

This is page ix
Printer: Opaque this

Contents

Preface vii

1 Introduction 1

2 Overview of Supervised Learning 9
2.1 Introduction . 9
2.2 Variable Types and Terminology 9
2.3 Two Simple Approaches to Prediction: Least Squares and

Nearest Neighbors . 11
2.3.1 Linear Models and Least Squares 11
2.3.2 Nearest-Neighbor Methods 14
2.3.3 From Least Squares to Nearest Neighbors 16

2.4 Statistical Decision Theory 18
2.5 Local Methods in High Dimensions 22
2.6 Statistical Models, Supervised Learning and Function Ap-

proximation . 28
2.6.1 A Statistical Model for the Joint Distribution Pr(X,Y) 28
2.6.2 Supervised Learning 29
2.6.3 Function Approximation 29

2.7 Structured Regression Models 32
2.7.1 Difficulty of the Problem 32

2.8 Classes of Restricted Estimators 33
2.8.1 Roughness Penalty and Bayesian Methods 34
2.8.2 Kernel Methods and Local Regression 34

x Contents

2.8.3 Basis Functions and Dictionary Methods 35
2.9 Model Selection and the Bias–Variance Tradeoff 37
Bibliographic Notes . 39
Exercises . 39

3 Linear Methods for Regression 41
3.1 Introduction . 41
3.2 Linear Regression Models and Least Squares 42

3.2.1 Example: Prostate Cancer 47
3.2.2 The Gauss–Markov Theorem 49

3.3 Multiple Regression from Simple Univariate Regression . . . 50
3.3.1 Multiple Outputs . 54

3.4 Subset Selection and Coefficient Shrinkage 55
3.4.1 Subset Selection . 55
3.4.2 Prostate Cancer Data Example (Continued) 57
3.4.3 Shrinkage Methods 59
3.4.4 Methods Using Derived Input Directions 66
3.4.5 Discussion: A Comparison of the Selection and Shrink-

age Methods . 68
3.4.6 Multiple Outcome Shrinkage and Selection 73

3.5 Computational Considerations 75
Bibliographic Notes . 75
Exercises . 75

4 Linear Methods for Classification 79
4.1 Introduction . 79
4.2 Linear Regression of an Indicator Matrix 81
4.3 Linear Discriminant Analysis 84

4.3.1 Regularized Discriminant Analysis 90
4.3.2 Computations for LDA 91
4.3.3 Reduced-Rank Linear Discriminant Analysis 91

4.4 Logistic Regression . 95
4.4.1 Fitting Logistic Regression Models 98
4.4.2 Example: South African Heart Disease 100
4.4.3 Quadratic Approximations and Inference 102
4.4.4 Logistic Regression or LDA? 103

4.5 Separating Hyperplanes . 105
4.5.1 Rosenblatt’s Perceptron Learning Algorithm 107
4.5.2 Optimal Separating Hyperplanes 108

Bibliographic Notes . 111
Exercises . 111

5 Basis Expansions and Regularization 115
5.1 Introduction . 115
5.2 Piecewise Polynomials and Splines 117

Contents xi

5.2.1 Natural Cubic Splines 120
5.2.2 Example: South African Heart Disease (Continued) . 122
5.2.3 Example: Phoneme Recognition 124

5.3 Filtering and Feature Extraction 126
5.4 Smoothing Splines . 127

5.4.1 Degrees of Freedom and Smoother Matrices 129
5.5 Automatic Selection of the Smoothing Parameters 134

5.5.1 Fixing the Degrees of Freedom 134
5.5.2 The Bias–Variance Tradeoff 134

5.6 Nonparametric Logistic Regression 137
5.7 Multidimensional Splines 138
5.8 Regularization and Reproducing Kernel Hilbert Spaces . . . 144

5.8.1 Spaces of Functions Generated by Kernels 144
5.8.2 Examples of RKHS 146

5.9 Wavelet Smoothing . 148
5.9.1 Wavelet Bases and the Wavelet Transform 150
5.9.2 Adaptive Wavelet Filtering 153

Bibliographic Notes . 155
Exercises . 155
Appendix: Computational Considerations for Splines 160

Appendix: B-splines . 160
Appendix: Computations for Smoothing Splines 163

6 Kernel Methods 165
6.1 One-Dimensional Kernel Smoothers 165

6.1.1 Local Linear Regression 168
6.1.2 Local Polynomial Regression 171

6.2 Selecting the Width of the Kernel 172
6.3 Local Regression in IRp . 174
6.4 Structured Local Regression Models in IRp 175

6.4.1 Structured Kernels 177
6.4.2 Structured Regression Functions 177

6.5 Local Likelihood and Other Models 179
6.6 Kernel Density Estimation and Classification 182

6.6.1 Kernel Density Estimation 182
6.6.2 Kernel Density Classification 184
6.6.3 The Naive Bayes Classifier 184

6.7 Radial Basis Functions and Kernels 186
6.8 Mixture Models for Density Estimation and Classification . 188
6.9 Computational Considerations 190
Bibliographic Notes . 190
Exercises . 190

7 Model Assessment and Selection 193
7.1 Introduction . 193

xii Contents

7.2 Bias, Variance and Model Complexity 193
7.3 The Bias–Variance Decomposition 196

7.3.1 Example: Bias–Variance Tradeoff 198
7.4 Optimism of the Training Error Rate 200
7.5 Estimates of In-Sample Prediction Error 203
7.6 The Effective Number of Parameters 205
7.7 The Bayesian Approach and BIC 206
7.8 Minimum Description Length 208
7.9 Vapnik–Chernovenkis Dimension 210

7.9.1 Example (Continued) 212
7.10 Cross-Validation . 214
7.11 Bootstrap Methods . 217

7.11.1 Example (Continued) 220
Bibliographic Notes . 222
Exercises . 222

8 Model Inference and Averaging 225
8.1 Introduction . 225
8.2 The Bootstrap and Maximum Likelihood Methods 225

8.2.1 A Smoothing Example 225
8.2.2 Maximum Likelihood Inference 229
8.2.3 Bootstrap versus Maximum Likelihood 231

8.3 Bayesian Methods . 231
8.4 Relationship Between the Bootstrap and Bayesian Inference 235
8.5 The EM Algorithm . 236

8.5.1 Two-Component Mixture Model 236
8.5.2 The EM Algorithm in General 240
8.5.3 EM as a Maximization–Maximization Procedure . . 241

8.6 MCMC for Sampling from the Posterior 243
8.7 Bagging . 246

8.7.1 Example: Trees with Simulated Data 247
8.8 Model Averaging and Stacking 250
8.9 Stochastic Search: Bumping 253
Bibliographic Notes . 254
Exercises . 255

9 Additive Models, Trees, and Related Methods 257
9.1 Generalized Additive Models 257

9.1.1 Fitting Additive Models 259
9.1.2 Example: Additive Logistic Regression 261
9.1.3 Summary . 266

9.2 Tree-Based Methods . 266
9.2.1 Background . 266
9.2.2 Regression Trees . 267
9.2.3 Classification Trees 270

Contents xiii

9.2.4 Other Issues . 272
9.2.5 Spam Example (Continued) 275

9.3 PRIM—Bump Hunting . 279
9.3.1 Spam Example (Continued) 282

9.4 MARS: Multivariate Adaptive Regression Splines 283
9.4.1 Spam Example (Continued) 287
9.4.2 Example (Simulated Data) 288
9.4.3 Other Issues . 289

9.5 Hierarchical Mixtures of Experts 290
9.6 Missing Data . 293
9.7 Computational Considerations 295
Bibliographic Notes . 295
Exercises . 296

10 Boosting and Additive Trees 299
10.1 Boosting Methods . 299

10.1.1 Outline of this Chapter 302
10.2 Boosting Fits an Additive Model 303
10.3 Forward Stagewise Additive Modeling 304
10.4 Exponential Loss and AdaBoost 305
10.5 Why Exponential Loss? . 306
10.6 Loss Functions and Robustness 308
10.7 “Off-the-Shelf” Procedures for Data Mining 312
10.8 Example—Spam Data . 314
10.9 Boosting Trees . 316
10.10Numerical Optimization . 319

10.10.1Steepest Descent . 320
10.10.2Gradient Boosting 320
10.10.3MART . 322

10.11Right-Sized Trees for Boosting 323
10.12Regularization . 324

10.12.1Shrinkage . 326
10.12.2Penalized Regression 328
10.12.3Virtues of the L1 Penalty (Lasso) over L2 330

10.13Interpretation . 331
10.13.1 Relative Importance of Predictor Variables 331
10.13.2Partial Dependence Plots 333

10.14Illustrations . 335
10.14.1California Housing 335
10.14.2Demographics Data 339

Bibliographic Notes . 340
Exercises . 344

11 Neural Networks 347
11.1 Introduction . 347

xiv Contents

11.2 Projection Pursuit Regression 347
11.3 Neural Networks . 350
11.4 Fitting Neural Networks . 353
11.5 Some Issues in Training Neural Networks 355

11.5.1 Starting Values . 355
11.5.2 Overfitting . 356
11.5.3 Scaling of the Inputs 358
11.5.4 Number of Hidden Units and Layers 358
11.5.5 Multiple Minima . 359

11.6 Example: Simulated Data 359
11.7 Example: ZIP Code Data 362
11.8 Discussion . 366
11.9 Computational Considerations 367
Bibliographic Notes . 367
Exercises . 368

12 Support Vector Machines and
Flexible Discriminants 371
12.1 Introduction . 371
12.2 The Support Vector Classifier 371

12.2.1 Computing the Support Vector Classifier 373
12.2.2 Mixture Example (Continued) 375

12.3 Support Vector Machines 377
12.3.1 Computing the SVM for Classification 377
12.3.2 The SVM as a Penalization Method 380
12.3.3 Function Estimation and Reproducing Kernels . . . 381
12.3.4 SVMs and the Curse of Dimensionality 384
12.3.5 Support Vector Machines for Regression 385
12.3.6 Regression and Kernels 387
12.3.7 Discussion . 389

12.4 Generalizing Linear Discriminant Analysis 390
12.5 Flexible Discriminant Analysis 391

12.5.1 Computing the FDA Estimates 394
12.6 Penalized Discriminant Analysis 397
12.7 Mixture Discriminant Analysis 399

12.7.1 Example: Waveform Data 402
Bibliographic Notes . 406
Exercises . 406

13 Prototype Methods and Nearest-Neighbors 411
13.1 Introduction . 411
13.2 Prototype Methods . 411

13.2.1 K-means Clustering 412
13.2.2 Learning Vector Quantization 414
13.2.3 Gaussian Mixtures 415

Contents xv

13.3 k-Nearest-Neighbor Classifiers 415
13.3.1 Example: A Comparative Study 420
13.3.2 Example: k-Nearest-Neighbors and Image Scene Clas-

sification . 422
13.3.3 Invariant Metrics and Tangent Distance 423

13.4 Adaptive Nearest-Neighbor Methods 427
13.4.1 Example . 430
13.4.2 Global Dimension Reduction for Nearest-Neighbors . 431

13.5 Computational Considerations 432
Bibliographic Notes . 433
Exercises . 433

14 Unsupervised Learning 437
14.1 Introduction . 437
14.2 Association Rules . 439

14.2.1 Market Basket Analysis 440
14.2.2 The Apriori Algorithm 441
14.2.3 Example: Market Basket Analysis 444
14.2.4 Unsupervised as Supervised Learning 447
14.2.5 Generalized Association Rules 449
14.2.6 Choice of Supervised Learning Method 451
14.2.7 Example: Market Basket Analysis (Continued) . . . 451

14.3 Cluster Analysis . 453
14.3.1 Proximity Matrices 455
14.3.2 Dissimilarities Based on Attributes 455
14.3.3 Object Dissimilarity 457
14.3.4 Clustering Algorithms 459
14.3.5 Combinatorial Algorithms 460
14.3.6 K-means . 461
14.3.7 Gaussian Mixtures as Soft K-means Clustering . . . 463
14.3.8 Example: Human Tumor Microarray Data 463
14.3.9 Vector Quantization 466
14.3.10K-medoids . 468
14.3.11Practical Issues . 470
14.3.12Hierarchical Clustering 472

14.4 Self-Organizing Maps . 480
14.5 Principal Components, Curves and Surfaces 485

14.5.1 Principal Components 485
14.5.2 Principal Curves and Surfaces 491

14.6 Independent Component Analysis and Exploratory Projec-
tion Pursuit . 494
14.6.1 Latent Variables and Factor Analysis 494
14.6.2 Independent Component Analysis 496
14.6.3 Exploratory Projection Pursuit 500
14.6.4 A Different Approach to ICA 500

xvi Contents

14.7 Multidimensional Scaling 502
Bibliographic Notes . 503
Exercises . 504

References 509

Author Index 523

Index 527

+ T h i is page 1
Printer: Opaque this

Introduction

Statistid Ie~ming plays a key role in many areas of science, finance and
industry. Here are mme examples of learning problems:

Predict whether a patient, hmpitalixed due to a heart attack, will
have a second heart attack. The prediction is to be b m d on demw
graphic, diet and clinical measurements fbr that patient.

I Predict the price of a stock in 6 months from now, on the basis of
company performance measures and economic data.

Identify the numbers in a handwritten ZIP code, from a digitized
image.

I Estimate the amount of glucose in the blood of a diabetic person,
from thc infrared absorption spcctmm of that pcrson's blood.

Identify the risk factors for prostrate cancer, bmed on clinical and
demographic variables.

The science of learning plays a key role in the fields of statistics, data
mining and artificial intelligence, interwcting with areas of engineering and
other diiciplinw.

This book is about learning from data. In a typical scenario, we have an
outcome measurement, usually quantitative (like a stock price) or categor-
ical (like heart attacklno heart attack), that we wish t o predict based on
a set of features (like diet and clinical measurements). We have a training
set of data, in which we observe the outcome and feature me~urements

1. Introduction

TABLE 1.1. Average percentage of words or chamcters gn an ernoil message
equd to the indicafd word or character. We have chosen the m o d and chamcfera
showing the iargest diflemnce between apam and amail.

for a set of objects (such as people). Using this data we build a predic-
tion model, or learner, which will enable us to predict the outcome for
new unseen objects. A good learner is one that accurately predicts such an
outcome.

The examples above describe what is called the supewised laming prob-
lem. It is called "supervisedn because of the presence of the outcome vari-
able to guide the learning process. In the unsupewised laming problem,
we observe only the Baturm and have no meauremeds d the oulcome.
Our task is rather to describe how the data are organbed or clustered. We
devute most of t l i i book t o supervised l w r i i ~ g ; the uuupervised problerrr
is less developed in the literature, and is the focus of the last chapter.

Here are some examples of red learning problems that are discussed in
this book.

s p a
e m a i l

The data for this example consists of information from 4601 ernail mes~ages,
in a study to try to predict whether the email was junk email, or "spam."
The objective was t o design an automatic spam detector that could filter
out spam before clogging the usem' mailboxes. For 3601 email mewages, the
true outmme (email type) mail or spam is available, along with the relative
frequencies of 57 of the mmt commonly occurring words and punctuation
marks in th ernail mmsage. This ii3 a supervised learning problem, with
the outcome the class variable email / spam. It is also called a elbssifiwtion
problem.

Table 1.1 lists the words and characters showing the largest average
difference between spam and email.

Our learning method has to decide which features to use and how: for
example, we might use a rule like

gaorga yon your hp f r e e hpl ! our r e edu ramove

0.00 2.26 1.38 0.02 0.52 0.01 0.51 0.51 0.13 0.01 0.28
1.27 1.27 0.44 0.90 0.07 0.43 0.11 0.18 0.42 0.29 0.01

if(Xgeorge<O.6)& (Xyon>1.5) thenspam
ehe email.

Another form of rule would be:

if (0.2. %you - 0.3 . Xgeorge) > 0 then spam
ehe email.

1. Introduction 3

FIGURE 1.1. Scatterplot m a t h of the prostate cancer data. The first row shows
the response againat era& o f f e p d i c t o r s in tram. Two of the predictors, svi and
gleason, ore cutegorid.

For t h i problem not all errors are equal; we want to avoid fltering out
p o d email, whiie letting spam get through is not desirable but less serious
in its consequences. We di13~~~13 a number of dierent methods for tackling
this learning problem in the book.

Example 2: Prostrate Cancer

The data for this example, displayed in Figure 1.1, come &om a atudy by ?
that examined the correlation between the level of prmtate specific antigen
and a number of clinical memures, in 97 men who were about to receive a
radical prmtatectomy.

The goal is to predict the log-cancer-volume (lcavol) from a number
of measurements including log prostate weight he ight , age, log of benign

1. Introduction

FIGURE 1.2. Ezomplea of handwritten digits from U.S. poatol envelopes.

proatatic hyperplasia amount lbph, seminal vesicle invasion sv i , log of cap-
sular penetration lcp, Gleason score gleason, and percent of Gleason scores
4 or 5 pgg46. Figure 1.1 is a scatterplot matrix of the variables. Some cor-
relations with lcavol are evident, but a good predictive model is difficult
to construct by eye.

This is a supervised learning problem, known as a wgmsaion problem,
because the outcome measurement is quantitative.

Example 3: Handwritten Digit Recognition
The data from this example come from the handwritten ZIP codes on
envelopes from U.S. pmtal mail. Each image is a segment from a five digit
Z I P code, isolating a single didt. The images are 16 x 16 eight-bit grayscale
maps, with each pixel ranging in intensity from 0 to 255. Some sample
images are shown in Figure 1.2.

The imagea have been normalized to have apprtmimately the same size
and orientation. The task is to predict, from the 16 x 16 matrix of pixel
intensities, the identity of each image (0,1,. . . ,9) quickly and accurately.
If it is accurate enough, the resulting algorithm would be used as part of an
automatic sorting procedure for envelopes. This is a classification problem
for which the error rate needs to be kept very low to avoid misdirection of
mail. In order to achieve this low error rate, some objects can be assigned
to a LLdon't knowD category, and sorted instead by hand.

1. Introduction 5

E x a ~ m l e 4: DNA E r m ~ s s i o n M i c m a m y s

DNA szmds for deaxyribunucleic acid, and is the b m c material that makes
up human chrommomes. DNA microarrays measure the expremion of a
gene in a cell by measuring the amount of mRNA (messenger ribonucleic
acid) present for that gene. Microarrays are considered a breakthrough
technolow in biology, facilitating the quantitative study of thousands of
genes simultaneously &om a single sample of cells.

Here is how a DNA microarray works. The nucleotide sequences for a few
thousand genes are printed on a glass slide. A target sample and a reference
sample are labeled with red and w e n dyes, and each are hybridized with
the DNA on the slide. Through fluoroscopy, the log (redigreen) intensities
of RNA hybridizing at each site is measured. The result is a few thousand
numbers, typically ranging from say -6 to 6, meamring the expression level
of each gene in the target relative to the reference sample. Pmitive values
indicate higher expression in the target versus the reference, and vice versa
for negative values.

A gene expression dataset collects together the expression values &om a
series of DNA microarray experiments, with each column representing an
experiment. There are therefore several thousand rows representing individ-
ual genes, and tens of columna representing samples: in the particular ex-
ample of Fiure 1.3 there are 6830 genes (rows) and 64 samples (columns),
although for clarity only a random mmple of 100 rows are shown. The fig-
ure diiplays the data & as a heat map, ranging from green (negative) to
red (pmitive). The samples are 64 cancer tumors from different patients.

The challenge here is to understand how the genes and samples are or-
ganized. Typical questions include the following:

(a) which samples are most similar to each other, in terms of their expres-
sion p r d e s across genes?

(b) which genet3 are mmt similar to each other, in terms of their expret3sion
profles across samples?

(c) do certain genes show very high (or low) expression for certain cancer
samples?

We could view this t a k as a regresi3ion problem, with two categorical
predictor variables-genes and samples, with the response variable being
Lhe level 01 expression. However, il is probably more u d u l Lo view il as
zsnsupe~vi8ed kam%ng problem. For example, for question (a) above, we
think of the samples as points in 6830-dimeni3iod space, which we want
to cluster together in some way.

1. Introduction

810WZ991M
SILntsEMP

SlD73161
O W

H IenrrnREU
%91
w19glPISE
91W172

egls
81DwJn4CZ
HurnmrnfWA
910YY469Bg(EST=
SlM71915

hMBPRDT0
ESTsChrl
s1m77491

ONLRXYNER
SIDa75812
91DW9148s
91M67117

SI0YY47W
8 1 D w r n t
w . .
SI*

IrrocuCNmYLm
810171 18
ESTnChrb

9 1 ~ 6 9 1 0
S I W 1 7
SIm0511FT
EmsChrs
91mmc.l
91-14

m c
810W298201
SloYy31M41
SIoWs16B28
m a h a 1
slm 14241
91mn41s
SIE97117

s10W2016al
8 l m m
SlOw510M
HUCUSSl
SIDUmaw
Sloe9012

810WZO5718
s 1 m m

HYPOMETW
W A W t a b i I
81DW91W
BTrChr.15
SIDWS76981
S l ~ m
man5

SIDWUllY21
9 1 M m

S l r n l l
EST.Chr2

SlDWgZBOB
SIDPrm34
ESTsChr.1S
S I W B
SIW8514U
SI-M

EST*
s1manm
SALLLNffi

eglr
8 1 ~ ~ 1 1
SIDWJm07

81052979 BTS
81-

910YY41E621
ERUlNW

NPLElNPl
8lDWUBM2
Slossims

SIDWZgBM2
810W41Rm
81-74
BSTrChrd5
s l m l m
9 1 m E n

8IDWJOBl~
SIW15W
s l m n i s s

SIDW96m09
BTrChr.10
S I ~ ! j I Z O
SlDaan97
91mmSD

910YY128968
SlDa019CQ
Slrn19M
51-

: 1.3. DNA microamy data: mpression matrix of 6830 genes (rows) ",.- "4 samples (columns), for f e human tumor data. Oniu a random sample
of 100 rows are shown. The displau i s a h u t map, ranging from bright green
(negative, under expressed) to bright red (positive, over e q w s e d) . Missing values
are gmy. The rows and columns are displayed in a randodg chosen order.

1. Introduction 7

Who Should Read this Book

This book is designed for researchers and students in a broad variety of
fields: statistics, artificial intelligence, engineering, finance and others. We
expect that the reader will have had at least one elementary course in
statistics, covering basic topics including linear regression.

We have not attempted to write a comprehensive catalog of learning
methods, but rather to describe some of the most important techniques.
Equally notable, we describe the underlying concepts and considerations
by which a researcher can judge a learning method. We have tried to write
this book in an intuitive fashion, emphasizing concepts rather than math-
ematical details.

As statisticians, our exposition will naturally reflect our backgrounds and
areas of expertise. However in the past eight years we have been attending
conferences in neural networks, data mining and machine learning, and our
thinking has been heavily influenced by these exciting fields. This influence
is evident in our current research, and in this book.

How this Book is Organized

Our view is that one must understand simple methods before trying to
grasp more complex ones. Hence after giving an overview of the supervis-
ing learning problem in Chapter 2, we discuss linear methods for regression
and classification in Chapters 3 and 4. In Chapter 5 we describe splines,
wavelets and regularization/penalization methods for a single predictor,
while Chapter 6 covers kernel methods and local regression. Both of these
sets of methods are important building blocks for high-dimensional learn-
ing techniques. Model assessment and selection is the topic of Chapter 7,
covering the concepts of bias and variance, overfitting and methods like
cross-validation for choosing models. Chapter 8 discusses model inference
and averaging, including an overview of maximum likelihood, Bayesian in-
ference and the bootstrap, the EM algorithm, Gibbs sampling and bagging,
A related procedure called boosting is the focus of Chapter 10.

In Chapters 9–13 we describe a series of structured methods for super-
vised learning, with Chapters 9 and 11 covering regression and Chapters 12
and 13 focussing on classification. Finally, in Chapter 14 we describe meth-
ods for unsupervised learning.

At the end of each chapter we discuss computational considerations im-
portant for data mining applications, including how the computations scale
with the number of observations and predictors. Each chapter ends with
Bibliographic Notes giving background references for the material.

We recommend that Chapters 1–4 be first read in sequence. Chapter
7 should also be considered mandatory, as it covers central concepts that
pertain to all learning methods. With this in mind, the rest of the book
can be read sequentially, or sampled, depending on the reader’s interest.

1. Introduction

The symbol indicates a technically difF~cult section, one that can
be skipped without interrupting the flow of the discussion.

Book Website
The website for this book is located at

http: //maw-stat. stenford. edn/ElemStatLearn

It contains a number of resources, including many of the datasets used in
this book.

Note for Instmctors
We have succe~ively used this book as the basis for a twequarter course,
and with additional materials, it could even be used for a three-quarter
sequence. Exercises are provided at the end of each chapter. It is important
for students to have access to good software tools for these topics. We wed
the S-PLUS programming language in our courses.

+ Thi is page 9
Printer: Opaque this

References

Stamey, T., Kabalin, J., McNed, J., Johwtone, I., Fkeiha, F., Mwine,
E. & Y q , N. (1989), 'Prostate specific antigen in the diagnosis and
treatment of adenocarcinoma of the prmtate ii. radical prmtatectomy
treated patients', JUWI-I~U~ of U~vlut~g 16, 1076-1083.

+ This is page 9
Printer: Opaque this

Overview of Supervised Learning

2.1 Introduction

The first three examples described in Chapter 1 have several components
in common. For each there is a set of variables that might be denoted as
inputs, which are measured or preset. These have some influence on one or
more outputs. For each example the goal is to use the inputs to predict the
values of the outputs. This exercise is called supervised learning.

We have used the more modern language of machine learning. In the
statistical literature the inputs are often called the pdictors, a term we
will use interchangeably with inputs, and more classically the independent
variables. The outputs are called the respomes, or classically the dependent
vahbles .

2.2 Variable Types and Terminology

The outputs vary in nature among the examples. In the glucose prediction
example, the output is a quantitative measurement, where some measurs
ments are bigger than others, and measurements claw in value are clow
in nature. In the famous Iris discrimination example due to R. A. Fisher,
the output is quaiitatiae (species of Iris) and assumes values in a finite set
G = { Virginiaa, Setosa and Versicolot-}. In the handwritten digit example
the output is one of 10 different digit classes: G = {0,1, . . . ,9}. In both of
these there is no explicit ordering in the classes, and in fact often descrip

10 2. Overview of Supervised Learning

tive labels rather than numbers are used to denote the classes. Qualitative
variables are also referred to as categorical or discrete variables as well as
factors.

For both types of outputs it makes sense to think of using the inputs to
predict the output. Given some specific atmospheric measurements today
and yesterday, we want to predict the ozone level tomorrow. Given the
grayscale values for the pixels of the digitized image of the handwritten
digit, we want to predict its class label.

This distinction in output type has led to a naming convention for the
prediction tasks: regression when we predict quantitative outputs, and clas-
szficatzon when we predict qualitative outputs. We will see that these two
tasks have a lot in common, and in particular both can be viewed as a task
in function approximation.

Inputs also vary in measurement type; we can have some of each of qual-
itative and quantitative input variables. These have also led to distinctions
in the types of methods that are used for prediction: some methods are
defined most naturally for quantitative inputs, some most naturally for
qualitative and some for both.

A third variable type is ordered categorical, such as small, medium and
large, where there is an ordering between the values, but no metric notion
is appropriate (the difference between medium and small need not be the
same as that between large and medium). These are discussed further in
Chapter 4.

Qualitalive variables are lypically represerlted rlurrlerically by codes. The
easiest case is when there are only two classes or categories, such as "suc-
cess" or "failure," "survived or "died." These are often represented by a
single binary digit or bit as 0 or 1, or else by -1 and 1. For reasons that will
become apparent, such numeric codes are sometimes referred to as targets.
When there are more than two categories, several alternatives are available.
The most useful and commonly used coding is via dummy variables. Here a
K-level qualitative variable is represented by a vector of K binary variables
or bits, only one of which is "on" at a time. Although more compact coding
schemes are possible, dummy variables are symmetric in the levels of the
factor.

We will typically denote an input variable by the symbol X. If X is
a vector, its components can be accessed by subscripts X j . Quantitative
outputs will be denoted by Y, and qualitative outputs by G (for group).
We use uppercase letters such as X, Y or G when referring to the generic
aspects of a variable. Observed values are written in lowercase; hence the
i th observed value of X is written as xi (where xi is again a scalar or
vector). Matrices are represented by bold uppercase letters; for example,
a set of N input p-vectors xi, i = 1,. . . , N would be represented by the
N x p matrix X. In general vectors will not be bold, except when they have
N components; this convention distinguishes a p-vector of inputs xi for the
i th observation from the N-vector xj consisting of all the observations on

Least Squares and Nearest Neighbors 11

variable Xj. Since all vectors are assumed to be column vectors, the ith
row of X is ST, the vector kranspose of q.

For the moment we can loosely state the learning task as follows: given
the value of an input vector X, make a good prediction of the output Y,
denoted by 3 (pronounced ?-hatn). If Y takes values in R then so should
?; likewise for categorical outputs, d should take values in the s m set
associated with G.

For a tw-class G, one approach is to denote the binary coded target
as Y, and then treat it as a quantitative output. The predictions ? will
typically lie in [0, I], and we can assign to 3 the class label according to
whether @ > 0.5. This approach generaljzes to K-level qualitative outputs
as well.

We need data to construct prediction rules, often a lot of it. We thus
supposc wc havc aMjlablc a sct of mcasurcmcnts (xi, vi) or (xi, gi), i =
1, . . . , N , known as the training data, with which to construct our predic-
tion rule.

2.3 Two Simple Approaches to Prediction: Least
Squares and Nearest Neighbors

In this section we develop two simple but powerful prediction methods: the
lincar modcl fit by lcnst aquarca and thc Kncarcsbncighbor prcdiction rulc.
The linear model makes huge assumptions about structure and yields st able
but pcesibly inaccurate predictions. The method of k-nearest neighbors
makes very mild structural assumptions: its predictions are often accurate
but cat1 be unstable.

2.9.1 Linear Models and Least Squares

The linear model has been a mainstay of statistics for the past 30 years
and remains one of our most important tools. Given a vector of inputs
X = (X I , X2, . . . , X,), we predict the output Y via the model

The term is the intercept, also known as the bias in machine leatnlng.
Often it is convenient to include the constant variable 1 in X, include in
the vector of coefficients a, and then write the linear model in vector form
as an inner product

12 2. Overview of Supervised Learning

where XT denotes vector or matrix transpose (X being a column vector).
Here we are modeling a single output, so is a scalar; in general P can be
a K-vector, in which case P would be a p x K patrix of coefficients. In the
(p + 1)-dimensional inpuboutput spaxe, (XI Y) represents a hyperplane.
If the constant is included in X, then the hyperplane includes the origin
and is a subspace; if not, it is an f i e set cutting the Y-axb at the point
(0, ,&). From now on we assume that the intercept is included in p.

Viewed as a function over the pdimensional input space, f (X) = xTp
is linear, and the gradient f '(X) = p is a vector in input space that points
in the steepest uphill direction.

How do we fit the linear model to a set of training data? There are
many different methods, but by far the most popular is the method of
I w t spares . In this approach, we pick the coefficients P to minimize the
rcsidual sum of aquarcs

RSS(P) is a quadratic function of the parameters, and hence its minimum
always exists, but may not be unique. The solution is easiest to characterize
in matrix notation. We can write

where X is an N x p matrix with each row an input vector, and y is an
N-vector of the outputs in the training set. Differentiating w.r.t. P we get
the nomal e p a t i o n a

If X ~ X is nonsingular, then the unique solution is given by

and the fitted value at the ith input 5 6 is $6 = $(xi) = X T ~ . At an arbi-
trary input so the prediction is y(so) = xT8. The entire fitted surf- is

characterized by the p parameters p. Intuitively, it seems that we do not
need a very large data set to fit such a model.

Let's look at an example of the linear model in a classification context.
Figure 2.1 shows a scatterplot of training data on a pair of inputs XI and
Xa. The data are simulated, and for the present the sirnula" -n model is
not important. The output class variable G has the values < E N or RED,
and is represented as such in the scatterplot. There are 100 points in each
of the two classes. The linear regression model was fit to these data, with
the response Y coded as 0 for GREEN and 1 for RED. The fitted d u e s P are

Least Squares and Nearest Neighbors 13

Linear Regression of 0/1 Response

. . . , , , , a ' : : : : : : : : : : : : : : : : : :
:::::o;;;aii i i i i i i i i i i : :; iQii i i i i i i i i i i i i i i i i i i " i i i i i i i i i i i i i i i i i i " "

.

. -
;-..

. """'...'.""O;...'.. a:::: ' : 0;;;;;;;;;;;;;;;;; :::::::::::::::::::::::::::..:::::bii . i i i i$ i i i i i i i i i i i i i i i i i i i . . : : : : : : . ::::: : : : : : : : : : : : : : : : : : : : : : ~ : : ~ ; ; o ; ~ % i i Q ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

. : a : : : : : : : : : . . : : : : """"""""" 0 : : : : : : : : : ; ; ; ; I ; ; ; . . 9'...... ; ; i i i i i i i : : a i i i i i i i ; ; ; ; ; i i "O.....'.""" ..

FIGURE 2.1. A cImsifimtiom maimpie in two C m m i o m . The dwses am d e d
as a b i n a ~ v a ~ a b k - = 0, RED = lTa& then fit by lhmr r q m s s i m . The
line is the decision h n d r s ~ defined by z T p = 0.5. The d shaded regiara demotes
Uaat part of znpd stspace drnssijied rxs RED, while the green region ia classijkd QS

GREEW.

converted to a fitted class variable according to the rule

if ? > 0.5,
,, if? < 0.5.

'I'he set of points in Uia classified as RED corresponds to {z : zT#? > 0.51,
indicated in Figure 2.1, and the two predicted classes are separated by
the deckion boundary {s : sTB = 0.51, which is linear in this case. We
see that for these data there are several misclassXcations on both sides
of the decision boundary. Perhaps our linear model is too rigid- or are
such errors unavoidable? Remember that these are errors on the training
data itself, and we have not said where the constructed data came from.
Consider the two possible scenarios:

Scenario 1: The training data in each class were generated according to
two bivariate Gaussian distributions with uncorrelated components
and different means.

14 2. Overview of Supervised Learning

Scenario 2: The training data in eachclass came from a mixture of 10 low-
variance Galmian disfribnfions, wifh individiial means themselves
distributed as Gaussian.

A mixture of Gaussians is best described in terms of the generative model.
One 6mt generates a discrete variable that determines which of the compw
nent Gaussiam to use, and then generates an observation from the chosen
density. In the case of one Gaussian per class, we will see in Chapter 4 that
a lineat decision boundary is the best one can do, and that our estimate is
almost optimal. The region of overlap is inevitable, and future data to be
predicted will be plagued by this overlap as well.

In the case of mixtures of tightly clustered Gaussians the story is dif-
ferent. A linear decision boundary is unlikely to be optimal, and in fact is
not. The optimal decision boundary is nonlinear and disjoint, and as such
will be much more difEcult to obtain.

We now look at another classiiication and regression procedure that is
in some sense at the opposite end of the spectrum to the linear model, and
far beffer s~iifed fo khe semnd scenario.

Nearesbneighbor methods me those observations in the training set 7 clm-
est in input space to x to form ?. Specifically, the knearest neighbor fit
for P is defined as follows:

where Nk (x) is the neighborhood of x deEned by the k closest points xi in
the training sample. Closeness implies a metric, which for the moment we
assume is Euclidean distance. So, in words, we End the k observations with
xi closest to x in input spxe, and average their responses.

In Figure 2.2 we use the same training data as in Figure 2.1, and use
l%neareskneighbor averaging of the binarv coded response as the method
of fitting. Thus ? is the ~roportion of 's in the neighborhood, and
so assigning class RED to G if 1; > 0.5 amounts to a majority vote in the
neighborhood. TI- - - -' - red regions indicate all those points in input space
classified as G I by such a rule, in this case found by evaluating the
procedure on a Ene grid in input space. We see that the decision boundaries
that separate the ' from the RETI regions are far more irregular, and
respond to local clus~ers where one class dominates.

Figure 2.3 shows the results for 1-nearesbneighbor classification: is
assigned the value ye of the closest point xe to x in the training data. In
this case the regions of classfication can be computed relatively easily, and
correspond to a Vowmoi tessellation of the training data. Each point xi

Least Squares and Nearest Neighbors 15

15-Nearest Neighbor Classifiir

, , , , , , . . , . ,

.
. . . .

. .. " ' " ' " (3 : : : : : : " " "'m.... . O " " " " '
i i i i i i i i i i i i i i i i i : . i i i i i wg;$*ii,,iiiii oiiQcl .ai i : i i i i i i i i i i i i i i i i i i i .

: : : : : : : : : : : : : : : : : : : . : : : : : : : : : : a : ; ; ; ; : ; I : : : : : : : ~ : : : : : : : : : :: i i i i i ' . L i i i i i i i a ; ; ; ; ; ; i i i i i i i
. . . . ' ' : ' : : : : : ' : " ' " " : ' : : ' : ' : : " : " ' " ' : : ' : : ' : ' 0 : " " " : ' : : : : :

we 2.1. The classes are d e d as a binavy variable (GREEN = 0,RED = 1) and
f i n fit by 16-~acara&mighbor amrnging as in (2.8). Thc pplodicicd dasr! i a h n c c
chosen by majority wk amongst Uae 15-nearest neighbors.

has an associated tile bounding the region for which it h the closest input
point. For all points x in the tile, &(x) = ga. The decision boundary is even
more irregular than before.

The method of k-nearest-neighbor averaging is defined in exactly the
same way for regression of a quantitative output Y, although k = 1 would
be an unlikely choice.

In Figure 2.2 we see that far fewer training observations are misclass~ed
than in Figure 2.1. This should not give us too much comfort, though, since
in Figure 2.3 none of the training data are misclassified. A little thought
suggests that for kneareskneighbor fits, the error on the training data
should be approximately an increasing function of k, and will always be O
for k = 1. An independent test set would give us a more satisfactory means
for comparing the different methods.

It appears that k-nearest-neighbor fits have a single parameter, the num-
ber of neighbors k, compared to the p parameters in least-squares fits. Al-
though this is the case, we will see that the eflective number of parameters
of k-nearest neighbors is N/k and is generally bigger thanp, and decreases
with increasing k. To get an idea of why, note that if the neighborhoods

16 2. Overview of Supervised Learning

1-Nearest Neighbor Classifier

FIGURE 2.S. The: aurrbc: d m a i J c d i u n txlsrrsplc: i n Lwu dimcrtaivrar ua i n Fiy-
w e 2.1. The chasses are coded as a binmy vaviabie (GREEN = 0, RED = I) , and
f i n p l d i c i d by 1-nmms&ncighbo~ cbaai jk t im.

were nonoverlapping, there would be N/k neighborhoods and we would fit
one parameter (a mean) in each neighborhood.

It is also clear that we cannot ~ s e sum-of-squared errors on the traiaiag
set as a criterion for picking k, since we would always pick k = l! It would
seem that k-nearest-neighbor methods would be more appropriate for the
mixture Scenario 2 described above, while for Gaussian data the decision
boundaries of Rnearest neighbors would be unnecessarily noisy.

2.3.3 From Least Squares to Nearest Neighbors

The linear decision boundary from least squares is very smooth, and ap-
parently stable to fit. It does appear to rely heavily on the assumption
that a linear decision boundary is appropriate. In language we will develop
shortly, it has low variance and potentially high bias.

On the other hand, the E-nearest-neighbor procedures do not appear to
rely on any stringent assumptions about the underlying data, and can adapt
to any situation. However, any particular subregion of the decision bound-
ary depends on a handful of input paints and their particular positions,
and is thus wiggly and unstablehigh variance and low bias.

Least Squares and Nearest Neighbors 17

Degrees of Freedom - N/k

T
es

t E
rr

or

0.
10

0.
15

0.
20

0.
25

 2 3 5 8 12 18 29 67 200

151 83 45 25 15 9 5 3 1

•

•
•

•••••••
•••

•••••
•

•

•
••

••••

••
••

•
•

•
••

•

Train
Test
Bayes

k - Number of Nearest Neighbors

Linear

FIGURE 2.4. Misclassification curves for the simulation example used in Fig-
ures 2.1, 2.2 and 2.3. A single training sample of size 200 was used, and a test
sample of size 10, 000. The red curves are test and the green are training error for
k-nearest-neighbor classification. The results for linear regression are the bigger
green and red squares at three degrees of freedom. The purple line is the optimal
Bayes Error Rate.

Each method has its own situations for which it works best; in particular
linear regression is more appropriate for Scenario 1 above, while nearest
neighbors are more suitable for Scenario 2. The time has come to expose
the oracle! The data in fact were simulated from a model somewhere be-
tween the two, but closer to Scenario 2. First we generated 10 means mk

from a bivariate Gaussian distribution N((1, 0)T , I) and labeled this class
GREEN. Similarly, 10 more were drawn from N((0, 1)T , I) and labeled class
RED. Then for each class we generated 100 observations as follows: for each
observation, we picked an mk at random with probability 1/10, and then
generated a N(mk, I/5), thus leading to a mixture of Gaussian clusters for
each class. Figure 2.4 shows the results of classifying 10,000 new observa-
tions generated from the model. We compare the results for least squares
and those for k-nearest neighbors for a range of values of k.

A large subset of the most popular techniques in use today are variants of
these two simple procedures. In fact 1-nearest-neighbor, the simplest of all,
captures a large percentage of the market for low-dimensional problems.

18 2. Overview of Supervised Learning

The following list describes some ways in which these simple procedures
have been enhanced:

Kernel methods use weights that decrease smoothly to zero with dis-
tance from the target point, rather than the effective 0/1 weights used
by k-nearest neighbors.

In high-dimensional spaces the distance kernels are modified to em-
phasize some variable more than others.

Local regression fits linear models by locally weighted least squares,
rather than fitting constants locally.

Linear models fit to a basis expansion of the original inputs allow
arbitrarily complex models.

a Projection pursuit and neural network models consist of sums of non-
linearly transformed linear modcls.

2.4 Statistical Decision Theory

In this section we develop a small amount of theory that provides a £tarn-
work for developing models such as those discussed informally so far. We
Erst consider the case of a quantitative output, and place ourselves in the
world of random variables and probability spaces. Let X E IRp denote a
real valued random input vector, and Y E IR a real valued random out-
put variable, with joint distribution Pr(X, Y). We seek a function f (X)
for predicting Y given values of the input X. Tkis theory requires a loss
fanction L(Y, f (X)) for penalizing errors in prediction, and by far the mod
common and convenient is squared e m r loss: L(Y, f (X)) = (Y - f (X))'.
This leads us to a criterion for chomjng f ,

the expected (squared) prediction error. By conditioni& on X, we can
write EPE as

and we see that it sates to minimbe EPE pointwise:

f (x) = a r ~ b E ~ l x ([Ir - cI21X = 2) -

'Conditioning here amounts to factoring the joint density Pr(X, Y) = Pr(YX)Pr(X)
where Pr(Y1X) -- Pr(Y, X)/Pr(X), and splitting up the bivariate integral accordingly

2.4 Statistical Decision Theory 19

The solution is

f (x) = E(YIX = x), (2.13)

the conditional expectation, also known as the regression function. Thus
the best prediction of Y at any point X = x is the conditional mean, when
best is measured by average squared error.

The nearest-neighbor methods attempt to directly implement this recipe
using the training data. At each point x, we might ask for the average
of all those yis with input xi = x. Since there are typically at most one
observation at any point x, we settle for

where "Ave" denotes average, and Nk(x) is the neighborhood containing
the k points in T closest to x. Two approximations are happening here:

expectation is approximated by averaging over sample data;

conditioning at a point is relaxed to conditioning on some region
"close" to the target point.

For large training sample size N , the points in the neighborhood are likely
to be close to x , and as k gets large the average will get more stable.
In fact, under mild regularity conditions on the joint probability distri-
bution Pr(X, Y) , one can show that as N, k + cc such that k / N + 0,
f(z) + E(YIX = x). In light of this, why look further, since it seems
we have a universal approximator? We often do not have very large sam-
ples. If the linear or some more structured model is appropriate, then we
can usually get a more stable estimate than k-nearest neighbors, although
such knowledge has to be learned from the data as well. There are other
problems though, sometimes disastrous. In Section 2.5 we see that as the
dimension p gets large, so does the metric size of the k-nearest neighbor-
hood. So settling for nearest neighborhood as a surrogate for conditioning
will fail us miserably. The convergence above still holds, but the ra te of
convergence decreases as the dimension increases.

How does linear regression fit into this framework? The simplest explana-
tion is that one assumes that the regression function f (x) is approximately
linear in its arguments:

f (x) FZ x T p (2.15)

This is a model-based approach-we specify a model for the regression func-
tion. Plugging this linear model for f (x) into EPE (2.9) and differentiating
we can solve for /? theoretically:

20 2. Overview of Supervised Learning

Note we have n o t conditioned on X ; rather we have used our knowledge
of the functional relationship to pool over values of X. The least squares
solution (2.6) amounts to replacing the expectation in (2.16) by averages
over the training data.

So both k-nearest neighbors and least squares end up approximating
conditional expectations by averages. But they differ dramatically in terms
of model assumptions:

Least squares assumes f (x) is well approximated by a globally linear
function.

k-nearest neighbors assumes f (x) is well approximated by a locally
constant function.

Although the latter seems more palatable, we have already seen that we
may pay a price for this flexibility.

Many of the more modern techniques described in this book are model
based, although far more flexible than the rigid linear model. For example,
additive models assume that

This retains the additivity of the linear model, but each coordinate function
f j is arbitrary. It turns out that the optimal estimate for the additive model
uses techniques such as k-nearest neighbors to approximate univariate con-
ditional expectations simultaneousl?~ for each of the coordinate functions.
Thus the problems of estimating a conditional expectation in high dimen-
sions are swept away in this case by imposing some (often unrealistic) model
assumptions, in this case additivity.

Are we happy with the criterion (2.11)? What happens if we replace the
La loss function with the L1: EIY - f (X)I? The solution in this case is the
conditional median,

f (x) = median(Y IX = x), (2.18)

which is a diEerent measure of location, and its estimates are more robust
than those for the conditional mean. L1 criteria have discontinuities in
their derivatives, which have hindered their widespread use. Other more
resistant loss functions will be mentioned in later chapters, but squared
error is analytically convenient and the most popular.

What do we do when the output is a categorical variable G? The same
paradigm works here, except we need a different loss function for penalizing
prediction errors. An estimate G will assume values in 9, the set of possible
classes. Our loss function can be represented by a N- x K matrix L, where
K = card(9). L will be zero on the diagonal and nonnegative elsewhere,

2.4 Statistical Decision Theory 21

where L(k, !) is the price paid for classifying an observation belonging to
class Gk as Ge. Most often we use the zero-one loss function, where all
misclassifications are charged a single unit. The expected prediction error
is

where again the expectation is taken with respect to the joint distribution
Pr(G, X) . Again we condition, and can write EPE as

EPE = E x L [Gk, G(x)]P~(GI; I x)
k = l

and again it suffices to minimize EPE pointwise:

With the 0-1 loss function this simplifies to

or simply

This reasonable solution is known as the Bayes classifier, and says that
we classify to the most probable class, using the conditional (discrete) dis-
tribution Pr(G1X). Figure 2.5 shows the Bayes-optimal decision boundary
for our simulation example. The error rate of the Bayes classifier is called
the Bayes rate.

Again we see that the k-nearest neighbor classifier directly approximates
this solution-a majority vote in a nearest neighborhood amounts to ex-
actly this, except that conditional probability at a point is relaxed to con-
ditional probability within a neighborhood of a point, and probabilities are
estimated by training-sample proportions.

Suppose for a two-class problem we had taken the dummy-variable ap-
proach and coded G' via a binary Y , followed by squared error loss estima-
tion. Then f (~) = E(Y1X) = Pr(G = GIIX) if G1 corresponded to Y = 1.
Likewise for a K-class problem, E(Yk IX) = Pr(G = Gk IX). This shows
that our dummy-variable regression procedure, followed by classification to
the largest fitted value, is another way of representing the Bayes classifier.
Although this theory is exact, in practice problems can occur, depending
on the regression model used. For example, when linear regression is used,
f (~) need not be positive, and we might be suspicious about using it as
an estimate of a probability. We will discuss a variety of approaches to
modeling Pr(G1X) in Chapter 4.

22 2. Overview of Supervised Learning

Bayes Optimal Classifier

FIGURE 2.5. The qd i r rbd Blsyca diziadurb hesr4dlsry jur. Wbc a i m d u h u n c c l s ~ r ~ ~ k
of F i g u w 2.1, 2.2 and 2.3. Siace the generating dewitu i s known for each c l a ~ ~ ,
this boundary m n bc d c d a t c d aacilg (Excmisc 2.2).

2.5 Local Methods in IIigh Dimensions

We have examined two learning techniques for prediction so far: the stable
but biased linear model and the less stable but apparently less biased class
of knearest-neighbor estimates. It would seem that with a reasonably large
set of training data, we could always approximate the theoretically optimal
conditional expectation by /+nearahneighbor averaging, since we should
be able to find a fairly large neighborhood of observations close to any x
and average them. 'l'b approach and our intuition breaks down in high
dimensions, and the phenomenon is commonly referred to as the curse
of dime&omliLy (Bellman, 1961). There are many manifestations of this
problem, and we will examine a few here.

Consider the nearest-neighbor procedure for inputs uniformly distributed
in a pdimensional unit hypercube, as in Figure 2.6. Suppow we send out a
hypercubical neighborhood about a target point to capture a fraction T of
the okrvations. Since tkis corresponds to a fraction r of the unit volume,
the expected edge length will be e,(r) = rl/p. In ten dimensions elo(O.Ol) =

0.63 and elo(O.l) = 0.80, while the entire range for each input is only 1.0.

2.5 Local Methods in High Dimensions 23

1

1

0

Unit Cube

Fraction of Volume
D

is
ta

nc
e

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d=1

d=2
d=3

d=10

Neighborhood

FIGURE 2.6. The curse of dimensionality is well illustrated by a subcubical
neighborhood for uniform data in a unit cube. The figure on the right shows the
side-length of the subcube needed to capture a fraction r of the volume of the data,
for different dimensions p. In ten dimensions we need to cover 80% of the range
of each coordinate to capture 10% of the data.

So to capture 1% or 10% of the data to form a local average, we must cover
63% or 80% of the range of each input variable. Such neighborhoods are no
longer “local.” Reducing r dramatically does not help much either, since
the fewer observations we average, the higher is the variance of our fit.

Another consequence of the sparse sampling in high dimensions is that
all sample points are close to an edge of the sample. Consider N data points
uniformly distributed in a p-dimensional unit ball centered at the origin.
Suppose we consider a nearest-neighbor estimate at the origin. The median
distance from the origin to the closest data point is given by the expression

d(p,N) =
(
1− 1

2

1/N)1/p

(2.24)

(Exercise 2.3). A more complicated expression exists for the mean distance
to the closest point. For N = 500, p = 10 , d(p,N) ≈ 0.52, more than half
way to the boundary. Hence most data points are closer to the boundary
of the sample space than to any other data point. The reason that this
presents a problem is that prediction is much more difficult near the edges
of the training sample. One must extrapolate from neighboring sample
points rather than interpolate between them.

Another manifestation of the curse is that the sampling density is pro-
portional to N1/p, where p is the dimension of the input space and N is the
sample size. Thus if N1 = 100 represents a dense sample for a single input
problem, then N10 = 10010 is the sample size required for the same sam-

24 2. Overview of Supervised Learning

pling density with 10 inputs. Thus in high dimensions all feasible training
samples sparsely populate the input space.

Let us construct another uniform example. Suppose we have 1000 train-
ing features xi generated uniformly on [-I, l]p. Assume that the true rela-
tionship between X and Y is

without any measurement error. We use the 1-nearest-neighbor rule to
predict yo at the test-point xo = 0. Denote the training set by 7. We can
compute the expected prediction error at xo for our procedure, averaging
over all such samples of size 1000. Since the problem is deterministic, this
is the mean squared error (MSE) for estimating f (0):

Figure 2.7 illustrates the setup. We have broken down the MSE into two
components that will become familiar as we proceed: variance and squared
bias. Such a decomposition is always possible and often useful, and is known
as the bias-variance decomposition. Unless the nearest neighbor is at 0, ijo
will be smaller than f (0) in this example, and so the average estimate will
be biased downward. The variance is due to the sampling variance of the
1-nearest neighbor. In low dimensions and with N = 1000, the nearest
neighbor is very close to 0, and so both the bias and variance are small. As
the dimension increases, the nearest neighbor tends to stray further from
the target point, and both bias and variance are incurred. By p = 10, for
more than 99% of the samples the nearest neighbor is a distance greater
than 0.5 from the origin. Thus as p increases, the estimate tends to be 0
more often than not, and hence the MSE levels off at 1.0, as does the bias,
and the variance starts dropping (an artifact of this example).

Although this is a highly contrived example, similar phenomena occur
more generally. The complexity of functions of many variables can grow
exponentially with the dimension, and if we wish to be able to estimate
such functions with the same accuracy as function in low dimensions, then
we need the size of our training set to grow exponentially as well. In this
example, the function is a complex interaction of all p variables involved.

The dependence of the bias term on distance depends on the truth, and
it need not always dominate with 1-nearest neighbor. For example, if the
function always involves only a few dimensions as in Figure 2.8, then the
variance can dominate instead.

Suppose, on the other hand, that we know that the relationship between
Y and X is linear,

2.5 Local Methods in High Dimensions 25

1-NN in One Dimension

' 4-

Distance to 1 -NN vs. Dimension

Dlmmnsbn

1 -NN in One vs. Two Dimensions

MSE vs. Dimension

Dlmmnsbn

FIGURE 2.7. A i m d a t i o n example, d e m m M n g fhe curse of dimemsiomak
ity and its eflmt oa MSE, bim and variance. The input jatures are uaifm-rdy
d i d v i k t d i n [-I, 1lP for p = 1,. . . ,10 The top lefi pame1 ~ h o w s the target finc-
tioa (no w i s e) i n IR: f (X) = e-'llxlla, and d e m m h t e s the e m that 1-neared
aeiglabor m d e s ia esfimatiag f (0). T h e h i a i a g pint i iadimfd by the blue t i 8
mark. The top rigM p m d iEEwh-ates why B e radiw of the I-nearest neighborhood
i n m e m a with dmetasion p . The lower left w n e l shows the average d i w of the
I - m m s t ne ighborMs. The lower-mght panel ~ h o w s the MSE, ~quwed bias and
v a m a m a w e s aa a function of &metasion p .

26 2. Overview of Supervised Learning

X

f(
X

)

-1.0 -0.5 0.0 0.5 1.0

0
1

2
3

4

•

1-NN in One Dimension

Dimension

M
S

E

2 4 6 8 10

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25

• • •
•

•

•

• •

•

•

• • •
•

•

•

• •

•

•

• • • • • • • •
• •

MSE vs. Dimension

• MSE
• Variance
• Sq. Bias

FIGURE 2.8. A simulation example with the same setup as in Figure 2.7. Here
the function is constant in all but one dimension: F (X) = 1

2
(X1 + 1)3. The

variance dominates.

where ε ∼ N(0, σ2) and we fit the model by least squares to the train-
ing data. For an arbitrary test point x0, we have ŷ0 = xT

0 β̂, which can
be written as ŷ0 = xT

0 β +
∑N

i=1 �i(x0)εi, where �i(x0) is the ith element
of X(XTX)−1x0. Since under this model the least squares estimates are
unbiased, we find that

EPE(x0) = Ey0|x0ET (y0 − ŷ0)2

= Var(y0|x0) + ET [ŷ0 − ET ŷ0]2 + [ET ŷ0 − ET y0]2

= Var(y0|x0) + VarT (ŷ0) + Bias2(ŷ0)
= σ2 + ET xT

0 (XTX)−1x0σ
2 + 02. (2.27)

Here we have incurred an additional variance σ2 in the prediction error,
since our target is not deterministic. There is no bias, and the variance
depends on x0. If N is large and T were selected at random, and assuming
E(X) = 0, then XTX→ NCov(X) and

Ex0EPE(x0) ∼ Ex0x
T
0 Cov(X)−1x0σ

2/N + σ2

= trace[Cov(X)−1Cov(x0)]σ2/N + σ2

= σ2(p/N) + σ2. (2.28)

Here we see that the expected EPE increases linearly as a function of p,
with slope σ2/N . If N is large and/or σ2 is small, this growth in vari-
ance is negligible (0 in the deterministic case). By imposing some heavy
restrictions on the class of models being fitted, we have avoided the curse
of dimensionality.

Statistical Models 27

Expected Prediction Error of 1 NN vs. OLS

Dimension

FIGURE 2.9. The curves show the mpecfed prediction e m r (at xo = 0) fur
I - w r e s t neighbor wlative to least squares for the model Y - f (X) + s. For the
red curve, f (x) = x 1, while for £he green curue f (x) = $ (xl + 1) 3 .

Figure 2.9 compares 1-nearest neighbor vs. least squares in two sit=
tions, both of which have the form Y = f (X) + E , X uniform as before,
and E N(0,l). The sample size is N = 500. For Lhe red curve, I(a) i
linear in the first coordinate, for the p e n curve, cubic as in Figure 2.8.
Shown is the relative EPE of 1-nearest neighbor to least squares, which
appears to start at around 2 for the linear case. Least squares is unbiased
in thh case, and as discussed above the EPE is sllghtly above u2 = 1.
The EPE for 1-nearest neighbor is always above 2, since the variance of
?(so) in this case is at least ma, and the ratio increases with dimension as
the nearest neighbor strays from the target point. For the cubic case, least
squares is biased, which moderates the ratio. Clearly we could rnanufxt~re
examples where the bias of least squares would dominate the variance, and
the 1-nearest neighbor would come out the winner.

By relying on rigid assumptions, the linear model has no bias at all and
negligible variance, while the error in 1-nearest neighbor is subst antially
larger. However, if the assumptions are wrong, all bets are off and the
1-nearest neighbor may dominate. We will see that there is a whole spec
trum of models between the rigid linear models and the extremely flexible
1-nearest-neighbor models, each with their own assumptions and biases,
which have been proposed specikally to avoid the exponential growth in
complexity of functions in high dimensions by drawing heavily on these
assumptions.

Before we delve more deeply, let u elaborate a bit on the concept of
statistiad naodeh and see how they fit into the prediction framework.

28 2. Overview of Supervised Learning

2.6 Statistical Models, Supervised Learning and
Function Approximation

Our goal is to find a useful approximation f(x) to the function f (x) that
underlies the predictive relatiomhip between the inputs and outputs. In the
theoretical setting of Section 2.4, we saw that squared error loss lead us
to the regression fundion f (x) = E(Y IX = x) for a quantitative response.
'I'he class of nearesbneighbor methods can be viewed as direct estimates
of this conditional expectation, but we have seen that they can fail in at
least two ways:

if thc dimmion of thc input spacc is high, thc ncarcst neighbors nccd
not be close to the target point, and can result in latge errors;

if special structure is known to exist, this can be used to reduce both
the bias and the variance of the estimates.

We anticipate using other classes of models for f (x), in many cases specif-
ically designed to overcome the dirnemionality problems, and here we dis-
cuss a framework for incorporating them into the prediction problem.

2.6.1 A Statistical hdodclfofor the Joint Dist.pibution Pr(X,Y)
Suppose in fact that our data arose from a statistical model

where the random error E has E(E) = 0 and is independent of X. Note that
for this model, f (x) = E (Y I X = x), and in fact the conditional distribution
Pr(Y1X) depends on X only through the conditional mean f (x).

The additive error model is a useful approximation to the truth. For
most systems the input-output pairs (X, Y) will not have a deterministic
relationship Y = f (X). Generally there will be other unmeasured variables
that also contribute to Y, including measurement error. The additive model
assumes that we can capture all these departures h m a deterministic r e
latiomhip via the error E.

For some problems a deterministic relationship does hold. Many of the
classification problems studied in machine learning are of this form, where
the response surface can be thought of as a colored map defined in IRp.
The training data consist of colored examples from the map {xi, gi}, and
the goal is to be able to color any point. Here the function is deterministic,
and the randomness enters through the x location of the training points.
For the moment we will not pursue such problems, but will see that they
can be handled by techniques appropriate for the error- based models.

The assumption in (2.29) that the errors are independent and identically
distributed is not strictly necessary, but seems to be at the back of our mind

Statistical Models 29

when we average squared errors uniformly in our EPE criterion. With such
a model it bemmm natnral ko 1~4e least sq~iares a.q a data crikerion for
model estimation as in (2.1). Simple modilications can be made to avoid
the independence assumption; for example, we can have Var(Y IX = x) =

a(x), and now both the mean and variance depend on X. In general the
conditional distribution Pr(Y1X) can depend on X in complicated ways,
but the additive error model precludes these.

So far we have concentrated on the quantitative response. Additive error
models are typically not used for qualitative outputs G; in this case the tar-
get function p(X) is the conditional density Pr(GIX), and this is modeled
directly. For example, for tweclass data, it is often reasonable to assume
that the data arise from independent binary trials, with the probability of
one particular outcome being p(X), and the other 1 - p (X) . Thus if Y is
thc 0 1 codcd vcrsion of C, thcn E(YIX = x) = p(x), but thc variance
depends on x as well: Var(Y IX = x) = p(x) [1 - p(x)].

Before we launch into more statistically oriented jargon, we present the
function-fitting paradigm from a machine learning point of view. Suppose
for simplicity that the errors are additive and that the model Y = f (X) + E

is a reasonable assumption. Supervised learning attempts to learn f by
example through a terache~. One observes the system under study, both
the inputs and outputs, and assembles a himirag set of observations 7 =
(xi, gi), i = 1,. . . , N. The observed input values to the system xi are also
fed into an arti6cial system, known as a learning algorithm (usually a com-
puter program), which also produces outputs f(xi) in respome to the in-
puts. The learning a1gori;thm has the property that it c p modify its in-
p~it/ou~tput relationship f in response to differences vi - f (xi) between the
original and generated outputs. This process is known as learning bv m m -
ple. Upon completion of the learning process the hope is that the artificial
and real outputs will be clme enough to be useful for all sets of inputs likely
to be encountered in practice.

2.6.3 Function Approximation
The learning paradigm of the previous section has been the motivation
for research into the supervised learning problem in the fields of machine
learning (with analogies to human reasoning) and neural networks (with
biological analogies to the brain). The approach taken in applied maths
matics and statistics has been from the perspective of function approxima,
tion and estimation. Here the data pairs {xi, yi) are viewed as points in a
@ + 1)-dimensional Euclidean space. The function f (x) has domain equal
to the pdimensional input subspace, and is related to the data via a model

30 2. Overview of Supervised Learning

such as yi = f (xi) + EG For convenience in this chapter we will assume the
domain is IRp, a p-dimensional Euclidean space, although in general the
inputs can be of mixed type. The goal is to obtain a useful approximation
to f (x) for all x in some region of IRp, given the representations in 7.
Although somewhat less glamorous than the learning paradigm, treating
supervised learning as a problem in function approximation encourages the
geometrical concepts of Euclidean spaces and mathematical concepts of
probabilistic inference to be applied to the problem. This is the approach
taken in this book.

Many of the approximations we will encounter have associated a set of
parameters 8 that can be modified to suit the data at hand. For example,
the linear model f (x) = xT/? has 8 = P. Another class of useful approxi-
mators can be expressed as linear basis expansions

where the hk are a suitable set of functions or transformations of the input
vector x. Traditional examples are polynomial and trigonometric expan-
sions, where for example hk might be x f , xlx;, cos(xl) and so on. We
also encounter nonlinear expansions, such as the sigmoid transformation
common to neural network models,

We can use least squares to estimate the parameters 8 in f e as we did
for the linear model, by minimizing the residual sum-of-squares

as a function of 0. This seems a reasonable criterion for an additive error
model. In terms of function approximation, we imagine our parameterized
function as a surface in p + 1 space, and what we observe are noisy re-
alizations from it. This is easy to visualize when p = 2 and the vertical
coordinate is the output y, as in Figure 2.10. 'l'he noise is in the output
coordinate, so we find the set of parameters such that the fitted surface
gets as close to the observed points as possible, where close is measured by
the sum of squared vertical errors in RSS(8).

For the linear model we get a simple closed form solution to the mini-
mization problem. This is also true for the basis function methods, if the
basis functions themselves do not have any hidden parameters. Otherwise
the solution requires either iterative methods or numerical optimization.

While least squares is generally very convenient, it is not the only crite-
rion used and in some cases would not make much sense. A more general

Statistical Models 31

TRE 2.10. k t srplms fitting of a jknction of two inputs. The paranaeters
01 10~s) are chosen so as to minimize the sumof-squared vert id m r s .

principle for estimation is maximum likelihood estimation. Suppose we have
a random sample yi, i = 1, . . . , N from a density Pre(y) indexed by some
parameters 19. The log-probability of the observed sample is

The principle of maximum likelihood assumes that the most reasonable
values for 0 are those for which the probability of the observed sample is
largest. Least squares for the additive error model Y = fe(X) + E, with
E N N(0, g2), is equivalent to maximum likelihood using the conditional
likelihood

So although the additional assumption of normality seems more restrictive,
the results are the same. The log-likelihood of the data is

and the only term involving 0 is the last, which is RSS(0) up to a scalar
negative multiplier.

A more interesting example is the multinomial likelihood for the regre*
sion function Pr(G1X) for a qualitative output G. Suppose we have a model

32 2. Overview of Supervised Learning

Pr(G = gklX = x) = pkPe(x), k = 1,. . . , K for the conditional probabil-
iky of each elm given X, indexed by the parameter vwkor B . Then the
log-likelihood (also referred to as the crass-entropy) is

N

and when m m h k e d it delivers v a l u ~ of 0 that best conform with the data
in this likelihood sense.

2.7 Structured Regression Models

We have seen that although nearesbneighbor and other local methods focus
directly on estimating the function at a point, they face problems in high
dimensions. They may also be inappropriate even in low dimensions in
cases where more structured approaches can make more efficient use of the
data. This section introduces classes of such structured approaches. Before
we proceed, though, we &cuss further the need for such classes.

2.7.1 DiificuEty of the Problem

Gnn~lider the RsS criterinn fm an afhittafy filnctinn f ,

Minimizing (2.37) leads to idnitely many solutions: any function f" passing
through the training points (xi, yi) is a solution. Any particular solution
chosen might be a poor predictor at test points merent from the training
points. If there are multiple observation pairs xi, yif, f = 1, . . . , Ni at each
value of xi, the risk is limited. In this case, the solutions pass through
the average values of the at each xi; see Ekercise 2.5. The situation is
similar to the one we have already visited in Section 2.4; indeed, (2.37) is
the finite sample version of (2.11) on page 18. If the sample size N were
sufficiently large such that repeats were guaranteed and demely arranged,
it would seem that these solutions might all tend to the limiting conditional
expectation.

In order to obtain useful results for Enite N, we must restrict the eligible
solutions to (2.37) to a smaller set of functions. How to decide on the
nature of the restrictions is based on considerations outside of the data.
These restrictions are sometimes encoded via the parametric representation
of fe, or may be built into the learning method itself, either implicitly or
explicitly. These restricted classes of solutions are the major topic of this

2.8 Classes of Restricted Estimators 33

book. One thing should be clear, though. Any restrictions imposed on f
khak lead Lo a nniquie soh~kion to (2.37) do not really remove the ambiguity
caused by the multiplicity of solutions. There are in6nitely many possible
restrictions, each leading to a unique solution, so the ambiguity has simply
been transferred to the choice of constraint.

In general the constraints imposed by most learning methods can be
described as w m p l e d t y restrictions of one kind or another. This usually
means some kind of regular behavior in small neighborhoods of the input
space. That is, for all input points x sufficiently close to each other in
some metric, fl exhibita some special structure such as nearly constant,
linear or low-order polynomial behavior. The estimator is then obtained by
averaging or polynomial fitting in that neighborhood.

The strength of the constraint is dictated by the neighborhood size. The
largcr thc aizc of thc ncighborhood, thc strongcr thc comtruint, and thc
more sensitive the solution is to the particular choice of constraint. For
example, local constant fits in infinitesimally small neighborhoods is no
constraint at all; local linear fits in very large neighborhoods is almost a
globally linear model, and is very restrictive.

The nature of the constraiat depends on the metric used. Some methods,
such as kernel and local regression and tresbased methods, directly spec*
the metric and size of the neighborhood. The nearest-neighbor methods
discussed so far are based on the assumption that locally the function is
constant; close to a target input xo, the f~nction~does not change much, and
so clwe oulpuls ~ M L be averaged Lo pmduce J(xo). Olhm melhods such
as splines, neural networks and basis- function methods implicitly define
neighborhoods of local behavior. In Section 5.4.1 we discuss the concept
of an quioralemt kernel (see Figure 5.8 on page 133), which describes this
local dependence for any method linear in the outputs. These equivalent
kernels in many cases look just like the explicitly defined weighting kernels
discussed above-peaked at the target point and falling away smoothly
away from it.

One fact should be clear by now. Any method that attempts to prw
duce locally varying functions in small isotropic neighborhoods will run
into problems in high dimensions-ain the curse of dimensionality. And
conversely, all methods that overcome the dimensionality problems have an
associated-and often implicit or adaptivemetric for measuring neighbor-
hoods, which basically does not allow the neighborhood to be simultane
ously small in all directions.

2.8 Classes of Restricted Estimators

The variety of nonparametric regression techniques or learning methods fall
into a number of different classes depending on the nature of the restrictions

34 2. Overview of Supervised Learning

imposed. These classes are not distinct, and indeed some methods fall in
several classes. Here we give a brief summary, since dekailed descripkions
are given in later chapters. Each of the classes has associated with it one
or more parameters, sometimes appropriately called m o o thing parameters,
that control the effective size of the local neighborhood. Here we describe
three broad classes.

2.8. l Roughness Penalty and Bayesian Methods

IIere the class of functim is controlled by explicitly penalizing R S S (f)
with a roughness penalty

The user-selected functional J (f) will be large for functions f that vary too
rapidly over small regions of input space. For example, the popular cubic
moothing spline for onedimensional inputs is the solution to the penalized
leaabsquares criterion

The roughness penalty here controh large values of the second derivative
of f , and the amount of penalty is dictated by X > 0. For X = 0 no penalty
is impmd, and any interpolating function will do, while for X = m only
functions h e a r in x are permitted.

Penalty functionah J can be constructed for functions in any dimension,
and special versions can be created to impose special structure. For ex-
ample, additive penalties J (f) = C;='=, J (f j) are used in conjunction with
additive functions f(X) = C;=l fj(Xj) to create additive models with
smooth coordinate functions. Similarly, projection purrnit regres~on mod-

M ely have J(X) = Em=1 ym (CYKX) Tor daplively ck~ostm direclior~ h, and
the functions g, can each have an associated roughness penalty.

Penalty function, or regulrafiarakiom methods, express our prior belief that
the type of functions we seek exhibit a certain type of smooth behavior, and
indeed can usually be cast in a Bayesian framework. The penalty J corrs
sponds to a log-prior, and PRSS (f ; A) the log-posterior distribution, and
m h h h h g P R S S (f ; A) amounts to finding the posterior mode. We discuss
roughness-penalty approaches in Chapter 5 and the Bayesian paradigm in
Chapter 8.

2 . 8 Kernel Methods and Local Regression

These methods can be thought of as explicitly providing estimates of the r e
g-ression function or conditional expectation by specifying the nature of the

2.8 Cl- of Restricted Estimators 35

local neighborhood, and of the class of regular functions fitted locally. The
Inca1 neighborhood is specified hy a kernel fimctiola Kx(zo , z) which assigns
weights to points x in a region around xo (see Figure 6.1 on page 166). For
example, the Gaussian kernel has a weight function based on the Gaussian
density function

and assigm weights to points that die exponentially with their squared
Euclidean distance from rco. The parameter X correspon& to the variance
of the Gaussian density, and controls the width of the neighborhood. The
simplcst form of kcrncl cstimatc is thc Nadaraya Watson wcightcd avcragc

In general we can define a local regression estimate of f (so) as f8 (so),

where 6J minimizes
N

MS(f0, TO) = C KA(XO, xi)(~i - f~ (2.42)
d= 1

and fs k some parameterized function, such as a low-order polynomial.
Some examples are:

fs (x) = Bo, the constant function; this results in the Nadaraya-
Watson estimate in (2.41) above.

fe (x) = do + O1x gives the popular local linear regression model.

Nearesbneighbor methods can be thought of as kernel methods having a
more datedependent metric. Indeed, the metric for k-nearest neighbors is

Kk(x, XO) = I(I(IIx - x o I I 5 IIx(k) - ~ 0 1 I) ,
where x(k) i8 the training observation ranked kth in distance from xo, and
I (S) is the indicator of the set S.

These methods of course need to be modijied in high dimemions, to avoid
the curse of dimensionality. Various adaptations are discussed in Chapter 6.

2.8.3 Basis hnctions and Dictionay Methods

This class of methods include the familiar linear and polynomial expan-
sions, but more importantly a wide variety of more flexible models. The
model for f h a h e a r expansion of bash functim

36 2. Overview of Supervised Learning

where each of the hm is a function of the input x, and the term linear here
refers to the action of the parameters 8. This class covers a wide variety of
methods. In some cases the sequence of basis functions is prescribed, such
as a basis for polynomials in x of total degree M.

For one-dimensional x, polynomial splines of degree K can be represented
by an appropriate sequence of M spline basis functions, determined in turn
by M - K knots. These produce functions that are piecewise polynomials
of degree K between the knots, and joined up with continuity of degree
K - 1 at the knots. As an example consider linear splines, or piecewise
linear functions. One intuitively satisfying basis consists of the functions
bl(x) = 1, bz(x) = x, and bm+z(x) = (x-t ,)+, m = 1 , . . . , M - 2 ,
where t , is the mth knot, and z+ denotes positive part. Tensor products
of spline bases can be used for inputs with dimensions larger than one
(see Section 5.2, and the CART and MARS models in Chapter 9.) The
parameter 8 can be the total degree of the polynomial or the number of
knots in the case of splines.

Radial basis functions are symmetric p-dimensional kernels located at
particular centroids,

for example, the Gaussian kernel KA(p, x) = e p x p @ 2 / 2 A is popular.
Radial basis functions have centroids pm and scales Am that have to

be determined. The spline basis functions have knots. In general we would
like the data to dictate them as well. lncluding these as parameters changes
the regression problem from a straightforward linear problem to a combi-
natorially hard nonlinear problem. In practice, shortcuts such as greedy
algorithms or two stage processes are used. Section 6.7 describes some such
approaches.

A single-layer feed-forward neural network model with linear output
weights can be thuugl~t of as an adaptive basis function method. The model
has the form

where ~ (x) = 1/(1 + epx) is known as the activation function. Here, as
in the projection pursuit model, the directions a, and the bias terms 6,
have to be determined, and their estimation is the meat of the computation.
Details are give in Chapter 11.

These adaptively chosen basis function methods are also known as dictio-
nary methods, where one has available a possibly infinite set or dictionary
D of candidate basis functions from which to choose, and models are built
up by employing some kind of search mechanism.

2.9 Model Selection and the Bias-Variance Tkadeoff 37

2.9 Model Selection and the Bias-Variance
Tradeoff

Lhe ~uodeb des~~ibed above and IUMIY olhem &wed ~ I L lsLer chplem
have a moothing or complexity parameter that has to be determined:

the multiplier of the penalty term;

the width of the kernel;

or the number of basis functions.

In thc cnsc of thc smoothing spline, thc paramctcr X indcxcs modcls ranging
£tom a straight line fit to the interpolating model. Similarly a local degrw
m polynomial modcl raagm bctwccn a dcgrc~rn global polynomial whcn
the window size is infinitely large, to an interpolating fit when the window
size shrinks to zero. Thie means that we cannot ~ s e residual sum-of-squares
on the training data to determine these parameters as well, since we would
always pick those that gaw interpolating fits and hence zero residuals. Such
a model is unlikely to predict future data well at all.
The k-nearest-neighbor regression fit ik (zo) usefully illustrates the com-

peting forces that effect the predictive ability of such approximations. S u p
pwe Lhe daLs arise ~ I U s ~uudel Y = J (X) + e, wiLh E(e) = 0 and
Var(~) = a'. For simplicity here we assume that the values of xi in the
sample are fixed in advance (nonrandom). The expected prediction error
at xo, also known as test or g e ~ e m ~ ~ t i o l a error, can be decamped:

The subwripts in parentheses (f) indicate the sequence of nearest neighbors
to xo.

There are three terms in this expression. The first term u2 is the ir-
reducible error-the variance of the new test target- and is beyond our
control, even if we know the true f (so).

The second and third terms are under our control, and make up the
mean spa& error of fk (so) in estimating f (xo) , which is broken down
into a bias component and a variance component. 'l'he bias term is the
squared difference between the true mean f (xo) and the expected value of
the estimate-[E& (xo)) - f (xo)]'-where the expectation averages the
randomness in the training data. This term will most likely increase with
k, if the true function is reasonably smooth. For small k the few closest
neighbors will have values f (x(e)) close to f (xo), so their average should

38 2. Overview of Supervised Learning

High Bias Low Bias

Low Variancc High Variancc ------- ----.--*

Test Sample

Training S a m ~

Low High

Model Complexity

FIGURE 3-11. Test and tmining e m r as a finction of rnodd wmplexify.

be clme to f (x o) . As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
CrAamR RR k h ~ inver~~: nf k . Sn RR k m , r i ~ ~ , kh~re i~ a, himimrinnrx kTmd61Ifl.

More generally, as the model wmpl&ty of our procedure is increased,
the variance tends to increase and the squared bias tends to decreases.
The opposite behavior occurs as the model complexity is decreased. For
k-nearest neighbors, the model complexity is controlled by k.

Typically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training e m r & C,(gi - $i)2. Unfortunately
training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figurc 2.11 shows thc typical bchavior of thc tcst and training Error, a~
model complexity is varied. The traiaing error tends to decrease whenever
we increnae the model complediy, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In
that case the predictions f"(xo) will have large variance, as reflected in the
last term of expression (2.48). In contrast, if the model is not complex
enough, it will uderf i t and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.

Bias-Variance Tkadeoff 39

Bibliographic Notes

Some good general books on the learning problem are Duda et al. (2000),
Bishop (1995)) Ripley (1996), Cherkassky and Mulier (1998) and Vapnik
(1996). Parts of this chapter are based on Eiedman (1994b).

Exercises

Ex. 2.1 Suppose each of K-classes has an associated target t k , which is a
vector of all zeros, except a one in the kth position. Show that classifying to
the largest element of i j amounts to choosing the closest target, mink Iltk -
611, if the elements of i j sum to one.

Ex. 2.2 Show how to compute the Bayes decision boundary for the simula
tion example in Figure 2.5.

Ex. 2.3 Derive equation (2.24).

Ex. 2.4 The edge effect problem discussed on page 23 is not peculiar to
uniform samplhg from bounded domdm. Consllder inputs drawn from a
spherical multinormal distribution X N(0, &). The squared distance
horn any sample point to the origin has a X: distribution with mean p.
Consider a prediction point xo drawn from this distribution, and let a =

xo/llxoll be an associated unit vector. Let q = aTxi be the projection of
each of the training points on tkis direction.

(a) Show that the g are distributed N (0 , l) with expected squared dis-
tance fiom the origin 1, wMe the target point haa expected squared
distance p from the origin.

fb) For p = 10 show that the expected distance of a test point from the
center of the training data is 3.1 standard deviations, while all the
traiaiag points have expected distance 1 along direction 0. So most
prediction points see themselves as lying on the edge of the training
set.

Ex. 2.5 Cnn~ir l~r a. r ~ g r m ~ i n n ptnhl~m with inputs xi and niltpilt~ yi, a.nd a.
parameterized model fs(x) to be fit by least squares. Show that if there are
observations with tiad or identical values of x, then the fit can be obtained
h m a reduced weighted least squares problem.

.6 Suppose we have a sample of N pairs as, yd drawn i.i.d. from the
amrlbution characterized as follows:

xi -- h(x), the design density

yi = =(xi) + 9, f is the regression function

~i (0, a2) (mean zero, variance a2)

40 2. Overview of Supervised Learning

We comtruct an estimator for f linear in the yi,

where the weights &(xo; X) do not depend on the yi, but do depend on the
entire training sequence of xi, denoted here by X.

(a) Show that linear regression and b-nearest-neighbor regression are mem-
b e r ~ nf t h i ~ C~FIRR nf ~ k i m ~ , t n r ~ . n e ~ r i h e explicikl y the weight^ ~((zo ; X)
for both these cases.

(b) Decompose the conditional mean-squared error

into a conditional squared bias and a conditional variance component.
Like X, y represents the entire training sequence of pi.

(c) Decompose the (unmnditional) mean-squared error

into a squared bias and a variance component.

(d) Establish a relationship between the squared biases and variances in
the above two cases.

Ex. 2.7 Compare the classi6cation performance of linear regression and k-
nearest neighbor classfication on the zipcode data. In particular, consider
only the 2's and s's, and k = 1,3,5,7 and 15. Show both the training and
test error for each choice. The zipcode data are available from the book
wekite mu-stat. stanf ord. edu/ElemStatLearn.

+ This is page 41
Printer: Opaque this

3
Linear Met hods for Regression

3.1 Introduction

A linear regression model assumes that the regression function E(Y1X) is
linear in the inputs XI, . . . , Xp. Linear models were largely developed in
the precomputer age of statistics, but even in today's computer era there
are still good reasons to study and use them. They are simple and often
provide an adequate and interpretable description of how the inputs affect
the output. For prediction purposes they can sometimes outperform fancier
nonlinear models, especially in situations with small numbers of training
cases, low signal-tenoise ratio or sparse data. Finally, linear methods can be
applied to transformations of the inputs and this considerably expands their
scope. These generalizations are sometimes called basis-function methods,
and are discussed in Chapter 5.

In this chapter we describe linear methods for regression, while in the
next chapter we discuss linear methods for classification. On some topics we
go into considerable detail, as it is our firm belief that an understanding
of linear methods is essential for understanding nonlinear ones. In fact,
many nonlinear techniques are direct generalizations of the linear methods
discussed here.

42 3. Linear Methods for Regression

3.2 Linear Regression Models and Least Squares

As introduced in Chapter 2, we have a vector of inputs X = (XI, Xa, . . . , Xp),
and want to predict a real-valued output Y. The linear regression model
has the form

P

f (XI = ~o + xxjpj.
j=l

The linear model either assumes that the regression function E(Y IX) is
linear, or that the linear model is a reasonable approximation. Here the
Pj's are unknown parameters or coefficients, and the variables Xi can come
from different sources:

quantitative inputs;

transformations of quantitative inputs, such as log, square-root or
square;

basis expansions, such as X2 = X; , X3 = X; , leading to a polynomial
representation;

numeric or "dummy" coding of the levels of qualitative inputs. For
example, if G is a fivelevel factor input, we might create Xj, j =
1,. . . ,5, such that Xj = I(G = j). Together this group of Xj r e p
resents the effect of G by a set of level-dependent constants, since in
C:-, Xi&, one of the Xjs is one, and the others are zero.

interactions between variables, for example, X3 = X1 X2.

No matter the source of the Xj, the model is linear in the parameters.
Typically we have a set of training data (xl, y . . . (xN, gn) h m which

to estimate the parameters p. Each xi = (xil, xi,, . . . , xi,)T is a vector
01 fetllure ruewuremerlls for lhe iilh cwe. The mwl popular eslhualiorl
method is least squares, in which we pick the coefficients = (Po, &, . . . , &)T
to minimize the residual sum of squares

From a statistical point of view, this criterion is reasonable if the traiaiag
observations (xi, yi) represent independent random draws fiom their popu-
lation. Even if the xi's were not drawn randomly, the criterion is still valid
if the yi's are conditionally independent given the inputs xi. Figure 3.1

3.2 Linear Regression Models and Least Squares 43

•• •

•
•

• •
•

•

• •

••

•

•

•

•
•

•

•
•

•
•

•

•

••

•

•• •
•

•

•

•

•

•

• •
•

•

•

•

•

•

•

•

•

•

•

•• •

•

•

•

•
•

•

• •
•

• •

•
•

• •
••

•

•

•

•

X1

X2

Y

FIGURE 3.1. Linear least squares fitting with X ∈ IR2. We seek the linear
function of X that minimizes the sum of squared residuals from Y .

illustrates the geometry of least-squares fitting in the IRp+1 dimensional
space occupied by the pairs (X,Y). Note that (3.2) makes no assumptions
about the validity of model (3.1); it simply finds the best linear fit to the
data. Least squares fitting is intuitively satisfying no matter how the data
arise; the criterion measures the average lack of fit.

How do we minimize (3.2)? Denote by X the N × (p + 1) matrix with
each row an input vector (with a 1 in the first position), and similarly let
y be the N -vector of outputs in the training set. Then we can write the
residual sum-of-squares as

RSS(β) = (y −Xβ)T (y −Xβ). (3.3)

This is a quadratic function in the p + 1 parameters. Differentiating with
respect to β we obtain

∂RSS
∂β

= −2XT (y −Xβ)

∂2RSS
∂β∂βT

= −2XTX.

(3.4)

Assuming (for the moment) that X has full column rank, and hence XTX
is positive definite, we set the first derivative to zero

XT (y −Xβ) = 0 (3.5)

44 3. Linear Methods for Regression

The N-dimmsiond geometry of lead squares -$&on with two

s p n r z d by the z n p d MGTS xl and x2. The prqjectiorz y represents h e vecfor
of the lead s p a r e s p d i c i i o m

to obtain the unique solution

The predicted values at an input vector so are given by ?(so) = (1 :
the fitted values at the training inputs are

9 = xb = xT(xTx)- 'xTy, (3.7)

where Br = ?(xi). The matrix H = XT(XTX)-'X appearing in equation
(3.7) is sometimes called the "hat" matrix because it puts the hat on y.

Figurc 3.2 shows a diffcrcnt gcornctrical rcprcscntation of thc thc lcnst
squares estimate, this time in ELN. We denote the column vectors of X by
m,xl , . . . , +, with = 1. For much of what follows, this first column is
treated like any other. These vectors span a subspace of also referred to
M LLt: t : ~ l u t ~ l ~pmt: UI X. Wt: ~rJt i t&t: RSS(P) = 11 - Xpll Ly clluutritg
,6 so that the residual vector y - 9 is orthogonal to this subspace. This
orthogonality is expressed in (3.5), and the resulting estimate 9 is hence the
orthogonal projection of y onto this subspace. The hat matrix H computes
the orthogonal projection, and hence it is also known as a projection matrix.

It might happen that the columns of X are not linearly independent, so
that X is not of tull rank. 'I'his would occur, for example, it two of the
inputs were perfectly correlated, (e.g., xa = 3x1). Then XTX is singular
and the least squares coefficients a are not uniquely defined. However,
the fitted values jr = ~6 are still the projection of y onto the column
space of X; there is just more than one way to express that projection in
terms of the column vectors of X. The nonfull rank case occurs mmt often

3.2 Linear Regression Models and Least Squares 45

when one or more qualitative inputs are coded in a redundant fashion.
There is usually a natural way to resolve the non-unique representation,
by recoding and/or dropping redundant columns in X. Most regression
software packages detect these redundancies and automatically implement
some strategy for removing them. Rank deficiencies can also occur in signal
and image analysis, where the number of inputs p can exceed the number of
training cases N. In this case, the features are typically reduced by filtering
or else the fitting is controlled by regularization (Section 5.2.3).

Up to now we have made minimal assumptions about the true distribu-
tion of the data. In order to pin down the sampling properties of P, we now
assume that the observations yi are uncorrelated and have constant vari-
ance c2, and that the xi are fixed (non random). The variancexovariance
matrix of the least squares parameter estimates is easily derived from (3.6)
and is given by

Typically one estimates the variance c2 by

The N - p - 1 rather than N in the denominator makes e2 an unbiased
estimate of c2 : E(e2) = c2.

To draw inferences about the parameters and the model, additional as-
sumptions are needed. We now assume that (3.1) is the correct model for
the mean; that is, the conditional expectation of Y is linear in XI, . . . , Xp.
We also assume that the deviations of Y around its expectation are additive
and Gaussian. Hence

where the error E is a Gaussian random variable with expectation zero and
variance c2, written E ,- N(0, c2) .

Under (3.9), it is easy to show that

This is a multivariate normal distribution with mean vector and variance-
covariance matrix as shown. Also

46 3. Linear Methods for Regression

- \
. k- --

1 -7 - normal

1 1 I
I , I
1 1 I . . - - - -T7--7-- - - - - - - - - - - - - - -

8 , 8 8 8

1 1 I I I

FIGURE 3.3. The tad pmbabdities Pr(lZ1 > z) for &we di$tv-ibuiion$, itso, t l o o
and standard n o m d . Shown a w the appropriate quantdes for testing smgnifimnce
at f ie p = 0.05 and 0.01 levels. The di8eren.m between t raad the standmd nomd
becomes negZig%-ble far N bigger fhan a b u t 100.

a chi-squared distribution with N - p - 1 degrees of freedom. In addition f i
and B2 are st atistically independent. We use these distributional properties
to form tests of hypothesis and con6dence intervals for the parameters pj.

To test the hypothesis that a particular coefficient pj = 0, we form the
standardized coefficient or 2-score

where v j is the jth diagonal element of (XTX)-I . Under the null hypothesis
that pj = 0, zj is distributed as t N p p l (a t distribution with N - p - 1
degrees of freedom), and hence a large (abolute) value of xj will lead to
rejeclivn oI Lt~b null t~ypvlhesb. II c were ~ ~ W I L , Lt~w z j would h v e a
standard normal distribution. The dBerence between the tail quantiles of
a t-distribution and a standard normal become negligible as the sample size
increases, and so we typically use the normal quantiles (see Figute 3.3).

Often we need to test for the signi£lcanm of groups of coemcients simul-
taneously. For example, to test if a categorical variable with b leveh can
be excluded from a model, we need to test whether the coefficients of the
dummy variables used to represent the levels can all be set to zero. Here
we use the F statistic,

where RSSl is the residual sum-of-squares for the least squares fit of the big-
ger model withpl +l parameters, and RSSo the same for the nested smder

3.2 Linear Regression Models and Least Squares 47

model with p0 +1 parameters, having p1−p0 parameters constrained to be
zero. The F statistic measures the change in residual sum-of-squares per
additional parameter in the bigger model, and it is normalized by an esti-
mate of σ2. Under the Gaussian assumptions, and the null hypothesis that
the smaller model is correct, the F statistic will have a Fp1−p0,N−p1−1 dis-
tribution. It can be shown (Exercise 3.1) that the zj in (3.12) are equivalent
to the F statistic for dropping the single coefficient βj from the model. For
large N , the quantiles of the Fp1−p0,N−p1−1 approach those of the χ2

p1−p0 .
Similarly, we can isolate βj in (3.10) to obtain a 1−2α confidence interval

for βj :

(β̂j − z(1−α)v
1
2
j σ̂, β̂j + z(1−α)v

1
2
j σ̂). (3.14)

Here z(1−α) is the 1− α percentile of the normal distribution:

z(1−0.025) = 1.96,
z(1−.05) = 1.645, etc.

Hence the standard practice of reporting β̂ ± 2 · se(β̂) amounts to an ap-
proximate 95% confidence interval. Even if the Gaussian error assumption
does not hold, this interval will be approximately correct, with its coverage
approaching 1− 2α as the sample size N →∞.

In a similar fashion we can obtain an approximate confidence set for the
entire parameter vector β, namely

Cβ = {β|(β̂ − β)TXTX(β̂ − β) ≤ σ̂2χ2
p+1

(1−α)}, (3.15)

where χ2
�
(1−α) is the 1 − α percentile of the chi-squared distribution on �

degrees of freedom: for example, χ2
5
(1−0.05) = 11.1, χ2

5
(1−0.1) = 9.2. This

confidence set for β generates a corresponding confidence interval for the
true function f(x) = xTβ, namely {xTβ|β ∈ Cβ} (Exercise 3.2). For an
example of such confidence intervals, see Figure 5.4 in Section 5.2.2.

3.2.1 Example: Prostate Cancer

The data for this example come from a study by Stamey et al. (1989). They
examined the correlation between the level of prostate-specific antigen and
a number of clinical measures in men who were about to receive a radical
prostatectomy. The variables are log cancer volume (lcavol), log prostate
weight (lweight), age, log of the amount of benign prostatic hyperplasia
(lbph), seminal vesicle invasion (svi), log of capsular penetration (lcp),
Gleason score (gleason), and percent of Gleason scores 4 or 5 (pgg45).
The correlation matrix of the predictors given in Table 3.1 shows many
strong correlations. Figure 1.1 (page 3) of Chapter 1 is a scatterplot matrix
showing every pairwise plot between the variables. We see that svi is a

48 3. Linear Methods for Regression

TABLE 3.1. Cmlations of pdictors in the prostate cancer data.

lcavol lweight age lbph svi lcp gleason
lmight 0.300

age 0.286 0.317
lbph 0.063 0.437 0.287
~ v i 0.593 0.181 0.129 -0.139
1cp 0.692 0.157 0.173 -0.089 0.671

gleamon 0.426 0.024 0.366 0.033 0.307 0.476
pgga 0.483 0.074 0.27G -0.030 0.481 O.GG3 0.757

TABLE 3.2. Linear &el fit to the p m s h k .cancer Lh. The Z sEom the
coeficieat divided by i h stmadmd e m r (3.12). Roughly m Z scow Eager fhan two
ia absolute udue is s i g n i h n a y amzero at the p = 0.05 level.

Term Coefficient Std. Error Z Score
Intercept 2.48 0.09 27.66

lcavol 0.68 0.13 5.37
lve ight 0.30 0.11 2.75

age -0.14 0.10 -1.40
lbph 0.21 0.10 2.06
svi 0.31 0.12 2.47
ICP -0.29 0.15 -1.87

gleamon -0.02 0.15 -0.15
~gg46 0.27 0.15 1.74

binary variable, and gleaxon is an ordered categorical variable. We see, for
example, that both lcavnl and lcp show a strong relationship with the
response l p ~ a , and with each other. We need to fit the effects jointly to
untangle the relationships between the predictors and the response.

We fit a linear model to the log of prostatsspecific antigen, I p ~ a , after
first standardizing the predictors to have unit variance. We randomly split
the dataset into a training set of size 6'7 and a test set of size SO. We a p
plied least squares estimation to the training set, producing the estimates,
standard errors and 8-scores shown in 'l'able 3.2. 'l'he X-scores are defined
in (3.12), and measure the effect of dropping that variable from the model.
A 2-score greater than 2 in absolute value is approximately sign3cant at
the 5% level. (For our example, we have nine parameters, and the 0.025 tail
quantiles of the distribution are f 2.002!) The predictor l c a w l shows
the strongest effect, with lweight and m i also strong. Notice that lcp is
not significant, once lcavol is in the model (when used in a model without
lcavol, lcp is strongly significant). We can also test for the exclusion of
a number of terms at once, using the F-statistic (3.13). For example, we
consider dropping all the non-signilkant terms in Table 3.2, namely age,

3.2 Linear Regression Models and Least Squares 49

lcp, gleason, and pgg45. We get

which has a pvalue of 0.17 (P T (F ~ , ~ ~ > 1.67) = 0.17), and hence is not
triglliEcat1L.

The mean prediction error on the test data is 0.545. In contrast, p r e d i ~
tion using the mean training value of I p ~ a has a test error of 1.050, which
is called the "base error rate." Hence the linear model reduces the base
error rate by about 50%. We will return to this example later to compare
various selection and shrinkage methods.

9 - 2 2 The Gaws-Markov Theorem

One of the most famous results in statistics asserts that the least squares
estimates of the parameters p have the smallest variance among all linear
unbiased estimates. We will make this precise here, and also make clear
that the restriction to unbiased estimates is not necessarily a wise one. This
observation will l e d us to consider biased estimates such as ridge regression
later in the chapter. We focus on estimation of any linear combination of
the parameters 13 = oTp; for example, predictions f (so) = arp are of this
form. The least squares estimate of il'P is

Conaidering X to be Exed, this is a linear function c r y of the response
vector y. If we assume that the linear model is correct, aTa is unbiased
aincc

The Gauss-Markov theorem states that if we have any other linear estima
tor 8" = cTy that is unbiased for aTP, that is, E(cTy) = aTP, then

The proof (Exercise 3.3) uses the triangle inequality. For simplicity we have
stated the result in terms of estimation of a single parameter aTp, but with
a few more definitions one can state it in terms of the entire parameter
vector p (Exercise 3.3).

Consider the mean squared error of an estimator 6 in estimating 0:

50 3. Linear Methods for Regression

The first t a m is the variance, while the second term is the squared bias.
The G~~issMarknv theorem implies khak khe Iemk sqliares estimator hm the
smallest mean squared error of all linear estimators with no bias. However,
there may well exist a biased estimator with smaller mean squared error.
Such an estimator would trade a little bias for a larger reduction in variance.
Biased estimates are commonly used. Any method that shrinks or sets to
zero some of the least squares coefficients may result in a biased estimate.
We discuss many examples, includmg variable subset selection and ridge
regression, later in this chapter. From a more pragmatic point of view, mmt
models are dhtortions of the truth, and hence are biased; picking the right
model amounts to creating the right balance between bias and variance.
We go into these issues in more detail in Chapter 7.

Mean squared error is intimately related to prediction accuracy, as dis-
cmscd in Chaptcr 2. Considcr thc prcdidion of thc ncw rcsponsc at input
2 0 7

Then the expected prediction error of an estimate f"(xo) = x r p is

Therefore, expected prediction error and mean squared error diEer only by
the constant ua, representing the variance of the new observation yo.

3.3 Multiple Regression from Simple Univariate
Regression

The linear model (3.1) with p > 1 inputs is called the multiple lintmr
regression model. The least squares estimates (3.6) for this model are best
understood in terms of the estimates for the univra~ate (p = 1) linear
model, as we indicate in this section.

Suppose first that we have a univariate model with no intercept, that is,

The least squares estimate and residuals are

3.3 Multiple Regression from Simple Univariate Regression 51

In convenient vector notation, we let y = (yl, . . . , yN)Tl x = (xl , . . . , xN)T
and define

N

the inner product between x and y.* Then we can write

As we will see, this simple univariate regression provides the building
block for multiple least squares regression. Suppose next that the inputs
XI , x2, . . . , x, (the columns of the data matrix X) are orthogonal; that is
(xj, xk) = 0 for all j # k . Then it is easy to check that the multiple least
squares estimates pj are equal to (xj, y) / (xj , x,)-the univariate estimates.
In other words, when the inputs are orthogonal, they have no effect on each
others parameter estimates in the model.

Orthogonal inputs occur most often with balanced, designed experiments
(where orthogonality is enforced), but almost never with observational
data. Hcncc wc will havc to orthogonalizc thcm in ordcr to carry this idca
further. Suppose next that we have an intercept and a single input x. Then
the least squares coefficient of x has the form

where x = xi xi/N, and 1 = xo, the vector of N ones. We can view the
estimate (3.26) as the result of two applications of the simple regression
(3.25). The steps are:

1. regress x on 1 to produce the residual z = x - x l ;

2. regress y on the residual z to give the coefficient gl.
In this procedure, "regress b on a" means a simple univariate regression of b
on a with no intercept, producing coefficient 9 = (a, b) / (a , a) and residual
vector b - ?a. We say that b is adjusted for a, or is "orthogonalized with
respect to a.

Step 1 orthogonalizes x with respect to xo = 1. Step 2 is just a simple
univariate regression, using the orthogonal predictors 1 and z. Figure 3.4
shows this process for two general inputs x l and x2. The orthogonalization
does not change the subspace spanned by xl and xz, it simply produces an
orthogonal basis for representing it.

*The inner-product notation is suggestive of generalizations of linear regression to
different metric spaces, as well as to probability spaces.

52 3. Linear Methods for Regression

x1

x2

y

ŷ

zzzzz

FIGURE 3.4. Least squares regression by orthogonalization of the inputs. The
vector x2 is regressed on the vector x1, leaving the residual vector z. The regres-
sion of y on z gives the multiple regression coefficient of x2. Adding together the
projections of y on each of x1 and z gives the least squares fit ŷ.

Algorithm 3.1 Regression by Successive Orthogonalization.

1. Initialize z0 = x0 = 1.

2. For j = 1, 2, . . . , p

Regress xj on z0, z1, . . . , , zj−1 to produce coefficients γ̂�j =
〈z�,xj〉/〈z�, z�〉, � = 0, . . . , j − 1 and residual vector zj =
xj −

∑j−1
k=0 γ̂kjzk−1.

3. Regress y on the residual zp to give the estimate β̂p.

This recipe generalizes to the case of p inputs, as shown in Algorithm 3.1.
Note that the inputs z0, . . . , zj−1 in step 2 are orthogonal, hence the simple
regression coefficients computed there are in fact also the multiple regres-
sion coefficients.

The result of this algorithm is

β̂p =
〈zp,y〉
〈zp, zp〉

. (3.27)

Re-arranging the residual in step 2, we can see that each of the xj is a linear
combination of the zk, k ≤ j. Since the zj are all orthogonal, they form
a basis for the column space of X, and hence the least squares projection
onto this subspace is ŷ. Since xp alone involves zp (with coefficient 1), we
see that the coefficient (3.27) is indeed the multiple regression coefficient of
y on xp. This key result exposes the effect of correlated inputs in multiple

3.3 Multiple Regression from Simple Univariate Regression 53

regression. Note also that by rearranging the x j , any one of them could
be in the last position, and a similar results holds. Hence stated more
generally, we have shown that the j t h multiple regression coefficient is the
univariate regression coefficient of y on x ~ . ~ ~ ~ . . . (~ ~ ~ ~ (~ + ~ ~ . . . ,p, the residual
after regressing x j on xo, XI, . . . , xj-1, x j+ l , . . . , xp:

The multiple regression coeflcient bj represents the additional
contribution of xj on y, after xj has been adjusted for xo, xl, . . . , xj-1,
Xj+l, . . . ,xp

If x, is highly correlated with some of the other xk's, the residual vector
zp will be close to zero, and from (3.27) the coefficient Bp will be very
unstable. This will be true for all the variables in the correlated set. From
(3.27) we also obtain an alternate formula for the variance estimates (3.8),

In other words, the precision with which we can estimate jp depends on
the length of the vector zp; this represents how much of xp is unexplained
by the other xk9s.

Algorithm 3.1 is known as the Gram-Schmidt procedure for multiple
regression, and is also a useful numerical strategy for computing the esti-
mates. We can obtain from it not just Pp, but also the entire multiple least
squares fit, as shown in Exercise 3.4.

We can represent step 2 of Algorithm 3.1 in matrix form:

x = zr, (3.29)

where Z has as columns the z j (in order), and I' is the upper triangular ma-
trix with entries Tkj. Introducing the diagonal matrix D with j t h diagonal
entry Djj = llzjII, we get

the so-called QR decomposition of X. Here Q is an N x (p + 1) orthogonal
matrix, QTQ = I, and R is a (p + 1) x (p + 1) upper triangular matrix.

The Q R decomposition represents a convenient orthogonal basis for the
column space of X. It is easy to see, for example, that the least squares
solution is given by

Equation (3.31) is easy to solve because R is upper triangular (Exer-
cise 3.4).

54 3. Linear Methods for Regression

Suppose we have multiple outputs Yl, Y2,. . . , YK that we wish to predict
from our inputs Xo, XI, Xa, . . . , X,. We assume a linear model for each
output

With N trainiag cases we can write the model in matrix notation

Here Y is the N x K response matrix, with ik entry yin, X is the N x (p+ 1)
input matrix, B is the @ + 1) x K matrix of parameters and E is the
N x K matrix of errors. A straightforward generalization of the univariate
low function (3.2) is

The least squares estimates have exactly the same form as before

Hcncc thc cocfficicnts for thc kth outcomc an: jwt thc lcwt squarcs @ti-
mates in the regression of yk on %, xl , . . . , +. Multiple outputs do not
affect one another's least squares estimates.

If the errors E = (E ~ , . . . , E ~) in (3.33) are correlated, then it might seem
appropriate to modify (3.36) in favor of a multivariate version. Specifically,
suppose COV(E) = !Z , then the multivariate weighted criterion

arises naturally from multivariate Gaussian theory. Here f (x) is the vector
function (fi(x), . . . , f ~ (x)) , and yi the vector of Pi responses for observa,
tion i. However, it can be shown that again the solution is given by (3.38);
K separate regressions that ignore the correlations (Exercise 3.9). If the Ed
vary among observations, then this is no longer the case, and the solution
for B no longer decouples.

In Section 3.4.6 we pursue the multiple outcome problem, and consider
situations where it does pay to combine the regressions.

3.4 Subset Selection and Coefficient Shrinkage 55

3.4 Subset Selection and Coefficient Shrinkage

There are two reasons why we are often not satisfied with the least squares
estimates (3.6).

r The first; is pmdictinm nrxnrncy the l e s ~ t R ~ I I A G ~ estirna.i;es nfken hs,ve
low bias but large variance. Prediction accuracy can sometimes be
improved by shrinking or setting some coefficients to zero. By doing
so we sacsce a little bit of bias to reduce the variance of the predicted
values, and hence may improve the overall prediction accuracy.

The second rewon is i~blerpmlulbu~~ WiLh a large rumher or prerlic-
tors, we often would like to determine a smaller subet that exhibit
the strongest effects. In order to get the "big picture," we are willing
to sacrXce some of the small details.

In this section we describe a number of approaches to variable selection
and coefficient shrinkage.

3.4 . I Subset Selection
In thh approach we retain only a subset of the variables, and eliminate
lhe resL Irom Lhe mudel. Lewl squarw ~gressio11 i used lo wlhaLe Lhe
coefficients of the inputs that are retained. There are a number of different
strategies for choosing the s u k t . Best mbset ~ ~ s s i o ~ a finds for each
k E { O , 1 , 2, . . . the subset of size k that gives smallest residual sum
of squares (3.2). An efflcient algorithm--the leaps and bounds procedure
(Furnival and Wilson, 1974)-makes this feasible for p as large as 30 or
40. Figure 3.5 shows all the s u k t models for the prostate cancer example.
The lower boundary represents the models that are eligible for selection by
the best-subets approach. Note that the best subset of size 2, for example,
need not include the variable that was in the best subet of size 1 (for
this example all the subsets are nested). The best-suhet curve (red lower
boundary in Figure 3.5) is necessarily decreasing, so cannot be used to
select the subet s k k. 'l'he question of how to choose k involves the
tradeoff between bias and variance, and there are a number of criteria that
one may use. Typically we choose the model that minimizes an estimate of
the expected prediction error. We defer discussion of this until Chapter 7.

Rather than search through all possible subsets (which becomes infeasible
for p much larger than 40), we can seek a good path through them. FowarH
s t e p h e selection starts with the intercept, and then sequentially adds into
the model the predictor that most improves the fit. Suppose our current
model has k inputs, represented by parameter estimates P, and we add in
a predictor, resulting in estimates p. The improvement in fit is often based

56 3. Linear Methods for Regression

Subset Size k

FIGURE 3.5. AII posd le tmbset models for the prostate cancer example. At
each subset size is shown the r e d u d sum-of-squares for each model of that size.

on the F statistic (3.13),

A typical strategy adds in sequentially the predictor producing the largest
value of F, stopping when no predictor produces an F-ratlo greater than
the 90th or 95th percentile of the Fl,H-k-2 distribution.

B a d w a d stepwise selection starts with the full model, and sequentially
deletes predictors. Like forward selection, it typically uses an F-ratio like
(3.40) to choose the predictor to delete. In this case we drop the predh
tor producing the smallest value of F at each stage, stopping when each
predictor in the model produces a value of F greater than the YOth or
95th percentile when dropped. Backward selection can only be used when
N > p, while forward stepwise can always be used. 'l'here are also hy-
brid s t e p e e selection strategies that consider both forward and backward
moves at each stage, and make the "best" move; these require a parameter
to set the threshold between when an "add" move is chosen over a "drop"
move.

The F-ratio stopping rule provides only local control of the model search,
and does not attempt to find the best model along the sequence of models
that it examines. As with all-subets selection, we can choose the model
h m the sequence that minimizes an estimate of expected prediction error.
This is discussed in Chapter 7, and illustrated in the example below.

3.4 Subset Selection and Coefficient Shrinkage 57

TABLE 3.3. E~Crnated mficdents and kd epmr m~esdh, for ddflemt subset
and shrinkrage methods applied fo the prostrate data. The blrank entries mmspond
to varimbles onaitted

Tkrm LS Best Subset Rid* Lasso PCR PLS
Intarcapt

lcavol
lweight

age
lbph
~ v i

ICP
glemon
pgg45

Test Error
Std. Error

3.4 2 Prostate Cancer Data Example (Contin&)
Table 3.3 shows the coefficients from a number of Werent selection and
shrinkage methods. They are best-subset selection using an all-subsets search,
d g e regression, the lasso, principal components rapasion and partial least
spares. Each method has a complexity parameter, and this was chosen to
mini mi^ an estimate of prediction error based on tenfold cross-validation;
full details are given in Section 7.10. Briefly, cross-validation works by divid-
ing the training data randomly into ten equal parts. The learning method
is fit to nine-tenths of the data, and the prediction error is computed on
the remaining onstenth. This is done in turn for each onstenth of the
data, and the ten prediction error estimates are averaged. Note that we
have already divided these data into a training set of size 67 and a test set
of size 30. Cross-validation is applied to the training set, since selecting the
shrinkage parameter is part of the tr- process. The test set h there to
judge the performance of the selected model.

The estimated prediction error curves are shown in Figire 3.R. Many of
the curves are very flat over large ranges near their minimum. Included
are estimated standard error bands for e a h estimated error rate, based on
the ten error estimates computed by cross-validation. We have used the
"onestandard-error" r u l e w e pick the most parsimonious model within
one standard error of the minimum (Section 7.10, page 216). Such a rule
faces up to the fact that the tradeoff curve is estimated with error, and
hence takes a conservative approach.

Besbsubset selection chose to use the two predictors lcvol and lcweight.
The last two lines of the table give the average prediction error (and its
standard error) over the test set.

58 3. Linear Methods for Regression

All Subsets

Partial Least Squares

Ridge Regression

I.

=?.

* . -
j 2 -

8 :-
I.

5 .

o 2 4 B a

D . g r a ol RrdDm

Principl Components Regregsion

I.
7

m .

* . -
k ? -

2 2 -

I.

m .

6. Es t imdd pdic t ion m y c u m $ and the i~ standard e m r s for
... ... - -.. i ~ t i n n rnmd ahrinkrngc mdhnds. Each cvhmx i s plnttd M a fihmdicwa
of the w m p a d i n g wmplexity prarnefer for #.at method The lwrizont& m i s

has bmn chosen so that tlae model complexity inc-es as we move left to
right. The p d i d i o n m r estirndes m d Uaeir s h a d a d e m r s were obtained by
tenfold cross-mEdaiiow fill de tdb am given in Secf on 7.10. The least compla
model within one standard e m r of the best i s chosen.

3.4 Sub& Selection and Coefficient Shrinkage 59

9.4.9 Shrinkage Methods

By retaining a subset of the predictors and discatding the rest, subset selec
tion produces a model that is interpretable and has pmibly lower predic
tion error than the id model. However, became it is a discrete p rocese
variables are either retained or discarded-it often exhibits high variance,
and so doesn't reduce the prediction error of the full model. Shrinkage
methods are more continuous, and don't suffer as much fiom high variabil-
ity.

Ridge Rqwssio~r

Ridge regression shrinks the regression coefficients by imposing a penalty
on their size. The ridge coefficients minimize a penalized residual sum of
squares,

Here X 2 0 is a complexity parameter that controls the amount of shrink-
age: the larger the value of A, the greater the amount of Shtshrjllkage. The
coefficients are shrunk toward zero (and each other). The idea of p e n a h
it% Ly LLe ~ a l ~ ~ u - u I - ~ ~ e a "1 LLe putatuelet-a ia &u ~ e r l h he ut-ul helwotka,
where it is known as weight decay (Chapter 11).

An equivalent way to write the ridge problem is

subject to p; < 5,

which makes explicit the she constraint on the parameters. There is a one
b o n e correspondence between the parameters X in (3.41) and s in (3.42).
When there are many correlated variables in a linear regression model,
their coefficients can become poorly determined and exhibit high variance.
A wildly large positive coefficient on one variable can be canceled by a sim-
ilarly large negative coefficient on its correlated cousin. By imposing a size
constraint on the coefficients, as in (3.421, this phenomenon is prevented
£tom occurring.

The ridge solutions are not equivariant under scaling of the inputs, and
so one normally standardizes the inputs before solving (3.41).

In addition, notice that the intercept Po has been left out of the penalty
term. Penalization of the intercept would make the procedure depend on
the origin chosen for Y ; that is, adding a constant c to each of the targets yi
would not simply result in a shift of the predictions by the same amount c.

60 3. Linear Methods for Regression

It can be shown (Exercise 3.5) that the solution to (3.41) can be separated
into two parts, after reparametrization using centered inputs: each xij gets

N replaced by xij - x,. We estimate Po by y = El yi/N. The remaining
coefficients get estimated by a ridge regression without intercept, using the
centered xij. Henceforth we assume that this centering has been done, so
that the input matrix X has p (rather than p + 1) columns.

Writing the criterion in (3.41) in matrix form,

the ridge regression solutions are easily seen to be

where I is the p x p identity matrix. Notice that with the choice of quadratic
penalty pTp, the ridge regression solution is again a linear function of
y. The solution adds a positive constant to the diagonal of XTX before
inversion. This makes the problem nonsingular, even if XTX is not of full
rank, and was the main motivation for ridge regression when it was first
introduced in statistics (Hoerl and Kennard, 1970). Traditional descriptions
of ridge regression start with definition (3.44). We choose to motivate it via
(3.41) and (3.42), as these provide insight into how it works.

Figure 3.7 shows the ridge coefficient estimates for the prnstate cancer
example, plotted as functions of df(X), the effective degrees of freedom im-
plied by a penalty X (defined in (3.50) on page 63).

In the case of orthogonal inputs, the ridge estimates are just a scaled
version of the least squares estimates, that is, P d g e = yj. Here 0 (y (1
is a simple function of X in equation (3.41); see Section 3.4.5.

Ridge regression can also be derived as the mean or mode of a poste-
rior distribution, with a suitably chosen prior distribution. Suppose y,
N(P0 + z:~, a'), and the parameters Pj are each distributed as N(0, T'),

independently of one another. Then the (negative) log-posterior density
of 0, with T' and CT' assumed known, is equal to the expression in curly
braces in (3.41), with X = CT'/T' (Exercise 3.6). Thus the ridge estimate is
the mode of the posterior distribution; since the distribution is Gaussian,
it is also the posterior mean.

The singular value decompositzon (SVD) of the centered input matrix X
gives us some additional insight into the nature of ridge regression. This de-
compositioil is extremely useful in the analysis of many statistical n~ethods.
The SVD of the N x p matrix X has the form

Here U and V are N x p and p x p orthogonal matrices, with the columns
of U spanning the column space of X , and the columns of V spanning the
row space. D is a p x p diagonal matrix, with diagonal entries dl 2 d2 2
. . > dp > 0 called the singular values of X.

3.4 Sub& Selection and Coefficient Shrinkage 61

lcavol

lai ht
PW%

lbph

- - - - - - - .
gleason

age

I

I I

I I

I ICP

FIGU: Pmfles of d g e coeficimts for the prostde cancer aarnple, as

degrees o f f redom. A verZid line is d m m at df = 4.16, Uae vdue chosen by
smq.s-~~didafina.

62 3. Linear Methods for Regression

Using the singular value decomposition we can write the least squares
fitted vector as

after some simplification. Note that uTy are the coordinates of y with
respect to the orthonormal ha.sis TJ. Note also the simila.rity with (3.32); Q
and U are generally different bases for the column space of X (Exercise 3.8).

Now the ridge solutions are

where the u j are the columns of U. Note that since X 2 0, we have d;/(d,"+
A) < 1. Like linear regression, ridge regression computes the coordinates of
y with respect to the orthonormal basis U. It then shrinks these coordinates
by the factors d;/(d; + A). This means that a greater amount of shrinkage
is applied to basis vectors with smaller d;.

What does a small value of d j mean? The SVD of the centered matrix
X is allother way of expressing the pri~acipal co~npo~ac~ats of the variables
in X. The sample covariance matrix is given by S = XTX/N, and from
(3.45) we have

which is the eigen decomposition of X ~ X (and of S, up to a factor N). The
eigenvectors vj are also called the principal components (or Karhunen-
Loeve) directions of X. The first principal component direction vl has
the property that z1 = Xul has the largest sample variance amongst all
normalized linear combinations of the columns of X. This sample variance
is easily seen to be

and in fact z l = Xul = uldl. The derived variable z l is called the first
principal component of X , and hence u l is the normalized first principal
component. Subsequent principal components z j have maximum variance
d:/N, subject to being orthogonal to the earlier ones. Conversely the last
principal component has minimum variance. Hence the small singular val-
ues d j correspond to directions in the column space of X having small
variance, and ridge regression shrinks these directions the most.

3.4 Sub& Selection and Coefficient Shrinkage 63

Largest Princbl o
Component

Smllest P r l n w l
Component

FIGURE 3.8. P&i& compwmis of some input data points. The Lvyest pvim
cipd mjwnerat b the dimtion that maximizes the va~ance of the projected
data, and fh .smEl~.st p r i n c i p l rnmponmt minimixes +Ad ;~af inwf i . Ridge re-

gression projects y omto these mrnpoments, and then shrinks Uae cwfidemts of

Uae lmuafirsrace mmpoments more than Uae higla-uafimmce mmpoments.

F i p e 3.8 illwtrates the principal components of some data points in
two dimensions. If we consider fitting a linear surface over this domain
(the Y-axh h ati- out of the page), the configuration of the data allow
us to determine its gradient more accurately in the long direction than
the short. Ridge regression protects against the potentially high varittnm
of gradients estimated in the short directions. The implicit assumption is
that the response will tend to vary most in the directions of high variance
of the inputs. This is often a reasonable assumption, but need not hold in
general.

In Figure 3.6 we have plotted the estimated prediction error versus the
quantity

This monotone decretwing function is the eflective dqrees of jpeedorn of
the ridge regression fit, as described in Section 7.6. Note that df (A) = p

64 3. Linear Methods for Regression

when λ = 0 (no regularization) and df(λ) → 0 as λ → ∞. In Figure 3.6
the minimum occurs at df(λ) = 4.16. Table 3.3 shows that ridge regression
reduces the test error of the full least squares estimates by a small amount.

The Lasso

The lasso is a shrinkage method like ridge, with subtle but important dif-
ferences. The lasso estimate is defined by

β̂lasso = argmin
β

N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2
subject to

p∑
j=1

|βj | ≤ t. (3.51)

Just as in ridge regression, we can reparametrize the constant β0 by stan-
dardizing the predictors; the solution for β̂0 is ȳ, and thereafter we fit a
model without an intercept (Exercise 3.11).

Notice the similarity to the ridge regression problem (3.42): the L2 ridge
penalty

∑p
1 β

2
j is replaced by the L1 lasso penalty

∑p
1 |βj |. This latter

constraint makes the solutions nonlinear in the yi, and a quadratic pro-
gramming algorithm is used to compute them. Because of the nature of the
constraint, making t sufficiently small will cause some of the coefficients to
be exactly zero. Thus the lasso does a kind of continuous subset selection.
If t is chosen larger than t0 =

∑p
1 |β̂j | (where β̂j = β̂ls

j , the least squares
estimates), then the lasso estimates are the β̂j ’s. On the other hand, for
t = t0/2 say, then the least squares coefficients are shrunk by about 50%
on average. However, the nature of the shrinkage is not obvious, and we
investigate it further in Section 3.4.5 below. Like the subset size in variable
subset selection, or the penalty parameter in ridge regression, t should be
adaptively chosen to minimize an estimate of expected prediction error.

In Figure 3.6, for ease of interpretation, we have plotted the lasso predic-
tion error estimates versus the standardized parameter s = t/

∑p
1 |β̂j |. A

value ŝ ≈ 0.50 was chosen by 10-fold cross-validation; this caused three co-
efficients to be set to zero (fifth column of Table 3.3). The resulting model
has the lowest test error, slightly lower than the full least squares model,
but the standard errors of the test error estimates (last line of Table 3.3)
are fairly large.

Figure 3.9 shows the lasso coefficients as the standardized tuning parame-
ter s = t/

∑p
1 |β̂j | is varied. At s = 1.0 these are the least squares estimates;

they decrease to 0 as s → 0. This decrease is not always strictly monotonic,
although it is in this example. A vertical line is drawn at s = 0.5, the value
chosen by cross-validation.

3.4 Sub& Selection and Coefficient Shrinkage 65

Shrinkage Factors

FIGURE 3.B. h f l e s of lasso weficierzh, ms tuning parameter t is wad.
Coeficienta ave plotted v e ~ s w s = t/ C; IPj 1. A vertical line ia drawn at s = 0.5,
the vdue chosen by crass-vdidation. Cmjmw Figure Z7 on page 61; the I ~ a o
pwfles hit zew, while those for ridge do not.

66 3. Linear Methods for Regression

4 Methods Using Derived Input Directions
In many situations we have a large number of inputs, often very correlated.
The methods in this section produce a small number of linear combinations
&, rn = 1,. . . , M of the or& inputs X j , and the Xrn are then used in
place of the X j as inputs in the regression. The methods differ in how the
linear combinations are constructed.

P&dpl Components Reqesdom

In this approach the linear combinations Z,,, used are the principal com-
ponents as defined in Section 3.4.3 above.

Principal component regression forms the derived input columns z, =

Xu,, and then regresses y on z ~ , z ~ , . . . ,ZM for some M 5 p. Since the
ems are orthogonal, thb regression is just a sum of Uniwiate regressions:

where 6, = (zm, y)/ (z, , z,) . Since the zm are each linear combinations
of the original xj, we can express the solution (3.52) in terms of coefficients
of the xj (Exercise 3.12):

As with ridge regression, principal components depend on the scaling of
the inputs, so typically we first standardize them. Note that if M = p, we
would just get back the usual least squares estimates, since the columns of
B = UD span the column space of X. For M < p we get a reduced regrep
sion. We see that principal components regression is very similar to ridge
regr~sion: hokh operahe via the principal components of the input; ma-
trix. Ridge regression shrinks the coefficients of the principal components
(Figure 3.10), shrinking more depending on the size of the corresponding
eigenvalue; principal components regression discards the p - M smallest
eigenvalue components. Figure 3.10 illustrates this.

In Figure 3.6 we see that crosvalidation suggests seven terms; the r s
sulting model has about the same test error as ridge regression in Table 3.3.

Partial Least Squares

This technique alao constructs a set of linear combinations of the inputs
for regression, but unlike principal components regression it uses y (in
addition to X) for thh construction. We assume that y is centered and
each xi is standardized to have mean 0 and variance 1. PLS begins by
computing the unimiate regression coefficient dV of y on each xj, that

3.4 Sub& Selection and Coefficient Shrinkage 67

Index

FIGURE 3.10. Ridge regression shrinks the regression m f i c i e m t s of the p r i m

c i p d mrnpoments, using shrinkage factors q / (d i + A) QS i n (3.47). P r i n c i p J
m p m e n i regressiom trermctates them. S b m are the shrinkage and tmmuation

pa&m comjwnding b Figuw 3.6, a8 a function of t h e pvincipd component
index.

is, $1, = {xjrY}. From this we construct the derived input z1 = CGljxj,
which is the first partial least squares direction. Hence in the construction of
each z,, the inputs are weighted by the strength of their univariate effect
on y. The outcome y is regressed on z1 giving coefficient fil, and then
we orthogonalize XI , . . . , x, with respect to 81. We continue this process,
uutil M 5 p directions have been obtained. In this manner, partial least
squares produces a sequence of derived inputs or directions zl,za,. . . , ZM.

As wiLh prhcipd-cvmpvner~L regre~iorl, X we were Lo cor~vLrucL dl M =
p directions, we would get back a solution equivalent to the usual least
squares estimates; using M < p directions produces a reduced regression.
The procedure is described fully in Algorithm 3.2.

In the prostate cancer example, cr-validation chose M = 2 PLS direc
tiom in Figure 3.6. This produced the model given in the rightmost column
of Table 3.3.

What optimization problem is partial least squares solving? Since it uses
the response y to construct its directions, its solution is a nonlinear func-
tion of y. It can be shown that partial least squares seeks directions that
have high variance and have high correlation with the response, in contrast
to principal components regression (Stone and Brooks, 1990; Frank and
bkiedman, 1993). In particular, the mth principal component direction vm
solves:

max Var(Xa),
I lm l l = l

where S is the sample covariance matrix of the xj. The conditions v i ' Sa = 0
ensures that em = Xa is uncorrelated with all the previous linear combi-

68 3. Linear Methods for Regression

Algorithm 3.2 Partial Least Squares.

1. Standardize each xj to have mean zero and variance one. Set ŷ(0) =
1ȳ, and x(0)j = xj , j = 1, . . . , p.

2. For m = 1, 2, . . . , p

• zm =
∑p

j=1 ϕ̂mjx
(m−1)
j , where ϕ̂mj = 〈x(m−1)

j ,y〉.

• θ̂m = 〈zm,y〉/〈zm, zm〉.
• ŷ(m) = ŷ(m−1) + θ̂mzm.

• Orthogonalize each x(m−1)
j with respect to zm: x(m)

j = x(m−1)
j −

[〈zm,x(m−1)
j 〉/〈zm, zm〉]zm, j = 1, 2, . . . , p.

3. Output the sequence of fitted vectors {ŷ(m)}p
1. Since the {z�}m

1 are
linear in the original xj , so is ŷ(m) = Xβ̂pls(m). These linear coeffi-
cients can be recovered from the sequence of PLS transformations.

nations z� = Xv�. The mth PLS direction ϕ̂m solves:

max
||α||=1

ϕ̂T
�

Sα=0,�=1,... ,m−1

Corr2(y,Xα)Var(Xα). (3.55)

Further analysis reveals that the variance aspect tends to dominate, and
so partial least squares behaves much like ridge regression and principal
components regression. We discuss this further in the next section.

If the input matrix X is orthogonal, then partial least squares finds the
least squares estimates after m = 1 steps. Subsequent steps have no effect
since the ϕ̂mj are zero for m > 1 (Exercise 3.13). It can also be shown that
the sequence of PLS coefficients for m = 1, 2, . . . , p represents the conjugate
gradient sequence for computing the least squares solutions (Exercise 3.16).

3.4.5 Discussion: A Comparison of the Selection and
Shrinkage Methods

There are some simple settings where we can understand better the rela-
tionship between the different methods described above. Consider an exam-
ple with two correlated inputs X1 and X2, with correlation ρ. We assume
that the true regression coefficients are β1 = 4 and β2 = 2. Figure 3.11
shows the coefficient profiles for the different methods, as their tuning pa-
rameters are varied. The top panel has ρ = 0.5, the bottom panel ρ = −0.5.
The tuning parameters for ridge and lasso vary over a continuous range,
while best subset, PLS and PCR take just two discrete steps to the least
squares solution. In the top panel, starting at the origin, ridge regression

3.4 Subset Selection and Coefficient Shrinkage 69

p = 0.5

r Least Squares

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

f
I ?st Subset ----\

I
I PCR

FIGURE 3.1 1 . Goeficdemt profiles $%om digereat m t h d s for a simple problem:
two inputs with w d a t i o n *0.5, and fhe true regression meficients P = (4,2).

70 3. Linear Methods for Regression

shrinks the coefficients together until it finally converges to least squares.
PLS and PCR show similar behavior to ridge, although are discrete and
more extreme. Best subset overshoots the solution and then backtracks.
The behavior of the lasso is intermediate to the other methods. When the
correlation is negative (lower panel), again PLS and PCR roughly track
the ridge path, while all of the methods are more similar to one another.

We can gain further insight into these methods by taking a Bayesian
point of view. Suppose we adopt a Gaussian prior as discussed earlier on
page 60:

We saw that the ridge regression estimate P d g e is the posterior mode
(and mean). This reveals an interesting point: the prior (3.56) is a function
only of the length of P and not its direction. Therefore, ridge regression's
shrinkage of low-variance directions is not due to a prior distribution that
favors high-variance directions; this shrinkage achieves variance reduction
to account for the correlation present in the input matrix X.

Recall that ridge regression shrinks all directions, but shrinks low-variance
directions more. Principal components regression leaves M high-variance
directions alone, and discards the rest. Hence its implicit prior puts more
probability on M high-variance directions and zero probability 011 p - M
low-variance directions. Interestingly, it can be shown that partial least
squares also terlds to shrink the low-variance directiorls, but car1 actually
inflate some of the higher variance directions. This can make PLS a little
unstable, and cause it to have slightly higher prediction error compared to
ridge regression. A full study is given in Frank and Friedman (1993). These
authors conclude that for minimizing prediction error, ridge regression is
generally preferable to variable subset selection, principal components re-
gression and partial least squares. However the improvement over the latter
two methods was only slight.

To summarize so far, PLS, PCR and ridge regression tend to behave
similarly. Ridge regression may be preferred because it shrinks smoothly,
rather than in discrete steps.

We now focus on ridge regression, the lasso and subset regression. In the
case of an orthonormal input matrix X the three procedures have explicit
solutions. nEach method applies a simple transformation to the least squares
estimate Pj, as detailed in Table 3.4. Ridge regression does a proportional
shrinkage. Best subset keeps the M largest coefficients, while lasso trans-
lates each by a constant factor, truncating at zero. This is called "soft
thresholding," and is used in the context of wavelet-based smoothing in
Section 5.9. Note that the threshold parameter y in the lasso formula is a
one-to-one transformation of the bound t appearing in the definition (3.51).

Back to the nonorthogonal case; some pictures help understand their re-
lationship. Figure 3.12 depicts the lasso (left) and ridge regression (right)

3.4 Subset Selection and Coefficient Shrinkage 71

TABLE 3.4. Estimators of Pj in the m e of o ~ n o m l colsrmas of X . A, M
and 7 are constants chosen by the m m p o n d i a g technipes. sign demotes the s i p
of i ts argwsment (fl), and x+ denotes "positive prt" o f x .

Estiimtor F o d a

Beat subset (size M) f i j if rank(l& 1) 5 M

Ridge + 4
Laam sign(&) (lPj I - 7>+

Estimation picture for f i e lasso (left) and mdge regression , ,,..,. ,..,,.a are mntmrs of the asvlr and mpastmini functions. T h e solid b k e
a- are fie corashinf r q i o m IPII + lia;rl 5 t and Pf + Pi 5 t', respectively,
whde Uae mi ellipses am the coatours of the l e d squaw ermr finchom.

74 3. Linear Methods for Regression

With X replaced by the estimate YTY/N, one can show (Exercise 3.19)
that the solution is given by a CCA of Y and X:

where U, is the K x m sub-matrix of U consisting of the first m columns,
and U is the K x M matrix of left canonical vectors ul, Ua, . . . , UW U;
is its generalized inverse. Writing the solution as

we see that reduced-rank regression performs a linear regression on the
pooled response matrix YU,, and then maps the coefficients (and hence
the fits as well) back to the original response space. The reduced-rank fits
are given by

y r r (rn) = X(X~X)-~X~YU,U;
(3.64)

= HYP,,

where H is the usual linear regression projection operator, and P, is the
rank-m CCA response project@ operator. Although a better estimate of
C would be (Y -XB)T(Y -XB) / (N -pK) , one can show that the solution
remains the same (Exercise 3.20).

Reduced-rank regression borrows strength among responses by truncat-
ing the CCA. Breiman and Friedman (1997) explored with some success
shrinkage of the canonical variates between X and Y , a smooth version of
reduced rank regression. Their proposal has the form (compare (3.62))

where A is a diagonal shrinkage matrix (the "c+wn stands for "Curds
and Whey", the name they gave to their procedure). Based on optimal
prediction in the population setting, they show that A has diagonal entries

where c , is the mth canonical correlation coefficient. Note that as the ratio
of the number of input variables to sample size p /N gets small, the shrink-
age factors approach 1. Breiman and Friedman (1997) proposed modified
versions of D based on training data and cross-validation, but the general
form is the same. Here the fitted response has the form

where SC+" = UAUpl is the response shrinkage operator.

3.5 Computational Considerations 75

Breiman and Friedman (1997) also suggested shrinking in both the Y
s p a and X space. This leads ko hybrid shrinkage models of khe form

where AA = X(XTX + XI)-'XT is the ridge regression shrinkage operator,
as in (3.46) on page 62. Their paper and the discussions thereof contain
many more details.

3.5 Computational Considerations

Least squares fitting is usually done via the Cholesky decomposition of
the matrix XTX or a QR decomposition of X. With N okrvations and p
features, the Cholesky decompmition requites p3 + N p a / 2 operations, while
the QR decompmition requires Npa operations. Depending on the relative
size of N and p, the Cholesky can sometimes be faster; on the other hand,
it can be less numerically stable (Lawson and Hansen, 1974). Computation
of the lasso requires quadratic programming; see for example Murray et al.
(1981).

Bibliographic Notes

Linear regression is discussed in many statistics books, for example Seber
(1984), Weisberg (1980) and Mardia et al. (1979). Ridge regression was
introduced by Hoerl and Kennard (1970), while the lasso was proposed by
Tihhirani (1996). Partial least squares was introduced by Wold (1975).
Comparisons of shrinkage methods may be found in Copas (1983) and
Frank and Friedman (1993).

Exercises

Ex. 3.1 Show that the F statistic (3.13) for dropping a single coefficient
£tom a model is equal to the square of the corresponding z-score (3.12).

Ex. 3.2 Given data on two variables X and Y, consider fitting a cubic
polynomial regression model f (X) = ~i~ &Xj. In addition to plotting
the fitted curve, you would k e a 95% codtdence band about the cwve.
Consider the following two approaches:

1. At each point xo , form a 95% coddence interval for the linear func-
tion aTP = ziGO Pjd.

76 3. Linear Methods for Regression

2. Form a 95% codidence set for as in (3.15), which in turn generates
confidence inkemls for f (zo).

How do these approaches differ? Which band is likely to be wider? Conduct
a s m d simulation experiment to compare the two methods.

Ex. 3.3

(a) Prove the Gauss-Matkov theorem: the least squares estimate of a p*
rameter aT@ has variance no bigger than that of any other linear
unbiased estimate of aT/3 (Section 3.2.2).

(b) Tilt: matrix i t leqdly B 3 A Ilul& iI A - B iti putrilivt: w~uid&tde.
Show that if is the variance-covariance matrix of the least squares
estimate of /3 and ? is the variance-covariance matrix of any other
unbiased estimate, then 5 c.

Ex. 3.4 Show how the vector of least squares coefficients can be obtained
horn a single pwa of the GramSchmidt procedure (Algorithm 3.1). Itep
resent your solution in terms of the QR decomposition of X.

Ex, 3.5 Consider the ridge regression problem (3.41). Show that tkis prob
lem is equivalent to the problem

Give the correspondence between and the original p in (3.41). Charac-
terim the solution to this modified criterion.

Ex. 3.6 Show that the ridge regression estimate is the mean (and mode)
of the pmterior distribution, under a Gaussian prior f i N N(0, TI), and
Gaussian sampling model y N(XP, a21). Find the relationship between
the regularization parameter X in the ridge formula, and the variances T
and ux .

.7 Assume vi -- N(Po +xTp,a2),i = 1,2,. . . , N, and the parameters
pj mlll~ each distributed as N (0, T'), independently of one another. Assuming
a' and T~ are known, show that the (minus) log-posterior density of C;1 is
proportional to ~ : , (y i - 80 - CJ z ~ ~ P ~) ~ + AX;=1 P; where X = u2/r2.

Ex. 3.8 Comider the QR decomposition of the uncentered N x @ + 1)
matrix X, and the SVD of the N x p centered matrix X. Show that Qa
and U span the same subspace, where Q2 is the submatrix of Q with the
first column removed. Under what circumstances will they be the same, up
to sign flips?

Exercises 77

Ex. 3.9 Show that the solution to the multivariate linear regression problem
(3.39) is given by (3.38). What happens if the covariance matrices Σi are
different for each observation?

Ex. 3.10 Show that the ridge regression estimates can be obtained by ordi-
nary least squares regression on an augmented data set. We augment the
centered matrix X with p additional rows

√
λI, and augment y with p ze-

ros. By introducing artificial data having response value zero, the fitting
procedure is forced to shrink the coefficients toward zero. This is related to
the idea of hints due to Abu-Mostafa (1995), where model constraints are
implemented by adding artificial data examples that satisfy them.

Ex. 3.11 Consider the lasso problem (3.51). Show that this problem is
equivalent to the problem

β̂c = argmin
βc

{ N∑
i=1

[
yi − βc

0 −
p∑

j=1

(xij − x̄j)βc
j

]2 + λ

p∑
j=1

|βc
j |
}
. (3.70)

Give the correspondence between βc and the original β in (3.51). Charac-
terize the solution to this modified criterion.

Ex. 3.12 Derive the expression (3.53), and show that β̂pcr(p) = β̂ls.

Ex. 3.13 Show that in the orthogonal case, PLS stops after m = 1 steps,
because subsequent ϕ̂mj in step 2 in Algorithm 3.2 are zero.

Ex. 3.14 Derive the entries in Table 3.4, the explicit forms for estimators
in the orthogonal case.

Ex. 3.15 Repeat the analysis of Table 3.3 on the spam data discussed in
Chapter 1.

Ex. 3.16 Read about conjugate gradient algorithms (Murray et al., 1981, for
example) and establish a connection between these algorithms and partial
least squares.

Ex. 3.17 Show that ‖β̂ridge‖ increases as its tuning parameter λ → 0. Does
the same property hold for the lasso and partial least squares estimates?
For the latter, consider the “tuning parameter” to be the successive steps
in the algorithm.

Ex. 3.18 Consider the canonical-correlation problem (3.60). Show that the
leading pair of canonical variates u1 and v1 solve the problem

max
uT (YT Y)u=1
vT (X

T X)v=1

uT (YTX)v, (3.71)

78 3. Linear Methods for Regression

a generalized SVD problem. Show that the solution is given by u1 =

(yTy)-gu;, and = (xTx)-+7)r, where ti; and 7); are khe leading left
and right singular vectors in

Show that the entire sequence u,, .LI,, m = 1, . . . , rnin(K, p) is also given
by (3.72).

Ex. 3 - Show that the solution to the reduced-rank regression problem
(3.611, ..ith 5; estimated by Y ~ Y / N , is given by (3.62). Hint: transform

Y to Y* = YE-), and solved in terms of the canonical vectors I&. Show

that U, = E-$u&, and a generalized inverse is U; = u & ~ E) .

Ex. 3.20 Show that the solution in Exercise 3.19 does not change if E is
estimated by the more natural quantity (Y - X B) ~ (Y - XB)/ (N - p K) .

+ This is page 79
Printer: Opaque this

4
Linear Methods for Classification

4.1 Introduction

In this chapter we revisit the classification problem and focus on linear
methods for classification. Since our predictor G (x) takes values in a dis-
crete set 9, we can always divide the input space into a collection of regions
labeled according to the classfication. We saw in Chapter 2 that the bound-
aries of these regions can be rough or smooth, depending on the prediction
function. For an important class of procedures, these decision bounhries
are linear; this i4 what we will mean by linear methods for classijication.

There are several different ways in which linear decision boundaries can
be found. In Chapter 2 we fit linear regression models to the class indicator
variables, and classify to the largest fit. Suppose there are K classes, for
convenience labelled 1,2, . . . , K , and the fitted linear model for the kth
indicator response variable is $ (x) = jko + j z x . The decision boundary
between claw k and L is that set of points for which fk(z) = fg(z), that is,
the set { x : (Bko - Bm) + (Bk - Bt)Ta: = O) , an aBhe set or hyperplane*
Since the same is true for any pair of clues, the input space is divided
into regions of constant classification, with piecewise hyperplanar decision
boundaries. This regression approach is a member of a class of methods
that model discriminant finctiom bk(x) for each class, and then classify x
to thc class with thc largcst valuc for its discriminant function. Mcthods

Strictly speaking, a hyperplane through the origin, while an d3ne set need
not. We sometimes ignore the distinction and refer in general to hyperplan-.

80 4. Linear Methods for Classification

that model the posterior probabilities Pr(G = klX = x) are also in this
class. Clearly, if either the dk(x) or Pr(G = klX = x) are linear in x , then
the decision boundaries will be linear.

Actually, all we require is that some monotone transformation of dk
or Pr(G = klX = x) be linear for the decision boundaries to be linear.
For example, if there are two classes, a popular model for the posterior
probabilities is

Here the monotone transformationis the logit transformation: 10g[p/(l-~)],
and in fact we see that

The decision boundary is the set of points for which the log-odds are zero,
and this is a hyperplane defined by {xlfio + fiTx = 0). We discuss two very
popular but different methods that result in linear log-odds or logits: linear
discrimi~la~lt analysis and linear logistic regression. Although they differ in
their derivation, the essential difference between them is in the way the
linear Iu~lction is fit to the trairlirlg data.

A more direct approach is to explicitly model the boundaries between
the classes as linear. For a two-class problem in a pdimensional input
space, this amounts to modeling the decision boundary as a hyperplane-in
other words, a normal vector and a cut-point. We will look at two methods
that explicitly look for "separating hyperplanes." The first is the well-
known perceptron model of Rosenblatt (1958), with an algorithm that finds
a separating hyperplane in the training data, if one exists. The second
method, due to Vapnik (1996), finds an optimally separating hyperplane if
one exists, else finds a hyperplane that minimizes some measure of overlap
in the training data. We treat the separable case here, and defer treatment
of the nonseparable case to Chapter 12.

While this entire chapter is devoted to linear decision boundaries, there is
considerable scope for generalization. For example, we can expand our vari-
able set XI , . . . , Xp by including their squares and cross-products X f , X i , . . .
X1X2, . . . , thereby adding p(p + l) /2 additional variables. Linear functions
in the augmented space map down to quadratic functions in the original
space -hence linear decision boundaries to quadratic decision boundaries.
Figure 4.1 illustrates the idea. The data are the same: the left plot uses
linear decision boundaries in the two-dimensional space shown, while the
right plot uses linear decision boundaries in the augmented five-dimensional
space described above. This approach can be used with any basis transfor-

4.2 Linear Regression of an Indicator Matrix 81

FIGURE 4.1. The left plot shows some data fp.wla three clmses, with Enmr
deckion boundaries found by linem discriminant analysis The right plot s b w s
quadratic decision boundaees. These mew obtained by finding l-r boundaries in
Uae fivedimemiond s p c e XI, Xz , X12, X: , X: . Linear inequalities in this space
are quadratic i n ~ d i t i e s in the ovigind space.

mation h(X) where h : IRP t, mP with q > p, and will be explored in later
chapters.

4.2 Linear Regression of an Indicator Matrix

Here each of the rwponse categoriw are coded via an indicator variable.
Thus if G has K classes, there will be K such indicators Yk, k = 1 , . . . , K ,
with Y, = 1 if G = k else 0. These are collected together in a vector
Y = (Yl, . . . , YK), and the N training instances of these form an N x K
indicator response ma* Y . Y is a matrix of 0's and 1'8, with each row
having a single 1. We fit a linear regression model to each of the columns
of Y simultanmusly, and the fit is given by

Chapter 3 has more details on linear regression. Note that we have a coeffi-
cient vector for each response column y,, and hence a @ + I) x K coefficient
malrix B = (XTX)-'XTY. Here X is Lhe mvdel mtllrix wilh y f l cvl-IH
corrwponding to the p inputs, and a leading column of 1's for the intercept.

A new observation with input x i4 c1assSed as follows:

rn cnmpirt;~: t;he fitted nirt;pirt; f(a) = [(I , z)i%lT, a, K vednr;

ident* the largest component and clasdfy accordingly:

82 4. Linear Methods for Classification

What is the rationale for this approach? One rather formal justification
is to view the regression as an estimate of conditional expectation. For the
random variable Yk, E(Yk IX = x) = Pr(G = klX = x), so conditional
expectation of each of the Yk seems a sensible goal. The real issue is: how
good an approximation to conditional expectation is the rather rigid linear
regression model? Alternatively, are the i k (z) reasonable estimates of the
posterior probabilities Pr(G = klX = x), and more importantly, does this
matter?

It is quite straightforward to verify that CktG fk(x) = 1 for any x, as
long as there is an intercept in the model (column of 1's in X). However,
the f k (x) can be negative or greater than 1, and typically some are. This
is a consequence of the rigid nature of linear regression, especially if we
make predictions outside the hull of the training data. These violations in
themselves do not guarantee that this approach will not work, and in fact
on many problems it gives similar results to more standard linear meth-
ods for classification. If we allow linear regression onto basis expansions
h (X) of the inputs, this approach can lead to consistent estimates of the
probabilities. As the size of the training set N grows bigger, we adaptively
include more basis elements so that linear regression onto these basis func-
tions approaches conditional expectation. We discuss such approaches in
Chapter 5 .

A more simplistic viewpoint is to construct targets tk for each class,
where tk is the kth column of the K x K identity matrix. Our prediction
problem is to try and reproduce the appropriate target for an observation.
With the same coding as before, the response vector yi (ith row of Y) for
observation i has the value yi = tk if gi = k. We might then fit the linear
model by least squares:

The criterion is a sum-of-squared Euclidean distances of the fitted vectors
from their targets. A new observation is classified by computing its fitted
vector f (z) and classifying to the closest target:

G(Z) = argmin I I ~ (z) - tk 11'.
k

This is exactly the same as the previous approach:

The sum-of-squared-norm criterion is exactly the criterion for multi-
ple response linear regression, just viewed slightly differently. Since
a squared norm is itself a sum of squares, the components decouple
and can be rearranged as a separate linear model for each element.
Note that this is only possible because there is nothing in the model
that binds the different responses together.

4.2 Linear Regression of an Indicator Matrix 83

Linear Regression Linear Discriminant Analysis

FIGURE 4.2. The data mme from thm c b ~ s e s in IR2 and are easily sepamtsd
by linear decision boesnda~es. The vight plot shows the h n d a v i e p found by P n m ~
disceminant amlysis. The left plot shows h n d a ~ e s found by linear wgms-
s i m of the indimtor response varidles. The middle clrms is completely rnrmked
(never donaim k s) .

'I'he closest target classification rule (4.6) is easily seen to be exmtly
the same as the maximum fitted component criterion (4.4), but does
require that the fitted values sum to 1.

There is a serious problem with the regression approach when the number
of classes K > 3, especially prevalent when K is large. Because of the rigid
nature of the regression model, classes can be mask& by others. Figure 4.2
illustrates an extreme situation when K = 3. The three classes are perfectly
separated by linear decision boundaries, yet linear regression misses the
middle class completely.

In Figure 4.3 we have projected the data onto the line joining the three
centroids (there i4 no information in the orthogonal direction in this case),
and we have included and coded the three response variables Yl, Y2 and
Y3. The three regression lines (left panel) are included, and we see that
the line corresponding to the middle class is horizontal and its fitted values
are never dominant! Thus, ohervations from class 2 are classified either
as class 1 or class 3. The right panel uses quadratic regression rather than
linear regression. For this simple example a quadratic rather than linear
fit (for the middle class at least) would solve the problem. However, it
can be seen that if there were four rather than three classes lined up like
this, a quadratic would not come down fast enough, and a cubic would
be needed as well. A loose but general rule is that if K 2 3 classes are
lined up, polynomial terms up to degree K - 1 might be needed to resolve
them. Note also that these are polynomials along the derived direction

84 4. Linear Methods for Classification

Degree = 1; Error = 0.25 Degree = 2; Error = 0.03

FIG1
proble .. The rug plot at the h e id imte s the p o ~ i t i o ~ and class mrnber~hip
of each obserudoa. The am a w e s i n each pnel m fhe fitid rqresdorrs to
Uae three-clms indicator uafimbles; for example, for Uae red class, yr,a is 1 for the
ursl ubseu-tdiurw, tsrd 0 juu- UE yuErb lsrd Llwe. T l ~ e J L y UTE liu~elsu- UYLJ Y ~ u d r d i ~

polynomiab. Above aach plot the training error rate. The Bayes e m r rak is
0.025 fos i!& pvvblem, 168 ig the LDA m s mte.

passing through the centroids, which can have arbitrary orientation. So in
pdimemional input space, one would need general polynomial term and
cross-products of total degree K - 1, O(pK-l) terms in all, to resolve such
worst-case scenarios.

The example is extreme, but for large K and small p such maskings
nat,.tirally occur. As a more realistic illiistration, Figire 4.4 is a projection
of the training data for a vowel recognition problem onto an informative
twr+dirnensional subpace. There are K = 11 classes in p = 10 dimensions.
This is a difficult classification problem, and the best methods achieve
around 40% errors on the test data. The main point here is summarhed in
Table 4.1; linear regression has an error rate of 67%, while a close relative,
linear discriminant analysis, has an error rate of 56%. It seems that masking
has hurt in this case. While all the other methods in this chapter are based
on linear functions of x as well, they use them in such a way that avoids
this maslung problem.

4.3 Linear Discriminant Analysis

Decision theory for classification (Section 2.4) tells us that we need to know
the class posteriors Pr(G1X) for optimal classfication. Suppose fk (x) is
the class-conditional density of X in class G = k, and let xk be the prior
probability of class k, with cF=~ = 1. A simple application of Bayes

4.3 Linear Discriminant Analysis 85

Linear Discriminant Analysis

FIGURE 4.4. A t w e d i m m i o n d plot of Uae vowel training dah . There are
eleven c l ~ s e s with X E IRlO, and this is the best view in t m of a LDA modd
(Section 4.3.3). The h m q ~ circles a m the project& mean vscibrs for mch class.
The class overlap is c o ~ i d e m b k .

-

-

-

-

-

-

TABLE 4.1. %aiming and kd e m mtes wing m uariety of linear techaipes

w
e

8
8 0

0 0 3 9
0 3 @ O c

0 go % O o
0 3
0

I 0
O 0 0 "

B
0 0 O

0 0" ",
0 O QP 0 0 0

%, fl Om 0 0 s 0 0
o 0 0 0
m

~ o 0 o 0 ~ O 7
0

0

o 0
0

0 0

I I I I I

on the vowel dah . Them are eleven classes ia ten d i m m i o m , of which three
acxoernt for 90% of the variance (via a p f imipd components andys#). W e see

-4 -2 0 2 4

Goordlnate 1 for Tralnlng Data

h t l h regressiota i a hurt by nawking, ivamwitag the test and h i d t a g e m r
by over 10%.

TBchnioue Error Rates
Trmdning %fit

Linear regression 0.48 0.67 -
Linear dis~riminant analysis 0.32 0.56

Quadratic discriminant analysis 0.01 0.53
Tlogidic regrmsion 0.22 0.51

86 4. Linear Methods for Classification

theorem gives us

We see that in terms of ability to classify, having the fk(x) is almost equiv-
alent to having the quantity Pr(G = klX = x).

Many techniques are based on models for the class densities:

linear and quadratic discriminant analysis use Gaussian densities;

more flexible mixtures of Gaussians allow for nonlinear decision bound-
aries (Section 6.8);

general nonparametric density estimates for each class density allow
the most flexibility (Section 6.6.2);

Naive Bayes models are a variant of the previous case, and assume
that each of the class densities are products of marginal densities;
that is, they assume that the inputs are conditionally independent in
each class (Section 6.6.3).

Suppose that we model each class density as multivariate Gaussian

Linear discriminant analysis (LDA) arises in the special case when we
assume that the classes have a common covariance matrix C k = C V k . In
comparing two classes k and !, it is sufficient to look at the log-ratio, and
we see that

Pr(G = klX = x) TTT~
= log + log

log Pr(G = YX = x) f&)

an equation linear in x. 'l'he equal covariance matrices cause the normal-
ization factors to cancel, as well as the quadratic part in the exponents.
This linear log-odds function implies that the decision boundary between
classes k and !--the set where Pr(G = klX = x) = Pr(G = !lX = x)--is
linear in x; in p dimensions a hyperplane. This is of course true for any pair
of classes, so all the decision boundaries are linear. If we divide IRP into
regions that are classified as class 1, class 2, etc., these regions will be sep-
arated by hyperplanes. Figure 4.5 (left panel) shows an idealized example
with three classes and p = 2. Here the data do arise from three Gaussian
distributions with a common covariance matrix. We have included in the

4.3 Linear Discriminant Analysis 87

FIGURE 4.6. The left p m d s h m s Uam Gaussian disfibdioas, wiUa the same
mar iaace and differed mems . Jnclwded are fie m d o u r s of msbshat density
eaclosiag 95% of the pmhbilify in each case. The Bayes d&ioa bounda~es
bdween each pair of classes are shorn @wken &might lines), m d the Bayes
decision boundaries sep~mtilag d l t h m classes are the thicker solid lines (a subset
of the former). On the right we see a sample of 30 d m r n j h m each G a w i a n
distribufioa, and the fitted LDA decisiun bouadaries.

figure the contours corresponding to 95% highest probability density, as
well as the class centroids. Notice that the the decision boundaries are not
the perpendicular bisectors of the line segments joining the centroids. This
would be the case if the covariance E were spherical uaI, and the class
priors were equal.

From (4.9) we see that the h e a r d k c r i m i m m t f u m c k i o m

are an equivalent description of the decision rule, with G(x) = argmaxksk (x).
In practice we do not know the parameters of the Gaussian distributions,

and will need to estimate them using our training data:

kk = N k / N , where lVk is the number of classk observations;

Figure CS(right panel) shows the estimated decision boundaries based on
a smple of size 30 each from three Gaussian distributions. Figure 4.1 on
page 81 is another example, but here the classes are not Gaussian.

With two classes there is a simple correspondence between linear dis-
criminant analysis and classification by linear least squares, as in (4.5).

88 4. Linear Methods for Classification

The LDA rule classifies to class 2 if

and class 1 otherwise. Suppose we code the targets in the two classes as +l
and -1, respectively. It is easy to show that the coefficient vector from least
squares is proportional to the LDA direction given in (4.11) (Exercise 4.2).
[In fact, this correspondence occurs for any (distinct) coding of the targets;
see Exercise 4.21. However unless N1 = N2 the intercepts are different and
hence the resulting decision rules are different.

Since this derivation of the LDA direction via least squares does not use a
Gaussian assumption for the features, the applicability the LDA direction
extends beyond the realm of Gaussian data. However the derivation of
the particular intercept or cut-point given in (4.11) does require Gaussian
data. Thus it makes sense to instead choose the cut-point that empirically
minimizes training error for a given dataset. This is something we have
found to work well in practice, but have not seen it mentioned in the
literature.

With more than two classes, LDA is not the same as linear regression of
the class indicator matrix, and it avoids the masking problems associated
with that approach (Hastie et al., 1994). A correspondence between regres-
sion and LDA can be established through the notion of optimal scoring,
discussed in Section 12.5.

Getting back to the general discriminant problem (4.8), if the X k are
not assumed to be equal, then the convenient cancellations in (4.9) do not
occur; in particular the pieces quadratic in x remain. We then get quadratic
discriminant functions (QDA),

The decision boundary between each pair of classes k and ! is described by
a quadratic equation {x : bk (x) = be(^)).

Figure 4.6 shows an example (from Figure 4.1 on page 81) where the three
classes are Gaussian mixtures (Section 6.8) and the decision boundaries are
approximated by quadratic equations in x. Here we illustrate two popular
ways of fitting these quadratic boundaries. The right plot uses QDA as
described here, while the left plot uses LDA in the enlarged five-dimensional
quadratic polynomial space. The differences are generally small; QDA is the
preferred approach, with the LDA method a convenient substitute. t

t ~ o r this figure and many similar figures in the book we compute the decision bound-
aries by an exhaustive contouring method. We compute the decision rule on a fine lattice
of points, and then use contouring algorithms to compute the boundaries.

4.3 Linear Discriminant Analysis 89

FIGURE 4.6. Two methods fop. fitting quadratic boundames. me left plot shows
Uae p d m t i c decision boundaries jm Uae ddra in F i p m 4 . 1 (obtained using
LDA i n fhe fiue-dimemion& q m c e sl, 52, xla, 5:, 5;). The righi? plot shows the
quadmtic decision boundaries fomd by QDA. The dif lemces are srndl, as is
wudiy the m e .

The estimates for QDA are similar to thme for LDA, except that separate
covariance matrices must be estimated for each class. When p is large this
can mean a dramatic increase in parameters. Since the decision boundaries
me 1ur~cLio11a oI Lhe pmmelers oI Lhe demilies, cour~liq Lhe number 01
parameters must be done with care. For LDA, it seems that there (K - 1) x
(p+ 1) parameters, since we only need the dserences 6k (x) - bK (x) between
the discriminant functions where K is some pre-chosen class (here we have
chosen the last), and each difference requires p + 1 Like*
for QDA there will be (K - 1) x p(p + 2)/2 parameters. Both LDA and
QDA perform well on an amazingly large and diverse set of classification
tasks. For example, in the STATLOG project (Michie et al., 1994) LDA
was among the top 3 classsers for 7 of the 22 datasets, QDA among the
top 3 for 4 datasets, and one of the pair were in the top 3 for 10 datasets.
Both techniques are widely used, and entire books are devoted to LDA. It
seems that whatever exotic tools are the rage of the day, we should always
have available these two simple tools. 'l'he question arises why LDA and
QDA have such a good track record. The reason is not likely to be that
the data are approximately Gaussian, and in addition for LDA that the
covariances are approximately equal. More likely a reason is that the data
can only support simple decision boundaries such as linear or quadratic, and
the estimates provided via the Gaussian models are stable. This is a bias

Althniieh WP fit, the cmrianre matrix 5 tn rnmpllte thn T,DA discriminant fi~ndinns,
a much r e d u d function of it is d that is required to estimate the 06) p~~
needed to compute the deckion boundaries.

4. Linear Methods for Classification

Regularized Discriminant Analysis on the Vowel Data

FIGURE 4.7. Test and tmidng e m s for the vowel d d a , wing mgesdar-ized
discfinsinant analysis with a series of values of a! g [o, 11. The optimum for the
test data occurs m u d IY = 0.9, close to qmdmtic discriminant andysis.

variance tradeoff-we can put up with the bias of a linear decision boundary
because it can be estimated with much lower variance than more exotic
alternatives. 'This argument is less believable for QUA, since it can have
many parameters itself, although perhaps fewer than the non-parametric
alternatives.

4.3.1 R e p l a ~ z d Discriminant Analysis
Friedman (1989) proposed a compromise between LDA and QDA, which
allows one to shrink the separate covariances of QDA toward a common
covariance as in LDA. These methods are very similar in flavor to ridge
regression. The regularized covariance matrices have the form

where k is the pooled covariance matrix as used in LLIA. Here a E [0, 11
allows a continuum of models between LDA and QDA, and needs to be
specfied. In practice a can be chosen based on the performance of the
model on validation data, or by cross-validation.

Figure 4.7 shows the results of FDA applied to the vowel data. Both
the training and test error improve with increasing a, although the test
error increases sharply after a! = 0.9. The large discrepancy between the
training and test error is partly due to the fact that there are many repeat
me~urements on a small number of individuals, different in the training
and test set.

4.3 Linear Discriminant Analysis 91

Similar modifications allow Σ̂ itself to be shrunk toward the scalar co-
variance,

Σ̂(γ) = γΣ̂+ (1− γ)σ̂2I (4.14)

for γ ∈ [0, 1]. Replacing Σ̂ in (4.13) by Σ̂(γ) leads to a a more general
family of covariances Σ̂(α, γ) indexed by a pair of parameters.

In Chapter 12, we discuss other regularized versions of LDA, which are
more suitable when the data arise from digitized analog signals and images.
In these situations the features are high-dimensional and correlated, and the
LDA coefficients can be regularized to be smooth or sparse in the original
domain of the signal. This leads to better generalization and allows for
easier interpretation of the coefficients.

4.3.2 Computations for LDA

As a lead-in to the next topic, we briefly digress on the computations
required for LDA and especially QDA. Their computations are simplified
by diagonalizing Σ̂ or Σ̂k. For the latter, suppose we compute the eigen-
decomposition for each Σ̂k = UkDkUT

k , where Uk is p × p orthonormal,
and Dk a diagonal matrix of positive eigenvalues dk�. Then the ingredients
for δk(x) (4.12) are

• (x− µ̂k)T Σ̂
−1

k (x− µ̂k) = [UT
k (x− µ̂k)]TD−1

k [UT
k (x− µ̂k)];

• log |Σ̂k| =
∑

� log dk�.

In light of the computational steps outlined above, the LDA classifier
can be implemented by the following pair of steps:

• Sphere the data with respect to the common covariance estimate Σ̂:
X∗ ← D− 1

2UTX, where Σ̂ = UDUT . The common covariance esti-
mate of X∗ will now be the identity.

• Classify to the closest class centroid in the transformed space, modulo
the effect of the class prior probabilities πk.

4.3.3 Reduced-Rank Linear Discriminant Analysis

So far we have discussed LDA as a restricted Gaussian classifier. Part of
its popularity is due to an additional restriction that allows us to view
informative low-dimensional projections of the data.

The K centroids in p-dimensional input space lie in an affine subspace
of dimension ≤ K − 1, and if p is much larger than K, this will be a con-
siderable drop in dimension. Moreover, in locating the closest centroid, we
can ignore distances orthogonal to this subspace, since they will contribute

92 4. Linear Methods for Classification

equally to each class. Thus we might just as well project the X* onto this
centroid-spanning subspace HKP1, and make distance comparisons there.
Thus there is a fundamental dimension reduction in LDA, namely that we
need only consider the data in a subspace of dimension at most K - 1.
If K = 3, for instance, this could allow us to view the data in a two-
dimensional plot, color-coding the classes. In doing so we would not have
relinquished any of the information needed for LDA classification.

What if K > 3? We might then ask for a L < K - 1 dimensional subspace
HL C HKP1 optimal for LDA in some sense. Fisher defined optimal to
mean that the projected centroids were spread out as much as possible in
terms of variance. This amounts to finding principal component subspaces
of the centroids themselves (principal components are described briefly in
Section 3.4.4, and in more detail in Section 14.5.1). Figure 4.4 shows such an
optimal two-dimensional subspace for the vowel data. Here there are eleven
classes, each a different vowel sound, in a ten-dimensional input space. The
centroids require the full space in this case, since K - 1 = p, but we have
shown an optimal two-dimensional subspace. The dimensions are ordered,
so we can compute additional dimensions in sequence. Figure 4.8 shows four
additional pairs of coordinates, also known as canonical or discriminant
variables.

In summary then, finding the sequences of optimal subspaces for LDA
illvolves the followi~~g steps:

compi~te the K x p ma.trix o f c1a.s~ centroids M a.nd the common
covariance matrix W (for within-class covariance);

compute M * = M W P b using the eigen-decomposition of W ;

compute B*, the covariance matrix of M * (B for between-class covari-
ance), and its eigen-decomposition B* = v * D ~ v * ~ . The columns
we* of V* in sequence from first to last define the coordinates of the
optimal subspaces.

Combining all these operations the f th discriminant variable is given by
Ze = ~ F x withwe = W ~ W * e .

Fisher arrived at this decomposition via a different route, without refer-
ring to Gaussian distributions at all. He posed the problem:

Find the linear combination Z = a T X such that the between-
class variance is maximized relative to the within-class variance.

Again, the between class variance is the variance of the class means of
Z, and the within class variance is the pooled variance about the means.
Figure 4.9 shows why this criterion makes sense. Although the direction
joining the centroids separates the means as much as possible (i.e., max-
imizes the between-class variance), there is considerable overlap between
the projected classes due to the nature of the covariances. By taking the

4.3 Linear Discriminant Analysis 93

Linear Discriminant Analysis

Cmrdinate 1

Cmrdinate 1

Coordinate 2

FIGURE 4.8. Four pmjeciiona onto pin of aamonicd wriates. Notice that aa
Uae m k of Uae c m m i m l wriates inmmes, fie cemtmids kwme less spread od.
In the lower righi panel they appmr to k superimposed, and t h e clmses most
mfwd.

94 4. Linear Methods for Classification

FIGURE 4.9. Although the l i e joining the centroids d e f i e s the d i m t i o n of
g m t e s f centmid spread, the pro jded data overlap k w e of the m a r i a a c e
(Zeft pmZ) . The discriminunt direcfion minimizes this overlap for Gaussian data
(right panel).

covariance into account as well, a direction with minimum overlap can be
found.

The between-class variance of Z h aTBa and the within-class variance
laT Wla, where W ia defined earlier, and B is the covariance imtrix of the
class centroid matrix M. Note that B + W = T, where T is the total
cuvatitizlt~r;e halt-k o1 X, igmthg claaa i t h t ~ ~ l i u t l .

Fisher's problem therefore amounts to madmhhg the fiyleigh quotient,

aTBa
max -

aTWla9

or equivalently

r n a x a T ~ a subject to aTwa = 1.
u

This is a generalized eigenvalue problem, with o given by the largest
eigenvalue of W P 1 B . It is not hard to show (Exercise 4.1) that the optimal
a1 is identical to .ul defined above. Similarly one can find the next direction
a2, orthogonal in W to al , such that a ~ ~ e ~ / a ~ ~ a ~ is maximized; the
solution is = ug, and so on. The a! are referred to as disc~minamt
coordinates, not to be confused with discriminant functions. They are &o
referred to as canoniml vadates, since an alternative derivation of these
results is through a canonical correlation analysis of the indicator response
matrix Y on the predictor matrix X. Thk line h pursued in Section 12.5.

To summarize the developments so far:

Gaussian classification with common comiaaces leads to linear deci-
sion boundaries. Classification can be achieved by sphering the data
with respect to W, and classifying to the closest centroid (modulo
log rk) in the sphered space.

4.4 Logistic Regression 95

Since only the relative distances to the centroids count, one can con-
fine khe data ko the wihpme spanned by the centmih in the sphered
space.

'I'hk subspace can be further decomposed into successively optimal
subspas in term of centroid separation. This decomposition is iden-
tical to the decompmition due to Fisher.

The reduced subspaces have been motivated as a data reduction (for
viewing) tool. Can they also be used for clasacation, and what is the
ra.kinnde? Cleasly khey can, a~ in nt~r nrigind derim.kinn; we imply limit
the distancstwcentroid calculations to the chosen subspace. One can show
that this is a Gaussian classification rule with the additional restriction
that the centroids of the Gaussians lie in a Ldimensional subspace of IRF.
Fitting such a model by maximum likelihood, and then constructing the
posterior probabilities using Bayes' theorem amounts to the classification
rule described above (Exercise 4.8).

Gaussian classification dictates the logxs correction factor in the dis-
tance calculation. The reason for this correction can be seen in Figure 4.0.
The misclassification rate is based on the area of overlap between the two
densities. If the rrk are equal (implicit in that figure), then the optimal
cubpoint is midway between the projected means. If the irk are not equal,
moving thc cut-point toward thc maIlcr clma will improvc thc crror ratc.
As mentioned earlier for two classes, one can derive the linear rule using
LDA (or any other method), and then chome the cut-point to minimize
misclassification error over the training data.
h an example of the benefit of the reduced-rank restriction, we return

to the vowel data. There are 11 classes and 10 variables, and hence 10
pmsible diinemiom for the classifier. We can compute the training m d
test error in each of these hierarchical subspaces; Figure 4.10 shows the
i-mullu. Figwe 4.11 uhuwu l l ~ e rlecitiiuil LuuilJa.tieu Iof the dmuiEeit Lmecl
on the twdimensional LDA solution.

There is a close connection between Fisher's reduced rank discriminant
analysis and regression of an indicator response matrix. It turns out that
LDA amounts to the regression followed by an eigen-decompdtion of
Y ~ Y . In the case of two classes, there is a single discriminant variable
that is identical up to a scalar multiplication to either of the columns of Y .
These connections are developed in Chapter 12. A related fact is that if one
transforms the original predictors X to Y, then LDA using Y is identical
to LDA in the original space (Exercise 4.3).

4.4 Logistic Regression

The logistic regression model arises from the desire to model the posterior
probabilities of the K classes via linear functions in x , while at the same

96 4. Linear Methods for Classification

Dimension

M
is

cl
as

si
fic

at
io

n
R

at
e

2 4 6 8 10

0.
3

0.
4

0.
5

0.
6

0.
7

LDA and Dimension Reduction on the Vowel Data

•

• •
• •

• • • • •

•

•
• •

•
•

• • • •

Test Data
Train Data

FIGURE 4.10. Training and test error rates for the vowel data, as a function
of the dimension of the discriminant subspace. In this case the best error rate is
for dimension 2. Figure 4.11 shows the decision boundaries in this space.

time ensuring that they sum to one and remain in [0, 1]. The model has
the form

log
Pr(G = 1|X = x)
Pr(G = K|X = x)

= β10 + βT
1 x

log
Pr(G = 2|X = x)
Pr(G = K|X = x)

= β20 + βT
2 x

...

log
Pr(G = K − 1|X = x)

Pr(G = K|X = x)
= β(K−1)0 + βT

K−1x.

(4.17)

The model is specified in terms of K − 1 log-odds or logit transformations
(reflecting the constraint that the probabilities sum to one). Although the
model uses the last class as the denominator in the odds-ratios, the choice
of denominator is arbitrary in that the estimates are equivariant under this
choice. A simple calculation shows that

Pr(G = k|X = x) =
exp(βk0 + βT

k x)

1 +
∑K−1

�=1 exp(β�0 + βT
� x)

, k = 1, . . . ,K − 1,

Pr(G = K|X = x) =
1

1 +
∑K−1

�=1 exp(β�0 + βT
� x)

, (4.18)

and they clearly sum to one. To emphasize the dependence on the entire pa-
rameter set θ = {β10, βT

1 , . . . , β(K−1)0, β
T
K−1}, we denote the probabilities

Pr(G = k|X = x) = pk(x; θ).

4.4 Logistic Regression 97

Classification in Reduced Subspace

Canonical Coordinata I

FIGURE 4.11. Decision h n d a ~ e s for the vowel training dah, b the
tw+dimrwiond subspmce spnned by h f i r a t two c a n o n i d vwiates. Note h t in
any higher-dimenaim& subspace, the deciaion boundaeea are higher-dimenaim&
afine planes, and m l d not be represented QS lines.

98 4. Linear Methods for Classification

When K = 2, this model is especially simple, since there is only a single
linear fiinction. It is widely wed in bicekatistical applications where binary
responses (two classes) occur quite frequently. For example, patients survive
or die, have heart disease or not, or a condition is present or absent.

4.4. Fitking Logistic Regression Models

Logistic regression models are usually fit by maximum likelihood, using the
conditional likelihood of G given X . Since Pr(G1X) completely specXes the
conditional distribution, the mzsltinomial distribution is appropriate. The
log-likelihood for N observations is

. .

e(e) = clog^^ (xi; 8),
d= 1

where pk(xi; 0) = Pr(G = klX = xi; (3).
We discuss in detail the twmclass case, since the algorithms simplify

considerably. It is convenient to code the tw+class gi via a 01 1 response yi ,
where yd = 1 when gd = 1, and 516 = 0 when gi = 2. Let pl(x; 13) = p(x; I3),
and pz(x; 8) = 1 -p(x; tl). 'I'he log-likelihood can be written

Here P = {fro, Pl), and we assume that the vector of inputs xi includes
the constant term 1 to accommodate the intercept.

To maximhe the log-likelihood, we set its derivatives to zero. These swre
equations are

which are p + 1 equations nonlinear in P. Notice that since the first camp+

nent of xi is I, the first score equation specifies that r,N_ yi = r,N_ p(xi; p);
the expect& number of class ones matches the observed number (and hence

CIMS twos.)
To solve the score equations (4.21), we use the Newton-Raphson alge

rithm, which requires the second-derivative or Hessian matrix

4.4 Logistic Regression 99

Starting with pld, a single Newton-Raphson update is

where the derivatives are evaluated at /?Old.

It is convenient to write the score and Hessian in matrix notation. Let
y denote the vector of yi values, X the N x (p + 1) matrix of xi values,
p the vector of fitted probabilities with i th element p(xi; pld) and W a
N x N diagonal matrix of weights with ith diagonal element p(xi; p" ld) (l -

p(xi; p ld)) . Then = XT(y - p) and a = -XTWX.
The Newton-R.a.phson step is thus

In the second and third line we have re-expressed the Newton-Raphson
step as a weighted least squares step, with the response

sometimes known as the adjusted response. 'l'hese equations get solved re-
peatedly, since at each iteration p changes, and hence so does W and z.
This algorithm is referred to as iteratively reweighted least squares or IRLS,
since each iteration solves the weighted least squares problem:

pnew t arg min(z - X P) ~ W (Z - XP). (4.26)
P

It seems that /3 = 0 is a good starting value for the iterative procedure,
although convergence is never guaranteed. Typically the algorithm does
converge, since the log-likelihood is concave, but overshooting can occur.
In the rare cases that the log-likelihood decreases, step size halving will
guarantee convergence.

For the multiclass case (K > 3) the Newton algorithm can also be ex-
pressed as an iteratively reweighted least squares algorithm, but with a
vector of K - 1 responses and a nondiagonal weight matrix per observa-
tion. The latter precludes any simplified algorithms, and in this case it is
numerically more convenient to work with the expanded vector 19 directly
(Exercise 4.4).

Logistic regression models are used mostly as a data analysis and infer-
ence tool, where the goal is to understand the role of the input variables
in explaining the outcome. Typically many models are fit in a search for a
parsimonious model involving a subset of the variables, possibly with some
interactions terms. The following example illustrates some of the issues
involved.

100 4. Linear Methods for Clasdcation

TABLE 4.2. Resuit8 from a kgistic v s s i m fit to the Smth Ajkimn hmrt
diserase dratra.

Coefficient Std. Error Z Score
(Intercept) -4.130 0.964 -4.285

S ~ P 0.006 0.006 1.023
tobacco 0.080 0.026 3.034

ldl 0.185 0.057 3.219
f amhist 0.939 0.225 4.178
obe~ity -0.035 0.029 -1.187
alcohol 0.001 0.004 0.136

W 0.043 0.010 4.184

4 2 Example: South Aficcan Hecad Dkmse
Here we present an analysis of binary data to illustrate the traditional
statistical use of the logistic regression model. The data in Figure 4.12 are a
suhet of the Coronary Risk-Factor Study (CORIS) baselhe survey, carried
out in three rural areas of the Western Cape, South Africa (R o ~ s e a u w

et al., 1983). The aim of the study was to establish the intensity of ischemic
heart disease risk factors in that high-incidence region. The data rcprcs~nt
white males between 15 and 64, and the response variable is the presence or
absence or myocardial idarclion (MI) aL Lhe Lime or Lhe survey (Lhe overall
prevalence of MI was 5.1% in this region). There are 160 cases in our data
set, and a sample of 302 controls. These data are described in more detail
in Hastie and Tibshirani (1987).

We flt this model by maximum likelihood, giving the results shown in
Table 4.2.

This summary includes Z scores for each of the mefficients in the model
(coefficients divided by their standard errors); a nonsignificant Z score sug-
gests a coefficient can be dropped from the model. Each of these correspond
formally to a test of the null hypothesis that the coefficient in question is
zero, while all the others are not (also known as the Wald test). A Z score
greater than approximately 2 in absolute value is significant at the 5% level.

'I'here are some surprha in this table of coefficients, which must be in-
terpreted with caution. Systolic blood pressure (sbp) is not sigdlcant! Nor
is obe~ity, and its sign is negative. This confusion is a result of the corre-
lation between the set of predictors. On their own, both ~ b p and obenity
are significant, and with positive sign. However, in the presence of many
other correlated variables, they are no longer needed (and can even get a
negative sign).

At this stage the analyst might do some model selection; find a subset
of the variabla that are sufficient for explaining their joint effect on the
prevalence of CM. One way to proceed by is to drop the least significant ca-

4.4 Logistic Regression 101

FIGURE 4.12. A s m t t q l o t rnahiz of the S a t h Aficrsa h r t disease ddra.
Each plot s h m s a p i r of ask factors, and the cmes and comtrobs are w l m wded
(d is a m e) . The variable family history of heart disease (f amhist) is &nary

UT 7 ~) .

102 4. Linear Methods for Clasdcation

TABLE 4.3. Resuits j hm skpwise logistic ngmsion fit to South Ajkican Heart
a s e a s e dafa

Coefficient Std. Error Z score
(Intercept) -4.204 0.498 -8.45

tobacco 0.081 0.026 3.16
l d l 0.168 0.054 3.09

f amhiat 0.924 0.223 4.14
age 0.044 0.010 4.52

efficient, and refit the model. This is done repeatedly until no further terms
can be dropped from the model. This gave the model shown in Table 4.3.

A better but more time-consuming strategy is to refit each of the models
with one variable r a o v d , and then perform an analysis of d .danw to
decide which variable to exclude. The residual deviance of a fitted model
itr ~d t lu t i twice iltr log-likelhuocl, aid llle cleviailce Lelweetl Iwu ~uoclelti iti
the difference of their individual residual deviances (in analogy to sum*of-
squares). This slralegy gave lhe same G r ~ d model m above.

How does one interpret a coefficient of 0.081 (Std. Error = 0.026) for
tobacco, for example? Tobacco is measured in total lifetime usage in kilw
grams, with a median of l.Okg for the controls and 4.lkg for the cases.
Thus an increase of lkg in lifetime tobacco usage accounts for an increase
in the odds of coronary heart disease of exp(0.081) = 1.084 or 8.4%. Incor-
porating the standard error we get an approximate 95% mrdldence interval
of exp(0.081 f 2 x 0.026) = (1.03,1.14).

We return to these data in Chapter 5, where we see that some of the
variables have nonlinear effects, and when modeled appropriately, are not
excluded from the model.

4.4 3 Quadrutic Approximations and Inference

The maximum-likelihood parameter estimates 8 satisfy a self-consistency
relationship: they are the coefficients of a weighted least squares fit, where
the responses are

and the weights are wi = &(l -a), both depending on 6 itself. Apart fiom
providing a convenient algorithm, t b connection with least squares has
more to offer:

4.4 Logistic Regression 103

The weighted residual sum-of-squares is the familiar Pearson chi-
sgiare statistic

a quadratic approximation to the deviance.

Asymptotic likelihood theory says that if the model is correct, then
,6 is consistent (i.e., converges to the tme p).

A central limit theorem then shows that the distribution of f i con-
verges to N (P , (XTTNX)-'). This and other asymptotics can be d e
rived directly from the weighted least squares fit by mimicking normal
theory inference.

Model building can be costly for logistic regression models, because
each model fitted requires iteration. Popular shortcuts are the Rao
score tes t which tests for inclusion of a term, and the WaId test which
can be to test for excl4sion of a term. Neither of these r e q e e
iterative fitting, and are baaed on the maximum-likelihood fit of the
current model. It turns out that both of these mount to adding
or dropping a term from the weighted least squares fit, using the
sramc weights. Suich comp~ikations can he done efficiently, without
recomputing the entire weighted least squares fit.

Software implementations can take advantage of these connections. For
example, the generalized linear modeling software in S-PLUS (which in-
cludes logistic regression as part of the binomial family of models) exploits
them fully. GLM (generalized linear model) objects can be treated as linear
model objects, and all the tools available for linear models can be applied
automatically.

4 . 4 1,nflfitic Regression n. TJIA?

In Scctioil 't.3 wc h d that thc lug-pustcrior odds bctwccn c l ~ a k and K
are linear functions of x (4.9):

This linearity is a comequence of the Gaussian assumption for the class
densities, as well as the assumption of a common covariance matrix. The

104 4. Linear Methods for Classification

linear logistic model (4.17) by construction has linear logits:

It seems that the models are the same. Although they have exactly the same
form, the difference lies in the way the linear coefficients are estimated. The
logistic regression model is more general, in that it makes less assumptions.
We can write the joint density of X and G as

where Pr(X) denotes the marginal density of the inputs X . For both LDA
and logistic regression, the second term on the right has the logit-linear
form

where we have again arbitrarily chosen the last class as the reference.
The logistic regression model leaves the marginal density of X as an arbi-

trary density function Pr(X), and fits the parameters of Pr(G1X) by max-
imizing the conditional likelihood-the multinomial likelihood with proba-
bilities the Pr(G = klX). Although Pr(X) is totally ignored, we can think
of this marginal density as being estimated in a fully nonparametric and
unrestricted fashion, using the empirical distribution function which places
mass 1/N at each observation.

With LDA we fit the parameters by maximizing the full log-likelihood,
based on the joint density

where 4 is the Gaussian density function. Standard normal theory leads
easily to the estimates f ik ,%, and ?tk given in Section 4.3. Since the linear
parameters of the logistic form (4.29) are functions of the Gaussian param-
eters, we get their maximum-likelihood estimates by plugging in the corre-
sponding estimates. However, unlike in the conditional case, the nlarginal
density Pr(X) does play a role here. It is a mixture density

which also involves the parameters.
What role can this additional component/restriction play? By relying

on the additional model assumptions, we have more information about the
parameters, and hence can estimate them more efficiently (lower variance).

4.5 Separating Hyperplanes 105

If in fact the true fk(x) are Gaussian, then in the worst case ignoring this
marginal part of the likelihood constitutes a loss of efficiency of about 30%
asymptotically in the error rate (Efron, 1975). Paraphrasing: with 30%
more data, the conditional likelihood will do as well.

For example, observations far from the decision boundary (which are
down-weighted by logistic regression) play a role in estimating the common
covariance matrix. This is not all good news, because it also means that
LDA is not robust to gross outliers.

From the mixture formulation, it is clear that even observations without
class labels have information about the parameters. Often it is expensive
to generate class labels, but unclassified observations come cheaply. By
relying on strong model assumptions, such as here, we can use both types
of information.

The marginal likelihood can be thought of as a regularizer, requiring
in some sense that class densities be visible from this marginal view. For
example, if the data in a two-class logistic regression model can be per-
fectly separated by a hyperplane, the maximum likelihood estimates of the
parameters are undefined (i.e., infinite; see Exercise 4.5). The LDA coeffi-
cients for the same data will be well defined, since the marginal likelihood
will not permit these degeneracies.

In practice these assumptions are never correct, and often some of the
components of X are qualitative variables. It is generally felt that logistic
regression is a safer, more robust bet than the LDA model, relying on fewer
assumptions. It is our experience that the models give very similar results,
even when LDA is used inappropriately, such as with qualitative predictors.

4.5 Separating Hyperplanes

We have seen that linear discriminant analysis and logistic regression both
estimate linear decision boundaries in similar but slightly different ways.
For the rest of this chapter we describe separating hyperplane classifiers.
These procedures construct linear decision boundaries that explicitly try
to separate the data into different classes as well as possible. They provide
the basis for support vector classifiers, discussed in Chapter 12. The math-
ematical level of this section is somewhat higher than that of the previous
sections.

Figure 4.13 shows 20 data points in two classes in IR2. These data can be
separated by a linear boundary. Included in the figure (blue lines) are two
of the infinitely many possible separating hyperplanes. The orange line is
the least squares solution to the problem, obtained by regressing the −1/1
response Y on X (with intercept); the line is given by

{x : β̂0 + β̂1x1 + β̂2x2 = 0}. (4.35)

106 4. Linear Methods for Clasdcation

A toy aarnple with two cimses sepzmble by a hyper-plane. The
UIUTLYC: LZ~SC: wi UE least spams sdwtion, which naisclrassifies one of Uae fining
points. Abso shown are two blue separating hyperplanes found by the p ~ ~ c p t ~ n
learning algorithm with diflmmt randorm sta.ts.

This least squares solution does not do a perfect job in separating the
points, and makes one error. This is the same boundary found by LDA,
in light of its equivalence with linear regression in the tweclass case (Sec-
tion 4.3 and Exercise 4.2).

Classifiers such as (4.35), that compute a linear combination of the input
features and return the sign, were called perceptmm in the engineering liter-
a t ~ e in the late 1950s (Rmenblatt, 1958). Perceptrons set the fodat ions
for the neural network models of the 1980s and 1990s.

Before we wntinue, let us digress slightly and review some vector algebra.
Figure 4.14 depicts a hyperplane or afime set L ddned by the equation

f (x) = + pTx = n; ~ i n c e we are in T R ~ t h i ~ i~ a, line.
Here we list some properties:

1. For any two points XI and x 2 lying in L, p(xl - 2 2) = 0, and hence
@* = @ / I Ifill is the vector normal to the surface of L.

2. For any point xo in L, pTxo = -A.
3. The signed distance of any point x to L is given by

Hence f (x) is proportional to the signed distance hom x to the hyperplane
defined by f (x) = 0.

4.5 Separating Hyperplanes 107

x0 x

β∗
β0 + βTx = 0

FIGURE 4.14. The linear algebra of a hyperplane (affine set).

4.5.1 Rosenblatt’s Perceptron Learning Algorithm

The perceptron learning algorithm tries to find a separating hyperplane by
minimizing the distance of misclassified points to the decision boundary. If
a response yi = 1 is misclassified, then xT

i β + β0 < 0, and the opposite for
a misclassified response with yi = −1. The goal is to minimize

D(β, β0) = −
∑
i∈M

yi(xT
i β + β0), (4.37)

where M indexes the set of misclassified points. The quantity is non-
negative and proportional to the distance of the misclassified points to
the decision boundary defined by βTx + β0 = 0. The gradient (assuming
M is fixed) is given by

∂
D(β, β0)

∂β
= −

∑
i∈M

yixi, (4.38)

∂
D(β, β0)

∂β0
= −

∑
i∈M

yi. (4.39)

The algorithm in fact uses stochastic gradient descent to minimize this
piecewise linear criterion. This means that rather than computing the sum
of the gradient contributions of each observation followed by a step in the
negative gradient direction, a step is taken after each observation is visited.
Hence the misclassified observations are visited in some sequence, and the

108 4. Linear Methods for Classification

parameters β are updated via(
β
β0

)
←
(
β
β0

)
+ ρ

(
yixi

yi

)
. (4.40)

Here ρ is the learning rate, which in this case can be taken to be 1 without
loss in generality. If the classes are linearly separable, it can be shown that
the algorithm converges to a separating hyperplane in a finite number of
steps (Exercise 4.6). Figure 4.13 shows two solutions to a toy problem, each
started at a different random guess.

There are a number of problems with this algorithm, summarized in
Ripley (1996):

• When the data are separable, there are many solutions, and which
one is found depends on the starting values.

• The “finite” number of steps can be very large. The smaller the gap,
the longer the time to find it.

• When the data are not separable, the algorithm will not converge,
and cycles develop. The cycles can be long and therefore hard to
detect.

The second problem can often be eliminated by seeking a hyperplane not
in the original space, but in a much enlarged space obtained by creating
many basis-function transformations of the original variables. This is anal-
ogous to driving the residuals in a polynomial regression problem down
to zero by making the degree sufficiently large. Perfect separation cannot
always be achieved: for example, if observations from two different classes
share the same input. It may not be desirable either, since the resulting
model is likely to be overfit and will not generalize well. We return to this
point at the end of the next section.

A rather elegant solution to the first problem is to add additional con-
straints to the separating hyperplane.

4.5.2 Optimal Separating Hyperplanes

The optimal separating hyperplane separates the two classes and maximizes
the distance to the closest point from either class (Vapnik, 1996). Not only
does this provide a unique solution to the separating hyperplane problem,
but by maximizing the margin between the two classes on the training data,
this leads to better classification performance on test data.

We need to generalize criterion (4.37). Consider the optimization problem

max
β,β0,||β||=1

C

subject to yi(xT
i β + β0) ≥ C, i = 1, . . . , N.

(4.41)

4.5 Separating Hyperplanes 109

The set of conditions ensure that all the points are at least a signed
distance C from the decision boundary defined by β and β0, and we seek
the largest such C and associated parameters. We can get rid of the ||β|| = 1
constraint by replacing the conditions with

1
||β||yi(xT

i β + β0) ≥ C, (4.42)

(which redefines β0) or equivalently

yi(xT
i β + β0) ≥ C||β||. (4.43)

Since for any β and β0 satisfying these inequalities, any positively scaled
multiple satisfies them too, we can arbitrarily set ||β|| = 1/C. Thus (4.41)
is equivalent to

min
β,β0

1
2
||β||2

subject to yi(xT
i β + β0) ≥ 1, i = 1, . . . , N.

(4.44)

In light of (4.36), the constraints define an empty slab or margin around the
linear decision boundary of thickness 1/||β||. Hence we choose β and β0 to
maximize its thickness. This is a convex optimization problem (quadratic
criterion with linear inequality constraints). The Lagrange (primal) func-
tion, to be minimized w.r.t. β and β0, is

LP =
1
2
||β||2 −

N∑
i=1

αi[yi(xT
i β + β0)− 1]. (4.45)

Setting the derivatives to zero, we obtain:

β =
N∑

i=1

αiyixi, (4.46)

0 =
N∑

i=1

αiyi, (4.47)

and substituting these in (4.45) we obtain the so-called Wolfe dual

LD =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
k=1

αiαkyiykx
T
i xk

subject to αi ≥ 0. (4.48)

The solution is obtained by maximizing LD in the positive orthant, a sim-
pler convex optimization problem, for which standard software can be used.

110 4. Linear Methods for Classification

FIGURE 4.15. The same data as in Figure 4.13. The shaded region delineates
the maximum margin separating the two classes. There are three support points
indicated, which lie on the boundary of the margin, and the optimal separating
hyperplane (blue line) bisects the slab. Included in the figure is the boundary found
using logistic regression (red line), which is very close to the optimal separating
hyperplane (see Section 12.3.3).

In addition the solution must satisfy the Karush–Kuhn–Tucker conditions,
which include (4.46), (4.47), (4.48) and

αi[yi(xT
i β + β0)− 1] = 0 ∀i. (4.49)

From these we can see that

• if αi > 0, then yi(xT
i β + β0) = 1, or in other words, xi is on the

boundary of the slab;

• if yi(xT
i β+β0) > 1, xi is not on the boundary of the slab, and αi = 0.

From (4.46) we see that the solution vector β is defined in terms of a linear
combination of the support points xi—those points defined to be on the
boundary of the slab via αi > 0. Figure 4.15 shows the optimal separating
hyperplane for our toy example; there are three support points. Likewise,
β0 is obtained by solving (4.49) for any of the support points.

The optimal separating hyperplane produces a function f̂(x) = xT β̂+ β̂0
for classifying new observations:

Ĝ(x) = signf̂(x). (4.50)

Although none of the training observations fall in the margin (by con-
struction), this will not necessarily be the case for test observations. The

4.5 Separating Hyperplanes 111

intuition is that a large margin on the training data will lead to good
sqa~ation on the Lest ddrtt.

The description of the solution in terms of support points seems to sug-
gest that the optimal hyperplane focuses more on the points that count,
and is more robust to model rnisspecification. The LDA solution, on the
other hand, depends on all of the data, even points far away from the d s
cision boundary. Note, however, that the identxcation of these support
points required the use of all the data. Of course, if the classes are really
Gaussian, then LDA is optimal, and separating hyperplanes will pay a price
for focusing on the (noisier) data at the boundaries of the classes.

Included in F&e 4.15 is the logistic regression solution to this prob
lem, fit by maximum likelihood. Both solutions are similar in tkis case.
When a separating hyperplane exists, logistic regression will always find
it, sincc thc log-likelihood can bc drivcn to 0 in this CMC (Facrcisc 4.5).
The logistic regression solution shares some other qualitative features with
the separating hyperplane solution. The coefficient vector is defined by a
weighted least squares fit of a zer-mean linearized response on the input
features, and the weights are larger for points near the decision boundary
than for t h e further away.

When the data are not separable, there will be no feasible solution to
this problem, and an alternative formulation is needed. Again one can en-
large the space using basis transhrimtions, but this c a n lead to artificial
separation through over-fitting. In Chapter 12 we discuss a more attractive
dlerrlalive know11 w Lhe mppvrl veclvr rnlad~irbe, which allows Tor overlap,
but minimizes a measure of the extent of this overlap.

Bibliographic Notes

Good general texts on classi6cation include Duda et al. (2000), Hand
(1981), McLachlan (1992) and Ripley (1996). Mardia et al. (1979) have
a concise discussion of linear discriminant analysis. Michie et al. (1994)
compare a large number of popular classfiers on benchmark datasets. Lin-
ear separating hyperplanes are discussed in Vapnik (1996). Our account of
the perceptron learnhg algorithm follows Ripley (1996).

Exercises

. Show how to solve the generalized eigenvalue problem maxaTBa
SUDJeC6 to aTWa = 1 by transforming to a standard eigenvalue problem.

Ex. 4.2 Suppose we have features x E IRP, a twwclass response, with class
sizm Nl, N2, and the target coded as -N/Nl, N/N2.

112 4. Linear Methods for Classification

(a) Show that the LDA rule classifies to class 2 if

xT Σ̂
−1

(µ̂2 − µ̂1) >
1
2
µ̂T
2 Σ̂

−1
µ̂2 −

1
2
µ̂T
1 Σ̂

−1
µ̂1 + log(

N1

N
)− log(

N2

N
),

and class 1 otherwise.

(b) Consider minimization of the least squares criterion

N∑
i=1

(yi − β0 − βTxi)2. (4.51)

Show that the solution β̂ satisfies[
(N − 2)Σ̂+

N1N2

N
Σ̂B

]
β = N(µ̂2 − µ̂1) (4.52)

(after simplification),where Σ̂B = (µ̂2 − µ̂1)(µ̂2 − µ̂1)T .

(c) Hence show that Σ̂Bβ is in the direction (µ̂2 − µ̂1) and thus

β̂ ∝ Σ̂−1
(µ̂2 − µ̂1). (4.53)

Therefore the least squares regression coefficient is identical to the
LDA coefficient, up to a scalar multiple.

(d) Show that this result holds for any (distinct) coding of the two classes.

(e) Find the solution β̂0, and hence the predicted values f̂ = β̂0 + β̂Tx.
Consider the following rule: classify to class 2 if ŷi > 0 and class
1 otherwise. Show this is not the same as the LDA rule unless the
classes have equal numbers of observations.

(Fisher, 1936; Ripley, 1996)

Ex. 4.3 Suppose we transform the original predictors X to Ŷ via linear
regression. In detail, let Ŷ = X(XTX)−1XTY = XB̂, where Y is the
indicator response matrix. Similarly for any input x ∈ IRp, we get a trans-
formed vector ŷ = B̂Tx ∈ IRK . Show that LDA using Ŷ is identical to
LDA in the original space.

Ex. 4.4 Consider the multilogit model with K classes (4.17). Let β be the
(p + 1)(K − 1)-vector consisting of all the coefficients. Define a suitably
enlarged version of the input vector x to accommodate this vectorized co-
efficient matrix. Derive the Newton-Raphson algorithm for maximizing the
multinomial log-likelihood, and describe how you would implement this
algorithm.

Exercises 113

Ex. 4.5 Consider a two-class logistic regression problem with x ∈ IR. Char-
acterize the maximum-likelihood estimates of the slope and intercept pa-
rameter if the sample xi for the two classes are separated by a point x0 ∈ IR.
Generalize this result to (a) x ∈ IRp (see Figure 4.15), and (b) more than
two classes.

Ex. 4.6 Suppose we have N points xi in IRp in general position, with class
labels yi ∈ {−1, 1}. Prove that the perceptron learning algorithm converges
to a separating hyperplane in a finite number of steps:

(a) Denote a hyperplane by f(x) = βT
1 x + β0 = 0, or in more compact

notation βTx∗ = 0, where x∗ = (x, 1) and β = (β1, β0). Let zi =
x∗

i /||x∗
i ||. Show that separability implies the existence of a βopt such

that yiβ
T
optzi ≥ 1 ∀i

(b) Given a current βold, the perceptron algorithm identifies a point zi that
is misclassified, and produces the update βnew ← βold + yizi. Show
that ||βnew−βopt||2 ≤ ||βold−βopt||2−1, and hence that the algorithm
converges to a separating hyperplane in no more than ||βstart−βopt||2
steps (Ripley, 1996).

Ex. 4.7 Consider the criterion

D∗(β, β0) = −
N∑

i=1

yi(xT
i β + β0), (4.54)

a generalization of (4.37) where we sum over all the observations. Consider
minimizing D∗ subject to ||β|| = 1. Describe this criterion in words. Does
it solve the optimal separating hyperplane problem?

Ex. 4.8 Consider the multivariate Gaussian model X|G = k ∼ N(µk,Σ),
with the additional restriction that rank{µk}K

1 = L < max(K − 1, p).
Derive the constrained MLEs for the µk and Σ. Show that the Bayes clas-
sification rule is equivalent to classifying in the reduced subspace computed
by LDA (Hastie and Tibshirani, 1996b).

Ex. 4.9 Write a computer program to perform a quadratic discriminant
analysis by fitting a separate Gaussian model per class. Try it out on the
vowel data, and compute the misclassification error for the test data. The
data can be found in the book website www-stat.stanford.edu/ElemStatLearn.

114 4. Linear Methods for Classification

+ This is page 115
Printer: Opaque this

Basis Expansions and Regularization

5.1 Introduction

We have already made use of models linear in the input features, both for
regression and classification. Linear regression, linear discriminant analysis,
logistic regression and separating hyperplanes all rely on a linear model.
It is extremely unlikely that the true function f (X) is actually linear in
X. In regression problems, f (X) = E(Y IX) will typically be nonlinear and
nonadditive in X, and representing f (X) by a linear model is usually a con-
venient, and sometimes a necessary, approximation. Convenient because a
linear model is easy to interpret, and is the firsborder Taylor approxima,
tion to f (X). Sometimes necessary, because with N small and/or p large,
a linear model might be all we are able to fit to the data without overfib
ting. Likewise in classification, a linear, Baymoptima1 decision boundary
implies that some monotone transformation of Pr(Y = 1 IX) is linear in X.
This is inevitably an approximation.

In this chapter and the next we discuss popular methods for moving
beyond linearity. The core idea in this chapter is to augmentjreplace the
vector of inputs X with additional variables, which are transformations of
X, and then use linear models in tkis new spxe of derived input features.

Denote by h,(X) : IRP H IR the mth transformation of X, m =
1, . . . , M. We then model

116 5. Basis Expansions and Regularization

a linear basis expansion in X . The beauty of this approach is that once the
basis functions h, have been determined, the models are linear in these
new variables, and the fitting proceeds as before.

Some simple and widely used examples of the h, are the following:

h,(X) = X,, m = 1, . . . , p recovers the original linear model.

h,(X) = X,; or h,(X) = XjXk allows us to augment the inputs with
polynomial terms to achieve higher-order Taylor expansions. Note,
however, that the number of variables grows exponentially in the de-
gree of the polynomial. A full quadratic model in p variables requires
O(p2) square and cross-product terms, or more generally o (~ ~) for a
degree-d polynomial.

h,(X) = log(Xj), a,. . . permits other nonlinear transforma-
tions of single inputs. More generally one can use similar functions
involving several inputs, such as h, (X) = I IX I I.

h,(X) = I (L , < Xk < U,), an indicator for a region of Xk. By
breaking the range of Xk up into Mk such nonoverlapping regions
results in a model with a piecewise constant contribution for X k .

Sometimes the problem at hand will call for particular basis functions h,,
such as logarithms or power functions. More often, however, we use the basis
expansions as a device to achieve more flexible representations for f (X).
Polynomials are an example of the latter, although they are limited by
Llleir global rlalure-lweakirlg Llle coeficienls to acllieve a Iur~cliurlal Iorrn
in one region can cause the function to flap about madly in remote regions.
In this chapter we consider more useful families of piecewise-polynomials
and splines that allow for local polynomial representations. We also discuss
the wavelet bases, especially useful for modeling signals and images. These
methods produce a dictionary D consisting of typically a very large number
ID1 of basis functions, far more than we can afford to fit to our data. Along
with the dictionary we require a method for controlling the complexity
of our model, using basis functions from the dictionary. There are three
common approaches:

Restriction methods, where we decide before-hand to limit the class
of functions. Additivity is an example, where we assume that our
model has the form

5.2 Piecewise Polynomials and Splines 117

The she of the model is limited by the number of basis functions Mj
~ m d for each component; fiinction fj.

Selection methods, which daptively scan the dictionary and include
only those basis functions la, that contribute sigdcantly to the fit of
the model. Here the variable selection techniques discussed in Chap
ter 3 are useful. The stagewise greedy approaches such as CART,
MARS and boosting fall into this category as well.

Regularization methods where we use the entire dictionary but r s
strict the coefficients. Ridge regression is a simple example of a regu-
larization approach, while the lasso is both a regularization and selec
tion method. Here we discuss these and more sophisticated methods
for regularization.

5.2 Piecewise Polynomials and Splines

We assume until Section 5.7 that X is onedimensional. A piecewise poly-
nomial function f (X) is obtained by dividing the domain of X into contigu-
ous intervals, and representing f by a separate polynomial in each interval.
Figlire 5.1 shows two simple piecewise polynomids. The firwt; is piecewise
constant, with three basis functions:

hl(X) = I (X < h), ha(X) = I(& 5 x < &), h3(X) = I(& < X).

Since these are positive over disjoint regions, the least squares estimate of
the model f (X) = c:_, P,&(X) amounts to = Y,, the mean of Y
in the mth region.

The top right panel shows a piecewise linear fit. Three additional basis
functions are needed: h,+3 = la, (X)X, rn = 1, . . . ,3. Except in special
cases, we would typically prefer the third panel, which is also piecewise
linear, but restricted to be continuous at the two knots. These continu-
ity restrictions lead to linear constraints on the parameters; for example,
f ([T) = f (d) implies that f i + C1P4 = P2 +t1P5. In this case, since there
are two restrictions, we expect to get back two parameters, leaving four free
parameters.

A more direct way to proceed in this case is to use a basis that incorpe
rates the constraints:

where t+ denotes the podtive part. The function h3 is shown in the lower
right panel of Figure 5.1. We often prefer smoother functions, and these
can be achieved by increasing the order of the local polynomial. Figure 5.2
shows a series of piecewisecubic polynomials fit to the same data, with

118 5. Basis Expansions and Regularization

Piecewise Constant Piecewise Linear

I
El Ea

Continuous Piecewise Linear

I I

I
El Ea

Piecewise-linear Basis Function

The top left panel shows a piecewise w w t a d function fit to some
UI-~JELTW U U ~ . The broken vertical lines indicate Uae positions of Uae two knots
61 a d 6. The blue curve represents the h e fiLRction, from which Uae data were
genemkd with Gaussian noise. The mrnaining two panels show piecewise lin-
ear fulacfow fit to the same data-the top right unvestkted, and the lower left
wstrided to b continuous at the Imota. The lower right parael shows a piece-
wise-linear ba& function, h j (X) = (X -&)+, wntinuuus at €1. The black points
indicate fhe sample ewluatiow ha(=<), i = 1,. . . , N.

5.2 Piecewise Polynomials and Splines 119

Piecewise Cubic Polynomials

Dlscontlnuous

I

Contlnuous

I I

Contlnuous Flrst Derlvatlve Contlnuous Semnd Derlvatlve

FIGURE 5.2. A series of piecewise-cubic polylomids, with increasing orders of
continuity.

increasing orders of continuity at the knots. The function in the lower
right panel is continuous, and has continuous first and second derivatives
at the knots. It is known as a cubic spline. Enforcing one more order of
continuity would lead to a global cubic polynomial. It is not hard to show
(Exercise 5.1) that the following basis represents a cubic spline with knots
at & and 6:

h ~ (X) = l , hs (X)=x2, hs (X)=(X-h)? ,

h2(X) = X, h4(X) = x3, hg (X) = (X - &):.

There are six basis functions corresponding to a six-dimensional linear space
of functions. A quick check confirms the parameter count: (3 regions) x (4
parameters per region) -(2 knots)x (3 constraints per knot)= 6.

120 5. Basis Expansions and Regularization

More generally, an order-M spline with knots ξj , j = 1, . . . ,K is a
piecewise-polynomial of order M , and has continuous derivatives up to
order M − 2. A cubic spline has M = 4. In fact the piecewise-constant
function in Figure 5.1 is an order-1 spline, while the continuous piece-
wise linear function is an order-2 spline. Likewise the general form for the
truncated-power basis set would be

hj(X) = Xj−1, j = 1, . . . ,M,

hM+�(X) = (X − ξ�)M−1
+ , � = 1, . . . ,K.

It is claimed that cubic splines are the lowest-order spline for which the
knot-discontinuity is not visible to the human eye. There is seldom any
good reason to go beyond cubic-splines, unless one is interested in smooth
derivatives. In practice the most widely used orders are M = 1, 2 and 4.

These fixed-knot splines are also known as regression splines. One needs
to select the order of the spline, the number of knots and their placement.
One simple approach is to parameterize a family of splines by the number
of basis functions or degrees of freedom, and have the observations xi de-
termine the positions of the knots. For example, the expression bs(x,df=7)

in S-PLUS generates a basis matrix of cubic-spline functions evaluated at
the N observations in x, with the 7 − 3 = 4∗ interior knots at the ap-
propriate percentiles of x (20, 40, 60 and 80th.) One can be more explicit,
however; bs(x, degree=1, knots = c(0.2, 0.4, 0.6)) generates a basis for
linear splines, with three interior knots, and returns an N × 4 matrix.

Since the space of spline functions of a particular order and knot sequence
is a vector space, there are many equivalent bases for representing them
(just as there are for ordinary polynomials.) While the truncated power
basis is conceptually simple, it is not too attractive numerically: powers of
large numbers can lead to severe rounding problems. The B-spline basis,
described in the Appendix to this chapter, allows for efficient computations
even when the number of knots K is large.

5.2.1 Natural Cubic Splines

We know that the behavior of polynomials fit to data tends to be erratic
near the boundaries, and extrapolation can be dangerous. These problems
are exacerbated with splines. The polynomials fit beyond the boundary
knots behave even more wildly than the corresponding global polynomials
in that region. This can be conveniently summarized in terms of the point-
wise variance of spline functions fit by least squares (see the example in the
next section for details on these variance calculations). Figure 5.3 compares

∗A cubic spline with four knots is eight-dimensional. The bs() function omits by
default the constant term in the basis, since terms like this are typically included with
other terms in the model.

5.2 Piecewise Polynomials and Splines 121

FIGURE Pointt&e vavian~e curves for f a r diflmnt modeb, with X cow
sisting of 3~ poimts d m m mt mndorn from U[O, 11, mmd m rrssumd e m rnodd
wifh comdant uariance. The linear and crbic polynomial jZs h u e two and forr
degrees of freedom respecfiely, while the cubic spline and natural mWc spline
each have s k d e p m oj&edm. The cubic spline has two knots at 0.33 and 0.66,
while the mhd spline lam boesndaw ho t s at 0.1 and 0.9, and four i n t e ~ o r h o t s
esnifodv spaced between tlsem.

the pointwise variances for a variety of different models. The explmion of
the variance near the boundaries is clear, and inevitably is worst for cubic
splines.

A natural cubic spline adds additional constraints, namely that the func-
tion is linear beyond the boundary knots. This frew up four degrea of
heedom (two constraints each in both boundary regions), which can be
spent more profitably by sprinkling more knots in the interior region. This
tradeoff is illustrated in terms of variance in Figure 5.3. There will be a
price paid in bias near the boundaries, but assuming the function is lin-
ear near the boundaries (where we have less information anyway) is often
considered reasonable.

A natural cubic spline with K knots is represented by K basis fundions.
One can start from a basis for cubic splines, and derive the reduced b a
sis by imposing the boundary constraints. For example, starting from the
truncated power series basis described in Section 5.2, we arrive at (Exer-
cise 5.4):

122 5. Basis Expansions and Regularization

where

Each of these basis functions can be seen to have zero second and third
dcrimtivc for X > tK.

5 . 2 2 Example: South Ahcan Heart Dismse (Continued)

h Ser;Liut~ 4.4.2 we EL 1hea.t l~gidic: t-egt-eaaiut~ ~uoclela lo LLe SuuLL Ahic;d~tl
heart disease data. Here we explore nonlinearities in the functions using
r~s lurd splines. The Irur~cLiorld Iorm oI Lhe ~uodel is

where each of the Bj are vectors of coefficients multiplying their associated
vector of natural spline basis functions h,i.

We use four natural spline bases for each term in the model. For example,
with XI representing ~ b p , hl(X1) is a basis consisting of four basis func-
tions. This actually implies three rather than two interior knots (chosen at
uniform quantiles of sbp), plus two boundary knots at the extremes of the
data, since we exclude the constant term from each of the hj .

Since ramhist is a tw+level factor, it is coded by a simple binary or
dummy variable, and is associated with a single coefficient in the fit of the
model.

More compactly we can combine all p vectors of basis functions (and
the constant term) into one big vector h(X), and then the model is simply
~ (x) ~ B , with total number of parameters df = 1 + C;='=l dfi, the sum of
the parameters in each component term. Each basis function is evaluated
at each of the 1V samples, resulting in a N x df basis matrix H. At this
pnint the mndel ia like a,ny nther lineas lngiskir: mndnl, and khn dgnrikhma
described in Section 4.4.1 apply.

We carried out a backward stepwise deletion process, dropping terms
horn this model while preserving the group structure of each term, rather
than dropping one coefficient at a time. The AIC statistic (Section 7.5) was
used to drop terms, and all the terms remaining in the final model would
came AIC to increase if deleted from the model (see Table 5.1). Figure 5.4
shows a plot of the final model selected by the stepwise regression. The
functions displayed are f j (~ ; ;) = hj (~ ; ;) ~ i j for each variable Xj. The
covariance matrix ~ov(B") = E is estimated by 2 = (H ~ w H) - ~ , where W
is the diagonal weight matrix ftom the logistic regression. IIence w, (Xj) =

var[fj (xi)] = hj (xj)%ji hj (x i) is the pointwise variance function of fj ,
where ~ov(6 j) = kj is the appropriate submatrix of k. 'l'he shaded region
in each panel is defined by fj (x~) k 2 d m .

5.2 Piecewise Polynomials and Splines 123

100 120 140 160 180 200 220

-2
0

2
4

0 5 10 15 20 25 30

0
2

4
6

8

2 4 6 8 10 12 14

-4
-2

0
2

4

-4
-2

0
2

4

Absent Present

15 20 25 30 35 40 45

-2
0

2
4

6

20 30 40 50 60

-6
-4

-2
0

2

f̂
(s
b
p
)

sbp

f̂
(t
o
b
a
c
c
o
)

tobacco

f̂
(l
d
l
)

ldl

f̂
(o
b
e
s
i
t
y
)

obesity

f̂
(a
g
e
)

age

f̂
(f
a
m
h
i
s
t
)

famhist

FIGURE 5.4. Fitted natural-spline functions for each of the terms in the final
model selected by the stepwise procedure. Included are pointwise standard-error
bands. The rug plot at the base of each figure indicates the location of each of the
sample values for that variable (jittered to break ties).

124 5. Basis Expansions and Regularization

TABLE 5.1. H n d logidic m s k o n model, aQfte~ stepwise deletion of mhd
splines t m s . The d r m n labeled "LRT" is the likelihood-mtio test stratistic when
Uaat t m is deleted jmm the model, and is fhe change i n deviance from Uae fill
model (jlrskld 'haoae").

Term Df Deviance AIC LRT P - d u e
none 458.09 502.09
sbp 4 467.16 503.16 9.076 0.059

tobacco 4 470.48 506.48 12.387 0.015
Id1 4 472.39 508.39 14.307 0.006

famhist 1 479.44 521.44 21.356 0.000
obesity 4 466.24 502.24 8.147 0.086

age 4 481.86 517.86 23.768 0.000

The AIC statistic is slightly more generous than the likelihood-ratio test
(deviance test). Both ~ b p and obezity are included in this model, while
they were not in the linear model. The Egure explains why, since their
contributions are inherently nonlinear. These effects at first may come as
a surprise, but an explanation lies in the nature of the retroepective data.
These measurements were made sometime after the patients suEered a
heart attack, and in many cases they had already benefited from a healthier
diet and lifestyle, hence the apparent increase in risk at low values for
obesity sbp. Table 5.1 shows a summary or Lhe seleecled model.

5.2.3 Example: Phoneme Recognition
In this example we use splines to reduce flexibility rather than increase it;
the application comes under the general heading of functional modeling. In
the top panel of Figure 5.5 are displayed a sample of 15 log-periodograms
for each of the two phonemes "aa" and "ad' measured at 256 frequencies.
The goal is to use such data to class@ a spoken phoneme. These two
phonemes were chosen because they are difficult to separate.

The input feature is a vector x of length 256, which we can think of as
a vector of evaluations of a function X(f) over a grid of frequencies f. In
reality there is a continuous analog signal which is a function of frequency,
and we have a sampled version of it.

The gray lines in the lower panel of Figure 5.5 show the coefficients of
a linear logistic regression model fit by maximum likelihood to a training
sample of 1000 drawn h m the total of 695 "aa"s and 1022 "ad's. The
coefficients are also plotted as a function of frequency, and in fact we can
think of the model in terms of its continuous counterpart

log Pr(m'X) = / ~ (f) ~ (~) d ~
Pr(ao 1x1

5.2 Piecewise Polynomials and Splines 125

Phoneme Examples

Frequency

Phoneme Classification; Raw and Restricted Logistic Regression

Frequency

FIGURE 5.6. The top panel displays Uae l o g - p e r i d o p m ras a f i n d i m of+
quency for 15 mmmples each of Me phonemes "am" and 'ho" sampled from a t o t d
of 695 "m "s and 1022 "m"s. Each log-peridogram ia m m m d at 256 m i f d y
spaced freqesen&es. The bwer panel shows the weficients (M a junction of fn-
qesency) of a logi~tic mgres&on fit ib the data by maximum likelihood, w i g the
256 l q - p e ~ d o g - m m vdues QS inputs. The coeficients w e restricted to be smooth
in the mi curve, and are eumreshicfd in the jmggd p y c u m .

126 5. Basis Expansions and Regularization

which we approximate by

The coefficients compute a contrast functional, and will have appreciable
values in regions of frequency where the log-periodograms differ between
the two classes.

The gray curves are very rough. Since the input sign& have fairly strong
positive autocorrelation, this results in negative autocorrelation in the c e
efficients. In addition the sample size effectively provides only four obser-
vations per coefficient.

Applications such as this permit a natural regularization. We force the
coefficients to vary smoothly as a function of frequency. The red curve in the
lower panel of Figure 5.5 shows such a smooth coefficient curve fit to these
data. We see that the lower frequencies offer the most discriminatory power.
Not only does the smoothing allow easier interpretation of the contrast, it
also produces a more accurate classifier:

The smooth red curve was obtained through a very simple use of natural
cubic splines. We can represent the coefficient function as an expansion of
splines P(f) = cE-, h,(f)B,. In practice this means that P = H B where,
H is a p x M basis matrix of natural cubic splines, defined on the set of
hequencies. Here we used M = 12 basis functions, with knots uniformly
placed over the integers 1,2, . . . ,256 representing the frequencies. Since
sTp = x T ~ O , we can simply replace the input features x by their j i l t e d
versions z* = HTx, and fit 0 by linear logistic regression on the z*. The
red cqrveis thqs p(f) = f~(f)~i.

5.3 Filtering and Feature Extraction

In the previous example, we constructed a p x M basis matrix H, and then
transformed our features x into new features s* = HTx. These filtered
versions of the features were then used as inputs into a learning procedure:
in the previous example, this was linear logistic regression.

Preprocessing of high-dimensional features is a very general and pow-
erful method for improving the performance of a learning algorithm. The
preprocessing need not be linear as it was above, but can be a general

5.4 Smoothing Splines 127

(nonlinear) function of the form x* = g(x) . The derived features x* can
khen he nsed 1t4 inpuits into any (linear or nonlinear) learning procedure.

For example, for signal or image recognition a popular approach is to
f ist transform the raw features via a wavelet transform x* = I!l?x (Sec-
tion 5.9) and then use the features x* as inputs into a neural network
(Chapter 11). Wavelets are effective in capturing discrete jump or edges,
and the neural network is powerful tool for constructing nonlinear func-
tions of these features for predicting the target variable. By using domain
knowledge to construct appropriate features, one can often improve upon
a learning method that has only the raw features x at its disposal.

5.4 Smoothing Splines

Here we discuss a spline basis method that avoids the knot selection prob
lein coinpletely by using a maximal set of knots. The minplexity of the fit
is controlled by regularization. Consider the following problem: among all
Iurlclior~u (a) wilh Iwo conlirluous rlerimlivw, h d one L h l rukimizes Lhe
penalized residual sum of squares

where A is a k e d smoothing pmmeter. The 6rst term measures closeness
to the data, while the second term penalizes curvature in the function, and
A establishes a tradeoff between the two. Two special cases are:

X = 0 : f can be any function that interpolates the data.

X = rn : the simple least squares line fit, since no second derivative can
be tolerated.

These vary from very rough to very smooth, and the hope is that X E (0, m)
indexes an interesting class of functions in between.

The criterion (5.9) is defined on an Snitedimensional function s p w
in fact, a Sobolev space of functions for which the second term is defined.
b a r k a b l y , it can be shown that (5.9) has an explicit, finite-dimensional,
unique minimher which k a natural cubic spline with knots at the unique
values of the xi, i = 1, . . . , N (Ekercise 5.7). At face value it seems that
thc f d y is still ovcr-paramctrizcd, sincc thcrc arc aa many as N knots,
which implies N degrees of freedom. However, the penalty term translates
to a penalty on the spline coefficients, which are shrunk some of the way
toward the linear fit.

Since the solution b a natural spline, we can write it w

128 5. Basis Expansions and Regularization

Female MI

. .
. . - ,

. C

* . - * .

FIGURE 5.6. The re$powe i s the dative change in h e minemi density w
surd at the spine i n d d e s m t a , as a f i n d i m of age. A seperak s d h i n g spline
WQS fl to Uae m d e s and femdes, with X = 0.OW22. This choice m m s p o n d s to
abod 12 degnxs of jmdm.

where the Nj(x) are rn N-dhnmioml set of basis functions for rep-
senting this family of natural splines (Section 5.2.1 and Exercise 5.4). The
crileriorl Lhua reduces lo

where {N}ij = Nj (xi) and {iIn}jk = N,j'(t)N{(t)dt. The solution is
easily seen to be

a generalized ridge regression. The fitted smoothmg spline is given by

Efficient computational techniques for smoothing splines are discussed in
the Appendix to this chapter.

Figure 5.6 shows a smoothing spline fit to some data on bone mineral
density (BMD) in adolescents. The response is relative change in spinal
BMD over two consecutive visits, typically about one year apart. The data

5.4 Smoothing Splines 129

are color coded by gender, and two separate curves were fit. This simple
nimmary reinforces the evidence in the data that the growth spurt for
females precedes that for males by about two years. In both cues the
smoothing parameter X was approximately 0.00022; this choice is discussed
in the next section.

5.4.1 Degrees of Freedom and Smoother Matrices

We have not yet indicated how X is chosen for the smoothing spline. Later
in this chapter we describe automatic methods using techniques such as
cross-validation. In this section we discuss intuitive ways of prespecifying
the amount of smoothing.

A smoothing spline with prechosen X is an example of a linear smoother
(as in linear operator). This is because the estimated parameters in (5.12)
are a linear combination of the ui. Denote by the N-vector of fitted values
f"(za) at the training predictors q. Then

Again the fit is linear it1 y, and the Enite linear operator SA is known as

the smoother vat* One consequence of this linearity is that the recipe
for producing f froin y does not depend on y itself; Sx depends only on
the xi and A.

Linear vpertlLors are IEtlIliliEtT in more LrdiLivd l e d squara Glli~lg as
well. Suppose BE is a N x M matrix of M cubic-spline basis functions
evaluated at the N training points xi, with knot sequence E, and M < N.
Then the vector of fitted spline values is given by

Here the linear operator % i4 a projection operator, also known as the hat
matrix in statistics. There are some important similarities and differences
between Hy and Sx:

Both are symmetric, pmitive semidefinite matrices.

%HE = HE (idempotent), while Sx Sx 5 Sx, meaning that the righk
hand side exceeds the left-hand side by a positive semidefinite matrix.
This is a consequence of the shhking nature of SA, which we discuss
further below.

has rank M, while Sx h u rank N .

130 5. Basis Expansions and Regularization

The expression M = trace(HE) gives the dimension of the projection space,
which is also the number of basis functions, and hence the number of pa-
rameters involved in the fit. By analogy we define the effective degrees of
freedom of a smoothing spline to be

the sum of the diagonal elements of SA. This very useful definition allows
us a more intuitive way to parameterize the smoothing spline, and indeed
many other smoothers as well, in a consistent fashion. For example, in Fig-
ure 5.6 we specified dfA = 12 for each of the curves, and the corresponding
X % 0.00022 was derived numerically by solving trace(Sx) = 12. There are
many arguments supporting this definition of degrees of freedom, and we
cover some of them here.

Since SA is symmetric (and positive semidefinite), it has a real eigen-
decomposition. Before we proceed, it is convenient to rewrite SA in the
Reinsch form

where K does not depend on X (Exercise 5.9). Since f = Sxy solves

K is known as the penalty matrix, and indeed a quadratic form in K has
a representation in terms of a weighted sum of squared (divided) second
diflerences. 'l'he eigen-decomposition of Sx is

with

and dk the corresponding eigenvalue of K.
Figure 5.7 (top) shows the results of applying a cubic smoothing spline to

some air pollution data (128 observations). Two fits are given: a smoother
fit corresponding to a larger penalty X and a rougher fit for a smaller
penalty. The lower panels represent the eigenvalues (lower left) and some
eigenvectors (lower right) of the corresponding smoother matrices. Some of
the highlights of the eigenrepresentation are the following:

w The eigenvectors are not affected by changes in A, and hence the whole
family of smoothing splines (for a particular sequence x) indexed by
X have the same eigenvectors.

5.4 Smoothing Splines 131

.
.

. * . a . * . . 4. .
1

J
-* . * *:

I.. '. . ' L

* * . -. *. *, * * *.

Daggot Pressure Gradient

FIGURE 6.7. [Top] Snawfhing spline fit of ozone c o m c e ~ o m versus Daggof
pwsure gradied. The two fits cornspond to d i f lmnt m l w s of the smaoothing
parnmkr , ch08epz t o rschiew 5 and I1 eflective d-s of M o n a , de$ned by
df, = t r n c e (S ~) . [Lower leH Fimt 25 eigenvdues for Use two moothing-spline
matrices. The j r s f two are amcf l y 1, and d l m 2 (I. [Lower right] and to
s d h eigenvectors of Uae spline srnooUaer naabices. In eech aase, UI, is plotted
u y u i r ~ l X, uusd w S W C I ~ ia A e ~ t r l us u jur~climb UI x. Tlse tw uL Ube h e u j Lhe
plots i n 6 m t e the m m c e of data points. The damp& function8 mpresepzt the
smoothed wers-siow of these jumctiona (wing Use 5& smoothel;).

132 5. Basis Expansions and Regularization

N
Sxy = Ck=l ukpk (X)(uk, y), and hence the smoothing spline oper-
ates by decomposing y w.r.t. the (complete) basis {uk), and differ-
entially shrinking the contributions using pk(X). This is to be con-
trasted with a basis-regression method, where the components are
either left alone, or shrunk to zero-that is, a projection matrix such
as He above has M eigenvalues equal to 1, and the rest are 0. For
this reason smoothing splines are referred to as shrinking smoothers,
while regression splines are projection smoothers (see Figure 3.10 on
page 67).

The sequence of uk, ordered by decreasing pk(X), appear to increase
in complexity. Indeed, they have the zero-crossing hehaxior of polyno-
mials of increasing degree. Since SXuk = pk (X)uk, we see how each of
the eigenvectors themselves are shrunk by the smoothing spline: the
higher the complexity, the more they are shrunk. If the domain of X
is periodic, then the uk are sines and cosines at different frequencies.

The first two eigenvalues are always one, and they correspond to the
two-dimensional eigenspace of functions linear in x (Exercise 5.11))
which are never shrunk.

The eigenvalues pk (A) = 1/(1 + Adk) are an inverse function of the
eigenvalues dk of the penalty matrix K, moderated by A; X controls
the rate at which the pk(X) decrease to zero. dl = da = 0 and again
linear functions are not penalized.

One can reparametrize the smoothing spline using the basis vectors
uk (the Demmler-Reinsch basis). In this case the smoothing spline
solves

where U has columns uk and D is a diagonal matrix with elements
dk .

N dfx = trace(Sx) = C,=, pk(X). For projection smoothers, all the
eigenvalues are 1, each one corresponding to a dimension of the pro-
jection subspace.

Figure 5.8 depicts a smoothing spline matrix, with the rows ordered with
x. The banded nature of this representation suggests that a smoothing
spline is a local fitting method, much like the locally weighted regression
procedures in Chapter 6. The right panel shows in detail selected rows of
S , which we call the equivalent kernels. As X i 0, dfA i N , and SA i I,
the N-dimensional identity matrix. As X i co, dfA i 2, and SA i H, the
hat matrix for linear regression on x.

Smoother Matrix

5.4 Smoothing Splines 133

Equivalent Kernels

-. i ----+--------

FIGURE 5.8. The smoother m a t e for a smoothing spline is nearly handed,
indicating an equivalent kernel with local support. The left panel wpresents the
elements of S as an image. The right panel shows the quivalent kernel or weigh&
ing finction in detail for the indimted rows.

134 5. Basis Expansions and Regularization

5.5 Automatic Selection of the Smoothing
Pasameters

The smoolhiug pwmuelers lor regre~io~l splir~w aco~upws l l~e degree or
the splines, and the number and placement of the knots. For smoothing
splines, we have only the penalty parameter X to select, since the knots are
at all the unique training X's, and cubic degree is almmt always used in
practie.

Selecting the placement and number of knots for regression splines can be
a combinatorially complex task, unless some simplifications are enforced.
The h U R S procedure in Chapter 9 uses a greedy algorithm with some
additional approximations to achieve a practical compromise. We will not
discuss this further here.

5.5.1 Fixing the Degrees of Freedom

Since dfx = trace(Sx) is monotone in X for smoothing splines, we can
invert the relationship and specify X by jking df. In practice this can be
achieved by simple numerical methods. So, for example, in SPLUS one
can use smooth. spline(x. y .df=6) to specify the amount of smoothing. This
encourages a more traditional mode of model selection, where we might
try a couple of different values of df, and select one based on approximate
F-tests, residual plots and other more subjective criteria. Using df in this
way provides a uniform approach to mmpare many merent smoothing
methods. It is particularly useful in genewlizd auitive models (Chapter 9),
where several smoothing methods can be simultaneously used in one model.

5.5.2 The Bim-Variance %deo$

Figure 5.9 shows the effect of the choice of dfx when using a smoothing
spline on R simple example:

with X - U[O, I] and E - N (0 , l) . Our training sample consists of N = 100
pairs xi, w drawn independently ftom this model.

The fitted splines for three different values of dfx are shown. The yellow
shaded region in the figure represents the poir$wise ~tandard~error of fA,
that is, we have shaded the region between fx(x) f 2 - se(fx(x)). Since

f = SAY,

5.5 Automatic Selection of the Smoothing Parameters 135

6 8 10 12 14

0.
9

1.
0

1.
1

1.
2

•••••••••••••
•

•
•

•

•

•••••••••••••
•

•
•

•

•

y

0.0 0.2 0.4 0.6 0.8 1.0

-4
-2

0
2

O

O

O

O

OO

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O
O

O

OO

O
O

O

O

O

OO

O

O

O

O
O

O

O
O

O

O

O

O

OO

O

O

O

O

O

OO

O

O

O
O
O

O

OO

O

O

O

O

O

O

O

O

O
O

O
O

O

O

O

O

O

O

O
O
O

OO

O

O

O

O

O
O

y

0.0 0.2 0.4 0.6 0.8 1.0

-4
-2

0
2

O

O

O

O

OO

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O
O

O

OO

O

O

O

O

O

OO

O

O

O

O

O

O

O
O

O

O

O

O

OO

O

O

O

O

O

OO

O

O

O
O
O

O

OO

O

O

O

O

O

O

O

O

O
O

O
O

O

O

O

O

O

O

O
O
O

OO

O

O

O

O

O
O

y

0.0 0.2 0.4 0.6 0.8 1.0

-4
-2

0
2

O

O

O

O

OO

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O
O

O

OO

O

O

O

O

O

OO

O

O

O

O

O

O

O
O

O

O

O

O

OO

O

O

O

O

O

OO

O

O

O
O
O

O

OO

O

O

O

O

O

O

O

O

O
O

O
O

O

O

O

O

O

O

O
O
O

OO

O

O

O

O

O
O

EPE
CV

XX

X

dfλ = 5

dfλ = 9 dfλ = 15

dfλ

Cross-Validation

E
P
E
(λ
)
a
n
d
C
V
(λ
)

FIGURE 5.9. The top left panel shows the EPE(λ) and CV(λ) curves for a
realization from a nonlinear additive error model (5.22). The remaining panels
show the data, the true functions (in purple), and the fitted curves (in green) with
yellow shaded ±2× standard error bands, for three different values of dfλ.

136 5. Basis Expansions and Regularization

The diagonal contains the pointwise variances at the training xi. The bias
is given by

Bias(f̂) = f − E(f̂)
= f − Sλf , (5.24)

where f is the (unknown) vector of evaluations of the true f at the training
X’s. The expectations and variances are with respect to repeated draws
of samples of size N = 100 from the model (5.22). In a similar fashion
Var(f̂λ(x0)) and Bias(f̂λ(x0)) can be computed at any point x0 (Exer-
cise 5.10). The three fits displayed in the figure give a visual demonstration
of the bias-variance tradeoff associated with selecting the smoothing pa-
rameter.

dfλ = 5: The spline under fits, and clearly trims down the hills and fills in
the valleys. This leads to a bias that is most dramatic in regions of
high curvature. The standard error band is very narrow, so we esti-
mate a badly biased version of the true function with great reliability!

dfλ = 9: Here the fitted function is close to the true function, although a
slight amount of bias seems evident. The variance has not increased
appreciably.

dfλ = 15: The fitted function is somewhat wiggly, but close to the true
function. The wiggliness also accounts for the increased width of the
standard error bands—the curve is starting to follow some individual
points too closely.

Note that in these figures we are seeing a single realization of data and
hence fitted spline f̂ in each case, while the bias involves an expectation
E(f̂). We leave it as an exercise (5.10) to compute similar figures where the
bias is shown as well. The middle curve seems “just right,” in that it has
achieved a good compromise between bias and variance.

The integrated squared prediction error (EPE) combines both bias and
variance in a single summary:

EPE(f̂λ) = E(Y − f̂λ(X))2

= Var(Y) + E
[
Bias2(f̂λ(X)) + Var(f̂λ(X))

]
= σ2 + MSE(f̂λ). (5.25)

Note that this is averaged both over the training sample (giving rise to f̂λ),
and the values of the (independently chosen) prediction points (X,Y). EPE
is a natural quantity of interest, and does create a tradeoff between bias
and variance. The blue points in the top left panel of Figure 5.9 suggest
that dfλ = 9 is spot on!

5.6 Nonparametric Logistic Regression 137

Since we don't know the true function, we do not have access to EPE, and
need an ~kimrtte. This kopic is discnssd in some dekrtil in Chapter 7, and
techniques such as K-fold cross-validation, GCV and C, are all in common
use. In Figure 5.9 we include the N-fold (leave-oneout) cross-validation
curve:

wlidl czltl (teiuatkaIlY) It: coiupuLerl T o r each vdue ul X h-uin Llle ut-igitld

fitted values and the diagonal elements SA (i, i) of Sx (Exercise 5.13).
The EPE and CV curves h v e s siruilar shape, buL Lhe er~lire CV curve

is above the EFE curve. For some realizations this is reversed, and overall
the CV curve is approximately unbiased as an estimate of the EPE curve.

5.6 Nonparametric Logistic Regression

The smoothing spline problem (5.9) in Section 5.4 is posed in a regression
setting. It is typically straightforward to transfer this technology to other
domaim. Here we consider logistic regression with a single quantitative
input X. The model is

which implies

FiLLirlg J(x) in s aruoolh 1 ~ h i 0 ~ leds Lo s smooLh eslirusle oI lhe corldi-
tional probability Pr(Y = llx), which can be used for class3cation or risk
scoring.

We construct the penalized log-likelihood criterion

138 5. Basis Expansions and Regularization

where we have abbreviated p(x) = Pr(Y = 1|x). The first term in this ex-
pression is the log-likelihood based on the binomial distribution (c.f. Chap-
ter 4, page 98). Arguments similar to those used in Section 5.4 show that
the optimal f is a finite-dimensional natural spline with knots at the unique
values of x. This means that we can represent f(x) =

∑N
j=1 Nj(x)θj . We

compute the first and second derivatives

∂�(θ)
∂θ

= NT (y − p)− λΩθ, (5.31)

∂2�(θ)
∂θ∂θT

= −NTWN− λΩ, (5.32)

where p is the N -vector with elements p(xi), and W is a diagonal matrix
of weights p(xi)(1− p(xi)). The first derivative (5.31) is nonlinear in θ, so
we need to use an iterative algorithm as in Section 4.4.1. Using Newton–
Raphson as in (4.23) and (4.24) for linear logistic regression, the update
equation can be written

θnew = (NTWN+ λΩ)−1NTW
(
Nθold +W−1(y − p)

)
= (NTWN+ λΩ)−1NTWz. (5.33)

We can also express this update in terms of the fitted values

fnew = N(NTWN+ λΩ)−1NTW
(
fold +W−1(y − p)

)
= Sλ,wz. (5.34)

Referring back to (5.12) and (5.14), we see that the update fits a weighted
smoothing spline to the working response z (Exercise 5.12).

The form of (5.34) is suggestive. It is tempting to replace Sλ,w by any
nonparametric (weighted) regression operator, and obtain general fami-
lies of nonparametric logistic regression models. Although here x is one-
dimensional, this procedure generalizes naturally to higher-dimensional x.
These extensions are at the heart of generalized additive models, which we
pursue in Chapter 9.

5.7 Multidimensional Splines

So far we have focussed on one-dimensional spline models. Each of the
approaches have multidimensional analogs. Suppose X ∈ IR2, and we have
a basis of functions h1k(X1), k = 1, . . . ,M1 for representing functions of
coordinate X1, and likewise a set of M2 functions h2k(X2) for coordinate
X2. Then the M1 ×M2 dimensional tensor product basis defined by

gjk(X) = h1j(X1)h2k(X2), j = 1, . . . ,M1, k = 1, . . . ,M2 (5.35)

5.7 Multidimensional Splines 139

FIGURE 5.10. A tensor product basis of B-splines, showing some selected pairs.
Each two-dimensional function is the tensor product of the corresponding one
dimensional marginals.

can be used for representing a two-dimensional function:

g(X) =
M1∑
j=1

M2∑
k=1

θjkgjk(X). (5.36)

Figure 5.10 illustrates a tensor product basis using B-splines. The coeffi-
cients can be fit by least squares, as before. This can be generalized to d
dimensions, but note that the dimension of the basis grows exponentially
fast—yet another manifestation of the curse of dimensionality. The MARS
procedure discussed in Chapter 9 is a greedy forward algorithm for includ-
ing only those tensor products that are deemed necessary by least squares.

140 5. Basis Expansions and Regularization

Figure 5.11 illustrates the difference between additive and tensor product
(natural) splines on the simulated classification example from Chapter 2.
A logistic regression model logit [Pr(Tlx)] = ~ (x) ~ B is fit to the binary re-
sponse, and the estimated decision boundary is the contour h (~) ~ i = 0.
The tensor product basis can achieve more flexibility at the decision bound-
ary, but introduces some spurious structure along the way.

One-dimensional smoothing splines (via regularization) generalize to high-
er dimensions as well. Suppose we have pairs yi, zi with zi E Rd, and we
seek a &dimensional regression function f (x). The idea is to set up the
problem

where J is an appropriate penalty functional for stabilizing a function f in
Rd. For example, a natural generalization of the one-dimensional roughness
penalty (5.9) for functions on IR' is

Optimizing (5.37) with this penalty leads to a smooth two-dimensional
surface, known as a thin-plate spline. It shares many properties with the
one-dimensional cubic smoothing spline:

as X + 0, the solution approaches an interpolating function [the one
with smallest penalty (5.38)];

as X + co, the solution approaches the least squares plane;

for intermediate values of A, the solution can be represented as a
linear expansion of basis functions, whose coefficients are obtained
by a form of generalized ridge regression.

The solution has the form

where hj(x) = ~ (1 Ix - x j I I) , and ~ (z) = z2 log z2. These hj are examples of
radial basis functions, which are discussed in more detail in the next section.
The coefficients are found by plugging (5.39) into (5.37), which reduces to
a finite-dimensional penalized least squares problem. For the penalty to
be finite, the coefficients aj have to satisfy a set of linear constraints; see
Exercise 5.14.

5.7 Multidimensional Splines 141

Additive Natural Cubic Splines - 4 df each

I - I

Natural Cubic Splines - Tensor Prduct - 4 dl each

FIGURE 6.11. The s i m d d i o n mample of Figure 2. I . The upper p m d s b w s the
decision boundary of an addifiue logistic regression model, using n a h d splines
in each of the teuo coordinates (totd df = 1 + (4 - 1) + (4 - 1) = 7). The lower
panel shaws the results of wing a tensor p d u d of n a t u d spline b m a in each
d i n a t e (hhI df = 4 x 4 = 16). l%e broken p u p k h n d a r y is Ube Hayes
decision boesndaw fop. this problem.

142 5. Basis Expansions and Regularization

Systolic Blood Pressure

FIGURE 1.12. A thin-plate spline fit to the har t disease data, displayed as a
corntour plot. The response is syetolic blood preesure, modeled rrs a function
of age and obesity. The data poirats are indicated, as well rrs the lafice of pints
wed as knols. Care siwaould be taken to w e kmoh from Me lattice inside the convex
hd l of the data (red), and ignore those otlkride (gmrq).

Thin-plate splines are defined more generally for arbitrary dimension d,
for which an appropriately more general J is used.

There are a number of hybrid approaches that are popular in practice,
both for computational and conceptual simplicity. Unlike one-dimensional
smoothing splines, the computational complexity for thin-plate splines is
O(N3), since there is not in general any sparse structure that can be ex-
ploited. However, as with univariate smoothing splines, we can get away
with substantially less than the N knots prescribed by the solution (5.39).
In practice, it is usually sufficient to work with a lattice of knots covering
the domain. The penalty is computed for the reduced expansion just as
before. Using K knots reduces the computations to O(NK2 + K3). Fig-
ure 5.12 shows the result of fitting a thin-plate spline to some heart disease
risk factors, representing the surface as a contour plot. Indicated are the

5.8 Regularization and Reproducing Kernel Hilbert Spaces 147

and

f̂(x) =
N∑

j=1

α̂jK(x, xj). (5.56)

The vector of N fitted values is given by

f̂ = Kα̂

= K(K+ λI)−1y (5.57)
= (I+ λK−1)−1y. (5.58)

The estimate (5.57) also arises as the kriging estimate of a Gaussian ran-
dom field in spatial statistics (Cressie, 1993). Compare also (5.58) with the
smoothing spline fit (5.17) on page 130.

Penalized Polynomial Regression

The kernel K(x, y) = (〈x, y〉 + 1)d (Vapnik, 1996), for x, y ∈ IRp, has
M =

(
p+d

d

)
eigen-functions that span the space of polynomials in IRp of

total degree d. For example, with p = 2 and d = 2, M = 6 and

K(x, y) = 1 + 2x1y1 + 2x2y2 + x21y
2
1 + x22y

2
2 + 2x1x2y1y2 (5.59)

=
M∑

m=1

hm(x)hm(y) (5.60)

with

h(x)T = (1,
√

2x1,
√

2x2, x21, x
2
2,
√

2x1x2). (5.61)

One can represent h in terms of the M orthogonal eigen-functions and
eigenvalues of K,

h(x) = VD
1
2
γ φ(x), (5.62)

where Dγ = diag(γ1, γ2, . . . , γM), and V is M ×M and orthogonal.
Suppose we wish to solve the penalized polynomial regression problem

min
{βm}M

1

N∑
i=1

(
yi −

M∑
m=1

βmhm(xi)

)2

+ λ

M∑
m=1

β2
m. (5.63)

Substituting (5.62) into (5.63), we get an expression of the form (5.53) to
optimize (Exercise 5.16).

The number of basis functions M =
(
p+d

d

)
can be very large, often much

larger than N . Equation (5.55) tells us that if we use the kernel represen-
tation for the solution function, we have only to evaluate the kernel N2

times, and can compute the solution in O(N3) operations.
This simplicity is not without implications. Each of the polynomials hm

in (5.61) inherits a scaling factor from the particular form of K, which has
a bearing on the impact of the penalty in (5.63).

5.7 Multidimensional Splines 143

location of the input features, as well as the knots used in the fit. Note that
X was specified via dfx = trace(Sx) = 15.

More generally one can represent f E lFtd as an expansion in any arbi-
trarily large collection of basis functions, and control the complexity by ap-
plying a regularizer such as (5.38). For example, we could construct a basis
by forming the tensor products of all pairs of univariate smoothing-spline
basis functions as in (5 .35) , using, for example, the univariate B-splines
recommended in Section 5.9.2 as ingredients. This leads to an exponential
growth in basis functions as the dimension increases, and typically we have
to reduce the number of functions per coordinate accordingly.

The additive spline models discussed in Chapter 9 are a restricted class
of multidimensional splines. They can be represented in this general formu-
lation as well; that is, there exists a penalty J [f] that guarantees that the
solution has the form f (X) = a + f l (Xl) + . . . + fd(Xd) and that each of
the functions f j are univariate splines. In this case the penalty is somewhat
degenerate, and it is more natural to assume that f is additive, and then
simply impose an additional penalty on each of the component functions:

These are naturally extended to ANOVA spline decompositions,

where each of the components are splines of the required dimension. There
are many choices to be made:

The maximum order of interaction-we have shown up to order 2
above.

Which terms to include-not all main effects and interactions are
necessarily needed.

What representation to use-ome choices are:

- regression splines with a relatively small number of basis func-
tions per coordinate, and their tensor products for interactions;

- a complete basis as in smoothing splines, and include appropri-
ate regularizers for each term in the expansion.

In many cases when the number of potential dimensions (features) is large,
automatic methods are more desirable. The MARS and MART procedures
(Chapters 9 and 10 respectively), both fall into this category.

5.9 Wavelet Smoothing 151

NMR Signal

Wavelet Transform - Original Signal Wavelet Transform - WaveShlunk Signal

FIGURE 6.14. The t o p p m d slaows ra NMR sigad, wifh the wavelet-shmnk
version mpz~aposed in m. The lower left panel r e p s e a t s Uae wavelet ham-
form of the GT&+UE sigad, d o m to V4, wing the symmlet-8 bwis. Each me&

c imt is repwenkd by the height (positive or nqative) of the vertical bar. The
bwer vight pmd repmerats the wavelet weficients after being shwdevz wing
the waveshrink f imtion in S-PLUS, which implements the Sureshrink method
u j ~ u d d a l ~sldu~lrrliur~ uJ Dvr~uliu urd Jul~r~luuie.

152 5. Basis Expansions and Regularization

Haar Basis Symmlet Basis

φ(x)φ(x)

ψ(x)ψ(x)

FIGURE 5.15. The Haar and symmlet father (scaling) wavelet φ(x) and mother
wavelet ψ(x).

generated by the mother wavelet ψ(x) = φ(2x)−φ(2x−1) form an orthonor-
mal basis for W0 for the Haar family. Likewise ψj,k = 2j/2ψ(2jx− k) form
a basis for Wj .

Now Vj+1 = Vj ⊕ Wj = Vj−1 ⊕ Wj−1 ⊕ Wj , so besides representing a
function by its level-j detail and level-j rough components, the latter can
be broken down to level-(j− 1) detail and rough, and so on. Finally we get
a representation of the form VJ = V0 ⊕W0 ⊕W1 · · · ⊕WJ−1. Figure 5.13
on page 149 shows particular wavelets ψj,k(x).

Notice that since these spaces are orthogonal, all the basis functions are
orthonormal. In fact, if the domain is discrete with N = 2J (time) points,
this is as far as we can go. There are 2j basis elements at level j, and
adding up, we have a total of 2J − 1 elements in the Wj , and one in V0.
This structured orthonormal basis allows for a multiresolution analysis,
which we illustrate in the next section.

While helpful for understanding the construction above, the Haar basis
is often too coarse for practical purposes. Fortunately, many clever wavelet
bases have been invented. Figures 5.13 and 5.15 include the Daubechies
symmlet-8 basis. This basis has smoother elements than the corresponding
Haar basis, but there is a tradeoff:

• Each wavelet has a support covering 15 consecutive time intervals,
rather than one for the Haar basis. More generally, the symmlet-p
family has a support of 2p − 1 consecutive intervals. The wider the
support, the more time the wavelet has to die to zero, and so it can

5.9 Wavelet Smoothing 153

achieve this more smoothly. Note that the effective support seems to
he mulch narrower.

The symmlet-p wavelet &(x) has p vanishing moments; that is,

One implication is that any degree-p polynomial over the N = 2.l
times points is reproduced exactly in Vo (Exercise 5.17). In this sense
Vo ia eqlLivd~l lo LLe hull upact: uI LLe u~uuuLLit~-uplhe pedLy. The
Haar wavelets have one vanishing moment, and Vo can reproduce any
cum La111 Iwclion.

The symmlet-p scaling fundions are one of many families of wavelet
generators. The operations are similar to those for the Haar basis:

If Vo is spanned by $(x - k), then Vl 3 Vo is spanned by (x) =
&$(2x-k) and +(x) = CktZ h(k)$l,k(x), for some filter coefficients

h(k) .

Wo is spanned by $(XI = CbEZg(k)+l,k(x), with filter coefficients
g(k) = (-l)@h(l- k).

5.9.2 Adaptive Wavelet Filtering

Wavelets are particularly useful when the data are measured on a uniform
lattice, such as a discretized signal, image, or a time series. We will focus on
the one-dimensional case, and having N = 2 latticepoints is convenient.
Suppose y is the response vector, and W is the N x N orthonormal wavelet
basis matrix evaluated at the N uniformly spaced observations. Then y* =

WTy is called the wavelet h n a f o m of y (and is the full least squares
regression coefficient). A popular method for adaptive wavelet fitting is
known as SURE shrinkage [Stein Unbiased Risk Estimation, (Donoho and
Johnstone, 1994)l:

which is the same as the lasso criterion in Chapter 3. Because W is or-
thonormal, this leads to the simple solution:

The least squares coefficients are translated toward zero, and truncated
at zero. The fitted function (vector) is then given by the inverse wavelet
h w f o m i = wi.

154 5. Basis Expansions and Regularization

A simple choice for λ is λ = σ
√

2 logN , where σ is an estimate of the
standard deviation of the noise. We can give some motivation for this choice.
Since W is an orthonormal transformation, if the elements of y are white
noise (independent Gaussian variates with mean 0 and variance σ2), then
so are y∗. Furthermore if random variables Z1, Z2, . . . , ZN are white noise,
the expected maximum of |Zj |, j = 1, . . . , N is approximately σ

√
2 logN .

Hence all coefficients below σ
√

2 logN are likely to be noise and are set to
zero.

The space W could be any basis of orthonormal functions: polynomials,
natural splines or cosinusoids. What makes wavelets special is the particular
form of basis functions used, which allows for a representation localized in
time and in frequency.

Let’s look again at the NMR signal of Figure 5.14. The wavelet transform
was computed using a symmlet−8 basis. Notice that the coefficients do not
descend all the way to V0, but stop at V4 which has 16 basis functions.
As we ascend to each level of detail, the coefficients get smaller, except in
locations where spiky behavior is present. The wavelet coefficients represent
characteristics of the signal localized in time (the basis functions at each
level are translations of each other) and localized in frequency. Each dilation
increases the detail by a factor of two, and in this sense corresponds to
doubling the frequency in a traditional Fourier representation. In fact, a
more mathematical understanding of wavelets reveals that the wavelets at
a particular scale have a Fourier transform that is restricted to a limited
range or octave of frequencies.

The shrinking/truncation in the right panel was achieved using the SURE
approach described in the introduction to this section. The orthonormal
N ×N basis matrix W has columns which are the wavelet basis functions
evaluated at the N time points. In particular, in this case there will be 16
columns corresponding to the φ4,k(x), and the remainder devoted to the
ψj,k(x), j = 4, . . . , 11. In practice λ depends on the noise variance, and
has to be estimated from the data (such as the variance of the coefficients
at the highest level).

Notice the similarity between the SURE criterion (5.67) on page 153,
and the smoothing spline criterion (5.21) on page 132:

• Both are hierarchically structured from coarse to fine detail, although
wavelets are also localized in time within each resolution level.

• The splines build in a bias toward smooth functions by imposing
differential shrinking constants dk. Early versions of SURE shrinkage
treated all scales equally. The S+wavelets function waveshrink() has
many options, some of which allow for differential shrinkage.

• The spline L2 penalty cause pure shrinkage, while the SURE L1

penalty does shrinkage and selection.

Exercises 155

More generally smoothing splines achieve compression of the original signal
by imposing smoothness, while wavelets impose sparsity. Figure 5.16 com-
pares a wavelet fit (using SURE shrinkage) to a smoothing spline fit (using
cross-validation) on two examples different in nature. For the NMR data in
the upper panel, the smoothing spline introduces detail everywhere in order
to capture the detail in the isolated spikes; the wavelet fit nicely localizes
the spikes. In the lower panel, the true function is smooth, and the noise is
relatively high. The wavelet fit has let in some additional and unnecessary
wiggles—a price it pays in variance for the additional adaptivity.

The wavelet transform is not performed by matrix multiplication as in
y∗ = WTy. In fact, using clever pyramidal schemes y∗ can be obtained
in O(N) computations, which is even faster than the N log(N) of the fast
Fourier transform (FFT). While the general construction is beyond the
scope of this book, it is easy to see for the Haar basis (Exercise 5.18).
Likewise, the inverse wavelet transform Wθ̂ is also O(N).

This has been a very brief glimpse of this vast and growing field. There is
a very large mathematical and computational base built on wavelets. Mod-
ern image compression is often performed using two-dimensional wavelet
representations.

Bibliographic Notes

Splines and B-splines are discussed in detail in de Boor (1978). Green
and Silverman (1994) and Wahba (1990) give a thorough treatment of
smoothing splines and thin-plate splines; the latter also covers reproducing
kernel Hilbert spaces. See also Girosi et al. (1995) and Evgeniou et al.
(2000) for connections between many nonparametric regression techniques
using RKHS approaches. Modelling functional data, as in Section 5.2.3, is
covered in detail in Ramsay and Silverman (1997).

Daubechies (1992) is a classic and mathematical treatment of wavelets.
Other useful sources are Chui (1992) and Wickerhauser (1994). Donoho and
Johnstone (1994) developed the SURE shrinkage and selection technology
from a statistical estimation framework; see also Vidakovic (1999). Bruce
and Gao (1996) is a useful applied introduction, which also describes the
wavelet software in S-PLUS.

Exercises

Ex. 5.1 Show that the truncated power basis functions in (5.3) represent a
basis for a cubic spline with the two knots as indicated.

156 5. Basis Expansions and Regularization

0
I D '

spline ' I-.,

NMR Signal

1
. *

. .
-

-. . (

spline .
wavela . .

Smooth Function (Simulated)

FIGURE 6.16. Wavcbt moothing m m p e d with amwubilag a p l k a on two
exampla. Each panel compares the SURE-slam& wevdet fit to the crvss-vdidatd
smoothing spline fit.

Exercises 157

Ex. 5.2 Suppose that Bi,M (x) is an order-M B-spline defined in the Ap-
pendix on page 160 through the sequence (5.76)–(5.77).

(a) Show by induction that Bi,M (x) = 0 for x �∈ [τi, τi+M]. This shows, for
example, that the support of cubic B-splines is at most 5 knots.

(b) Show by induction that Bi,M (x) > 0 for x ∈ (τi, τi+M). The B-splines
are positive in the interior of their support.

(c) Show by induction that
∑K+M

i=1 Bi,M (x) = 1∀x ∈ [ξ0, ξK+1].

(d) Show that Bi,M is a piecewise polynomial of order M (degree M − 1)
on [ξ0, ξK+1], with breaks only at the knots ξ1, . . . , ξK .

(e) Show that an order-M B-spline basis function is the density function
of a convolution of M uniform random variables.

Ex. 5.3 Write a program to reproduce Figure 5.3 on page 121.

Ex. 5.4 Consider the truncated power series representation for cubic splines
with K interior knots. Let

f(X) =
3∑

j=0

βjX
j +

K∑
k=1

θk(X − ξk)3+. (5.69)

Prove that the natural boundary conditions for natural cubic splines (Sec-
tion 5.2.1) imply the following linear constraints on the coefficients:

β2 = 0,
∑K

k=1 θk = 0,
β3 = 0,

∑K
k=1 ξkθk = 0.

(5.70)

Hence derive the basis (5.4) and (5.5).

Ex. 5.5 Write a program to classify the phoneme data using a quadratic dis-
criminant analysis (Section 4.3). Since there are many correlated features,
you should filter them using a smooth basis of natural cubic splines (Sec-
tion 5.2.3). Decide beforehand on a series of five different choices for the
number and position of the knots, and use tenfold cross-validation to make
the final selection. The phoneme data are available from the book website
www-stat.stanford.edu/ElemStatLearn.

Ex. 5.6 Suppose you wish to fit a periodic function, with a known period T .
Describe how you could modify the truncated power series basis to achieve
this goal.

Ex. 5.7 Derivation of smoothing splines (Green and Silverman, 1994). Sup-
pose that N ≥ 2, and that g is the natural cubic spline interpolant to the
pairs {xi, zi}N

1 , with a < x1 < · · · < xN < b. This is a natural spline

158 5. Basis Expansions and Regularization

with a knot at every xi; being an N -dimensional space of functions, we can
determine the coefficients such that it interpolates the sequence zi exactly.
Let g̃ be any other differentiable function on [a, b] that interpolates the N
pairs.

(a) Let h(x) = g̃(x)− g(x). Use the boundary conditions on g and integra-
tion by parts to show that∫ b

a

g′′(x)h′′(x)dx = −
N−1∑
j=1

g′′′(x+j){h(xj+1)− h(xj)}. (5.71)

(b) Use the fact that g is a natural cubic spline to argue that this expression
is zero, and hence that∫ b

a

g̃′′(t)2dt ≥
∫ b

a

g′′(t)2dt.

(c) Show that equality can only hold if h is identically zero in [a, b].

(d) Consider the penalized least squares problem

min
f

[
N∑

i=1

(yi − f(xi))2 + λ

∫ b

a

f ′′(t)2dt

]
.

Use (b) to argue that the minimizer must be a cubic spline with knots
at each of the xi.

Ex. 5.8 In the appendix to this chapter we show how the smoothing spline
computations could be more efficiently carried out using a (N + 4) dimen-
sional basis of B-splines. Describe a slightly simpler scheme using a (N +2)
dimensional B-spline basis defined on the N − 2 interior knots.

Ex. 5.9 Derive the Reinsch form Sλ = (I+λK)−1 for the smoothing spline.

Ex. 5.10 Derive an expression for Var(f̂λ(x0)) and bias(f̂λ(x0)). Using the
example (5.22), create a version of Figure 5.9 where the mean and several
(pointwise) quantiles of f̂λ(x) are shown.

Ex. 5.11 Prove that for a smoothing spline the null space of K is spanned
by functions linear in X.

Ex. 5.12 Characterize the solution to the following problem,

min
f

RSS(f, λ) =
N∑

i=1

wi{yi − f(xi)}2 + λ

∫
{f ′′(t)}2dt, (5.72)

where the wi ≥ 0 are observation weights.
Characterize the solution to the smoothing spline problem (5.9) when

the training data have ties in X.

Exercises 159

Ex. 5.13 You have fitted a smoothing spline f̂λ to a sample of N pairs
(xi, yi). Suppose you augment your original sample with the pair x0, f̂λ(x0),
and refit; describe the result. Use this to derive the N -fold cross-validation
formula (5.26).

Ex. 5.14 Derive the constraints on the αj in the thin-plate spline expan-
sion (5.39) to guarantee that the penalty J(f) is finite. How else could one
ensure that the penalty was finite?

Ex. 5.15 This exercise derives some of the results quoted in Section 5.8.1.
Suppose K(x, y) satisfying the conditions (5.45) and let f(x) ∈ HK . Show
that

(a) 〈K(·, xi), f〉HK
= f(xi).

(b) 〈K(·, xi),K(·, xj)〉HK
= K(xi, xj).

(c) If g(x) =
∑N

i=1 αiK(x, xi), then

J(g) =
N∑

i=1

N∑
j=1

K(xi, xj)αiαj .

Suppose that g̃(x) = g(x) + ρ(x), with ρ(x) ∈ HK , and orthogonal in HK

to each of K(x, xi), i = 1, . . . , N . Show that

(d)

N∑
i=1

L(yi, g̃(xi)) + λJ(g̃) ≥
N∑

i=1

L(yi, g(xi)) + λJ(g) (5.73)

with equality iff ρ(x) = 0.

Ex. 5.16 Consider the ridge regression problem (5.53), and assume M ≥ N .
Assume you have a kernel K that computes the inner product K(x, y) =∑M

m=1 hm(x)hm(y).

(a) Derive (5.62) on page 147 in the text. How would you compute the
matrices V and Dγ , given K? Hence show that (5.63) is equivalent
to (5.53).

(b) Show that

f̂ = Hβ̂

= K(K+ λI)−1y, (5.74)

where H is the N ×M matrix of evaluations hm(xi), and K = HHT

the N ×N matrix of inner-products h(xi)Th(xj).

160 5. Basis Expansions and Regularization

(c) Show that

f̂(x) = h(x)T β̂

=
N∑

i=1

K(x, xi)α̂i (5.75)

and α̂ = (K+ λI)−1y.

(d) How would you modify your solution if M < N?

Ex. 5.17 The scaling function φ(x) of the the symmlet-p wavelet basis has
vanishing moments up to order p. Show that this implies that polynomials
of degree p are represented exactly in V0, defined on page 150.

Ex. 5.18 Show that the Haar wavelet transform of a signal of length N = 2J

can be computed in O(N) computations.

Computational Considerations for Splines

In this appendix, we describe the B-spline basis for representing polynomial
splines. We also discuss their use in the computations of smoothing splines.

Appendix: B-splines

Before we can get started, we need to augment the knot sequence defined
in Section 5.2. Let ξ0 < ξ1 and ξK < ξK+1 be two boundary knots, which
typically define the domain over which we wish to evaluate our spline. We
now define the augmented knot sequence τ such that

• τ1 ≤ τ2 ≤ · · · ≤ τM ≤ ξ0;

• τj+M = ξj , j = 1, · · · ,K;

• ξK+1 ≤ τK+M+1 ≤ τK+M+2 ≤ · · · ≤ τK+2M .

The actual values of these additional knots beyond the boundary are arbi-
trary, and it is customary to make them all the same and equal to ξ0 and
ξK+1, respectively.

Denote by Bi,m(x) the ith B-spline basis function of order m for the
knot-sequence τ , m ≤ M . They are defined recursively in terms of divided
differences as follows:

Bi,1(x) =
{

1 if τi ≤ x < τi+1

0 otherwise (5.76)

for i = 1, . . . ,K + 2M − 1. These are also known as Haar basis functions.

Computational Considerations 161

Bi,m(x) =
x− τi

τi+m−1 − τi
Bi,m−1(x) +

τi+m − x

τi+m − τi+1
Bi+1,m−1(x)

for i = 1, . . . ,K + 2M −m.
(5.77)

Thus with M = 4, Bi,4, i = 1, · · · ,K + 4 are the K + 4 cubic B-spline
basis functions for the knot sequence ξ. This recursion can be contin-
ued and will generate the B-spline basis for any order spline. Figure 5.17
shows the sequence of B-splines up to order four with knots at the points
0.0, 0.1, . . . , 1.0. Since we have created some duplicate knots, some care
has to be taken to avoid division by zero. If we adopt the convention
that Bi,1 = 0 if τi = τi+1, then by induction Bi,m = 0 if τi = τi+1 =
. . . = τi+m. Note also that in the construction above, only the subset
Bi,m, i = M − m + 1, . . . ,M + K are required for the B-spline basis
of order m < M with knots ξ.

To fully understand the properties of these functions, and to show that
they do indeed span the space of cubic splines for the knot sequence, re-
quires additional mathematical machinery, including the properties of di-
vided differences. Exercise 5.2 explores these issues.

The scope of B-splines is in fact bigger than advertised here, and has to
do with knot duplication. If we duplicate an interior knot in the construc-
tion of the τ sequence above, and then generate the B-spline sequence as
before, the resulting basis spans the space of piecewise polynomials with
one less continuous derivative at the duplicated knot. In general, if in ad-
dition to the repeated boundary knots, we include the interior knot ξj

1 ≤ rj ≤ M times, then the lowest-order derivative to be discontinuous
at x = ξj will be order M − rj . Thus for cubic splines with no repeats,
rj = 1, j = 1, . . . ,K, and at each interior knot the third derivatives (4−1)
are discontinuous. Repeating the jth knot three times leads to a discontin-
uous 1st derivative; repeating it four times leads to a discontinuous zeroeth
derivative, i.e., the function is discontinuous at x = ξj . This is exactly what
happens at the boundary knots; we repeat the knots M times, so the spline
becomes discontinuous at the boundary knots (i.e., undefined beyond the
boundary).

The local support of B-splines has important computational implica-
tions, especially when the number of knots K is large. Least squares com-
putations with N observations and K +M variables (basis functions) take
O(N(K +M)2 + (K +M)3) flops (floating point operations.) If K is some
appreciable fraction of N , this leads to O(N3) algorithms which becomes
unacceptable for large N . If the N observations are sorted, the N×(K+M)
regression matrix consisting of the K + M B-spline basis functions evalu-
ated at the N points has many zeros, which can be exploited to reduce the
computational complexity back to O(N). We take this up further in the
next section.

162 5. Basis Expansions and Regularization

B-splines uf Order 1

B-splines uf Order 2

8-splines of Order 3

8-splines of Order 4

FIGURE 5.17. The sequence o j B-splines up to o d e r four ~ t h t en haoh evenly
speed fmm 0 to 1 . The B-splines have local support; they m r e noazem om an
iakwd spanned hy M + 1 h o t s .

Computational Considerations 163

Computations for Smoothing Splines

Although natural splines (Section 5.2.1) provide a basis for smoothing
splines, it is computationally more convenient to operate in the larger space
of unconstrained B-splines. We write f(x) =

∑N+4
1 γjBj(x), where γj are

coefficients and the Bj are the cubic B-spline basis functions. The solution
looks the same as before,

γ̂ = (BTB+ λΩB)−1BTy, (5.78)

except now the N × N matrix N is replaced by the N × (N + 4) matrix
B, and similarly the (N + 4) × (N + 4) penalty matrix ΩB replaces the
N × N dimensional ΩN . Although at face value it seems that there are
no boundary derivative constraints, it turns out that the penalty term
automatically imposes them by giving effectively infinite weight to any non
zero derivative beyond the boundary. In practice, γ̂ is restricted to a linear
subspace for which the penalty is always finite.

Since the columns of B are the evaluated B-splines, in order from left
to right and evaluated at the sorted values of X, and the cubic B-splines
have local support, B is lower 4-banded. Consequently the matrix M =
(BTB+λΩ) is 4-banded and hence its Cholesky decomposition M = LLT

can be computed easily. One then solves LLT γ = BTy by back-substitution
to give γ and hence the solution f̂ in O(N) operations.

In practice, when N is large, it is unnecessary to use all N interior knots,
and any reasonable thinning strategy will save in computations and have
negligible effect on the fit. For example, the smooth.spline function in S-
PLUS uses an approximately logarithmic strategy: if N < 50 all knots are
included, but even at N = 5, 000 only 204 knots are used.

164 5. Basis Expansions and Regularization

+ This is page 165
Printer: Opaque this

6
Kernel Methods

In this chapter we describe a class of regression techniques that achieve
flexibility in esthnatimg the regression function f (X) over the domain IRp
by fitting a different but simple model separately at each query point xo.
This ia dv~le by using v ~ ~ l y Lhuae vbsamlivm clwe Lo Lhe LtlrgeL poirll a0 Lo
fit the simple model, and in such a way that the resulting estimated fundion
f (~) is mooth in IRp. This localization is achieved via a weighting function
or kernel KA (xo , xi), which assigns a weight to xi based on its distance from
s o . The kernels KA are typically indexed by a parameter X that dictates
the width of the neighborhood. These memory-bras& methods require in
principle little or no training; all the work gets done at evaluation time.
The only parameter that needs to be determined from the training data is
A. The model, however, is the entire training data set.

We also discuss more general classes of kernel-based techniques, which
tie in with structured methods in other chapters, and are useful for density
estimation and classification.

6.1 One-Dimensional Kernel Smoothers

In Chapter 2, we motivated the k-nearest-neighbor aver age

f(x) = Ave(~i 1 xi E Nk (x))

as an estimate of the regression function E(Y IX = x) . Here Nk (x) is the set
of k points nearest to x in squared distance, and Ave denotes the average

166 6. Kernel Methods

Nearest-Nelghbar Kernel

1. I n each panel 100 p i r s xi, y, are generated at random fmm the ,., ~ u r v e ,.A Gaussian errors: Y = sin(4X) +&, X U[O, 11, E - N(O,1/3). I n
the left panel the g m n a w e is the wml t of a-30-naamshneighbr rernning-maan
smoother. The d point is the fitted constant j (xo) , and the m n g e dded circles
indicate those observaEions mtribut ing to the fit at 2 0 . The solid omnge -ion
indicates the weights assigned to observations. I n the right panel, the green curve
is the kernebweighted average, using an Epanechnhv kernel with (half) window
width X = 0.2.

(mean). The idea is to relax the definition of conditional expectation, as
illustrated in the left panel of Figure 6.1, and compute an average in a
neighborhood of the target point. In this case we have used the 3CLnearest
neighborhood-the fit at xo is the average of the 30 pairs whose x i values
are closest to XO. The green curve is traced out as we 5pply this definition
at different values xo. The green curve is bumpy, sinm f (x) is discontinuous
in x. As we move xo from left to right, the k-nearest neighborhood remains
constant, until a point xi to the right of xo becomes closer than the furthest
point ail in the neighborhood to the left of so, at which time xi replaces ail.
The average in (6.1) changes in a discrete way, leading to a discontinuous

fe>.
This discontinuity is ugly and unnecessary. Rather than give all the

points in the neighborhood equal weight, we can assign weights that die
off smoothly with distance from the target point. The right panel shows
an example of this, using the secalled Nadaraya-Watson kernel-weighted
average

6.1 One-Dimensional Kernel Smoothers 167

with the Epanechnikov quadratic kernel

with

2(1 - t2) if It1 < 1; D(t) =
otherwise.

The fitted function is now continuous, and quite smooth in the right panel
of Figure 6.1. As we move the target from left to right, points enter the
neighborhood initially with weight zero, and then their contribution slowly
increases (see Exercise 6.1).

In the right panel we used a metric window size X = 0.2 for the kernel
fit, which does not change as we move the target point xo, while the size
of the 30-nearest-neighbor smoothing window adapts to the local density
of the xi. One can, however, also use such adaptive neighborhoods with
kernels, but we need to use a more general notation. Let hA(xo) be a width
function (indexed by A) that determines the width of the neighborhood at
z o . Then more generally we have

In (6.3), hx(xo) = X is constant. For k-nearest neighborhoods, the neigh-
borhood size k replaces A, and we have hk (xo) = 1x0 - x[k] I where x[k] is
the kth closest xi to xo.

There are a number of details that one has to attend to in practice:

The smoothing parameter A, which determines the width of the local
neighborhood, has to be determined. Large X implies lower variance
(averages over more observatior~s) but higher bias (we esserltially as-
sume the true function is constant within the window).

Metric window widths (constant hx(x)) tend to keep the bias of the
estimate constant, but the variance is inversely proportional to the
local density. Nearest-neighbor window widths exhibit the opposite
behavior; the variance stays constant and the absolute bias varies
inversely with local density.

Issues arise with nearest-neighbors when there are ties in the xi. With
most smoothing techniques one can simply reduce the data set by
averaging the yi at tied values of X, and supplementing these new
observations at the unique values of xi with an additional weight wi
(which multiples the kernel weight).

168 6. Kernel Methods

2 . A comparison oJ thwe popdav k e m b fop. load smoothing. Each
,., ,,,. -.,rakl to integmte to 1. The t+cesbe k m e l is compact a d has two
continuow devivaiives at the boesndaq~ of its suppv-4 while the Epnechnikov key-
a d ~ Q S a m e . Th.e Gaussian kernel % mntinuowly d i f lmnt id le , but h s infinite
support.

This leaves a more general problem to deal with: observation weights
wi. Operationally we simply multiply them by the kernel weights be-
fore computing the weighted average. With nearest neighborhoods, it
is now natural to insist on neighborhoods with a total weight content
k (relative to C wi). In the event of overflow (the last observation
needed in a neighborhood has a weight wj which causes the sum of
weights to exceed the budget k), then fractional parts can be used.

Boundary issues arise. The metric neighborhoods tend to contain less
points on thc boundaries, whilc thc ncarcst-ncighborhoods gct widcr.

The Epanechnikov kernel has compact support (needed when used
with nearesbneighbor window size). Another popular compact kernel
is based on the tri-cube function

D(t) =
{ S - t3)3 if t l 5 1;

otherwise

This is flatter on the top (like the nearesbneighbor box) and is diEer-
entiable at the boundary of its support. The Gaussian density func-
tion D(d) = $(t) is a popular noncompact kernel, with the standard-
deviation playing the role of the window size. Figure 6.2 comparcs
the three.

6.1.1 Loml LEnmr Regression

We have progressed from the raw moving average to a smoothly varying
locally weighted average by using kernel weighting. The smooth kernel fit
still has problems, however, as exhibited in Figure 6.3(left panel). Locally-
weighted averages can be badly biased on the boundaries of the domain,

6.1 0neDimensiona.l Kernel Smoothers 169

N-W Kernel at Baundary

-I 0 0 0 0

Laml Llnear kgl#cslan at Boundary

The locally weighhi average has bias pb lems at or near the
,,.,,arie, , ,ie domain. The h e &action is appmzinaately linear hem, but
most of the obsewations in the neighborhood have a higher mean than the target
point, so despite weighting, their naean will be biased upwad . By fitting a idly
weighted Pnear w s s i o n (right panel), this bias is m o o e d to first order

because of the asymmetry of the kernel in that region. By fitting straight
lines rather than constants locally, we can remove this bias exactly to first
order; see Figure 6.3 (right panel). Actually, this bias can be present in the
interior of the domain as well, if the X values are not equally spaced (for
the same reasons, but usually less severe). Again locally weighted linear
regression will make a &border correction.

Locally weighted regression solves a separate weighted least squares prob-
lem at each target point xo:

The atimate is then .f(zo) = &(so) + $(xo)xo, Notice that although we fit
an entire linear model to the data in the region, we only use it to evaluate
the fit at the single point xo.

Defhe the vector-valued function b (~) ~ = (1,x). Let B be the N x 2
regression matrix with ith row b (~ ~) ~ , and W(xo) the N x N diagonal
matrix with ith diagonal element Kx(xo, xi). Then

Equation (6.8) gives an explicit expression for the local linear regression
estimate, and (6.9) highlights the fact that the estimate is linear in the

170 6. Kernel Methods

Lacel Llnear 6quhralent Kern4 at Baunday

6.4. The gram points show the equivalent kernel l,(xo) for local re-
yr-,.on. These are the weights in f ^ (~ ~) = zZl li(x~)yi, plotted against thek
wmespmding xi. For display pvposes, these have been wscded, since in fact
they suna to 1 . Since the o m g e shaded region is the (resealed) ecpivdepzt kernel
for the Nadaraya-Watson local average, we see how Iocd rqression automati-
cally modifies the weighting kernel to mrrecf for biases due to asymmetry in the
srnooUling windmu.

yi (the lr(xo) do not involve y). These weights li(xo) combine the weigh&
ing kernel KA(xo, .) and the least squares operations, and are sometimes
referred to as the ecpiwalent kernel. Figure 6.4 illustrates the effect of 1-
cal linear regression on the equivalent kernel. Historically, the bias in the
Nadaraya-Watson and other local average kernel methods were corrected
by modifying the kernel. These modifications were based on theoretical
asymptotic mean-square-error considerations, and besides being tedious to
implement, are only approximate for finite sample sizes. Local linear r e
gression avtonaatically modifies the kernel to correct the bias emctly to
f ist order, a phenomenon dubbed as automatic kernel oarpent~. Consider
the following expansion for Ef (xo), using the linearity of local regression
and a series expansion of the true function f around s o ,

where the remainder term R involves third- and higheer-order derivatives
of f , and is typically small under suitable smoothness assumptions. It can

6.1 OneDimensional Kernel Smoothers 171

Lmal Quadratic In Ihterlar

h d linear fits exhibit bias in regiona of cum&re of the h e
,,.-,on. ,- padmtic fits tend to diminate this bias.

be shown (Exercise 6.2) that for local linear regression, cE~ lc(x0) = 1

and xzl (xi - xO)li (xO) = 0. Hence the middle term equals f (so), and
since the bias is ~f"(x0) - f (so), we see that it depends only on quadratic
and higher-order terms in the expansion of f .

6.1 2 A al Polpbv--'a1 Regr
Why stop at local linear fits? We can fit local polynomial fits of any degree
d,

with solution f(xo) = b(xo) + xy=l f i i(xO)~. In fact, an expansion like
(6.10) will tell us that the bias will only have components of degree d+l and
higher (Exercise 6.2). Figure 6.5 illustrates local quadratic regression. Local
linear fits tend to be biased in regions of curvature of the true function, a
phenomenon referred to as ternrning the hilb and filling the volleys. Local
quadratic regression is generally able to correct this bias.

There is of course a price to be paid for this bias reduction, and that is
increased variance. The fit in the right panel of Figure 6.5 is slightly more
wiggly, especially in the tails. Asswning the model yc = f (xi) + ei, with

independent and identically distributed with mean zero and variance
u" var(fl(x0)) = u2111(xo)lla, where l(xo) is the vector of equivalent kernel
weights at xo. It can be shown (Exercise 6.3) that 1 11 (so) 1 1 increases with d,
and so there is a bias-variance tradeoff in selecting the polynomial degree.
Figure 6.6 illustrates these variance curves for degree zero, one and two

172 6. Kernel Methods

Linear

FIGURE 6.6. The variances junctions 1 lI(x)11' for lorn1 constant, l inear and

quudretic r c p s s i o n , for a m h i c bandwidth (A = 0.2) tri-cube kernel.

local polynomials. To summarize some collected wisdom on this issue:

Local linear fits can help bias dramatically at the boundaria at a
modest cost in variance. Local quadratic fits do little at the bound-
aria for bias, but increase the variance a lot.

a Local quadratic fits tend to be most helpful in reducing bias due to
curvature in the interior of the domain.

Asymptotic analysis suggest that local polynomials of odd degree
dominate thmc of cvcn dcgrcc. This h largely duc to thc fact that
asymptotically the MSE is dominated by boundary effects.

While it may be helpful to tinker, and move from local linear fits at the
boundary to local quadratic fits in the interior, we do not recommend such
strategies. Usually the application will didate the degree of the fit. For
example, if we are interested in extrapolation, khen the boundary is of
more interest, and local linear fits are probably more reliable.

6.2 Selecting the Width of the Kernel

In each of the kernels f i , X is a parameter that controls its width:

a For thc Epmcchnilrov or tri-cubc kcrncl with mctric width, A is thc
radius of the support region.

For the Gaussian kernel, X is the standard deviation.

a A is the number k of nearest neighbors in k-nearest neighborhoods,
often expressed as a fraction or spapa k/N of the total training sample.

6.2 Seleding the Width of the Kernel 173

7 . Equivdeaf k m e h for a E d linear re.gressioa smoother (hi-cube
kme l ; red) a d a smoothing w l i e (green), with matching d-s o j & d m .
The .vertid spikes indicates the tawet pints.

There is a natural bias-variance tradeoff as we change the width of the
averaging window, which is most explicit for local averages:

a If the window is narrow, j (~) is an average of a small number of yi
c l m Lo zo, and its variance will he relatively I a r g ~ l m Lo that of
an individual yi. The bias will tend to be small, again because each
of the E(gi) = f (xi) should be c h e to f (so).

a If the window is wide, the variance of f(zo) will be small relative to
the variance of any yi, because of the effects of averaging. The bias
will be higher, because we are now using obervations xi further from
xo, and there is no guarantee that f (xi) will be close to f (xo).

Similar wgu~utmLs apply Lo locd repssio11 e s l h s l e s , say local linear: as
the width goes to zero, the estimates approach a piecewiselinear fundion
that interpolates the training data; as the width gets infinitely large, the
fit approaches the global linear least-squares fit to the data.

The dtsmdon In Chapter 5 on selecting the regularhation parameter for
smoothing splines applies here, and will not be repeated. Local regression
smoothers are linear estimators; the smoother matrix in = SAy is built up
from the equivalent kernels (6.8), and has i j th entry {SAIij = li (xj). Leavs
one-out cros*validation is particularly simple (Exercise 6.7), as is general-
ized cross-validation, Cp (Exercise 6. lo), and k-fold crow validation. The
effective degrees of freedom is again defined as trace(Sx), and can be used
to calibrate the amount of smootking. Figure 6.7 compares the equivalent
kernels for a smoothing spline and local linear regression. 'l'he local regree
sion smoother has a span of 40%, which results in df = trace(Sx) = 5.86.
The smoothing spline was calibrated to have the same df, and their equiv-
alent kernels are qualitatively quite similar.

174 6. Kernel Methods

6 .3 Local Regression in IRp

Kernel smoothing and local regression generalize very naturally to two or
more dimemiom. The Nadaraya-Watsan kernel smoother fits a constant
locally with weights supplied by a pdimenaional kernel. Local linear r s
gression will fit a hyperplane locally in X , by weighted least squares, with
weights supplied by a pdimensional kernel. It is simple to implement and
is generally preferred to the local constant fit for its superior performance
on the boundaries.

Let b (X) be a vector of polynomial terms in X of maximum degree d.
For example, with d = 1 and p = 2 we get b(X) = (1,X1, Xa); with d = 2
we get b(X) = (I, XI, X2, Xf , X:, X1X2); and trivially with d = 0 we get
b(X) = 1. At each xo E IRp solve

to produce the fit f(zo) = b(zo)Tb(zo). Typically the kernel will be a radial
function, such as the radial Epanechnikov or tri-cube kernel

where I I . I I b the Euclidean norm. Since the Euclidean norm depends on the
units in each coordinate, it makes most sense to standardize each predictor,
for example, to unit standard deviation, prior to smoothing.

While boundary effects are a problem in one-dimensional smoothing,
llley ate a. LUU& bigget- bt-oLleiu h I w u ut. Ligllet- Jiiuehiow, h c e Lhe
fraction of points on the boundary is larger. In fact, one of the manifest*
liom oI Lhe curse oI diruemio~dly is lhsl Lhe Irtlclio~l oI poir~ls close lo Lhe
boundary increases to one as the dimension grows. Directly modifying the
kernel to accommodate twedimensional boundaries becomes very messy,
especially for irregular boundaries. Local polynomial regression seamlessly
performs boundary correction to the desired order in any dimensions. Fig-
ure 6.8 illustrates local linear regression on some measurements from an
astronomical study with an unusual predictor design (star shaped). Here
the boundary is extremely irregular, and the fitted surface must also inter-
polate over regions of increasing data sparsity as we approach the boundary.

Local regression becomes less useful in dimensions much higher than two
or three. We have discussed in some detail the problems of dimensional-
ity, for example, in Chapter 2. It is impossible to simultaneously main-
tain localness (+ low bias) and a sizeable sample in the neighborhood (+
low variance) as the dimension increases, without the total sample size in-
creasing exponentially in p. Visualization of J(x) also becomes difficult in
higher dimensions, and this is often one of the primary goals of smoothing.

6.4 Structured Local Regression Models in IRP 175

FIGURE 6.8. The left panel shows three-dimensimd data, where the response
is the velacity mmsurements on a galaxy, and the two predictors d positiow
on the celestial sphere. The unusual 'ktar" shaped design indicates the way the
mwerremen~ were made, and results in an extremely irwplar boundary. The
right panel shows the m d t s of local linear wpession smoothing in R2, using a
nearestneighhr window with 15% of the data.

Although the scatter-cloud and wireframe pictures in Figure 6.8 look at-
tractive, it is quite dficult to interpret the results except at a gross level.
From a data analysis perspective, conditional plots are far more useful.

Figure 6.9 shows an of some environmental data with three p r e
dictors. The trellis display here shows ozone as a function of radiation,
conditioned on the other two variables, temperature and wind speed. How-
ever, conditioning on the value of a variable really implies local to that
value (as in local regression). Above each of the panels in Figure 6.9 is an
indication of the range of values present in that panel for each of the condi-
tioning values. In the panel itself the data subsets are displayed (response
versus remaining variable), and a onedimensional local linear regression is
fit to the data. Although this is not quite the same aa looking at slices of
a fitted three-dimensional surface, it is probably more useful in terms of
understanding the joint behavior of the data.

6.4 Structured Local Regression Models in IR?

When the dimension to samplesize ratio is unfavorable, local regression
does not help us much, unless we are willing to make some structural as-
sumptions about the model. Much of this book is about structured regres
sion and classification models. Here we focus on some approaches directly
related to kernel methods.

176 6. Kernel Methods

Solar Radiation (langleys)

FIGURE 6.9. The-d imens iona l smoothing example. The m p p z s e i s
(cube-mot) o f ozone concentmtion, and the thm predictors are temperature, wind
speed and radiation. The trellis display shows ozone wi a function of radiation,
wnditioned on intervals of t empemtu~e and mind speed (indicated by darker g m n
o r orange shaded bas) . Each panel aontaiw &out 40% of the range of each of
#e wnditioned variables. The c v w e in each panel is a univaride local linear
wgession, fit t o the data in the panel.

6.4 Structured Local Regression Models in lRp 177

. S t m c t u d Kernels

One line of approach is to modify the kernel. The default spherical ker-
nel (6.13) gives equal weight to each coordinate, and so a natural default
strategy is to standardize each variable to unit standard deviation. A more
general approach is to use a positive semidefinite matrix A to weigh the
different coordinates:

Entire coordinates or directions can be downgraded or omitted by imposing
appropriate rcstridions on A. For cxamplc, if A is diagonal, thcn wc can
increase or decrease the influence of individual predictors Xj by increasing
or dccrcnsing Aj j . Oftcn thc prcdictora arc many and highly corrclatcd,
such as those arising from digitized analog signals or images. The covariance
function of the predictors can be used to tailor a metric A that focuses less,
say, on high-frequency mntrasts (Exercise 6.4). Proposals have been made
for learning the parameters for multidimensional kernels. For example, the
projection-pursuit regression model discussed in Chapta 11 is of this flavor,
where low-rank versions of A iinply ridge fullctiom for f (X). More general
models for A are cumbersome, and we favor instead the structured forms
[or Lhe regression IucLio11 & L W ~ 1 ~ x 1 .

6.4.2 S t m c t u d Regression Functions

We are trying to fit a regression function E(Y1X) = f (XI, Xa, . . . , Xp) in
IRP, in which every level of interaction is potentially present. It is natural
to consider analysis-of-variance (ANOVA) decompositions of the form

and then introduce structure by eliminating some of the higher-order terms.
Additive models assume only main effect terms: f (X) = a + Cy=l gj (Xj);
second-order models will have terms with interactions of order at mod
two, and so on. In Chapter 9, we describe iterative backjitting algorithms
for fitting such low-order interaction models. In the additive model, for
example, if all but the kth term is assumed known, then we can estimate gk

by local regression of Y - C j f k gj (Xi) on Xk. This is done for each function
in turn, repeatedly, until convergence. The important detail is that at any
st age, onedimensional local regression is all that is needed. The same ideas
can be used to fit low-dimensional ANOVA decompositiom.

An important special case of these structured models are the class of
varping coeficient rndeb. Suppose, for example, that we divide the p pre-
dictors in X into a set (XI, X2, . . . , Xp) with q < p, and the remainder of

178 6. Kernel Methods

Aortic Diameter vs Age

FIGURE 6.10. In each panel the aorta diameter b modeled a linear fwc-
tion of age. The coeficientts of &is model vary with gender and depth down
the aorta (left is near the top, right b low down). Them b a clear trend in the
coeficients of the linear model.

the variables we collect in the vector Z. We then assume the conditionally
linear model

For given 2, this is a linear model, but each of the coefficients can vary
with 2. It is natural to fit such a model by locally weighted least squares:

Figure 6.10 illustrates the idea on measurements of the human aorta. A
longstanding claim bas been that the aorta thickens with age. Here we
model the diameter of the aorta as a linear function of age, but allow the
coefficients to vary with gender and depth down the aorta. We used a local
regression model separately for males and females. While the aorta clearly
does thicken with age at the higher regions of the aorta, the relationship
fades with distance down the aorta. Figure 6.11 shows the intercept and
slope as a function of depth.

6.5 Local Likelihood and Other Mod& 179

Male Female

Dlstarce Down Aorta Dlstarce Down Aorta

FIGURE 6.11. me intercept and slop of age as a function of distance down
Uae aorta, s e p d e l y for males and ferndes. Tile ydlow bands iadimte one dam-
d a d e m r .

6.5 Local Likelihood and Other Models

The concept of local regression and varying coefficient models is extremely
broad: any parametric model can be made local If the Bttlng method ac
commodates observation weights. Here are some examples:

Associated with each okrvation TJ~ h a parameter Bi = B(sc) = sTfi
linear in the mvariate(s) q, and inference for /3 is based on the log-
likelihood 1 (P) = c ~ N , ~ 1 (uE, xTP). We can model B(X) more flexibly
by using the likelihood local to xo for inference of f?(xo) = xrfl(xo):

Many likelihood models, in particular the family of generalized linear
models including logistic and log-hear models, involve the covariates
in a linear fashion. Local likelihood allows a relaxation from a globally
linear model to one that is locally linear.

180 6. Kernel Methods

As above, except different variables are associated with 0 from those
used for defining the local likelihood:

For example, ~ (x , 0) = xTO could be a linear model in x. This will fit
a varying coefficient model 8 (z) by maximizing the local likelihood.

Autoregressive time series models of order k have the form yt =

h + Pl~t-1 + Pzyt-2 + ... + Pkyt-k + ~ t . Denoting the lag set by
zt = (yt-l, yt-2,.. . , ytYt-k), the model looks like a standard linear
model yt = z : ~ + E ~ , and is typically fit by least squares. Fitting
by local least squares with a kernel K(zo, zt) allows the model to
vary according the short-term history of the series. This is to be
distinguished from the more traditional dynamic linear models that
vary by windowing time.

As an illustration of local likelihood, we consider the local version of the
multi-class linear logistic regression model (4.32) of Chapter 4. The data
consist of features xi and an associated categorical response gi E {1,2, . . . , J),
and the linear model has the form

The local log-likelihood for this J class model can be written

Notice that

we have used gi as a subscript in the first line to pick out the appro-
priate numerator;

PJo = 0 and /?j = 0 by the definition of the model;

we have centered the local regressions at xo, so that the fitted poste-
rior probabilities at xo are simply

6.5 Local Likelihood and Other Mod& 181

Systolic Blood Pressure Obesity

FIGURE 6.12. Each plof s h m s the binary w p m e GHD (coronary h r t dis-
w e) rn m jknction of m r i sk fadm for the South A f i c a n heart disease d d a .
For eech plot we have mmpuied t h e fiaed premlaa~e of CHD w i n g a l d Enear
logistic regression mod$. T h e ulampecfed incmse in the pmdence of CHD at
the lower ends of the ranges i s b w e ihese are r e h $ ~ 1 ~ ~ t i v e d d a , and some of
tlae subjects laad d m d y undergone treatment t o reduce tlaeir Mood pressurn and
weight. The s h d d v i m i n the plof i a d i m k s ma e s f i m t d pointwise standmd
e m hnd.

This model can be used for flexible multi-class classification in moder-
ately low dimensions, although successes have been reported with the high-
dimensional ZIP-code classification problem. Generalized additive models
(Chapter 9) using kernel smoothing methods are clmely related, and avoid
dimensionality problems by assuming an additive structure for the regre*
sion function.

As a simple illustration we fit a tweclass local linear logistic model to
the heart disease data of Chapter 4. Figure 6.12 shows the univariate local
logistic models fit to two of the risk factors (separately). Thh is a useful
screening device for detecting nonlinearities, when the data themselves have
little visual information to offer. In this case an unexpected anomaly is
uncovered in the data, which may have gone unnoticed with traditional
methods.

Since cm is a binary indicator, we could estimate the conditional preva,
lence Pr(G = jlxo) by simply smoothmg this binary response directly with-
out resorting to a likelihood formulation. This amounts to fitting a locally
constant logistic regression model (Exercise 6.5). In order to enjoy the bias-
correction of local-linear smoothing, it is more natural to operate on the
unrestricted logit scale.

Typically with logistic regression, we compute parameter estimates as
well as their standard errors. This can be done locally as well, and so

182 6. Kernel Methods

140 160 180

Systolic Blood Pressure (for CHD group)

FIGURE 6.13. A kernel density estim.de for systolic M o d presswm (for the
CHD growp). The density est imate at each p i a t ds f ie rawrage comhibwtim from
each of the kernels at that point W e have scaled the kernels down by a factor of
10 to make the graph readable.

we can produce, as shown in the plot, estimated pointwise standard-error
bands about our fitted prevalence.

6.6 Kernel Density Estimation and Classification

Kernel density estimation is an unsupervised learning procedure, which
historically precedes kernel regression. It also leads naturally to a simple
family of procedures for nonparametric classfication.

6.6.1 Kernel Density Estimation
Suppose we have a random sample XI,. . . , X N drawn from a probability
density fx (x), and we wish to estimate fx at a point xo. For simplicity we
assume for now that X E IR. Arguing as before, a natural local estimate
has the form

where N(xo) is a small metric neighborhood around xo of width A. This
eslirnale is bumpy, m ~ d lhe smoolh Prarzen eslirusle is p ~ b r r e d

6.6 Kernel Density IMirnation and Classification 183

9
0 - 0

100 180 220 100 140 180 220

Systolic Blood Pressure Systolic Blood Pressure

FIGURE 6.14. The left panel shows tlae t w o s e w d e demsity e s t i m a k s for
sysblic blood pmssuc in the CHD ercrswa no-CHD p u p s , using a Cawsian
k m e l density est imate i a each. The right p m d slaows Uae essnaded pos teeor
probabilities for CHD, wing (6.25).

because it counts obervations clme to so with weights that decrease with
distance h m XO. In this case a popular choice for KA is the Gaussian kernel
K x (x o , x) = $(Ix - xol/X). Figure 6.13 shows a Gaussian kernel density fit
Lo the sample mlulea for systolic blood pressure for the group. 1,ekLing
+A denote the Gaussian density with mean zero and standard-deviation A,
then (6.22) has the form

the convolution of the sample empirical distribution @ with dx. The dis-
tribution @(XI puts mass l/N at each of the o k r v e d xi, and is jumpy; in
fx (a) we have smoothed @ by adding independent Gaussian noise to each
observation xi.

The Pamen density estimate is the equivalent of the local average, and
improvements have been proposed along the lines of local regression (on the
log scale for densities; see Loader (1999)). We will not pursue these here.
In IRP the natural generalization of the Gaussian density estimate amounts
to using the Gaussian product kernel in (6.23),

184 6. Kernel Methods

FIGURE 6.15. The popdation d m s demities may have interesting s t m d u m
(left) that disappear^ when the poste fior probabilities are j o d (right).

6.6.2 Kernel Density Classification
One can use nonparametric density estimates for classification in a straighk
forward fashion using Bayes' theor~m. Suppose for a J class problem we fit
nonparametric density estimates fj(X), j = 1,. . . , J separately in each of
the classes, and we also have estimates of the class priors .irj (usually the
sample proportions). Then

Figure 6.14 uses this method to estimate the prevalence of CIID for the
heart risk factor study, and should be compared with the left panel of Fig-
ure 6.12. The main difference occurs in the region of high SBP in the right
panel of Figure 6.14. In this region the data are sparse for both classes, and
tritlce lhe G~al~rtiizlt~ k e t t d &mily etrLitnaLetr utit: helrir: kemelr, lhe t:mily
estimates are low and of poor quality (high variance) in these regions. The
local logistic regression method (6.20) uses the tri-cube kernel with k-NN
bandwidth; this effectively widem the kernel in this region, and makes use
of the local linear assumption to smooth out the estimate (on the logit
scale).

If classification is the ultimate goal, then learning the separate class den-
sities well may be unnecessary, and can in fact be misleading. Figure 6.15
shows an example where the densities are both multimodal, but the pos-
terior ratio h quite smooth. In learning the separate densities from data,
one might decide to settle for a rougher, high-variance fit to capture these
features, which are irrelevant for the purposes of estimating the posterior
probabilities. h fact, if classitication is the ultimate goal, then we need only
to estimate the posterior well near the decision boundary (for two classes,
this is the set {slPr(G = 1IX = z) = i)).

6.6.9 The Naive Bayes Classifier

This is a technique that has remained popular over the years, despite its
name (also known as Ydiot's Bayes"!) It is especially appropriate when

6.6 Kernel Density Estimation and Classification 185

the dimension p of the feature space is high, making density estimation
unattractive. The naive Bayes model assumes that given a class G = j , the
features Xk are independent:

While this assumption is generally not true, it does simplify the estimation
dramatically:

The individual class-conditional marginal densities fjk can each be
eslirnalecl separalely usirlg uue-dir~~er~siur~al kerrlel clerlsily eslirnales.
This is in fact a generalization of the original naive Bayes procedures,
which used univariate Gaussians to represent these marginals.

If a component X j of X is discrete, then an appropriate histogram
estimate can be used. This provides a seamless way of mixing variable
types in a feature vector.

Despite these rather optimistic assumptions, naive Bayes classifiers often
outperform far more sophisticated alternatives. The reasons are related to
Figure 6.15: although the individual class density estimates may be biased,
this bias might not hurt the posterior probabilities as much, especially
near the decision regions. In fact, the problem may be able to withstand
considerable bias for the savings in variance such a "naive" assumption
earrls.

Starting from (6.26) we can derive the logit-transform (using class J as
the base) :

Pr(G = !lX)
logit = log Tefe(X)

Pr(G = JIX) T J ~ J (X)

This has the form of a generalized additive model, which is described in more
detail in Chapter 9. The models are fit in quite different ways though; their
differences are explored in Exercise 6.9. The relationship between naive
Bayes and generalized additive models is analogous to that between linear
discriminant analysis and logistic regression (Section 4.4.4).

186 6. Kernel Methods

6.7 Radial Basis Functions and Kernels

In Chapter 5, functions are represented as expansions in basis functions:
f(x) =

∑M
j=1 βjhj(x). The art of flexible modeling using basis expansions

consists of picking an appropriate family of basis functions, and then con-
trolling the complexity of the representation by selection, regularization, or
both. Some of the families of basis functions have elements that are defined
locally; for example, B-splines are defined locally in IR. If more flexibility
is desired in a particular region, then that region needs to be represented
by more basis functions (which in the case of B-splines translates to more
knots). Tensor products of IR-local basis functions deliver basis functions
local in IRp. Not all basis functions are local—for example, the truncated
power bases for splines, or the sigmoidal basis functions σ(α0 + αx) used
in neural-networks (see Chapter 11). The composed function f(x) can nev-
ertheless show local behavior, because of the particular signs and values
of the coefficients causing cancellations of global effects. For example, the
truncated power basis has an equivalent B-spline basis for the same space
of functions; the cancellation is exact in this case.

Kernel methods achieve flexibility by fitting simple models in a region
local to the target point x0. Localization is achieved via a weighting kernel
Kλ, and individual observations receive weights Kλ(x0, xi).

Radial basis functions combine these ideas, by treating the kernel func-
tions Kλ(ξ, x) as basis functions. This leads to the model

f(x) =
M∑

j=1

Kλj
(ξj , x)βj

=
M∑

j=1

D

(
||x− ξj ||

λj

)
βj , (6.28)

where each basis element is indexed by a location or prototype parameter ξj

and a scale parameter λj . A popular choice for D is the standard Gaussian
density function. There are several approaches to learning the parameters
{λj , ξj , βj}, j = 1, . . . ,M . For simplicity we will focus on least squares
methods for regression, and use the Gaussian kernel.

• Optimize the sum-of-squares with respect to all the parameters:

min
{λj ,ξj ,βj}M

1

N∑
i=1

yi − β0 −
M∑

j=1

βj exp

{
− (xi − ξj)T (xi − ξj)

λ2j

}2

.

(6.29)

This model is commonly referred to as an RBF network, an alterna-
tive to the sigmoidal neural network discussed in Chapter 11; the ξj

6.7 Radial Basis Functions and Kernels 187

F I G W 6.16. Gaussian radial basis +dim ia IR with jixed width m a leave
holes (top ~ n e l) . R e n m d L d Gawsian radid bmis fiwtiopas avoid this prob-
lem, and produce h i s f indims similar in some respmts ib B-splines.

and Xj playing the role of the weights. This criterion is nonoonvex
with multiple local minima, and the algorithm for optimization are
similar to thme used for neural networks.

Estimate the (Aj, t j) separately £tom the /?j. Given the former, the
estimation of the latter is a simple least squares problem. Often the
kernel parameters Xj and [, are chosen in an unsupervised way using
the X distribution alone. One of the methods is to fit a Gaussian
r n i x t ~ e density model to the training xi, which provides both the
centers tj and the scales A j . Other even more adhoc approaches use
clustering methods to locate the prototypm t j , and treat Xj = X
as a hyper-parameter. The obvious drawback of these approaches is
that the conditional distribution Pr(Y IX) and in particular E(Y IX)
is having no say in where the action is concentrated. On the positive
side, they are much simpler t;o implement;.

Wh& it would seem attractive to reduce the parameter set and assme
a constant value for Xj = A, this can have an undairable side effect of
creating holeeregions of IRP where none of the kernels has appreciable
support, as illustrated in Figure 6.16 (upper panel). Renomlaiized radial
basis functions,

hj (x) = D(llx - €jll/4
C L I ~ (I I X - E ~ I I / X) '

avoid this problem (lower panel).

188 6. Kernel Methods

The Nadaraya-Watson kernel regression estimator (6.2) in IRP can be
viewed a8 an expansinn in renormalined radial basis fimctions,

with a basis function hi located at every observation and coefficients ui;
that is, = xi, pi = y ~ , i = 1,. . . , N.

6.8 Mixture Models for Density Estimation and
Classification

The mixture model is a useful tool for density estimation, and can be viewed
tw a k i d uI ket-t~el ~uelllud. The Gautitria &lute dudel 11m llle I ~ i u

with mixing proportions a,, C, ru, = 1, and each Gaussian density has
a mean p, and covariance matrix Em. In general, mixture models can use
any component densities in place of the Gaussian in (6.32): the Gaussian
mixture model is by far the most popular.

The parameters are usually fit by maximum likelihood, using the EM
algorithm as described in Chapter 8. Some special cases atise:

If the covariance matrices are constrained to be scalar: Em = u,I,
then (6.32) has the form of a radial basis expansion.

If in addition urn = u > 0 is Exed, and M .t N, then the max-
imum likelihood estimate for (6.32) approaches the kernel density
estimate (6.22) where &, = l /N and fi, = x,.

Using Bayes' theorem, separate mixture densities in each class lead to flex-
ible models for Pr(G1X); this is taken up in some detail in Chapter 12.

Figure 6.17 shows an application of mixtures to the heart disease risk-
factor study. In the top row are histograms of Age for the no WD and
group separately, and then combined on the right. Using the combined
data, we fit a twecomponent mixture of the form (6.32) with the (scalars)
El and Ea not constrained to be equal. Fitting was done via the EM
algorithm (Chapter 8): note that the procedure does not Use knowledge of
the labels. The resulting estimates were

6.8 Mixture Models for Density Mimation and Classification 189

No CHD CHD Combined

FIGURE 6.17. Applicution of mixtures t o the heart disease Idsh=factor study.
Top row: h k t o g m m of Age for the no CHD and CHD groups sepamtely, and corn
bined. Bottom mw: estimated component densities from a Gaussian mixture
model, (left, middle); bottom right: estimded component dewities (green and
red) along with the estimated mixture density (blue). The mi density has a very
large atandad deviation, and is appmximating a mi fama density.

The component densities 4(fi1, e l) and 4(fi2, 92) are shown in the lower-
left and middle panels. The lower right panel shows these component den-
sities (green and red) along with the estimated mixture density (blue).

The mixture model also provides an estimate of the probability that
observation i belongs to component m,

where xi is Aee in our example. Suppose we threshold each value Pi2 and
hence define bi = I(ic2 > 0.5). Then we can compare the classification of
each observation by and the mixture model:

I Mixture model
I J = O

CHD No 1 232 70
Yes 1 76 84

Although the mixture model did not use the CHD labels, it has done a fair
job in discovering the two CHD subpopulations. Linear logistic regression,

190 6. Kernel Methods

using the c;an as a response, achieves the same error rate (32%) when fit to
khese daka iising mrtximuim-likelihood (Section 4.4).

6.9 Computational Considerations

Kernel and local regression and density estimation are m e m o r y - k e d meth-
ods: the model is the entire training data set, and the fitting is done at
evaluation or prediction time. For m y real-time applications, this can
make this class of methods infeasible.

The computational cmt to fit at a single obervation xn is O (N) flop,
except in oversimpMed cases (such as square kernels). By comparison,
an expansion in M basis fundions cmts O(M) for one evaluation, and
typically M - O(1og N) . Basis function methods have an initial cost of at
least O(NM2 + M3),

The smootbmg parameter(s) X for kernel methods are typically deter-
mined off-line, for example using cross-validation, at a wst of O (N2) flop.

Popular implementations of local regression, such as the ~ D ~ S B function
in SPTdJS and the lncfit prncerlt~re (Tmder, 1999), I I F I ~ t;riangrla.t;inn
schemes to redum the computations. They compute the fit exactly at M
carefully h e n locatioas (O(NM)), and then use blending techniques to
interpolate the fit elsewhere (O(M) per evaluation).

Bibliographic Notes

There is a vast literature on kernel methods which we will not attempt to
summarize. Rather we will point to a few good references that themselves
have extensive bibliographies. Loader (1999) gives excellent cover age of 1m
cal regression & likelihood, and also describes st ate-of- thsart software
for fitting these models. Fan and GijbeLs (1996) cover these models from
a more theoretical aspect. Hastie and Tihkirani (1990) discuss local re-
g-ression in the context of additive modeling. Silverman (1986) gives a good
overview of density estimation, M does Scott (1992).

Exercises

Ex. 6.1 Show that the Nadaraya-Watson kernel smooth with k e d metric
bandwidth X and a Gaussian kernel is differentiable. What can be said for
the Epanechnikov kernel? What can be said for the Epanechikov kernel
with adaptive nearest-neighbor bandwidth X(xo) ?

Exercises 191

Ex. 6.2 Show that
∑N

i=1(xi−x0)li(x0) = 0 for local linear regression. Define
bj(x0) =

∑N
i=1(xi − x0)j li(x0). Show that b0(x0) = 1 for local polynomial

regression of any degree (including local constants). Show that bj(x0) = 0
for all j ∈ {1, 2, . . . , k} for local polynomial regression of degree k. What
are the implications of this on the bias?

Ex. 6.3 Show that ||l(x)|| (Section 6.1.2) increases with the degree of the
local polynomial.

Ex. 6.4 Suppose that the p predictors X arise from sampling relatively
smooth analog curves at p uniformly spaced abscissa values. Denote by
Cov(X|Y) = Σ the conditional covariance matrix of the predictors, and
assume this does not change much with Y . Discuss the nature of Maha-
lanobis choice A = Σ−1 for the metric in (6.14). How does this compare
with A = I? How might you construct a kernel A that (a) downweighs
high-frequency components in the distance metric; (b) ignores them com-
pletely?

Ex. 6.5 Show that fitting a locally constant multinomial logit model of
the form (6.19) amounts to smoothing the binary response indicators for
each class separately using a Nadaraya–Watson kernel smoother with kernel
weights Kλ(x0, xi).

Ex. 6.6 Suppose that all you have is software for fitting local regression,
but you can specify exactly which monomials are included in the fit. How
could you use this software to fit a varying-coefficient model in some of the
variables?

Ex. 6.7 Derive an expression for the leave-one-out cross-validated residual
sum-of-squares for local polynomial regression.

Ex. 6.8 Suppose that for continuous response Y and predictor X, we model
the joint density of X,Y using a multivariate Gaussian kernel estimator.
Note that the kernel in this case would be the product kernel φλ(X)φλ(Y).
Show that the conditional mean E(Y |X) derived from this estimate is a
Nadaraya–Watson estimator. Extend this result to classification by pro-
viding a suitable kernel for the estimation of the joint distribution of a
continuous X and discrete Y .

Ex. 6.9 Explore the differences between the naive Bayes model (6.27) and
a generalized additive logistic regression model, in terms of (a) model as-
sumptions and (b) estimation. If all the variables Xk are discrete, what can
you say about the corresponding GAM?

Ex. 6.10 Suppose we have N samples generated from the model yi = f(xi)+
εi, with εi independent and identically distributed with mean zero and
variance σ2, the xi assumed fixed (non random). We estimate f using a

192 6. Kernel Methods

linear smoother (local regression, smoothing spline, etc.) with smoothing
parameter A. Thus the vector of fitted values is given by = S x y Consider
the in-sample prediction error

h r predicling rlew rwpomes a1 lhe N ii~pul values. Show L h L lhe lever-
age squared residual on the training data, ASR(X), is a biased estimate
(optimistic) for PE(X), while

is unbiased.

Ex. 6.11 Show that for the Gaussian mixture model (6.32) the likelihood
is madmized at +m, and describe how.

Ex. 6.12 Write a computer program to perform a local linear discrimi-
nant d y s i s . At each query point xo, the training data receive weights
Kx(x0, x i) from a weighting kernel, and the ingredients for the linear deci-

LoutlJdiea (act: Sc~liut14.3) ate cu~upuLerl Ly weigllhl avctagea. Try
out your program on the zipcode data, and show the training and test er-
rors for a series of five prschosen values of A. The zipcode data are available
£tom the book website vmn-stat . stdord.edu/ElemStatLearn.

+ This is page 193
Printer: Opaque this

7
Model Assessment and Selection

7.1 Introduction

The genemlizratiors performance of a learning method relates to its predh
tion capability on independent test data. Assessment of this performance
is extremely important in practice, since it guides the choice of learning
method or model, and gives us a measure of the quality of the ultimately
chosen model.

In this chapter we describe and illustrate the key methods for perfor-
mance assessment, and show how they are used to select models. We begin
the chapter with a discussion of the interplay between bias, variance and
model complexity.

7.2 Bias, Variance and Model Complexity

Figure 7.1 illustrates the important issue in assessing the ability of a learn-
ing method to generalize. This is the same as Figure 2.11; because it is
so important, we dhplay it here again. Consider first the case of a quan-
titative or interval scale response. We have a target variable Y, a vector
of inputs X, and a prediction model j (~) that has been estimated kom
a training sample. The loss function for measuring errors between Y and

194 7. Model Assessment and Selection

High Bias Low Bias

Low Variancc High Variancc ------- ----.--*

Test Sample

Training S a m ~

Low

Model Complmity
High

FIGURE 7.1. Behavior of test sample and training sample m r as the modd
cosmplexity is u a r i d .

f (X) is denoted by L(Y, f(x)). Typical choices are

(Y - f l (~)) = squared error
L(y '(x)) = {IY - f (X) absolute error.

Test error, ah0 referred to as genemlization e m r , is the expected p r e d i ~
tion error over an independent test sample

where both X and Y are drawn randomly from their joint distribution
(population). Note that this expect ation averages anything that is random,
including the randomness h the training sample that produced f". Training
e m r is the average loss over the training sample

We would like to know the test error of our estimated model f. As the model
becomes more and more complex, it is able to adapt to more complicated
underlying structures (a decrease in bias), but the estimation error increases
(an increase in variance). In between there is an optimal model complexiiy
that gives minimum test error.

Unfortunately training error is not a good estimate of the test error,
as seen in Figure 7.1. Training error consistently decreases with model
complexity, typically dropping to zero if we increase the model complexity
enough. However, a model with mro training error is overfk to the training
data and will typically generalize poorly.

7.2 Bias, Variance and Model Complexity 195

The story is similar for a qualitative or categorical response G taking one
of K ml~ies in a set G , labelled for convenience rts 1,2,. . . , K. Typically
we model the probabilities pk(X) A= Pr(G = k l X) (or some monotone
transformations fk (X)), and then G (X) = arg maxb Sk (X) . In some cases,
such as 1-nearest neighbor classification (Chapters 2 and 13) we produce
G(X) directly. Typical loss functions are

L(G, G(x)) = I(G # G(x)) 0-1 loss,
K

L (G , ~ (x)) = - Z C I (G = ~) ~ O ~ ~ ~ (X)
k=l

= - 2 log 6, (X) log-likelihood.

The log-likelihood is sometimes referred to as cross-entropy loss or devknce.
Again, test error ia given by Err = E[L(U, ~ (x)) I , the expected mis-

classification rate, or Err = E[L(G, @(X))]. Daining error is the sample
analogue, for example,

- -2
err = - C logig. (xi),

i=1

the sample log-likelihood for the model.
The log-likelihood can be used as a lm+function for general response

densities, such as the Poisson, gamma, exponential, log-normal and others.
If (Y) is the density of Y, indexed by a parameter B(X) that depends
on the predictor X, then

The "2" in the definition makes the log-likelihood loss for the Gaussian
distribution match squared-error loss.

For ease of exposition, for the remainder of this chapter we will use Y and
f (X) to represent all of the above situations, since we focus mainly on the
quantitative response (squared-error loss) setting. For the other situations,
the appropriate translations are obvious.

In this chapter we describe a number of methods for estimating the test
error curve for a model. Typically our model will have a ;4uning parameter
or parameters a and so we can write our predictions as f,(x). The tuning
parameter varies the complexity of our model, and we wish to 6nd the Value
of a that minimizes error, that is, produces the minimum of the test error
curve in Figure 7.1. Having said khis, for brevity we will ofken slippress the
dependence of f (x) on a.

Tt i~ impntksnt fn nnke ths,t there anre in fact; t;wn ~epssa,te g n s l ~ t;hii.t; we
might have in mind:

Mode estimating the performance of Merent models in order
to cnoose fine (approximate) best one.

196 7. Model Assessment and Selection

Model assessmrat: having chosen a final model, estimating its predic-
tion error (generalization error) on new data.

If we are in a data-rich situation, the best approach for both problems is
to randomly divide the dataset into three parts: a training set, a validation
set, and a test set. The training set is used to fit the models; the validation
set is used to estimate prediction error for model selection; the test set is
used for assessment of the generalization error of the final chosen model.
Ideally, the test set should be kept in a "vault," and be brought out only
at the end of the data analysis. Suppose instead that we use the test set
repeatedly, choosing the model with smallest test set error. Then the test
set error of the final chosen model will underestimate the true test error,
sometimes substantially.

It is difficult to give a general rule on how to chom the number of
observations in each of the three parts, as this depends on the signal-tw
noise ratio in the data and the training sample size. A typical split might
be 50% for training, and 25% each for validation and testing:

I Train Validation Test 1

The methods in this chapter are designed for situations where there is
insacient data to split it into three parts. Again it is too difficult to give
a general rule on how much training data is enough; among other things,
this depends on the signal-tenoise ratio of the underlying function, and
the complexi* of the models being fit to the data.

The methods of this chapter approximate the validation step either an-
dylLdY (AIC, BIG, MDL, SRM) ut- by dicietd tizltuplt: t e ~ ~ (ct-

validation and the bootstrap). Besides their use in model selection, we alao
exmui~le lo w h L exled each ~uelhod provides s rehble wliruale 01 lesL
error of the final chosen model.

Before jumping into these topics, we first explore in more detail the
nature of test error and the bias-variance tradeoff.

7.3 The Bias-Variance Decomposition

As in Chapter 2, if we assume that Y = f (X) + E where E(E) = 0 and
Var(~) = C T ~ , we can derive an expression for the expected prediction error

7.3 The Bias-Variance Decomposition 197

of a regression fit f (X) at an input point X = xo, using squared-error loss:

Err(xo) = E[(Y - ~"(xo))' IX = xo]

= 0," + [Ef"(xo) - f (xo)12 + +[f"(xo) - ~f"(x0)l '
= 0," + ~ i a s ' (f"(x0)) + var (f"(x0))
= Irreducible Error + ~ i a s ' + Variance. (7.8)

The first term is the variance of the target around its true mean f (xo), and
ca.nnot he a.voided no ma.tter how well we estima.te f (zo), unless (r,2 = 0.
The second term is the squared bias, the amount by which the average of
our estima.te differs from the t r i~e mean; the 1a.st term is the varia.nce; the
expected squared deviation of f"(xo) around its mean. Typically the more
complex we make the model f", the lower the (squared) bias but the higher
the variance.

For the k-nearest-neighbor regression fit, these expressions have the sim-
ple form

Here we assume for simplicity that training inputs xi are fixed, and the ran-
domness arises from the yi. The number of neighbors k is inversely related
to the model complexity. For small k , the estima.te i k (z) ca.n potentially
adapt itself better to the underlying f (x). As we increase k , the bias-the
squared difference between f (xo) and the average of f (x) at the k-nearest
neighbors-will typically increase, while the variance decreases.

For a linear model fit fp(x) = gTx, where the parameter vector /? with
p components is fit by least squares, we have

Here h(xo) is the N-vector of linear weights that produce the fit &(xu) =

z:(xTx)-'xTy, and hence var[fP(xo)] = 1 1 h(xo) 1 1 2 ~ z . While this vari-
ance changes with xo, its average (over the sample values xi) is (p/N)~:,
and hence

1
N

1
N

P
- x ~ r r (x i) = 4 + - x[f (xi) - ~ . f (x i) l ' f -Oz, (7.11)
N i=l N

i=l
N

the in-sample error. Here model complexity is directly related to the num-
ber of parameters p.

198 7. Model Assessment and Selection

The test error Err(x0) for a ridge regression fit f̂α(x0) is identical in
form to (7.10), except the linear weights in the variance term are different:
h(x0) = X(XTX+ αI)−1x0. The bias term will also be different.

For a linear model family such as ridge regression, we can break down
the bias more finely. Let β∗ denote the parameters of the best-fitting linear
approximation to f :

β∗ = arg min
β

E
(
f(X)− βTX

)2
. (7.12)

Here the expectation is taken with respect to the distribution of the input
variables X. Then we can write the average squared bias as

Ex0

[
f(x0)− Ef̂α(x0)

]2
= Ex0

[
f(x0)− βT

∗ x0
]2

+ Ex0

[
βT
∗ x0 − Eβ̂T

αx0

]2
= Ave[Model Bias]2 + Ave[Estimation Bias]2

(7.13)

The first term on the right-hand side is the average squared model bias, the
error between the best-fitting linear approximation and the true function.
The second term is the average squared estimation bias, the error between
the average estimate E(β̂Tx0) and the best fitting linear approximation.

For linear models fit by ordinary least squares, the estimation bias is zero.
For restricted fits, such as ridge regression, it is positive, and we trade it off
with the benefits of a reduced variance. The model bias can only be reduced
by enlarging the class of linear models to a richer collection of models, by
including interactions and transformations of the variables in the model.

Figure 7.2 shows the bias–variance tradeoff schematically. In the case
of linear models, the model space is the set of all linear predictions from
p inputs and the black dot labeled “closest fit” is βT

∗ x. The blue-shaded
region indicates the error σε with which we see the truth in the training
sample.

Also shown is the variance of the least squares fit, indicated by the large
yellow circle centered at the black dot labelled “closest fit in population’.
Now if we were to fit a model with fewer predictors, or regularize the coef-
ficients by shrinking them toward zero (say), we would get the “shrunken
fit” shown in the figure. This fit has an additional estimation bias, due to
the fact that it is not the closest fit in the model space. On the other hand,
it has smaller variance. If the decrease in variance exceeds the increase in
(squared) bias, then this is worthwhile.

7.3.1 Example: Bias–Variance Tradeoff

Figure 7.3 shows the bias–variance tradeoff for two simulated examples.
There are 50 observations and 20 predictors, uniformly distributed in the
hypercube [0, 1]20. The situations are as follows:

7.3 The Bias-Variance Decomposition 199

Realizatio~l
I \

I \
I 8 Closest fit

I 8
r \

I
I

Truth ;'

Model bias l

Estimation ,/'
V&e

MODEL
SPACE

Y Shrunken fit

RESTRICTED
MODEL SPACE

FIGURE 7.2. Schematic of the behavim of bias and variance. The model space
ia the aet of d l poaaible pdict iona from the model, with the "dosest fit" labeled
with a black dot. The model bias from the h t h is shown, dong with fhe variance,
indicated by Uae large yellow circle c e d e d at the black dot labelled "dosed fit
in population". A shrunken or wqulariztd fit 8s idso shorn, having additional
estimation bias, but smaller pd i c t i on e m r due to iba d e e m e d variance.

200 7. Model Assessment and Selection

Left panels: Y is 0 if X1 5 1/2 and 1 if X1 > 1/2, and we apply bnearest
neighbors.

Right panels: Y is 1 if xE1 Xj is greater than 5 and 0 otherwise, and we
use best subet linear regression of size p.

The top row is regression with squared error loss; the bottom row is classi-
fication with &I loss. The figures show the prediction error (red), squared
bias (green) and variance (blue), all computed for a large test sample.

In the regression problems, bias and variance add to produce the p r e d i ~
tion error curves, with minima at about k = 5 for kinearest neighbors, and
p 2 10 for the linear model. For classi6cation loss (bottom figures), some
interesting phenomena can be seen. The bias and variance curves are the
same as in the top figures, and prediction error now refers to misclassi6-
cation rate. We see that prediction error is no longer the sum of squared
bias and variance. For the E-nearest neighbor classifier, prediction error
decreases or stays the same as the number of neighbors is increased to 20,
despite the fact that the squared bias is rising. For the linear model classi-
fier the minimum occurs for p > 10 as in regression, but the improvement
over the p = 1 model is more dramatic. We see that bias and variance seem
to interact in determining prediction error.

Why does this happen? There is a simple explanation for the first phe
nomenon. Suppose at a given input point, the true probability of class 1 is
0.9 while the expected value of our estimate is 0.6. Then the squared bias-
(0.6 - 0.9)"is considerable, but the prediction error is zero since we make
the correct decision. In other words, estimation errors that leave us on the
right side of the decision boundary don't hurt. Exercise 7.2 demonstrates
this phenomenon analytically, and also shows the interaction effect between
bias and variance.

The overall point is that the bias-variance tradeoff behaves diE€erently
for &I loss than it does for squared error loss. This in turn means that
the best choices of tuning parameters may differ substantially in the two
settings. One should base the choice of tuning parameter on an estimate of
prediction error, as described in the following sections.

7.4 Optimism of the Training Error Rate

Typically, the training error rate

will be less than the true error Err = E[L(Y, j (~))] , because the same
data is being used to fit the method and assess its error. A fitting method

k-NN - Regression

7.4 Optimism of the Tkaining Error Rate 201

/ / 0

50 40 90 20 10 0

Nurnbmrd Nmlghbors k

k-NN - Classification

Linear Model - Regression

Nurnbmrd Nmlghbors k

z , , , I
5 10 15 20

Subset Shm p

Linear M d e l - Classification

z .
5 10 15 20

Subsst Shm p

FIGURE 7.3. Prediction e m (d), s q u a d bias (green) and variance (blue)
for a irndated exasmple. The top row is w g m s i o n wtth s q u a d e m loss; the
buttom m ia classi jmtim with 0-1 loss. The models are k-nearest neighbors
(left) and best mbset -#&on of size p (r-ight). The var-ianm and b i ~ mwes
am the same in repssiom and cl~&firniiom, but the prediction e m r cuwe is
different

202 7. Model Assessment and Selection

typically adapts to the training data, and hence the apparent or training
error err will be an overly optimistic estimate of the generalization error
Err.

Part of the discrepancy is due to where the evaluation points occur. Err
is a kind of extra-sample error, since the test feature vectors don't need to
coincide with the training feature vectors. The nature of the optimism in
err is easiest to understand when we focus not on Err but on the in-sample
error

The Ynew notation indicates that we observe N new response values at
each of the training points xi, i = 1,2, . . . , N. We define the optimism as
the expected difference between Errin and the training error err:

This is typically positive since err is usually biased downward as an estimate
of prediction error.

For squared error, 0-1, and other loss functions, one can show quite
generally that

where Cov indicates covariance. Thus the amount by which err underesti-
mates the true error depends on how strongly yi affects its own prediction.
The harder we fit the data, the greater Cov(yi, yi) will be, thereby increas-
ing the optimism. Exercise 7.4 proves this result for squared error loss where
f j i is the fitted value from the regression. For 0-1 loss, ci E { O , 1) is the
classification at xi, and for entropy loss, Gi E [O , 1] is the fitted probability
of class 1 at xi.

In summary, we have the important relation

This expression simplifies if yi is obtained by a linear fit with d inputs
or basis functions. For example,

for the additive error model Y = f (X) + E , and so

7.5 Estimates of In-Sample Prediction Error 203

The optimism increases linearly with the number d of inputs or basis func-
Lions we use, hut decreases ~q the training sample size increases. Versions
of (7.20) hold approximately for other error models, such as binary data
and entropy loss.

An obvious way to estimate prediction error is to estimate the optimism
and then add it to the training error rate err. The methods described in the
next section-AIC, BIC and others--work in this way, for a special class
of estimates that are linear in their parameters.

In contrast, the cross-validation and bootstrap methods, described later
in the chapter, are direct estimates of the extra-sample error Err. These
general tools can be used with any lms function, and with nonlinear, adap
tive fitting techniques.

In-sample error is not usually of direct interest since future values of the
fcaturcs arc not likcly to coincidc with with thcir training sct d u r n . But for
comparison between models, in-sample error is convenient and often leads
to effective model selection. The rewon is that the relative (not a h l u t e)
size of the error is what matters.

7.5 Estimates of In-Sample Prediction Error

The general form of the in-sample estimates is

Errin = err + s,
where 5 is an estimate of the optimism.

Using expression (7.201, applicable when d parameters are fit under
squared error loss, leads to the s-called Cp statistic,

Here 6: is an estimate of the noise variance, obtained £tom the mean-
squared error of a low-bias model. Using this criterion we adjust the training
error by a factor proportional to the number of basis functions used.

The AkaQe infomotion miterion is a similar but more generally appli-
cable estimate of Erri, when a log-likelihood loss function is used. It relies
on a relationship similar to (7.20) that holds asymptotically as N + m:

Hcrc Pre(Y) b a family of dcnsitics for Y (containing thc "truc" dcnsity),
8" is the maximum-likelihood estimate of 13, and "10glik'~ is the maximized
log-likelihood:

-.
log& = log Pri(%).

i=1

204 7. Model Assessment and Selection

For example, for the logistic regression model, using the binomial log-
likelihood, we have

AIC = − 2
N

· loglik + 2 · d

N
. (7.25)

For the Gaussian model (with variance σ2ε = σ̂2ε assumed known), the AIC
statistic is equivalent to Cp , and so we refer to them collectively as AIC.

To use AIC for model selection, we simply choose the model giving small-
est AIC over the set of models considered. For nonlinear and other complex
models, we need to replace d by some measure of model complexity. We
discuss this in Section 7.6.

Given a set of models fα(x) indexed by a tuning parameter α, denote
by err(α) and d(α) the training error and number of parameters for each
model. Then for this set of models we define

AIC(α) = err(α) + 2 · d(α)
N

σ̂2ε . (7.26)

The function AIC(α) provides an estimate of the test error curve, and we
find the tuning parameter α̂ that minimizes it. Our final chosen model
is fα̂(x). Note that if the basis functions are chosen adaptively, (7.19) no
longer holds. For example, if we have a total of p inputs, and we choose
the best-fitting linear model with d < p inputs, the optimism will exceed
(2d/N)σ2ε . Put another way, by choosing the best-fitting model with d
inputs, the effective number of parameters fit is more than d.

Figure 7.4 shows AIC in action for the phoneme recognition example
of Section 5.2.3 on page 124. The input vector is the log-periodogram of
the spoken vowel, quantized to 256 uniformly spaced frequencies. A lin-
ear logistic regression model is used to predict the phoneme class, with
coefficient function β(f) =

∑M
m=1 hm(f)θm, an expansion in M spline ba-

sis functions. For any given M , a basis of natural cubic splines is used
for the hm, with knots chosen uniformly over the range of frequencies (so
d(α) = d(M) = M). Using AIC to select the number of basis functions will
approximately minimize Err(M) for both entropy and 0–1 loss.

The simple formula

(2/N)
N∑

i=1

Cov(ŷi, yi) = (2d/N)σ2ε

holds exactly for linear models with additive errors and squared error loss,
and approximately for linear models and log-likelihoods. In particular, the
formula does not hold in general for 0–1 loss (Efron, 1986), although many
authors nevertheless use it in that context (right panel of Figure 7.4).

7.6 The E W i v e Number of Parameters 205

Numberof Basis Functiow Numberof k i s Functiow

FIGURE 7.4. AIG wed fur model aelectiopa for the phoneme wmpk
tion ccample of Section 5.2.3. The lcgidic v q m s e o n coeficiepzt f i n d i m
8 (j) = CZpl L (j) 8 , is modeled M an expansion in M @pihe brisk fwwtiopas,
I n the left p a e l we see the AIC d a t i d i c used ib estimate Err!, using log-likelib&
loss. Included ia a n estimate of Err bmed om m indepmdemt test sample. It does
w d l moept for i9z.e e x h m d y over-parametrized mse (M = 256 pamrneters for
N = 1OOO obsemtiom). In the rigM panel the same is done for 0-1 loss. Al-
thoesgh tlae AIC f m d a does not d r i d l y apply here, it does a wasonable job in
this m e .

7.6 The Effective Number of Parameters

The concept of "number of parameters" can be generalized, especially to
models where regularization is used in the fitting. Suppose we stack the
outcomes yl , ya, . . . , y~ into a vector y, and similarly for the predictions
9. Then a linear fitting method i~ one for which we can write

where S is an N x N matrix depending on the input vectors xi but not on
the yi. Linear fltthg methods include linear regression on the original fe*
tures or on a derived basis set, and smoothing methods that use quadratic
shrinkage, such as ridge regression and cubic smoothing splines. Then the
eflective number of pammeters is defined as

the sum of the diagonal elements of S. Note that if S is an orthogonal-
projection matrix onto a basis set spanned by M features, then trace(S) =

206 7. Model Assessment and Selection

M . It turns out that trace(S) is exactly the correct quantity to replace d as
the number of parameters in the Cp statistic (7.22) (Exercise 7.4 and 7.5).
We motivate d = trace(S) in some detail in Section 5.4.1 on page 129.

For models like neural networks, in which we minimize an error function
R(w) with weight decay penalty (regularization) α

∑
m w2

m, the effective
number of parameters has the form

d(α) =
M∑

m=1

θm

θm + α
, (7.29)

where the θm are the eigenvalues of the Hessian matrix ∂2R(w)/∂w∂wT .
Expression (7.29) follows from (7.28) if we make a quadratic approximation
to the error function at the solution (Bishop, 1995).

7.7 The Bayesian Approach and BIC

The Bayesian information criterion (BIC), like AIC, is applicable in settings
where the fitting is carried out by maximization of a log-likelihood. The
generic form of BIC is

BIC = −2 · loglik + (logN) · d. (7.30)

The BIC statistic (times 1/2) is also known as the Schwartz criterion
(Schwartz, 1979).

Under the Gaussian model, assuming the variance σ2ε is known, −2·loglik
equals (up to a constant)

∑
i(yi−f̂(xi))2/σ2ε , which is N ·err/σ2ε for squared

error loss. Hence we can write

BIC =
N

σ2ε

[
err + (logN) · d

N
σ2ε

]
. (7.31)

Therefore BIC is proportional to AIC (Cp), with the factor 2 replaced
by logN . Assuming N > e2 ≈ 7.4, BIC tends to penalize complex models
more heavily, giving preference to simpler models in selection. As with AIC,
σ2ε is typically estimated by the mean squared error of a low-bias model.
For classification problems, use of the multinomial log-likelihood leads to a
similar relationship with the AIC, using cross-entropy as the error measure.
Note however that the misclassification error measure does not arise in the
BIC context, since it does not correspond to the log-likelihood of the data
under any probability model.

Despite its similarity with AIC, BIC is motivated in quite a different
way. It arises in the Bayesian approach to model selection, which we now
describe.

Suppose we have a set of candidate models Mm,m = 1, . . . ,M and
corresponding model parameters θm, and we wish to choose a best model

7.7 The Bayesian Approach and BIC 207

from among them. Assuming we have a prior distribution Pr(B,IM,) for
the parameters of each model M,, the posterior probability of a given
model is

N where Z represents the training data {xi, yi j l . To compare two models
M,, and M L , we form the posterior odds

If the odds are greater than one we choose model m, otherwise we choose
model e. The rightmost quantity

is called the Bayes factor, the contribution of the data toward the posterior
odds.

Typically we assurrle LllaL l l ~ e prior over rnudels is urlilurrn, so lllal
Pr(M,) is constant. We need some way of approximating Pr(ZIM,).
A so-called Laplace approxirrlatior~ lo the irltegral lollowed by sorrle olher
simplifications (Ripley, 1996, page 64) to (7.32) gives

dm log Pr(ZlM,) = log P~(zIB", , M,) - - . log N + O(1). (7.35)
2

Here 8, is a maximum likelihood estimate and dm is the number of free
parameters in model M,. If we define our loss function to be

-2log~r(z16,, M,),

this is equivalent to the BIC criterion of equation (7.30).
Therefore, choosing the model with minimum BIG is equivalent to choos-

ing the model with largest (approximate) posterior probability. But this
framework gives us more. If we compute the BIC criterion for a set of M,
models, giving BIC,, m = 1,2 , . . . , M, then we can estimate the posterior
probability of each model M, as

Thus we can estimate not only the best model, but also assess the relative
merits of the models considered.

208 7. Model Assessment and Selection

For model selection purposes, there is no clear choice between AIC and
RTC. RTC is rt.1ymptot;ically consistent; rt.1 a seleckion criteririan. What this
means is that given a family of models, includmg the true model, the prob
ability that BIG will select the correct model approdes one as the sample
size N + m. This is not the case for AIC, which tends to choose models
which are too complex as N + m. On the other hand, for finite samples,
BIC often chooses models that are too simple, because of its heavy penalty
on complexiiy.

7.8 Minimum Description Length

The minimum description length (MDL) approach gives a selection cri-
terion formally identical to the BIG approach, but is motivated from an
optimal coding viewpoint. We h s t review the theory of coding for data
compression, and then apply it to model selection.

We think of our datum x as a message that we want to encode and
send to someone else (the "receiver"). We think of our model as a way of
encoding the datum, and will choose the most parsimonious model, that is
the shortest code, for the transmission.

Suppose first that the possible messages we rnight want to transmit are
zl,zz,. . . , h. UUI code uses a tinite alphabet of length A: for example, we
might use a binary code (0, 1) of length A = 2. Here is an example with
four possible messages and a binary coding:

Mcssagc 11 x l 1 22 I 2s I 24
Code 11 0 1 10 1 110 1 111

This code is known as an instantaneous p r e k code: no code is the pre-
Ex of any other, and the receiver (who knows all of the possible codes),
knows exactly when the message has been completely sent. We restrict our
&-ion to such instantanmqs pr& codes.

One could use the coding in (7.37) or we could permute the codes, for
example we codes 110,10,111, O for x l , 32, x3, x4. How do we decide which
to use? It depends on how often we will be sending each of the messages.
If, for example, we will he sending z l most often, it makes sense to nsc the
shortest code 0 for 21 . Using thh kind of strategyahorter codes for more
f t ~ q l l ~ ! n t ~ A F I F I A ~ P P I - ~ ~ ~ R , V A ~ R ~ F ! TTlARFIAgA l e n g t h w i l l he ~ h n r t ~ r .

In general, if messages are sent with probabilities Pr(y), i = 1 ,2 , . . . ,4 ,
a famous theorem due to Shannon says we should use code lengths li =
- loga Pr(%) and the average message length s a t s e s

The righbhand side above is also called the entropy of the distribution
Pr(g). The inequality is an equality when the probabilities satisfy pi =

7.8 Minimum Description Length 209

A−li . In our example, if Pr(zi) = 1/2, 1/4, 1/8, 1/8, respectively, then the
coding shown in (7.37) is optimal and achieves the entropy lower bound.

In general the lower bound cannot be achieved, but procedures like the
Huffmann coding scheme can get close to the bound. Note that with an
infinite set of messages, the entropy is replaced by −

∫
Pr(z) log2 Pr(z)dz.

From this result we glean the following:

To transmit a random variable z having probability density func-
tion Pr(z), we require about − log2 Pr(z) bits of information.

We henceforth change notation from log2 Pr(z) to log Pr(z) = loge Pr(z);
this is for convenience, and just introduces an unimportant multiplicative
constant.

Now we apply this result to the problem of model selection. We have
a model M with parameters θ, and data Z = (X,y) consisting of both
inputs and outputs. Let the (conditional) probability of the outputs under
the model be Pr(y|θ,M,X), assume the receiver knows all of the inputs,
and we wish to transmit the outputs. Then the message length required to
transmit the outputs is

length = − log Pr(y|θ,M,X)− log Pr(θ|M), (7.39)

the log-probability of the target values given the inputs. The second term
is the average code length for transmitting the model parameters θ, while
the first term is the average code length for transmitting the discrepancy
between the model and actual target values. For example suppose we have
a single target y with y ∼ N(θ, σ2), parameter θ ∼ N(0, 1) and no input
(for simplicity). Then the message length is

length = constant + log σ +
(y − θ)2

σ2
+

θ2

2
. (7.40)

Note that the smaller σ, is the shorter the message length, since y is more
concentrated around θ.

The MDL principle says that we should choose the model that mini-
mizes (7.39). We recognize (7.39) as the (negative) log-posterior distribu-
tion, and hence minimizing description length is equivalent to maximizing
posterior probability. Hence the BIC criterion, derived as approximation to
log-posterior probability, can also be viewed as a device for (approximate)
model choice by minimum description length.

Note that we have ignored the precision with which a random variable
z is coded. With a finite code length we cannot code a continuous variable
exactly. However, if we code z within a tolerance δz, the message length
needed is the log of the probability in the interval [z, z+δz] which is well ap-
proximated by δzPr(z) if δz is small. Since log δzPr(z) = log δz+log Pr(z),
this means we can just ignore the constant log δz and use log Pr(z) as our
measure of message length, as we did above.

210 7. Model Assessment and Selection

0.0 0.2 0.4 0.6 0.8 1.0
-1

.0
0.

0
1.

0

x

si
n
(5
0
·x

)

FIGURE 7.5. The solid curve is the function sin(50x) for x ∈ [0, 1]. The blue
(solid) and green (hollow) points illustrate how the associated indicator function
I(sin(αx) > 0) can shatter (separate) an arbitrarily large number of points by
choosing an appropriately high frequency α.

The preceding view of MDL for model selection says that we should
choose the model with highest posterior probability. However many Bayes-
ians would instead do inference by sampling from the posterior distribution.

7.9 Vapnik–Chernovenkis Dimension

A difficulty in using estimates of in-sample error is the need to specify the
number of parameters (or the complexity) d used in the fit. Although the
effective number of parameters introduced in Section 7.6 is useful for some
nonlinear models, it is not fully general. The Vapnik–Chernovenkis (VC)
theory provides such a general measure of complexity, and gives associated
bounds on the optimism. Here we give a brief review of this theory.

Suppose we have a class of functions {f(x, α)} indexed by a parameter
vector α, with x ∈ IRp. Assume for now that f is an indicator function,
that is, takes the values 0 or 1. If α = (α0, α1) and f is the linear indi-
cator function I(α0 + αT

1 x > 0), then it seems reasonable to say that the
complexity of the class f is the number of parameters p + 1. But what
about f(x, α) = I(sinα · x) where α is any real number and x ∈ IR? The
function sin(50 · x) is shown in Figure 7.5. This is a very wiggly function
that gets even rougher as the frequency α increases, but it has only one
parameter: despite this, it doesn’t seem reasonable to conclude that it has
less complexity than the linear indicator function I(α0 + α1x) in p = 1
dimension.

The Vapnik–Chernovenkis dimension is a way of measuring the complex-
ity of a class of functions by assessing how wiggly its members can be.

The VC dimension of the class {f(x, α)} is defined to be the
largest number of points (in some configuration) that can be
shattered by members of {f(x, α)}.

7.9 Vapnik-Chernovenkis Dimension 211

FIGURE 7.6. The fir& three palraeb show that the dass of limes in Ube plane
m n sht ter three poink, The Imt pmel shows that thia clma mnnot shatter jour
points, as no Ene d l put the hollow points om one side and the solid points m
Uae other. Heace the VC dimemion of the class of straight limes in the plane is
Usme. Nofe that a class of nodinear cwares mdd s h d e r fowr points, and hmce
has VC dimemsioa greater thrnn thm.

A set of points is said to be shattered by a class of functions if, no matter
how we we assign a binary label to each point, a member of the class can
perfectly separate them.

Figure 7.6 shows that the VC dimension of linear indicator functions
in the plane is 3 but not 4, since no four points can be shattered by a
set of lines. In general, a linear indicator function in p dimensions has VC
dimension p + 1, which is also the number of free parameters. On the other
hand, it can be shown that the family sin(ax) has inhite VC dimension,
as Figure 7.5 suggests. By appropriate choice of a, any set of points can be
shattered by this class (Exercise 7.7).

$0 far we have discwed the VC dimension only of indicator functions,
but this can be extended to real-valued functions. The VC dimension of a
class of real-valued functiom { g (x , a)) is defined to be the VC dimension
of the indicator class {I(g (x, a) - /? > O)), where /? takes values over the
range nf g.

One can use the VC dimension in constructing an estimate of in-sample
prediction error; different types of results are available. Using the concept
of VC dimension, one can prove results about the optimism of the training
error when using a class of functions. An example of such a result is the
following. If we fit N training points using a class of functions { f (x , a)}
having VC dimension la , then with probability at least 1 - g over training
sets:

Err 5 w+:(l+/-) 2 (binary class3cation)
-
err

Err 5 (regression)
(1 - c&)+

where E = ral
hPog (aaN/h) + 11 - log (~ / 4)

N

These bounds hold simultaneously for all members f (x, a), and are taken
h m Cherkassky and Mulier (1998), pages 10S110. They recommend the
value c = 1. For regression they suggest a1 = a2 = 1, and for classification

212 7. Model Assessment and Selection

they make no recommendation, with a1 = 4 and a2 = 2 corresponding to
worst-case scenarios. The bounds suggest that the optimism increases with
h and decreases with N in qualitative agreement with the AIC correction
d/N given is (7.20). However, the results in (7.41) are stronger: rather
than giving the expected optimism for each fixed function f(x, α), they
give probabilistic upper bounds for all functions f(x, α), and hence allow
for searching over the class.

Vapnik’s structural risk minimization (SRM) approach fits a nested se-
quence of models of increasing VC dimensions h1 < h2 < · · · , and then
chooses the model with the smallest value of the upper bound.

We note that upper bounds like the ones in (7.41) are often very loose,
but that doesn’t rule them out as good criteria for model selection, where
the relative (not absolute) size of the test error is important. The main
drawback of this approach is the difficulty in calculating the VC dimension
of a class of functions. Often only a crude upper bound for VC dimension
is obtainable, and this may not be adequate. An example in which the
structural risk minimization program can be successfully carried out is the
support vector classifier, discussed in Section 12.2.

7.9.1 Example (Continued)

Figure 7.7 shows the results when AIC, BIC and SRM are used to select
the model size for the examples of Figure 7.3. For the examples labeled KNN,
the model index α refers to neighborhood size, while for those labeled REG α
refers to subset size. Using each selection method (e.g., AIC) we estimated
the best model α̂ and found its true prediction error Err(α̂) on a test set.
For the same training set we computed the prediction error of the best and
worst possible model choices: minα Err(α) and maxα Err(α). The boxplots
show the distribution of the quantity

100× Err(α̂)−minα Err(α)
maxα Err(α)−minα Err(α)

,

which represents the error in using the chosen model relative to the best
model. For linear regression the model complexity was measured by the
number of features; this is also the VC dimension of the linear classifier.
For k-nearest neighbors, we used the quantity N/k. This is a rough estimate
of complexity; we do not know if it corresponds to the VC dimension. We
used a1 = a2 = 1 for the constants in (7.41); the results for SRM changed
with different constants, and this choice gave the most favorable results.
For misclassification error we used σ̂2ε = [N/(N − d)] · err(α) for the least
restrictive model (k = 5 for KNN, since k = 1 results in zero training
error). The AIC criterion seems to work well in all four scenarios, despite
the lack of theoretical support with 0–1 loss. BIC does nearly as well, while
the performance of SRM is mixed.

7.9 Vapnik-Chernovenkis Dimension 213

J Y
- =

e - -
2 ra -
8 0 -

ngiKNN regninear class/KNN claswlinear

BIC

0
SRM

FIGURE 7.7. B q l o h show the disf ibdion of Uae relative e m r
100 x prr(&) - min, Err(a)]/[maxc. Err(a) - min, Err(a)] m e r Uae f a r scearar-
ios of Figure 7.3. This i s the e m r in wing the chosen modd relati* ib the best
model. Them are 20 training sets repmsedsd in each boxplot.

3 = -

E 8 -
$ 0 -

- - -
j

-
n 0

regiKNN reg/linmr class/KNN claswlinear

214 7. Model Assessment and Selection

7.10 Cross-Validat ion

Probably the simplest and mmt widely used method for estimating pre-
diction error is cross-validation. This method directly estimates the extre
sample error Err = E[L(Y, P (x))] , which is the generalization error when
the method Y (x) is applied to an independent test sample from the joint
distribution of X and Y.

Ideally if we had enough data, we would set adde a validation set and me
it to assess the performance of our prediction model. Since data are often
acarm, this is usually not pwiblc. To fincsac thc problcm, Pi-fold crosa-
validation uses part of the available data to fit the model, and a different
part to test it. We split the data into K roughly equal-sized parts; for
example, when K = 5, the scenario looks like this:

1 2 4 5

Fnr khe kth pa,rt (third ahnve), we f i t khe mndel tn the nthsr d- 1 pwta
of the data, and calculate the prediction error of the fitted model when
predicting the kth part of the data. We do this for k = 1,2,. . . , K and
combine the K estimates of prediction error.

Here are more details. Let K : (1, . . . , N) & {I,. . . , K) be an indexing
function that indicates the parti;tion to which observation i is allocated by
the randomization. Denote by f-"x) the fitted function, computed with
the kth part of the data removed. Then the cross-validation estimate of
prediction error is

Typical choices of K are 5 or 10 (see below). The case K = N is known
as leave-one-out cross-validation. In this case ~ (d) = d, and for the dth
observation the fit is computed using all the data except the ith.

Given a set of models f (x, a) indexed by a tuning parameter a, denote
by f P k (a;, a) the a th model fit with the kth part of the data removed. Then
for this set of models we ddne

The function CV(a) provides an estimate of the test error curve, and we
find the tuning parameter & that minimizes it. Our final chosen model is
f (x, &), which we then fit to all the data.

7.10 Cross-Validation 215

50 100 150
Size of Training Sst

Hyjwtheticd learning curve for a dlsssijie~ on a given t ~ k ; a
pao~ uj L - nrr wvms the s i ~ of the training set hi. With a d d ~ e t of 200
obsewatims, fivefold cross-miidation w d d use training sets of sixe 160, which
wmld M a v e much like the fill set. Huwevm> witla a dataset of 5U obsewations
fivefold cms-vdidat ion w o d d use h i n i n g sets of size 40, and this would rewlt
in a m i d m b l e oueresfimfe oj prediction error.

What value should we choose for K? With K = N, CV is approximately
unbiased for the true prediction error, but can have high variance because
the N "training sets" are so similar to one another. The computational bur-
der~ & Etlyo c~r~iderable, rquirirlg N applicalior~ 01 Lhe 1e~lrrLirlg ruelhud.
In certain special problems, this computation can be done quicklyaee
Exercise 7.3 and 5.13.

On the other hand, with K = 5 say, CV has lower variance. But bias
could be a problem, depending on how the performance of the learnlng
method varies with the size of the training set. Figure 7.8 shows a hyp*
thetical "learning curve'' for a classifier on a given task, a plot of 1 - Err
versus the size of the training set N. The performance of the classifier
improves as the training set size increases to 100 okrvations; increasing
the number further to 200 brings only a small benefit. If our training set
had PUO observations, fivefold cros+validation would estimate the perfor-
mance of our classser over training sets of size 160, which from Figure 7.8
is virtually the same as the performance for training set size 200. 'l'hus
cross-validation would not suffer from much bias. However if the training
set had 50 obervations, fivefold cross-validation would estimate the per-
formance of our classifier over training sets of size 40, and from the figure
that would be an underestimate of 1 - Err. Hence as an estimate of Err,
cross-validation would be biased upward.

To summarize, if the learning curve has a considerable slope at the given
training set size, fiv* or tenfold cross-validation will overestimate the true
prediction error. Whether this bias is a drawback in practice depends on
the objective. On the other hand, leaveoneout cross-validation has low

216 7. Model Assessment and Selection

7 7.9. M i c t i o n e m (red) and tenfold cross-validation curve (gmn)
jhm a single training set, the scenario in the boktorn right pnel

of Figerw 7.3.

bias but can have high variance. Overall, five or tenfold cross-validation
are recommended as a good compromise.

Figure 7.9 shows the prediction error and tenfold cross-validation curve
estimated from a single training set, from the scenario in the bottom right
panel of Figure 7.3. This is a tweclass classification problem, using a lin-
ear model with best s u k t s regression of subset she p. Standard error bars
are shown, which are the standard errors of the individual misclassification
error rat= for each of the ten parts. Both curves have minima at p = 10,
although the CV curve is rather flat beyond 10. Often a "onestandard
error" rule js wed with crossdidation, in which we choose the most p s -
simoniom model w h m error is no more than one standard error above
thc crror of thc b c i modcl. Hcrc it lookg lilcc a modcl with about p = D
predictors would be chosen, while the true model uses p = 10.

Genembed cm~~-validation provides a convenient approximation to leave
one out cros+validation, for linear fitting under squared-error loss. As d e
fined in Section 7.6, a linear fitting method L one for which we can write

y - sy.

Now for many linear fitting methods,

7.11 Bootstrap Methods 217

where Sii is the ith diagonal element of S (see Exercise 7.3). The GCV
approximation is

The quantity trace(S) is the effective number of parameters, as defined in
Section 7.6.
GCV can have a computational advantage in some settings, where the

trace of S can be computed more easily than th individual elements Sii.
h smoothing problems, GCV can also alleviate the tendency of cross-
validation to undersmooth. The similarity between GCV and AIC can be
seen h m the approximation 1/(1- x)' M 1 + 25 (Exercise 7.6).

7.11 Bootstrap Methods

The bootstrap is a general tool for assessing statistical accuracy. First we
describe the bootstrap in general, and then show how it can be used to
estimate extresample prediction error.

Suppose we have a model fit to a set of training data. We denote the
traiaing set by Z = (zl, 22,. . . , zN) where zi = (xi, t ~ i) . The basic idea is
to randomly draw datasets with replacement from the training data, each
sample the same size as the original training set. This is done B times
(B = 100 say), producing B bootstrap datasets, as shown in Figure 7.10.
Then we refit the model to each of the bootstrap datasets, and examine
the behavior of the fits over the B replications.

In the figure, S(Z) is any quantity computed fkom the data Z, for ex-
ample, the prediction at some input point. From the bootstrap sampling
we can estimate any ~ p e c t of the dhtribution of S(Z), for example, its
variance,

where s* = C b S (~ * b) / ~ . Note that G[s(z)] can be thought of as a
Montecarlo estimate of the variance of S(Z) under sampling from the
empirical distribution function fi for the data (x l , x2, . . . , x N) .

How can we apply the bootstrap to estimate prediction error? One a p
p r o d would be to fit the model in question on a set of bootstrap samples,
and then keep track of how well it predicts the original training set. If
pb(xi) is the predicted value at xi, from the model fitted to the bth boot-
strap dataset, our estimate is

218 7. Model Assessment and Selection

_ _ _ - * - - - ..._--- _ _ - - - Bo tstrap
..-------

-__-.---
_ _ - - - - *

--.- . . - - - rep?icatiom
_ _ _ _ > - -

* - * -
e.....-, - - ._,--- -- - -

S(Z*l)
> ? - -

s(Z*=> d- - - - - S(Z*3)
t t t

__..._ _ - - - - - .._.---

.-__---- ---.- --..-- ...- Boot trap 1 .-- ..--- 1 .>* - a * - - - smp7es
,_-,-

A -
- _ _ - * - -

FIGURE 7.10. Schenaafic of the b w t s h p p m s s . We wish to rnssess Uae st*
tkztiml aweawc-p of a quanti~ S(Z) c o t ~ p d e d fmrn our dahct. D twining sets
Z k b , b = I,. . . , B each of &e N are dram with replacement the ovigind
d d m e t . The qesmih of imierest S(Z) D compukd fp.wla each b o o h h p training
set, and the vdues s (z * ~) , . . . , s (z * ~) are wed to assess the stakkticd accuracy
of ' S (X) .

However it is easy to see that ErbOot does not provide a good estimate in
general. The reuon is that the bootstrap datasets are acting as the training
samples, while the original training set is acting as the test sample, and
these two samples have observations in common. This overlap can make
overfit predictions look unrealistically good, and is the reason that cross-
validation explicitly uses non-overlapping data for the training and test
~ m p l a . Comider for example s. 1-nearat neighbor c l m ~ e r applied to a
twwclass classification problem with the same number of okrvatiom in
cach class, in which thc fcaturcg and c l w labcls arc in fact indcpcndcnt.
Then the>e error rate is 0.5. But the contributions to the bootstrap
estimate Errboot will be zero unless the observation i does not appear in the
bootstrap sample 6 In this latter case it will have the correct expectation
0.5. Now

1 N
Pr{observation i E bootstrap sample b) = 1 - (1 - -)

N

h

Hence the expectation of Emoot is about 0.5 x 0.368 = 0.184, far below
the correct error rate 0.5.

7.11 Bootstrap Methods 219

By mimicking cross-validation, a better bootstrap estimate can be ob-
tained. For each observation, we only keep track of predictions from boot-
strap samples not containing that observation. The leave-one-out bootstrap
estimate of prediction error is defined by

N
-(I) 1 1
Err = -x- x L(yi, Pb (x i))

N i=1 IC-21 ,,,-,
Here Cpi is the set of indices of the bootstrap samples b that do n o t contain

---(I)
observation i , and ICpi I is the number of such samples. In computing Err ,
we either have to choose B large enough to ensure that all of the ICpi I are
greater than zero, or we can just leave out the terms in (7.50) corresponding
to ICpi 1's that are zero.

The leave-one out bootstrap solves the overfitting problem suffered by
Errboot, but has the training-set-size bias mentioned in the discussion of
cross-validation. The average number of distinct observations in each boot-
strap sample is about 0.632. N, so its bias will roughly behave like that of
twofold cross-validation. Thus if the learning curve has considerable slope
at sample size N/2, the leave-one out bootstrap will be biased upward as
an estimate of the true error.

The ".632 estimator" is designed to alleviate this bias. It is defined by

-(.632) -(I)
Err - .368. EiT + .632. Err

The derivation of the .632 estimator is complex; intuitively it pulls the
leave-one out bootstrap estimate down toward the training error rate, and
hence reduces its upward bias. The use of the constant .632 relates to (7.49).

The .632 estimator works well in "light fitting" situations, but can break
down in overfit ones. Here is an example due to Breiman et al. (1984).
Suppose we have two equal-size classes, with the targets independent of
the class labels, and we apply a one-nearest neighbor rule. Then EiT = 0,
-(I) -(.632)
Err = 0.5 and so Err = .632 x 0.5 = .316. However the true error
rate is 0.5.

One can improve the .632 estimator by taking into account the amount
of overfitting. First we define y to be the no - i n fo rma t i on e r r o r r a te : this
is the error rate of our prediction rule if the inputs and class labels were
independent. An estimate of y is obtained by evaluating the prediction rule
on all possible combinations of targets yi and predictors xi,

For example, consider the dichotomous classification problem: let p1 be
the observed proportion of responses yi equaling 1, and let ijl be the ob-

220 7. Model Assessment and Selection

saved proportion of predictions f*(zrl) equaling 1. Then

With a rule like 1-nearest neighbors for which $1 = the value of 'l. is
231 (1 -$I). The multi-category generalization of (7.53) is .jl= C, (1 - a).

Using t b , the rehtive overfitting rate is defined to be

EL quantity that rangcs from 0 if thcrc is no ovcrfitting (~ r r ") = m) to 1
if the overfitting equals the nsinformation value .jr --. Finally, we d e h e
the ".632+" estimator by

-(.esa+)
Err = (1 -

.632
with 6 =

1 - .368~'

- (.852+)
The weight w ranges from .632 if = 0 to 1 if R = 1, so Err

-(.632) -(I)
rangca from Err to Err . Again, thc derivation of (7.55) is compli-
cated: roughly speaking, it produces a compromise between the leavsons
out bootstrap and the training error rate that depends on the amount of
overfitting. For the 1-nearest-neighbor problem with class labels indepen-

-(.632+) ---(I)
dent of the inputs, eir = fi = 1, so Err = Err , which has the correct

-(.esa+)
expectation of 0.5. In other problems with less ovefitting, Err will

---(I)
lie somewhere between and Err .

Figure 7.11 show he results ul fivefold cross-validation and the .632+
bootstrap estimate in the same four problems of Figures '7.7. As in that fig-
ure, Figure 7.11 shows boxplots of 100- [Err&-- Err(a)]/[max, Err(a) -
min, Hrr(a)], the error in using the chosen model relative to the best model.
There are 20 different training sets represented in each boxplot. Both me*
sures perform well overall, perhaps the same or slightly worse that the AIC
in Figure 7.7.

Our conclusion is that for these particular problems and fitting methods,
minimization of either AIC, cross-validation or bootstrap yields a model
fairly close to the best available. Note that for the purpose of model s e l e ~
tion, any of the measures could be biased and it wouldn't affect things, as
long as the bias did not change the relative performance of the methods.
For example, the addition of a constant to any of the measures would not

7.11 Bootstrap Methods 221

Bootstrap

FIGURE 7.11. B q l o Q show Use digtdution of Use dative e m r
100 . [Em& - min, Err(a)]/[max, Err(a) - min, Err(&)] over t h e four B E ~ ~ T -

ios ul FiyuTt: 7.3. This i s Ue emr. i r b wirq Use chutren r r b d d ~t:ldiw ku .he besL
rnde l . T h e w are 20 twining sets repwsenied in each h p l o f .

change the resulting chosen model. However, for many adaptive, nonlinear
techniques (like trees), estimation of the effective number of parameters is
vcry difficult. This makcs mcthods likc AIC impractical and lcavca us with
cross-validation or bootstrap as the methods of choice.

A d8crcnt qucstion is: how wcll docs cach mcthod cstimatc tcst crror?
On the average the AIC criterion overestimated prediction error of its che
sen model by 38%, 37%, 51%, and 30%, respectively, over the four scenarios,
with BIC performing similarly. In contrast, cross-validation overestimated
the error by 1%, 4%, 074, and 4%, with the bootstrap doing about the
same. Hence the extra work involved in camputing a cros+validation or
bootstrap measure is worthwhile, if an accurate estimate of t a t error is
required. With other fitting methods like trees, cross-validation and boot-
slrap can wderes LlruaLe lhe Lrue error by lo%, became Lhe search [or besL
tree is strongly affected by the validation set. In these situations only a
separate test set will provide an unbiased estimate of test error.

222 7. Model Assessment and Selection

Bibliographic Notes

Key references for cross-validation are Stone (1974), Stone (1977) and
f i n (1977). The AIC was proposed by Akaike (1973), while the BIT:
was introduced by Schwartz (1979). Madigan and Raftery (1994) give an
overview of Bayesian model selection. The MDL criterion is due to Rissa,
nen (1983). Cover and Thomas (1991) contains a good description of coding
theory and complexity. VC dimension is described in Vapnik (1996). Stone
(1977) showed that the AIC and leaveone out cross-validation are asymp
totically equivalent. Generalized crossvalidation is described by Golub
et al. (1979) and Wahba (1980); a further discussion of the topic may
be found in the monograph by Wahba (1990). See also Hastie and Tibshi-
rani (1990), Chapter 3. The bootstrap is due to Efron (1979); see Efron
and Tihhirani (1003) for an ovcrvicw. Efron (1083) proposcs a numbcr of
bootstrap estimates of prediction error, including the optimism and .632 es-
timates. Efron (1986) compares CV, GCV and bootstrap estimates of error
rates. The use of mevalidat ion and the bootstrap for model selection is
studied by Breiman and Spector (1992), Breiman (1992), Shao (1996) and
Zhang (1993). The .632+ estimator was propmed by Efron and Tibshitani
(1997).

Exercises

Ex. 7.1 Derive the estimate of in-sample ermr (7.20).

Ex. 7.2 For &I loss with Pr(Y = llxo) = f (xo), show that

where f"(z0) is an estimate of f (~ 0) . In the above,

the cumulative distribution function of the Gaussian distribution. This is
an increasing function, with value zero at t = -m and value 1 at t = +m.

we can think of sign[(j(xo) - 1/2)(1/2 - f (en))] as a kind of bias term,
and it depends only on which side of boundary (1/2) that f"(x0) lies. N*
tice also that the bias and variance combme in a multiplicative rather than
additive fashion. If the f"(xo) is on the same side of l /2 as f (xO), then the
bias is negative and decreasing the ~ariance will decrease the misclassfi-
cation error. On the other hand, if f (xo) is on the opposite side of l / 2 to

Exercises 223

We can think of sign(12 − f(x0))(Ef̂(x0) − 1
2) as a kind of boundary-

bias term, as it depends on the true f(x0) only through which side of the
boundary (12) that it lies. Notice also that the bias and variance combine
in a multiplicative rather than additive fashion. If Ef̂(x0) is on the same
side of 1

2 as f(x0), then the bias is negative, and decreasing the variance
will decrease the misclassification error. On the other hand, if Ef̂(x0) is
on the opposite side of 1

2 to f(x0), then the bias is positive and it pays to
increase the variance! Such an increase will improve the chance that f̂(x0)
falls on the correct side of 1

2 (Friedman, 1997).

Ex. 7.3 Let f̂ = Sy be a linear smoothing of y.

(a) If Sii is the ith diagonal element of S, show that for S arising from least
squares projections and cubic smoothing splines, the cross-validated
residual can be written as

yi − f̂−i(xi) =
yi − f̂(xi)

1− Sii
. (7.58)

(b) Use this result to show that |yi − f̂−i(xi)| ≥ |yi − f̂(xi)|.

(c) Find general conditions on any smoother S to make result (7.58) hold.

Ex. 7.4 Consider the in-sample prediction error (7.15) and the training
error err in the case of squared-error loss:

Errin =
1
N

N∑
i=1

EY newEy(Y new
i − f̂(xi))2

err =
1
N

N∑
i=1

(yi − f̂(xi))2.

Add and subtract f(xi) and Ef̂(xi) in each expression and expand. Hence
establish that the optimism in the training error is

2
N

N∑
i=1

Cov(ŷi, yi),

as given in (7.17).

Ex. 7.5 For a linear smoother ŷ = Sy, show that

N∑
i=1

Cov(ŷi, yi) = trace(S)σ2ε , (7.59)

which justifies its use as the effective number of parameters.

224 7. Model Assessment and Selection

Ex. 7.7 Show that the set of functions {I(sin(az) > 0)) can shatter the
following poinfs on fhe line:

for any !. Hence the VC dimension of the class {I(sin(m) > 0)) is Mnite.

Ex. 7.8 For the prostrate data of Chapter 3, carry out a best-sub& linear
regression analysis, EM in Table 3.3 (third mlumn h m left). Compute the
AIC, BIC, five and tenfold cross-validation, and bootstrap .632 estimates
of prediction error. Discuss the results.

+ This is page 225
Printer: Opaque this

Model Inference and Averaging

8.1 Introduction

For most of this book, the fitting (learning) of models has been achieved by
minimizing a sum of squares for regression, or by minimizing cross-entropy
for classification. In fact, both of these minimizations are instances of the
maximum likelihood approach to fitting.

In thh chapter we provide a general exposition of the maximum likeli-
hood approach, as well as the Bayesian method for inference. The boot-
strap, introduced in Chapter 7, is discussed in this context, and its relation
to maximum likelihood and Bayes is described. Finally, we present some
related techniques for model averaging and improvement, including com-
mittee methods, bagging, stacking and bumping.

8.2 The Bootstrap and Maximum Likelihood
Methods

8.2.1 A Smoothing Example

The bootstrap method provides a direct computational way of assessing
uncertainty, by sampling from the training data. Here we illustrate the
bootstrap in a simple onedimensional smoothing problem, and show its
connection to maximum likelihood.

226 8. Model Inference and Averaging

FIGZrRE 8.1. Lefl panel: data f o ~ moothing sample. Right pmd: s d of seven
B-spline h i s junctions. The h l o e n vediml lines indicate the placemepat of the
thm h o t s .

Denote the training data by Z = {zl, 32, . . . , zN), with 3s = (xi, ys),
i = 1,2, . . . , N. Here xa is a onsdimemional input, and yi the outcome,
either continuous or categorical. As an example, consider the N - 50 data
points shown in the left panel of Figure 8.1.

Suppose we decide to fit a cubic spline to the data, with three knots
placed at the quartiles of the X values. This is a seven-dimensional lin-
car apacc of fundions, and can bc rcprcscntcd, for cxamplc, by a lincar
expansion of B-spline basis functions (see Section 5.9.2):

Here the hj(x), j = 1,2,. . . ,7 are the seven functions shown in the right
panel of Figure 8.1. We can think of p(x) as representing the conditional
mean E(Y lX = x).

Let H be the N x 7 matrix with ijth element h,(xi). The usual estimate
of p, obtained by minimizing the squared error over the training set, is
given by

The corresponding fit @(x) = zLl bjhj(x) is shown in the top left panel
of Figure 8.2.

The estimated covariance matrix of p is

where we have estimated the noise variance by 8" =El (yi - @(xr))VN.
Letting h (~) ~ = (h l (x) , ha("), . . . , h7(x)), the standard error of a predic-

8.2 The Bootstrap and Maximum Likelihood Methods 227

; 8.2. Top left: B-spline mwth of data. Top right: B-spline smooth

of the B-spline s m t h . Bottom right: B-spline smooth with 95% standad e m r
bands conapdd ,%om the bootdmp d i d ~ h i o n .

228 8. Model Inference and Averaging

In the top right panel of Figure 8.2 we have plotted fi(x) f 1.96. &[fi(x)].
Since 1.96 is the 97.5% point of the standard normal distribution, these
represent approximate 100 - 2 x 2.5% = 95% pointwise confidence bands
for ~r (x) .

Here's how we could apply the bootstrap in this example. We draw B
datasets each of size N = 50 with replacement from our training data, the
sampling unit being the pair zi = (xi, yi). To each bootstrap dataset Z*
we fit a cubic spline fi*(x); the fits from ten such samples are shown in the
bottom left panel of Figure 8.2. Using B = 200 bootstrap samples, we can
form a 95% pointwise confidence band from the percentiles at each x: we
find the 2.5% x 200 = fifth largest and smallest values at each x. These are
plotted in the bottom right panel of Figure 8.2. The bands look similar to
those in the top right, being a little wider at the endpoints.

There is actually a close connection between the least squares estimates
(8.2) and (8.3), the bootstrap, and maximum likelihood. Suppose we further
assume that the model errors are Gaussian,

The bootstrap method described above, in which we sample with re-
placement from the training data, is called the nonparametric bootstrap.
This really means that the method is "model-free," since it uses the raw
data, not a specific parametric model, to generate new datasets. Consider
a variation of the bootstrap, called the parametric bootstrap, in which we
simulate new responses by adding Gaussian noise to the predicted values:

This process is repeated B times, where B = 200 say. The resulting boot-
strap datasets have the form (xl, y:), . . . , (x ~ , y;) and we recompute the
B-spline smooth on each. The confidence bands from this method will ex-
actly equal the least squares bands in the top right panel, as the number of
bootstrap samples goes to infinity. A function estimated from a bootstrap
sample y* is given by fi*(x) = ~ (X) ~ (H ~ H) ~ ' H ~ ~ * , and has distribution

Notice that the mean of this distribution is the least squares estimate, and
the standard deviation is the same as the approximate formula (8.4).

8.2 The Bootstrap and Maximum Likelihood Methods 229

. Maximum Likelihood Inference

It tlltns out that the parametric bootstrap agrees with least squates in the
previous example because the model (8.5) has additive Gaussian errors. In
general, the parametric bootstrap agrees not with least squates but with
maximum likelihood, which we now review.

We begin by specifying a probability density or probability mass fundion
for our observations

In this expression 13 represents one or more unknown parameters that gov-
ern the distribution of 2. This is called a parametric model for 2. As an
example, if Z has a normal distribution with mean p and variance a2, then

and

Maximum likelihood is based on the likelihood function, given by

k h ~ ! prnha.hility nf the n h ~ ~ e ~ e d da,ta, i ~ n d ~ t the mndel IJB. The likelihnnd is

defined only up to a positive multiplier, which we have taken to be one.
We think of L(B; Z) as a function of 8, with our data Z h d .

Denote the logarithm of L(B; Z) by

which we will sometimes abbreviate as 1(8). This expression is called the
log-likelihood, and each value L(8; g) = log ge(z,) is called a log-likelihood
component. The method of maximum likelihood chooses the value 8 = 8"
lo maxiruiae L(0; Z).

The likelihood function can be used to assess the precision of 6. We need
a few more definitions. The score function is defined by

230 8. Model Inference and Averaging

where �̇(θ; zi) = ∂�(θ; zi)/∂θ. Assuming that the likelihood takes its maxi-
mum in the interior of the parameter space, �̇(θ̂;Z) = 0. The information
matrix is

I(θ) = −
N∑

i=1

∂2�(θ; zi)
∂θ∂θT

. (8.14)

When I(θ) is evaluated at θ = θ̂, it is often called the observed information.
The Fisher information (or expected information) is

i(θ) = Eθ[I(θ)]. (8.15)

Finally, let θ0 denote the true value of θ.
A standard result says that the sampling distribution of the maximum

likelihood estimator has a limiting normal distribution

θ̂ → N(θ0, i(θ0)−1), (8.16)

as N →∞. Here we are independently sampling from gθ0(z). This suggests
that the sampling distribution of θ̂ may be approximated by

N(θ̂, i(θ̂)−1) or N(θ̂, I(θ̂)−1), (8.17)

where θ̂ represents the maximum likelihood estimate from the observed
data.

The corresponding estimates for the standard errors of θ̂j are obtained
from √

i(θ̂)−1
jj and

√
I(θ̂)−1

jj . (8.18)

Confidence points for θj can be constructed from either approximation
in (8.17). Such a confidence point has the form

θ̂j − z(1−α) ·
√
i(θ̂)−1

jj or θ̂j − z(1−α) ·
√
I(θ̂)−1

jj ,

respectively, where z(1−α) is the 1 − α percentile of the standard normal
distribution. More accurate confidence intervals can be derived from the
likelihood function, by using the chi-squared approximation

2[�(θ̂)− �(θ0)] ∼ χ2
p, (8.19)

where p is the number of components in θ. The resulting 1 − 2α confi-
dence interval is the set of all θ0 such that 2[�(θ̂) − �(θ0)] ≤ χ2

p
(1−2α),

where χ2
p
(1−2α) is the 1−2α percentile of the chi-squared distribution with

p degrees of freedom.

8.3 Bayesian Methods 231

Let's return to our smoothing example to see what maximum likelihood
yields. The paramekern are 0 = (8, a'). The log-likelihood is

The maximum likelihood estimate is obtained by setting = 0 and
AR1/Arr2 = n, giving

which are the same as the usual estimates given in (8.2) and below (8.3).
'I'he information matrix for ti= (p, ma) is block-diagonal, and the block

corresponding to p is

so that the estimated variance (H~H)-'&' agrees with the least squares
estimate (8.3).

8.2.9 Boohtrmp versus Mtmimum Likelihood

In essence the bootstrap is a computer implementation of nonpararnetric or
parametric maximum likelihood. The advantage of the bootstrap over the
maximum likelihood formula is that it allows us to compute maximum like
lihood estimates of standard errors and other quantities in settings where
no formulas arc available.

In our example, suppose that we adaptively choose by cross-validation
thc numbcr and position of thc knots that dcfinc thc B-aplinca, rathcr
than Ex them in advance. Denote by X the collection of knots and their
pmitions. Then the standard errors and coddence bands should account
for the adaptive choice of A, but there is no way to do this analytically.
With the boot~trap, we compute the I?-spline smooth with an adaptive
choice of knots for each bootstrap sample. The percentiles of the resulting
curves capkure the variability from both the noise in the targets as well as
that fiom A. In this particular example the con6dence bands (not shown)
don'L look ruuch &tIererll L h Lhe h e d X butds. BuL in olher problem,
where more adaptation is used, this can be an important effect to capture.

8.3 Bayesian Methods

In the Bayesian approach to inference, we specify a sampling model Pr(Zl0)
(density or probability mass function) for our data given the parameters,

232 8. Model Inference and Averaging

and a prior distribution for the parameters Pr(θ) reflecting our knowledge
about θ before we see the data. We then compute the posterior distribution

Pr(θ|Z) =
Pr(Z|θ) · Pr(θ)∫
Pr(Z|θ) · Pr(θ)dθ

, (8.23)

which represents our updated knowledge about θ after we see the data. To
understand this posterior distribution, one might draw samples from it or
summarize by computing its mean or mode. The Bayesian approach differs
from the standard (“frequentist”) method for inference in its use of a prior
distribution to express the uncertainty present before seeing the data, and
to allow the uncertainly remaining after seeing the data to be expressed in
the form of a posterior distribution.

The posterior distribution also provides the basis for predicting the values
of a future observation znew, via the predictive distribution:

Pr(znew|Z) =
∫

Pr(znew|θ) · Pr(θ|Z)dθ. (8.24)

In contrast, the maximum likelihood approach would use Pr(znew|θ̂),
the data density evaluated at the maximum likelihood estimate, to predict
future data. Unlike the predictive distribution (8.24), this does not account
for the uncertainty in estimating θ.

Let’s walk through the Bayesian approach in our smoothing example.
We start with the parametric model given by equation (8.5), and assume
for the moment that σ2 is known. We assume that the observed feature
values x1, x2, . . . , xN are fixed, so that the randomness in the data comes
solely from y varying around its mean µ(x).

The second ingredient we need is a prior distribution. Distributions on
functions are fairly complex entities: one approach is to use a Gaussian
process prior in which we specify the prior covariance between any two
function values µ(x) and µ(x′) (Wahba, 1990; Neal, 1996).

Here we take a simpler route: by considering a finite B-spline basis for
µ(x), we can instead provide a prior for the coefficients β, and this implicitly
defines a prior for µ(x). We choose a Gaussian prior centered at zero

β ∼ N(0, τΣ) (8.25)

with the choices of the prior correlation matrix Σ and variance τ to be
discussed below. The implicit process prior for µ(x) is hence Gaussian,
with covariance kernel

K(x, x′) = cov[µ(x), µ(x′)]
= τ · h(x)TΣh(x′). (8.26)

8.3 Bayesian Methods 233

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-3
-2

-1
0

1
2

3

µ
(x

)

x

FIGURE 8.3. Smoothing example: Ten draws from the Gaussian prior distri-
bution for the function µ(x).

The posterior distribution for β is also Gaussian, with mean and covariance

E(β|Z) =
(
HTH+

σ2

τ
Σ−1

)−1

HTy,

cov(β|Z) =
(
HTH+

σ2

τ
Σ−1

)−1

σ2,

(8.27)

with the corresponding posterior values for µ(x),

E(µ(x)|Z) = h(x)T
(
HTH+

σ2

τ
Σ−1

)−1

HTy,

cov[µ(x), µ(x′)|Z] = h(x)T
(
HTH+

σ2

τ
Σ−1

)−1

h(x′)σ2.

(8.28)

How do we choose the prior correlation matrix Σ? In some settings the
prior can be chosen from subject matter knowledge about the parameters.
Here we are willing to say the function µ(x) should be smooth, and have
guaranteed this by expressing µ in a smooth low-dimensional basis of B-
splines. Hence we can take the prior correlation matrix to be the identity
Σ = I. When the number of basis functions is large, this might not be suf-
ficient, and additional smoothness can be enforced by imposing restrictions
on Σ; this is exactly the case with smoothing splines (Section 5.8.1).

Figure 8.3 shows ten draws from the corresponding prior for µ(x). To
generate posterior values of the function µ(x), we generate values β′ from its
posterior (8.27), giving corresponding posterior value µ′(x) =

∑7
1 β

′
jhj(x).

Ten such posterior curves are shown in Figure 8.4. Two different values
were used for the prior variance τ , 1 and 1000. Notice how similar the
right panel looks to the bootstrap distribution in the bottom left panel

234 8. Model Inference and Averaging

F I G W 8.4. SmooUsiag example; Tea d w a fwm the pat&or dishibutiom
for Uae finctioa p(x) , for two d i f femt values of the pior variance 7 . The purple
curves rare Uae postefior -M.

of Figure 8.2 on page 227. This similarity is no accident. As T + m, the
pmterior distribution (8.27) and the bootstrap distribution (8.7) coincide.
On the other hand, for T = 1, the posterior curves p(x) in the left panel
of Figure 8.4 are smoother than the bootstrap curves, because we have
imposed more prior weight on smoothness.

The distribution (8.25) with T + ca is called a noninfomative prior for
8. In Gaussian models, maximum likelihood and parametric bootstrap anal-
yses tend to agree with Bayesian analyses that use a noninformative prior
for the free parameters. These tend to agree, because with a constant prior,
the posterior distribution is proportional to the likelihood. This mrrespon-
den= also exten& to the nonpar metric case, where the nonparametric
bootstrap approximates a noninformative Bayes analysis; Section 8.4 has
the details.

We have, however, done some things that are not proper from a Bayesian
point of view. Wc! have ~ m d a noninformakivc! (mnskant) prior for a2 and
replaced it with the maximum likelihood estimate 82 in the posterior. A
more standard Bayesian analysis would also put a prior on a (typically
g(o) m l /o) , calculate a joint posterior for p(x) and a, and then integrate
out u, rather than just extract the maximum of the pmterior distribution
(UMAP" estimate).

8.4 Relationship Between the Bootstrap and Bayesian Inference 235

8.4 Relationship Between the Bootstrap and
Bayesian Inference

Consider first a very simple example, in which we observe a single obser-
vation z from a normal distribution

z ∼ N(θ, 1). (8.29)

To carry out a Bayesian analysis for θ, we need to specify a prior. The
most convenient and common choice would be θ ∼ N(0, τ) giving posterior
distribution

θ|z ∼ N

(
z

1 + 1/τ
,

1
1 + 1/τ

)
. (8.30)

Now the larger we take τ , the more concentrated the posterior becomes
around the maximum likelihood estimate θ̂ = z. In the limit as τ →∞ we
obtain a noninformative (constant) prior, and the posterior distribution is

θ|z ∼ N(z, 1). (8.31)

This is the same as a parametric bootstrap distribution in which we gen-
erate bootstrap values z∗ from the maximum likelihood estimate of the
sampling density N(z, 1).

There are three ingredients that make this correspondence work:

1. The choice of noninformative prior for θ.

2. The dependence of the log-likelihood �(θ;Z) on the data Z only
through the maximum likelihood estimate θ̂. Hence we can write the
log-likelihood as �(θ; θ̂).

3. The symmetry of the log-likelihood in θ and θ̂, that is, �(θ; θ̂) =
�(θ̂; θ) + constant.

Properties (2) and (3) essentially only hold for the Gaussian distribu-
tion. However, they also hold approximately for the multinomial distribu-
tion, leading to a correspondence between the nonparametric bootstrap
and Bayes inference, which we outline next.

Assume that we have a discrete sample space with L categories. Let wj be
the probability that a sample point falls in category j, and ŵj the observed
proportion in category j. Let w = (w1, w2, . . . , wL), ŵ = (ŵ1, ŵ2, . . . , ŵL).
Denote our estimator by S(ŵ); take as a prior distribution for w a sym-
metric Dirichlet distribution with parameter a:

w ∼ DiL(a1), (8.32)

236 8. Model Inference and Averaging

that is, the prior probability mass function is proportional to n;', w:-l.
Then the pmterior density of r11 is

where N is the sample size. Letting ra + 0 to obtain a noninformative prior
gives

Now the bootst;rap distrib~ition, oht;dned by sampling with replacement;
£tom the data, can be expressed as sampling the category proportions from
a. mt~ltinnmial distriht~tinn. Specifically,

where Mult (N , 63) denotes a multinomial distribution, having probability
N A NTi;

mass function (NB;,... , N B Z) w, . This distribution is similar to the

posterior distribution above, having the same support, same mean, and
nearly the same covariance matrix. Hence the bootstrap distribution of
S(G*) will clmely approximate the posterior distribution of S(w).

In this sense, the bootstrap distribution represents an (approximate)
nonparametric, noninformative posterior distribution for our parameter.
But this bootstrap distribution is obtained painlessly-without having to
formally spec@ a prior and without having to sample from the posterior
distribution. Hence we might think of the bootstrap distribution as a "poor
 man'^" Raye~ pmkerinr. Ry pertirrhing the data., the hnnk~tra.p a.ppr&-
mates the Bayesian effect of perturbing the parameters, and is typically
much simpler to carry out.

8.5 The EM Algorithm

The EM algorithm is a popular tool for simplifying difficult m d u m
likelihood problems. We flrst describe it in the context of a simple mixture
model.

8.5.1 Two- Component Mixture Model
In this section we describe a simple mixture model for density estimation,
and the associated EM algorithm for carrying out maximum likelihood
estimation. This has a natural connection to Gibbs sampling methods for
Bayesian inference. Mixture modeh are discussed and demonstrated in sev-
eral other parts of the book, in particular Sections 6.8, 12.7 and 13.2.3.

The left panel of Figure 8.5 shows a histogram of the 20 fictitious data
points in Table 8.1.

8.5 The EM Algorithm 237

i. Mixtwre example. Left p a e l : histogmm of data. Right pml: mux-
....,...,.,, d jtl of Gaussian dewities (solid red) and respowiMity (dotled
g w n) of the left ~ornponed depasih for observation y, as a f ind ion of y.

TABLE I ZOficttttow data points w e d in the tuo-compnent mixturn aarnple
in Figurn -.-.

We would like to model the density of the data points, and due to the
apparent bi-modality, a Gaussian distribution would not be appropriate.
There seems to be two separate underlying regimes, so h t e a d we model
Y as a mixture of two normal distributions:

K - ~ (~ i , u ?) ,

y 2 - N(PZ,U;) ,
Y = (I - A) * Y l + A * f i ,

where A E { O , 1) with Pr(A = 1) = T. This generative representation is
explicit: generate a A E {O,1} with probability T , and then depending on
the outcome, deliver either Yl or Y2. Let # e (~) denote the normal density
with parameters 0 = (p, ma). Then the density of Y is

Now suppose we wish to fit this model to the data in Figure 8.5 by maxi-
mum likelihood. The parameters are

6 = (r, Qi,dz) = (r,~i,a: ,~a,a;). (8.38)

The log-likelihood based on the N training cases is

N

e(R z) = C l o g [(l - T)$o,(v~) + r4e, (~i) l .
6=1

238 8. Model Inference and Averaging

Algorithm 8.1 EM algorithm for two-component Gaussian mixture.

1. Take initial guesses for the parameters µ̂1, σ̂
2
1 , µ̂2, σ̂

2
2 , π̂ (see text).

2. Expectation Step: compute the responsibilities

γ̂i =
π̂φθ̂2

(yi)
(1− π̂)φθ̂1

(yi) + π̂φθ̂2
.(yi)

, i = 1, 2, . . . , N. (8.42)

3. Maximization Step: compute the weighted means and variances:

µ̂1 =
∑N

i=1(1− γ̂i)yi∑N
i=1(1− γ̂i)

, σ̂21 =
∑N

i=1(1− γ̂i)(yi − µ̂1)2∑N
i=1(1− γ̂i)

,

µ̂2 =
∑N

i=1 γ̂iyi∑N
i=1 γ̂i

, σ̂22 =
∑N

i=1 γ̂i(yi − µ̂1)2∑N
i=1 γ̂i

,

and the mixing probability π̂ =
∑N

i=1 γ̂i/N .

4. Iterate steps 2 and 3 until convergence.

Direct maximization of �(θ;Z) is quite difficult numerically, because of
the sum of terms inside the logarithm. There is, however, a simpler ap-
proach. We consider unobserved latent variables ∆i taking values 0 or 1 as
in (8.36): if ∆i = 1 then Yi comes from model 2, otherwise it comes from
model 1. Suppose we knew the values of the ∆i’s. Then the log-likelihood
would be

�0(θ;Z,∆) =
N∑

i=1

[(1−∆i) log φθ1(yi) + ∆i log φθ2(yi)]

+
N∑

i=1

[(1−∆i) log π + ∆i log(1− π)] (8.40)

and the maximum likelihood estimates of µ1 and σ21 would be the sample
mean and variance for those data with ∆i = 0, and similarly those for µ2
and σ22 would be the sample mean and variance of the data with ∆i = 1.

Since the values of the ∆i’s are actually unknown, we proceed in an
iterative fashion, substituting for each ∆i in (8.40) its expected value

γi(θ) = E(∆i|θ,Z) = Pr(∆i = 1|θ,Z), (8.41)

also called the responsibility of model 2 for observation i. We use a proce-
dure called the EM algorithm, given in Algorithm 8.1 for the special case of
Gaussian mixtures. In the expectation step, we do a soft assignment of each
observation to each model: the current estimates of the parameters are used

8.5 The EM Algorithm 239

Iteration

O
bs

er
ve

d
D

at
a

Lo
g-

lik
el

ih
oo

d

5 10 15 20

-4
4

-4
3

-4
2

-4
1

-4
0

-3
9

o

o o o
o

o

o

o
o o o o o o o o o o o o

FIGURE 8.6. EM algorithm: observed data log-likelihood as a function of the
iteration number.

TABLE 8.2. Selected iterations of the EM algorithm for mixture example.

Iteration π̂

1 0.485
5 0.493
10 0.523
15 0.544
20 0.546

to assign responsibilities according to the relative density of the training
points under each model. In the maximization step, these responsibilities
are used in weighted maximum-likelihood fits to update the estimates of
the parameters.

A good way to construct initial guesses for µ̂1 and µ̂2 is simply to choose
two of the yi at random. Both σ̂21 and σ̂22 can be set equal to the overall
sample variance

∑N
i=1(yi− ȳ)2/N . The mixing proportion π̂ can be started

at the value 0.5.
Note that the actual maximizer of the likelihood occurs when we put a

spike of infinite height at any one data point, that is, µ̂1 = yi for some
i and σ̂21 = 0. This gives infinite likelihood, but is not a useful solution.
Hence we are actually looking for a good local maximum of the likelihood,
one for which σ̂21 , σ̂

2
2 > 0. To further complicate matters, there can be

more than one local maximum having σ̂21 , σ̂
2
2 > 0. In our example, we

ran the EM algorithm with a number of different initial guesses for the
parameters, all having σ̂2k > 0.5, and chose the run that gave us the highest
maximized likelihood. Figure 8.6 shows the progress of the EM algorithm in
maximizing the log-likelihood. Table 8.2 shows π̂ =

∑
i γ̂i/N , the maximum

likelihood estimate of the proportion of observations in class 2, at selected
iterations of the EM procedure.

8.6 MCMC far Sampling from the Posterior 243

Algorithm 8.3 Gabs sampler.

1. Take some initial values u?), k = 1,2,. . . , K .

2. Repeat for t = l , 2 , . . . , . :

For Ic = 1 ,2 , . . . , K gcncratc ~ f) from
(t) U(t-l) P u , . . , u , ,+, , . . . , us-").

3. Continue step 2 until the joint distribution of (U,(t), uF), . . . , u$))
does not change.

8.6 MCMC for Sampling from the Posterior

Having defined a Bayesian model, one would like to draw samples from
the resulting pwterior distribution, in order to make inferences about the
parameters. Except for simple models, this is often a difficult computs
tional problem. In this section we discuss the Markow ciaaim Monte Carlo
(MCMC) approach to posterior sampling. We will see that Gibbs sampling,
an MCMC procedure, is closely related to the EM algorithm: the main dif-
fcrcncc ia that it aamplcs from thc conditional distributions rathcr than
maximizing aver them.

Consider first the following ahtract problem. We have random variables
Ul, U2, . . . , UK and we wish to draw a sample from their joint distribution.
Suppose this b difficult to do, but it L easy to simulate from the conditional
distributions Pr(Uj IUl, Ua, . . . , Uj-l, Uj+1,. . . , UK), j = 1,2,. . . , K. The
Gibbs samplkg procedure alternatively simulates from each of these distri-
butions and when the process stabilizes, provides a sample £tom the desired
juiid Jitili-iLuLi~i~. The ptocedutt: ir rldht:d Algufill~~u 8.3.

Under regularity conditions it can be shown that this procedure eventu-
ally stabilizes, and the resulting random variables are indeed a sample from
the joint distribution of Ul , Ua, . . . , UK. This occurs despite the fact that
the samples (UP), u;), . . . , u$)) are clearly not independent for different
t. More formally, Gibh sampling produces a Markov chain whose station-
ary distribution is the true joint distribution, and hence the term "Markov
chain Monte Carlo." It is not surprising that the true joint distribution is
stationary under this process, as the successive steps leave the marginal
distributions of the Uk 's unchanged.

Note that we don't need to know the explicit form of the conditional
densities, but just need to be able to sample from them. After the procedure
reaches stationarity, the marginal density of any subset of the variables
can be approximated by a density estimate applied to the sample values.
However if the explicit form of the conditional density Pr(Uk, IUe,L # k)
is available, a better estimate of say the marginal density of Uk can be

244 8. Model Inference and Averaging

Algorithm 8.4 Gibbs sampling for mixtures.

1. Take some initial values θ(0) = (µ(0)1 , µ
(0)
2).

2. Repeat for t = 1, 2, . . . , .

(a) For i = 1, 2, . . . , N generate ∆(t)
i ∈ {0, 1} with Pr(∆(t)

i = 1) =
γ̂i(θ(t)), from equation (8.42).

(b) Set

µ̂1 =
∑N

i=1(1−∆(t)
i) · yi∑N

i=1(1−∆(t)
i)

,

µ̂2 =
∑N

i=1 ∆(t)
i · yi∑N

i=1 ∆(t)
i

,

and generate µ
(t)
1 ∼ N(µ̂1, σ̂21) and µ

(t)
2 ∼ N(µ̂2, σ̂22).

3. Continue step 2 until the joint distribution of (∆(t), µ
(t)
1 , µ

(t)
2) doesn’t

change

obtained from (Exercise 8.4):

P̂rUk
(u) =

1
(M −m + 1)

M∑
t=m

Pr(u|U (t)
� , � �= k). (8.50)

Here we have averaged over the last M −m + 1 members of the sequence,
to allow for an initial “burn-in” period before stationarity is reached.

Now getting back to Bayesian inference, our goal is to draw a sample from
the joint posterior of the parameters given the data Z. Gibbs sampling will
be helpful if it is easy to sample from the conditional distribution of each
parameter given the other parameters and Z. An example—the Gaussian
mixture problem—is detailed next.

There is a close connection between Gibbs sampling from a posterior and
the EM algorithm in exponential family models. The key is to consider the
latent data Zm from the EM procedure to be another parameter for the
Gibbs sampler. To make this explicit for the Gaussian mixture problem,
we take our parameters to be (θ,Zm). For simplicity we fix the variances
σ21 , σ

2
2 and mixing proportion π at their maximum likelihood values so that

the only unknown parameters in θ are the means µ1 and µ2. The Gibbs
sampler for the mixture problem is given in Algorithm 8.4. We see that
steps 2(a) and 2(b) are the same as the E and M steps of the EM pro-
cedure, except that we sample rather than maximize. In step 2(a), rather
than compute the maximum likelihood responsibilities γi = E(∆i|θ,Z),

8.6 MCMC far Sampling from the Posterior 245

0 50 100 150 200

Gibbs lteration

50 100 150 200

Gibbs lteration

3 . Mixterm example. Lefi panel: 200 m l w s of the two mean pram-
,,, , ..,... ,.bbs sampling; horizontal lines are drawn at the maximum likdlaood
estirndes fil, Pa. Right pand: p p r t i o n of values with A= = I, for mch of the
200 GiLLs surr~pliuir~ ileuuliuuu; u hmhuihl liuse k clrrs*s ol C i j , / N .

the Gibbs sampling procedure simulates the latent data 4 from the distri-
butions Pt(Ab 10, Z). In step 2(b), rather than compute the maximizers of
the posterior Pr(pl, pa, A I Z) we simulate from the conditional distribution

Pr(Pl,P2lA, Z).
Figure 8.8 shows 200 iterations of Gibbs sampling, with the mean param-

elms p1 (lower) utrd pa (upper) shvw11 irl Lhe leIL putrlel, md Lhe prop~10rLivn
of class 2 observations C, 4 / N on the right. Horizontal broken lines have
been drawn at the maximum likelihood estimate values P1, P2 and Ci qi /N
in each case. The values seem to stabilize quite quicklx and are distributed
evenly atound the maximum likelihood values.

The above mixture model was simplified, in order to make the clear
connection between Gibbs sampling and the EM algorithm. More realisti-
call% one would put a prior distribution on the variances uf , ui and mixing
proportion T , and include separate Gibb sampling steps in which we sam-
ple from their posterior distributions, conditional on the other parameters.
One can also incorporate proper (informative) priors for the mean param-
eters. These priors must not be improper as this will lead to a degenerate
posterior, with all the mixing weight on one component.

Gibbs sampling is just one of a number of recently developed procedures
for sampling £tom posterior distributions. It uses conditional sampling of
each parameter given the rest, and is useful when the structure of the prob
lem makes this sampling easy to carry out. Other methods do not require
such structure, for example the Meh-opoEs-Hastings algorithm. These and
other computational Bayesian methods have been applied to sophisticated
learning algorithms such as Gaussian process models and neural networks.
Details may be found in the references given in the Bibliographic Notes at
the end of this chapter.

246 8. Model Inference and Averaging

8.7 Bagging

Earlier we introduced the bootstrap as a way of assessing the accuracy of a
parameter estimate or a prediction. Here we show how to use the bootstrap
to improve the estimate or prediction itself. In Section 8.4 we investigated
the relationship between the bootstrap and Bay- approaches, and found
that the bootstrap mean is approximately a posterior average. Bagging
further exploits this connection.

Consider first the regression problem. Suppose we fit a model to our
training data Z = {(XI, yl), (x2, y ~) , . . . , (XN, y ~)) , obtaining the predic
tion f(x) at input x. Bootstrap aggregation or bagging averages this p r e d i ~
tion over a collection of bootstrap samples, thereby reducing its variance.
For each bootstrap sample z * ~ , b = 1,2, . . . , B, we fit our model, giving
prediction Pb(s). The bagging estimate is defined by

Denote by @ the empirical distribution putting equal probability 1/N on
each of the data points (xi, gi). In fad the "true" bagging estimate is
defined by E+P (x), where Z* = (x;, g;), (x;, @), . . . , (xk, 41;;) and each

(x;, $) $. Expression (8.51) is a Monte Carlo estimate of the true
bagging estimate, approaching it as 3 4 m.

The bagged estimate (8.51) will d8er kom the original estimate f(z)
only when the latter is a nonlinear or adaptive function of the data. For
example, to bag the 3-spline smooth of Section 8.2.1, we average the curves
in the bottom left panel of Figure 8.2 at each value of x. The 3-spline
smoother is linear in the data if we 6x the inputsi hence if w~ sample using
the parametric bootstrap in equation (8.6), then fbq(%) + f (x) a~ B + cxl
(Exercise 8.5). Hence bagging just reproduces the original smooth in the
top lcft panel of Figurc 8.2. Thc samc is approximately truc if wc wcrc to
bag using the nonparametric bootstrap.

A more interesting example is a regression tree, where f"(z) denotes the
tree's prediction at input vector x (regression trees are described in Chap
ter 9). Each bootstrap tree will typically involve different features than the
original, and might have a different number of terminal nodes. The bagged
estimate is the average prediction at x from these B trees.

Now suppose our tree produces a classifier k(x) for a K-class response.
Here it is useful to consider an underlying indicator-vector function f"(x),
with value a single one and K - 1 zeroes, such that &(x) = arg mayE f(x) .
Then the bagged estimate fbag(x) (8.51) is a K-vector (p l , p a , . . . , p K) ,
with pk equal to the proportion of trees predicting class k at x. 'lleating
these as estimates of the class probabilities, our predicted clay is the one
with the most 'Lvotes" from the B trees, G~%(x) = arg maxk fbW(2).

8.7 Bagging 247

For many classifiers &(2), (including trees), there is already an under-
lying function f(z) that estimates the class probabilities at z. An alterna,
tive bagging strategy is to average these instead, rather than the indicator
vectors, and this tends to produce bagged estimates with lower variance,
especially for small B (see Figure 8.10).

8.7.1 Example: Frees WKLII Simulated Data
We generated a sample of size N = 30, with two classes and p = 5 features,
each having a standard Gaussian distribution with pairwise correlation
0.95. The response Y was generated according to Pr(Y = llxl 5 0.5) = 0.2,
Pr(Y = llxl > 0.5) = 0.8. The Bayes error is 0.2. A test sample of size
2000 was also generated hom the same population. We fit classification
trees to the training sample and to each of 200 bootstrap samples (class%-
cation trees are described in Chapter 9). No pruning was used. Figure 8.9
shows the original tree and five bootstrap trees. Notice how the trees are
all different, with different splitting featutes and cutpoints. The test error
for the original tree and the bagged tree is shown in Figure 8.10. In this
example the trees have high variance due to the correlation in the predic
tors. Bagging succeeds in smoothmg out this variance and hence reducing
the test error.

Bagging can dramatically reduce the variance of unstable procedures
like trees, leading to improved prediction. A simple argument shows why
bagging helps under squared-error loss, in short because averaging reduces
variance and leaves bias unchanged.

Assume our training observations (x i , ui), i = 1, . . . , N are indepen-
dently drawn from a distribution P, and consider the ideal aggregate es-
timator f,,(x) = ~?f"g(s). Here x is k e d and the bootstrap dataset Z*
consists of observations a;, $, i = 1,2,. . . , N sampled from P. Note that
fag(s) is a bagging estimate, drawing bootstrap samples from the actual
popdation P rather than the data. It is not an estimate that we can me
in practice, but is convenient for analysis. We can write

The extra error on the right-hand side comes from the variance of (x)
around its mean fw(x). Therefore true population aggregation never in-
creases mean squared error. This suggests that bagging4rawing samples
£tom the traiaiag data- will often decrease mean-squared error.

The above argument does not hold for class%cation under 0-1 loss, b e
cause of the nodditivity of bias and variance. In that setting, bagging a
good classifier can make it better, but bagging a bad classifier can make it

248 8. Model Inference and Averaging

Original Tree

Bootstrap Tree 2

Bootstrap Tree 4

Bootstrap nee 1

Bootstrap n e e 3

Bootstrap n e e 6

FIGURE 8.9. Bagging trees on sinadded dahset. Top left p a w l shows omginat
twe. Five k s gmwn on h t s t m p barnpies a w ~hown.

8.7 Bagging 249

Bagged Trees

Number of Bootstrap Samples

FIGT-- 10. Ewer curves for the bagging example of Figure 8.9. Shown is
the ttx of the origind tree and blsgged tms as a function of the number of
b w t s h p samples. The g x e n e n t s mrrespond to majority wk, while the purple
points m~emqe tlae probabilities.

worse. Here is a simple example, using a randomized rule. Suppose Y = 1
for all x, and the classfier G(x) predicts Y = 1 (for all x) with proba-
bility 0.4 and predicts Y = 0 (for all x) with probability 0.6. Then the
rnisclassification error of 2(x) is 0.6 but that of the bagged clasaer is 1.0.

Note that when we bag a model, any simple structure in the model is
lost. As an example, a bagged tree is no longer a tree. For interpretation
of the model this is clearly a drawback. More stable procedures like near-
est neighbors are typically not affected much by bagging. Unfortunately,
the unstable models most helped by bagging are unstable because of the
emphasis on interpretability, and tkis is lost in the bagging process.

Figure 8.11 shows an example where bagging doesn't help. 'l'he 100 data
points shown have two features and two classes, separated by the gray
linear boundary XI + xa = 1. We chome as our classifier G (Z) a single
d o r i e n t e d split, choosing the split along either XI or xz that produces
the largest decrease in training misclassfication error.

The decision boundary obtained from bagging the 0-1 decision rule over
B = 50 bootstrap samples is shown by the blue curve in the left panel.
It does a poor job of capturing the true boundary. The single split rule,
derived kom the training data, splits near 0 (the middle of the range of XI
or x 2) , and hence has little contribution away from the center. Averaging

250 8. Model Inference and Averaging

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

••
•

•

•
•

•

•
••

•

•
•

•

•

•

•

•

•

•

•

• •••
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •• •

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

• •

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

• •

•

•

•

•
•

•

•

•

•
•

•

•
••

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

• •
•

•

•

•

••

•

•
•

•

•

•
•

•

•

•
•

•
• •

•

•

•
•

•

•

•

•

•

••

•

•

•

Bagged Decision Rule

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

••
•

•

•
•

•

•
••

•

•
•

•

•

•

•

•

•

•

•

• •••
•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •• •

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

• •

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

• •

•

•

•

•
•

•

•

•

•
•

•

•
••

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

• •
•

•

•

•

••

•

•
•

•

•

•
•

•

•

•
•

•
• •

•

•

•
•

•

•

•

•

•

••

•

•

•

Boosted Decision Rule

FIGURE 8.11. Data with two features and two classes, separated by a linear
boundary. Left panel: decision boundary estimated from bagging the decision rule
from a single split, axis-oriented classifier. Right panel: decision boundary from
boosting the decision rule of the same classifier. The test error rates are 0.166,
and 0.065 respectively. Boosting is described in Chapter 10.

the probabilities rather than the classifications does not help here. Bagging
estimates the expected class probabilities from the single split rule, that is,
averaged over many replications. In a stylized version of the above model,
its error can be shown to be 0.5 for all x1, x2 (Exercise 8.1). Note that
the expected class probabilities computed by bagging cannot be realized
on any single replication, in the same way that a woman cannot have 2.4
children. In this sense, bagging increases somewhat the space of models
of the individual base classifier. However it doesn’t help in this and many
other examples where a greater enlargement of the model class is needed.
“Boosting” is a way of doing this and is described in Chapter 10. The
decision boundary in the right panel is the result of the boosting procedure,
and it roughly captures the diagonal boundary.

8.8 Model Averaging and Stacking

In Section 8.4 we viewed bootstrap values of an estimator as approximate
posterior values of a corresponding parameter, from a kind of nonparamet-
ric Bayesian analysis. Viewed in this way, the bagged estimate (8.51) is
an approximate posterior Bayesian mean. In contrast, the training sample
estimate f̂(x) corresponds to the mode of the posterior. Since the posterior
mean (not mode) minimizes squared-error loss, it is not surprising that
bagging can often reduce mean squared-error.

8.8 Model Averaging and Stacking 251

Here we discuss Bayesian model averaging more generally. We have a
set of candidate models M,, m = 1,. . . , M for our training set Z. These
models may be of the same type with different parameter values (e.g.,
subsets in linear regression), or different models for the same task (e.g.,
neural networks and regression trees).

Suppose C is some quantity of interest, for example, a prediction f (x) at
some fixed feature value x. The posterior distribution of (; is

with posterior mean

This Bayesian prediction is a weighted average of the individual predictions,
with weights proportional to the posterior probability of each model.

This formulation leads to a number of different model-averaging strate-
gies. Committee methods take a simple unweighted average of the predic-
tions from each model, essentially giving equal probability to each model.
More ambitiously, the development in Section 7.7 shows the BIG criterion
can be used to estimate posterior modcl probabilities. This is applicable
in cases where the different models arise from the same parametric model,
with diffcrcnt parameter values. The BIC gives weight to each modcl dc-
pending on how well it fits and how many parameters it uses. One can also
carry out the Bayesian recipe in full. If each model M, has parameters
O,, we write

In principle one can specify priors Pr(&,, IM,r,,) and numerically com-
pute the posterior probabilities from (8.55), to be used as model-averaging
wcights. However, wc have seen no real evidence that this is worth all of
the effort, relative to the much simpler BIG approximation.

How can we approach model averaging from a frequentist viewpoint?
Given predictions fl (x), f ~ (x) , . . . , ~ M (z) , under squared-error loss, we can
seek the weights w = (wl, wz, . . . , wM) such that

M

G = argmin E~ [Y -): w, j, (x)] '.
W m=l

252 8. Model Inference and Averaging

Here the input value x is fixed and the N observations in the dataset Z (and
the target Y) are distributed according to P. The solution is the population
linear regression of Y on F (z) ~ = [f l (z) , f 2 ((Z , . . . , f M (z)] :

Now the full regression has smaller error than any single model

so combining models never makes things worse, at the population level.
Of course the population linear regression (8.57) is not available, and it

is natural to replace it with the linear regression over the training set. But
there are simple examples where this does not work well. For example, if
fm(x), m = 1 , 2 , . . . , M represent the prediction from the best subset of
inputs of size m among M total inputs, then linear regression would put all
of the weight on the largest model, that is, wM = 1, w, = 0 , m < M. The
problem is that we have not put each of the models on the same footing
by taking into account their complexity (the number of inputs m in this
example).

Stacked generalization, or stacking, is a way of doing this. Let f ~ ' (2)

be the prediction at x, using model m, applied to the dataset with the
ith training observation removed. The stacking estimate of the weights is
obtained from the least squares linear regression of y, on f;"x,), m =
1 , 2 , . . . , M. In detail the stacking weights are given by

The final prediction is Cm8g.frn(z). By using the cross-validated pre-
dictions f$(x), stacking avoids giving unfairly high weight to models with
higher complexity. Better results can be obtained by restricting the weights
to be nonnegative, and to sum to 1. This seems like a reasonable restriction
if we interpret the weights as posterior model probabilities as in equation
(8.54), and it leads to a tractable quadratic programming problem.

There is a close connection between stacking and model selection via
leave-one-out cross-validation (Section 7.10). If we restrict the minimization
in (8.59) to weight vectors w that have one unit weight and the rest zero,
this leads to a model choice m with smallest leave-one-out crossvalidation
error. Rather than choose a single model, stacking combines them with
estimated optimal weights. This will often lead to better prediction, but
less interpretability than the choice of only one of the M models.

The stacking idea is actually more general than described above. One
can use any learning method, not just linear regression, to combine the

8.9 Stochastic Search: Bumping 253

models as in (8.59); the weights could also depend on the input location
x. In this way, learning methods are "stacked" on top of one another, to
improve prediction performance.

Stocllatic Search: Burnping

'I'he final method described in this chapter does not involve averaging or
combining models, but rather is a technique for finding a better single
model. Bt~rnpirg uses bootstrap sampling to move randomly through model
space. For problems where fitting method hds many local minima, bump
ing can help the method to avoid getting stuck in poor solutions.

As in bagging, we draw bootstrap samples and fit a model to each. But
rather than average the predictions, we choose the model estimated from a
bootstrap sample that best fits the training data. In detail, we draw boot-
strap samples Z ' l , . . . , Z*B and fit our model to each, giving predictions
Pb(x) , b = 1 ,2 , . . . , B at input point x. We then choose the model that
produces the smallest prediction error, aver aged over the original training
set. For squared efror, for example, we choose the model obtained fiom
bootstrap sample b, where

The corresponding model predictions are f*'L(z). By convention we also
include the original training sample in the set of bootstrap samples, so that
the method is free to pick the original model K it has the lowest tr-
enor.

By perturbing the data, bumping tries to move the fitting procedure
around to good areas of model space. For example, if a few data points are
causing the procedure to find a poor solution, any bootstrap sample that
omits thme data points should procedure a better solution.

For another example, consider the classijication data in Figure 8.12, the
notorious exclu&ve or (XOR) problem. There are two classes (green and
red) and two input features, with the features exhibiting a pure interaction.
By splitting the data at XI = 0 and then splitting each resulting strata at
x2 = 0, (or vice versa) a treebased classifier could achieve perfect discrim-
ination. However, the greedy, short-sighted CART algorithm (Section 9.2)
tries to find the best split on either feature, and then splits the resulting
strata. Became of the balanced nature of the data, all initial splits on XI or
x2 appear to be useless, and the procedure essentially generates a random
split at the top level. The actual split found for these data is shown in
the left panel of Figure 8.12. By bootstrap sampling horn the data, bump
ing breaks the balance in the classes, and with a reasonable number of

254 8. Model Inference and Averaging

Regular 4-Node Tree Bumped 4-Node Tree

,.a -$. =.. ; #; 1 . .
.a. -

b ..> . .:. '..I , . " .. • ' :. i C
. 1 . . -

a.{* -.a*::-$ i - c-'l--+---l . . .
, . . . - . - . . -.. I:

.;
j - . . .{: .% . 3.. . . . '. 1 ' . ' . *- ..:.. : . *. . . - :...:. .% : I,.. 0 - - .

FIGURE 8.12. Data with two featurns and two classes (green and dl, displap
mng a puw intemcf on. The left jmnel shows Be partition found by Uam splits of a
s tandad, greedy, h e - g r o k n g dgoritlam. The vertiml blue line near the left edge
is fhe f i s t split, and fhe bmken lines are the two serbsquent splifs. The aigm-thna
has no idea &em £0 make a good ini t id split, a d mtakes a pm claoice. The rigM
panel shows the nmr-optimal s i t s found by bumping the tw-gmtting algorithm
20 t i e s .

bootstrap samples (here 20), it will by chance produce at least one tree
with initial split near either XI = 0 or xa = 0. Using just 20 bootstrap
samples, bumping found the near optimal splits shown in the right panel
of Figure 8.12. This shortcoming of the greedy tree-growing algorithm is
exacerbated if we add a number of noise features that are independent of
the clam label. Then the tree-growing algorithm cannot dist-h $1 or
Xa horn the others, and gets seriously lmt.

Since bumping wmpares different models on the training data, one must
ensure that the models have roughly the same compled~. In the case of
kree~, t h i ~ wnt~ld mean grnwing tree^ with khe mrne nt~mher nf terminal
nodes on each bootstrap sample. Bumping can also help in problems where
it is difficult to optimize the fitting criterion, perhaps because of a lack of
smoothness. The trick is to optimize a different, more convenient criterion
over the bootstrap samples, and then choose the model producing the best
results for the desired criterion on the training sample.

Bibliographic Notes

There are many books on classical statistical inference: Cox and Hink-
ley (1974) and Silvey (1975) give nontechnical accounts. The bootstrap
is due to Efron (1979) and is described more fully in Ekon and Tibshi-
rani (1993) and Hall (1992). A good modern book on Bayesian inference

Exercises 255

is Gelman et al. (1995). A lucid account of the application of Bayesian
methods to neural networks is given in Neal (1996). The statistical appli-
cation of Gibbs sampling is due to Geman and Geman (1984), and Gelfand
and Smith (1990), with related work by Tanner and Wong (1987). Markov
chain Monte Carlo methods, including Gibbs sampling and the Metropolis–
Hastings algorithm, are discussed in Spiegelhalter et al. (1996). The EM
algorithm is due to Dempster et al. (1977); as the discussants in that pa-
per make clear, there was much related, earlier work. The view of EM as
a joint maximization scheme for a penalized complete-data log-likelihood
was elucidated by Neal and Hinton (1998); they credit Csiszar and Tusnády
(1984) and Hathaway (1986) as having noticed this connection earlier. Bag-
ging was proposed by Breiman (1996a). Stacking is due to Wolpert (1992);
Breiman (1996b) contains an accessible discussion for statisticians. Leblanc
and Tibshirani (1996) describe variations on stacking based on the boot-
strap. Model averaging in the Bayesian framework has been recently advo-
cated by Madigan and Raftery (1994). Bumping was proposed by Tibshi-
rani and Knight (1999).

Exercises

Ex. 8.1 Consider the unit square and partition it into nine smaller squares of
equal size by two lines cutting each axis at values 1/3 and 2/3, respectively.
Below the line x1 + x2 = 1 is class 1; the rest is class 2.

We consider a single split classifier, that yields splits at one of the four
lines (two on x1 at 1/3 and 2/3, and similarly for x2), with all four splits
having equal probability.

(a) Analyze the effects of bagging the decision rule and the probability
estimates, and show that the former has an error rate of 0.5, while
the latter has the Bayes error rate of zero.

(b) Calculate the bias and variance of the single split probability estimates,
and their bagged versions. Hence determine whether the positive ef-
fect of bagging is to reduce bias or variance.

Ex. 8.2 Let r(y) and q(y) be probability density functions. Jensen’s in-
equality states that for a random variable X and a convex function φ(x),
E[φ(X)] ≥ φ[E(X)]. Use Jensen’s inequality to show that

Eq log[r(Y)/q(Y)] (8.61)

is maximized as a function of r(y) when r(y) = q(y). Hence show that
R(θ, θ) ≥ R(θ′, θ) as stated below equation (8.46).

256 8. Model Inference and Averaging

Ex. 8.3 Consider the maximization of the log-likelihood (8.48), over dis-
kribukions P(zm) s u ~ h khak F(zm) 2 O and C,, P(zm) = 1. [kc! Ida-
grange multipliers to show that the solution is the conditional distribution
p(zm) = Pr(Zml Z, 89, as in (8.49).

Ex. 8.4 Justify the estimate (8.50), using the relationship

Ex. 8.5 Consider the baggkg method of Section 8.7. Let our estimate f(x)
be the B-spline smoother P (x) of Section 8.2.1. Consider the parametric
bootstrap of equation (&ti), applied to this estimator. Show that if we bag
f(x), using the parametric bootstrap to generate the bootstrap samples,
the bagging estimate fbag(a;) converges to the original estimate f"(z) as

B 402.

Ex. 8.6 Suggest generalizations of each of the lms functions in Figure 10.4
to more than two classes, and design an appropriate plot to compare them.

Ex. 8.7 Consider the bone mineral dmity data of Figure 5.6.

(a) Fit a cubic smooth spline to the relative change in spinal BMD, as a
function of age. Use cross-validation to estimate the optimal amount
of smoothing. Construct pointwk 90% coddence bands for the un-
derlying function.

(b) Compute the posterior mean and covariance for the true function via
(8.28), and compare the pmterior bands to thme obtained in (a).

(c) Compute 100 bootstrap replicates of the fitted curves, as in the bottom
1eIL paid uI Figut-e 8.2. Cuiubate Ll~e t-cs~lla lu lhme ubl&eJ it1 (a)

and (b).

+ This is page 257
Printer: Opaque this

Additive Models, Trees, and Related
Methods

In this chapter we begin our discussion of some spec& methods for super-
vised learning. These techniques each assume a (different) structured farm
for the unknown regression function, and by doing so they finesse the curse
VT rliruemivdly. OI course, Lhey pay Lhe possible price v1 ruisspeciryhg
the model, and so in each case there is a tradeoff that has to be made. They
take off where Chapters 343 left off. We describe five related techniques:
generalized additive models, trees, multivariate adaptive regression splines,
the patient rule induction method, and hierarchical mixtures of experts.

9.1 Generalized Additive Models

Regression models play an important role in many data analyses, providing
prediction and classification rules, and data analytic tools for understand-
ing the importance of different inputs.

Although attractively simple, the traditional linear model often fails in
these situations: in real life, etfects are often not linear. In earlier chapters
we described techniques that used predefined basis functions to achieve
nonlinearities. This section describes more automatic flexible statistical
methods that may be used to ident* and characterize nonlinear regression
effects. These methods are called Ugener alized additive models."

In the regression setting, a generalized additive model has the form

258 9. Additive Models, Trees, and Related Methods

As usual XI, X2, . . . , X, represent predictors and Y is the outcome; the fj7s
are unspecified smooth ("nonparametric") functions. If we were to model
each function using an expansion of basis functions (as in Chapter 5) , the
resulting model could then be fit by simple least squares. Our approach
here is different: we fit each function using a scatterplot smoother (e.g., a
cubic smoothing spline or kernel smoother), and provide an algorithm for
simultaneously estimating all p functions (Section 9.1.1).

For two-class classification, recall the logistic regression model for binary
data discussed in Section 4.4. We relate the mean of the binary response
p(X) = Pr(Y = 1IX) to the predictors via a linear regression model and
the logit link function:

The additive logistic regression model replaces each linear term by a more
general functional form

where again each f j is an unspecified smooth function. While the non-
parametric form for the functions f j makes the model more flexible, the
additivity is retained and allows us to interpret the model in much the
same way as before. The additive logistic regression model is an example
of a generalized additive model. In general, the conditional mean p(X) of
a response Y is related to an additive function of the predictors via a link
function g:

Examples of classical link functions are the following:

g(p) = p is the identity link, used for linear and additive models for
Gaussian response data.

g(p) = logit(p) as above, or g(p) = probit(p), the probit link function,
for modeling binomial probabilities. The probit function is the inverse
Gaussian cumulative distribution function: probit (p) - (p).

g(p) = log(p) for log-linear or log-additive models for Poisson count
data.

All three of these arise from exponential family sampling models, which
in addition include the gamma and negative-binomial distributions. These
families generate the well-known class of generalized linear models, which
are all extended in the same way to generalized additive models.

9.1 Generalized Additive Models 259

The functions fj are estimated in a flexible manner, using an algorithm
whose hasic building block is a scatterplot smoother. The estirnaked fiinc-
tion fj can then reveal possible nonlinearities in the effect of X j . Not all
of the fundions f j need to be nonlinear. We can easily mix in linear and
other parametric forms with the nonlinear terms, a necessity when some of
the inputs are qualitative variables (factors). The nonlinear term are not
restricted to main effects either; we can have nonlinear components in two
or more variables, or separate curves in Xi for each level of the factor Xk .
Thus each of the following would qualify:

g (p) = XY'P + ak + f (2)-a semipalmmetric model, where X is a
vector of predictors to be modeled linearly, ak the effect for the kth
level of a qualitative input V, and the effect of predictor Z is modeled
nonparametrically.

g (p) = f (X) + gk (2)-again k indexes the levels of a qualitative
input V. and thus creates an interaction term g(V, 2) = gk(Z) for
the effect of V and 2.

g (p) = f (X) + g (2, W) where g is a nonpararnetric function in two
features.

Additive models can replace linear modeh in a wide variety of settings,
for example an additive decomposition of time series,

where S1 is a seasonal component, Ti is a trend and E is an error term.

9. I . 1 Fitting Additive Models

In this section we describe a modular algorithm for fitting additive models
and their generalizations. The building block is the scatterplot smoother
for fitting nonlinear effects in a flexible way. For concreteness we use as our
scatterplot smoother the cubic smoothing spline described in Chapter 5.

The ddiLive 1uude1 h Lhe Iurm

where the error term E has mean zero. Given observations xi, yi, a criterion
lilcc thc pcndiwd sum of squarcs (5.9) of Scction 5.4 can bc spcciflcd for
this problem,

260 9. Additive Models, Tkees, and Related Methods

rithm 9.1 The backfitting algofithm for additive models.

where the Xi 3 0 are tuning parameters. It can be shown that the minimizer
of (9.7) is an additive cubic spline model; each of the functions fi is a
cubic spline in the component X j , with knots at each of the unique values
of zy, i = 1,. . . , N. However, without further restrictions on the model,
the solution is not unique. The constant a! is not identifiable, since we
can add or subtract any constants to each of the functions fj, and adjust

CY accordingly. The standard convention is to assume that C: fj (z i j) =
0 Vj-the functions average mro over the data. It is easily seen that & =
a v e (~) in this case. If in addition to this restriction, the matrix of input
values (having i j th entry xij) is nonsmgular, then (9.7) is a strictly convex
criterion and the minimizer is unique. If the matrix is singular, then the
h e a r part of the components f, cannot be uniquely determined (while the
nonlinear pmta can!) (Buja et d., 1989).

Furthermore, a simple iterative procedure exists for finding the solution.
Wc sct b = avc(gi), and it ncvcr m c s . Wc apply a cubic smoothing
spline Sk to the targets {yi - d - Cj#k fj(xij))F, as a function of xik, to

obtain a new estimate fk. This is done for each predictor in turn, using
the current estimates of the other functions fj when computing yi - & -
CjPk fj(%j). The process is continued until the a t ima ta stabilize. Thin
procedure, given in detail in Algorithm 9.1, is known as "backfitting" and
the resulting fit is analogous to a multiple regression for linear models.

In principle, the second step in (2) of Algorithm 9.1 is not needed, since
the smoothing spline fit to a mean-zero response has mean mro (Exer-
cise 9.1). In practice, machine rounding can cause slippage, and the ad-
justment is advised.

This same algorithm can mommodate other fitting methods in exactly
the same way, by specifying appropriate smoothing operators S,:

other univariate regression smoothers such M local polynomial r e
gression and kernel methods;

9.1 Generalized Additive Models 261

a linear regression operators yielding polynomial fits, piecewise con-
stant fits, parametric spline fits, series and Fourier fits;

more complicated operators such as surface smoothers for second or
higher-order interactions or periodic smoothers for seasonal effects.

If we conaider the operation of smoother Sj only at the training points, it
can be represented by an N x N operator matrix S j (see Section 5.4.1).
Then the degrees of freedom for the j th term are (approximately) computed
as dfj = trace[Sj] - 1, by analogy with degrees of freedom for smoothers
discussed in Chapters 5 and 6.

For a large class of linear smoothers Sj , backjitting is equivalent to a
G a d e i d e l algorithm for solving a certain linear system of equations.
Details are given in Exercise 9.2.

For thc logistic rcpssion modcl and othcr gcncralhcd additivc modcls,
the appropriate criterion is a penalized log-likelihood. To madmize it, the
backfitting proccdurc is uscd in conjunction with a likelihood rnndrnbcr.
The usual Newton-Raphon routine for maximizing log-likelihoods in gen-
eralized linear models can be recast as an IRLS (iteratively reweighted
least squares) algorithm. This involves repeatedly fitting a weighted linear
regr~sion of a working response variable on the covariat~; each regression
yields a new value of the parameter estimates, which in turn give new work-
ing responses m d weights, m d the process is iterated (see Section 4.4.1).
In the generalized additive model, the weighted linear regression is simply
replaced by a weighled b~tckGLLiq dgorilhu. We describe Lhe algurilkm irl
more detail for logistic regression below, and more generally in Chapter 6
of Hastie and T iMran i (1990).

9.1.2 Example: Additive Logistic Regression

Probably the most widely used model in medical research is the logistic
model for binary data. In this model the outcome Y can be coded as 0
or 1, with 1 indicating an event (like death or r e l a p of a disease) and
0 indicating no event. We wish to model Pr(Y = lIX), the probability
of an event given values of the prognostic factors = (X . . . , x ~) . 'I'he
goal is usually to understand the roles of the prognostic factors, rather
than to classify new individuals. Logistic models are also used in applica,
tiom where one is interested in estimating the class probabilities, for use
in risk screening. Apart from medical applications, credit risk screening is
a popular application.

The generalized additive logistic model has the form

The functions fi, fa, . . . , f, are estimated by a backjitting algorithm
within a Newton-Raphson procedure, shown in Algorithm 9.2.

262 9. Additive Models, Trees, and Related Methods

Algorithm 9.2 Local scoring algorithm for the additive logistic regression
model.

1. Compute starting values: α̂ = log[ȳ/(1 − ȳ)], where ȳ = ave(yi), the
sample proportion of ones, and set f̂j ≡ 0 ∀j.

2. Define η̂i = α̂ +
∑

j f̂j(xij) and p̂i = 1/[1 + exp(−η̂i)].

Iterate:

(a) Construct the working target variable

zi = η̂i +
(yi − p̂i)
p̂i(1− p̂i)

.

(b) Construct weights wi = p̂i(1− p̂i)

(c) Fit an additive model to the targets zi with weights wi, us-
ing a weighted backfitting algorithm. This gives new estimates
α̂, f̂j , ∀j

3. Continue step 2. until the change in the functions falls below a pre-
specified threshold.

The additive model fitting in step (2) of Algorithm 9.2 requires a weighted
scatterplot smoother. Most smoothing procedures can accept observation
weights (Exercise 5.12); see Chapter 3 of Hastie and Tibshirani (1990) for
further details.

The additive logistic regression model can be generalized further to han-
dle more than two classes, using the multilogit formulation as outlined in
Section 4.4. While the formulation is a straightforward extension of (9.8),
the algorithms for fitting such models are more complex. See Yee and Wild
(1996) for details, and the VGAM software currently available from:

http://www.stat.auckland.ac.nz/∼yee.

Example: Predicting Email Spam

We apply a generalized additive model to the spam data introduced in
Chapter 1. The data consists of information from 4601 email messages, in
a study to screen email for “spam” (i.e., junk email). The data is publicly
available at ftp.ics.uci.edu, and was donated by George Forman from
Hewlett-Packard laboratories, Palo Alto, California.

The response variable is binary, with values email or spam, and there are
57 predictors as described below:

• 48 quantitative predictors—the percentage of words in the email that
match a given word. Examples include business, address, internet,

9.1 Generalized Additive Models 263

- * - LE 9.1. Test data m j w i o n mh% for the additive logistic mgwsion mod$
the Tram training data. T h e memll test e m rate is 5.3%.

free, and george. The idea was that these could be customimd for
individual users.

6 quantitative predictors-the percentage of characters in the email
that match a given character. The characters are ch; , ch(, chC, ch!,
ch$, and ch#.

The average length of uninterrupted sequences of capital letters:
CAP AVE.

The length of the longest Uninterrupted sequence of capital letters:
CAPMhx.

The sum of the length of uninterrupted sequences of capital letters:
CAPTOT.

We coded spam w 1 md email w mro. A LesL ~1 o l s h e 1536 w w rmdo~uly
chosen, leaving 3065 observations in the training set. A generalized additive
model was fit, using a cubic smoothing spline with a nominal four degrees of
freedom for each predictor. What this means is that for each predictor Xj ,
the smooth-spline parameter Xi was chosen so that trace[Sj (A j)] - 1 = 4,
where S j (A) is the smoothing spline operator matrix constructed using the
observed values xij, i = 1,. . . , N. This is a convenient way of specifying
the amount of smoothing in such a complex model.

The test error rates are shown in Table 9.1; the overall error rate is 5.3%.
By comparison, a linear logistic regression has a test error rate of 7.6%.
Table 9.2 shows the predictors that are highly signijicant in the additive
model.

For ease of interpretation, in 'I'able 9.2 the contribution for each variable
is decomposed into a linear component and the remaining nonlinear com-
ponent. The top block of predictors are positively correlated with spam,
while the bottom block is negatively correlated. The linear component is a
weighted least squares linear fit of the fitted curve on the predictor, while
the nonlinear part is the residual. The linear component of an estimated
function is summarized by the coefficient, standard error and Z-score; the
latter is the coefficient divided by its standard error, and is considered
significant if it exceeds the appropriate quantile of a standard normal dis-
tribution. The column labeled nonlinear P-value is a test of nonlinearity

264 9. Additive Models, k s , and Related Methods

of the estimated function. Note, however, that the effect of each predictor
is fully adjusted for the entire effects of the other predictors, not just for
their linear parts. The predictors shown in the table were judged sllgrdfl-
cant by at least one of the tests (linear or nonlinear) at the p = 0.01 level
(twesided) .

Figure 9.1 shows the estimated functions for the a i m c a n t predictors
appearing in Table 9.2. Many of the nonlinear effects appear to account for
a strong discontinuity at zero. For example, the probability of spam drop
significantly as the frequency of george increases from zero, but then does
not change much after that. This suggests that one might replace each of
the frequency predictors by an indicator variable for a zero count, and resort
to a linear logistic model. This gave a test error rate of 7.4%; including the
linear effects of the frequencies as well dropped the test error to 6.6%. It
appears that the nonlinearities in the additive model have an additional
predictive power.

It is more serious to class* a genuine email message as ~ p m , since then
a good email would be Eltered out and would not reach the user. We can
alter the balance between the class error rates by changing the losses (see
Section 2.4). If we assign a loss Lol for predicting a true class 0 as class 1,
and Llo for predicting a true class 1 as class 0, then the estimated Bayes

ing ddo The weficients mpmserat the linear prad of j,, along with their standrand
e m s mmd 2-score. Tib nonlinear P-vdue is for a test of rwdinearity of fj.

Name Num. df Coe5cient Std. Error Z Score Nodinear
P -value

Positive eflects
w r
over
remove
internet

free
~ U Q ~ ~ B B

h ~ l
ch!

dl$

CAPMRX
CAPTOT

h~
george
1999
re
edu

6
'r
8
9

17
18
27
53
54
57
58

26
28
38
46
47

3.9
3.9
4.0
4.0
3.9
3.8
3.8
4.0
3.9
3.8
4.0

3.9
3.7
3.8
3.9
4.0

0.566
0.244
0.949
0.524
0.507
0 . m
0.045
0.674
1.419
0.247
0.755

Nqmtive
-1.404
-5.003
-0.672
0.620
-1.183

0.114
0.195
0.183
0.176
0.127
0.186
0.250
0.128
0.280
0.228
0.165

effmts
0.224
0.744
0.191
0.133
0.209

4.970
1.249
5.201
2.974
4.010
4.179
0.181
5.283
5.062
1.080
4.566

-6.262
-6.722
-3.512
4.649
-5.647

0.052
0.W4
0.093
0.028
0.065
0.194
0.002
0.164
0.354
0.000
0.063

0.140
0.045
0.011
0.597
0.000

9.1 Generalized Additive Models 265

0 2 4 6 8

-5
0

5

0 1 2 3

-5
0

5

0 2 4 6

-5
0

5
10

0 2 4 6 8 10

-5
0

5
10

0 2 4 6 8 10

-5
0

5
10

0 2 4 6

-5
0

5
10

0 5 10 15 20

-1
0

-5
0

0 5 10

-1
0

-5
0

0 10 20 30

-1
0

-5
0

5

0 2 4 6

-5
0

5

0 5 10 15 20

-1
0

-5
0

5

0 5 10 15

-1
0

-5
0

0 10 20 30

-5
0

5
10

0 1 2 3 4 5 6

-5
0

5
10

0 2000 6000 10000

-5
0

5

0 5000 10000 15000

-5
0

5

our over remove internet

free business hp hpl

george 1999 re edu

ch! ch$ CAPMAX CAPTOT

f̂
(o
u
r
)

f̂
(o
v
e
r
)

f̂
(r
e
m
o
v
e
)

f̂
(i
n
t
e
r
n
e
t
)

f̂
(f
r
e
e
)

f̂
(b
u
s
i
n
e
s
s
)

f̂
(h
p
)

f̂
(h
p
l
)

f̂
(g
e
o
r
g
e
)

f̂
(1
9
9
9
)

f̂
(r
e
)

f̂
(e
d
u
)

f̂
(c
h
!)

f̂
(c
h
$
)

f̂
(C
A
P
M
A
X
)

f̂
(C
A
P
T
O
T
)

FIGURE 9.1. Spam analysis: estimated functions for significant predictors. The
rug plot along the bottom of each frame indicates the observed values of the cor-
responding predictor. For many of the predictors the nonlinearity picks up the
discontinuity at zero.

266 9. Additive Models, k s , and Related Methods

rule predicts class 1 if its probability is greater than Lol/(Lol + Llo). For
example, if we take Col = 10, Clo = 1 khm khe (krule) class 0 and class 1
error rates change to 0.8% and 8.7%.

More ambitiously, we can encourage the model to fit better data in the
class 0 by using weights Lol for the class 0 observations and Llo for the
class 1 observations. As above, we then use the estimated Bayes rule to
predict. This gave error rates of 1.2% and 8.0% in (true) class 0 and class 1,
respectively. We discuss below the issue of unequal losses further, in the
context of tresbased models.

After fitting an additive model, one should check whether the inclusion
of some interactions can significantly improve the fit. This can be done
'Lmanually," by inserting products of some or all of the sigdicant inputs,
or automatically via the MARS procedure (Section 9.4).
T b cxmplc usca thc additivc modcl in an automatic fashion. As a data

analysis tool, additive models are often used in a more interactive fashion,
adding and dropping terms to determine their effect. By calibrating the
amount of smoothing in terms of dfj, one can move seamleasly between
linear models (df, = 1) and partially linear models, where some terms are
modeled more flexibly. See Hastie and Tibshirani (1990) for more details.

9.1.3 Summary

Additive models provide a useful extension of linear models, making them
more flexible while still retaining much of their interpretability. The familiar
tools for modelling and inference in linear models are also available for
additive models, seen for example in Table 9.2. The backfitting procedure
for fitting these models is simple and modular, allowing one to choose a
fitting method appropriate for each input variable. As a result they have
become widely used in the statistical community.

However additive models can have limitations for large dabmining a p
plications. The backfitting algorithm fits all predictors, which is not feasi-
ble or desirable when a large number are available. The BRUT0 procedure
(Hastie and Tibshirani, 1990, Chapter 9) combines b d t t i n g with selec
tion of inputs, but is not designed for large dahmining problems. For these
problems a forward stagewise approach such as boosting (Chapter 10) is
more effective, and also allows for interactions to be included in the model.

9,2 TreeBased Methods

Treebased methods partition the feature space into a set of rectangles, and
then fit a simple model (like a constant) in each one. They are conceptually
simple yet powerful. We first describe a popular method for trebased

9.2 Tree-Based Methods 267

regression and classification called CART, and later contrast it with C4.5,
rt major competiknr.

Let's consider a regression problem with continuous response Y and in-
puts XI and X2, each taking values in the unit interval. The top left panel
of Figure 9.2 shows a partition of the feature space by lines that are parallel
to the coordinate axes. In each partition we can model Y with a different
constant. However, there is a problem: although each partitioning line has
a simple description like XI = c, some of the resulting regiom are compli-
cated to describe.

To simp& matters, we restrict attention to recursive binary partitions
like that in the top right panel of Figure 9.2. We first split the space into
two regions, and model the reaponse by the mean of Y in each region.
We choose the variable and split-point to achieve the best fit. Then one
or both of thcsc rcgions arc split into two mom rcgions, and this proccsa
is continued, until some stopping rule is applied. For example, in the top
right panel of Figure 9.2, we first split at X1 = tl. Then the region Xz 5 tl
is split at X2 = t2 and the region X1 > t2 is split at X1 = ts. Finally, the
region XI > ty is split at Xz = tq. The result of this process is a partition
into the five regions R1, Ra, . . . , R5 shown in the Egure. The corresponding
regression model predicts Y with a constant c, in region R,, that is,

5

I (x) = &I{(Xl, X2) 6 Rm).
m=l

(9.9)

This same model can be represented by the binary tree in the bottom left
panel of Figure 9.2. The full dataset sits at the top of the tree. Observations
satisfying the condition at each junction are assigned to the left branch,
and the others to the right branch. The terminal nodes or leaves of the
tree correspond to the regions R1, R 2 , . . . , R5. The bottom right panel of
Figwe 9.2 ir a pehpeclive blul ul Il~e regteutiiutl tiurIwe huiu l l h iruudel.
For illustration, we chme the node means c1 = -5, ql = -7, c3 = 0 , c d =
2, c5 = 4 to make this plot.

A key advantage of the recursive binary tree is its interpretability. The
feature space partition la fully described by a single tree. With more than
two inputs, partitions like that in the top right panel of Figure 9.2 are
difficult to draw, but the binary tree representation works in the same
way. This representation is also popular among medical scientists, perhap
because it mimics the way that a doctor thinks. The tree stratses the
population into strata of high and low outcome, on the basis of patient
characteristics.

9 . 2 Regression W e s

We now turn to the question of how to grow a regression tree. Our data
consists of p inputs and a response, for each of N okrvations: that is,

268 9. Additive Models, W s , and Related Methods

FIGURE B.2. Partitioras and CART. Top right pmE shows a parzition of a
two-dimensional faturn space by recursive &naw splitting, as wed in CART,
applied ta some fake data Top left panel shows a general partition that cannot
be obtained from recursive bimvy splitting. Bottom left panel shows the twe COY-

responding to Uae padtion in Uae top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.

9.2 Tree-Based Methods 269

(xi, yi) for i = 1,2 , . . . , N , with xi = (xil,xi2,. . . ,xip). The algorithm
needs to automatically decide on the splitting variables and split points,
and also what topology (shape) the tree should have. Suppose first that
we have a partition into M regions R1, R2, . . . , RM, and we model the
response as a constant c, in each region:

If we adopt as our criterion minimization of the sum of squares C (y i -
f (xi))', it is easy to see that the best i., is just the average of yi in region
R,:

Em = ave(yi Ixi E R,). (9.11)

Now finding the best binary partition in terms of minimum sum of squares
is generally computationally infeasible. Hence we proceed with a greedy
algorithm. Starting with all of the data, consider a splitting variable j and
split point s, and define the pair of half-planes

Rl(j , s) = {X IXj I s) and Rz(j, s) = {X IXj > s). (9.12)

Then we seek the splitting variable j and split point s that solve

For any choice j and s , the inner minimization is solved by

El = ave(yi lxi E Rl(j , s)) and E2 = ave(yi1.i E R2(j, s)). (9.14)

For each splitting variable, the determination of the split point s can
be done very quickly and hence by scanning through all of the inputs,
determination of the best pair (j, s) is feasible.

Having found the best split, we partition the data into the two resulting
regions and repeat the splitting process on each of the two regions. Then
this process is repeated on all of the resulting regions.

How large should we grow the tree.! Clearly a very large tree might overfit
the data, while a small tree might not capture the important structure.
Tree size is a tuning parameter governing the model's complexity, and the
optimal tree size should be adaptively chosen from the data. One approach
would be to split tree nodes only if the decrease in sum-of-squares due to the
split exceeds some threshold. This strategy is too short-sighted, however,
since a seemingly worthless split might lead to a very good split below it.

The preferred strategy is to grow a large tree To, stopping the splitting
process only when some minimum node size (say 5) is reached. Then this
large tree is pruned using cost-complexity pruning, which we now describe.

270 9. Additive Models, Tkees, and Related Methods

We define a subtree T c To to be any tree that can be obtained by
pruning To, khak is, collapsing any number of its inkcmal (non-terminal)
nodes. We index terminal nodes by m, with node m representing region
R,. Let IT I denote the number of terminal nodes in T. Letting

we define the mst complexity criterion

The idea is to End, for each a, the subtree T, To to minimize C, (T).
The tuning parameter a! > 0 governs the trdeoff between tree size and its
goodness of fit to the data. Large values of a! result in smaller trees T,, and
conversely for smaller values of a. As the notation suggests, with a! = 0 the
solution is the full tree To. We discuss how to adaptively choose a below.

For each a one can show that there is a unique smallest subtree Ta that
minimizes Ca(T). To find T, we use wmkest link pmdng: we successively
collape the internal node that produces the smallest per-node incresse in
C , NmQm(T), and continue until we produce the single-node (root) tree.
This gives a (finite) sequence of subtrees, and one can show this sequence
must contains T,. See Breiman et al. (1984) or Ripley (1996) for details.
Estimation of a! is achieved by five- or tenfold cross-validation: we choose
the value & to rninirnize the crossvalidated sum of squares. Our final tree
is T&.

If the target is a classification outcome taking values 1,2, . . . , K, the only
changes needed in the tree algorithm pertain to the criteria for splitting
nodes and pruning the tree. For regression we used the squared-error node
impurity measure Q,(T) defined in (9.151, but this is not suitable for
classification. In a node m, representing a region R, with N , observations,
let

the proportion of class k obervations in node m. We classify the o b s e m
tiom in node m to class k(m) = argmaxk&,, the majority class in node

9.2 Tree-Based Methods 271

p

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Entropy

Gini
 in

de
x

M
isc

las
sif

ica
tio

n
er

ro
r

FIGURE 9.3. Node impurity measures for two-class classification, as a function
of the proportion p in class 2. Cross-entropy has been scaled to pass through
(0.5, 0.5).

node m. Different measures Qm(T) of node impurity include the following:

Misclassification error: 1
Nm

∑
i∈Rm

I(yi �= k(m)) = 1− p̂mk(m).

Gini index:
∑

k �=k′ p̂mkp̂mk′ =
∑K

k=1 p̂mk(1− p̂mk).

Cross-entropy or deviance: −
∑K

k=1 p̂mk log p̂mk.

(9.17)

For two classes, if p is the proportion in the second class, these three mea-
sures are 1 − max(p, 1 − p), 2p(1 − p) and −p log p − (1 − p) log (1− p),
respectively. They are shown in Figure 9.3. All three are similar, but cross-
entropy and the Gini index are differentiable, and hence more amenable to
numerical optimization.

In addition, cross-entropy and the Gini index are more sensitive to changes
in the node probabilities than the misclassification rate. For example, in
a two-class problem with 400 observations in each class (denote this by
(400, 400)), suppose one split created nodes (300, 100) and (100, 300), while
the other created nodes (200, 400) and (200, 0). Both splits produce a mis-
classification rate of 0.25, but the second split produces a pure node and is
probably preferable. Both the Gini index and cross-entropy are lower for the
second split. For this reason, either the Gini index or cross-entropy should
be used when growing the tree. To guide cost-complexity pruning, any of
the three measures can be used, but typically it is the misclassification rate.

The Gini index can be interpreted in two interesting ways. Rather than
classify observations to the majority class in the node, we could classify
them to class k with probability p̂mk. Then the training error rate of this
rule in the node is

∑
k �=k′ p̂mkp̂mk′—the Gini index. Similarly, if we code

each observation as 1 for class k and zero otherwise, the variance over the

272 9. Additive Models, Trees, and Related Methods

node of this 0-1 response is p̂mk(1 − p̂mk). Summing over classes k again
gives the Gini index.

9.2.4 Other Issues

Categorical Predictors

When splitting a predictor having q possible unordered values, there are
2q−1 − 1 possible partitions of the q values into two groups, and the com-
putations become prohibitive for large q. However, with a 0-1 outcome,
this computation simplifies. We order the predictor classes according to
the proportion falling in outcome class 1. Then we split this predictor as if
it were an ordered predictor. One can show this gives the optimal split, in
terms of squared error or Gini index, among all possible 2q−1−1 splits. This
result also holds for a quantitative outcome—the categories are ordered by
increasing mean of the outcome (Breiman et al., 1984).

The Loss Matrix

In classification problems, the consequences of misclassifying observations
are more serious in some classes than others. For example it is probably
worse to predict that a person will not have a heart attack when he/she
actually will, than vice versa. To account for this, we define a K ×K loss
matrix L, with Lkk′ being the loss incurred for classifying a class k obser-
vation as class k′. Typically no loss is incurred for correct classifications,
that is, Lkk = 0 ∀k. To incorporate the losses into the modeling process,
we could modify the Gini index to

∑
k �=k′ Lkk′ p̂mkp̂mk′ ; this would be the

expected loss incurred by the randomized rule. This works for the multi-
class case, but in the two-class case has no effect, since the coefficient of
p̂mkp̂mk′ is Lkk′ + Lk′k. For two classes a better approach is to weight the
observations in class k by Lkk′ . This can be used in the multiclass case only
if, as a function of k, Lkk′ doesn’t depend on k′. Observation weighting can
be used with the deviance as well. The effect of observation weighting is to
alter the prior probability on the classes. In a terminal node, the empirical
Bayes rule implies that we classify to class k(m) = arg mink

∑
� L�kp̂m�.

Missing Predictor Values

Suppose our data has some missing predictor values in some or all of the
variables. We might discard any observation with some missing values, but
this could lead to serious depletion of the training set. Alternatively we
might try to fill in (impute) the missing values, with say the mean of that
predictor over the nonmissing observations. For tree-based models, there
are two better approaches. The first is applicable to categorical predictors:
we simply make a new category for “missing.” From this we might dis-
cover that observations with missing values for some measurement behave

9.2 Tree-Based Methods 273

differently than those with nonmissing values. The second more general
approach is the constr~~ction of s~irrngake variables. When considering a
predictor for a split, we use only the observations for which that predictor
is not missing. Having chosen the best (primary) predictor and split point,
we form a list of surrogate predictors and split points. The first surrogate
is the predictor and corresponding split point that best mimics the split of
the training data achieved by the primary split. The second surrogate is
the predictor and corresponding split point that does semnd best, and so
on. When sending observations down the tree either in the training phase
or during prediction, we use the surrogate splits in order, if the primary
spitthg predictor is missing. Surrogate splits exploit correlations between
predictors to try and alleviate the effect of missing data. The higher the cor-
relation between the missing predictor and the other predictors, the smaller
thc low of information duc to thc missing valuc. Thc gcncral problcm of
missing data is discussed in Section 9.6,

Whu Binary Splits?

Rather than splitting each node into just two group at each stage (as
above), we might consider multiway splits into more than two goup . Wkile
this can sometimes be useful, it is not a good general strategy. The problem
is that mdtiway splits fragment; t;he daka too q~uickly, leaving insufficient
data at the next level down. Hence we would want to use such splits only
w h ~ n nR~dRd. Since mt~lkiway ~ p l i t s can h e achieved by a. FlRtiRFl nf bina.ry
splits, the latter are preferred.

Other W e Building P~oceHuws

The discussion above focuses on the CART (class3cation and regression
tree) implementation of trees. The other popular methodology is ID3 and
its later versions, C4.5 and (25.0 (Quinlan, 1993). Early versions of the
program were limited to categorical predictors, and used a topdown rule
with no pruning. With more recent developments, C5.0 has become quite
similar to CART. The most significant feature unique to C5.0 is a scheme
for deriving rule sets. After a tree is grown, the splitting rules that d d n e the
terminal nodes can sometimes be simpl~ed: that is, one or more condition
can be dropped without chnging the subset of observations that fall in
the node. We end up with a simpmed set of rules defining each terminal
node; these no longer follow a tree structure, but their simplicity might
make them more attractive to the user.

Linear Cornbimtion Splits

Rather than restricting splits to be of the form Xj 5 s, one can allow splits
along linear combinations of the form C aiXj 5 s. The weights ai and
split point s are optimized to minimize the relevant criterion (such as the

274 9. Additive Models, Tkees, and Related Methods

Gini index). While this can improve the predictive power of the tree, it can
hmt; inkerpretabili t;y. Computakionally, the discreteness of khe split point
search precludes the use of a smooth optimization for the weights. A better
way to incorporate linear combination splits is in the hierarchical mixtures
of experts (HME) model, the topic of Section 9.5.

One major problem with trees is their high variance. Often a small change
in the data can result in a very different series of splits, making interpm
tation somewhat precarious. The major reason for this instability is the
hierarchical nature of the process: the effect of an error in the top split
is propagated down to all of the splits below it. One can alleviate this to
some degree by trying to use a more stable split criterion, but the inherent
instability is not removed. It is the price to be paid for estimating a simple,
treebssed structure from the data. Bagging (Section 8.7) averages m y
trees to reduce this variance.

Lack of Smoothness

Another limitation of trees is the lack of smoothness of the prediction sur-
face, as can bc accn in thc bottom right pancl of Figurc 9.2. In clnssification
with 0/1 loss, this doesn't hurt much, since bias in estimation of the class
probabilities has a limited effect. However, this can degrade performane
in the regression setting, where we would normally expect the underlying
function to be smooth. The MARS procedure, described in Section 9.4,
can be viewed as a modfication of CART designed to alleviate this lack of
smoothness.

Dificolty in C a p h ~ n g Additive Stmchm

Another problem with trees is their difficulty in modeling additive struc-
ture. In regression, suppose for example that Y = CII(XI < tl) +caI(Xa <
la) + e where e is xeruIueul noise. The11 a bhwy lree ~uighL m&e ils ErsL
split on X I near tl. At the next level down it would have to split both nodes
on X2 at t2 in order to capture the additive structure. This might happen
with sflcient data, but the model is given no special encouragement to End
such structure. If there were ten rather than two additive effects, it would
take many fortuitous splits to recreate the structure, and the data analyst
would be hard pressed to recognize it in the estimated tree. The "blame"
here can again be attributed to the binary tree structure, which has both
advantages and drawbacks. Again the MARS method (Section 9.4) gives
up this tree structure in order to capture additive structure.

9.2 Tree-Based Methods 275

Tree Size

M
is

cl
as

si
fic

at
io

n
R

at
e

0 10 20 30 40

0.
0

0.
1

0.
2

0.
3

0.
4

•••••••••••••
•

•

•

•

••••••••
•••••

•

•

•

•

176 21 7 5 3 2 0

α

FIGURE 9.4. Results for spam example. The green curve is the tenfold
cross-validation estimate of misclassification rate as a function of tree size, with
± two standard error bars. The minimum occurs at a tree size with about 17
terminal nodes. The red curve is the test error, which tracks the CV error quite
closely. The cross-validation was indexed by values of α, shown above. The tree
sizes shown below refer to |Tα|, the size of the original tree indexed by α.

9.2.5 Spam Example (Continued)

We applied the classification tree methodology to the spam example intro-
duced earlier. We used the deviance measure to grow the tree and misclassi-
fication rate to prune it. Figure 9.4 shows the tenfold cross-validation error
rate as a function of the size of the pruned tree, along with ±2 standard
errors of the mean, from the ten replications. The test error curve is shown
in red. Note that the cross-validation error rates are indexed by a sequence
of values of α and not tree size; for trees grown in different folds, a value of
α might imply different sizes. The sizes shown at the base of the plot refer
to |Tα|, the sizes of the pruned original tree.

The error flattens out at around 17 terminal nodes, giving the pruned tree
in Figure 9.5. Of the 13 distinct features chosen by the tree, 11 overlap with
the 16 significant features in the additive model (Table 9.2). The overall
error rate shown in Table 9.3 is about 50% higher than for the additive
model in Table 9.1.

Consider the rightmost branches of the tree. We branch to the right
with a spam warning if more than 5.5% of the characters are the $ sign.

276 9. Additive Models, Trees, and Related Methods

600/1536

280/1177

180/1065

 80/861

 80/652

 77/423

 20/238

 19/236 1/2

 57/185

 48/113

 37/101 1/12

 9/72

 3/229

 0/209

100/204

 36/123

 16/94

 14/89 3/5

 9/29

 16/81

 9/112

 6/109 0/3

 48/359

 26/337

 19/110

 18/109 0/1

 7/227

 0/22

spam

spam

spam

spam

spam

spam

spam

spam

spam

spam

spam

spam

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

email

ch$<0.0555

remove<0.06

ch!<0.191

george<0.005

hp<0.03

CAPMAX<10.5

receive<0.125 edu<0.045

our<1.2

CAPAVE<2.7505

free<0.065

business<0.145

george<0.15

hp<0.405

CAPAVE<2.907

1999<0.58

ch$>0.0555

remove>0.06

ch!>0.191

george>0.005

hp>0.03

CAPMAX>10.5

receive>0.125 edu>0.045

our>1.2

CAPAVE>2.7505

free>0.065

business>0.145

george>0.15

hp>0.405

CAPAVE>2.907

1999>0.58

FIGURE 9.5. The pruned tree for the spam example. The split variables are
shown in blue on the branches, and the classification is shown in every node.The
numbers under the terminal nodes indicate misclassification rates on the test data.

TABLE 9.3. Spam data: confusion rates for the 17-node tree (chosen by
cross-validation) on the test data. Overall error rate is 9.3%.

Predicted
True email spam
email 57.3% 4.0%
spam 5.3% 33.4%

9.2 Tree-Based Methods 277

However, if in addition the phrase hp occurs frequently, then this is likely
Lo he company b ~ ~ i n e ~ and we classify as email. All of the 22 cases in
the test set s a t i s M these criteria were correctly classified. If the second
condition is not met, and in addition the average length of repeated capital
letters CAPAVE is larger than 2.9, then we c l~s i fy as spam. Of the 227 test
cases, only seven were misclassified.

In medical clasacation problems, the terms sewitiuity and specificity
are used to characterize a rule. They are defined as follows:

Semitiuityr probability of predicting disease given true state is disease.

Specificity: probability of predicting non-disease given true state is non-
disease.

If we think of spam and email as presence and abaence of disease, respec-
tively, then from Table 9.3 we have

33.4
Sensitivity = 100 x = 86.3%,

33.4 + 5.3
57.3

Specificity = 100 x = 93.4%.
57.3 + 4.0

In this d y s i a we have used equal lceses. As before let Lkkt be the
loss associated with predicting a class k object as class k'. By varying the
relalive sizes 01 Lhe lwses Lol Llo, we increwe lhe lt:~~uiLivily md
decrease the specificity of the rule, or vice versa. In this example, we want
to avoid marking good email as spam, and thus we want the specificity to
be very high. We can achieve this by setting Lol > 1 say, with Llo = 1.
The Bayes' rule in each terminal node classflea to class 1 (spam) if the
proportion of npam is > Llo/(Llo + Lol), and class zero otherwise. The
receiver operating characteristic curve (ROC) is a commonly used summary
for assessing the tradeoff between sensitivity and specificity. It is a plot of
the sensitivity versus specficity as we vary the parameters of a classification
rule. Varying the loss Lol between 0.1 and 10, and applying Bayes' rule to
the 17-node tree selected in Figure 9.4, produced the ROC curve shown in
Figure 9.6. We see that in order to achieve a specscity of close to 100%,
the sensitivity has to drop to about 50%. 'l'he area under the curve is a
commonly used quantitative summary; extending the curve linearly in each
direction so that it is defined over [O, 1001, the area is approximately 0.95.
For comparison, we have included the ROC curve for the GAM model fit
to these data in Section 9.2; it gives a better classfication rule for any loss,
with an area of 0.98.

Rather than just modifying the Bayes rule in the nodes, it is better to
take full account of the unequal losses in growing the tree, as was done
in Section 9.2. With just two classes 0 and 1, losses may be incorporated
into the tree-growing process by using weight LkllPk for an observation in

278 9. Additive Models, Tkees, and Related Methods

I Tree (0.95)
GAM (0.98)

I - Weighted Tree (0.90)

FIGURE B.6. ROC c u m s for the clmsifimtion d e s fit to Uae spam d a h . h a r e s
that are closer to the n d h e m t comer wpwsent better c ia~s i+r~ . In thi8 case the
GAM ciassijier dominates the trees. The weighted t.se achieves better sen&titdy
for higher specif i ib than the unweightd tse. The number8 in the iqend r e p -
s m t the area under the c u m .

class k. Here we chose Lol = 5, Llo = 1 and fit the same s k tree as before
(ITa 1 = 17). This tree h ~ q higher sensitivity at high mlui~ of the specificity
than the or- tree, but does more poorly at the other extreme. Its top
few splits are the same as the original tree, and then it departs horn it.
For this application the tree grown using Lol = 5 is clearly better than the
original tree.

9.3 PHM-Bump Hunting

Trcubmcd mcthods (for rcgrcsaion) partition thc fcaturc spwc into box-
shaped regions, to try to make the response averages in each box as differ-
ent as pmsible. The splitting rules defining the boxes are related to each
through a binary tree, facilitating their interpret ation.

The patient rule induction method (PRIM) also finds boxes in the feature
space, but seeks boxes in which the response average is high. Hence it looks
for maxima in the target function, an exercise known a4 bump hunfing. (If
minima rather than maxima are desired, one simply works with the negative
response values.)

PRIM also differs from tree-based partitioning methods in that the box
rlehiLior~ we 11oL described by a b k y Lree. This ~ d e s ir~lerprelsliou or
the collection of rules more difficult; however, by removing the binary tree
constraint, the individual rules are often simpler.

The main box construction method in PRIM works from the top down,
startlng with a box containing all of the data. The box h compressed along
one face by a small amount, and the observations then falling outside the
box are peel& off. The face chosen for compression is the one resulting in
the largest box mean, after the compression is performed. Then the process
is repeated, stopping when the current boxcontains some minimum number
of data points.
Thh process is illustrated in Figure 9.7. There are 200 data points uni-

formly distributed over the unit square. The color-coded plot indicates the
response Y taking the value 1 (red) when 0.5 < XI < 0.8 and 0.4 < Xa <
0.6. and zero (blue) otherwise. The panels shows the successive boxes found
by the topdown peeling procedure, peeling off a proportion a = 0.1 of the
remaining data points at each stage.

Figure 9.8 shows the mean of the response values in the box, as the box
is compressed.

After the topdown sequence is computed, PRIM reverses the process,
expanding along any edge, if such an expansion increases the box mean.
This is called pasting. Since the topdown procedure is greedy at each step,
such an expansion is often possible.

280 9. Additive Models, Tkees, and Related Methods i:"' : ,".IB so4" Lm"

y&jc
$0

8 o m O ~ o a o 0 : D @

FIGURE 8.7. nlwtraion of PRIM algorithm. There are two clmses, indicatd
by the blue (class 0) and pled (clam I) points. The p d u m s t a h wiih a rectangle
(shown in orange) sumunding d l of the data, and &ma peek away poi& dong
one tdge by ra prespeciw amount in order to rnrazimize fie mem of Uae pints
u~urtlsiraiu~y iit Use Lwx. SLUT-Liusy U L Lhe Lup IejL plsusd, UE Y q n s r u : uj pzeliutys i s
shorn, until a pure red +on is holatd im the bottom right p m d .

Nurnbr of Obmwations in Box

FIGURE 9.8. Box mmn as a junction of number of obsmations in the h x .

Aleorithm 9.3 Patient mle-induction mehod

1. Start with all of the training data, and a maximal box containing all
of the data.

2. Consider shrinking the box by compressing one face, so as to peel off
the proportion a of observations having either the highest values of
a predictor Xj, or the lowest. Choose the peeling that produces the
highest response mean in the rernajning box. (Typically a = 0.05 or
0.10.)

3. Repeat step 2 until some minimal number of observations (say 10)
remain in the box.

4. Expand the box along any face, as long as the resulting box mean
increases.

5. Steps 14 give a sequence of bmes, with different numbers of obser-
vations in each box. Use cros+validation to choose a member of the
uequeilce. Call LLe Lux B1.

6. Remove the data in box B1 from the dataset and repeat steps 2-5 to
obtain a second box, and continue to get as many boxes as desired.

The result of these steps is a sequence of boxes, with different numbers
of observation in each box. Crosvalidation, combined with the judgment
of the data analyst, i~ med to choose the optimal box size.

Denote by B1 the indices of the observations in the box found in step 1.
Thc PRIM proccdurc thcn rcmovcs thc observations in B1 fiom thc training
set, and the twestep procesetop down peeling, followed by bottom-up
pasting is repeated on the remaining dataset. This entire process is r e
peated several times, producing a sequence of boxes El, Ba, . . . , Bk. Each
box is defined by a set of rules involving a subset of predict- like

A summary of the PRIM procedure is given Algorithm 9.3.
PRIM can handle a categorical predictor by considering all partitions of

the predictor, as in CART. Missing values are also handled in a manner
similar to CART. PRIM is designed for regression (quantitative response
variable); a tweclass outcome can be handled simply by coding it as 0 and
1. There is no simple way to deal with k > 2 classes simultaneously: one
approach is to run PRIM separately for each class versus a baseline class.

An advantage of PRIM over CART is its patience. Because of its bi-
nary splits, CART fragments the data quite quickly. Assuming splits of
equal size, with N obervations it can only make log, (N) - 1 splits before
running out of data. If PRIM peels off a proportion a of training points

282 9. Additive Models, k s , and Related Methods

at each stage, it can perform approximately - log(N)/ log(1 - a) peeling
steps befnre running out of data. For example, if N = 128 and n = 0.10,
then log, (N) - 1 = 6 while - log(N) / log(1- a) M 46. Taking into account
that there must be an integer number of observations at e d stage, PRIM
in f ad can peel only 29 times. In any cMe, the ability of PRIM to be more
patient should help the topdown greedy algorithm End a better solution.

9.9.1 Spam Example (Continued)

We applied PRIM to the spam data, with the response coded as 1 for ~pam

and 0 for mail.
The first two boxes found by PRIM are summarized below:

Rule 1

Rule 1
Tr aiaing
Test

?
ch!

CAPAVE
your
1999

CAPTOT
edu

re
ch; ,

Global Mean
0.3931
0.3958

~ u l e 2 { remove > 0.010
george < 0.110

Rule 2
Training
Test

The box support is the proportion of observations falling in the box.
The first box is p~irely spam, and conkdns ahoiik 1.5% of the Lest data.
The second box contains 10.6% of the test observations, 92.6% of which
are spam. Together the two boxes contain 26% of the data and are about
97% spam. The next few boxes (not shown) are quite small, containing only
about 3% of the data.

The predictors are listed in order of importance. Interestingly the top
splitting variables in the CART tree (Figure 9.5) do not appear in PRIM'S
Erst box.

Box Mean
0.9607
1.0000

Box Support
0.1413
0.1536

Remain Mean
0.2998
0.2862

Box Mean
0.9560
0.9264

Box Support
0.1043
0.1061

9.4 U R S : Multivariate Adaptive Remsion Splines 283

FIGURE D.D. The basis fincfioas (x - f)+ (solid red) and (t - x)+ (broken
g w n) wed MARS.

9.4 MARS: Multivariate Adaptive Regression
Splines

MARS is an adaptivc proccdurc for rcgrcssion, and is wcll suited for high-
dimensional problems (i.e., a large number of inputs). It can be viewed as a
generalization of stepwise linear regression or a modification of the CART
method to improve the latter's performance in the regression setting. We
introduce h&ARS from the first point of view, and later make the connection
to CART.

MARS uses expamions in piecewise linear basis functions of the form
(x - t)+ and (t - x)+. The U+" means positive part, so

t - x , , i f x < t ,
and (t - x) + = { 0, o t h c h .

As an example, the functions (x - 0.5)+ and (0.5 - x)+ are shown in Fig-
ure g.9.
Each function is piecewise linear, with a h o t at the value t. In the

terminology of Chapter 5, these are linear splines. We call the two functions
a mflected p a i ~ in the discussion below. The idea is to form reflected pairs
for each input Xj with knots at each observed value xi, of that input.
Therefore, the collection of basis functiom is

If all of the input values are distinct, there are 2Np basis functions altw
gether. Note that although each basis function depends only on a single
Xi, for example, h(X) = (Xj - t)+, it is considered as a function over the
entire input space IRP.
The model-building strategy is like a forward stepwise linear regression,

but instead of using the original inputs, we are allowed to use functions

284 9. Additive Models, Trees, and Related Methods

from the set C and their products. Thus the model has the form

where each h,(X) is a function in C, or a product of two or more such
functions.

Giver1 a clwice lor Lhe IL,, Llle coeKlcierlLs Pm are esLir~~aLecl by ~r~i~rlir~~ix-
ing the residual sum-of-squares, that is, by standard linear regression. The
real art, however, is in the construction of the functions h,(x). We start
with only the constant function ho(X) = 1 in our model, and all functions
in the set C are candidate functions. This is depicted in Figure 9.10.

At each stage we consider as a new basis function pair all products of a
function h, in the model set M with one of the reflected pairs in C. We
add to the model M the term of the form

that produces the largest decrease in training error. Here PMI1 and PM+z
are coefficients estimated by least squares, along with all the other M + 1
coefficients in the model. Then the winning products are added to the
model and the process is continued until the model set M contains some
preset maximum number of terms.

For example, at the first stage we consider adding to the model a function
of the form PI (Xj - t)+ + Pz(t - X3)+; t E {xij), since multiplication by
the constant function just produces the function itself. Suppose the best
choice is ~ I (X Z - ~ 7 2) + + gZ(x72 - X2)+. Then this pair of basis functions
is added to the set M, and at the next stage we consider including a pair
of products the form

where for h, we have the choices

The third choice produces functions such as (XI - xS1)+ . (x72 - X2)+,
depicted in Figure 9.11.

At the end of this process we have a large model of the form (9.19). This
model typically overfits the data, and so a backward deletion procedure
is applied. The term whose removal causes the smallest increase in resid-
ual squared error is deleted from the model at each stage, producing an
estimated best model fA of each size (number of terms) A. One could use

9.4 U R S : Multivariate Adaptive Remsion Splines 285

Const ant

FIGURE 9.10. Schematic of the MARS forward model-hilding p m d u m . On
the left are the bmis f iwt iom cumnt ly i n the mmodd: initidly, this is the cowtapat
function h (X) = 1. Om the right are dl candidate h i s fumctiow to be m i d m d
in building the model. These are p i r s of piecewise linemr bmis fi6mctiow as in
Figure 9.9, with h o t s t mt dl unique obsemed wdues x,j of each p d z c t o r Xi.
A t each s twe we contzider all pduc tS of a candidate p i v with a basis f i n d i m
in B e model. Thc p d w t that docpvxlaca B e maidud CWOP thc most i a add& into
the c u m n t &el. A h e we i l l w t d e the $vst thwe deps of the p m d u m , with
tme selected fumctiom s h m ia red.

286 9. Additive Models, W s , and Related Methods

FIGURE 9.11. The function h(X1, X2) = (XI - x ~ I) + . (572 - Xa)+, resdting
from naultiplimtion of two piecewise linear MARS ba& jknctions.

cross-validation to estimate the optimal value of A, but for computational
savings the MARS procedure instead uses generalized cross-validation. This
criterion is defined as

The value M(A) is the effective number of parameters in the model: this
accounts both for the number of terms in the models, plus the number
of parameters used in selecting the optimal positions of the knots. Some
mathematical and simulation results suggest that one should pay a price
of three parameters for selecting a knot in a piecewise linear regression.

Thus if there are T linearly independent basis functions in the model, and
K knots were selected in the forward process, the formula is M(X) = r+cK,
where c = 3. (When the model is restricted to be addit ivdetails below-
a penalty of c = 2 is used). Using this, we choose the model along the
backward sequence that minimizes GCV(X).

Why these piecewise linear basis functions, and why this particular model
strategy? A key property of the functions of Figure 9.9 is their ability to
operate locally; they are zero over part of their range. When they are mul-
tiplied together, as in Figure 9.11, the result is nonzero only over the small
part of the feature space where both component functions are nonzero. As
a result, the regression surface is built up parsimoniously, using nonzero
components loca l ly~n ly where they are needed. This is important, since
one should %pendm parameters carefully in high dimensions, as they can
run out quickly, The use of other basis functions such as polynomials, would
produce a nonzero product everywhere, and would not work as well.

9.4 MARS: Multivariate Adaptive Regression Splines 287

The second important advantage of the piecewise linear basis function
concerns computation. Consider the product of a function in M with each
of the N reflected pairs for an input Xj . This appears to require the fitting
of N single-input linear regression models, each of which uses O(N) oper-
ations, making a total of O(N2) operations. However, we can exploit the
simple form of the piecewise linear function. We first fit the reflected pair
with rightmost knot. As the knot is moved successively one position at a
time to the left, the basis functions differ by zero over the left part of the
domain, and by a constant over the right part. Hence after each such move
we can update the fit in O(1) operations. This allows us to try every knot
in only O(N) operations.

The forward modeling strategy in MARS is hierarchical, in the sense that
multiway products are built up from products involving terms already in
the model. For example, a four-way product can only be added to the model
if one of its three-way components is already in the model. The philosophy
here is that a high-order interaction will likely only exist if some of its lower-
order “footprints” exist as well. This need not be true, but is a reasonable
working assumption and avoids the search over an exponentially growing
space of alternatives.

There is one restriction put on the formation of model terms: each input
can appear at most once in a product. This prevents the formation of
higher-order powers of an input, which increase or decrease too sharply
near the boundaries of the feature space. Such powers can be approximated
in a more stable way with piecewise linear functions.

A useful option in the MARS procedure is to set an upper limit on
the order of interaction. For example, one can set a limit of two, allowing
pairwise products of piecewise linear functions, but not three- or higher-
way products. This can aid in the interpretation of the final model. An
upper limit of one results in an additive model.

9.4.1 Spam Example (Continued)

We applied MARS to the “spam” data analyzed earlier in this chapter. To
enhance interpretability, we restricted MARS to second-degree interactions.
Although the target is a two-class variable, we used the squared-error loss
function nonetheless (see Section 9.4.3). Figure 9.12 shows the test error
misclassification rate as a function of the rank (number of independent ba-
sis functions) in the model. The error rate levels off at about 5.5%, which is
slightly higher than that of the generalized additive model (5.3%) discussed
earlier. GCV chose a model size of 60, which is roughly the smallest model
giving optimal performance. The leading interactions found by MARS in-
volved inputs (ch$, remove), (ch$, free) and (hp, CAPTOT). However, these
interactions give no improvement in performance over the generalized ad-
ditive model.

288 9. Additive Models, k s , and Related Methods

GGV choice

Rank d Model

FIGURE 8.12. Spam d a t ~ test e m r misclm~$mtiora rate for the MARS p-
d~~t:, L?M MI j lA+fbC .hJr& 01 .!he r~7bk (r & I b ? i & k r 0r a + f b d e J l W d ~ b l h&v j l N b C . k J ? & ~) i?& Lhe
mdeL

9.4.2 Examp E e (Simulated Data)

Here we examine the performance of MARS in three contrasting scenarios.
There are N = 100 observations, and the predictors XI, X2,. . . , Xp and
errors E have independent standard normal distributions.

Scenario 1: The data generation model is

Y = (Xi - I)+ + (Xi - I)+. (Xa - .8)+ + 0.12. E.

The noise standard deviation 0.12 was chosen so that the signal-te
noise ratio was about 5. We call this the tensor-product scenario; the
product term gives a surfam that looks like that of Figure 9.11.

Scenario 2: This is the same as scenario 1, but withp = 20 total predictors;
that is, there are 18 inputs that are independent of the respome.

Scenario 3: This has the structure of a neural network:

Scenarios 1 and 2 are ideally suited for MARS, while scenario 3 contains
high-order interactions and may be difficult for h4ARS to approximate. We
ran five simulations from each model, and remrded the results.

In scenario 1, MARS typically uncovered the correct model almost per-
fectly. In scenario 2, it found the correct structure but a h found a few
extraneous t e rm involving other predictors.

9.4 U R S : Multivariate Adaptive Remsion Splines 289

P w p d i o m l d m m e in model m r (R2) when MARS is applid

Scenario Mean (S.E)
1: Tensor product p = 2 0.97 (0.01)
2; Tensor product p = 20 0.96 (0.01)
3: Neural network 0.79 (0.01)

Let p(x) be the true mean of Y, and let

M S E ~ = ave ,E~~~t (g - P (x)) ~ ,
MSE = aveXEnBt (f (x) - lab))'.

These represent the mean-square error of the constant model and the fitted
MARS model, estimated by averaging at the 1000 test values of x. Table 9.4
shows the proportional decrettse in model ermr or R2 for each scenario:

The values shown are means and standard error over the five simulations.
The performance of MARS is degraded only slightly by the inclusion of the
useless inputs in scenario 2; it performs substantially worse in scenario 3.

9 Other Issues

MARS for Cirassificratio~~

The MARS method and algorithm can be extended to handle classification
problems. Several strategies have been suggested.

For two classes, one can code the output as O / l and treat the problem as
a regression; we did this for the spam example. For more than two classes,
one can use the indicator response approach described in Section 4.2. One
codes the K response classes via O / l indicator variables, and then per-
forms a multiresponse MARS regression. For the latter we use a common
set of basis functions for all response variables. Classifmtion is made to
the class with the largest predicted response value. There are, however, p*
tential masking problems with this approach, as described in Section 4.2.
A generally superior approach is the "optimal scoring" method discussed
in Section 12.5.

Stone et al. (1997) developed a hybrid of MARS called PolyMARS specif-
ically designed to handle classXcation problems. It uses the multiple logistic
framework described in Section 4.4. It grows the model in a forward stags
wise fashion like MARS, but at each stage uses a quadratic approximation
to the multinomial log-likelihood to search for the next basis-function pair.
Once found, the enlarged model is fit by maximum likelihood, and the
process is repeated.

290 9. Additive Models, Tkees, and Related Methods

Relatiomship of MARS to CART

Although they might seem quite merent, the MARS and CART strategies
actually have strong similarities. Suppose we take the h U R S procedure and
make the following changes:

Rsplace the piecewise linear basis functions by step functions I(x-t >
0) and I(x - t < 0) .

When a model term is involved in a multiplication by a candidate
term, it gets replaced by the interaction, and hence is not available
for further interactions.

With these changes, the MARS forward procedure is the same as the CART
tree-$rowing algorithm. Multiplying a step function by a pair of reflected
step functions is equivalent to splitting a node at the step. The second
restriction implies that a node may not be split more than once, and leads
to the attractive binary-tree representation of the CART model. On the
other hand, it is this restriction that makes it difficult for CART to model
additive structures. MAKS foregoes the tree structure and gains the ability
to captwe additive effects.

Mars can handle "mixed" predictorvuantitative and qualitativein a
natural way, much like CART does. U R S considers all possible binary
partitions of the categories for a qualitative predictor into two groups.
Each such partition generates a pair of piecewise constant basis fundions-
indicator functions for the two sets of categories. This basis pair is now
treated as any other, and is used in forming tensor products with other
basis functions already in the model.

The hierarchical mixtures of experts (HME) procedure can be viewed as a
variant of tree-based methods. The main difference is that the tree splits
are not hard decisions but rather soft probabilistic ones. At each node an
observation goes left or right with probabilities depending on its input val-
ues. This has some computational advantages since the resulting parameter
optimization problem is smooth, unlike the discrete split point search in the
tree-based approach. The soft splits might also help in prediction accuracy
and provide a useful alternative description of the data.

There are other diEerences between HMEs and the CART implement*
tion of trees. In an HME, a linear (or logistic regression) model is fit in
each terminal node, instead of a constant as in CART. The splits can be
multiway, not just binary, and the splits are probabilistic functions of a

9.5 Hierarchical Mixtures of Ekperts 291

FIGURE 8.18. A two-level hiemPlclaica1 midurt of (HME) model.

linear combination of inputs, rather than a single input as in the standard
use of CART. However, the relative merits of these choices we not clew,
u r l ~uutrl wete klltitierl al llle etld 01 Secliofi 9.2.

A simple two-level HME model in shown in Figure 9.13. It can be thought
or as a lree wilh soIL splils a1 each ~~or~-lerruir~d node. However, lhe inven-
tors of this methodology use a different terminology. The terminal nodes
are called experts, and the non-terminal nodes are called gating netw0rk.s.
The idea is that each expert provides an opinion (prediction) about the
response, and these ate combined together by the gating networks. As we
will see, the model is formally a mixture model, and the twslevel model
in the figure can be extend to multiple levels, hence the name hiemwhim1
mixtures of experts.

Consider the regression or clasacation problem, as described earlier in
the chapter. The data is (xi, yi), i = 1,2,. . . , N , with vi either a continuous
or binary-valued response, and xi a vector-valued input. For eMe of not*
tion we assume that the first element of xi is one, to account for intercepts.

Here is how an HME is defined. 'l'he top gating network has the output

292 9. Additive Models, Tkees, and Related Methods

where each .yj is a vector of unknown parameters. This represents a soft
K-way split; (K = 2 in Figire 9.13.) Each gj(z, . y j) is the pmbability of
assigning an observation with feature vector x to the j th branch. Notice
that with K = 2 p u p s , if we take the coefficient of one of the elements of
x to be +oo, then we get a logistic curve with idnite slope. In this case,
the gating probabilities are either 0 or 1, corresponding to a hard split on
that input.

At the second level, the gating networks have a similar form:

This is the probability of assignment to the fth branch, given assignment
to the jth branch at the level above.

At each expert (terminal node), we have a model for the response variable
of the form

This differs according to the problem.

Regression: The Gaussian linear regression model is used, with Bjr =

(Pjt u$):

Classification: The linear logistic regression model is used:

Denoting the collection of all parameters by @ = {yj ,7je, Bje), the tot a1
ptul~al~ilil~ ll~al Y = .y ir

This is a mixture model, with the mixture probabilities determined by the
gating network models.

To estimate the parameters, we maximize the log-likelihood of the data, xi log Pr(= I xi, q), over the parameters in @. The most convenient method
for doing this is the EM algorithm, which we describe for mixtures in
Section 8.5. We define latent variables A ,, all of which are zero except for
a single one. We interpret these as the branching decisions made by the top
level gating network. Similarly we define latent variables All to describe
the gating decisions at the second level.

9.6 Missing Data 293

In the Estep, the EM algorithm computes the expectations of the Aj
and Atlj given the current values of the parameters. These expectations
are then used as ohervation weights in the M-step of the procedure, to
estimate the parameters in the expert networks. The parameters in the
internal nodes are estimated by a version of multiple logistic regression.
The expectations of the Aj or Atl are probability profiles, and these are
used as the response vectors for these logistic regressions.

The hierarchical mixtures of experts approach is a promising competitor
to CART trees. By using soft splits rather than hard decision rules it can
capture situations where the transition £tom low to high response is gradual.
The log-likelihood is a smooth function of the unknown weights and hence
is amenable to numerical optimization. The model is similar to CART with
linear combination splits, but the latter is more difficult to optimize. On
thc othcr hand, to our knowlcdgc thcrc arc no mcthods for finding a good
tree topology for the HME model, as there are in CART. Typically one uses
a fixed tree of some depth, pwibly the output of the CART procedure.
The emphasis in the research on HMEs has been on prediction rather than
interpretation of the final model. A clme cousin of the HME is the btent
cless model (Lin et al., 2000), which typically has only one layer; here
the nodes or latent classes are interpreted groups of subjtxts that show
similar response behavior.

9.6 Missing Data

It is quite common to have observations with missing values for one or more
input features. The usual approach is to impute (Ell-in) the missing values
in some way.

However, the first issue in dealing with the problem is determining whether
missing data mechanism has distorted the observed data. Roughly speak-
ing, data are missing at random if the mechanism resulting in its omission
is independent of its (unobserved) value. A more precise definition is given
in Little and Rubin (1987). Suppose y is the response vector and X is the
N x p matrix of inputs (some of which are missing). Denote by Xobs the
observed entries in X and let Z = (y, X), Zobs = (y, Kbs). Finally, if R is
an indicator matrix with i j th entry 1 if xij is missing and zero otherwise,
then the data said to be missing at wndom (MAR) if the distribution of
R depends on the data Z only through Zobs:

Here 13 are any parameters in the distribution of R. Data are said to be
missing completely at mndom (MCAR) if the distribution of R doesn't
depend on the oberved or missing data:

294 9. Additive Models, Trees, and Related Methods

MCAR is a stronger assumption than MAR: most imputation methods rely
on MCAR for their validity.

For example, if a patient's measurement was not taken because the doctor
felt he was too sick, that observation would not be MAR or MCAR. In this
case the missing data mechanism causes our observed training data to give a
distorted picture of the true population, and data imputation is dangerous
in this instance. Often the determination of whether features are MCAR
must be made from information about the data collection process. For
categorical features, one way to diagnose this problem is to code "missing"
as an addition class. Then we fit our model to the training data and see if
class "missing" is predictive of the response.

Assuming the features are missing completely at random, there are a
number of ways of proceeding:

1. Discard observations with any missing values.

2. Rely on the learning algorithm to deal with missing values in its
training phase.

3. Impute all missing values before training.

Approach (1) can be used if the relative amount of missing data is small,
but otherwise sl~ould be avoided. Regarding (2), CART is one learning
algorithm that deals effectively with missing values, through surrogate splits
(Secliorl 9.2.4). MARS arid PRIM use sirrlilar approaches. 111 gerleralixed
additive modelling, all observations missing for a given input feature are
omitted when the partial residuals are smoothed against that feature in
the backfitting algorithm, and their fitted values are set to zero. Since the
fitted curves have mean zero (when the model includes an intercept), this
amounts to assigning the average fitted value to the missing observations.

For most learning methods, the imputation approach (3) is necessary.
The simplest tactic is to impute the missing value with the mean or median
of the nonmissing values for that feature. (Note that the above procedure
for generalized additive models is analogous to this.)

If the features have at least some moderate degree of dependence, one
can do better by estimating a predictive model for each feature given the
other features and then imputing each missing value by its prediction from
the model. In choosing the learning method for imputation of the features,
one must remember that this choice is distinct from the method used for
predicting y from X. Thus a flexible, adaptive method will often be pre-
ferred, even for the eventual purpose of carrying out a linear regression of y
on X. In addition if there any many missing feature values in the training
set, the learning method must itself be able to deal with missing feature
values. CART therefore is an ideal choice for this imputation "engine."

After imputation, missing values are typically treated as if they were ac-
tually observed. This ignores the uncertainty due to the imputation, which

9.7 Computational Considerations 295

will itself introduce additional uncertainty into estimates and predictions
from the response model. One can measure this additional uncertainty by
doing multiple imputations and hence creating many different training sets.
The predictive model for y can be fit to each training set, and the variation
across training sets can be assessed. If CART was used for the imputation
engine, the multiple imputations could be done by sampling from the values
in the corresponding terminal nodes.

9.7 Computational Considerations

With N observations and p predictors, additive model fitting requires some
number mp of applications of a one-dimensional smoother or regression
method. The required number of cycles m of the backfitting algorithm is
usually less than 20 and often less than 10, and depends on the amount
of correlation in the inputs. With cubic smoothing splines, for example,
N logN operations are needed for an initial sort and N operations for the
spline fit. Hence the total operations for an additive model fit is pN logN +
mpN .

Trees require pN logN operations for an initial sort for each predictor,
and typically another pN logN operations for the split computations. If the
splits occurred near the edges of the predictor ranges, this number could
increase to N2p.

MARS requires Nm2 + pmN operations to add a basis function to a
model with m terms already present, from a pool of p predictors. Hence to
build an M -term model requires NM3 + pM2N computations, which can
be quite prohibitive if M is a reasonable fraction of N .

Each of the components of an HME are typically inexpensive to fit at
each M-step: Np2 for the regressions, and Np2K2 for a K-class logistic
regression. The EM algorithm, however, can take a long time to converge,
and so sizable HME models are considered costly to fit.

Bibliographic Notes

The most comprehensive source for generalized additive models is the text
of that name by Hastie and Tibshirani (1990). Different applications of this
work in medical problems are discussed in Hastie et al. (1989) and Hastie
and Herman (1990), and the software implementation in Splus is described
in Chambers and Hastie (1991). Green and Silverman (1994) discuss pe-
nalization and spline models in a variety of settings. Efron and Tibshirani
(1991) give an exposition of modern developments in statistics (including
generalized additive models), for a nonmathematical audience. Classifica-
tion and regression trees date back at least as far as Morgan and Sonquist

296 9. Additive Models, Tkees, and Related Methods

(1963). We have followed the modern approaches of Breiman et al. (1984)
and Qninlan (1993). The PRIM method is du~e fiiedman and Fisher (1 999),
while MARS is introduced in Pkiedman (1991), with an additive precursor
in fiiedrnan and Silverman (1989). Hierarchical mixtures of experts were
proposed in Jordan and Jacobs (1994); see also Jacobs et al. (1991).

Exercises

Ex. 9.1 Show that a smoothing spline fit of TJ~ to xi preserves the Enmr
pnrt nf khe fit. Tn nthet wntds, if ? ~ d = Gi + ri, where ?jd r ep r~en t s the
linear regression fits, and S is the smoothing matrix, then Sy = Q + Sr.
Show that the same is true for local linear regression (Section 6.1.1). Heme
argue that the adjustment step in the second line of (2) in Algorithm 9.1
is unnecessary.

Ex. 9.2 Let A be a known k x k matrix, b be a known k-vector, and z be an
unknown bvector. A Gauss-Seidel algorithm for solving the linear system
of equations Ax = b works by successively solving for element zj in the
j th equation, 6xing all other zj's at their current guesses. This process is
repeated for j = 1,2, . . . , k, 1,2, . . . , k, . . . , until convergence (Golub and
Van Loan, 1983).

(a) Consider an additive model with N observations and p terms, with
the j t h term to be fit by a linear smoother Sj . Consider the following
system of equations:

Hete each fj i~ a,n N-vmtnt nf evalt~a.tinns nf the jth filnctinn a,t the
data points, and y is an N-vector of the response values. Show that
b w t t i n g is a block-wise Gauss-Seidel algorithm for solving this
system of equations.

(b) The Gauss-Seidel procedure mnverges if the matrix A is positive
ddnite. For a simple case p = 2, and assuming each Si is symmetric
with eigenvalues in [0, l), show that backfitting converges (the next
exercise asks for a direct proof).

Ex. 9.3 Backfitting with two terns. Let S1 and S2 be symmetric smoothing
operators (matrices) with eigenvalues in [0, 1). Consider a backjitting alge
rithm with response vector y and smoothers S1, Sz. Show that with any

Exercises 297

starting values, the algorithm converges and give a formula for the final
iterates.

Ex. 9.4 Backfitting equations. Consider a backfitting procedure with orthog-
onal projections, and let D be the overall regression matrix whose columns
span V = Lcol(S1)⊕ Lcol(S2)⊕ · · · ,⊕Lcol(Sp), where Lcol(S) denotes the
column space of a matrix S. Show that the estimating equations

I S1 S1 · · · S1
S2 I S2 · · · S2
...

...
...

. . .
...

Sp Sp Sp · · · I



f1
f2
...
fp

 =


S1y
S2y

...
Spy


are equivalent to the least squares normal equations DTDβ = DTy where
β is the vector of coefficients.

Ex. 9.5 Suppose the same smoother S is used to estimate both terms in a
two-term additive model (i.e., both variables are identical). Assume that S
is symmetric with eigenvalues in [0, 1). Show that the backfitting residual
converges to (I+ S)−1(I− S)y, and that the residual sum of squares con-
verges upward. Can the residual sum of squares converge upward in less
structured situations? How does this fit compare to the fit with a single
term fit by S? [Hint: Use the eigen-decomposition of S to help with this
comparison.]

Ex. 9.6 Degrees of freedom of a tree. Given data yi with mean f(xi) and
variance σ2, and a fitting operation y → ŷ, let’s define the degrees of
freedom of a fit by

∑
i var(ŷi)/σ2.

Consider a fit ŷ estimated by a regression tree, fit to a set of predictors
X1,X2, . . . ,Xp.

(a) In terms of the number of terminal nodes m, give a rough formula for
the degrees of freedom of the fit.

(b) Generate 100 observations with predictors X1,X2, . . . ,X10 as inde-
pendent standard Gaussian variates and fix these values.

(c) Generate response values also as standard Gaussian (σ2 = 1), indepen-
dent of the predictors. Fit regression trees to the data of fixed size 1,5
and 10 terminal nodes and hence estimate the degrees of freedom of
each fit. [Do ten simulations of the response and average the results,
to get a good estimate of degrees of freedom.]

(d) Compare your estimates of degrees of freedom in (a) and (c) and
discuss.

(e) If the regression tree fit were a linear operation, we could write ŷ = Sy
for some matrix S. Then the degrees of freedom would be (1/σ2)tr(S).

298 9. Additive Models, Tkees, and Related Methods

Suggest a way to compute an approximate S matrix for a regression
tree, mmpute it, and mmpare the r~ullting degrem of freedom to
those in (a) and (c).

Ex. 9.7 Consider the ozone data of Figure 6.9.

(a) Fit an additive model to the cube root of ozone concentration. as a
function of temperature, wind speed, and radiation. Compare your
results to those obtained via the trellis display in Figure 6.9.

(b) Fit trees, MARS, and PRIM to the same data, and compare the results
to those found in (a) and in Figure 6.9.

+ This is page 299
Printer: Opaque this

10
Boosting and Additive Trees

10.1 Boosting Methods

Boosting is one of the most powerful learning ideas introduced in the last
ten years. It was originally designed for classification problems, but as will
be seen in this chapter, it can profitably be extended to regression as well.
The motintion for boosting was a procedure that combines the outputs
of many "weak" classfiers to produce a powerful '%ommittee." From this
perspective bomting bears a resemblance to bagging and other committee
based approaches (Section 8.8). However we shall see that the connection
is at best superficial and that boosting is fundamentally different.

We begin by describing the most popular boosting algorithm due to
Freund and Schapire (1997) called "AdaBoost.Ml." Consider a two class
problem, with the output variable coded as Y E {- 1,l). Given a vector of
predictor variables X, a clasaer G(X) produces a prediction taking one
of the two values {-1,l). The error rate on the training sample is

and the expected error rate on future predictions is ExuI (Y # G(X)).
A weak classifier is one whose error rate is only slightly better than

random guessing. The purpose of boosting is to sequentially apply the
weak classiikation algorithm to repeatedly modified versions of the data,
thereby producing a sequence of weak classifiers G;,(z), m = 1,2,. . . , M.
The predictions fiom all of them are then combined through a weighted

300 10. Boosting and Additive Trees

FIGURE 10.1. Schematic of AdaBoocd. CTassifirs are t k n d ma wemghtd ver-
sions of the dahset, and &en combined to p d u c e a find pdict ion.

majorik vote to produce the Enal prediction:

G(z) = sign %Gm (x) .
(mMl)

Here al, a g , . . . , a M are computed by the boosting algorithm and weigh
the contribution of each respective G,(x). Their d e c t is to give higher
iduence to the more accurate classifiers in the sequence. Figure 10.1 shows
a schematic of the AdaBoost procedure.

The data modilications at each boosting step consist of applying weights
wl, wa, . . . , wjv to each of the training observations (xi, ui), i = 1,2, . . . , N.
Initially all of the weights are set to wi = 1/N, so that the f ist step simply
trains the classifier on the data in the usual manner. For each successive
iteration m = 2,3, . . . , M the okrvation weights are individually modi-
fied and the classfication algorithm is reapplied to the weighted observa,
tions. At step na, those observations that were misclasaed by the classifier
GmPl (x) induced at the previous step have their weights increased, whereas
the weights are decreased for those that were classified correctly. Thus as
iterations proceed, ohervations that are difllcult to correctly classify r e
ceive ever-increasing iduence. Each successive classilier is thereby forced

10.1 Boosting Methods 301

Algorithm 10.1 AdaBoost.M1.

1. Initialize the observation weights wi = 1/N, i = 1, 2, . . . , N .

2. For m = 1 to M :

(a) Fit a classifier Gm(x) to the training data using weights wi.

(b) Compute

errm =
∑N

i=1 wiI(yi �= Gm(xi))∑N
i=1 wi

.

(c) Compute αm = log((1− errm)/errm).

(d) Set wi ← wi · exp[αm · I(yi �= Gm(xi))], i = 1, 2, . . . , N .

3. Output G(x) = sign
[∑M

m=1 αmGm(x)
]
.

to concentrate on those training observations that are missed by previous
ones in the sequence.

Algorithm 10.1 shows the details of the AdaBoost.M1 algorithm. The
current classifier Gm(x) is induced on the weighted observations at line 2a.
The resulting weighted error rate is computed at line 2b. Line 2c calculates
the weight αm given to Gm(x) in producing the final classifier G(x) (line
3). The individual weights of each of the observations are updated for the
next iteration at line 2d. Observations misclassified by Gm(x) have their
weights scaled by a factor exp(αm), increasing their relative influence for
inducing the next classifier Gm+1(x) in the sequence.

The AdaBoost.M1 algorithm is known as “Discrete AdaBoost” in Fried-
man et al. (2000), because the base classifier Gm(x) returns a discrete class
label. If the base classifier instead returns a real-valued prediction (e.g.,
a probability mapped to the interval [−1, 1]), AdaBoost can be modified
appropriately (see “Real AdaBoost” in Friedman et al. (2000)).

The power of AdaBoost to dramatically increase the performance of even
a very weak classifier is illustrated in Figure 10.2. The features X1, . . . ,X10

are standard independent Gaussian, and the deterministic target Y is de-
fined by

Y =
{

1 if
∑

X2
j > χ2

10(0.5),
−1 otherwise. (10.2)

Here χ2
10(0.5) = 9.34 is the median of a chi-squared random variable with

10 degrees of freedom (sum of squares of 10 standard Gaussians). There are
2000 training cases, with approximately 1000 cases in each class, and 10,000
test observations. Here the weak classifier is just a “stump”: a two–terminal
node classification tree. Applying this classifier alone to the training data

302 10. Boosting and Additive Trees

Boosting Iterations

T
es

t E
rr

or

0 100 200 300 400

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Single Stump

400 Node Tree

FIGURE 10.2. Simulated data (10.2): test error rate for boosting with stumps,
as a function of the number of iterations. Also shown are the test error rate for
a single stump, and a 400 node classification tree.

set yields a very poor test set error rate of 46%, compared to 50% for
random guessing. However, as boosting iterations proceed the error rate
steadily decreases, reaching 12.2% after 400 iterations. Thus, boosting this
simple very weak classifier reduces its prediction error rate by almost a
factor of four. It also outperforms a single large classification tree (error
rate 26%). Since its introduction, much has been written to explain the
success of AdaBoost in producing accurate classifiers. Most of this work
has centered on using classification trees as the “base learner” G(x), where
improvements are often most dramatic. In fact, Breiman (NIPS Workshop,
1996) referred to AdaBoost with trees as the “best off-the-shelf classifier in
the world” (see also Breiman (1998)). This is especially the case for data-
mining applications as discussed more fully in Section 10.7 later in this
chapter.

10.1.1 Outline of this Chapter

Here is an outline of the developments in this chapter:

• We show that AdaBoost fits an additive model in a base learner,
optimizing a novel exponential loss function. This loss function is

10.2 Boding Fits an Additive Model 303

very similar to the (negative) binomial log-Ekelihood (Sections 10.2-
10.4).

The population minimizer of the exponential loss function is shown
to be the log-odds of the class probabilities (Section 10.5).

We describe loss functiom for regression and clasdkation that are
more robust than squared error or exponential loss (Section 10.6).

It is argued that decision trees are an ideal base learner for data
mining applications of boosting (Scctiom 10.7 and 10.9).

Using a gradient approach, we develop a class of techniques ("MART")
for boosting trees with any loss function (Section 10.10).

The importance of "slow l e a r e is emphasized, and implemented
by shrinkage of each new term that enters the model (Section 10.12).

We draw a connection between forward stagewise shrinkage and an
L1 penalty for the model parameters (the Ulasso"). We argue that L1
penalties may be superior to the La penalties used by methods such
as the support vector machine (Section 10.12.2).

Tools for intcrprctation of thc fittcd modcl arc dcscribcd (Scction 10.13).

10.2 Boosting Fits an Additive Model

The success of boosting is really not very mysterious. The key lies in ex-
pression (10.1). Boosting is a way of fitting an additive expansion in a set
of elementary "basis" functions. Here the basis functions are the individual
classifiers G,(x) E {-1,l). More generally, basis function expansions take
the form

where pmi m = 1,2,. . . , M are the expamion coefficients, and b(x; y) E IR
are usually simple functions of the multivariate argument x, characterized
by a set of parameters 7. We discuss basis expansions in some detail in
Chapter 5.

Additive expansions like this form the basis of many of the learning
techniques covered in this book

In single hidden layer neural networks (Chapter ll), b(x; 7) = a(.yo +
y;x) , where a(.) is a sigmoidal function and 7 parameterizes a linear
combination of the input variables.

304 10. Boosting and Additive Trees

a In signal processing, wavelets (Section 5.9.1) are a popular choice with
y parameterizing the location and scale shifts of a "mother" wavelet;.

a MARS (Section 9.4) uses truncated power spline basis functions where
y parameterizes the variables and values for the knots.

For trees, 7 parameterizes the split variables and split points at the
internal nodes, and the predictiom at the terminal nodes.

Typically these models are fit by minimizing a loss function averaged over
the training data, such as squared-error or a likelihood-based loss function,

For many lms fundions L(v, f (x)) and/or basis functions b(x; 7) this r e
quires computationally intensive numerical optimization techniques. How-
ever, a simple alternative often can be found when it is feasible to rapidly
solve the subproblem of fitting just a single basis function,

nr

10.3 Forward St agewise Additive Modeling

Forward stagewise modeling approximates the solution to (10.4) by sequen-
tially adding new basis functim to the expansion without adjust@ the
parameters and coefficients of those that have already been added. This is
outlined in Algorithm 10.2. At each iteration In, one solves far the optimal
basis function b(x; 7rn) and corresponding coefficient P, to add to the cur-
t-&t t l ~ b m i 0 ~ 1 JmPlb). Tlh pi-orluce jrn(x), aid the bi-ucetrtr iti tebealerl.
Previously added terms are not modified.

For squared-error loss

f (XI) = (v - f (x)I2,
one has

where rim = yi- f r n - l (~ a) is simply the error (residual) of the current model
on the ith observation. Thus, for squared-error loss, the term Prnb(x; 7,)
that best fits the current residuals is added to the expamion at each step.
This idea is the basis for "least squaresy' regression boosting discussed in
Section 10.10.2. However, as we show near the end of the next section,
squared-error loss is generally not a good choice for classfication: hence
the need to consider other loss criteria.

10.4 Exponential Loss and AdaBoost 305

Algorithm 10.2 Forward stagewise additive modeling.

1. Initialize f0(x) = 0.

2. For m = 1 to M :

(a) Compute

(βm, γm) = arg min
β,γ

N∑
i=1

L(yi, fm−1(xi) + βb(xi; γ)).

(b) Set fm(x) = fm−1(x) + βmb(x; γm).

10.4 Exponential Loss and AdaBoost

We now show that AdaBoost.M1 (Algorithm 10.1) is equivalent to forward
stagewise additive modeling (Algorithm 10.2) using the loss function

L(y, f(x)) = exp(−y f(x)). (10.8)

The appropriateness of this criterion is addressed in the next section.
For AdaBoost the basis functions are the individual classifiers Gm(x) ∈

{−1, 1}. Using the exponential loss function, one must solve

(βm, Gm) = arg min
β,G

N∑
i=1

exp[−yi(fm−1(xi) + β G(xi))]

for the classifier Gm and corresponding coefficient βm to be added at each
step. This can be expressed as

(βm, Gm) = arg min
β,G

N∑
i=1

w
(m)
i exp(−β yi G(xi)) (10.9)

with w
(m)
i = exp(−yi fm−1(xi)). Since each w

(m)
i depends neither on β

nor G(x), it can be regarded as a weight that is applied to each observa-
tion. This weight depends on fm−1(xi), and so the individual weight values
change with each iteration m.

The solution to (10.9) can be obtained in two steps. First, for any value
of β > 0, the solution to (10.9) for Gm(x) is

Gm = arg min
G

N∑
i=1

w
(m)
i I(yi �= G(xi)), (10.10)

which is the classifier that minimizes the weighted error rate in predicting
y. This can be easily seen by expressing the criterion in (10.9) as

e−β ·
∑

yi=G(xi)

w
(m)
i + eβ ·

∑
yi �=G(xi)

w
(m)
i ,

306 10. Boosting and Additive Trees

which in turn can be written as

(
eβ − e−β

)
·

N∑
i=1

w
(m)
i I(yi �= G(xi)) + e−β ·

N∑
i=1

w
(m)
i . (10.11)

Plugging this Gm into (10.9) and solving for β one obtains

βm =
1
2

log
1− errm

errm
, (10.12)

where errm is the minimized weighted error rate

errm =
∑N

i=1 w
(m)
i I(yi �= Gm(xi))∑N

i=1 w
(m)
i

. (10.13)

The approximation is then updated

fm(x) = fm−1(x) + βmGm(x),

which causes the weights for the next iteration to be

w
(m+1)
i = w

(m)
i · e−βmyiGm(xi). (10.14)

Using the fact that −yiGm(xi) = 2 · I(yi �= Gm(xi))− 1, (10.14) becomes

w
(m+1)
i = w

(m)
i · eαmI(yi �=Gm(xi)) · e−βm , (10.15)

where αm = 2βm is the quantity defined at line 2c of AdaBoost.M1 (Algo-
rithm 10.1). The factor e−βm in (10.15) multiplies all weights by the same
value, so it has no effect. Thus (10.15) is equivalent to line 2(d) of Algo-
rithm 10.1. One can view line 2(a) of the algorithm as a method for solving
the minimization in (10.10). Hence we conclude that AdaBoost.M1 mini-
mizes the exponential loss criterion (10.8) via a forward-stagewise additive
modeling approach.

Figure 10.3 shows the training-set misclassification error rate and average
exponential loss for the simulated data problem (10.2) of Figure 10.2. The
training-set misclassification error levels off at around 250 iterations, but
the exponential loss keeps decreasing because it is more sensitive to changes
in the estimated class probabilities.

10.5 Why Exponential Loss?

The AdaBoost.M1 algorithm was originally motivated from a very differ-
ent perspective than presented in the previous section. Its equivalence to
forward stagewise additive modeling based on exponential loss was only

10.5 Why Exponential Loss? 307

Boosting Iterations

T
ra

in
in

g
E

rr
or

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Misclassification Rate

Exponential Loss

FIGURE 10.3. Simulated data, boosting with stumps: misclassification error
rate on the training set, and average exponential loss: (1/N)

∑N
i=1 exp(−yif(xi)).

recently discovered. By studying the properties of the exponential loss cri-
terion, one can gain insight into the procedure and discover ways it might
be improved.

The principal attraction of exponential loss in the context of additive
modeling is computational; it leads to the simple modular reweighting Ad-
aBoost algorithm. However, it is of interest to inquire about its statistical
properties. What does it estimate and how well is it being estimated? The
first question is answered by seeking its population minimizer.

It is easy to show (Friedman et al., 2000) that

f∗(x) = arg min
f(x)

EY |x(e−Y f(x)) =
1
2

log
Pr(Y = 1|x)

Pr(Y = −1|x)
, (10.16)

or equivalently

Pr(Y = 1|x) =
1

1 + e−2f∗(x)
.

Thus, the additive expansion produced by AdaBoost is estimating one-
half the log-odds of P (Y = 1|x). This justifies using its sign as the classifi-
cation rule in (10.1).

Another loss criterion with the same population minimizer is the bi-
nomial negative log-likelihood or deviance (also known as cross-entropy),

308 10. Boosting and Additive Trees

interpreting f as the logit transform. Let

and define Y' = (Y + l)/2 E (0, 1). Then the binomial log-likelihood loss
fundion is

or equivalently the deviance is

Since the population maximizer of log-likelihood is at the true probabilities
p(x) = Pr(Y = 1 I x), we see from (10.17) that the population minimizers of
the deviance EYlx [- I (Y, f (x))] and E~ l X [e-=f are the same. Thus, using
either criterion le& to the same solution at the population level. Note that
e Yf itself is not a proper log-likelihood, since it is not the logarithm of
any probability mass function of Y E {-1,l).

10.6 Loss Functions and Robustness

In this section we examine the merent loss functions for clas&cation and
regression more closely, and characterize them in terms of their robustness
to extreme data.

Robust Loss Functio~as for Cdcasaifimtion

Although both the exponential (10.8) and binomial deviance (10.18) yield
the same solution when applied to the population joint distribution, the
same is not true for finite data sets. Both criteria are monotone decreasing
fundions of the "mar@ u f (x). In cl~sijication (with a -l/l response)
the margin plays arole analogous to the residuals y- f (x) in regression. The
classification rule G(x) = sign[f (x)] implies that observations with positive
margin gi f (xi) > 0 are classified correctly whereas thme with negative
margin yi f (xi) < 0 are misclassijied. The deckion boundary is defined by
f (x) = 0. The goal of the classification algorithm is to produce positive
margins as frequently as pmible. Any l m criterion used for classification
should penalize negative margins more heavily than positive ones since
positive margin okrvations are already correctly classed.

Figure 10.4 shows both the exponential (10.8) and binomial deviance
criteria as a function of the margin y - f (x) . Also shown is misclassification
loss L(gl, f (x)) = I (y- f (x) < 0), which gives unit penalty for negative mar-
gin values, and no penalty at all for positive ones. Both the exponential

10.6 Loss Functions and Robustness 309

- MlsclassHlcanan

- Blnomlal Devlance

Support Vector

FTCTJRl3 10.4. Loss f i n d i m for fw+class clmsifimtion. The response is

y f 1; Uae prediction is f, with d m s prediction s ign(f) . The losses are
rniaclmeifimtion; I(sign(f) # y); exponentid; exp(-y f); b inmid deviance;
log(l+arp(-2y f)); s q u a d m r : (y- f)2; and &upport vecto~: (1 -yf)-I(y f > 1)
(ace &ciiun I.Z?.$). Eudb Iur&cLivlb hua ker& a d d so .#mi il ywsca .#bvbsvesyh Lhc
point (0,l) .

and deviance l w can be viewed as monotone continuous approximations
to misclas~cation loss. They continuously penalize increasingly negative
margin values more heavily than they reward increasingly positive ones.
The dEerence between them is in degree. The penalty associated with bi-
n o d deviance increases linearly for large increasingly negative margin,
whereas the exponential criterion increases the influence of such observa-
tions exponentially.

At any point in the training process the exponential criterion concen-
trates much more iduence on observations with large negative margins.
Binomial deviance concentrates relatively less influence on such observa-
tiom, more evenly spreading the Muence among all of the data. It is
therefore f a t more robust in noisy settings where the Bayes error rate is
not close to zero, and especially in situations where there is misspecfication
of the class labels in the training data. The performance of AdaBoost has
been empirically observed to dramatically degrade in such situations.

Also shown in the figure is squared-error loss. The minimizer of the cor-
respondmg risk on the population is

f*(x) = argminEylz(Y - f(x))' = E(Y I x) = 2 .Pr(Y = 1 Is) - 1.
f (XI

310 10. Boosting and Additive Trees

As before the classification rule is G(x) = sign[f (x)] . Squared-error loss is
not; a good surrogate for mixl~qdfication ermr. As seen in Figure 10.4, it is
not a monotone decreasing function of increasing margin y f (x) . For mar-
gin values ui f (xi) > 1 it increases quadratically, thereby placing increasing
iduence (error) on obervations that are correctly classified with increas-
ing certainty, thereby reducing the relative iduence of those incorrectly
classified yi f (xi) < 0. Thus, if class assignment is the goal, a monotone
decreasing criterion serves as a better surrogate loss function.

With K-class clas&cation, the response Y takes values in the unordered
set = {GI, . . . , &) (see Sections 2.4 and 4.4). We now seek a classifier
G(x) taking values in 9. It is sufficient to know the class conditional prob*
bilities pk(x) = Pr(Y = Gk lx), k = 1,2, . . . , K, for then the Bayes classifier
is

G(x) = Gk where k = arg maxpt(x).
L

(10.19)

In principal, though, we need not learn the pk (x), but simply which one is
largest. However, in data mining applications the interest is often more in
the class probabilities pL (x), f = 1, . . . , K themselves, rather than in per-
forming a class assignment. As in Section 4.4, the logistic model generalizes
naturally to K classes,

which ensures that 0 5 pk (x) 5 1 and that they sum to one. Note that
Let-e we have K rlilIeretll Iuc l ioh , vile pet clm. Thet-e iti a t - e d ~ r l a t l c ~
in the functions (a), since adding an arbitrary h(x) to each leaves the
model unchanged. Tkaditionally one of them is set to zero: for example,
f K (x) = 0, as in (4.17). Here we prefer to retaia the symmetry, and impose
the constraint zfG1 fk (x) = 0. The binomial deviance extends naturally
to the K-class multinomial deviance loss function:

K

P(x)) = - I(Y = Gk) logpk (x)
k=l
K

As in the twsclass case, the criterion (10.21) penalizes incorrect predic
tiom only linearly in their degree of incorrectness. We know of no natural
generalization of the exponential criterion for K classes.

Robwt Loss Feanctiow for Rqesaion

In the regression setting, analogous to the relationship between exponential
loss and binomial log-likelihood is the relationship between squared-error

10.6 Loss Functions and Robustness 311

FIGURE 10.6. A m m p a n k o a of three loss finctiona jm q m s s i o n , plotted as ra
f imtion of the margin y - j . The Huber loss f inc t im combines the good properties
of s q e s a v d e m r loss n e w zero and absolute e m r loss when 1 y - f 1 is large.

loss L (y, f (x)) = (y - f (x)) ~ and absolute loss L (y, f (x)) = I g - f (x) I. The
population scllutiom me f (x) = E(Y lx) for squard-error loss, and f (x) =

median(Y1x) for absolute lms; for symmetric error distributions these are
llle aaiue. Huwevei-, uil litfile aaiuplea aqwecl-&tot loaa plxea 1uur;ll do te

emphasis on obervations with large absolute residuals I yi - f (xi) I duting
the fitting process. It is thus far less robust, and its performance severely
degrades for long-tailed error distributions and especially for grossly mis-
measured y-values ("outliers"). Other more robust criteria, such as a b
solute loss perform much better in these situations. In the statistical ro-
bustness literature, a variety of regression lms criteria have been proposed
that provide strong resistance (if not absolute immunity) to gross outliers
while being nearly as efficient as least squares for Gaussian errors. They
are often better than either for error distributions with moderately heavy
tails. One such criterion is the Huber loss criterion used for M-regression
(Huber, 1964)

[y - f (x)I2* for I y - f (XI l 5 6. (IO-JrJ)
L(y' f(x)) = { 6(l y - f (z) 1 - 6/2), otherwise.

Figure 10.5 compares these three loss functions.
Thus absolute loss in regression is analogous to binomial deviance in

classification: it increases linearly for extreme margins. Exponential loss is
even more severe than squared-error lom, penalizing exponentially rather
than quadratically.

These conaiderations suggest than when robustness is a mncern, as is
especially the case in data mining applications (see Section 10.7). squared-
error loss for regression and exponential loss for classification are not the
best criteria from a stathtical perspective. However, they both lead to the

312 10. Boosting and Additive Trees

elegant modular boosting algorithms in the context of forward stagewise
additive modeling. For squared-error loss one simply fits the base learner
to the residuals from the current model yi − fm−1(xi) at each step. For
exponential loss one performs a weighted fit of the base learner to the
output values yi, with weights wi = exp(−yifm−1(xi)). Using other more
robust criteria directly in their place does not give rise to such simple
feasible boosting algorithms. However, in Section 10.10.2 we show how one
can derive simple elegant boosting algorithms based on any differentiable
loss criterion, thereby producing highly robust boosting procedures for data
mining.

10.7 “Off-the-Shelf” Procedures for Data Mining

Predictive learning is an important aspect of data mining. As can be seen
from this book, a wide variety of methods have been developed for predic-
tive learning from data. For each particular method there are situations
for which it is particularly well suited, and others where it performs badly
compared to the best that can be done with that data. We have attempted
to characterize appropriate situations in our discussions of each of the re-
spective methods. However, it is seldom known in advance which procedure
will perform best or even well for any given problem. Table 10.1 summarizes
some of the characteristics of a number of learning methods.

Industrial and commercial data mining applications tend to be especially
challenging in terms of the requirements placed on learning procedures.
Data sets are often very large in terms of number of observations and num-
ber of variables measured on each of them. Thus, computational consider-
ations play an important role. Also, the data are usually messy: the inputs
tend to be mixtures of quantitative, binary, and categorical variables, the
latter often with many levels. There are generally many missing values,
complete observations being rare. Distributions of numeric predictor and
response variables are often long-tailed and highly skewed. In addition they
usually contain a substantial fraction of gross mismeasurements (outliers).
The predictor variables are generally measured on very different scales.

In data mining applications, usually only a small fraction of the large
number of predictor variables that have been included in the analysis are
actually relevant to prediction. Also, unlike many applications such as pat-
tern recognition, there is seldom reliable domain knowledge to help create
especially relevant features and/or filter out the irrelevant ones, the inclu-
sion of which dramatically degrades the performance of many methods.

In addition, data mining applications generally require interpretable mod-
els. It is not enough to simply produce predictions. It is also desirable to
have information providing qualitative understanding of the relationship
between joint values of the input variables and the resulting predicted re-

10.7 “Off-the-Shelf” Procedures for Data Mining 313

TABLE 10.1. Some characteristics of different learning methods. Key: ●= good,
●=fair, and ●=poor.

Characteristic Neural SVM Trees MARS k-NN,

nets kernels

Natural handling of data
of “mixed” type

● ● ● ● ●

Handling of missing values ● ● ● ● ●

Robustness to outliers in
input space

● ● ● ● ●

Insensitive to monotone
transformations of inputs

● ● ● ● ●

Computational scalability
(large N)

● ● ● ● ●

Ability to deal with irrel-
evant inputs

● ● ● ● ●

Ability to extract linear
combinations of features

● ● ● ● ●

Interpretability ● ● ● ● ●

Predictive power ● ● ● ● ●

sponse value. Thus, black box methods such as neural networks, which can
be quite useful in purely predictive settings such as pattern recognition,
are far less useful for data mining.

These requirements of speed, interpretability and the messy nature of
the data sharply limit the usefulness of most learning procedures as off-
the-shelf methods for data mining. An “off-the-shelf” method is one that
can be directly applied to the data without requiring a great deal of time
consuming data preprocessing or careful tuning of the learning procedure.

Of all the well-known learning methods, decision trees come closest to
meeting the requirements for serving as an off-the-shelf procedure for data
mining. They are relatively fast to construct and they produce interpretable
models. As discussed in Section 9.2, they naturally incorporate mixtures
of numeric and categorical predictor variables and missing values. They
are invariant under (strictly monotone) transformations of the individual
predictors. As a result, scaling and/or more general transformations are
not an issue, and they are immune to the effects of predictor outliers. They
perform internal feature selection as an integral part of the procedure. They
are thereby resistant, if not completely immune, to the inclusion of many
irrelevant predictor variables. These properties of decision trees are largely

314 10. Boosting and Additive Trees

the reason that they have emerged as the most popular learning method
for data mining.

Trees have one aspect that prevents them from being the ideal tool for
predictive learning, namely inaccuracy. They seldom provide predictive ac-
curacy comparable to the best that can be achieved with the data at hand.
As seen in Section 10.1, boosting decision trees improves their accuracy,
often dramatically. At the same time it maintains most of their desirable
properties for data mining. Some advantages of trees that are sacrificed by
boosting are speed, interpretability, and, for AdaBoost, robustness against
overlapping class distributions and especially mislabeling of the training
data. A multiple additive regression tree (MART) is a generalization of
tree boosting that attempts to mitigate these problems, so as to produce
an accurate and effective off-the-shelf procedure for data mining.

10.8 Example—Spam Data

Before we go into the details of MART, we demonstrate its abilities on a
two-class classification problem. The spam data are introduced in Chap-
ter 1, and used as an example for many of the procedures in Chapter 9
(Sections 9.1.2, 9.2.5, 9.3.1 and 9.4.1).

Applying MART to this data resulted in a test error rate of 4.0%, using
the same test set as was used in Section 9.1.2. By comparison, an additive
logistic regression achieved 5.3%, a CART tree fully grown and pruned
by cross-validation 8.7%, and MARS 5.5%. The standard error of these
estimates is around 0.6%.

In Section 10.13 below we develop a relative importance measure for
each predictor, as well as a partial dependence plot describing a predictor’s
contribution to the fitted model. We now illustrate these for the spam data.

Figure 10.6 displays the relative importance spectrum for all 57 predictor
variables. Clearly some predictors are more important than others in sep-
arating spam from email. The frequencies of the character strings !, $, hp,
and remove are estimated to be the four most relevant predictor variables.
At the other end of the spectrum, the character strings 857, 415, table, and
3d have virtually no relevance.

The quantity being modeled here is the log-odds of spam versus email

f(x) = log
Pr(spam|x)
Pr(email|x)

(10.23)

(see Section 10.13 below). Figure 10.7 shows the partial dependence of the
log-odds on selected important predictors, two positively associated with
spam (! and remove), and two negatively associated (edu and hp). These par-
ticular dependencies are seen to be generally monotonic.There is a general
agreement with the corresponding functions found by the additive logistic
regression model; see Figure 9.1.

10.8 &l&pam Data 315

3d
addrcsscs

labs
telnet

857
41s

direct I

conference
report

orig~nal
data

"I2
make

addregs
order

all
hpl

technolo y
m d e

meetin
e m 4

000
internet
reCslVU

(
re

business
1999

will
money

our

i::
CAPTOT

c#%i
cnpXP?

free
remove

hi I

Relative Importance

10.6. Pndzctor variable irnpodmam spechrm for t h e ~pam ddm. The
vunause marrws arc wriUevb ow lhe wrCd &.

316 10. Boosting and Additive Trees

!

P
ar

tia
l D

ep
en

de
nc

e

0.0 0.2 0.4 0.6 0.8 1.0

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

remove

P
ar

tia
l D

ep
en

de
nc

e

0.0 0.2 0.4 0.6

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

edu

P
ar

tia
l D

ep
en

de
nc

e

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.6

-0
.2

0.
0

0.
2

hp

P
ar

tia
l D

ep
en

de
nc

e

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

-0
.6

-0
.2

0.
0

0.
2

FIGURE 10.7. Partial dependence of log-odds of spam on four important pre-
dictors. The red ticks at the base of the plots are deciles of the input variable.

Running MART on these data with J = 2 terminal-node trees produces a
purely additive (main effects) model for the log-odds, with a corresponding
error rate of 4.6%, as compared to 4.0% for the full MART model (with
J = 6 terminal-node trees). Since there are 1536 observations in the test set,
the standard error of these rates is approximately

√
0.04(1− 0.04)/1536 =

0.005 or 0.5%. This slightly higher error rate suggests that there may be
interactions among some of the important predictor variables. This can
be diagnosed through two-variable partial dependence plots. Figure 10.8
shows one of the several such plots displaying strong interaction effects.

One sees that for very low frequencies of hp, the log-odds of spam are
greatly increased. For high frequencies of hp, the log-odds of spam tend to
be much lower and roughly constant as a function of !. As the frequency
of hp decreases, the functional relationship with ! strengthens.

10.9 Boosting Trees

Regression and classification trees are discussed in detail in Section 9.2.
They partition the space of all joint predictor variable values into disjoint
regions Rj , j = 1, 2, . . . , J , as represented by the terminal nodes of the tree.

10.9 Boding Tkees 317

FIGURE 10.8. Portid dependence of the log-odds of spam vs. email os o fine-
#on of joint freqtleracies ofhp and !.

A constant yj is assigned to each such region and the predictive rule is

Thus a tree can be formally expressed as

with parameters 8 = {R,, J is usually treated as a meta-parameter.
The parameters are found by minimizing the empirical risk

This is a formidable mmbinatorial optimization problem, and we usually
settle for approximate suboptimal solutions. It is useful to divide the opti-
mization problem into two parts:

Finding 7;. given Rj: Given the Rj, estimating the yj is typically trivial,
and often .jlj = jji, the mean of the yi falling in region Rj. For mis-
classification loss, =yj is the modal class of the observations falling in
region Rj.

Finding Ri: This is the difficult part, for which approximate solutions are
found. Note also that finding the R entails estimating the yj as well.
A typical strategy is to use a greedy, topdown recursive partitioning

318 10. Boosting and Additive Trees

algorithm to find the Rj. In addition, it is sometimes necessary to
approximate (10.25) by a smoother and more convenient criterion for
optimizing the Rj:

. .
6 = arg min ?i(yi, T(xi, O)).

0 i=l

Then given the R~ = Rj, the y3 can be estimated more precisely
using the original criterion.

In Section 9.2 we described such a strategy for classification trees. The Gini
index replaced misclassification loss in the growing of the tree (identifying
the R3).

The boosted tree model is a sum of such trees,

induced in a forward stagewise manner (Algorithm 10.2). At each step in
the forward stagewise procedure one must solve

for the region set and constants Om = {Rjm, yjm}:" of the next tree, given
the current model fmPl (x).

Given the regions RJm, finding the optimal constants T~~ in each region
is typically straightforward:

qjm = arg min L(yi, fm-l(xi) + yj,). (10.29)
'Y3m z , tRJm

Finding the regions is difficult, and even more difficult than for a single
trcc. For a fcw spccial cascs, thc problcm simplifics.

For squared-error loss, the solution to (10.28) is no harder than for a
single tree. It is simply the regression tree that best predicts the current
residuals yi - fm-l(xi), and %, is the mean of the these residuals in each
corresponding region.

For two-class classification and exponential loss, this stagewise approach
gives rise to the AdaBoost method for boosting classification trees (Algo-
rithm 10.1). In particular, if the trees T(x; 0,) are restricted to be scaled
classification trees, then we showed in Section 10.4 that the solution to

N (10.28) is the tree that minimizes the weighted error rate W ! ~) I (~ ~ #
T(xi; Om)) with weights wjm) = epyzfm-l("z). By a scaled classification
tree, we mean &T(x; Om), with the restriction that yjm E {-1,l)).

10.10 Numerical Optimization 319

Without this restriction, (10.28) still simplifies for exponential loss to a
weighted exponential crikerion for the new kree:

N

It is straightforward to implement a greedy recursivepartitioning alge
rithm using this weighted exponential lms as a splitting criterion. Note
that given the tl j,, the solution to (10.29) is the weighted log-odds in each
corresponding region

This requires a specidhd treegrming algorithm; in prwtice, we prefer
the approximation presented below that uses a weighted least squares r e
gressiurl Iree.

Using lms criteria such as the a h l u t e error or the Huber loss (10.22) in
place of squared-error loss for regression, and the deviance (10.21) in place
of exponential loss for class~cation, will serve to robust@ boosting trees.
Unfortunately, unllke their nonrobust counterparts, these robust criteria
do not give rise to simple fast boosting algorithms.

For more general loss criteria the solution to (10.29), given the Rim,
is typically straightforward since it is a simple ulocation" estimate. For
absolute loss it is just the median of the residuals in each respective region.
For the other criteria fast iterative algorithms exist for solving (10.29),
and usually their faster "single step" approximations are adequate. The
problem is tree induction. Simple fast algorithms do not exist for solving
(10.28) for these more general loss criteria, and approximations like (10.26)
become essential.

10.10 Numerical Optimization

Fast approximate algorithms for solving (10.28) with any differentiable 1-
criterion can be derived by analogy to numerical optimization. The loss in
using f (x) to predict y on the training data is

N

L(f) =)r L(Y~, f (xi)). (10.32)
a=1

The goal is to minimize L(f) with respect to f, where here f (x) is mn-
strained to be a sum of trees (10.27). Ignoring this constraint, minimizing
(10.32) can be viewed as a numerical optimization

320 10. Boosting and Additive Trees

where the “parameters” f ∈ IRN are the values of the approximating func-
tion f(xi) at each of the N data points xi:

f = {f(x1), f(x2)), . . . , f(xN)}.

Numerical optimization procedures solve (10.33) as a sum of component
vectors

fM =
M∑

m=0

hm , hm ∈ IRN ,

where f0 = h0 is an initial guess, and each successive fm is induced based
on the current parameter vector fm−1, which is the sum of the previously
induced updates. Numerical optimization methods differ in their prescrip-
tions for computing each increment vector hm (“step”).

10.10.1 Steepest Descent

Steepest descent chooses hm = −ρmgm where ρm is a scalar and gm ∈ IRN

is the gradient of L(f) evaluated at f = fm−1. The components of the
gradient gm are

gim =
[
∂L(yi, f(xi))

∂f(xi)

]
f(xi)=fm−1(xi)

(10.34)

The step length ρm is the solution to

ρm = arg min
ρ

L(fm−1 − ρgm). (10.35)

The current solution is then updated

fm = fm−1 − ρmgm

and the process repeated at the next iteration. Steepest descent can be
viewed as a very greedy strategy, since −gm is the local direction in IRN

for which L(f) is most rapidly decreasing at f = fm−1.

10.10.2 Gradient Boosting

Forward stagewise boosting (Algorithm 10.2) is also a very greedy strategy.
At each step the solution tree is the one that maximally reduces (10.28),
given the current model fm−1 and its fits fm−1(xi). Thus, the tree predic-
tions T (xi; Θm) are analogous to the components of the negative gradient
(10.34). The principal difference between them is that the tree compo-
nents tm = (T (x1; Θm), . . . , T (xN ; Θm) are not independent. They are con-
strained to be the predictions of a Jm-terminal node decision tree, whereas
the negative gradient is the unconstrained maximal descent direction.

10.10 Numerical Optimization 321

TABLE 10.2. Gradients for commonly used loss functions

Setting Loss Function −∂L(yi, f(xi))/∂f(xi)

Regression 1
2 [yi − f(xi)]2 yi − f(xi)

Regression |yi − f(xi)| sign[yi − f(xi)]

Regression Huber yi − f(xi) for |yi − f(xi)| ≤ δm

δmsign[yi − f(xi)] for |yi − f(xi)| > δm

where δm = αth-quantile{|yi − f(xi)|}

Classification Deviance kth component: I(yi = Gk)− pk(xi)

The solution to (10.29) in the stagewise approach is analogous to the line
search (10.35) in steepest descent. The difference is that (10.29) performs
a separate line search for those components of tm that correspond to each
separate terminal region {T (xi; Θm)}xi∈Rjm

.
If minimizing loss on the training data (10.32) were the only goal, steep-

est descent would be the preferred strategy. The gradient (10.34) is trivial
to calculate for any differentiable loss function L(y, f(x)), whereas solving
(10.28) is difficult for the robust criteria discussed in Section 10.6. Unfor-
tunately the gradient (10.34) is defined only at the training data points xi,
whereas the ultimate goal is to generalize fM (x) to new data not repre-
sented in the training set.

A possible resolution to this dilemma is to induce a tree T (x; Θm) at the
mth iteration whose predictions tm are as close as possible to the negative
gradient. Using squared error to measure closeness, this leads us to

Θ̃m = arg min
Θ

N∑
i=1

(−gim − T (xi; Θ))2 . (10.36)

That is, one fits the tree T to the negative gradient values (10.34) by least
squares. As noted in Section 10.9 fast algorithms exist for least squares
decision tree induction. Although the solution regions R̃jm to (10.36) will
not be identical to the regions Rjm that solve (10.28), it is generally sim-
ilar enough to serve the same purpose. In any case, the forward stagewise
boosting procedure, and top-down decision tree induction, are themselves
approximation procedures. After constructing the tree (10.36), the corre-
sponding constants in each region are given by (10.29).

Table 10.2 summarizes the gradients for commonly used loss functions.
For squared error loss, the negative gradient is just the ordinary residual
−gim = yi − fm−1(xi), so that (10.36) on its own is equivalent standard
least squares boosting. With absolute error loss, the negative gradient is

322 10. Boosting and Additive Trees

rithm 10.3 h d i e n t tree bmsting for nadtiple additive regression frees.

1. Initialize fo (x) = arg m h cE~ L(yi, r).
2. For rn = 1 Lo M:

(a) For i = 1,2, . . . , N compute

rim = - [a L (~ i , .f (xi))]
Bf(xa) ,=,,,-,

(b) Fit a regression tree to the targets r im giving terminal regions
Rjm, j = l , 2 ,..., Jm.

(c) For j = 1,2,. . . , Jm compute

(d) Update fm (x) = &-I (x) + C& % d (x E Rjm).

3. output j(x) = ~ M (x) .

the s i p nf the te~idiral, Mn a.t each iteta.tinn (ln.36) fits khe tree tn the
sign of the current residuals by least squares. For Huber M-regression, the
negative gradient is a compromise between these two (see the table).

For classification the loss function is the multinornial deviance (10.21),
and K least squares trees are constructed at each iteration. Each tree Tk,
is fit to its respective negative gradient vector gkm,

with pA(x) given by (10.20). Although K separate trees are built at each
iteration, thcy an: rclatcd through (10.20).

10.10.9 MART
Algorithm 10.3 presents the generic gradient tresboosting algorithm for
regression. SpecXc algorithms are obtained by inserting different loss crits
ria L(y, f (x)). This approach is referred to as "multiple additive regression
trees," or MART. The h s t line of the algorithm initializes to the optimal
const ant model, which is just a single terminal node tree. The components
of the negative gradient computed at line 2(a) are referred to as general-

10.11 Right-Shed Trees for Boding 323

ized or pseudo residuals, r. Gradients for commonly used lms functions are
nimmarized in Trthle 10.2.

The algorithm for classification is similar. Lines 2(a)-(d) are repeated
K times at e d iteration m, once for e d class using (10.37). The result
at line 3 is K different (coupled) tree expansions fkM (x) , k = 1,2, . . . , K.
These produce probabilities via (10.20) or do clasacation as in (10.19).
Details are given in Exercise 10.5.

Tuning parameters associated with the MART procedure are the number
of iterations M and the sizes of each of the constituent trees J,, rn =
1,2 ,... , M .

10.11 Right-Sized Trees for Boosting

Historically, bomting wwi considered to be a technique for combining mod-
els, here trees. As such, the tree building algorithm was regarded as a
primitive that produced models to be combined by the boosting proce-
dure. In this scenario, the optimal s k of each tree is estimated separately
in the usual manner when it is built (Section 9.2). A very large (oversized)
tree is first induced, and then a bottom-up procedure is employed to prune
it to the estimated optimal number of terminal nodes. This approach as-
sumes implicitly that each tree is the last one in the expansion (10.27).
Except perhaps for the very last tree, this is clearly a very poor assump
tion. The result is that trees tend to be much too large, especially during
the early iterations. This substantially degrades performance and increases
computation.

The simplest strategy for avoiding this problem is to restrict all trees
to be the same size, J , = J Vm. At each iteration a J-terminal node
regression tree is induced. Thus J becomes a meteparameter of the entire
boosting procedure, to be adjusted to maximk estimated performance for
the data at hand.

One can get an idea of useful values for J by considering the properties
nf the LLt;~,rget" firnckinn

Here the expected value is over the population joint distribution of (X, Y).
The target function y(x) is the one with minimum prediction risk on future
data. This is the function we are trying to approximate.

One relevant property of q(X) is the degree to which the coordinates
variables X = (XI, X2, . . . , Xp) interact with one another. This is captured

324 10. Boosting and Additive Trees

by its ANOVA (analysis of variance) expansion

The first sum in (10.39) is over functions of only a single predictor variable
Xj. The particular functions qj (Xj) are those that jointly best approximate
q (X) under the loss criterion being used. Each such rlj (X j) is called the
"main effect" of Xj . The second sum is over those twwvariable functions
that when added to the main effects best fit q(X). These are called the
second-order interactiom of each respective variable pair (Xi, Xk) . The
third sum represents third-order interactions, and so on. For many problems
encountered in practice, low-order interaction effects tend to dominate.
When this is the case, models that produce strong higher-order interaction
effects, such as large decision trees, s d e r in accwacy.

The interaction level of tree-based approximatiom is limited by the tree
she J . Namely, no interxtion effects of level greater that J - 1 are pos-
sible. Since boosted models are additive in the trees (10.27), this limit
e x t m b Lo them M well. Setting J = 2 (single split; "decision st~imp")
produces boosted models with only main effects; no interactions are per-
mitted. With J = 3, tw~variable interadion effects are also allowed, and
so on. This suggests that the value chosen for J should reflect the level
of dominant interactions of ~ (x) . This is of course generally unknown, but
in most situations it will tend to be low. Figure 10.9 illustrates the effect
of interaction order (choie of J) on the simulation example (10.2). The
generative function is additive (sum of quadratic monomials) , so boosting
models with J > 2 incurs unnecessary variance and hence the higher test
error. Figure 10.10 compares the coordinate functions found by boosted
s tump with the true functions.

Although in many applications J = 2 will be insufficient, it is unlikely
that J > 10 will bc rcquircd. Expcricncc so far indicates that 4 5 J 5 8
works well in the context of boosting, with results being fairly insensitive
to pmticulm choiccs in this rmgc. Onc can Enc tunc thc d u c for J by
trying several merent values and choosing the one that produces the low-
est risk on a validation sample. However, this seldom provides s i e c a n t
improvement over using J 11 6.

10.12 Regularization

Besides the size of the constituent trees, J, the other met¶meter of the
MART procedure is the number of boosting iterations M. Each iteration
usually reduces the training risk L(fM), so that for M large enough thh risk
can be made arbitrarily small. However, fitting the training data too well

10.12 Regularization 325

10 Node
100 Node

I -

Number of Terms

FIGl Boosting with d g e m t s i z d k, applied to the example (10.2)
wed in Figurn 10.2 S i m thc gcpacmtivc modd Sa addiivc, atumps pcyforrn thc
k t . The boosting algorithm w d the binomid deviance loss in Algovithm 10.3;
ahown for c0mpa9.ison i s the Ada3md algomthm 10.1.

Coordinate Functions for Addilive Logistic Trsss

Coordinate finctions estimated by boosting dumps for the sim-
*-- = ~ ~ ~ , ~ p . = wed in Figure 10.9. The h e q u a d d c fwmcfioms are s h m for
mparisopa

326 10. Boosting and Additive Trees

can lead to overfitting, which degrades the risk on future predictions. Thus,
there is an optimal number M∗ minimizing future risk that is application
dependent. A convenient way to estimate M∗ is to monitor prediction risk
as a function of M on a validation sample. The value of M that minimizes
this risk is taken to be an estimate of M∗. This is analogous to the early
stopping strategy often used with neural networks (Section 11.4).

10.12.1 Shrinkage

Controlling the value of M is not the only possible regularization strategy.
As with ridge regression and neural networks, shrinkage techniques can be
employed as well (see Sections 3.4.3 and 11.5). The simplest implementation
of shrinkage in the context of boosting is to scale the contribution of each
tree by a factor 0 < ν < 1 when it is added to the current approximation.
That is, line 2(d) of Algorithm 10.3 is replaced by

fm(x) = fm−1(x) + ν ·
J∑

j=1

γjmI(x ∈ Rjm). (10.40)

The parameter ν can be regarded as controlling the learning rate of the
boosting procedure. Smaller values of ν (more shrinkage) result in larger
training risk for the same number of iterations M . Thus, both ν and M
control prediction risk on the training data. However, these parameters do
not operate independently. Smaller values of ν lead to larger values of M
for the same training risk, so that there is a tradeoff between them.

Empirically it has been found (Friedman, 2001) that smaller values of ν
favor better test error, and require correspondingly larger values of M . In
fact, the best strategy appears to be to set ν to be very small (ν < 0.1)
and then choose M by early stopping. This yields dramatic improvements
(over no shrinkage ν = 1) for regression and for probability estimation. The
corresponding improvements in misclassification risk via (10.19) are less,
but still substantial. The price paid for these improvements is computa-
tional: smaller values of ν give rise to larger values of M , and computation
is proportional to the latter. However, as seen below, many iterations are
generally computationally feasible even on very large data sets. This is
partly due to the fact that small trees are induced at each step with no
pruning.

Figure 10.11 shows test error curves for the simulated example (10.2)
of Figure 10.2. MART was trained using binomial deviance, using either
stumps or six terminal-node trees, and with or without shrinkage. The
benefits of shrinkage are evident, especially when the binomial deviance is
tracked. With shrinkage, each test error curve reaches a lower value, and
stays there for many iterations.

10.12 Regularization 327

Stumps
Deviance

- Shrinkages.

Boostlng ltoratlons

6-Node Trees
Deviance

- Shrinkages.

\

Sbrnps
Misclassificdion Error

Boostlng lteratlons

Boostlng ltoratlons

6-Node Trees
Misclassification Error

Boostlng lteratlons

FIGURE 10.11. Tesf ermr cumes for simulated example (10.2) of Figure 10.9,
using MART. The mod& were trained using birwmid & d m , efther s h m p s or
six k m i n d - n o d e trees, and with or wiihuut shrinkage. The left pneb report test
deviance, while the night panels show misdmsificdion error. The beneficid effect
of shrinkage can be seeta ita d l w e s , eqxx-idlu for deism i ta the left paneb.

328 10. Boosting and Additive Trees

10.1 P 9 penalized Regression

Intuition Ior the success of the shrinkage strategy (10.40) can be obtained
by drawing analogies with penalized linear regression with a large basis
expansion. Consider the set of all pmible J-terminal node regression trees
7 = {Tk} that could be realimd on the training data as basis functions in
ELp. The linear model is

where K = card(7). Suppose the coefficients are to be estimated by least
squares. Since the number of such trees is likely to be much larger than
even the largest training data sets, penalized least squares is required

where a is the vector of parameters, and J(a) is a function of the coefficients
that generally penal iz~ larger values. E x a m p l ~ are

K

(a) = a ridge regression,
Ie=l

K

lasso (Section 3.4.3).

As discussed In Section 3.4.3, the solution to the lasso problem with
moderate to large X tends to be sparse; many of the bk(X) = 0. That is,
only a small fraction of all pmible trees enter the model (10.41). This seem
reasonable since it is likely that only a small fraction of all possible trees will
be relevant in approximating any particular target function. However, the
relevant subet will be different for different targets. Those coefficients that
are not set to zero are shrunk by the lasso in that their absolute values are
smaller than their corresponding least squares values: I Bk (A) I < I Bk(0) 1 .
As A increases, the coefficients all shrink, each one ultimately becoming
zero.

Owing to the very large number of basis functions Tk , directly solving
(10.42) with the lasso penalty (10.44) is not pmible. However, a feasible
forward stagewise strategy exists that closely approximates the effect of
the lasso, and is very similar to boosting and the forward stagewise Alge
rithm 10.2. Algorithm 10.4 gives the details. Although phrased in t e r m
of tree basis functions Tk, the algorithm can be used with any set of basis
functions. Initially all coefficients are zero in line 1; this corresponds to
X = oo in (10.42). At each successive step, the tree Tk* is selected that

10.12 Regularization 329

Algorithm 10.4 FomarH stagewise ikear regressiom

1. Initialize &I, = 0, k = 1,. . . ,K. Set E > 0 to some small constant,
and M large.

2. For rn = 1 to M:
a

(3 (P*,k*) =argmiq ,~ , EL1 (~ i - EEl nzTz(xi) - m(q)) .
(b) a k * t a k * + E - sign(F).

bcst fits thc rmrrcnt residuals in linc 2 (a). Its mrrcsponding cocfficicnt ap
is then incremented or decremented by an infinitesimal amount in 2(b),
while all other coefficients ah, k # k* are left unchanged. In principle, this
process could be iterated until either all the residuals are zero, or P* = 0.
The latter case can occur if K < N, and at that point the coefficient values
represent a least squares solution. This corresponds to X = 0 in (10.42).

After applying Algorithm 10.4 with M < m iterations, many of the coef-
ficients will be zero, namely those that have yet to be incremented. The oth-
ers will tend to have a h l u t e values smaller than their correspo~~ding least
squares solution values, I bk (M) I < I Bk (0) I. Therefore tkis M-iteration
soluliv~l qdlaLively resembles Lhe lasso, wiLh M hverxly relaled Lo A.

Figure 10.12 shows an example, using the prmtate data studied in Chap
ter 3. Here, instead of using trees Tk(X) as basis functions, we use the origi-
nal variables XI, themselves; that is, a multiple linear regression model. The
left panel &plays the proflles of estimated codcients from the laaso, for
merent values of the bound parameter t = Ck 1 a k 1. The right panel shows
the results of the stagewise Algorithm 10.4, with M = 250 and E = 0.01.
The similarity between the two graphs is striking.

In some situations the resemblance is more than qualitative. For example,
if all of the basis functions Tk are mutually uncorrelated, then as E +
0, Algorithm 10.4 for some O < M < m yields exactly the same set of
solutions as the lasso for oo 2 X 2 0. Of course, treebased regressors
are not uncorrelated. However, the solution sets are also identical if the
coefficients &(A) are all monotone functions of A. Tkis is often the case.
When the kk(A) are not monotone in A, then the solution sets are not
identical, but usually quite c lm. The solutions sets for Algorithm 10.4 tend
to change less rapidly with changing values of the regularization parameter
than t h m of the lasso.

Tree boosting (Algorithm 10.3) with shrinkage (10.40) clmly resembles
Algorithm 10.4, with the learning rate parameter v corresponding to E .

For squared error loss, the only Werence is that the optimal tree to be
selected at each iteration Tk, is approximated by the standard topdown

330 10. Boosting and Additive Trees

Lasso Forward Stagewise

0 50 100 150 a 0 250

Iteration

FIGURE 10.12. Profiles of esLimded coef ic ieah from linear regmrssion, for
Uae pmtmte dmtm studied zn Ghapter 3. The left p m d shows the m d t s from the
bsso, fop. d i e w n t values of the bound pammetw t = Ck l a k l . The mght wnel
shows the wmlts of the stgg&e linear -$&on algovithm 10.4, wing M = 250
m e c e ~ i v e skps of size ze = .01.

greedy induction algorithm. For other loss criteria, there are no rigorous re-
milts mmprtring shrinkage (10.40) to pendined regrmsion with a parkicullar
penalty. However, qualitatively one would expect a correspondence similar
kn f;hs,t nf 1~aflt R~IIR,TAR. T ~ I I R , nnF: can view ~TRF: hnnsking wikh ~ h r i n h g ~ :
as ill-posed regression on all pmible (J-tmninal node) trees with the lasso
penalty (10.44) as a regularher.

No shrinkage (v = 1 in equation (10.40)) is analogom to subset selection
which penalizes the number of non zero coefficients J(a) = z, 1 ak 1'. For
prediction, subset selection is well-known to be excessively greedy (Copas,
1983), yielding poor results when compared to less aggressive strategies
such as the lasso or ridge regression. The dramatic improvements resulting
h m shrinkage in the context of boosting are yet another codrmation of
this approach.

10.12.3 Virtues of the L1 Penalty (Lasso) over L2
As shown in the previous section, boosting's forward stagewise strategy
with shrinkage approximately minimizes the same loss function with a
lassestyle L1 penalty. The model is built up slowly, traveling through

10.13 Interpretation 331

"model space" and adding shrunken functions of important predictors. In
conkrrtsk, khe Ida penalty is much easier kn deal with, ~q shown in Sec-
tion 12.3.6. With the basis functions and La penalty chosen to match a
particular positive dehite kernel, one can solve the corresponding mini-
mization problem without explicitly searching over individual basis func-
tions.

However, the superior performance of boosting over procedures such as
the support vector machine may be largely due to the implicit Use of L1
versus La penalty. The shrinkage resulting £tom the L1 penalty is better
suited to sparse situations, where there are few basis functions with nonzero
weights (among all possible choices). Some results supporting this claim, for
the specialized setting of wavelet bases, are given by Donoho et al. (1995).
Direct minimization of the L1-penalbed problem is much more difficult
than that for La, but thc forward stugcwisc algorithm of bomting providca
an approximate, practical attack on the problem.

10.13 Interpret ation

Single decision trees are highly interpretable. The entire model can be com-
pletely represented by a simple twedimensional graphic (binary tree) that
is easily visualized. Linear combinations of trem (10.5'7) lose this important
feature, and must therefore be interpreted in a different way.

10.13.1 Relative Importance of Predictor Variables

In data mining applicatiom the input predictor variables are seldom equally
relevant. Often only a few of them have substantial influence on the re-
sponse; the vast majority are irrelevant and could just as well have not
been included. It is often useful to learn the relative importance or contri-
bution of each input variable in predicting the response.

For a single decision tree T, Breiman et al. (1984) proposed

Z,a (T) = C g I(v (t) = L)
t-1

as a measure of relevance for each predictor variable X f . The sum is over
the J - 1 internal nodes of the tree. At each such node t , one of the input
variables X,(t) is used to partition the region associated with that node into
two subregions; within each a separate constant is fit to the response values.
The particular variable chosen is the one that gives maximal estimated
improvement it in squared error risk over that for a constant fit over the
entire region. The squared relative importance of variable XE is the sum of
such squared improvements over all internal nodes for which it was chosen
as the splitting variable.

332 10. Boosting and Additive Trees

This importance measure is easily generalized to additive tree expansions
(10.27); it is simply averaged over the trees

I2� =
1
M

M∑
m=1

I2� (Tm). (10.46)

Due to the stabilizing effect of averaging, this measure turns out to be more
reliable than is its counterpart (10.45) for a single tree. Also, because of
shrinkage (Section 10.12.1) the masking of important variables by others
with which they are highly correlated is much less of a problem. Note
that (10.45) and (10.46) refer to squared relevance; the actual relevances
are their respective square roots. Since these measures are relative, it is
customary to assign the largest a value of 100 and then scale the others
accordingly. Figure 10.6 shows the relevant importance of the 57 inputs in
predicting spam versus email.

For K-class classification, K separate models fk(x), k = 1, 2, . . . ,K are
induced, each consisting of a sum of trees

fk(x) =
M∑

m=1

Tkm(x). (10.47)

In this case (10.46) generalizes to

I2�k =
1
M

M∑
m=1

I2� (Tkm). (10.48)

Here I�k is the relevance of X� in separating the class k observations from
the other classes. The overall relevance of X� is obtained by averaging over
all of the classes

I2� =
1
K

K∑
k=1

I2�k. (10.49)

Figures 10.19 and 10.20 illustrate the use of these averaged and separate
relative importances.

The individual I�k can themselves be quite useful. One can summarize
the p×K matrix of these relevance values in a variety of ways. Individual
columns I·k give the relative variable importances in separating class k. The
individual rows I� reveal the influence of X� in separating the respective
classes. One can average the matrix elements (10.48) over chosen subsets
of classes to determine variable relevance for that subset. Similarly, one
can average over subsets of variables to obtain an idea of which classes the
chosen variable subset is most influential in separating.

10.13 Interpretation 333

10.13.2 Pn+ial Dependence p h b

After the mosr; relevant variables have been identxed, the next step is to
attempt to understand the nature of the dependence of the approximation
f (X) on their joint values. Visualization is one of the most powerful such
interpretational tools. Graphical renderings of the f(X) as a function of
its arguments provides a comprehensive summary of its dependence on the
joint values of the input variables.

Unfortunately, such visualbation is limited to low-dimensional views.
We can easily display functions of one or two arguments, either continuous
or discrete (or mixed), in a variety of different ways; this book is filled
with such displays. Functions of slightly higher dimensions can be plotted
by conditioning on particular sets of values of all but one or two of the
arguments, producing a trellis of plots (Becker et al., 1996).

For more than two or three variables, viewing functions of the corre-
sponding higher dimensional arguments is more difEcult. A useful alterna,
tive can sometimes be to view a collection of plots, each one of which shows
the partial dependence of the approximation f (X) on a selected small s u b
set of the input variables. Although such a collection can seldom provide a
comprehensive depiction of the approximation, it can often produce helpful
clues, especially when f (x) is dominated by low-order interactions (10.39).

Consider the subvector Xs of f < p of the input predictor variables X =
(XI, Xz, . . . , X,), indexed by S c {1,2, . . . , Let C be the complement
set, with S U C = {1,2, . . . , p) . A general function f (X) will in principle
depend on all of the input variables: f (X) = f (Xs, Xc). One way to define
the average or p~t i ta l dependence of f (X) on Xs is

This is a marginal average of f, and can serve as a mew description of the
effect of the chosen subset on f (X) when, for example, the variables in Xs
do not have strong interactions with those in Xc.

Partial dependence functions can be used to interpret the results of any
"black box" learning mekhod. They can he estimated hy

where {xlc, s a c , . . . , xNC} are the values of Xc ornurring in the training
data. This requires a pass over the data for each set of joint values of Xs for
which f s (~ s) is to be evaluated. This can be computationally intensive,
even for moderately sized data sets. Fortunately with decision trees, fS(xs)
(10.51) can be rapidly computed from the tree itself without reference to
the data (Friedman, 2001). For additive tree models (10.27), the results are
averaged over the constituent trees.

334 10. Boosting and Additive Trees

It is important to note that partial dependence functions defined in
(10.50) represent the effect of XS on f(X) after accounting for the (av-
erage) effects of the other variables XC on f(X). They are not the effect
of XS on f(X) ignoring the effects of XC . The latter is given by the con-
ditional expectation

f̃S(XS) = E(f(XS ,XC)|XS), (10.52)

and is the best least squares approximation to f(X) by a function of XS
alone. The quantities f̃S(XS) and f̄S(XS) will be the same only in the
unlikely event of complete independence among all the predictor variables.
For example, if the effect of the chosen variable subset happens to be purely
additive,

f(X) = h1(XS) + h2(XC). (10.53)

Then (10.50) produces the h1(XS) up to an additive constant. If the effect
is purely multiplicative,

f(X) = h1(XS) · h2(XC), (10.54)

then (10.50) produces h1(XS) up to a multiplicative constant factor. On
the other hand, (10.52) will not produce h1(XS) in either case. In fact,
(10.52) can produce strong effects on variable subsets for which f(X) has
no dependence at all.

Viewing plots of the partial dependence of the boosted-tree approxima-
tion (10.27) on selected variables subsets can help to provide a qualitative
description of its properties. Illustrations are shown in Sections 10.8 and
10.14. Owing to the limitations of computer graphics, and human percep-
tion, the size of the subsets XS must be small (l ≈ 1, 2, 3). There are of
course a large number of such subsets, but only those chosen from among
the usually much smaller set of highly relevant predictors are likely to be
informative. Also, those subsets whose effect on f(X) is approximately ad-
ditive (10.53) or multiplicative (10.54) will be most revealing. Diagnostics
for the degree to which this is the case can be obtained by computing the
multiple correlation coefficient of f(X) with f̄S(XS) and f̄C(XC) for (10.53),
and the simple correlation of f(X) with f̄S(XS)· f̄C(XC) for (10.54).

For K-class classification, there are K separate models (10.47), one for
each class. Each one is related to the respective probabilities (10.20) through

fk(X) = log pk(X)− 1
K

K∑
l=1

log pl(X). (10.55)

Thus each fk(X) is a monotone increasing function of its respective prob-
ability on a logarithmic scale. Partial dependence plots of each respective
fk(X) (10.47) on its most relevant predictors (10.48) can help reveal how
the log-odds of realizing that class depend on the respective input variables.

10.14 Illustrations 335

10.14 Illustrations

In this section the MART procedure is further illustrated on two larger
public domain data sets. In both of the examples the constituent tree size
(Section 10.11) was taken to be J = 6 terminal nodes, and the learning rate
(10.40) was set to ν = 0.1. The Huber loss criterion was used for predicting
numeric responses (regression) and multinomial deviance for classification.
A random sample of 20% of each data set was set aside as a test set to
evaluate performance, and the models were trained on the remaining 80%.

10.14.1 California Housing

This data set (Pace and Barry, 1997) is available from the Carnegie-Mellon
StatLib repository.∗ It consists of aggregated data from each of 20,460
neighborhoods (1990 census block groups) in California. The response vari-
able Y is the median house value in each neighborhood measured in units of
$100,000. The predictor variables are demographics such as median income
MedInc, housing density as reflected by the number of houses House, and the
average occupancy in each house AveOccup. Also included as predictors are
the location of each neighborhood (longitude and latitude), and several
quantities reflecting the properties of the houses in the neighborhood: av-
erage number of rooms AveRooms and bedrooms AveBedrms. There are thus
a total of eight predictors, all numeric.

Figure 10.13 shows the average absolute error

AAE = E |y − f̂M (x)| (10.56)

as a function for number of iterations M on both the training data (lower
green curve) and test data (upper red curve). The training error has a rough
wiggly appearance due to a stochastic aspect of the algorithm described in
Friedman (1999). The test error is seen to decrease monotonically with
increasing M , more rapidly during the early stages and then leveling off to
being nearly constant as iterations increase. Thus, the choice of a particular
value of M is not critical, as long as it is not too small. This tends to be
the case in nearly all applications. The shrinkage strategy (10.40) tends to
eliminate the problem of overfitting, especially for larger data sets.

The value of AAE after 600 iterations is 0.31. This can be compared to
that of the optimal constant predictor median{yi} which is 0.89. In terms of
more familiar quantities, the squared multiple correlation coefficient of this
model is R2 = 0.84. Pace and Barry (1997) use a sophisticated spatial auto-
regression procedure, where prediction for each neighborhood is based on
median house values in nearby neighborhoods, using the other predictors as
covariates. Experimenting with transformations they achieved R2 = 0.85,

∗http://lib.stat.cmu.edu

336 10. Boosting and Additive Trees

Training and Test Absolute Error

. Aumge-absolute ermr ras a f ind im of number of itemtiom
lor the Uazfornsm housing data.

predicting log Y. Using log Y as the response the corresponding value for
MART w w R2 = 0.86.

Figure 10.14 displays the relative variable importances for each of the
eight predictor variables. Not surprisingly, neighborhood median income
was the most relevant predictor. Longitude, latitude, and average occu-
pancy all have roughly half the relevance of income, whereas the others are
somewhat less Muential.

Figure 10.15 shows singlevariable partial dependence plots on the most
relevant nonlocation predictors. Note that the plots are not strictly smooth.
This is a consequence of using tresbased models. Decision trees produce
discontinuous piecewise constant models (10.24). This carries over to sums
of trees (10.2'7), with of course many more pieces. Unlike mmt of the meth-
ods discussed in this book, there is no smoothness constraint imposed on
the result. Arbitrarily sharp discontinuities can be modeled. 'l'he f a d that
these curves generally exhibit a smooth trend is because that is what is
estimated to best predict the response for this problem. This is often the
case.

The hash marks at the base of each plot delineate the deciles of the
data distribution of the corresponding variables. Note that here the data
density is lower near the edges, especially for larger values. This causes the
curves to be somewhat less well determined in those regions. The vertical
scales of the plots are the same, and give a visual comparison of the relative
importance of the different variables.

10.14 Illustrations 337

Population

AveBdrms

AveRaoms

HouseAge

Laiiiude

AWOCCUp

LonglWde

Medlnc

Relaliw importance

FIGURE 10.14. Relative irnpdamce of the predictors for the Gdifomira laowing
data.

The partial dependence of median house value on median income is
~uurlulo~~ic irlcrewirlg, beirlg nearly lirlear over Lhe main body 01 dala. Home
value is generally monotonic decreasing with increasing average occupancy,
except perhap for average occupancy rates less than one. Median house
value has a nonmonotonic partial dependence on average number of rooms.
It has a mlnimum at approximately three rooms and h Increasing both for
smaller and larger values.

Median house value is seen to have a very weak partial dependence on
house age that is inconsistent with its importance ranking (Figure 10.14).
This suggests that this weak main d e c t may be masking stronger inter-
tion effeds with other variables. Figure 10.16 shows the twevariable partial
dependence of housing value on joint values of median age and average oc-
cupancy. An interaction between these two variables is apparent. For values
of average occupancy greater than two, house value is nearly independent
of median age, whereas for values less than two there is a strong dependence
on age.

Figure 10.17 shows the twmvariable partial dependence contour plot on
joint values of longitude and latitude, displayed as a contour. There is
clearly a very strong dependence of median house value on the neighbor-
hood location in California. Note that Figure 10.17 is not a plot of house
value versus location Wofing the effeds of the other predictors (10.52).
Like all partial dependence plots, it represents the effect of location after
accounting for the effeds of the other neighborhood and house attributes

338 10. Boosting and Additive Trees

MedInc

P
ar

tia
l D

ep
en

de
nc

e

2 4 6 8 10

-0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

AveOccup

P
ar

tia
l D

ep
en

de
nc

e

2 3 4 5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

HouseAge

P
ar

tia
l D

ep
en

de
nc

e

10 20 30 40 50

-1
.0

-0
.5

0.
0

0.
5

1.
0

AveRooms

P
ar

tia
l D

ep
en

de
nc

e

4 6 8 10

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

FIGURE 10.15. Partial dependence of housing value on the nonlocation vari-
ables for the California housing data.

2

3

4

5
10

20

30

40

50

0.0

0.5

1.0

AveOccup

HouseAge

FIGURE 10.16. Partial dependence of house value on median age and aver-
age occupancy. There appears to be a strong interaction effect between these two
variables.

10.14 Illustrations

I I

FIGURE 10.17. Partial depadeace of median house valve on location in Gal-
ifomia.

(10.50). It can be viewed as representing an extra premium one pays for
location. This premium is seen to be relatively large near the PaciEc coast
especially in the Bay Area and Los Angeles-San Diego regions. In the north-
ern, central valley, and southeastern desert regions of California, location
costs considerably less.

10. i4.2 Demographics Data
In this section MART is illustrated on a multi-class classification problem.
The data come from 9243 questionnaires Elled out by shopping mall cus-
tomers in the San Francisco Bay Area (Impact Resources, Inc., Columbus,
OH). Among the questions are 14 concerning demographics. For this il-
lustration the goal is to predict occupation using the other 13 variables
as predictors, and hence identify demographic variables that discriminate
between different occupational categories.

340 10. Boosting and Additive Trees

Overall Error Rate = 0.425

Student

Retirsd

ProWMan

Homemaker

Labor

Clerlcal

Militaly

Unemployed

Error Rate-

FIGURE 10.18. E m rate fop. each occupaiima in the dmogmphica data.

Figure 10.18 shows the K = 9 occupation class values along with their
corresponding error rates. The overall error rate is 42.5%, which can be
compared to the null rate of 69% obtained by predicting the most numerous
class prof /Man (Professional/Managerial) . The four best predicted claases
are seen to be Retired, Student, Prof/Man, and Homemaker.

Figure 10.19 shows the relative predictor variable importances as aver-
aged over all classes (10.49). Figure 10.20 displays the individual relative
importance distributions (10.48) for each of the four best predicted classes.
One sees that the most relevant predictors are generally different for each
respective class. An exception is age which is among the three most relevant
for predicting Retired, Student, and Prof /Man.

Figure 10.21 shows the partial dependence of the log-odds (10.55) on age
for these three classes. The abscissa values are ordered codes for respective
equally spaced age intervals. One sees that after accounting for the contri-
butions of the other variables, the odds of being retired are higher for older
people, whereas the opposite is the case for being a student. The odds of
being professionallmanagerial are highest for middleaged people. These
resdts are of couse not suprising. They illutrate that inspecting partial
dependences separately for each class can lead to sensible results.

Bibliographic Notes

Schapire (1990) developed the first simple bomting procedure in the PAC
learning framework (Valiant, 1984; Kearns and Vazirani, 1994). Schapire

10.14 Illustrations 341

yn-B

chlldre

num-hsl

Ian

typ-horn

mar-sb

ethn~

SR

mar-dlin

hsld-st:

ad

i n a m

w

I I I I I I
0 20 40 60 80 1M1

Relative Importance

. Relative impm-tan~e of Use pldicim-8 M avemgd over dl
Jvr w.r; l a G m ~ p p h i c ~ data.

showed that a weak Earner could always improve its performance by train-
ing two additional classifiers on ffltered versions of the input data stream.
A weak learner is an algorithm for producing a twwclass classifier with
performance guaranteed (with high probability) to be significantly better
than a coin-flip. After learning an initial class~er GI on the first N training
points,

a G2 is learned on a new sample of N points, half of which are misclas-
sified by GI;

G3 is learned on N points for which GI and Ga disagree;

the boosted classifier is Gg = rnajoritp vote(G1, Gz, G3).

Schapire's "Strength of Weak Learnability" theorem proves that GB has
improved performance over GI.

Freund (1995) proposed a Uboost by majoriiyl' miation which combined
many weak learners simultaneously and improved the performance of the
simple boosting algorithm of Schapire. The theory supporting both of these
algorithms requires the weak learner to produce a classifier with a h e d
error rate. This led to the more adaptive and realistic AdaBoost (Freund
and Schapire, 1996a) and its oapring, where this assumption was dropped.

342 10. Boosting and Additive Trees

yrs-BA
num hald

edu
children

typ-home

mar-stat
hslctstat

~nwrnm
emnlc

S e x
mar-dlinc

w e

Class = Retired

0 20 40 60 BO 1M1

Relanve lmportanca

children
yrs-BA

mar-stat E
num-hsl!

typ-home

ethnic
mar-dlinc

lnmme
edu k

0 20 40 60 BO 1 0 0

Relafive lmportanca

Class = Student

mar-dl~nc

typ-home
num-hsld

ethnic

lnmme

hslctstat e
0 20 40 60 BO 100

Helathre Importance

Class = Homemaker

lnmme
lyp-home

mar-stat

ethnic .
0 20 40 60 BO 100

Helathre Importance

FIGURE 10.20. Predictor variable imports- rseprately for each of We four
classes wfth lowest m r mte for Uae demqmphics data.

Retired

10.14 Illustrations 343

mdsnt

FIGURE 10.21. Pad id dependence of the odds of Uam diflemat o a x p t i o m
on age, for t h e denaogmphics data.

Freund and Schapire (1996a) and Schapire and Singer (1998) provide
some theory to support their algorithms, in the form of upper bounds on
generalization error. This theory has evolved in the Computational Learn-
ing community, initially based on the concepts of PAC learning. Other t h e
ories attempting to explain boosting come from game theory (Freund and
Schapire, 19YBb; Breirnan, 1999; Breiman, 19 98), and VC theory (Schapire
et al., 1998). The bounds and the theory associated with the AdaBoost
algorithms are interesting, but tend to be too loose to be of practical im-
portance. In practice, boosting achieves results far more impressive than
the bounds would imply. Friedman et al. (2000) and Friedman (2001) form
the basis for our exposition in this chapter. Friedman et al. (2000) analyze
AdaBoost st atistically, derive the exponential criterion, and show that it
estimates the log-odds of the class probability. They propose additive tree
models, the right-sized trees and ANOVA represent ation of Section 10.11,
and the multi-class logit formulation. Friedman (2001) developed gradient
boosting and shrinkage for classscation and regression, while Fkiedman
(1999) explored stochastic variants of boosting. As the discussion of Fried-

344 10. Boosting and Additive Trees

man et al. (2000) shows, there is still some controversy about how and why
bornking works.

Exercises

Ex. 10.1 Derive expression (10.12) for the update parameter in AdaBoost.

Ex. 10.2 Prove result (10.16), that a, the minimizer of the population
version of the AdaBoost criterion, is onehalf of the log odds.

3huw Ll1a.L Llle ~ n ~ - g h d average (10.50) t-erxrverti dditive mrl
mwlpucative fundions (10.53) and (10.54), while the conditional expec-
L~lLiorl (10.52) does noL.

Ex. 10.4

(a) Write a program implementing AdaBoost with trees.

(b) Redo the computations for the example of Figure 10.2. Plot the train-
ing error as well as test error, and discuss its behavior.

(c) Investigate the number of iterations needed to make the teat error
finally start to rise.

(d) Change the setup of this example as follows: d d n e two classes, with
the features in Class 1 being XI, X2, . . . , Xl0, standard indepen-
dent Gaussian variates. In Class 2, the features XI, X2, . . . , Xlo are
also standard independent Gaussian, but conditioned on the event
C Xi2 > 12. Now the classes have s i m c a n t overlap in feature space.
Repeat the AdaBoost experiments as in Figure 10.2 and & m s the
results.

Ex. 10.5 Consider a K-class problem where the targets yin are coded as 1 if
observation i is in class k and zero otherwise. Using the symmetric logistic
transform (10.55) as the loss function, use the arguments leading to the
MART Algorithm 10.3 to derive Algorithm 10.5.

Exercises 345

Algorithm 10.5 MART for K-class classification.

1. Initialize fk0(x) = 0, k = 1, 2, . . . ,K.

2. For m=1 to M :

(a) Set

pk(x) =
efk(x)∑K
�=1 e

f�(x)
, k = 1, 2, . . . ,K.

(b) For k = 1 to K:

i. Compute rikm = yik − pk(xi), i = 1, 2, . . . , N .
ii. Fit a regression tree to the targets rikm, i = 1, 2, . . . , N ,

giving terminal regions Rjkm, j = 1, 2, . . . , Jm.
iii. Compute

γjkm =
K − 1
K

∑
xi∈Rjkm

rikm∑
xi∈Rjkm

|rikm|(1− |rikm|)
, j = 1, 2, . . . , Jm.

iv. Update fkm(x) = fk,m−1(x) +
∑Jm

j=1 γjkmI(x ∈ Rjkm).

3. Output f̂k(x) = fkM (x), k = 1, 2, . . . ,K.

346 10. Boosting and Additive Trees

+ This is page 347
Printer: Opaque this

11
Neural Networks

11.1 Introduction

In this chapter we describe a class of learning methods that was developed
separately in different fields-tatistics and artXcial intelligencebased
on essentially identical models. The central idea is to extract linear com-
binations of the inputs as derived features, and then model the target as
a nonlinear function of these features. The result is a powerful learning
method, with widespread applications in many fields. We first discuss the
projection pursuit model, which evolved in the domain of semiparameb
ric statistics and smoothmg. The rest of the chapter is devoted to neural
network models.

11.2 Projection Pursuit Regression

As in our generic supervised learning problem, assume we have an input
vertnt X with p rnmpnnent~, and A, ta,tgel; Y. Tlet w,, m = 1 , 2 , . . . , M , he
unit pvectors of unknown parameters. The projection pursuit regression
(PPR) model has the form

This is an additive model, but in the derived features Vm = w2X rather
than the inputs themselves. The fundions g,,, are unspeci6ed and are esti-

348 Neural Networks

FIGURE 11.1. Perspective plots of h o ridge finctiom.

Left: g(V) = 1/[1+ exp(-5(V - 0.5))], where V = (XI + x a) / f i .
Right: g (V) = (V + 0.1) sin(l/(V/S + 0.1)), where V = XI.

mated along with the directions w, using some flexible smoothing method
(see below).

The function g , (wz~) is called a ridge function in IRP. It varies only
in the direction defined by the vector wm. The scalar variable Vm = wzX
is the projection of X onto the unit vector w,, and we seek wm so that
the model fits well, hence the name "projection pursuit." Figure 11.1 shows
some examples of ridge functions. In the example on the left w = (l/&)(l, I) ~ ,
so that the function only varies in the direction XI + XZ. In the example
on the right, w = (1,O).

The PPR model (11.1) is very general, since the operation of forming
nonlinear functions of linear combinations generates a surprisingly large
class of models. For example, the product XI. Xz can be written as [(XI +
Xa)' - (XI - X2)z]/4, and higher-order products can be represented simi-
larly.

In fact, if M is taken arbitrarily large, for appropriate choice of g, the
PPR model can approximate any continuous function in IRP arbitrarily
well. Such a class of models is called a universal approximator. However
this generality comes at a price. Interpretation of the fitted model is usually
difficult, because each input enters into the model in a complex and multi-
faceted way. As a result, the PPR model is most useful for prediction, and
not very useful for producing an understandable model for the data. The
M = 1 model, known as the single index model in econometrics, is an
exception. It is slightly more general than the linear regression model, and
offers a similar interpretation.

How do we Et a PPR model, given training data (xi, pt), i = 1,2,. . . N?
We seek the approximate minimkers of the error function

11.2 Projection Pursuit Regression 349

over functions gm and direction vectors ωm, m = 1, 2, . . . ,M . As in other
smoothing problems, we need either explicitly or implicitly to impose com-
plexity constraints on the gm, to avoid overfit solutions.

Consider just one term (M = 1, and drop the subscript). Given the
direction vector ω, we form the derived variables vi = ωTxi. Then we have
a one-dimensional smoothing problem, and we can apply any scatterplot
smoother, such as a smoothing spline, to obtain an estimate of g.

On the other hand, given g, we want to minimize (11.2) over ω. A Gauss–
Newton search is convenient for this task. This is a quasi-Newton method,
in which the part of the Hessian involving the second derivative of g is
discarded. It can be simply derived as follows. Let ωold be the current
estimate for ω. We write

g(ωTxi) ≈ g(ωT
oldxi) + g′(ωT

oldxi)(ω − ωold)Txi (11.3)

to give

N∑
i=1

[
yi − g(ωTxi)

]2 ≈ N∑
i=1

g′(ωT
oldxi)2

[(
ωT
oldxi +

yi − g(ωT
oldxi)

g′(ωT
oldxi)

)
− ωTxi

]2
.

(11.4)

To minimize the right-hand side, we carry out a least squares regression
with target ωT

oldxi+(yi−g(ωT
oldxi))/g′(ωT

oldxi) on the input xi, with weights
g′(ωT

oldxi)2 and no intercept (bias) term. This produces the updated coef-
ficient vector ωnew.

These two steps, estimation of g and ω, are iterated until convergence.
With more than one term in the PPR model, the model is built in a forward
stage-wise manner, adding a pair (ωm, gm) at each stage.

There are a number of implementation details.

• Although any smoothing method can in principle be used, it is conve-
nient if the method provides derivatives. Local regression and smooth-
ing splines are convenient.

• After each step the gm’s from previous steps can be readjusted using
the backfitting procedure described in Chapter 9. While this may
lead ultimately to fewer terms, it is not clear whether it improves
prediction performance.

• Usually the ωm are not readjusted (partly to avoid excessive compu-
tation), although in principle they could be as well.

• The number of terms M is usually estimated as part of the forward
stage-wise strategy. The model building stops when the next term
does not appreciably improve the fit of the model. Cross-validation
can also be used to determine M .

350 Neural Networks

There are many other applications, such as density estimation (F'riedman
et al., 1984; Friedman, 1987), where khe projmkion puimuiik idea can be ~ised.
In particular, see the discussion of ICA in Section 14.6 and its relationship
with exploratory projection pursuit. However the projection pursuit re-
gression model has not been widely used in the field of statistics, perhap
became at the time of its introduction (1981), its computational demands
exceeded the capabilities of most readily available computers. But it does
represent an important intellectual advance, one that has blossomed in its
reincarnation in the field of neural networks, the topic of the rest of this
chapta.

11.3 Neural Networks

The t a m neoml network has evolved to encompass a large class of models
and leaning methods. Here we describe the most widely wed LLvanilla" neu-
r al net, sometimes called the single hidden layer back- propagation network,
or single layer perceptron. There has been a great deal of hype surrounding
neural networks, making them seem magical and mysterious. As we make
clear in tkis section, they are just nonlinear statistical models, much like
the projection pursuit regression model discussed above.

A neural network is a twc-stage regression or classification model, t y p
ically represented by a network diagram as in Figure 11.2. Tkis network
applies both to regression or classitication. For regression, typically K = 1
and there is only one output unit Yl at the top. However, these networks
can handle multiple quantitative responses in a seamless fashion, so we will
deal with the general case.

For K-class clasdkation, there are K units at the top, with the kth
unit modeling the probability of class k. There Me K target measurements
Yk, k = 1, . . . , K, each being coded as a 0-1 variable for the kth class.

Derived featurw 2, are created from linear combinations of the inputs,
and then the target Yk h modeled as a function of linear combinations of
the Z,,

where Z = (Zl, Z2, . . . , ZM), and T = (TI, T2,. . . , TK).
The activation function u (v) is usually chosen to be the sigmoid u (v) =

1/(1+ e-"); see Figure 11.3 for a plot of 1/(1+ ePw). Sometimes Gaussian
radial basis functions (Chapter 6) are used for the u(u) , producing what is
known as a radial basis f inct ion network

Neural network diagrams like Figure 11.2 are sometimes drawn with an
additional Mas unit feeding into every unit in the hidden and output layers.

11.3 Neural Networks 351

FIGURE 11.2. Schematic of a single hidden layer, f m d - f m a d m e u d network.

Thinking of the constant I" as an additional input feature, this bias unit
captures the intercepts %, and bk in model (11.5).

The output function gA (T) allows a find transformation of the vector of
outputs T . For regression we typically choose the identity function g h (T) =
Th. Early work in K-class class~cation also used the identity function, but
this was later abandoned in favor of the softrnm function

This is of course exadly the transformation used in the multilogit model
(Section 4.41, and produces pmitive estimates that sum to one. In Sec-
tion 4.2 we discuss other problems with linear activation functions, in par-
ticular potentidy severe masking effects.

The units in the middle of the network, computing the derived features
Z,, are called hidden umih because the values 2, are not directly o b
served. In general there can be more than one hidden layer, as illustrated
in the example at the end of this chapter. We can think of the 2, as a
basis expansion of the original inputs X; the neural network is then a st an-
dard linear model, or linear multilogit model, using these transformations
as inputs. There is, however, an important enhancement over the basis-
expansion techniqum discussed in Chapter 5; here the parameters of the
basis functions are learned from the data.

352 Neural Networks

Plot of the dgmoid junctim v(w) = l/(l+exp(-v)) (md curve),
,.....,.,, ,,,, in fhe hidden layer oj a neural network. Included am u(3.v) for
s = (blue cupare) a d s = 10 (purple c u m) . The scale pmrnefer s copatrob
iYw mctivieratim mk, m d we clnm see that large s amounts fr, a h a d activation mi?
v = 0. Note Uaat u(s(v - vo)) shifls the ractivation threshdd from 0 to V O .

Notice that if a is the identity function, then the entire model collapses
to a linear model in the inputs. Heme a neural network c m be thought of
as a nonlinear generalization of the linear model, both for regrmsion and
c h ~ l i f i ~ a l i ~ u . By hlruduci~~g Lhe uvdhear Lrmrormaliou a, iL greally
enlarges the class of linear models. In Figure 11.3 we see that the rate of
activation of the sigmoid depends on the norm of a,, and if 1 1 amll is very
small, the unit will indeed be operating in the linear part of its activation
function.

Notice also that the neural network model with one hidden layer has
exactly the same form as the projection pursuit model described above.
The difference is that the PPR model uses nonparametric functions g, (a),
while the neural network uses a far simpler function based on u(.u), with
three free parameters in its argument. In detail, viewing the neural network
model as a PPR model, we identify

where w, = a,/lla,ll is the mth unit-vector. Since ~p, , , , , (v) = pa(ao +
sa) has lower complexity than a more general nonparametric g(a), it is not
surprising that a neural network might use 20 or 100 such functions, while
the PPR model typically uses fewer terms (M = 5 or 10, for example).

Finally, we note that the name "neural networks" derives from the fact
that they were Erst developed as models for the human brain. Each unit
represents a neuron, and the connections (links in Figure 11.2) represent
synapses. In early models, the neurons fired when the total signal passed to
that unit exceeded a certain threshold. In the model above, tkis corresponds

354 Neural Networks

Here is back-propagation in detail for squared error loss. Let z,i =

~ (a o m + azx i) , from (11.5) and let zi = (zli, zzi, . . . , z ~ i) . Then we have

with derivatives

Given these derivatives, a gradient descent update at the (r + 1)st iter-
ation has the form

where yr is the learning rate, discussed below.
Now write (11.12) as

Tlle yuarllilies Ski arlcl s,i are "errors" It-urn Ll~e currsrll rrluclsl a1 Llle
output and hidden layer units, respectively. From their definitions, these
errors satisfy

known as the back-propagation equations. Using this, the updates in (11.13)
can be implemented with a two-pass algorithm. In the forward pass, the
current weights are fixed and the predicted values fk(zi) are computed
from formula (11.5). In the backward pass, the errors ski are computed,
and then back-propagated via (11.15) to give the errors smi. Both sets of

11.5 Some Issues in ? th ing Neural Networks 355

errors are then used to compute the gradients for the updates in (11.13),
via (11.14).

Tkis twepass procedure is what is known as back-propagation. It has
also been called the delta W E C (Widrow and Hoff, 1960). The computational
components for cross-entropy have the same form as thme for the sum of
squares error function, and are derived in Exercise 11.3.

The advantages of back-propagation are its simple, local nature. In the
back propagation algorithm, each hidden unit passes and receives infor-
mation only to and from units that share a connection. Hence it can be
implemented efficiently on a parallel architecture computer.

The updates in (11.13) are a kind of batch learning, with the parame
ter updates being a sum over all of the training casw. Learning can also
be carried out online-processing each observation one at a time, updat-
ing thc gradient aftcr cach training cnsc, and cycling through thc training
cases many times. In this case, the sums in equations (11.13) are replaced
by a single summand. A tmb8ng epoch refers to one sweep through the
entire training set. Online training allows the network to handle very large
training seta, and also to update the weights as new okrvatiom come in.

The learning rate y, for batch learning is usually taken to be a con-
stant, and can also be optimized by a line starch that minimizes the error
function at each update. With online learning 7, should decrease to zero
as the iteration r + oo. This learning is a form of sto&&ic csppmxinza-
tion (Robbins and Munro, 1951); results in this field ensure convergence if
rr + 0, C, 7, = ca, and C, 7; < OC) (saLbEed, [or exmuple, by ,yr = l / r) .

Back-propagation can be very slow, and for that reason is usually not
the method of choice. Second-order techniques such as Newton's method
are not attractive here, because the second derivative matrix of R (the
Hessian) can be very large. Better approaches to flttlng include conjugate
gradients and variable metric methods. These avoid explicit mmput ation
of the second derivative matrix while still providing faster convergence.

11.5 Some Issues in Training Neural Networks

There is quite an art in training neural networks. The model is generally
overpar ametrized, and the optimization problem is nonconvex and unstable
unlcss ccrtain guidclincs arc followed. In this section wc summarhc somc
of the important issues.

11.5.1 Stadang Values
Note that if the weights are near zero, then the operative part of the sigmoid
(Figure 11.3) is roughly linear, and hence the neural network collapses into
an approximately h e a r model (Exercise 11.2). Usually starting values for

356 Neural Networks

weights are chosen to be random values near zero. Hence the model starts
out; nearly linear, and b e m r n ~ nonlinear .rq the weights incre~qe. Individual
units localize to directions and introduce nonlinearities where needed. Use
of exwt zero weights leads to zero derivatives and perfect symmetry, and
the algorithm never moves. Starting instead with large weights often leads
to poor solutions.

Often neural networks have too many weights and will overfit the data at
the global minimum of R. In early developments of neural networks, either
by design or by accident, an early stopping rule was used to avoid over-
fitting. Here we train the model only for a while, and stop well before we
approach the global minimum. Since the weights start at a highly regular-
ized (linear) solution, this has the effect of shrinking the final model toward
a linear model. A validation dataset is useful for determining when to stop,
since we expect the validation error to start increasing.

A more explicit method for regularization is weight deccas which is anal-
ogous to ridge regression used for linear models (Section 3.4.3). We add a
penalty to the error function R(B) + XJ(O), where

and X 2 0 is a tuning parameter. Larger values of X will tend to shrink
the weights toward zero: typically cross-validation is used to estimate A.
The effect of the penalty is to simply add terms 2Pkm and 2 h r to the
respective gradient expressions (11.13). Other forms for the penalty have
been proposed, for example,

known as the weight eiimimatiom penalty. This has the effect of shrinking
smaller weights more than (11.16) does.

Figure 11.4 shows the result of training a neural network with ten hidden
units, without weight decay (upper panel) and with weight decay (lower
panel), to the mixture example of Chapter 2. Weight decay has clearly
improved the prediction. Figure 11.5 shows heat m a p of the estimated
weights from the training (grayscale versions of these are called HePaton
diagmnas.) We see that weight decay has dampened the weights in both
layers: the resulting weights are spread fairly evenly over the ten hidden
units.

11.5 Some Issues in ?th ing Neural Networks 357

Neural Network - 10 Units, No Weight Decay

Neural Network - 10 Units, WeigM Decay=0.02

FIGURE 11.4. A n e u d network on the mixture example of Chmpfer 2. The
upper panel uses no weight decay, m d overfZts the training data. The lower p n e l
w e s wemght demu, and achieves close to the Bays e m r rak (boloen p w I e
h n d a v y) . Both use the s o j k m activation function and c~.oss-ent~.oplv e m r .

No weight decay Weight decay

FIGURE 11.6. Heat maps of the estimated weights jmm Uae f ining of n e u d
adworks frmn F i p m 11 .$. The display ranges from bright p e a (negatiae) to
bvight md (positive).

11.5.3 Sml ing o f t h e Inputs

Since the scaling of the inputs determines the effective scaling of the weights
in the bottom layer, it can have a large effect on the quality of the final
solution. At the outset it is best to standardbe all inputs to have mean zero
and standard deviation one. This ensures all inputs are treated equally in
the regularization process, and allows one to choose a me- range for
the random starting weights. With standardized inputs, it is typical to take
random uniform weights over the range [-0.7, f0.71.

1 5.4 Number of Hidden U n i h and Layers

Generally speaking it is better to have too many hidden units than too few.
With too few hidden units, the model might not have enough flexibility to
capture the nonlinearities in the data; with too many hidden units, the
extra weights can be shrunk toward zero if appropriate regularization is
used. Typically the number of hidden units is somewhere in the range of
5 to 100, with the number increasing with the number of inputs and num-
ber of training cases. It is most common to put down a reasonably large
number of units and train them with regularization. Some researchers me
cross-validation to estimate the optimal number, but this seem unneces-
sary if cross-validation is used to estimate the regularization parameter.
Choice of the number of hidden layers is guided by background knowledge
and experimentation. Each layer extracts features of the input for regre*
sion or classijication. Use of multiple hidden layers allows construction of
hierarchical features at different levels of resolution. An example of the
effective use of multiple layers is given in Section 11.6.

11.6 Ehmple: Simulated Data 359

11.5.5 Multiple Minima
The error function R(B) is nonconvex, pmessing many local minirna. As a
result, the final solution obtained is quite dependent on the choice of stark
ing weights. One must at least try a number of random starting configura,
tions, and choose the solution giving lowest (penalized) error. Probably a
better approach is to use the average predictions over the collection of net-
works as the final prediction (Ripley, 1996). This is preferable to averaging
the weights, since the nonlinearity of the model implies that tkis averaged
solution could be quite poor. Another approach is via bagging, which aver-
ages the predictions of networks training from randomly perturbed versions
of the training data. This is described in Section 8.7.

11.6 Example: Simulated Data

We generated data from two additive error models Y = f (X) + E:

Sum of sigmoids: Y = U(~?X) + U(~;X) + €1;
10

Radial: Y = +(Xm) + ~ 2 .

m-1

Here X = (XI, X2, . . . , X,), each Xj being a standard Gaussian variate,
with p = 2 in the first model, and p = 10 in the second.

For the sigmoid model, a1 = (3,3), a2 = (3, -3); for the radial model,
+(t) = (1 / 2 ~) ' / ~ exp(-t2/2). ~1 and &a are both Gaussian errors, with
variance chosen so that the signal-tenoise ratio

is 4 in both models. We took a training sample of size 100 and a test sample
of size 10000. We fit neural networks with weight decay and various numbers
of hidden units, and recorded the average test error ET,,,(Y - f " (~)) * for
each of ten random starting weights. Only one training set was generated,
but the results are typical for an "average" training set. The test errors are
shown in Figure 11.6. Note that the zero hidden unit model refers to linear
least squares regression. The neural network is perfectly suited to the sum
of sigmoids model, and the twmunit model does perform the best, achieving
an error clam to the Bayes rate. (Recall that the Bayes rate for regression
with squared error is the error variance; in the figures, we report test error
relative to the Bayes error). Notice, however, that with more hidden units,
overfitting quickly creep in, and with some starting weights the model
does worse than the linear model (zero hidden unit) model. Even with two
hidden units, two of the ten starting weight configurations produced results

Sum ol Slgrnolds

Nun-ber d Hldder Unlts Number d Hldder Unlts

FIGURE 11.6. Boxplots of test e m ? for simulatatd data mampb, dat ive to
the Bayes e m r (bmkm hov%zontd line). f i e function is a sum of two sigmoids
on Uae left, and a mdi& pEmc£ion is on the right. The test error is displayed for
fern diffemrnt starting weighfs, for a: single hiddm layer neural network m-th the
number of units as indicated

no better than the linear model, codrrning the importance of multiple
starting values.

A radial function is in a sense the most dacul t for the neural net, as it is
spherically sy~uueLric wiLh nu prelerrd &wLio~~. We x e ~ I L Lhe righL
panel of Figure 11.6 that it does poorly in this case, with the test error
staying well above the Bayes error (note the different vertical scale from
the left panel). In fact, since a constant fit (such as the sample average)
achieves a relative error of 5 (when the SNR h 4), we see that the neural
networks perform increasingly worse than the mean.

In this example we used a Exed weight decay parameter of 0.0005, r e p
resenting a mild amount of regularization. The results in the left panel of
Figure 11.6 suggest that more regularization is needed with greater num-
bers of hidden units.

In Figure 11.7 we repeated the experiment for the sum of sigmoids model,
with no weight decay in the left panel, and stronger weight decay (A = 0.1)
in the right panel. With no weight decay, overfittu becomes even more
severe for larger numbers of hidden units. The weight decay value A = 0.1
produces good results for all numbers of hidden units, and there does not
appear to be overfitting as the number of units increase. Finally, Figure 11.8
shows the test error for a ten hidden unit network, varying the weight decay
parameter over a wide range. The value 0.1 is approximately optimal.

In summary, there are two free parameters to select: the weight decay X
and number of hidden units M. As a learning strategy, one could fix either
parameter at the value corresponding to the least constrained model, to
emure that the model is rich enough, and use crosevalidation to choose

Test Ermr

FIGURE 11.9. Examples of training cmes fp.om ZIP code dah. Each image is
a 16 x 16 &bit qmysmk wpmsmt~tiora of Q karadwp.8aeva digit.

the other parameter. Here the least constrained values are mro weight decay
and ten hidden units. Comparing the left panel of Figure 11.7 to Figure
11.8, we see that the test error is less sensitive to the vahe of the weight
decay parameter, and hence cr-validation of this parameter would be
preferred.

11.7 Example: ZIP Code Data

This example is a character recognition task: classification of handwritten
numerals. This problem captured the attention of the machine learning and
neural network community for many years, and has remained a benchmark
problem in the field. Figure 11 .Y shows some examples of normalized hand-
written digits, automatically scanned fiom envelopes by the U.S. Pmtal
Service. 'l'he original scanned digits are binary and of different sizes and
orientations; the images shown here have been deslanted and size normal-
ized, resulting in 16 x 16 grayscale images (Le Cun et al., 1990). These 256
pixel values are used as inputs to the neural network clasdfier.

A black Box neural network is not ideally suited to this pattern recogni-
tion task, partly because the pixel representation of the images lack certain
invariances (such as small rotations of the image). Consequently early at-
tempts with neural networks yielded misclassi6cation rates around 4.5%
on various examples of the problem. In this section we show some of the
pioneering efforts to handcraft the neural network to overcome some these

11.7 Example: ZIP Code Data 363

deficiencies (Le Cun, 1989), which ultimately led to the state of the art in
neural network performance (Le Cun et al., 1998)∗.

Although current digit datasets have tens of thousands of training and
test examples, the sample size here is deliberately modest in order to em-
phasize the effects. The examples were obtained by scanning some actual
handdrawn digits, and then generating additional images by random hori-
zontal shifts. Details may be found in Le Cun (1989). There are 320 digits
in the training set, and 160 in the test set.

Five different networks were fit to the data:

Net-1: No hidden layer, equivalent to multinomial logistic regression.

Net-2: One hidden layer, 12 hidden units fully connected.

Net-3: Two hidden layers locally connected.

Net-4: Two hidden layers, locally connected with weight sharing.

Net-5: Two hidden layers, locally connected, two levels of weight sharing.

These are depicted in Figure 11.10. Net-1 for example has 256 inputs, one
each for the 16×16 input pixels, and ten output units for each of the digits
0–9. The predicted value f̂k(x) represents the estimated probability that
an image x has digit class k, for k = 0, 1, 2, . . . , 9.

The networks all have sigmoidal output units, and were all fit with the
sum-of-squares error function. The first network has no hidden layer, and
hence is nearly equivalent to a linear multinomial regression model (Exer-
cise 11.4). Net-2 is a single hidden layer network with 12 hidden units, of
the kind described above.

The training set error for all of the networks was 0%, since in all cases
there are more parameters than training observations. The evolution of the
test error during the training epochs is shown in Figure 11.11. The linear
network (Net-1) starts to overfit fairly quickly, while test performance of
the others level off at successively superior values.

The other three networks have additional features which demonstrate
the power and flexibility of the neural network paradigm. They introduce
constraints on the network, natural for the problem at hand, which allow
for more complex connectivity but fewer parameters.

Net-3 uses local connectivity: this means that each hidden unit is con-
nected to only a small patch of units in the layer below. In the first hidden
layer (an 8×8 array), each unit takes inputs from a 3×3 patch of the input
layer; for units in the first hidden layer that are one unit apart, their recep-
tive fields overlap by one row or column, and hence are two pixels apart.
In the second hidden layer, inputs are from a 5× 5 patch, and again units
that are one unit apart have receptive fields that are two units apart. The

∗The figures and tables in this example were recreated from Le Cun (1989)

Shared Weighb

Net-3
Local Connectivity

FIGURE 11.10. Architectwe of the jive networks w d in the ZIP code example.

weights for all other connections are set to zero. Local connectivity makes
each unit responsible for extracting local features £tom the layer below, and
reduces considerably the total number of weights. With many more hidden
units than Net-2, Neb3 has fewer links and hence weights (1226 vs. 3214),
and achieves similar performance.

Net-4 and Net-5 have local connectivity with shared weights. All units
in a local feature map perform the same operation on different parts of the
image, achieved by sharing the same weights. 'I'he first hidden layer of Net-
4 has two 8 x 8 arrays, and each unit takes input from a 3 x 3 patch just like
in Net-3. However, each of the units in a single 8 x 8 feature map share the
same set of nine weights (but have their own b i i parameter). This forces
the extracted features in different parts of the image to be computed by
the same linear functional, and consequently these networks are sometimes
known as wn~olutionral networks.. The second hidden layer of Net-4 has
no weight sbming, and is the same as in Net-3. The gradient of the error
function R with respect to a shared weight is the sum of the gradients of
R with respect to each connection controlled by the weights in question.

11.7 &le: ZIP Code Data 365

h l d I

Training Epochs

FIGURE Test p e r j o m n c e curwea, aa a function of the number of tmipk
ing e p c h s , jor &ire five netuorlcs of Tabk 11.1 appi*ed t o the ZIP code data
(Le Gm, 198g).

Table 11.1 gives the number of links, the number of weights and the
optimal tcst pcrformancc for cach of thc nctworlrs. Wc scc that Nct-4 hns
more links but fewer weights than Net-3, and superior test performance.
Nek5 has four 4 x 4 feature m a p in the second hidden layer, each unit
connected to a 5 x 5 local patch in the layer below. Weights are shared
in each of these feature map. We see that Neb5 does the best, having
errors of only 1.6%, compared to 13% for the "vanilla" network Net-2.
The clever design of network Nek-5, motivated by the fact that features of
handwriting style should appear in more than one part of a digit, was the
result of many person years of experimentation. This and similar n e h r k a
gave better performance on ZIP code problems than any other learning
~ueLhvd a1 LhsL Lime (early 1990s). T L example &O shows L h L I L W ~

TABLE 11.1. T e d set performaace of five diffemat n e w d nefworks oa rs h a d -
writken dzgit clmsifirnfion mmrnple (& &a, 1989).

Network Architecture
Net-1: Single layer network
Net-2: Two layer network
Net-3: Locally connected
Net-4: Constrained network 1
Net-5: Constrained network 2

Links
2570
3214
1226
2266
5194

Weights
2570
3214
1226
1132
1060

% Correct
80.0%
87.0%
88.5%
94.0%
98.4%

networks are not a fully automatic tool, as they are sometimes advertised.
As with all ~katistical models, subject makker knowledge can and sholild be
used to improve their performance.
This network was later outperformed by the tangent distance approach

(Simard et al., 1993) described in Section 13.3.3, which explicitly incorpe
rates natural affine invariances. At this point the digit recognition datasets
bemme test beds for every new learning procedure, and researchers worked
hard to drive down the error rates. As of this writing, the best error rates on
a large database (60000 training, 10,000 test observations), derived from
standard NIST~ databases, were reported to be the following: (Le Cun
et al., 1998):

1.1% for tangent distance with a 1-nearest neighbor classser (Sec-
tion 13.3.3);

0.8% for a degree9 polynomial SVM (Section 12.3);

0.8% for LeNet-5, a more complex version of the mnvolutional net-
work described here;

0.7% for boosted LeNet-4. Boosting is described in Chapter 8. LeNet-
4 is a predecessor of LeNet-5.

Te Cirri et; a]. (1998) repnrt a, mrrch lasger table nf perfnrmantx: re~lrrlt~,
and it is evident that many group have been working very hard to bring
these test error rates down. They report a standard error of 0.1% on the
error estimates, which is based on a binomial average with N = 10000 and
p M 0.01. This implies that error rates within 0 . 1 4 . 2 % of one another
are statistically equivalent. Realistically the standard error is even higher,
since the test data has been implicitly used in the tuning of the various
procedures.

11.8 Discussion

Both projection pursuit regression and neural networks take nonlinear func-
tions of linear combinations ("derived features") of the inputs. This is a
powerful and very general approach for regression and classXcation, and
has been shown to compete well with the best learning methods on many
problems.

These tooh are especially effective in problems with a high signal-twnoise
ratio and settings where prediction without interpretation is the goal. They
are less effective for problems where the goal is to describe the physical prw
cess that generated the data and the roles of individual inputs. Each input

t ~ h e National Institute of Stan* and Technology maintain large databases, in-
cluding handwritten character d a t a k ; http://waw.ni~t .gov/rrd/

11.9 Computational Cornideratiom 367

enters into the model in many places, in a nonlinear fashion. Some authors
(Hinton, 1989) plot rt dirtgram of the estimated weights into each hidden
unit, to try to understand the feature that each unit is extracting. This
is limited however by the lack of ident5ability of the parameter vectors
a,, m = 1,. . . , M. Often there are solutions with cr, spanning the same
linear space as the ones found during training, giving predicted values that
are roughly the same. Some authors suggest carrying out a principal com-
ponent analysis of these weights, to try to End an interpretable solution. In
general, the difficulty of interpreting these models has limited their use in
fields like medicine, where interpretation of the model is very important.

There has been a great deal of research on the training of neural net-
works. Unlike methods like CART and MARS, neural networks are smooth
fundions of real-valued parameters. This facilitates the development of
Baycsian infcrcncc for thcsc modcls. Somc rcfcrcnccs arc givcn in thc bib
liographic notes below.

11.9 Cornput ational Considerations

With N ohrvations, p predictors, M hidden units and L training epochs, a
neural network fit typically requites O (N p M L) operations. There are many
packages available for fitting neural networks, probably many more than
exist for mainstream st atistical methods. Because the available software
varies widely in quality, and the learning problem for neural networks is
sensitive to issues such as input scaling, such software should be carefully
chosen and tested.

Bibliographic Notes

Projection pursuit was proposed by Friedman and Tukey (19741, and s p s
cialized to regression by Friedman and Stuetzle (1981). Huber (1985) gives
a scholarly overview, and Roosen and Hastie (1994) present a formulation
using smoothing splines. The motivation for neural networks dates back
to McCulloch and Yitts (1943), Widrow and Hoff (1960) (reprinted in An-
derson and Rasenfeld (1988)) and b e n b l a t t (1962). Hebb (1949) heavily
iduenced the development of learning algorithms. The resurgence of neural
networks in the mid 1980s was due to Werbos (1974), Parker (1985) and
Rumelhart et al. (1986), who proposed the back-propagation algorithm.
Today there are many books written on the topic, for a broad range of
audiences. For readers of this book, Hertz et al. (1991), Bishop (1995) and
Ripley (1996) may be the most informative. Bayesian learning for neural
networks is described in Neal (1996). The ZIP code example was taken kom
Le Cun (1989); see also Le Cun et al. (1990) and Le Cun et al. (1998).

We do not discuss theoretical topics such tw approximation properties of
neural nehorks, nich ~q khe work of Rarron (1 993), Girosi et al. (I 995)
and Jones (1992). Some of these results are summarkd by Ripley (1996).

Exercises

Ex. 11.1 atablish the exact correspondence between the projection pur-
niit regression model (11.1) and the nmird net;work (11.5). In pttrticullar,
show that the single-layer regression network is equivalent to a PPR model
with gm(wTLx) = &a(cvo, + S , (W ~ ~ X)) , where w, is the mth unit vector.
Establish a similar equivalence for a classfication network.

Ex. 11.2 Consider a neural network for a quantitative outcome as in (1 1.5),
using squared-error lms and identity output function g k (t) = t. Suppose
that the weights ag, from the input to hidden layer are nearly zero. Show
that the resulting model is nearly linear in the inputs.

Ex. 11.3 Derive the forward and backward propagation equations for the
cross-entropy loss function.

Ex. 11.4 Consider a neural network for a K class outcome that uses cress-
entropy loss. If the network has no hidden layer, show that the model is
equivalent to the multinomial logistic model described in Chapter 4.

Ex. 11.5

(a) Write a program to fit a single hidden layer neural network (ten hidden
units) via back- propagation and weight decay.

(b) Apply it to 100 obervations from the model

where a k the sigmoid function, Z is standard normal, X = (XI, X2),
each X j being independent standard normal, and a1 = (3,3), a2 =

(3, 3). Ccncratcatcst samplcofsizc 1000,andplot thc training and
test error curves as a function of the number of training epochs, for
Wcrcnt valuca of thc wcight dccay paramctcr. Discuss thc ovc&ting
behavior in each case.

(c) Vary the number of hidden units in the network, from 1 up to 10, and
determine the minimum number needed to perform well for this task.

Ex. 11.6 Write a program to carry out projection pursuit regression, using
cubic smoothing splines with k e d degrees of freedom. Fit it to the data
h m the previous exercise, for various values of the smoothing parameter

Exercises 369

and number of model terms. Find the minimum number of model terms
necessary for the model to perform well and compare this to the number
of hidden units from the previous exercise.

Ex. 11.7 Fit a neural network to the spam data of Section 9.1.2, and compare
the results to those for the additive model given in that chapter. Compare
both the classification performance and interpretability of the final model.

370 Neural Networks

+ This is page 371
Printer: Opaque this

Support Vector Machines and
Flexible Discriminants

12.1 Introduction

In this chapter we describe generalizations of linear decision boundaries
for classXcation. Optimal separating hyperplanes are introduced in Chap
ter 4 for the case when two classes are linearly separable. Here we cover
extensions to the nonseparable case, where the classes overlap. These tech-
niques are then generalized to what is known as the mppor t vector machine,
which produces nonlinear boundaries by constructing a linear boundary in
a large, transformed version of the feature space. The second set of methods
generalize Fisher's linear discriminant analysis (LDA). The generalizations
include p e i b l e dkcriminant analysis which facilitates construction of non-
linear boundaries in a manner very similar to the support vector machines,
penalizd dkcrinzinant analysis for problems such as signal and image clas-
sification where the large number of features are highly correlated, and
mixhim dkmiminant analysis for irregularly shaped classes.

12.2 The Support Vector Classifier

In Chapter 4 we discussed a technique for constructing an optimal separab
ing hyperplane between two perfectly separated classes. We review this and
generalize to the nonseparable case, where the classa may not be separable
by a linear boundary.

372 12. Flexible Discriminants

xT@+Po=O . x T P + P 0 = 0
- .

I I

*. I' *. margin
c=' . IlPll I .

C = h

FIGURE 12.1. Support vector classi&rs. The left panel shows the separable
w e . The decision h n d a w is the solid lime, while broken lines bound Me shaded
maxim1 margin of widt?~ 2G = 2/11Pll. The fi9ht panel shms the nonsepamble
(overlap) case. The points labeled t; are on Use m n g side of Meir margin by
an amount = Ctj; points on the c o d side have ,$; = 0. The margin is
maximized subject to a total budget C& 5 eonstarat. Hence C G is Me totd
distance of points on the m m g side of their margin.

Our training data consists of N pairs (XI, yl), (xa, yz), . . . , (XN, YN), with
xi E IRP and yi E {-1,l). Define a hyperplane by

where p is a unit vector: IlPll = 1. A classi6cation rule induced by f(x) is

The geometry of hyperplanes is reviewed in Section 4.5, where we show that
f (x) in (12.1) gives the signed distance from a point x to the hyperplane
f (x) = xTP+,& = 0. Since the classes are separable, we can 6nd a function
f(x) = xT@ + with gif (xi) > 0 N. Hence we are able to find the
hyperplane that creates the biggest margin between the training points for
class 1 and -1 (see Figure 12.1). The optimization problem

max C
B,Bo,llBII=1

subject to yi(zTP + ,&) 2 C, i = 1, . . . , N,
captures this concept. The band in the figure is C units away from the
hyperplane on either side, and hence 2C units wide. It is called the margin.

We showed that this problem can be more conveniently rephrased as

llall
subject to Y ((x T ~ + Po) 2 I, i = I,. . - - N,

12.2 The Support Vector Classifier 373

where we have dropped the norm constraint on β. Note that C = 1/‖β‖.
Expression (12.4) is the usual way of writing the support vector criterion
for separated data. This is a convex optimization problem (quadratic cri-
terion, linear inequality constraints), and the solution is characterized in
Section 4.5.2.

Suppose now the classes overlap in feature space. One way to deal with
the overlap is to still maximize C, but allow for some points to be on the
wrong side of the margin. Define the slack variables ξ = (ξ1, ξ2, . . . , ξN).
There are two natural ways to modify the constraint in (12.3):

yi(xT
i β + β0), ≥ C − ξi, (12.5)

or
yi(xT

i β + β0), ≥ C(1− ξi), (12.6)

∀i, ξi ≥ 0,
∑N

i=1 ξi ≤ constant. The two choices lead to different solutions.
While both are equally natural, the second choice leads to the “standard”
support vector classifier, and hence we use it.

Here is the idea of the formulation. The value ξi in the constraint yi(xT
i β+

β0) ≥ C(1−ξi) is the proportional amount by which the prediction f(xi) =
xT

i β + β0 is on the wrong side of its margin. Hence by bounding the sum∑
ξi, we bound the total proportional amount by which predictions fall

on the wrong side of their margin. Misclassifications occur when ξi > 1,
so bounding

∑
ξi at a value K say, bounds the total number of training

misclassifications at K.
As in (4.44) in Section 4.5.2, we can drop the norm constraint on β,

define C = 1/‖β‖, and write (12.4) in the equivalent form

min ‖β‖ subject to

{
yi(xT

i β + β0) ≥ 1− ξi ∀i,
ξi ≥ 0,

∑
ξi ≤ constant.

(12.7)

This is the usual way the support vector classifier is defined for the non-
separable case. However we find confusing the presence of the fixed scale
“1” in the constraint yi(xT

i β +β0) ≥ 1− ξi, and prefer to start with (12.6).
The right panel of Figure 12.1 illustrates this overlapping case.

By the nature of the criterion (12.7), we see that points well inside their
class boundary do not play a big role in shaping the boundary. This seems
like an attractive property, and one that differentiates it from linear dis-
criminant analysis (Section 4.3). In LDA, the decision boundary is deter-
mined by the covariance of the class distributions and the positions of the
class centroids. We will see in Section 12.3.3 that logistic regression is more
similar to the support vector classifier in this regard.

12.2.1 Computing the Support Vector Classifier

The problem (12.7) is quadratic with linear inequality constraints, hence it
is a convex optimization problem. We describe a quadratic programming

374 12. Flexible Discriminants

solution using Lagrange multipliers. Computationally it is convenient to
re-express (12.7) in the equivalent form

min
β,β0

1
2
‖β‖2 + γ

N∑
i=1

ξi

subject to ξi ≥ 0, yi(xT
i β + β0) ≥ 1− ξi ∀i,

(12.8)

where γ replaces the constant in (12.7); the separable case corresponds to
γ = ∞.

The Lagrange (primal) function is

LP =
1
2
‖β‖2 + γ

N∑
i=1

ξi −
N∑

i=1

αi[yi(xT
i β + β0)− (1− ξi)]−

N∑
i=1

µiξi,

(12.9)

which we minimize w.r.t β, β0 and ξi. Setting the respective derivatives to
zero, we get

β =
N∑

i=1

αiyixi, (12.10)

0 =
N∑

i=1

αiyi, (12.11)

αi = γ − µi, ∀i, (12.12)

as well as the positivity constraints αi, µi, ξi ≥ 0 ∀i. By substituting
(12.10)–(12.12) into (12.9), we obtain the Lagrangian (Wolfe) dual objec-
tive function

LD =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
i′=1

αiαi′yiyi′x
T
i xi′ , (12.13)

which gives a lower bound on the objective function (12.8) for any feasible
point. We maximize LD subject to 0 ≤ αi ≤ γ and

∑N
i=1 αiyi = 0. In

addition to (12.10)–(12.12), the Karush–Kuhn–Tucker conditions include
the constraints

αi[yi(xT
i β + β0)− (1− ξi)] = 0, (12.14)

µiξi = 0, (12.15)
yi(xT

i β + β0)− (1− ξi) ≥ 0, (12.16)

for i = 1, . . . , N . Together these equations (12.10)–(12.16) uniquely char-
acterize the solution to the primal and dual problem.

12.2 The Support Vector Classifier 375

From (12.10) we see that the solution for β has the form

β̂ =
N∑

i=1

α̂iyixi, (12.17)

with nonzero coefficients α̂i only for those observations i for which the
constraints in (12.16) are exactly met (due to (12.14)). These observations
are called the support vectors, since β̂ is represented in terms of them
alone. Among these support points, some will lie on the edge of the margin
(ξ̂i = 0), and hence from (12.15) and (12.12) will be characterized by
0 < α̂i < γ; the remainder (ξ̂i > 0) have α̂i = γ. From (12.14) we can
see that any of these margin points (0 < α̂i, ξ̂i = 0) can be used to solve
for β0, and we typically use an average of all the solutions for numerical
stability.

Maximizing the dual (12.13) is a simpler convex quadratic programming
problem than the primal (12.9), and can be solved with standard techniques
(Murray et al., 1981, for example).

Given the solutions β̂0 and β̂, the decision function can be written as

Ĝ(x) = sign[f̂(x)]

= sign[xT β̂ + β̂0]. (12.18)

The tuning parameter of this procedure is γ.

12.2.2 Mixture Example (Continued)

Figure 12.2 shows the support vector boundary for the mixture example
of Figure 2.5 on page 22, with two overlapping classes, for two different
values of the tuning parameter γ. The classifiers are rather similar in their
performance. Points on the wrong side of the boundary are support vectors.
In addition, points on the correct side of the boundary but close to it (in
the margin), are also support vectors. The margin is larger for γ = 0.01
than it is for γ = 10, 000. Hence larger values of γ focus attention more
on (correctly classified) points near the decision boundary, while smaller
values involve data further away. Either way, misclassified points are given
weight, no matter how far away. In this example the procedure is not very
sensitive to choices of γ, because of the rigidity of a linear boundary.

The optimal value for γ can be estimated by cross-validation, as discussed
in Chapter 7. Interestingly, the leave-one-out cross-validation error can be
bounded above by the proportion of support points in the data. The reason
is that leaving out an observation that is not a support vector will not
change the solution. Hence these observations, being classified correctly by
the original boundary, will be classified correctly in the cross-validation
process. However this bound tends to be too high, and not generally useful
for choosing γ (62% and 85%, respectively, in our examples).

376 12. Flexible Discriminants

..........

I ,. i , . , , ..9:::i.iiiiijji:i!p::oii:iiiiiiiiii:: , , , , . . . p i i : : : , , : : : : : : , . , : : : : : : : : : I ;
.911: e r 6 0 " ! ! ! ! ! ! ! ! !

.......... : Q 0. i i i , o . , , , & . i i iP i i i i i 0 6 ' O i j * i i i i i i i i i i i i i i i i i i i i
..... a : : r a ''B' ~...'...... 6:'all.

.....
, ,;;S??
b' ; ;;;;;

.
, , ,,:,aiiiiiQi , , . , /

: : :*

Tmining Ermr: 0.270

Test Ermr: 0.288
Bayes Ermr: 0.210

FIGURE 12.2. The linear support vector bundavy .for the mixtum data exam
ple with two overlapping dmsses, for two digereat values of y. The broken lines
iadicde the margins, w h m f (2) = f 1. m e s u p p d @nts (a, > 0) are all the
points om the wmng side o j Uaeir rnagia . 'Ilae bZa& solid d o h are those s u p p r t
points f d l i g exactly on ihe maqin (ti = 0, ai > 0). 1% the uppep. panel 62% of
the observations am sup+ jwinh, while in the lower panel 85% am. l%e broken
puvle curve in &e backgmund is the Bayes daision boundaqj.

12.3 Support Vector Machines 377

12.3 Support Vector Machines

The support vector classifier described so far finds linear boundaries in the
input feature space. As with other linear methods, we can make the pro-
cedure more flexible by enlarging the feature space using basis expansions
such as polynomials or splines (Chapter 5). Generally linear boundaries
in the enlarged space achieve better training-class separation, and trans-
late to nonlinear boundaries in the original space. Once the basis functions
hm(x), m = 1, . . . ,M are selected, the procedure is the same as before. We
fit the SV classifier using input features h(xi) = (h1(xi), h2(xi), . . . , hM (xi)),
i = 1, . . . , N , and produce the (nonlinear) function f̂(x) = h(x)T β̂ + β̂0.
The classifier is Ĝ(x) = sign(f̂(x)) as before.

The support vector machine classifier is an extension of this idea, where
the dimension of the enlarged space is allowed to get very large, infinite
in some cases. It might seem that the computations would become pro-
hibitive. It would also seem that with sufficient basis functions, the data
would be separable, and overfitting would occur. We first show how the
SVM technology deals with these issues. We then see that in fact the SVM
classifier is solving a function-fitting problem using a particular criterion
and form of regularization, and is part of a much bigger class of problems
that includes the smoothing splines of Chapter 5. The reader may wish
to consult Section 5.8, which provides background material and overlaps
somewhat with the next two sections.

12.3.1 Computing the SVM for Classification

We can represent the optimization problem (12.9) and its solution in a
special way that only involves the input features via inner products. We do
this directly for the transformed feature vectors h(xi). We then see that for
particular choices of h, these inner products can be computed very cheaply.

The Lagrange dual function (12.13) has the form

LD =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
i′=1

αiαi′yiyi′〈h(xi), h(xi′)〉. (12.19)

From (12.10) we see that the solution function f(x) can be written

f(x) = h(x)Tβ + β0

=
N∑

i=1

αiyi〈h(x), h(xi)〉+ β0. (12.20)

As before, given αi, β0 can be determined by solving yif(xi) = 1 in (12.20)
for any (or all) xi for which 0 < αi < γ.

378 12. Flexible Discriminants

So both (12.19) and (12.20) involve h(x) only through inner products. In
fact;, we need not specify khe transformation h(z) at; all, but; require only
knowledge of the kernel function

that computes inner products in the transformed space. K should be a
symmetric positive (semi-) definite function; see Section 5.8.1.

Three popular choices for K in the SVM literature are

dth Degree polynomial: K(x, x') = (1 + (x, x!))~,

R& basis: ~ (x , x') = exp(-llx - x1~12/c), (12.22)

Neural network: K(x, x') = t a n h (~ 1 (x, xi) + ~ 2) .

Consider for example a feature space with two inputs X1 and X2, and a
polynomial kernel of degree 2. Then

Then M = 6, and if we choose hl(X) = 1, h2(X) = l/ZX1, h3(X) =
fix2, hd(X) = Xl, hS(X) = Xi, and hg(X) = fix1 X2, then K(X, Xi) =
{h(X), h(X3). From (12.20) we see that the solution can be written

The role of the parameter y is clearer in an enlarged feature space, since
perfect separation is typically achievable there. A large value of 7 will
discourage any positive ti, and lead to an overfit wiggly boundary in the
original feature space; a small value of 7 will encourage a small value of
1 1 811, which in turn causes f (x) and hence the boundary to be smoother.
Figure 12.3 show two nonlinear support vector machines applied to the
mixture example of Chapter 2. The regularization parameter was chosen
in both cases to achieve good test error. The radial basis kernel produces
a boundary quite sirnilar to the Bayes optimal boundary for this example;
compare Figure 2.5.

In the early literature on support vectors, there were claims that the
kernel property of the support vector machine is unique to it and allows
one to finesse the curse of dimensionality. Neither of these claim is true,
and we go into both of these issues in the next three subections.

12.3 Support Vector Machines

TIGURE 13.3. TWO nonlinerar SVMs for the rnixhre data. The u p p ~ plat uses

I 4-th d e g m polynomial kernel, the lower a radial b a d kernel. In each case 7
was tuned t o f i p p r m i m k l y @chime Use best test e m r peP-fomfilace, and 7 = 1
worked well in both w e s . The d i a l h i s kernel p e r f o m the best (close to Bages
optirnd), rss might be expected given the data acke from mkhres of Gmussiam.
The broken purple miwe in Uae h c k p u n d is the Bayes decision boundary.

380 12. Flexible Discriminants

Squared Ermr

FIGURJ3 11.4. The support - t m loss function, mrnpared t o the (megdive]
log-l&Iihood loss for logistic n g w s i o n , a d s q u a d e m r loss. AII are s h m as
a f i n d i m of yf rather than f , bemwe of the qymrnetrp in d l three between the
y = +I m d y = -1 m e . The log-Iikelboord has the same aqgmploles as tlae SVM
loss, b d st rounded in the interior.

12.9.2 The SVM us a Penalization MeMod
With f (x) = ~ (x) ~ P + h, consider the optimization problem

where the subcript u+" indicates pmitive part. This h~ the form loss +
penalty, which is a familiar paradigm in function estimation. It is easy to
show (Exercise 12.1) that the solution to (12.25), with X = l/(27), is the
same as that for (12.8).

b i n a t i o n of the lms function L(y, f) = [l - y f]+ shows that it is
reasonable for twcclass classzcation, when compared to other more tra,
ditional l m functions. Figure 12.4 compares it to the log-likelihood l m
for logistic regression, as well as squared-error loss. The (negative) log-
likelihood has similar tails as the SVM loss, giving zero penalty to points
well inside their margin, and a linear penalty to points on the wrong side
and far away. squared-error, on the other hand gives a quadratic penalty,
and points well inside their own margin have a strong influence on the
model as well.

12.3 Support Vector Machines 381

TABLE 12.1. The population minimizers for three different loss functions. Lo-
gistic regression uses the binomial log-likelihood. Linear discriminant analysis
(Exercise 4.51) uses squared-error loss. The SVM loss estimates the mode of the
posterior class probabilities.

Loss function L(Y, f(X)) Minimizing function

(−)Binomial
Log-likelihood

log(1+e−Y f(X)) f(X) = log
Pr(Y = +1|X)

Pr(Y = −1|X)

Squared-error (Y − f(X))2 f(X) = Pr(Y = +1|X)−Pr(Y = −1|X)

Support vector
machine

[1− Y f(X)]+ f(X) =

 +1, if Pr(Y = +1|X) ≥ 1
2

−1, otherwise

We can characterize these three loss functions in terms of what they are
estimating at the population level. We consider minimizing EL(Y, f(X)).
Table 12.1 summarizes the results.

This casts the SVM as a regularized function estimation problem, where
the coefficients of the linear expansion f(x) = β0 + h(x)Tβ are shrunk
toward zero (excluding the constant). If h(x) represents a hierarchical basis
having some ordered structure (such as ordered in roughness), then the
uniform shrinkage makes more sense if the rougher elements hj in the vector
h have smaller norm.

12.3.3 Function Estimation and Reproducing Kernels

Here we describe SVMs in terms of function estimation in reproducing
kernel Hilbert spaces, where the kernel property abounds. This material is
discussed in some detail in Section 5.8. This provides another view of the
support vector classifier, and helps to clarify how it works.

Suppose the basis h arises from the (possibly finite) eigen-expansion of
a positive definite kernel K,

K(x, x′) =
∞∑

m=1

φm(x)φm(x′)δm (12.26)

382 12. Flexible Discriminants

and hm(x) =
√
δmφm(x). Then with θm =

√
δmβm, we can write (12.25)

as

min
β0, θ

N∑
i=1

[
1− yi(β0 +

∞∑
m=1

θmφm(xi))
]
+

+ λ

∞∑
m=1

θ2m
δm

. (12.27)

Now (12.27) is identical in form to (5.49) on page 145 in Section 5.8, and
the theory of reproducing kernel Hilbert spaces described there guarantees
a finite-dimensional solution of the form

f(x) = β0 +
N∑

i=1

αiK(x, xi). (12.28)

In particular we see there an equivalent version of the optimization crite-
rion (12.19) (Equation (5.66) in Section 5.8.2; see also Wahba et al. (2000)),

min
α0,α

N∑
i=1

(1− yif(xi))+ + λαTKα, (12.29)

where K is the N ×N matrix of kernel evaluations for all pairs of training
features (Exercise 12.2).

These models are quite general, and include, for example, the entire fam-
ily of smoothing splines, additive and interaction spline models discussed
in Chapters 5 and 9, and in more detail in Wahba (1990) and Hastie and
Tibshirani (1990). They can be expressed more generally as

min
f∈H

N∑
i=1

[1− yif(xi)]+ + λJ(f), (12.30)

where H is the structured space of functions, and J(f) an appropriate reg-
ularizer on that space. For example, suppose H is the space of additive
functions f(x) =

∑p
j=1 fj(xj), and J(f) =

∑
j

∫
{f ′′

j(xj)}2dxj . Then the
solution to (12.30) is an additive cubic spline, and has a kernel representa-
tion (12.28) with K(x, x′) =

∑p
j=1 Kj(xj , x

′
j). Each of the Kj is the kernel

appropriate for the univariate smoothing spline in xj (Wahba, 1990).
Conversely this discussion also shows that, for example, any of the kernels

described in (12.22) above can be used with any convex loss function, and
will also lead to a finite-dimensional representation of the form (12.28).
Figure 12.5 uses the same kernel functions as in Figure 12.3, except using
the binomial log-likelihood as a loss function.∗ The fitted function is hence

∗Ji Zhu assisted in the preparation of these examples.

12.3 Support Vector Maichines 383

LR - Degree-4 Polynomial in Feature Space

.

.

i i "a""'jiiiii' : :a;;;'

.

.
.....

.
..........

a:::::::::::::::

LR - Radial Kernel in Feature Space

The logistic regression versions of the SVM models i a Fig-
,,, ,,.,, -.r.y .he i d e a t i d kern& m d heace peadties, but fie log-likel-
loss iimsterad of the SVM loss plnctiom. T ~ E two broken matoerrs mrrespond to
p o d e ~ o r probabilities of 0.75 and 0.25 for the +I c1ws (or vice versa). The h-
km p e a ~ l e cutwe in the background t h e Dayes d&iota b u n d a ~ .

384 12. Flexible Discriminants

an estimate of the log-odds,

f̂(x) = log
P̂r(Y = +1|x)
P̂r(Y = −1|x)

= β̂0 +
N∑

i=1

α̂iK(x, xi), (12.31)

or conversely we get an estimate of the class probabilities

P̂r(Y = +1|x) =
1

1 + e−β̂0−
∑N

i=1 α̂iK(x,xi)
. (12.32)

The fitted models are quite similar in shape and performance. Examples
and more details are given in Section 5.8.

It does happen that for SVMs, a sizeable fraction of the N values of αi

can be zero (the nonsupport points). In the two examples in Figure 12.3,
these fractions are 42% and 45%, respectively. This is a consequence of the
piecewise linear nature of the first part of the criterion (12.25). The lower
the class overlap (on the training data), the greater this fraction will be.
Reducing λ will generally reduce the overlap (allowing a more flexible f).
A small number of support points means that f̂(x) can be evaluated more
quickly, which is important at lookup time. Of course, reducing the overlap
too much can lead to poor generalization.

12.3.4 SVMs and the Curse of Dimensionality

In this section, we address the question of whether SVMs have some edge
on the curse of dimensionality. Notice that in expression (12.23) we are not
allowed a fully general inner product in the space of powers and products.
For example, all terms of the form 2XjX

′
j are given equal weight, and the

kernel cannot adapt itself to concentrate on subspaces. If the number of
features p were large, but the class separation occurred only in the linear
subspace spanned by say X1 and X2, this kernel would not easily find the
structure and would suffer from having many dimensions to search over.
One would have to build knowledge about the subspace into the kernel;
that is, tell it to ignore all but the first two inputs. If such knowledge were
available a priori, much of statistical learning would be made much easier.
A major goal of adaptive methods is to discover such structure.

We support these statements with an illustrative example. We generated
100 observations in each of two classes. The first class has four standard
normal independent features X1,X2,X3,X4. The second class also has four
standard normal independent features, but conditioned on 9 ≤

∑
X2

j ≤ 16.
This is a relatively easy problem. As a second harder problem, we aug-
mented the features with an additional six standard Gaussian noise fea-
tures. Hence the second class almost completely surrounds the first, like the

12.3 Support Vector Machines 385

TABLE 12.2. Skin of the orange: shown are mean (standard error of the mean)
of the test error over 50 simulations. BRUTO fits an additive spline model adap-
tively, while MARS fits a low-order interaction model adaptively.

Test Error (SE)
Method No Noise Features Six Noise Features

1 SV Classifier 0.450 (0.003) 0.472 (0.003)
2 SVM/poly 2 0.078 (0.003) 0.152 (0.004)
3 SVM/poly 5 0.180 (0.004) 0.370 (0.004)
4 SVM/poly 10 0.230 (0.003) 0.434 (0.002)
5 BRUTO 0.084 (0.003) 0.090 (0.003)
6 MARS 0.156 (0.004) 0.173 (0.005)

Bayes 0.029 0.029

skin surrounding the orange, in a four-dimensional subspace. The Bayes er-
ror rate for this problem is 0.029 (irrespective of dimension). We generated
1000 test observations to compare different procedures. The average test
errors over 50 simulations, with and without noise features, are shown in
Table 12.2.

Line 1 uses the support vector classifier in the original feature space.
Lines 2–4 refer to the support vector machine with a 2-, 5- and 10-dimension-
al polynomial kernel. For all support vector procedures, we chose the tun-
ing parameter C to minimize the test error, to be as fair as possible to the
method. Line 5 fits an additive spline model to the (−1,+1) response by
least squares, using the BRUTO algorithm for additive models, described
in Hastie and Tibshirani (1990). Line 6 uses MARS (multivariate adaptive
regression splines) allowing interaction of all orders, as described in Chap-
ter 9; as such it is comparable with the SVM/poly 10. Both BRUTO and
MARS have the ability to ignore redundant variables. Test error was not
used to choose the smoothing parameters in either of lines 5 or 6.

In the original feature space, a hyperplane cannot separate the classes,
and the support vector classifier (line 1) does poorly. The polynomial sup-
port vector machine makes a substantial improvement in test error rate,
but is adversely affected by the six noise features. It is also very sensitive to
the choice of kernel: the second degree polynomial kernel (line 2) does best,
since the true decision boundary is a second-degree polynomial. However,
higher-degree polynomial kernels (lines 3 and 4) do much worse. BRUTO
performs well, since the boundary is additive. BRUTO and MARS adapt
well: their performance does not deteriorate much in the presence of noise.

12.3.5 Support Vector Machines for Regression

In this section we show how SVMs can be adapted for regression with a
quantitative response, in ways that inherit some of the properties of the

386 12. Flexible Discriminants

-4 -2 0 2 4

-1
0

1
2

3
4

-4 -2 0 2 4

0
2

4
6

8
10

12

ε−ε c−c

V
H

(r
)

V
ε
(r

)

rr

FIGURE 12.6. The left panel shows the ε-insensitive error function used by the
support vector regression machine. The right panel shows the error function used
in Huber’s robust regression (green curve). Beyond |c|, the function changes from
quadratic to linear.

SVM classifier. We first discuss the linear regression model

f(x) = xTβ + β0, (12.33)

and then handle nonlinear generalizations. To estimate β, we consider min-
imization of

H(β, β0) =
N∑

i=1

V (yi − f(xi)) +
λ

2
‖β‖2, (12.34)

where

Vε(r) =

{
0 if |r| < ε,
|r| − ε, otherwise.

(12.35)

This is an “ε-insensitive” error measure, ignoring errors of size less than
ε (left panel of Figure 12.6). There is a rough analogy with the support
vector classification setup, where points on the correct side of the deci-
sion boundary and far away from it, are ignored in the optimization. In
regression, these “low error” points are the ones with small residuals.

It is interesting to contrast this with error measures used in robust re-
gression in statistics. The most popular, due to Huber (1964), has the form

VH(r) =

{
r2/2 if |r| ≤ c,
c|r| − c2/2, |r| > c,

(12.36)

shown in the right panel of Figure 12.6. This function reduces from quadratic
to linear the contributions of observations with absolute residual greater
than a prechosen constant c. This makes the fitting less sensitive to out-
liers. The support vector error measure (12.35) also has linear tails (beyond

12.3 Support Vector Machines 387

ε), but in addition it flattens the contributions of those cases with small
residuals.

If β̂, β̂0 are the minimizers of H, the solution function can be shown to
have the form

β̂ =
N∑

i=1

(α̂∗
i − α̂i)xi, (12.37)

f̂(x) =
N∑

i=1

(α̂∗
i − α̂i)〈x, xi〉+ β0, (12.38)

where α̂i, α̂
∗
i are positive and solve the quadratic programming problem

min
αi,α∗

i

ε
N∑

i=1

(α∗
i + αi)−

N∑
i=1

yi(α∗
i − αi) +

1
2

N∑
i,i′=1

(α∗
i − αi)(α∗

i′ − αi′)〈xi, xi′〉

subject to the constraints

0 ≤ αi, α∗
i ≤ 1/λ,

N∑
i=1

(α∗
i − αi) = 0, (12.39)

αiα
∗
i = 0.

Due to the nature of these constraints, typically only a subset of the solution
values (α̂∗

i − α̂i) are nonzero, and the associated data values are called the
support vectors. As was the case in the classification setting, the solution
depends on the input values only through the inner products 〈xi, xi′〉. Thus
we can generalize the methods to richer spaces by defining an appropriate
inner product, for example, one of those defined in (12.22).

Note that there are parameters, ε and λ, associated with the criterion
(12.34). These seem to play different roles. ε is a parameter of the loss
function Vε, just like c is for VH . Note that both Vε and VH depend on the
scale of y and hence r. If we scale our response (and hence use VH(r/σ) and
Vε(r/σ) instead), then we might consider using preset values for c and ε (the
value c = 1.345 achieves 95% efficiency for the Gaussian). The quantity λ
is a more traditional regularization parameter, and can be estimated for
example by cross-validation.

12.3.6 Regression and Kernels

As discussed in Section 12.3.3, this kernel property is not unique to sup-
port vector machines. Suppose we consider approximation of the regression
function in terms of a set of basis functions {hm(x)},m = 1, 2, . . . ,M :

f(x) =
M∑

m=1

βmhm(x) + β0. (12.40)

388 12. Flexible Discriminants

To estimate β and β0 we minimize

H(β, β0) =
N∑

i=1

V (yi − f(xi)) +
λ

2

∑
β2

m (12.41)

for some general error measure V (r). For any choice of V (r), the solution
f̂(x) =

∑
β̂mhm(x) + β̂0 has the form

f̂(x) =
N∑

i=1

âiK(x, xi) (12.42)

with K(x, y) =
∑M

m=1 hm(x)hm(y). Notice that this has the same form
as both the radial basis function expansion and a regularization estimate,
discussed in Chapters 5 and 6.

For concreteness, let’s work out the case V (r) = r2. Let H be the N×M
basis matrix with imth element hm(xi), and suppose that M > N is large.
For simplicity we assume that β0 = 0, or that the constant is absorbed in
h; see Exercise 12.3 for an alternative.

We estimate β by minimizing the penalized least squares criterion

H(β) = (y −Hβ)T (y −Hβ) + λ‖β‖2. (12.43)

The solution is

ŷ = Hβ̂ (12.44)

with β̂ determined by

−HT (y −Hβ̂) + λβ̂ = 0. (12.45)

From this it appears that we need to evaluate the M ×M matrix of inner
products in the transformed space. However, we can premultiply by H to
give

Hβ̂ = (HHT + λI)−1HHTy. (12.46)

The N ×N matrix HHT consists of inner products between pairs of obser-
vations i, i′; that is, the evaluation of an inner product kernel {HHT }i,i′ =
K(xi, xi′). It is easy to show (12.42) directly in this case, that the predicted
values at an arbitrary x satisfy

f̂(x) = h(x)T β̂

=
N∑

i=1

α̂iK(x, xi), (12.47)

where α̂ = (HHT +λI)−1y. As in the support vector machine, we need not
specify or evaluate the large set of functions h1(x), h2(x), . . . , hM (x). Only

12.3 Support Vector Machines 389

the inner product kernel K(xi, xi′) need be evaluated, at the N training
points for each i, i′ and at points x for predictions there. Careful choice
of hm (such as the eigenfunctions of particular, easy-to-evaluate kernels
K) means, for example, that HHT can be computed at a cost of N2/2
evaluations of K, rather than the direct cost N2M .

Note, however, that this property depends on the choice of squared norm
‖β‖2 in the penalty. It does not hold, for example, for the L1 norm |β|,
which may lead to a superior model.

12.3.7 Discussion

The support vector machine can be extended to multiclass problems, es-
sentially by solving many two-class problems. A classifier is built for each
pair of classes, and the final classifier is the one that dominates the most
(Kressel, 1999; Friedman, 1996; Hastie and Tibshirani, 1998). Alternatively,
one could use the multinomial loss function along with a suitable kernel,
as in Section 12.3.3. SVMs have applications in many other supervised
and unsupervised learning problems. At the time of this writing, empirical
evidence suggests that it performs well in many real learning problems.

Finally, we mention the connection of the support vector machine and
structural risk minimization (7.9). Suppose the training points (or their
basis expansion) are contained in a sphere of radius R, and let G(x) =
sign[f(x)] = sign[βTx + β0] as in (12.2). Then one can show that the class
of functions {G(x), ‖β‖ ≤ A} has VC-dimension h satisfying

h ≤ R2A2. (12.48)

If f(x) separates the training data, optimally for ‖β‖ ≤ A, then with
probability at least 1− η over training sets (Vapnik, 1996, page 139):

Error Test ≤ 4
h(log (2N/h) + 1)− log (η/4)

N
. (12.49)

The support vector classifier was one of the first practical learning pro-
cedures for which useful bounds on the VC dimension could be obtained,
and hence the SRM program could be carried out. However in the deriva-
tion, balls are put around the data points—a process that depends on the
observed values of the features. Hence in a strict sense, the VC complexity
of the class is not fixed a priori, before seeing the features.

The regularization parameter γ controls an upper bound on the VC
dimension of the classifier. Following the SRM paradigm, we could choose γ
by minimizing the upper bound on the test error, given in (12.49). However,
it is not clear that this has any advantage over the use of cross-validation
for choice of γ.

390 12. Flexible Discriminants

12.4 Generalizing Linear Discriminant Analysis

In Section 4.3 we discussed linear discriminant analysis (LDA), a fund*
mental tool for classification. For the remainder of this chapter we discuss
a class of techniques that produce better cl~stliers than LDA by directly
generalizing LDA.

Some of the virtues of LDA are as follows:

It is a simple prototype clasder. A new observation is classified to the
class with closest centroid. A slight twist is that distance is measured
in the Mahalanobis metric, using a pooled covariance estimate.

LDA ls the estimated Bayes classfler If the observations are multl-
variate Gaussian in each class, with a common covariance matrix.
Since this assumption is unlikely to be true, this might not seem to
be much of a virtue.

The decision boundariw created by LDA are linear, leading to deci-
sion rules that are simple to describe and implement.

LDA provides natural low-dimensional views of the data. For exam-
ple, Figure 12.10 is an informative tw~dimensional view of data in
256 dimemions with ten classes.

Often LDA producw the best classification results, because of its
simplicity and low variance. LDA was among the top three classL6ers
for 11 of the 22 datasets studied in the STATLOG project (Michie
et al., 19941.1

Unfortunatcly thc simplicity of LDA cawcs it to fail in a numbcr of s i t w
tiom as well:

Often linear decision boundaries do not adequately separate the classes.
When N is large, it is possible to estimate more complex decision
boundaries. Quadratic discriminant analysis (QDA) is often useful
here, and allows for quadratic decision boundaries. More generally
we would like to be able to model irregular decision boundaries.

The aforementioned shortcoming of LDA can often be paraphrasd
by saying that a single prototype per class is insflcient. LDA uses
a single prototype (class centroid) plus a common covariance matrix
to describe the spread of the data in each class. In many situations,
several prototypa are more appropriate.

At the other end of the spectmn, W e may have way too i m y (mrre
lated) predictors, for example, in the case of digitized analogue signals

This study predated the emergence of SVMe.

12.5 Flexible Discriminant Analysis 391

and images. In
estirnaked wikh
such as this we

this case LDA u s a too many parameters, which are
high variance, and iks performance s~iffers. In c ~ q m
need to ratrict or regularize LDA even further.

In the remainder of this chapter we describe a class of techniques that
attend to all thwe issues by generaking the LDA model. This is achieved
largely by three diEerent ideas.

The first idea is to recast the LDA problem as a linear regression problem.
Many techniques exist for generalizing linear regression to more flexible,
nonparametric form of regression. This in turn leads to more flexible forms
of discriminant analysis, which we call FDA. In most cases of interest, the
regrasion procedures can be seen to identify an enlarged set of predictors
via basis expansions. FDA amounts to LDA in this enlarged space, the
same par* used in SVMs.

In the case of too many predictors, such as the pixels of a digitbed image,
we do not want to expand the set: it h already too large. The second idea is
to fit an LDA model, but pe&e its coefficients to be smooth or otherwise
coherent in the spatial domain, that is, as an image. We call this procedure
penalized discriminant analysis or PDA. With FDA itself, the expanded
~ R R ~ H H F : ~ i~ nken Rn la,rge t,hn.t, regttlasixa,tinn i~ d ~ n reqirired (again a8 in
SVMs). Both of these can be achieved via a suitably regularized regression
in the context of the FDA model.

The third idea is to model each class by a mixture of two or more Gaus-
sians with different centroids, but with every component Gaussian, both
within and between classes, sharing the same covariance matrix. This allows
for more complex decision boundaries, and allows for subspace reduction
as in LDA. We call this extension mixture discriminant analyab or MDA.
All three of these generalizations use a common framework by exploiting

their connection with LDA.

12.5 Flexible Discriminant Analysis

In this section we describe a method for performing LDA using h e a t re-
gression on derived responses. This in turn le& to nonparametric and flex-
ible alternatives to LDA. As in Chapter 4, we a s sme we have observations
with a quantitative response G falling into one of K classes B = {l, . . . , K) ,
each having measured features X. Suppose 0 : B I+ EL1 is a function that
assigns scores to the classes, such that the transformed class labels are o p
timally predicted by linear regression on X: If our training sample has the
form (gi, xi), i = 1 ,2 , . . . , N, then we solve

392 12. Flexible Discriminants

with restrictions on θ to avoid a trivial solution (mean zero and unit vari-
ance over the training data). This produces a one-dimensional separation
between the classes.

More generally, we can find up to L ≤ K−1 sets of independent scorings
for the class labels, θ1, θ2, . . . , θL, and L corresponding linear maps η�(X) =
XTβ�, � = 1, . . . , L, chosen to be optimal for multiple regression in IRp. The
scores θ�(g) and the maps β� are chosen to minimize the average squared
residual,

ASR =
1
N

L∑
�=1

[
N∑

i=1

(
θ�(gi)− xT

i β�

)2]
. (12.51)

The set of scores are assumed to be mutually orthogonal and normalized
with respect to an appropriate inner product to prevent trivial zero solu-
tions.

Why are we going down this road? It can be shown that the sequence
of discriminant (canonical) vectors ν� derived in 4.3.3 are identical to the
sequence β� up to a constant (Mardia et al., 1979; Hastie et al., 1995). More-
over, the Mahalanobis distance of a test point x to the kth class centroid
µ̂k is given by

δJ (x, µ̂k) =
K−1∑
�=1

w�(η̂�(x)− η̄k
�)2 + D(x), (12.52)

where η̄k
� is the mean of the η̂�(xi) in the kth class, and D(x) does not

depend on k. Here w� are coordinate weights that are defined in terms of
the mean squared residual r2� of the �th optimally scored fit

w� =
1

r2� (1− r2�)
. (12.53)

In Section 4.3.2 we saw that these canonical distances are all that is needed
for classification in the Gaussian setup, with equal covariances in each class.
To summarize:

LDA can be performed by a sequence of linear regressions, fol-
lowed by classification to the closest class centroid in the space
of fits. The analogy applies both to the reduced rank version,
or the full rank case when L = K − 1.

The real power of this result is in the generalizations that it invites. We
can replace the linear regression fits η�(x) = xTβ� by far more flexible,
nonparametric fits, and by analogy achieve a more flexible classifier than
LDA. We have in mind generalized additive fits, spline functions, MARS
models and the like. In this more general form the regression problems are

12.5 Flexible Discriminant Analysis 393

T h e data c o w i d of 50 poi& generated ,+om mcla of N(0, I) and
N(U, t 1) . 'I'he solid black ellipse is the decision boesndaq~ found by FDA w i n g
d m - t w o polynomial qress ion . The dashed purple c i d e i the B a y s decision
h a d a y .

defined via the criterion

where J is a regularher appropriate for some forms of nonparametric regTe*
sio11, such m smooL1k sphes, ddilive sphles m d lower-order ANOVA
spline models. Also included are the claases of functions and associated
penalties generated by kernels, as in Section 12.3.3.

Before we describe the computations involved in this generahation, let
US consider a very simple example. Suppose we Use degreetwo polpormlal
regression for each qt. The decision boundaries implied by the (12.52) will
be quadratic surfaces, since each of the fitted functions is quadratic, and as
in LDA their squares cancel out when comparing distances. We could have
achieved identimi quadratic boundaries in a more conventional way, by
augmenting our original predictors with their squares and cros*products.
In the enlarged space one performs an LDA, and the linear boundaries in
the enlarged space map down to quadratic boundaries in the original space.
A classic example is a pair of multivariate Gaussians centered at the origin,
one having covariance matrix I, and the other cI for c > 1; Figure 12.7
illustrates. The Bayes decision boundary is the sphere I z 11 = w, which
is a linear boundary in the enlarged space.

394 12. Flexible Discriminants

Many nonparametric regression procedures operate by generating a basis
expansion nf derived variables, and khm performing a linear regression in
the enlarged space. The MARS procedure (Chapter 9) is exactly of this
form. Smoothing splines and additive spline models generate an extremely
large basis set (N x p basis functions for additive splines), but then perform
a penalized regression fit in the enlarged space. SVMs do as well; see alao
the kernel-based regression example in Section 12.3.6. FDA in this case can
be shown to perform a penalized linear d i ~ ~ m i n a n t analysis in the enlarged
space. We elaborate in Section 12.6. Linear boundaries in the enlarged space
map down to nonlinear boundaries in the reduced space. This is exactly the
same par* that is used with support vector machines (Section 12.3).

We illustrate FDA on the speech recognition example used in Chapter
4.), with K = 11 classes and p = 10 predictors. The classes correspond to
11 vowcl sounds, cach contuind in 11 diffcrcnt words. Hcrc arc thc words,
preceded by the symbols that represent them:

Each of eight speakers spoke each word six times in the training set, and
likewise seven speakers in the test set. The ten predictors are derived from
the digitbed speech in a rather complicated way, but standard in the speech
recognition world. There are thm 528 training obervations, and 462 test
observations. Figure 12.8 shows tw*dimensional projections produced by
LDA m d FDA. The FDA model used adaptive additivespline regression
fundions to model the ~ (x) , and the points plotted in the right plot have
cuut-hits ,i j l(q) , h (x i) . Tile f u ~ l h t : ~d hl $PLUS iti c d e d bruto,
hence the heading on the plot and in Table 12.3. We see that fledble model-
ing has helped to separate the classes in this case. Table 12.3 shows training
and test error rates for a number of classification techniques. FDA/MARS
refers to Friedman's multivariate adaptive regression splines; degree = 2
means pairwise products are permitted. Notice that for FDA/MARS, the
best class%cation results are obtained in a reduced-rank subspace.

vowel word
1: heed
E head
a: hard

5 . 1 Cornputzng the FDA Estimates
The computations for the FDA coordinates can be simpmed in many im-
portant cases, in particular when the nonparametric regression procedure
can be represented as a linear operator. We will denote this operator by
Sx; that is, 9 = SAy, where y is the vector of responses and jr the vector
of fits. Additive splines have this property, if the smoothing parameters are
fixed, as does MARS once the basis fundions are selected. The subwript X
denotes the entire set of smoothing parameters. In this case optimal scoring
is equivalent to a canonical correlation problem, and the solution can be

vowel word
0 hod
U hood
3: heard

vowel word
I hid
A had
Y hud

vowel word
C: hoard
u: who'd

Linear Di~rirninant Analysis

12.5 Flexible Discriminant Analysis 395

Flexible Discriminant Analysis -- Bruto

Coordinate 1 for Trainiq Data Coordinate 1 for Training Data

FIGURE 12.8. The iefi plot shows the first two LDA mpaonicd mviates for
the vowel tramning data. The mght plot shows the m m p n d i n g pro$xtion &en
FDA/BRUTO k us& to jii the model; p lo t td are the fitM regression finctioms
$(x,) and $(x#). Notice the zmproved separation. The letters label Uae w w e l
svuurds.

computed by a single eigen-decomposition. This is pursued in kercise 12.6,
and the resulting algorithm is presented here.

We create an N x K indimtor response m a w Y kom the responses gi,
such that pih - 1 if gi - k, otherwise gik - 0. For a fiveclass problem Y
might look like the following:

Here are the computational steps:

1. Multivariate nonpmnaet~c reg~.esaion. Fit a multiresponse, adaptive
nonparametric regression of Y on X, giving fitted values Y . Let Sx
be the linear operator that fits the final chosen model, and q * (x) be
the vector of fitted regression functions.

2. Optimal scores. Compute the eigen-decomposition of Y'"Y = YY'SAY,
where the eigenvectors 8 are normalized: eTD,8 = I. Here D, =

396 12. Flexible Discriminants

TABLE 12.3. Vowel recognition data performance results. The results for neural
networks are the best among a much larger set, taken from a neural network
archive. The notation FDA/BRUTO refers to the regression method used with
FDA.

Technique Error Rates
Training Test

(1) LDA 0.32 0.56
Softmax 0.48 0.67

(2) QDA 0.01 0.53
(3) CART 0.05 0.56
(4) CART (linear combination splits) 0.05 0.54
(5) Single-layer perceptron 0.67
(6) Multi-layer perceptron (88 hidden units) 0.49
(7) Gaussian node network (528 hidden units) 0.45
(8) Nearest neighbor 0.44
(9) FDA/BRUTO 0.06 0.44

Softmax 0.11 0.50
(10) FDA/MARS (degree = 1) 0.09 0.45

Best reduced dimension (=2) 0.18 0.42
Softmax 0.14 0.48

(11) FDA/MARS (degree = 2) 0.02 0.42
Best reduced dimension (=6) 0.13 0.39
Softmax 0.10 0.50

YTY/N is a diagonal matrix of the estimated class prior probabili-
ties.

3. Update the model from step 1 using the optimal scores: η(x) = ΘT η∗(x).

The first of the K functions in η(x) is the constant function— a trivial
solution; the remaining K−1 functions are the discriminant functions. The
constant function, along with the normalization, causes all the remaining
functions to be centered.

Again Sλ can correspond to any regression method. When Sλ = HX , the
linear regression projection operator, then FDA is linear discriminant anal-
ysis. The software that we reference in the Computational Considerations
section on page 405 makes good use of this modularity; the fda function
has a method= argument that allows one to supply any regression function,
as long as it follows some natural conventions. The regression functions
we provide allow for polynomial regression, adaptive additive models and
MARS. They all efficiently handle multiple responses, so step (1) is a single
call to a regression routine. The eigen-decomposition in step (2) simulta-
neously computes all the optimal scoring functions.

12.6 Penalized Discriminant Analysis 397

In Section 4.2 we discussed the pitfalls of using linear regression on an
indicator response matrix as a method for classification. In particular, se-
vere masking can occur with three or more classes. FDA uses the fits from
such a regression in step (1), but then transforms them further to produce
useful discriminant functions that are devoid of these pitfalls. Exercise 12.9
takes another view of this phenomenon.

12.6 Penalized Discriminant Analysis

Although FDA is motivated by generalizing optimal scoring, it can also be
viewed directly as a form of regularized discriminant analysis. Suppose the
regression procedure used in FDA amounts to a linear regression onto a
basis expansion h(X), with a quadratic penalty on the coefficients:

ASR({θ�, β�}L
�=1) =

1
N

L∑
�=1

[
N∑

i=1

(θ�(gi)− hT (xi)β�)2 + λβT
� Ωβ�

]
. (12.55)

The choice of Ω depends on the problem. If η�(x) = h(x)β� is an expansion
on spline basis functions, Ω might constrain η� to be smooth over IRp. In
the case of additive splines, there are N spline basis functions for each
coordinate, resulting in a total of Np basis functions in h(x); Ω in this case
is Np×Np and block diagonal.

The steps in FDA can then be viewed as a generalized form of LDA,
which we call penalized discriminant analysis, or PDA:

• Enlarge the set of predictors X via a basis expansion h(X).

• Use (penalized) LDA in the enlarged space, where the penalized Ma-
halanobis distance is given by

D(x, µ) = (h(x)− h(µ))T (ΣW + λΩ)−1(h(x)− h(µ)), (12.56)

where ΣW is the within-class covariance matrix of the derived vari-
ables h(xi).

• Decompose the classification subspace using a penalized metric:

maxuT ΣBetu subject to uT (ΣW + λΩ)u = 1.

Loosely speaking, the penalized Mahalanobis distance tends to give less
weight to “rough” coordinates, and more weight to “smooth” ones; since
the penalty is not diagonal, the same applies to linear combinations that
are rough or smooth.

For some classes of problems, the first step, involving the basis expansion,
is not needed; we already have far too many (correlated) predictors. A
leading example is when the objects to be classified are digitized analog
signals:

398 12. Flexible Discriminants

. -

LDk - i d I PDA: Coeffldemi t LDA: Coeficiat 2 P M : C d o i e n t 2 LOP; CaMoienlS P D k - i d 3

I.
LDk CoefflEien(4 PDA: C & a d 4 LDA: CoeRci6nt 5 PDA: CMFient 5 LDA; Ccd3cienl6 P D k - i d 6

L W - i d 7 PDA: C m d e m i 7 LDA: Coefioient 8 P M : C d o i o n t 8 LD); M o i e n l W P W - i d e

FIGURE 12.9. The images appear in pai~s, mad repwsent the nine discriminant
coeflcient functions for tlae digit recognition problem. The left member of each pair
is the LDA coeficient, while the right member is the PDA coeficient, regularized
to enforce spatid smoothness.

the log-periodogram of a fragment of spoken speech, sampled at a set
of 256 frequencies; see Figure 5.5 on page 125.

the grayscale pixel values in a digitized image of a handwritten digit.

It is also intuitively clear in these cases why reguldation is needed.
Take the digitized image as an example. Neighboring pixel values will tend
to be correlated, being often almost the same. This implies that the pair
of corresponding LDA coefficients for these pixels can be wildly different
and opposite in sign, and thus cancel when applied to similar pixel values.
Positively correlated predictors lead to noisy, negatively correlated coeffi-
cient estimates, and this noise results in unwanted sampling variance. A
reasonable strategy is to regularize the weflcients to be smooth over the
spatial domain, as with images. This is what PDA does. The computations
proceed just as for FDA, except that an appropriate penalized regression
method is used. Here laT(x)pc = X&, and fl is chosen so that ,@flpt
penalizes roughness in when viewed as an image. Figure 1.2 on page 4
shows some examples of handwritten digits. Figure 12.9 shows the discrim-
inant variates using LDA and PDA. Those produced by LDA appear as
salt-ad-pepper images, while those produced by PDA are smooth images.
The first smooth image can be seen ais the coefficients of a linear contrast
functional for separating images with a dark central vertical strip (ones,

12.7 Mixture Discriminant Analysis

FDA: Discriminant Coordinata 1

FIGURE 12.10. The first two peadizd cmmiml variates, eeuduatad for the
test data. The c ides indimk the ciaas cemtmids. 3% first coordinate comtmk
t~aaidy 0's atad 1 k, while the s m d mtatwts 6's atad 7/9's.

possibly sevens) £tom images that are hollow in the middle (zeros, some
fours). Figure 12.10 supports this interpretation, and with more difEculty
allows an interpretation of the second coordinate. This and other exam-
ples are discwed in more detail in Hastie et al. (1Q95), who also show
that the regularization improves the clmdcation performance of LDA on
independent test data by a factor of around 25% in the cases they tried,

12.7 Mixture Discriminant Analysis

Linear discriminant analysis can be viewed as a prototype classijier. Each
class is represented by its centroid, and we classify to the closest using an
appropriate metric. In many situations a single prototype is not suflicient

400 12. Flexible Discriminants

to represent inhomogeneous classes, and mixture models are more apprw
priake. In this section we review Galisdan mixkuire models and show how
they can be generabd via the FDA and PDA methods discussed earlier.
A Gaussian mixture model for the kth class has density

where the mixing prop09-tions Q, sum to one. This has Rk prototypes for
the kth class, and in our specification, the same covariance matrix E is
used as the metric throughout. Given such a model for each class, the class
pmlet-iot pt-oLaLilitieti a-e givetl Ly

where Ilk represent the class prior probabilities.
We saw these calculations for the special case of two components in

Chapter 8. As in LDA, we estimate the parameters by maximum likelihood,
using the joint log-likelihood based on P (G, X):

The sum within the log makes this a rather messy optimization problem
if tackled directly. The classical and natural method for computing the
maximqm-likelihood estimates (MLEs) for mixtqre distribqtions is the EM
algorithm (Dempster et al., 1977), which is known to possess good conver-
gence properties. EM alternates between the two steps;

Estep: Given the current parameters, compute the responsibility of s u b
class c k , within class k for each of the class-k okrvations (gi = k):

M-step: Compute the weighted MLEs for the parameters of each of the
component Gaussians within each of the classes, using the weights
from the Estep.

In the Estep, the algorithm apportions the unit weight of an observation
in class E to the various subclasses assigned to that class. If it is close to the
centroid of a particular subclass, and far from the others, it will receive a
mass close to one for that subclass. On the other hand, observations halfway
between two subclasses will get approximately equal weight for both.

12.7 Mixture Discriminant Analysis 401

In the M-step, an observation in class k is used Rk times, to estimate the
parameters in each of the Rk component densities, with a different weight
for each.

The EM algorithm is studied in detail in Chapter 8. The algorithm re-
quires initialization, which can have an impact, since mixture likelihoods
are generally multimodal. Our software (referenced in the Computaional
Considerations on page 405) allows several strategies; here we describe the
default. The user supplies the number Rk of subclasses per class. Within
class k, a k-means clustering model, with multiple random starts, is fitted
to the data. This partitions the observations into Rk disjoint groups, from
which an initial weight matrix, consisting of zeros and ones, is created.

Our assumption of an equal component covariance matrix Σ throughout
buys an additional simplicity; we can incorporate rank restrictions in the
mixture formulation just like in LDA. To understand this, we review a little-
known fact about LDA. The rank-L LDA fit (Section 4.3.3) is equivalent to
the maximum-likelihood fit of a Gaussian model,where the different mean
vectors in each class are confined to a rank-L subspace of IRp (Exercise 4.8).
We can inherit this property for the mixture model, and maximize the log-
likelihood (12.59) subject to rank constraints on all the

∑
k Rk centroids:

rank{µk�} = L.
Again the EM algorithm is available, and the M-step turns out to be

a weighted version of LDA, with R =
∑K

k=1Rk “classes.” Furthermore,
we can use optimal scoring as before to solve the weighted LDA problem,
which allows us to use a weighted version of FDA or PDA at this stage.
One would expect, in addition to an increase in the number of “classes,” a
similar increase in the number of “observations” in the kth class by a factor
of Rk. It turns out that this is not the case if linear operators are used for
the optimal scoring regression. The enlarged indicator Y matrix collapses
in this case to a blurred response matrix Z, which is intuitively pleasing.
For example, suppose there are K = 3 classes, and Rk = 3 subclasses per
class. Then Z might be



c11 c12 c13 c21 c22 c23 c31 c32 c33

g1 = 2 0 0 0 0.3 0.5 0.2 0 0 0
g2 = 1 0.9 0.1 0.0 0 0 0 0 0 0
g3 = 1 0.1 0.8 0.1 0 0 0 0 0 0
g4 = 3 0 0 0 0 0 0 0.5 0.4 0.1
g5 = 2 0 0 0 0.7 0.1 0.2 0 0 0
...

...
gN = 3 0 0 0 0 0 0 0.1 0.1 0.8


, (12.61)

where the entries in a class-k row correspond to W (ckr|x, gi).

402 12. Flexible Discriminants

The remaining s t e p are the same:

z= sz
Z ~ Z = B D ~ ~ M-step of MDA.
Update ns and IIs

These simple modikations add considerable flexibility to the mixture
model:

The dimension reduction step in LDA, FDA or PDA is limited by
the number of classes; in particular, for K = 2 classes no reduction is
possible. MDA substitutes subclasses for classes, and then allows us
to look at low-dimensional views of the subspace spanned by these
subclass centroids. This subspace will often be an important one for
discrimination.

By using FDA or PDA in the M-step, we can adapt even more to par-
ticular situations. For example, we can fit MDA models to digitized
analog signals and images, with smoothness constraints built in.

Figure 12.11 compares FDA and MDA on the rnixture example.

12.7. Exnmgle: Wm~eform Dnta
We now illustrate some of these ideas on a popular simulated example,
taken from Breiman et al. (1984, pp. 4935), and used in Hastie and T i b
shirani (1996b) and elsewhere. It is a three-class problem with 21 variables,
and is considered to be a difficult pattern recognition problem. 'l'he predic-
tors are defined by

Xj = U h l b) + (l - U) h z b) + € j Classl,

Aj = ~ h ~ b) + (l - ~) h ~ b) + ~ j class2, (12.62)

Xj = Uh2b) + (1 - U)h3b) + ~j Class 3,

where j = 1,2, . . . ,21, U is uniform on (0, l) , ~j are standard normal
variates, and the hl are the shifted triangular waveforms: hl (j) = max(b -
lj - lll,O), h2(j) = hl(j - 4) and h3(j) = hl(j f4). Figure 12.12 shows
some example waveforms from each class.

Table 12.4 shows the results of MDA applied to the waveform data, as
well as several other methods from this and other chapters. Each train-
ing sample has 300 observations, and equal priors were used, so there are
roughly 100 observatiom in each class. We used test samples of size 500.
The two MDA models are described in the caption.

Figure 12.13 shows the leading canonical variates for the penalized MDA
model, evaluated at the test data. As we might have guessed, the classes
appear to lie on the edges of a triangle. This is because the hj (i) are repre
sented by three points in 21-space, thereby forming vertices of a triangle,

12.7 Mixture Discriminant Analysis 403

FDA / MARS - Degree 2

.

.

o
o

oo
o

o

o

o

o

o

o

o

o

o
o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o o

oo

o
o

o

oo

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o oo
o

o

o

o
oo o

o

o

o

o

o

o

o

oo

o

o

o
o

oo
o

o

o

oo
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o
oo

o

o

o

o

o

o

oo

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

Training Error: 0.185
Test Error: 0.235
Bayes Error: 0.210

MDA - 5 Subclasses per Class

..

..

.

o
o

oo
o

o

o

o

o

o

o

o

o

o
o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o o

oo

o
o

o

oo

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o oo
o

o

o

o
oo o

o

o

o

o

o

o

o

oo

o

o

o
o

oo
o

o

o

oo
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o
oo

o

o

o

o

o

o

oo

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

•
•

•

•
•

•
•

•

•

• •

•

•

•
•

•

•

•

•

•

Training Error: 0.17
Test Error: 0.22
Bayes Error: 0.21

FIGURE 12.11. FDA and MDA on the mixture data. The upper plot uses
FDA with MARS as the regression procedure. The lower plot uses MDA with
five mixture centers per class (indicated). The MDA solution is close to Bayes
optimal, as might be expected given the data arise from mixtures of Gaussians.
The broken purple curve in the background is the Bayes decision boundary.

404 12. Flexible Discriminants

Class 2

FIGURE 12-12. S o m eaxlmples ofthe wauefoms geaeded from m d e l (1,262)
before Uae Gaussiaa aoke is added.

TABLE 12.4. Remlta for euavejom data. The vdues are averages over tea sim-
d d o a s , with Me s h a d a d ermr of the a u e q e in preatheses. The five entries
above the line are faken fmm Hastie ef al. (lSg4). The first model below the line
is MDA with three mbcllssses per clam. The next line i s the same, mcept that the
discrimisnni wefic imts are pelanl id via a wesghness penalty to & ~ t i v d y 4df,
The th id is the commonding pendizd LDA or PDA model.

Technique Error Rates
Training Test

LDA 0.121(0.006) 0.191(0.006)

QDA 0.03a(o.o04) 0.2os(o.oos)
CART 0.072(0.003) 0.289(0.004)
FDA/hIARS (degree = 1) 0.100(0.006) 0.1~1(0.006)
FDAjMARS (degree = 2) 0.068(0.004) 0.215(0.002)
MDA (3 subclasses) 0.087(0.005) 0.169(0.006)
MT)A (3 suhdttssm, pmrtliztd 4 df) 0.137(0.006) 0.157(0.005)

. (penalized 4 df) 0.150(0.005) 0.17' '0.OC"

12.7 Mixture Discriminant Analysis 405

3 Subclasss, Penalized 4 dl 3 Subclasses, Penalized 4 dl

Discriminant Var 1 Discriminant Var 3

. Some two-dimenaiond views of fie MDA madd fitM to m
,,..,., , ,., ,,uefom model. The poipats am ipadeppadepat kd dah, pwjected
on to the leading two canonicd cmrdinatea @ej% panel), and the thid and fourth
(v+ght panel). The subcla$s cepakw am indicated.

and each class is represented as a convex combination of a pair of vertices,
m d hence lie 011 ML edge. Abo i L i clear v b d y lhal dl Lhe idurrualiorl
lies in the first two dimensions; the percent age of variance explained by the
fist two coordinates is 99.8%, and we would lose nothing by truncating the
solution there. The Bayes risk for this problem has been estimated to be
about 0.14 (Breiman et al., 1984). MDA comes c l m to the optimal rate,
which is not surprising since the structure of the MDA model is similar to
the generating model.

Computational Considerations

With N training cases, p predictors, and rn support vectors, the support
veckor machine reql~ire~ m3 + m N + m p N operations, muming m M N .
They do not scale well with N, although computational shortcuts are avail-
able (Platt, 1999). Since these are evolving rapidly, the reader is urged to
search the web for the latest technology.

LDA requires Np2 + P3 operations, as does PDA. The complexity of
FDA depends on the regression method used. Many techniques are linear
in N , such as additive models and m R S . General splines and kernel-based
regression methods will typically require 1V3 operations.

Software in SPLUS for fitting FDA, PDA and MDA models is available
in the public archive at http: //lib/=tat. cmu/edu/S/mda.

406 12. Flexible Discriminants

Bibliographic Notes

The theory behind support vector machines is due to Vapnik and is d e
scribed in Vapnik (1996). There is a burgeoning literature on SVMs; an
online bibliography, created and maintained by Alex Smola and Bernhard
Schijlkopf, can be found at:

http://ww.kerrrel-machi~s.org/publications.html.

Our treatment is based on Wahba et al. (2000) and Evgeniou et al. (2001),
and the tutorial by Burges (Burges, 1998).

Linear discriminant analysis is due to Fisher (1936) and Rao (1973). The
connection with optimal scoring dates back at least to Breiman and Ihaka
(1081), and in a simple form to Fisher (1036). There are strong connections
with correspondence analysis (Greenacre, 1984). The description of flexible,
pcnalizcd and mixturc discriminant analysh is takcn from Hnstic ct al.
(1994), Hastie et al. (1995) and Hastie and Tihhirani (1996b), and all
three are summarized in Hastie et al. (1998); see also Ripley (1996).

Exercises

Ex. 12.1 Show that the criteria (12.25) and (12.8) are equivalent.

Ex. 12.2 Show that the the solution to (12.29) is the same as the solution
to (12.25) or (12.25).

Ex. 12.3 Consider a moacat ion to (12.41) where you do not penalize the
const ant. Formulate the problem, and characterize its solution.

Ex. 12.4 Suppose you perform a reduced-subspace linear discriminant anal-
ysis for a K-group problem. You compute the canonical variables of di-
mension L 5 K - 1 given by x = wx, where U is the p x L matrix of
discriminant cocfficicnts, and p > K is thc dimension of x.

(a) If L = K - 1 show that

where Il-ll denotes Mahahnobia distance with respect to the covari-
ance W.

(b) If L < Pi - 1, ahow that thc a m c cxprcaaion on thc lcft mcnsurcs
the difference in Mahalanobis squared distances for the distributions
projected onto the subpace spanned by U.

Ex. 12.5 The data in phoneme. subset, available horn tkis book's website

Exercises 407

consists of digitized log-periodograms for phonemes uttered by 60 speakers,
each speaker having produced phonemes from each of five classes. It is
appropriate to plot each vector of 256 “features” against the frequencies
0–255.

(a) Produce a separate plot of all the phoneme curves against frequency
for each class.

(b) You plan to use a nearest prototype classification scheme to classify
the curves into phoneme classes. In particular, you will use a K-
means clustering algorithm in each class (kmeans() in S-PLUS), and
then classify observations to the class of the closest cluster center.
The curves are high-dimensional and you have a rather small sample-
size-to-variables ratio. You decide to restrict all the prototypes to be
smooth functions of frequency. In particular, you decide to represent
each prototype m as m = Bθ where B is a 256 × J matrix of nat-
ural spline basis functions with J knots uniformly chosen in (0, 255)
and boundary knots at 0 and 255. Describe how to proceed analyti-
cally, and in particular, how to avoid costly high-dimensional fitting
procedures. (Hint: It may help to restrict B to be orthogonal.)

(c) Implement your procedure on the phoneme data, and try it out. Divide
the data into a training set and a test set (50-50), making sure that
speakers are not split across sets (why?). Use K = 1, 3, 5, 7 centers
per class, and for each use J = 5, 10, 15 knots (taking care to start
the K-means procedure at the same starting values for each value of
J), and compare the results.

Ex. 12.6 Suppose that the regression procedure used in FDA (Section 12.5.1)
is a linear expansion of basis functions hm(x), m = 1, . . . ,M . Let Dπ =
YTY/N be the diagonal matrix of class proportions.

(a) Show that the optimal scoring problem (12.50) can be written in vector
notation as

min
θ,β

‖Yθ −Hβ‖2 , (12.63)

where θ is a vector of K real numbers, and H is the N ×M matrix
of evaluations hj(xi).

(b) Suppose that the normalization on θ is θTDπ1 = 0 and θTDπθ = 1.
Interpret these normalizations in terms of the original scored θ(gi).

(c) Show that, with this normalization, (12.63) can be partially optimized
w.r.t. β, and leads to

max
θ

θTSθ, (12.64)

408 12. Flexible Discriminants

subject to the normalization constraints, where S is the projection
operator corresponding to the hasis matrix H.

(d) Suppose that the hj include the constant function. Show that the
largest eigenvalue of S is 1.

fe) Let 8 be a K x K matrix of Bcores (in column^), and suppcee the
normalization is BTIl ,B = I. Show that the solution to (12.51) is
givcn by thc complctc act of cigcnvcctora of 5; thc Erst cigcnvcctor is
trivial, and takes care of the centering of the scores. The remainder
characterize the optimal scoring solution.

Ex. 12.7 Derive the solution to the penalized optimal scoring problem
(12.55).

Ex. 12.8 Show that coefficimts Pf found by optimal scoring are proportional
to the discriminant directions vf found by linear discriminant analysis.

Ex. 12.9 Let Y = XB be the fitted N x K indicator response matrix after
linear regression on the N xp matrix X, wherep > K . Consider the reduced
featutes sf = B ~ x ~ . Show that LDA using x: is equivalent to LDA in the
original space.

3 Kernels and linear dismimivaant analysis. Suppose you wish to
,,,, ,,; a linear discriminant analysis (two classes) using a vector of
transformations of the input variables h(x). Since h(x) is high-dimensional,
you will use a regularized within-class covariance matrix W h + 71. Show
that the model can be estimated using only the inner products K(xr, xi)) =

{h(xi), h(xil)). Hence the kernel property of support vector machines is also
shared by regularked linear discriminant analysis.

Ex. 12.11 The M D A procedure models each class as a mixture of Gaussiam.
Hence each mixture center belongs to one and only one class. A more
general model allows each mixture center to be shared by all classes. We
take the joint devlsity of labels and features to be

a mixture of joint densities. hrthermore we assume

This model consists of regions centered at p,-, and for each there H a cl-
profile P, (G). The pmterior class distribution is given by

where the denominator is the marginal distribution P(X).

Exercises 409

(a) Show that this model (called MDA2) can be viewed as a generalization
of MDA since

P (X|G = k) =
∑R

r=1 πrPr(G = k)φ(x;µr,Σ)∑R
r=1 πrPr(G = k)

, (12.68)

where πrk = πrPr(G = k)/
∑R

r=1 πrPr(G = k) corresponds to the
mixing proportions for the kth class.

(b) Derive the EM algorithm for MDA2.

(c) Show that if the initial weight matrix is constructed as in MDA, in-
volving separate k-means clustering in each class, then the algorithm
for MDA2 is identical to the original MDA procedure.

410 12. Flexible Discriminants

+ This is page 41 1
Printer: Opaque this

Prototype Methods and
Nearest-Neighbors

13.1 Introduction

In this chapter we discuss some simple and essentially model-free methods
for classification and pattern recognition. Because they are highly unstruc
tured, they typically aren't useful for understandhg the nature of the re-
latiomhip between the features and class outcome. However, as black box
prediction engines, they can be very effective, and are often among the best
performers in real data problems. The nearest-neighbor technique can also
be used in regression; thh was touched on in Chapter 2 and works reason-
ably well for low-dimensional problems. However, with high-dimensional
features, the bias-variance tradeoff does not work as favorably for nearesb
neighbor regression as it does for classification.

13.2 Prototype Methods

Throughout this chapter, our training data consists of the N pairs (xl, gl),
. . . , (x,, g N) where ga is a class label taking values in {1,2, . . . , K). P r e
totype methods represent the training data by a set of points in feature
space. These prototypes are typically not examples from the training Sam-
ple, except in the case of 1-nearest-neighbor classification discussd later.

Each prototype has an associated class label, and classification of a query
point x is made to the class of the closest prototype. "Closest" is usually
defined by Euclidean distance in the feature space, after each feature has

412 13. Prototypes and Nearest-Neighbors

been standardized to have overall mean 0 and variance 1 in the training
sample. Fhiclidean distance is appropriate for qliantitakive featnrm. We
discuss distance measures between qualitative and other kinds of feature
values in Chapter 14.

These methods can be very effective if the prototypes are well positioned
to capture the distribution of each class. Irregular class boundaries can be
represented, with enough prototypes in the right places in feature space.
The main challenge is to figure out how many prototypes to Use and where
to put them. Methods differ according to the number and way in which
prototypw are selected.

K-means clustering is a method for finding clusters and cluster centers in a
set of unlabeled data. One chooses the desired number of cluster centers, say
R, and the K-means procedure iteratively moves the centers to minimize
the total within cluster variance.* Given an initial set of centers, the K-
means algorithm alternates the two steps:

for each center we identify the subset of training pohts (its cluster)
that is closer to it than any other center;

the means of each feature for the data points in each cluster are
computed, and this mean vector becoines the new center for that
cluster.

These two steps are iterated until convergence. Typically the initial centers
are R randomly chosen observations from the traiaing data. Detaih of the
K-means procedure, as well as generalizations allowing for different variable
types and more general distance measures, are given in Chapter 14.

To use K-means clustering for classification of labeled data, the s t e p
arc:

apply K-means clustering to the training data in each class sepa-
rately, using R prototypes per class;

assign a class label to each of the K x R prototypm;

classify a new feature x to the class of the closest prototype.

Figure 13.1 (upper panel) shows a simulated example with three classes
and two features. We used R = 5 prototypes per class, and show the clas-
sitication regiom and the decision boundary. Notice that a number of the

*17he u p in ' PC-m- refers to the number of cluster &era. Since we have already
reserved K to denote the number of W, we denote the number of clu&m by R.

13.2 Prototype Methods

K-means - 5 Prototypes per Class

LVQ - 5 Prototypes per Class

FIGURE 13.1. SimuMed example with thm c l ~ s e s a d five pmtotmes per
cIa4a. 5% data im mch c l w ~ art= gememid fPI1P7b D rnixt'1~1~: of t h ~ a i a m . in the
upper pmnel, the prwib&s w e w found hy applying fhe K - m e m s duder ing dg+
ri.iUam separately in each class. In the lower panel, Uae LVQ dgori fhm (stmrting
+ m Uae K - m e m s so ld ion) moves Uae prototypes awmy from the decision h a &
ary. The broken p u v k curve in the background is the Bayes decision boudaqt.

414 13. Prototypes and Nearest-Neighbors

Algorithm 13.1 Learning Vector Quantization—LVQ.

1. Choose R initial prototypes for each class: m1(k),m2(k), . . . ,mR(k),
k = 1, 2, . . . ,K, for example by sampling R training points at random
from each class.

2. Sample a training point xi randomly (with replacement), and let (j, k)
index the closest prototype mj(k) to xi.

(a) If gi = k (i.e., they are in the same class), move the prototype
towards the training point:

mj(k) ← mj(k) + ε(xi −mj(k)),

where ε is the learning rate.

(b) If gi �= k (i.e., they are in different classes), move the prototype
away from the training point:

mj(k) ← mj(k)− ε(xi −mj(k)).

3. Repeat step 2, decreasing the learning rate ε with each iteration to-
wards zero.

prototypes are near the class boundaries, leading to potential misclassifica-
tion errors for points near these boundaries. This results from an obvious
shortcoming with this method: for each class, the other classes do not have
a say in the positioning of the prototypes for that class. A better approach,
discussed next, uses all of the data to position all prototypes.

13.2.2 Learning Vector Quantization

In this technique due to Kohonen (1989), prototypes are placed strategically
with respect to the decision boundaries in an ad-hoc way. LVQ is an online
algorithm—observations are processed one at a time.

The idea is that the training points attract prototypes of the correct class,
and repel other prototypes. When the iterations settle down, prototypes
should be close to the training points in their class. The learning rate ε is
decreased to zero with each iteration, following the guidelines for stochastic
approximation learning rates (Section 11.4.)

Figure 13.1 (lower panel) shows the result of LVQ, using the K-means
solution as starting values. The prototypes have tended to move away from
the decision boundaries, and away from prototypes of competing classes.

The procedure just described is actually called LVQ1. Modifications
(LVQ2, LVQ3, etc.) have been proposed, that can sometimes improve per-
formance. A drawback of learning vector quantization methods is the fact

that they are defined by algorithms, rather than optimization of some h e d
criteria; this makes it; difficuilt; Lo ~indarwtrtnd Lheir propartias.

The GLW~MI mixlure model can also be lhoughl ol w a prololype melhod,
similar in spirit to K-means and LVQ. We discuss Gaussian mixtura in
some detail in Sections 6.8, 8.5 and 12.7. Each cluster is described in terms
of a Gaussian density, which has a centroid (as in K-means) , and a covari-
ance m a t h . The cornparkon becomes cnlsper if we restrict the component
Gaussians to have a scalar covariance matrix (Exercise 13.1). The two steps
of the alternating EM algorithm are very similar to the two steps in
means:

In the E-step, each observation is assigned a responsibility or weight
for each cluster, based on the likelihood of each of the correspond-
ing Gaussians. Ohervations close to the center of a cluster will mmt
likely get weight 1 for that cluster, and weight 0 for every other c l w
ter. Observations half-way between two clusters divide their weight
accordingly.

r In the M-step, each observation contributes to the weighted means
(and covariances) for evew cluster.

As a consequence, the Gaussian mixture model is often referred to as a soft
clustering method, while K-means is h a d

Similarly, when Gamsian mixture models are used to represent the fe*
t u e density in each class, it produces smooth posterior probabilities $(x) =
@~(x) , . . . , $ ~ (x)) for c l a s s r n x (see (12.58) on page 400.) Often this
is interpreted as a soft cl~si6cation, whde in fact the classification rule is
G (X) = a r g m a ~ ~ $ ~ (x) . Figure 13.2 compares the results of K-means and
Galmian mixtnrw on khe sirnui1at;cd mixLuire problem of Chapter 2. We
see that although the decision boundaries are roughly similar, thme for the
mixture model are smoother (although the prototypes are in approximately
the same pmitions.) We &o see that while both procedures devote a green
prototype (incorrectly) to a region in the northwest, the Gaussian mixture
classifier can ultimately ignore this region, while K-means cannot. LVQ
gave very similar results to K-means on this example, and is not shown.

13.3 le-Nearest-Neighbor Classifiers

These classtliers are memo~y-based, and require no model to be fit. Given
a query point xo, we find the k training points x(,), r = 1,. . . , k closest in
distance to xo, and then classify using majority vote among the k neighbors.

416 13. Prototypes and Nearest-Neighbors

K-means - 5 Prototypes per Class

shows

Gaussian Mimres - 5 Sub

. a ' "'"0"'i i i i i i i i i i i i b:::: : : : ; : ; ; ; ;

... 0 : :::: o,,:iiaiiiiiiiQG i i i i i i i i i
i i . : : : . . : : iaiiiii i i:ifi-" "- - - - - GiQdiiiiAiiiiii#

- :::::a;;; i
, : ,. ,,a:::i:iiiiii: , ,
. : :.:fl::- ! ci

.

.....

...........

. Test Ermr: 0,22 ! ! ! , ! ! ! :!: :::!: :: ! : ! I I I I I I I ::!: :::! I I ! ! ! ! ! !
Bayes Ermr: 0.21 : :-::::: :

Ir 13.2. The upper panel shows the K-means clmsijier applied t o the
- -atrn example. The decision boundary is pi&e Zinernr. The lower p n e l
a Gaussian mkdztesw &el with a m m n comviance for d l component

Gau~sian~. The EM algorithm for the mixture modd was &art& ai the K-means
solution. The broken purple cuwe in the blsckg~~ztesnd D the Bayes decision h n d -

ary.

13.3 k-Nearest-Neighbor Classifiers 417

Ties are broken at random. For simplicity we will assume that the features
are real-valued, and we use Euclidean distance in feature space:

Typically we first standardize each of the features to have mean zero and
variance 1, since it is possible that they are measured in different units. In
Chapter 14 we discuss distance measures appropriate for qualitative and
ordinal features, and how to combine them for mixed data. Adaptively
chosen distance metrics are discussed later in this chapter.

Despite its simplicity, k-nearest-neighbors has been successful in a large
number of classification problems, including handwritten digits, satellite
image scenes and EKG patterns. It is often successful where each class
has many possible prototypes, and the decision boundary is very irregular.
Figure 13.3 (upper panel) shows the decision boundary of a 15-nearest-
neighbor classifier applied to the three-class simulated data. The decision
boundary is fairly smooth compared to the lower panel, where a l-nearest-
neighbor classifier was used. There is a close relationship between nearest-
neighbor and prototype methods: in 1-nearest-neighbor classification, each
training point is a prototype.

Figure 13.4 shows the training, test and tenfold cross-validation errors
as a function of the neighborhood size, for the two-class mixture problem.
Since the tenfold CV errors are averages of ten numbers, we can estimate
a standard error.

Because it uses only the training point closest to the query point, the bias
of the 1-nearest-neighbor estimate is often low, but the variance is high.
A Itirnous result u I Cuver arid Harl (1967) sl~uws lllal asy r~~plulically Llle
error rate of the 1-nearest-neighbor classifier is never more than twice the
Bayes rate. The rough idea of the proof is as follows (using squared-error
loss). We assume that the query point coincides with one of the training
points, so that the bias is zero. This is true asymptotically if the dimension
of the feature space is fixed and the training data fills up the space in a
dense fashion. Then the error of the Bayes rule is just the variance of a
Bernoulli random variate (the target at the query point), while the error of
1-nearest-neighbor rule is twice the variance of a Bernoulli random variate,
one contribution each for the training and query targets.

We now give more detail for misclassification loss. At x let k* be the
dominant class, and pk(x) the true conditional probability for class k. Then

Bayes error = 1 - pk* (x), (13.2)
K

1-Nearest-Neighbor error =): Pk (x) (1 - pk (x)), (13.3)
k = l

> l - ~ k * (x) . (13.4)

The asymptotic 1-nearest-neighbor error rate is that of a random rule; we
pick both the classification and the test point at random with probabil-

418 13. Prototypes and Nearest-Neighbors

15-Nearest Neighbors

1 -Nearest Neighbor

FIGURE 13.3. k-aeamd-neighbor classifiers app l id t o fi s i m d d i o a d d a of
Figure 121. 11he broken pwple c u m in the background is the Bayes decision
hnrdeq/.

1 0-fold GV
Tralnlng Ermr
Bayas Error

Number of Neighbors

7-Nearest Neighbors

FIGURE 13.4. k-neamLneighbors om Uae two-class mixhire data. The upper
panel slaows Uae m8scZassifimtion errors as a jhnctioa of neighborhaxi size. Stam-
d a d error bars am inclzsdd for I&fold cross validation. The lower panel s b v s
the decision boundaw for 7-neawd-neighbor#, which a p p a ~ s to be optimal for
minimizing test error. The broken purple c u m in the backpund i s the Bayes
decision boudaqi.

420 13. Prototypes and Nearest-Neighbors

ities pk(x), k = 1,. . . , K. For K = 2 the 1-nearest-neighbor error rate
is 2pt- (z)(l - p p (z)) 5 2(1 - pk- (x)) (t;wice the Rayes ermr rake). More
generally, one can show (Exercise 13.3)

Many additional results of this kind have been derived; Ripley (1996) sum-
marizes a number of them.

Tkis result can provide a rough idea about the best performance that
is possible in a given problem. For example, if the 1-nearest-neighbor rule
hw LL 10% error rale, Lhen asymplolicdy Lhe Bayes error raLe is al 1easL
5%. The kicker here is the asymptotic part, which assume8 the bias of the
nearesLneighbor rule is zero. In real problems the bias can be substantial.
The adaptive nearesbneighbor rules, described later in this chapter, are an
attempt to alleviate thts bias. For dmple nearesbneighbors, the bias and
variance characteristics can dictate the optimal number of near neighbors
for a given problem. This is illustrated in the next example.

13.3.1 Exarnp be: A Comparative Study
We tested the nearest-neighbors, K-means and LVQ classifiers on two sim-
ulated problems. There are 10 independent features Xi, each uniformly
distributed on [0, I]. The tw~class 0-1 target variable is defined as follows:

Y = I XI > - ; problem 1: ueasy", (:>
(13.6)

Y = I (sign x,--)) p b l e m 2 : " d E ~ u l t . "

Hence in the &st problem the two classes are separated by the hyperplane
X1 = 1/2; in the second problem, the two classes form a checkerboard
pattern in the hypercube defined by the first three features. The Bay=
error rate is wro in both problems. 'l'here were 100 training and 1000 test
observations.

Figure 13.5 shows the mean and standard error of the misclassification
error for nearest-neighbors, K-means and LVQ over ten realizations, as
the tuning parameters are varied. We see that K-means and LVQ give
nearly identical results. For the best choices of their tuning parameters,
K-means and LVQ outperform nearest-neighbors for the first problem, and
they perform similarly for the second problem. Notice that the best value
of each tuning parameter is clearly situation dependent. For example 2 5
neareskneighbors outperforms 1-neareskneighbor by a factor of 70% in the

Neared Nelghbars I Dmleult

Number of Nelghbn

K-means P LVQ I Easy

Nun~bs ul P r u l u l y p F r Class

K-means a LVQI DIMCUI~

Number of Pmto 'yp p r Class

FIGURE 13.5. Mean & one standad e m r of miscl~&$mtion e m r fop n m -
ed-neighbow, K - m m w (blue) and LVQ (red) over ten d i m t i o m for two sim-
detd problem: "8nsg" and "dif icdt ," descc~+hd ia the text.

422 13. Prototypes and Nearest-Neighbors

Spdral Band 1

Spectral Band 4

Sp- Band 2

m

Land Usage Predlded Land Usqe

FIGURE 13.6. Th.e first four pan& are LANDSAT images for an ngricultumE
area in four spectml bands, depictsd by heatmap shading. The remaining two
paneb give the actud land wage (color coded) and the pdic ted land wage wing
a five-neamCneighbop. d e deacvibd in the text

f ist problem, while 1-nearest-neighbor is best in the second problem by a
factor of 18%. These results underline the importance of using an objective,
data-based method like cros*validation to estimate the best value of a
tuning parameter (see Figure 13.4 and Chapter 7).

13.3.2 Example: k-Nearest-Neigh bors and Image Scene
Classi %tion

The STATLOG puject (Michie et al., 1994) used part of a LANDSAT
image as a benchmark for classification (82 x 100 pixels). Figure 13.6 shows
four heabmap images, two in the visible spectrum and two in the infi-ared,
for an area of agricultural land in Australia. Each pixel has a class label
h m the 7-element set G = (red sod, cotton, vegetation stubble, mkture,
gray soid, damp gmy soil, very damp grmy soil), determined manually by
research assistants surveying the area. The lower middle panel shows the
actual land usage, shaded by Werent colors to indicate the classes. The
objective is to classify the land usage at a pixel, based on the information
in the four spectral bands.

Five-nearest-neighbors produced the predicted map shown in the bottom
right panel, and was computed as follows. For each pixel we extracted an
8-neighbor feature m a p t h e pixel itself and its eight immediate neighbors

FIGURE 13.7. A pixel and its eighheighbor feature map.

(see Figlire 13.7). This is done separately in the four spectrd hands, giving
(1 + 8) x 4 = 36 input features per pixel. Then five-nearest-neighbors classi-
fication was carried out in this 3Bdimensional feature space. The resulting
test error rate was about 9.5% (see Figure 13.8). Of all the methods used
in the STATLOG project, including LVQ, CART, neural networks, linear
discriminant analysis and many others, k-nearest-neighbors performed best
on this task. Hence it is likely that the decision boundarim in I R ~ ~ are quite
irregular.

13.3.3 Invariant Metrics and Tangent Distance

In some problems, the training features are invariant under certain natural
Ir ~~IvrmtlLivm. The newesl-neighbor classifier can mp1oiL such invwi-
ances by incorporating them into the metric used to measure the distances
between objects. Here we give an example where this idea was used with
great success, and the resulting classfier outperformed all others at the
time of its development (Shard et al., 1993).

The problem is handwritten digit recognition, as discussed is Chapter 1
and Section 11.7. The inputs are grayscale images with 16 x 16 = 256
pixels; some examples are shown in Figure 13.9. At the top of Figure 13.10,
a U3" is shown, in its actual orientation (middle) and rotated 7.5' and 15'
in either direction. Such rotations can often occur in real handwriting, and
it is obvious to our eye that this "3" is still a "3" after small rotations.
Hence we want our nearest-neighbor classifier to consider these two "3"s
to be clme together (similar). However the 256 grayscale pixel values for a
rotated "3" will look quite different from thme in the original image, and
hence the two objects can be far apart in Euclidean distance in EL2".

We wish to remove the effect of rotation in measuring distances between
two digits of the same class. Consider the set of pixel values consisting of
the original "3" and its rotated versions. This is a onsdimemional curve in
IR256 , depicted by the green curve passing through the "3" in Figure 13.10.
Figure 13.11 shows a stylized version of lFLa5" with two images indicated
by xi and xi). These might be two Merent "3"s, for example. Through
each image we have drawn the curve of rotated versions of that image,

424 13. Prototypes and Nearest-Neighbors

STATLOG resu Its

e
Ill

5 :- 1 0 K-NN

DANN
B
I

!-

LD A
SMARfOgidic

NewlD C4.5
QDA

CART
ALLOCBO

REF

LVQ

Nueml

Y'esGemr per fomam for a number of cLassi&eras, aas reported
oy me ~ ~ A I L V G project m e entw DANN i s a variant of k-meamsf neighbors,
wing an adaptive metmc (Section I t4 .2) .

FIGURE 13.8. fiamples of gmysmie images of handwrieem digih.

FIGURE 13.10. The top row shows a "3" in its osdgiml omentation (middle)
and rotakd ve~siopas of i t The green curve in the middle of the figure depicts
this set of rotaid 3" in 2256-dimen~ioml w e . Th.e red Ene is the tangent line
to Me curve at fie origin& image, with some " 3"s on Mia tangent line, and its
quatiom s b w n at Me Mtom of Me jigurn.

called inflafiance manifolds in this context. Now rather than using the usual
Euclidean dhtance between the two images, we use the shortest distance
between the two curves. In other words, the distance between the two
images is taken to be the shortest Euclidean distance between any rotated
version of first image, and any rotated version of the second image. This
distance is called an ira~adant met&

In principle one could carry out 1-nearest-neighbor classification using
this invariant metric. However there are two problems with it. First, it is
very difficult to calculate for real images. Second, it allows large trans-
formations that can lead to poor performance. For example a "6" would
be considered close to a "9" after a rotation of 180". We need to restrict
attention to small rotations.

The ~ s e of tangent dktarace solves both of these problems. As shown in
Figure 13.10, we can approximate the invariance manifold of the image
"3" by its tangent at the original image. This tangent can be computed
by estimating the direction vector from small rotations of the image, or by
more sophisticated spatial smoothing methods (Exercise 13.4.) For large
rotations, the tangent image no longer looks like a "3", so the problem
with large transformations is alleviated.

426 13. Prototypes and Nearest-Neighbors

[stance between
transfmmed

Tangent distance xa and x,r
\

FIGURE 13.11. Tangent distance comaputation for two images xi and xi#.
Rather t h a n w i n g the h d i d m n distance between x i a n d xi,, or the alrorkd
didnnce between the two a w e s , we we the shorted dbtance b e t m the two
tangent lines.

The idea then is to compute the invariant tangent line for each training
image. For a query image Lo be ch~iGed, we w~upuLe iLs invlrim11 ImgwL
line, and find the closest line to it among the lines in the training set. The
class (digit) corresponding to this ches t line is our predicted class for the
query image. In Figure 13.11 the two tangent lines intersect, but this is only
because we have been forced to draw a tw~dirnensional representation of
the actual 25Bdimemional situation. In lFL25%he probability of two such
lines intersecting is effectively zero.

Now a simpler way to achieve this invariance would be to add into the
training set a number of rotated versions of each training image, and then
just use a standard nearest-neighbor classifier. This idea is called "hints" in
Abu-Mostafa (199 51, and works well when the space of invariances is s m d .
So far we have presented a simplfied version of the problem. In addition to
rotation, there are six other types of transformations under which we would
like our classfier to be invariant. There are tramlation (two directions),
scaling (two directions), sheer, and character thickness. Hence the curves
and tangent lines in Figures 13.10 and 13.11 are actually 7-dimensional
manifolds and hyperplanes. It is infeasible to add transformed versiom
of each training image to capture all of these possibilities. The tangent
manifolds provide an elegant way of capturing the invariances.

Table 13.1 shows the test misclass%cation error for a problem with 7291
training images and 2007 test digits (the U.S. Postal Services database), for
a carefully constructed neur a1 network, and simple 1-nearest-neighbor and

13.4 Adaptive Nearest-Neighbor Methods 427

TABLE 13.1. Test error rates for the handwritten ZIP code problem.

Method Error rate

Neural-net 0.049
1-nearest-neighbor/Euclidean distance 0.055
1-nearest-neighbor/tangent distance 0.026

tangent distance 1-nearest-neighbor rules. The tangent distance nearest-
neighbor classifier works remarkably well, with test error rates near those
for the human eye (this is a notoriously difficult test set). In practice,
it turned out that nearest-neighbors are too slow for online classification
in this application (see Section 13.5), and neural network classifiers were
subsequently developed to mimic it.

13.4 Adaptive Nearest-Neighbor Methods

When nearest-neighbor classification is carried out in a high-dimensional
feature space, the nearest neighbors of a point can be very far away, causing
bias and degrading the performance of the rule.

To quantify this, consider N data points uniformly distributed in the unit
cube [− 1

2 ,
1
2]p. Let R be the radius of a 1-nearest-neighborhood centered at

the origin. Then

median(R) = v−1/p
p

(
1− 1

2

1/N)1/p

, (13.7)

where vpr
p is the volume of the sphere of radius r in p dimensions. Fig-

ure 13.12 shows the median radius for various training sample sizes and
dimensions. We see that median radius quickly approaches 0.5, the dis-
tance to the edge of the cube.

What can be done about this problem? Consider the two-class situation
in Figure 13.13. There are two features, and a nearest-neighborhood at
a query point is depicted by the circular region. Implicit in near-neighbor
classification is the assumption that the class probabilities are roughly con-
stant in the neighborhood, and hence simple averages give good estimates.
However, in this example the class probabilities vary only in the horizontal
direction. If we knew this, we would stretch the neighborhood in the verti-
cal direction, as shown by the tall rectangular region. This will reduce the
bias of our estimate and leave the variance the same.

In general, this calls for adapting the metric used in nearest-neighbor
classification, so that the resulting neighborhoods stretch out in directions
for which the class probabilities don’t change much. In high-dimensional
feature space, the class probabilities might change only a low-dimensional
subspace and hence there can be considerable advantage to adapting the
metric.

428 13. Prototypes and Nearest-Neighbors

FIGURE 13.11. Median radius of a 1-neemat-meighborhd, for unifonn data
wifh N obsewmtiow i n p dimensions.

5 Nearest Neighborhoods

FIGURE 13.15. The points are unijom in the cube, with the .vertid Ene s e w
rating class d and green. The vertical stmp denotes the 5 - m m s & n e i g h region
wing only the h 0 ~ n t a . i wordinate to find fhe nmms&neighbrs fop. the tayd
point (solid dot). The sphere shows the 5-mearesbneiglabor region wing both u+

ordindes, and we see i n fhis case i f has atended info the class-md region (and
is dominated by the wmng class i n this imfmoe) .

13.4 Adaptive Nearest-Neighbor Methods 429

Friedman (1994a) proposed a method in which rectangular neighbor-
hoods are found adaptively by successively carving away edges of a box
containing the training data. Here we describe the discriminant adaptive
nearest-neighbor (DANN) rule of Hastie and Tibshirani (1996a). Earlier,
related proposals appear in Short and Fukunaga (1981) and Myles and
Hand (1990).

At each query point a neighborhood of say 50 points is formed, and the
class distribution among the points is used to decide how to deform the
neighborhood-that is, to adapt the metric. The adapted metric is then
used in a nearest-neighbor rule at the query point. Thus at each query
point a potentially different metric is used.

In Figure 13.13 it is clear that the neighborhood should be stretched in
the direction orthogonal to line joining the class centroids. This direction
also coincides with the linear discriminant boundary, and is the direction
in which the class probabilities change the least. In general this direction
of maximum change will not be orthogonal to the line joining the class cen-
troids (see Figure 4.9 on page 94.) Assuming a local discriminant model,
the information contained in the local within- and between-class covari-
ance matrices is all that is needed to determine the optimal shape of the
neighborhood.

The discriminant adaptive nearest-neighbor (DANN) metric at a query
point xo is defined by

T
D(X,X") = (x-xu) X(x -xu),

where

K Here W is the pooled within-class covariance matrix Ck=l 7rk Wk and B
K is the between class covariance matrix Ck=l 7rk (z ~ - 5) (z ~ - with

W and B computed using only the 50 nearest neighbors around xo. After
computation of the metric, it is used in a nearest-neighbor rule at xo.

This complicated formula is actually quite simple in its operation. It first
spheres the data with respect to W, and then stretches the neighborhood
in the zereeigenvalue directions of B* (the between-matrix for the sphered
data). This makes sense, since locally the observed class means do not dif-
fer in these directions. The t parameter rounds the neighborhood, from an
infinite strip to an ellipsoid, to avoid using points far away from the query
point. The value of t = 1 seems to work well in general. Figure 13.14 shows
the resulting neighborhoods for a problem where the classes form two con-
centric circles. Notice how the neighborhoods stretch out orthogonally to
the decision boundaries when both classes are present in the neighborhood.
In the pure regions with only one class, the neighborhoods remain circular;

430 13. Prototypes and Nearest-Neighbors

FIGURE 13.14. N e i g h h o o d s found by the DA NN p d u r e , at vamow qwvy
poirats (centers of the cpossm). Thew are two classes ira the Lh, with m e class
sumuading the other. 50 aemresbaeighbors were w d to estimate Uae l d mei5
rics. S h m a m fhe resulting rneh-ics used t o forma 15-nearesf-neighbarhwds.

in these cases the between matrix B = 0, and the E in (13.8) is the identity
matrix.

3 . 4 Example

IIere we generate twclass data in ten dimmiom, analogm to the t w
dimensional example of Figure 13.14. All ten predictors in class 1 are in-
dependent standard norind, conditioned on the radius being greater than
22.4 and less than 40, while the predictors in class 2 are independent stan-
c l a d h o t i d withoul the i-etilticliuh. Thei-e zit-e 250 oltretvalioh h e&

class. Hence the fist class almost completely surrounds the second class in
the full ten-dimemional space.
In this example there are no pure noise variables, the kind that a nearesk

neighbor subset selection rule might be able to weed out. At any given
point in the feature space, the class discrimination occurs along only one
direction. However, tkis direction changes as we move across the feature
space and all variables are important somewhere in the space.

Figure 13.15 shows boxplots of the test error rates over ten reah*
tiom, for standard Lneareskneighbors, LVQ, and discriminant daptive
5-nearest-neighbors. We used 50 prototypes per class for LVQ, to make
it comparable to 5 neareskneighbors (since 250/5 = 50). The daptive
metric signiticantly reduces the error rate, compared to LVq or standard
neareskneighbors.

13.4 Adaptive Nearest-Neighbor Methods 431

FIGUR,E 13.16. Tea-dimensioaal simulahd example: +lob of the test error
rates over ten r e d i z a t i m , jm standard 5-aeawst-neighbors, LVQ with 50 m t e r s ,
and dis&mdmni-adaptive 5-neawst-neighbor$

3 . Global Bimension Reduction for NeuresfiNeighbors

The discriminankadaptive nearest-neighbor method carries out local di-
memion rducliorl-lhl is, dher~ior l reduc lion septlralely al each query
point. In many problems we can also ben&t from global dimension r e
duction, that is, apply a neareshneighbor rule in some optimally chosen
subspace of the original feature space. For example, suppose that the two
classes form two nested spheres In four dimensions of feature space, and
there are an additional six noise features whose distribution is independent
of class. Then we would like to discover the important four-dimensional
subspace, and carry out nearest-neighbor classij?cation in that reduced s u b
space. Hastie and Tihhirani (1996a) discuss a variation of the discriminanb
adaptive nearahneighbor method for this purpose. At each training point
x i , the between-centroids sum of squares matrix Bi is computed, and then
these matrices are averaged over all training points:

Let el , ea, . . . , e, be the eigenvectors of the matrix B, ordered h m largat
to small& eigenvalue Ok. Then thae eigenvectors span the optimal s u b
spaces for global subspace reduction. The derivation is based on the fad

L that the best rank-L approximation to B, B [~ ~ = €JLeLeT, solves the
lcast squmcs problcm

Since each Bi contains information on (a) the local discriminant subspace,
and (b) the strength of discrimination in that subspace, (13.11) can be seen

432 13. Prototypes and Nearest-Neighbors

as a way of finding the b a t approximating subpace of dimension L to a
series of N mhpmas by weighkad 1a~qt sqliarm (Exercise 13.5.)

In the four-dimensional sphere example mentioned above and examined
in Hastie and Tibshirani (1996a), four of the eigenvalues Qf turn out to be
large (having eigenvedors nearly spanning the interesting subspace), and
the remaining six are near zero. Operationally, we project the data into
the leading four-dimensional subspace, and then carry out nearest neighbor
classification. In the sateUite image classification example in Section 13.3.2,
the technique labeled DAMN in Figure 13.8 used 5-nearest-neighbors in a
globally reduced subspace. There are also connections of this technique
with the sliced inverse regresdon proposal of Duan and Li (1991). These
authors me similar ideas in the regression setting, but do global rather
than local computations. They aasume and exploit spherical symmetry of
thc fcaturc distribution to cstimatc intcrcsting subspaccs.

13.5 Computational Consider at ions

One drawback of nearrst-ndghbor rules in general is the computational
load, both in finding the neighbors and storing the entire training set. With
N ohervations m d p pr~dictors, nearest-neighbor classi6cation require N p
operations to find the neighbors per query point. There are fast algorithms
Iur Gurlirlg uemesl-neighbors (Fridmw el d., 1975; Friedman el d., 1977)
which can reduce thh load somewhat. Hastie and Simard (1998) reduce
the computations for tangent distance by developing analogs of K-means
clustering in the context of this invariant metric.

Redudng the storage requirements h more m c u l t , and various editing
and condensing procedures have been proposed. The idea is to isolate a
subset of the training set that s d c e s for nearest-neighbor predictions, and
throw away the remaining training data. Intuitively, it seems important to
keep the training points that are near the decision boundaries and on the
correct side of thwe boundaries, while some points far horn the boundaries
could be discarded.

The multi-&it algorithm of Devijver and Kittler (1982) divides the data
cyclically into training and test sets, computing a nearest neighbor rule on
the training set and deleting test points that are misclassXed. The idea is
to keep homogeneous clust ers of training observations.

The condensing pprocedure of Hart (1968) goes further, trying to keep
only important exterior points of these clusters. Starting with a single ran-
dornly chosen observation as the training set, each additional data item is
processed one at a time, adding it to the training set only if it is misclas-
sified by a nearest-neighbor rule computed on the current training set.

Thae procedura are surveyed in Daaarathy (1991) and Ripley (1996).
They can also be applied to other learning procedures besides nearesk

Exercises 433

neighbors. While such methods are sometimes useful, we have not had
much practical experience with them, nor have we found any systematic
comparison of their performance in the literature.

Bibliographic Notes

The nearest-neighbor method goes back at least to Fix and Hodges (1951).
The extensive literature on the topic is reviewed by Dasarathy (1991);
Chapter 6 of Ripley (1996) contains a good summary. K-means cluster-
ing is due to Lloyd (1957) and MacQueen (1967). Kohonen (1989) intro-
duced learning vector quantization. The tangent distance method is due to
Simard et al. (1993). Hastie and Tibshirani (1996a) proposed the discrim-
inant adaptive nearest-neighbor technique.

Exercises

Ex. 13.1 Consider a Gaussian mixture model where the covariance matri-
ces are assumed to be scalar: Σr = σI ∀r = 1, . . . , R, and σ is a fixed
parameter. Discuss the analogy between the K-means clustering algorithm
and the EM algorithm for fitting this mixture model in detail. Show that
in the limit σ → 0 the two methods coincide.

Ex. 13.2 Derive formula (13.7) for the median radius of the 1-nearest-
neighborhood.

Ex. 13.3 Let E∗ be the error rate of the Bayes rule in a K-class problem,
where the true class probabilities are given by pk(x), k = 1, . . . ,K. As-
suming the test point and training point have identical features x, prove
(13.5)

K∑
k=1

pk(x)(1− pk(x)) ≤ 2(1− pk∗(x))− K

K − 1
(1− pk∗(x))2.

where k∗ = arg maxk pk(x). Hence argue that the error rate of the 1-
nearest-neighbor rule converges in L1, as the size of the training set in-
creases, to a value E1, bounded above by

E∗
(
2− E∗ K

K − 1

)
. (13.12)

[This statement of the theorem of Cover and Hart (1967) is taken from
Chapter 6 of Ripley (1996), where a short proof is also given].

434 13. Prototypes and Nearest-Neighbors

Ex. 13.4 Consider an image to be a function F (x) : EL2 H EL1 over the tww
dimensional spatial domain (paper coordinat~). Then F(c+zo+A(z-so))
represents an a fbe transformation of the image F, where A is a 2 x 2
matrix.

1. Decompose A (via Q-R) in such a way that parameters identifying
the four f i n e transformatiom (two scale, shear and rotation) are
clearly identxed.

2. Using the chain rule, show that the derivative of F (c+xo + A(x-xo))
w.r.t. each of these parameters can be represented in terms of the two
spatial derivatives of F.

3. Using a twedimensional kernel smoother (Chapter 6), describe how
to implement this procedure when the images are quantized to 16 x 16
pixels.

Lct Bi, 6 = 1,2, . . . , N bc square p x p pmitivc scmi-ddnitc
luabllLGn and let B = (1/N) C Bd. Write the eigen-decomposition of B
as C$Tl BteteT with Bt 2 BEPI 2 - - - 2 el. Show that the best rank-L
approximation for the Bi,

min trace[(ai - M)'],
rank(M)-L ,

a = l

L N is given by = ~ ~ e ~ e : . (Hint: Writc Ci=l tracc[(Bi M) ~] ns

Ex. 13.6 Here we consider the problem of shape averaging. In particular,
TAd, i = I , . . . , M a,te each N x 2 ma.krism nf pninks in T R ~ , each ~a,mpled
£tom corresponding positions of handwritten (cursive) letters. We seek an
afine invariant aoemge V, also N x 2, V ~ V = I, of the M letters Li with
the following property: V minimizes

Characterize the solution.
This solution can suffer if some of the letters are b@ and dominate the

average. An alternative approach is to minimize instead:

Derive the solution to this problem. How do the criteria differ? Use the
SVD of the Lj to simplify the comparison of the two approaches.

Exercises 435

Ex. 13.7 Consider the application of nearest-neighbors to the “easy” and
“hard” problems in the left panel of Figure 13.5.

1. Replicate the results in the left panel of Figure 13.5.

2. Estimate the misclassification errors using fivefold cross-validation,
and compare the error rate curves to those in 1.

3. Consider an “AIC-like” penalization of the training set misclassifica-
tion error. Specifically, add 2t/N to the training set misclassification
error, where t is the approximate number of parameters N/r, r be-
ing the number of nearest-neighbors. Compare plots of the resulting
penalized misclassification error to those in 1 and 2. Which method
gives a better estimate of the optimal number of nearest-neighbors:
cross-validation or AIC?

Ex. 13.8 Generate data in two classes, with two features. These features
are all independent Gaussian variates with standard deviation 1. Their
mean vectors are (−1,−1) in class 1 and (1, 1) in class 2. To each feature
vector apply a random rotation of angle θ, θ chosen uniformly from 0 to
2π. Generate 50 observations from each class to form the training set, and
500 in each class as the test set. Apply four different classifiers:

1. Nearest-neighbors.

2. Nearest-neighbors with hints: ten randomly rotated versions of each
data point are added to the training set before applying nearest-
neighbors.

3. Invariant metric nearest-neighbors, using Euclidean distance invari-
ant to rotations about the origin.

4. Tangent distance nearest-neighbors.

In each case choose the number of neighbors by tenfold cross-validation.
Compare the results.

436 13. Prototypes and Nearest-Neighbors

+ This is page 437
Printer: Opaque this

14
Unsupervised Learning

14.1 Introduction

The previous chapters have been concerned with predictkg the values
of one or more outputs or response variables Y = (Yl,. . . , Y,) for a
given set of input or predictor variables X = (XI, . . . , XP). Denote by
xi = (xi1,. . . ,xip) the inputs for the ith training case, and let gi be a
response measurement. The predictions are based on the training sample
(xl, w), . . . , (xN, yN) of previously solved cases, where the joint values of
all of the variables are known. This is called mpewised learning or "learn-
ing with a teacher." Under this metaphor the "student" presents an an-
swer $$ for each a$ in the training sample, and the supervisor or "teacher"
provides either the correct answer and/or an error associated with the stu-
dent's anawer. This is usually characterized by some l m function L(y, e),
for example, L(TJ,$) = (T J - $)'.

I f one supposes that (X, Y) are random variables represented by some
joint probability density Pr(X, Y), then supervised learning can be formally
characterized as a density estimation problem where one is concerned with
determining properties of the conditional density Pr(Y IX). Usually the
propertiee of interest are the "location" parametere f i that m i i m k the
expected error at each x,

438 14. Unsupervised Learning

Conditioning one has

Pr(X,Y) = Pr(Y |X) · Pr(X),

where Pr(X) is the joint marginal density of the X values alone. In su-
pervised learning Pr(X) is typically of no direct concern. One is interested
mainly in the properties of the conditional density Pr(Y |X). Since Y is of-
ten of low dimension (usually one), and only its location µ(x) is of interest,
the problem is greatly simplified. As discussed in the previous chapters,
there are many approaches for successfully addressing supervised learning
in a variety of contexts.

In this chapter we address unsupervised learning or “learning without a
teacher.” In this case one has a set of N observations (x1, x2, . . . , xN) of a
random p-vector X having joint density Pr(X). The goal is to directly infer
the properties of this probability density without the help of a supervisor or
teacher providing correct answers or degree-of-error for each observation.
The dimension of X is sometimes much higher than in supervised learn-
ing, and the properties of interest are often more complicated than simple
location estimates. These factors are somewhat mitigated by the fact that
X represents all of the variables under consideration; one is not required
to infer how the properties of Pr(X) change, conditioned on the changing
values of another set of variables.

In low-dimensional problems (say p ≤ 3), there are a variety of effective
nonparametric methods for directly estimating the density Pr(X) itself at
all X-values, and representing it graphically (Silverman, 1986, e.g.). Owing
to the curse of dimensionality, these methods fail in high dimensions. One
must settle for estimating rather crude global models, such as Gaussian
mixtures or various simple descriptive statistics that characterize Pr(X).

Generally, these descriptive statistics attempt to characterize X-values,
or collections of such values, where Pr(X) is relatively large. Principal
components, multidimensional scaling, self-organizing maps, and principal
curves, for example, attempt to identify low-dimensional manifolds within
the X-space that represent high data density. This provides information
about the associations among the variables and whether or not they can be
considered as functions of a smaller set of “latent” variables. Cluster anal-
ysis attempts to find multiple convex regions of the X-space that contain
modes of Pr(X). This can tell whether or not Pr(X) can be represented by
a mixture of simpler densities representing distinct types or classes of ob-
servations. Mixture modeling has a similar goal. Association rules attempt
to construct simple descriptions (conjunctive rules) that describe regions
of high density in the special case of very high dimensional binary-valued
data.

With supervised learning there is a clear measure of success, or lack
thereof, that can be used to judge adequacy in particular situations and
to compare the effectiveness of different methods over various situations.

14.2 Association Rules 439

Lack of success is directly measured by expected loss over the joint dis-
tribution Pr(X,Y). This can be estimated in a variety of ways including
cross-validation. In the context of unsupervised learning, there is no such
direct measure of success. It is difficult to ascertain the validity of inferences
drawn from the output of most unsupervised learning algorithms. One must
resort to heuristic arguments not only for motivating the algorithms, as is
often the case in supervised learning as well, but also for judgments as to
the quality of the results. This uncomfortable situation has led to heavy
proliferation of proposed methods, since effectiveness is a matter of opinion
and cannot be verified directly.

In this chapter we present those unsupervised learning techniques that
are among the most commonly used in practice, and additionally, a few
others that are favored by the authors.

14.2 Association Rules

Association rule analysis has emerged as a popular tool for mining com-
mercial data bases. The goal is to find joint values of the variables X =
(X1,X2, . . . ,Xp) that appear most frequently in the data base. It is most
often applied to binary-valued data Xj ∈ {0, 1}, where it is referred to as
“market basket” analysis. In this context the observations are sales trans-
actions, such as those occurring at the checkout counter of a store. The
variables represent all of the items sold in the store. For observation i, each
variable Xj is assigned one of two values; xij = 1 if the jth item is pur-
chased as part of the transaction, whereas xij = 0 if it was not purchased.
Those variables that frequently have joint values of one represent items that
are frequently purchased together. This information can be quite useful for
stocking shelves, cross-marketing in sales promotions, catalog design, and
consumer segmentation based on buying patterns.

More generally, the basic goal of association rule analysis is to find a
collection of prototype X-values v1, . . . , vL for the feature vector X, such
that the probability density Pr(vl) evaluated at each of those values is rela-
tively large. In this general framework, the problem can be viewed as “mode
finding” or “bump hunting.” As formulated, this problem is impossibly dif-
ficult. A natural estimator for each Pr(vl) is the fraction of observations
for which X = vl. For problems that involve more than a small number
of variables, each of which can assume more than a small number of val-
ues, the number of observations for which X = vl will nearly always be too
small for reliable estimation. In order to have a tractable problem, both the
goals of the analysis and the generality of the data to which it is applied
must be greatly simplified.

The first simplification modifies the goal. Instead of seeking values x
where Pr(x) is large, one seeks regions of the X-space with high probability

440 14. Unsupervised Learning

content relative to their size or support. Let Sj represent the set of all
possible values of the jth variable (its support), and let sj ⊆ Sj be a subset
of these values. The modified goal can be stated as attempting to find
subsets of variable values s1, . . . , sp such that the probability of each of
the variables simultaneously assuming a value within its respective subset,

Pr

 p⋂
j=1

(Xj ∈ sj)

 , (14.2)

is relatively large. The intersection of subsets ∩p
j=1(Xj ∈ sj) is called a

conjunctive rule. For quantitative variables the subsets sj are contiguous
intervals; for categorical variables the subsets are delineated explicitly. Note
that if the subset sj is in fact the entire set of values sj = Sj , as is often
the case, the variable Xj is said not to appear in the rule (14.2).

14.2.1 Market Basket Analysis

General approaches to solving (14.2) are discussed in Section 14.2.5. These
can be quite useful in many applications. However, they are not feasible
for the very large (p ≈ 104, N ≈ 108) commercial data bases to which
market basket analysis is often applied. Several further simplifications of
(14.2) are required. First, only two types of subsets are considered; either
sj consists of a single value of Xj , sj = v0j , or it consists of the entire set
of values that Xj can assume, sj = Sj . This simplifies the problem (14.2)
to finding subsets of the integers J ⊂ {1, . . . , p}, and corresponding values
v0j , j ∈ J , such that

Pr

⋂
j∈J

(Xj = v0j)

 (14.3)

is large. Figure 14.1 illustrates this assumption.
One can apply the technique of dummy variables to turn (14.3) into

a problem involving only binary-valued variables. Here we assume that
the support Sj is finite for each variable Xj . Specifically, a new set of
variables Z1, . . . , ZK is created, one such variable for each of the values
vlj attainable by each of the original variables X1, . . . ,Xp. The number of
dummy variables K is

K =
p∑

j=1

|Sj |,

where |Sj | is the number of distinct values attainable by Xj . Each dummy
variable is assigned the value Zk = 1 if the variable with which it is as-
sociated takes on the corresponding value to which Zk is assigned, and

14.2 Association Rules 441

x1 Xl Xl

FIGURE 14.1. Simplifimtioms for association d e s . Hem there are two inputs
XI and Xa, taking four and six distinct values, mpBctively. The red squares
indicate a m of high density. T o simplify the comptatioms, we assume that the
d&vd subset c o m g o n d s t o &they a single value of an input OT dl vdues. With
this assumption we aodd find either the middle or v-ight pattern, but not the left
one.

Zk = 0 otherwise. This transforms (14.3) to Ending a subset of the integers
K c {I,. . . , K) such that

is large. This is the standard formulation of the market basket problem.
The set K is called an "item set!' The number of variables Zk in the item
set is called its "size" (note that the size is no bigger thanp). The estimated
value of (14.4) is taken to be the fraction of observations in the data base
for which the conjunction in (14.4) is true:

Here s e is the value of Zk for this ith case. This is called the usupport" or
"prevalence" T(K) of the item set K. An observation i for which nkEK ~k =
1 is said to LLcontain" the item set K.

In association rule mining a lower support bound t is specified, and one
seeks all item sets Kl that can be formed from the variables Zl, . . . , ZK
with support in the data base greater this lower bound t

1 . 2 2 The Apriori Algorithm
The solution to this problem (14.6) can be obtained with feasible compu-
tation for very large data bases provided the threshold t is adjusted so that

442 14. Unsupervised Learning

(14.6) consists of only a small fraction of all 2K possible item sets. The
"Apriori" algorithm (Agrawal et al., 1995) exploits several aspects of the
curse of dimensionality to solve (14.6) with a small number of passes over
the data. Specifically, for a given support threshold t:

The cardinality I{KI T(K) > t) 1 is relatively small.

Any item set C consisting of a subset of the items in K must have
support greater than or equal to that of K, C C K + T(L) 2 T(K).

The first pass over the data computes the support of all single-item sets.
'I'hose whose support is less than the threshold are discarded. 'l'he second
pass computes the support of all item sets of size two that can be formed
from pairs of the single items surviving the first pass. In other words, to
generate all frequent itemsets with 1x1 = m, we need to consider only
candidates such that all of their m ancestral item sets of size m - 1 are
frequent. Those size-two item sets with support less than the threshold are
discarded. Each successive pass over the data considers only those item
sets that can be formed by combining those that survived the previous
pass with those retained from the first pass. Passes over the data continue
until all candidate rules from the previous pass have support less than the
specified threshold. The Apriori algorithm requires only one pass over the
data for each value of 1x1, which is crucial since we assume the data cannot
be fitted into a computer's main memory. If the data are sufficiently sparse
(or if the threshold t is high enough), then the process will terminate in
reasonable time even for huge data sets.

There are many additional tricks that can be used as part of this strat-
egy to increase speed and convergence (Agrawal et al., 1995). The Apriori
algorithm represents one of the major advances in data mining technology.

Each high support item set K (14.6) returned by the Apriori algorithm is
cast into a set of "association rules." The items Z k , k E K, are partitioned
into two disjoint subsets, A U B = K, and written

The first item subset A is called the "antecedent" and the second B the
"consequent." Association rules are defined to have several properties based
on the prevalence of the antecedent and consequent item sets in the data
base. The "support" of the rule T(A + B) is the fraction of observations
in the union of the antecedent and consequent, which is just the support
of the item set K from which they were derived. It can be viewed as an
estimate (14.5) of the probability of simultaneously observing both item
sets Pr(A and B) in a randomly selected market basket. The "confidence"
or "predictability" C(A + B) of the rule is its support divided by the
support of the antecedent

14.2 Association Rules 443

which can be viewed as an estimate of Pr (B I A). The notation Pr(A), the
probability of an item set A occurring in a basket, is an abbreviation for
P r (nk tA Zk = 1). The "expected confidence" is defined as the support of
the consequent T(B), which is an estimate of the unconditional probability
Pr(B). Finally, the "lift" of the rule is defined as the confidence divided by
the expected confidence

This is a11 estirr~ate 01 the associatiorl rrleasure Pr(A arid B)/Pr(A)Pr(B).
As an example, suppose the item set K = butter, jelly, bread)

and consider the rule {peanut butter, je l ly) + {bread). A support value
of 0.03 for this rule means that peanut bu t t e r , jelly, and bread appeared
together in 3% of the market baskets. A confidence of 0.82 for this rule im-
plies that when peanut butter and jelly were purchased, 82% of the time
bread was also purchased. If bread appeared in 43% of all market baskets
then the rule butter, je l ly) + {bread) would have a lift of 1.95.

The goal of this analysis is to produce association rules (14.7) with both
high values of support and confidence (14.8). The Apriori algorithm returns
all item sets with high support as defined by the support threshold t (14.6).
A confidence threshold c is set, and all rules that can be formed from those
item sets (14.6) with confidence greater than this value

are reported. For each item set K of size IIC there are 2IK-' - 1 rules of
the form A + (K - A), A c K. Agrawal et al. (1995) present a variant of
the Apriori algorithm that can rapidly determine which rules survive the
confidence threshold (14.9) from all possible rules that can be formed from
the solution item sets (14.6).

The output of the entire analysis is a collection of association rules (14.7)
that satisfy the constraints

T(A + B) > t and C(A + B) > c.

These are generally stored in a data base that can be queried by the user.
Typical requests might be to display the rules in sorted order of confidence,
lift or support. More specifically, one might request such a list conditioned
on particular items in the antecedent or especially the consequent. bor
example, a request might be the following:

Display all transactions in which ice s ta tes are the consequent
that have confidence over 80% and support of more than 2%.

This could provide information on those items (antecedent) that predicate
sales of ice skates. Focusing on a particular consequent casts the problem
into the framework of supervised learning.

444 14. Unsupervised Learning

Association rules have become a popular tool for analyzing very large
commercial data bases in settings where market basket is relevant. That is
when the data can be cast in the form of a multidimensional contingency
table. The output is in the form of conjunctive rules (14.4) that are easily
understood and interpreted. The Apriori algorithm allows this analysis to
be applied to huge data bases, much larger that are amenable to other types
of analyses. Association rules are among data mining’s biggest successes.

Besides the restrictive form of the data to which they can be applied, as-
sociation rules have other limitations. Critical to computational feasibility
is the support threshold (14.6). The number of solution item sets, their size,
and the number of passes required over the data can grow exponentially
with decreasing size of this lower bound. Thus, rules with high confidence
or lift, but low support, will not be discovered. For example, a high confi-
dence rule such as vodka ⇒ caviar will not be uncovered owing to the low
sales volume of the consequent caviar.

14.2.3 Example: Market Basket Analysis

We illustrate the use of Apriori on a moderately sized demographics data
base. This data set consists of N = 9409 questionnaires filled out by shop-
ping mall customers in the San Francisco Bay Area (Impact Resources, Inc.,
Columbus OH, 1987). Here we use answers to the first 14 questions, relat-
ing to demographics, for illustration. These questions are listed in Table
14.1. The data are seen to consist of a mixture of ordinal and (unordered)
categorical variables, many of the latter having more than a few values.
There are many missing values.

We used a freeware implementation of the Apriori algorithm due to Chris-
tian Borgelt. ∗ After removing observations with missing values, each or-
dinal predictor was cut at its median and coded by two dummy variables;
each categorical predictor with k categories was coded by k dummy vari-
ables. This resulted in a 6876×50 matrix of 6876 observations on 50 dummy
variables.

The algorithm found a total of 6288 association rules, involving ≤ 5
predictors, with support of at least 10%. Understanding this large set of
rules is itself a challenging data analysis task. We will not attempt this here,
but only illustrate in Figure 14.2 the relative frequency of each dummy
variable in the data (top) and the association rules (bottom). Prevalent
categories tend to appear more often in the rules, for example, the first
category in language (English). However, others such as occupation are
under-represented, with the exception of the first and fifth level.

Here are three examples of association rules found by the Apriori algo-
rithm:

∗See http://fuzzy.cs.uni-magdeburg.de/∼borgelt

14.2 Association Rules 445

Attrbute

Attrbute

FIGURE 14.2. Market basket aadys is : d a i i w e j%queacy of each d u m y va+
able (d i n g a n iapwt rnkgory) i n the d d a (t*), and the associdioa mles f a a d
by the A p r k i dgorithm @atom).

446 14. Unsupervised Learning

TABLE 14.1. Inpests for the demographic data.

Fcaturc Demographic # valucs Typc

1 sex 2 categorical
2 marital status 5 categorical
3 age 7 ordinal
4 education 6 ordinal
5 ~ c c u p a l i ~ h 9 calegut-icd
6 income 9 ordinal
7 y e m in Bay Area 5 o d i r ~ d
8 dual incomes 3 categorical
9 number in household 9 ordinal
10 number of children 9 ordinal
11 householder status 3 categorical
12 type of home 5 categorical
13 ethnic classification 8 categorical
14 language in home 3 categorical

Association rule 1: Suppurl 25%, cvdde~lce 99.7% and NL 1.03.

number in household -
number of children = 0

4
' I

language in home = &gbh

Association rule 2: Support 13.4%, co&dence 80.8%, and lift 2.13.

language in home = & g t h
householder status = own

occupation = {p~ofesdoml/mrangge&l}

4
income 2 $40,000

I
Association rulc 3: Support 26.5%, coddcncc 82.8% and lift 2.15.

I
h g m g e in home = English

income < $40,000
marital status = not married

number ofchildren = 0

4
I

education @ {college graduate, gpmdaate studu}

14.2 Association Rules 447

We chose the first and third rules bued on their high support. The second
rille is an association ruile with a high-income con~quimt, and cwild be
used to try to target high-income individuals.

As stated above, we created dummy variables for each category of the
input predictors, for example, Zl = I(income < $40,000) and Z2 =

I(income > $40,000) for below and above the median income. If we were
interested only in finding associations with the high-income category, we
would include Zz but not Z1. This is often the case in actual market basket
problems, where we are interested in Ending associations with the presence
of a relatively rare item, but not associations with its absence.

Hcrc wc & m s a tcchniquc for tramforming thc dmi ty cstimation prob
lem into one of supervised function approximation. T b forms the basis
for the generabed association rules described in the next section.

Let g(x) be the unknown data probability density to be estimated, and
go (x) be a apedied probability density function used for reference. For ex-
ample, go(x) might be the uniform density over the range of the variables.
Other possibilities are discussed below. The data set XI, xz, . . . , XM is prs
s u e d to be an i. i d random sample drawn from g(x) . A sample of size No
GUL Lt: r l tawf i ~ I L I uitg MutlLc Catlo dt:Ll~uJa. Poolitg Illeat: Iwu
data sets, and assigning mass w = No / (N + No) to those drawn from g (x),
and wo = N/(N + No) to those drawn from go(x), results in a random
sample drawn from the mixture density (g (x) + go (x)) /2. If one assigns
the value Y = 1 to each sample point drawn from g (x) and Y = 0 those
drawn from go(x), then

can be estimated by supervised learning using the combined sample

as training data. The resulting estimate ji(x) can be inverted to provide an
estimate for g (x)

Generalized versions of logistic regression (Section 4.4) are especially well
suited for this application since the log-odds,

Y (x) f (5) = log -
go (4 '

448 14. Unsupervised Learning

FIGURE 14.5. Dewity estimation via cllss~fimtion. Left pneI: %ining set of
200 data points. Right jmnel: Training set plus 200 r e f e m ~ e data poinik, genedad
w m i f o d y over Uae rectangle wntaining the braining data. The braining sample
uim label& m dass 1, and the mjerence sample cIms 0 , and a sern ipmmeh~c
logidic regression model was fit to Uae data. Some w n t m r s for i(x) are shown.

are estimated directly. In this case one has

i(x) = go (x) .f(x).

An example is show11 in Figure 14.3. We ger~ertlled s I r e XI ol she
200 shown in the left panel. The right panel shows the reference data (green)
generated uniformly over the rectangle cant- the training data. The
training sample was labeled as class 1, and the reference sample class 0,
and a loglstic regression model, using a tensor product of natural splines
(Section 5.2.1), was fit to the data. Some probability contours of fi(x) are
shown in the right panel; these are also the contours of the density estimate
i j (x) , since i(x) = fi(x)/(l - ji(x)), is a monotone function. The contours
roughly capture the data density.

In principle any reference density can be used for go(x) in (14.14). In
practiw the accuracy of the estimate #(x) can depend greatly on partic-
ular choices. Good choices will depend on the data density g(x) and the
procedure used to estimate (14.10) or (14.13). If accuracy is the goal, go(x)
should be chosen so that the resulting fundions p(x) or f (x) are approx-
imated easily by the method being used. However, accuracy is not always
the primary goal. Both p(x) and f (x) are monotonic functions of the den-
sity ratio g (x) /go (a). They can thus be viewed as "contrast" statistics that
provide information concerning departures of the data density g (x) from
the c h e n reference density go(x). Therefore, in data analytic settiags, a
choice for go(x) is dictated by types of departures that are deemed mod
interesting in the context of the s p e d c problem at hand. For example, if
departures h m uniformity are of interest, go(x) might be the a uniform

14.2 Association Rules 449

density over the range of the variables. If departures from joint normality
are of interest, a good choice for g0(x) would be a Gaussian distribution
with the same mean vector and covariance matrix as the data; we pursue
this further in Section 14.6.4 in the context of Independent Components
Analysis. Departures from independence could be investigated by using

g0(x) =
p∏

j=1

gj(xj), (14.15)

where gj(xj) is the marginal data density of Xj , the jth coordinate of X.
A sample from this independent density (14.15) is easily generated from the
data itself by applying a different random permutation to the data values
of each of the variables.

As discussed above, unsupervised learning is concerned with revealing
properties of the data density g(x). Each technique focuses on a particu-
lar property or set of properties. Although this approach of transforming
the problem to one of supervised learning (14.10)–(14.14) seems to have
been part of the statistics folklore for some time, it does not appear to
have had much impact despite its potential to bring well-developed su-
pervised learning methodology to bear on unsupervised learning problems.
One reason may be that the problem must be enlarged with a simulated
data set generated by Monte Carlo techniques. Since the size of this data
set should be at least as large as the data sample N0 ≥ N , the compu-
tation and memory requirements of the estimation procedure are at least
doubled. Also, substantial computation may be required to generate the
Monte Carlo sample itself. Although perhaps a deterrent in the past, these
increased computational requirements are becoming much less of a burden
as increased resources become routinely available. We illustrate the use of
supervising learning methods for unsupervised learning in the next section.

14.2.5 Generalized Association Rules

The more general problem (14.2) of finding high-density regions in the data
space can be addressed using the supervised learning approach described
above. Although not applicable to the huge data bases for which market
basket analysis is feasible, useful information can be obtained from mod-
erately sized data sets. The problem (14.2) can be formulated as finding
subsets of the integers J ⊂ {1, 2, . . . , p} and corresponding value subsets
sj , j ∈ J for the corresponding variables Xj , such that

P̂r

⋂
j∈J

(Xj ∈ sj)

 =
1
N

N∑
i=1

I

⋂
j∈J

(xij ∈ sj)

 (14.16)

is large. Following the nomenclature of association rule analysis, {(Xj ∈
sj)}j∈J will be called a “generalized” item set. The subsets sj correspond-

450 14. Unsupervised Learning

ing to quantitative variables are taken to be contiguous intervals within
their range of values, and subsets for categorical variables can involve more
than a single value. The ambitious nature of this formulation precludes a
thorough search for all generalized item sets with support (14.16) greater
than a specified minimum threshold, as was possible in the more restric-
tive setting of market basket analysis. Heuristic search methods must be
employed, and the most one can hope for is to find a useful collection of
such generalized item sets.

Both market basket analysis (14.5) and the generalized formulation (14.16)
implicitly reference the uniform probability distribution. One seeks item
sets that are more frequent than would be expected if all joint data values
(xl, x2, . . . , xN) were uniformly distributed. This favors the discovery of
item sets whose marginal constituents (Xj E s 3) are individually frequent,
that is, the quantity

is large. Conjunctions of frequent subsets (14.17) will tend to appear more
often among item sets of high support (14.16) than conjunctions of margin-
ally less frequent subsets. This is why the rule vodka + cav ia r is not likely
to be discovered in spite of a high association (lift); neither item has high
ma.rginal support, so that their joint support is especiajly small. Reference
to the uniform distribution can cause highly frequent item sets with low
associations among their constituents to dominate the collection of highest
support item sets.

Highly frequent subsets sj are formed as disjunctions of the most fre-
quent Xj-values. Using the product of the variable marginal data densities
(14.15) as a reference distribution removes the preference for highly fre-
quent values of the individual variables in the discovered item sets. This is
because the density ratio g(x)/go (x) is uniform if there are no associations
among the variables (complete independence), regardless of the frequency
distribution of the individual variable values. Rules like vodka + caviar

would have a chance to emerge. It is not clear however, how to incorporate
rcfcrcncc distributions othcr than thc uniform into thc Apriori algorithm.
As explained in Section 14.2.4, it is straightforward to generate a sample
from the product density (14.15), given the original data set.

After choosing a reference distribution, and drawing a sample from it
as in (14.11), one has a supervised learning problem with a binary-valued
output variable Y E { O , l) . The goal is to use this training data to find
regions

14.2 Association Rules 451

for which the target function p(x) = E(Y I x) is relatively large. In addition,
one might wish t;o req~iire fhat; the dnta slipport; of these regions

not be too small.

14.2.6 Choice of Supervisd Learning Meihod

The regiom (14.18) are defined by conjunctive rules. Hence supervised
methods that learn such rules would be most appropriate in this context.
The terminal nodes of a CART decision tree are defined by rules precisely
of the form (14.18). Applying CART to the pooled data (14.11) will pro-
duce a decision tree that attempts to model the target (14.10) over the
entire data space by a disjoint set of regions (terininal nodes). Each region
is defined by a rule of the form (14.18). Those terminal nodes t with high

are candidates for high-support generalized item sets (14.16). The actual
(data) support is given by

where Nt is the number of (pooled) observations within the region repre-
sented by the terminal node. By examining the resulting decision tree, one
might discover interesting generalized item sets of relatively high-support.
These can then be partitioned into antecedents and consequents in a search
for generalized association rules of high coddence and/or LiR.

Another natural learning method for this purpose is the patient rule
induction method PRIM describsd in Setion 9.3. PRIM also produces
rules precisely of the form (14.18), but it is especially designed for finding
high-support regions that maximize the average target (14.10) value within
them, rather than trying to model the target function over the entire data
spacc. It also providcs morc control ovcr thc support/avcragctargc~vduc
tradeoff.

14.2.7 Example: Market Basket Analysis (Continu&)
We illustrate the use of PRIM on the demographics data of Table 14.1.

Three of the high-support generalized item sets emerging from the PRIM
analysis were the following:

452 14. Unsupervised Learning

Item set 1: Support= 24%. marital status = married
householder status = own

type of home �= apartment


Item set 2: Support= 24%.

age ≤ 24
marital status ∈ {living together-not married, single}

occupation /∈ {professional, homemaker, retired}
householder status ∈ {rent, live with family}


Item set 3: Support= 15%.

householder status = rent
type of home �= house

number in household ≤ 2
number of children = 0

occupation /∈ {homemaker, student, unemployed}
income ∈ [$20,000, $150,000]


Generalized association rules derived from these item sets with confidence
(14.8) greater than 95% are the following:

Association rule 1: Support 25%, confidence 99.7% and lift 1.35.[
marital status = married

householder status = own

]
⇓

type of home �= apartment

Association rule 2: Support 25%, confidence 98.7% and lift 1.97. age ≤ 24
occupation /∈ {professional, homemaker, retired}

householder status ∈ {rent, live with family}


⇓

marital status ∈ {single, living together-not married}

Association rule 3: Support 25%, confidence 95.9% and lift 2.61.[
householder status = own

type of home �= apartment

]
⇓

marital status = married

14.3 Cluster Analysis 453

Association rule 4: Support 15%, confidence 95.4% and lift 1.50.
householder status = rent

type of home �= house
number in household ≤ 2

occupation /∈ {homemaker, student, unemployed}
income ∈ [$20,000, $150,000]


⇓

number of children = 0

There are no great surprises among these particular rules. For the most
part they verify intuition. In other contexts where there is less prior in-
formation available, unexpected results have a greater chance to emerge.
These results do illustrate the type of information generalized association
rules can provide, and that the supervised learning approach, coupled with
a ruled induction method such as CART or PRIM, can uncover item sets
exhibiting high associations among their constituents.

How do these generalized association rules compare to those found earlier
by the Apriori algorithm? Since the Apriori procedure gives thousands of
rules, it is difficult to compare them. However some general points can be
made. The Apriori algorithm is exhaustive—it finds all rules with support
greater than a specified amount. In contrast, PRIM is a greedy algorithm
and is not guaranteed to give an “optimal” set of rules. On the other hand,
the Apriori algorithm can deal only with dummy variables and hence could
not find some of the above rules. For example, since type of home is a
categorical input, with a dummy variable for each level, Apriori could not
find a rule involving the set

type of home �= apartment.

To find this set, we would have to code a dummy variable for apartment
versus the other categories of type of home. It will not generally be feasible
to precode all such potentially interesting comparisons.

14.3 Cluster Analysis

Cluster analysis, also called data segmentation, has a variety of goals. All
relate to grouping or segmenting a collection of objects into subsets or
“clusters,” such that those within each cluster are more closely related to
one another than objects assigned to different clusters. An object can be
described by a set of measurements, or by its relation to other objects.
In addition, the goal is sometimes to arrange the clusters into a natural
hierarchy. This involves successively grouping the clusters themselves so

454 14. Unsupervised Learning

FIGITRE 14.4. Simulated ddo in tlac plane, cludmd iato thw c l ~ a c s (wpm-
sepated by &, blue a d p e n) the K - m e a n s dudering dgmithm

that at each level of the hierarchy, cluters within the same group are more
similar to each other than those in different groups.

Cluatcr analysis is also uscd to form dcscriptivc statistics to aaccrtain
whether or not the data consists of a set distinct subgroups, each group
representing objects with subtantially different properties. Thia latter goal
requires an assessment of the degree of difference between the objects as-
signed to the respective clusters.

Central to all of the goals of cluster analysis is the notion of the degree of
similarity (or dissimilarity) between the individual objects being clustered.
A clustering method attempts to p u p the objects based on the definition
or tiiLuil&-ily tiupplied lu it. Ti& ody WILL^ h o ~ u truLjecl kusllet cut~dd-

eratiom. The situation is somewhat similar to the speczcation of a low or
cost function in prediction problems (supervised learning). There the cmt
associated with an inaccurate prediction depends on considerations outside
the data.

Figure 14.4 shows some simulated data clustered into three groups via
the popular K-meam algorithm. In this case two of the clusters are not
well separated, so that "segment ation" more accurately describes the part
of this process than Uclustering." K-means clustering starts with guesses
for the three cluster centers. Then it alternates the following s t e p until
convergence:

for each data point, the closest cluster center (in Euclidean distance)
is identified;

14.3 Cluster Analysis 455

a each cluster center is replaced by the coordinatewise average of all
daka points that are ches t ko it.

We describe K-means clustering in more detail later, including the prok
lem of how to choose the number of clusters (three in this example). K-
mean8 clirsteting is a, fnp-dn~~~n, ptncedirre, while nkhet clirstet a.pprna~hes
that we discuss are bottomup. Fundamental to all clustering techniques is
the choice of distance or dissimilarity measure between two objects. We
fist discuss distance measures before describing a variety of algorithms for
clustering.

14.9.1 Pmxinaity Matrices
Sometimes the data is represented directly in terms of the pro&@ (alike
nem nr a;Riniky) h e h e m pair8 nf nhjeda. Thme can he either similfirifies nt
dissimiltavities (merence or lack of &@). For example, in social science
experiments, participants are asked to judge by how much certain objects
differ from one another. Dissimilarities can then be computed by averaging
over the collection of such judgments. This type af data can be represented
by an N x N matrix D, where N is the number of objects, and each element
diit records the proximity between the ith and i'th objects. This matrix is
then provided as input to the clustering algorithm.

Most algorithms presume a matrix of dissimilarities with nonnegative
entries and zero diagonal elements: dii = 0, i = 1,2, . . . , N. If the original
data were collected ss similarities, a suitable mono tone -dec ree func-
tion can be used to convert them to dissimilarities. Also, most algorithms
nsaumc ayrnmctric dissimilarity matriccs, so if thc original matrix D is
not symmetric it must be replaced by (D + DT)/2. Subjectively judged
dissimilarities are seldom dktances in the strict sense, since the triangle
inequality &it 5 t&k + &lk, for all k E (1,. . . , N) does not hold. Thus,
some algorithm that mume d i s t a n c ~ cannot be used with such data.

14.9.2 Dissimilarities Based on Attributes
Most often we have measurements xij for i = 1 , 2 , . . . , N , on variables
j = 1,2, . . . , p (alao callcd ottfibutcs). Sincc most of thc popular cluatcring
algorithms take a dissimilarity matrix as their input, we must first construct
pairwise dissimilarities between the ohervations. In the mmt common case,
we define a dissimilarity dj(xij, j) between values of the j th attribute,
and then define

456 14. Unsupervised Learning

as the dissimilarity between objects i and i′. By far the most common
choice is squared distance

dj(xij , xi′j) = (xij − xi′j)2. (14.21)

However, other choices are possible, and can lead to potentially different
results. For nonquantitative attributes (e.g., categorical data), squared dis-
tance may not be appropriate. In addition, it is sometimes desirable to
weigh attributes differently rather than giving them equal weight as in
(14.20).

We first discuss alternatives in terms of the attribute type:

• Quantitative variables. Measurements of this type of variable or at-
tribute are represented by continuous real-valued numbers. It is nat-
ural to define the “error” between them as a monotone-increasing
function of their absolute difference

d(xi, xi′) = l(|xi − xi′ |).

Besides squared-error loss (xi−xi′)2, a common choice is the identity
(absolute error). The former places more emphasis on larger differ-
ences than smaller ones. Alternatively, clustering can be based on the
correlation

ρ(xi, xi′) =

∑
j(xij − x̄i)(xi′j − x̄i′)√∑

j(xij − x̄i)2
∑

j(xi′j − x̄i′)2
, (14.22)

with x̄i =
∑

j xij/p. Note that this is averaged over variables, not ob-
servations. If the inputs are first standardized, then

∑
j(xij−xi′j)2 ∝

2(1− ρ(xi, xi′)). Hence clustering based on correlation (similarity) is
equivalent to that based on squared distance (dissimilarity).

• Ordinal variables. The values of this type of variable are often repre-
sented as contiguous integers, and the realizable values are considered
to be an ordered set. Examples are academic grades (A, B, C, D, F),
degree of preference (can’t stand, dislike, OK, like, terrific). Rank
data are a special kind of ordinal data. Error measures for ordinal
variables are generally defined by replacing their M original values
with

i− 1/2
M

, i = 1, . . . ,M (14.23)

in the prescribed order of their original values. They are then treated
as quantitative variables on this scale.

• Categorical variables. With unordered categorical (also called nomi-
nal) variables, the degree-of-difference between pairs of values must

14.3 Cluster Analysis 457

be delineated explicitly. If the variable assumes M distinct values,
khme can he arranged in rt symmetric M x M makrix wikh elements
L,,) = L,),, L,, = 0, L,,) 2 0. The mmt common choice is L,,) = 1
for all r # r, while unequal losses can be used to emp- some
errors more than others.

Next we define a procedure for combining the pindividual attribute dissim-
ilarities dj(xij, xirj), j = 1,2,. . . , p into a single overall measure of dissim-
ilarity D(xi, xi,) between two objects or observations (xi, xi,) possessing
the respective attribute values. This is nearly always done by means of a
weighted average (convex combination)

Here wj is a weight assigned to the jth attribute regulating the relative
iduence of that variable in determining the overall dissimilarity between
objects. This choice should be based on subject matter considerations.

It is important to realize that setting the weight wj to the same value
for each variable (say, wj = 1 V j) does not necessarily give all attributes
equal influence. The influence of the jth attribute X j on object dissimilarity
D (xi, xi)) (14.24) depends upon its relative contribution to the average
object dissimilarity measure over all pairs of observations in the data set

with

being the average dissimilarity on the j th attribute. Thus, the relative in-
fluence of the jth variable is 211j - 4, and setting I I I ~ - 1/4 wnlild give all
attributes equal influence in characterizing overall dissimilarity between o b
jmks. Fnr ma,mple, wifh p qirantita.five msia.hlm and quar red-ermr disfance
used for each coordinate, then (14.24) becomes the (weighted) squared Eu-
clidean distance

458 14. Unsupervised Learning

FIGURE 14.6. Simulated data: on the left, K-meam clustering (wdh K=2) hlls
been applied to the raw data. The two mlms indicate fhe clzsskr merrsberrrhips. One
the *ght, the features were fir& dandadized before dudering. This is equivalent
to using feature weights 1/[2. var(Xj)]. The standadkation has o b $ m d the two
wdksepamted groups. Note that mch plot uses the same w i t s i n the ho&o&d
and vedd axerr.

between pairs of points in an IRF, with the quantitative variables as axes.
In this case (14.25) becomes

where varj is the sample estimate of Var(Xj). Thus, the relative impor-
tance of each such variable is proportional to its variance over the data
set. In general, setting wj = I/& for all attributes, irrespective of type,
will cause each one of them to equally influence the overall dissimilarity
between pairs of objects (xi,xi~). Although this may seem reasonable, and
is often recommended, it can be highly counterproductive. If the goal is to
segment the data into group of similar objects, all attributes may not con-
tribute equally to the (problem-dependent) notion of dissimilarity between
objects. Some attribute value differences may reflect greater actual object
dissimilarity in the context of the problem domain.

If the goal is to discover natural groupings in the data, some attributes
may exhibit more of a grouping tendency than others. Variables that are
more relevaat in separating the groups should be assigned a higher influ-
ence in de6ning object dissimilarity. Giving all attributes equal influence
in this case will tend to obscure the groups to the point where a clustering
algorithm cannot uncover them. Figure 14.5 shows an example.

14.3 Cluster Analysis 459

Although simple generic prescriptions for choosing the individual at-
krib~~ke dissimilarities dj(zij, ql j) and kheir weights TI)^ can be cmmforting,
there is no substitute for careful thought in the context of each individ-
ual problem. Specifying an appropriate dissimilarity measure is far more
important in obtaining success with clustering than choice of clustering
algorithm. This aspect of the problem is emphasized less in the cluster-
ing literature than the algorithms themselves, since it depends on domain
knowledge specifim and is less amenable to general research.

Finally, often okrvations have missing values in one or more of the
attributes. The most common method of incorporating missing values in
dissimilarity calculations (14.24) is to omit each observation pair xij, j

having at least one value missing, when computing the dissimilarity b e
tween observations xi and s:. This method can fail in the circumstance
whcn both observations havc no mcasurcd valucs in common. In this cnsc
both observations could be deleted h m the analysis. Alternatively, the
missing values could be imputed using the mean or median of each attribute
over the nonmissing data. For categorical variables, one could consider the
value "missing" as just another categorical value, if it were reasonable to
consider two objects as being similar if they both have missing values on
the same variables.

14.3.4 Clustering Algorithms
The goal of cluster analysis is to partition the observations into groups
(Uclusters") so that the pairwise dissimilarities between those assigned to
the same cluster tend to be smaller than those in d8erent clusters. Clus-
tering algorithm fall into three &tinct types: combinatorid algorithms,
mixture modeling, and mode seeking.
Combinratoriral ralgo~thms work dircctly on thc obxrvcd data with no

direct reference to an underlying probability model. Mixture modeling s u p
pcses that the data is an i.i.d sample from some population described by a
probability density function. This density function is characterhed by a p&
rameterized model taken to be a mixture of component density functions;
each component density describes one of the clusters. This model is then fit
to the data by maximum likelihood or corresponding I3ayesian approaches.
Mode seekers ("bump hunters") take a nonpar metric perspective, attempt-
i t g Lu JitecLly etrLitnaLe JitrlitlcL ~uuJeti ul lhe p t u l ~ a l ~ i l i l ~ detltiiLy Iuilcliutl.
Observations "closest" to each respective mode then define the individual
clusters.

Mixture modeling is described in Section 6.8. The PRIM algorithm, dis-
cussed in Sections 9.3 and 14.2.5, is an example of mode seeking or "bump
hunting." We discuss combinatorial algorithms next.

460 14. Unsupervised Learning

4.9.5 Comb~~.tto.Pial Algom ".,
i h e m a t popular clustering algorithms directly assign each observation
to a group or cluster without regard to a probability model describing the
data. Each observation is uniquely labeled by an integer i E (1, . . a , N) .
A prespecified number of clusters K < N is postulated, and each one is
labeled by an integer k E (1,. . . , K). Each okrvation is assigned to one
and only one cluster. These assignments can be characterized by a many-
b o n e mapping, or encoder k = C(i), that assigns the ith observation to
the kth cluster. One seeks the particular encoder C*(i) that achieves the
required goal (details below), based on the dissimilarities d(q, xi!) between
every pair of observations. These are specified by the user as described
above. Generally, the encoder C(i) is explicitly delineated by giving its
value (cluster assignment) for each observation i . Thus, the "parameters"
of the procedure are the individual cluster assignments for each of the N
observations. These are adjusted so as to minimize a uloss" function that
characterizes the degree to which the clustering goal is n o t met.

One approach is to directly specify a mathematical loss fundion and
attempt to minimize it through some combinatorial optimization algorithm.
Since the goal is to assign close points to the same cluster, a natural loss
(or "energy") function would be

This criterion characterizes the extent to which observations assigned to
the same cluster tend to be close to one another. It is sometimes referred
to as the "within cluster" point scatter since

where Hait = d(xa, xi,). Here T is the total point scatter, which is a constant
given the data, independent of cluster assignment. The quantity

is the betweemcluster point scatter. This will tend to be large when obser-
vations assigned to different clusters are far apart. Thus one has

14.3 Cluster Analysis 461

and minimking W(C) is equivalent to maximizing B(L').
Chister analysis by comhinatorial optimization is straightforward in prin-

ciple. One simply rninimjzes W or equivalently maximizes B over all pos-
sible assignments of the N data points to K clusters. Unfortunately, such
optimization by complete enumeration is feasible only for very small data
sets. The number of distinct assignments is (Jain and Dub-, 1988)

For example, S(10,4) = 34,105 which is quite feasible. But, S(N, K) grows
very rapidly with increasing values of its arguments. Already S(19,4) -.
lo1', and most clustering problems involve much larger data sets than
N = 19. For this reason, practical clustering algorithms are able to examine
only a very small fraction of all possible encoders E = C(i). The goal is to
identify a small subset that is likely to contain the optimal one, or at least
a good suboptimal partition.

Such feasible strategies are based on iterative greedy descent. An initial
partition is spe5ed. At each iterative step, the cluster assignments are
changed in such a way that the value of the criterion is improved from
its previous value. Clustering algorithms of this type differ in their pre-
scriptions for modifying the cluster assignments at each iteration. When
the prescription is unable to provide an improvement, the algorithm ter-
minates with the current assignments as its solution. Since the assignment
of observations to clusters at any iteration is a perturbation of that for the
previous iteration, only a very small fraction of all possible assignments
(14.30) are examined. However, these algorithms converge to lorn1 optima
which may be highly suboptimal when compared to the global optimum.

The K-means algorithm is one of the most popular iterative descent clus-
tering methods. It is intended for situations in which all variables are of
the quantitative type, and squared Euclidean distance

is chosen as the dissimilarity measure. Note that weighted Euclidean dis-
tance can be used by redefining the xij values (Exercise 14.1).

The within-point ~catter (14.28) can be written a~

462 14. Unsupervised Learning

Algorithm 14.1 K-means clustering.

1. For a given cluster assignment C, the total cluster variance (14.33) is
minimized with respect to {m1, . . . ,mK} yielding the means of the
currently assigned clusters (14.32).

2. Given a current set of means {m1, . . . ,mK}, (14.33) is minimized by
assigning each observation to the closest (current) cluster mean. That
is,

C(i) = argmin
1≤k≤K

||xi −mk||2. (14.34)

3. Steps 1 and 2 are iterated until the assignments do not change.

=
K∑

k=1

Nk

∑
C(i)=k

||xi − x̄k||2, (14.31)

where x̄k = (x̄1k, . . . , x̄pk) is the mean vector associated with the kth
cluster, and Nk =

∑N
i=1 I(C(i) = k). Thus, the criterion is minimized by

assigning the N observations to the K clusters in such a way that within
each cluster the average dissimilarity of the observations from the cluster
mean, as defined by the points in that cluster, is minimized.

An iterative descent algorithm for solving

C∗ = min
C

K∑
k=1

Nk

∑
C(i)=k

||xi − x̄k||2

can be obtained by noting that for any set of observations S

x̄S = argmin
m

∑
i∈S

||xi −m||2. (14.32)

Hence we can obtain C∗ by solving the enlarged optimization problem

min
C,{mk}K

1

K∑
k=1

Nk

∑
C(i)=k

||xi −mk||2. (14.33)

This can be minimized by an alternating optimization procedure given in
Algorithm 14.1.

Each of steps 1 and 2 reduces the value of the criterion (14.33), so that
convergence is assured. However, the result may represent a suboptimal
local minimum. The algorithm of Hartigan and Wong (1979) goes further,
and ensures that there is no single switch of an observation from one group
to another group that will decrease the objective. In addition, one should

14.3 Cluster Analysis 463

start the algorithm with many different random choices for the starting
means, and choose the solution having smallest value of the objective func-
tion.

Figure 14.6 shows some of the K-means iterations for the simulated data
of Figure 14.4. The centroids are depicted by “O”s. The straight lines show
the partitioning of points, each sector being the set of points closest to
each centroid. This partitioning is called the Voronoi tessellation. After 20
iterations the procedure has converged.

14.3.7 Gaussian Mixtures as Soft K-means Clustering

The K-means clustering procedure is closely related to the EM algorithm
for estimating a certain Gaussian mixture model. (Sections 6.8 and 8.5.1).
The E-step of the EM algorithm assigns “responsibilities” for each data
point based in its relative density under each mixture component, while
the M-step recomputes the component density parameters based on the
current responsibilities. Suppose we specify K mixture components, each
with a Gaussian density having scalar covariance matrix σ2I. Then the
relative density under each mixture component is a monotone function of
the Euclidean distance between the data point and the mixture center.
Hence in this setup EM is a “soft” version of K-means clustering, making
probabilistic (rather than deterministic) assignments of points to cluster
centers. As the variance σ2 → 0, these probabilities become 0 and 1, and
the two methods coincide. Details are given in Exercise 14.2. Figure 14.7
illustrates this result for two clusters on the real line.

14.3.8 Example: Human Tumor Microarray Data

We apply K-means clustering to the human tumor microarray data de-
scribed in Chapter 1. This is an example of high-dimensional clustering.
The data are a 6830 × 64 matrix of real numbers, each representing an
expression measurement for a gene (row) and sample (column). Here we
cluster the samples, each of which is a vector of length 6830, corresponding
to expression values for the 6830 genes. Each sample has a label such as
breast (for breast cancer), melanoma, and so on; we don’t use these labels
in the clustering, but will examine posthoc which labels fall into which
clusters.

We applied K-means clustering with K running from 1 to 10, and com-
puted the total within-sum of squares for each clustering, shown in Fig-
ure 14.8. Typically one looks for a kink in the sum of squares curve (or its
logarithm) to locate the optimal number of clusters (see Section 14.3.11).
Here there is no clear indication: for illustration we chose K = 3 giving the
three clusters shown in Table 14.2.

We see that the procedure is successful at grouping together samples of
the same cancer. In fact, the two breast cancers in the second cluster were

464 14. Unsupervised Learning

Initial Centroids

Iteration Number 2

Initial Partition

lteration Number 20

FIGURE 14.6. Successive C t e d o n s of the K-means clsfer ing dgmithna for
Uae simdated data of F i p m 14.4.

TABLE 14.2. Human h m o r data: number of cancer m e s of each type, in each
of the three clusters from K-means c l s t e ~ n g .

cluster
1
2
3
Cluster
1
2
3

Breast CNS Colon K562 Leukemia MCF7

3 5 0 0 0 0
2 0 0 2 6 2
2 0 7 0 0 0

Msl- NSCLC Ovarian Pro~tatm Renal U h m
1 7 6 2 9 1
7 2 0 0 0 0
0 0 0 0 0 0

14.3 Cluster Analysis 465

FIGl Left panels: two G a e ~ s s i m densities go(x) and g l (x) (hiwe and
orange, ma ~ r r e m l line, and a: single dafa pint (pxn dot) at x = 0.5. T h e
d o r e d s q u a w mre p b E d mt x = -1.0 and x = 1.0, the m e m s of each dewi£y.
Righi m s e b ; the rebtive d m i f es go (x) / (go (x) +gl (x)) nsd gt (x) /(go (x)+gt (x)) ,
&led the 'bpowibi l i t ies" of mch clwter, for this data point. I n the top pan&,
the Gaussian standard deviatim u = 1.0; in the boidorn p n e b u = 0.2. The
EM d g o d h m uses Uaese w p n s i b i l i t i e s t o make m 'haft" m s i g n m m t of each
data point t o erach of the £wo dusters. W h e n u is fairly lmge, the responsibitities
can be near 0.5 (they are 0.36 and 0.64 in Uae h p riglat pmad). A s u 4 0, the
m~opa&bdities + 1, for the d u d w center closest to the h q e t point, and 0 for
all other c iwkrs . This %ad" assig~arnemt is seen in Be bottom eght jmnel.

466 14. Unsupervised Learning

6

Number of Custes K

FIGURE 14.8. Totd withia-clwkr a m of squares for K-maw dudering a p
plid to Uae human hmor r n i c m m y data.

later found to be misdiagnmd and were melanomas that had metastesized.
However, K-means clustering has shortcomings in this application. For one,
it does not give a linear ordering of objects within a cluster: we have simply
listed them in alphabetic order above. Secondly, as the number of clusters
K is changed, the cluster memberships can change in arbitrary ways. That
is, with say four clusters, the clusters need not be nested withh the three
clusters above. For these reasons, hierarchical clustering (described later),
is probably preferable for this application.

14.9.9 Vector Quantization

Thc K-mcans clustering algorithm rcprcscnts o, kcy tool in thc appmcntly
unrelated area of image and signal compression, particularly in vector pa*
tacstion or VQ (Gersho and Gray, 1992). The left image in Figure 14.9t is a
Q i t k d photograph of a famous statistician, Sir Ronald Fisher. It consists
of 1024 x 1024 pixels, where each pixel is a grayscale value ranging from 0
to 255, and hence requires 8 bits of storage per pixel. The entire image o c
cupies 1 megabyte of storage. The center image is a VQ-compressed version
of the left panel, and requires 0.239 of the storage (at some loss in quality).
Tlle t-ighL ituzlge iti co~uptetrtrtxl evetl hut-e, aid t-equetr ody 0.0625 u1 Lhe
storage (at a considerable loss in quality).

The version or VQ iruple~uenld here h s l breaks lhe image inlo small
blocks, in this case 2 x 2 blocks of pixels. Each of the 512 x 512 blocks of four

tThh example was prepared by Maya Gupta.

14.3 Cluster Analysis 467

FIGZ : 14.9. Sir Rondd A. Fisher (189&1962) was one of the founders
of modem day statistics, to whom we owe r n a z i m u ~ l ~ l i h o o d , suficiency, and
many other fundamental concepts. The image on the left is a 1024 x 1024 p p m l e
image at 8 bits per pixel. The center image is the mal t of 2 x 2 block VQ, wring
200 code vectors, with a compression rate of 1.9 bits/pkI. The p.ight image uses
only four code vectors, with a compression rate of 0.50 bits/p&eJ

numbers is regarded as a vector in lFt4. A K-means clustering algorithm
(also known as Lloyd's algorithm in this context) is run in this space.
The center image uses K = 200, while the right image K = 4. Each of
the 512 x 512 pixel blocks (or points) is approximated by its closest cluster
centroid, known as a wdeword. The clustering process is called the encoding
step, and the collection of centroids is called the codebook

To represent the approximated image, we need to supply for each block
the identity of the codebook entry that approximates it. This will require
log2(K) bits per block. We also need to supply the codebook itself, which
is K x 4 real numbers (typically negligible). Overall, the storage for the
compressed image amounts to log2(K)/(4 . 8) of the original (0.239 for
K = 200, 0.063 for K = 4). This is typically expressed as a mte in bits
per pixel: log2(K)/4, which are 1.91 and 0.50, respectively. The process
of constructing the approximate image from the centroids is called the
decoding step.

Why do we expect VQ to work at all? The reason is that for typical
everyday images like photographs, many of the blocks look the same. In
this case there are many almost pure white blocks, and similarly pure gray
blocks of various shades. These require only one block each to represent
them, and then multiple pointers to that block.

What we have described is known as lossy compression, since ow im-
ages are degraded versions of the original. The degradation or distortion is
usually measured in terms of mean squared error. In this case D = 0.89
for K = 200 and D = 16.95 for K = 4. More generally a rate/distortion
curve would be used to assess the tradeoff. One can also perform lossless
compression using block clustering, and still capit& on the repeated pat-

468 14. Unsupervised Learning

terns. If you took the original image and losslessly compressed it, the best
you would do is 4.48 bits per pixel.

We claimed above that log2(K) bits were needed to identify each of the K
codewords in the codebook. This uses a fixed-length code, and is inefficient
if some codewords occur many more times than others in the image. Using
Shannon coding theory, we know that in general a variable length code
will do better, and the rate then becomes −

∑K
�=1 p� log2(p�)/4. The term

in the numerator is the entropy of the distribution p� of the codewords
in the image. Using variable length coding our rates come down to 1.42
and 0.39, respectively. Finally, there are many generalizations of VQ that
have been developed: for example, tree-structured VQ finds the centroids
with a top-down, 2-means style algorithm, as alluded to in Section 14.3.12.
This allows successive refinement of the compression. Further details may
be found in Gersho and Gray (1992).

14.3.10 K-medoids

As discussed above, the K-means algorithm is appropriate when the dissim-
ilarity measure is taken to be squared Euclidean distance D(xi, xi′) (14.74).
This requires all of the variables to be of the quantitative type. In addi-
tion, using squared Euclidean distance places the highest influence on the
largest distances. This causes the procedure to lack robustness against out-
liers that produce very large distances. These restrictions can be removed
at the expense of computation.

The only part of the K-means algorithm that assumes squared Eu-
clidean distance is the minimization step (14.32); the cluster representa-
tives {m1, . . . ,mK} in (14.33) are taken to be the means of the currently
assigned clusters. The algorithm can be generalized for use with arbitrarily
defined dissimilarities D(xi, xi′) by replacing this step by an explicit opti-
mization with respect to {m1, . . . ,mK} in (14.33). In the most common
form, centers for each cluster are restricted to be one of the observations
assigned to the cluster, as summarized in Algorithm 14.2. This algorithm
assumes attribute data, but the approach can also be applied to data de-
scribed only by proximity matrices (Section 14.3.1). There is no need to ex-
plicitly compute cluster centers; rather we just keep track of the indices i∗k.

Solving (14.32) for each provisional cluster k requires an amount of com-
putation proportional to the number of observations assigned to it, whereas
for solving (14.35) the computation increases to O(N2

k). Given a set of clus-
ter “centers,” {i1, . . . , iK}, obtaining the new assignments

C(i) = argmin
1≤k≤K

dii∗k
(14.37)

requires computation proportional to K ·N as before. Thus, K-medoids is
far more computationally intensive than K-means.

14.3 Cluster Analysis 469

Algorithm 14.2 K-mdohds clustedng.

1. For a given cluster assignment C find the observation in the cluster
minimizing total distance to other points in that cluster:

i; = argmin D(xi, xi)).
: C) , 1-

Then pnk = x~;, k = 1,2, . . . , K are the current estimates of the
cluster centers.

2. Given a current set of cluster centers {ml,. . . , mK), minimize the t*
tal error by assigming each obervation to the closest (current) clmter
center:

3. Iterate steps 1 and 2 until the assignments do not change.

Alternating between (14.35) and (14.37) represents a particular heuristic
search strategy for trying to solve

Kaufman and Rousseeuw (1990) propose an alternative strategy for directly
solving (14.38) that provisionally exchanges each center ik with an obser-
vation that is not currently a center, selecting the exchange that produces
khe g~ea,tmf; tedirctinn in the mlire nf the miterinn (1 4.38). T h i ~ i~ tepea.t;ed
until no advantageous exchanges can be found. Massart et al. (1983) derive
a branch-and-bound combinatorial method that finds the global minimum
of (14.38) that is practical only for very small data sets.

'I'his example, taken from Kaufman and busseeuw (1990), comes from a
study in which political science students were asked to provide pairwise dis-
similarity measures for 12 countries: Belgium, Brazil, Chile, Cuba, Egypt,
France, India, Israel, United States, Union of Soviet Socialist Republics,
Yugoslavia and Zaire. The average dissimilarity scores are given in %
ble 14.3. We applied brnedoid clustering to these dissimilarities. Note that
K-means clustering could not be applied because we have only distances
rather than raw okrvations. The left panel of Figure 14.10 shows the
dissimilarities reordered and blocked accordmg to the Fmedoid clustering.
The right panel is a twedimensional multidimensional scaling plot, with

470 14. Unsupervised Learning

TABLE 14.3. Data jhm a p o i i t i d science survey: values are average p d w i s e
dissimilarities of meusatries j h m a questionnaire given t o p o l i f i ~ l science shdenfs .

-
BRA
CHI
CUB
EGY
FRA
IND
ISR
USA
USS
YUG
x A1 -

BEL BRA CHI CUB EGY FRA IND ISR USA US6 YUG
5.58
7.00 6.50
7.08 7.00 3.83
4.83 5.08 8.17 5.83
2.17 5.75 6.67 6.92 4.92
6.42 5.00 5.58 6.00 4.67 6.42
3.42 5.50 6.42 6.42 5 .M 3.92 6.17
2.50 4.92 6.25 7.33 4.50 2.25 6.33 2.75
6.08 6.67 4.25 2.67 6.00 6.17 6.17 6.92 6.17
5.25 6.83 4.50 3.75 5.75 5.42 6.08 5.83 6.67 3.67
4.75 3.00 6.08 6.67 5 .M 5.58 4.83 6.17 5.67 6.50 6.92

the 3-medoid clusters assignments indicated by colors (multidimensional
scaling is discussed in Section 14.7.) Both plots show three well-separated
clusters, but the MDS display indicates that "Egypt" falls about halfway
between two clusters.

1 . 3 11 Practical Issues
In order to apply K-means or K-medoids one must select the number of
clusters K' and an initialization. The latter can be defined by specifying
an initial set of centers {ml,. . . , mK) or {il,. . . , iK) or an initial encoder
C(i). Usually specifying the centers h more convenient. Suggestions range
from simple random selection to a deliberate strategy based on forward
stepwise assignment. At each step a new center ik is chosen to minimize
the criterion (14.33) or (14.38), given the centers 6 1 , . . . ,ikPl chosen at
the previous steps. This continues for K steps, thereby producing K initial
centers with which to begin the optimization algorithm.

A choice for the number of clusters K depends on the goal. For data
segmentation K is usually defined as part of the problem. For example, a
company may employ K sales people, and the goal is to partition a cus-
tomer data base into K segments, one for each sales person, such that the
customers assigned to each one are as similar as possible. Often, however,
cluster analysis is used to provide a descriptive statistic for ascertaining the
extent to which the observatiom comprising the data base fall into natural
distinct groupings. Here the number of such groups K* is unknown and
one requires that it, as well as the group* themselves, be estimated from
the data.

Datebased methods for -timating K* typically examine the within-
cluster dissimilarity WK as a function of the number of clusters K. Separate

14.3 Cluster Analysis 471

Ern -

m -
lNn -

EW -

CUB -

B m - 1 - 7 a
8 - - EGY
V1
a
1 0 -
'CI

i
V1 7 -

Reordered Dlsslmllarlty Mablx

YUG
FRR

FIM MDS Coordinate

FIGURE 14.10. S v m y of covnhy dissinailarifies. Left p m l : dissinailarities
d e d and Mocked racmdiag to 3 - m e d ~ i d c l ss te~ag. H e d map is wded frwm
most similar (dad red) ik l a s t similar (bright red). Right panel: twed immiond
m d t i b m m i o n d smling plot, with 3-mdoid clmters indimhi by different m l m .

solutiom arc o b t h c d for K E {1,2, . . . , K,,). The corresponding d u e s
{Wl, W2,. . . , WK,,,) generally decrease with increasing K. This will be
Ihe case even when Ihe criIerio11 is evdusled OIL MI i11dependenL IesL sell
since a large number of cluster centers will tend to fill the feature space
densely and thus will be clwe to all data points. Thus cross-validation
techniques, so useful for model selection in supervised learning, cannot be
utilized in this context.

The intuition underlying the approach is that if there are actually K*
distinct groupings of the observations (as dehed by the dissimilarity me*
sure), then for K < K* the clusters returned by the algorithm will each
contain a subset of the true underlying groups. That is, the solution will
not assign observations in the same naturally occurring group to different
estimated clusters. To the extent that this is the case, the solution criterion
value will tend to decrease substantially with each succwsive increase in the
number of specified clusters, WK+~ < WK, as the natural group are suc-
cessively assigned to separate clusters. For K > K*, one of the estimated
clusters must partition at least one of the natural groups into two s u b
group. This will tend to provide a smaller decrease in the criterion as K is
further increased. Splitting a natural group, within which the observations
are all quite close to each other, reduces the criterion less than partitioning
the union of two well-separated groups into their proper constituents.

To the extent this scenario i4 realized, there will be a sharp decrease in
succwsive differences in criterion value, WK - WK+1, at K = K*. That
is, {WK - WKtl 1 K < K*) < {WK - WKtl 1 K 2 K*). An ti mate

472 14. Unsupervised Learning

K̂∗ for K∗ is then obtained by identifying a “kink” in the plot of WK as a
function of K. As with other aspects of clustering procedures, this approach
is somewhat heuristic.

The recently proposed Gap statistic (Tibshirani et al., 2001) compares
the curve logWK to the curve obtained from data uniformly distributed
over a rectangle containing the data. It estimates the optimal number of
clusters to be the place where the gap between the two curves is largest.
Essentially this is an automatic way of locating the aforementioned “kink.”
It also works reasonably well when the data fall into a single cluster, and
in that case will tend to estimate the optimal number of clusters to be one.
This is the scenario where most other competing methods fail.

Figure 14.11 shows the result of the Gap statistic applied to simulated
data of Figure 14.4. The left panel shows logWK for k = 1, 2, . . . , 8 clusters
(green curve) and the expected value of logWK over 20 simulations from
uniform data (blue curve). The right panel shows the gap curve, which is the
expected curve minus the observed curve. Shown also are error bars of half-
width s′K = sK

√
1 + 1/20, where sK is the standard deviation of logWK

over the 20 simulations. The Gap curve is maximized at K = 2 clusters. If
G(K) is the Gap curve at K clusters, the formal rule for estimating K∗ is

K∗ = argmin
K

{K|G(K) ≥ G(K + 1)− s′K+1}. (14.39)

This gives K∗ = 2, which looks reasonable from Figure 14.4.

14.3.12 Hierarchical Clustering

The results of applying K-means or K-medoids clustering algorithms de-
pend on the choice for the number of clusters to be searched and a starting
configuration assignment. In contrast, hierarchical clustering methods do
not require such specifications. Instead, they require the user to specify a
measure of dissimilarity between (disjoint) groups of observations, based
on the pairwise dissimilarities among the observations in the two groups.
As the name suggests, they produce hierarchical representations in which
the clusters at each level of the hierarchy are created by merging clusters
at the next lower level. At the lowest level, each cluster contains a single
observation. At the highest level there is only one cluster containing all of
the data.

Strategies for hierarchical clustering divide into two basic paradigms: ag-
glomerative (bottom-up) and divisive (top-down). Agglomerative strategies
start at the bottom and at each level recursively merge a selected pair of
clusters into a single cluster. This produces a grouping at the next higher
level with one less cluster. The pair chosen for merging consist of the two
groups with the smallest intergroup dissimilarity. Divisive methods start
at the top and at each level recursively split one of the existing clusters at
that level into two new clusters. The split is chosen to produce two new

14.3 Cluster Analysis 473

Number of Clusters

2 4 6 8

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

0.
0 •

• •

• •
•

• •

•

•
•

•
•

•
• •

Number of Clusters
G

ap

2 4 6 8

-0
.5

0.
0

0.
5

1.
0

•

•

•
•

• • •

•

lo
g

W
K

FIGURE 14.11. Left panel: observed (green) and expected (blue) values of
logWK for the simulated data of Figure 14.4. Both curves have been translated
to equal zero at 1 cluster. Right panel: Gap curve, equal to the difference between
the observed and expected values of logWK . The Gap estimate K

∗ is the smallest
K producing a gap within one standard deviation of the maximum; here K∗ = 2.

groups with the largest between-group dissimilarity. With both paradigms
there are N − 1 levels in the hierarchy.

Each level of the hierarchy represents a particular grouping of the data
into disjoint clusters of observations. The entire hierarchy represents an
ordered sequence of such groupings. It is up to the user to decide which
level (if any) actually represents a “natural” clustering in the sense that
observations within each of its groups are sufficiently more similar to each
other than to observations assigned to different groups at that level. The
Gap statistic described earlier can be used for this purpose.

Recursive binary splitting/agglomeration can be represented by a rooted
binary tree. The nodes of the trees represent groups. The root node repre-
sents the entire data set. The N terminal nodes each represent one of the
individual observations (singleton clusters). Each nonterminal node (“par-
ent”) has two daughter nodes. For divisive clustering the two daughters
represent the two groups resulting from the split of the parent; for agglom-
erative clustering the daughters represent the two groups that were merged
to form the parent.

All agglomerative and some divisive methods (when viewed bottom-up)
possess a monotonicity property. That is, the dissimilarity between merged
clusters is monotone increasing with the level of the merger. Thus the
binary tree can be plotted so that the height of each node is proportional
to the value of the intergroup dissimilarity between its two daughters. The

FIGURE 14.12. Dedmgmm from agglomemtive hierarchical ciwkP.sng with
average li&lsge to the human tumor micrmmy data.

terminal nodes representing individual observations are all plotted at zero
height. This type of graphical display is called a dendrogmm.

A denhogram provides a highly interpretable mmplete description of
the hierarchical clustering in a graphical format. This is one of the main
reasons for the popularity of hierarchical clustering methods.

For the microarray data, Figure 14.12 shows the dendrogram resulting
born agglomerative clustering with average linkage; agglomerative cluster-
ing and this example are discussed in more detail later in tkis chapter.
Cutting the dendrogr a m horizontally at a particular height partitions the
data into disjoint clusters represented by the vertical lines that intersect
it. These are the clusters that would be produced by terminating the prw
cedure when the optimal intergroup dissimilarity exceeds that threshold
cut value. Groups that merge at high values, relative to the merger values
of the subgroups contained within them lower in the tree, are candidates
for natural clusters. Note that tkis may occur at several different levels,
indicating a clustering hierarchy: that is, clusters nested within clusters.

14.3 Cluster Analysis 475

Such a dendrogram is often viewed as a graphical summary of the data
itself, rather than a description of the results of the algorithm. However,
such interpretations should be treated with caution. First, different hierar-
chical methods (see below), as well as small changes in the data, can lead
to quite different dendrograms. Also, such a summary will be valid only to
the extent that the pairwise observation dissimilarities possess the hierar-
chical structure produced by the algorithm. Hierarchical methods impose
hierarchical structure whether or not such structure actually exists in the
data.

The extent to which the hierarchical structure produced by a dendro-
gram actually represents the data itself can be judged by the cophenetic
correlation coefficient. This is the correlation between the N(N−1)/2 pair-
wise observation dissimilarities dii′ input to the algorithm and their corre-
sponding cophenetic dissimilarities Cii′ derived from the dendrogram. The
cophenetic dissimilarity Cii′ between two observations (i, i′) is the inter-
group dissimilarity at which observations i and i′ are first joined together
in the same cluster.

The cophenetic dissimilarity is a very restrictive dissimilarity measure.
First, the Cii′ over the observations must contain many ties, since only N−1
of the total N(N − 1)/2 values can be distinct. Also these dissimilarities
obey the ultrametric inequality

Cii′ ≤ max{Cik, Ci′k} (14.40)

for any three observations (i, i′, k). As a geometric example, suppose the
data were represented as points in a Euclidean coordinate system. In order
for the set of interpoint distances over the data to conform to (14.40), the
triangles formed by all triples of points must be isosceles triangles with the
unequal length no longer than the length of the two equal sides (Jain and
Dubes, 1988). Therefore it is unrealistic to expect general dissimilarities
over arbitrary data sets to closely resemble their corresponding cophenetic
dissimilarities as calculated from a dendrogram, especially if there are not
many tied values. Thus the dendrogram should be viewed mainly as a de-
scription of the clustering structure of the data as imposed by the particular
algorithm employed.

Agglomerative Clustering

Agglomerative clustering algorithms begin with every observation repre-
senting a singleton cluster. At each of the N −1 steps the closest two (least
dissimilar) clusters are merged into a single cluster, producing one less clus-
ter at the next higher level. Therefore, a measure of dissimilarity between
two clusters (groups of observations) must be defined.

Let G and H represent two such groups. The dissimilarity d(G,H) be-
tween G and H is computed from the set of pairwise observation dissim-
ilarities dii′ where one member of the pair i is in G and the other i′ is

476 14. Unsupervised Learning

Average Linkage Complete Li- Single Linkage

FIGURE 14.13. D e d w n a s from aggiornemiiw MemmMud c i w k ~ a g of law
man hrnor n a i c m m y ddrs.

in H. Single linkage (SL) agglomerative clustering takes the intergroup
dissimilarity to be that of the closest (least dissirnilarj pair

Ti& is Etlyo v1Le11 called lhe rbe~msl-~beigh'lQbvr Leh~ique. Cvmplel e lirklage
(CL) agglomerative clustering (&thest-neighbor technique) takes the in-
tergroup dissimilarity to be that of the furthest (most dissimilar) pair

Group average (GA) clustering uses the average dissimilarity between the
group

where NG and NH are the respective number of observations in each group.
Although there have been many other proposals for defining intergroup
dissimilarity in the context of agglomerative clustering, the above three are
the ones most commonly used. Figure 14.13 shows examples of all three.

If the data dissimilarities {&i,) exhibit a strong clustering tendency, with
e x h of the clusters being compact and well separated from others, then all

14.3 Cluster Analysis 477

three methods produce similar results. Clusters are compact if all of the
observations within them are relatively close together (small dissimilarities)
as compared with observations in different clusters. To the extent this is
not the case, results will differ.

Single linkage (14.41) only requires that a single dissimilarity dii′ , i ∈ G
and i′ ∈ H, be small for two groups G and H to be considered close
together, irrespective of the other observation dissimilarities between the
groups. It will therefore have a tendency to combine, at relatively low
thresholds, observations linked by a series of close intermediate observa-
tions. This phenomenon, referred to as chaining, is often considered a de-
fect of the method. The clusters produced by single linkage can violate the
“compactness” property that all observations within each cluster tend to
be similar to one another, based on the supplied observation dissimilari-
ties {dii′}. If we define the diameter DG of a group of observations as the
largest dissimilarity among its members

DG = max
i∈G
i′∈G

dii′ , (14.44)

then single linkage can produce clusters with very large diameters.
Complete linkage (14.42) represents the opposite extreme. Two groups

G and H are considered close only if all of the observations in their union
are relatively similar. It will tend to produce compact clusters with small
diameters (14.44). However, it can produce clusters that violate the “close-
ness” property. That is, observations assigned to a cluster can be much
closer to members of other clusters than they are to some members of their
own cluster.

Group average clustering (14.43) represents a compromise between the
two extremes of single and complete linkage. It attempts to produce rel-
atively compact clusters that are relatively far apart. However, its results
depend on the numerical scale on which the observation dissimilarities dii′

are measured. Applying a monotone strictly increasing transformation h(·)
to the dii′ , hii′ = h(dii′), can change the result produced by (14.43). In
contrast, (14.41) and (14.42) depend only on the ordering of the dii′ and
are thus invariant to such monotone transformations. This invariance is
often used as an argument in favor of single or complete linkage over group
average methods.

Kelly and Rice (1990) argue that group average clustering has a statis-
tical consistency property violated by single and complete linkage. Assume
we have attribute-value data X = (X1, . . . ,Xp) and that each cluster k is
a random sample from some population joint density pk(x). The complete
data set is a random sample from a mixture of K such densities. The group
average dissimilarity dGA(G,H) (14.43) is an estimate of∫ ∫

d(x, x′) pG(x) pH(x′) dx dx′, (14.45)

478 14. Unsupervised Learning

where d(x,x') is the dissimjlarity between points x and x' in the space
of akkrih~ike nllies. As khe sample size N approaches infinity dGA(G, H)
(14.43) approaches (14.45), which is a characteristic of the relationship
between the two densities pc (x) and p~ (x) . For single lirhge, dsL (G, H)
(14.41) approaches zero as N + ca independent of pG(x) and pH(x). For
complete linkage, GL (G, H) (14.42) becomes Mnite as N + m, again
independent of the two densities. Thus, it is not clear what aspects of the
population distribution are being estimated by dg~(G, H) and de~(G, H) .

Example: Human Cancer M i m a m y Daf a (Continued)

The left panel of Figure 14.13 shows the dendrogram resulting from average
linkage agglomerative clustering of the samples (columns) of the microarray
data. The middle and right paneh show the result using complete and single
linkage. Average and complete linkage gave similar results, while single
linkage produced unbalanced groups with long thin clusters. We focus on
the average linkage clustering.

Like K-means clustering, hierarchical clustering is successful at clustering
simple cancers together. However it has other nice features. By cutting off
the dendrogram at various heights, different numbers of clusters emerge,
and the sets of clusters are nested within one another. Secondly, it gives
some partial ordering information about the samples. In Figure 14.14, we
have arranged the genes (rows) and samples (columns) of the expression
matrix in orderings derived from hierarchical clustering.

Note that if we £lip the orientation of the branches of a dendrogram at any
merge, the resulting dendrogram is still consistent with the series of hierar-
chical clustering operations. Hence to determine an ordering of the leaves,
we must add a constraint. To produce the row ordering of Figure 14.14,
we have used the default rule in SPLUS: at each merge, the subtree with
the tighter clwter is plwed to the left (toward the bottom in the rotated
dendrogram in the figure.) Individual genes are the tightest clusters possi-
ble, and merges involving two individual genes place them in order by kheir
observation number. The same rule was used for the columns. Many other
rirle~ ase p ~ i h l + f n r ma,mple, nrdwing hy a, m111kidimen~inn.d maling nf
the genes; see Section 14.7.

The tweway rearrangement of Figurel4.14 produces an informative pic
ture of the genes and sampla. This picture is more informative than the
randomly ordered rows and columns of Figure 1.3 of Chapter 1. Further-
more, the dendrograms themselves are useful, as biologists can, for example,
interpret the gene clusters in terms of biological processes.

Divisive clustering algorithms begin with the entire data set as a single
cluster, and recursively divide one of the existing clusters into two daugh-
ter clusters at each iteration in a topdown fashion. This approach has not

14.3 Cluster Analysis 4'79

: 14.14. DNA m i c m m g data: avemge linkage hierarchid clustering
has been applied independently to the mws (genes) and eolupnns (samples), deter-
mining the ordering of the r a u s and columms (see text). The colors mnge from
bright green (nqative, undenqressed) to brighi red (psiti*, mewxpressed).

480 14. Unsupervised Learning

been studied nearly as extensively as agglomerative methods in the cluster-
ing literat~ire. It hrt.1 been explored somewhat in the engineering literature
(Gersho and Gray, 1992) in the context of compression. In the clustering
setting, a potential advantage of divisive over agglomerative methods can
occur when interest is focused on partitioning the data into a relatively
m a i l number of clusters.

The divisive paradigm can be employed by recursively applying any of
the mmbinatorial methods such as K-means (Section 14.3.6) or K-medoids
(Section 14.3.10), with K = 2, to perform the splits at each iteration. How-
ever, such an approach would depend on the starthg codiguration specified
at each step. In addition, it would not necessarily produce a splitting s e
quence that possesses the monotonicity property required for dendrogram
representation.

A divhivc algorithm that avoids thcsc problcms was proposcd by Mm-
naughton Smith et al. (1965). It begins by placing all observations in a
single cluster G. It then chomes that observation whme average dissimi-
larity from all the other okrvatiom is largest. This okrvation forms the
Erst member of a second cluster H. At each successive step that observation
in G w h e average distance from those in H, minm that for the remaiaing
observations in G is largest, is transferred to 11. This continues until the
corresponding difference in averages becomes negative. That is, there are
no longer any okeervations in G that are, on average, closer to those in
H. The result is a split of the original cluster into two daughter clusters,
lhe okrvtlliom LruIerred lo H, and Lhuw r e r m i r i q in G. Thew Lwo
clusters represent the second level of the hierarchy. Each successive level
is produced by applying this splitting procedure to one of the clusters at
the previous level. K a u f m and Rousseeuw (1990) suggest choosing the
cluster at each level with the largest diameter (14.44) for splitting. An al-
ternative would be to choose the one with the largest average dissimilarity
among its members

The recursive splitting continues until all clusters either become singletons
or all members of each one have zero dhimilarity £tom one another.

14.4 Self-organizing Maps

This method can be viewed as a constrained version of K-means clustering,
in which the prototypes are encouraged to lie in a one or tw*dimensional
manifold in the feature space. The resulting manifold is also referred to
as a conatmined topolog%ml map, since the original high-dimensional obser-
vations can be mapped down onto the twedimensional coordinate system.

14.4 Self-organizing Maps 481

The original SOM algorithm was online--observations are processed one at
a time-and later a batch version was proposed. The technique also bears
a close relationship to principal curves and surfaces, which are discussed in
the next section.

We consider a SOM with a two-dimensional rectangular grid of K proto-
types ml, E RP (other choices, such as hexagonal grids, can also be used).
Each of the K prototypes are parametrized with respect to an integer co-
ordinate pair e j E Ql x Q2. Here Q1 = {1,2,. . . , ql), similarly Q2, and
K = q1.q~. The mj are initialized, for example, to lie in the two-dimensional
principal component plane of the data (next section). We can think of the
prototypes as "buttons," "sewn" on the principal component plane in a
regular pattern. The SOM procedure tries to bend the plane so that the
buttons approximate the data points as well as possible. Once the model is
fit, the observations can be mapped down onto the two-dimensional grid.

The observations xi are processed one at a time. We find the closest
prototype ml, to xi in Euclidean distance in Rp, and then for all neighbors
mk of mj , move mk toward xi via the update

The "rleighbors" 01 ,rrbj are defirled lo be all ,rrLk such lhat lhe dislarlce
between ti and f k is small. The simplest approach uses Euclidean distance,
and "small" is determined by a threshold r . This neighborhood always
includes the closest prototype m j itself.

Notice that distance is defined in the space Q1 x Qz of integer topological
coordinates of the prototypes, rather than in the feature space IRP. The
effect of the update (14.46) is to move the prototypes closer to the data,
but also to maintain a smooth two-dimensional spatial relationship between
the prototypes.

The performance of the SOM algorithm depends on the learning rate
a and the distance threshold r . Typically a is decreased from say 1.0 to
0.0 over a few thousand iterations (one per observation). Similarly r is
decreased linearly from from starting value R to 1 over a few thousand
itera.tions. We il111stra.te a. method for choosing R in the exa.mple below.

We have described the simplest version of the SOM. More sophisticated
versions modify the update step according to distance:

where the neighborhood function h gives more weight to prototypes mk with
indices f k closer to f j than to those further away.

If we take the distance r small enough so that each neighborhood contains
only one point, then the spatial connection between prototypes is lost. In
that case one can show that the SOM algorithm is an online version of
K-means clustering, and eventually stabilizes at one of the local minima
found by K-means. Since the SOM is a constrained version of K-means

482 14. Unsupervised Learning

−1
−0.5

0
0.5

1
1.5

−1

−0.5

0

0.5

1

1.5
−1

−0.5

0

0.5

1

1.5

FIGURE 14.15. Simulated data in three classes, near the surface of a
half-sphere.

clustering, it is important to check whether the constraint is reasonable
in any given problem. One can do this by computing the reconstruction
error ‖x − mj‖2, summed over observations, for both methods. This will
necessarily be smaller for K-means, but should not be much smaller if the
SOM is a reasonable approximation.

As an illustrative example, we generated 90 data points in three dimen-
sions, near the surface of a half sphere of radius 1. The points were in each
of three clusters—red, green, and blue—located near (0, 1, 0), (0, 0, 1) and
(1, 0, 0). The data are shown in Figure 14.15

By design, the red cluster was much tighter than the green or blue ones.
(Full details of the data generation are given in Exercise 14.5.) A 5×5 grid
of prototypes was used, with initial grid size R = 2; this meant that about
a third of the prototypes were initially in each neighborhood. We did a
total of 40 passes through the dataset of 90 observations, and let r and α
decrease linearly over the 3600 iterations.

In Figure 14.16 the prototypes are indicated by circles, and the points
that project to each prototype are plotted randomly within the correspond-
ing circle. The left panel shows the initial configuration, while the right
panel shows the final one. The algorithm has succeeded in separating the
clusters; however, the separation of the red cluster indicates that the the
manifold has folded back on itself (see Figure 14.17). Since the distances
in the two-dimensional display are not used, there is little indication in the
SOM projection that the red cluster is tighter than the others.

Figure 14.18 shows the reconstruction error, equal to the total sum of
squares of each data point around its prototype. For comparison we carried

14.4 Self-Organizing M a p 483

, Self-oryanMag map appEed to hdf-sphew Lik example. Left ,,.,. , .,., ., d ~~nf igumt im, vight pnel the find me. The 5 x 5 grid of
probobw am indicaird by circles, and the poinb that p m j d to each p m t o w
are plotted namdody &£him the comsrpomding circle.

FIGURE 14 , Wimmah mpc~cntat im of Uac fithi SOM mdcl in R3. Thc
lines mpwsen e hovizmtd and vedical edges of the topological bt t iw. The
double lines indicate that the surfa~e wlb~ folded diagonall~ back on iBelj in d e r
£0 &el the rad p i n t s . The c l w k r members have been j i i f e d £0 indicate t h e k
&or, and the purple poimts m r e the node ceders .

484 14. Unsupervised Learning

500 IODO 1500 2000

Iteration

FIGURE 14.18. H d f where d a t ~ wond~asctiom m s for the SDM a.s a h c
t ion of iteration. E w o ~ for k-meam ciwkr-ing is iadimted by the h o r i m n t d line.

out a K-means clustering with 25 centroids, and indicate its recomtruction
error by the horizontal line on the graph. We see that the SOM significantly
decreases the error, nearly to the level of the K - m e m solution. This pro-
vidcs cvidcncc that thc tw~dimcnsional comtraint uscd by thc SOM is
reasonable for this particular dataset.

In thc batch vcrsion of thc $OM, wc updatc cach r n j via

The sum is over points x k that mapped (i.e., were closest to) neighbors r n k

nf mj. The weight firnctinn may he recta.ngt~la+, tha.t ~ F I , eqiral tn 1 fnr the
neighbors of r n n , or may decrease smoothly with distance Ilfk-Lj 1 1 as before.
If the neighborhood size is chosen small enough m that it consists only
of mk, with rectangular weights, this reduces to the K-means clustering
procedure described earlier. It can also be thought of as a discrete version
of principal curves and surfaces, described in Section 14.5.

Example: Document Organizatiom and Rehieval

Document retrieval has gained importance with the rapid development of
the Internet and the Web, and SOMs have proved to be useful for organizing

14.5 Principal Components, Curves and Su* 485

and indexing large corpii. This example is taken from the WEBSOM home
page http: //vebsom.hut . f i/websom/ (Kohonen et &I., 2000). Figire 14.19
represents a SOM fit to 12,088 newsgmup comp.ai.neura1-nets articles.
The labels are generated automatically by the WEBSOM software and
provide a guide as to the typical content of a node.

In applications such as this, the documents have to be reprocessed in
order to create a feature vector. A tern-document matrix is created, where
each row represents a single document. The entries in each row are the
relative frequency of each of a predefined set of terms. These terms could
be a large set of dictionary entries (50,000 words), or an even larger set
of bigrams (word pairs), or subsets of these. These matrices are typically
very sparse, and so often some preprocessing is done to reduce the number
of features (columns). Sometimes the SVD (next section) is used to reduce
thc matrix; Kohoncn ct al. (2000) usc a randomkd variant thcrcof. Thcsc
reduced vectors are then the input to the SOM.

In this application the authors have developed a "zoom" feature, which
allows one to interact with the map in order to get more detail. The final
level of zooming retrieves the d u a l news articles, which can then be read.

14.5 Principal Components, Curves and Surfaces

14.5.1 Principal Components

The principal components of a set of data in IRP provide a sequence of best
linear approximatiom to that data, of all ranks q < p.

Denote the observations by XI , 5 2 , . . . , x ~ , and consider the rank-q linear
model for representing them

where p is a location vector in IRP, V, is a p x q matrix with q orthogonal
unit vectors as mlumns, and X is a q vector of parameters. This is the
parametric representation of an d n e hyperplane of rank q. Figures 14.20
and 14.21 illustrate for q = 1 and q = 2, respectively. Fitting such a model
to the data by least squares amounts to minimizing the r e c o ~ t m c t i o n e m r

min llxi - p - v,&ll2.
P*I~* I , Vq i=l

W e c a n pwlidy oplimiiw Tor p and Lhe AXi (Exercise 14.7) lo ohlain

14.5 Principal Components, Curves and Su* 487

FIGURE 14.20. The fird linear pincipl conspnemt of ra set of dmim. The line
rninimixs the total squamd distance jrom mch point to its orthogmal projection
onto the line.

This leaves us to End the orthogonal matrix Vq:

For convenience we assume that % = 0 (otherwise we simply replace the
observations by their centered versions Zi = xi - x). The p x p matrix
H, = V,V: is a projection ma*, and maps each point X I onto its rank-
q reconstruction Hqxt , the orthogonal projection of xq onto the subspace
spanned by the columns of Vq. The solution can be expressed as follows.
Stack the (centered) observations into the rows of an N x p matrix X. We
construct the singular zrelue decomposition of X :

This is a standard decomposition in numerical analysis, and many algw
rithms exist for its computation (Golub and Van Loan, 1983, for example).
Here U is an N x p orthogonal matrix (U ~ U = Ip) wh- columns u, are
called the left singular uectorq V is a ap x p orthogonal matrix (vTv = Ip)
with columns w, called the Aght singular vectors, and D is a p x p diagonal
matrix, with diagonal elements dl 2 d2 -. . 2 dp 2 0 known as the s i ~ h
values. For each rank q, the solution V, to (14.53) consists of the first q
columns of V. The columns of UD are called the principal components of

488 14. Unsupervised Learning

Th.e bed rank-two linear approximation to the hdj-sphere data.
ight pan bows the projected p i n t s with coordinates given by U2D2, the

fir& two p-incipd mmponenh of the data.

X (see Section 3.4.4). The N optimal in (14.52) are given by the first p
principal components (the N rows of the N x q matrix U4D4).

The onedimensional principal component line in R' is illustrated in Fig-
ure 14.20. For each data point xi , there is a closest poAht on the line, given
by wldlvl. Here v l is the direction of the line and Ar = wldl measures
distance along the line from the origin. Similarly Figure 14.21 shows the
tw+dimensional principal component surface fit to the half-sphere data
(left panel). The right panel shows the projection of the data onto the
Erst two principal components. This projection was the basis for the initial
co~guration for the $OM method shown earlier. The procedure is quite
successful at separating the clusters. Since the half-sphere is nonlinear, a
nonlinear projection will do a better job, and this is the topic of the next
section.

Principal components have many other nice properties, for example, the
linear combination Xul has the highest variance among all linear com-
binations of the features; Xu2 has the highest variance among all linear
combinations satisfying va orthogonal to q, and so on.

Example: Handwritten Digits

Principal components are a useful tool for dimension reduction and com-
pression. We illustrate this feature on the handwritten digits data described
in Chapter 1. Figure 14.22 shows a sample of 130 handwritten threes, each
a digithd 16 x 16 grayscale image, from a total of 658 such threes. We
see considerable variation in writing styles, character thickness and orien-

14.5 Principal Components, Curves and S u h 489

L ~ U - 14.22. sample of 130 handwritten threes shows a variety of writing
- _ ~ l e s .

tation. We consider these images as points zi in and compute their
principal components via the SVD (14.54).

Figure 14.23 shows the first two principal co~nponents of these data. For
each of these first two principal components and 2662, we computed the
5%, 25%, 50%, 75% and 95% quantile points, and used them to define
the rectangular grid superimposed on the plot. The circled points indicate
those images close to the vertices of the grid, where the distance measure
focuses mainly on these projected coordinates, but gives some weight to the
components in the orthogonal subpace. The right plot shows the images
corresponding to these circled points. This allows us to visualize the nature
of the first two principal components. We see that the v l (horizontal move
m a t) mainly accounts for the lengthening of the lower tail of the three,
while v2 (vertical movement) accounts for character thickness. In terms of
the parametrf ed model (14.49), this twcxomponent model has the form

Here we have displayed the first two principal component directions, v l
and v2, as images. Although there are a possible 256 principal components,

490 14. Unsupervised Learning

FIGURE 14.23. Left plot: the first two principal components of the handwritten
threes. The circled points are the closest project& inaages to the vertices of a
grid, defined by the marginal qw~ntiles of the principcril components. Right pilot:
the images w m p n d i n g ib the red-ciwled poinh. These show the natuw of the
first two pincipal wmpopzents.

Dimension

FIGURE 14.24. The 256 singular values for the digitized threes, compared to
those for a randomized version of the data (each column of X was scrambled).

14.5 Principal Components, Curves and Surfaces 491

approximately 50 account for 90% of the variation in the threes, 12 ac-
count for 63%. Figme 14.24 compares khe singilar mlua to khose ohkdned
for equivalent uncorrelated data, obtained by randomly scrambhg each
column of X. The pixels in a digitized image are inherently correlated,
and since these are all the same digit the correlations are even stronger.
A relatively small subet of the principal components serve as excellent
low&-dimensional features for representing the high-dimensional data.

14.5.2 Principz E Curves and Suqfaces

Principal curves generalize the principal component line, providing a smooth
one-dimensional curved approximation to a set of data points in IRp. A prh-
cipal surface is more general, providing a curved manifold approximation
of dimension 2 or more.

We will first ddne principal curves for random variables X E IRF, and
then move to the finite data case. Let f (A) be a parameterized smooth
curve in IRP. Hence f (A) is a vector function with p coordinates, each a
smooth function of the single parameter A. The parameter X can be chosen,
for example, to be arc-length along the curve from some 6xed origin. For
each data value x, let h (x) define the closest point on the curve to x. Then
f (A) is called a principal curve for the distribution of the random vector
X if

f (A) = E(XIAf(X) = A).

This says f (A) is the average of all data points that project to it, that is, the
points for which it is "responsible." This is also known as a self -comktency
property. Although in practice, continuous multivariate &tributes have
idnitely many principal curves (Duchamp and Stuetzle, 1996), we are
interested mainly in the smooth ones. A principal curve is illustrated in
Figure 14.25.

P d n c i p l points ate an interesting related concept. Consider a set of k
prototypes and for each point x in the support of a distribution, identify
the closest prototype, that is, the prototype that 61 responsible for it. This
induces a partition of the feature space into =called Voronoi regions. The
set of k points that minimize the expected distance from X to its prototype
are called the principal points of the distribution. Each principal point is
self-consistent, in that it equals the mean of X in its Voronoi region. For
example, with E = 1, the principal point of a circular normal distribution is
the mean vector; with k = 2 they are a pair of points symmetrically placed
on a ray through the mean vector. Principal points are the distributional
d o g s of centroids found by K-means clustering. Principal curves can be
viewed as k = oo principal points, but constrained to lie on a smooth curve,
in a similar way that a SOM constrains K-means cluster centers to fall on
a smooth manifold.

492 14. Unsupervised Learning

IRE 14.25. The principal curve of a set of data. Each p int on the curve
IS bhe average of dl data pwhh f i a t projecb thew.

To EtlJ a, pi-itlcipd cut-ve J(X) UI a Jidt-iLuLi0~1, we wtl~lidef ih w u t . J h L e

functions f (A) = [f ~ (A), f 2 (A), . . . , fp (A)] and let X = (XI, Xz, . . . , X,).
Comider the following alternating steps:

(a) fj(A) t E(XjlX(X)=X); j = 1 , 2 ,..., p,

(b) if(") t argmia,,llx-f"(X')l12.

The Erst equation Exes X and enforces the self-consist ency requirement
(14.55). The second equation Exes the curve and flnds the closest poht on
the curve to each data point. With finite data, the principal m v e algorithm
starts with the linear principal component, and iterates the two s t e p in
(14.56) until convergence. A scatterplot smoother is used to estimate the
conditional expect ations in step (a) by smoothing each X j as a function of
the arc-length A (x) , and the projection in (b) is done for each of the o b
served data points. Proving convergence in general is difficult, but one can
show that if a linear least squares fit is used for the scatterplot smoothing,
then the procedure converges to the first linear principal component, and
is equivalent to the power method for Ending the largest eigenvector of a
matrix.

Principal surfaces have exactly the same form as principal mves, but
are of higher dimension. The mostly commonly used is the twmdimensional
principal surface, with coordinate functions

Independent Component Analysis 493

FIGURE 14.36. Principal sudace j2 to hdj-sphere data. Left panel: w e d
tuo-dimepasiond Right panel: projectio~ of data pints onto the surface,
wmlting in d i m k s A1 , X2.

The estimates In step (a) above are obtained from tw*dhensional surfam
smoothers. Principal surfaces of dimension greater than two are rarely used,
since the visualization aspect is less attractive, as is smoothing in high
dimensions.

Figure 14.26 shows the result of a principal surface fit to the hall-sphere
data. Plotted are the data points as a function of the estimated nonlinear
coordinates il(%), i2(zi). The class separation is evident.

Principal surfaces are very similar to self-organizing map. If we use a
kernel surface smoother to estimate each coordinate function fj (A1, A=),
this has the same form as the batch version of SOMs (14.48). The SOM
weights wh are just the weights in the kernel. There is a difference, however:
the principal surface estimates a separate prototype f (XI (xi), Xz (xi)) for
each data point xi, while the SOM shares a smaller number of prototypes
for all data points. As a result, the SOM and principal surface will agree
only as the number of SOM prototypes grows very large.

There also is a conceptual difference between the two. Principal sur-
faces provide a smooth parameterization of the entire manifold in terms
of its coordinate functions, while SOMs are discrete and produce only the
estimated prototypes for approximating the data. The smooth pararneter-
ization in principal surfaces preserves distance locally: in Figure 14.26 it
reveals that the red cluster is tighter than the p e n or blue clusters. In
simple examples the estimates coordinate functions themselves can be in-
formative: see Exercise 14.9.

494 14. Unsupervised Learning

14.6 Independent Component Analysis and
Exploratory Projection Pursuit

MulLivLtriale dala are ofierl viewed as ~uulliple inrlirecl ~uewuremerlls arb
ing from an underlying source, which typically cannot be directly measured.
Examples include the following:

Educational and psychological tests use the answers to questionnaires
to measure the underlying intelligence and other mental abilities of
subjects.

a EEG brain scans measure the neuronal activity in various parts of
the brain indirectly via electromagnetic signals recorded at sensors
placed at various pmitions on the head.

a The trading prices of stocks change constantly ova time, and reflect
various unmeasured factors such as market contidence, external in-
fluences, and other driving forces that may be hard to identify or
measure.

Factor analysis is a classical tcchniquc dcvclopcd in thc statistical litcr-
ature that aims to identify these latent sources. Factor analysis models
are typically wed to Gaussian distributions, which has to some extent hin-
dered their usefulness. More recently, independent component analysis has
emerged as a strong competitor to factor analysis, and as we will see, relies
on the non-Gaussian nature of the underlying sources for its success.

14.6.1 Tiatent Variables and Factor Analysis

The singular-value decomposition X = U D V ~ (14.54) has a latent variable
representation. Writing S = f i ~ and = uvT/ f i , we have X =
S A ~ , and hence each of the columns of X is a linear combination of the
colwnns of S. Now since U is orthogonal, and assuming as before that the
colwnns of X (and hence U) each have mean zero, this implies that the
colwnns of S have zero mean, are unoorrelated and have unit variance. In
terms of random variables, we can interpret the SVD, or the corresponding
principal component analysis (PCA) as an estimate of a latent variable
model

or simply X = AS. The correlated Xi are each represented as a linear
expansion in the uncorrelated, unit variance variables Sf. Thh is not too

14.6 Independent Component Analysis and Exploratory Projection Pursuit 495

satisfactory, though, because given any orthogonal p× p matrix R, we can
write

X = AS

= ARTRS

= A∗S∗, (14.58)

and Cov(S∗) = RCov(S)RT = I. Hence there are many such decom-
positions, and it is therefore impossible to identify any particular latent
variables as unique underlying sources. The SVD decomposition does have
the property that any rank q < p truncated decomposition approximates
X in an optimal way.

The classical factor analysis model, developed primarily by researchers in
psychometrics, alleviates these problems to some extent; see, for example,
Mardia et al. (1979). With q < p, a factor analysis model has the form

X1 = a11S1 + · · ·+ a1qSq + ε1
X2 = a21S1 + · · ·+ a2qSq + ε2

...
...

Xp = ap1S1 + · · ·+ apqSq + εp,

(14.59)

or X = AS + ε. Here S is a vector of q < p underlying latent variables or
factors, A is a p× q matrix of factor loadings, and the εj are uncorrelated
zero-mean disturbances. The idea is that the latent variables S� are com-
mon sources of variation amongst the Xj , and account for their correlation
structure, while the uncorrelated εj are unique to each Xj and pick up the
remaining unaccounted variation. Typically the Sj and the εj are modelled
as Gaussian random variables, and the model is fit by maximum likelihood.
The parameters all reside in the covariance matrix

Σ = AAT +Dε, (14.60)

where Dε = diag[Var(ε1), . . . ,Var(εp)]. The Sj being Gaussian and un-
correlated makes them statistically independent random variables. Thus a
battery of educational test scores would be thought to be driven by the
independent underlying factors such as intelligence, drive and so on. The
columns of A are referred to as the factor loadings, and are used to name
and interpret the factors.

Unfortunately the identifiability issue (14.58) remains, sinceA andART

are equivalent in (14.60) for any q × q orthogonal R. This leaves a certain
subjectivity in the use of factor analysis, since the user can search for ro-
tated versions of the factors that are more easily interpretable. This aspect
has left many analysts skeptical of factor analysis, and may account for its
lack of popularity in contemporary statistics. Although we will not go into
details here, the SVD plays a key role in the estimation of (14.60). For ex-
ample, if the Var(εj) are all assumed to be equal, the leading q components
of the SVD identify the subspace determined by A.

496 14. Unsupervised Learning

Because of the separate disturbances εj for each Xj , factor analysis can
be seen to be modelling the correlation structure of the Xj rather than the
covariance structure. This can be easily seen by standardizing the covari-
ance structure in (14.60) (Exercise 14.10). This is an important distinction
between factor analysis and PCA, although not central to the discussion
here. Exercise 14.11 discusses a simple example where the solutions from
factor analysis and PCA differ dramatically because of this distinction.

14.6.2 Independent Component Analysis

The independent component analysis (ICA) model has exactly the same
form as (14.57), except the Si are assumed to be statistically indepen-
dent rather than uncorrelated. Intuitively, lack of correlation determines
the second-degree cross-moments (covariances) of a multivariate distribu-
tion, while in general statistical independence determines all of the cross-
moments. These extra moment conditions allow us to identify the elements
of A uniquely. Since the multivariate Gaussian distribution is determined
by its second moments alone, it is the exception, and any Gaussian inde-
pendent components can be determined only up to a rotation, as before.
Hence identifiability problems in (14.57) and (14.59) can be avoided if we
assume that the Si are independent and non-Gaussian.

Here we will discuss the full p-component model as in (14.57), where the
S� are independent with unit variance; ICA versions of the factor analysis
model (14.59) exist as well. Our treatment is based on the survey article
by Hyvärinen and Oja (2000).

We wish to recover the mixing matrix A in X = AS. Without loss
of generality, we can assume that X has already been whitened to have
Cov(X) = I; this is typically achieved via the SVD described above. This
in turn implies that A is orthogonal, since S also has covariance I. So
solving the ICA problem amounts to finding an orthogonal A such that
the components of the vector random variable S = ATX are independent
(and non-Gaussian).

Figure 14.27 shows the power of ICA in separating two mixed signals.
This is an example of the classical cocktail party problem, where differ-
ent microphones Xj pick up mixtures of different independent sources S�

(music, speech from different speakers, etc.). ICA is able to perform blind
source separation, by exploiting the independence and non-Gaussianity of
the original sources.

Many of the popular approaches to ICA are based on entropy. The dif-
ferential entropy H of a random variable Y with density g(y) is given by

H(Y) = −
∫

g(y) log g(y)dy. (14.61)

A well-known result in information theory says that among all random
variables with equal variance, Gaussian variables have the maximum en-

14.6 Independent Component Analysis and Ekploratory Pmjedion Pursuit 497

Measured slgnds

l 2 i s h t i o n of IGA vs. PCA om arfiflcid time-s&es ddm. The

fime points. The upper righi panel shows the observed mixed signals. The lower
two pan& show the pr inc id componmts and independmi component solutiom.

tropy. Finally, the muhal inomation I (Y) between the components of the
random vector Y is a natural measure of dependence:

P

I (Y) = H (5) - H (Y) . (14.62)
j=1

The quantity I (Y) is called the KulibaA-Leibler distance between the
density g (y) of Y and its independenm version ny=l gj (y j) , where gj (y j)

is the marginal density of 5. Now if X has covariance I, and Y = ATX
with A orthogonal, then it is easy to show that

Findmg an A to mini mi^ I(Y) = I(ATX) looks for the orthogonal trans-
formation that leads to the most independence between its components. In
light of (14.63) this is equivalent to minimizing the sum of the entropies of
the separate components of Y, which in turn amounts to maximizing their
departures from Gaussianity.

For convenience, rather than using the entropy H(%), Hyvilrinen and
Oja (2000) use the negemtropy measure J (q) ddned by

where Zj is a Gaussian random variable with the same variance as Yj.
Negentropy is nonnegative, and measures the departure of Yj from Gaus-
sianity. They propose simple approximations to negentropy which can be

498 14. Unsupervised Learning

Source S Data X

ICA Solution

FIGURE 14.38. Mixhms of independed rsnifmm m d o m variables. The upper
lefi panel shows 500 realizations from the two independent u n i f o m sou^, the
upper ~ g h t panel Be i~ mixed ve~siopwr. The lower two paneb ahow the PCA and
ICA solution$, respectively.

computed and optimized on data. The ICA solutions shown inFigures 14.27
and 14.28 use the approximation

where G(u) = log cosh(au) for 1 < a < 2. When applied to a sample
of xi, the expectations are replaced by data averages. More classical (and
less robmt) measqres are based on foqrth moments, and hence look for
departures £tom the Gaussian via kurtosis. See Hyviirinen and Oja (2000)
for more details, and for a simple Newton algorithm for finding the optimal
directions.

In nimmary then, TCA applied to mullfiimrirtte daka looks for a sequlmce
of orthogonal projections such that the projected data look as far from
Gaussian as possible. With pre-whitened data, this amounts to looking for
components that are as independent as possible.

ICA starts from essentially a factor analysis solution, and looks for rota,
tiom that l e d to independent components. From this point of view, ICA is
just another factor rotation method, along with the traditional Uvarifnax"
and "quartimax" methods used in pychometrics.

Example: Handwritten Digits

We revisit the handwritten threes analyzed by PCA in Section 14.5.1. Fig-
ure 14.29 compares the first five (standardized) principal components with

14.6 Independent Component Analysis and Ekploratory Projection Pursuit 499

ICA Components

- -

FIGL ., ,, . A compa&on of the $rst five ICA ~ornponmts (above bag-
ond) && th~ai at $w PCA ~ornponmt@idow diagotad). Each armponetat is
shndadked to have unit vammce.

component
1

*

the Erst five ICA components, all shown in the same standardized units.
Note that each plot is a twdimemional projection from a 256-dimensional
space. While the PCA components all appear to have joint Gaussian distri-
butions, the ICA components have long-tailed distributions. This is not too
surprising, since PCA focusses on variance, while ICA speci6cally looks for
non-Gaussian distributions. All the components have been standardized,
so we do not see the decreasing variances of the principal components.

For each ICA component we have highlighted two of the extreme digits,
as well as a pair of central digits and displayed them in Figure 14.30.
This illustrates the nature of each of the components. For example, ICA
component five picks up the long sweeping tailed threes.

%Fir.
@

c o m p m n t m . ;). '. 1 '
3 .* ". e.

Q p C m n t
4

"" 0 * . . 5

* . $ '. . .
mm

nYi
=.n

B

Component
2

;$ =$%*

el . n n
=.

. %
n n

4 .:a -.
= * "

, *
n g +
5

. ..
m .

.. > : k a n n

-
o q m 1 1 1 1 - .. II

B

4 .
m .

;* rn
*m5: .

a

500 14. Unsupervised Learning

Mean ICA 1 ICA 2 ICA 3 ICA 4 ICA 5

FIGURE 14.30. The highlighted digits from Figure 14.29. By comparing with
the mean digits, we see the nature of the ICA component.

14.6.3 Exploratory Projection Pursuit

Friedman and Tukey (1974) proposed exploratory projection pursuit, a
graphical exploration technique for visualizing high-dimensional data. Their
view was that most low (one- or two-dimensional) projections of high-
dimensional data look Gaussian. Interesting structure, such as clusters or
long tails, would be revealed by non-Gaussian projections. They proposed
a number of projection indices for optimization, each focussing on a dif-
ferent departure from Gaussianity. Since their initial proposal, a variety
of improvements have been suggested (Huber, 1985; Friedman, 1987), and
a variety of indices, including entropy, are implemented in the interactive
graphics package Xgobi (Swayne et al., 1991). These projection indices are
exactly of the same form as J(Yj) above, where Yj = aT

j X, a normalized
linear combination of the components of X. In fact, some of the approxi-
mations and substitutions for cross-entropy coincide with indices proposed
for projection pursuit. Typically with projection pursuit, the directions aj

are not constrained to be orthogonal. Friedman (1987) transforms the data
to look Gaussian in the chosen projection, and then searches for subsequent
directions. Despite their different origins, ICA and exploratory projection
pursuit are quite similar, at least in the representation described here.

14.6.4 A Different Approach to ICA

Independent components have by definition a joint product density, and
so to find them we can estimate their product density. Using the trick of
Section 14.2.4, we can simplify things by casting the density estimation task
as a two-class classification problem. The observed data points are assigned
to class G = 1 and a background sample is generated from a density g0(x),
and assigned to class G = 0. For illustration consider a bivariate problem
X = (X1,X2) and a two-term model of the form

log
Pr(G = 1)

1− Pr(G = 1)
= f1(aT

1 X) + f2(aT
2 X). (14.67)

14.6 Independent Component Analysis and Ekploratory Projection Pursuit 501

FIGURE 14.31. P ~ j e c t i o w p u r ~ ~ ~ soiufiopas to the artijkial time sep-ses pmblem
of F i p m 14.27 Oefl panel), and the mixture o f u n i f o m ~ problem of F i p m l4.B
(right p w Z) . m s e soEdions were obtained wing the y e n d i d Zqisfic wgms-
s i m model (14.67).

By the arguments in Section (14.2.4), tkis additive model for the logit gives
a data density of the form

We seek components aTx and ~ Z X that are independent, and hence have
a joint demity that factors:

A change of variables is needed to get from expression (14.68) to expres-
sion (14.69), and it is easy to see that go (~ T x , ~ T x) must factor into a
product. This occurs only if go h the density of a multivariate Gausslan
distribution and a1 is orthogonal to a2 in the metric of the inverse of the
covariance matrix X of X. As before we Erst transform the data so as to
have identity covariance, which then allows us to use for go a spherical
Gaussian distribution.

Hence to apply this procedure, we sphere the observed data, generate
the background data from a spherical Gaussian distribution, and then fit
model (14.67) with the constraint that a1 be orthogonal to a=.

Model (14.67) is a generahation of logistic regression, and hence we can
use the local scoring algorithm (9.2) to fit it. The right hand side of the
model has the form of projection pursuit regression, and so we use the
PPR algorithm (11.2) in step 2(c) of local scoring. We tried this on the
artxcial time series data of Figure 14.27, and the mixture of uniform data
of Figure 14.28. The resulting components &Tx and G T x for each case are
shown in Figure 14.31 and reproduce the original source signals.

Like ICA, the above procedure finds independent components by finding
orthogonal, non-Gaussian projections of the data. It has the apparent ad-
vantage of not requiring the choice of a non-normality index, but instead

502 14. Unsupervised Learning

uses background Gaussian data to judge non-normality of projections. How-
ever, t;he index is implicit; in the binomial deviance loss fimckian wed t;o
measure separation between the original and background data in a given
projection (Exercise 14.12). While this procedure appears to work well on
the examples presented here, at the time of writing it is largely untested.

14.7 Multidimensional Scaling

Both sell-organizing maps and principal curves and surfaces map data
points in IRP to a lower-dimensional manifold. Multidimensional scaling
(MDS) has a similar goal, but approaches the problem in a somewhat dif-
ferent way.

We start with observations X I , xa, . . . , X N E IRP, and let &j be the dis-
Lance between ohsemt;ions i and j. Often we choose Eu~clidean distance
dij = llxi - xjlll but other distances may be used. h t h e r , in some a p
plisa-kinna we ma,y nnk even hare a.m,ilahle the da.ka, pnink~ xi, hirk nnly
have some dissimila~ty measure c & ~ (see Section 14.3.10). For example, in
a wine tasting experiment, dij might be a measure of how Werent a sub
ject judged wines i and j, and the subject provides such a measure for all
pairs of wines i , j. MDS requires only the dissimilarities &,, in contrast to
the SOM and principal curves and surfaces which need the data points xi.

Multidimensional scaling seeks values x l , xa , . . . , x~ E IR' to minimize
the secalled stress junction

This is known as Imt squares or Kmskal-Shepbad scaling. The idea is to
h r l a lowei--&tuei~dutlzll apptuxiLualiofi or Il~e &la EU as Lo ptewtve LLe
pairwise distances as well as possible. Notice that the approximation is in
terms of the distances rather that squared distances: the square root on
the outside is just a convention. A gradient descent algorithm is used to
r d n h h e SD.

A variation on least squares scaling is the smcalled Sammon mapping
which minimizes

Here more emphasis is put on preserving smaller pairwise distances.
In classical scaling, we instead start with similarities sic: often we use

the centered inner product sill = (xi - 3, x: - 3) . The problem then is to

14.7 Multidimensional Scaling 503

over xl , xa, . . . , x~ E R ~ . This is attractive because there is an explicit
solulion in 1er1m or eiger~vwlom: see Exercise 14.8. Clwsical scdiug is no1
equivalent to least squares scaling, since inner products rely on a choice of
origin while pairwise distances do not. A set of inner products determines
a set of pairwise distances but not vice versa.

Least squares and clasdcal scaling are referred to as metric scaling meth-
ods, in the sense that the actual dissimilarities or similarities are apprmc-
irnated. Shephrad-Kmskal nommehic scaling effectively uses only ranks.
Nonmetric scaling seeks to minimize the stress function

over the diit and an arbitrary increasing function 13(.). With 8(.) Exed,we
minimize over dii, by gradient descent. With the dii, &xed, the method of
isotonic regression is used to find the best monotonic approximation @(.I.
These steps are iterated until the solutions stabilize.

Like the self-organizing map, multidimensional scaling projects the data
onto a lower-dimensional manifold, but does not give a parameterization of
the manifold, as with principal surfaces. In a principal surface and SOM,
points close together in the original feature space should map close together
on the manifold, but pointa far apart in feature apace might also map cloee
together. This is less likely in multidimensional scaling since it explicitly
trics to prcscrvc all pairwisc distances.

Figure 14.32 shows the Erst two MDS coordinates from classical scaling
for the half-sphere example. There is clear separation of the clusters, and
the tighter nature of the red cluster is apparent.

Bibliog~apllir: Notes

'I'here are many books on clustering, including Hartigan (19751, Gordon
(1999) and Kaufman and FCausseeuw (1990). K-means clustering goes back
at least to Lloyd (19571, Forgy (19651, Jancey (1966) and MacQueen (1967).
Applications in engineering, especially in image compression via vector
quantization, can be found in Gersho and Gray (1992). The k-medoid prw
cedure is described in Kaufman and Rousseeuw (1990). Association rules
are outlined in Agrawal et al. (1995). The self-organizing map was proposed
by Kohonen (1989) and Kohonen (1990); Kohonen et al. (2000) give a more
recent account. Principal components analysis and multidimensional seal-
ing are described in standard books on multivariate analysis, for example,

504 14. Unsupervised Learning

FIGURE 14.32. Fmr~t two coodinates for hdf-&ew d a t ~ jbrn cia~simi rnui-
f idimmiond s d i g .

Mardia et al. (1979). Buja et al. (1999) have implemented a powerful en-
vironment called XGvis for multidimensional scaling, and the user manual
contains a lucid overview of the subject. Figures 14.17, 14.21 (left panel)
and 14.26 (lcft pancl) whcrc produccd in XCobi, a multidimcnsional data
visualization package by the same authors. Principal curves and surfaces
were propmed in Hastie (1984) and Hastie and Stuetale (1989). The idea of
principal points was formulated in Flury (1990), Tarpey and Flury (1996)
give an expodtion of the general concept of self-consistency. Independent
component analysis was propmed by Comon (1994), with subsequent d s
velopments by Dell and Sejnowski (1995); our treatment in Section 14.6 is
based on (Hyviirinen and Oja, 2000). Projection pursuit was proposed by
(Friedmm m d Tukey, 1974), and is discussed in detail in (Huber, 1985). A
dynamic projection pursuit algorithm is implemented in XGobi.

Exercises

Ex. 14.1 Weights for c i u s t e r i y . Show that weighted Euclidean distance

Exercises 505

satisfies

d(w)
e (xi, xi′) = de(zi, zi′) =

p∑
l=1

(zil − zi′l)2, (14.74)

where

zil = xil ·
(

wl∑p
l=1 wl

)1/2

. (14.75)

Thus weighted Euclidean distance based on x is equivalent to unweighted
Euclidean distance based on z.

Ex. 14.2 Consider a mixture model density in p-dimensional feature space,

g(x) =
K∑

k=1

πkgk(x), (14.76)

where gk = N(µk, I ·σ2) and πk ≥ 0 ∀k with
∑

k πk = 1. Here {µk, πk}, k =
1, . . . ,K and σ2 are unknown parameters.

Suppose we have data x1, x2, . . . , xN ∼ g(x) and we wish to fit the
mixture model.

1. Write down the log-likelihood of the data

2. Derive an EM algorithm for computing the maximum likelihood es-
timates (see Section 8.1).

3. Show that if σ has a known value in the mixture model and we take
σ → 0, then in a sense this EM algorithm coincides with K-means
clustering.

Ex. 14.3 Show how the K-means procedure can be viewed as a special
case of the EM algorithm (Chapter 8) applied to an appropriate mixture
of Gaussian densities model.

Ex. 14.4 Cluster the the demographic data of Table 14.1 using a classifica-
tion tree. Specifically, generate a reference sample of the same size of the
training set, by randomly permuting the values within each feature. Build a
classification tree to the training sample (class 1) and the reference sample
(class 0) and describe the terminal nodes having highest estimated class 1
probability. Compare the results to the PRIM results near Table 14.1 and
also to the results of K-means clustering applied to the same data.

Ex. 14.5 Generate data with three features, with 30 data points in each of
three classes as follows:

θ1 = U(−π/8, π/8)

506 14. Unsupervised Learning

Here U(a, b) indicates a uniform variate on the range [a, b] and Wjk are
independent normal variates with standard deviation 0.6. Hence the data
lie near the surface of a sphere in three clusters centered at (1,0, O), (0,1,0)
and (O,O, 1).

Write a program to fit a SSOM to these data, using the learning rates
given in the text. Carry out a K-meam clutering of the same data, and
compare the results to t h m in the text.

Ex. 14.6 Write programs to implement K-means clustering and a self-
organizing map (SOM), with the prototype lying on a tw+dimewional
grid. Apply them to the columns of the human tumor microarray data, us-
ing K = 2,5,10,20 centroids for both. Demonstrate that as the size of the
SOM neighborhood h taken to be smaller and smaller, the SOM solution
Leculum h o k e tihilzlt- lo llle K-iuezltm ~ l u l i 0 ~ 1 .

Derive (14.51) and (14.52) In Section 14.5.1. Show that ,!I is not
and characterize the family of equivalent solutions.

Ex. 14.8 Classiml multidimensional scaling. Let S be the centered inner
product matrix with elements (x i - 3, xj - 3). Let XI > X2 . . . > Ak be the k
largest eigenvalues of S, with associated eigenvedors Ek = (el, e2 , . . . , ek) .
Let Dk be a diagonal matrix with diagonal entries 6, a,. . . , a.

Show that the solutions za to the classical scaling problem (14.72) are
the w ~ s of EkDn.

Ex. 14.9 Generate 200 data points with three features, lying c l m to a helix.
In detail, define X1 = cos(s) +O.l.Zl, X2 = sin(s)+0.1.Z2, X3 = s+0.1-Z3
where s takes on 200 equally spaced values between 0 and 27r, and Z1, Z2, Z3
are independent and have standard Gaussian distributions.

Exercises 507

(a) Fit a principal curve to the data and plot the estimated coordinate
functions. Compare them to the underlying functions cos(s), sin(s)
and s.

(b) Fit a self-organizing map to the same data, and see if you can discover
the helical shape of the original point cloud.

Ex. 14.10 Pre and post-multiply equation (14.60) by a diagonal matrix
containing the inverse variances of the Xj . Hence obtain an equivalent
decomposition for the correlation matrix, in the sense that a simple scaling
is applied to the matrix A.

Ex. 14.11 Generate 200 observations of three variates X1,X2,X3 according
to

X1 ∼ Z1

X2 = X1 + .001 · Z2

X3 = 10 · Z3 (14.77)

where Z1, Z2, Z3 are independent standard normal variates. Compute the
leading principal component and factor analysis directions. Hence show
that the leading principal component aligns itself in the maximal variance
direction X3, while the leading factor essentially ignores the uncorrelated
component X3, and picks up the correlated component X2 +X1. [Geoffrey
Hinton, personal communication]

Ex. 14.12 ICA and projection pursuit (Section 14.6.4).

(a) Suppose that the true density at a point X is f(X), and denote the
Gaussian density by g(X). Show that the probability that a point
selected at random comes from f is

p(X) = Pr(Y = 1|X) =
f(X)

f(X) + g(X)
,

and its logit is

logit(p(X)) = log(f(X))− log(g(X)).

(b) Show that the expected binomial log-likelihood for a model p̃(X) is

EX [p(X) log(p̃(X)) + (1− p(X)) log(1− p̃(X))]

(c) Assuming that p̃ is modelled nonparametrically and is close to the true
p, we can replace it by p.

Hence we have an index of non-normality

κ(p) = EXp(X) log(p(X)) + (1− p(X)) log(1− p(X)),

508 14. Unsupervised Learning

and we seek projection directions a to maximize κ(pa), where pa(X) =
p(aTX).

Now κ(pa) is maximized when pa is zero or one — extremes — and
hence logit(pa(X)) = log(fa(X)) − log(ga(X)) is large in absolute
value. So by maximizing the likelihood with respect to a, we are
looking for the direction for which the projected data is as far from
the Gaussian density as possible, in this binomial entropy metric.

Expand κ in a Taylor series about pa = 1
2 , to show that

κ(pa) ≈ EX
fa(X)ga(X)

fa(X) + ga(X)
[log(fa(X))− log(ga(X))]2 .

Compare the measure of non-normality on the righthand side to those
discussed in Section 14.6.2.

+ This is page 509
Printer: Opaque this

References

Abu-Mostafa, Y. (1995). Hints, Neuml Computation 7: 639471.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H. and Verkamo, A. I.
(1995). Fast discovery of association rules, Advances in Knowledge
Discovew a d Data Mining, AAAI/MIT Press, Cambridge, MA.

Akaike, H. (1973). Information theory and an extension of the maximum
likelihood principle, Sewnd International Symposium on Infomation
meory, pp. 267-281.

Allen, D. (1977). The relationship between variable selection and data
augmentation and a method of prediction, Technometrics 16: 1 2 5 7 .

Anderson, J. and k n f e l d , E. (eds) (1988). Neurocomputiy: Foundations
of Resmrch MIT Press, Cambridge, hh4.

Barron, A. (1993). Universal approximation bounds for superpositions of a
sigmoid function, IEEE tmmactiom on Infomation K5eof-g 39: 930-
945.

Becker, R., Cleveland, W. and Shyu, M. (1996). The visual design and con-
trol of trellis display, J o u m l of Computational and Gmphiml Statk-
tics 5: 123-155.

Bell, A. and Sejnowski, T. (1995). An information-maximization approach
to blind separation and blind deconvolution, Neuml Computation
7: 1129-1159.

510 References

Bellman, R. E. (1961). Adaptive Control Processes, Princeton University
Press.

Bishop, C. (1995). Neural Networks for Pattern Recognition, Clarendon
Press, Oxford.

Breiman, L. (1992). The little bootstrap and other methods for dimension-
ality selection in regression: X-fixed prediction error, J. Amer. Statist.
Assuc 87: 738-754.

Rreima.n, 1,. (1996a.). Ragging predictors, Mn,ch,in,e Learn,in,g 26: 123-140.

Breiman, L. (1996b). Stacked regressions, Machine Learning 24: 51-64.

Breiman, L. (1998). Arcing classifiers (with discussion), Annals of Statistics
26: 801-849.

Breiman, L. (1999). Prediction games and arcing algorithms, Neural Com-
putation pp. 1493-1517.

Breiman, L. and Friedman, J. (1997). Predicting multivariate responses in
multiple linear regression (with discussion), J. Roy. Statist. Soc. B.
59: 3-37.

Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Clus~ificution
and Regression Trees, Wadsworth.

Breiman, L. and Ihaka, R. (1984). Nonlinear discriminant analysis via
scaling a.nd ACE, Tech,n,icnl report, IJniv. of California., Rerkeley.

Breiman, L. and Spector, P. (1992). Submodel selection and evaluation in
regression: the X-random case, Intern. Statist. Rev 60: 291-319.

Bruce, A. and Gao, H. (1996). Applied Wavelet Analysis with S-PLUS,
Springer.

Buja, A., Hastie, T . and Tibshirani, R. (1989). Linear smoothers and
a.dditivr models (with disci~ssion), An,n,nls of Stntistics 17: 453-555.

Buja, A., Swayne, D., Littman, M. and Dean, N. (1999). Xgvis: A sys-
tem for multidimensional scaling and graph layout in any dimension,
Technical report, AT&T Laboratories.

Burges, C. J . C. (1998). A Tutorial on Support Vector Machines for Pattern
Recognition, Knowledge Discovery and Data Mining 2(2): 121-167.

Chambers, J . and Hastie, T. (1991). Statistical Models in S,
Wadsworth/Brooks Cole, Pacific Grove, CA.

Cherkassky, V. and Mulier, F. (1998). Learning from Data, Wiley, New
York.

References 51 1

Chui, C. (1992). An Introduction to Wavelets, Academic Press, London.

Comon, P. (1994). Independent component analysis - a new concept?,
Signal Processing 36: 287-314.

Copas, J. B. (1983). Regression, prediction and shrinkage (with discus-
sion), Journal of the Royal Statistical Society, Series B, Methodological
45: 311-354.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification,
Proc. IEEE Trans. Inform. Theory IT-11: 21-27.

Cover, T. and Thomas, J. (1991). Elements of Information Theory, Wiley,
New York.

Cox, D. and Hinkley, D. (1974). Theoretical Statistics, Chapman and Hall,
London.

Cressie, N. A. C. (1993). Statistics for Spatial Data (Revised Edition),
Wiley-Interscience, New York.

Csiszar, I. and Tusnkdy, G. (1984). Information geometry and alternat-
ing minimization procedures, Statistics & Decisions Supplement Issue
1: 205-237.

Dasarathy, B. (1991). Nearest Neighbor Pattern Classification Techniques,
IEEE Computer Society Press.

Daubechies, I. (1992). Ten Lectures in Wavelets, Society for Industrial and
Applied Mathematics, Philadelphia, PA.

de Boor, C. (1978). A Practical Guide to Splines, Springer-Verlag, New
York.

Dempster, A., Laird, N. and Rubin, D. (1977). Maximum likelihood from
incomplete data via the EM algorithm (with discussion), J. R. Statist.
Soc. B. 39: 1-38.

Devijver, P. and Kittler, J. (1982). Pattern Recognition: a Statistical Ap-
proach, prentice-Hall, Englewood Cliffs, N.J.

Donoho, D. and Johnstone, I. (1994). Ideal spatial adaptation by wavelet
shrinkage, Biometrika 81: 425-455.

Donoho, D., Johnstone, I., Kerkyachairan, G. and Picard, D. (1995).
Wavelet shrinkage; asymptopia? (with discussion), J. Royal. Statist.
SOC. 57: 201-337.

Duan, N. and Li, K.-C. (1991). Slicing regression: a link-free regression
method, Annals of Statistics 19: 505-530.

512 References

Duchamp, T. and Stuetzle, W. (1996). Extremal properties of principal
curves in the plane, The Annals of Statistics 24: 1511–1520.

Duda, R., Hart, P. and Stork, D. (2000). Pattern Classification (Second
Edition), Wiley, New York.

Efron, B. (1975). The efficiency of logistic regression compared to normal
discriminant analysis, J. Amer. Statist. Assoc. 70: 892–898.

Efron, B. (1979). Bootstrap methods: another look at the jackknife, Annals
of Statistics 7: 1–26.

Efron, B. (1983). Estimating the error rate of a prediction rule: some
improvements on cross-validation, J. Amer. Statist. Assoc. 78: 316–
331.

Efron, B. (1986). How biased is the apparent error rate of a prediction
rule?, J. Amer. Statist. Assoc. 81: 461–70.

Efron, B. and Tibshirani, R. (1991). Statistical analysis in the computer
age, Science 253: 390–395.

Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap,
Chapman and Hall, London.

Efron, B. and Tibshirani, R. (1997). Improvements on cross-validation: the
632+ bootstrap: method, J. Amer. Statist. Assoc. 92: 548–560.

Evgeniou, T., Pontil, M. and Poggio, T. (2000). Regularization networks
and support vector machines, Advances in Computational Mathemat-
ics 13: 1–50.

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Appli-
cations, Chapman and Hall, London.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic
problems, Eugen. 7: 179–188.

Fix, E. and Hodges, J. (1951). Discriminatory analysis- nonparametric
discrimination: Consistency properties, Technical Report 21-49-004,4,
US Air Force, School of Aviation Medicine, Randolph Field, TX.

Flury, B. (1990). Principal points, Biometrika 77: 33–41.

Forgy, E. (1965). Cluster analysis of multivariate data: Efficiency vs. in-
terpretability of classifications (abstract), Biometrics 21: 768–769.

Frank, I. and Friedman, J. (1993). A statistical view of some chemometrics
regression tools (with discussion), Technometrics 35(2): 109–148.

References 513

Freund, Y. (1995). Boosting a weak learning algorithm by majority, Infor-
mation and Computation 121(2): 256–285.

Freund, Y. and Schapire, R. (1996a). Experiments with a new boosting
algorithm, Machine Learning: Proceedings of the Thirteenth Interna-
tional Conference, Morgan Kauffman, San Francisco, pp. 148–156.

Freund, Y. and Schapire, R. (1996b). Game theory, on-line prediction and
boosting, Proceedings of the Ninth Annual Conference on Computa-
tional Learning Theory, pp. 325–332.

Freund, Y. and Schapire, R. (1997). A decision-theoretic generalization of
online learning and an application to boosting, Journal of Computer
and System Sciences 55: 119–139.

Friedman, J. (1987). Exploratory projection pursuit, Journal of the Amer-
ican Statistical Association 82: 249–266.

Friedman, J. (1989). Regularized discriminant analysis, Journal of the
American Statistical Association 84: 165–175.

Friedman, J. (1991). Multivariate adaptive regression splines (with discus-
sion), Annals of Statistics 19(1): 1–141.

Friedman, J. (1994a). Flexible metric nearest-neighbor classification, Tech-
nical report, Stanford University.

Friedman, J. (1994b). An overview of predictive learning and function
approximation, in V. Cherkassky, J. Friedman and H. Wechsler (eds),
From Statistics to Neural Networks, Vol. 136 of NATO ISI Series F,
Springer Verlag, New York.

Friedman, J. (1996). Another approach to polychotomous classification,
Technical report, Stanford University.

Friedman, J. (1997). On bias, variance, 0-1 loss and the curse of dimen-
sionality, J. Data Mining and Knowledge Discovery 1: 55–77.

Friedman, J. (1999). Stochastic gradient boosting, Technical report, Stan-
ford University.

Friedman, J. (2001). Greedy function approximation: a gradient boosting
machine, Annals of Statistics 29(5).

Friedman, J., Baskett, F. and Shustek, L. (1975). An algorithm for finding
nearest neighbors, IEEE Transactions on Computers 24: 1000–1006.

Friedman, J., Bentley, J. and Finkel, R. (1977). An algorithm for find-
ing best matches in logarithmic expected time, ACM Transactions on
Mathematical Software 3: 209–226.

514 References

Friedman, J. and Fisher, N. (1999). Bump hunting in high dimensional
data, Statistics and Computing 9: 123–143.

Friedman, J., Hastie, T. and Tibshirani, R. (2000). Additive logistic re-
gression: a statistical view of boosting (with discussion), Annals of
Statistics 28: 337–407.

Friedman, J. and Silverman, B. (1989). Flexible parsimonious smoothing
and additive modelling (with discussion), Technometrics 31: 3–39.

Friedman, J. and Stuetzle, W. (1981). Projection pursuit regression, Jour-
nal of the American Statistical Association 76: 817–823.

Friedman, J., Stuetzle, W. and Schroeder, A. (1984). Projection pursuit
density estimation, Journal of the American Statistical Association
79: 599–608.

Friedman, J. and Tukey, J. (1974). A projection pursuit algorithm for
exploratory data analysis, IEEE trans. on computers, Ser. C 23: 881–
889.

Furnival, G. and Wilson, R. (1974). Regression by leaps and bounds, Tech-
nometrics 16: 499–511.

Gelfand, A. and Smith, A. (1990). Sampling based approaches to calculat-
ing marginal densities, J. Amer. Statist. Assoc. 85: 398–409.

Gelman, A., Carlin, J., Stern, H. and Rubin, D. (1995). Bayesian Data
Analysis, CRC Press, Boca Raton, FL.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distribu-
tions and the Bayesian restoration of images, IEEE Transactions on
Pattern Analysis and Machine Intelligence 6: 721–741.

Gersho, A. and Gray, R. (1992). Vector Quantization and Signal Compres-
sion, Kluwer Academic Publishers, Boston, MA.

Girosi, F., Jones, M. and Poggio, T. (1995). Regularization theory and
neural network architectures, Neural Computation 7: 219–269.

Golub, G., Heath, M. and Wahba, G. (1979). Generalized cross-validation
as a method for choosing a good ridge parameter, Technometrics
21: 215–224.

Golub, G. and Van Loan, C. (1983). Matrix Computations, Johns Hopkins
University Press, Baltimore.

Gordon, A. (1999). Classification (2nd edition), Chapman and Hall/CRC
press, London.

References 515

Green, P. and Silverman, B. (1994). Nonparametric Regression and Gener-
alized Linear Models: A Roughness Penalty Approach, Chapman and
Hall, London.

Greenacre, M. (1984). Theory and Applications of Correspondence Analy-
sis, Academic Press, New York.

Hall, P. (1992). T h e Bootstrap and Edgeworth Expansion, Springer-Verlag,
New York.

Hart, P. (1968). The condensed nearest-neighbor rule, I E E E Trans. Inform.
Theory 14: 515-516.

Hartigan, J. A. (1975). Clustering Algorithms, Wiley, New York.

Hartigan, J. A. and Wong, M. A. (1979). [(Algorithm AS 1361 A k-means
clustering algorithm (AS R39: 8 1 ~ 3 0 p355-356), Applied Statistics
28: 100-108.

Hastie, T. (1984). Principal curves and surfaces, Technical report, Stanford
University.

Hastie, T., Botha, J. and Schnitzler, C. (1989). Regression with an ordered
categorical rcsponsc, Statistics in Mcdicinc 43: 884 889.

Hastie, T., Ruja., A. and Tibshirani, R.. (1995). Penalized discrimina.nt
analysis, Annals of Statistics 23: 73-102.

Hastie, T. and Herman, A. (1990). An analysis of gestational age, neona
tal size and neonatal death using nonparametric logistic regression,
Journal of Clinical Epidemiology 43: 1179-90.

Hastie, T. and Simard, P. (1998). Models and metrics for handwritten digit
recognition, Statistical Science 13: 54-65.

Hastie, T. and Stuetzle, W. (1989). Principal curves, Journal of the Amer-
icun SLukisl.icu1 Assoc.iul.io.r~ 84(406): 502-516.

Hastie, T. and Tibshirani, R. (1987). Nonparametric logistic and propor-
tional odds regression, Applied Statistics 36: 260-276.

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models, Chap-
man and Hall, London.

Hastie, T. and Tibshirani, R. (1996a). Discriminant adaptive nearest-
neighbor classification, IEEE Pat tern Recognition and Machine In-
telligence 18: 607-616.

516 References

Hastie, T. and Tibshirani, R. (1996b). Discriminant analysis by Gaussian
mixtures, J. Royal. Statist. Soc. B. 58: 155-176.

Hastie, T. and Tibshirani, R. (1998). Classification by pairwise coupling,
Annals of Statistics 26(2).

Hastie, T., Tibshirani, R. and Buja, A. (1994). Flexible discriminant anal-
ysis by optimal scoring, J. Amer. Statist. Assoc. 89: 1255-1270.

Hastie, T., Tibshirani, R. and Buja, A. (1998). Flexible discriminant and
mixturc modcls, i n J. Kay and M. Tittcrington (cds), Statistics and
Artificial Neural Networks, Oxford University Press.

Hathaway, R. J. (1986). Another interpretation of the EM algorithm for
mixture distributions, Statistics & Probability Letters 4: 53-56.

Hebb, D. (1949). The Organization of Behavior, Wiley, New York.

Hertz, J., Krogh, A. and Palmer, R. (1991). Introduction to the Theory of
Neural Computation, Addison Wesley, Redwood City, CA.

Hinton, G. (1989). Connectionist learning procedures, Artificial Intelli-
gence 40: 185-234.

Hoerl, A. E. and Kennard, R. (1970). Ridge regression: Biased estimation
for nonorthogonal problems, Technometrics 12: 55-67.

Huber, P. (1964). Robust estimation of a location parameter, Annals of
Math. Stat. 53: 73-101.

Huber, P. (1985). Projection pursuit, Annals of Statistics 13: 435-475.

Hyviirinen, A. and Oja, E. (2000). Independent component analysis: Algo-
rithms and applications, Neural Networks 13: 41 1-430.

Izenman, A. (1975). Reduced-rank regression for the multivariate linear
model, Journal of Multivariate Analysis 5: 248-264.

Jacobs, R., Jordan, M., Nowlan, S. and Hinton, G. (1991). Adaptive mix-
tures of local experts, Neural computation 3: 79-87.

Jain, A. and Dubcs, R. (1988). Algorithms for Clustering Data, Prcnticc-
Hall.

Jancey, R. (1966). Multidimensional group analysis, Austral. J. Botany
14: 127-130.

Jones, L. (1992). A simple lemma on greedy approximation in Hilbert space
and convergence rates for projection pursuit regression and neural
network training, Ann. Stat. 20: 608-613.

References 517

Jordan, M. and Jacobs, R. (1994). Hierachical mixtures of experts and the
EM algorithm, Neural Computation 6: 181-214.

Kaufman, L. and Rousseeuw, P. (1990). Finding Groups in Data: An In-
troduction to Cluster Analysis, Wiley, New York.

Kearns, M. and Vazirani, U. (1994). An Introduction to Computational
Learning Theory, MIT Press.

Kelly, C. and Rice, J . (1990). Monotone smoothing with application to
dose-response curves and the assessment of synergism, Biometrics
46: 1071-1085.

Kohonen, T. (1989). Self-organization and Associative Memory (3rd edi-
tion), Springer-Verlag, Berlin.

Kohonen, T. (1990). The self-organizing map, Proc. of IEEE 78: 1464-
1479.

Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Paatero, A. and Saarela,
A. (2000). Sell orgarlixaliorl ol a rrlassive docurrlerll colleclior~, IEEE
Transactions on Neural Networks l l (3) : 574-585. Special Issue on
Neural Networks for Data Mining and Knowledge Discovery.

Kressel, U. (1999). Pairwise classification and support vector machines,
in B. Scholkopf, C. Burges and A. Smola (eds), Advances in Ker-
nel Methods - Support Vector Learning, MIT Press, Cambridge, MA.,
pp. 255-268.

Lawson, C. and Hansen, R. (1974). Solving Least Squares Problems,
Prentice-Hall, Englewood Cliffs, NJ.

Le Cun, Y. (1989). Generalization and network design strategies, Technical
Report CRG-TR-89-4, Dept. of Comp. Sci,. Univ. of Toronto.

Le Cun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard,
W. and Jackel, L. (1990). Handwritten digit recognition with a back-
propogation network, in D. Touretzky (ed.), Advances in Neural In-
formation Processing Systems, Vol. 2, Morgan Kaufman, Denver, CO.

Le Cun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998). Gradient-based
learning applied to document recognition, Proceedings of the IEEE
86(11): 2278-2324.

Leblanc, M. and Tibshirani, R. (1996). Combining estimates in regression
and classification, J. Amer. Statist. Assoc. 91: 1641-1650.

518 References

Lin, H., McCulloch, C., Turnbull, B., Slate, E. and Clark, L. (2000). A
latent class mixed model for analyzing biomarker trajectories in lon-
gitudinal data with irregularly scheduled observations., Statistics in
Medicine 19: 1303-1318.

Little, R. and Rubin, D. (1987). Statistical Analysis with Missing Data,
Wilcy, Ncw York.

Lloyd, S. (1957). Least squares quantization in PCM., Technical report,
Bell Laboratories. Published in 1982 in IEEE Trans. Inf. Theory 28
128-137.

Loader, C. (1999). Local Regression and Likelihood, Springer-Verlag.

Macnaughton Smith, P., Williams, W., Dale, M. and Mockett, L. (1965).
Dissimilarity analysis: a new technique of hierarchical subdivision, Na-
ture 202: 1034-1035.

MacQueen, J. (1967). Some methods for classification and analysis of mul-
tivariate observations, Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, eds. L.M. LeCam and J.
Neyman, Univ. of California Press, pp. 281-297.

Madigan, D. and Raftery, A. (1994). Model selection and accounting for
model uncertainty using occam7s window., J. Amer. Statist. Assoc.
89: 1535-46.

Mardia, K., Kent, J. and Bibby, J. (1979). Multivariate Analysis, Academic
Press.

Massart, D., Plastria, F. and Kaufman, L. (1983). Non-hierarchical clus-
tering with MASLOC, The Journal of the Pattern Recognition Society
16: 507-516.

McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas irnme-
nent in nervous activity, Bull. Math. Biophys. 5: 115-133. pp 96-104;
Reprinted in Andersen and Rosenfeld (1988).

McLachlan, G. J. (1992). Discriminant Analysis and Statistical Pattern
Recognition, Wiley, New York.

Michie, D., Spiegelhalter, D. and Taylor, C. (eds) (1994). Machine Learn-
ing, Neural and Statistical Classification, Ellis Horwood Series in Ar-
tificial Intelligence, Ellis Horwood.

Morgan, J. N. and Sonquist, J. A. (1963). Problems in the analysis of survey
data, and a proposal, Journal of the American Statistical Association
pp. 415-434.

References 519

Murray, W., Gill, P., and Wright , M . (1981). Practical Optimization, Aca-
demic Press.

Myles, J . and Hand, D. (1990). T h e multiclass metric problem i n nearest
neighbor clasification, Pattern Recognition 23: 1291-1297.

Neal, R. (1996). Bayesian Learning for Neural Networks, Springer-Verlag,
New York .

Neal, R. and Hinton, G . (1998). A view of the EM algorithm that justi-
fies incremental, sparse, and other variants; i n Learning in Graphical
Models, M. Jordan (ed.),, Dordrecht: Kluwer Academic Publishers,
Boston, M A . , pp. 355-368.

Pace, R. K . and Barry, R. (1997). Sparse spatial autoregressions, Statistics
6Y Probability Letters 33: 291-297.

Parker, D. (1985). Learning logic, Technical Report TR-87, Cambridge M A :
MIT Center for Reserach i n Computational Economics and Manage-
ment Science.

Platt, J . (1999). Fast training o f support vector machines using sequential
minimal optimization, i n B . Scholkopf, C . J . C . Burges and A. J . Smola
(eds) , Advances in Kernel Methods - Support Vector Learning, MIT
Press, Cambridge, MA., pp. 185-208.

Quinlan, R. (1993). C4.5: Programs for Machine Learning, Morgan Kauf-
mann, San Mateo.

Ramsay, J . and Silverman, B. (1997). Functional Data Analysis, Springer
Verlag.

Rao, C . R. (1973). Linear Statistical Inference and Its Applications, Wiley,
New York .

Ripley, B. D. (1996). Pattern Recognition and Neural Networks, Cambridge
University Press.

Rissanen, J . (1983). A universal prior for integers and estimation b y mini-
mum description length, Annals of Statistics 11: 416-431.

Robbins, 11. and Munro, S . (1951). A stochastic approximation method,
Ann. Math. Stat. 22 : 400-407.

Roosen, C . and Hastie, T . (1994). Automatic smoothing spline projection
pursuit, Journal of Computational and Graphical Statistics 3: 235-248.

Rosenblatt, F . (1958). T h e perceptron: a probabilistic model for infor-
mation storage and organization i n the brain, Psychological Review
65: 386-408.

520 References

Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the
Theory of Brain Mechanisms, Spartan, Washington, D.C.

Rousseauw, J., du Plessis, J., Benade, A., Jordaan, P., Kotze, J., Jooste, P.
and Ferreira, J. (1983). Coronary risk factor screening in three rural
communities, South Afr ican Medical Journal 64: 430-436.

Rumelhart, D., Hinton, G. and Williams, R. (1986). Learning internal rep-
resentations by error propagation in Parallel Distributed Processing:
Explorations in the Microstructure of Cognition (Rumelhart, D.E. and
McClelland, J. L eds.), The MIT Press, Cambridge, MA., pp. 318-362.

Schapire, R. (1990). The strength of weak learnability, Machine Learning
5(2): 197-227.

Schapire, R., Freund, Y., Bartlett, P. and Lee, W. (1998). Boosting the
margin: a new explanation for the effectiveness of voting methods,
Annals of Statistics 26(5): 1651-1686.

Schapire, R. and Singer, Y. (1998). Improved boosting algorithms using
confidence-rated predictions, Proceedings of the Eleventh Annual Con-
ference o n Computational Learning Theory.

Schwartz, G. (1979). Estimating the dimension of a model, Annals of
Statistics 6: 461-464.

Scott, D. (1992). hfulki.uwriuLe Der~siky Eski.rr~ul.ion: T l~eovy , P~ucl.ice, wr~d
Visualization, Wiley, New York.

Seber, G. (1984). Multivariate Observations, Wiley, New York.

Shao, J. (1996). Bootstrap model selection, J. A m e r . Statist . Assoc.
91: 655-665.

Short, R. and Fukunaga, K. (1981). The optimal distance measure for near-
est neighbor classification, I E E E Transactions o n Information Theory
27: 622-627.

Silverman, B. (1986). Densi ty Est imat ion for Statistics and Data Analysis,
Chapman and Hall, London.

Silvey, S. (1975). Statistical Inference, Halsted.

Simard, P., Le Cun, Y. and Denker, J. (1993). Efficient pattern recognition
using a new transformation distance, Advances in Neural Information
Processing Systems, Morgan Kaufman, San Mateo, CA, pp. 50-58.

Spiegelhalter, D., Best, N., Gilks, W. and Inskip, H. (1996). Hepatitis
B: a case study in MCMC methods, in W. Gilks, S . Richardson and
D. Spegelhalter (eds), Markov Chain Monte Carlo in Practice, Inter-
disciplinary Statistics, Chapman and Hall, London.

References 521

Stamey, T., Kabalin, J., McNeal, J., Johnstone, I., Freiha, F., Redwine, E.
and Yang, N. (1989). Prostate specific antigen in the diagnosis and
treatment of adenocarcinoma of the prostate II. radical prostatectomy
treated patients, Journal of Urology 16: 1076–1083.

Stone, C., Hansen, M., Kooperberg, C. and Truong, Y. (1997). Polynomial
splines and their tensor products (with discussion), Annals of Statistics
25(4): 1371–1470.

Stone, M. (1974). Cross-validatory choice and assessment of statistical
predictions, J. Roy. Statist. Soc. 36: 111–147.

Stone, M. (1977). An asymptotic equivalence of choice of model by cross-
validation and Akaike’s criterion, J. Roy. Statist. Soc. 39: 44–7.

Stone, M. and Brooks, R. J. (1990). Continuum regression: Cross-validated
sequentially constructed prediction embracing ordinary least squares,
partial least squares and principal components regression (Corr: V54
p906-907), Journal of the Royal Statistical Society, Series B, Method-
ological 52: 237–269.

Swayne, D., Cook, D. and Buja, A. (1991). Xgobi: Interactive dynamic
graphics in the X window system with a link to S, ASA Proceedings
of Section on Statistical Graphics, pp. 1–8.

Tanner, M. and Wong, W. (1987). The calculation of posterior distribu-
tions by data augmentation (with discussion), J. Amer. Statist. Assoc.
82: 528–550.

Tarpey, T. and Flury, B. (1996). Self-consistency: A fundamental concept
in statistics, Statistical Science 11: 229–243.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, J.
Royal. Statist. Soc. B. 58: 267–288.

Tibshirani, R. and Knight, K. (1999). Model search and inference by boot-
strap “bumping, J. Comp. and Graph. Stat. 8: 671–686.

Tibshirani, R., Walther, G. and Hastie, T. (2001). Estimating the number
of clusters in a dataset via the gap statistic, J. Royal. Statist. Soc. B.
32(2): 411–423.

Valiant, L. G. (1984). A theory of the learnable, Communications of the
ACM 27: 1134–1142.

van der Merwe, A. and Zidek, J. (1980). Multivariate regression analysis
and canonical variates, The Canadian Journal of Statistics 8: 27–39.

Vapnik, V. (1996). The Nature of Statistical Learning Theory, Springer-
Verlag, New York.

522 References

Vidakovic, B. (1999). Statistical Modeling by Wavelets, Wiley, New York.

Wahba, G. (1980). Spline bases, regularization, and generalized cross-
validation for solving approximation problems with large quantities
of noisy data, Proceedings of the International Conference on Approx-
imation theory in Honour of George Lorenz, Academic Press, Austin,
Texas.

Wahba, G. (1990). Spline Models for Observational Data, SIAM, Philadel-
phia.

Wahba, G., Lin, Y. and Zhang, H. (2000). GACV for support vector ma-
chines, in A. Smola, P. Bartlett, B. Scholkopf and D. Schuurmans
(eds), Advances in Large Margin Classifiers, MIT Press, Cambridge,
MA., pp. 297-311.

Weisberg, S. (1980). Applied Linear Regression, Wiley, New York.

Werbos, P. (1974). Beyond regression, PhD thesis, Harvard University.

Wickerhauser, M. (1994). Adapted Wavelet Analysis from Theory to Soft-
ware, A.K. Peters Ltd, Natick, MA.

Widrow, R. a.nd Hoff, M. (1960). Adaptive switching ci~rcuits, Vol. 4, 1R.R
WESCON Convention record. pp 96-104; Reprinted in Andersen and
Rnsenfeld (1 988).

Wold, H. (1975). Soft modelling by latent variables: The nonlinear iterative
partial least squares (NIPALS) approach, Perspectives in Probability
and Statistics, In Honor of M. S. Bartlett, pp. 117- 144.

Wolpert, D. (1992). Stacked generalization, Neural Networks 5: 241-259.

Yee, T . and Wild, C. (1996). Vector generalized additive models, Journal
of the Royal Statistical Society, Series B. 58: 481-493.

Zhang, P. (1993). Model selection via multifold cross-validation, Ann.
Statist. 21: 299-311.

+ This is page 523
Printer: Opaque this

Author Index

Abu-Mostafa, Y.S. 77, 509
Agrswal, R. 442, 443, 503, 500
Akaike, H. 222, 509
Allcn, D.M. 222, 609

Barron, A.R 368, 509
Barry, Ronald 335, 519
Dartlett, P. 343, 520
Baskett, F. 513
Becktlt, R. 333, 509
Bell, A. 504, 509
Bellman, R E. 22, 510
Bena.de, A. 100, 520
Bengio, Y. 363, 366, 368, 517
Bentley, J. 513
Best, N. 255, 520
Bibby, J.M. 75, 111,495, 504, 518
Bishop, C.M. 39, 206, 367, 510
B m r , B. 362, 368, 517
Botha, J. 295, 515
Bottou, L. 363, 366, 368, 517
Breiman, L. 74, 75, 219, 222,255,

270, 272, 296, 302, 331,
405, 406, 510

Breiman, L 222, 510

Brooks, R. J 521
Bruce, A. 155, 510
Buja, A. 88, 260, 399, 404, 406,

600, 604, 610, 616, 616,
521

Burges, C. J. C. 406, 510

Carlin, J. 255, 514
Chambers, J. 295, 510
C l ~ e t h u k ~ , V. 39, 211, 610
Chui, C. 155, 511
Clark, L.C. 293, 518
Cleveland, W. 333, 509
Comon, P. 504, 511
Cook, D. 500, 521
Copas, J. B. 75, 330, 511
Cover, T.M. 222, 417, 433, 511
cox, U.K. 254, 511
Cressie, Noel A. C. 511
Csiszar, I. 255,511

Dale, M.B. 518
Dasarathy, B.V. 432,433, 511
Daubechies, I. 155, 511
de Boor, C. 155, 511

524 Author Index

Dean, .N 504, 510
Dempster, A. 255, 400, 511
Denker, J. 362, 368, 517, 520
Devijver, P.A. 432, 511
Donoho, D. 331, 511
du Plessis, J. 100, 520
Duan, N. 432, 511
Dubes, R.C. 461, 475, 516
Duchamp, T. 512
Duda, R. 39, 111, 512

Efron, B. 105, 204, 222, 254, 295,
512

Evgeniou, T. 144, 155, 406, 512

Fan, J. 190, 512
Ferreira, J. 100, 520
Finkel, R. 513
Fisher, N. 296, 514
Fisher, R. A. 406, 512
Fix, E. 433, 512
Flury, 13. 504, 512, 521
Forgy, E.W. 503, 512
FI-a-arlk, I. 70, 75, 512
Freiha, F. 3, 47, 521
Freund, Y. 299,341, 343, 513,520
Friedman, J. 39, 70, 74, 75, 90,

219, 223, 270, 272, 296,
301, 307, 326, 331, 333,
335, 343, 344, 367, 405,
429, 500, 504, 510, 512,
513

Fukunaga, K. 429, 520
hhrnival, G. 55, 514

Gao, H. 155, 510
Gelfand, A. 255, 514
Gelman, A. 255, 514
Geman, D. 255, 514
Geman, S. 255, 514
Gersho, A. 466,468, 480, 503, 514
Gijbels, I. 190, 512
Gilks, W. 255, 520
Gill, P.E. 75, 519
Girosi, F. 144, 148, 155, 368, 514

Golub, G. 222, 296, 514
Gordon, A.D. 503, 514
Gray, R. 466, 468, 480, 503, 514
Green, P. 155, 157, 295, 515
Greenacre, M. 515

Haffner, P. 363, 366, 368, 517
Hall, P. 254, 515
Hand, D.J. 111, 429, 515, 519
Hansen, M. 289, 521
Hansen, R. 75, 517
Hart, P. 39, 111, 417, 432, 433,

511, 512, 515
Hartigan, J. A. 462, 503, 515
Hastie, T. 88, 113, 190, 222, 260,

261, 262, 266, 295, 301,
307, 343, 344, 382, 385,
399, 402, 404, 406, 429,
431, 432, 433, 472, 504,
510, 514, 515, 516, 519

Hathaway, Richard J. 255, 516
Hcalh, M. 222, 514
Hebb, D.O. 367, 516
Henderson, D. 362, 368, 517
Herman, A. 295, 515
Hertz, J. 367, 516
Hinkley, D.V. 254, 511
Hinton, G. 255,296, 367,516,519,

520
Hodges, J.L. 433, 512
Hoerl, A. E. 60, 75, 516
Hoff, M.E. 355, 367, 522
Howard, R.E. 362, 368, 517
Hubbard, W. 362, 368, 517
Huber, P. 311, 367, 386, 504, 516
Hyvarinen, A. 496, 497, 498, 504,

516

Ihaka, R. 406, 510
Inskip, H. 255, 520
Izenman, A. 516

Jackel, L.D. 362, 368, 517
Jacobs, R. 296, 516, 517
Jain, A.K. 461, 475, 516

Author Index 525

Jancey, R.C. 503, 516
Johnstone, I. 3, 47, 331, 511, 521
Jones, L. 368, 517
Jones, M. 144, 148, 155, 368, 514
Jooste, P. 100, 520
Jordaan, P. 100, 520
Jordan, M. 296, 516, 517

Kabalin, J. 3, 47, 521
Kaski, S. 485, 503, 517
Kaufman, L. 469, 480, 503, 517,

518
Kearns, M. 517
Kelly, C. 477, 517
Kennard, R.W 60, 75, 516
Kent, J. 75, 111, 495, 504, 518
Kerkyachairan, G. 331, 511
Kittler, J.V. 432, 511
Knight, K. 255, 521
Kohonen, T. 414, 433, 485, 503,

517
Kooperberg, C. 289, 521
Kotze, J . 100, 520
Kressel, Ulrich 517
Krogh, A. 367, 516

Lagus, K. 485, 503, 517
Laird, N.. 255, 400, 511
Lawson, C. 75, 517
Le Cun, Y. 362, 363, 365, 366,

368, 517, 520
Leblanc, M. 255, 517
Lee, W. 343, 520
Li, K-C: 432, 512
Lin, H. 293, 518
Lin, Y. 382, 406, 522
Little, R. 293, 518
Littman, M. 504, 510
Lloyd, S.P. 433, 503, 518
Loader, C. 183, 190, 518

Macnaughton Smith, P. 518
MacQueen, J. 433, 503, 518
Madigan, D. 222, 255, 518
Mannila, H. 442, 443, 503, 509

Mardia, K.V. 75, 111, 495, 504,
518

Massart, D. 469, 518
McCulloch, C.E. 293, 518
McCulloch, W.S. 367, 518
McLachlan, Geoffrey J. 111, 518
McNeal, J. 3, 47, 521
Michie, D. 89, 390, 422, 518
Mockett, L.G. 518
Morgan, James N. 296, 518
Mulier, F 39, 211, 510
Munro, S. 355, 519
Murray, W. 75, 519
Myles, J.P. 429, 519

Neal, R. 255, 519
Nowlan, S. 296, 516

Oja, E. 496, 497, 498, 504, 516
Olshen, R. 219,270,272,296,331,

405, 510

Paatero, A. 485, 503, 517
Pace, R. Kelley 335, 519
Palmer, R.G. 367, 516
Parker, David 367, 519
Picard, D. 331, 511
Pitts, W. 367, 518
Plastria, F. 469, 518
Platt, J. 405, 519
Poggio, T. 144, 148, 155,368,406,

512, 514
Pontil, M. 144, 155, 406, 512

Quinlan, R. 273, 296, 519

Kaftery, A.H. 222, 255, 518
Ramsay, J. 155, 519
Rao, C. R. 406, 519
Redwine, E. 3, 47, 521
Rice, J. 477, 517
Ripley, B. D. 39, 108, 111, 113,

270, 359, 367, 368, 406,
420, 432, 433, 519

Rissanen, Jorma 222, 519
Robbins, H. 355, 519

526 Author Index

Roosen, C. 519
Rosenblatt, F. 80, 106, 367, 520
Rousseauw, J. 100, 520
Rousseeuw, P. 469, 480, 503, 517
Rubin, D. 255, 293, 400, 511, 514,

518
Rumelhart, D. 367, 520

Saarela, A. 485, 503, 517
Salojarvi, J 485, 503, 517
Schapire, R. 299, 340, 341, 343,

513, 520
Schnitzler, C. 295, 515
Schroeder, A. 514
Schwartz, G. 206, 222, 520
Scott, D. 190, 520
Seber, G.A.F 75, 520
Sejnowski, T. 504, 509
Shao, J. 222, 520
Short, R.S. 429, 520
Shustek, L.J. 513
Sllyu, M. 333, 509
Silverman, B. 155, 157, 190, 295,

296, 514, 515, 519, 520
Silvey, S.D. 254, 520
Simard, P. 432, 515, 520
Singer, Y. 343, 520
Slate, E.H. 293, 518
Smith, A. 255, 514
Sonquist, John A. 296, 518
Spector, P. 222, 510
Spicgclhaltcr, D. 255, 518, 520
Srikant, R. 442, 443, 503, 509
Stamey, T 3, 47, 521
Stern, H. 255, 514
Stone, C. 219, 270, 272, 289, 296,

331, 405, 510, 521
Stone, M. 222, 521
Stork, D. 39, 111, 512
Stuetzle, W. 367, 504, 512, 514,

515
Swayne, D. 500, 504, 510, 521

Tanner, M. 255, 521
Tarpey, T. 504, 521

Thomas, J.A. 222, 511
Tibshirani, R. 75, 88, 113, 190,

222, 254, 255, 260, 261,
262, 266, 295, 301, 307,
343, 344, 382, 385, 399,
402, 404, 406, 429, 431,
432, 433, 472, 510, 512,
514, 515, 516, 517, 521

Toivonen, H. 442, 443, 503, 509
Truong, Y. 289, 521
Tukey, J. 367, 500, 504, 514
Turnbull, B.W. 293, 518
Tusnady, G. 255, 511

Valiant, L. G. 521
van der Merwe, A. 521
Van Loan, C. 296, 514
Vapnik, V. 39, 80, 108, 111, 147,

222, 406, 521
Vazirani, U. 517
Verkamo, A. 1. 442, 443, 503, 509
Vidakovic, B. 155, 522

Wahba, G. 144,155,222,382,406,
514, 522

Walther, G. 472, 521
Weisberg, Sanford 75, 522
Werbos, P.J 367, 522
Wickerhauser, M.V. 155, 522
Widrow, B. 355, 367, 522
Wild, C.J. 262, 522
Williams, R. 367, 520
Williams, W.T. 518
Wilson, R. 55, 514
Wold, H. 75, 522
Wolpert, D. 255, 522
Wong, M. A. 462, 515
Wong, W. 255, 521
Wright, M.H. 75, 519

Yang, N. 3, 47, 521
Yee, T.W. 262, 522

Zhang, H. 382, 406, 522
Zhang, P. 222, 523
Zidek, J. 521

+ This is page 527
Printer: Opaque this

Index

AIC-- see Akaike information cri-
terion

Activation function 350-352
AdaBoost 20S300
Adaptive methods 383
Adaptive nearest neighbor meth-

ods 427430
Adaptive wavelet Eltering 157
Additive model 257-266
AJj &Led t-etibutltie 259
f f ine invariant average 434
f f ine set 106
Akaike information criterion (AIC)

203
Analysis of deviance 102
Applications

aorta 178
bone 128
California housing 335-336
countries 468
document 485
galaxy 175
heart attack 122,181
marketing 444
microarray 5,462,485

nuclear magnetic resonance 150
oaonc 175
prmtate cancer 2,47,57
satellite image 422
spam 2, 62-264,274,276,282,289,

314
vowel 391,416
waveform 402
ZIP code 3,362,48&489

Association rules 444-447,451453
Activation function 35&352
Automatic selection of smoothing

parameters 134

B I h e e Bayesian Information Cri-
terion

BRUT0 266,385
B-Spline 160
Back-propagation 349,355355,386

367
Hacktitting procedure 259
Backward pass 354
Backward stepwise selection 55
Bagging 246-249

528 Index

Basis expansions and regulariza-
tion 115-164

Basis functions 117,161,163,283,289
Batch learning 355
Baum-Welch algorithm 236
Bayes

classifier 21
factor 207
methods 206-207,231-236
rate 21

Bayesian information criterion (BIC)
206

Between-class covariance matrix
92

Bias 16,24,37,136,193
Bias-variance decomposition 24,37,193
Bias-variance tradeoff 37,193
Boosting 299-346
Bootstrap 217,225-228,231,234-246

relationship to maximum like-
lihood method 231

relationship to Bayesian method
235

Bottom-up clustering 472-479
Bump hunting-see patient rule

induction method (PRIM)
Bumping 253-254

CART-see classification and re-
gression trees

Canonical variates 392
Categorical predictors 10,271-272
Classical multidimensional scaling

502
Classification 21,79-114,266-278,371-

384
Classification and regression trees

(CAKI') 266-278
Clustering 453-479

agglomerative 475-479
hierarchical 472-479
k-means 461-462

Codebook 465,468
Combinatorial algorithms 460
Combining models 250-252

Committee methods 251
Complete data 240
Complexity parameter 37
Comparison of learning methods

312-314
Condensing procedure 432
Conditional likelihood 31
Conjugate gradients 355
Confusion matrix 263
Convolutional networks 364
Cost complexity pruning 270
Cp statistic 203
Cross-entropy 270-271
Cross-validation 214-216
Cubic smoothing spline 127-128
Cubic spline 127-128
Curse of dimensionality 22-27

Data augmentation 240
Daubechies symmlet-8 wavelets

150
Decision boundary 13,15,16,22
Decision trees 266-278
Decoding step 467
Degrees of freedom

it1 ridge regressiotl 63
of smoother matrices 129-130,

134
of a tree 297
in an additive model 264

Delta rule 355
Demmler-Reinsch basis for splines

132
Density estimation 182-189
Deviance 102,271
Discrete variables 10,272-273
Discriminant adaptive nearest

neighbor (DANN) clas-
sifier 427-432

Discriminant
analysis 84-94
coordinates 85
functions 87-88

Dissimilarity measure 455-456
Dummy variables 10

Index 529

Early stopping 355
Effective degrees of freedom 15,63,

129-130,134,205,264,297
Effective number of parameters 15,63,

129-130,134,205,264,297
Eigenvalues of a smoother matrix

130
Expectation-maximization algorithm-

see EM algorithm
EM algorithm 236-242

for two component Gaussian
mixturc 236

as a maximization-maximization
procedure 241

Encoder 466-467
Entropy 271
Equivalent kernel 133
Error rate 193-203
Estimates of in-sample prediction

error 203
Exponential loss and AdaBoost 305
Extra-sample error 202

Features 1
Feature extraction 126
Feed-forward neural networks 350-

366
Fisher's linear discriminant 84~94,390
Flexible discriminant analysis 391-

396
Forward pass algorithm 353
Forward selection 55
Forward stagewise additive mod-

eling 304
Fourier transform 144
Frequentist methods 231
Function approximation 28-36

G C V s e e Generalized cross-validation
GEM (generalized EM) 241
Gap statistic 472
Gating networks 290-291
Gaussian (normal) distribution 17
Gauss-Markov theorem 49-50
Gauss-Newton method 349

Gaussian mixtures 237,416,444,462
Gaussian radial basis functions 186
Generalization

error 194
performance 194

Generalized additive model 257-
265

Generalized association rules 449-
450

Generalized cross-validation 216
Generalized linear models 103
Ccncralizing lincar discriminant

analysis 390
Gibbs sampler 243-244
Gibbs sampler for mixtures 244
Gini index 271
Global dimension reduction for

nearest neighbors 431
Gradient boosting 320
Gradient descent 320.353-354

Haar basis fullctioll 150
Hat matrix 44
Hessiarl rrlatrix 99
Helix 506
Hidden units 351-352
Hierarchical clustering 472-479
Hierarchical mixtures of experts

290-292
Hints 77
Hyperplane, separating 108-110

ICA-see independent components
analysis

I R L S s e e iteratively reweighted
least squares

In-sample prediction error 203
Incomplete data 293
Independent variables 9
Independent components analysis

494-501
Indicator response matrix 81
Inference 225-255
Information

Fisher 230

530 Index

observed 239
Information theory 208,496
Inputs 10
Instability of trees 274
Intercept 11
Invariance manifold 423
Invariant metric 423
Inverse wavelet transform 153
Irreducible error 197
Itcrativcly rcwcightcd lcast squarcs

(IRLS) 99

Jensen's inequality 255

K-means clustering 412,461-465
K-medoid clustering 468-472
K-nearest neighbor classifiers 415
Karhunen-Loeve transformation

(principal components) 62
63,66,485-491

Kernel density classification 184
Kernel density estimation 182-189
Kernel function 183
Kernel ~llethods 182-189
Knot 117,283
Krigirlg 147
Kruskal-Shephard scaling 502
Kullback-Leibler distance 497
Karush-Kuhn-Tucker conditions

110.374

L V Q s e e Learning Vector Quan-
tization

Lagrange multipliers 256
Laplacian distribution 72
Lasso 64-65,69-72,330-331
Learning 1
Learning rate 354
Learning Vector Quantization 414
Least squares 11,32
Leave-one-out cross-validation 215
Left singular vectors 487
LeNet 363
Life, ultimate meaning of 534
Likelihood function 229,237

Linear basis expansion 115-124
Linear combination splits 273
Linear discriminant function 84-

94
Linear methods

for classification 79-114
for regression 41-78

Linear models and least squares
11

Linear regression of an indicator
matrix 81

Lincar scparability 105
Linear smoother 129
Link function 258
Local likelihood 179
Local methods in high dimensions

22-27
Local minima 359
Local polynomial regression 171
Local regression 168,174
Localization in time and in fre-

quency 149
Loess (local regression) 168,174
Log-odds ratio (logit) 96
Logistic (sigmoid) function 352
Logistic regression 95-104,261
Logit (log-odds ratio) 96
Loss function 18,21,193-195,308
Loss matrix 272
Lossless compression 467
Lossy compression 467

MAP (maximum apost eriori) es-
timate 234

M A R S s e e Multivariate adaptive
regression splines

MART-see Multiple additive re-
gression trees

MCMC-see Markov Chain Monte
Carlo Methods

M D L s e e Minimum description
length

Mahalanobis distance 392
Majority vote 249,299
Margin 110,372

Market basket analysis 440,451
Maximum likelihood estimation 32,

225
Maximum likelihood inference 229
Markov chain Monte Carlo (MCMC)

methods 243
Mean squared error 24,247
Memory-based method 415
Metropolis-Hastings algorithm 245
Minimum description length (MDL)

208
Misclassification error 17,271
Missing predictor values 293-294
Missing data 240,293-294
Mixing proportions 189
Mixture discriminant analysis 399-

405
Mixture modeling 188-189,236-240,

399-405
Mixture of experts 290-292
Mixtures and the EM algorithm

236-240
Mode seekers 459
Model averaging arid slackir~g 250
Model combination 251
Model complexity 194-195
Model selection 195-196,203-204
Monte carlo method 217,447
Mother wavelet 152
Multi-dimensional splines 138
Multi-edit algorithm 432
Multi-resolution analysis 152
Multidimensional scaling 502-503
Multi-layer perceptron 358,362
Multinomial distribution 98
Multiple minima 253,359
Multiple outcome shrinkage and

selection 73
Multiple outputs 54,73,81-84
Multiple regression from simple uni-

variate regression 50
Multivariate adaptive regression

splines (MARS) 283-289
Multiple additive regression trees

(MART) 322

Multivariate nonparametric regres-
sion 395

Nadaraya-Watson estimate 166
Naive Bayes classifier 86,184-185
Natural cubic splines 120-121
Nearest neighbor methods 415-436
Network diagram 351
Neural networks 347-370
Newton's method (Newton-Raphson

procedure) 98-99
Nonparametric logistic regression

261-265
Normal (Gaussian) distribution 17,31
Normal equations 12
Numerical optimization 319,353-

354

Object dissimilarity 457-458
Online algorithm 355
Optimal scoring 395-397,401-402
Optimal separating llyperpla~zes 108-

110
Oplirr~isrr~ ul Ll~e Lrairlirlg errur rale

200-202
Ordered categorical (ordinal) pre-

dictor 10,456
Orthogonal predictors 51
Overfitting 194,200-203,324

PRIM- see patient rule induction
method

Parametric bootstrap 228
Partial dependence plots 333-334
Partial least squares 66-68
Parzen window 182
Pasting 279
Patient rule induction method

(PRIM) 279-282,451-452
Peeling 279
Penalization-see regularization
Penalized discriminant analysis

397-398
Penalized polynomial regression

147

Penalized regression 34,59-65,147
Penalty matrix 128,163,
Perceptron 350-370
Piecewise polynomials and splines

36,119
Posterior

distribution 232
probability 206-207,232

Prediction accuracy 290
Predictive distribution 232
Prediction error 18
Principal componcnts 62 63,66

67,485-491
Principal components regression

66-67
Principal curves and surfaces 491-

493
Principal points 491
Prior distribution 232-235
Projection pursuit 347-349,500
Projection pursuit regression 347-

349
Prototype classifier 411-415
Prototype methods 411-415
Proximity matrices 455
Pruning 270

QR decomposition 53
Quadratic approximations and in-

ference 102
Quadratic discriminant function

86,89

Radial basis functions 186-187,240,351
Radial basis function (RBF) net-

work 350
Rao score test 103
Kayleigh quotient 94
Receiver operating characteristic

(ROC) curve 277-278
Reduced-rank linear discriminant

analysis 91
Regression 11-13,41-78,174-178
Regression spline 120
Regularization 34,144-149

Regularized discriminant analysis
90-91

Representer of evaluation 145
Reproducing kernel Hilbert space

144-149
Reproducing property 145
Responsibilities 238-240
Ridgc rcgrcssion 59 64
Risk factor 100
Robust fitting 308-310
Rosenblatt's perceptron learning

algorithm 107
Rug plot 265

S O M s e e self-organizing map
S R M s e e structural risk

minimization
SURE shrinkage method 153
S V D s e e singular value decom-

position
Sammon mapping 502
Scaling of the inputs 358
Schwartz's criterion 206-207
Score equations 98,229
Self-consistency property 491-492
Self-organizing map (SOM) 480-

484
Sensitivity of a test 277-278
Separating hyperplanes 108,371-

373
Shape averaging 434
Shrinkage methods 59-66
Sigrrloicl 352
Similarity measuresee dissimi-

larity measure
Single index model 348
Singular value decomposition

(SVD) 487-488
Singular values 487
Skin of the orange example 384-

385
Sliced inverse regression 432
Smoother 115-134,165-173
Smoother matrix 129

Index 533

Smoothing parameter 37,134–136,
172–173

Smoothing spline 127–133
Soft clustering 463
Softmax function 351
Sparseness 149
Specificity of a test 277–278
Spline

additive 259–260
cubic smoothing 127–128
cubic 127–128
interaction 382
regression 120
smoothing 127–133
thin plate 140

Squared error loss 18,24,37,193
Stacking (stacked generalization)

252–253
Starting values 355
Statistical decision theory 18–21
Statistical model 28–29
Steepest descent 320,353–354
Stochastic approximation 355
Stochastic search (bumping) 253–

254
Stress function 502–503
Structural risk minimization (SRM)

212–213
Subset selection 55–57
Supervised learning 2
Support vector classifier 371–376
Support vector machine 377–389
Symmlet basis 150

Tangent distance 423–426
Tanh activation function 378
Target variable 10
Tensor product basis 138
Test set 194
Test error 194–196
Thin plate spline 140
Thinning strategy 163
Trace of a matrix 130

Training epoch 355
Training error 194–196
Training set 193–196
Tree-based methods 266–278
Trees for classification 270–271
Tree for regression 267–269
Trellis display 176

Universal approximator 348
Unsupervised learning 2,437–508
Unsupervised learning as super-

vised learning 447–448

VC dimension—see Vapnik-
Chernovenkis dimension

Validation set 196
Vapnik-Chernovenkis (VC) dimen-

sion 210–211
Variable types and terminology 9
Variance 16,24,37,134–136,193

between 92,94
within 92,94,397

Varying coefficient models 177–178
Vector quantization 466–467
Voronoi regions 14,16,97,463

Wald test 103
Wavelet basis functions 150–152
Wavelet smoothing 148
Wavelet transform 150–153
Weak learner 341
Weakest link pruning 270
Website for book 8
Weights in a neural network 353
Weight decay 356
Weight elimination 356
Within-class covariance matrix 92,

94,397

	Hastie2003

