the
mean squared error (MSE) is minimized and specified as follows:

2
Evix [[Y —Ex(Y[X=X)] X = x} =Var,, (Y | X =X) (3.121)
The overal MSE, averaged over al the possible values of X, is:

E[Y =BV 10T =E{ B [V - 0 DOT 1 | =B [pvar(v 1x =]
(3.122)

It is important to distinguish between the overall MSE E, [Var,, (Y|X)] and the

MSE of the particular estimate when X = x, whichis Var,, (Y | X = x) . Before the value of
X is observed, the expected MSE for the process of observing X and predicting Y is
Ey [ Var, (Y | X)]. On the other hand, after a particular value x of X has been observed and

the prediction E,, (Y | X =X) has been made, the appropriate measure of MSE of the pre-
dictionis Var,, (Y | X =x).

In general, the form of the MMSE estimator for nonlinear functions depends on the
form of the joint distribution of X and Y. There is no mathematical closed-form solution. To
get the conditional expectation in Eq. (3.120), we have to perform the following integral :

Y9 = [ yh (Y1 X =x)dy (3.123)

It is difficult to solve this integral calculation. First, different measures of x could de-
termine different conditional p.d.f. for the integral. Exact information about the p.d.f. is of-
ten impossible to obtain. Second, there could be no analytic solution for the integral. Those
difficulties reduce the interest of the MM SE estimation of nonlinear functions to theoretical
aspects only. The same difficulties also exist for LSE estimation for nonlinear functions.
Some certain classes of well-behaved nonlinear functions are typically assumed for LSE
problems and numeric methods are used to obtain L SE estimate from sample data.

3.2.2. Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is the most widely used parametric estimation
method, largely because of its efficiency. Suppose that a set of random samples
X ={X, X,,..., X,} isto be drawn independently according to a discrete or continuous dis-

tribution with the p.f. or the p.d.f. p(x|®), where the parameter vector @ belongsto some
parameter space Q . Given an observed vector x =(x,---,X,), the likelihood of the set of
sample data vectors x with respect to @ is defined as the joint p.f. or joint p.d.f. p,(x |®);
p,(x|®) isaso referred to asthe likelihood function.
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MLE assumes the parameters of p.d.f.’s are fixed but unknown and aims to find the set
of parameters that maximizes the likelihood of generating the observed data. For example,
the p.d.f. p,(x|®) is assumed to be a Gaussian distribution N(u,X), the components of
® will then include exactly the components of mean-vector p and covariance matrix X .
Since X, X,,..., X, are independent random variables, the likelihood can be rewritten as
follows:

p,(x | ®) = H p(x, | ®) (3.124)

The likelihood p,(x |®) can be viewed as the probability of generating the sample

data set x based on parameter set @ . The maximum likelihood estimator of @ isdenoted as
@, . that maximizesthelikelihood p,(x |®).Thatis,

Dy e = agmax p, (x| ®) (3.125)

This estimation method is called the maximum likelihood estimation method and is of-
ten abbreviated as MLE. Since the logarithm function is a monotonically increasing func-

tion, the parameter set ®,, . that maximizes the log-likelihood should also maximize the
likelihood. If p,(x|®)is differentiable function of ®, ®,, . can be attained by taking the
partial derivative with respect to @ and setting it to zero. Specificaly, let ® be a k-
component parameter vector ® =(®,,®,,...,d,)" and 0, be the gradient operator:

0

0= | (3.126)

90,

The log-likelihood becomes:
|(®) =log p,(x |®) =) log p(x, | D) (3.127)
k=1

and its partial derivativeis:

n

Oy [(®F DD, log p(x, |®) (3.128)

k=1

Thus, the maximum likelihood estimate of ® can be obtained by solving the follow-
ing set of k equations:

O, |(®E O (3.129)
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Example 1

Let'stake alook at the maximum likelihood estimator of a univariate Gaussian p.d.f., given
as the following equation:

—(X_“)Z} (3.130)

1
p(x|®) = \/Ew_exp{ 257

where 4 and ¢ are the mean and the variance respectively. The parameter vector ® de-
notes (u,0?) . Thelog-likelihood is:

log p,(x ) =" log p(, |®)

_< 1 _(x - py?
Sl 5

. =N

= —Elog(ZITOz) - 20_2

and the partial derivative of the above expressionis:

n
k=1

0 S
alogpn(xlm)—Zo_z(xk H)

3 ( y (3.132)
n ~&-u
[ X|®)=- +
60_2 Og pn( | ) 20_2 ; 20_4
We set the two partial differential derivativesto zero,
o1
Z_z(xk -u)=0
k=10
) (3.133)

n (% -
-+ —:0
o? ; o’

The maximum likelihood estimates for # and ¢ are obtained by solving the above equa-
tions:

1 n
Hye :HZXK =E(X)
1 o (3.134)
ahz/ILE :HZ(Xk _.urvn_E)2 = E[(X _/’IMLE)Z]
k=1

Equation (3.134) indicates that the maximum likelihood estimation for mean and vari-
ance isjust the sample mean and variance.
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Example 2

For the multivariate Gaussian p.d.f. p(x)

p(x|®) = 1| " exp[—%(x ) —p)} (3.135)

(zﬂ)dlz Z
The maximum likelihood estimates of m and Z can be obtained by asimilar procedure.
- 13
Bue :EZXK
1k:1 (3.136)
e :HZ(XK _ﬁMLE)(Xk _ﬁMLE)t :E[(Xk _ﬁMLE)(Xk _l]MLE)t:|
k=1

Once again, the maximum likelihood estimation for mean vector and co-variance matrix is
the sample mean vector and sample covariance matrix.

In some situations, a maximum likelihood estimation of ® may not exist, or the
maximum likelihood estimator may not be uniquely defined, i.e., there may be more than
one MLE of @ for a specific set of sample values. Fortunately, according to Fisher’'s theo-
rem, for most practical problems with a well-behaved family of distributions, the MLE ex-
istsand isuniquely defined [4, 25, 26].

In fact, the maximum likelihood estimator can be proven to be sound under certain
conditions. As mentioned before, the estimator (X) is a function of the vector of random

variables X that represent the sample data. €(X) itself is aso a random variable, with a

distribution determined by joint distributions of X . Let ® be the parameter vector of true
distribution p(x|®) from which the samples are drawn. If the following three conditions

hold:
1. The sample x isadrawn from the assumed family of distribution,
2. Thefamily of distributionsis well behaved,
3. Thesample x islarge enough,

then maximum likelihood estimator, ®,, . , has a Gaussian distribution with amean® and
avariance of the form 1/nB?[26], where n is the size of sample and B, isthe Fisher infor-

mation, which is determined solely by ® and x . An estimator is said to be consistent, iff
the estimate will converge to the true distribution when there is infinite number of training
samples.

lim®,, . =® (3.137)

n->w
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@, is aconsistent estimator based on the anaysis above. In addition, it can be
shown that no consistent estimator has a lower variance than ®,, . . In other words, no es-

timator provides a closer estimate of the true parameters than the maximum likelihood esti-
mator.

3.2.3. Bayesian Estimation and M AP Estimation

Bayesian estimation has a different philosophy than maximum likelihood estimation. While
MLE assumes that the parameter @ s fixed but unknown, Bayesian estimation assumes
that the parameter @ itself isarandom variable with aprior distribution p(®) . Suppose we
observe a sequence of random samples X ={X,,X,,...,X,} , which are i.i.d. with a p.df.

p(x|®) . According to Bayes' rule, we have the posterior distribution of @ as:

p(X |P) p(P)
p(x)

In Eqg. (3.138), we dropped the denominator p(x) here because it is independent of the
parameter @ . The distribution in Eq. (3.138) is called the posterior distribution of ® be-
cause it is the distribution of @ after we observed the values of random variables
X Xyyeoiy X

p(P[x) = Op(x{P )p®) (3.138)

3.2.3.1. Prior and Posterior Distributions

For mathematical tractability, conjugate priors are often used in Bayesian estimation. Sup-
pose a random sample is taken of a known distribution with p.d.f. p(x|®). A conjugate

prior for the random variable (or vector) is defined as the prior distribution for the parame-
ters of the probability density function of the random variable (or vector), such that the
class-conditional p.d.f. p(x|®), the posterior distribution p(® |x), and the prior distribu-
tion p(®) belong to the same distribution family. For example, it is well known that the
conjugate prior for the mean of a Gaussian p.d.f. is also a Gaussian p.d.f. [4]. Now, let's
derive such aposterior distribution p(® |x) from the widely used Gaussian conjugate prior.

Example

Suppose X, X,,..., X, are drawn from a Gaussian distribution for which the mean @ isa

random variable and the variance o is known. The likelihood function p(x|®) can be
written as;

3 For simplicity, we assume the parameter @ is a scalar instead of a vector here. However, the extension to a pa-
rameter vector @ can be derived according to a similar procedure.
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__ 1 L (XY ool Ly XY
IO(XICD)—(Zﬂ)TaneXp{ 2;( o j}mexl{ 2.21:( o j

To further simply Eq. (3.139), we could use Eq. (3.140)

(3.139)

(6 =) =n(®-K ) +Y (x %) (3140)

where X, :%Zn:x = the sample mean of x ={x,,%,,..., X} .
i=1

Let'srewrite p(x|®) inEg. (3.139) into Eq. (3.141):

202 20% -

p(xlda)mexp{ - fn)z}exp{— ! Z(x— fn)z} (3.141)

Now supposed the prior distribution of @ is also a Gaussian distribution with mean
4 and variance v?, i.e., the prior distribution p(®) is given asfollows:

1 1 o-uY 1 o-uY
P(P) =——;—exp ——(—”) Oexp|- —( L ] (3.142)
(2m)"" v A" 2l v
By combining Egs. (3.141) and (3.142) while dropping the second term in Eq. (3.141)
we could attain the posterior p.d.f. p(® |x) in the following equation:

p(®]x) Dexp{ %{%@— X, )+ V—lz - u)z}} (3.143)

Now if we define p and 7 asfollows:

ol u+nix,

- . _ (3.144)

o’ +nv

2,,2

2.0V (3.145)

o’ +n?

We can rewrite Eq. (3.143) can be rewritten as:
p(®[x) Dexpl = iéb - o)+ (%~ p)f (3.146)
2| 1° o?+mw?

Since the second term in Eq. (3.146) does not depend on @ , it can be absorbed in the
constant factor. Finally, we have the posterior p.d.f. in the following form:
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p(® | x) =%Texp{2_—rlz(¢ —p)z} (3.147)

Equation (3.147) shows that the posterior p.d.f. p(®|x) is a Gaussian distribution

with mean p and variance 72 as defined in Egs. (3.144) and (3.145). The Gaussian prior
distribution defined in Eq. (3.142) is a conjurgate prior.

3.2.3.2 General Bayesian Estimation

The foremost requirement of a good estimator & is that it can yield an estimate of @
(8(X)) which is close to the rea value @ . In other words, a good estimator is one for

which it is highly probable that the error 8(X) - ® iscloseto 0. In general, we can define a
loss function® R(®, ®) . It measures the loss or cost associated with the fact that the true

value of the parameter is ® while the estimate is ® . When only the prior distribution
p(®P) is available and no sample data has been observed, if we choose one particular esti-

mate @ , the expected lossis:
E[R@®,®)] = [R(®, D) p(P)d & (3.148)

The fact that we could derive posterior distribution from the likelihood function and
the prior distribution [as shown in the derivation of Eq. (3.147)] is very important here be-
cause it allows us to compute the expected posterior loss after sample vector x is observed.

The expected posterior loss associated with estimate @ is:
E[R@®,®) [x] = [R(®, ®)p(®]x)d & (3.149)

The Bayesian estimator of @ is defined as the estimator that attains minimum Bayes
risk, that is, minimizes the expected posterior loss function (3.149). Formally, the Bayesian
estimator is chosen according to:

Bpayes (X) = argmin E[R(P, 6(x)) | x] (3.150)

The Bayesian estimator of ® isthe estimator &, .. for which Eq. (3.150) is satisfied

for every possible value of x of random vector X . Therefore, the form of the Bayesian es-

timator 6, should depend only on the loss function and the prior distribution, but not the

sample value x.

4 The Bayesian estimation and loss function are based on Bayes' decision theory, which will be described in detail
in Chapter 4.
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One of the most common loss functions used in statistical estimation is the mean
squared error function [20]. The mean squared error function for Bayesian estimation should
have the following form:

R(®,6(x)) = (P -6(x))* (3.151)

In order to find the Bayesian estimator, we are seeking &,
terior loss function:

to minimize the expected pos-

ayes

E[R(®,0(x) ] =E[(®-6(x))° |x ] =E(® |x) 26()E(D|X) -#x)*  (3.152)

The minimum value of this function can be obtained by taking the partial derivative of
Eqg. (3.152) with respect to 8(x) . Since the above equation is simply a quadratic function of

6(x) , it can be shown that the minimum loss can be achieved when &, is chosen based
on the following equation:

eBay&s (X) = E(CD | X) (3153)

Equation (3.153) trand atesinto the fact that the Bayesian estimate of the parameter ®
for mean squared error function is equal to the mean of the posterior distribution of @ . In
the following section, we discuss another popular loss function (MAP estimation) that also
generates the same estimate for certain distribution functions.

3.2.3.3. MAP Estimation

One intuitive interpretation of Eq. (3.138) is that a prior p.d.f. p(®) represents the relative
likelihood before the values of X, X,,..., X, have been observed; while the posterior p.d.f.
p(®|x) represents the relative likelihood after the values of X, X,,..., X,, have been ob-

served. Therefore, choosing an estimate ® that maximizes posterior probability is consis-
tent with out intuition. This estimator is in fact the maximum posterior probability (MAP)
estimator and is the most popular Bayesian estimator.

The loss function associated with the MAP estimator is the so-called uniform loss
function [20]:

0, if |6(x)-Pl<A

. where A >0 (3.154)
Lif |6X)-Dd|>A

R(®,0(x)) = {

Now let’s see how this uniform loss function resultsin MAP estimation. Based on loss
function defined above, the expected posterior loss functioniis:

E(R(®,6(X)) |X) =P(|6(x) = ®|>A]x)

e 3.155
=1-P(160) ~®|<A1x) =1-[""" p(PIx) (3159)
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The quantity in Eq. (3.155) is minimized by maximizing the shaded area under
p(® |x) over theinterval [6(x)~A,6(x) +4)] in Figure 3.16. If p(®|x) isasmooth curve
and A issmall enough, the shaded area can be computed roughly as:

(x)+a
L7 (@150 02 pe 1) oo (3.156)

x)-A

Thus, the shaded area can be approximately maximized by choosing 6(x) to be the maxi-

mum point of p(® |x) . This concludes our proof the using the error function in Eq. (3.154)

indeed will generate MAP estimator.
1-E(R(®,6(x)) |x)

g

P(®[x)

0(x) - A 600 0(x) +A

Figure 3.16 Illustration of finding the minimum expected posterior loss function for MAP es-
timation [20].

MAP estimation is to find the parameter estimate ®,,,,0r estimator 8,,,,(x) that
maximizes the posterior probability,

Pyae = Ouae (X) =agmax p(®|x) =argmax p(X| D p(D (3.157)

®,,» Can also be specified in the logarithm form as follows:

®,,» =argmax log p(x | ®) +log p( D) (3.158)
(o]

@, Can be attained by solving the following partial differential equation:

dlog p(x | P) + dlog p(®P) -0

(3.159)
0o 0o
Thus the MAP equation for finding ®,,,, can be established.
dlog p(x| ®) _ —0log p(®P)
T |‘D:‘DMAP - aq) |¢:%AP (3160)

There are interesting rel ationships between MAP estimation and MLE estimation. The
prior distribution is viewed as the knowledge of the statistics of the parameters of interest
before any sample data is observed. For the case of MLE, the parameter is assumed to be
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fixed but unknown. That is, there is no preference (knowledge) of what the values of pa-
rameters should be. The prior distribution p(®) can only be set to constant for the entire

parameter space, and this type of prior information is often referred to as non-informative
prior or uniform prior. By substituting p(®) with a uniform distribution in Eq. (3.157),
MAP estimation is identical to MLE. In this case, the parameter estimation is solely deter-
mined by the observed data. A sufficient amount of training data is often a requirement for
MLE. On the other hand, when the size of the training data is limited, the use of the prior
density becomes valuable. If some prior knowledge of the distribution of the parameters can
be obtained, the MAP estimation provides a way of incorporating prior information in the
parameter learning process.

Example

Now, let's formulate MAP estimation for Gaussian densities. As described in Section
3.2.3.1, the conjugate prior distribution for a Gaussian density is also a Gaussian distribu-
tion. Similarly, we assumed random variables X, X,,..., X, drawn from a Gaussian distri-
bution for which the mean @ is unknown and the variance o? is known, while the conju-
gate prior distribution of @ is a Gaussian distribution with mean g and variance v?. It is

shown in Section 3.2.3.1 that the posterior p.d.f. can be formulated as in Eq. (3.147). The
MAP estimation for @ can be solved by taking the derivative of Eq. (3.147) with respect to
(O2

__otutwx,
Dy =0 = (3.161)
where nisthe total number of training samplesand X, the sample mean.

The MAP estimate of the mean @ is a weighted average of the sample mean X, and

the prior mean. When nis zero (when there is no training data at all), the MAP estimate is
simply the prior mean u . On the other hand, when n islarge (n — o), the MAP estimate

will converge to the maximum likelihood estimate. This phenomenon is consistent with our
intuition and is often referred to as asymptotic equivalence or asymptotic convergence.
Therefore, in practice, the difference between MAP estimation and MLE is often insignifi-

cant when a large amount of training data is available. When the prior variance v? is very
large (e.g., v*> >>0?/n), the MAP estimate will converge to the ML estimate because a
very large v? trandated into a non-informative prior.

It isimportant to note that the requirement of learning prior distribution for MAP es-
timation is critical. In some cases, the prior distribution is very difficult to estimate and MLE
is dtill an attractive estimation method. As mentioned before, the MAP estimation frame-
work is particularly useful for dealing with sparse data, such as parameter adaptation. For
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example, in speaker adaptation, the speaker-independent (or multiple speakers) database can
be used to first estimate the prior distribution [9]. The model parameters are adapted to a
target speaker through a MAP framework by using limited speaker-specific training data as
discussed in Chapter 9.

3.3. SIGNIFICANCE TESTING

Sgnificance testing is one of the most important theories and methods of statistical infer-
ence. A problem of statistical inference, or, more simply, a statistics problem, is one in
which data that have been generated in accordance with some unknown probability distribu-
tion must be analyzed, and some type of inference about the unknown distribution must be
made. Hundreds of test procedures have developed in statistics for various kinds of hypothe-
sestesting. We focus only on tests that are used in spoken language systems.

The selection of appropriate models for the data or systems is essential for spoken lan-
guage systems. When the distribution of certain sample data is unknown, it is usually appro-
priate to make some assumptions about the distribution of the data with a distribution func-
tion whose properties are well known. For example, people often use Gaussian distributions
to model the distribution of background noise in spoken language systems. One important
issue is how good our assumptions are, and what the appropriate values of the parameters
for the distributions are, even when we can use the methods in Section 3.2 to estimate
parameters from sample data. Statistical tests are often applied to determine if the
distribution with specific parameters is appropriate to model the sample data. In this section,
we describe the most popular testing method for the goodness of distribution fitting — the

x? goodness-of-fit test.

Another important type of statistical testsis designed to evaluate the excellence of two
different methods or algorithms for the same tasks when there is uncertainty regarding the
results. To assure that the two systems are evaluated on the same or similar conditions, ex-
perimenters often carefully choose similar or even the exactly same data sets for testing.
This is why we refer to this type of statistical test as a paired observations test. In both
speech recognition and speech synthesis, the paired observations test is a very important tool
for interpreting the comparison results.

3.3.1. Level of Significance

We now consider statistical problems involving a parameter @ whose vaue is unknown but
must lie in a certain parameter space Q . In statistical tests, we let H, denote the hypothesis
that @[@Q , and let H, denote the hypothesisthat @[Q . The subsets Q, and Q, aredis-
jointand Q, @ =Q , so exactly one of the hypotheses H, and H, must be true. We
must now decide whether to accept H, or H, by observing a random sample X,,---, X,
drawn from a distribution involving the unknown parameter ¢. A problem like thisis called
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hypotheses testing. A procedure for deciding whether to accept H, or H, is called a test
procedure or smply atest. The hypothesis H, is often referred to as the null hypothesis and
the hypothesis H, as the alternative hypothesis. Since there are only two possible decisions,
accepting H,, isequivalent to rejecting H, and rejecting H, is equivalent to accepting H, .
Therefore, in testing hypotheses, we often use the terms accepting or rejecting the null hy-
pothesis H, asthe only decision choices.

Usually we are presented with arandom sample X =(X,,---, X)) to help usin making
the test decision. Let S denote the sample space of n-dimensional random vector X. The test-
ing procedure is equivalent to partitioning the sample space S into two subsets. One subset
specifies the values of X for which one will accept H, and the other subset specifies the
values of X for which one will reject H,. The second subset is called the critical region and

is often denoted as C.
Since there is uncertainty associated with the test decision, for each value of @@

we are interested in the probability p(¢) that the testing procedure rejects H,, . The function
p(@) iscaled the power function of the test and can be specified asfollows:

pl@)=P(XUC|9 (3.162)

For @@ ,, the decision to reject H, is incorrect. Therefore, if @Q ,, p(¢) isthe
probability that the statistician will make an incorrect decision (false rejection). In statistical
tests, an upper bound a, (0<a, <1) is specified, and we only consider tests for which
p(@) <a, for every value of @[Q ,. The upper bound a, is called the level of signifi-
cance. Thesmaller a, is, thelesslikely it isthat the test procedure will reject H,. Since a,
specifies the upper bound for false rejection, once a hypothesis is rejected by the test proce-
dure, we can be (1-a,) confident the decision is correct. In most applications, «, is set to

be 0.05 and the test is said to be carried out at the 0.05 level of significance or 0.95 level of
confidence.

We definethe size a of agiven test as the maximum probability, among all the values
of @ which satisfy the null hypothesis, of making an incorrect decision.

a =mex (%) (3.163)

Once we obtain the value of a , the test procedure is straightforward. First, the statisti-
cian specifies a certain level of significance a, in a given problem of testing hypotheses,
then he or she rgjects the null hypothesisif thesize a issuchthata <a, .

Thesize a of agiven test is also called the tail area or the p-value corresponding to
the observed value of data sample X because it corresponds to tail area of the distribution.
The hypothesis will be rejected if the level of significance a, is such that a, >a and

should be accepted for any value of a, <a . Alternatively, we can say the observed value of
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X isjust significant at the level of significance a without using the level of significance
a, . Therefore, if we had found that the observed value of one data sample X was just sig-
nificant at the level of 0.0001, while the other observed value of data sample Y was just sig-
nificant at the level of 0.001, then we can conclude the sample X provides much stronger
evidence against H,, . In statistics, an observed value of one data sample X is generally said
to be datistically significant if the corresponding tail area is smaller than the traditional
value 0.05. For case requiring more significance (confidence), 0.01 can be used.

A satigtically significant observed data sample X that provides strong evidence
against H, does not necessary provide strong evidence that the actual value of @ is signifi-
cantly far away from parameter set Q, . This situation can arise, particularly when the size
of random data sample is large, because a test with larger sample size will in general reject
hypotheses with more confidence, unless the hypothesisisindeed the true one.

3.3.2. Normal Test (Z-Test)

Suppose we need to find whether a coin is fair or not. Let p be the probability of the head.
The hypotheses to be tested are as follows:

Ho: p=%

Ho - p#)

We assume that a random sample size n istaken, and let random variable M denote the
number of times we observe heads as the result. The random variable M has a binomial dis-
tribution B(n, ;) . Because of the shape of binomia distribution, M can lie on either side of

the mean. Thisis why it is called a typical two-tailed test. The tail area or p-value for the
observed value k can be computed as:

2P(k<M <n) fork>n/2
p=<2P(0<M <k) fork<n/2 (3.164)
10 fork =n/2

The p-value in Eq. (3.164) can be computed directly using the binomial distribution.
Thetest procedure will reject H, when p islessthan the significance level a .

In many situations, the p-value for the distribution of data sample X is difficult to ob-
tain due to the complexity of the distribution. Fortunately, if some statistic Z of the data
sample X has some well-known distribution, the test can then be done in the Z domain in-
stead. If nislarge enough (n>50), a normal test (or Z-test) can be used to approximate a
binomia probability. Under H,, the mean and variance for M are E(M)=n/2 and

Var (M) =n/4. The new random variable Z is defined as,

L _IM-n2|-12

i (3.165)
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which can be approximated as standard Gaussian distribution N(0,1) under H,. The p-
value can now be computed as p=2P(Z = z) where zisthe realized value of Z after M is
observed. Thus, H, isrejected if p<a,, where a, isthelevel of significance.

3.3.3. x? Goodness-of-Fit Test

The normal test (Z-test) can be extended to test the hypothesis that a given set of data came
from a certain distribution with all parameters specified. First let's look at the case of dis-
crete distribution fitting.

Suppose that a large population consists of items of k different typesand let p. be the

probability that a random selected item belongs to type i. Now, let q,,...,q, beaset of spe-
cific numbers satisfying the probabilistic constraint (g =0fori=1,...,k and Zik:lqi =1).
Finally, suppose that the following hypotheses are to be tested:

H,: p=q fori=1...,k

H,: p#q foratleast onevaue of i

Assume that a random sample of size n is to be taken from the given population. For
i=1...,k, let N, denote the number of observations in the random sample which are of
type i. Here, N,,...,N, are nonnegative numbers and Ziklei =n. Random variables

N,,...,N, have a multinomial distribution. Since the p-value for the multinomial distribu-
tion is hard to obtain, instead we use another statistic about N,,...,N, . When H, istrue, the
expected number of observations of typei is ng . In other words, the difference between the
actual number of observations N, and the expected number ng should be small when H,,
is true. It seems reasonable to base the test on the differences N, —ng and to reject H,
when the differences are large. It can be proved [14] that the following random variable A

k _ 2
A= ZM (3.166)
=
convergesto the x? distribution with k -1 degrees of freedom asthe samplesize n — o .
A x? test of goodness-of-fit can be carried out in the following way. Once alevel of

significance a, is specified, we can use the following p-value function to find critical point

c>:

P(A >c¢) :1_':;(2 (x =¢) =a, (3.167)

®Since x? pdf isamonotonic function, the test is a one-tail test. Thus, we only need to calculate one tail area.
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where FXZ(X) is the distribution function for x* distribution. The test procedure simply

rejects H, when the realized value A issuch that A > c. Empirical results show that the x?
distribution will be a good approximation to the actual distribution of A aslong as the value
of each expectation ng, is not too small (=5). The approximation should still be satisfac-
toryif ng, 21.5fori=1,...,k.

For continuous distributions, a modified y* goodness-of-fit test procedure can be ap-
plied. Suppose that we would like to hypothesize a null hypothesis H,, in which continuous
random sample data X,,..., X, are drawn from a certain continuous distribution with all
parameters specified or estimated. Also, suppose the observed values of random sample
X.,..., % are bounded within interval Q . First, we divide the range of the hypothesized
distribution into m subintervals within interval Q such that the expected number of values,
say E,ineachinterval isat least 5. For i =1,...,k, welet N, denote the number of obser-

vations in the i"™ subintervals. As in Eq. (3.166), one can prove that the following random
variable A

m _ 2
A= ZM (3.168)
R =
converges to the x* distribution with m—k —1 degrees of freedom as the sample size
n - o, wherek isthe number of parameters that must be estimated from the sample datain
order to calculate the expected number of values, E, . Once the x? distribution is estab-

lished, the same procedure can be used to find the critical ¢ in Eq. (3.167) to make test deci-
sion.

Example
Suppose we are given a random variable X of sample size 100 points and we want to deter-
mine whether we can reject the following hypothesis:

H,: X ~N(0,1) (3.169)

To perform x? goodness-of-fit test, we first divide the range of X into 10 subintervals.

The corresponding probability falling in each subinterval, the expected number of points
falling in each subinterval and the actual number of points falling in each subintervals [10]
areillustrated in Table 3.1.

Table 3.1 The probability faling in each subinterval of an N(0,1), and 100 sample points, the
expected number of points falling in each subinterval, and the actual number of points falling
in each subintervals[10].

Subinterval 1, P(XOI) E =100P(X [I1;) N,

[-00, -1.6] 0.0548 5.48 2
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[-1.6,-1.2] 0.0603 603 9
[-1.2,-0.8] 0.0968 968 6
[-0.8, -0.4] 0.1327 1327 11
[-0.4,0.0] 0.1554 1554 19
[0.0, 0.4] 0.1554 1554 25
[0.4, 0.8] 0.1327 1327 17
[0.8, 1.2] 0.0968 968 2
[1.2, 1.6] 0.0603 603 6
[-1.6, ©] 0.0548 548 3

Thevaluefor A can then be calculated as follows:

m 2
A= ZM =18.286
i=1 Ei

Since A can be approximated as a x? distribution with m-k -1=10-0 -1 =9 de-
grees of freedom, the critical point ¢ at the 0.05 level of significance is calculated® to be
16.919 according to Eqg. (3.167). Thus, we should reject the hypothesis H,, because the cal-
culated A isgreater than the critical point c.

The x* goodness-of-fit test at the 0.05 significance level isin general used to deter-
mine when a hypothesized distribution is not an adequate distribution to use. To accept the
distribution as a good fit, one needs to make sure the hypothesized distribution cannot be
rejected at the 0.4 to 0.5 level-of-significance. The alternative is to use the y? goodness-of-

fit test for a number of potential distributions and select the one with smallest calculated x2.

When all the parameters are specified (instead of estimated), the Kolmogorov-
Smirnov test [5] can also be used for the goodness-of -fit test. The Kolmogorov-Smirnov test
in genera isamore powerful test procedure when the sample sizeisrelatively small.

3.3.4. M atched-Pairs Test

In this section, we discuss experiments in which two different methods (or systems) are to
be compared to learn which one is better. To assure the two methods are evaluated under
similar conditions, two closely resemble data samples or idedly the same data sample
should be used to evaluate both methods. This type of hypotheses test is called matched-
paired test [5].

® In general, we use cumulative distribution function table to find the point with specific desired cumulative prob-
ability for complicated digtributions, like x? distribution.
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3.34.1. The Sign Test

For i =1,...,n, let p denote the probability that method A is better than method B when
testing on the i" paired data sample. We shall assume that the probability p, has the same
value p for each of the n pairs. Suppose we wish to test the null hypothesis that method A is
no better than method B. That is, the hypotheses to be tested have the following form:

Ho ' p<%

H - p>)

Suppose that, for each pair of data samples, either one method or the other will appear
to be better, and the two methods cannot tie. Under these assumptions, the n pairs represent
n Bernoulli trials, for each of which there is probability p that method A yields better per-
formance. Thus the number of pairs M in which method A yields better performance will
have a binomia distribution B(n, p) . For the smple sign test where one needs to decide

which method is better, p will be set to 1/2. Hence areasonable procedure isto reject H, if

M >c, where cisacritical point. This procedure is called a signed test. The critical point
can be found according to.

P(M >c) =1-F,(x =c) =a, (3.170)

where Fg(X) isthe distribution for binomial distribution. Thus, for observed value M >c,
we will reject H,.

3.34.2 Magnitude-Difference Test

The only information that the sign test utilizes from each pair of data samples, is the sign of
the difference between two performances. To do a sign test, one does not need to obtain a
numeric measurement of the magnitude of the difference between the two performances.
However, if the measurement of magnitude of the difference for each pair is available, atest
procedure based on the relative magnitudes of the differences can be used [11].

We assume now that the performance of each method can be measured for any data
samples. For i =1,...,n, let A denote the performance of the method A on the i" pair of

data samples and B denote the performance of the method B on the i" pair of data sample.
Moreover, we shell let D, = A —B. Since D,,...,D, are generated on n different pairs of
data samples, they should be independent random variables. We also assume that D,,...,D,

have the same distribution. Suppose now we are interested in testing the null hypothesis that
method A and method B have on the average the same performance on the n pairs of data
samples.

Let u, bethemeanof D,.The MLE estimate of 1, is:

n D
Uy = ZFI (3.171)
i=1
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Thetest hypotheses are:

Hy @ Uy =0

H : u, #0

The MLE estimate of the variance of D, is

1 n
logs =HZ(Di ~tp)? (3.172)
2,

We define anew random variable Z as follows:

_ M
Z= /T (3.173)

If nis large enough (> 50), Z is proved to have a standard Gaussian distribution
N(0,1) . The normal test procedure described in Section 3.3.2 can be used to test H,. This
type of matched-paired tests usually depends on having enough pairs of data samples for the
assumption that Z can be approximated with a Gaussian distribution. It also requires enough
data samples to estimate the mean and variance of the D, .

3.4. INFORMATION THEORY

Transmission of information is a general definition of what we call communication. Claude
Shannon'’s classic paper of 1948 gave birth to a new field in information theory that has be-
come the cornerstone for coding and digital communication. In the paper titled A Mathe-
matical Theory of Communication, he wrote:

The fundamental problem of communication is that of re-
producing at one point either exactly or approximately a
message selected at another point.

Information theory is a mathematical framework of approaching a large class of problems
related to encoding, transmission, and decoding information in a systematic and disciplined
way. Since speech is a form of communication, information theory has served as the under-
lying mathematical foundation for spoken language processing.

3.4.1. Entropy

Three interpretations can be used to describe the quantity of information: (1) the amount of
uncertainty before seeing an event, (2) the amount of surprise when seeing an event, and (3)
the amount of information after seeing an event. Although these three interpretations seem
dlightly different, they are virtually the same under the framework of information theory.
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According to information theory, the information derivable from outcome x; depends
on its probability. If the probability P(x) issmall, we can derive alarge degree of informa-

tion, because the outcome that it has occurred is very rare. On the other hand, if the prob-
ability is large, the information derived will be small, because the outcome is well expected.
Thus, the amount of information is defined as follows:

1
P(x)

The reason to use a logarithm can be interpreted as follows. The information for two
independent events to occur (where the joint probability is the multiplication of both indi-
vidual probabilities) can be simply carried out by the addition of the individual information
of each event. When the logarithm base is 2, the unit of information is called a bit. This
means that one bit of information is required to specify the outcome. In this probabilistic
framework, the amount of information represents uncertainty. Suppose X is a discrete ran-
dom variable taking value x; (referred to as a symbol) from afinite or countabl e infinite sam-
ple space S={x,,X,,...,%,...} (referred to as an alphabet). The symbol x; is produced from

an information source with alphabet S, according to the probability distribution of the
random variable X. One of the most important properties of an information source is the
entropy H(S) of the random variable X, defined as the average amount of information (ex-
pected information):

I(x)=1log (3.174)

=E[-logP(X)| (3.175)

H(X) = E[1(X)] =X P(x)1(x) =) P(x)log
S S P()ﬂ)

This entropy H(X) is the amount of information required to specify what kind of
symbol has occurred on average. It is also the averaged uncertainty for the symbol. Suppose
that the sample space S has an alphabet size |S| = N . The entropy H(X) attains the maxi-

mum value when the p.f. has a uniform distribution, i.e.:
P(X)=P(x) == fordli and] (3.176)

Equation (3.176) can be interpreted to mean that uncertainty reaches its maximum
level when no outcome is more probable than any other. It can be proved that the entropy
H (X) is nonnegative and becomes zero only if the probability function is a deterministic

one, i.e,
H (X) = 0 with equality i.f.f. P(x) =1for somex OS (3.277)

There is another very interesting property for the entropy. If we replace the p.f. of
generating symbol x; in Eq. (3.175) with any other arbitrary p.f., the new value is no smaller
than the original entropy. That is,



Information Theory 123

H(X) < E[-1ogQ(X)] = -)_P(x)logQ(x) (3.178)

Equation (3.178) has a very important meaning. It shows that we are more uncertain
about the data if we misestimate the distribution governing the data source. The equality for
Eq. (3.178) occursif and only if P(x)=Q(x) 1<i <N . Equation (3.178), often referred to

as Jensen's inequality, is the basis for the proof of EM algorithm in Chapter 4. Similarly,
Jensen’sinegality can be extended to continuous pdf:

—fo(x)log f (x)dx < —ng(x)log f, (x)dx (3.179)

with equality occurring if and only if f,(x) =g, (x) OXx.
The proof of Eg. (3.178) follows from the fact log(x) < x-1, x, so the following
quantity must have an non-positive value.

S Px)Iog 3 ST (x){ e 1}:0 (3180

Based on this property, the negation of the quantity in Eq. (3.180) can be used for the
measurement of the distance of two probability distributions. Specifically, the Kullback-
Leibler (KL) distance (relative entropy, discrimination, or divergence) is defined as:

P(X) P(X)
KL(P E|l 3.181
(PIQ)= {OgQ(X)} ZS: P(X )OQQ( ) (3.181)

As discussed in Chapter 11, the branching factor of a grammar or language is an im-
portant measure of degree of difficulty of a particular task in spoken language systems. This
relates to the size of the word list from which a speech recognizer or a natural language
processor needs to disambiguate in a given context. According to the entropy definition
above, this branching factor estimate (or average choices for an aphabet) is defined as fol-
lows:

PP(X) = 2" (3.182)

PP(X) is caled the perplexity of source X, since it describes how confusing the
grammar (or language) is. The value of perplexity is equivalent to the size of an imaginary
equivaent list, whose words are equally probable. The bigger the perplexity, the higher
branching factor. To find out the perplexity of English, Shannon devised an ingenious way
[22] to estimate the entropy and perplexity of English words and letters. His method is simi-
lar to a guessing game where a human subject guesses sequentially the words of a text hid-
den from him, using the relative frequencies of her/his guesses as the estimates of the prob-
ability distribution underlying the source of the text. Shannon’s perplexity estimate of Eng-
lish comes out to be about 2.39 for English letters and 130 for English words. Chapter 11
has a detailed description on the use of perplexity for language modeling.
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34.2. Conditional Entropy

Now let us consider transmission of symbols through an information channel. Suppose the
input alphabet is X =(x,%,,..., %) , the output alphabet is Y =(y,,V,,...,¥,), and the in-
formation channel is defined by the channel matrix M;; = P(y; | X) , where P(y, | x) isthe

conditional probability of receiving output symbol y; when input symbol x; is sent. Figure
3.17 shows an example of an information channel.

<

X
P(X) > PYIX) >

Source Channel

Figure 3.17 Example of information channel. The source is described by source p.f. P(X) and
the channel is characterized by the conditiona p.f. P(Y|X).

Before transmission, the average amount of information, or the uncertainty of the in-
put aphabet X, isthe prior entropy H(X).
1
H(X)=)» P(X=x)log———— (3.183)
; P(X =x)

where P(x) is the prior probability. After transmission, suppose y; is received; then the
average amount of information, or the uncertainty of the input alphabet A, is reduced to the
following posterior entropy.

H(X]Y =y)) ==X P(X = |Y =y,)logP(X =X |Y =y,) (3.184)

where the P(x |y;) are the posterior probabilities. Averaging the posterior entropy
H (X |y;) over al output symbolsy; leads to the following equation:

H(XY) =2P(Y =yPHXTY =y))

=2 P(Y =) X P(X =X |Y =Y)IogP(X =X |Y =y)  (3185)

=-> > P(X =x,Y =y))logP(X =x |Y =y;)

Thisxcor:ditional entropy, defined in Eq. (3.185), is the average amount of information

or the uncertainty of the input alphabet X given the outcome of the output event Y. Based on
the definition of conditional entropy, we derive the following equation:
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H(X,Y) =2 2 P(X =X.Y =y)logP(X =x,Y =)
=-2. 2 P(X =x,Y =y){logP(X =x) +logP(Y =y, | X =x} (3.186)
=H (X)+H (Y| X)

Equation (3.186) has an intuitive meaning — the uncertainty about two random vari-
ables equals the sum of uncertainty about the first variable and the conditional entropy for
the second variable given the first variable is known. Equations (3.185) and (3.186) can be
generalized to random vectors X and Y where each contains several random variables.

It can be proved that the chain rule [Eq. (3.16)] appliesto entropy.

H (le"'1 Xn) =H (Xn | Xl!"'! Xn—l) *e- +H(X2 | Xl) +H (Xl) (3-187)
Finaly, the following inequality can also be proved:
H(X|Y,Z)<H(X]Y) (3.188)

with equality i.f.f. X and Z being independent when conditioned on Y. Equation (3.188) ba-
sically confirms the intuitive belief that uncertainty decreases when more information is
known.

3.4.3. The Sour ce Coding Theorem

Information theory is the foundation for data compressing. In this section we describe Shan-
non's source coding theorem, also known as the first coding theorem. In source coding, we
are interested in lossless compression, which means the compressed information (or sym-
bols) can be recovered (decoded) perfectly. The entropy serves as the upper bound for a
source |ossless compression.

Consider an information source with alphabet S={0,1...,N -1} . The goal of data

compression is to encode the output symbols into a string of binary symbols. An interesting
question arises: What is the minimum number of bits required, on the average, to encode the
output symbols of the information source?

Let’s assume we have a source that can emit four symbols {0,1,2,3} with equal prob-
ability P(0) =P(1) =P(2) =P(3) =1/4. Itsentropy is 2 bits asillustrated in Eg. (3.189):

3
H(S) =) P(i)log, i =2 (3.189)
= P(i)

It is obvious that 2 bits per symbol is good enough to encode this source. A possible
binary code for this source is {00, 01, 10, 11}. It could happen, though some symbols are
more likely than others, for example, P(0)=1/2, P(1) =1/4, P(2) =1/8, P(3) =1/8. In
this case the entropy is only 1.75 bits. One obvious idea is to use fewer bits for lower values
that are frequently used and more bits for larger values that are rarely used. To represent this
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source we can use a variable-length code {0,10,110,111} , where no codeword is a prefix for
the rest and thus a string of 0’s and 1's can be uniquely broken into those symbols. The en-
coding scheme with such a property is called uniquely decipherable (or instantaneous) cod-
ing, because as soon as the decoder observes a sequence of codes, it can decisively deter-
mine the sequence of the original symbols. If we let r(x) be the number of bits (Iength)

used to encode symbol X, the average rate R of bits per symbol used for encoding the infor-
mation sourceis:

R=Yr(\)P(x) (3.190)

Inour case, Ris 1.75 bits as shown in Eq. (3.191):
R=0.5x1+0.25x%2 +0.125 x3 +0.125 x3 =1.75 (3.191)

Such variable-length coding strategy is called Huffman coding. Huffman coding be-
longs to entropy coding because it matches the entropy of the source. In general, Shannon’s
source coding theorem says that a source cannot be coded with fewer bits than its entropy.
We will skip the proof here. Interested readers can refer to [3, 15, 17] for the detailed proof.
This theorem is consistent with our intuition because the entropy measure is exactly the in-
formation content of the information measured in hits. If the entropy increases, then uncer-
tainty increases, resulting in a large amount of information. Therefore, it takes more bits to
encode the symboals. In the case above, we are able to match this rate, but, in generadl, thisis
impossible, though we can get arbitrarily close to it. The Huffman code for this source offers
acompression rate of 12.5% relative to the code designed for the uniform distribution.

Shannon's source coding theorem establishes not only the lower bound for lossless

compression but also the upper bound. Let [x} denote the smallest integer that greater or

equal to x. As in the similar procedure above, we can make the code length assigned to
source output x equal to

[(x) = [—Iog P(x)] (3.192)
The average length L satisfies the following inequality:
L =Y 1(0)P(x) <Y [1-logP(x)] P(x) =1+H(X) (3.193)

Equation (3.193) means that the average rate R only exceeds the value of entropy by less
than one bit.

L can be made arbitrary close to the entropy by block coding. Instead of encoding sin-
gle output symbols of the information source, one can encode each block of length n. Let’s
assume the source is memoryless, s0 X,, X,,..., X, are independent. According to Eq.

(3.193), the average rate R for this block code satisfies:
L<1+H(X,,X,,...,X,) =1+nH(X) (3.194)

This makes the average number of bits per output symbol, L/n, satisfy
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Inim%Ls H(X) (3.195)

In general, Huffman coding arranges the symbols in order of decreasing probability,
assigns the bit 0 to the symbol of highest probability and the bit 1 to what is left, and pro-
ceeds the same way for the second highest probability value (which now has a code 10) and
iterate. This results in 2.25 bits for the uniform distribution case, which is higher than the 2
bits we obtain with equal-length codes.

Lempel-Ziv coding is a coding strategy that uses correlation to encode strings of sym-
bols that occur frequently. Although it can be proved to converge to the entropy, its conver-
gence rate is much slower [27]. Unlike Huffman coding, Lempel-Ziv coding is independent
of the distribution of the source; i.e., it needs not be aware of the distribution of the source
before encoding. This type of coding scheme is often referred to as universal encoding
scheme.

3.4.4. Mutual Information and Channel Coding

Let's review the information channel illustrated in Figure 3.17. An intuitively plausible
measure of the average amount of information provided by the random event Y about the
random event X is the average difference between the number of bits it takes to specify the
outcome of X when the outcome of Y is not known and the outcome of Y is known. Mutual
information is defined as the difference in the entropy of X and the conditional entropy of X
given:

1(X;Y) = H(X)—H(X 1Y)

=3P -
Z (x)! gp( 5 ;Z P(%,y))! gP( Iy,)
P(x 1Y) P(%,Y,) (3.196)
= P | =
ZZ (x,y;)log———=~ ) gjz P(x, yj)ogp( P
:E|:|Og—P(X'Y) }
P(X)P(Y)

1(X;Y) is referred to as the mutual information between X and Y. 1(X;Y) is sym-
metrical; i.e, 1(X;Y)=1(Y;X). The quantity P(x,y)/P(X)P(y) is often referred to as the
mutual information between symbol x andy. | (X;Y) isbounded:

0< I(X;Y)<smin[H(X),H(Y)] (3.197)

I (X;Y) reaches the minimum value (zero) when the random variables X and Y are in-

dependent.
Mutual information represents the information obtained (or the reduction in uncer-
tainty) through a channel by observing an output symbol. If the information channel is
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noiseless, the input symbol can be determined definitely by observing an output symbol. In
this case, the conditional entropy H(X|Y) equals zero and it is called a noiseless channel. We
obtain the maximum mutua information I(X; Y) = H(X). However, the information channel
is generally noisy so that the conditional entropy H(X|Y) is not zero. Therefore, maximizing
the mutual information is equivalent to obtaining a low-noise information channel, which
offers acloser relationship between input and output symboals.

X=0 P > V=0
X=1 D > Y=1

Figure 3.18 A binary channel with two symbols.

Let’s assume that we have a binary channel, a channel with a binary input and output.
Associated with each output are a probability p that the output is correct, and a probability
(1- p) that itis not, so that the channel is symmetric.

If we observe a symbol Y = 1 at the output, we don’'t know for sure what symbol X
was transmitted, though we know P(X =1|Y =1)=p and P(X =0|Y =1) =(1-p), SO
that we can measure our uncertainty about X by its conditional entropy:

H(X|Y =1 =-plog p -(1 -p)log(l —p) (3.198)

If we assume that our source X has a uniform distribution, H(X |Y)=H(X|Y =1) as
shown in Eqg. (3.198) and H(X) = 1. The mutual information between X and Y is given by

I(X,Y)=H(X)-H(X]Y) =1+plogp +(1 —p)log(l —p) (3.199)

It measures the information that Y carries by about X. The channel capacity C is the maxi-
mum of the mutual information over all distributions of X. That is,

C= rp(a§< 1(X;Y) (3.200)

The channel capacity C can be attained by varying the distribution of the information
source until the mutual information is maximized for the channel. The channel capacity C
can be regarded as a channel that can transmit at most C bits of information per unit of time.
Shannon’'s channel coding theorem says that for a given channel there exists a code that
permits error-free transmission across the channel, provided that R< C , where R is the rate
of the communication system, which is defined as the number of bits per unit of time being
transmitted by the communication system. Shannon’s channel coding theorem states the fact
that arbitrarily reliable communication is possible at any rate below channel capability.

Figure 3.19 illustrates a transmission channel with the source decoder and destination
decoder. The source encoder will encode the source symbol sequence X = X, %,,..., %, into

channel input sequence v,,V,,..., Y, . The destination decoder takes the output sequence
Z,2,,...,z, from the channel and converts it into the estimates of the source output
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X =%,%,,...,X,. Thegoa of thistransmission is to make the probability of correct decoding
P(X =x) asymptotically close to 1 while keeping the compressionratio = n/k aslarge as
possible. Shannon’s source-channel coding theorem (also referred to as Shannon’s second
coding theorem) saysthat it is possible to find an encoder-decoder pair of rate 00 for anoisy
information channel, provided that x H(Xk C.

X, X , X Y.¥.... ¥

Source T
u > Encoder >

PX)

Channel
P(2ly)

x|

x|

I
N
N

; _ Encoder <

Figure 3.19 Transmission of information through a noisy channel [15].

Because of channel errors, speech coders need to provide error correction codes that
will decrease the hit rate allocated to the speech. In practice, there is a tradeoff between the
bit rate used for source coding and the bit rate for channel coding. In Chapter 7 we will de-
scribe speech coding in great detail.

3.5. HISTORICAL PERSPECTIVE AND FURTHER READING

The idea of uncertainty and probability can be traced all the way back to about 3500 B.C.,
when games of chance played with bone objects were developed in Egypt. Cubical dice with
markings virtually identical to modern dice have been found in Egyptian tombs dating in
around 2000 B.C. Gambling with dice played an important part in the early development of
probability theory. Modern mathematical theory of probability is believed to have been
started by the French mathematicians Blaise Pascal (1623-1662) and Pierre Fermat (1601-
1665) when they worked on certain gambling problems involving dice. English mathemati-
cian Thomas Bayes (1702-1761) was first to use probability inductively and established a
mathematical basis for probability inference, leading to what is now known as Bayes' theo-
rem. The theory of probability has developed steadily since then and has been widely ap-
plied in diverse fields of study. There are many good textbooks on probability theory. The
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book by DeGroot [6] is an excellent textbook for both probability and statistics which covers
al the necessary elements for engineering majors. The authors also recommend [14], [19],
or [24] for interested readers.

Estimation theory is a basic subject in statistics covered in textbooks. The books by
DeGroot [6], Wilks [26] and Hoel [13] offer excellent discussions of estimation theory.
They al include comprehensive treatments for maximum likelihood estimation and Bayes-
ian estimation. Maximum likelihood estimation was introduced by in 1912 R. A. Fisher
(1890-1962) and has been applied to various domains. It is arguably the most popular pa-
rameter estimation method due to its intuitive appea and excellent performance with large
training samples. The EM algorithm in Chapter 4 and the estimation of hidden Markov
models in Chapter 8 are based on the principle of MLE. The use of prior distribution in
Bayesian estimation is very controversia in statistics. Some statisticians adhere to the
Bayesian philosophy of statistics by taking the Bayesian estimation' view of the parameter
@ having a probability distribution. Others, however, believe that in many problems & is
not arandom variable but rather a fixed number whose value is unknown. Those statisticians
believe that a prior distribution can be assigned to a parameter @ only when there is exten-
sive prior knowledge of the past; thus the non-informative priors are completely ruled out.
Both groups of statisticians agree that whenever a meaningful prior distribution can be ob-
tained, the theory of Bayesian estimation is applicable and useful. The books by DeGroot [6]
and Poor[20] are excellent for learning the basics of Bayesian and MAP estimations. Bayes-
ian and MAP adaptation are particularly powerful when the training samples are sparse.
Therefore, they are often used for adaptation where the knowledge of prior distribution can
help to adapt the model to a new but limited training set. The speaker adaptation work done
by Brown et al. [2] first applied Bayesian estimation to speech recognition and [9] is another
good paper on using MAP for hidden Markov models. References [4], [16] and [14] have
extensive studies of different conjugate prior distributions for various standard distributions.
Finally, [1] has an extensive reference for Bayesian estimation.

Significance testing is an essential tool for statisticians to interpret all the statistical
experiments. Neyman and Person provided some of the most important pioneering work in
hypotheses testing [18]. There are many different testing methods presented in most statis-

tics book. The y* test, invented in 1900 by Karl Pearson, is arguably the most widely used

testing method. Again, the textbook by DeGroot [6] is an excellent source for the basics of
testing and various testing methods. The authors recommend [7] as an interesting book that
uses many real-world examples to explain statistical theories and methods, particularly the
significance testing.

Information theory first appeared in Claude Shannon's historical paper: A Mathemati-
cal Theory of Communication [21]. In it, Shannon, analyzed communication as the transmis-
sion of a message from a source through a channel to a receiver. In order to solve the prob-
lem he created a new branch of applied mathematics - information and coding theory. |IEEE
published a collection of Shannon's papers [23] containing all of his published works, as
well as many that have never been published. Those published include his classic papers on
information theory and switching theory. Among the unpublished works are his once-secret
wartime reports, his Ph.D. thesis on population genetics, unpublished Bell Labs memoranda,
and a paper on the theory of juggling. The textbook by McEliece [17] is excellent for learn-
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ing al theoretical aspects of information and coding theory. However, it might be out of
print now. Instead, the books by Hamming [12] and Cover [3] are two current great refer-
ences for information and coding theory. Finaly, F. Jelinek's Satistical Methods for Speech
Recognition [15] approaches the speech recognition problem from an information-theoretic
aspect. It isauseful book for people interested in both topics.
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CHAPTER 4

Pattern Recognition

S)oken language processing relies heavily on
pattern recognition, one of the most challenging problems for machines. In a broader sense,
the ability to recognize patterns forms the core of our intelligence. If we can incorporate the
ability to reliably recognize patterns in our work and life, we can make machines much eas-
ier to use. The process of human pattern recognition is not well understood.

Due to the inherent variability of spoken language patterns, we emphasize the use of
statistical approach in this book. The decision for pattern recognition is based on appropriate
probabilistic models of the patterns. This Chapter presents several mathematical fundamen-
tals for statistical pattern recognition and classification. In particular, Bayes decision theory,
and estimation techniques for parameters of classifiers are introduced. Bayes decision the-
ory, which plays a central role for statistical pattern recognition, is described to introduce the
concept of decision-making based on both posterior knowledge obtained from specific ob-
servation data, and prior knowledge of the categories. To build such a classifier or predictor,
it is critical to estimate prior class probabilities and the class-conditional probabilities for a
Bayes classifier.

133
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Supervised learning has class information for the data. Only the probabilistic structure
needs to be learned. Maximum likelihood estimation (MLE) and maximum posterior prob-
ability estimation (MAP) that we discussed in Chapter 3 are two most powerful methods.
Both MLE and MAP aim to maximize the likelihood function. The MLE criterion does not
necessarily minimize the recognition error rate. Various discriminant estimation methods are
introduced for that purpose. Maximum mutual information estimation (MMIE) is based on
criteria to achieve maximum model separation (the model for the correct class is well sepa-
rated from other competing models) instead of likelihood criteria. The MMIE criterion is
one step closer but still is not directly related to minimizing the error rate. Other discrimi-
nant estimation methods, such as minimum error-rate estimation, use the ultimate goal of
pattern recognition — minimizing the classification errors. Neural networks are one class of
discriminant estimation methods.

The EM algorithm is an iterative algorithm for unsupervised learning in which class
information is unavailable or only partialy available. The EM algorithm forms the theoreti-
cal basis for training hidden Markov models (HMM) as described in Chapter 8. To better
understand the relationship between MLE and EM agorithms, we first introduce vector
quantization (VQ), a widely used source-coding technique in speech analysis. The well-
known k-means clustering algorithm best illustrates the relationship between MLE and the
EM agorithm. We close this chapter by introducing a powerful binary prediction and re-
gression technique, classification and regression trees (CART). The CART represents an
important technique that combines rule-based expert knowledge and statistical |earning.

4.1. BAYESDECISION THEORY

Bayes decision theory forms the basis of statistical pattern recognition. The theory is based
on the assumption that the decision problem can be specified in probabilistic terms and that
all of the relevant probability values are known. Bayes decision theory can be viewed as a
formalization of a common-sense procedure, i.e., the am to achieve minimum-error-rate
classification. This common-sense procedure can be best observed in the following real-
world decision examples.

Consider the problem of making predictions for the stock market. We use the Dow
Jones Industrial average index to formulate our example, where we have to decide tomor-
row's Dow Jones Industrial average index in one of the three categories (events): Up, Down,
or Unchanged. The available information is the probability function P(w) of the three cate-

gories. The variable w is a discrete random variable with the value w= @ (i =1,2,3) . We
call the probability P(w) a prior probability, since it reflects prior knowledge of tomor-
row's Dow Jones Industrial index. If we have to make a decision based only on the prior
probability, the most plausible decision may be made by selecting the class w with the
highest prior probability P(«) . This decision is unreasonable, in that we always make the

same decision even though we know that all three categories of Dow Jones Industrial index
changes will appear. If we are given further observable data, such as the federal-funds inter-
est rate or the jobless rate, we can make a more informed decision. Let x be a continuous
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random variable whose value is the federal-fund interest rate, and f, (x|w) be a class-
conditional pdf. For simplicity, we denote the pdf f, ,(Xx|w) as p(x|w), wherei=1,2,3

unless there is ambiguity. The class-conditional probability density function is often referred
to as the likelihood function as well, since it measures how likely it is that the underlying
parametric model of class w will generate the data sample x. Since we know the prior prob-

ability P(w) and class-conditional pdf p(x|w) , we can compute the conditional probabil-
ity P(w |x) using Bayes' rule:

X|w

P(c [X) = p(x|@)P(«w) (4.1)
p(x)

where p(x) =Y p(x|@)P(a) -

i=1

The probability term in the left-hand side of Eq. (4.1) is called the posterior probabil-
ity as it is the probability of class w after observing the federal-funds interest rate x. An
intuitive decision rule would be choosing the class «, with the greatest posterior probabil-
ity. That is,

k =argmax P(« | X) (4.2)

In general, the denominator p(x) in Eq. (4.1) is unnecessary because it is a constant term
for al classes. Therefore, EQ. (4.2) becomes

k=argimax P(w %) = argmax P(X| @)P( ) (4.3)

Therulein Eq. (4.3) isreferred to as Bayes' decision rule. 1t shows how the observed
data x changes the decision based on the prior probability P(«w) to one based on the poste-
rior probability P(w |X) . Decision making based on the posterior probability is more reli-
able, because it employs prior knowledge together with the present observed data. As a mat-
ter of fact, when the prior knowledge is non-informative ( P(«w) = P(w,) = P(w) =1/3), the

present observed data fully control the decision. On the other hand, when present observed
data are ambiguous, then prior knowledge controls the decision. There are many kinds of
decision rules based on posterior probability. Our interest is to find the decision rule that
leads to minimum overall risk, or minimum error rate in decision.

41.1. Minimum-Error-Rate Decision Rules

Bayes decision rule is designed to minimize the overall risk involved in making a decision.
Bayes decision based on posterior probability P(c | X) instead of prior probability P(cw)
isanatural choice. Given an observation X, if P(a, |X) 2 P(w |x) for dl i #k, we can de-
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cide that the true classis w, . To justify this procedure, we show such a decision results in
minimum decision error.

Let Q={a,..,@} be the finite set of s possible categories to be predicted and
A={9,,..,3} beafinite set of t possible decisions. Let I(J, |w) be the loss function in-
curred for making decision J, when thetrue classis w;, . Using the prior probability P(w)
and class-conditional pdf p(x|w), the posterior probability P(w |x) is computed by
Bayes rule as shown in Eq. (4.1). If we make decision J, when the true class is w, , we
incur aloss 1(d [a)) . Since the posterior probability P(cw; [x) is the probability that the
true class is w; after observing the data x, the expected loss associated with making deci-
sion ¢, is:

R@ 19 = Y181 @)P(&]9) (49

In decision-theoretic terminology, the above expression is called conditional risks.
The overal risk R is the expected loss associated with a given decision rule. The decision
rule is employed as a decision function 6(x) that maps the data x to one of the decisions
A={3,,...d}.Since R(J |X) isthe conditional risk associated with decision &, , the over-
all risk isgiven by:

R= j R(3(X) | X) p(x)dx (4.5)

If the decision function J(x) is chosen so that the conditional risk R(J(x) | x) is minimized

for every x, the overall risk is minimized. This leads to the Bayes' decision rule: To mini-
mize the overall risk, we compute the conditional risk shown in Eq. (4.4) for i =1,...,t and

select the decision &, for which the conditional risk R(J, | X) is minimum. The resulting

minimum overall risk is known as Bayes' risk that has the best performance possible.
Thelossfunction 1(J, | @) inthe Bayes’ decision rule can be defined as.

0 i=j
13 |w) = i,j=1...,s (4.6)
1 i#z]
This loss function assigns no loss to a correct decision where the true classis « and the
decision is J,, which implies that the true class must be w . It assigns a unit loss to any er-

ror where i # j; i.e., al errors are equally costly. This type of loss function is known as a

symmetrical or zero-one loss function. The risk corresponding to this loss function equals
the classification error rate, as shown in the following equation.
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R@ 19 = 1(E [)P(@ 1) =3 P( &%

S (4.7)
=Y P@, 1) ~P(& | 2 -P(&])

HereP(w | X) is the conditional probability that decision J. is correct after observing the
data x. Therefore, in order to minimize classification error rate, we have to choose the deci-
sion of classi that maximizes the posterior probability P(cw | X) . Furthermore, since p(x)is
a constant, the decision is eguivalent to picking the class i that maximizes p(x|w)P(«w) .
The Bayes' decision rule can be formulated as follows:

a(x) = argmax P(a |x) = argmax P(X| @)P( @) (4.8)

This decision rule, which is based on the maximum of the posterior probability
P(w |X), is caled the minimum-error-rate decision rule. It minimizes the classification

error rate. Although our description is for random variable x, Bayes' decision rule is appli-
cable to multivariate random vector x without loss of generality.

P
optimal p(xjw, ) P(®,)
decision
boundary

p(xjw, ) P(w,) \

A

v

< vl
D R, T %,

Figure 4.1 Calculation of the likelihood of classification error [22]. The shaded area represents
theintegra valuein Eq. (4.9).

A pattern classifier can be regarded as a device for partitioning the feature space into
decision regions. Without loss of generality, we consider a two-class case. Assume that the
classifier divides the space O into two regions, [0, and O, . To compute the likelihood of

errors, we need to consider two cases. In the first case, x fallsin O, , but the true classis w,.
In the other case, x fallsin O, , but the true classis « . Since these two cases are mutually
exclusive, we have
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P(error) = P(xM ,a) P ;)
=P(x@ , |@)P(e) PE | @)P() (4.9)
= [ Pxl@)P(@)dx+ [ P(x| @)P(@)dx

Figure 4.1 illustrates the calculation of the classification error in Eq. (4.9). The two
terms in the summation are merely the tail areas of the function P(x|w)P(q). It is clear

that this decision boundary is not optimal. If we move the decision boundary a little bit to
the left, so that the decision is made to choose the class i based on the maximum value
of P(x|w)P(w), the tail integral area P(error) becomes minimum, which is the Bayes

decisionrule.

41.2. Discriminant Functions

The decision problem above can also be viewed as a pattern classification problem where
unknown data x* are classified into known categories, such as the classification of sounds
into phonemes using spectral data x. A classifier is designed to classify data x into s catego-
ries by using s discriminant functions, d.(x), computing the similarities between the un-

known data x and each class ¢ and assigning x to class wj if
d;(x)>d (x) O ] (4.10)

This representation of a classifier isillustrated in Figure 4.2.

d,(x)
d,(x)
MAX —O 8(x)
dy(x)
Feature Discriminate Maximum Decision
V ector Function Selector

Figure 4.2 Block diagram of aclassifier based on discriminant functions[22].

 Assuming x is a d-dimensional vector.



Bayes Decision Theory 139

A Bayes' classifier can be represented in the same way. Based on the Bayes' classi-
fier, unknown data x are classified on the basis of Bayes' decision rule, which minimizes the
conditional risk R(a | x) . Since the classification decision of a pattern classifier is based on

the maximum discriminant function shown in Eq. (4.10), we define our discriminant func-
tion as:

d (x) =-R(a |X) (4.112)

As such, the maximum discriminant function corresponds to the minimum conditional risk.
In the minimum-error-rate classifier, the decision rule is to maximize the posterior probabil-
ity P(w |x) . Thus, the discriminant function can be written as follows:

00 = Pl ) = PEIQP@) __p(x] @)P() w1
PO S plx | @)P(w)

There is avery interesting relationship between Bayes' decision rule and the hypothe-
ses testing method described in Chapter 3. For a two-class pattern recognition problem, the
Bayes decision rulein Eq. (4.2) can be written as follows:

w

pOxIa)P(@) plx| @)P(@) (413

w,

Eq. (4.13) can be rewritten as:

3
109 = Px1@) > P(@) @10
p(x| ) < P(a)

Theterm /(x) is called likelihood ratio and is the basic quantity in hypothesis testing [73].
Theterm P(w,)/P(«) is caled the threshold value of the likelihood ratio for the decision.

Often it is convenient to use the log-likelihood ratio instead of the likelihood ratio for the
decision rule. Namely, the following single discriminant function can be used instead of
d,(x) and d,(x) for:

d(x) =log((x) =log p(x | &) —~log p(x | &) logP(ay) ~logP( &) (4.15)

SN VE

As the classifier assigns data x to class w , the data space is divided into s regions,
0% 9,.0, ¢, called decision regions. The boundaries between decision regions are called
decision boundaries and are represented as follows (if they are contiguous):

d()=d,(x) i#] (4.16)
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For points on the decision boundary, the classification can go either way. For a Bayes' clas-
sifier, the conditional risk associated with either decision is the same and how to break the
tie does not matter. Figure 4.3 illustrates an example of decision boundaries and regions for
athree-class classifier on a scalar data sample x.

P(xlw;) P(w,)

p(xko,) P(wa\ / p(xi0, ) PLo,)

< > X
9?14+7 9?34+7 9?2—+7 9{34>

Figure 4.3 An example of decision boundaries and regions. For simplicity, we use scalar vari-
able x instead of a multi-dimensional vector [22].

4.2. How To CONSTRUCT CLASSIFIERS

In the Bayes classifier, or the minimum-error-rate classifier, the prior probability P(w) and
class-conditional pdf p(x|cw) are known. Unfortunately, in pattern recognition domains,

we rarely have complete knowledge of class-conditional pdf’s and/or prior probability
P(w) . They often must be estimated or learned from the training data. In practice, the esti-

mation of the prior probabilitiesis relatively easy. Estimation of the class-conditiona pdf is
more complicated. There is always concern to have sufficient training data relative to the
tractability of the huge dimensionality of the sample data x. In this chapter we focus on es-
timation methods for the class-conditional pdf.

The estimation of the class-conditional pdfs can be nonparametric or parametric. In
nonparametric estimation, no model structure is assumed and the pdf is directly estimated
from the training data. When large amounts of sample data are available, nonparametric
learning can accurately reflect the underlying probabilistic structure of the training data.
However, available sample data are normally limited in practice, and parametric learning
can achieve better estimates if valid model assumptions are made. In parametric learning,
some general knowledge about the problem space allows one to parameterize the class-
conditional pdf, so the severity of sparse training data can be reduced significantly. Suppose
the pdf p(x|a)is assumed to have a certain probabilistic structure, such as the Gaussian

pdf. In such cases, only the mean vector p, (or mean () and covariance matrix .. (or
variance o) need to be estimated.
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When the observed data x only takes discrete values from a finite set of N values, the
class-conditional pdf is often assumed nonparametric, so there will be N -1 free parameters
in the probability function p(x | )2 When the observed data x takes continuous values,

parametric approaches are usualy necessary. In many systems, the continuous class-
conditional pdf (likelihood) p(x|w) isassumed to be a Gaussian distribution or a mixture
of Gaussian distributions.

In pattern recognition, the set of data samples, which is often collected to estimate the
parameters of the recognizer (including the prior and class-conditional pdf), is referred to as
the training set. In contrast to the training set, the testing set is referred to the independent
set of data samples, which is used to evaluate the recognition performance of the recognizer.

For parameter estimation or learning, it is also important to distinguish between super-
vised learning and unsupervised learning. Let’s denote the pair (X,w) as asample, where x
isthe observed data and w isthe class from which the data x comes. From the definition, it
is clear that (X,w) are jointly distributed random variables. In supervised learning, w, in-
formation about the class of the sample data x is given. Such sample data are usually called
labeled data or complete data, in contrast to incomplete data where the class information w
is missing for unsupervised learning. Techniques for parametric unsupervised learning are
discussed in Section 4.4.

In Chapter 3 we introduced two most popular parameter estimation techniques —
maximum likelihood estimation (MLE) and maximum a posteriori probability estimation
(MAP). Both MLE and MAP are supervised learning methods since the class information is
required. MLE is the most widely used because of its efficiency. The goal of MLE isto find
the set of parameters that maximizes the probability of generating the training data actually
observed. The class-conditional pdf istypically parameterized. Let ®, denote the parameter

vector for class i. We can represent the class-conditional pdf as a function of ®, as
p(x|w,®;) . As stated earlier, in supervised learning, the class name « is given for each
sample datain training set {x,,X,,...,X,} . We need to make an assumption® that samplesin
class « give no information about the parameter vector ®; of the other class w, . This

assumption allows us to deal with each class independently, since the parameter vectors for
different categories are functionally independent. The class-conditiona pdf can be rewritten
as p(x|®), where ® ={®,,®,,....® }. If aset of random samples {X,,X,,...,X }is
drawn independently according to a pdf p(x|®) , where the value of the parameter ® is
unknown, the MLE method described in Chapter 3 can be directly applied to estimate ® .
Similarly, MAP estimation can be applied to estimate @ if knowledge about a prior

distribution is available. In general, MLE is used for estimating parameters from scratch
without any prior knowledge, and MAP estimation is used for parameter adaptation where

2 Since all the probabilities need to add up to one.
® This assumption is only true for non-discriminant estimation. Samples in class w may affect parameter vector

@, of the other classes in discriminant estimation methods as described in Section 4.3
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the behavior of prior distribution is known and only small amount adaptation data is avail-
able. When the amount of adaptation data increases, MAP estimation convergesto MLE.

421. Gaussian Classifiers

A Gaussian classifier is a Bayes classifier where class-conditional probability density
p(x | ) for each class « isassumed to have a Gaussian distribution®:

px @) = - exp[—%(x ) 5 —ui)} (@.17)

.
(Zﬂ_)nlz |ZI

As discussed in Chapter 3, the parameter estimation techniques are well suited for the
Gaussian family. The MLE of the Gaussian parameter is just its sample mean and variance
(or co-variance matrix). A Gaussian classifier is equivalent to the one using a quadratic dis-
criminant function. As noted in Eq. (4.12), the discriminant function for a Bayes' decision
rule is the posterior probability p(cw |x) or p(x|w)P(w) as the discriminant function.

Assuming p(x|w) isa multivariate Gaussian density as shown in Eq. (4.17), a discrimi-
nant function can be written as follows:
d (x) =log p(x | @) p(«w)

4,18
= -2 (x =) 5(x -,) +log (@) ~3log] 7| Slog2r o

If we have a uniform prior p(w), it is clear that the above discriminant function
d, (x) isaquadratic function. Once we have the s Gaussian discriminant functions, the deci-
sion process simply assigns data x to class w; iff

j =argmax d, (x) (4.19)

When adl the Gaussian pdfs have the same covariance matrix
(2, =2 fori =1,2,...,s), the quadratic term x'Z™'x isindependent of the class and can be

treated as a constant. Thus the following new discriminant function d, (x) can be used [22];

d(x) =ax+c (4.20)

where a =™y, and ¢, = _%"i[zi_llli +logP(w). d. (x)in Eq. (4.20) is a linear discrimi-

nant function. For linear discriminant functions, the decision boundaries are hyperplanes.
For the two-class case (« and w,), and assuming that data sample x is areal random vec-

tor, the decision boundary can be shown to be the following hyperplane:

* The Gaussian distribution may include a mixture of Gaussian pdfs.
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A'(x-b)=0 (4.21)

where
A= Z_1(”1 ~n,) (4.22)
and

1 (n, —n,)log| P(
=L (n, —n,) - P M 100[P@ ] (4.23)

2 (= 1,) 27 (0, —ny)

Dl
DZ
n
n

/ decision boundary

Figure 4.4 Decision boundary for a two-class Gaussian classifier. Gaussian distributions for
the two categories have the same covariance matrix X . Each ellipse represents the region with
the same likelihood probability [22].

Figure 4.4 shows a two dimensional decision boundary for a two-class Gaussian classifier
with the same covariance matrix. Please note that the decision hyperplane is generally not
orthogonal to the line between the means p, and p,, athough it does intersect that line at
the point b, which is halfway between p, and p,. The analysis above is based on the case
of uniform priors ( p(a) = p(aw,) ). For nonuniform priors, the decision hyperplane moves
away from the more likely mean.

Finally, if each dimension of random vector x is statistically independent and has the

same variance o?,i.e, ¥, =3, =0l , Figure 4.4 becomes Figure 4.5. The ellipse in Figure

4.4 becomes a circle because the variance o isthe samefor all dimensions[22].



144 Pattern Recognition

/ decision boundary

Figure 4.5 Decision boundary for a two-class Gaussian classifier. Gaussian distributions for

the two categories have the same covariance matrix ¢l . Each circle represents the region
with the same likelihood probability [22].

4.2.2. The Curse of Dimensionality

More features (higher dimensions for sample x) and more parameters for the class
conditiona pdf p(x|®) may lead to lower classification error rate. If the features are statis-

tically independent, there are theoretical arguments that support better classification per-
formance with more features. Let us consider a simple two-class Gaussian classifier. Sup-
pose the prior probabilities p(w) are equal and the class-conditional Gaussian pdf’'s

p(x|m,,Z,) share the same covariance matrix X . According to Egs. (4.9) and (4.21), the
Bayes classification error rateis given by:

P(error) = ZL P(x|w)P(w)dx
= ZIZ(X_M:O—(ZH)H,%‘Z 7 exp -2 (x—p,) 5" (x -p,) ] dx (4.24)

—Lfe%zzdz
T Jer 4

where r = \/(ul -n,)' = (n, —n,) . When features are independent, the covariance matrix

becomes a diagonal one. The following eguation shows that each independent feature helps
to reduce the error rate>:

® When the means of a feature for the two classes are exactly the same, adding such a feature does not reduce the
Bayes' error. Nonetheless, according to Eq. (4.25), the Bayes' error cannot possibly be increased by incorporating
an additional independent feature.
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(4.25)

where y, and u, are the i -dimension of mean vectors i, and p, respectively.

Unfortunately, in practice, the inclusion of additional features may lead to worse clas-
sification results. This paradox is called the curse of dimensionality. The fundamental issue,
called trainability, refers to how well the parameters of the classifier are trained from the
limited training samples. Trainability can be illustrated by a typical curve-fitting (or regres-
sion) problem. Figure 4.6 shows a set of eleven data points and several polynomial fitting
curves with different orders. Both the first-order (linear) and second-order (quadratic) poly-
nomials shown provide fairly good fittings for these data points. Although the tenth-order
polynomial fits the data points perfectly, no one would expect such an under-determined
solution to fit the new data well. In general, many more data samples would be necessary to
get a good estimate of a tenth-order polynomial than of a second-order polynomial, because
reliable interpolation or extrapolation can be attained only with an over-determined solution.

Figure 4.6 Fitting eleven data points with polynomial functions of different orders[22].

Figure 4.7 shows the error rates for two-phonemes (/ae/ and /ih/) classification where
two phonemes are modeled by mixtures of Gaussian distributions. The parameters of mix-
tures of Gaussian are trained from a varied set of training samples via maximum likelihood
estimation. The curve illustrates the classification error rate as a function of the number of
training samples and the number of mixtures. For every curve associated with a finite num-
ber of samples, there are an optimal number of mixtures. This illustrates the importance of
trainability: it is critical to assure there are enough samples for training an increased number
of features or parameters. When the size of training data is fixed, increasing the number of
features or parameters beyond a certain point islikely to be counterproductive.

When you have an insufficient amount of data to estimate the parameters, some sim-
plification can be made to the structure of your models. In general, the estimation for higher-
order statistics, like variances or co-variance matrices, requires more data than that for
lower- order statistics, like mean vectors. Thus more attention often is paid to dealing with
the estimation of covariance matrices. Some frequent used heuristics for Gaussian distribu-
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tions include the use of the same covariance matrix for all mixture components [77], diago-
nal covariance matrix, and shrinkage (also referred to as regularized discriminant analysis),
where the covariance matrix is interpolated with the constant covariance matrix [23, 50].

I 2 NUMBER OF
10 SAMPLES, n

50 —

ERROR
RATE 500

1000

— 10000 —

| |
1 10 100 1000

NUMBER OF MIXTURES, m

Figure 4.7 Two-phoneme (/ae/ and /ih/) classification results as a function of the number of
Gaussian mixtures and the number of training samples.

4.2.3. Estimating the Error Rate

Estimating the error rate of a classifier isimportant. We want to see whether the classifier is
good enough to be useful for our task. For example, telephone applications show that some
accuracy is required before users would switch from using the touch-tone to the speech rec-
ognizer. It is aso critical to compare the performance of a classifier (algorithm) against an
aternative. In this section we deal with how to estimate the true classification error rate.

One approach is to compute the theoretic error rate from the parametric model as
shown in Eq. (4.25). However, there are severa problems with this approach. First, such an
approach almost always under-estimates, because the parameters estimated from the training
samples might not be realistic unless the training samples are representative and sufficient.
Second, &l the assumptions about models and distributions might be severely wrong. Fi-
nally, it is very difficult to compute the exact error rate, as in the simple case illustrated in
Eq. (4.25).

Instead, you can estimate the error rate empirically. In general, the recognition error
rate on the training set should be viewed only as a lower bound, because the estimate can be
made to minimize the error rate on the training data. Therefore, a better estimate of the rec-
ognition performance should be obtained on an independent test set. The question now is
how representative is the error rate computed from an arbitrary independent test set. The



How to Construct Classifiers 147

common process of using some of the data samples for design and reserving the rest for test
is called the holdout or H method.

Suppose the true but unknown classification error rate of the classifier is p, and one
observes that k out of n independent randomly drawn test samples are misclassified. The
random variable K should have a binomia distribution B(n, p) . The maximum likelihood

estimation for p should be

p=X (4.26)
n
The statistical test for binomial distribution is discussed in Chapter 3. For a 0.05 signifi-

cance level, we can compute the following equations to get the range (p,, p,) :

2P(ksmsn) = ZZn:[:J( p)" (1-p)" " =005 whenk >np, (4.27)
m=k
k
2P(0<m<k) = 22(:1}( p,)"(1-p,)"™" =0.05 whenk <np, (4.29)
m=0

Equations (4.27) and (4.28) are cumbersome to solve, so the normal test described in
Chapter 3 can be used instead. The null hypothesis H, is

Ho: p=p
We can use the normal test to find the two boundary points p, and p, at which we would
not reject the null hypothesis H,, .

The range (p,, p,) is caled the 0.95 confidence intervals because one can be 95%
confident that the true error rate p fallsin therange (p,, p,) . Figure 4.8 illustrates 95% con-
fidence intervals as a function of p and n. The curve certainly agrees with our intuition —
the larger the number of test samples n, the more confidence we have in the MLE estimated
error rate p; otherwise, the p can be used only with caution.

Based on the description in the previous paragraph, the larger the test set is, the better
it represents the recognition performance of possible data. On one hand, we need more train-
ing data to build a reliable and consistent estimate. On the other hand, we need alarge inde-
pendent test set to derive a good estimate of the true recognition performance. This creates a
contradictory situation for dividing the available data set into training and independent test
set. One way to effectively use the available database is V-fold cross validation. It first splits
the entire database into V equal parts. Each part is used in turn as an independent test set
while the remaining (V - 1) parts are used for training. The error rate can then be better esti-
mated by averaging the error rates evaluated on the V different testing sets. Thus, each part
can contribute to both training and test sets during V-fold cross validation. This procedure,

also called the leave-one-out or U method [53], is particularly attractive when the number of
available samples are limited.
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Figure 4.8 95% confidence intervals for classification error rate estimation with normal test

4.2.4. Comparing Classifiers

Given so many design aternatives, it is critical to compare the performance of different
classifiers so that the best classifier can be used for real-world applications. It is common for
designers to test two classifiers on some test samples and decide if one is superior to the
other. Relative efficacy can be claimed only if the difference in performance is statistically
significant. In other words, we establish the null hypothesis H, that the two classifiers have
the same error rates. Based on the observed error patterns, we decide whether we could re-
ject H, at the 0.05 level of significance. The test for different classifiers falls into the cate-
gory of matched-pairs tests described in Chapter 3. Classifiers are compared with the same
test samples.

We present an effective matched-pairs test - McNemar’s test [66] which is particularly

suitable for comparing classification results. Suppose there are two classifiers: Q, and Q,.
The estimated classification error rates on the same test set for these two classifiers are p,
and p, respectively. The null hypothesis H, isp,=p,. The classification performance of
the two classifiers can be summarized asin Table 4.1. We define g 's asfollows:

Oy = P(Q, and Q, classify data sample correctly)

0, = P(Q, classifies data sample correctly, but Q, incorrectly)
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P(Q, classifies data sample correctly, but Q, incorrectly)
P(Q, and Q, classify data sample incorrectly)

Cho
O

Table 4.1 Classification performance table for classifier Q and Q,. N, is the number of

samples which Q, and Q, classify correctly, N, isthe number of sampleswhich Q, classi-
fies correctly, but Q, incorrectly, N,, isthe of sampleswhich Q, classifies correctly, but Q,
incorrectly, and N,; isthe number of sampleswhich Q, and Q, classify incorrectly [30].

Q
Correct Incorrect
Q Correct No, N,
Incorrect Ny, N,,

The null hypothesis H, is equivalent to H; : q, = ¢,. If we define

2

0=0/(0y +G) . H, isequivalentto HZ : q=1%. HZ represents the hypothesis that,
given only one of the classifiers makes an error, it is equaly likely to be either one. We can
test HZ based on the data samples on which only one of the classifiers made an error. Let
n=N, +N,,. The observed random variable N, should have a binomial distribution
B(n, %) . Therefore, the normal test (z-test) described in Chapter 3 can be applied directly to

test the null hypothesis H?.

The above procedure is caled the McNemar’s test [66]. If we view the classification
results as N (the total number of test samples) independent matched pairs, the sign test as
described in Chapter 3 can be directly applied to test the null hypothesis that classifier Q, is

not better than classifier Q,, that is, the probability that classifier Q, performs better than
classifier Q,, p, issmaller than or equal to %

McNemar’s test is applicable when the errors made by a classifier are independent
among different test samples. Although this condition is true for most static pattern recogni-
tion problems, it is not the case for most speech recognition problems. In speech recognition,
the errors are highly inter-dependent because of the use of higher-order language models
(described in Chapter 11).

The solution is to divide the test data stream into segments in such away that errorsin
one segment are statistically independent of errorsin any other segment [30]. A natural can-

didate for such a segment is a sentence or a phrase after which the speaker pauses. Let N;
the number of errors® made on the i segment by classifier Q, and N; be the number of er-

rors made on the i™ segment by classifier Q,. Under this formulation, the magnitude-
difference test described in Chapter 3 can be applied directly to test the null hypothesis that

® The errors for speech recognition include substitutions, insertions and deletions as discussed in Chapter 8.
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classifiers Q, and Q, have on the average the same error rate on the pairs of n independent
segments.

4.3. DISCRIMINATIVE TRAINING

Both MLE and MAP criteria maximize the probability of the model associated with the cor-
responding data. Only data labeled as belonging to class « are used to train the parameters.

There is no guarantee that the observed data x from class « actualy have a higher likeli-
hood probability P(x|w) thanthelikelihood P(x |w,) associated with classj, given j #i.

Models generated by MLE or MAP have a loose discriminant nature. Several estimation
methods aim for maximum discrimination among models to achieve best pattern recognition
performance.

4.31. Maximum Mutual |nfor mation Estimation

The pattern recognition problem can be formalized as an information channel, as illustrated
in Figure 4.9. The source symbol w is encoded into data x and transmitted through an in-
formation channel to the observer. The observer utilizes pattern recognition techniques to
decode x into source symbol & . Consistent with the goal of communication channels, the
observer hopes the decoded symbol @ is the same as the original source symbol w. Maxi-
mum mutual information estimation tries to improve channel quality between input and out-
put symbols.

Communication Channel

Data: Pattern
_91 Generator ﬁ Decoder 9

w X w

Figure 4.9 An information channel framework for pattern recognition.

As described in Section 4.1.1, the decision rule for the minimum-error-rate classifier
selects the class @ with maximum posterior probability P(w |x) . It is agood criterion to
maximize the posterior probability P(w |x) for parameter estimation. Recalling Bayes' rule
in Section 4.1, the posterior probability p(w |x) (assuming x belongsto class w) is.

p(x | @) P(w)

Plw [x) = o(x)

(4.29)
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and p(x) can be expressed as follows:

p() =D p(x|w,) p(@) (4.30)

In the classification stage, p(X) can be considered as a constant. However, during training,
the value of p(x) depends on the parameters of all models and is different for different x.

Equation (4.29) is referred to as conditional likelihood. A conditional maximum likelihood
estimator (CMLE) 6, . isdefined asfollows:

QCMLE (X) = q)MAP :arg(l;pax p(D (0‘4 |X) (431)

The summation in Eq. (4.30) extends over all possible classes that include the correct model
and all the possible competing models. The parameter vector ® in Eq. (4.31) includes not
only the parameter @, corresponding to class w , but also those for all other classes.

Note that in Chapter 3, the mutual information between random variable X (observed
data) and Q (classlabel) isdefined as:

1(X,Q) = E[IogMj = E(Iogw] (4.32)
P(X)P(Q) P(X)P(Q)

Since we don't know the probability distribution for p(X,Q), we assume our sample
(x,w) isrepresentative and define the following instantaneous mutual information:

p(x,@)
pP(X)P(w)

If equal prior p(w) isassumed for dl classes, maximizing the conditional likelihood

in Eq. (4.29) is equivalent to maximizing the mutual information defined in Eq. (4.33).
CMLE becomes maximum mutual information estimation (MMIE). It is important to note
that, in contrast to MLE, MMIE is concerned with distributions over all possible classes.
Equation (4.30) can be rewritten as two terms, one corresponding to the correct one, and the
other corresponding to the competing models:

p(X) = p(x|@)P(@) +_ p(x| @)P(®) (4.34)

k#i

I (X,w) =log (4.33)

Based on the new expression of p(x) shown in Eq. (4.34), the posterior probability
p(a | X) in Eq. (4.29) can be rewritten as:

pP(X|w)P(w)
P(X|@)P(@) + Y. p(x| @)P( )

k#i

P(@ |X) = (4.35)
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Now, maximization of the posterior probability p(c |Xx) with respect to all models leads to
adiscriminant model.” It implies that the contribution of p(x | w)P(«) from the true model
needs to be enforced, while the contribution of al the competing models, specified by
Z p(x|aw,)P(a), needs to be minimized. Maximization of Eq. (4.35) can be further re-

ki
written as;

1
D p(x|w)p(w)

k#i

p(x|w)p(w)

Maximization is thus equivalent to maximization of the following term, which is clearly a
discriminant criterion between model « and the sum of all other competing models.

Plw |x) = (4.36)

p(X| @) p(«w) 437
> p(x| @) p(a,) (437

k#i
Equation (4.37) also illustrates a fundamental difference between MLE and MMIE. In MLE,
only the correct model needs to be updated during training. However, every MMIE model is
updated even with one training sample. Furthermore, the greater the prior probability p(cw,)

for class «, , the more effect it has on the maximum mutual information estimator 6,,,c -
This makes sense, since the greater the prior probability p(w,), the greater the chance for
the recognition system to mis-recognize « as «, . MLE isasimplified version of MMIE by
restricting the training of model using the data for the model only. This simplification allows

the denominator term in Eq. (4.35) to contain the correct model so that it can be dropped as
a constant term. Thus, maximization of the posterior probability p(w |x) can be trans-

formed into maximization of the likelihood p(x|w) .

Although likelihood and posterior probability are transformable based on Bayes' rule,
MLE and MMIE often generate different results. Discriminative criteria like MMIE attempt
to achieve minimum error rate. It might actually produce lower likelihood than for the un-
derlying probability density p(x|cw,). However, if the assumption of the underlying distri-

butions is correct and there are enough (or infinite) training data, the estimates should con-
verge to the true underlying distributions. Therefore, Bayes rule should be satisfied and
MLE and MMIE should produce the same estimate.

Arthur Nadas [71] showed that if the prior distribution (language model) and the as-
sumed likelihood distribution family are correct, both MLE and MMIE are consistent esti-
mators, but MMIE has a greater variance. However, when some of those premises are not
valid, it is desirable to use MMIE to find the estimate that maximizes the mutual information
(instead of likelihood) between sample data and its class information. The difference be-

” General minimum-error-rate estimation is described in Section 4.3.2.
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tween these two estimation techniquesis that MMIE not only aims to increase the likelihood
for the correct class, but also tries to decrease the likelihood for the incorrect classes. Thus,
MMIE in general possesses more discriminating power among different categories. Al-
though MMIE is theoretically appealing, computationally it is very expensive. Comparing
with MLE, every data sample needs to train all the possible models instead of the corre-
sponding model. It also lacks an efficient maximization algorithm. Y ou need to use a gradi-
ent descent algorithm.

43.1.1. Gradient Descent

To maximize Eq. (4.37) over the entire parameter space ® ={®,,®,,...,®,,} with M

classes, we define the mutual information term in Eq. (4.37) to be a function of ® . To fit
into the traditional gradient descent framework, we take the inverse of Eq. (4.37) as our op-
timization function to minimize the following function:®

1 D Po, (X| ) P(a)
F((I)) = — Kk#i
P (@ %) Pe, (X1 &) P(w)

(4.39)

The gradient descent algorithm starts with some initial estimate ®° and computes the
gradient vector OF (@) (O is defined in Chapter 3). It obtains a new estimate ®* by mov-

ing ®° in the direction of the steepest descent, i.e., along the negative of the gradient. Once
it obtains the new estimate, it can perform the same gradient descent procedure iteratively

until F(d) converges to the local minimum. In summary, it obtains ®'** from ®"' by the
following formula

O =0 - [F@)]| (4.39)

p=a!
where &, isthelearning rate (or step size) for the gradient descent.
Why can gradient descent lead F(®) to alocal minimum? Based on the definition of
gradient vector, F(®) can be approximated by the first order expansion if the correction
term A® issmall enough.
F(@")=F(®')+A® MF(®)| _, (4.40)
AD can be expressed as the following term based on Eqg. (4.39)

AD =@ -®' = -, [F(D)| (4.41)

D=@'

Thus, we can obtain the following equation:

8You can use the logarithm of the object function to make it easier to compute the derivative in gradient descent.
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FO™) ~F(@) ==& (F(@) |y P R ),y )

, (4.42)
=-¢ |OF (@), < O

where (x,y) represents the inner product of two vectors, and || represents the Euclidean

norm of the vector. Equation (4.42) means that the gradient descent finds a new estimate
@' that makes the value of the function F(®) decrease.

The gradient descent algorithm needs to go through an iterative hill-climbing proce-
dure to converge to the local minimum (estimate). Gradient descent usually requires many
iterations to converge. The agorithm usually stops when the change of the parameter
A® becomes small enough. That is,

0F(®@)],_< A (4.43)

D=@'
where A isapreset threshold.

Based on the derivation above, the learning rate coefficient & must be small enough
for gradient descent to converge. However, if & istoo small, convergence is needlessy
sdow. Thus, it is very important to choose an appropriate &, . It is proved [47] [48] that gra-
dient converges amost surely if the learning rate coefficient &, satisfies the following condi-
tion:

g2 <o, and &>0 (4.44)

M

igt =%,

t=0 t

1l
o

One popular choice of &, satisfying the above conditionis
§=— (4.45)
Another way to find an appropriate &, isthrough the second-order expansion:

F(®"") = F(®') + ADLF (D) |

p='

" %@ @) © (4.46)

where D is the Hessian matrix [23] of the second-order gradient operator where the i-th row
and j-th element D, ; are given by the following partial derivative:

_O°F(@)

= 4.47
Vom0, (4.47)

By substituting A® from Eqg. (4.41) into Eq. (4.46), we can obtain

F@) = F(@) - |[F[* 28 FD F (4.48)
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From this, it followsthat & can be chosen as follows to minimize F(®) [23]:

JoF*
= 4.49
COF D F (4.49)
Sometimes it is desirable to impose a different learning rate for the correct model vs. com-
peting models. Therefore re-estimation Eqg. (4.39) can be generalized to the following form
[19, 48]:

O =" -gU,OF (®) (4.50)
t~t

D=@'
where U, is the learning bias matrix which is a positive definite matrix. One particular

choice of U, is D*, where D is the Hessian matrix defined in Eq. (4.47). When the learning

rate is set to be 1.0, Eq. (4.50) becomes Newton's algorithm, where the gradient descent is
chosen to minimize the second-order expansion. Equation (4.50) becomes:

O ="' -D'OF (@) | (4.51)

D=0
When probabilistic parameters are iteratively re-estimated, probabilistic constraints
must be satisfied in each iteration as probability measure, such as:

1. For discrete distributions, all the values of the probability function ought to
be nonnegative. Moreover the sum of al discrete probability values needs to

beone i.e, > g =1

2. For continuous distributions (assuming Gaussian density family), the vari-
ance needs to be nonnegative. For Gaussian mixtures, the diagonal covari-
ance entries need to be nonnegative and the sum of mixture weights needs to

beone ie, Y ¢ =1

In general, gradient descent is an unconstrained minimization (or maximization) proc-
ess that needs to be modified to accommodate constrained minimization (or maximization)
problems. The tricks to use are parameter transformations that implicitly maintain these con-
straints during gradient descent. The original parameters are updated through the inverse
transform from the transformed parameter space to the original parameter space. The trans-
formation is done in such a way that constraints on the original parameter are always main-
tained. Some of these transformations are listed as follows [48]:

1. For probabilities which need to be nonnegative and sum to one, like discrete
probability function and mixture weight, the following transformation can be
performed:

__exp(a) 4.52
D IETCH (@2
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2. For mean u and variance (or diagonal covariance entries) o, the following
transformation can be used.

U= flo (4.53)

o =exp(6) (4.54)

After the transformations, we can now compute the gradient with respect to the trans-
formed parameters (&, /,0) using the chain rules. Once the new estimate for the trans-

formed parameters is obtained through gradient descent, one can easily transform them back
to the original parameter domain.

4.3.2. Minimum-Error-Rate Estimation

Parameter estimation techniques described so far aim to maximize either the likelihood
(class-conditional probability) (MLE and MAP) or the posterior probability (MMIE) in
Bayes equation, Eq. (4.1). Although the criteria used in those estimation methods all have
their own merit and under some conditions should lead to satisfactory results, the ultimate
parameter estimation criterion for pattern recognition should be made to minimize the rec-
ognition error rate (or the Bayes' risk) directly. Minimum+-error-rate estimation is also called
minimum-classification-error (MCE) training, or discriminative training. Similar to MMIE,
the algorithm generaly tests the classifier using re-estimated models in the training proce-
dure, and subsequently improves the correct models and suppresses mis-recognized or near-
miss models.” Neural networks are in this class. Although minimum-error-rate estimation
cannot be easily applied, it is still attractive that the criterion is identical to the goal of the
spoken language systems.

We have used the posterior probability p(w |x) in Bayes' rule as the discriminant

function. In fact, just about any discriminant function can be used for minimum-error-rate
estimation. For example, as described in Section 4.1.2, a Bayes Gaussian classifier is
equivalent to a quadratic discriminant function. The goal now is to find the estimation of

parameters for a discriminant function family {di (x)} to achieve the minimum error rate.

One such error measureis defined in Eq. (4.5). The difficulty associated with the discrimina-
tive training approach lies in the fact that the error function needs to be consistent with the
true error rate measure and also suitable for optimization.”® Unfortunately, the error function
defined in Section 4.1.1 [Eq. (4.5)] is based on a finite set, which is a piecewise constant
function of the parameter vector @ . It is not suitable for optimization.

To find an aternative smooth error function for MCE, let us assume that the discrimi-
nant function family contains s discriminant functions d. (x,®),i =1, 2,..., s. ® denotes

® A near-miss mode! istheincorrect model that has highest likelihood other than that of the correct model.
191n general, afunction is optimizableif it is a smooth function and has a derivative.
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the entire parameter set for s discriminant functions. We aso assume that al the discrimi-
nant functions are nonnegative. We define the following error (misclassification) measure:

1/n
e (x) = —d (x, ) {iz d, (x,@)"} (4.55)
s-14%

where 77 is a positive number. The intuition behind the above measure is the attempt to
enumerate the decision rule. For a w class input x, e(x) >0 implies recognition error;
while g (x) <0 implies correct recognition. The number 77 can be thought to be a coeffi-
cient to select competing classes in Eq. (4.55). When 7 =1, the competing class term is the
average of al the competing discriminant function scores. When 7 — o, the competing
class term becomes nngx d; (x,®) representing the discriminant function score for the top

competing class. By varying the value of 17, one can take all the competing classes into ac-
count based on their individual significance.

To transform g (x) into a normalized smooth function, we can use the sigmoid func-
tion to embed e (x) in a smooth zero-one function. The loss function can be defined as fol-
lows:

|, (@) = sigmoid (g (x)) (4.56)

where sigmoid(x) = 1_X (4.57)
1+e

When g (x) isabig negative number, which indicates correct recognition, the loss function
[, (x; @) has avalue close to zero, which implies no loss incurred. On the other hand, when
g (x) isapositive number, it leads to a value between zero and one that indicates the likeli-
hood of an error. Thus |, (x; @) essentially represents a soft recognition error count.

For any data sample x, the recognizer’ s loss function can be defined as:

(X, ®) = ili (X, ®)3(w= ) (4.58)

where d(¢) is a Boolean function which will return 1 if the argument is true and O if the

argument is false. Since X is arandom vector, the expected loss according to Eq. (4.58) can
be defined as:

L(®) = E, (I (x,®)) = Z szl(x,(l)) p(x)dx (4.59)
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Since mq?x“f(x,cl))dx} = f[mq?x f(x,(I))de, ® can be estimated by gradient descent

over |(x,®) instead of expected loss L(®). That is, minimum classification error training
of parameter @ can be estimated by first choosing an initial estimate @, and the following
iterative estimation equation:

O =0 - 0(x,®)|,_,, (4.60)

You can follow the gradient descent procedure described in Section 4.3.1.1 to achieve the
MCE estimate of @ .

Both MMIE and MCE are much more computationally intensive than MLE, owing to
the inefficiency of gradient descent algorithms. Therefore, discriminant estimation methods,
like MMIE and MCE, are usualy used for tasks containing few classes or data samples. A
more pragmatic approach is corrective training [6], which is based on a very simple error-
correcting procedure. First, a labeled training set is used to train the parameters for each
corresponding class by standard MLE. For each training sample, alist of confusable classes
is created by running the recognizer and kept as its near-miss list. Then, the parameters of
the correct class are moved in the direction of the data sample, while the parameters of the
“near-miss’ class are moved in the opposite direction of the data samples. After all training
samples have been processed; the parameters of all classes are updated. This procedure is
repeated until the parameters for al classes converge. Although there is no theoretical proof
that such a process converges, some experimental results show that it outperforms both
MLE and MMIE methods [4].

We have described various estimators: minimum mean square estimator, maximum
likelihood estimator, maximum posterior estimator, maximum mutual information estimator,
and minimum error estimator. Although based on different training criteria, they are all
powerful estimators for various pattern recognition problems. Every estimator has its
strengths and weaknesses. It is almost impossible always to favor one over the others. In-
stead, you should study their characteristics and assumptions and select the most suitable
ones for the domains you are working on.

In the following section we discuss neural networks. Both neural networks and MCE
estimations follow avery similar discriminant training framework.

4.3.3. Neural Networks

In the area of pattern recognition, the advent of new learning procedures and the availability
of high-speed parallel supercomputers have given rise to a renewed interest in neural net-
works.™ Neural networks are particularly interesting for speech recognition, which requires
massive constraint satisfaction, i.e., the parallel evaluation of many clues and facts and their
interpretation in the light of numerous interrelated constraints. The computational flexibility
of the human brain comes from its large number of neurons in a mesh of axons and den-
drites. The communication between neurons is via the synapse and afferent fibers. There are

1 A neural network is sometimes called an artificial neural network (ANN), a neural net, or a connectionist model.
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many billions of neural connections in the human brain. At asimple level it can be consid-
ered that nerve impulses are comparable to the phonemes of speech, or to letters, in that they
do not themselves convey meaning but indicate different intensities [95, 101] that are inter-
preted as meaningful units by the language of the brain. Neural networks attempt to achieve
real-time response and human like performance using many simple processing elements
operating in parallel asin biological nervous systems. Models of neural networks use a par-
ticular topology for the interactions and interrelations of the connections of the neural units.
In this section we describe the basics of neural networks, including the multi-layer percep-
trons and the back-propagation algorithm for training neural networks.

4.3.3.1. Single-L ayer Perceptrons

Figure 4.10 shows a basic single-layer perceptron. Assuming there are N inputs, labeled as
X, %, Xy, We can form a linear function with weights w,;,w;;,W,;,...,w, to give the

output y;, defined as
N
Y, =W, +Zwij)g :ijt :gj(x) (4.61)
i=1

where w; = (Wy; Wi W, Wy ) and X = (1, %, Xy, Xy ) -

jl

For pattern recognition purposes, we associate each class w; out of s classes
(W, @, .., @) with such a linear discriminant function g;(x). By collecting al the dis-
criminant functions, we will have the following matrix representation:

y =g(x) =W'x (4.62)

where  g(x) = (9,(x), 9, (X),---, Gs(X))'; W = (W}, Wy,...,w) and Y = (Y, Y, ¥s) - The
pattern recognition decision can then be based on these discriminant functions as in Bayes
decision theory. That is,

xOw, iff k argmax g (x) (4.63)

The perceptron training algorithm [68], guaranteed to converge for linearly separable
classes, is often used for training the weight matrix W . The algorithm basically divides the

sample space OV into regions of corresponding classes. The decision boundary is character-
ized by hyper-planes of the following form:

g(x)-g;,(x)=0 O j (4.64)

Using linear discriminant functions is equivalent to estimating Bayes' Gaussian densi-
ties in which all densities are sharing the same covariance matrix. Unfortunately, for data
samples that are not linearly separable, the perceptron algorithm does not converge. How-
ever, if we can relax the definition of classification errors in this case, we can still use a
powerful algorithm to train the weight matrix W . This approach is the Least Square Error
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(LSE) agorithm described in Chapter 3, which aims at minimizing sum-of-squared-error
(SSE) criterion, instead of minimizing the classification errors. The sum-of-squared-error is
defined as.

SSE=). > lg(x) -4 If (4.65)

i xOw

where & is an M-dimensional index vector with all zero components except that the i" one
is 1.0, since the desired output for g(x) istypically equal to 1.0if xOw and Oif xOaw .

Yi

output layer

input layer
X X, XN

Figure4.10 A single-layer perceptron.

The use of LSE leads to discriminant functions that have real outputs approximating
the values 1 or 0. Suppose there are Sinput vectors X = (X;,X5,...,Xs) in the training set.

Similar to the LSE for linear functions described in Chapter 3 (cf. Section 3.2.1.2), the LSE
estimate of weight matrix W will have the following closed form:

W = ((XX')) 'L (4.66)

where L is a (N+1)xs matrix where the k-th column is the mean vector
W =@ Mgy Hyos--0 My )' OF @Al the vectors classified into class «, , and £ isan sxs di-
agonal matrix with diagonal entry ¢, representing the number of vectors classified into

@, . LSE estimation using linear discriminant functions is equivalent to estimating Bayes

Gaussian densities where all the densities are assumed to share the same covariance matrix
[98].

Although the use of LSE agorithm solves the convergence problems, it loses the
power of nonlinear logical decision (i.e., minimizing the classification error rate), since it is
only approximating the simple logical decision between alternatives. An aternative ap-
proach is to use a smooth and differential sigmoid function as the threshold function:
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Y = Sigmoid(g(x) = Sgmoid((g,(), 6,(9.---. 8, ()) s
= (sigmoid (g, (x)) Sgmoid(g, ()..... Sgmoid (g, ()’

where sigmoid(X) is the sigmoid function defined in Eq. (4.57). With the sigmoid function,
the following new sum-of-sgquared-error term closely tracks the classification error:

NSSE =}’ >[I sigmoid(g(x)) -4, II (4.68)

i xOw

where J, isthe same index vector defined above. Since thereis no analytic way of minimiz-

ing a nonlinear function, the use of the sigmoid threshold function requires an iterative gra-
dient descent algorithm, back-propagation, which will be described in the next section.

output layer

hidden layer

hidden layer

input layer

Figure 4.11 A multi-layer perceptron with four total layers. The middle two layers are hidden.

4.3.3.2. Multi-Layer Perceptron

One of the technical developments sparking the recent resurgence of interest in neural net-
works has been the popularization of multi-layer perceptrons (MLP) [37, 90]. Figure 4.11
shows a multi-layer perceptron. In contrast to a single-layer perceptron, it has two hidden
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layers. The hidden layers can be viewed as feature extractors. Each layer has the same com-
putation models as the single-layer perceptron; i.e., the value of each node is computed as a
linear weighted sum of the input nodes and passed to a sigmoid type of threshold function.

h, = sigmoid(g,,(x)) = sigmoid(W;,X)
h, = sigmoid(g,,(h,)) = sigmoid(W,,h,) (4.69)
y = sigmoid(g, (h,)) = Sgmoid(Wh,)

where sigmoid(x) isthe sigmoid function defined in Eq. (4.57).
According to Eq. (4.69), we can propagate the computation from input layer to output
layer and denote the output layer as a nonlinear function of the input layer.

Y = MLP(X) (4.70)

Let's denote O(x) asthe desired output for input vector x . For pattern classification,
O(x) will be an s-dimensional vector with the desired output pattern set to one and the re-
maining patterns set to zero. As we mentioned before, there is no analytic way to minimize
the mean square error E = z | MLP(x) —O(x) |F . Instead, an iterative gradient descent algo-

rithm called back propagation [89, 90] needs to be used to reduce to error. Without loss of
generality, we assume there is only one input vector x = (1, X, X,,..., Xy ) with desired output

0=(0,,0,,...,0,) . All the layers in the MLP are numbered 0O, 1, 2,... upward from the input
layer. The back propagation algorithm can then be described asin Algorithm 4.1.

In computing the partial derivative , you need to use the chain rule. W* isthe

oE
ow; () !
weight connecting the output layer and the last hidden layer; the partia derivativeis:

2> (v -0

oE T
o
a(Z(yi-O.)z) o Z WiV )
_ o « i x 1 (4.71)
ayj Z WEVK 1 aW”-
Ij |

=2(y, —0)y; (y; v

For layers k =K -1, K —2,---, one can apply chain rules similarly for gradient WE(t)
i
The back propagation algorithm is a generalization of the minimum mean squared er-
ror (MMSE) algorithm. It uses a gradient search to minimize the difference between the
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desired outputs and the actual net outputs, where the optimized criterion is directly related to
pattern classification. With initial parameters for the weights, the training procedure is then
repeated to update the weights until the cost function is reduced to an acceptable value or
remains unchanged. In the algorithm described above, we assume a single training example.
In real-world application, these weights are estimated from a large number of training ob-
servations in a manner similar to hidden Markov modeling. The weight updatesin the Step 3
are accumulated over al the training data. The actual gradient is then estimated for the com-
plete set of training data before the starting of the next iteration. Note that the estimation
criterion for neural networks is directly related to classification rather than the maximum
likelihood.

ALGORITHM 4.1 THE BACK PROPAGATION ALGORITHM
Step 1: Initialization: Set t =0 and choose initial weight matrices W for each layer. Let's de-
note vv”*(t) as the weighting coefficients connecting i™ input node in layer k-1 and j™ out-

put node in layer k attime t.

Step 2: Forward Propagation: Compute the values in each node from input layer to output layer
in a propagating fashion, fork = 1to K

Vi = sigmoid (w, () +ZN:VV§('£)Vik_l) 0 (472)

. . 1
h =
where sigmoid(x) ”

e—X

and Vi is denotes as the j node in the k™ layer

Step 3: Back Propagation: Update the weights matrix for each layer from output layer to input

layer according to:
_ _ __ OE
W (E+D) =wi(t) ar WO (4.73)

where E = Z” y. —a | and (y,,Y,,...Y,) is the computed output vector in Step 2.

i=1
a is referred to as the learning rate and has to be small enough to guarantee
convergence. One popular choice is 1/(t +1) .
Step 4: lteration: Let t = t +1 Repeat Steps 2 and 3 until some convergence condition is met.

4.4, UNSUPERVISED ESTIMATION METHODS

Asdescribed in Section 4.2, in unsupervised learning, information about class w of the data
sample x is unavailable. Data observed are incomplete since the class data w is missing.
One might wonder why we are interested in such an unpromising problem, and whether or
not it is possible to learn anything from incomplete data. Interestingly enough, the formal
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solution to this problem is amost identical to the solution for the supervised learning case —
MLE. We discuss vector quantization (VQ), which uses principles similar to the EM algo-
rithm. It isimportant in its own right in spoken language systems.

4.4.1. Vector Quantization

As described in Chapter 3, source coding refers to techniques that convert the signal source
into a sequence of bits that are transmitted over a communication channel and then used to
reproduce the original signal at a different location or time. In speech communication, the
reproduced sound usually allows some acceptable level of distortion to achieve low bit rate.
The goal of source coding isto reduce the number of bits necessary to transmit or store data,
subject to a distortion or fidelity criterion, or equivalently, to achieve the minimum possible
distortion for a prescribed bit rate. Vector quantization (VQ) is one of the most efficient
source-coding techniques

Quantization is the process of approximating continuous amplitude signals by discrete
symbols. The quantization of asingle signal value or parameter isreferred to as scalar quan-
tization. In contrast, joint quantization of multiple signal values or parametersis referred to
as vector quantization. Conventional pattern recognition techniques have been used effec-
tively to solve the quantization or data compression problem with successful application to
speech coding, image coding, and speech recognition [36, 85]. In both speech recognition
and synthesis systems, vector quantization serves an important role in many aspects of the
systems, ranging from discrete acoustic prototypes of speech signals for the discrete HMM,
to robust signal processing and data compression.

A vector quantizer is described by a codebook, which is a set of fixed prototype vec-
tors or reproduction vectors. Each of these prototype vectors is also referred to as a code-
word. To perform the quantization process, the input vector is matched against each code-
word in the codebook using some distortion measure. The input vector is then replaced by
the index of the codeword with the smallest distortion. Therefore, a description of the vector
guantization process includes:

1. the distortion measure;
2. the generation of each codeword in the codebook.

441.1. Distortion M easures

Since vectors are replaced by the index of the codeword with smallest distortion, the trans-
mitted data can be recovered only by replacing the code index sequence with the corre-
sponding codeword sequence. This inevitably causes distortion between the original data
and the transmitted data. How to minimize the distortion is thus the central goal of vector
quantization. This section describes a couple of the most common distortion measures.

Assume that X = (X, %,,...,%;) OR® is a d-dimensional vector whose components
{xk A<ks d} are real-valued, continuous-amplitude random variables. After vector quanti-
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zation, the vector x is mapped (quantized) to another discrete-amplitude d-dimensional vec-
tor z.

z=q(x) (4.74)

In Eq. (4.74) q() is the quantization operator. Typicaly, z is a vector from a finite set
Z :{zj A< j< M} , Where z, isalso ad-dimensional vector. The set Z is referred to asthe

codebook, M is the size of the codebook, and z; is j™ codeword. The size M of the code-
book is also called the number of partitions (or levels) in the codebook. To design a code-
book, the d-dimensional space of the original random vector x can be partitioned into M
regions or cells {C,,1<i <M}, and each cell C, is associated with a codeword vector z .

VQ then maps (quantizes) the input vector x to codeword z, if x liesin C, . That s,
q(x) =z if xOC (4.75)

An example of partitioning of atwo-dimensional space (d = 2) for the purpose of vec-
tor quantization is shown in Figure 4.12. The shaded region enclosed by the dashed lines is
thecell C . Any input vector X that liesin the cell C is quantized as z, . The shapes of the

various cells can be different. The positions of the codewords within each cell are shown by
dots in Figure 4.12. The codeword z, is aso referred to as the centroid of the cell C, be-

cause it can be viewed asthe central point of the cell C, .

When x is quantized as z, a quantization error results. A distortion measure d(x, z) can
be defined between x and z to measure the quantization quality. Using this distortion meas-
ure, Eq. (4.75) can be reformulated as follows:

q(x) =z, if andonly if i =argmin d(x,z,) (4.76)
k

The distortion measure between x and z is also known as a distance measure in the
speech context. The measure must be tractable in order to be computed and analyzed, and
also must be subjectively relevant so that differences in distortion values can be used to in-
dicate differences in original and transmitted signals. The most commonly used measure is
the Euclidean distortion measure, which assumes that the distortions contributed by quantiz-
ing the different parameters are equal. Therefore, the distortion measure d(X, z) can be de-
fined asfollows:

d(x,2) =(x-2)'(x -2) =Z(>§ -z)* (4.77)

The distortion defined in Eq. (4.77) is also known as sum of squared error. In general,
unequal weights can be introduced to weight certain contributions to the distortion more
than others. One choice for weights that is popular in many practical applications is to use
the inverse of the covariance matrix of z.

d(x,z2) =(x-2)' = (x -2) (4.78)
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This distortion measure, known as the Mahalanobis distance, is actually the exponentia
termin a Gaussian density function.
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Figure 4.12 Partitioning of atwo-dimensional space into 16 cells.

Another way to weight the contributions to the distortion measure is to use perceptu-
ally-based distortion measures. Such distortion measures take advantage of subjective judg-
ments of perceptual difference caused by two different signals. A perceptually-based distor-
tion measure has the property that signal changes that make the sounds being perceived dif-
ferent should be associated with large distances. Similarly signal changes that keep the
sound perceived the same should be associated with small distances. A number of perceptu-
aly based distortion measures have been used in speech coding [3, 75, 76].

4.4.1.2. The K-Means Algorithm

To design an M-level codebook, it is necessary to partition d-dimensional space into M cells
and associate a quantized vector with each cell. Based on the source-coding principle, the
criterion for optimization of the vector quantizer is to minimize overall average distortion
over al M-levels of the VQ. The overall average distortion can be defined by

D = E[d(x,2)] :i p(x OC)E[d(x,z) X0 C]
y = y (4.79)
=2 P(x0C) [ d(xz)p(x1X] C)ex 3D,
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where the integral is taken over all components of vector x; p(xCC,) denotes the prior
probability of codeword z,; p(x|xOC) denotes the multidimensional probability density
function of x in cell C; and D, is the average distortion in cell C,. No analytic solution

exists to guarantee global minimization of the average distortion measure for a given set of
speech data. However, an iterative algorithm, which guarantees a local minimum, exists and
works well in practice.

We say aquantizer is optimal if the overall average distortion is minimized over al M-
levels of the quantizer. There are two necessary conditions for optimality. The first is that
the optimal quantizer is realized by using a nearest-neighbor selection rule as specified by
EQ. (4.76). Note that the average distortion for each cell C,

E[d(x,z)[xOC] (4.80)

can be minimized when z, isselected such that d(x,z;) isminimized for x. This means that

the quantizer must choose the codeword that results in the minimum distortion with respect
to x. The second condition for optimality is that each codeword z, is chosen to minimize the

average distortionincell C . Thatis, z; isthe vector that minimizes
D, = p(z)E[d(x,2)|x OC] (4.81)

Since the overall average distortion D is a linear combination of average distortionsin
C. , they can be independently computed after classification of x. The vector z; iscalled the

centroid of the cell C, and iswritten
z, =cent(C) (4.82)
The centroid for a particular region (cell) depends on the definition of the distortion
measure. In practice, given a set of training vectors {x[, 1<t sT} , asubset of K, vectors

will be located in cell C . Inthiscase, p(x|z) can beassumedto be 1/K,, and p(z) be-
comesK, /T . Theaverage distortion D, incell C, can then be given by

D = 1 Z d(x,z (4.83)
T xOC
The second condition for optimality can then be rewritten as follows:
z, =argminD,(z,) :argminEZd(x,zi) (4.84)
Zi Zi xdG;

When the sum of squared error in Eq. (4.77) is used for the distortion measure, the at-
tempt to find such 2, to minimize the sum of squared error is equivalent to least squared
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error estimation, which was described in Chapter 3. Minimization of D, in Eq. (4.84) with
respect to z, isgiven by setting the derivative of D. to zero:

0,0=0, Z@z)az)

xDC

:le O, 0¢ 2) (e z;) (4.85)
——Z(x z) =0
xDC,

By solving Eq. (4.85), we obtain the least square error estimate of centroid z, simply as the
sample mean of al the training vectors x, quantized to cell C.:

5 =1 3 x (4.86)

If the Mahalanobis distance measure (Eq. (4.78)) is used, minimization of D, in Eq.
(4.84) can be done similarly:

0,070,236 23 " 2)

xOG

:$§@w;t%wm (4.87)
——ZZ (x-z) =0
xDC,

and centroid Z; isobtained from
5 1
== 4.88
2 = 2 (489

One can see that Z; is again the sample mean of al the training vectors x, quantized to cell
C. . Although Eqg. (4.88) is obtained based on the Mahalanobis distance measure, it aso

works with a large class of Euclidean-like distortion measures [61]. Since the Mahalanobis
distance measure is actually the exponential term in a Gaussian density, minimization of the
distance criterion can be easily trandated into maximization of the logarithm of the Gaussian
likelihood. Therefore, similar to the relationship between least square error estimation for
the linear discrimination function and the Gaussian classifier described in Section 4.3.3.1,
the distance minimization process (least square error estimation) above isin fact a maximum
likelihood estimation.
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According to these two conditions for VQ optimality, one can iteratively apply the
nearest-neighbor selection rule and Eq. (4.88) to get the new centroid 2, for each cell in

order to minimize the average distortion measure. This procedure is known as the k-means
algorithm or the generalized Lloyd algorithm [29, 34, 56]. In the k-means algorithm, the

basic idea is to partition the set of training vectors into M clusters C, (1si <M ) in such a

way that the two necessary conditions for optimality described above are satisfied. The k-
means algorithm can be described as follows:

ALGORITHM 4.2: THE K-MEANS ALGORITHM

Step 1: Initialization: Choose some adequate method to derive initial VQ codewords
(z; 1<i < M) inthe codebook.

Step 2: Nearest-neighbor Classification: Classify each training vector {x, } into one of the cell
s C, by choosing the closest codeword z, (xOGC,, iff d(x,z, x d(x,z;) forall j#i). This
classification is also called minimum-distance classifier.

Step 3: Codebook Updating: Update the codeword of every cell by computing the centroid of
the training vectors in each cell according to Eg. (4.84) (Z, = cent(C,), 1<i <M ).

Step 4: lteration: Repeat steps 2 and 3 until the ratio of the new overall distortion D at the cur-

rent iteration relative to the overall distortion at the previous iteration is above a preset thresh-
old.

In the process of minimizing the average distortion measure, the k-means procedure
actually breaks the minimization process into two steps. Assuming that the centroid z, (or

mean) for each cell C, has been found, then the minimization process is found simply by

partitioning al the training vectors into their corresponding cells according to the distortion
measure. After all of the new partitions are obtained, the minimization process involves
finding the new centroid within each cell to minimize its corresponding within-cell average
distortion D, based on Eq. (4.84). By iterating over these two steps, a new overall distortion

D smaller than that of the previous step can be obtained.

Theoretically, the k-means algorithm can converge only to a local optimum [56].
Furthermore, any such solution is, in general, not unique [33]. Initiaization is often critical
to the quality of the eventual converged codebook. Global optimality may be approximated
by repeating the k-means algorithm for several sets of codebook initialization values, and
then one can choose the codebook that produces the minimum overall distortion. In the next
subsection we will describe methods for finding adecent initial codebook.

4.4.1.3. TheLBG Algorithm

Since the initial codebook is critical to the ultimate quality of the final codebook, it has been
shown that it is advantageous to design an M-vector codebook in stages. This extended k-
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means algorithm is known as the LBG agorithm proposed by Linde, Buzo, and Gray [56].
The LBG agorithm first computes a 1-vector codebook, then uses a splitting algorithm on
the codewords to obtain the initial 2-vector codebook, and continues the splitting process
until the desired M-vector codebook is obtained. The procedure is formally implemented by
the following algorithm:

ALGORITHM 4.3: THE LBG ALGORITHM

Step 1: Initialization: Set M (number of partitions or cells) =1. Find the centroid of all the train-
ing data according to Eq. (4.84).

Step 2: Splitting: Split M into 2M partitions by splitting each current codeword by finding two
points that are far apart in each partition using a heuristic method, and use these two points as
the new centroids for the new 2M codebook. Now set M = 2M.

Step 3: K-means Stage: Now use the k-means iterative algorithm described in the previous
section to reach the best set of centroids for the new codebook.

Step 4: Termination: If M equals the VQ codebook size required, STOP; otherwise go to Step
2.

4.4.2. The EM Algorithm

We introduce the EM algorithm that is important to hidden Markov models and other learn-
ing techniques. It discovers model parameters by maximizing the log-likelihood of incom-
plete data and by iteratively maximizing the expectation of log-likelihood from complete
data. The EM algorithm is a generalization of the VQ a gorithm described above.

The EM algorithm can also be viewed as a generalization of the MLE method, when
the data observed is incomplete. Without loss of generality, we use scale random variables
here to describe the EM algorithm. Suppose we observe training data y. In order to deter-

mine the parameter vector @ that maximizes P(Y =vy| CD) , we would need to know some
hidden data x (that is unobserved). For example, x may be a hidden number that refers to

component densities of observable datay, or x may be the underlying hidden state sequence
in hidden Markov models (as discussed in Chapter 8). Without knowing this hidden data x,

we could not easily use the maximum likelihood estimation to estimate @ , which maxi-
mizes P(Y = y|®) . Instead, we assume a parameter vector ® and estimate the probability
that each x occurred in the generation of y. This way we can pretend that we had in fact ob-
served a complete data pair (X, y), with frequency proportional to the probability
P(X=xY =y|®), to compute anew @, the maximum likelihood estimate of ® . We
can then set the parameter vector ® to be thisnew ® and repeat the process to iteratively
improve our estimate.

The issue now is whether or not the process (EM algorithm) described above con-

verges. Without loss of generality, we assume that both random variables X (unobserved)
and Y (observed) are discrete random variables. According to Bayesrule,
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P(X =xY =y|®) =P(X =x|Y =y, DP(Y =y| @ (4.89)

Our goal is to maximize the log-likelihood of the observable, real datay generated by pa-
rameter vector ® . Based on Eq. (4.89), the log-likelihood can be expressed as follows:

logP(Y = y|®) =logP(X =x,Y =y| ® HogP(X =x|Y =y, @ (4.90)

Now, we take the conditional expectation of logP(Y =y|®) over X computed with pa-
rameter vector @ :

logP(Y = y| )]y, = (P(X =X|Y =y, ®)logP(Y =y| d
EullogP(Y =y [ ®)lyy-, =X (PX =Y =y, D)logP(Y =y| 9) o

=logP(Y = y| ®)

where we denote E,[ f],, ., asthe expectation of function f over X computed with parame-
ter vector @ . Then using Eq. (4.90) and (4.91) , the following expression is obtained:

logP(Y = y| ®) =E,[logP(X,Y =y| ®)],y-, ~E,[logP(X |Y =y, D], -,

_ _ (4.92)
=Q(P, D) -H(D, D
where
Q(®, ®) =E4[logP(X,Y =y | D)lyy-,
=3 (P(X =x|Y =y, ®)logP(X =xY =y| B) (4.93)
and
H(®,®) =E,[logP(X |Y =y, D)],-,
=Y (P(X =x]Y =y, ®)logP(X =x|Y =y, D) (4.99)
The convergence of the EM a gorithm liesin the fact that if we choose ® so that
Q(®, ®) =2Q(P, D) (4.95)
then
logP(Y = y|®) 2logP(Y =y| ®) (4.96)

since it follows from Jensen's inequality that H(®,®) <H(®, @) [21]. The function

Q(®, ®) is known as the Q-function or auxiliary function. This fact implies that we can
maximize the Q-function, which is the expectation of log-likelihood from compl ete data pair
(X, ¥), to update parameter vector from ® to ®, so that the incomplete log-likelihood
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L(x,®) increases monotonically. Eventually, the likelihood will converge to a local maxi-

mum if we iterate the process.
The name of the EM algorithm comes from E for expectation and M for maximization.
The implementation of the EM algorithm includes the E (expectation) step, which calculates

the auxiliary Q-function Q(®,®) and the M (maximization) step, which maximizes
Q(®, ®) over ® toobtain ® . The general EM algorithm can be described in the following
way.

ALGORITHM 4.4: THE EM ALGORITHM

Step 1: Initialization: Choose an initial estimate @ .
Step 2: E-Step: Compute auxiliary Q-function Q(d, ®) (which is also the expectation of log-
likelihood from complete data) based on @ .
Step 3: M-Step: Compute = argmax Q(, @) to maximize the auxiliary Q-function.
(o]

Step 4: Iteration: Set & = D, repeat from Step 2 until convergence.

The M-step of the EM algorithm is actually a maximum likelihood estimation of com-
plete data (assuming we know the unobserved data x based on observed data y and initial
parameter vector @ ). The EM algorithm is usually used in applications where no analytic
solution exists for maximization of log-likelihood of incomplete data. Instead, the Q-
function isiteratively maximized to obtain the estimation of parameter vector.

4.4.3. Multivariate Gaussian Mixture Density Estimation

The vector quantization process described in Section 4.4.1 partitions the data space into
separate regions based on some distance measure regardless of the probability distributions
of original data. This process may introduce errors in partitions that could potentially de-
stroy the original structure of data. An alternative way for modeling a VQ codebook isto use
afamily of Gaussian probability density functions, such that each cell will be represented by
a (Gaussian) probability density function as shown in Figure 4.13. These probability density
functions can then overlap, rather than partition, in order to represent the entire data space.
The objective for a mixture Gaussian VQ is to maximize the likelihood of the observed data
(represented by the product of the Gaussian mixture scores) instead of minimizing the over-
al distortion. The centroid of each cell (the mean vectors of each Gaussian pdf) obtained via
such a representation may be quite different from that obtained using the traditional k-mean
agorithm, since the distribution properties of the data are taken into account.
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Figure 4.13 Partitioning of atwo-dimensional space with 12 Gaussian density functions.

There should be an obvious analogy between the EM algorithm and the k-means algo-
rithm described in the Section 4.4.1.2. In the k-means algorithm, the class information for
the observed data samples is hidden and unobserved, so an EM-like algorithm instead of
maximum likelihood estimate needs to be used. Therefore, instead of a single process of
maximum likelihood estimation, the k-means algorithm first uses the old codebook to find
the nearest neighbor for each data sample followed by maximum likelihood estimation of
the new codebook and iterates the process until the distortion stabilizes. The steps2 and 3in
the k-means algorithm are actually the E and M stepsin the EM algorithm respectively.

Mixture density estimation [41] isatypical example of EM estimation. In the mixtures
of Gaussian density, the probability density for observable data y is the weighted sum of
each Gaussian component.

Y 19) =3 6,0,y 19) = 6N, [, %) (@97)

where 0<¢, <1, for 1<k <K and Z:lck =1.

Unlike the case of a single Gaussian estimation, we also need to estimate the mixture
weight ¢, . In order to do so, we can assume that observable data'y come from one of the
component densities p, (Y | &), where X is arandom variable taking value from {1,2,... K}
to indicate the Gaussian component. It is clear that X is unobserved and used to specify the
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pdf component ¢, . Assuming that the probability density function for complete data (x,y) is
given by the joint probability:

p(y, x| ®) = P(X =X)p,(y [®,) =P(X =X)N, (Y [y, %) (4.98)

P(X =x) can be regarded as the probability of the unobserved data x used to specify the
component density p, (y |®,) from which the observed datay is drawn. If we assume the

number of components is K and @® is the vector of all probability parameters
(P(X), ®,,®,,...,®, ), the probability density function of incomplete (observed) data y
can be specified as the following marginal probability:

py [®) =) p(y, x| ®) =D P(X =x)p,(y | ®,) (4.99)

By comparing Eqg. (4.97) and (4.99), we can see that the mixture weight is represented as the
probability function P(X =x) . That is,

¢, = P(X =Kk) (4.100)

According to the EM algorithm, the maximization of the logarithm of the likelihood
function log p(y | ®) can be performed by iteratively maximizing the conditional expecta-
tion of the logarithm of Eq. (4.98), i.e., log p(y, x| ®) . Suppose we have observed N inde-
pendent samples: {y,.y,,...,yy} with hidden unobserved data {x,X,.....X}; the Q-
function can then be written as follows:

Q@,®) = ZQ(<I> ®) = ZZ P(x |y;,®)log p(y;,% |®)
X (4.101)

—ZZ p(y.,xlclp)) og p(y,, % | ®)
=l x

By replacing items in Eq. (4.101) with Egs. (4.98) and (4.100), the following equation can
be obtained:

Q®,®) =3y, log5, +3Q, (@, ,) (4.102)
where

S ATy @1

yk :iyk :ick pk(yi |q)k) (4.104)

i=1 i=1 P(y| |(I))
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Q(®.®,) = ZVklogpk(y.m)k) z%

Now we can perform a maximum likelihood estimation on the complete data (x, y)
during the M-step. By taking the derivative with respect to each parameter and setting it to
zero, we obtain the following EM re-estimate of ¢, m,, and Z, :

log p,(y; |®,) (4.105)

= K (4.106)
Zyk N
N ckpk(y.l<1>k)y.
;Vk zl P(y; I<I>)
N ot 3 G P Y @)Y, —m )Y, _llk)t
X _2AV I ) :Z P(y, | ®) w108
k NG G Py, |®,) .
;Vk zl P(y, | @)

The quantity y, defined in Eq. (4.103) can be interpreted as the posterior probability
that the observed data y, belong to Gaussian component k (N, (v |p,.Z,) ). Thisinforma-
tion as to whether the observed data y, should belong to Gaussian component k is hidden
and can only be observed through the hidden variable x (c,) . The EM agorithm described
above is used to uncover how likely the observed data y, are expected to be in each Gaus-

sian component. The re-estimation formulas are consistent with our intuition. These MLE
formulas calculate the weighted contribution of each data sample according to the mixture
posterior probability y .

In fact, VQ is an approximate version of EM algorithms. A traditional VQ with the

Mahalanobis distance measure is equivalent to a mixture Gaussian VQ with the following
conditions

¢ =1/K (4.109)

)1y, OG
= 4.110
g {O, otherwise (4.110)
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The difference between VQ and the EM algorithm is that VQ performs a hard assignment of
the data sample y, to clusters (cells) while the EM algorithm performs a soft assignment of

the data sample y, to clusters. As discussed in Chapter 8, this difference carries over to the
case of the Viterbi algorithm vs. the Baum-Welch algorithm in hidden Markov models.

4.5, CLASSIFICATION AND REGRESSION TREES

Classification and regression trees (CART) [15, 82] have been used in a variety of pattern
recognition applications. Binary decision trees, with splitting questions attached to each
node, provide an easy representation that interprets and predicts the structures of a set of
data. The application of binary decision trees is much like playing the number-guessing
game, where the examinee tries to deduce the chosen number by asking a series of binary
number-comparing questions.

Consider a simple binary decision tree for height classification. Every person’s datain
the study may consist of several measurements, including race, gender, weight, age, occupa-
tion, and so on. The goal of the study isto develop a classification method to assign a person
one of the following five height classes: tall (T), medium-tall (t), medium (M), medium-shor
t(s) and short (S). Figure 4.14 shows an example of such a binary tree structure. With this
binary decision tree, one can easily predict the height class for any new person (with al the
measured data, but no height information) by traversing the binary trees. Traversing the bi-
nary tree is done through answering a series of yes/no questions in the traversed nodes with
the measured data. When the answer is yes, the right branch is traversed next; otherwise, the
left branch will be traversed instead. When the path ends at a leaf node, you can use its at-
tached label as the height class for the new person. If you have the average height for each
leaf node (computed by averaging the heights from those people who fall in the same leaf
node during training), you can actually use the average height in the leaf node to predict the
height for the new person.

This classification process is similar to a rule-based system where the classification is
carried out by a sequence of decision rules. The choice and order of rules applied in arule-
based system is typically designed subjectively by hand through an introspective analysis
based on the impressions and intuitions of a limited number of data samples. CART, on the
other hand, provides an automatic and data-driven framework to construct the decision proc-
ess based on objective criteria. Most statistical pattern recognition techniques are designed
for data samples having a standard structure with homogeneous variables. CART is designed
instead to handle data samples with high dimensionality, mixed data types, and nonstandard
data structure. It has the following advantages over other pattern recognition techniques:

[0 CART can be applied to any data structure through appropriate formulation of
the set of potential questions.

0 The binary tree structure allows for compact storage, efficient classification, and
easily understood interpretation of the predictive structure of the data.

0 It often provides, without additional effort, not only classification and recogni-
tion, but also an estimate of the misclassification rate for each class.
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0 It not only handles missing data, but also is very robust to outliers and misa-
beled data samples.

Isage> 122

I's occupation = professional

Is milk consumption > more
than 5 quarts per week?

M m

Figure4.14 A binary tree structure for height classification

To construct a CART from the training samples with their classes (let’s denote the set
as [0), we first need to find a set of questions regarding the measured variables; e.g., “Isage
> 127", “Is occupation = professional basketball player?’, “Is gender = male?’ and so on.
Once the question set is determined, CART uses a greedy algorithm to generate the decision
trees. All training samples O are placed in the root of the initia tree. The best question is
then chosen from the question set to split the root into two nodes. Of course, we need a
measurement of how well each question splits the data samples to pick the best question.
The algorithm recursively splits the most promising node with the best question until the
right-sized tree is obtained. We describe next how to construct the question set, how to
measure each split, how to grow the tree, and how to choose the right-sized tree.

45.1. Choice of Question Set

Assume that the training data has the following format:

X = (X5 Xgye e Xy ) (4.111)
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where each variable x is a discrete or continuous data type. We can construct a standard
set of questions Q asfollows:

1. Each question is about the value of only a single variable. Questions of this
type are called simple or singleton questions.

2. If x is adiscrete variable from the set{c,,c,,...,c.} , Q includes all ques-
tions of the following form:

{Isx 0S? (4.112)
where S isany subset of {c,,c,,...,C }

3. If x is a continuous variable, Q includes all questions of the following
form:

{Isx <c? for cOfoo ¢ ) (4.113)

The question subset generated from discrete variables (in condition 2 above) is clearly
a finite set (2™ —1). On the other hand, the question subset generated from continuous
variables (in condition 3 above) seems to be an infinite set based on the definition. Fortu-
nately, since the training data samples are finite, there are only finite number of distinct
splits for the training data. For a continuous variable x , the data points in O contain at

most M distinct values v,,v,,...,V,, . There are only at most M different splits generated by
the set of questionsin the form:

{1sx <c } n=12,...,M (4.114)

V.tV . . .
where ¢, = % and v, =0. Therefore, questions related to a continuous variable aso

form a finite subset. The fact that Q is a finite set allows the enumerating of all possible

guestions in each node during tree growing.
The construction of a question set is similar to that of rulesin arule-based system. In-
stead of using the all-possible question set Q, some people use knowledge selectively to

pick asubset of Q, which is sensitive to pattern classification. For example, the vowel sub-

set and consonant subset are a natural choice for these sensitive questions for phoneme clas-
sification. However, the beauty of CART isthe ability to use al possible questions related to
the measured variables, because CART has a statistical data-driven framework to determine
the decision process (as described in subsequent Sections). Instead of setting some con-
straints on the questions (splits), most CART systems use all the possible questionsfor Q.
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4.5.2. Splitting Criteria

A question in CART framework represents a split (partition) of data samples. All the leaf
nodes (L in total) represent L digjoint subsets A, A,,..., A . Now we have the entire po-

tential question set Q, the task is how to find the best question for a node split. The selec-
tion of the best question is equivalent to finding the best split for the data samples of the
node.

Since each node t in the tree contains some training samples, we can compute the cor-
responding class probability density function P(w|t) . The classification process for the
node can then be interpreted as a random process based on P(w|t) . Since our goal isclassi-

fication, the objective of a decision tree is to reduce the uncertainty of the event being de-
cided upon. We want the leaf nodes to be as pure as possible in terms of the class distribu-
tion. Let Y be the random variable of classification decision for data sasmple X . We could
define the weighted entropy for any node t asfollows:

H,(Y) = H,(Y)P(t) (4.115)

H.(Y) ==X P(« |t)log P(« 1) (4.116)

where P(w |t) isthe percentage of data samples for classi in node t; and P(t) is the prior

probability of visiting node t (equivalent to the ratio of number of data samplesin nodet and
the total number of training data samples). With this weighted entropy definition, the split-
ting criterion is equivalent to finding the question which gives the greatest entropy reduc-
tion, where the entropy reduction for a question g to split anode t into leaves | and r can be
defined as:

AH, (@) = H (V) = (H (V) +H, (Y)) =H,(Y) -H,(Y |9) (4.117)

The reduction in entropy is also the mutual information between Y and question .
The task becomes that of evaluating the entropy reduction AH_q for each potential question
(split), and picking the question with the greatest entropy reduction, that is,

q =argmax (AH, (q)) (4.118)

If we define the entropy for atree, T, as the sum of weighted entropies for all the terminal
nodes, we have:

HT)= D H(Y) (4.119)
t istermina
It can be shown that the tree-growing (splitting) process repeatedly reduces the en-
tropy of the tree. The resulting tree thus has a better classification power. For continuous
pdf, likelihood gain is often used instead, since there is no straightforward entropy meas-
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urement [43]. Suppose one specific split divides the data into two groups, X, and X,,
which can then be used to train two Gaussian distributions N(p,,%,) and N(p,,Z,). The
log-likelihoods for generating these two data groups are:

L,(X,|N)=log |_| N(X,,n,, %) =(dlog27 +log| 5| +d)a/2 (4.120)
L,(X, |N)=log |_| N(X,,n,,Z,) =(dlog 2 +log|5,| +d)b/2 (4.121)

where d is the dimensionality of the data; and a and b are the sample counts for the data
groups X, and X, respectively. Now if the entire data X, and X, are merged into one

group and modeled by one Gaussian N(p,%), according to MLE, we have

__a b

hE o™ T (4.122)

__ a b

e R U DR D PR e PR P DICAIS D (4.123)
Thus, the likelihood gain of splitting the data X into two groups X, and X, is:

AL () = L(X, IN) + L, (X, IN) =L (X N

L(@) = L(X; IN) + L, (X5 [N) =L (X [N) @120

=(a+b)log|5| -alog|%,| -blog|Z,|

For regression purposes, the most popular splitting criterion is the mean squared error
measure, which is consistent with the common least squared regression methods. For in-
stance, suppose we need to investigate the real height as a regression function of the meas-
ured variables in the height study. Instead of finding height classification, we could simply
use the average height in each node to predict the height for any data sample. Suppose Y is
the actual height for training data X , then overall regression (prediction) error for a node t
can be defined as:

Et) =YY -d(X)F (4.125)
X0Ot
where d(X) isthe regression (predictive) value of Y
Now, instead of finding the question with greatest entropy reduction, we want to find
the question with largest squared error reduction. That is, we want to pick the question g
that maximizes:

AE (q) = E(t) - (E() +E(r)) (4.126)

where | and r are the leaves of node t. We define the expected square error V (t) for anodet
asthe overall regression error divided by the total number of data samplesin the node.
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V(1) :E(Z|Y—d(X) |2J :ﬁZw—d(X) B (4.127)

Note that V (t) is actually the variance estimate of the height, if d(X)is made to be the aver-
age height of data samples in the node. With V(t) , we define the weighted squared error
V(t) for anodet asfollows.

V(t) =V{©)PE) = (ﬁZw ~d(X) |2J P(t) (4.128)
Finally, the splitting criterion can be rewritten as:
AV, (q) =V () —(V (1) +V(r)) (4.129)

Based on Egs. (4.117) and (4.129), one can see the analogy between entropy and variance in
the splitting criteria for CART. The use of entropy or variance as splitting criteria is under
the assumption of uniform misclassification costs and uniform prior distributions. When
nonuniform misclassification costs and prior distributions are used, some other splitting
might be used for splitting criteria. Noteworthy ones are Gini index of diverity and twoing
rule. Those interested in aternative splitting criteria can refer to [11, 15].

For awide range of splitting criteria, the properties of the resulting CARTs are empiri-
cally insensitive to these choices. Instead, the criterion used to get the right-sized tree is
much more important. We discuss thisissue in Section 4.5.6.

4.5.3. Growingthe Tree

Given the question set Q and splitting criteria AH, (q), the tree-growing algorithm starts
from the initial root-only tree. At each node of tree, the algorithm searches through the vari-
ables one by one, from x, to X, . For each variable, it uses the splitting criteria to find the

best question (split). Then it can pick the best question out of the N best single-variable
questions. The procedure can continue splitting each node until either of the following con-
ditionsis met for a node:

1. No more splits are possible; that is, all the data samplesin the node belong to
the same class,

2. The greatest entropy reduction of best question (split) fall below a pre-set
threshold g, i.e.

mex AH (0)< B (4.130)
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3. The number of data samples falling in the leaf nodet is below some threshold
a . Thisisto assure that there are enough training tokens for each leaf node if
one needs to estimate some parameters associated with the node.
When a node cannot be further split, it is declared a terminal node. When all active (non-
split) nodes are terminal, the tree-growing algorithm stops.

The algorithm is greedy because the question selected for any given node is the one
that seems to be the best, without regard to subsequent splits and nodes. Thus, the algorithm
constructs a tree that is locally optimal, but not necessarily globally optimal (but hopefully
globally good enough). This tree-growing algorithm has been successfully applied in many
applications [5, 39, 60]. A dynamic programming algorithm for determining global optimal-
ity is described in [78]; however, it is suitable only in restricted applications with relatively
few variables.

4.5.4. Missing Values and Conflict Resolution

Sometimes, the available data sample X = (%, %;,...Xy) has some value x; missing. This
missing-value case can be handled by the use of surrogate questions (splits). The idea is
intuitive. We define a similarity measurement between any two questions (splits) q and §
of anode t. If the best question of node t is the question g on the variable X, find the
question § that is most similar to gon a variable other than x, . § is our best surrogate

question. Similarly, we find the second-best surrogate question, third-best and so on. The
surrogate questions are considered as the backup questions in the case of missing x values

in the data samples. The surrogate question is used in the descending order to continue tree
traversing for those data samples. The surrogate question gives CART unique ability to han-
dle the case of missing data. The similarity measurement is basically a measurement reflect-
ing the similarity of the class probability density function [15].

When choosing the best question for splitting a node, several questions on the same
variable x may achieve the same entropy reduction and generate the same partition. Asin
rule-based problem solving systems, a conflict resolution procedure [99] is needed to decide
which question to use. For example, discrete questions g, and g, have the following for-
mat:

g : {IsxO0S% (4.131)

0, : {Isx0S, % (4.132)

Suppose S is a subset of S,, and one particular node contains only data samples
whose x value contains only valuesin S, but no other. Now question g, or g, performs
the same splitting pattern and therefore achieves exactly the same amount of entropy reduc-
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tion. In this case, we call g, a sub-question of question q,, because g, is a more specific

version.

A specificity ordering conflict resolution strategy is used to favor the discrete question
with fewer elements because it is more specific to the current node. In other words, if the
elements of a question are a subset of the elements of another question with the same en-
tropy reduction, the question with the subset of elements is preferred. Preferring more spe-
cific questions will prevent decision trees from over-generalizing. The specificity ordering
conflict resolution can be implemented easily by presorting the set of discrete questions by
the number of elements they contain in descending order, before applying them to decision
trees. A similar specificity ordering conflict resolution can also be implemented for continu-
ous-variable questions.

455. Complex Questions

One problem with allowing only simple questions is that the data may be over-fragmented,
resulting in similar leavesin different locations of the tree. For example, when the best ques-
tion (rule) to split a node is actually a composite question of the form “Is x 0§ ?" or “Is
x 0S,?", asystem alowing only simple questions will generate two separate questions to
split the data into three clusters rather than two as shown in Figure 4.15. Also data for which
the answer is yes are inevitably fragmented across two shaded nodes. This is inefficient and
ineffective since these two very similar data clusters may now both contain insufficient
training examples, which could potentially handicap the future tree growing. Splitting data
unnecessarily across different nodes leads to unnecessary computation, redundant clusters,
reduced trainability, and less accurate entropy reduction.

We deal with this problem by using a composite-question construction [38, 40]. It in-
volves conjunctive and disunctive combinations of all questions (and their negations). A
composite question is formed by first growing a tree with simple questions only and then
clustering the leaves into two sets. Figure 4.16 shows the formation of one composite ques-
tion. After merging, the structure is still a binary question. To construct the composite ques-
tion, multiple OR operators are used to describe the composite condition leading to either
one of the final clusters, and AND operators are used to describe the relation within a par-
ticular route. Finally, a Boolean reduction algorithm is used to simplify the Boolean expres-
sion of the composite question.

To speed up the process of constructing composite questions, we constrain the number
of leaves or the depth of the binary tree through heuristics. The most frequently used heuris-
tics is the limitation of the depth when searching a composite question. Since composite
questions are essentially binary questions, we use the same greedy tree-growing algorithm to
find the best composite question for each node and keep growing the tree until the stop crite-
rion is met. The use of composite questions not only enables flexible clustering, but also
improves entropy reduction. Growing the sub-tree a little deeper before constructing the
composite question may achieve longer-range optimum, which is preferable to the local op-
timum achieved in the original greedy algorithm that used simple questions only.
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Figure 4.15 A over-split tree for question “Is x 0§ ?" or “Is x 0S,?’

Figure 4.16 The formation of a composite question from simple questions

The construction of composite questions can also be applied to continuous variables to
obtained complex rectangular partitions. However, some other techniques are used to obtain
genera partitions generated by hyperplanes not perpendicular to the coordinate axes. Ques-
tions typically have alinear combination of continuous variablesin the following form [15]:

{Is Zapg <c? (4.133)
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4.5.6. TheRight-Sized Tree

One of the most critical problems for CART is that the tree may be strictly tailored to the
training data that has no generalization capability. When you split a leaf node in the tree to
get entropy reduction until each leaf node contains data from one single class, that tree pos-
sesses a zero percent classification error on the training set. Thisis an over-optimistic esti-
mate of the test-set misclassification rate. Independent test sample estimation or cross-
validation is often used to prevent decision trees from over-modeling idiosyncrasies of the
training data. To get aright-sized tree, you can minimize the misclassification rate for future
independent test data.

Before we describe the solution for finding the right sized tree, let’ s define a couple of
useful terms. Naturally we will use the plurality rule o(t) to choose the classfor anodet:

o(t) =argmax P(« |t) (4.134)

Similar to the notation used in Bayes' decision theory, we can define the misclassification
rate R(t) for anodet as:

R(t) =r(t)P(t) (4.135)

where r(t) =1-max P(w |t) and P(t) is the frequency (probability) of the data falling in
nodet. The overall misclassification rate for the whole tree T is defined as:

R(T) = Z R(t) (4.136)

where T represents the set of terminal nodes. If a nonuniform misclassification cost c(i | j),
the cost of misclassifying class| dataas classi data, is used, r(t) isredefined as.

r®)=min c(i|j)P(j 1) (4.137)

Aswe mentioned, R(T) can be made arbitrarily small (eventually reduced to zero) for
the training data if we keep growing the tree. The key now is how we choose the tree that
can minimize R (T) , which is denoted as the misclassification rate of independent test data.
Almost no treeinitialy grown can perform well on independent test data. In fact, using more
complicated stopping rules to limit the tree growing seldom works, and it is either stopped
too soon at some terminal nodes, or continued too far in other parts of the tree. Instead of
inventing some clever stopping criteria to stop the tree growing at the right size, we let the
tree over-grow (based on rulesin Section 4.5.3). We use a pruning strategy to gradually cut

back the tree until the minimum R’ (T) is achieved. In the next section we describe an algo-
rithm to prune an over-grown tree, minimum cost-complexity pruning.
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4.5.6.1. Minimum Cost-Complexity Pruning

To prune atree, we need to find a subtree (or branch) that makes the least impact in terms of
acost measure, whether it is pruned or not. This candidate to be pruned is called the weakest
subtree. To define such a weakest subtree, we first need to define the cost measure.

DEFINITION 1: For any sub-tree T of T (T <T_, ), let |T| denote the number of ter-
minal nodesintree T .

DEFINITION 2: Let a =0 be areal number called the complexity parameter. The cost-
complexity measure can be defined as:

R(M)=R(M)+a|T| (4.138)

DEFINITION 3: For each a, define the minimal cost-complexity subtree T(a) <T,,, that
minimizes R, (T), that is,
T(a)=agminR,(T) (4.139)

T<Trax

Based on DEFINITION 3, if a is small, the penalty for having a large tree is small
and T(a) will belarge. Infact, T(0) = T, because T, hasazero misclassification rate,
so it will minimize R (T). On the other hand, when «a increases, T(a) becomes smaller
and smaller. For asufficient large a, T(a) may collapse into atree with only the root. The
increase of a produces a sequence of pruned trees and it is the basis of the pruning process.
The pruning algorithm rests on two theorems. Thefirst is given as follows.

THEOREM 1: For every value of a, there exists a unique minimal cost-complexity sub-
tree T(a) asdefined in Definition 3.2

To progressively prune the tree, we need to find the weakest subtree (node). The idea
of aweakest subtree is the following: if we collapse the weakest subtree into a single termi-
nal node, the cost-complexity measure would increase least. For any node tinthetree T,
let {t} denote the subtree containing only the node t, and T, denote the branch starting at

node t . Then we have
R, (T)=R(T) +a|T| (4.140)

R, ({t}) =R(t) +a (4.141)

When ¢ is smdl, T, has a smaller cost-complexity than the single-node tree {t} .
However, when ¢ increases to a point where the cost-complexity measures for T, and {t}

%2'Y ou can find the proof to thisin [15].
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are the same, it makes sense to collapse T, into a single terminal node {t} . Therefore, we
decide the critical value for a by solving the following inequality:

R (T) =R ({t}) (4.142)
We obtain:
a < RO -RT) (4.143)
T, [-1

Based on Eq. (4.143), we define a measurement 1(t) for eachnodetintreeT:

RO-R(M) 7
ny=4{ [T 1-1 ° (4.144)
+o00, tOT

Based on measurement 7(t) , we then define the weakest subtree T, as the tree branch start-
ing at the node t, such that

t, =argmin 7(t) (4.145)
taT

a, =n(t,) (4.146)

As a increases, the node t, is the first node such that R, ({t}) becomes equal to
R, (T;) . At this point, it would make sense to prune subtree T, (collapse T, into a single-
node subtree {t,} ), and a, isthevalue of a where the pruning occurs.

Now thetree T after pruningisreferredtoas T, i.e,
T,=T-T, (4.147)

We then use the same process to find the weakest subtree T, in T, and the new pruning
point a,. After pruning away T, from T, to form the new pruned tree T,, we repeat the

same process to find the next weakest subtree and pruning point. If we continue the process,
we get a sequence of decreasing pruned trees:

T-T,>T, =T, ={r} (4.148)

where {r} isthe single-node tree containing the root of tree T with corresponding pruning
points:

a, <a,<a, <d, <--- (4.149)

where a, =0
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With the process above, the following theorem (which is basic for the minimum cost-
complexity pruning) can be proved.

THEOREM 2: Let T, betheorigina tree T .

For k=20, a,<a<a,,,, T(a)=T(@,) =T, (4.150)

45.6.2. Independent Test Sample Estimation

The minimum cost-complexity pruning algorithm can progressively prune the over-grown
tree to form a decreasing sequence of subtrees T >T, > T, > T,--- >={r} , where T, =T(a,) ,
a,=0 and T, =T . The task now is simply to choose one of those subtrees as the optimal-
sized tree. Our goal is to find the optimal-sized tree that minimizes the misclassification for
independent test set R'(T) . When the training set 0 is abundant, we can afford to set aside
an independent test set 0 from the training set. Usually O is selected as one third of the
training set 0. We use the remaining two thirds of the training set - (still abundant) to
train the initia tree T and apply the minimum cost-complexity pruning algorithm to attain
the decreasing sequence of subtrees T T, > T, >T,--->{r}. Next, the test set O isrun
through the sequence of subtrees to get corresponding estimates of test-set misclassification
R (T),R(T),R (T,),---,R ({r}) . The optimal-sized tree T is then picked as the one with
minimum test-set misclassification measure, i.e.:

k' =argminR (T,) (4.151)
k

The independent test sample estimation approach has the drawback that it reduces the
effective training sample size. This is why it is used only when there is abundant training
data. Under most circumstances where training data is limited, cross-validation is often
used.

45.6.3. Cross-Validation

CART can be pruned via v-fold cross-validation. It follows the same principle of cross vali-
dation described in Section 4.2.3. First it randomly divides the training set [ into v digoint
subset 0,11 ,,--E] , each containing roughly the same data samples. It then defines the i"

training set

O=030 =i 12..,v (4.152)

sothat [0 contains the fraction (v—1)/v of the original training set. v is usually chosen to

be large, like 10.
In v-fold cross-validation, v auxiliary trees are grown together with the main tree T

grown on 0. The i" tree is grown on the i training set ['. By applying minimum cost-
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complexity pruning, for any given value of the cost-complexity parameter a , we can obtain
the corresponding minimum cost-complexity subtrees T(a) and T'(a), i =12,...,v. Ac-

cording to Theorem 2 in Section 4.5.6.1, those minimum cost-complexity subtrees will form
v+1 sequences of subtrees:

T>-T,>T,>T,--->{r} and (4.153)

TeT sT =T {r'} i=12..v (4.154)

ALGORITHM 4.5 THE CART ALGORITHM

Step 1: Question Set: Create a standard set of questions Q that consists of all possible ques-
tions about the measure variables.

Step 2: Splitting Criterion: Pick a splitting criterion that can evaluate all the possible questions in
any node. Usually it is either entropy-like measurement for classification trees or mean square
errors for regression trees.

Step 3: Initialization: Create a tree with one (root) node, consisting of all training samples.

Step 4: Split Candidates: Find the best composite question for each terminal node:

| a. Generate a tree with several simple-question splits as described in Section 4.5.3. |

b. Cluster leaf nodes into two classes according to the same splitting criterion.

c. Based on the clustering done in (b), construct a corresponding composite question.
Step 5: Split: Out of all the split candidates in Step 4, split the one with best criterion.
Step 6: Stop Criterion: If all the leaf node containing data samples from the same class or all
the potential splits generate improvement fall below a pre-set threshold £, go to Step 7; oth-
erwise go to Step 4.

Step 7: Use independent test sample estimate or cross-validation estimate to prune the original
tree into the optimal size.

The basic assumption of cross-validation is that the procedure is stable if v islarge.
That is, T(a) should have the same classification accuracy as T'(a) . Although we cannot

directly estimate the test-set misclassification for the main tree R (T(a)), we could ap-
proximate it via the test-set misclassification measure R (T'(a)), since each data samplein

0 occurs in one and only one test set [J,. The v-fold cross-validation estimate R (T (a))
can be computed as:

R (T(@) =Y R (' @) (4.155)
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Similar to Eq. (4.151), once R% (T(a)) is computed, the optimal v-fold cross-validation
tree T, can be found through

k% =argminR* (T,) (4.156)
k

Cross-validation is computationally expensive in comparison with independent test
sample estimation, though it makes more effective use of all training data and reveals useful
information regarding the stability of the tree structure. Since the auxiliary trees are grown
on asmaller training set (afraction v—1/v of the original training data), they tend to have a

higher misclassification rate. Therefore, the cross-validation estimates R®Y (T) tend to be an

over-estimation of the misclassification rate. The algorithm for generating a CART tree is
illustrated in Algorithm 4.5.

4.6. HISTORICAL PERSPECTIVE AND FURTHER READING

Pattern recognition is amultidisciplinary field that comprises a broad body of loosely related
knowledge and techniques. Historically, there are two major approaches to pattern recogni-
tion — the statistical and the syntactical approaches. Although this chapter is focused on the
statistical approach, syntactical pattern recognition techniques, which aim to address the
limitations of the statistical approach in handling contextual or structural information, can be
complementary to statistical approaches for spoken language processing, such as parsing.
Syntactic pattern recognition is based on the analogy that complex patterns can be decom-
posed recursively into simpler subpatterns, much as a sentence can be decomposed into
words and letters. Fu [24] provides an excellent book on syntactic pattern recognition.

The foundation of statistical pattern recognition is Bayesian theory, which can be
traced back to the 18" century [9, 54] and its invention by the British mathematician Tho-
mas Bayes (1702-1761). Chow [20] was the first to use Bayesian decision theory for pattern
recognition. Statistical pattern recognition has been used successfully in a wide range of
applications, from optical/handwritten recognition [13, 96], to speech recognition [7, 86] and
to medical/machinery diagnosis [1, 27]. The books by Duda et al. [22] and Fukunaga [25]
are two classic treatments of statistical pattern recognition. Duda et al. have a second edition
of the classic pattern recognition book [23] that includes many up-to-date topics.

MLE and MAP are two most frequently used estimation methods for pattern recogni-
tion because of their smplicity and efficiency. In Chapters 8 and 9, they play an essential
role in model parameter estimation. Estimating the recognition performance and comparing
different recognition systems are important subjects in pattern recognition. The importance
of alarge number of test samples was reported in [49]. McNemar’s test is dated back to the
1940s [66]. The modification of the test for continuous speech recognition systems pre-
sented in this chapter is based on an interesting paper [30] that contains a general discussion
on using hypothesis-testing methods for continuous speech recognition.

Gradient descent is fundamental for most discriminant estimation methods, including
MMIE, MCE, and neural networks. The history of gradient descent can be traced back to
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Newton’s method for root finding [72, 81]. Both the book by Duda et al. [23] and the paper
by Juang et al. [48] provide a good description of gradient descent. MMIE was first pro-
posed in [16, 71] for the speech recognition problem. According to these two works, MMIE
is more robust than MLE to incorrect model assumptions. MCE was first formulated by
Juang et al. [48] and successfully applied to small-vocabulary speech recognition [47].

The modern era of neural networks was brought to the scientific community by
McCulloch and Pitts. In the pioneering paper [64], McCulloch and Pitts laid out the mathe-
matical treatment of the behavior of networks of simple neurons. The most important result
they showed is that a network would compute any computable function. John von Neumann
was influenced by this paper to use switch-delay elements derived from the McCulloch-Pitts
neuron in the construction of the EDVAC (Electronic Discrete Variable Automatic Com-
puter) that was devel oped based on ENIAC (Electronic Numerical Integrator and Computer)
[2, 35]. The ENIAC was the famous first general-purpose electronic computer built at the
Moore School of Electrical Engineering at the University of Pennsylvania from 1943 to
1946 [31]. The two-layer perceptron work [87] by Rosenblatt, was the first to provide rigor-
ous proofs about perceptron convergence. A 1969 book by Minsky and Papert [68] reveds
that there are fundamental limits to what single-layer perceptrons can compute. It was not
until the 1980s that the discovery of multi-layer perceptrons (with hidden layers and nonlin-
ear threshold functions) and back-propagation [88] reawakened interest in neural networks.
The two-volume PDP book [90, 91], Parallel Distributed Processing: Explorations in the
Microstructures of Cognition, edited by Rummelhart and McClelland, brought the back-
propagation learning method to the attention of the widest audience. Since then, various
applications of neural networks in diverse domains have been developed, including speech
recognition [14, 58], speech production and perception [93, 94], optical and handwriting
character recognition [55, 92], visual recognition [26], game playing [97], and natural lan-
guage processing [63]. There are severa good textbooks for neural networks. In particular,
the book by Haykin [35] provides a very comprehensive coverage of al foundations of neu-
ral networks. Bishop [12] provides a thoughtful treatment of neural networks from the per-
spective of pattern recognition. Short, concise tutorial papers on neural networks can be
found in [44, 57].

Vector quantization originated from speech coding [17, 32, 45, 61]. The k-means algo-
rithm was introduced by Lloyd [59]. Over the years, there have been many variations of VQ,
including fuzzy VQ [10], learning VQ (LVQ) [51], and supervised VQ [18, 42]. The first
published investigation toward the EM-like agorithm for incomplete data learning can be
attributed to Pearson [79]. The modern EM algorithm is formalized by Dempster, Laird, and
Rubin [21]. McLachlan and Krishnan [65] provide a thorough overview and history of the
EM agorithm. The convergence of the EM agorithm is an interesting research topic and
Wu [100] has an extensive description of the rate of convergence. The EM agorithm is the
basis for all unsupervised learning that includes hidden variables. The famous HMM train-
ing algorithm, as described in Chapter 8, is based on the EM algorithm.

CART uses avery intuitive and natural principle of sequential questions and answers,
which can be traced back to 1960s [70]. The popularity of CART is attributed to the book by
Breiman et al. [15]. Quinlan proposed some interesting variants of CART, like ID3[82] and
CA4.5 [84]. CART has recently been one of the most popular techniques in machine learning.



192 Pattern Recognition

Mitchell includes a good overview chapter on the latest CART techniques in his machine-
learning book [69]. In addition to the strategies of node splitting and pruning mentioned in
this chapter, [62] used a very interesting approach for splitting and pruning criteria based on
adatistical significance testing of the data’ s distributions. Moreover, [28] proposed an itera
tive expansion pruning algorithm which is believed to perform as well as cross-validation
pruning and yet is computationally cheaper [52]. CART has been successfully used in ava
riety of spoken language applications such as letter-to-sound conversion [46, 60], allophone
model clustering [8, 38, 39], language models [5], automatic rule generation [83], duration
modeling of phonemes [74, 80], and supervised vector quantization [67].
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CHAPTER 5

Digital Signal Processing

One of the most popular ways of characteriz-
ing speech isin terms of asignal or acoustic waveform. Shown in Figure 5.1 is a representa-
tion of the speech signal that ensures that the information content can be easily extracted by
human listeners or computers. Thisis why digital signal processing plays a fundamental role
for spoken language processing. We describe here the fundamentals of digital signal proc-
essing: digital signals and systems, frequency-domain transforms for both continuous and
discrete frequencies, digital filters, the relationship between analog and digital signals, fil-
terbanks, and stochastic processes. In this chapter we set the mathematical foundations of
frequency analysis that allow us to develop specific techniques for speech signals in Chapter
6.

The main theme of this chapter is the development of frequency-domain methods
computed through the Fourier transform. When we boost the bass knob in our amplifier we
are increasing the gain at low frequencies, and when we boost the treble knob we are in-
creasing the gain at high frequencies. Representation of speech signals in the frequency do-
main is especially useful because the frequency structure of a phoneme is generally unique.
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Figure 5.1 Signal processing is both a representation and a transformation that allows a useful
information extraction from a source. The representation and transformation are based on a
model of the signal, often parametric, that is convenient for subsequent processing.

5.1. DIGITAL SIGNALSAND SYSTEMS

To process speech signals, it is convenient to represent them mathematically as functions of
a continuous variable t, which represents time. Let us define an analog signal x,(t) as a
function varying continuoudly in time. If we sample the signal x with a sampling period T
(i.e, t=nT), we can define a discrete-time signal as Xn] = x,(nT) , aso known as digital
signal®. In this book we use parentheses to describe an analog signal and brackets for digital
signals. Furthermore we can define the sampling frequency F, as F, =1/T , the inverse of
the sampling period T. For example, for a sampling rate F, =8kHz, its corresponding sam-
pling period is 125 microseconds. In Section 5.5 it is shown that, under some circumstances,
the analog signal x,(t) can be recovered exactly from the digital signal x{n]. Figure 5.2

shows an analog signal and its corresponding digital signal. In subsequent figures, for con-
venience, we will sometimes plot digital signals as continuous functions.

! Actually the term digital signal is defined as a discrete-time signal whose values are represented by integers within
arange, whereas a general discrete-time signal would be represented by real numbers. Since the term digital signal
is much more commonly used, we will use that term, except when the distinction between them is necessary.
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Figure 5.2 Analog signal and its corresponding digital signal.
The term Digital Sgnal Processing (DSP) refers to methods for manipulating the se-
guence of numbers x[n] in a digital computer. The acronym DSP is also used to refer to a

Digital Signal Processor, i.e., amicroprocessor specialized to perform DSP operations.

We start with sinusoidal signals and show they are the fundamental signals for linear
systems. We then introduce the concept of convolution and linear time-invariant systems.
Other digital signals and nonlinear systems are also introduced.

5.1.1. Sinusoidal Signals

One of the most important signalsisthe sine wave or sinusoid
%[n] = Ay cos(ayn+¢) (5.1)

where A, isthe sinusoid's amplitude, ), the angular frequency and ¢ the phase. The an-
gle in the trigonometric functions is expressed in radians, so that the angular frequency w,
is related to the normalized linear frequency f, by the relation w, = 27f,, and 0< f, <1.
This signal is periodic” with period T, =1/ f,. In Figure 5.3 we can see an example of a
sinusoid with frequency f, =0.04, or aperiod of T, =25 samples.

Sinusoids are important because speech signals can be decomposed as sums of sinu-
soids. When we boost the bass knob in our amplifier we are increasing the gain for sinusoids
of low frequencies, and when we boost the treble knob we are increasing the gain for sinu-
soids of high frequencies.

2 A signa x[n] is periodic with period N if and only if x[n]=x{n+N], which requires c, =27/ N . This means that
the digital signal in Eq. (5.1) is not periodic for all values of «, , even though its continuous signal counterpart
X(t) = A, cos(ayt +¢) isperiodic for al values of w, (see Section 5.5).
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Figure5.3 A digital sinusoid with a period of 25 samples.

What is the sum of two sinusoids x,[n] and x[n] of the same frequency w, but dif-
ferent amplitudes A, and A , and phases ¢ and ¢ ? The answer is another sinusoid of the

same frequency but a different amplitude A and phase @ While this can be computed
through trigonometric identities, it is somewhat tedious and not very intuitive. For this rea-
son we introduce another representation based on complex numbers, which proves to be
very useful when we study digital filters.

A
y

»

X

Figure 5.4 Complex number representation in Cartesian form z=x+ jy and polar form
z=Ae" . Thus x= Acosp and y = Asing.

A complex number x can be expressed as z = x+jy, where j = J-1, xisthe rea part
and y is the imaginary part, with both x and y being real numbers. Using Euler’s relation,
given areal number ¢ we have

e’ =cosp+jsin g (5.2)
so that the complex number z can also be expressed in polar form as z= Ae'?, where A is
the amplitude and @is the phase. Both representations can be seen in Figure 5.4, where the
real part is shown in the abscissa (x-axis) and the imaginary part in the ordinate (y-axis).

Using complex numbers, the sinusoid in Eq. (5.1) can be expressed as the real part of
the corresponding complex exponential

%[Nl = A, cos(ayn + ) =Re{ Ajg! ™ @} (5.3)

and thus the sum of two complex exponential signals equals
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Abej(%n*'%) + Aej‘“”*@ - el ’W(A)ej 6”+Aej¢1) —el P pei? = pei( @ W (5.4)
Taking thereal part in both sides resultsin

A, cos(apn+ @) + A, cos(ayn +¢) = Acos(ayn +¢) (5.5)

or in other words, the sum of two sinusoids of the same frequency is another sinusoid of the
same fregquency.

To compute A and ¢ dividing Eq. (5.4) by €'“" leads to a relationship between the
amplitude A and phase ¢:

Ae® + A = Ae? (5.6)

Equating real and imaginary partsin Eq. (5.6) and dividing them we obtain:

tangp= AsSng +Asng (5.7)
A, cos@, + A cos @
and adding the squared of real and imaginary parts and using trigonometric identities®
A=A+ A +2AA cos(g — @) (5.8)

&

»
'

Figure 5.5 Geometric representation of the sum of two sinusoids of the same frequency. It fol-
lows the complex number representation in Cartesian form of Figure 5.4.

This complex representation of Figure 5.5 lets us analyze and visualize the amplitudes
and phases of sinusoids of the same frequency as vectors. The sum of N sinusoids of the
same frequency is another sinusoid of the same frequency that can be obtained by adding the
real and imaginary parts of al complex vectors. In Section 5.1.3.3 we show that the output
of alinear time-invariant system to a sinusoid is another sinusoid of the same frequency.

3 sin® p+cos® p=1 and cos(a—b) =cosacosb +sinasinb
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5.1.2. Other Digital Signals
In the field of digital signal processing there are other signals that repeatedly arise and that
areshown in Table 5.1.

Table 5.1 Some useful digital signals: the Kronecker delta, unit step, rectangular signd, real
exponential (a<1) and real part of acomplex exponentia (r <1).

Kronecker delta, 1 n=0
o nl =
or unit impulse a[n] 0 othervise )

Unit step 1 n=0
uln] =
0 n<O T

Rectangular 1 0<n<N
i rect, [n] =
signal vl 0 otherwise 4._._j_u_u_.~.> N

Real exponential X[n] =a"u[n] [

}7HHHWWWWWW n
Complex x[n] =a"u[n] =r"e™u[n] -
Sponenta =" (oosna, + jsnnauln] | ! e e

If r=1and w, #0 we have acomplex sinusoid as shown in Section 5.1.1. If w, =0
we have areal exponential signal, and if r <1 and w, # 0 we have an exponentially decay-
ing oscillatory sequence, also known as a damped sinusoid.

5.1.3. Digital Systems

A digital system isasystem that, given an input signal x[n], generates an output signal y[n]:
yin] =T{x{n]} (5.9)

whose input/output relationship can be seen in Figure 5.6.

| — T} [yl

Figure 5.6 Block diagram of a digita system whose input is digital signal x[n], and whose
output is digital signal y[n].

In general, adigital system T is defined to be linear iff (if and only if)
T{ax[n] +a,x[n]} =aT{x[n]} +a,T{x,[n]} (5.10)
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for any valuesof a,, a, and any signals x[n] and x,[n] .
Here, we study systems according to whether or not they are linear and/or time invari-
ant.

5.1.3.1 Linear Time-Invariant Systems

A systemistime-invariant if given Eqg. (5.9), then
YIn=ne] =T{x{n -n, ]} (5.11)

Linear digital systems of a specia type, the so-called linear time-invariant (LTI)*, are de-
scribed by

yin] = i X[ KkJh[n=k] =x{n] thn] (512

where [ is defined as the convolution operator. It is|eft to the reader to show that the linear
systemin Eq. (5.12) indeed satisfies Eq. (5.11).
LTI systems are completely characterized by the signal h[n], which is known as the

system’s impulse response because it is the output of the system when the input is an im-
pulse X[n] = J[n] . Most of the systems described in this book are LTI systems.

Table 5.2 Properties of the convolution operator.
Commutative x[n]Oh[n]= h[n]OX{n]
Associative X O(h[nOhnlE (nP hin) e X0 hE] hln]
Distributive X O(h[nk+ h,[n])= nOh[nk XnP hyn]

The convolution operator is commutative, associative and distributive as shown in
Table5.2 and Figure 5.7.

— hy[n] > hfn] —> > hy[n] }
> hyn] > hy[n]

—» hyn]

A

— hnlh[n] — — h[n]+hn]

Figure 5.7 The block diagrams on the | eft, representing the commutative property, are equiva-
lent. The block diagrams on the right, representing the distributive property, are also equiva
lent.

4 Actually the term linear time-invariant (LTI) systemsis typically reserved for continuous or analog systems, and
linear shift-invariant system is used for discrete-time signals, but we will use LTI for discrete-time signals too since
it iswidely used in this context.
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5.1.3.2. Linear Time-Varying Systems

An interesting type of digital systems is that whose output is a linear combination of the
input signal at different times:

yinl = > xklg[n,n-K] (5.13)
k=—o
The digital system in Eq. (5.13) is linear, since it satisfies Eq. (5.10). The Linear
Time-lnvariant systems of Section 5.1.3.1 are a specia case of EQ. (5.13) when
gin,n—Kk] =h[n—K] . The systems in Eq. (5.13) are called linear time-varying (LTV) sys-
tems, because the weighting coefficients can vary with time.
A useful example of such system is the so-called amplitude modulator

y[n] = x{n] cosa,n (5.19)

used in AM transmissions. As we show in Chapter 6, speech signals are the output of LTV
systems. Since these systems are difficult to analyze, we often approximate them with linear
time-invariant systems.

Table 5.3 Examples of nonlinear systems for speech processing. All of them are memoryless
except for the median smoother.

Nonlinear System Equation
Median Smoother y[n] = median{ [N —N],---,x{n],---,n +NJ}
of order (2N+1)
Full-Wave Rectifier yin] =|xn]|
Half-Wave Rectifier _[Xn Xn]=0
Al "{ 0 Xnj<0
Frequency Modulator | y[n] = Acos(cg, +Aax{n])n
o A Xnj=A
Hard-Limiter yin] =4 Xn] |x[n]| <A
-A Xn]<-A
(N-1/2)A xn] =2(N-1A

Uniform Quantizer
(L-bit) with 2N =2 | y[n] =
intervals of width A

(m+1/2)A  mAsxn <(M+)A O0<m<N-1
(-m+1/2)A -mA<xn] <{m-)A 0<m<N -
(-N+1/2) A x{n] <N -1) A
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5.1.3.3. Nonlinear Systems

Many nonlinear systems do not satisfy Eq. (5.10). Table 5.3 includes a list of typical nonlin-
ear systems used in speech processing. All these nonlinear systems are memoryless, because
the output at time n depends only on the input at time n, except for the median smoother of
order (2N + 1) whose output depends also on the previous and the following N samples.

5.2. CONTINUOUS-FREQUENCY TRANSFORMS

A very useful transform for LTI systems is the Fourier transform, because it uses complex
exponentials as its basis functions, and its generalization: the z-transform. In this section we
cover both transforms, which are continuous functions of frequency, and their properties.

5.2.1. TheFourier Transform

It isinstructive to see what the output of a LTI system with impulse response h[n] is when

the input is a complex exponential. Substituting X[n] =e'“" in Eq. (5.12) and using the
commutative property of the convolution we obtain

yin] = > hikje!®™™ =el@" %" hkle " =e! “"H (e’ ¢) (5.15)
k=-00 k=-00
which is another complex exponentia of the same frequency and amplitude multiplied by
the complex quantity H (e®) given by

HE )= 3 Hnje (5.16)

Since the output of a LTI system to a complex exponentia is another complex exponential,
it is said that complex exponentials are eigensignals of LTI systems, with the complex quan-

tity H(e'*) being their eigenvalue.

The quantity H(e') is defined as the discrete-time Fourier transform of h[n]. It is
clear from Eq. (5.16) that H (e'“) is a periodic function of w with period 277, and there-
fore we need to keep only one period to fully describeit, typicaly - < w< 7 (Figure 5.8).

H(e'*) isacomplex function of w which can be expressed in terms of the real and
imaginary parts:

H(e")=H, (&) +jH,(e'“) (5.17)

or in terms of the magnitude and phase as
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H (e = |H (ej“’)| INELCIC) (5.18)

Thusif theinput to the LTI systemisasinusoid asin Eg. (5.1), the output will be

Yoln] = Ay |H ()| cos(eyn + g +arg{H (€")}) (5.19)
according to Eq. (5.15). Therefore if |H(ej"’°)| >1, the LTI system will amplify that fre-

guency, and likewise it will attenuate, or filter it, it if |H(ej“’°)| <1. That is one reason why

these systems are also called filters. The Fourier transform H(e'*) of afilter h[n] is called
the system’ s frequency response or transfer function.

H(e")

SN I N

2n n n 2n o

Figure5.8 H(e') isaperiodic functionof w.

The angular frequency w isrelated to the normalized linear frequency f by the sim-
plerelation w=27f . We show in Section 5.5 that linear frequency f, and normalized fre-
quency f arerelated by f, = fF,, where F, isthe sampling frequency.

The inverse discrete-time Fourier transformis defined as

in) == " H(e")e"" dw (5.20)
2
The Fourier transformisinvertible, and Eg. (5.16) and (5.20) are transform pairs:

— 1 7 jwy qjan — 1 4 S —jam j an
hinj = [ H(e")e dw—gr[”(m;mh[m]ej ]el dw

o 1 . (5.21)
= Hm— [ e“"™dw=3" Hmldn-m =hn
2 nmz-f, 2 himdn - =hir]
since
1 o jew(n-m) —
- j e dw=qn-mj (5.22)
2ir -

A sufficient condition for the existence of the Fourier transformis
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Z”_: [[n]| < o0 (5.23)

Although we have computed the Fourier transform of the impulse response of a filter
h[n], Eqg. (5.16) and (5.20) can be applied to any signal x[n].

5.2.2. Z-Transform

The z-transform is a generalization of the Fourier transform. The ztransform of a digital
signa h[n] isdefined as

H@Z = hnjz" (5.24)

where z is a complex variable. Indeed, the Fourier transform of h[n] equals its ztransform

evaluated at z= e . While the Fourier and z-transforms are often used interchangeably, we
normally use the Fourier transform to plot the filter's frequency response, and the z
transform to analyze more general filter characteristics, given its polynomial functional
form. We can also use the ztransform for unstable filters, which do not have Fourier trans-
forms.

Since Eq. (5.24) is an infinite sum, it is not guaranteed to exist. A sufficient condition
for convergenceis:

> | <o (5.25)

which is true only for a region of convergence (ROC) in the complex z-plane R <|7 <R,
asindicated in Figure 5.9.

Figure 5.9 Region of convergence of the z-transform in the complex plane.

For asigna h[n] to have a Fourier transform, its ztransform H(z) has to include the
unit circle, | z|=1, in its convergence region. Therefore, a sufficient condition for the exis-

tence of the Fourier transform is given in Eq. (5.23) by applying Eq. (5.25) to the unit circle.
An LTI system is defined to be causal if its impulse response is a causal signal, i.e.
h[n] =0 for n<0. Similarly, a LTI system is anti-causal if h[n]=0 for n>0. While all
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physical systems are causal, noncausal systems are still useful since causal systems could be
decomposed into causal and anti-causal systems.

A system is defined to be stable if for every bounded input it produces a bounded out-
put. A necessary and sufficient condition for an LTI system to be stableis

_i_: [hln]| < eo (5.26)

which means, according to Eq. (5.23), that h[n] has a Fourier transform, and therefore that
its ztransform includes the unit circle in its region of convergence.

Just asin the case of Fourier transforms, we can use the z-transform for any signal, not
just for afilter’ simpulse response.

The inverse z-transformis defined as

hn] = 2—71“4 H(2)Z 'z (5.27)

where the integral is performed along a closed contour that is within the region of conver-
gence. Egs. (5.24) and (5.27) plus knowledge of the region of convergence form a transform
pair: i.e. one can be exactly determined if the other is known. If the integral is performed
along the unit circle (i.e., doing the substitution z =€) we obtain Eq. (5.20), the inverse
Fourier transform.

5.23. Z-Transforms of Elementary Functions

In this section we compute the z-transforms of the signals defined in Table 5.1. The z
transforms of such signals are summarized in Table 5.4. In particular we compute the z
transforms of left-sided and right-sided complex exponentias, which are essential to com-
pute the inverse z-transform of rational polynomials. As we see in Chapter 6, speech signals
are often modeled as having z-transforms that are rational polynomials.

Table 5.4 Z-transforms of some useful signals together with their region of convergence.

Signal Z-Transform Region of Convergence
h[n] =J[n-N] H,(z)=z" z%0
h[n] =u[n] —u[n -N] H2(2)=11__ZZ__T 2#0
h,[n] = a"un] H= L |k z]
h,[n] = -a"u[-n -] H4(Z):1—i\z‘1 |zI<lal
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5.2.3.1. Right-Sided Complex Exponentials

A right-sided complex exponential sequence
hy[n] =a"u[n] (5.28)

has a z-transform given by

© _(as )N
H@=Yaz = lim =) =1
n=0

= for |al<|z 5.29
m= = for |akiz] (5.29)

by using the sum of the terms of a geometric sequence and making N — o . Thisregion of
convergence (|al<| z|) istypical of causal signals (those that are zero for n<0).

When a z-transform is expressed as the ratio of two polynomials, the roots of the nu-
merator are caled zeros, and the roots of the denominator are called poles. Zeros are the
values of z for which the z-transform eguals 0, and poles are the values of z for which the z-
transform equalsinfinity.

H.(z) hasapolea z=a, because its value goes to infinity a¢ z=a. According to
Eq. (5.26), h[n] isastable signal if and only if |a|<1, or in other words, if its poleisin-
side the unit circle. In general, a causal and stable system has al its poles inside the unit

circle. As a corollary, a system which has poles outside the unit circle is either noncausal or
unstable or both. Thisis avery important fact, which we exploit throughout the book.

5.2.3.2. L eft-Sided Complex Exponentials

A left-sided complex exponential sequence
h,[n] = -a"u[-n -1 (5.30)

has a z-transform given by
-1 0 )
H,(=-) a'z"=-) a"z" =1-) a™7"
n=-oo n=1 n=0

1 _-a'z _ 1
l-a'z 1-a'z 1-az*

for | z|<|a] (5.3

Thisregion of convergence (| z|<|a|) istypical of noncausal signals (those that are nonzero
for n<0). Observethat H,(z) and H,(z) arefunctionaly identical and only differ in the

region of convergence. In general, the region of convergence of a signal that is nonzero for
—o<n<wis R <z|<R,.
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5.2.3.3. Inver se Z-Transform of Rational Functions

Integrals in the complex plane such as Eq. (5.27) are not easy to do, but fortunately they are
not necessary for the special case of H(z) being a rational polynomial transform. In this
case, partial fraction expansion can be used to decompose the signal into a linear combina-
tion of signalslike h[n], h[n] and h,[n] asin Table5.4.

For example,
2+8z"
Ho(2)=—————— 5.32
(2 2-57"-3z7 (32
has as roots of its denominator z=3,-1/2. Therefore it can be decomposed as
_ -1
H@=—n +_ B _(A*2B)+(A-0B)z (5.33)
1-3z7 1+(1/2)z 2-5z7 -3z
so that A and B are the solution of the following set of linear equations:
2A+2B =2 (5.34)
A-6B =8
whose solutionis A=2 and B = -1, and thus Eq. (5.33) is expressed as
1 1
H.(2)=2 - 5.35
(2 (1—3{1) (1+(1/2)z'1j (5:35)

However, we cannot compute the inverse z-transform unless we know the region of
convergence. If, for example, we are told that the region of convergence includes the unit
circle (necessary for the system to be stable), then the inverse transform of

1

H(2)= 1-3z"

(5.36)

must have aregion of convergence of | z|< 3 according to Table 5.4, and thus be a left-sided
complex exponential:

h,[n]=-3"u-n-1 (5.37)
and the transform of

1

0w

(5.38)

must have a region of convergence of 1/2 <| z| according to Table 5.4, and thus be a right-
sided complex exponential:
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h[n] = (-1/2)"u[n] (5.39)
so that
h[n] = -2@3"u[-n -1] —(-1/2)"u[n] (5.40)

While we only showed an example here, the method used generalizesto rational trans-
fer functions with more poles and zeros.

5.2.4. Properties of the Z and Fourier Transform

In this section we include a number of properties that are used throughout the book and that
can be derived from the definition of Fourier and z-transforms. Of special interest are the
convolution property and Parseval’s theorem, which are described below.

524.1. The Convolution Property

The ztransform of y[n], convolution of X[n] and h[n], can be expressed as a function of
their ztransforms:

o0

Y(2) = Z nlz" = [ 3 x[k]h[n—k]}z'”

= n=—co\_k =—0c0

- i x[k][i h[n—k]z‘”j =y x[k]( i h[n]z'(”*k)j (5.41)

K=-c0

0

2. {KIZ*H(2) =X(9H (2

k=—o00

which is the fundamental property of LTI systems. “The ztransform of the convolution of
two signals is the product of their ztransforms.” This is also known as the convolution
property. The ROC of Y(z) is now the intersection of the ROCs of X(z) and H(z) and

cannot be empty for Y(z) to exist.
Likewise, we can obtain asimilar expression for the Fourier transforms;

Y (') = X (e'“)H (e'%) (5.42)

A dua version of the convolution property can be proven for the product of digital
signals:

X(r]y[n] - %TX(eJ“)DY(e'“) (5.43)

whose transform is the continuous convolution of the transforms with a scale factor. The
convolution of functions of continuous variablesis defined as
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y(t) = x(t)* h(t) = J:, x()h(t —=7)dr (5.44)

Note how this differs from the discrete convolution of Eq. (5.12).
5.24.2. Power Spectrum and Par seval’s Theorem

Let’s define the autocorrelation of signal x[n] as

R,nl= 3 xme+nlx{m] = 3" {IX[n -] =xn] X [-r] (5.45)

m=—co |'=—o

where the superscript asterisk (*) means complex conjugate® and should not be confused
with the convolution operator.

Using the fundamental property of LTI systemsin Eq. (5.42) and the symmetry prop-
ertiesin Table 5.5, we can express its Fourier transform S, (w) as

Su(@) = X(X (@) =|X( a)* (5.46)

which is the power spectrum. The Fourier transform of the autocorrelation is the power
spectrum:

R.N « Sy(w) (5.47)
or alternatively
— 1 T jon
R =— [ So(@)e"dw (5.48)

If weset n=0in Eg. (5.48) and use Eq. (5.45) and (5.46), we obtain
> 2 1 e 2
ni" =— 1| [ X(w)| dw 5.49
2l =5 [ |X(@) (5.49)

which is called Parseval’ s theorem and says that we can compute the signal’s energy in the
time domain or in the frequency domain.

In Table 5.5 we ligt, in addition to the convolution property and Parseval’s theorem, a
number of propertiesthat can be derived from the definition of Fourier and z-transforms.

5.3. DISCRETE-FREQUENCY TRANSFORMS

Here we describe transforms, including the DFT, DCT and FFT, that take our discrete-time
signal into a discrete frequency representation. Discrete-frequency transforms are the natural

SIf z=x+ jy =Ae”, itscomplex conjugateis defined as z”= x — jy = Ag 1*
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transform for periodic signals, though we show in Section 5.7 and Chapter 6 how they are
also useful for aperiodic signals such as speech.

Table 5.5 Properties of the Fourier and z-transforms.

Property Sgnal Fourier Transform z-Transform
Linearity ax,[n] +bx,[n] ax, () +bX,(e') | aX,(2)+bX,(2)
X{-n] X (e7%) X(z?)
xn] X(e') XA(Z')
x{-n] X"(e"*) X"/ 2))

X (e'®) isHermitian
X(€?) = X" (e'?)

Symmetry |X(e")] iseven®
X{n] real Re[X (€)} iseven X(Z2)=X"(2
arg{X(ej"’)} is odd’
Im{ X ()} isodd
Even{X{n]} Re{ X (')}
Odd{ X{n]} j Im{ X (e’“)}
Time-shifting xn-n,] X (e'¥)e 1 X(2)z™
. X[n]ejwon X(ej(w-%)) X(e-j&bz)
Modulation iz X(z/z,)
_ X[n] Oh[n] X (€"°)H (e'®) X(2H(2)
Convolution XNyinl

1 xEevyovE®)
21

'Fr)?ure?e?]r;s Ru[n] = i x{m+n]x[m] Su (@) =|X (@) X)X/ Z)

m=-co

A discrete transform of asignal X[ n] isanother signal defined as
X[k] = T{x{n]} (5.50)

Linear transforms are special transforms that decompose the input signal X[n] into a
linear combination of other signals:

® A function f(x) is called even if and only if f(x) = f(-x).
" A function f(x) is called odd if and only if f(x)=—f(-x) .
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An = 3 X(Kig [ (55)
where ¢,[n] isaset of orthonormal functions
<@ [n].¢,[n] >=d[k -] (5.52)

with the inner product defined as

<p .8, [n>= S ¢, [npTn] (5593)

n=-co

With this definition, the coefficients X[k] arethe projection of x[n] onto ¢,[n] :
X[k] =<xn],¢,[n] > (5.54)
asillustrated in Figure 5.10.

X0,
(2

> >
Po Xo®o

Figure 5.10 Orthonormal expansion of asigna x[n] in atwo-dimensional space.

5.3.1. The Discrete Fourier Transform (DFT)

If a x,[n] signal is periodic with period N then
Xy [N] = %, [N+ N] (5.55)

and the signal is uniquely represented by N consecutive samples. Unfortunately, since Eq.
(5.23) is not met, we cannot guarantee the existence of its Fourier transform. The Discrete
Fourier Transform (DFT) of aperiodic signal x,[n] isdefined as

N-1 )
Xy[K] =Y x[n]e 2N O<k<N (5.56)
n=0
1 N-1 .
X [N] :WZ X, [k]e'Z™ /N 0<n<N (5.57)
k=0

which are transform pairs. Equation (5.57) is also referred as a Fourier series expansion.
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In Figure 5.11 we see the approximation of a periodic square signal with period
N =100 as a sum of 19 harmonic sinusoids, i.e., we used only the first 19 X[k] coeffi-

cientsin Eq. (5.57).
Xy[0], 2

o _1 & j2rmk N _
XN[n]—ﬁz Xy[kle =——+
K

= N ﬁé Xy[K]cos(27mk / N) (5.58)

Had we used 100 harmonic sinusoids, the periodic signal would have been reproduced
exactly. Nonetheless, retaining a smaller number of sinusoids can provide a decent approxi-
mation for a periodic signal.

15 T T T T T

05 1 1 1 1 1
-150 -100 -50 0 50 100 150

Figure 5.11 Decomposition of a periodic square signal with period 100 samples as a sum of 19
harmonic sinusoids with frequencies w, = 27k /100.

5.3.2. Fourier Transforms of Periodic Signals

Using the DFT, we now discuss how to compute the Fourier transforms of a complex expo-
nential, an impulse train, and a genera periodic signal, since they are signals often used in
DSP. We also present a relationship between the continuous-frequency Fourier transform
and the discrete Fourier transform.

5.3.2.1. The Complex Exponential

One of the simplest periodic functions is the complex exponential x[n] =e'“". Since it has

infinite energy, we cannot compute its Fourier transform in its strict sense. Since such sig-
nals are so useful, we devise an aternate formulation.
First, let us define the function

/A O0<sw<A

. (5.59)
0 otherwise

d, (@) ={

which has the following property
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fm d, (w)dw=1 (5.60)

for al valuesof A>0.
It is useful to define the continuous delta function d(w), also known as the Dirac
delta, as

o(w) =limd, () (5.61)
which isasingular function and can be seen in Figure 5.12. The Dirac deltais a function of

a continuous variable and should not be confused with the Kronecker delta, which is a func-
tion of adiscrete variable.

A o) UA da(a)

» »
» »

w A w

Figure5.12 Representation of the d(«) function and its approximation d, (w) .

Using Egs. (5.59) and (5.61) we can then see that

[ X(@(@d w=lim [ X(dds( gd = X(0) (5.62)
and similarly

[ X(@ (@ a)d = X( @) (5.63)
so that

X(@)d(w- @) =X(&) & & ¢ (5.64)

because the integrals on both sides are identical.
Using Eq. (5.63), we see that the convolution of X(w) and d(w- &) is

X(w) 0w &)= f XU dw @udu=X( @ @ (5.65)
For the case of a complex exponential, inserting X (w) =€/“" into Eq. (5.63) resultsin
f d(w- a3)ed w=e/*" (5.66)

By comparing Eq. (5.66) with (5.20) we can then obtain
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e o 2N w- @) (5.67)

so that the Fourier transform of a complex exponential is an impulse concentrated at fre-
quency @, .

53.2.2. Thelmpulse Train
Since theimpulse train
pu[nl= > 3[n—kN] (5.68)
k=-00

is periodic with period N, it can be expanded in Fourier series according to (5.56) as
Rkl =1 (5.69)

so that using the inverse Fourier series Eq. (5.57), p,[n] can aternatively be expressed as

1 N-1
puln] ==> e ™ (5.70)
N =

which is an aternate expression to Eq. (5.68) as a sum of complex exponentials. Taking the
Fourier transform of Eq. (5.70) and using Eq. (5.67) we obtain

. 27TN—1
P, (€') :WZ I(w-27k/IN) (5.71)
k=0

which is another impulse train in the frequency domain (See Figure 5.13). The impulse train
in the time domain is given in terms of the Kronecker delta, and the impulse train in the fre-
guency domain is given in terms of the Dirac delta.

Ll ottt

Figure 5.13 An impulse train signal and its Fourier transform, which is al'so an impulse train.

5.3.2.3. General Periodic Signals

We now compute the Fourier transform of a general periodic signal using the results of Sec-
tion 5.3.2.2 and show that, in addition to being periodic, the transform is also discrete. Given
aperiodic signal x,[n] with period N, we define another signal X{n] :

] :{XN[I’]] 0<n<N

) (5.72)
0 otherwise
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s0 that

xy[n] = Z Xn—kN] =xn] DZ dln— kN1= X n]Op,[n] (5.73)

k=—0o
which is the convolution of x{n] with animpulsetrain p,[n] asin Eqg. (5.68). Since Xn] is
of finite length, it has a Fourier transform X(e'”). Using the convolution property
X, (") = X(e'“)P, (e!“) , where P, (e'”) is the Fourier transform of p,[n] as given by
Eqg. (5.71), we obtain another impulse train;
X, (@) =2y Z X (2N 3(cw-2 7K/ N) (5.74)

k=-c0

Therefore the Fourier transform X, (€') of a periodic signal x,[n] can be expressed
in terms of samples w, =27k /N, spaced 277/ N apart, of the Fourier transform X (e'*) of
x[n] , one period of the signal x,[n] . The relationships between x{n], x,[n], X(e*) and
X, (e'*) are shownin Figure 5.14.

U AAA

XN [n] X (ejw)

JHT??TT TT?, ,TTT} Al ,,4’fTT‘}li;

Figure 5.14 Relationships between finite and periodic signals and their Fourier transforms. On
one hand, X[n] isalength N discrete signal whose transform X (e!*) is continuous and peri-
odic with period 277. On the other hand, x,[n] isa periodic signal with period N whose trans-

form X, (e'”) isdiscrete and periodic.

5.3.3. The Fast Fourier Transform (FFT)

There is a family of fast algorithms to compute the DFT, which are called Fast Fourier
Transforms (FFT). Direct computation of the DFT from Eq. (5.56) requires N operations,
assuming that the trigonometric functions have been pre-computed. The FFT algorithm only
requires on the order of Nlog, N operations, so it iswidely used for speech processing.
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5.3.3.1. Radix-2 FFT
Let’s express the discrete Fourier transform of x[n]
mmzfxmémw“:fﬂmwT O<k<N (5.75)
n=0 n=0
where we have defined for convenience
W, = e iz (5.76)

Equation (5.75) requires N? complex multiplies and adds. Now, let's suppose N is
even, and let f[n]=x2n] represent the even-indexed samples of xn], and
g[n] =X 2n +1] the odd-indexed samples. We can express Eq. (5.75) as

N/2-1 N/2-1
XK= > fInWT, +Wo D alnW, = FK] +WGLK] (5.77)
n=0 n=0

where F[K] and G[K] are the N/2 point DFTs of f[n] and g[n], respectively. Since both
F[k] and G[k] are defined for 0<k<N/2, we need to also evaluate them for
N/2< k< N, whichissraightforward, since

Flk+N/2] = F[K] (5.78)

G[k+N/2] =G[K] (5.79)

If N/2 is aso even, then both f[n] and g[n] can be decomposed into sequences of
even and odd indexed samples and therefore its DFT can be computed using the same proc-
ess. Furthermore, if N is an integer power of 2, this process can be iterated and it can be
shown that the number of multiplies and adds is Nlog, N, which is a significant saving

from NZ. This is the decimation-in-time algorithm and can be seen in Figure 5.15. A dual
algorithm called decimation-in-frequency can be derived by decomposing the signal into its
first N/2 and itslast N/2 samples.

5.3.3.2. Other FFT Algorithms

Although the radix-2 FFT isthe best known agorithm, there are other variants that are faster
and are more often used in practice. Among those are the radix-4, radix-8, split-radix and
prime-factor algorithm.

The same process used in the derivation of the radix-2 decimation-in-time algorithm

applies if we decompose the sequences into four sequences: f[n] =x4n],
f,[n] =x4n+1, f,[n]=x4n+2], and f,[n]=x[4n+3]. This is the radix-4 agorithm,
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which can be applied when N is a power of 4, and is generally faster than an equivalent
radix-2 algorithm.

Similarly there are radix-8 and radix-16 algorithms for N being powers of 8 and 16 re-
spectively, which use fewer multiplies and adds. But because of possible additional control
logic, it is not obvious that they will be faster, and every algorithm needs to be optimized for
agiven processor.

There are values of N, such as N =128, for which we cannot use radix-4, radix-8 nor
radix-16, so we have to use the less efficient radix-2. A combination of radix-2 and radix-4,
called split-radix [5], has been shown to have fewer multiplies than both radix-2 and radix-
4, and can be applied to N being a power of 2.

Finally, another possible decompositionis N = p,p,---p, with p. being prime num-
bers. This leads to the prime-factor algorithm [2]. While this family of algorithms offers a
similar number of operations as the algorithms above, it offers more flexibility in the choice

of N.
x[0] X[0]
X[2] / X[1]
X[4] X[2]
W"
X[6] j : : i i X[3]
X[1] W X[4]
X[5] />©<\ X[5]
N

x[3] X[6]

w0 w,°

X[7]

X[
W, 0 w0 w,0

Figure 5.15 Decimation in time radix-2 algorithm for an 8-point FFT.

5.3.3.3. FFT Subroutines

Typicaly, FFT subroutines are computed in-place to save memory and have the form

fft (float *xr, float *xi, int n)
where xr and xi are the real and imaginary parts respectively of the input sequence, before
calling the subroutine, and the real and imaginary parts of the output transform, after return-
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ing from it. C code that implements a decimation-in-time radix-2 FFT of Figure 5.15 is

shown in Figure 5.16.

void fft2 (float *x, float *y, int n, int m
int nl, n2, i, j, k, |;
float xt, yt, c, s;
double e, a;

/* Loop through all m stages */

n2 = n;
for (k =0; k <m k++) {
nl = n2,
n2 =n2/ 2
e = Pl2/ ni;
for (j =0; j < n2; j++
/* Conpute Twiddle factors */
a=] * e
c = (float) cos (a);
s = (float) sin (a);
/* Do the butterflies */
for (i =j; i <n; i +=nl1) {
I =i + n2
xt = x[i] - x[I];
x[i] = x[i] + x[1]
yt =y[i] - y[l1];
yli] =yli] +y[l];
x[I] =c¢c* xt +s * yt
y[lI] =c * yt - s * xt;
}
}
}
[* Bit reversal: descrambling */
] =0
for (i =0; i <n - 1; i++) {
if (i <j) {
xt = x[j];
X[j] = x[i]
x[i] = xt;
xt = vy[j];
yli] = yli]
) y[i] = xt;
k =n/ 2
while (k <=j) {
j-=k
k 1= 2;
}
Jo+=k
}

Figure 5.16 C source for a decimation-in-time radix-2 FFT. Before calling the subroutine, x
and y contain the real and imaginary parts of the input signal respectively. After returning from
the subroutine, x and y contain the real and imaginary parts of the Fourier transform of the in-

put signal. nisthe length of the FFT and isrelated to mby n=2".

The first part of the subroutine in Figure 5.16 is doing the so-called butterflies, which
use the trigonometric factors, also called twiddle factors. Normally, those twiddle factors are
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pre-computed and stored in atable. The second part of the subroutine deals with the fact that
the output samples are not linearly ordered (see Figure 5.15), in fact the indexing has the bits
reversed, which is why we need to do bit reversal, also called descrambling.

To compute the inverse FFT an additional routine is not necessary; it can be computed
with the subroutine above. To see that, we expand the DFT in Eq. (5.56) into its real and
imaginary parts:

N-1
XalK]+ JX, [K] = D (xe[n] + jx, [n]) e7/#™™ (5.80)

n=0

take complex conjugate and multiply by j to obtain

X, [K]+ JXg[K] =2(X.[n] + jxg[n]) €™ (5.81)

n=0
which has the same functional form as the expanded inverse DFT of Eq. (5.57)
. 1 . i 2m
Xe[K] + jx [K] =NZ(XR[n] + X, [n]) e (5.82)
n=0
so that the inverse FFT can be computed by calling fft (xi, xr, n) other than the
(UN) factor.

Often the input signal X[ n] isreal, so that we know from the symmetry properties of
Table 5.5 that its Fourier transform is Hermitian. This symmetry can be used to compute the
length-N FFT more efficiently with a length (N/2) FFT. One way of doing so is to define

f[n] =x2n] to represent the even-indexed samples of x[n], and g[n] =X 2n+1] the odd-
indexed samples. We can then define alength (N/2) complex signal h[n] as

h[n] = f[n] + jg[n] =x{2n] + jx[2n +]] (5.83)
whose DFT is
H[K] = F[K] + jG[K] =Hg[K] +jH, [K] (5.84)

Since f[n] and g[n] arered, their transforms are Hermitian and thus
H-K] = F'[-K] ]G [ ] =F[k] —jG[K] (5.85)

Using Egs. (5.84) and (5.85), we can obtain F[k] and G[k] as a function of H[k] and
H, [K]:

Fig = HIKL*H :[HR[k] +2HR[—k]j+j[H.[k1 -2H|[-k]j 556
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o= H 1 :(H.[k]+2H.[—k]]_j(HR[k] —ZHRH]] (587

Asshownin Eq. (5.77), X[k] can be abtained asafunction of F[k] and G[K]
X[K] = F[K] + G[KW,* (5.88)

so that the DFT of the real sequence x[n] is obtained through Egs. (5.83), (5.86), (5.87) and

(5.88). The computational complexity is alength (N/2) complex FFT plus N real multiplies
and 3N real adds.

5.3.4. Circular Convolution

The convolution of two periodic signals is not defined according to Eq. (5.12). Given two
periodic signals x[n] and x,[n] with period N, we define their circular convolution as

yin] =x[n] Ox[nF lelm]xz[f‘r mE Y x[mx[n m (5.89)

m=<N >
where m=<N > in Eq. (5.89) means that the sum lasts only one period. In fact, the sum
could be over any N consecutive samples, not just the first N. Moreover, y[n] is aso peri-
odic with period N. Furthermore, it isleft to the reader to show that

YIK] = X,[K] X, [K] (5.90)

i.e., the DFT of y[n] isthe product of the DFTsof x[n] and x,[n] .
An important application of the above result is the computation of a regular convolu-
tion using a circular convolution. Let x[n] and x,[n] be two signals such that x[n] =0

outside 0sn<N,, and x,[n] =0 outside 0<n< N,. We know that their regular convolu-
tion y[n] = x[n] Ox,[n] is zero outside 0< N, + N, —1. If we choose an integer N such that
N =N, +N, -1, we can define two periodic signals %[n] and X,[n] with period N such
that

. |X[N 0sn<N,
Xl[n]—{ 0 N,<n<N (5.91)
. _|%[nl 0sn<N,
len]—{ 0 N,<n<N (5.92)

where x[n] and x,[n] have been zero padded. It can be shown that the circular convolution
§ln] =X [n] O %,[n] isidentical to y[n] for 0<n< N, which means that y[n] can be ob-
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tained as the inverse DFT of Y[k] = X,[k]X,[k] . This method of computing the regular
convolution of two signals is more efficient than the direct calculation when N is large.
While the crossover point will depend on the particular implementations of the FFT and
convolution, as well as the processor, in practice this has been found beneficial for
N =1024.

5.3.5. The Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT) is awidely used for speech processing. It has several
definitions. The DCT-II C[k] of areal signal x[n] is defined by:

Clk] = ilx[n] cos(rk(n+1/2)/N) for Osk<N (5.93)

n=0

with itsinverse given by
N-1
Xn] = %{C[O] +2> " C[K] cos(rk(n +1/2)/ N)} for 0sn<N (5.94)
k=1

The DCT-II can be derived from the DFT by assuming x[n] is a real periodic se-
guence with period 2N and with an even symmetry xn] =x2N -1-n]. It is left to the
reader to show, that X[k] and C[k] arerelated by

X[K] = 2¢™/2NC[Kk] for 0<k <N (5.95)

X[2N -k] = 2e7™/>NC[Kk] for 0<k< N (5.96)

It is left to the reader to prove Eq. (5.94) is indeed the inverse transform using Egs.
(5.57), (5.95), and (5.96). Other versions of the DCT-II have been defined that differ on the
normalization constants but are otherwise the same.

There are eight different ways to extend an N-point sequence and make it both peri-
odic and even, such that can be uniquely recovered. The DCT-II isjust one of the ways, with
three others being shown in Figure 5.17.

The DCT-II is the most often used discrete cosine transform because of its energy
compaction, which results in its coefficients being more concentrated at low indices than the
DFT. This property allows us to approximate the signal with fewer coefficients[10].

From Eq. (5.95) and (5.96) we see that the DCT-I1 of areal sequence can be computed
with a length-2N FFT of areal and even sequence, which in turn can be computed with a
length (N/2) complex FFT and some additional computations. Other fast algorithms have
been derived to compute the DCT directly [15], using the principles described in Section
5.3.3.1. Two-dimensional transforms can also be used for image processing.
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Figure 5.17 Four ways to extend a four-point sequence x[n] to make it both periodic and have
even symmetry. The figuresin (@), (b), (c) and (d) correspond to the DCT-I, DCT-II, DCT-III
and DCT-IV respectively.

[l

54. DiGITAL FILTERSAND WINDOWS

We describe here the fundamentals of digital filter design and study finite-impulse response
(FIR) and infinite-impulse response (IIR) filters, which are special types of linear time-
invariant digital filters. We establish the time-frequency duality and study the ideal low-pass
filter (frequency limited) and its dual window functions (time limited). These transforms are
applied to stochastic processes.

54.1. Theldeal L ow-Pass Filter

It isuseful to find an impulse response h[n] whose Fourier transformis

1 |wka

(5.97)
0 wwlckm

H(e"*) = {
which isthe ideal low-pass filter because it lets all frequencies below w, pass through unaf-
fected and completely blocks frequencies above . Using the definition of Fourier trans-
form, we obtain

Sl (&) snan (@)
h[n]—ng:be dw= 2in  m ——nsmc(cq,n) (5.98)

where we have defined the so-called sinc function as

sinc(x) :S"‘T”X (5.99)
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which isareal and even function of x and is plotted in Figure 5.18. Note that the sinc func-
tion is 0 when X is a nonzero integer.

1 T T T T T T

-0.5 ! ! ! ! ! ! !
-8 -6 -4 -2 0 2 4 6 8

Figure 5.18 A sinc function, which is the impulse response of the ideal low-pass filter with a
scale factor.

Thus, an ideal low-pass filter is noncausal since it has an impulse response with an in-
finite number of nonzero coefficients.

5.4.2. Window Functions

Window functions are signals that are concentrated in time, often of limited duration. While
window functions such as triangular, Kaiser, Barlett, and prolate spheroidal occasionally
appear in digital speech processing systems, the rectangular, Hanning, and Hamming are the
most widely used. Window functions are also concentrated in low frequencies. These win-
dow functions are useful in digital filter design and al throughout Chapter 6.

54.2.1. The Rectangular Window

The rectangular window is defined as
h.[n] =u[n] —u[n—N] (5.100)

and we refer to it often in this book. Its ztransform is given by
N-1
H,(2=> 2" (5.101)
n=0

which results in a polynomial of order (N — 1). Multiplying both sides of Eq. (5.101) by z*,
we obtain

Z'H, (2) = ZN: z"=H (2-1+z™" (5.102)

n=1

and therefore the sum of the terms of a geometric series can also be expressed as
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1-z7"
1-7*
Although z=1 appearsto be a pole in Eg. (5.103), it actually isn’t because it is can-
celed by a zero a z=1. Since h[n] has finite length, Eqg. (5.25) must be satisfied for
z#0, so the region of convergence is everywhere but at z=0. Moreover, al finite-length
sequences have a region of convergence that is the complete z-plane except for possibly
z=0.
The Fourier transform of the rectangular window is, using Eq. (5.103):
1— g ioN (eijlz _ e—jale)e—jale

1-gi® - (ejwlz_e—jwlz)e—jcdz

H,.(2) =

(5.103)

H,(e") =
(5.104)
_sinwN lze_jw(N_l),2

:A(a))e—jw(N—l)lz
sinw/2
where A(w) is real and even. The function A(w), plotted in Figure 5.19 in dB.2 is O for

@, =27/ N with k#{0,£N,*2N,..}, and is the discrete-time equivalent of the sinc
function.

(dB)

_100 1 1 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Normalized Frequency

Figure 5.19 Frequency response (magnitude in dB) of the rectangular window with N = 50,
which isadigital sinc function.

5.4.2.2. The Generalized Hamming Window

The generalized Hamming window is defined as

8 An energy value E is expressed is decibels (dB) as E =10log,, E . If the energy value is 2E, it is therefore 3dB
higher. Logarithmic measurements like dB are useful because they correlate well with how the human auditory
system perceives volume.
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R i
and can be expressed in terms of the rectangular window in Eq. (5.100) as

h,[n] =@ -a)h.[n] —ah [n]cos(2zn/ N) (5.106)
whose transform is

H,(€”) =@-a)H () —(@/2H (e“*"V) —(a [ 2)H (e'(** ™)) (5.107)

after using the modulation property in Table 5.5. When a = 0.5 the window is known as the
Hanning window, whereas for a = 0.46 it is the Hamming window. Hanning and Hamming
windows and their magnitude frequency responses are plotted in Figure 5.20.

The main lobe of both Hamming and Hanning is twice as wide as that of the rectangu-
lar window, but the attenuation is much greater than that of the rectangular window. The
secondary lobe of the Hanning window is 31 dB below the main lobe, whereas for the
Hamming window it is 44 dB below. On the other hand, the attenuation of the Hanning win-
dow decays with frequency quite rapidly, which is not the case for the Hamming window,
whose attenuation stays approximately constant for all frequencies.

@ 1 (b) 0
0.5 (dB) -50
0 -100 Mnna

0 10 20 30 40 0 0.1 0.2 0.3 0.4 0.5
() 1 (d o
0.5 (dB) -50
0 -100

0 10 20 30 40 0 0.1 0.2 0.3 0.4 0.5

time Normalized Frequency

Figure 5.20 (&) Hanning window and (b) the magnitude of its frequency response in dB; (c)
Hamming window and (d) the magnitude of its frequency responsein dB for N = 50.

5.4.3. FIR Filters

From a practical point of view, it is useful to consider LTI filters whose impulse responses
have alimited number of nonzero coefficients:
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<nsM
h[n] = b 0=n . (5.108)
0 otherwise

These types of LTI filters are called finite-impulse response (FIR) filters. The in-
put/output relationship in this caseis

M

y[n] = Zb,x[n—r] (5.109)
r=0

The z-transform of x[n—r] is

S n-r1z" =3 {7 ™ =27 X(2) (5.110)

Therefore, given that the z-transformislinear, H(z) is

Y(2) _<p - 4

H2=—==) bz =Az l-cz (5.111)
X(2) Z% ”( )

M
whose region of convergence is the whole z-plane except for possibly z=0. Since > '|b | is
r=0

finite, FIR systems are aways stable, which makes them very attractive. Severa special
types of FIR filters will be analyzed below: linear-phase, first-order and low-pass FIR filters.

54.3.1. Linear-Phase FIR Filters

Linear-phase filters are important because, other than a delay, the phase of the signal is un-
changed. Only the magnitude is affected. Therefore, the temporal properties of the input
signal are preserved. In this section we show that linear-phase FIR filters can be built if the
filter exhibits symmetry.

Let's explore the particular case of h[n] rea, M =2L, an even number, and

h[n] = h[M —n] (called a Type-| filter). In this case
L-1

H(e') :ih[n]e‘j‘m =h[Lle”’ +Y (hnle” @ +h[M —nje” 4 ™)

n=0

L-1
=hL]e ™ +Y hin](e7/4") +el“n D )g (5.112)

n=0

= (h[ L] +ZL: 2h[n +L] cos(wn)] et = Awe '+

where A(w) is area and even function of w, since the cosine is an even function, and
A(w) is a linear combination of cosines. Furthermore, we see that the phase
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arg{H (ej’“)} = Lw, which is alinear function of w, and therefore h[n] is called a linear-

phase system. It can be shown that if h[n] =-h[M —-n], we also get a linear phase system
but A(w) thistime is a pure imaginary and odd function (Type 11 filter). It is |eft to the

reader to show that in the case of M being odd the system is still linear phase (Types |1 and
IV filters). Moreover, h[n] doesn’t have to be real and:

h[n] = £h'[M —n] (5.113)

isasufficient condition for h[n] to be linear phase.

54.3.2. First-Order FIR Filters

A special case of FIR filtersisthe first-order filter:
yin] =xn] +axn-1] (5.114)
for real valuesof a, which, unless a =1, isnot linear phase. Its z-transform is
H(z)=1+az* (5.115)
It is of interest to analyze the magnitude and phase of its frequency response

|H(€") P=|1+a(cosw - jsinw) F

. (5.116)
= (1+a cosw)® +(asinw)® =1+a° +2acosw
6(el®) = —arctan(ﬂJ (5.117)
1+acosw

10

(dB)

-10 o =-09 a=09 T

415 .
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normalized frequency

Figure 5.21 Frequency response of the first order FIR filter for various values of o .
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It is customary to display the magnitude response in decibels (dB):
10log| H (e"*) F=10log] (1+a)* +20 cosw | (5.118)

as shown in Figure 5.21 for various values of « .

We see that for a >0 we have a low-pass filter whereas for a <0 it is a high-pass
filter, dso called a pre-emphasis filter, since it emphasizes the high frequencies. In general,
filters that boost the high frequencies and attenuate the low frequencies are called high-pass
filters, and filters that emphasi ze the low frequencies and de-emphasize the high frequencies
are called low-pass filters. The parameter a controls the slope of the curve.

54.3.3. Window Design FIR Lowpass Filters

The ideal lowpass filter lets all frequencies below @, go through and eliminates all energy
from frequencies above that range. As we described in Section 5.4.1, the ideal lowpass filter
has an infinite impulse response, which poses difficulties for implementation in a practica
system, asit requires an infinite number of multiplies and adds.

1 T —v T T T i
0.5 i
Ot 1 1 1 1
0 0.05 0.1 0.4 0.45 0.5
0 ' ]
50
(dB)
10 . ﬂﬂﬂmﬂm
0 005 .l .l 02 0.25 . 0.4 0.45 0.5

Normalized Frequency
Figure 5.22 Magnitude frequency response of the truncated sinc signa (N=200) for
w, =1l 4 . It is an approximation to the ideal low-pass filter, though we see that overshoots
are present near the transition. The first graph is linear magnitude and the second isin dB.

Since we know that the sinc function decays over time, it is reasonable to assume that
a truncated sinc function that keeps a large enough number of samples N could be a good
approximation to the ideal low-pass filter. Figure 5.22 shows the magnitude of the frequency
response of such atruncated sinc function for different values of N. While the approximation
gets better for larger N, the overshoot near «), doesn’t go away and it facts stays at about
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9% of the discontinuity even for large N. This is known as the Gibbs phenomenon, since
Y ale professor Josiah Gibbs first noticed it in 1899.

In computing the truncated sinc function, we have implicitly multiplied the ideal low-
pass filter, the sinc function, by a rectangular window. In the so-called window design filter
design method, the filter coefficients are obtained by multiplying the ideal sinc function by a
tapering window function, such as the Hamming window. The resulting frequency response
is the convolution of the ideal lowpass filter function with the transform of the window
(shown in Figure 5.23), and it does not exhibit the overshoots seen above, at the expense of
adlower transition.

0.5F i

0 0.05 0.1 0.15 0.2 0.25 0.3 035 0.4 0.45 05

@B) -50

_100 1 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Normalized Freguency

Figure 5.23 Magnitude frequency response of a low-pass filter obtained with the window de-
sign method and a Hamming window (N = 200). The first graph is linear magnitude and the
second isin dB.

5.4.3.4. Parks McClellan Algorithm

While the window design method is simple, it is hard to predict what the final response will
be. Other methods have been proposed whose coefficients are obtained to satisfy some con-
straints. If our constraints are a maximum ripple of J, in the passband (0< w< ), ), and a

minimum attenuation of J; in the stopband (w, < w< ), the optimal solution is given by

the Parks McClellan algorithm [14].
The transformation

X = COSwW (5.119)

mapstheinterval 0< w< 77 into —1< x <1. We note that
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cos(nw) =T, (cosw) (5.120)

where T (x) isthe n"-order Chebyshev polynomial. The first two Chebychev polynomials
aregivenby T,(x) =1 and T,(x) = x. If we add the following trigonometric identities

cos(n+1)w = cosnwcos w-sinn asin @

. . (5.121)
cos(n—-1)w =cosnwcos w+sinn asin w
and use Egs. (5.119) and (5.120), we obtain the following recursion formula:
T, =2xT,(X) -T,,(x) for n>1 (5.122)

Using Eq. (5.120), the magnitude response of a linear phase Type-l filter in Eq.
(5.112) can be expressed as an L™-order polynomial in cosw:

L
Aw) =Y a, (cosaw)* (5.123)
k=0
which, using Eq. (5.119) resultsin a polynomial
L
P(X) =) ax (5.124)
k=0
0 T T T T T T T T T ]
20} 4
40
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Figure 5.24 Magnitude frequency response of a length-19 lowpass filter designed with the
Parks McClélan agorithm.

Given that a desired response is D(X) = D(cosw) , we define the weighted squared er-
ror as

E(X) = E(cosw) =W(cosaw)[D(cos &) —P(cos )] =W (X)[D(x) —P(x)] (5.125)

where W(cosw) is the weighting in w. A necessary and sufficient condition for this

weighted squared error to be minimized is to have P(x) aternate between minima and
maxima. For the case of alow-passfilter,
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1 cosw, <cosw<l
D(cosw) = { P (5.126)

0 -l<cosw<scosa)

and the weight in the stopband is several times larger that in the passband.

These constraints and the response of a filter designed with such a method are shown
in Figure 5.24. We can thus obtain a similar transfer function with fewer coefficients using
this method.

5.4.4. IR Filters

Other useful filters are afunction of past values of the input and also the output

N M
yinl =D a,yin-k] +> b xn -r] (5.127)
k=1 r=0
whose z-transform is given by
>
bz'
H@= @ - = (5.128)
X(2) 1-Y az"
k=1

which in turn can be expressed as a function of the roots of the numerator ¢, (called zeros),
and denominator d, (called poles) as

LM_L( 1)
Az l-cz°
1l

l:l (1— dkz‘l)

It is not obvious what the impul se response of such a system is by looking at either Eq.
(5.128) or Eg. (5.129). To do that, we can compute the inverse z-transform of Eq. (5.129). If
M <N inEg. (5.129), H(z) can be expanded into partia fractions (see Section 5.2.3.3) as

H(z) = (5.129)

H(2)=3 1_32_1 (5.130)
andif M =N
H(2) = ZN] A, MZN Bz " (5.131)

—1
ml-d.z k=0
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which we can now compute, since we know that the inverse ztransform of
H (2 =A/1-d.z") is

Addun] - |d, <1

-Addu-n-1] |d, [>1 (5.132)

-]
so that the convergence region includes the unit circle and therefore h [n] is stable. There-
fore, anecessary and sufficient condition for H(z) to be stable and causal simultaneoudly is
that all its poles beinside the unit circle: i.e,, | d, |[<1 for al k, so that itsimpulse response is
given by

hn] = B, +i Adru[n] (5.133)

which has an infinite impul se response, and hence its name.

Since IR systems may have poles outside the unit circle, they are not guaranteed to be
stable and causal like their FIR counterparts. This makes IIR filter design more difficult,
since only stable and causal filters can be implemented in practice. Moreover, unlike FIR
filters, IR filters do not have linear phase. Despite these difficulties, IR filters are popular
because they are more efficient than FIR filtersin realizing steeper roll-offs with fewer coef-
ficients. In addition, as shown in Chapter 6, they represent many physical systems.

54.4.1. First-Order IR Filters

An important type of IIR filter isthe first-order filter of the form
yinl = A{n] +ayln-1] (5.134)
for a redl. Itstransfer function is given by

A
1-az?

H(z) = (5.135)

This system has one pole and no zeros. Aswe saw in our discussion of ztransformsin
Section 5.2.3, a necessary condition for this system to be both stable and causal is that

|a |<1. Since for the low-pass filter case 0 < a <1, it is convenient to define a =e™® where
b >0. In addition, the corresponding impulse response isinfinite:

h[n] =a"u[n] (5.136)
whose Fourier transformis

A A

H(e”) = _ = :
&) 1-ge’® 1-eP®

(5.137)
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and magnitude square is given by

2
|H(E*)F= I LAl (5.138)

+a? -2q cosw

which isshown in Figure 5.25 for a >0, which corresponds to alow-pass filter.

20
151 7
0r 7
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a=0.
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Figure 5.25 Magnitude frequency response of the first-order IR filter.

The bandwidth of alow-pass filter is defined as the point where its magnitude square
is half of its maximum value. Using the first-order Taylor approximation of the exponential
function, the following approximation can be used when b — 0:

i A? A
H(E"°) f=——=— 5.139
HE = e = (5.139)
If the bandwidth w, isaso small, we can similarly approximate
2 2 2
|H(e™) P=—4 A_-_A (5.140)

1-e™F b+ ja P (07 +af)

so that for @y, =b we have |H(e’®) = 0.5|H(e'°) > In other words, the bandwidth of this

filter equals b, for small values of b. The relative error in this approximation® is smaller
than 2% for b < 0.5, which correspondsto 0.6 <a <1. The relationship with the unnormal -
ized bandwidth B is

q=e?®% (5.141)

® The exact valueis w, = arccos| 2-coshb ], where coshb = (eb +e’b)/2 is the hyperbolic cosine.
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For a <0 it behaves as a high-pass filter, and a similar discussion can be carried out.

54.4.2. Second-Order IR Filters

An important type of IIR filtersisthe set of second-order filters of the form

yinl = An] +a,y{n 1] +a,y{n 2] (5.142)
whose transfer function is given by
A
HO=————= 5.143
@=arar (5.143)

This system has two poles and no zeros. A special case is when the coefficients A, a
and a, arereal. Inthis case the two poles are given by

2
z= atVa 48, V& *+43, (5.144)

2

which for the case of a’+4a, >0 yields two red roots, and is a degenerate case of two

first-order systems. The more interesting case is when & +4a, <0. In this case we see that

the two roots are complex conjugates of each other, which can be expressed in their magni-
tude and phase notation as

z=e 7% (5.145)

As we mentioned before, o >0 is a necessary and sufficient condition for the poles to be
inside the unit circle and thus for the system to be stable. With those values, the z-transform
isgiven by

A A

H(z) = . . =
(2 (-7 % z71-e7"“z") 1-2e7cos(w,)z™ +e227

(5.146)

In Figure 5.26 we show the magnitude of its Fourier transform for a value of o and
w,. We see that the response is centered around «, and is more concentrated for smaller
values of o . Thisis atype of bandpass filter, since it favors frequencies in a band around
@, . It isleft to the reader as an exercise to show that the bandwidth™ is approximately 20 .
The smaller the ratio o/ w,, the sharper the resonance. The filter coefficients can be ex-

pressed as a function of the unnormalized bandwidth B and resonant frequency F and the
sampling frequency F, (all expressed in Hz) as

a, = 2e ™" cos(2nF I F,) (5.147)

10 The bandwidth of a bandpass filter isthe region between half maximum magnitude squared values.
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a, = —g2BIF (5.148)

These types of systems are also known as second-order resonators and will be of great
use for speech synthesis (Chapter 16), particularly for formant synthesis.
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Figure 5.26 Frequency response of the second-order IIR filter for center frequency of
F = 0.1F, and bandwidth B =0.01F, .

5.5. DIGITAL PROCESSING OF ANALOG SIGNALS

To use the digital signal processing methods, it is necessary to convert the speech signal
X(t) , which isanalog, to adigital signal x[n], which is formed by periodically sampling the
analog signal x(t) at intervalsequally spaced T seconds apart:

x[n] = x(nT) (5.149)

where T is defined as the sampling period, and its inverse F, =1/T as the sampling fre-
quency. In the speech applications considered in this book, F, can range from 8000 Hz for

telephone applications to 44,100 Hz for high-fidelity audio applications. This section ex-
plains the sampling theorem, which essentially says that the analog signal x(t) can be

uniquely recovered given its digital signal X[n] if the analog signal x(t) has no energy for
frequencies above the Nyquist frequency F,/2.

We not only prove the sampling theorem, but also provide great insight into the ana-
log-digital conversion, which is used in Chapter 7.

5.5.1. Fourier Transform of Analog Signals

The Fourier transform of an analog signal x(t) is defined as
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X(Q) = J‘“ x(t)e” % dt (5.150)
with itsinverse transform being
x(t) -1 r X(Q)e?dQ (5.151)
21T -

They are transform pairs. Y ou can prove similar relations for the Fourier transform of
analog signals as for their digital signals counterpart.

55.2. The Sampling Theorem
Let'sdefine x,(t)

X, (t) = x(t) p(t) (5.152)

asasampled version of x(t), where

p(t) = Y 3(t-nT) (5.153)
where J(t) is the Dirac delta defined in Section 5.3.2.1. Therefore, x,(t) can also be ex-
pressed as

o0 0 o0

X, (1) = Y x(t)a(t—nT) = > x(nT)d(t -nT) = > Xn] &t -nT) (5.154)

n=-oo n=-oc =—00

after using Eq. (5.149). In other words, X, (t) can be uniquely specified given the digital
signa xn].
Using the modulation property of Fourier transforms of analog signal's, we obtain

X,(Q) = %T X(Q)PQ) (5.155)

Following a derivation similar to that in Section 5.3.2.2, one can show that the trans-
form of theimpulsetrain p(t) isgiven by

P(Q) == d(Q-kQ,) (5.156)

g
T =
where Q, =2m7F, and F, =1/T , so that

X, (Q) :% 3 X(Q-kQ,) (5.157)

k=—00
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From Figure 5.27 it can be seen that if
X(Q)=0 for |Q> Q.12 (5.158)

then X(Q) can be completely recovered from X (Q) asfollows

X(Q) =R, (QX,(Q) (5.159)
where
(1 |QKkQ,/2
Ra. (@) _{0 otherwise (5.160)

is an ideal lowpass filter. We can also see that if Eq. (5.158) is not met, then aliasing will
take place and X(Q) can no longer be recovered from X, (Q) . Since, in general, we cannot

be certain that Eq. (5.158) is true, the analog signal is low-pass filtered with an idea filter
given by Eq. (5.160), which is called anti-aliasing filter, prior to sampling. Limiting the
bandwidth of our analog signal is the price we have to pay to be able to manipulate it digi-
tally.

A X(©Q
>
A X (Q
Q. -QJ2 QJ2 Qg
X,(Q)
/):\ /):\ >

Qs -QJ2  QJ2 Qg
Figure5.27 X(Q), X,(Q) for the case of no diasing and diasing.

The inverse Fourier transform of Eq. (5.160), computed through Eq. (5.151), isasinc
function
sin(nt/T)

I (t) =sinc(t/T) = T

(5.161)

so that using the convolution property in Eq. (5.159) we obtain
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0

X(t) =1, (1) DX, (©)= 1, ()0 Z NKIS(E KTE Y XKIr, (& KT) (5.162)

k=—00 =—o

The sampling theorem states that we can recover the continuous time signal x(t) just
from its samples x{n] using Egs. (5.161) and (5.162). The angular frequency Q. = 27rF, is
expressed in terms of the sampling frequency F;. T =1/F, is the sampling period, and
F./2 the Nyquist frequency. Equation (5.162) is referred to as bandlimited interpolation
because x(t) isreconstructed by interpolating x[n] with sinc functions that are bandlimited.

Now let’s see the relationship between X (Q) and X (e'), the Fourier transform of
the discrete sequence X n] . From Eq. (5.154) we have

X, (@)=Y Hnje (5.163)

so that the continuous transform X (Q) equals the discrete Fourier transform X(e"™) at
w=QT .

5.5.3. Analog-to-Digital Conversion

The process of converting an analog signa x(t) into adigital signal x[n] is called Analog-

to-Digital conversion, or A/D for short, and the device that does it caled an Analog-to-
Digital Converter. In Section 5.5.2 we saw that an ideal low-pass anti-aliasing filter was
required on the analog signal, which of course is not realizable in practice so that an ap-
proximation has to be used. In practice, sharp analog filters can be implemented on the same
chip using switched capacitor filters, which have attenuations above 60 dB in the stop band
so that aliasing tends not to be an important issue for speech signals. The passband is not
exactly flat, but this again does not have much significance for speech signals (for other sig-
nals, such as those used in modems, this issue needs to be studied more carefully).

Although such sharp analog filters are possible, they can be expensive and difficult to
implement. One common solution involves the use of a simple analog low-pass filter with a
large attenuation at MF,/2, a multiple of the required cutoff frequency. Then over-

sampling is done at the new rate MF,, followed by a sharper digital filter with a cut-off fre-
quency of F,/2 and downsampling (see Section 5.6). This is equivalent to having used a

sharp analog filter, with the advantage of a lower-cost implementation. This method also
alows variable sampling rates with minimal increase in cost and complexity. This topic is
discussed in more detail in Chapter 7 in the context of sigma-delta modulators.

In addition, the pulsesin Eg. (5.59) cannot be zero length in practice, and therefore the
sampling theorem does not hold. However, current hardware allows the pulses to be small
enough that the analog signa can be approximately recovered. The signal level isthen main-
tained during T seconds, while the conversion to digital is being carried out.
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A real A/D converter cannot provide real numbers for x{n], but rather a set of integers

typicaly represented with 16 bits, which gives a range between —32,768 and 32,767. Such
conversion is achieved by comparing the analog signal to a number of different signal levels.
This means that quantization noise has been added to the digital signal. Thisistypically not
a big problem for speech signals if using 16 bits or more since, as is shown in Chapter 7,
other noises will mask the quantization noise anyway. Typically, quantization noise be-
comes an issue only if 12 or fewer bits are used. A more detailed study of the effects of
quantization is presented in Chapter 7.

Finaly, A/D subsystems are not exactly linear, which adds another source of distor-
tion. This nonlinearity can be caused by, among things, jitter and drift in the pulses and un-
evenly spaced comparators. For popular A/D subsystems, such as sigma-delta A/D, an offset
is typically added to x[n], which in practice is not very important, because speech signals

do not contain informationat f =0, and thus can be safely ignored.

5.5.4. Digital-to-Analog Conversion

The process of converting the digital signal x[n] back into an analog x(t) is called digital-
to-analog conversion, or D/A for short. The ideal band-limited interpolation requires ideal
sinc functions as shown in Eg. (5.162), which are not realizable. To convert the digital signal
to analog, a zero-order hold filter

hy (t) ={1 o<t<T (5.164)

0 otherwise

is often used, which produces an analog signal as shown in Figure 5.28. The output of such a
filter is given by

% (1) = hy (1) DZ (- nT)= Z x{rihy (t- rT) (5.165)
Xo(1)
/ X,(1)
o —
| | | | T | 2T /

Figure 5.28 Output of azero-order hold filter.
The Fourier transform of the zero-hold filter in Eq. (5.164) is, using Eq. (5.150),
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28N(QT/2) _jar/:
Q

and, since we need an ideal lowpass filter to achieve the band-limited interpolation of Eq.
(5.162), the signal x,(t) hasto befiltered with areconstruction filter with transfer function

Ho(Q) = (5.166)

_QT—/Zejm’2 Q| <m/T
H, (Q) =1sn(QT/2) (5.167)
0 |Q|>m/T

In practice, the phase compensation is ignored, as it amounts to a delay of T/2 seconds. Its
magnitude response can be seen in Figure 5.29. In practice, such an analog filter is not real-
izable and an approximation is made. Since the zero-order hold filter is already low-pass, the
reconstruction filter doesn’t need to be that sharp.

IH, (iQ)|

[y

7

T
T T

Figure 5.29 Magnitude frequency response of the reconstruction filter used in digital-to-
analog converters after a zero-hold filter.

In the above discussion we note that practical A/D and D/A systems introduce distor-
tions, which causes us to wonder whether it is a good idea to go through this process just to
manipulate digital signals. It turns out that for most speech processing algorithms described
in Chapter 6, the advantages of operating with digital signals outweigh the disadvantage of
the distortions described above. Moreover, commercial A/D and D/A systems are such that
the errors and distortions can be arbitrarily small. The fact that music in digital format (asin
compact discs) has won out over analog format (cassettes) shows that thisis indeed the case.
Nonetheless, it isimportant to be aware of the above limitations when designing a system.

5.6. MULTIRATE SIGNAL PROCESSING

The term Multirate Signal Processing refers to processing of signals sampled at different
rates. A particularly important problem is that of sampling-rate conversion. It is often the
case that we have adigital signal x[n] sampled at a sampling rate F,, and we want to obtain
an equivalent signal y[n] but at adifferent sampling rate F. . This often occursin A/D sys-
tems that oversample in order to use smaller quantizers, such as a delta or sigma delta-
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quantizer (see Chapter 7), and a simpler analog filter, and then have to downsample the sig-
nal. Other examples include mixing signals of different sampling rates and downsampling to
reduce computation (many signal processing algorithms have a computational complexity
proportional to the sampling rate or its square).

A simple solution is to convert the digital signa x[n] into an analog signal x(t) with

aD/A system running at F, and then convert it back to digital with an A/D system running
a F..Aninteresting problem is whether this could be done in the digital domain directly,
and the techniques to do so belong to the general class of multi-rate processing.

5.6.1. Decimation

If we want to reduce the sampling rate by a factor of M, i.e.,, T'=MT , we take every M
samples. In order to avoid aliasing, we need to lowpass filter the signal to bandlimit it to
frequencies 1/T' . This is shown in Figure 5.30, where the arrow pointing down indicates
the decimation.

xnj —>| relnl 1 WM [ yin]

Figure 5.30 Block diagram of the decimation process.

Since the output is not desired at al instants n, but only every M samples, the compu-
tation can be reduced by afactor of M over the case where lowpass filtering is done first and
decimation later. To do this we express the analog signal x (t) at the output of the lowpass

filter as

X (1) = D XK]r. (t —KT) (5.168)
k=00
and then look at the value t' =nT' . The decimated signal y[n] isthen given by
1 - r > . Mn - k
yin =x (nT") = > KKl (nT" =KT) = >’ x[k]smc( v J (5.169)
k=-0c0 k=-co
which can be expressed as
yin] = > Xklh[Mn-K] (5.170)
k=—00
where

h[n] =sinc(n/M) (5.171)
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In practice, the ideal lowpass filter h[n] is approximated by an FIR filter with a cutoff
frequency of 1/(2M).

5.6.2. Inter polation

If we want to increase the sampling rate by afactor of N, sothat T' =T /N, we do not have
any aliasing and no further filtering is necessary. In fact we already know one out of every N
output samples

yINn] = x{n] (5.172)

and we just need to compute the (N —1) samples in-between. Since we know that x[n] isa
bandlimited signal, we can use the sampling theorem in Eq. (5.162) to reconstruct the anal og
signal as

0

X (t) = Y XK]r, (t —KT) (5.173)

k=—c0

and thus the interpolated signal y[n] as

Vil = x(nT) = 3 AKIr, (T -kT) = 3 x[k]sinc(n_kN] (5.174)
Now let’s define
X[K]= {X[Nk] K= Nk (5.175)
0 otherwise
which, inserted into Eq. (5.174), gives
yinl= 3 x[K]sinc((n-K)/N) (5.176)

K'=—co

This can be seen in Figure 5.31, where the block with the arrow pointing up imple-
ments Eq. (5.175).

XNl — > NA 1 rin] > yin]

Figure 5.31 Block diagram of the interpolation process.
Equation (5.174) can be expressed as

yin = 3 XKIh[n-kN] (5.177)
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where we have defined
h[n] =sinc(n/ N) (5.178)

Again, in practice, the ideal low-passfilter h[n] is approximated by an FIR filter with a
cutoff frequency of 1/(2N).

5.6.3. Resampling

To resample the signal so that T'=TM /N, or F,=F,(N/M), we can first upsample the

signal by N and then downsample it by M. However, there is a more efficient way. Proceed-
ing similarly to decimation and interpolation, one can show the output is given by

yin = S XKIh["M —KkN] (5.179)
where
. n
h[n] = smc(m] (5.180)

for the idea case. In practice, h[n] is an FIR filter with a cutoff frequency of
1/(2max(N,M)) . We can see that Eq. (5.179) is asuperset of Egs. (5.170) and (5.177).

5.7. FILTERBANKS

A filterbank is a collection of filters that span the whole frequency spectrum. In this section
we describe the fundamentals of filterbanks, which are used in speech and audio coding,
echo cancellation, and other applications. We first start with a filterbank with two equal
bands, then explain multi-resolution filterbanks, and present the FFT as a filterbank. Finally
we introduce the concept of lapped transforms and wavelets.

5.7.1. Two-Band Conjugate Quadrature Filters

A two-band filterbank is shown in Figure 5.32, where the filters f,[n] and g,[n] are low-
pass filters, and the filters f,[n] and g,[n] are high-pass filters, as shown in Figure 5.33.
Since the output of f,[n] has a bandwidth half of that of x[n], we can sample it at half the

rate of x[n]. We do that by decimation (throwing out every other sample), as shown in
Figure 5.32. The output of such a filter plus decimation is x,[m]. Similar results can be

shown for f,[n] and x[n].
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For reconstruction, we upsample x,[m], by inserting a O between every sample. Then
we low-pass filter it with filter g,[n] to complete the interpolation, as we saw in Section
5.6. A similar process can be done with the high pass filters f,[n] and g,[n] . Adding the
two bands produces X[ n], which isidentical to x[n] if thefiltersare ideal.

Xo[m]
Ot 0 g2 42w
X[n]
_>
X [m]
W) [ §2 > > A2 [
Anaysis Synthesis

Figure 5.32 Two-band filterbank.

In practice, however, ideal filters such as those in Figure 5.33 are not achievable, so
we would like to know if it is possible to build a filterbank that has perfect reconstruction
with FIR filters. The answer is affirmative, and in this section we describe conjugate quadra-
ture filters, which are the basis for the solutions.

'C
Sa
1

fo(n) fi(n)

Go(N) g(n)

Lowpass filter Highpassfilter
0 >
0 /2 Frequency i

Figure 5.33 Idead frequency responses of analysis and synthesis filters for the two-band filter-
bank.

To invegtigate this, let's analyze the cascade of a downsampler and an upsampler
(Figure 5.34). The output y[n] is a signal whose odd samples are zero and whose even sam-
ples are the same as those of the input signal x[n].

X — ¢2 fz —> ]

Figure 5.34 Cascade of adownsampler and an upsampler.
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The z-transform of the output is given by

Y@= Y iz =2 Y Arlz" 42 3 (K2
N n=~ n=e (5.181)
_X@+X(-2)
2

Using Eqg. (5.181) and the system in Figure 5.32, we can express the z-transform of the
output in Figure 5.32 as

2@ :(Fo(z)eo(z); Fl(z)Gl(z)) (@

{ Fy(-2G(2) + Fl(—z)Gl(z)) X(-2) 5182
2

:(Fo(z)X(z)+ 2Fo(—z)X(—z))GO(Z)+(F1(z)X(z)+ ZFI(—z)X(—z)]Gl(Z)

which for perfect reconstruction requires the output to be a delayed version of the input, and
thus

FO(Z)GQ(Z) + Fl(Z)Gl(Z) = 22‘('—‘1)
F(-2)G,(2) +F(-2)G,(2) =0

These conditions are met if we select the so-called Conjugate Quadrature Filters
(CQF) [17], which are FIR filters that specify f[n], g,[n], and g,[n] as a function of

fo[n] :
filnl = (=" fo[L -1-n]
go[n] = fo[L-1-n] (5.184)
gl[n] = fl[L _1_n]

(5.183)

where f,[n] isan FIR filter of even length L. The z-transforms of Eq. (5.184) are

Fl(z) =z® Fo(_z_l)
G,(2) =2 VF,(zY) (5.185)
G(2) =F(-2)

so that the second equation in Eq. (5.183) is met if L is even. In order to analyze the first
equation in Eq. (5.183), let’sdefine P(z) as
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P(2) = (2R (z7)

pin = f[mlf[m+n] (5.186)

then insert Eq. (5.185) into (5.183), use Eq. (5.186), and obtain the following condition:

P(2)+P(-2) =2 (5.187)
Taking the inverse z-transform of Eq. (5.186) and using Eq. (5.181), we obtain
1 n=0
n] = 5.188
plr {O o (5.189)

so that all even samples of the autocorrelation of f,[n] are zero, except for n = 0. Since
f,[n] isahaf-band low-pass filter, p[n] isalso ahalf-band low-pass filter. The ideal half-
band filter h[n]

_sin(m/2) (5.189)

h[n]
satisfies Eq. (5.188), as does any half-band zero-phase filter (a linear phase filter with no
delay). Therefore, the stepsto build CQF are

1. Design a (2L - 1) tap™ half-band linear-phase low-pass filter p[n] with any avail-

able technique, for an even value of L. For example, one could use the Parks
McClellan agorithm, constraining the passhand and stopband cutoff frequencies
sothat w, = 71— @ and using an error weighting that is the same for the passband
and stopband. Thisresultsin a half-band linear-phase filter with equal ripple J in

both bands. Another possibility is to multiply the ideal half-band filter in Eq.
(5.189) by a window with low-pass characteristics.

2. Add avalue J to p[0] so that we can guarantee that P(e'“) =0 for al w and
thusis alegitimate power spectral density.

3. Spectrally factor P(z) = F,(2)F,(z™") by computing its roots.

4. Compute f,[n], g,[n] and g,[n] from Eq. (5.184).

5.7.2. Multiresolution Filter banks

While the above filterbank has equal bandwidth for both filters, it may be desirable to have
varying bandwidths, since it has been proven to work better in speech recognition systems.
In this section we show how to use the two-band conjugate quadrature filters described in
the previous section to design a filterbank with more than two bands. In fact, multi-

™ A filter with N tapsis afilter of length N.
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resolution analysis such as that of Figure 5.35, are possible with bands of different band-
widths (see Figure 5.36).

e I e 2SI e R PR e na B A R ER LA

f1—>¢21 f1—>¢21 f1—>¢21

Xa[Nn] X2[N] x([n]

Figure 5.35 Anaysis part of a multi-resolution filterbank designed with conjugate quadrature
filters. Only f,[n] needsto be specified.

A
1

0

|
0 n/8 ml/4 /2 T

Figure 5.36 Ideal frequency responses of the multi-resolution filterbank of Figure 5.35. Note
that X,[n] and x[Nn] occupy 1/8 of the total bandwidth.

A A

> >
t t

Figure 5.37 Two different time-frequency tilings: the non-uniform filterbank and that obtain
through a short-time Fourier transform. Notice that the area of each tileis constant.
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One interesting result is that the product of time resolution and frequency resolution is
constant (all the tiles in Figure 5.37 have the same area), since filters with smaller band-
widths do not need to be sampled as often. Instead of using Fourier basis for decomposition,
multi-resolution filterbanks allow more flexibility in the tiling of the time-frequency plane.

5.7.3. The FFT asa Filterbank

It turns out that we can use the Fourier transform to construct a filterbank. To do that, we
decompose theinput signal x{n] as asum of short-time signals x_[n]

xn] = i Xa[N] (5.190)

m=-—co

where x_[n] isobtained as

Xn[N] = X[N]w;,[N] (5.191)

the product of x{n] by awindow function w,[n] of length N. From Egs. (5.190) and (5.191)
we see that the window function has to satisfy

S w =1 On (5.192)

If the short-term signals x[n] are spaced M samples apart, we define the window
w,[n] as:

w, [n] =w{n—Mm] (5.193)

wherew[n] = 0for n<0 and n> N . Thewindows w_[n] overlap in time while satisfying
Eqg. (5.192).
Since x,[n] has N nonzero values, we can evaluate its length-N DFT as

X, [K] :fxm[lvlmﬂ]e'w'

- - (5.194)
= qMm+Iwl1e’ =3 {Mm+I]f, [ ]
1=0 1=0
where w, =27k/N and the analysisfilters f,[I] are given by
f [1]=w[-]e' (5.195)

If we define X, [n] as
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X,[n] =Xn] Of, [n]= i n-rlf[r]= ilx[m i [=1] (5.196)

=—00

then Eqgs. (5.194) and (5.196) are related by
X [K] = X, [mM] (5.197)

This manipulation is shown in Figure 5.38, so that the DFT output X, [K] is X, [n]
decimated by M.

X Xl
x[n] —» f[n] k[n]= +M >

Figure 5.38 Fourier analysis used to build alinear filter.

The short-time signal x_[n] can be recovered through the inverse DFT of X [k] as

X, [MM +1] =HITY X, [Kle™ (5.198)

where h[n] has been defined as

<
h[n]:{l/N O<n<N

. (5.199)
0 otherwise

so that Eq. (5.198) isvalid for al valuesof |, and not just 0<| <N .

Making the change of variables mM +1 =n in Eq. (5.198) and inserting it into Eq.
(5.190) resultsin

=3 Hn-mM]Y X, [Kels o

m=-co

Nt . (5.200)
=2 > Xu[Klg[n-mMm]
k=0 m=-o
where the synthesis filters g,[n] are defined as
gi[n] = h[nje’" (5.201)
Now, let’s define the upsampled version of X [K] as
- X [k] I=mM
R,[1 = okl T =mh (5.202)
0 otherwise
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which, inserted into Eq. (5.200), yields

N-1 o N-1

) => Y X, Mg n-11=> X[n] Cg,[n] (5.203)

k=01=-co k=0

Thus, the signal can be reconstructed. The block diagram of the analysis/resynthesis
filterbank implemented by the DFT can be seen in Figure 5.39, where x [m] = X [k] and

Xn] =xn].

>t M g M gl
>t M g M ol
\ X[n]
X[n] -+ —>
> faalnl Al =XN—l[m] =AM — On-1[n]
AnaysisDFT Synthesis DFT

Figure 5.39 A filterbank with N analysis and synthesisfilters.

For perfect reconstruction we need N =M . If w[n] is arectangular window of length
N, the frame rate hasto be M =N . We can aso use overlapping windows with N =2M
(50% overlap), such as Hamming or Hanning windows, and still get perfect reconstruction.
The use of such overlapping windows increases the data rate by a factor of 2, but the analy-
sis filters have much less spectral leakage because of the higher attenuation of the Ham-
ming/Hanning window outside the main lobe.

5.7.4. Modulated Lapped Transforms

The filterbank of Figure 5.39 is useful because, as we see in Chapter 7, it is better to quan-
tize the spectral coefficients than the waveform directly. If the DFT coefficients are quan-
tized, there will be some discontinuities at frame boundaries. To solve this problem we can
distribute the window win] between the analysis and synthesis filters so that

win] = w,[njw[n] (5.204)
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so that the analysis filters are given by

f.[n] = w,[-n]e/" (5.205)
and the synthesis filters by

g,[n] = w[n]e 4" (5.206)

This way, if there is a quantization error, the use of a tapering synthesis window will
substantially decrease the border effect. A common choice is w,[n] =w,[n], which for the

case of wn] being a Hanning window divided by N, resultsin

w,[n] =w,[n] :isin(mj for 0<n<N (5.207)

JNTUN
so that the analysis and synthesis filters are the reversed versions of each other:

f[-n] =g.[n] =wejm’“ My [n] =[] (5.208)

whose frequency response can be seen in Figure 5.40.
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Figure 5.40 Frequency response of the Lapped Orthogonal Transform filterbank.

The functions h'[n] in Eq. (5.208) are sine modulated complex exponentials, which
have the property

he'"?[n] = 272y [2n] (5.209)



Stochastic Processes 259

which is a property typical of functions called wavelets, i.e., they can be obtained from each
other by stretching by 2 and scaling them appropriately. Such wavelets can be seen in Figure
5.41.

Figure 5.41 Iterations of the wavelet hy'[n] for several values of k and N.

If instead of modulating a complex exponential we use a cosine sequence, we obtain
the Modulated Lapped Transform (MLT) [7], aso known as the Modified Discrete Cosine
Transform (MDCT):

P = f.[2M —-1-n] =g,[n] :h[n]\/%cos[(k +%J(n +M2+1j%} (5.210)

for k=0,1,---,M -1 and n=0,1,---,2M -1. There are M filters with 2M taps each, and
h[n] isasymmetric window h[n] = h[2M -1-n] that satisfies

h’[n]+h’[n+M] =1 (5.211)
where the most common choice for h[n] is
. 1\
h[n]=sin|| n+= |— 5.212
s o3 =

A fast algorithm can be used to compute these filters based on the DCT, which is called the
Lapped Orthogonal Transform (LOT).

5.8. STOCHASTIC PROCESSES

While in this chapter we have been dealing with deterministic signals, we also need to deal
with noise, such as the static present in a poorly tuned AM station. To analyze noise signals
we need to introduce the concept of stochastic processes, also known as random processes.
A discrete-time stochastic process x[n], aso denoted by X, is a sequence of random vari-

ables for each time instant n. Continuous-time stochastic processes x(t), random variables

for each value of t, will not be the focus of this book, though their treatment is similar to that
of discrete-time processes. We use bold for random variables and regular text for determi-
nistic signals.
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Here, we cover the statistics of stochastic processes, defining stationary and ergodic
processes and the output of linear systems to such processes.

Example
We can define arandom process x[n] as
x[n] = cos[wn + @] (5.213)

where ¢ isrea random variable with a uniform pdf in the interval (-7, 7)) . Severd realiza-
tions of this random process are displayed in Figure 5.42.

1l T T T T T T
N\ i \ N \ X\ 4 \ X SN
) \ p \ ; \ R \

-4 -3 -2 -1 0 1 2 3 4

Figure 5.42 Several realizations of a sinusoidal random process with arandom phase.

5.8.1. Statistics of Stochastic Processes

In this section we introduce several statistics of stochastic processes such as distribution,
density function, mean and autocorrelation. We also define several types of processes de-
pending on these statistics.

For a specific n, x[n] isarandom variable with distribution

F(x,n) =P{x[n] <% (5.214)

Itsfirst derivative with respect to x is the first-order density function, or simply the probabil-
ity density function (pdf)

f(x,n) = —dFé’; )

(5.215)

The second-order distribution of the process x[n] isthejoint distribution

F 4% m,n,) = PIXI ] < %, X[, ] < %} (5.216)
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of the random variables x[n,] and x[n,] . The corresponding density equals

O°F (%, %1, 1) (5217)

0%,0%,

A complex random process X[n] =X, [n] + jx;[n] is specified in terms of the joint sta-
tistics of the real processes x,[n] and x;[n].

The mean g[n] of x[n], also called first-order moment, is defined as the expected
value of the random variable x[n] for each value of n:

F(x %5, n,) =

[n] = E{x(n} = J“" x[n] f (x, n)dx (5.218)

The autocorrelation of complex random process x[n], aso called second-order moment, is
defined as

R.[n.n,1 = E{x{n]xn,]} =R.[n,.n] (5.219)

which is a statistical average, unlike the autocorrelation of a deterministic signal defined in
Eq. (5.45), which was an average over time.

Example
Let’slook at the following sinusoidal random process
X[n] =r cos{wn + @] (5.220)

wherer and ¢ are independent and ¢ is uniform in the interval (-7, 77 . This process is
zero-mean because

w,[n] = E{r cosiwn +¢]} =E{r} E{cos[an +¢]} =0 (5.221)

sincer and ¢ areindependent and

E{cogwn+e¢} = fﬂcos[an +q>]%1dq> =0 (5.222)
Its autocorrelation is given by

R.[nn,] = E(r?} [ codeon, +gloos{an, +o]_dp

:%E{rz} [ {cosfe(n, +1,) +¢] +cog afn, -n)} %Td(p (5.223)

= ~E{r*}oosan, -]
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which only depends on the time difference n, —n, .

An important property of a stochastic process isthat its autocorrelation R, [n,n,] isa
positive-definite function, i.e., for any a,a,

> > aaR,[n,n]z0 (5.224)
which is a consequence of the identity
0< Eﬂzax[ni] }:Zzaa?E{x[ni]ﬁ[nj]} (5.225)

Similarly, the autocovariance of a complex random process is defined as
Cxx[nunz] = E{(X[nl] _,ux[nl])(x[nz] _,ux[nz])m} :Rm[nunz] _ﬂx[nl]#xm[nz] (5-226)

The correlation coefficient of process x[n] is defined as

_ cnn)
N R TSR (5227

An important property of the correlation coefficient isthat it is bounded by 1:

[ro[n,n] <1 (5.228)
which is the Cauchy-Schwarz inequality. To proveit, we note that for any real number a

0= E{|acqn] - sn]) + (x{n,] -pn,)}
=a’C, [, 0] +2aC, [y, 0,] +C, [y, 1]

(5.229)

Since the quadratic function in Eq. (5.229) is positive for al a, its roots have to be complex,
and thus its discriminant hasto be negative:

Ciln,n]-C,[n,n]C,[n,,n,] <0 (5.230)

from which Eq. (5.228) is derived.
The cross-correlation of two stochastic processes x[n] and y[n] isdefined as

Ry[n.n,1 = E{x{nlyIn,]} =R, [n,.n] (5.231)

where we have explicitly indicated with subindices the random process. Similarly, their
cross-covarianceis
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Cylm,n] = Ry[n,n,] -4 [n ]y, (5.232)
Two processes x[n] and y[n] are called orthogonal iff
R,[n,n,]=0 forevery n and n, (5.233)

They are called uncorrelated iff
Cyln,n,]=0 forevery n and n, (5.234)

Independent processes. If two processes x[n] and y[n] are such that the random vari-
ables x[n,],x[n,],---,x[n.], and y[n],y[n,],---,y[r.] are mutually independent, then these
processes are called independent. If two processes are independent, then they are also uncor-
related, though the converseis not generally true.

Gaussian processes. A process X[n] is caled Gaussian if the random variables
x[n1,x[n,],---,x[n,] arejointly Gaussian for any mand n;,n,,---,n_ . If two processes are
Gaussian and also uncorrelated, then they are also statistically independent.

5.8.2. Stationary Processes

Stationary processes are those whose statistical properties do not change over time. While
truly stationary processes do not exist in speech signals, they are a reasonable approximation
and have the advantage of allowing us to use the Fourier transforms defined in Section
5.1.3.3. In this section we define stationarity and analyze some of its properties.

A stochastic process is called strict-sense stationary (SSS) if its statistical properties
are invariant to a shift of the origin: i.e., both processes x[n] and x[n+I] have the same
statistics for any | . Likewise, two processes x[n] and y[n] are caled jointly strict-sense
stationary if their joint statistics are the same asthose of x[n+1] and y[n+I1] forany | .

From the definition, it follows that the m"-order density of an SSS process must be
such that

PO X o) = 0,0 Xy + 1,0y, +) (5.235)

for any | . Thusthe first-order density satisfies f (x,n) = f(x,n+I) for any I, which means
that it isindependent of n:

f(xn) = f(X) (5.236)

or, in other words, the density function is constant with time.
Similarly, f(x,%;n +1,n, +I) isindependent of | , which leads to the conclusion

FO0 %0, n0) = 1%, ;M) m=n-n, (5.237)
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or, in other words, the joint density of x[n] and x[n+m] is not a function of n, only of m,

the time difference between the two samples.
Let’s compute the first two moments of a SSS process:

EO(n)} = [X(n]f (qn]) = [xf () = (5.239)

E{Qqn+mlx[nl} = [x(n+m]x’[n] f (g +m],x{n]) =R,[m] (5.239)

or, in other words, its mean is not a function of time and its autocorrelation depends only on
m.
A stochastic process x[n] that obeys Eqg. (5.238) and (5.239) is called wide-sense sta-

tionary (WSS). From this definition, a SSS process is also a WSS process but the converse
is not true in general. Gaussian processes are an important exception, and it can be proved
that a WSS Gaussian processisaso SSS.

For example, the random process of Eq. (5.213) is WSS, because it has zero mean and
its autocorrelation function, as given by Eq. (5.223), is only a function of m=n, —n,. By

setting m=0 in Eq. (5.239) we see that the average power of a WSS stationary process

E{|x(n][} = RO] (5.240)

isindependent of n.
The autocorrelation of a WSS process is a conjugate-symmetric function, also referred
to asaHermitian function:

R-m] = E{x{n -m]x"[n]} =E{Xn]X'[n +m]} =R [m] (5.241)

sothat if x[n] isreal, Rlm] is even.
From Egs. (5.219), (5.238), and (5.239) we can compute the autocovariance as

CIml = Riml -4’ (5.242)
and its correlation coefficient as
r[m] = C[m]/C[0] (5.243)

Two processes x[n] and y[n] are caled jointly WSSif both are WSS and their cross-
correlation dependsonly on m=n, —n,:

R, [ml = E{x[n+mly [n]} (5.244)

C, Il = R, [m] -, (5.245)
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5.8.2.1. Ergodic Processes

A critical problem in the theory of stochastic processes is the estimation of their various
statistics, such as the mean and autocorrelation given that often only one realization of the
random process is available. The first approximation would be to replace the expectation in
Eqg. (5.218) with its ensemble average:

un] DMih_A_Z_lx [n] (5.246)

where x[n] are different samples of the random process.
As an example, let x[n] be the frequency-modulated (FM) random process received
by a FM radio receiver:

x[n] =a[n] +v[n] (5.247)

which contains some additive noise v[n]. The realization x[n] received by receiver i will be
different from the realization x;[n] for receiver j. We know that each signal has a certain

level of noise, so one would hope that by averaging them, we could get the mean of the
process for a sufficiently large number of radio receivers.

In many cases, however, only one sample of the processis available. According to Eq.
(5.246) this would mean that that the sample signal equals the mean, which does not seem
very robust. We could also compute the signal’ s time average, but this may not tell us much
about the random processin general. However, for a specia type of random processes called
ergodic, their ensemble averages equal appropriate time averages.

A process x[n] with constant mean

is called mean-ergodic if, with probability 1, the ensemble average equals the time average
when N approachesinfinity:

Lim My = U (5.249)

where p,, isthetime average
1 N/2-1
fy == Xl (5.250)
n=-N/2
which, combined with Eq. (5.248), indicates that 1, is a random variable with mean L .
Taking expectationsin Eq. (5.250) and using Eq. (5.248), it is clear that
Eu}=u (5.251)

so that proving Eq. (5.249) is equivalent to proving
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limaf =0 (5.252)

with o7 being the variance of 1, . It can be shown [12] that a process x[n] is mean ergodic
iff

N/2-1 N/2-1

Lig;% > > Cunml=0 (5.253)

n=-N/2m=-N/2

It can also be shown [12] that a sufficient condition for a WSS process to be mean ergodic is
to satisfy

limC,[m] =0 (5.254)

m-— oo

which means that if the random variables x[n] and x[n+m] are uncorrelated for large m,
then process x[n] is mean ergodic. Thisistrue for many regular processes.

A similar condition can be proven for a WSS process to be covariance ergodic. In
most cases in this book we assume ergodicity, first because of convenience for mathematical
tractability, and second because it is a good approximation to assume that samples that are
far apart are uncorrelated. Ergodicity allows us to compute means and covariances of ran-
dom processes by their time averages.

5.8.3. LTI Systemswith Stochastic I nputs

If the WSS random process x[n] istheinput to an LTI system with impulse response h[n],
the output

o0

y[n] = i h[m]x[n-m| = h[n —m]x[m]| (5.255)

m=—co m=

is another WSS random process. To prove this we need to show that the mean is not a func-
tion of n:

ol = EQyin} = 3 HmlE din-nf =41, 3" A (5.256)

m=-oco =

The cross-correl ation between input and output is given by

R,[m = E{x{n+m]y (On} = i hT1E x[n+ m]xO[n- [

o . ) (5.257)
= Z hlIR,[m+1] = Z H[HIR,[m -] =K [ -m] [R,[m]

and the autocorrelation of the output
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R, [m] = E{yln+mly On} = 3" HITE X[n+ m- 1]y [
= (5.258)

= i hIR,[m~1] =hm] LR [m]= {m]OhE mp R, [m]

isonly afunction of m.

5.8.4. Power Spectral Density

The Fourier transform of a WSS random process x[n] is a stochastic process in the variable
w

X(@)= S e’ (5.259)

n=-o0

whose autocorrelation is given by

E{X(@+ux (e} = E{i UL kj[m]ej“"‘} -

. . (5.260)
= @ N Exm+n]x{ml}e "

n=-oo m=-oo

where we made a change of variables | = n+m and changed the order of expectation and
summation. Now, if x[n] isWSS

R[] = E{x[m+n]x"[m} (5.261)

and if we set u=0 in Eq. (5.260) together with Eq. (5.261), then we obtain
S.(@) = E{[x(ef} = 3. R,[nle (5.262)

S, (w) is called the power spectral density of the WSS random process x[n], and it is the
Fourier transform of its autocorrelation function R, [n] , with the inversion formula being

— 1 jon
R =— [ S.(@e"dw (5.263)

Note that Egs. (5.48) and (5.263) are identical, though in one case we compute the
autocorrelation of asignal as atime average, and the other is the autocorrelation of arandom
process as an ensemble average. For an ergodic process both are the same.
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Just as we take Fourier transforms of deterministic signals, we can also compute the
power spectral density of a random process as long as it is wide-sense stationary, which is
why these wide-sense stationary processes are so useful.

If the random process x[n] isreal then R [n] isrea and even and, using propertiesin

Table5.5, S, (w) isasoreal and even.
Parseval’ s theorem for random processes also applies here:

E{Mr} = R0 = [ S.(@de (5.264)

so that we can compute the signal’ s energy from the areaunder S, (w) . Let’s get a physical
interpretation of S, (w) . In order to do that we can similarly derive the cross-power spec-
trum S (w) of two WSS random processes x[n] and y[n] asthe Fourier transform of their
cross-correl ation:

s, (@) = 2 R, [n]e " (5.265)

which allows us, taking Fourier transforms in Eq. (5.257), to obtain the cross-power spec-
trum between input and output to alinear system as

S, (@) =S, (WH"() (5.266)

Now, taking the Fourier transform of Eq. (5.258), the power spectrum of the output is
thus given by

Sy (@) =S, (WH (@) =S, (QH( @f (5.267)
Finaly, suppose we filter x[n] through the ideal bandpass filter

Hy(w) = VTC @< ws ge (5.268)
0 otherwise

The energy of the output processis
2] _ 1 1 e

0< E{|y[n]| } =R, [0] —ETJ'_”SW(a))da)—EJ'%_C S.(0d w (5.269)

so that taking the limit when ¢ - 0 resultsin
0<limY J::WS&X(a))d w=S, (&) (5.270)
c-02¢c -c

which is the Wiener-Khinchin theorem and says that the power spectrum of a WSS process
x[n], real or complex, is always positive for any w. Equation (5.269) also explains the
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name power spectral density, because S, (w) represents the density of power at any given
frequency w.

5.8.5. Noise

A process x[n] iswhite noiseif, and only if, its samples are uncorrel ated:

Culn,n,] =C[n]d[n, —n,] (5.271)

andiszero-mean (4, [n] =0.
If in addition x[n] isWSS, then

CuInl = R,[n] =qd[n] (5.272)
which has aflat power spectral density
S,(w)y=q foral w (5.273)

The therma noise phenomenon in metallic resistors can be accurately modeled as
white Gaussian noise. White noise doesn't have to be Gaussian (white Poisson impulse
noise is one of many other possihilities).

Colored noise is defined as a zero-mean WSS process whose samples are correlated
with autocorrelation R, [n] . Colored noise can be generated by passing white noise through

afilter h[n] suchthat S, (w) :|H(w)|2. A type of colored noise that is very frequently en-

countered in speech signals is the so-called pink noise, whose power spectral density decays
with w. A more in-depth discussion of noise and its effect on speech signalsisincluded in
Chapter 10.

5.9. HISTORICAL PERSPECTIVE AND FURTHER READING

It isimpossible to cover the field of Digital Signal Processing in just one chapter. The book
by Oppenheim and Shafer [10] is one of the most widely used as a comprehensive treatment.
For a more in-depth coverage of digital filter design, you can read the book by Parks and
Burrus [13]. A detailed study of the FFT is provided by Burrus and Parks [2]. The theory of
signal processing for analog signals can be found in Oppenheim and Willsky [11]. The the-
ory of random signals can be found in Papoulis [12]. Multirate processing is well studied in
Crochiere and Rabiner [4]. Razavi [16] covers analog-digital conversion. Software pro-
grams, such as MATLAB [1], contain a large number of packaged subroutines. Malvar [7]
has extensive coverage of filterbanks and lapped transforms.

The field of Digital Signal Processing has along history. The greatest advances in the
field started in the 17" century. In 1666, English mathematician and physicist Sir Isaac
Newton (1642-1727) invented differential and integral calculus, which was independently
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discovered in 1675 by German mathematician Gottfried Wilhelm Leibniz (1646-1716). They
both developed discrete mathematics and numerical methods to solve such equations when
closed-form solutions were not available. In the 18" century, these techniques were further
extended. Swiss brothers Johann (1667-1748) and Jakob Bernoulli (1654-1705) invented the
calculus of variations and polar coordinates. French mathematician Joseph Louis Lagrange
(1736-1813) developed algorithms for numerical integration and interpolation of continuous
functions. The famous Swiss mathematician Leonhard Euler (1707-1783) developed the
theory of complex numbers and number theory so useful in the DSP field, in addition to the
first full analytical treatment of algebra, the theory of equations, trigonometry and analytical
geometry. In 1748, Euler examined the motion of a vibrating string and discovered that si-
nusoids are eigenfunctions for linear systems. Swiss scientist Daniel Bernoulli (1700-1782),
son of Johann Bernoulli, also conjectured in 1753 that al physical motions of a string could
be represented by linear combinations of normal modes. However, both Euler and Bernoulli,
and later Lagrange, discarded the use of trigonometric series because it was impossible to
represent signals with corners. The 19™ century brought us the theory of harmonic analysis.
One of those who contributed most to the field of Digital Signal Processing is Jean Baptiste
Joseph Fourier (1768-1830), a French mathematician who in 1822 published The Analytical
Theory of Heat, where he derived a mathematical formulation for the phenomenon of heat
conduction. In this treatise, he also developed the concept of Fourier series and harmonic
analysis and the Fourier transform. One of Fourier's disciples, the French mathematician
Smeon-Denis Poisson (1781-1840), studied the convergence of Fourier series together with
countryman Augustin Louis Cauchy (1789-1857). Nonetheless, it was German Peter
Dirichlet (1805-1859) who gave the first set of conditions sufficient to guarantee the con-
vergence of a Fourier series. French mathematician Pierre Smon Laplace (1749-1827) in-
vented the Laplace transform, a transform for continuous-time signals over the whole com-
plex plane. French mathematician Marc-Antoine Parseval (1755-1836) derived the theorem
that carries his name. German Leopold Kronecker (1823-1891) did work with discrete delta
functions. French mathematician Charles Hermite (1822-1901) discovered complex conju-
gate matrices. American Josiah Willard Gibbs (1839-1903) studied the phenomenon of Fou-
rier approximations to periodic square waveforms.

Until the early 1950s, al signal processing was analog, including the long-playing
(LP) record first released in 1948. Pulse Code Modulation (PCM) had been invented by Paul
M. Rainey in 1926 and independently by Alan H. Reeves in 1937, but it wasn't until 1948
when Oliver, Pierce, and Shannon [9] laid the groundwork for PCM (see Chapter 7 for de-
tails). Bell Labs engineers developed a PCM system in 1955, the so-called T-1 carrier sys-
tem, which was put into service in 1962 as the world’s first common-carrier digital commu-
nications system and is still used today. The year 1948 also saw the invention of the transis-
tor at Bell Labs and a small prototype computer at Manchester University and marked the
birth of modern Digital Signal Processing. In 1958, Jack Kilby of Texas Instruments in-
vented the integrated circuit and in 1970, researchers at Lincoln Laboratories developed the
first rea-time DSP computer, which performed signal processing tasks about 100 times
faster than general-purpose computers of the time. In 1978, Texas Instruments introduced
Foeak & Spelld, a toy that included an integrated circuit especially designed for speech
synthesis. Intel Corporation introduced in 1971 the 4-hit Intel 4004, the first general-purpose
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microprocessor chip, and in 1972 they introduced the 8-bit 8008. In 1982 Texas |nstruments
introduced the TM S32010, the first commercially viable single-chip Digital Signal Proces-
sor (DSP), a microprocessor specially designed for fast signal processing operations. At a
cost of about $100, the TM S32010 was a 16-bit fixed-point chip with a hardware multiplier
built-in that executed 5 million instructions per second (MIPS). Gordon Moore, Intel’s
founder, came up with the law that carries his name stating that computing power doubles
every 18 months, allowing ever faster processors. By the end of the 20™ century, DSP chips
could perform floating-point operations at arate over 1000MIPS and had a cost below $5, so
that today they are found in many devices from automobiles to cellular phones.

While hardware improvements significantly enabled the development of the field,
digital algorithms were also needed. The 1960s saw the discovery of many of the concepts
described in this chapter. In 1965, James W. Cooley and John W. Tukey [3] discovered the
FFT, athough it was later found [6] that German mathematician Carl Friedrich Gauss
(1777-1855) had already invented it over a century earlier. The FFT sped up calculations by
orders of magnitude, which opened up many possible algorithms for the slow computers of
the time. James F. Kaiser, Bernard Gold, and Charles Rader published key papers on digital
filtering. John Sockham and Howard Helms independently discovered fast convolution by
doing convolution with FFTs.

An association that has had a large impact on the development of modern Digital Sig-
nal Processing is the Institute of Electrical and Electronic Engineers (IEEE), which has over
350,000 members in 150 nations and is the world's largest technical organization. It was
founded in 1884 as the American Ingtitute of Electrical Engineers (AIEE). IEEE's other par-
ent organization, the Institute of Radio Engineers (IRE), was founded in 1912, and the two
merged in 1963. The |EEE Signal Processing Society is a society within the |EEE devoted
to Signal Processing. Originally founded on 1948 as the Ingtitute of Radio Engineers Profes-
sional Group on Audio, it was later renamed the IEEE Group on Audio (1964), the IEEE
Audio and Electroacoustics group (1965), the IEEE group on Acoustics Speech and Signal
Processing (1974), the Acoustic, Speech and Signal Processing Society (1976), and finally
IEEE Signal Processing Society (1989). In 1976 the society initiated its practice of holding
an annual conference, the International Conference on Acoustic, Speech and Signal Process-
ing (ICASSP), which has been held every year since, and whose proceedings constitute an
invaluable reference. Frederik Nebeker [8] provides a history of the society’s first 50 years
rich in insights from the pioneers.
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CHAPTER 6

Speech Signal Representations

This chapter presents severa representations
for speech signals useful in speech coding, synthesis and recognition. The central theme is
the decomposition of the speech signal as a source passed through a linear time-varying fil-
ter. This filter can be derived from models of speech production based on the theory of
acoustics where the source represents the air flow at the vocal cords, and the filter represents
the resonances of the vocal tract which change over time. Such a source-filter model isillus-
trated in Figure 6.1. We describe methods to compute both the source or excitation €[n] and
the filter h[n] from the speech signal x[n].

Nl —— hin] — XNl

Figure 6.1 Basic source-filter model for speech signals.

To estimate the filter we present methods inspired by speech production models (such
as linear predictive coding and cepstral analysis) as well as speech perception models (such

273
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as mel-frequency cepstrum). Once the filter has been estimated, the source can be obtained
by passing the speech signal through the inverse filter. Separation between source and filter
is one of the most difficult challenges in speech processing.

It turns out that phoneme classification (either by human or by machines) is mostly
dependent on the characteristics of the filter. Traditionally, speech recognizers estimate the
filter characteristics and ignore the source. Many speech synthesis techniques use a source-
filter model because it allows flexibility in altering the pitch and the filter. Many speech
coders also use this model becauseit allows alow bit rate.

We first introduce the spectrogram as a representation of the speech signal that high-
lights several of its properties and describe the short-time Fourier analysis, which is the ba-
sic tool to build the spectrograms of Chapter 2. We then introduce several techniques used to
separate source and filter: LPC and cepstral analysis, perceptually motivated models, for-
mant tracking, and pitch tracking.

6.1. SHORT-TIME FOURIER ANALYSIS

In Chapter 2, we demonstrated how useful spectrograms are to analyze phonemes and their
transitions. A spectrogram of atime signa is a special two-dimensional representation that
displaystimeinits horizontal axisand frequency in its vertical axis. A gray scaleistypically
used to indicate the energy at each point (t, f) with white representing low energy and black
high energy. In this section we cover short-time Fourier analysis, the basic tool with which
to compute them.
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Figure 6.2 (&) Waveform with (b) its corresponding wideband spectrogram. Darker areas
mean higher energy for that time and frequency. Note the vertical lines spaced by pitch peri-
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ods.

The idea behind a spectrogram, such as that in Figure 6.2, is to compute a Fourier
transform every 5 milliseconds or so, displaying the energy at each time/frequency point.
Since some regions of speech signals shorter than, say, 100 milliseconds often appear to be
periodic, we use the techniques discussed in Chapter 5. However, the signal is no longer
periodic when longer segments are analyzed, and therefore the exact definition of Fourier
transform cannot be used. Moreover, that definition requires knowledge of the signal for
infinite time. For both reasons, a new set of techniques called short-time analysis, are pro-
posed. These techniques decompose the speech signal into a series of short segments, re-
ferred to as analysis frames, and analyze each one independently.

In Figure 6.2 (&), note the assumption that the signal can be approximated as periodic
within X and Y is reasonable. In regions (Z, W) and (H, G), the signal is not periodic and
looks like random noise. The signal in (Z, W) appears to have different noisy characteristics
than those of segment (H, G). The use of an analysis frame implies that the region is short
enough for the behavior (periodicity or noise-like appearance) of the signal to be approxi-
mately constant. If the region where speech seems periodic is too long, the pitch period is
not constant and not all the periods in the region are similar. In essence, the speech region
has to be short enough so that the signal is stationary in that region: i.e., the signal character-
istics (whether periodicity or noise-like appearance) are uniform in that region. A more for-
mal definition of stationarity is given in Chapter 5.

Similarly to the filterbanks described in Chapter 5, given a speech signal X[ n], we de-

fine the short-time signal x_[n] of framemas

Xa[N] = X[N]w;[N] (6.1)
the product of x[n] by a window function w_[n], which is zero everywhere except in a
small region.

While the window function can have different values for different frames m, a popular
choiceisto keep i