__Springer Series in Statistics @

The Elementé of
Statistical Learning

Contents
Preface vii
1 Introduction 1
2 Overview of Supervised Learning 9
2.1 Imtroduction. Lo 9
2.2 Variable Types and Terminology 9
2.3 Two Simple Approaches to Prediction: Least Squares and
Nearest Neighbors 11
2.3.1 Linear Models and Least Squares 11
2.3.2 Nearest-Neighbor Methods 14
2.3.3 From Least Squares to Nearest Neighbors 16
2.4 Statistical Decision Theory 18
2.5 Local Methods in High Dimensions 22
2.6 Statistical Models, Supervised Learning and Function Ap-
proximation Lo 28
2.6.1 A Statistical Model for the Joint Distribution Pr(X,Y") 28
2.6.2 Supervised Learning 29
2.6.3 Function Approximation 29
2.7 Structured Regression Models 32
2.7.1 Difficulty of the Problem 32
2.8 Classes of Restricted Estimators 33
2.8.1 Roughness Penalty and Bayesian Methods 34

2.8.2 Kernel Methods and Local Regression 34

This is page ix
Printer: Opaque this

X

Contents

2.8.3 Basis Functions and Dictionary Methods 35
2.9 Model Selection and the Bias—Variance Tradeoff 37
Bibliographic Notes 39
Exercises 39
Linear Methods for Regression 41
3.1 Imtroduction. 41
3.2 Linear Regression Models and Least Squares 42
3.2.1 Example: Prostate Cancer 47
3.2.2 The Gauss—Markov Theorem 49
3.3 Multiple Regression from Simple Univariate Regression . . . 50
3.3.1 Multiple Outputs 54
3.4 Subset Selection and Coefficient Shrinkage 55
3.4.1 Subset Selection 55
3.4.2 Prostate Cancer Data Example (Continued) 57
3.4.3 Shrinkage Methods 59
3.4.4 Methods Using Derived Input Directions 66
3.4.5 Discussion: A Comparison of the Selection and Shrink-
age Methods 68
3.4.6 Multiple Outcome Shrinkage and Selection 73
3.5 Computational Considerations 75
Bibliographic Notes 75
Exercises 75
Linear Methods for Classification 79
4.1 Imtroduction L. 79
4.2 Linear Regression of an Indicator Matrix 81
4.3 Linear Discriminant Analysis 84
4.3.1 Regularized Discriminant Analysis 90
4.3.2 Computations for LDA 91
4.3.3 Reduced-Rank Linear Discriminant Analysis 91
4.4 Logistic Regression 95
4.4.1 Fitting Logistic Regression Models 98
4.4.2 Example: South African Heart Disease 100
4.4.3 Quadratic Approximations and Inference 102
4.4.4 Logistic Regression or LDA? 103
4.5 Separating Hyperplanes 105
4.5.1 Rosenblatt’s Perceptron Learning Algorithm 107
4.5.2 Optimal Separating Hyperplanes 108
Bibliographic Notes 111
Exercises 111
Basis Expansions and Regularization 115
5.1 Imtroduction. L . 115

5.2 Piecewise Polynomials and Splines 117

Contents xi

5.2.1 Natural Cubic Splines 120
5.2.2 Example: South African Heart Disease (Continued) . 122
5.2.3 Example: Phoneme Recognition 124
5.3 Filtering and Feature Extraction 126
5.4 Smoothing Splines 127
5.4.1 Degrees of Freedom and Smoother Matrices 129
5.5 Automatic Selection of the Smoothing Parameters 134
5.5.1 Fixing the Degrees of Freedom 134
5.5.2 The Bias—Variance Tradeoff 134
5.6 Nonparametric Logistic Regression 137
5.7 Multidimensional Splines 138
5.8 Regularization and Reproducing Kernel Hilbert Spaces . . . 144
5.8.1 Spaces of Functions Generated by Kernels 144
5.8.2 Examplesof RKHS. 146
5.9 Wavelet Smoothing oL oL 148
5.9.1 Wavelet Bases and the Wavelet Transform 150
5.9.2 Adaptive Wavelet Filtering 153
Bibliographic Notes 155
Exercises 155
Appendix: Computational Considerations for Splines 160
Appendix: B-splines L. 160
Appendix: Computations for Smoothing Splines 163
Kernel Methods 165
6.1 One-Dimensional Kernel Smoothers. 165
6.1.1 Local Linear Regression 168
6.1.2 Local Polynomial Regression 171
6.2 Selecting the Width of the Kernel 172
6.3 Local Regression in IRP 174
6.4 Structured Local Regression Models in IRP 175
6.4.1 Structured Kernels 177
6.4.2 Structured Regression Functions 177
6.5 Local Likelihood and Other Models 179
6.6 Kernel Density Estimation and Classification 182
6.6.1 Kernel Density Estimation 182
6.6.2 Kernel Density Classification 184
6.6.3 The Naive Bayes Classifier 184
6.7 Radial Basis Functions and Kernels 186
6.8 Mixture Models for Density Estimation and Classification . 188
6.9 Computational Considerations 190
Bibliographic Notes 190
Exercises 190
Model Assessment and Selection 193

7.1 Introduction 193

xii

Contents
7.2 Bias, Variance and Model Complexity 193
7.3 The Bias—Variance Decomposition 196
7.3.1 Example: Bias—Variance Tradeoff 198
7.4 Optimism of the Training Error Rate 200
7.5 Estimates of In-Sample Prediction Error 203
7.6 The Effective Number of Parameters 205
7.7 The Bayesian Approach and BIC 206
7.8 Minimum Description Length 208
7.9 Vapnik—Chernovenkis Dimension 210
7.9.1 Example (Continued) 212
7.10 Cross-Validation 214
7.11 Bootstrap Methods 217
7.11.1 Example (Continued) 220
Bibliographic Notes 222
Exercises 222
Model Inference and Averaging 225
8.1 Imtroduction., 225
8.2 The Bootstrap and Maximum Likelihood Methods 225
8.2.1 A Smoothing Example 225
8.2.2 Maximum Likelihood Inference 229
8.2.3 Bootstrap versus Maximum Likelihood 231
8.3 Bayesian Methods 231
8.4 Relationship Between the Bootstrap and Bayesian Inference 235
8.5 The EM Algorithm 236
8.5.1 Two-Component Mixture Model 236
8.5.2 The EM Algorithm in General 240
8.5.3 EM as a Maximization-Maximization Procedure . . 241
8.6 MCMC for Sampling from the Posterior 243
8.7 Bagging oo 246
8.7.1 Example: Trees with Simulated Data 247
8.8 Model Averaging and Stacking 250
8.9 Stochastic Search: Bumping 253
Bibliographic Notes 254
Exercises 255
Additive Models, Trees, and Related Methods 257
9.1 Generalized Additive Models 257
9.1.1 Fitting Additive Models 259
9.1.2 Example: Additive Logistic Regression 261
9.1.3 Summary 266
9.2 Tree-Based Methods 266
9.2.1 Background oo 266
9.2.2 Regression Trees 267

9.2.3 Classification Trees 270

9.2.4 Other
9.2.5 Spam
9.3 PRIM—Bum
9.3.1 Spam

Contents

Isswes. oo
Example (Continued)
pHunting
Example (Continued)

9.4 MARS: Multivariate Adaptive Regression Splines

9.4.1 Spam

Example (Continued)

9.4.2 Example (Simulated Data)

9.4.3 Other

Issues.

9.5 Hierarchical Mixtures of Experts

9.6 Missing Data
9.7 Computation

al Considerations

Bibliographic Notes

Exercises

10 Boosting and Additive Trees

10.1 Boosting Methods

10.1.1 Outline of this Chapter
10.2 Boosting Fits an Additive Model
10.3 Forward Stagewise Additive Modeling
10.4 Exponential Loss and AdaBoost
10.5 Why Exponential Loss?
10.6 Loss Functions and Robustness
10.7 “Off-the-Shelf” Procedures for Data Mining
10.8 Example—Spam Data
10.9 Boosting Trees
10.10Numerical Optimization

10.10.1 Steepest Descent

10.10.2 Gradient Boosting oL

10.10.3MART
10.11Right-Sized Trees for Boosting

10.12Regularizatio

8

10.12.1Shrinkage oL oo
10.12.2 Penalized Regression
10.12.3 Virtues of the L; Penalty (Lasso) over Ly
10.13Interpretation oL oo

10.13.1 Relat

ive Importance of Predictor Variables

10.13.2 Partial Dependence Plots

10.14I1lustrations

10.14.1 California Housing
10.14.2 Demographics Data
Bibliographic Notes

Exercises

11 Neural Networks

11.1 Introduction

xiii

272
275
279
282
283
287
288
289
290
293
295
295
296

299
299
302
303
304
305
306
308
312
314
316
319
320
320
322
323
324
326
328
330
331
331
333
335
335
339
340
344

347

Xiv

12

13

Contents

11.2 Projection Pursuit Regression
11.3 Neural Networks
11.4 Fitting Neural Networks
11.5 Some Issues in Training Neural Networks
11.5.1 Starting Values
11.5.2 Overfitting
11.5.3 Scaling of the Inputs
11.5.4 Number of Hidden Units and Layers
11.5.5 Multiple Minima
11.6 Example: Simulated Data
11.7 Example: ZIP Code Data
11.8 Discussion L L
11.9 Computational Considerations
Bibliographic Notes
Exercises

Support Vector Machines and
Flexible Discriminants
12.1 Introduction
12.2 The Support Vector Classifier
12.2.1 Computing the Support Vector Classifier
12.2.2 Mixture Example (Continued)
12.3 Support Vector Machines
12.3.1 Computing the SVM for Classification
12.3.2 The SVM as a Penalization Method
12.3.3 Function Estimation and Reproducing Kernels . . .
12.3.4 SVMs and the Curse of Dimensionality
12.3.5 Support Vector Machines for Regression
12.3.6 Regression and Kernels
12.3.7 Discussion
12.4 Generalizing Linear Discriminant Analysis
12.5 Flexible Discriminant Analysis
12.5.1 Computing the FDA Estimates
12.6 Penalized Discriminant Analysis
12.7 Mixture Discriminant Analysis
12.7.1 Example: Waveform Data
Bibliographic Notes,
Exercises

Prototype Methods and Nearest-Neighbors

13.1 Introduction

13.2 Prototype Methods
13.2.1 K-means Clustering
13.2.2 Learning Vector Quantization
13.2.3 Gaussian Mixtures

371
371
371
373
375
377
377
380
381
384
385
387
389
390
391
394
397
399
402
406
406

Contents XV

13.3 k-Nearest-Neighbor Classifiers 415
13.3.1 Example: A Comparative Study 420
13.3.2 Example: k-Nearest-Neighbors and Image Scene Clas-

sificationo o 422
13.3.3 Invariant Metrics and Tangent Distance 423

13.4 Adaptive Nearest-Neighbor Methods 427
13.4.1 Exampleo oo 430
13.4.2 Global Dimension Reduction for Nearest-Neighbors . 431

13.5 Computational Considerations 432

Bibliographic Notes 433

Exercises 433

14 Unsupervised Learning 437

14.1 Introductiono oo 437

14.2 Association Rules L. 439
14.2.1 Market Basket Analysis 440
14.2.2 The Apriori Algorithm 441
14.2.3 Example: Market Basket Analysis 444
14.2.4 Unsupervised as Supervised Learning 447
14.2.5 Generalized Association Rules. 449
14.2.6 Choice of Supervised Learning Method 451
14.2.7 Example: Market Basket Analysis (Continued) . . . 451

14.3 Cluster Analysis 453
14.3.1 Proximity Matrices 455
14.3.2 Dissimilarities Based on Attributes 455
14.3.3 Object Dissimilarity 457
14.3.4 Clustering Algorithms 459
14.3.5 Combinatorial Algorithms 460
14.3.6 K-means 461
14.3.7 Gaussian Mixtures as Soft K-means Clustering . . . 463
14.3.8 Example: Human Tumor Microarray Data 463
14.3.9 Vector Quantization 466
14.3.10 K-medoids o 468
14.3.11 Practical Issues 470
14.3.12 Hierarchical Clustering 472

14.4 Self-Organizing Maps, 480

14.5 Principal Components, Curves and Surfaces 485
14.5.1 Principal Components 485
14.5.2 Principal Curves and Surfaces. 491

14.6 Independent Component Analysis and Exploratory Projec-
tion Pursuit o 494
14.6.1 Latent Variables and Factor Analysis. 494
14.6.2 Independent Component Analysis 496
14.6.3 Exploratory Projection Pursuit 500

14.6.4 A Different Approach to ICA 500

xvi

Contents

14.7 Multidimensional Scaling
Bibliographic Notes,
Exercises

References
Author Index

Index

509

523

527

‘This is page 1
Printer: Opaque this

!

Introduction

Statistical learning plays a key role in many areas of science, finance and
industry. Here are some examples of learning problems:

e Predict whether a patient, hospitalized due to a heart attack, will
have a second heart attack. The prediction is to be based on demo-
graphic, diet and clinical measurements for that patient.

e Predict the price of a stock in 6 months from now, on the basis of
company performance measures and economic data.

e Identify the numbers in a handwritten ZIP code, from a digitized
image.

e Estimate the amount of glucose in the blood of a diabetic person,
from the infrared absorption spectrum of that person’s blood.

o Identify the risk factors for prostrate cancer, based on clinical and
demographic variables.

The science of learning plays a key role in the fields of statistics, data
mining and artificial intelligence, intersecting with areas of engineering and
other disciplines.

This book is about learning from data. In a typical scenario, we have an
outcome measurement, usually quantitative (like a stock price) or categor-
ical (like heart attack/no heart attack), that we wish to predict based on
a set of features (like diet and clinical measurements). We have a training
set of data, in which we observe the outcome and feature measurements

2 1. Introduction

TABLE 1.1. Average percentage of words or characters in an email message
equal to the indicated word or character. We have chosen the words and characters
showing the largest difference between spam and email.

george you your hp free hpl ! our re edu remove

spam 0.00 2.26 138 0.02 0.52 0.01 0.51 0.51 0.13 0.01 0.28
email| 1.27 1.27 0.44 0.90 0.07 0.43 0.11 0.18 0.42 0.29 0.01

for a set of objects (such as people). Using this data we build a predic-
tion model, or learner, which will enable us to predict the outcome for
new unseen objects. A good learner is one that accurately predicts such an
outcome.

The examples above describe what is called the supervised learning prob-
lem. It is called “supervised” because of the presence of the outcome vari-
able to guide the learning process. In the unsupervised learning problem,
we observe only Lhe [ealures and have no measurements of the oulcome.
Qur task is rather to describe how the data are organized or clustered. We
devote most of this book to supervised learning; the unsupervised problem
is less developed in the literature, and is the focus of the last chapter.

Here are some examples of real learning problems that are discussed in

this book.

Erample 1: Ewmuail Spam

The data for this example consists of information from 4601 email messages,
in a study to try to predict whether the email was junk email, or “spam.”
The objective was to design an automatic spam detector that could filter
out spam before clogging the users’ mailboxes. For 3601 email messages, the
true outcome (email type) email or spam is available, along with the relative
frequencies of 57 of the most commonly occurring words and punctuation
marks in the email message. This is a supervised learning problem, with
the outcome the class variable email/spam. It is also called a classification
problem.

Table 1.1 lists the words and characters showing the largest average
difference between spam and email.

Our learning method has to decide which features to use and how: for
example, we might use a rule like

if (%george < 0.6) & (Yyou > 1.5) then spam
else email.

Another form of rule would be:

if (0.2- %you — 0.3 -%george) >0 then spam
else email.

1. Introduction 3

LI w0 @ 8 0o 04 08 80 75 90
[P e T T T o P I
o
ks’ B cogd Fi &l b o Bacocolld . I &
" o " i ‘h~ o
Ipsa . 1& q9 .'\:f;% F o ?;\J u o d "P o8 I
) o %
il LY Ji. [L -
» T ™
: a 0 0® o L : o H P y:ﬁ o q ﬁspukh::o P
- Icavol o | 1% o oy f qfi’ o 7 8% o
- = ')] &0 L T F o flo
__:t';’ L -I'f‘u n,.g";w w0 n Ll L [} [0
E ™ ™ L] L ™
] -
o & a¥.an Iweight og qLe . © f
o N a a i g, o e d -
ool A sl | £ 28 (ferws|) | - o Pl
2k o - i
g — - - - - =
s 4" w“: o '&ﬁ l':a L 1Y C' = Hﬂ 3 &':"a ooy Ll' :‘ oul:‘go
y ggru- X e ‘?‘& :s b1 o Eu
g 1% H oo ﬁ: ' age CE A I o Vol o I "W o
Ta i [€ o 0
3 O P A L o | R J8 = J|B 5 3
7 W s -
E oo 10?‘ a .‘h fo fogd e q F e ®po ¢
| <4y o1 obe ? . L1 B3 a el
i k: E .‘.3} 85 wc.', : Ibph g 2 od B : “”n o*| o
& o 0@ a° n 00 n qi o o Bl Jo8 i
i | o
T —— - T T T m
=
=
- svi
:
©
= L]
T o T 7 L a0
& o [oo |fg @ b | b v Tl
¢80 o7 || B e [o, R o g8 gl
% A -kgiln o TP B0l lep L # olloor 2 |
ST R A0l
; .- one i onn L o Lol helad
=5 @] ° o 0) o]
s gleason
~ - - ' 1 of | oo [T
- ol w—— i res [ut s I s
H
= - - - » B
wod | =t || & 8 1E Fae |E yopals g
& o Bdo - s |B el E © 0 8l ¢ : g
on o o0 o [] 0 [o a wgqﬁ
] ™50 s ma, q | o o my . 0 gm b oo (Igi.
v m} & Ring.. Lo B " mﬁ' o 9 Bome] [§ o E
o 2 4 a4 5 8 40 1 2 -1 123 n 40 80

FIGURE 1.1. Scatterplot matriz of the prostate cancer data. The first row shows
the response against each of the predictors in turn. Two of the predictors, svi and
gleason, are categorical.

For this problem not all errors are equal; we want to avoid filtering out
good email, while letting spam get through is not desirable but less serious
in its consequences. We discuss a number of different methods for tackling
this learning problem in the book.

Ezample 2: Prostrate Cancer

The data for this example, displayed in Figure 1.1, come from a study by ?
that examined the correlation between the level of prostate specific antigen
and a number of clinical measures, in 97 men who were about to receive a
radical prostatectomy.

The goal is to predict the log-cancer-volume (lcavol) from a number
of measurements including log prostate weight 1weight, age, log of benign

M IOALRE/.TE G

1. Introduction 5

Example 4: DNA Expression Microarrays

DNA stands for deoxyribonucleic acid, and is the basic material that makes
up human chromosomes. DNA microarrays measure the expression of a
gene in a cell by measuring the amount of mRNA (messenger ribonucleic
acid) present for that gene. Microarrays are considered a breakthrough
technology in biology, facilitating the quantitative study of thousands of
genes simultaneously from a single sample of cells.

Here is how a DNA microarray works. The nucleotide sequences for a few
thousand genes are printed on a glass slide. A target sample and a reference
sample are labeled with red and green dyes, and each are hybridized with
the DNA on the slide. Through fluoroscopy, the log (red/green) intensities
of RNA hybridizing at each site is measured. The result is a few thousand
numbers, typically ranging from say —6 to 6, measuring the expression level
of each gene in the target relative to the reference sample. Positive values
indicate higher expression in the target versus the reference, and vice versa
for negative values.

A gene expression dataset collects together the expression values from a
series of DNA microarray experiments, with each column representing an
experiment. There are therefore several thousand rows representing individ-
ual genes, and tens of columns representing samples: in the particular ex-
ample of Figure 1.3 there are 6830 genes (rows) and 64 samples (columns),
although for clarity only a random sample of 100 rows are shown. The fig-
ure digplays the data set as a heat map, ranging from green (negative) to
red (positive). The samples are 64 cancer tumors from different patients.

The challenge here is to understand how the genes and samples are or-
ganized. Typical questions include the following:

(a) which samples are most similar to each other, in terms of their expres-
sion profiles across genes?

(b) which genes are most similar to each other, in terms of their expression
profiles across samples?

(¢) do certain genes show very high (or low) expression for certain cancer
samples?

We could view this task as a regression problem, with two categorical
predictor variables—genes and samples, with the response variable being
Lhe level of expression. However, il is probably more uselul Lo view il as
unsupervised learning problem. For example, for question (a) above, we
think of the samples as points in 6830—dimensional space, which we want
to cluster together in some way.

1. Introduction

SIDW2as104
SIDW3B0102
SIDT3E1
H.saplensmAMNA
SiDazs30g
RASGTPASE
sip2oT172
ESTs
SIDWITTADR
HumanmANA
SIDWnoant
ESTs
50471915
MYBPROTO
ESTeChr.1
SID37TT451

DNAPOLYMER
SI0375E12

Chr
MITOCHONDARIALED
SIDa7116
EST=Chr&
SIDW206310
SID488017
SID305167
ESTsChr.3
SID1ZT504
SIDZE 14

SIDW2HRIE
SIDW310Ma1

G536
SIDW257915

ESTaChr
SIDWE2ZA0E
S DEnEsd
ESTaChr15
50204853
BDansian
05

| DT

ESTs
SIDW4BE740
SMALLNUC

1. Introduction 7

Who Should Read this Book

This book is designed for researchers and students in a broad variety of
fields: statistics, artificial intelligence, engineering, finance and others. We
expect that the reader will have had at least one elementary course in
statistics, covering basic topics including linear regression.

We have not attempted to write a comprehensive catalog of learning
methods, but rather to describe some of the most important techniques.
Equally notable, we describe the underlying concepts and considerations
by which a researcher can judge a learning method. We have tried to write
this book in an intuitive fashion, emphasizing concepts rather than math-
ematical details.

As statisticians, our exposition will naturally reflect our backgrounds and
areas of expertise. However in the past eight years we have been attending
conferences in neural networks, data mining and machine learning, and our
thinking has been heavily influenced by these exciting fields. This influence
is evident in our current research, and in this book.

How this Book is Organized

Our view is that one must understand simple methods before trying to
grasp more complex ones. Hence after giving an overview of the supervis-
ing learning problem in Chapter 2, we discuss linear methods for regression
and classification in Chapters 3 and 4. In Chapter 5 we describe splines,
wavelets and regularization/penalization methods for a single predictor,
while Chapter 6 covers kernel methods and local regression. Both of these
sets of methods are important building blocks for high-dimensional learn-
ing techniques. Model assessment and selection is the topic of Chapter 7,
covering the concepts of bias and variance, overfitting and methods like
cross-validation for choosing models. Chapter 8 discusses model inference
and averaging, including an overview of maximum likelihood, Bayesian in-
ference and the bootstrap, the EM algorithm, Gibbs sampling and bagging,
A related procedure called boosting is the focus of Chapter 10.

In Chapters 9-13 we describe a series of structured methods for super-
vised learning, with Chapters 9 and 11 covering regression and Chapters 12
and 13 focussing on classification. Finally, in Chapter 14 we describe meth-
ods for unsupervised learning.

At the end of each chapter we discuss computational considerations im-
portant for data mining applications, including how the computations scale
with the number of observations and predictors. Each chapter ends with
Bibliographic Notes giving background references for the material.

We recommend that Chapters 1-4 be first read in sequence. Chapter
7 should also be considered mandatory, as it covers central concepts that
pertain to all learning methods. With this in mind, the rest of the book
can be read sequentially, or sampled, depending on the reader’s interest.

The symbol f indicates a technically difficult section, one that can

This is page 9
Printer: Opaque this

References

Stamey, T., Kabalin, J., McNeal, J., Johnstone, 1., Freiha, F., Redwine,
E. & Yang, N. (1989), ‘Prostate specific antigen in the diagnosis and
treatment of adenocarcinoma of the prostate ii. radical prostatectomy
treated patients’, Journal of Urology 16, 1076-1083.

2

Overview of Supervised Learning

2.1 Introduction

The first three examples described in Chapler 1 have several components
in common. For each there is a set of variables that might be denoted as
inputs, which are measured or preset. These have some influence on one or
more outputs. For each example the goal is to use the inputs to predict the
values of the outputs. This exercise is called supervised learning.

We have used the more modern language of machine learning. In the
statistical literature the inputs are often called the predictors, a term we
will use interchangeably with inputs, and more classically the independent
variables. The outputs are called the responses, or classically the dependent
variables.

2.2 Variable Types and Terminology

The outputs vary in nature among the examples. In the glucose prediction
example, the output is a quantitative measurement, where some measure-
ments are bigger than others, and measurements close in value are close
in nature. In the famous Iris discrimination example due to R. A. Fisher,
the oulpul is qualitative (species of Iris) and assumes values in a [inite set
G = { Virginica, Setosa and Versicolor}. In the handwritten digit example
the output is one of 10 different digit classes: G = {0,1,...,9}. In both of
these there is no explicit ordering in the classes, and in fact often descrip-

This is page 9
Printer: Opaque this

10 2. Overview of Supervised Learning

tive labels rather than numbers are used to denote the classes. Qualitative
variables are also referred to as categorical or discrete variables as well as
factors.

For both types of outputs it makes sense to think of using the inputs to
predict the output. Given some specific atmospheric measurements today
and yesterday, we want to predict the ozone level tomorrow. Given the
grayscale values for the pixels of the digitized image of the handwritten
digit, we want to predict its class label.

This distinction in output type has led to a naming convention for the
prediction tasks: regression when we predict quantitative outputs, and clas-
sification when we predict qualitative outputs. We will see that these two
tasks have a lot in common, and in particular both can be viewed as a task
in function approximation.

Inputs also vary in measurement type; we can <
itative and quantitative input variables. These have also led to distinctions
in the types of methods that are used for prediction: some
defined most naturally for quantitative inputs, some most naturally for
qualitative and some for both.

A third variable type is ordered categorical, such as small, medium and
large, where there is an ordering between the values, but no metric notion
is appropriate (the difference between medium and small need not be the
same as that between large and medium). These are discussed further in
Chapter 4.

Qualitative variables are typically represented numerically by codes. The
easiest case is when there are only two classes or categories, such as “suc-
cess” or “failure,” “survived” or “died.” These are often represented by a
single binary digit or bit as 0 or 1, or else by —1 and 1. For reasons that will
become apparent, such numeric codes are sometimes referred to as targets.
When there are more than two categories, several alternatives are available.
The most useful and commonly used coding is via dummy variables. Here a
K-level qualitative variable is represented by a vector of K binary variables
or bits, only one of which is “on” at a time. Although more compact coding
schemes are possible, dummy variables are symmetric in the levels of the
factor.

We will typically denote an input variable by the symbol X. If X is
a vector, its components can be accessed by subscripts X;. Quantitative
outputs will be denoted by Y, and qualitative outputs by G (for group).
We use uppercase letters such as X, Y or G when referring to the generic
aspects of a variable. Observed values are written in lowercase; hence the
ith observed value of X is written as z; (where z; is again a scalar or
vector). Matrices are represented by bold uppercase letters; for example,
a set of N input p-vectors z;, i = 1,..., N would be represented by the
N x p matrix X. In general vectors will not be bold, except when they have
N components; this convention distinguishes a p-vector of inputs z; for the
ith observation from the N-vector x; consisting of all the observations on

£ oh of q11al
1

€acli 01 Guau-

(PR A PN
1L 1ICLIIVUD alcT

Least Squares and Nearest Neighbors 11

variable X;. Since all vectors are assumed to be column vectors, the ith
row of X is ‘r'f, the vector transpose of ;.

For the moment we can loosely state the learning task as follows: given
the value of an inpuf vector X, make a good prediction of the output Y,
denoted by ¥ (pronounced “y-hat”). If ¥ takes values in IR then so should
Y; likewise for categorical outputs, G should take values in the same set G
associated with G.

For a two-class G, one approach is to denote the binary coded target
as Y, and then freat it as a quantitative output. The predictions Y will
typically lie in [0,1], and we can assign to G the class label according to
whether § > 0.5. This approach generalizes to K-level qualitative outputs
as well.

We need data to construct prediction rules, often a lot of it. We thus
suppose we have available a sct of measurcments (;,9;) or (24,9:), i =
1,..., N, known as the training data, with which to construct our predic-
tion rule.

2.3 Two Simple Approaches to Prediction: Least
Squares and Nearest Neighbors

In this section we develop two simple but powerful prediction methods: the
lincar model fit by least squares and the k-nearest-necighbor prediction rule.
The linear model makes huge assumptions about structure and yields stable
but possibly inaccurate predictions. The method of k-nearest neighbors
makes very mild structural assumptions: its predictions are often accurate
but can be unstable.

2.3.1 Linear Models and Least Squares

The linear model has been a mainstay of statistics for the past 30 years
and remains one of our most important tools. Given a vector of inputs
X = (X1, Xa,..., X}p), we predict the output ¥ via the model

P
Y =5+ X;B (2.1)
j=1

The term (o is the intercept, also known as the bias in machine learning.
Often it is convenient to include the constant variable 1 in X, include & in
the vector of coeflicients 3, and then write the linear model in vector form
as an inner product

Y =XT3, (2.2)

12 2. Overview of Supervised Learning

where X7 denotes vector or malrix transpose (X being a column vector).
Here we are modeling a single output, so Y is a scalar; in general ¥ can be
a K—vector, in which case # would be a p x K matrix of coefficients. In the
(p + 1)-dimensional input-output space, (X,Y) represents a hyperplane.
If the constant is included in X, then the hyperplane includes the origin
and is a subspace; if not, it is an affine set cutting the Y-axis at the point
(0, By). From now on we assume that the intercept is included in 3.

Viewed as a function over the p-dimensional input space, f(X) = X3
is linear, and the gradient f’(X) = @ is a vector in input space that points
in the steepest uphill direction.

How do we fit the linear model to a set of training data? There are
many different methods, but by far the most popular is the method of
least squares. In this approach, we pick the coeflicients # to minimize the
residual sum of squares

N
RSS(8) = Y _(vi — a1 B)". (2.3)

i=1

RSS(f3) is a quadratic function of the parameters, and hence its minimum
always exists, but may not be unique. The solution is easiest to characterize
in matrix notation. We can write

RSS(8) = (y — X8)"(y — XB), (2.4)

where X is an N x p matrix with each row an input vector, and y is an
N-vector of the outputs in the training set. Differentiating w.r.t. 3 we get
the normal equations

X" (y -X8) =0. (2.5)
If X7X is nonsingular, then the unique solution is given by
f=X"X)"'X"y, (2.6)

and the fitted value at the ith input z; is §; = §(z;) = z7 8. At an arbi-
trary input xg the prediction is g(zg) = a:%“ﬁ‘. The entire fitted surface is
characterized by the p parameters {3 Intuitively, it seems that we do not
need a very large data sel to fit such a model.

Let’s look at an example of the linear model in a classification context.
Figure 2.1 shows a scatterplot of training data on a pair of inputs X; and
Xy. The data are simulated, and for the present the simulation model is
not important. The output class variable G has the values GREZN or RED,
and is represented as such in the scatterplot. There are 100 points in each
of the two classes. The linear regression model was fit to these data, with
the response Y coded as 0 for Greey and 1 for RED. The fitted values Y are

Least Squares and Nearest Neighbors 13

Linear Regression of 0/1 Response

FIGURE 2.1. A classification ezample in two dimensions. The classes are coded
as a binary variable—CREEN = 0, RED = | —and then fii by linear regression. The
line is the decision boundary defined by 273 = 0.5. The red shaded region denotes
that part of input space classified as RED, while the green region is classified as
GREEXN,

converted to a fitted class variable G according to the rule

(2.7)

. JmED WY >0.5,
GREEN if ¥ < 0.5.

'I'he set of points in IR? classified as RED corresponds to {z : :J:Tf:f > 0.5},
indicated in Figure 2.1, and the two predicted classes are separated by
the decision boundary {z : 73 = 0.5}, which is linear in this case. We
see thal for these data there are several misclassifications on both sides
of the decision boundary. Perhaps our linear model is too rigid— or are
such errors unavoidable? Remember that these are errors on the training
data itself, and we have not said where the constructed data came from.
Consider the two possible scenarios:

Scenario 1: The training data in each class were generated according to
two bivariate Gaussian distributions with uncorrelated components
and different means.

14 2. Overview of Supervised Learning

Scenario 2: The training data in each class came [rom a mixture of 10 low-
variance Gaussian distributions, with individual means themselves
distributed as Gaussian.

A mixture of Gaussians is best described in terms of the generative model.
One first generates a discrete variable that determines which of the compo-
nent Gaussians to use, and then generates an observation from the chosen
density. In the case of one Gaussian per class, we will see in Chapter 4 that
a linear decision boundary is the best one can do, and that our estimate is
almost optimal. The region of overlap is inevitable, and future data to be
predicted will be plagued by this overlap as well.

In the case of mixtures of tightly clustered Gaussians the story is dif-
ferent. A linear decision boundary is unlikely to be optimal, and in fact is
not. The optimal decision boundary is nonlinear and disjoint, and as such
will be much more difficult to obtain.

We now look at another classification and regression procedure that is
in some sense at the opposite end of the spectrum to the linear model, and
far better suited to the second scenario.

2.3.2 Nearest-Neighbor Methods

Nearest-neighbor methods use those observations in the training set 7 clos-
est in input space to x to form Y. Specifically, the k-nearest neighbor fit
for Y is defined as follows:

F@=1 ¥ w (28)

o € Ni(x)

where Nj(z) is the neighborhood of = defined by the k closest points z; in
the training sample. Closeness implies a metric, which for the moment we
assume is Fuclidean distance. So, in words, we find the k observations with
z; closest to z in input space, and average their responses.

In Figure 2.2 we use the same training data as in Figure 2.1, and use
15-nearest-neighbor averaging of the binary coded response as the method
of fitting. Thus Y is the proportion of GEEENs in the neighborhood, and
so assigning class RED to GG if Y > 0.5 amounts to a majority vote in the
neighborhood. The colored regions indicate all those points in input space
classified as CHEEN or RED by such a rule, in this case found by evaluating the
procedure on a fine grid in input space. We see that the decision boundaries
that separate the GREEN from the RED regions are far more irregular, and
respond to local clusters where one class dominates. X

Figure 2.3 shows the results for l-nearest-neighbor classification: Y is
assigned the value g, of the closest point z; to x in the training data. In
this case the regions of classification can be computed relatively easily, and
correspond to a Voronoi tessellation of the training data. Each point ;

Least Squares and Nearest Neighbors 15

15-Nearest Neighbor Classifier

FIGURE 2.2. The same cassificalion ecample in lwo dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (GREEN = 0,RED = 1) and
then fit by 15-ncarest-neighbor averaging as in (2.8). The predicted elass is henee
chosen by majorily vote amongsi the 15-nearest neighbors.

has an associated tile bounding the region for which it is the closest input
point. For all points z in the tile, G(z) = g;. The decision boundary is even
more irregular than before.

The method of k-nearest-neighbor averaging is delined in exactly the
same way for regression of a quantitative output Y, although k = | would
be an unlikely choice.

In Figure 2.2 we see that far fewer training observations are misclassified
than in Figure 2.1. This should not give us too much comfort, though, since
in Figure 2.3 none of the training data are misclassified. A little thought
suggests that for k-nearest-neighbor fits, the error on the training data
should be approximately an increasing function of k, and will always be 0
for k = 1. An independent test set would give us a more satisfactory means
for comparing the different methods.

It appears that k-nearest-neighbor fits have a single parameter, the num-
ber of neighbors k, compared to the p parameters in least-squares [its. Al-
though this is the case, we will see that the effective number of parameters
of k-nearest neighbors is N/k and is generally bigger than p, and decreases
with increasing k. To get an idea of why, note that if the neighborhoods

16 2. Overview of Supervised Learning

1-Nearest Neighbor Classifier

FIGURE 2.8. The same cdassificalion example in lwo dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (CREEN = 0,RED = 1), and
then predicted by 1-ncarest-neighbor classification.

were nonoverlapping, there would be N/k neighborhoods and we would fit
one parameter (a mean) in each neighborhood.

It is also clear thal we cannol use sum-of-squared errors on Lhe Lraining
set as a criterion for picking k, since we would always pick k = 1! It would
seem that k-nearest-neighbor methods would be more appropriate for the
mixture Scenario 2 described above, while for Gaussian data the decision
boundaries of k-nearest neighbors would be unnecessarily noisy.

2.8.8 From Least Squares to Nearest Neighbors

The linear decision boundary from least squares is very smooth, and ap-
parently stable to fit. It does appear to rely heavily on the assumption
that a linear decision boundary is appropriate. In language we will develop
shortly, it has low variance and potentially high bias.

On the other hand, the k-nearest-neighbor procedures do not appear to
rely on any stringent assumptions about the underlying data, and can adapt
to any situation. However, any particular subregion of the decision bound-
ary depends on a handful of input points and their particular positions,
and is thus wiggly and unstable —high variance and low bias.

Least Squares and Nearest Neighbors 17

k - Number of Nearest Neighbors

151 83 45 25 15 9 5 3 1
T Yy | | |
0 Linear °
Ni. /
o
..... ./.
\ .Q/
S e/ .o’.
g o\
. O
g
w
7]
(]
it
n
|—!7
© Train
— Test
—— Bayes
o
-
o
T T T T T T T T T
2 3 5 8 12 18 29 67 200

Degrees of Freedom - N/k

FIGURE 2.4. Misclassification curves for the simulation example used in Fig-
ures 2.1, 2.2 and 2.3. A single training sample of size 200 was used, and a test
sample of size 10,000. The red curves are test and the green are training error for
k-nearest-neighbor classification. The results for linear regression are the bigger
green and red squares at three degrees of freedom. The purple line is the optimal
Bayes Error Rate.

Each method has its own situations for which it works best; in particular
linear regression is more appropriate for Scenario 1 above, while nearest
neighbors are more suitable for Scenario 2. The time has come to expose
the oracle! The data in fact were simulated from a model somewhere be-
tween the two, but closer to Scenario 2. First we generated 10 means my,
from a bivariate Gaussian distribution N((1,0)7,I) and labeled this class

. Similarly, 10 more were drawn from N((0,1)7,I) and labeled class
RED. Then for each class we generated 100 observations as follows: for each
observation, we picked an my at random with probability 1/10, and then
generated a N (my,I/5), thus leading to a mixture of Gaussian clusters for
each class. Figure 2.4 shows the results of classifying 10,000 new observa-
tions generated from the model. We compare the results for least squares
and those for k-nearest neighbors for a range of values of k.

A large subset of the most popular techniques in use today are variants of
these two simple procedures. In fact 1-nearest-neighbor, the simplest of all,
captures a large percentage of the market for low-dimensional problems.

18 2. Overview of Supervised Learning

The following list describes some ways in which these simple procedures
have been enhanced:

e Kernel methods use weights that decrease smoothly to zero with dis-
tance from the target point, rather than the effective 0/1 weights used
by k-nearest neighbors.

e In high-dimensional spaces the distance kernels are modified to em-
phasize some variable more than others.

e Local regression fits linear models by locally weighted least squares,
rather than fitting constants locally.

e Linear models fit to a basis expansion of the original inputs allow
arbitrarily complex models.

e Projection pursuit and neural network models consist of sums of non-
lincarly transformed linear models.

2.4 Statistical Decision Theory

In this section we develop a small amount of theory that provides a frame-
work for developing models such as those discussed informally so lar. We
first consider the case of a quantitative output, and place ourselves in the
world of random variables and probability spaces. Let X € IRY denote a
real valued random inpul vector, and ¥ € IR a real valued random out-
put variable, with joint distribution Pr(X,Y). We seek a function f(X)
for predicting Y given values of the input X. This theory requires a loss
Sfunetion L(Y, f(X)) for penalizing errors in prediction, and by far the most
common and convenient is squared error loss: L(Y, f(X)) = (Y — f(X))2.
This leads us Lo a criterion for choosing f,

EPE(f) = E(Y - f(X))? (2.9)
[w- s@)Pe(az.dy), (2.10)

the expected (squared) prediction error. By conditioning® on X, we can
write EPE as

EPE(f) = ExEyx ([Y — F(X)]*|X) (2.11)
and we see that it suffices to minimize EPE pointwise:
J(x) = argmin Ey x ([Y —]*|X = 2). (2.12)

* Conditioning here amounts to factoring the joint density Pr(X,Y) = Pr(Y|X)Pr(X)
where Pr(Y|X) = Pr(Y, X)/Pr(X), and splitting up the bivariate integral accordingly

2.4 Statistical Decision Theory 19

The solution is
f(z) =EY|X =2), (2.13)

the conditional expectation, also known as the regression function. Thus
the best prediction of Y at any point X = z is the conditional mean, when
best is measured by average squared error.

The nearest-neighbor methods attempt to directly implement this recipe
using the training data. At each point z, we might ask for the average
of all those y;s with input z; = z. Since there are typically at most one
observation at any point x, we settle for

f(z) = Ave(y;|z; € Ni(z)), (2.14)

where “Ave” denotes average, and Ni(z) is the neighborhood containing
the k& points in T closest to z. Two approximations are happening here:

e expectation is approximated by averaging over sample data;

e conditioning at a point is relaxed to conditioning on some region
“close” to the target point.

For large training sample size N, the points in the neighborhood are likely
to be close to x, and as k gets large the average will get more stable.
In fact, under mild regularity conditions on the joint probability distri-
bution Pr(X,Y), one can show that as N,k — oo such that k/N — 0,
f(x) = E(Y|X = z). In light of this, why look further, since it seems
we have a universal approximator? We often do not have very large sam-
ples. If the linear or some more structured model is appropriate, then we
can usually get a more stable estimate than k-nearest neighbors, although
such knowledge has to be learned from the data as well. There are other
problems though, sometimes disastrous. In Section 2.5 we see that as the
dimension p gets large, so does the metric size of the k-nearest neighbor-
hood. So settling for nearest neighborhood as a surrogate for conditioning
will fail us miserably. The convergence above still holds, but the rate of
convergence decreases as the dimension increases.

How does linear regression fit into this framework? The simplest explana-
tion is that one assumes that the regression function f(z) is approximately
linear in its arguments:

f(z) ~a"p. (2.15)

This is a model-based approach—we specify a model for the regression func-
tion. Plugging this linear model for f(z) into EPE (2.9) and differentiating
we can solve for § theoretically:

6= [EXXD]EXY). (2.16)

20 2. Overview of Supervised Learning

Note we have not conditioned on X; rather we have used our knowledge
of the functional relationship to pool over values of X. The least squares
solution (2.6) amounts to replacing the expectation in (2.16) by averages
over the training data.

So both k-nearest neighbors and least squares end up approximating
conditional expectations by averages. But they differ dramatically in terms

of model assumptions:

e Least squares assumes f(z) is well approximated by a globally linear
function.

e k-nearest neighbors assumes f(z) is well approximated by a locally
constant function.

Although the latter seems more palatable, we have aiready seen that we
may pay a price for this flexibility.

Many of the more modern techniques described in this book are model
based, although far more flexible than the rigid linear model. For example,
additive models assume that

~
—

>
~—

|

(=

Sk
—~
e
~—

(2.17)

This retains the additivity of the linear model, but each coordinate function
f; is arbitrary. It turns out that the optimal estimate for the additive model
uses techniques such as k-nearest neighbors to approximate univariate con-
ditional expectations simultaneously for each of the coordinate functions.
Thus the problems of estimating a conditional expectation in high dimen-
sions are swept away in this case by imposing some (often unrealistic) model
assumptions, in this case additivity.

Are we happy with the criterion (2.11)? What happens if we replace the
L loss function with the Li: E|Y — f(X)|? The solution in this case is the
conditional median,

~

f(z) = median(Y'| X = z), (2.18)

which is a different measure of location, and its estimates are more robust
than those for the conditional mean. L criteria have discontinuities in
their derivatives, which have hindered their widespread use. Other more
resistant loss functions will be mentioned in later chapters, but squared
error is analytically convenient and the most popular.

What do we do when the output is a categorical variable G? The same
paradigm works here, except we need a different loss function for penalizing
prediction errors. An estimate G will assume values in G , the set of possible
classes. Our loss function can be represented by a K x K matrix L, where
K = card(G). L will be zero on the diagonal and nonnegative elsewhere,

2.4 Statistical Decision Theory 21

where L(k, £) is the price paid for classifying an observation belonging to
class Gr as Gy. Most often we use the zero—one loss function, where all
misclassifications are charged a single unit. The expected prediction error

is

EPE = E[L(G, G(X))], (2.19)
where again the expectation is taken with respect to the joint distribution
Pr(G, X). Again we condition, and can write EPE as

K

EPE =Ex Y L[Gk, G(X)|Pr(Gx|X) (2.20)

and again it suffices to minimize EPE pointwise:

K
é(a:) = argmin,.g Z L(Gk, 9)Pr(Gr| X =). (2.21)
k=1

With the 0-1 loss function this simplifies to

G(z) = argmingg[l — Pr(g|X = z)] (2.22)
or simply
G(X) = Gy if Pr(Gi|X = 2) = max Pr(g|X = z). (2.23)
g

This reasonable solution is known as the Bayes classifier, and says that
we classify to the most probable class, using the conditional (discrete) dis-
tribution Pr(G|X). Figure 2.5 shows the Bayes-optimal decision boundary
for our simulation example. The error rate of the Bayes classifier is called
the Bayes rate.

Again we see that the k-nearest neighbor classifier directly approximates
this solution—a majority vote in a nearest neighborhood amounts to ex-
actly this, except that conditional probability at a point is relaxed to con-
ditional probability within a neighborhood of a point, and probabilities are
estimated by training-sample proportions.

Suppose for a two-class problem we had taken the dummy-variable ap-
proach and coded G via a binary Y, followed by squared error loss estima-
tion. Then f(X) = E(Y|X) = Pr(G = G1|X) if G corresponded to Y = 1.
Likewise for a K-class problem, E(Y;|X) = Pr(G = Gx|X). This shows
that our dummy-variable regression procedure, followed by classification to
the largest fitted value, is another way of representing the Bayes classifier.
Although this theory is exact, in practice problems can occur, depending
on the regression model used. For example, when linear regression is used,
f (X) need not be positive, and we might be suspicious about using it as
an estimate of a probability. We will discuss a variety of approaches to
modeling Pr(G|X) in Chapter 4.

22 2. Overview of Supervised Learning

Bayes Optimal Classifier

FIGURI 2.5. The oplimal Bayes decision boundary for the simulalion example
of Figures 2.1, 2.2 and 2.3. Since the generating density is known for each class,
this boundary ean be calewlated cractly (Erercise 2.2).

2.5 Local Methods in TTligh Dimensions

We have examined two learning techniques for prediction so far: the stable
but biased linear model and the less stable but apparently less biased class
of k-nearest-neighbor estimates. It would seem that with a reasonably large
set of training data, we could always approximate the theoretically optimal
conditional expectation by k-nearest-neighbor averaging, since we should
be able to find a fairly large neighborhood of observations close to any @
and average them. 'his approach and our intuition breaks down in high
dimensions, and the phenomenon is commonly referred to as the curse
of dimensionality (Bellman, 1961). There are many manifestations of this
problem, and we will examine a few here.

Consider the nearest-neighbor procedure for inputs uniformly distributed
in a p-dimensional unit hypercube, as in Figure 2.6. Suppose we send out a
hypercubical neighborhood aboul a targel point to capture a [raction r of
the observations. Since this corresponds to a fraction r of the unit volume,
the expected edge length will be e,,(r) = r'/P. In ten dimensions ,0(0.01) =
0.63 and €19(0.1) = 0.80, while the entire range for each input is only 1.0.

2.5 Local Methods in High Dimensions 23

. o
Unit Cube - / d=10
\ o | d=3
IS) d=2
1 ©
g 3 /d=1
c
o]
[%2]
a8 = | /
o
N
A
0
\ o |
\ l © T T T T
Neighborhood 0.0 0.2 0.4 0.6

Fraction of Volume

FIGURE 2.6. The curse of dimensionality is well illustrated by a subcubical
neighborhood for uniform data in a unit cube. The figure on the right shows the
side-length of the subcube needed to capture a fraction r of the volume of the data,
for different dimensions p. In ten dimensions we need to cover 80% of the range
of each coordinate to capture 10% of the data.

So to capture 1% or 10% of the data to form a local average, we must cover
63% or 80% of the range of each input variable. Such neighborhoods are no
longer “local.” Reducing r dramatically does not help much either, since
the fewer observations we average, the higher is the variance of our fit.
Another consequence of the sparse sampling in high dimensions is that
all sample points are close to an edge of the sample. Consider N data points
uniformly distributed in a p-dimensional unit ball centered at the origin.
Suppose we consider a nearest-neighbor estimate at the origin. The median
distance from the origin to the closest data point is given by the expression

1/N 1/
1)p (2.24)

d(p, N) = (1— 5

(Exercise 2.3). A more complicated expression exists for the mean distance
to the closest point. For N = 500, p = 10, d(p, N) ~ 0.52, more than half
way to the boundary. Hence most data points are closer to the boundary
of the sample space than to any other data point. The reason that this
presents a problem is that prediction is much more difficult near the edges
of the training sample. One must extrapolate from neighboring sample
points rather than interpolate between them.

Another manifestation of the curse is that the sampling density is pro-
portional to N'/? where p is the dimension of the input space and N is the
sample size. Thus if Ny = 100 represents a dense sample for a single input
problem, then Njg = 1000 is the sample size required for the same sam-

24 2. Overview of Supervised Learning

pling density with 10 inputs. Thus in high dimensions all feasible training
samples sparsely populate the input space.

Let us construct another uniform example. Suppose w

ing features x; generated uniformly on [—1i 1]1’; Assume that th

ALUTES Ly Hnerated Uiiorint e LIl 1

tionship between X and Y is

a
g
<
a
D =
~+ &
=
]
D
=
=3
7

Y = f(X) = C*SHXHz’

without any measurement error. We use the l-nearest-neighbor rule to
predict yo at the test-point zg = 0. Denote the training set by 7. We can
compute the expected prediction error at zg for our procedure, averaging
over all such samples of size 1000. Since the problem is deterministic, this
is the mean squared error (MSE) for estimating f(0):

(e N _ 512

\vu) U]

= Erfjo — Er(d0)]* + [E7(J0) — f(z0)]?

= Varr(go) + Bias®(4o). (2.25)

Figure 2.7 illustrates the setup. We have broken down the MSE into two
components that will become familiar as we proceed: variance and squared
bias. Such a decomposition is always possible and often useful, and is known
as the bias—variance decomposition. Unless the nearest neighbor is at 0, 9o
will be smaller than f(0) in this example, and so the average estimate will
be biased downward. The variance is due to the sampling variance of the
1-nearest neighbor. In low dimensions and with N = 1000, the nearest
neighbor is very close to 0, and so both the bias and variance are small. As
the dimension increases, the nearest neighbor tends to stray further from
the target point, and both bias and variance are incurred. By p = 10, for
more than 99% of the samples the nearest neighbor is a distance greater
than 0.5 from the origin. Thus as p increases, the estimate tends to be 0
more often than not, and hence the MSE levels off at 1.0, as does the bias,
and the variance starts dropping (an artifact of this example).

Although this is a highly contrived example, similar phenomena occur
more generally. The complexity of functions of many variables can grow
exponentially with the dimension, and if we wish to be able to estimate
such functions with the same accuracy as function in low dimensions, then
we need the size of our training set to grow exponentially as well. In this
example, the function is a complex interaction of all p variables involved.

The dependence of the bias term on distance depends on the truth, and
it need not always dominate with 1-nearest neighbor. For example, if the
function always involves only a few dimensions as in Figure 2.8, then the
variance can dominate instead.

Suppose, on the other hand, that we know that the relationship between
Y and X is linear,

AR -\
/) =7

Y =XT3+¢, (2.26)

2.5 Local Methods in High Dimensions

1-NN in One Dimension

08 10

fx)

04

'_,:LI.I/
o 1
T

1.0 0.5

Distance to 1-NN vs. Dimension

08

06
L
L

o2
~

Averape Distanoe to Nearast Neighbor
.

02
-

Dimension

Mse

1-NN in One vs. Two Dimensions

Q
- - L4
A
e
A .
0| .
= /1
.
.
L
5 <.
. . -
.
uy .
] L
o
- 4
0

MSE vs. Dimension

Dimension

25

FIGURE 2.7. A simulation example, demonstrating the curse of dimensional-
ity and its effect on MSE, bias and variance. The inpul features are uniformly
distributed in [—1,1]7 for p=1,... 10 The top left panel shows the target func-
tion (no noise) in IR: f(X) = e *XI* | and demonstrates the error that 1-nearest
neighbor makes in estimating f(0). The training point is indicated by the blue tick
mark. The top right panel illustrates why the radius of the 1-nearest neighborhood
inereases with dimension p. The lower left panel shows the average radius of the
1-nearest neighborhoods. The lower-righi panel shows the MSE, squared bias and

variance curves as a function of dimension p.

26 2. Overview of Supervised Learning

1-NN in One Dimension MSE vs. Dimension
n
<t A g -
MSE
< Variance
o S . Sg. Bias
n
—
=
— w
X o A 0
= =

Qf\

X Dimension

FIGURE 2.8. A simulation example with the same setup as in Figure 2.7. Here
the function is constant in all but one dimension: F(X) = (X1 + 1)>. The
variance dominates.

where € ~ N(0,0%) and we fit the model by least squares to the train-
ing data. For an arbitrary test point xg, we have gy = xgﬁ, which can
be written as gy = 23 3 + Zfil li(xo)e;, where £;(x) is the ith element
of X(X*X)~1z¢. Since under this model the least squares estimates are
unbiased, we find that

EPE(z0) = Ey0u0E7(yo — o)
Var(yo|zo) + Ez[fo — E790]* + [E790 — Ezyo]?
= Var(yolzo) + Varr(fjo) + Bias?(fio)
0? + Bral (XTX) tzgo? + 02 (2.27)

Here we have incurred an additional variance o2 in the prediction error,
since our target is not deterministic. There is no bias, and the variance
depends on zq. If N is large and 7 were selected at random, and assuming
E(X) = 0, then XTX — NCov(X) and

E.,EPE(z9) ~ EalCov(X) t2go?/N + o?
= trace[Cov(X) ' Cov(zg)]o?/N + o>
= o*(p/N)+ o> (2.28)

Here we see that the expected EPE increases linearly as a function of p,
with slope 0?/N. If N is large and/or o2 is small, this growth in vari-
ance is negligible (0 in the deterministic case). By imposing some heavy
restrictions on the class of models being fitted, we have avoided the curse
of dimensionality.

Statistical Models 27

Expected Prediction Error of 1NN vs. OLS

a 7 H”/—/’/
[=] 4 o———— —
[V
e 2 4
& . Linear .
W Cubic <
o | r
[T A
e :
Py o
A =
-~
2 | e—eo——" -
= T T T T T
2 4 6 a8 10
Dimension

FIGURE 2.9. The curves show the expected prediction error (at xq = 0) for
1-nearest neighbor relative lo least squares for the model Y — f(X) 4 =2. For the
red curve, f(z) = z1, while for the green curve f(z) = %(Il +1)%.

Figure 2.9 compares 1-nearest neighbor vs. least squares in two situa-
tions, both of which have the form Y = f(X) + 2, X uniform as before,
and & ~ N(0,1). The sample size is N = 500. For the red curve, [(x) is
linear in the first coordinate, for the green curve, cubic as in Figure 2.8.
Shown is the relative EPE of 1-nearest neighbor to least squares, which
appears to start at around 2 for the linear case. Least squares is unbiased
in this case, and as discussed above the EPE is slightly above o2 = 1.
The EPE for l-nearest neighbor is always above 2, since the variance of
f(x0) in this case is at least 0, and the ratio increases with dimension as
the nearest neighbor strays from the target point. For the cubic case, least
squares is biased, which moderates the ratio. Clearly we could manufacture
examples where the bias of least squares would dominate the variance, and
the 1-nearest neighbor would come out the winner.

By relying on rigid assumptions, the linear model has no bias at all and
negligible variance, while the error in l-nearest neighbor is substantially
larger. However, if the assumptions are wrong, all bets are offl and the
l-nearest neighbor may dominate. We will see that there is a whole spec-
trum of models between the rigid linear models and the extremely flexible
l-nearest-neighbor models, each with their own assumptions and biases,
which have been proposed specifically to avoid the exponential growth in
complexity of [unctions in high dimensions by drawing heavily on these
assumptions.

Before we delve more deeply, let us elaborate a bit on the concept of
statistical models and see how they fit into the prediction framework.

28 2. Overview of Supervised Learning

2.6 Statistical Models, Supervised Learning and
Function Approximation

Our goal is to find a useful approximation f(z) to the function f(z) that
underlies the predictive relationship between the inputs and outputs. In the
theoretical setting of Section 2.4, we saw that squared error loss lead us
to the regression function f(z) = E(Y|X = 2) for a quantitative response.
'I'he class ol nearest-neighbor methods can be viewed as direct estimates
of this conditional expectation, but we have seen that they can fail in at
least two ways:

e if the dimension of the input space is high, the nearcst neighbors need
not. be close to the target point, and can result in large errors;

e if special structure is known to exist, this can be used to reduce both
the bias and the variance of the estimates.

We anticipate using other classes of models for f(z), in many cases specif-
ically designed to overcome the dimensionality problems, and here we dis-
cuss a framework for incorporating them into the prediction problem.

2.6.1 A Statistical Model for the Joint Distribution Pr(X,Y)

Suppose in fact that our data arose from a statistical model
Y =[(X)+=, (2.29)

where the random error £ has E(g) = 0 and is independent of X. Note that
for this model, f(z) = E(Y|X = z), and in fact the conditional distribution
Pr(Y|X) depends on X only through the conditional mean f(z).

The additive error model is a useful approximation to the truth. For
most systems the input-output pairs (X, Y') will not have a deterministic
relationship Y = f(X). Generally there will be other unmeasured variables
that also contribute to Y, including measurement error. The additive model
assumes that we can capture all these departures from a deterministic re-
lationship via the error =.

For some problems a deterministic relationship does hold. Many of the
classification problems studied in machine learning are of this form, where
the response surface can be thought of as a colored map defined in IR.
The training data consist of colored examples from the map {=;, g;}, and
the goal is to be able to color any point. Here the function is deterministic,
and the randomness enters through the z location of the training points.
For the moment we will not. pursue such problems, but will see that they
can be handled by techniques appropriate for the error-based models.

The assumption in (2.29) that the errors are independent and identically
distributed is not strictly necessary, but seems to be at the back of our mind

Statistical Models 29

when we average squared errors uniformly in our EPIE criterion. With such
a model it becomes natural to use least squares as a dafa criterion for
model estimation as in (2.1). Simple modifications can be made to avoid
the independence assumption; for example, we can have Var(Y|X = a) =
o(x), and now both the mean and variance depend on X. In general the
conditional distribution Pr(Y|X) can depend on X in complicated ways,
but the additive error model precludes these.

So far we have concentrated on the quantitative response. Additive error
models are typically not used for qualitative outputs (; in this case the tar-
get function p(X) is the conditional density Pr(G|X), and this is modeled
directly. For example, for two-class data, it is often reasonable to assume
that the data arise from independent binary trials, with the probability of
one particular outcome being p(X), and the other 1 — p(X). Thus if Y is
the 0 1 coded version of ¢, then E(Y|X = @) = p(x), but the variance
depends on z as well: Var(Y|X = 2) = p(z)[1 — p(2)].

2.6.2 Supervised Learning

Before we launch into more statistically oriented jargon, we present the
function-fitting paradigm from a machine learning point of view. Suppose
for simplicity that the errors are additive and that the model ¥ = f(X)+¢
is a reasonable assumption. Supervised learning attempts to learn f by
example through a teacher. One observes the system under study, both
the inputs and outputs, and assembles a lraining set of observations T =
(zi,9:), i =1,...,N. The observed input values to the system z; are also
fed into an artificial system, known as a learning algorithm (usually a com-
puter program), which also produces outputs f(z;) in response to the in-
puts. The learning algorithm has the property that it can modify its in-
put/output relationship f in response to differences y; — f(@:) between the
original and generated outputs. This process is known as learning by exam-
ple. Upon completion of the learning process the hope is that the artificial
and real outputs will be close enough to be useful for all sets of inputs likely
to be encountered in practice.

2.0.3 Function Approzimation

The learning paradigm of the previous section has been the motivation
for research into the supervised learning problem in the fields of machine
learning (with analogies to human reasoning) and neural networks (with
biological analogies to the brain). The approach taken in applied mathe-
matics and statistics has been [rom the perspeclive of function approxima-
tion and estimation. Here the data pairs {z;,y;} are viewed as points in a
(p + 1)-dimensional Fuclidean space. The function f(z) has domain equal
to the p-dimensional input subspace, and is related to the data via a model

30 2. Overview of Supervised Learning

such as y; = f(z;) + ;. For convenience in this chapter we will assume the
domain is IRP, a p-dimensional Euclidean space, although in general the
inputs can be of mixed type. The goal is to obtain a useful approximation
to f(z) for all z in some region of IRP, given the representations in 7.
Although somewhat less glamorous than the learning paradigm, treating
supervised learning as a problem in function approximation encourages the
geometrical concepts of Euclidean spaces and mathematical concepts of
probabilistic inference to be applied to the problem. This is the approach
taken in this book.

Many of the approximations we will encounter have associated a set of
parameters € that can be modified to suit the data at hand. For example,
the linear model f(z) = 273 has 6 = 3. Another class of useful approxi-

mators can be expressed as linear basis expansions

K

fo(z) = > hu(2)0, (2.30)
k=1

where the hy are a suitable set of functions or transformations of the input
vector z. Traditional examples are polynomial and trigonometric expan-
sions, where for example hy might be z%, z12%, cos(z1) and so on. We
also encounter nonlinear expansions, such as the sigmoid transformation
common to neural network models,

1

hi(z) = m.

(2.31)
We can use least squares to estimate the parameters 6 in fy as we did
for the linear model, by minimizing the residual sum-of-squares

N

RSS(6) = Z(yi — fo(z))? (2.32)

i=1

as a function of 6. This seems a reasonable criterion for an additive error
model. In terms of function approximation, we imagine our parameterized
function as a surface in p 4+ 1 space, and what we observe are noisy re-
alizations from it. This is easy to visualize when p = 2 and the vertical
coordinate is the output y, as in Figure 2.10. The noise is in the output
coordinate, so we find the set of parameters such that the fitted surface
gets as close to the observed points as possible, where close is measured by
the sum of squared vertical errors in RSS(6).

For the linear model we get a simple closed form solution to the mini-
mization problem. This is also true for the basis function methods, if the
basis functions themselves do not have any hidden parameters. Otherwise
the solution requires either iterative methods or numerical optimization.

While least squares is generally very convenient, it is not the only crite-
rion used and in some cases would not make much sense. A more general

| " -
"flfrfﬁ’ s

o oSy

R

i

32 2. Overview of Supervised Learning

Pr(G = G| X = 2) = pro(z), k = 1,..., K for the condilional probabil-
ity of each class given X, indexed hy the parameter vector €. Then the
log-likelihood (also referred to as the cross-entropy) is

N
L(O) = Y log pg, (), (2.36)

i=1

and when maximized it delivers values of 0 that best conform with the data
in this likelihood sense.

2.7 Structured Regression Models

We have seen that although nearest-neighbor and other local methods focus
directly on estimating the function at a point, they face problems in high
dimensions. They may also be inappropriate even in low dimensions in
cases where more structured approaches can make more efficient use of the
data. This section introduces classes of such structured approaches. Before
we proceed, though, we discuss further the need for such classes.

2.7.1 Difficulty of the Problem

Consider the RSS criterion for an arbitrary function [,

N
RSS(f) = D (v: — f(z))*. (2.37)

1=1

Minimizing (2.37) leads to infinitely many solutions: any function f passing
through the training points (z;,¥;) is a solution. Any particular solution
chosen might be a poor predictor at test points different from the training
points. If there are multiple observation pairs z;, ye, £ = L,... . N; at each
value of z;, the risk is limited. In this case, the solutions pass through
the average values of the y;¢ at each x;; see Exercise 2.5. The situation is
similar to the one we have already visited in Section 2.4; indeed, (2.37) is
the finite sample version of (2.11) on page 18. If the sample size N were
sufficiently large such that repeats were guaranteed and densely arranged,
it would seem that these solutions might all tend to the limiting conditional
expectation.

In order to obtain useful results for finite N, we must restrict the eligible
solutions to (2.37) to a smaller set of functions. How to decide on the
nature of the restrictions is based on considerations outside of the data.
These restrictions are sometimes encoded via the parametric representation
of fg, or may be built into the learning method itself, either implicitly or
explicitly. These restricted classes of solutions are the major topic of this

2.8 Classes of Restricted Estimators 33

book. One thing should be clear, though. Any restrictions imposed on f
that lead o a unigue solution to (2.37) do not really remove the ambiguity
caused by the multiplicity of solutions. There are infinitely many possible
restrictions, each leading to a unique solution, so the amhiguity has simply
been transferred to the choice of constraint.

In general the constraints imposed by most learning methods can be
described as complexity restrictions of one kind or another. This usually
means some kind of regular behavior in small neighborhoods of the input
space. That is, for all input points = sufficiently close to each other in
some metric, f exhibits some special structure such as nearly constant,
linear or low-order polynomial behavior. The estimator is then obtained by
averaging or polynomial fitting in that neighborhood.

‘I'he strength of the constraint is dictated by the neighborhood size. The
larger the size of the neighborhood, the stronger the constraint, and the
more sensitive the solution is to the particular choice of constraint. For
example, local constant fits in infinitesimally small neighborhoods is no
constraint at all; local linear fits in very large neighborhoods is almost a
globally linear model, and is very restrictive.

The nature of the constraint depends on the metric used. Some methods,
such as kernel and local regression and tree-based methods, directly specify
the metric and size of the neighborhood. The nearest-neighbor methods
discussed so far are based on the assumption that locally the function is
constant; close to a target input 2o, the function does not change much, and
so close oulpuls can be averaged Lo produce [(wg). Other melhods such
as splines, neural networks and basis-function methods implicitly define
neighborhoods of local behavior. In Section 5.4.1 we discuss the concept
of an equivalent kernel (see Figure 5.8 on page 133), which describes this
local dependence for any method linear in the outputs. These equivalent
kernels in many cases look just like the explicitly defined weighting kernels
discussed above—peaked at the target point and falling away smoothly
away [rom it.

One fact should be clear by now. Any method that attempts to pro-
duce locally varying functions in small isotropic neighborhoods will run
into problems in high dimensions—again the curse of dimensionality. And
conversely, all methods that overcome the dimensionality problems have an
associated—and often implicit or adaptive—metric for measuring neighbor-
hoods, which basically does not allow the neighborhood to be simultane-
ously small in all directions.

2.8 C(Classes of Restricted Estimators

The variety of nonparametric regression techniques or learning methods fall
into a number of different classes depending on the nature of the restrictions

3 2. Overview of Supervised Learning

imposed. These classes are not distinct, and indeed some methods fall in
several classes. Here we give a brief summary, since detailed descriptions
are given in later chapters. Each of the classes has associated with it one
ar more parameters, sometimes appropriately called smaonthing parameters,
that control the effective size of the local neighborhood. Here we describe

three broad classes.

2.8.1 Roughness Penalty and Bayesian Methods

[lere the class of functions is controlled by cxplicitly penalizing RSS(f)
with a roughness penalty

PRSS(f; A) = RSS(f) + AJ (). (2.38)

The user-selected functional J(f) will be large for functions f that vary too
rapidly over small regions of input space. For example, the popular cubic
smoothing spline for one-dimensional inputs is the solution to the penalized
least-squares criterion

N
PRSS(N) = Y- S@) +4 [@l (239)

The roughness penalty here controls large values of the second derivative
of [, and the amount of penalty is dictated by A > 0. For A = 0 no penalty
is imposed, and any interpolating function will do, while for A = co only
functions linear in x are permitted.

Penalty functionals .J can be constructed for functions in any dimension,
and special versions can be created to impose special structure. For ex-
ample, additive penalties J(f) = ?:1 J(f;) are used in conjunction with
additive functions f(X) = Z;’:i fi(X;) to create additive models with
smooth coordinate functions. Similarly, projection pursuit regression mod-
els have [(X) = Z:wf:l gm((x%X) for adaplively chosen direclions oy, , and
the functions ¢,, can each have an associated roughness penalty.

Penalty function, or regularization methods, express our prior beliel that
the type of lunctions we seek exhibit a certain type of smooth behavior, and
indeed can usually be cast in a Bayesian framework. The penalty J corre-
sponds to a log-prior, and PRSS(f; \) the log-posterior distribution, and
minimizing PRSS(f: A) amounts to finding the posterior mode. We discuss
roughness-penalty approaches in Chapter 5 and the Bayesian paradigm in
Chapter 8.

2.8.2 Kernel Methods and Local Regression

These methods can be thought of as explicitly providing estimates of the re-
gression function or conditional expectation by specifying the nature of the

2.8 Classes of Restricted Estimators a5

local neighborhood, and of the class of regular functions fitted locally. The
local neighborhood is specified by a kernel function K (20, 2) which assigns
weights to points 2 in a region around zg (see Figure 6.1 on page 166). For
example, the Gaussian kernel has a weight function based on the Gaussian
density function

1 x —mxg|?
Kjy(zo,z) = 3 eXP [— %] (2.10)

and assigns weights Lo points that die exponentially with their squared
Euclidean distance from xy. The parameter A corresponds to the variance
of the Gaussian density, and controls the width of the neighborhood. The
simplest form of kernel estimate is the Nadaraya Watson weighted average

Y | Ka(2o, zi)ui
Yy Ka(@o,2:)

In general we can define a local regression estimate of f(zo) as f;(wo),

flzo) =

(2.41)

where # minimizes

¥
RSS(fo,20) = Y _ K (@0, 7:)(yi — fo(:))?, (2.42)

i=1

and fy is some parameterized function, such as a low-order polynomial.
Some examples are:

e fo(z) = 6y, the constant function; this results in the Nadaraya—
Watson estimate in (2.41) above.

e fy(x) =6y + 02 gives the popular local linear regression model.

Nearest-neighbor methods can be thought of as kernel methods having a.
more data~-dependent metric, Indeed, the metric for k-nearest neighbors is
Ki(z,20) = I(||lz — zo|| < [|lz(x) — Zoll),

where z(y) is the training observation ranked kth in distance from g, and
I(S) is the indicator of the set S.

These methods of course need to be modified in high dimensions, to avoid
the curse of dimensionality. Various adaptations are discussed in Chapter 6.

2.8.2 Basis Functions and Dictionary Methods

This class of methods include the familiar linear and polynomial expan-
sions, but more importantly a wide variety of more flexible models. The
model for f is a linear expansion of basis functions

M
fo@) =" Omhm(z), (2.43)
m=1

36 2. Overview of Supervised Learning

where each of the h,, is a function of the input z, and the term linear here
refers to the action of the parameters . This class covers a wide variety of
methods. In some cases the sequence of basis functions is prescribed, such
as a basis for polynomials in z of total degree M.

For one-dimensional z, polynomial splines of degree K can be represented
by an appropriate sequence of M spline basis functions, determined in turn
by M — K knots. These produce functions that are piecewise polynomials
of degree K between the knots, and joined up with continuity of degree
K — 1 at the knots. As an example consider linear splines, or piecewise
linear functions. One intuitively satisfying basis consists of the functions
bi(z) = 1, ba(z) = z, and bpi2(z) = (& —ty)y, m = 1,... , M — 2,
where t,, is the mth knot, and z, denotes positive part. Tensor products
of spline bases can be used for inputs with dimensions larger than one
(see Section 5.2, and the CART and MARS models in Chanter 0) The

kDUC WO LIULL . A LI\l LIIC il [eNSLV SRS Ve WAV NS SLV .V ivite] lLl Ullaybcl ._[} P Siv)
parameter ¢ can be the total degree of the polynomial or the number of
Trinnta 3 tlhn mnca ~F cnlincac
KIIOULD 111 LIIC CadT UL DPLLILCD-

Radial basis functions are symmetric p-dimensional kernels located at
particular centroids,

M
fo@) =D K (poms 2)0rm; (2.44)

m=1

for example, the Gaussian kernel K (p,z) = e lle=nll*/2X is popular.

Radial basis functions have centroids p,, and scales), that have to
be determined. The spline basis functions have knots. In general we would
like the data to dictate them as well. Including these as parameters changes
the regression problem from a straightforward linear problem to a combi-
natorially hard nonlinear problem. In practice, shortcuts such as greedy
algorithms or two stage processes are used. Section 6.7 describes some such
approaches.

A single-layer feed-forward neural network model with linear output
weights can be thought of as an adaptive basis function method. The model
has the form

M
2) = Bno(ahs + bm), (2.45)

m=1

where o(z) = 1/(1 4 e~ 7) is known as the activation function. Here, as
in the projection pursuit model, the directions a,, and the bias terms b,,
have to be determined, and their estimation is the meat of the computation.
Details are give in Chapter 11.

These adaptively chosen basis function methods are also known as dictio-
nary methods, where one has available a possibly infinite set or dictionary
D of candidate basis functions from which to choose, and models are built
up by employing some kind of search mechanism.

2.9 Model Selection and the Bias Variance Tradeoff ar

2.9 Model Selection and the BiasVariance
Tradeoff

All the models described above and many others discussed in laler chaplers
have a smoothing or complexily parameter that has Lo be determined:

e the multiplier of the penalty term;
e the width of the kernel;
e or the number of basis functions.

In the casc of the smoothing spline, the parameter A indexes models ranging
from a straight line fit to the interpolating model. Similarly a local degree-
m polynomial model ranges between a degree-m global polynomial when
the window size is infinitely large, to an interpolating fit when the window
size shrinks to zero. This means that we cannot use residual sum-of-squares
on the training data to determine these parameters as well, since we would
always pick those that gave interpolating fits and hence zero residuals. Such
a model is unlikely to predict future dala well at all.

The k-nearest-neighbor regression fit fk{;rg] usefully illustrates the com-
peting forces that effect the predictive ability of such approximations. Sup-
pose Lhe dala arise from a model Y = [(X) 4 &, with E(z) = 0 aud
Var(s) = o?. For simplicity here we assume that the values of z; in the
sample are fixed in advance (nonrandom). The expected prediction error
al xq, also known as test or generalizalion error, can be decomposed:

EPEj(z0) E[(Y — fu(0))*| X = o]

o® + [Bias®(fi(20)) + Varr (fu(wo))] (2.46)

Il

k 2
o’ + [f(ﬂa'ﬂ) = %gﬂﬂiu)}]z + 9];—. (2.47)

The subscripts in parentheses (£) indicate the sequence of nearest neighbors
to xg.

There are three terms in this expression. The first term o? is the ir-
reducible error—the variance of the new test target— and is beyond our
control, even if we know the true f(zq).

The second and third terms are under our control, and make up the
mean squared error of fi(xg) in estimating f(zo), which is broken down
into a bias component and a variance component. 'l'he bias term is the
squared difference between the true mean f(zo) and the expected value of
the estimate—[E7(fi(20)) — J(20)]*—where the expectation averages the
randomness in the training data. This term will most likely increase with
k, if the true function is reasonably smooth. For small k the few closest
neighbors will have values f(x(,)) close to f(ap), so their average should

38 2. Overview of Supervised Learning
High Bias Low Bias
Low Variance High Variance
—-—————— meaaa 7

Test Sample

Prediction Error

e
7N

Training Sample T o

Low High
Model Complexity

FIGURE 2.11. Test and training error as a function of model complexity.

be close to f(z¢). As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
creases as the inverse of k. So as k varies, there is a bias-varionce fradeof].

More generally, as the model complexity of our procedure is increased,
the variance tends o increase and the squared bias tends to decreases.
The opposite behavior occurs as the model complexity is decreased. For
k-nearest neighbors, the model complexity is controlled by k.

‘I'ypically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error 7},— i (i — #i)?. Unfortunately
training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexily is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the dats harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In
that case the predictions f(zo) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.

Bias Variance Tradeoff 39
Bibliographic Notes

Some good general books on the learning problem are Duda et al. (2000),
Bishop (1995), Ripley (1996), Cherkassky and Mulier (1998) and Vapnik
(1996). Parts of this chapter are based on Friedman (1994b).

Exercises

[tx. 2.1 Suppose each of K-classes has an associated target t5., which is a
vector of all zeros, except a one in the kth position. Show that classifyving to
the largest element of amounts to choosing the closest target, miny ||£; —
gll, if the elements of 4 sum to one.

[x. 2.2 Show how to compute the Bayes decision boundary for the simula-
tion example in [Migure 2.5,

lix. 2.3 Derive equation (2.24).

[ixx. 2.1 The edge effect problem discussed on page 23 is not peculiar to
uniform sampling from bounded domains. Consider inputs drawn from a
spherical multinormal distribution X' ~ N(0,I,). The squared distance
from any sample point to the origin has a xg distribution with mean p.
Consider a prediction point 2y drawn from this distribution, and let a =
xo/||wo|| be an associated unit vector. Let z; = a”a; be the projection of
each of the training points on this direction,

(a) Show that the z; are distributed N(0,1) with expected squared dis-
tance from the origin 1, while the target point has expected squared
distance p from the origin.

(b) For p = 10 show that the expected distance of a test point from the
center of the training data is 3.1 standard deviations, while all the
training points have expected distance 1 along direclion a. So most
prediction points see themselves as lying on the edge of the training
set.

e, 2.5 Consider a regression problem with inpufs »; and outputs ;. and a,
parameterized model fz(x) to be fit by least squares. Show that if there are
aobservations with tied or identical values of 2, then the fit can be obtained
from a reduced weighted least squares problem.

[&x. 2.6 Suppose we have a sample of N pairs z;,y; drawn ii.d. from the
distribution characterized as follows:

a; ~ h(z), the design density

y: = f(x;) + &4, [is the regression function

i ~ (0,0%) (mean zero, variance o)

40 2. Overview of Supervised Learning

We construct an estimator for [linear in the y;,
N

J(xo) = Zfi(fﬂni X)ui,
i=1

where the weights £;(20; ') do not depend on the y;, but do depend on the
entire training sequence of x;, denoted here by X

(a) Show that linear regression and k-nearest-neighbor regression are mem-
hers of this class of estimafiors. Describe explicitly the weightis £3(70; X))
for both these cases.

(b) Decompose the conditional mean-squared error

Ey x (f(20) — f(z0))?

into a conditional squared bias and a conditional variance component.
Like X, Y represents the entire training sequence of ;.

(c) Decompose the (unconditional) mean-squared error
Ey,x(f(z0) = f(z0))?

into a squared bias and a variance component.

(d) Establish a relationship between the squared biases and variances in
the above two cases.

I'x. 2.7 Compare the classification performance of linear regression and k—
nearest neighbor classification on the zipcode data. In particular, consider
only the 2's and 3's, and k = 1, 3,5,7 and 15. Show both the training and
test error for each choice. The zipcode data are available from the book
website www-stat.stanford. edu/ElemStatLearn.

This is page 41
Printer: Opaque this

3

Linear Methods for Regression

3.1 Introduction

A linear regression model assumes thal the regression function E(Y|X) is
linear in the inputs Xy,...,X,. Linear models were largely developed in
the precomputer age of statistics, but even in today’s computer era there
are still good reasons to study and use them. They are simple and offen
provide an adequate and interpretable description of how the inputs affect
the oulpul. For prediction purposes they can somelimes oulperform fancier
nonlinear models, especially in situations with small numbers of training
cases, low signal-to-noise ratio or sparse data. Finally, linear methods can be
applied to transformations of the inputs and this considerably expands their
scope. These generalizations are sometimes called basis-function methods,
and are discussed in Chapter 5.

In this chapter we describe linear methods for regression, while in the
next chapter we discuss linear methods for classification. On some topics we
go into considerable detail, as it is our firm belief that an understanding
of linear methods is essential for understanding nonlinear ones. In fact,
many nonlinear techniques are direct generalizations of the linear methods
discussed here,

42 3. Lincar Methods for Regression
3.2 Linear Regression Models and Least Squares

As introduced in Chapter 2, we have a vector of inputs X = (X1, Xo,... , Xp),
and want to predict a real-valued output Y, The linear regression model
has the form

r
F(X)=5o+_ Xib;. (3.1)

J=2

The linear model either assumes that the regression function E(Y|X) is
linear, or that the linear model is a reasonable approximation. Here the
;s are unknown parameters or coefficients, and the variables X; can come
from different sources:

e quantitative inputs;

e transformations of quantitative inputs, such as log, square-root or
square;

e basis expansions, such as X, = X2, X3 = X7, leading to a polynomial
representation;

e numeric or *dummy” coding of the levels of qualitative inputs. For
example, if G is a five-level factor input, we might create X;, 7 =
1,...,5, such that X; = I(G = j). Together this group of X, rep-
resents the eflect of G by a sel of level-dependent constants, since in
Z;’-_ 1 X;8;, one of the X;s is one, and the others are zero.

e interactions belween variables, for example, X3 = X; + Xs.

No matter the source of the X, the model is linear in the parameters.

Typically we have a set of training data (21, 1) ... (2n, yn) from which
to estimate the parameters §. Each x; = (21, Zi2,. .. ,a:,-p)T is a vector
of lealure measuremenls for Lhe ilh case. The mosl popular eslimalion
method is least squares, in which we pick the coefficients 8 = (o, B1, ...+ Bp)T
to minimize the residual sum of squares

N
RSS(B) = Y (vi—f(z:))
i=1
N P
= Z(Zh‘ — o — Zzijﬁj)zo (3.2)
i=1 =1

From a statistical point of view, this criterion is reasonable if the training
observations (z;,y;) represent independent random draws from their popu-
lation. Even if the @;'s were not drawn randomly, the criterion is still valid
if the y,'s are conditionally independent given the inputs a;. Figure 3.1

3.2 Linear Regression Models and Least Squares 43

FIGURE 3.1. Linear least squares fitting with X € IR?. We seek the linear
function of X that minimizes the sum of squared residuals from Y.

illustrates the geometry of least-squares fitting in the IRP™! dimensional
space occupied by the pairs (X,Y"). Note that (3.2) makes no assumptions
about the validity of model (3.1); it simply finds the best linear fit to the
data. Least squares fitting is intuitively satisfying no matter how the data
arise; the criterion measures the average lack of fit.

How do we minimize (3.2)7 Denote by X the N x (p + 1) matrix with
each row an input vector (with a 1 in the first position), and similarly let
y be the N-vector of outputs in the training set. Then we can write the
residual sum-of-squares as

RSS(3) = (y — XB)T (y — XA). (3.3)

This is a quadratic function in the p + 1 parameters. Differentiating with
respect to 3 we obtain

ORSS

_ T(v _
O°RSS '

Assuming (for the moment) that X has full column rank, and hence XX
is positive definite, we set the first derivative to zero

X" (y -Xp3) =0 (3.5)

44 3. Lincar Methods for Regression

Y

__x1
FIGURE 3.2, The N-dimensional geomelry of least squares regression with two
predictors. The outcome vector y is orthogonally projected onto the hyperplane
spanned by the input vectors x, and x2. The projection ¥ represents the vector
of the least squares predictions

to obtain the unique solution
8= (XTX)'XTy. (3.6)

The predicted values at an input vector 2¢ are given by f (zo) = (1:27) B
the fitted values at the training inputs are

y=X3=X"(X"X)""XTy, (3.7)

where §; = f(x;). The matrix H = X7 (X7X) X appearing in equation
(3.7) is sometimes called the “hat” matrix because it puts the hat on y.
Figure 3.2 shows a different geometrical representation of the the least
squares estimate, this time in IRN. We denote the column vectors of X by
Xg,X|,... Xy, With x5 = 1. For mueh of what follows, this firat column is
treated like any other. These vectors span a subspace of IRY, also referred to
as Lhe column space of X, We inimize RSS(4) = ||y — X3||? by chivosing
3 so that the residual vector y — y is orthogonal to this subspace. This
orthogonality is expressed in (3.5), and the resulting estimate y is hence the
orthogonal projection of y onto this subspace. The hat matrix H computes
the orthogonal projection, and hence it is also known as a projection matrix.
It might happen that the columns of X are not linearly independent, so
that X is not of full rank. 'I'his would occur, for example, il two of the
inputs were perfectly correlated, (e.g., X2 = 3x;). Then X7X is singular
and the least squares coeflicients 3 are not uniquely defined. However,
the fitted values ¥ = X3 are still the projection of y onto the column
space of X; there is just more than one way to express that projection in
terms of the column vectors of X. The nonfull rank case occurs most often

3.2 Linear Regression Models and Least Squares 45

when one or more qualitative inputs are coded in a redundant fashion.
There is usually a natural way to resolve the non-unique representation,
by recoding and/or dropping redundant columns in X. Most regression
software packages detect these redundancies and automatically implement
some strategy for removing them. Rank deficiencies can also occur in signal
and image analysis, where the number of inputs p can exceed the number of
training cases IN. In this case, the features are typically reduced by filtering
or else the fitting is controlled by regularization (Section 5.2.3).

Up to now we have made minimal assumptions about the true distribu-
tion of the data. In order to pin down the sampling properties of ,5’, we now
assume that the observations y; are uncorrelated and have constant vari-
ance o2, and that the z; are fixed (non random). The variance—covariance
matrix of the least squares parameter estimates is easily derived from (3.6)

and ia ociven ko
alia 18 giveil Oy

o
=l
~
)
e
Il
M

~
4
L
3
[V]
~~
w
w0
g

Typically one estimates the variance o2 by

1 N
A2 _ - 52
7 _N—p—1zi:1(yl i)

2

The N — p — 1 rather than N in the denominator makes ¢ an unbiased

estimate of 02: E(62) = o2.

To draw inferences about the parameters and the model, additional as-
sumptions are needed. We now assume that (3.1) is the correct model for
the mean; that is, the conditional expectation of Y is linear in X1,... , X,.
We also assume that the deviations of Y around its expectation are additive

and Gaussian. Hence

Y = E(Y|X1,...,Xp)+e
Y4
= Bo+ Y Xifj+e, (3.9)
j=1

where the error € is a Gaussian random variable with expectation zero and
variance 2, written € ~ N(0, o2).
Under (3.9), it is easy to show that

G~ N, (XTX) o?). (3.10)

This is a multivariate normal distribution with mean vector and variance—
covariance matrix as shown. Also

(N—p—1)8" ~*x} p 1, (3.11)

46 3. Lincar Methods for Regression

Tail Probatkilities
0.01 0.02 0.03 0.04 0.05 0.06

FIGURE 3.3. The tail probabilities Pr(|Z| > 2) for three distributions, ts0, t100
and standard normal. Shown arve the appropriate quantiles for lesting significance
al the p = 0.05 and 0.01 levels. The difference between t and the standard normal
becomes negligible for N bigger than about 100,

a chi-squared distribution with N —p— 1 degrees of freedom. In addition 3
and 67 are statistically independent. We use these distributional properties
to form tests of hypothesis and confidence intervals for the parameters 3;.

To test the hypothesis that a particular coefficient 3; = 0, we form the
standardized coefficient or Z-score

3
zi = s 3.12
b (3.12)

where v; is the jth diagonal element of (XTX)~1. Under the null hypothesis
that 3; = 0, z; is distributed as ty , 1 (a ¢ distribution with N —p — 1
degrees of freedom), and hence a large (absolute) value of z; will lead to
rejection of Lhis null hypothesis. Il & were known, then z; would have a
standard normal distribution. The difference between the tail quantiles of
a t-distribution and a standard normal become negligible as the sample size
increases, and so we typically use the normal quantiles (see Figure 3.3).

Often we need to test for the significance of groups of coefficients simul-
taneously. For example, to test if a categorical variable with k levels can
be excluded from a model, we need to test whether the coeflicients of the
dummy variables used to represent the levels can all be set to zero. Here
we use the I statistic,

F = {RSSQ — RSS])/(pj o j'.'o)
RSSl/(N -p1—1) '

where RSS; is the residual sum-of-squares for the least squares fit of the big-
ger model with p; 41 parameters, and RSSy the same for the nested smaller

(3.13)

3.2 Linear Regression Models and Least Squares 47

model with pg+ 1 parameters, having p; — pg parameters constrained to be
zero. The F statistic measures the change in residual sum-of-squares per
additional parameter in the bigger model, and it is normalized by an esti-
mate of o2. Under the Gaussian assumptions, and the null hypothesis that
the smaller model is correct, the F' statistic will have a F},, _p, n—p, -1 dis-
tribution. It can be shown (Exercise 3.1) that the z; in (3.12) are equivalent
to the F' statistic for dropping the single coeflicient 8; from the model. For
large N, the quantiles of the F,, _,, n—p,—1 approach those of the Xz%rpo'

Similarly, we can isolate 3; in (3.10) to obtain a 1—2a confidence interval
for (3;:

(B — 2126, 3+ 20-026). (3.14)

Here z(1=®) is the 1 — o percentile of the normal distribution:

z(170-025) =1 96,
z(1-:05) = 1.645, etc.

Hence the standard practice of reporting 3 =+ 2 - se(B) amounts to an ap-
proximate 95% confidence interval. Even if the Gaussian error assumption
does not hold, this interval will be approximately correct, with its coverage
approaching 1 — 2« as the sample size N — oo.

In a similar fashion we can obtain an approximate confidence set for the
entire parameter vector 3, namely

(1-a)

Cs ={BI(B—B)X"X(B-P) <6>Xpi1 h (3.15)

(179 s the 1 — percentile of the chi-squared distribution on ¢

degrees of freedom: for example, X§(170'05) = 11.1, X?)(170.1) = 9.2. This
confidence set for 3 generates a corresponding confidence interval for the
true function f(x) = 273, namely {27 3|3 € Cs} (Exercise 3.2). For an

example of such confidence intervals, see Figure 5.4 in Section 5.2.2.

where x?

3.2.1 FExample: Prostate Cancer

The data for this example come from a study by Stamey et al. (1989). They
examined the correlation between the level of prostate-specific antigen and
a number of clinical measures in men who were about to receive a radical
prostatectomy. The variables are log cancer volume (1lcavol), log prostate
weight (lweight), age, log of the amount of benign prostatic hyperplasia
(1bph), seminal vesicle invasion (svi), log of capsular penetration (lcp),
Gleason score (gleason), and percent of Gleason scores 4 or 5 (pgg45).
The correlation matrix of the predictors given in Table 3.1 shows many
strong correlations. Figure 1.1 (page 3) of Chapter 1 is a scatterplot matrix
showing every pairwise plot between the variables. We see that svi is a

48 3. Lincar Methods for Regression

TABLE 3.1. Correlations of predictors in the prostate cancer data.

lcavol lweight age 1bph svi lcp gleason

lveight 0.300

age 0.286 0.317

lbph 0.063 0.437 0.287

svi 0.593 0.181 0.129 -0.139

lep 0.692 0.157 0.173 -0.089 0.671
gleason 0.426 0.024 0.366 0.033 0.307 0476

pee45 0.483 0.074 0.276 -0.030 0.481 0.663 0.757

TABLE 3.2. Linear model fit to the prostate cancer data. The Z score is the
coefficient divided by its standard error (3.12). Roughly a Z score larger than lwo
in absolule value is significantly nonzero ai the p = 0.05 level.

Term Coeflicient Std. Iirror Z Score

Intercept 2.48 0.09 27.66
lcavol 0.68 0.13 5.37
lweight 0.30 0.11 2.75
age -0.14 0.10 -1.40

1bph 0.21 0.10 2.06

svi 0.31 0.12 2.47

lep -0.29 0.15 -1.87
gleason -0.02 0.15 -0.15
pEE4S 0.27 0.15 1.74

binary variable, and gleason is an ordered categorical variable. We see, for
example, that both lcavol and 1lcp show a strong relationship with the
response lpsa, and with each other. We need to fit the effects jointly to
untangle the relationships between the predictors and the response.

We fit a linear model to the log of prostate-specific antigen, lpsa, after
first standardizing the predictors to have unit variance. We randomly split
the dataset into a training set of size 67 and a test set of size 30. We ap-
plied least squares estimation to the training set, producing the estimates,
standard errors and Z-scores shown in ‘lable 3.2. The Z-scores are delined
in (3.12), and measure the effect of dropping that variable from the model.
A Z-score greater than 2 in absolute value is approximately significant at
the 5% level. (For our example, we have nine parameters, and the 0.025 tail
quantiles of the #57_g distribution are £2.002!) The predictor lcavol shows
the strongest effect, with 1weight and svi also strong. Notice that lcp is
not significant, once lcavel is in the model (when used in a model without
lcavol, lcp is strongly significant). We can also test for the exclusion of
a number of terms at once, using the F-statistic (3.13). For example, we
consider dropping all the non-significant terms in Table 3.2, namely age,

3.2 Lincar Regression Models and Least Squares 49

lcp, gleason, and pggs5. We get

(32.81 —29.43)/(9 - 5)
- 29.43/(67 — 9)

which has a p-value of 0.17 (Pr(Fy sz > 1.67) = 0.17), and hence is not
signilicant.

The mean prediction error on the test data is 0.545. In contrast, predic-
tion using the mean training value of 1psa has a test error of 1.050, which
is called the “base error rate.” Hence the linear model reduces the base
error rate by about 50%. We will return to this example later to compare
various selection and shrinkage methods.

-

= 1.67, (3.16)

2.9 92 The Gauss—Markov Theorem

One of the most famous results in statistics asserts that the least squares
estimates of the parameters @ have the smallest variance among all linear
unbiased estimates. We will make this precise here, and also make clear
that the restriction to unbiased estimates is nol necessarily a wise one. This
observation will lead us to consider biased estimates such as ridge regression
later in the chapter. We focus on estimation of any linear combination of
the parameters ¢ = a” 8; for example, predictions f(zo) = z{ 3 are of this
form. The least squares estimate of a3 is

0=0a"8=a"(X"X) X"y, (3.17)
Considering X to be fixed, this is a linear function cg1y of the response
vector y. If we assume that the linear model is correct, a” 3 is unbiased
sinee

BT3) = BT(XTX)'XTy)
= o' (XTX)'X"Xp
= a’'s. (3.18)

The Gauss-Markov theorem states that if we have any other linear estima-
tor @ = ¢Ty that is unbiased for o7 3, that is, E(c”y) = aT 3, then

Var(a”3) < Var(c"y). (3.19)

The proof (Ixercise 3.3) uses the triangle inequality. For simplicity we have
stated the result in terms of estimation of a single parameter a” 3, but with
a few more definitions one can state it in terms of the entire parameter
vector 3 (Exercise 3.3).)

Consider the mean squared error of an estimator ¢ in estimating 0:

MSE(#) = E(0—0)?
= Var(d) + [E(0) — 0] (3.20)

50 3. Lincar Methods for Regression

The first term is the variance, while the second Lerm is the squared bias.
The Gauss-Markov theorem implies that the least squares estimator has the
smallest mean squared error of all linear estimators with no bias. However,
there may well exist a biased estimator with smaller mean squared error,
Such an estimator would trade a little bias for a larger reduction in variance.
Biased estimates are commonly used. Any method that shrinks or sets to
zero some of the least squares coefficients may result in a biased estimate.
We discuss many examples, including variable subset selection and ridge
regression, later in this chapter. 'rom a more pragmatic point of view, most
models are distortions of the truth, and hence are biased; picking the right
model amounts to creating the right balance between bias and variance.
We go into these issues in more detail in Chapter 7.

Mean squared error is intimately related to prediction accuracy, as dis-
cussed in Chapter 2. Consider the prediction of the new responsc at input
&g,

¥g = f{xo) + E0. (321)
Then the expected prediction error of an estimate f (@0) = mg",g is

a? + E(xgé — [(z0))?
= o2+ MSE(f(w0)). (3.22)

E(Yo — f(x0))?

I

Therefore, expected prediction error and mean squared error differ only by
the constant o2, representing the variance of the new observation yq.

3.3 Multiple Regression from Simple Univariate
Regression

The linear model (3.1) with p > 1 inputs is called the multiple lincar

regression model. The least squares estimates (3.6) for this model are best

understood in terms of the estimates for the univariate (p = 1) linear

model, as we indicate in this section.
Suppose first that we have a univariate model with no intercept, that is,

Y = XB+e. (3.23)

The least squares estimate and residuals are

EJ,V Ty

N
¥y 2 (3.24)

Ts =Yi — xiﬁ-

8=

3.3 Multiple Regression from Simple Univariate Regression 51

In convenient vector notation, welety = (y1,...,yn)7, x = (z1,... ,on)T
and define
N
(xv)y = N zoa
Vg YA A2
i=1
T
= XY,
the inner product between x and y.* Then we can write
S <Xa Y>
B = ;
(x,x) (3.25)
r=y—x3.

As we will see, this simple univariate regression provides the building
block for multiple least squares regression. Suppose next that the inputs
X1,X2,...,Xp (the columns of the data matrix X) are orthogonal; that is
(x;,%x) = 0 for all j # k. Then it is easy to check that the multiple least
squares estimates ,éj are equal to (x;,y)/(x;, x;)—the univariate estimates.
In other words, when the inputs are orthogonal, they have no effect on each
others parameter estimates in the model.

Orthogonal inputs occur most often with balanced, designed experiments
(where orthogonality is enforced), but almost never with observational
data. Hence we will have to orthogonalize them in order to carry this idea
further. Suppose next that we have an intercept and a single input x. Then
the least squares coefficient of x has the form

- (x—z1,y)
L= (x —z1,x —z1)’ (3.26)
where 2 = Y . 2. /N. and 1 = x, e

nere xr =) ,x;/IV, ana 1

0, th !
estimate (3.26) as the result of two applications of the simple regression
(3.25). The steps are:

vector of N

nes. We can view the
nes 1eW

CCLOr O I¥ 185, YWE Call V W LG

1. regress x on 1 to produce the residual z = x — z1;

2. regress y on the residual z to give the coefficient ,5’1.

In this procedure, “regress b on a” means a simple univariate regression of b
on a with no intercept, producing coefficient 4 = (a, b)/(a, a) and residual
vector b — 4a. We say that b is adjusted for a, or is “orthogonalized” with
respect to a.

Step 1 orthogonalizes x with respect to xo = 1. Step 2 is just a simple
univariate regression, using the orthogonal predictors 1 and z. Figure 3.4
shows this process for two general inputs x; and x3. The orthogonalization
does not change the subspace spanned by x; and xg, it simply produces an
orthogonal basis for representing it.

*The inner-product notation is suggestive of generalizations of linear regression to
different metric spaces, as well as to probability spaces.

52 3. Linear Methods for Regression

y

X2

A -

X1

FIGURE 3.4. Least squares regression by orthogonalization of the inputs. The
vector Xz is regressed on the vector X1, leaving the residual vector z. The regres-
sion of y on z gives the multiple regression coefficient of x2. Adding together the
projections of y on each of x1 and z gives the least squares fit y.

Algorithm 3.1 Regression by Successive Orthogonalization.

1. Initialize zg = xg = 1.
2. Forj=1,2,...,p

Regress x; on zg,21,...,,%;—1 to produce coefficients 4y =
(ze,x;)/{(20,20), £ = 0,...,5 — 1 and residual vector z; =

-1 4
Xj = D kim0 VkjZh—1-

3. Regress y on the residual z, to give the estimate Bp.

This recipe generalizes to the case of p inputs, as shown in Algorithm 3.1.
Note that the inputs zo, ... ,z;_1 in step 2 are orthogonal, hence the simple
regression coefficients computed there are in fact also the multiple regres-
sion coefficients.

The result of this algorithm is

By = Zm¥) (3.27)

(Zp,2p)

Re-arranging the residual in step 2, we can see that each of the x; is a linear
combination of the z;, k < j. Since the z; are all orthogonal, they form
a basis for the column space of X, and hence the least squares projection
onto this subspace is y. Since x,, alone involves z, (with coefficient 1), we
see that the coefficient (3.27) is indeed the multiple regression coefficient of
y on x,. This key result exposes the effect of correlated inputs in multiple

3.3 Multiple Regression from Simple Univariate Regression 53

regression. Note also that by rearranging the x;, any one of them could
be in the last position, and a similar results holds. Hence stated more

generally, we have shown that the jth multiple regression coefficient is the

univariate regression coefficient of v on X..g12 ¢+ 1ys11) 5, the residual
g y §-012...(j—1)(j+1)... ,ps
after regressing x; on Xg, Xi,... ,Xj—1,Xj41,... , Xp:

The multiple regression coefficient ﬁAj represents the additional
contribution of x; on'y, after x; has been adjusted for xo,x1,... ,X;_1,
Xjtlye-- 3 Xpe.

If x,, is highly correlated with some of the other x;’s, the residual vector
z, will be close to zero, and from (3.27) the coefficient Bp will be very
unstable. This will be true for all the variables in the correlated set. From
(3.27) we also obtain an alternate formula for the variance estimates (3.8),

2 0.2

Var(3,) = (3.28)

(Zpr2p) l2pl?

In other words, the precision with which we can estimate ,ép depends on
the length of the vector z,; this represents how much of x, is unexplained
by the other xi’s.

Algorithm 3.1 is known as the Gram—Schmidt procedure for multiple
regression, and is also a useful numerical strategy for computing the esti-
mates. We can obtain from it not just Bp, but also the entire multiple least
squares fit, as shown in Exercise 3.4.

We can represent step 2 of Algorithm 3.1 in matrix form:

X = 7T, (3.29)

where Z has as columns the z; (in order), and I is the upper triangular ma-
trix with entries 4y;. Introducing the diagonal matrix D with jth diagonal
entry Dj; = ||z, we get

ZD 'DT

QR, (3.30)

X

the so-called QR decomposition of X. Here Q is an N x (p+ 1) orthogonal
matrix, Q’Q =1, and Ris a (p+ 1) x (p + 1) upper triangular matrix.

The QR decomposition represents a convenient orthogonal basis for the
column space of X. It is easy to see, for example, that the least squares
solution is given by

8 = R'Q"y, (3.31)
y = QQ'y. (3.32)

Equation (3.31) is easy to solve because R is upper triangular (Exer-
cise 3.4).

54 3. Linear Methods for Regression

3.3.1 Multiple Qutputs

Suppose we have multiple outputs Y3, Y52, ... , Vi that we wish to predict
from our inputs Xg, X1, X2,...,X,. We assume a linear model for each
output

P

Yi = Box+ Y X;Bjx+ex (3.33)
j=1

= Ji(X) + e (3.34)

With N training cases we can write the model in matrix notation
Y=XB+E. (3.35)

Here Y is the N x K response matrix, with ik entry yix, X is the N x(p+1)
input matrix, B is the (p + 1) x K matrix of parameters and E is the
N x K matrix of errors. A straightforward generalization of the univariate
loss funetion (3.2) is

K N

RSS(B) = Z Z{yik — fil(x:))? (3.36)
k=1 i=1

= tr[(Y - XB)"(Y — XB)|. (3.37)

The least squares estimates have exactly the same form as before
B=X"X)'xX"Y. (3.38)

Hence the cocfficients for the kth outcome are just the least squares csti-
mates in the regression of y; on xg,X,...,%p. Multiple outputs do not
affect one another’s least squares estimates.

If the errors £ = (1,... ,£x) in (3.33) are correlated, then it might seem
appropriate to modify (3.36) in favor of a multivariate version. Specifically,
suppose Cov(g) = X, then the multivariate weighted criterion

=
RSS(B; X) = 3 (s — (@)= (i — (@) (3.39)

i=1

arises naturally from multivariate Gaussian theory. Here f(x) is the vector
function (fi(z),... , fr(z)), and y; the vector of K responses for observa-
tion i. However, it can be shown that again the solution is given by (3.38);
K separate regressions that ignore the correlations (Exercise 3.9). If the X;
vary among observations, then this is no longer the case, and the solution
for B no longer decouples.

In Section 3.4.6 we pursue the multiple outcome problem, and consider
situations where it does pay to combine the regressions.

3.4 Subset Selection and Coefficient Shrinkage 55
3.4 Subset Selection and Coeflicient Shrinkage

There are two reasons why we are often not satisfied with the least squares
estimates (3.6).

e The first is prediction ocenracy: the least squares estimaltes ofien have
low bias but large variance. Prediction accuracy can sometimes be
improved hy shrinking or setting some coeflicients to zero. By doing
so we sacrifice a little bit of bias to reduce the variance of the predicted
values, and hence may improve the overall prediction accuracy.

o The second reason is dnlerpretation. Wilth a large number ol predic-
tors, we often would like to determine a smaller subset that exhibit
the strongest effects. In order to get the “big picture,” we are willing
to sacrifice some of the small details.

In this section we describe a number of approaches to variable selection
and coefficient shrinkage.

9.4.1 Subset Selection

In this approach we retain only a subset of the variables, and eliminate
Lhe rest from the model. Leasl squares regression is used Lo eslimale Lhe
coefficients of the inputs that are retained. There are a number of different
strategies for choosing the subset. Best subset regression finds for each
k € {0,1,2,...,p} the subset of size k that gives smallest residual sum
of squares (3.2). An efficient algorithm—the leaps and bounds procedure
(Furnival and Wilson, 1974)—makes this feasible for p as large as 30 or
40. Figure 3.5 shows all the subset models for the prostate cancer example.
The lower boundary represents the models that are eligible for selection by
the best-subsets approach. Note that the best subset of size 2, for example,
need not include the variable that was in the best subset of size 1 (for
this example all the subsets are nested). The best-subset curve (red lower
boundary in Figure 3.5) is necessarily decreasing, so cannot be used to
select the subset size k. I'he question of how to choose k£ involves the
tradeofl between bias and variance, and there are a number of criteria that
one may use. Typically we choose the model that minimizes an estimate of
the expected prediction error. We defer discussion of this until Chapter 7.

Rather than search through all possible subsets (which becomes infeasible
for p much larger than 40), we can seek a good path through them. Forward
stepwise selection starts with the inlercept, and then sequentially adds into
the model the predictor that most improves the fit. Suppose our current
model has k inputs, represented by parameter estimates 3, and we add in
a predictor, resulting in estimates &. The improvement in fit is often based

56 3. Linear Methods for Regression

8
¥ L]
‘ -
g‘- - : »
o . :
g . I [] .
c%‘:_ b] [] .
i ©
3 : .
g L] ' L
w] H ' : -
3 %1 \;1l ! :
2 e — —Ihl i
H e —_—
o
3—
o
T T T T T T T T T
0 1 2 3 4 5 6 7 8
Subset Size k

FIGURE 3.5. All possible subset models for the prosiate cancer erample. At
each subsel size is shown the residual sum-of-squares for each model of thal size.

on the F statistic (3.13),
__RSS(3) — RSS(B)
RSS(3)/(N —k—2)

A typical strategy adds in sequentially the predictor producing the largest
value of I, stopping when no predictor produces an F-ratio greater than
the 90th or 95th percentile of the 7 n_j o distribution.

Backward stepwise selection starts with the full model, and sequentially
deletes predictors. Like forward selection, it typically uses an F-ratio like
(3.40) to choose the predictor to delete. In this case we drop the predic-
tor producing the smallest value of I at each stage, stopping when each
predictor in the model produces a value of F' greater than the Y0th or
95th percentile when dropped. Backward selection can only be used when
N > p, while forward stepwise can always be used. 'here are also hy-
brid stepwise selection strategies that consider both forward and backward
moves at each stage, and make the “best” move; these require a parameter
to set the threshold between when an “add” move is chosen over a “drop”
move.

The F-ratio stopping rule provides only local control of the model search,
and does not altempt to find the best model along the sequence of models
that it examines. As with all-subsets selection, we can choose the model
from the sequence that minimizes an estimate of expected prediction error.
This is discussed in Chapter 7, and illustrated in the example below.

(3.40)

3.4 Subset Selection and Coefficient Shrinkage 57

TABLE 3.3, Estimated coefficients and lest error resulls, for different subsel
and shrinkage methods applied to the prostaie data. The blank entries correspond
to variables omitted.

Term IS Best Subset Ridge TLasso PCR PLS
Intercept 2.480 2,495 2467 2477 2013 2.452
lcavol 0.680 0.740 0.380 0.545 0.544 0.440
lweight 0.305 0.367 0.238 0.237 0337 0.351
age -0.141 -0.029 -0.152 -0.017

lbph 0.210 0.159 0.098 0213 0.248

svi 0.305 0.217 0.165 0315 0.252

lcp -0.288 0.026 -0.053 0.078
gleason -0.021 0.042 0.230 0.003
peggss 0.267 0.123 0.059 -0.053 0.080
Test Exror 0.586 0.574 0.540 0491 0527 0.636
Std. Error 0.184 0.156 0.168 0.152 0.122 0.172

3.4.2 Prostate Cancer Date Example (Continued)

Table 3.3 shows the coeflicients from a number of different selection and
shrinkage methods. They are best-subset selection using an all-subsets search,
ridge regression, the lasso, principal components regression and partial least
squares. Fach method has a complexity parameter, and this was chosen to
minimize an estimate of prediction error based on tenfold cross-validation;
full details are given in Section 7.10. Briefly, cross-validation works by divid-
ing the training data randomly into ten equal parts. The learning method
is [it to nine-tenths of the data, and the prediction error is computed on
the remaining one-tenth. This is done in turn for each one-tenth of the
data, and the ten prediction error estimates are averaged. Note that we
have already divided these data into a training set of size 67 and a test set
of size 30. Cross-validation is applied to the training set, since selecting the
shrinkage parameter is part of the training process. The test set is there to
judge the performance of the selected model.

The estimated prediction error curves are shown in Figure 3.6. Many of
the curves are very flat over large ranges near their minimum. Included
are estimated standard error hands for each estimated error rate, based on
the ten error estimates computed by cross-validation. We have used the
“one-standard-error” rule—we pick the most parsimonious model within
one standard error of the minimum (Section 7.10, page 216). Such a rule
faces up to the fact that the tradeoff curve is estimated with error, and
hence takes a conservative approach.

Best-subset selection chose to use the two predictors 1cvol and lcweight.
The last two lines of the table give the average prediction error (and its
standard error) over the test set.

58 3. Lincar Methods for Regression

All Subsets Ridge Regression

. =

=L =2
% o B o

&

8= 3 e

@]

= =

a a !

o 2 ; B B
Dogees of Freadom
Principal Components Regression

@ =

et ot 10 |

b -

o 5N
E . =
e 3=

@ =

(=] o

@]

Shrinkags Factor s
Partial Least Squares

@

L

x
g 2
i
5 =

2 4

T —
o 2 4 L] 8

FIGURE 3.6. Estimated prediction error curves and their standard errors for
the various selection and shrinkage methods. Fach curve is plotted as a funclion
of the corresponding complexity parameter for that method. The horizonlal azis
has been chosen so thal the model complexity increases as we move from left to
right. The prediction error estimates and their standard errors were oblained by
tenfold cross-validation; full details are given in Section 7.10. The least complex
model within one standard error of the best is chosen.

3.4 Subset Selection and Coefficient Shrinkage 59

3. 4 .3 Shri f.ﬂ‘ttyt': Methods

By retaining a subset of the predictors and discarding the rest, subset selec-
tion produces a model that is interpretable and has possibly lower predic-
tion error than the full model. However, because it is a discrete process—
variables are either retained or discarded—it often exhibits high variance,
and so doesn’t reduce the prediction error of the full model. Shrinkage
methods are more continuous, and don’t suffer as much from high variabil-

ity.
Ridge Regression

Ridge regression shrinks the regression coefficients by imposing a penalty
on their size. The ridge coefficients minimize a penalized residual sum of
squares,

N

P . P
Gridge _ arg;nin{Z(ye — Bo — ijﬁjf + /\z 532} (3.41)
j=1 =1

i=1

Here X > 0 is a complexily parameter thal controls the amount of shrink-
age: the larger the value of A, the greater the amount of shrinkage. The
coefficients are shrunk toward zero (and each other). The idea of penaliz-
ing by the sum-olsquares of Lhe parameters is also used in neural neltworks,
where it is known as weight decay (Chapter 11).

An equivalent way to write the ridge problem is

N | p
réu-iud:;e = a.rg;ninZ(y,- —Bo— Zmijﬁj)a‘
=i = (3.42)

P
subject to Zﬁ? < s,
=1

which makes explicit the size constraint on the parameters. There is a one-
to-one correspondence between the parameters A in (3.41) and s in (3.42).
When there are many correlated variables in a linear regression model,
their coefficients can become poorly determined and exhibit high variance.
A wildly large positive coefficient on one variable can be canceled by a sim-
ilarly large negative coefficient on its correlated cousin. By imposing a size
constraint on the coefficients, as in (3.42), this phenomenon is prevented
from occurring.

The ridge solutions are not equivariant under scaling of the inputs, and
so one normally standardizes the inputs before solving (3.41).

In addition, notice that the intercept fy has been leflt out of the penalty
term. Penalization of the intercept would make the procedure depend on
the origin chosen for Y'; that is, adding a constant ¢ to each of the targets y;
would not simply result in a shift of the predictions by the same amount c.

60 3. Linear Methods for Regression

It can be shown (Exercise 3.5) that the solution to (3.41) can be separated
into two parts, after reparametrization using centered inputs: each z;; gets

replaced by x;; — Z;. We estimate Gy by ¥ = Ziv yi/N. The remaining

coefficients oot eatimated by o ridoe reoreggion withaotit intercent 1igine the
CoOeLICieivs geu estiitlaieqd Oy a riage regression wWividouy 11ivercepy, Usillg uile

centered z;;. Henceforth we assume that this centering has been done, so
that the input matrix X has p (rather than p 4+ 1) columns.
Writing the criterion in (3.41) in matrix form,

RSS(A) = (v — X8)" (y — X0) + 1675, (3.43)
the ridge regression solutions are easily seen to be
gridee — (XTX + A1) X Ty, (3.44)

where I is the p X p identity matrix. Notice that with the choice of quadratic
penalty 373, the ridge regression solution is again a linear function of
y. The solution adds a positive constant to the diagonal of X7X before
inversion. This makes the problem nonsingular, even if X7X is not of full
rank, and was the main motivation for ridge regression when it was first
introduced in statistics (Hoerl and Kennard, 1970). Traditional descriptions
of ridge regression start with definition (3.44). We choose to motivate it via
(3.41) and (3.42), as these provide insight into how it works.

Figure 3.7 shows the ridge coefficient estimates for the prostate cancer
example, plotted as functions of df(\), the effective degrees of freedom im-
plied by a penalty A (defined in (3.50) on page 63).

In the case of orthogonal inputs, the ridge estimates are just a scaled
version of the least squares estimates, that is, Bridge = 7/3’. Here 0 <y <1
is a simple function of A in equation (3.41); see Section 3.4.5.

Ridoe recression can also be derived as the mean or mode of 3 boste-
nlGge regressicll Call aisSG Le Gerlved as Lile Imeall O MmMode C1 & posie

rior distribution, with a suitably chosen prior distribution. Suppose y; ~
N(Bo + 2 B,0?), and the parameters j3; are each distributed as N(0,72%),
independently of one another. Then the (negative) log-posterior density
of 8, with 72 and o2 assumed known, is equal to the expression in curly
braces in (3.41), with A = 02 /72 (Exercise 3.6). Thus the ridge estimate is
the mode of the posterior distribution; since the distribution is Gaussian,
it is also the posterior mean.

The singular value decomposition (SVD) of the centered input matrix X
gives us some additional insight into the nature of ridge regression. This de-
composition is extremely useful in the analysis of many statistical methods.
The SVD of the N X p matrix X has the form

X = UDVT. (3.45)

Here U and V are N X p and p X p orthogonal matrices, with the columns
of U spanning the column space of X, and the columns of V spanning the
row space. D is a p X p diagonal matrix, with diagonal entries d; > dg >
-+ > dp > 0 called the singular values of X.

3.4 Subset Selection and Coefficient Shrinkage 61

Icavol
) St
2 p
@
% Ibph
o
“~gleason_
age
! lep
T T T T T
0 2 4 5] 8
df(A)

FIGURE 3.7. Profiles of ridge coefficients for the prostate cancer example, as
tuning parameter X is varied. Coefficients are plotied versus df(\), the effective
degrees of freedom. A vertical line is draun al df = 4.16, the value chosen by

eross-validation.

62 3. Linear Methods for Regression

Using the singular value decomposition we can write the least squares
fitted vector as

XB]S

X(xX'x)"'xTy
= UUTYy, (3.46)

after some simplification. Note that UTy are the coordinates of y with

respect to the orthonormal basis U. Note also the similarity with (3.32); Q

and U are generally different bases for the column space of X (Exercise 3.8).
Now the ridge solutions are

Xﬁridge X(X_TX.*—)\I)*IXT}’

UD(D + A1) 'D Uy

= Eﬂ u»iuTy, (3.47)
—~ a2+
J—1 <

where the u; are the columns of U. Note that since A > 0, we have d? / (d?—i—
A) < 1. Like linear regression, ridge regression computes the coordinates of
y with respect to the orthonormal basis U. It then shrinks these coordinates
by the factors d /(d5 4+). This means that a greater amount of shrinkage
is applied to basis vectors with smaller d?.

What does a small value of d2 mean? The SVD of the centered matrix
X is another way of expressing the principal components of the variables
in X. The sample covariance matrix is given by S = X7X/N, and from
(3.45) we have

wT'y — yn2yT (2 .48)
X' X=VDV*H, (3.48)
which is the eigen decomposition of XTX (and of S, up to a factor N). The
eigenvectors v; are also called the principal components (or Karhunen—
Loeve) directions of X. The first principal component direction v; has
the property that z; = Xw; has the largest sample variance amongst all
normalized linear combinations of the columns of X. This sample variance

is easily seen to be

2

Var(z1) = Var(Xvq) = %, (3.49)
and in fact z; = Xv, = uidy. The derived variable z, is called the first
principal component of X, and hence u; is the normalized first principal
component. Subsequent principal components z; have maximum variance
d? /N, subject to being orthogonal to the earlier ones. Conversely the last
principal component has minimum variance. Hence the small singular val-
ues d; correspond to directions in the column space of X having small
variance, and ridge regression shrinks these directions the most.

3.4 Subset Selection and Coefficient Shrinkage 63

94 -
Largest Principal
Component
, o
a
o
™
o o o
(}l -
Smallest Principal
Component
&
T T T T T
-4 2 a 2 4

FICURE 3.8. Principal components of some input data points. The largest prin
cipal component is the direction that maximizes the variance of the projected
data, and the smallest principal component minimizes that variance. Ridge re-
gression. projects y onto these components, and then shrinks the coefficients of
the low-variance components more than the high-variance componenls.

Figure 3.8 illustrates the principal components of some data points in
two dimensions. If we consider fitting a linear surface over this domain
(the Y-axis is sticking out of the page), the configuration of the data allow
us to determine its gradient more accurately in the long direction than
the short. Ridge regression protects against the potentially high variance
of gradients estimated in the short directions. The implicit assumption is
that the response will tend to vary most in the directions of high variance
of the inputs. This is often a reasonable assumption, but need not hold in
general.

In Figure 3.6 we have plotted the estimated prediction error versus the
quantity

dr(A) r[X(XTX 4+ AL) 1 XT),
z

- Zdz

j=1"17

<. (3.50)

+

This monotone decreasing function is the effective degrees of freedom of
the ridge regression fit, as described in Section 7.6. Note that df(\) = p

64 3. Linear Methods for Regression

when A = 0 (no regularization) and df(A\) — 0 as A — oo. In Figure 3.6
the minimum occurs at df(A) = 4.16. Table 3.3 shows that ridge regression
reduces the test error of the full least squares estimates by a small amount.

The Lasso

The lasso is a shrinkage method like ridge, with subtle but important dif-
ferences. The lasso estimate is defined by

N P 2
ﬁlasso = argéninZ(yi — Bo — Z l“i]ﬂj)
i=1 j=1

14
subject to » || < t. (3.51)

j=1

Just as in ridge regression, we can reparametrize the constant By by stan-
dardizing the predictors; the solution for By is 9, and thereafter we fit a
model without an intercept (Exercise 3.11).

Notice the similarity to the ridge regression problem (3.42): the Lo ridge
penalty Y7 7 is replaced by the L; lasso penalty Y7 [G;|. This latter
constraint makes the solutions nonlinear in the y;, and a quadratic pro-
gramming algorithm is used to compute them. Because of the nature of the
constraint, making ¢ sufficiently small will cause some of the coefficients to
be exactly zero. Thus the lasso does a kind of continuous subset selection.
If ¢ is chosen larger than to = Y ¥ |BJ\ (where fij = B}S, the least squares

estimates), then the lasso estimates are the ﬁj’s. On the other hand, for
t = to/2 say, then the least squares coefficients are shrunk by about 50%
on average. However, the nature of the shrinkage is not obvious, and we
investigate it further in Section 3.4.5 below. Like the subset size in variable
subset selection, or the penalty parameter in ridge regression, ¢ should be
adaptively chosen to minimize an estimate of expected prediction error.

In Figure 3.6, for ease of interpretation, we have plotted the lasso predic-
tion error estimates versus the standardized parameter s = ¢/ > 7 (5;]. A
value § = 0.50 was chosen by 10-fold cross-validation; this caused three co-
efficients to be set to zero (fifth column of Table 3.3). The resulting model
has the lowest test error, slightly lower than the full least squares model,
but the standard errors of the test error estimates (last line of Table 3.3)
are fairly large.

Figure 3.9 shows the lasso coeflicients as the standardized tuning parame-
ters=1t/> " |BJ\ is varied. At s = 1.0 these are the least squares estimates;
they decrease to 0 as s — 0. This decrease is not always strictly monotonic,
although it is in this example. A vertical line is drawn at s = 0.5, the value
chosen by cross-validation.

3.4 Subset Selection and Coefficient Shrinkage 65

lcavol
Q-
o
«<]
=]
iweight
2 pggis
@
=) o™
g 3 Ibph
S
| ; <
3 i T gleasorny
age
o)
= 1
" lep

1 T T T T T
0.0 0.2 04 0.6 0.8 1.0

Shrinkage Factor s

FIGURE 3.9. Profiles of lasso coefficients, as tuning parameler t is varied.
Coefficients are plotted versus s = /37 |)§J| A wvertical line is draun at s = 0.5,
the value chosen by cross-validation. Compare Figure 3.7 on page 61; the lasso
profiles hit zero, while those for ridge do not.

66 3. Lincar Methods for Regression

3.4.4 Methods Using Derived Input Directions

In many situations we have a large number of inputs, often very correlated.
The methods in this section produce a small number of linear combinations
Zyy m =1,..., M of the original inputs X, and the Z,, are then used in
place of the X; as inputs in the regression. The methods differ in how the
linear combinations are constructed.

Principal Components Regression

In this approach the linear combinations Z,, used are the principal com-
ponents as defined in Section 3.4.3 above.

Principal component regression forms the derived input columns z,, =
XUpm, and then regresses y on zi, Z2,...,2Zy for some M < p. Since the
Zm,ms are orthogonal, this regression is just a sum of univariate regressions:

M
P =g+ Y i, (3.52)
m=1

where 6,, = (Zin, ¥)/(Zin, Zm). Since the z,, are each linear combinations
of the original x;, we can express the solution (3.52) in terms of coeflicients
of the x; (Exercise 3.12):

M
BT (M) = Y bom. (3.53)
m=1

As with ridge regression, principal components depend on the scaling of
the inputs, so typically we [irst standardize them. Note that if M = p, we
would just get back the usual least squares estimates, since the columns of
Z = UD span the column space of X. I'or M < p we get a reduced regres-
sion. We see that principal components regression is very similar to ridge
regression: hoth operate via the principal components of the input ma-
trix. Ridge regression shrinks the coefficients of the principal components
(Figure 3.10), shrinking more depending on the size of the corresponding
eigenvalue; principal components regression discards the p — M smallest
eigenvalue components. Figure 3.10 illustrates this.

In Figure 3.6 we see that cross-validation suggests seven terms; the re-
sulting model has about the same test error as ridge regression in Table 3.3.

Partial Least Squares

This technique also constructs a set of linear combinations of the inputs
for regression, bul unlike principal componenls regression it uses y (in
addition to X) for this construction. We assume that y is centered and
each x; is standardized to have mean 0 and variance 1. PLS begins by
computing the univariate regression coefficient ¢1; of y on each x;, that

3.4 Subset Selection and Coefficient Shrinkage 67

S]
0 - T
g o
L = \\“"“"L
g e
H——c“
i S ridge =
2 - P By =
7 B
N
(=1
c . —
2 4 6 B
Index

FIGURE 3.10. Ridge regression shrinks the regression coefficients of the prin-
cipal components, using shrinkage factors d3/(d] + X) as in (3.47). Principal
component regression truncates them. Shoun are the shrinkage and truncalion
patterns corresponding to Figure 3.6, as a function of the principal component
index.

is, $¢1; = (x;,¥). From this we construct the derived input z; = 3 ¢1;x;,
which is the first partial least squares direction. Hence in the construction of
each zy,, the inputs are weighted by the strength of their univariate effect
on y. The outcome y is regressed on z; giving coefficient 0, and then
we orthogonalize x,,... , X, with respect to z;. We continue this process,
until M < p directions have been obtained. In this manner, partial least
squares produces a sequence of derived inputs or directions z;.zg, ... , Zps.
As wilth principal-componenl regression, il we were Lo construcl all M =
p directions, we would get back a solution equivalent to the usual least
squares estimates; using M < p directions produces a reduced regression.
The procedure is described fully in Algorithm 3.2.

In the prostate cancer example, cross-validation chose M = 2 PLS direc-
tions in Figure 3.6. This produced the model given in the rightmost column
of Table 3.3.

What optimization problem is partial least squares solving? Since it uses
the response y to construct its directions, its solution is a nonlinear func-
tion of y. It can be shown that partial least squares seeks directions that
have high variance and have high correlation with the response, in contrast
to principal components regression (Stone and Brooks, 1990; I'rank and
Hriedman, 1993). In particular, the mth principal component direction v,
solves:

max Var(Xea), (3.54)

ug‘ﬂa =0,f=1,... ;m—1

where S is the sample covariance matrix of the x;. The conditions v} Sa =0
ensures that z,, = Xa is uncorrelated with all the previous linear combi-

68 3. Linear Methods for Regression

Algorithm 3.2 Partial Least Squares.

1. Standardize each x; to have mean zero and variance one. Set y(© =

(0)

1y, and x;” =x;, j=1,...,p.

2. Form=1,2,....p

® Zm = Z?:l @ﬂﬁxg'm_l), where Samj = <X§‘m_1),y>‘

4 ém = <Zm7Y>/<Zm7Zm>-

) y(m) — S](m_l) + émzm.

e Orthogonalize each x&mfl) with respect to z,,: x;m) = x;-mfl) —

1 .
(2 ") /(B 2|2, 5= 1,2, .
3. Output the sequence of fitted vectors {y(™}}. Since the {z,}7" are
linear in the original x;, so is y(m) = X3P (m). These linear coeffi-
cients can be recovered from the sequence of PLS transformations.

nations zy = Xvy. The mth PLS direction ¢, solves:

max Corr?(y, Xa)Var(Xa). (3.55)

[lee] =1
@ZS@:O,Z:L... m—1

Further analysis reveals that the variance aspect tends to dominate, and
so partial least squares behaves much like ridge regression and principal
components regression. We discuss this further in the next section.

If the input matrix X is orthogonal, then partial least squares finds the
least squares estimates after m = 1 steps. Subsequent steps have no effect
since the ¢,,; are zero for m > 1 (Exercise 3.13). It can also be shown that
the sequence of PLS coefficients for m = 1,2, ... , p represents the conjugate
gradient sequence for computing the least squares solutions (Exercise 3.16).

3.4.5 Discussion: A Comparison of the Selection and
Shrinkage Methods

There are some simple settings where we can understand better the rela-
tionship between the different methods described above. Consider an exam-
ple with two correlated inputs X; and X5, with correlation p. We assume
that the true regression coefficients are #; = 4 and (G = 2. Figure 3.11
shows the coefficient profiles for the different methods, as their tuning pa-
rameters are varied. The top panel has p = 0.5, the bottom panel p = —0.5.
The tuning parameters for ridge and lasso vary over a continuous range,
while best subset, PLS and PCR take just two discrete steps to the least
squares solution. In the top panel, starting at the origin, ridge regression

3.4 Subset Selection and Coefficient Shrinkage 69

p=0.5
oM - i
1
1
1
1
1
1
o A ! Least Squares
i
1
i
- 4 1
& :
1
:
O I P R O AROEARiARRRRORRDRDBDNAA =
1
1
1
‘
_— |
‘ i
I T T T T T T
0 1 2 a3 4 5 6
h
p=-05
o - i
1
1
1
1
1
1
o ! Least Squares
i
i
1
-4 Ridge
o i
: s st Subset
1
&
PO Py S e S e L L e P
——
! il
: PLS
1
- 7l |
g ' PCR
i T T T T T !
(4] 1 2 3 4 5 6

&4

FIGURE 3.11. Coefficient profiles from different methods for a sstmple problem:
two inpuls with corvelation 0.5, and the true regression coefficients 3 = (4, 2).

70 3. Linear Methods for Regression

shrinks the coefficients together until it finally converges to least squares.
PLS and PCR show similar behavior to ridge, although are discrete and
more extreme. Best subset overshoots the solution and then backtracks.
The behavior of the lasso is intermediate to the other methods. When the
correlation is negative (lower panel), again PLS and PCR roughly track
the ridge path, while all of the methods are more similar to one another.
We can gain further insight into these methods by taking a Bayesian
point of view. Suppose we adopt a Gaussian prior as discussed earlier on

page 60:
B~ N(0,7I). (3.56)

We saw that the ridge regression estimate Bridge is the posterior mode

{and mean) Thia revesla an intereatinge noint: the nrior (2 ERY i 5 funetion
\auu lllcanllj A 11D LOVOQLD il 111L01L CDUlLLs PULLLU lJllC PLLUL \L) UU} LD b LUylivuviull

only of the length of 3 and not its direction. Therefore, ridge regression’s
shrinkage of low-variance directions is not due to a prior distribution that
favors high-variance directions; this shrinkage achieves variance reduction
to account for the correlation present in the input matrix X.

Recall that ridge regression shrinks all directions, but shrinks low-variance
directions more. Principal components regression leaves M high-variance
directions alone, and discards the rest. Hence its implicit prior puts more
probability on M high-variance directions and zero probability on p — M
low-variance directions. Interestingly, it can be shown that partial least
squares also tends to shrink the low-variance directions, but can actually
inflate some of the higher variance directions. This can make PLS a little
unstable, and cause it to have slightly higher prediction error compared to
ridge regression. A full study is given in Frank and Friedman (1993). These
authors conclude that for minimizing prediction error, ridge regression is
generally preferable to variable subset selection, principal components re-
gression and partial least squares. However the improvement over the latter
two methods was only slight.

To summarize so far, PLS, PCR and ridge regression tend to behave
similarly. Ridge regression may be preferred because it shrinks smoothly,
rather than in discrete steps.

We now focus on ridge regression, the lasso and subset regression. In the
case of an orthonormal input matrix X the three procedures have explicit
solutions. Each method applies a simple transformation to the least squares
estimate ,é’j, as detailed in Table 3.4. Ridge regression does a proportional
shrinkage. Best subset keeps the M largest coefficients, while lasso trans-
lates each by a constant factor, truncating at zero. This is called “soft
thresholding,” and is used in the context of wavelet-based smoothing in
Section 5.9. Note that the threshold parameter v in the lasso formula is a
one-to-one transformation of the bound ¢ appearing in the definition (3.51).

Back to the nonorthogonal case; some pictures help understand their re-
lationship. Figure 3.12 depicts the lasso (left) and ridge regression (right)

3.4 Subset Selection and Coefficient Shrinkage 71

TABLE 3.4. Estimators of 3, in the case of orthonormal columns of X. A, M
and =y are constanis chosen by the corresponding techniques. sign denotes the sign
of its argument (£1), and ., denotes “positive part” of z.

Estimator Formula

Best subset (size M) §; if rank(|3;]) < M

Ridge B;/(1+A)
Lasso sign(B8,) (18| — 7)+

FIGURE 3.12. Estimation picture for the lasso (left) and ridge regression
(right). Shown are conlours of the error and constrainl funclions. The solid blue
areas are the constraint regions |Bi| + |B:2] < t and 87 + 83 < t*, respectively,
while the red ellipses are the conlours of lhe leasl squares error funclion,

74 3. Linear Methods for Regression

With 3 replaced by the estimate Y7Y /N, one can show (Exercise 3.19)
that the solution is given by a CCA of Y and X:

B”(m) =BU,, U, (3.62)

where U,, is the K x m sub-matrix of U consisting of the first m columns,
and U is the K x M matrix of left canonical vectors ui, ug,...,up. U,
is its generalized inverse. Writing the solution as

B (M) = (XTX)"'XT(YU,,)U,,, (3.63)

we see that reduced-rank regression performs a linear regression on the
pooled response matrix YU,,, and then maps the coefficients (and hence
the fits as well) back to the original response space. The reduced-rank fits
are given by

Y™ (m) = X(X'X)"'x"YU,, U,

(3.64)
=HYP,,,

where H is the usual linear regression projection operator, and P, is the
rank-m CCA response projection operator. Although a better estimate of
3 would be (Y —XB)T(Y—XB)/(N—pK), one can show that the solution
remains the same (Exercise 3.20).

Reduced-rank regression borrows strength among responses by truncat-
ing the CCA. Breiman and Friedman (1997) explored with some success
shrinkage of the canonical variates between X and Y, a smooth version of
reduced rank regression. Their proposal has the form (compare (3.62))

Bt = BUAU !, (3.65)

where A is a diagonal shrinkage matrix (the “c+w” stands for “Curds
and Whey”, the name they gave to their procedure). Based on optimal
prediction in the population setting, they show that A has diagonal entries

2
Cm

App =
" g R

,m=1,...,M, (3.66)

where ¢, is the mth canonical correlation coefficient. Note that as the ratio
of the number of input variables to sample size p/N gets small, the shrink-
age factors approach 1. Breiman and Friedman (1997) proposed modified
versions of D based on training data and cross-validation, but the general
form is the same. Here the fitted response has the form

YOV = HYSHY, (3.67)

where St% = UAU! is the response shrinkage operator.

3.5 Computational Considerations 75

Breiman and Friedman (1997) also suggested shrinking in both the Y
space and X space. This leads to hybrid shrinkage maodels of the form

-i}rldge,c+w — A;‘YSH—“" (3.63)

where Ay = X(XTX +AI)'X7 is the ridge regression shrinkage operator,
as in (3.46) on page 62. Their paper and the discussions thereof contain
many more details.

3.5 Computational Considerations

Least squares fitting is usually done via the Cholesky decomposition of
the matrix X7 X or a QR decomposition of X. With N observations and p
features, the Cholesky decomposition requires p* + Np?/2 operations, while
the QR decomposition requires Np? operations. Depending on the relative
size of N and p, the Cholesky can sometimes be faster; on the other hand,
it can be less numerically stable (Lawson and Hansen, 1974). Computation
of the lasso requires quadratic programming; see for example Murray et al.
(1981).

Bibliographic Notes

Linear regression is discussed in many statistics hooks, for example Seber
(1984), Weisberg (1980) and Mardia et al. (1979). Ridge regression was
introduced by Hoerl and Kennard (1970), while the lasso was proposed by
Tibshirani (1996). Partial least squares was introduced by Wold (1975).
Comparisons of shrinkage methods may be found in Copas (1983) and
Frank and Friedman (1093).

Exercises

lx. 3.1 Show that the F statistic (3.13) for dropping a single coefficient
from a model is equal to the square of the corresponding z-score (3.12).

Itx. 3.2 Given data on two variables X and Y, consider fitting a cubic
polynomial regression model f(X) = Zj=o G;X?. In addition to plotting
the fitted curve, you would like a 95% confidence band about the curve.
Consider the following two approaches:

1. At each point zo, form a 95% confidence interval for the linear func-
tion a7 = Z?:Q B;a}.

76 3. Linear Methods for Regression

2. Form a 95% confidence set for 4 as in (3.15), which in turn generates
confidence intervals for f(aq).

How do these approaches differ? Which band is likely to be wider? Conduct
a small simulation experiment to compare the two methods.

Ex. 3.3

(a) Prove the Gauss-Markov theorem: the least squares estimate of a pa-
rameter a’ 8 has variance no bigger than that of any other linear
unbiased estimate of a” 3 (Section 3.2.2).

(b) The mabrix inequality B < A holds il A — B is positive semidelinite,
Show that if V is the variance-covariance matrix of the least squares
estimate of § and V is the variance-covariance matrix of any other
unbiased estimale, Lhen \Y4 = V.

[, 3.1 Show how the vector of least squares coefficients can be obtained
from a single pass of the Gram-Schmidt procedure (Algorithm 3.1). Rep-
resent your solution in Lerms of the QR decomposition of X.

[ix. 3.5 Consider the ridge regression problem (3.41). Show that this prob-
lem is equivalent to the problem

N P . p
B° = a,r%lflin{z [yg — 65— Z:(ﬂ';gj — &y)ﬁf] + /\Z ,(3;2}. (3.69)
i=1 d=1

=1

Give the correspondence between 3¢ and the original 8 in (3.41). Charac-
Lerize the solution to this modified criterion.

[ix. 3.6 Show that the ridge regression estimate is the mean (and mode)
of the posterior distribution, under a Gaussian prior 3 ~ N(0,71), and
Gaussian sampling model y ~ N (X, ¢°I). Find the relationship between
the regularization parameter A in the ridge formula, and the variances 7
and o”.

Fx. 3.7 Assume y; ~ N (o +a:;f“__6‘ 02),i=1,2,...,N, and the parameters
(3; are cach distributed as N (0,72%), independently of one another. Assuming

0% and 72 are known, show that the (minus) log-posterior density of 3 is

proportional to Zil (% = Bo — X, iiB;)? + A X5, B where A = o? /7.

I'x. 3.8 Consider the QR decomposition of the uncentered N x (p + 1)
matrix X, and the SVD of the N x p centered matrix X. Show that Q»
and U span the same subspace, where Qs is the sub-matrix of Q with the
first column removed. Under what circumstances will they be the same, up
to sign flips?

Exercises 7

Ex. 3.9 Show that the solution to the multivariate linear regression problem
(3.39) is given by (3.38). What happens if the covariance matrices X; are
different for each observation?

Ex. 3.10 Show that the ridge regression estimates can be obtained by ordi-
nary least squares regression on an augmented data set. We augment the
centered matrix X with p additional rows v/AI, and augment y with p ze-
ros. By introducing artificial data having response value zero, the fitting
procedure is forced to shrink the coefficients toward zero. This is related to
the idea of hints due to Abu-Mostafa (1995), where model constraints are
implemented by adding artificial data examples that satisfy them.

Ex. 3.11 Consider the lasso problem (3.51). Show that this problem is
equivalent to the problem

N

p p
b = argmin{ Y[— 55 = Yot — 2] A AW} (370)
, 2

i=1 j=1

Give the correspondence between 5¢ and the original 8 in (3.51). Charac-
terize the solution to this modified criterion.

Ex. 3.12 Derive the expression (3.53), and show that 3¢ (p) = j3'.

Ex. 3.13 Show that in the orthogonal case, PLS stops after m = 1 steps,
because subsequent ¢,,; in step 2 in Algorithm 3.2 are zero.

Ex. 3.14 Derive the entries in Table 3.4, the explicit forms for estimators
in the orthogonal case.

Ex. 3.15 Repeat the analysis of Table 3.3 on the spam data discussed in
Chapter 1.

Ex. 3.16 Read about conjugate gradient algorithms (Murray et al., 1981, for
example) and establish a connection between these algorithms and partial
least squares.

Ex. 3.17 Show that ||3"98¢|| increases as its tuning parameter A — 0. Does
the same property hold for the lasso and partial least squares estimates?
For the latter, consider the “tuning parameter” to be the successive steps
in the algorithm.

Ex. 3.18 Consider the canonical-correlation problem (3.60). Show that the
leading pair of canonical variates u; and v; solve the problem

max ul (YIX)w, (3.71)
uwT (YT Y)u=1
vp (XT X)v=1

78 3. Linear Methods for Regression

a generalized SVD problem. Shluw that the solution is given by u; =
(YTY) %uj, and v = (XTX) %u;, where u} and] are the leading left
and right singular vectors in

YTY) H(YTX)(X"X) ¥ =Uu'DV*T, (3.72)

Show that the entire sequence ty,, Vm, m=1,... ,min(K, p) is also given
by (3.72).

[tx. 3.19 Show that the solution to the reduced-rank regression problem
(3.61), with 3 estimated by Y7Y /N, is given by (3.62). Hint: transform
YioY" =YX %', and solved in terms of the canonical vectors u},. Show
that U,, = E_JfU,‘n, and a generalized inverse is U, = U;ITE%.

Iix. 3.20 Show that the solution in Exercise 3.19 does not change if 3 is
estimated by the more natural quantity (Y — XB)” (Y — XB)/(N — pK).

4

[inear Methods for Classification

4.1 Introduction

In this chapter we revisit the classification problem and focus on linear
methods for classification. Since our predictor G(z) takes values in a dis-
crete set G, we can always divide the input space into a collection of regions
labeled according to the classification. We saw in Chapter 2 that the bound-
aries of these regions can be rough or smooth, depending on the prediction
function. For an important class of procedures, these decision boundaries
are linear; this is what we will mean by linear methods for classification.
There are several different ways in which linear decision boundaries can
be found. In Chapter 2 we fit linear regression models to the class indicator
variables, and classify to the largest fit. Suppose there are K classes, for
convenience labelled 1,2,..., K, and the fitted linear model for the kth
indicator response variable is fk(z} = [}kg - 331:5 The decision boundary
between class k and £ is that set of points for which fi(2) = fe(z). that is,
the set {z : (Bro — Fw) + {& — B)Tz = 0}, an affine set or hyperplane*
Since the same is true for any pair of classes, the input space is divided
into regions of constant classification, with piecewise hyperplanar decision
boundaries. This regression approach is a member of a class of methods
that model discriminant functions 6;(zx) for each class, and then classify x
to the class with the largest value for its diseriminant function. Methods

*Strictly speaking, a hyperplane passes through the origin, while an affine set need
not. We sometimes ignore the distinction and refer in general to hyperplanes.

This is page 79
Printer: Opaque this

80 4. Linear Methods for Classification

that model the posterior probabilities Pr(G = k|X = z) are also in this
class. Clearly, if either the dj(z) or Pr(G = k|X =) are linear in z, then
the decision boundaries will be linear.

Actually, all we require is that some monotone transfor

1CLUALL all requil Lila 1rle Ino Olle LIalls1001n

ation of dy
or Pr(G = k|X = z) be linear for the decision boundaries to be linear.
For example, if there are two classes, a popular model for the posterior

probabilities is

iy — oy exp(Bo + T x)
PG =X =a) = ;e s

1
PH(G = 20X =0) = [

Here the monotone transformation is the logit transformation: log[p/(1—p)],
and in fact we see that
Pr(G=1X =2x)

_ T
PrG=2X =g) 0Tl (42)

log

The decision boundary is the set of points for which the log-odds are zero,
and this is a hyperplane defined by {w|/80 + 8Tz = 0}. We discuss two very
popular but different methods that result in linear log-odds or logits: linear
discriminant analysis and linear logistic regression. Although they differ in
their derivation, the essential difference between them is in the way the
linear function is fit to the training data.

A more direct approach is to explicitly model the boundaries between
the classes as linear. For a two-class problem in a p-dimensional input
space, this amounts to modeling the decision boundary as a hyperplane—in
other words, a normal vector and a cut-point. We will look at two methods
that explicitly look for “separating hyperplanes.” The first is the well-
known perceptron model of Rosenblatt (1958), with an algorithm that finds
a separating hyperplane in the training data, if one exists. The second
method, due to Vapnik (1996), finds an optimally separating hyperplane if
one exists, else finds a hyperplane that minimizes some measure of overlap
in the training data. We treat the separable case here, and defer treatment
of the nonseparable case to Chapter 12.

While this entire chapter is devoted to linear decision boundaries, there is
considerable scope for generalization. For example, we can expand our vari-
ableset X1, ..., X, by including their squares and cross-products X%, X7, ...
X1Xo, ..., thereby adding p(p+ 1)/2 additional variables. Linear functions
in the augmented space map down to quadratic functions in the original
space —hence linear decision boundaries to quadratic decision boundaries.
Figure 4.1 illustrates the idea. The data are the same: the left plot uses
linear decision boundaries in the two-dimensional space shown, while the
right plot uses linear decision boundaries in the augmented five-dimensional
space described above. This approach can be used with any basis transfor-

4.2 Linear Regression of an Indicator Matrix 81

FIGURE 4.1. The left plot shows some dala from three classes, with linear
decision boundaries found by linear discriminani analysis. The right plol shows
quadratic decision boundaries. These were obtained by finding linear boundaries in
the five-dimensional space X\, Xa, X12, X2, X3. Linear in ities in this space
are quadratic inequalities in the original space.

mation h(X) where h : IR — IRT with ¢ > p, and will be explored in later
chapters.

4.2 Linear Regression of an Indicator Matrix

Here each of the response categories are coded via an indicator variable.
Thus if G has K classes, there will be K such indicators Y, k=1,... , K,
with Yy = 1 if & = k else 0. These are collected together in a vector
Y = (Y),....Yk), and the N training instances of these form an N x K
indicator response matriz Y. Y is a matrix of 0’s and 1’s, with each row
having a single 1. We fit a linear regression model to each of the columns
of Y simultaneously, and the fit is given by

Y =x(XTx) XTY. (4.3)

Chapter 3 has more details on linear regression. Note that we have a coeffi-
cient vector for each response column yy, and hence a (p+1) x K coefficient

matrix B = (X7X) 'X7Y. Here X is the model matrix with p+1 columns
corresponding to the p inputs, and a leading column of 1’s for the intercept.
A new observation with input is classified as follows:

o compute the fitted output f(z) = [(1,#)B]7, a K vector;

e identify the largest component and classify accordingly:

G(x) = argmax;, ¢ fu(2). (4.4)

82 4. Linear Methods for Classification

What is the rationale for this approach? One rather formal justification
is to view the regression as an estimate of conditional expectation. For the
random variable Y, E(Y;x|X = z) = Pr(G = k|X = z), so conditional
expectation of each of the Y}, seems a sensible goal. The real issue is: how
good an approximation to conditional expectation is the rather rigid linear
regression model? Alternatively, are the f (z) reasonable estimates of the
posterior probabilities Pr(G = k|X = z), and more importantly, does this
matter?

It is quite straightforward to verify that), ¢ fr (z) = 1 for any z, as
long as there is an intercept in the model (column of 1’s in X). However,
the f (z) can be negative or greater than 1, and typically some are. This
is a consequence of the rigid nature of linear regression, especially if we
make predictions outside the hull of the training data. These violations in
themselves do not guarantee that this approach will not work, and in fact
on many problems it gives similar results to more standard linear meth-
ods for classification. If we allow linear regression onto basis expausions
h(X) of the inputs, this approach can lead to consistent estimates of the
probabilities. As the size of the training set N grows bigger, we adaptively
include more basis elements so that linear regression onto these basis func-
tions approaches conditional expectation. We discuss such approaches in
Chapter 5.

A more simplistic viewpoint is to construct targets tj for each class,
where t; is the kth column of the K x K identity matrix. Our prediction
problem is to try and reproduce the appropriate target for an observation.
With the same coding as before, the response vector y; (ith row of Y) for
observation i has the value y; = 1, if g; = k. We might then fit the linear

model by least squares:

min Y lys — [(1,2:)BI"] (1.5)

The criterion is a sum-of-squared Euclidean distances of the fitted vectors
from thgir targets. A new observation is classified by computing its fitted
vector f(z) and classifying to the closest target:

G(z) = arg;ninn F(z) — te] % (4.6)

This is exactly the same as the previous approach:

e The sum-of-squared-norm criterion is exactly the criterion for multi-
ple response linear regression, just viewed slightly differently. Since
a squared norm is itself a sum of squares, the components decouple
and can be rearranged as a separate linear model for each element.
Note that this is only possible because there is nothing in the model
that binds the different responses together.

4.2 Linear Regression of an Indicator Matrix 83

Linear Regression Linear Discriminant Analysis

JYQ

FIGURE 4.2. The data come from three classes in IR? and are easily separated
by linear decision boundaries. The right plot shows the boundaries found by linear
discriminant analysis. The left plot shows the boundaries found by linear regres-
sion of the indicator response variables. The middle class is completely masked
(never dominates).

e 'I'he closest target classification rule (4.6) is easily seen to be exactly
the same as the maximum fitted component criterion (4.4), but does
require that the fitted values sum to 1.

There is a serious problem with the regression approach when the number
of classes K > 3, especially prevalent when K is large. Because of the rigid
nature of the regression model, classes can be masked by others. Figure 4.2
illustrates an extreme situation when K = 3. The three classes are perfectly
separated by linear decision boundaries, yet linear regression misses the
middle class completely.

In Figure 4.3 we have projected the data onto the line joining the three
centroids (there is no information in the orthogonal direction in this case),
and we have included and coded the three response variables Y7, Y5 and
Y3. The three regression lines (left panel) are included, and we see that
the line corresponding to the middle class is horizontal and its fitted values
are never dominant! Thus, observations from class 2 are classified either
as class 1 or class 3. The right panel uses quadratic regression rather than
linear regression. For this simple example a quadratic rather than linear
fit (for the middle class at least) would solve the problem. However, it
can be seen that if there were four rather than three classes lined up like
this, a quadratic would not come down fast enough, and a cubic would
be needed as well. A loose but general rule is that if K > 3 classes are
lined up, polynomial terms up to degree K — 1 might be needed to resolve
them. Note also that these are polynomials along the derived direction

84 4. Linear Methods for Classification

Degree = 1; Error = 0.25 Degree = 2; Error = 0.03

L e B 1

L i BT 0.5 -..__...._:.::..._.-_...._:‘_.5,
. €37 ’)]

P i M r’)(\
o.n—--".;,f- _______ .'-ﬂ_\.‘--__ 0.0 “’Tfi‘-‘-ﬁ‘ S b *“‘

"
? '-Illl —.-II i I.In —lin'nI AL - ll L :l'l![ll_.-u A llnl_n:ﬂ Siid L l.
00 02 04 06 D08 10 00 02 04 06 08 10

FIGURE 4.3. The effects of masking on linear regression in R for a three-class
problem. The rug plot at the base indicates the positions and class membership
of each observation. The three curves in each panel are the fitted regressions to
the three-class indicator variables; for ezample, for the red class, y,..q is 1 for the
ved observalions, and O for the green and Vue. The fils are bnear and quadralic
polynomials. Above each plot is the training errvor rate. The Bayes error rale is
0.025 for this problem, as is the LDA error rate.

passing through the centroids, which can have arbitrary orientation. So in
p-dimensional input space, one would need general polynomial terms and
cross-products of total degree K — 1, O(p 1) terms in all, to resolve such
worst-case scenarios.

The example is extreme, but for large K and small p such maskings
naturally occur. As a more realistic illustration, Figure 4.4 is a projection
of the training data for a vowel recognition problem onto an informative
two-dimensional subspace. There are K = 11 classes in p = 10 dimensions,
This is a difficult classification problem, and the best methods achieve
around 40% errors on the test data. The main point here is summarized in
Table 4.1; linear regression has an error rate of 67%, while a close relative,
linear discriminant analysis, has an error rate of 56%. It seems that masking
has hurt in this case. While all the other methods in this chapter are based
on linear functions of x as well, they use them in such a way that avoids
this masking problem.

4.3 Linear Discriminant Analysis

Decision theory for classification (Section 2.4) tells us that we need to know
the class posteriors Pr(G|X) for optimal classification. Suppose fi(z) is
the class-conditional density of X in class G = k, and let 73 be the prior
probability of class k, with Z;(:l mr = 1. A simple application of Bayes

4.3 Linear Discriminant Analysis 85

Linear Discriminant Analysis

- —
% 2]
]
6o N .o
] y D s o b
- %G%.g Cpte " o
o _db glo 5 2 -
o . RS, o0 Q o
a of s ¢ o0 e Yo, o@d €
0 a; ¥ &0 L} Il'J ¥ ¥ %o ‘}‘.QQ" R o
a o J o & o o
o] P o
o g o a8 == Op o oty oo
i By, oy & P o A
2 7 Ry s ° @g &K e o000 ©
= o o .80 00 o @
& o %9 OOQ)E %ﬂﬂ - % B o
[l o o n P © =
- o o g oowvw cpo o
= o0 ® & o ©
5 L. d’ o Q Oooﬁnoo §°
o o ° 2 o900 gn o a0
-% R % o o Ooﬂmo o
% Omo Og 3 o § [¢
o
Vg 8, ° o ® o o9 50 @
g ° o 0 ® e o
@ 5
+- %0 00 2o ¥
[}
o
o
o o0
o
(?...
o [+1
I 1 1 I |
-4 -2 0 2 4

Coordinate 1 for Training Data

FIGURE 4.4. A lwo-dimensional plot of the vowel training data. There are
eleven classes with X € IR'®, and this is the best view in terms of a LDA model
(Section 4.3.3). The heavy circles ave the projected mean vectors for each class.
The class overlap is considerable.

TABLE 4.1. Training and test error rales using a variely of linear techniques
on the vowel data. There are eleven classes in len dimensions, of which three
account for 90% of the variance (via a principal components analysis). We see
that linear rvegression is hurt by masking, increasing the test and training ervor

by over 10%.

Technique Error Rates
Training Test
Linear regression 0.48 0.67
Linear discriminant analysis 0.32 0.56
Quadratic discriminant analysis 0.01 0.53
Logistic regression (.22 (.51

86 4. Linear Methods for Classification

theorem gives us

Jr(@)m
Pr(G =k|X = =
(C=HX =2 = o

£=1 %\

(4.7)

We see that in terms of ability to classify, having the fi(z) is almost equiv-
alent to having the quantity Pr(G = k| X = z).
Many techniques are based on models for the class densities:

e linear and quadratic discriminant analysis use Gaussian densities;

e more flexible mixtures of Gaussians allow for nonlinear decision bound
aries (Section 6.8);

e general nonparametric density estimates for each class density allow
the most flexibility (Section 6.6.2);

e Naive Bayes models are a variant of the previous case, and assume
that each of the class densities are products of marginal densities;
that is, they assume that the inputs are conditionally independent in
each class (Section 6.6.3).

Suppose that we model each class density as multivariate Gaussian

1 1 Tsv—1
— = o spe) B (—pk) 4.8

)= e . .
fk() (27T)p/2|2k|1/2 ()

Linear discriminant analysis (LDA) arises in the special case when we
assume that the classes have a common covariance matrix X = X Vk. In
comparing two classes k and ¢, it is sufficient to look at the log-ratio, and
we see that

Pr(G = k|X = z)
Pr(G = {|X = z)

Tr(@) + logﬂ

fe(x) Ly
Tk 1 _

=log — — =(ux + pe) TS (ux — pie)
Ty 2

log = log

(4.9)

+ xTzil(:u’k - ,UJE),

an equation linear in z. The equal covariance matrices cause the normal-
ization factors to cancel, as well as the quadratic part in the exponents.
This linear log-odds function implies that the decision boundary between
classes k and f—the set where Pr(G = k|X = z) = Pr(G = {|X = z)—is
linear in z; in p dimensions a hyperplane. This is of course true for any pair
of classes, so all the decision boundaries are linear. If we divide IR? into
regions that are classified as class 1, class 2, etc., these regions will be sep-
arated by hyperplanes. Figure 4.5 (left panel) shows an idealized example
with three classes and p = 2. Here the data do arise from three Gaussian
distributions with a common covariance matrix. We have included in the

4.3 Linear Discriminant Analysis 87

FIGURE 4.5. The left panel shows three Gaussian distributions, with the same
covariance and different means. Included are the contours of constani densily
enclosing 95% of the probability in each case. The Bayes decision boundaries
between each pair of classes are shouwn (broken siraight lines), and the Bayes
decision boundaries separating all three classes are the thicker solid lines (o subset
of the former). On the right we see a sample of 30 drawn from each Gaussian
disiribution, and the fitted LDA decision boundaries.

figure the contours corresponding to 95% highest probability density, as
well as the class centroids. Notice that the the decision boundaries are not
the perpendicular bisectors of the line segments joining the centroids. This
would be the case if the covariance X were spherical oI, and the class
priors were equal.

From (4.9) we see that the linear diseriminant functions

= 1 =
() =S Ty — 5;;.{2 Lk + log (4.10)

are an equivalent description of the decision rule, with G(z) = argmax,.0x (2:).
In practice we do not know the parameters of the Gaussian distributions,
and will need to estimate them using our training data:

e 7, = N /N, where Ny is the number of class-k observations;
. A&f\u = 29‘:& $§/Nk;

o B=Y0 ¥ i@ —) (@i —) /(N - K).

Figure 4.5(right panel) shows the estimated decision boundaries based on
a sample of size 30 each from three Gaussian distributions. Figure 4.1 on
page 81 is another example, but here the classes are not Gaussian.

With two classes there is a simple correspondence between linear dis-
criminant analysis and classification by linear least squares, as in (4.5).

88 4. Linear Methods for Classification

The LDA rule classifies to class 2 if

A7 E 1 +log(N1/N) —log(Nz/N),
(4.11)

N | =

. . 1l ras
(fiz — fir) > 5#52112 -

and class 1 otherwise. Suppose we code the targets in the two classes as +1
and —1, respectively. It is easy to show that the coefficient vector from least
squares is proportional to the LDA direction given in (4.11) (Exercise 4.2).
[In fact, this correspondence occurs for any (distinct) coding of the targets;
see Exercise 4.2]. However unless N1 = Nj the intercepts are different and
hence the resulting decision rules are different.

Since this derivation of the LDA direction via least squares does not use a
Gaussian assumption for the features, the applicability the LDA direction
extends beyond the realm of Gaussian data. However the derivation of
the particular intercept or cut-point given in (4.11) does require Gaussian
data. Thus it makes sense to instead choose the cut-point that empirically
minimizes training error for a given dataset. This is something we have
found to work well in practice, but have not seen it mentioned in the
literature.

With more than two classes, LDA is not the same as linear regression of
the class indicator matrix, and it avoids the masking problems associated
with that approach (Hastie et al., 1994). A correspondence between regres-
sion and LDA can be established through the notion of optimal scoring,
discussed in Section 12.5.

Getting back to the general discriminant problem (4.8), if the X are
not assumed to be equal, then the convenient cancellations in (4.9) do not
occur; in particular the pieces quadratic in 2 remain. We then get guadratic

s I i = - e~

discriminant functions (QDA),

1 1 _
Ok(z) = —3 log |Xx| — E(x —)T (& — pw) + log . (4.12)

The decision boundary between each pair of classes k and £ is described by
a quadratic equation {z : 8;(z) = d¢(z)}.

Figure 4.6 shows an example (from Figure 4.1 on page 81) where the three
classes are Gaussian mixtures (Section 6.8) and the decision boundaries are
approximated by quadratic equations in z. Here we illustrate two popular
ways of fitting these quadratic boundaries. The right plot uses QDA as
described here, while the left plot uses LDA in the enlarged five-dimensional
quadratic polynomial space. The differences are generally small; QDA is the
preferred approach, with the LDA method a convenient substitute.

T For this figure and many similar figures in the book we compute the decision bound-
aries by an exhaustive contouring method. We compute the decision rule on a fine lattice
of points, and then use contouring algorithms to compute the boundaries.

4.3 Linear Discriminant Analysis 89

FIGURE 4.6. Two methods for fitting quadratic boundaries. The left plot shows
the quadralic decision boundaries for the dale in Figure 4.1 (oblained using
LDA in the five-dimensional space T1,2,T12,77,23). The right plot shows the
quadratic decision boundaries found by QDA. The differences are small, as is
usually the case.

The estimates for QDA are similar to those for LDA, except that separate
covariance matrices must be estimated for each class. When p is large this
can mean a dramalic increase in parameters. Since the decision boundaries
are [unclions of Lhe paramelers of Lhe densilies, counling the number of
parameters must be done with care. For LDA, it seems that there (K —1) x
(p+1) parameters, since we only need the differences 6;(z)— g (x) between
the discriminant functions where K is some pre-chosen class (here we have
chosen the last), and each difference requires p + 1 parameters.” Likewise
for QDA there will be (K — 1) x p(p + 2)/2 parameters. Both LDA and
QDA perform well on an amazingly large and diverse set of classification
tasks. For example, in the STATLOG project (Michie et al., 1994) LDA
was among the top 3 classifiers for 7 of the 22 datasets, QDA among the
top 3 for 4 datasets, and one of the pair were in the top 3 for 10 datasets.
Both techniques are widely used, and entire books are devoted to LDA. It
seems that whatever exotic tools are the rage of the day, we should always
have available these two simple tools. 'I'he question arises why LDA and
QDA have such a good track record. The reason is not likely to be that
the data are approximately Gaussian, and in addition for LDA that the
covariances are approximately equal. More likely a reason is that the data
can only support simple decision boundaries such as linear or quadratic, and
the estimates provided via the Gaussian models are stable. This is a bias

P Althemgh we it the covariance matrix 33 to compute the TIDA discriminant. fimetions,
a much rednced function of it is all that is required to estimate the O(p) parameters
needed to compute the decision boundaries.

90 4. Linear Methods for Classification

Regularized Discriminant Analysis on the Vowel Data

“ ..-.......,,"". . 'I
o B LT L T TSR TP
E
-
- ©
2
]
é e —— TesiData
ﬁ o) ~——— Train Data
g ° g
2 -
=
o |l T e
b= : : : : :
0.0 02 0.4 0.6 0.8 1.0

FIGURE 4.7, Test and training errors for the vowel data, using regularized
discriminant analysis with a series of values of o € [0,1]. The optimum for the
test data occurs around a = 0.9, close to quadratic discriminant analysis.

variance tradeofl—we can put up with the bias of a linear decision boundary
because it can be estimated with much lower variance than more exotic
alternatives. 'I'his argument is less believable for (DA, since it can have
many parameters itsell, although perhaps fewer than the non-parametric
alternatives.

4.8.1 Regularized Discriminant Analysis

Friedman (1989) proposed a compromise between LDA and QDA, which
allows one to shrink the separate covariances of QDA toward a common
covariance as in LDA. These methods are very similar in flavor to ridge
regression. The regularized covariance matrices have the form

Bi(w) = ok + (1 — 0)%, (4.13)

where 3 is the pooled covariance matrix as used in LDA. Here a € [0, 1]
allows a continuum of models between LDA and QDA, and needs to be
specified. In practice a can be chosen based on the performance of the
model on validation data, or by cross-validation.

Figure 4.7 shows the results of RDA applied to the vowel data. Both
the training and test error improve with increasing o, although the test
error increases sharply alter o = 0.9. The large discrepancy between the
training and test error is partly due to the fact that there are many repeat
measurements on a small number of individuals, different in the training
and test set.

4.3 Linear Discriminant Analysis 91

Similar modifications allow 3 itself to be shrunk toward the scalar co-
variance,

3(y) =92+ (1 —)61 (4.14)

for v € [0,1]. Replacing 3 in (4.13) by 3(v) leads to a a more general
family of covariances ﬁ](a, ~) indexed by a pair of parameters.

In Chapter 12, we discuss other regularized versions of LDA, which are
more suitable when the data arise from digitized analog signals and images.
In these situations the features are high-dimensional and correlated, and the
LDA coefficients can be regularized to be smooth or sparse in the original
domain of the signal. This leads to better generalization and allows for
easier interpretation of the coefficients.

4.3.2 Computations for LDA

As a lead-in to the next topic, we briefly digress on the computations
required for LDA and especially QDA. Their computations are simplified
by diagonalizing 3 or 3. For the latter, suppose we compute the eigen-
decomposition for each 3, = U,D, U7, where Uy, is p x p orthonormal,
and Dy, a diagonal matrix of positive eigenvalues dyy. Then the ingredients
for §x(x) (4.12) are

A1

o (x—)Ty (z—) = [UF (x —)] "D} [UF (& — f));
o log|Zi| =3, log die.

In light of the computational steps outlined above, the LDA classifier
can be implemented by the following pair of steps:

e Sphere the data with respect to the common covariance estimate 3

1 i . .

X* «— D 3UTX, where ¥ = UDU”. The common covariance esti-
mate of X* will now be the identity.

e (lassify to the closest class centroid in the transformed space, modulo
the effect of the class prior probabilities 7.

4.3.3 Reduced-Rank Linear Discriminant Analysis

So far we have discussed LDA as a restricted Gaussian classifier. Part of
its popularity is due to an additional restriction that allows us to view
informative low-dimensional projections of the data.

The K centroids in p-dimensional input space lie in an affine subspace
of dimension < K — 1, and if p is much larger than K, this will be a con-
siderable drop in dimension. Moreover, in locating the closest centroid, we
can ignore distances orthogonal to this subspace, since they will contribute

92 4. Linear Methods for Classification

equally to each class. Thus we might just as well project the X* onto this
centroid-spanning subspace Hg 1, and make distance comparisons there.
Thus there is a fundamental dimension reduction in LDA, namely that we
need only consider the data in a subspace of dimension at most K — 1.

If K = 3, for instance, this could allow us to view the data in a two-
dimensional plot, color-coding the classes. In doing so we would not have
relinquished any of the information needed for LDA classification.

What if K > 37 We might then ask for a I < K —1 dimensional subspace
H; C Hi_ 1 optimal for LDA in some sense. Fisher defined optimal to
mean that the projected centroids were spread out as much as possible in
terms of variance. This amounts to finding principal component subspaces
of the centroids themselves (principal components are described briefly in
Section 3.4.4, and in more detail in Section 14.5.1). Figure 4.4 shows such an

antimal troa_dimenaional giihanaera for tha vawel date Hara thara ara alavan
Optimas tWO-Giiniensioas suospace 1I0r tiie VOWEL Gata. r1ere tinere are cieven

classes, each a different vowel sound, in a ten-dimensional input space. The
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA I’g 1 Tiiid v Lo
LCLL[JIULL[D IUHHLLU l:llt? iU DPO:LC 111 blllb L/d:bt?’ DLILLU Iy — 1 — P, UL wo 11avo
shown an optimal two-dimensional subspace. The dimensions are ordered,
so we can compute additional dimensions in sequence. I'igure 4.8 shows four
additional pairs of coordinates, also known as canonical or discriminant
variables.

In summary then, finding the sequences of optimal subspaces for LDA

involves the following steps:

e compute the K X p matrix of class centroids M and the common
covariance matrix W (for within-class covariance);

e compute M* = MWz using the eigen-decomposition of W

e compute B*, the covariance matrix of M* (B for between-class covari-
ance), and its eigen-decomposition B* = V*DpV*T. The columns
v; of V* in sequence from first to last define the coordinates of the
optimal subspaces.

Combining all these operations the £th discriminant variable is given by
Zy =y T X with vy = W*%v;.

Fisher arrived at this decomposition via a different route, without refer-
ring to Gaussian distributions at all. He posed the problem:

Find the linear combination Z = oT X such that the between-
class variance is maximized relative to the within-class variance.

Again, the between class variance is the variance of the class means of
Z, and the within class variance is the pooled variance about the means.
Figure 4.9 shows why this criterion makes sense. Although the direction
joining the centroids separates the means as much as possible (i.e., max-
imizes the between-class variance), there is considerable overlap between
the projected classes due to the nature of the covariances. By taking the

4.3 Linear Discriminant Analysis 93

Linear Discriminant Analysis

L B o~
L ©
2 2
2 o g o
o 4 N
-4 -2 0 2 4
Coordinate 1
™ -
PO
N B
o ~ s
1) o
2 o - ®
= £ o1
8 = - 8
(}l .
. H o
-4 -2 0 2 4 -2 -1 0 1 2 3
Coordinate 1 Coordinate 9

FIGURE 4.8. Four projections onlo pairs of canonical variates. Nolice thal as
the rank of the canonical variales increases, the centroids become less spread oul.
In the lower right panel they appear to be superimposed, and the classes most
confused.

94 4. Linear Methods for Classification

FIGURE 4.9. Although the line joining the centroids defines the direction of
grealest centroid spread, the projected data overlap because of the covariance
(left panel). The discriminant direction minimizes this overlap for Gaussian data
(right panel).

covariance into account as well, a direction with minimum overlap can be
found.

The between-class variance of Z is a”Ba and the within-class variance
aTWa, where W is defined earlier, and B is the covariance matrix of the
class centroid matrix M. Note that B + W = T, where T is the total
covariance wabrix of X, ignoring class informalion.

Fisher’s problem therefore amounts to maximizing the Rayleigh quotient,

T
a’ Ba
L (%:15)
or equivalently
maxa’Ba subject to " Wa = 1. (4.16)
O

This is a generalized cigenvalue problem, with a given by the largest
eigenvalue of W 'B. It is not hard to show (Exercise 4.1) that the optimal
a; is identical to v; defined above. Similarly one can find the next direction
ay, orthogonal in W to a;, such that a;Baz / a;Wag is maximized; the
solution is ay; = wvg, and so on. The a; are referred to as discriminant
coordinates, not to be confused with discriminant functions. They are also
referred to as canonical variates, since an alternative derivation of these
results is through a canonical correlation analysis of the indicator response
matrix Y on the predictor matrix X, This line is pursued in Section 12.5.

‘To summarize the developments so far:

e Gaussian classification with common covariances leads to linear deci-
sion boundaries. Classification can be achieved by sphering the data
with respect to W, and classifying to the closest centroid (modulo
log 7)) in the sphered space.

=

4.4 Logistic Regression 95

e Since only the relative distances to the centroids count, one can con-
fine the data to the subspace spanned by the centreids in the sphered
space.

e ''his subspace can be further decomposed into successively optimal
subspaces in term of centroid separation. I'his decomposition is iden-
tical to the decomposition due to Fisher.

The reduced subspaces have been motivated as a data reduction (for
viewing) tool. Can they also be used for classification, and what is the
rationale? Clearly they can, as in our ariginal derivation; we simply limit
the distance-to-centroid calculations to the chosen subspace. One can show
that this is a Gaussian classification rule with the additional restriction
that the centroids of the Gaussians lie in a L-dimensional subspace of IR”.
Fitting such a model by maximum likelihood, and then constructing the
posterior probabilities using Bayes’ theorem amounts to the classification
rule described above (Exercise 4.8).

Gaussian classification dictates the logm correction factor in the dis-
tance calculation. The reason for this correction can be seen in Figure 1.9.
The misclassification rate is based on the arca of overlap between the two
densities. If the 7. are equal (implicit in that figure), then the optimal
cut-point is midway between the projected means. If the m; are not equal,
moving the cut-point toward the smaller class will improve the crror rate.
As mentioned earlier for two classes, one can derive the linear rule using
LDA (or any other method), and then choose the cut-point to minimize
misclassification error over the training data.

As an example of the benefit of the reduced-rank restriction, we return
to the vowel data. There are 11 classes and 10 variables, and hence 10
possible dimensions for the classifier. We can compute the training and
test error in each of these hierarchical subspaces; Figure 4.10 shows the
resulls. Figure 4.11 shows Lhe decision boundaries for the classifier hased
on the two-dimensional LDA solution.

There is a close connection between Fisher’s reduced rank discriminant
analysis and regression of an indicator response matrix. It turns out that
LDA amounts to the regression followed by an eigen-decomposition of
Y?Y. In the case of two classes, there is a single discriminant variable
that is identical up to a scalar multiplication to either of the columns of X
These connections are developed in Chapter 12. A related fact is that if one
transforms the original predictors X to Y, then LDA using Y is identical
to LDA in the original space (Exercise 4.3).

4.4 Logistic Regression

The logistic regression model arises from the desire to model the posterior
probabilities of the K classes via linear functions in z, while at the same

96 4. Linear Methods for Classification

LDA and Dimension Reduction on the Vowel Data

~]
o
© |
o
2 [—
<
24 /
52 e
T
2
% —— Test Data
8 o .
3 oS Train Data
=
@
°© T T T T T
2 4 6 8 10
Dimension

FIGURE 4.10. Training and test error rates for the vowel data, as a function
of the dimension of the discriminant subspace. In this case the best error rate is
for dimension 2. Figure 4.11 shows the decision boundaries in this space.

time ensuring that they sum to one and remain in [0, 1]. The model has
the form

Pr(G=1X =x)

_ T
logPr(G:K|X:$) _510—’_/81‘%.
Pr(G = 2|X = 2) .
1 =
PG KX =a) 0t (4.17)

Pr(G=K—-1|X =x)

o8 PG = KX =)

= Bx-1)0 *+ Bk .

The model is specified in terms of K — 1 log-odds or logit transformations
(reflecting the constraint that the probabilities sum to one). Although the
model uses the last class as the denominator in the odds-ratios, the choice
of denominator is arbitrary in that the estimates are equivariant under this
choice. A simple calculation shows that

T
Pr(G =KX =2) = xp(Bro + B 7) k=1,....K 1,

1+ 3K exp(Buo + BT)

1
Pr(G = K|X =2) — : 4.18
r(| {E) 14 Zéi;l exp(ﬂgo T ﬁ{x) ()

and they clearly sum to one. To emphasize the dependence on the entire pa-
rameter set 0 = {310, 07,... ,B(K_l)o,ﬂ};_l}, we denote the probabilities
Pr(G = k|X = z) = pp(x;0).

4.4 Logistic Regression 97

Classification in Reduced Subspace

Canonical Coordinatz 2

Canonical Coordinate 1

FIGURE 4.11. Decision boundaries for the vowel training data, in the
two-dimensional subspace spanned by the first two canonical variates. Note thal in
any higher-dimensional subspace, the decision boundaries are higher-dimensional
affine planes, and could nol be represenied as lines.

08 4. Linear Methods for Classification

When K = 2, this model is especially simple, since there is only a single
linear function. It is widely used in biostatistical applications where binary
responses (two classes) occur quite frequently. For example, patients survive
or die, have heart disease or not, or a condition is present or ahsent.

4.4.1 Fitting Logistic Regression Models

Logistic regression models are usually fit by maximum likelihood, using the
conditional likelihood of G given X . Since Pr(G|X) completely specifies the
conditional distribution, the multinomial distribution is appropriate. The
log-likelihood for N observations is

£(0) =Y logp,, (2:;0), (4.19)

i=1

where py(z;;0) = Pr(G = k| X = 2;;0).

We discuss in detail the two-class case, since the algorithms simplify
considerably. It is convenient to code the two-class g; via a 0/1 response y;,
where y; = 1 when g; = 1, and y; = 0 when ¢; = 2. Let p1(z; 0) = p(z:0),
and pa(z;0) = 1 — p(z;). 'Lhe log-likelihood can be written

N
48 = Y {mlogn(iB)+ (1 — i) og(1 — p(a:i) |
i—1
N .
= 3 i i+ og(1 + €5)} (1.20)

Here 8 = {B0, 61}, and we assume thal the vector of inputs @; includes
the constant term 1 to accommodate the intercept.

To maximize the log-likelihood, we set its derivatives to zero. These score
equations are

N

ﬂg%ﬁl =fz;we‘(yi —plzi;8)) =0, (4.21)
which are p + 1 equations nonlinear in 3. Notice that since the [irst compo-
nent of z; is 1, the first score equation specifies that "0 3 = S0 | plas; 8);
the ezpected number of class ones matches the observed number (and hence
also class twos.)

To solve the score equations (4.21), we use the Newton-Raphson algo-
rithm, which requires the second-derivative or Hessian matrix

a*(B)
apoasT

.
=3 2" plas B) A - plai: B))- (4.22)
i=1

4.4 Logistic Regression 99

Starting with 5°4, a single Newton-Raphson update is

new __ old 82Z(ﬁ) - 8£(/6)
B = p _(3ﬁ3ﬁT> 96 (4.23)

where the derivatives are evaluated at 3°19.

It is convenient to write the score and Hessian in matrix notation. Let
y denote the vector of y; values, X the N x (p + 1) matrix of z; values,
p the vector of fitted probabilities with ith element p(z;; 5°'9) and W a
N x N diagonal matrix of weights with ith diagonal element p(z;; 8°'9)(1 —

p(a; 6°9)). Then &) = XT(y — p) and 7Up) _ _XTWX.

8B08T
The Newton—Raphson step is thus
ﬁnew — ﬁ01d (XTWX) — le (y p)
= (XTWX) "W (Xp° + Wy — p))
= (XTWX) 'XTWa. (4.29)

In the second and third line we have re-expressed the Newton-Raphson
step as a weighted least squares step, with the response

=XpM+W (y —p), (4.25)

sometimes known as the adjusted response. These equations get solved re-
peatedly, since at each iteration p changes, and hence so does W and z.
This algorithm is referred to as iteratively reweighted least squares or IRLS,
since each iteration solves the weighted least squares problem:

oY «— arg mﬁin(z - XB8)TW(z - Xg). (4.26)

It seems that 8 = 0 is a good starting value for the iterative procedure,
although convergence is never guaranteed. Typically the algorithm does
converge, since the log-likelihood is concave, but overshooting can occur.
In the rare cases that the log-likelihood decreases, step size halving will
guarantee convergence.

For the multiclass case (K > 3) the Newton algorithm can also be ex-
pressed as an iteratively reweighted least squares algorithm, but with a
vector of K — 1 responses and a nondiagonal weight matrix per observa-
tion. The latter precludes any simplified algorithms, and in this case it is
numerically more convenient to work with the expanded vector directly
(Exercise 4.4).

Logistic regression models are used mostly as a data analysis and infer-
ence tool, where the goal is to understand the role of the input variables
in explaining the outcome. Typically many models are fit in a search for a
parsimonious model involving a subset of the variables, possibly with some
interactions terms. The following example illustrates some of the issues
involved.

100 4. Linear Methods for Classification

TABLE 4.2. Results from a logistic regression fit to the South African heart
disease dala.

Coefficient Std. Error Z Score

(Intercept) —4.130 0.964 —41.285
abp 0.006 0.006 1.023

tobacco 0.080 0.026 3.034

1d1 0.185 0.057 3.219

famhist 0.939 0.225 4,178
obesity -0.035 0.029 —1.187
alcohol 0.001 0.004 0.136

age 0.043 0.010 4.184

4.4.2 Example: South African Heart Disease

Here we present an analysis of binary data to illustrate the traditional
statistical use of the logistic regression model. The data in Figure 4.12 are a
subset of the Coronary Risk-Factor Study (CORIS) baseline survey, carried
out in three rural areas of the Western Cape, South Africa (Rousscauw
et al., 1983). The aim of the study was to establish the intensity of ischemic
heart disease risk factors in that high-incidence region. The data represent
white males between 15 and 64, and the response variable is the presence or
absence of myocardial infarction (MI) al the Lime of the survey (the overall
prevalence of MI was 5.1% in this region). There are 160 cases in our data
set, and a sample of 302 controls. These data are described in more detail
in Hastie and Tibshirani (1987).

We fit. this model by maximum likelihood, giving the results shown in
Table 4.2.

This summary includes Z scores for each of the coefficients in the model
(coeflicients divided by their standard errors); a nonsignificant Z score sug-
gests a coefficient can be dropped from the model. Each of these correspond
formally to a test of the null hypothesis that the coefficient in question is
zero, while all the others are not (also known as the Wald test). A Z score
greater than approximately 2 in absolute value is significant at the 5% level.

‘I'here are some surprises in this table of coefficients, which must be in-
terpreted with caution. Systolic blood pressure (sbp) is not significant! Nor
is obesity, and its sign is negative. This confusion is a result of the corre-
lation between the set of predictors. On their own, both sbp and cbesity
are significant, and with positive sign. However, in the presence of many
other correlated variables, they are no longer needed (and can even get a
negalive sign).

At this stage the analyst might do some model selection; find a subset
of the variables that are sufficient for explaining their joint effect on the
prevalence of chd. One way to proceed by is to drop the least significant co-

4.4 Logistic Regression 101

0 10 20 30 00 04 08

=

9 of

= E
o E

o

0 10 20 30

™

famhist

5o 04 0B

15 25 35 45

100

0 50

FIGURE 4.12. A scatterplot matriz of the South African heart disease data.
Each plot shows a pawr of risk factors, and the cases and controls are color coded
(red is a case). The variable family history of heart disease (famhist) is binary
(ves or no).

102 4. Linear Methods for Classification

TABLE 4.3, Results from stepwise logistic regression fit to South African Heart
Disease data

Coefficient Std. Error Z score

(Intercept) —4.201 0.498 —8.45
tobacco 0.081 0.026 3.16

1dl 0.168 0.054 3.09

famhist 0.924 0.223 4.14
age 0.044 0.010 4.52

efficient, and refit the model. This is done repeatedly until no further terms
can be dropped from the model. This gave the model shown in Table 4.3.

A better but more time-consuming strategy is to refit each of the models
with ene variable removed, and then perform an analysis of deviance to
decide which variable to exclude. The residual deviance of a fitted model
is minus Lwice ils log-likelihood, and the deviance belween two models is
the difference of their individual residual deviances (in analogy to sums-of-
squares). This slralegy gave Lhe same [inal model as above.

How does one interpret a coefficient of 0.081 (Std. Error = 0.026) for
tobacco, for example? Tobacco is measured in total lifetime usage in kilo-
grams, with a median of 1.0kg for the controls and 4.1kg for the cases.
Thus an increase of 1kg in lifetime tobacco usage accounts for an increase
in the odds of coronary heart discase of cxp(0.0SI) = 1.084 or 8.4%. Incor-
porating the standard error we get an approximate 95% confidence interval
of exp(0.081 + 2 x 0.026) = (1.03, 1.14).

We return to these data in Chapter 5, where we see that some of the
variables have nonlinear effects, and when modeled appropriately, are not
excluded from the model.

4.4.9 Quadratic Approxvimations and Inference

The maximum-likelihood parameter estimates 3 satisfy a self-consistency
relationship: they are the coefficients of a weighted least squares fit, where
the responses are

(v — pi)

= ?""
A=

(4.27)

and the weights are w; = p;(1— p;), both depending on 3 itself. Apart from
providing a convenient algorithm, this connection with least squares has
more to offer:

4.4 Logistic Regression 103

e The weighted residual sum-of-squares is the familiar Pearson chi-
square statistic

L
¥, v —ps) (4.28)
pi(1—p:)
a quadratic approximation to the deviance.

* Asymptotic likelihood theory says that if the model is correct, then
(3 is consistent (i.e., converges to the true j3).

e A central limit theorem then shows that the distribution of {:! con-
verges to N(G, (XTWX)). This and other asymptotics can be de-
rived directly from the weighted least squares fit by mimicking normal
theory inference.

e Model building can be costly for logistic regression models, because
each model fitted requires iteration. Popular shortcuts are the Rao
score test which tests for inclusion of a term, and the Wald test which
can be used to test for exclusion of a term. Neither of these require
iterative fitting, and are based on the maximum-likelihood fit of the
current model, It turns out that both of these amount to adding
or dropping a term from the weighted least squares fit, using the
same weights. Such computations can be done efficiently, without
recomputing the entire weighted least squares fit.

Software implementations can take advantage of these connections. For
example, the generalized linear modeling software in S-PLUS (which in-
cludes logistic regression as part of the binomial family of models) exploits
them fully. GLM (generalized linear model) objects can be treated as linear
model objects, and all the tools available for linear models can be applied
automatically.

4.4.4 Logistic Regression or LDAY

In Scction 4.3 we find that the log-posterior odds between class k and K
are linear functions of x (4.9):

Pr(G =k|X = 2)
Og
Pr(C = K|X =2)

e 1 -
log — — = (ux + pr)" S (x — pc)
TE 2

+2"S 7 (s, — pk)
= Qo+ a{m. (4.29)

This linearity is a consequence of the Gaussian assumption for the class
densities, as well as the assumption of a common covariance matrix. The

104 4. Linear Methods for Classification

linear logistic model (4.17) by construction has linear logits:

log PTG = kX =)

_ T
B G =KX =) Pkt (4.30)

It seems that the models are the same. Although they have exactly the same
form, the difference lies in the way the linear coefficients are estimated. The
logistic regression model is more general, in that it makes less assumptions.
We can write the joint density of X and G as

Pr(X,G = k) = Pr(X)Pr(G = k| X), (4.31)

where Pr(X) denotes the marginal density of the inputs X. For both LDA
and logistic regression, the second term on the right has the logit-linear
form

_Brot+8lx
et B

1+ Ef{:? eBeotBi e’

Pr(G = k|X = 2) = (4.32)

where we have again arbitrarily chosen the last class as the reference.

The logistic regression model leaves the marginal density of X as an arbi-
trary density function Pr(X), and fits the parameters of Pr(G|X) by max-
imizing the conditional likelihood—the multinomial likelihood with proba-
bilities the Pr(G = k| X). Although Pr(X) is totally ignored, we can think
of this marginal density as being estimated in a fully nonparametric and
unrestricted fashion, using the empirical distribution function which places
mass 1/N at each observation.

With LDA we fit the parameters by maximizing the full log-likelihood,
based on the joint density

Pr(X, G = k) = ¢(X; poge, X) 7, (4.33)

where ¢ is the Gaussian density function. Standard normal theory leads
easily to the estimates ﬂk,ﬁ], and 7, given in Section 4.3. Since the linear
parameters of the logistic form (4.29) are functions of the Gaussian param-
eters, we get their maximum-likelihood estimates by plugging in the corre-
sponding estimates. However, unlike in the conditional case, the marginal
density Pr(X) does play a role here. It is a mixture density

—~
=~
3%
=

N’

which also involves the parameters.

What role can this additional component/restriction play? By relying
on the additional model assumptions, we have more information about the
parameters, and hence can estimate them more efficiently (lower variance).

4.5 Separating Hyperplanes 105

If in fact the true fi(x) are Gaussian, then in the worst case ignoring this
marginal part of the likelihood constitutes a loss of efficiency of about 30%
asymptotically in the error rate (Efron, 1975). Paraphrasing: with 30%
more data, the conditional likelihood will do as well.

For example, observations far from the decision boundary (which are
down-weighted by logistic regression) play a role in estimating the common
covariance matrix. This is not all good news, because it also means that
LDA is not robust to gross outliers.

From the mixture formulation, it is clear that even observations without
class labels have information about the parameters. Often it is expensive
to generate class labels, but unclassified observations come cheaply. By
relying on strong model assumptions, such as here, we can use both types
of information.

The marginal likelihood can be thought of as a regularizer, requiring
in some sense that class densities be wvisible from this marginal view. For
example, if the data in a two-class logistic regression model can be per-
fectly separated by a hyperplane, the maximum likelihood estimates of the
parameters are undefined (i.e., infinite; see Exercise 4.5). The LDA coeffi-
cients for the same data will be well defined, since the marginal likelihood
will not permit these degeneracies.

In practice these assumptions are never correct, and often some of the
components of X are qualitative variables. It is generally felt that logistic
regression is a safer, more robust bet than the LDA model, relying on fewer
assumptions. It is our experience that the models give very similar results,
even when LDA is used inappropriately, such as with qualitative predictors.

4.5 Separating Hyperplanes

We have seen that linear discriminant analysis and logistic regression both
estimate linear decision boundaries in similar but slightly different ways.
For the rest of this chapter we describe separating hyperplane classifiers.
These procedures construct linear decision boundaries that explicitly try
to separate the data into different classes as well as possible. They provide
the basis for support vector classifiers, discussed in Chapter 12. The math-
ematical level of this section is somewhat higher than that of the previous
sections.

Figure 4.13 shows 20 data points in two classes in IR?. These data can be
separated by a linear boundary. Included in the figure (blue lines) are two
of the infinitely many possible separating hyperplanes. The orange line is
the least squares solution to the problem, obtained by regressing the —1/1
response Y on X (with intercept); the line is given by

{z: Bo + P11 + Pz = 0} (4.35)

106 4, Linear Methods for Classification

FIGURE 4.13. A toy example with two classes separable by a hyperplane. The
orange line is the least squares solution, which misclassifies one of the training
points. Also shown are lwo blue separating hyperplanes found by the pereeptron
learning algorithm with different random starts.

This least squares solution does not do a perfect job in separating the
points, and makes one error. This is the same boundary found by LDA,
in light of its equivalence with linear regression in the two-class case (Sec-
tion 4.3 and Exercise 4.2).

Classifiers such as (4.35), that compute a linear combination of the input
features and return the sign, were called perceptronsin the engineering liter-
ature in the late 1950s (Rosenblatt, 1958). Perceptrons set the foundations
for the neural network models of the 1980s and 1990s.

Before we continue, let us digress slightly and review some vector algebra.
Figure 4.14 depicts a hyperplane or affine set L defined by the equation
f(x) = fo + ATz = 0; since we are in IR? this is a line.

Here we list some properties:

1. For any two points =1 and = lying in L, 87 (z; — x2) = 0, and hence
3* = 3/||8|| is the vector normal to the surface of L.

2. For any point zg in L, 87z = —fo.

3. The signed distance of any point « to L is given by

oT R .
B (e—2y) = l]ﬁl[(ﬁ 2+ o)

l; =
@ @ (4.36)

Hence f(x) is proportional to the signed distance from « to the hyperplane
defined by f(x) = 0.

4.5 Separating Hyperplanes 107

ﬂ*

FIGURE 4.14. The linear algebra of a hyperplane (affine set).

4.5.1 Rosenblatt’s Perceptron Learning Algorithm

The perceptron learning algorithm tries to find a separating hyperplane by
minimizing the distance of misclassified points to the decision boundary. If
a response y; = 1 is misclassified, then 2 3 + 3y < 0, and the opposite for

a misclassified response with y; = —1. The goal is to minimize
D(B,B0) == > vi(z{ B+ Po), (4.37)
ieEM

where M indexes the set of misclassified points. The quantity is non-
negative and proportional to the distance of the misclassified points to
the decision boundary defined by 7z + 3y = 0. The gradient (assuming
M is fixed) is given by

D(ﬂa /80) _ o

aT - = lgM YiZi, (438)
D(ﬂa ﬂO) _ .

0= = EM: . (4.39)

The algorithm in fact uses stochastic gradient descent to minimize this
piecewise linear criterion. This means that rather than computing the sum
of the gradient contributions of each observation followed by a step in the
negative gradient direction, a step is taken after each observation is visited.
Hence the misclassified observations are visited in some sequence, and the

108 4. Linear Methods for Classification

parameters 3 are updated via

<5ﬂo> - (go) Tp (y;fl) : (4.40)

Here p is the learning rate, which in this case can be taken to be 1 without
loss in generality. If the classes are linearly separable, it can be shown that
the algorithm converges to a separating hyperplane in a finite number of
steps (Exercise 4.6). Figure 4.13 shows two solutions to a toy problem, each
started at a different random guess.

There are a number of problems with this algorithm, summarized in
Ripley (1996):

e When the data are separable, there are many solutions, and which
one is found depends on the starting values.

e The “finite” number of steps can be very large. The smaller the gap,
the longer the time to find it.

e When the data are not separable, the algorithm will not converge,
and cycles develop. The cycles can be long and therefore hard to
detect.

The second problem can often be eliminated by seeking a hyperplane not
in the original space, but in a much enlarged space obtained by creating
many basis-function transformations of the original variables. This is anal-
ogous to driving the residuals in a polynomial regression problem down
to zero by making the degree sufficiently large. Perfect separation cannot
always be achieved: for example, if observations from two different classes
share the same input. It may not be desirable either, since the resulting
model is likely to be overfit and will not generalize well. We return to this
point at the end of the next section.

A rather elegant solution to the first problem is to add additional con-
straints to the separating hyperplane.

4.5.2 Optimal Separating Hyperplanes

The optimal separating hyperplane separates the two classes and maximizes
the distance to the closest point from either class (Vapnik, 1996). Not only
does this provide a unique solution to the separating hyperplane problem,
but by maximizing the margin between the two classes on the training data,
this leads to better classification performance on test data.

We need to generalize criterion (4.37). Consider the optimization problem

max

C
B:Bo,18]1=1 (4.41)
subject to y;(zl B+ o) > C, i=1,...,N.

4.5 Separating Hyperplanes 109

The set of conditions ensure that all the points are at least a signed
distance C' from the decision boundary defined by 5 and By, and we seek
the largest such C' and associated parameters. We can get rid of the ||8]] = 1
constraint by replacing the conditions with

H—;nyx?ﬁ +B) > C, (4.42)

(which redefines f3y) or equivalently

yi(ag B+ o) = C||B|l- (4.43)

Since for any @ and [, satisfying these inequalities, any positively scaled
multiple satisfies them too, we can arbitrarily set ||5|| = 1/C. Thus (4.41)
is equivalent to

o1
min — ||3][*
5,60 2 (4.44)

subject to y; (27 B4 Bo) >1,i=1,... ,N.

In light of (4.36), the constraints define an empty slab or margin around the
linear decision boundary of thickness 1/||3||. Hence we choose 3 and 5y to
maximize its thickness. This is a convex optimization problem (quadratic
criterion with linear inequality constraints). The Lagrange (primal) func-
tion, to be minimized w.r.t. 8 and [y, is

N
Lo = I8P =Y auluCel 5+ o) 1. (4.45)
i=1

Setting the derivatives to zero, we obtain:

N

Bo= > iy, (4.46)
=1
N

0 = > aw, (4.47)
i=1

and substituting these in (4.45) we obtain the so-called Wolfe dual

N 1 N N
Lp = Z ay — B Z aiakyiykx?xk

i=1 i=1 k=1
subject to a; > 0. (4.48)

The solution is obtained by maximizing Lp in the positive orthant, a sim-
pler convex optimization problem, for which standard software can be used.

110 4. Linear Methods for Classification

FIGURE 4.15. The same data as in Figure 4.13. The shaded region delineates
the maximum margin separating the two classes. There are three support points
indicated, which lie on the boundary of the margin, and the optimal separating
hyperplane (blue line) bisects the slab. Included in the figure is the boundary found
using logistic regression (red line), which is very close to the optimal separating
hyperplane (see Section 12.3.3).

In addition the solution must satisfy the Karush—-Kuhn—Tucker conditions,
which include (4.46), (4.47), (4.48) and

ailyi(x] B+ Bo) — 1] = 0 Vi. (4.49)
From these we can see that

o if a; > 0, then y;(z7 3 + Bo) = 1, or in other words, z; is on the
boundary of the slab;

o if y;(x7 3+ o) > 1, z; is not on the boundary of the slab, and a; = 0.

From (4.46) we see that the solution vector /3 is defined in terms of a linear
combination of the support points x;—those points defined to be on the
boundary of the slab via a; > 0. Figure 4.15 shows the optimal separating
hyperplane for our toy example; there are three support points. Likewise,
Bo is obtained by solving (4.49) for any of the support points.

The optimal separating hyperplane produces a function f () = xTB + BO
for classifying new observations:

G(z) = signf(z). (4.50)

Although none of the training observations fall in the margin (by con-
struction), this will not necessarily be the case for test observations. The

4.5 Separating Hyperplanes 111

intuition is that a large margin on the training data will lead to good
separation on the test data.

The description of the solution in terms of support points seems to sug-
gest that the optimal hyperplane focuses maore an the points that count,
and is more robust to model misspecification. The LDA solution, on the
other hand, depends on all of the data, even points far away from the de-
cision boundary. Note, however, that the identification of these support
points required the use of all the data. Of course, if the classes are really
Gaussian, then LDA is optimal, and separating hyperplanes will pay a price
for focusing on the (noisier) data at the boundaries of the classes.

Included in Figure 4.15 is the logistic regression solution to this prob-
lem, fit by maximum likelihood. Both solutions are similar in this case.
When a separating hyperplane exists, logistic regression will always find
it, since the log-likelihood can be driven to 0 in this case (Excrcise 4.5).
The logistic regression solution shares some other qualitative features with
the separating hyperplane solution. The coefficient veetor is defined by a
weighted least squares fit of a zero-mean linearized response on the input
features, and the weights are larger for points near the decision boundary
than for those further away.

When the data are not separable, there will be no feasible solution to
this problem, and an alternative formulation is needed. Again one can en-
large the space using basis transformations, but this can lead to artificial
separation through over-fitting. In Chapter 12 we discuss a more attractive
allernalive known as the support veclor machine, which allows for overlap,
but minimizes a measure of the extent of this overlap.

Bibliographic Notes

Good general texts on classification include Duda et al. (2000), Hand
(1981), McLachlan (1992) and Ripley (1996). Mardia et al. (1979) have
a concise discussion of linear discriminant analysis. Michie et al. (1994)
compare a large number of popular classifiers on benchmark datasets. Lin-
car separating hyperplanes are discussed in Vapnik (1996). Our account of
the perceptron learning algorithm follows Ripley (1996).

Exercises
I2x. 4.1 Show how to solve the generalized eigenvalue problem maxa” Ba
subject to aTWa = 1 by transforming to a standard eigenvalue problem.

[£x. 1.2 Suppose we have features x € IR”, a two-class response, with class
sizes Ny, N3, and the target coded as —N/N;, N/No.

112 4. Linear Methods for Classification

(a) Show that the LDA rule classifies to class 2 if

—1 N2

. . . R N-
2T (i —) > =f H1 + log(Wl) - IOg(W%

L~ —1 1 re-1
2 2

™M

fio — ~ji] 3

N~

and class 1 otherwise.

(b) Consider minimization of the least squares criterion

N

Z(yi — Bo — BT a:)?. (4.51)

i=1
Show that the solution B satisfies

=22+ 2 5= V(e -) (452)

(after simplification),where s = (fr2 — 1) (fiz — fi1)7.

(¢) Hence show that 3p /4 is in the direction (fiz — fi1) and thus

Boc £ (jia —). (4.53)

Therefore the least squares regression coefficient is identical to the
LDA coefficient, up to a scalar multiple.

(d) Show that this result holds for any (distinct) coding of the two classes.

(e) Find the solution ﬁo, and hence the predicted values f = BO + BTJ:.
Consider the following rule: classify to class 2 if g; > 0 and class
1 otherwise. Show this is not the same as the LDA rule unless the
classes have equal numbers of observations.

(Fisher, 1936; Ripley, 1996)

Ex. 4.3 Suppose we transform the original predictors X to Y via linear
regression. In detail, let Y = X(X7X)"!XTY = XB, where Y is the
indicator response matrix. Similarly for any input x € IR?, we get a trans-
formed vector § = BTz € R¥. Show that LDA using Y is identical to
LDA in the original space.

Ex. 4.4 Consider the multilogit model with K classes (4.17). Let 8 be the
(p + 1)(K — 1)-vector consisting of all the coefficients. Define a suitably
enlarged version of the input vector x to accommodate this vectorized co-
efficient matrix. Derive the Newton-Raphson algorithm for maximizing the
multinomial log-likelihood, and describe how you would implement this
algorithm.

Exercises 113

Ex. 4.5 Consider a two-class logistic regression problem with z € IR. Char-
acterize the maximum-likelihood estimates of the slope and intercept pa-
rameter if the sample z; for the two classes are separated by a point xy € IR.
Generalize this result to (a) x € IRP (see Figure 4.15), and (b) more than
two classes.

Ex. 4.6 Suppose we have N points z; in IR? in general position, with class
labels y; € {—1,1}. Prove that the perceptron learning algorithm converges
to a separating hyperplane in a finite number of steps:

(a) Denote a hyperplane by f(z) = fx + 3y = 0, or in more compact
notation BT2* = 0, where 2* = (x,1) and 3 = (31, 0). Let z; =
xf/||zF]|. Show that separability implies the existence of a Byp such
that yiﬁg;,tzi >1Vi

(b) Given a current (14, the perceptron algorithm identifies a point z; that
is misclassified, and produces the update Buew «— Bold + yizi- Show
that ||Bnew — Bopt| 12 < |Boia — Bopt| |2 —1, and hence that the algorithm
converges to a separating hyperplane in no more than ||Bstart — Bopt||*
steps (Ripley, 1996).

Ex. 4.7 Consider the criterion
“(8,B0) = Zyz 7B+ Bo), (4.54)

a generalization of (4.37) where we sum over all the observations. Consider
minimizing D* subject to ||3|| = 1. Describe this criterion in words. Does
it solve the optimal separating hyperplane problem?

Ex. 4.8 Consider the multivariate Gaussian model X|G = k ~ N (u, X),
with the additional restriction that rank{u;}¥ = L < max(K — 1,p).
Derive the constrained MLEs for the u; and X. Show that the Bayes clas-
sification rule is equivalent to classifying in the reduced subspace computed
by LDA (Hastie and Tibshirani, 1996b).

Ex. 4.9 Write a computer program to perform a quadratic discriminant
analysis by fitting a separate Gaussian model per class. Try it out on the
vowel data, and compute the misclassification error for the test data. The
data can be found in the book website www-stat.stanford.edu/ElemStatLearn.

114 4. Linear Methods for Classification

5}

Basis Expansions and Regularization

5.1 Introduction

We have already made use of models linear in the input features, both for
regression and classification. Linear regression, linear discriminant analysis,
logistic regression and separating hyperplanes all rely on a linear model.
It is extremely unlikely that the true function f(X) is actually linear in
X. In regression problems, f(X) = E(Y|X) will typically be nonlinear and
nonaddilive in X, and representing f(X) by a linear model is usually a con-
venient, and sometimes a necessary, approximation. Convenient because a
linear model is easy to interpret, and is the first-order Taylor approxima-
tion to f(X). Sometimes necessary, because with N small and/or p large,
a linear model might be all we are able to fit to the data without overfit-
ting. Likewise in classification, a linear, Bayes-optimal decision boundary
implies that some monotone transformation of Pr(Y = 1|X) is linear in X.
This is inevitably an approximation.

In this chapter and the next we discuss popular methods for moving
beyond linearity. The core idea in this chapter is fo augment/replace the
vector of inputs X with additional variables, which are transformations of
X, and then use linear models in this new space of derived input features.

Denote by h,,(X) : IR” — IR the mth transformation of X, m =
L,...,M. We then model

M
f(X) =" Buhm(X), (5.1)

m=1

This is page 115
Printer: Opaque this

116 5. Basis Expansions and Regularization

a linear basis expansion in X. The beauty of this approach is that once the
basis functions h,, have been determined, the models are linear in these

new variables, and the fitting proceeds as before.

Some simple and widely used examples of the h;, are the following:

LR CALIIPIES tm, e X

® hm(X)=Xm, m=1,...,p recovers the original linear model.

o hp(X) = X7 or hyn(X) = X; X}, allows us to augment the inputs with
polynomial terms to achieve higher-order Taylor expansions. Note,
however, that the number of variables grows exponentially in the de-
gree of the polynomial. A full quadratic model in p variables requires
O(p?) square and cross-product terms, or more generally O(p?) for a
degree-d polynomial.

e hp(X) = log(X;), /Xj,... permits other nonlinear transforma-
tions of single inputs. More generally one can use similar functions
involving several inputs, such as b, (X) = || X|].

e hp(X) = I(Lp, < X < U,y), an indicator for a region of Xj. By
breaking the range of X} up into M) such nonoverlapping regions
results in a model with a piecewise constant contribution for Xj.

Sometimes the problem at hand will call for particular basis functions hy,,
such as logarithms or power functions. More often, however, we use the basis
expansions as a device to achieve more flexible representations for f(X).
Polynomials are an example of the latter, although they are limited by
their global nature—tweaking the coefficients to achieve a functional form
in one region can cause the function to flap about madly in remote regions.
In this chapter we consider more useful families of piecewise-polynomials
and splines that allow for local polynomial representations. We also discuss
the wavelet bases, especially useful for modeling signals and images. These
methods produce a dictionary D consisting of typically a very large number
|D| of basis functions, far more than we can afford to fit to our data. Along
with the dictionary we require a method for controlling the complexity
of our model, using basis functions from the dictionary. There are three
common approaches:

e Restriction methods, where we decide before-hand to limit the class
of functions. Additivity is an example, where we assume that our
model has the form

X)) = > (X))

5.2 Piecewise Polynomials and Splines 117

The size of the model is limited by the number of basis functions M;
used for each component function f;.

e Selection methods, which adaptively scan the dictionary and include
only those basis functions h,, that contribute significantly to the fit of
the model. Here the variable selection techniques discussed in Chap-
ter 3 are useful. The stagewise greedy approaches such as CART,
MARS and boosting fall into this category as well.

e Regularization methods where we use the entire dictionary but re-
strict the coefficients. Ridge regression is a simple example of a regu-
larization approach, while the lasso is both a regularization and selec-
tion method. Here we discuss these and more sophisticated methods
for regularization.

5.2 Piecewise Polynomials and Splines

We assume until Section 5.7 that X is one-dimensional. A piecewise poly-
nomial function f(X) is obtained by dividing the domain of X into contigu-
ous intervals, and representing f by a separate polynomial in each interval.
Figure 5.1 shows two simple piecewise polynomials. The first is piecewise
constant, with three basis functions:

h(X)=I(X<&), h(X)=I6<X<8&), hi(X)=1(&<X).

Since these are positive over disjoint regions, the least squares estimate of
the model f(X) =2, | Bmhm(X) amounts to B = Y;n, the mean of ¥
in the mth region.

The top right panel shows a piecewise linear fit. Three additional basis
functions are needed: hy, 13 = h,\ (X)X, m = 1,...,3. Except in special
cases, we would typically prefer the third panel, which is also piecewise
linear, but restricted to be continuous at the two knots. These continu-
ity restrictions lead to linear constraints on the parameters; for example,
(&) = f(&) implies that 81 + & 85 = B2 + &1 85. In this case, since there
are two restrictions, we expect to get back two parameters, leaving four free
parameters.

A more direct way to proceed in this case is to use a basis that incorpo-
rates the constraints:

hM(X)=1, h(X)=X, hy(X)=(X-6&)s, hi(X)=(X-8&)4,

where £ denotes the positive parl. The [unction hs is shown in the lower
right panel of Figure 5.1. We often prefer smoother functions, and these
can be achieved by increasing the order of the local polynomial. Figure 5.2
shows a series of piecewise-cubic polynomials fit to the same data, with

L]

120 5. Basis Expansions and Regularization

More generally, an order-M spline with knots &;, j = 1,... ,K is a
piecewise-polynomial of order M, and has continuous derivatives up to
order M — 2. A cubic spline has M = 4. In fact the piecewise-constant
function in Figure 5.1 is an order-1 spline, while the continuous piece-
wise linear function is an order-2 spline. Likewise the general form for the
truncated-power basis set would be

hi(X) = X7 j=1,..., M,
hM+Z(X) - (X 75@)5\}4_17 = 1; aK'

It is claimed that cubic splines are the lowest-order spline for which the
knot-discontinuity is not visible to the human eye. There is seldom any
good reason to go beyond cubic-splines, unless one is interested in smooth
derivatives. In practice the most widely used orders are M = 1,2 and 4.

These fixed-knot splines are also known as regression splines. One needs
to select the order of the spline, the number of knots and their placement.
One simple approach is to parameterize a family of splines by the number
of basis functions or degrees of freedom, and have the observations x; de-
termine the positions of the knots. For example, the expression bs(x,df=7)
in S-PLUS generates a basis matrix of cubic-spline functions evaluated at
the N observations in x, with the 7 — 3 = 4* interior knots at the ap-
propriate percentiles of x (20, 40, 60 and 80th.) One can be more explicit,
however; bs(x, degree=1, knots = c(0.2, 0.4, 0.6)) generates a basis for
linear splines, with three interior knots, and returns an N x 4 matrix.

Since the space of spline functions of a particular order and knot sequence
is a vector space, there are many equivalent bases for representing them
(just as there are for ordinary polynomials.) While the truncated power
basis is conceptually simple, it is not too attractive numerically: powers of
large numbers can lead to severe rounding problems. The B-spline basis,
described in the Appendix to this chapter, allows for efficient computations
even when the number of knots K is large.

5.2.1 Natural Cubic Splines

We know that the behavior of polynomials fit to data tends to be erratic
near the boundaries, and extrapolation can be dangerous. These problems
are exacerbated with splines. The polynomials fit beyond the boundary
knots behave even more wildly than the corresponding global polynomials
in that region. This can be conveniently summarized in terms of the point-
wise variance of spline functions fit by least squares (see the example in the
next section for details on these variance calculations). Figure 5.3 compares

*A cubic spline with four knots is eight-dimensional. The bs() function omits by
default the constant term in the basis, since terms like this are typically included with
other terms in the model.

5.2 Piecewise Polynomials and Splines 121

o
o Global Linear
—— Giobhal Cubic Polynomial
0 ——— Cubic Spline - 2knots
o —— Natural Cubic Spiine - 6 knots
: .
g °
=
a:
8 o
2
[=
5 o
o o
S
[=] S ———r
o T T T T T T
0.0 0.2 04 06 0.8 1.0
X

FIGURE 5.3. Pointwise variance curves for four different models, with X con-
sisting of 50 points drawn at random from U0, 1], and an assumed error model
with constant variance. The linear and cubic polynomial fits have two and four
degrees of freedom respectively, while the cubic spline and naotural cubic spline
each have siz degrees of freedom. The cubic spline has two knots at 0.33 and 0.66,
whale the natural spline has boundary knots at 0.1 and 0.9, and four interior knots
uniformly spaced between them.

the pointwise variances for a variety of different models. The explosion of
the variance near the boundaries is clear, and inevitably is worst for cubic
splines.

A natural cubic spline adds additional constraints, namely that the func-
tion is linear beyond the boundary knots. This frees up four degrees of
freedom (two constraints each in both boundary regions), which can be
spent more profitably by sprinkling more knots in the interior region. This
tradeoff is illustrated in terms of variance in Figure 5.3. There will be a
price paid in bias near the boundaries, but assuming the function is lin-
ear near the boundaries (where we have less information anyway) is often
considered reasonable,

A natural cubic spline with K knots is represented by K basis functions.
One can start from a basis for cubic splines, and derive the reduced ba-
sis by imposing the boundary constraints. For example, starting from the
truncated power scries basis described in Section 5.2, we arrive at (Exer-
cise 5.4):

N(X)=1, Nao(X)=X, NpioX)=dp(X)—- d;(_1()(), (5.4)

122 5. Basis Expansions and Regularization

where

(X = &) — (X —¢k)}
Ex — &k ’

Each of these basis functions can be seen to have zero second and third
derivative for X > £

d(X) = (5.5)

5.2.2 Erample: South African Heart Disease (Confinued)

I Section 4.4.2 we [it linear logistic regression models Lo the South Alrican
heart disease data. Here we explore nonlinearities in the functions using
nalural splines. The funclional form of the model is

logit[Pr(chd| X)] = g + hy(X1)T0; + ha(X2)T02 + -+ + hp(Xp) T 0p,
(5.6)

where each of Lhe #; are vectors of coellicients mulliplying their associaled
vector of natural spline basis functions h;.

We use four natural spline bases for each term in the model. For example,
with X representing sbp, h1(X;) is a basis consisting of four basis func-
tions. This actually implies three rather than two interior knots (chosen at
uniform quantiles of sbp), plus two boundary knots at the extremes of the
data, since we exclude the constant term from each of the h;.

Since famhist is a two-level factor, it is coded by a simple binary or
dummy variable, and is associated with a single coefficient in the fit of the
model.

More compactly we can combine all p vectors of basis functions (and
the constant term) into one big vector h(X), and then the model is simply
h(X)T0, with total number of parameters df = 1 + Z;:I df;, the sum of
the parameters in each component term. Each basis function is evaluated
at each of the N samples, resulting in a N x df basis matrix H. At this
point. the madel is like any other linear logistic model, and the algorithms
described in Section 4.4.1 apply.

We carried out a backward stepwise deletion process, dropping ferms
from this model while preserving the group structure of each term, rather
than dropping one coefficient at a time. The AIC statistic (Section 7.5) was
used to drop terms, and all the terms remaining in the final model would
cause AIC to increase if deleted from the model (see Table 5.1). Figure 5.4
shows a plot of the final model selected by the stepwise regression. The
functions displayed are [;(X;) = h;(X;)70; for each variable X;. The
covariance matrix Cov(fj] 3 is estimated by = (H'"WH) ', where W
is the diagonal weight matrix from the logistic regression. IIK“.‘“CL v;(X;) =
Var[f;(X;)] = hJ(X)T,;h;(X;) is the pointwise variance function of f;,
where (;mr(f)) = Xjj isthe dppl‘()pl’ldt.e sub-matrix of 3. The shaded region

in each panel is defined by fJ() £ 24/v;(X;).

f(sbp)

5.2 Piecewise Polynomials and Splines

N

T T
120

f(tobacco)

123

100 140 160 180 200 220 0 5 10 15 20 25 30
sbp tobacco
—~
i P
—~ n
—~ -
" 8
— 4 4
=
S~)
¥
| S
1 | ; I i A1 \‘ i IH‘\ \‘ 1 1]
2 4 6 8 10 12 14 Absent . Present
famhist
1d1
—
= |
2 <
Rl o
n ()
])
g~ & %
& =
u \‘ HHHIIF A IIHI}\ WLl ‘\ | . L1 -1 \-\HIII\II‘\I LU ik I I ! Il
15 20 25 30 35 40 45 20 30 40 50 60
obesity age

FIGURE 5.4. Fitted natural-spline functions for each of the terms in the final
model selected by the stepwise procedure. Included are pointwise standard-error
bands. The rug plot at the base of each figure indicates the location of each of the
sample values for that variable (jittered to break ties).

124 5. Basis Expansions and Regularization

TABLE 5.1. Final logistic regression model, after stepwise deletion of natural
splines terms. The column labeled “LRT" is the likelihood-ratio test statistic when
that term is deleted from the model, and is the change in deviance from the full
model (labeled “none”).

Terms DI Deviance AIC LRT P-value
none 458.09 502.09

sbp 4 467.16 503.16 9.076 0.059
tobacco 4 47048 506.48 12.387 0.015
ldi 4 472,39 508.39 14.307 0.006
famhist 1 479.44 521.44 21.356 0.000
obesity 4 466.24 502.24 8.147 0.086
age 4 481.86 517.86 23.768 0.000

The AIC statistic is slightly more generous than the likelihood-ratio test
(deviance test). Both sbp and obesity are included in this model, while
they were not in the linear model. The figure explains why, since their
contributions are inherently nonlinear. These effects al first may come as
a surprise, but an explanation lies in the nature of the retrospective data.
These measurements were made sometime after the patients suffered a
heart attack, and in many cases they had already benefited from a healthier
diet and lifestyle, hence the apparent increase in risk at low values for
obesity and sbp. Table 5.1 shows a summary ol the selecled model.

5.2.3 Example: Phoneme Recognition

In this example we use splines to reduce flexibility rather than increase it;
the application comes under the general heading of functional modeling. In
the top panel of Figure 5.5 are displayed a sample of 15 log-periodograms
for each of the two phonemes “aa” and “ao” measured at 256 frequencies.
The goal is to use such data to classify a spoken phoneme. These two
phonemes were chosen because they are difficult to separate.

The input feature is a vector = of length 256, which we can think of as
a vector of evaluations of a function X (f) over a grid of frequencies f. In
reality there is a continuous analog signal which is a funection of frequency,
and we have a sampled version of it.

The gray lines in the lower panel of Figure 5.5 show the coefficients of
a linear logistic regression model fit by maximum likelihood to a training
sample of 1000 drawn from the total of 695 “aa”s and 1022 “ao”s. The
coefficients are also plotted as a function of frequency, and in fact we can
think of the model in terms of its continuous counterpart

Pr(aalX)

198 B a0 [X) —

f X(f)B(f)df, (5.7)

5.2 Piccewise Polynomials and Splines 125

Phoneme Examples

25
L

15
1

Log-periodogram
10
1

m -
[= T
0 50 100 150 200 250
Frequency
Phoneme Classification; Raw and Restricted Logistic Regression
ﬂ: - 1
o

02

0.2
i

Logistic Regression Coefficients
0.0

04

100 150
Frequency

FIGURE 5.5. The lop panel displays the log-periodogram as a funclion of fre-
quency for 15 examples each of the phonemes “aa” and “ao” sampled from a total
of 695 “aas and 1022 “ao”s. Bach log-periodogram. is measured at 256 uniformly
spaced frequencies. The lower panel shows the coefficients (as a funclion of fre-
quency) of a logistic regression fit to the data by mazimum likelihood, using the
256 log-periodogram values as inpuls. The coefficients are vestricted to be smooth
in the red curve, and are unrestricted in the jagged gray curve.

126 5. Basis Expansions and Regularization

which we approximate by

256 256
S X()B(F) =Y 248 (5.8)
j=1 i=1

The coefficients compute a contrast functional, and will have appreciable
values in regions of frequency where the log-periodograms differ between
the two classes.

The gray curves are very rough. Since the input signals have fairly strong
positive autocorrelation, this results in negative autocorrelation in the co-
cfficients. In addition the sample size effectively provides only four obser-
vations per coefficient.

Applications such as this permit a natural regularization. We force the
coeflicients to vary smoothly as a function of frequency. The red curve in the
lower panel of Figure 5.5 shows such a smooth coefficient curve fit to these
data. We see that the lower frequencies offer the most discriminatory power.
Not. only does the smoothing allow easier interpretation of the contrast, it
also produces a more accurate classifier:

Raw | Regularized
Training error || 0.080 0.185
Test error 0.255 0.158

‘I'he smooth red curve was obtained through a very simple use of natural
cubic splines. We can represent the coefficient function as an expansion of
splines 3(f) = 5:::_1 B ([)0,,. In practice this means that 3 = H6 where,
H is a p x M basis matrix of natural cubic splines, defined on the set of
frequencies. Here we used M = 12 basis functions, with knots uniformly
placed over the integers 1,2,...,256 representing the frequencies. Since
T3 = 2THO, we can simply replace the input features a by their filtered
versions 2* = H”' 'z, and fit # by linear logistic regression on the x*. The

red curve is thus 8(f) = h(f)70.

5.3 Filtering and Feature Extraction

In the previous example, we constructed a p x M basis matrix H, and then
transformed our features into new features z* = H7wx. These filtered
versions of the features were then used as inputs into a learning procedure:
in the previous example, this was linear logistic regression.

Preprocessing of high-dimensional features is a very general and pow-
erful method for improving the performance of a learning algorithm. The
preprocessing need not be linear as it was above, but can be a general

5.4 Smoothing Splines 127

(nonlinear) function of the form z* = g(x). The derived features x* can
then be used as inputs into any (linear or nonlinear) learning procedure.

For example, for signal or image recognition a popular approach is to
first transform the raw features via a wavelet transform a* = HT2 (Sec-
tion 5.9) and then use the features 2* as inputs into a neural network
(Chapter 11). Wavelets are effective in capturing discrete jumps or edges,
and the neural network is powerful tool for constructing nonlinear func-
tions of these features for predicting the target variable. By using domain
knowledge to construct appropriate features, one can often improve upon
a learning method that has only the raw features z at its disposal.

5.4 Smoothing Splines

Here we discuss a spline basis method that avoids the knot selection prob-
lem completely by using a maximal set of knots. The complexity of the fit
is controlled by regularization. Consider the following problem: among all
[unctions [(x) wilth Lwo continuous derivalives, [ind one Lhal minimizes the
penalized residual sum of squares

N
RSS(/,N) = Yo fws — F@)V 42 [{0 a (5.9)
=1

where A is a fixed smoothing parameter. The first term measures closeness
to the data, while the second term penalizes curvature in the function, and
A establishes a tradeoff between the two. I'wo special cases are:

A =10: f can be any function that interpolates the data.

A = oo : the simple least squares line fit, since no second derivative can
be tolerated.

These vary from very rough to very smooth, and the hope is that A £ (0, o0)
indexes an interesting class of functions in between.

The criterion (5.9) is defined on an infinite-dimensional function space—
in fact, a Sobolev space of functions for which the second term is defined.
Remarkably, it can be shown that (5.9) has an explicit, finite-dimensional,
unique minimizer which is a natural cubic spline with knots at the unique
values of the ;. i = 1,... , N (Exercise 5.7). At face value it seems that
the family is still over-parametrized, sinec there arc as many as N knots,
which implies N degrees of freedom. However, the penalty term translates
to a penalty on the spline coefficients, which are shrunk some of the way
toward the lincar fit.

Since the solution is a natural spline, we can write it as

N
fl@)=>" Nj(=)0;, (5.10)
=1

128 5. Basis Expansions and Regularization

g - =
° . —— Male
N ot .
- ——— Female
= =
m o
=
&
B o2
E ©
@
o
5 g
o S
H
ED
7] 3
r o
uw
o
? .

FIGURE 5.6. The response is the relative change in bone mineral densily mea-
sured al the spine in adolescenls, as a funclion of age. A separate smoolthing spline
was fit to the males and females, with A ~ 0.00022. This choice corresponds lo
about 12 degrees of freedom.

where the Nj(x) are an N-dimensional set of basis functions for repre-
senting this family of natural splines (Section 5.2.1 and Exercisc 5.4). The
crilerion Lhus reduces Lo

RSS(0,A) = (y = NO)” (y — NO) + A" 250, (5.11)

where {N}i; = Nj(z;) and {Qn}x = [NJ(t)N{/(t)dt. The solution is

easily seen to be
0 =(NTN+A2y) 'NTy, (5.12)

a generalized ridge regression. The fitted smoothing spline is given by
N

fl@) = Y Nj@)b;. (5.13)

§=1

Efficient computational techniques for smoothing splines are discussed in
the Appendix to this chapter.

Figure 5.6 shows a smoothing spline fit to some data on bone mineral
density (BMD) in adolescents. The response is relative change in spinal
BMD over two consecutive visits, typically about one year apart. The data

5.4 Smoothing Splines 129

are color coded by gender, and two separate curves were [it. This simple
summary reinforces the evidence in the data that the growth spurt for
females precedes that for males by about two years. In both cases the
smoothing parameter A was approximately 0.00022; this choice is discussed
in the next section.

5.4.1 Degrees of Freedom and Smoother Matrices

We have not yet indicated how A is chosen for the smoothing spline. Later
in this chapter we describe automatic methods using techniques such as
cross-validation. In Lhis section we discuss intuilive ways ol prespecilying
the amount of smoothing.

A smoothing spline with prechosen X is an example of a linear smoother
(as in linear operator). This is because the estimated parameters in (5.12)
are a linear combination of the y;. Denote by f the N-vector of fitted values
S(z;) at the training predictors z;. Then
f = NINTN+AQy) Ny

Again the fit is linear in y, and the finite lincar operator S, is known as
the smoother matriz. One consequence of this linearity is that the recipe
for producing f from y does not depend on y itself; Sy depends only on
the z; and A.

Linear operalors are [amiliar in more lraditional leasl squares [illing as
well. Suppose B¢ is a N x M matrix of M cubic-spline basis functions
evaluated at the N training points z;, with knot sequence £, and M < N.
Then the veclor of fitted spline values is given by

f Be(B{B¢) 'Bly
Hgy. (5.15)

Here the linear operator He is a projection operator, also known as the hat
maltrix in statistics. There are some important similarities and differences
between H¢ and S:

e Both are symmetric, positive semidefinite matrices.

e H:H; = H¢ (idempotent), while $,8, < S,, meaning that the right-
hand side exceeds the left-hand side by a positive semidefinite matrix.
This is a consequence of the shrinking nature of Sy, which we discuss
further below.

e H¢ has rank M, while S, has rank N.

130 5. Basis Expansions and Regularization

The expression M = trace(Hg) gives the dimension of the projection space,
which is also the number of basis functions; and hence the number of pa-

rameters involved in the fit. By analogy we define the effective degrees of

freedom of a smoothing spline to be

dfy = trace(S,), (5.16)

the sum of the diagonal elements of S). This very useful definition allows
us a more intuitive way to parameterize the smoothing spline, and indeed
many other smoothers as well, in a consistent fashion. For example, in Fig-
ure 5.6 we specified dfy = 12 for each of the curves, and the corresponding
A & 0.00022 was derived numerically by solving trace(Sy) = 12. There are
many arguments supporting this definition of degrees of freedom, and we
cover some of them here.

Since Sy is symmetric (and positive semidefinite), it has a real eigen-
decomposition. Before we proceed, it is convenient to rewrite Sy in the
Reinsch form

Sh = (I+2K) ™, (5.17)
where K does not depend on A (Exercise 5.9). Since f = Syy solves
min(y — £)7(y —) + MTKT, (5.18)

K is known as the penalty matriz, and indeed a quadratic form in K has
a representation in terms of a weighted sum of squared (divided) second
differences. The eigen-decomposition of Sy is

Sx=>_ pr(Nupuf (5.19)
k=1
with
()= — (5.20)
PR = T4, :

and dj, the corresponding eigenvalue of K.

Figure 5.7 (top) shows the results of applying a cubic smoothing spline to
some air pollution data (128 observations). Two fits are given: a smoother
fit corresponding to a larger penalty A and a rougher fit for a smaller
penalty. The lower panels represent the eigenvalues (lower left) and some

eigenvectors (lower right) of the corresponding smoother matrices. Some of
the highlights of the eigenrepresentation are the following:

e The eigenvectors are not affected by changes in A, and hence the whole
family of smoothing splines (for a particular sequence x) indexed by
A have the same eigenvectors.

5.4 Smoothing Splines 131

20
1

Ozone Concentration
20
L

Daggot Pressure Gradient

o0& 10
i b

ne

Eigenvalues
o4
i}

o0

0.2

Ll L T 1
Order 50 a 50 100 50 o 30 100

FIGURE 5.7. [Top] Smoothing spline fit of ozone concentration versus Daggot
pressure gradient. The two fils correspond to different values of the smoothing
parameter, chosen to achieve 5 and 11 effective degrees of freedom, defined by
df, = trace(8,). [Lower left] First 25 eigenvalues for the two smoothing-spline
matrices. The first two are eractly 1, and all are > 0. [Lower right] third to
sizth eigenveclors of the spline smoolther matrices. In each ecase, wi is plolled
uyainsl X, anud as such is viewed as o funclion of . The vug al e buse of the
plots indicate the occurvence of data points. The damped functions represent the
smoothed versions of these functions (using the 5df smoother).

132

5. Basis Expansions and Regularization

S,y = Zg 1 Wepr(A)(ug,y), and hence the smoothing spline oper-
ates by decomposing y w.r.t. the (complete) basis {uz}, and differ-
entially shrinking the contributions using px(A). This is to be con-
trasted with a basis-regression method, where the components are
either left alone, or shrunk to zero—that is, a projection matrix such
as H¢ above has M eigenvalues equal to 1, and the rest are 0. For
this reason smoothing splines are referred to as shrinking smoothers,
while regression splines are projection smoothers (see Figure 3.10 on

page 67).

The sequence of uy, ordered by decreasing pi (), appear to increase
in complexity. Indeed, they have the zero-crossing behavior of polyno-
mials of increasing degree. Since Syuy = pr(A)ug, we see how each of
Hm: eigenvectors fhpmqp]qu are shrunk by the smoothing qn]me the

The first two eigenvalues are always one, and they correspond to the
two-dimensional eigenspace of functions linear in z (Exercise 5.11),
which are never shrunk.

The eigenvalues pi(A) = 1/(1 4+ Ady) are an inverse function of the
eigenvalues dj of the penalty matrix K, moderated by A; A controls
the rate at which the py(A) decrease to zero. d; = dz = 0 and again
linear functions are not penalized.

One can reparametrize the smoothing spline using the basis vectors
x (the Demmler—Reinsch basis). In this case the smoothing spline
solves

min [y — U6||% + 20" De, (5.21)

where U has columns u; and D is a diagonal matrix with elements
dj.

dfy = trace(S)) = Z,’cvzl pr(X). For projection smoothers, all the
eigenvalues are 1, each one corresponding to a dimension of the pro-
jection subspace.

Figure 5.8 depicts a smoothing spline matrix, with the rows ordered with
2. The banded nature of this representation suggests that a smoothing
spline is a local fitting method, much like the locally weighted regression
procedures in Chapter 6. The right panel shows in detail selected rows of
S, which we call the equivalent kernels. As A — 0, dfy, — N, and Sy — I,
the N-dimensional identity matrix. As A — oo, dfy — 2, and S, — H, the
hat matrix for linear regression on x.

115

Smoother Matrix

Row 12

]
Y

Row 25

134 5. Basis Expansions and Regularization

5.5 Automatic Selection of the Smoothing
Parameters

The smoolhing paramelers for regression splines encompass Lhe degree of
the splines, and the number and placement of the knots. For smoothing
splines, we have only the penalty parameter A to select, since the knots are
at all the unique training X’s, and cubic degree is almost always used in
practice.

Selecting the placement and number of knots for regression splines can be
a combinatorially complex task, unless some simplifications are enforced.
The MARS procedure in Chapter 9 uses a greedy algorithm with some
additional approximations to achieve a practical compromise. We will not
discuss this further here.

5.5.1 Fixing the Degrees of Freedom

Since dfy = trace(S,) is monotone in A for smoothing splines, we can
invert the relationship and specify A by fixing df. In practice this can be
achieved by simple numerical methods. So, for example, in S-PLUS one
can use smooth.spline(x,y,df=6) to specify the amount of smoothing. This
encourages a more traditional mode of model selection, where we might
try a couple of different values of df, and select one based on approximate
F-tests, residual plots and other more subjective criteria. Using df in this
way provides a uniform approach to compare many different smoothing
methods. It is particularly useful in generalized additive models (Chapter 9),
where several smoothing methods can be simultaneously used in one model.

5.5.2 The Bias—Variance Tradeoff

Figure 5.9 shows the effect of the choice of dfy when using a smoothing
spline on a simple example:

Y = f(X) +¢,
sin + 0. 5.22
7(X) = (1}2{(1’(:‘20 2))‘ (5.22)

with X ~ U[0,1] and £ ~ N(0, 1). Our training sample consists of N = 100
pairs z;,¥; drawn independently from this model.

The fitted splines for three different values of dfy are shown. The yellow
shaded region in the figure represents the pointwise standard error of fy,
that is, we have shaded the region between fy(z) £ 2 - se(fx(z)). Since
f= SAY 1

Cov(f) = S,Cov(y)ST
= 8,87. (5.23)

5.5 Automatic Selection of the Smoothing Parameters 135

Cross-Validation dfy =5
o]
N
- cv ~
EPE
-
>]
O © A
E >
@
< o |
g " o
o
3]
(o)
S < | °
o
T T T T T T T T T T T
6 8 10 12 14 0.0 0.2 0.4 0.6 0.8 1.0
dfy X
dfy =9 dfy = 15
~
o J
>
('}l -
< d © < J o
[e] o
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

FIGURE 5.9. The top left panel shows the EPE()) and CV(A) curves for a
realization from a nonlinear additive error model (5.22). The remaining panels
show the data, the true functions (in purple), and the fitted curves (in green) with
yellow shaded £2x standard error bands, for three different values of df,.

136 5. Basis Expansions and Regularization

The diagonal contains the pointwise variances at the training x;. The bias
is given by

Bias(f) = f—E(f)
= f—S,f, (5.24)

where f is the (unknown) vector of evaluations of the true f at the training
X’s. The expectations and variances are with respect to repeated draws
of samples of size N = 100 from the model (5.22). In a similar fashion
Var(fx(zo)) and Bias(fx(zo)) can be computed at any point z (Exer-
cise 5.10). The three fits displayed in the figure give a visual demonstration
of the bias-variance tradeoff associated with selecting the smoothing pa-
rameter.

dfy = 5: The spline under fits, and clearly trims down the hills and fills in
the wvalleys. This leads to a bias that is most dramatic in regions of
high curvature. The standard error band is very narrow, so we esti-
mate a badly biased version of the true function with great reliability!

dfy = 9: Here the fitted function is close to the true function, although a
slight amount of bias seems evident. The variance has not increased
appreciably.

dfy, = 15: The fitted function is somewhat wiggly, but close to the true
function. The wiggliness also accounts for the increased width of the
standard error bands—the curve is starting to follow some individual
points too closely.

Note that in these figures we are seeing a single realization of data and
hence fitted spline f in each case, while the bias involves an expectation
E(f). We leave it as an exercise (5.10) to compute similar figures where the
bias is shown as well. The middle curve seems “just right,” in that it has
achieved a good compromise between bias and variance.

The integrated squared prediction error (EPE) combines both bias and

variance in a single summary:

EPE(f\) = E(Y - fr(X))?
= Var(Y) +E [Bias(f(X)) + Var(f1(X))
= o2+ MSE(f)). (5.25)

Note that this is averaged both over the training sample (giving rise to f 2,
and the values of the (independently chosen) prediction points (X,Y). EPE
is a natural quantity of interest, and does create a tradeoff between bias
and variance. The blue points in the top left panel of Figure 5.9 suggest
that dfy =9 is spot on!

5.6 Nonparametric Logistic Regression 137

Since we don’t know the true function, we do not have access to EPE, and
need an estimate. This topic is discussed in some detail in Chapter 7, and
techniques such as K-fold cross-validation, GCV and Cj, are all in common
use. In [igure 5.9 we include the N-fold (leave-one-ont) cross-validation
curves:

N i
OV = YA @) (538
N - 2
= vi — Ia(@i)
- g(l“sa(i,é)) , (5.27)

which cau (remarkably) be computed for eacli value of A from the original
fitted values and the diagonal elements Sy(4,1) of Sy (Exercise 5.13).

The EPE and CV curves have a similar shape, bul the enlire CV curve
is above the EPE curve. For some realizations this is reversed, and overall
the CV curve is approximately unbiased as an estimate of the EPE curve.

5.6 Nonparametric Logistic Regression

The smoothing spline problem (5.9) in Section 5.4 is posed in a regression
setting. It is typically straightforward to transfer this technology to other
domains. Here we consider logistic regression with a single quantitative
input X. The model is

Pr(Y =1|X =2)

o8 pr ¥ —ojx =2) — 1@ (5.28)
which implies
(@)

Fitting f(#) in a smoolh lashion leads to a smooth estimale of the condi-
tional probability Pr(Y = 1|z), which can be used for classification or risk
scoring.

We construct the penalized log-likelihood criterion

N
(N = Y lidosa(a) + (1- pi)log(t —p(a))] - 5A [{" () at

i=1

N
. L "
‘; [ysf(mg) + log(1 + /¢))] o é)\f{f OFPdt, (5.30)

138 5. Basis Expansions and Regularization

where we have abbreviated p(z) = Pr(Y = 1|z). The first term in this ex-
pression is the log-likelihood based on the binomial distribution (c.f. Chap-
ter 4, page 98). Arguments similar to those used in Section 5.4 show that
the optimal f is a finite-dimensional natural spline with knots at the unique
values of x. This means that we can represent f(z) = Ejvzl N;(z)0;. We
compute the first and second derivatives

82—(:) = NT(y —p)— 00, (5.31)
024(0) T
56907 —NTWN - \Q, (5.32)

where p is the N-vector with elements p(x;), and W is a diagonal matrix
of weights p(z;)(1 — p(x;)). The first derivative (5.31) is nonlinear in 6, so
we need to use an iterative algorithm as in Section 4.4.1. Using Newton—
Raphson as in (4.23) and (4.24) for linear logistic regression, the update
equation can be written

" = (NTWN + Q) 'N"W (N¢° + W (y — p))

We can also express this update in terms of the fitted values

e = N(NTWN + Q)" 'NTW (£ + W (y — p))
_ Sz (5.34)

Referring back to (5.12) and (5.14), we see that the update fits a weighted
smoothing spline to the working response z (Exercise 5.12).

The form of (5.34) is suggestive. It is tempting to replace Sy ., by any
nonparametric (weighted) regression operator, and obtain general fami-
lies of nonparametric logistic regression models. Although here x is one-
dimensional, this procedure generalizes naturally to higher-dimensional x.
These extensions are at the heart of generalized additive models, which we
pursue in Chapter 9.

5.7 Multidimensional Splines

So far we have focussed on one-dimensional spline models. Each of the
approaches have multidimensional analogs. Suppose X € IR?, and we have
a basis of functions hy,(X1), k = 1,..., My for representing functions of
coordinate X7, and likewise a set of My functions hoy(X2) for coordinate
X5. Then the My x My dimensional tensor product basis defined by

gjk(X) = hlj(Xl)th(XQ),]:]., . .,Ml, k = 1, e ,MQ (535)

5.7 Multidimensional Splines 139

FIGURE 5.10. A tensor product basis of B-splines, showing some selected pairs.
FEach two-dimensional function is the tensor product of the corresponding one
dimensional marginals.

can be used for representing a two-dimensional function:

M; M>

9(X) =" Okgik(X). (5.36)

j=1k=1

Figure 5.10 illustrates a tensor product basis using B-splines. The coeffi-
cients can be fit by least squares, as before. This can be generalized to d
dimensions, but note that the dimension of the basis grows exponentially
fast—yet another manifestation of the curse of dimensionality. The MARS
procedure discussed in Chapter 9 is a greedy forward algorithm for includ-
ing only those tensor products that are deemed necessary by least squares.

140 5. Basis Expansions and Regularization

Figure 5.11 illustrates the difference between additive and tensor product
(natural) splines on the simulated classification example from Chapter 2.

A logistic regression model logit[Pr(7'|z)] = h(z)T is fit to the binary re-
sponse and the estimated decision boundarv is the contour B(W\Tﬂ = 0.

POLSE, allG Ve oLl LeG GECISIVH DOULIGALl y 15 vl COLLO UL

The tensor product basis can achieve more flexibility at the de01s1on bound—
ary, but introduces some spurious structure along the way.

One-dimensional smoothing splines (via regularization) generalize to high-
er dimensions as well. Suppose we have pairs y;, z; with #; € IR%, and we
seek a d-dimensional regression function f(z). The idea is to set up the
problem

N
min} {yi — f(@)}* + ML, (537)

where J is an appropriate penalty functional for stabilizing a function f in
IR?. For example, a natural generalization of the one-dimensional roughness
penalty (5.9) for functions on IR? is

- | LI (3252 (G4 e

(5.38)

Optimizing (5.37) with this penalty leads to a smooth two-dimensional
surface, known as a thin-plate spline. It shares many properties with the
one-dimensional cubic smoothing spline:

e as A — 0, the solution approaches an interpolating function [the one

41 H.mﬂn 2\,
with smallest peuau.y (9.90)];

® as A — oo, the solution approaches the least squares plane;

e for intermediate values of A, the solution can be represented as a
linear expansion of basis functions, whose coefficients are obtained
by a form of generalized ridge regression.

The solution has the form

N
f@)=po+ "2+ ajh;(x), (5.39)

=1

where h;(z) = n(||z — z4]|), and (z) = 2% log z%. These h; are examples of
radiol basis functions, which are discussed in more detail in the next section.
The coefficients are found by plugging (5.39) into (5.37), which reduces to
a finite-dimensional penalized least squares problem. For the penalty to
be finite, the coeflicients «; have to satisfy a set of linear constraints; see
Exercise 5.14.

5.7 Multidimensional Splines 141

Additive Natural Cubic Splines - 4 df each

Training Error: 0.23 o ; 90
Test Error: 0,28 2t
Bayes Error. 0.21 (]

Natural Cubic Splines - Tensor Product - 4 df each

Training Eror: 0.230
Test Error: 0.282
Bayes Eror: 0.210

FIGURE 5.11. The simulation example of Figure 2.1. The upper panel shows the
decision boundary of an additive logistic regression model, using natural splines
in each of the two coordinates (total df = 14 (4 — 1)+ (4 — 1) = 7). The lower
panel shows the resulls of using a tensor product of natural spline bases in each
coordinate (lotal df = 4 x 4 = 16). The broken purple boundary is the Bayes
decision boundary for this problem.

Obesity

- 145

+ 140

130

azn

5.8 Regularization and Reproducing Kernel Hilbert Spaces 147

and
) N
fla) =" &;K(x,x;). (5.56)
j=1
The vector of N fitted values is given by
f = Ka
= K(K+) 'y (5.57)
I+ XKy, (5.58)

The estimate (5.57) also arises as the kriging estimate of a Gaussian ran-
dom field in spatial statistics (Cressie, 1993). Compare also (5.58) with the
smoothing spline fit (5.17) on page 130.

Penalized Polynomial Regression

The kernel K(z,y) = ((x,y) + 1)¢ (Vapnik, 1996), for x,y € IR, has
M = (pji'd) eigen-functions that span the space of polynomials in IR? of
total degree d. For example, with p =2 and d =2, M =6 and

K(z,y) = 142zy1 4 222y2 + 27y7 + 2595 + 2z12011y2 (5.59)
= P (2) o (1) (5.60)

with
h(z)T = (1,V2x1, V229, 23, 23, V211 29). (5.61)

One can represent h in terms of the M orthogonal eigen-functions and
eigenvalues of K,

h(z) = VD2 é(z), (5.62)

where D, = diag(y1,72,...,vm), and V is M x M and orthogonal.
Suppose we wish to solve the penalized polynomial regression problem

N M 2 M
{gli]gw (yz -3 ﬂmhm(fm)> +AD B (5.63)
™I =1

m=1 m=1

Substituting (5.62) into (5.63), we get an expression of the form (5.53) to
optimize (Exercise 5.16).

The number of basis functions M) can be very large, often much
larger than N. Equation (5.55) tells us that if we use the kernel represen-
tation for the solution function, we have only to evaluate the kernel N?2
times, and can compute the solution in O(N?) operations.

This simplicity is not without implications. Each of the polynomials A,
in (5.61) inherits a scaling factor from the particular form of K, which has
a bearing on the impact of the penalty in (5.63).

— (ptd

5.7 Multidimensional Splines 143

location of the input features, as well as the knots used in the fit. Note that
X was specified via dfy = trace(S,) = 15.

More generally one can represent f € IR% as an expansion in any arbi-
trarily large collection of basis functions, and control the complexity by ap-
plying a regularizer such as (5.38). For example, we could construct a basis
by forming the tensor products of all pairs of univariate smoothing-spline
basis functions as in (5.35), using, for example, the univariate B-splines
recommended in Section 5.9.2 as ingredients. This leads to an exponential
growth in basis functions as the dimension increases, and typically we have
to reduce the number of functions per coordinate accordingly.

The additive spline models discussed in Chapter 9 are a restricted class
of multidimensional splines. They can be represented in this general formu-
lation as well; that is, there exists a penalty J[f] that guarantees that the
solution has the form f{X)=a+ fi{(Xi) + - + fa{Xa) and that each of
the functions f; are univariate splines. In this case the penalty is somewhat

A A =1 4+1. P I I [P [PN
LlCSUJJUld;lJC, all LlJ LD more lld.-l:UJd;l bU assuine blld;l: J LD d;uull:LVC, ana l:llUJJ

simply impose an additional penalty on each of the component functions:

JIfl = Jhi+fot+Tfa)

-y / F ()%t (5.40)

These are naturally extended to ANOVA spline decompositions,
X)=a+ Y f(X)+ > Fe(X5 Xe)+- (5.41)
] j<k
where each of the components are splines of the required dimension. There

are many choices to be made:

e The maximum order of interaction—we have shown up to order 2
above.

e Which terms to include—mnot all main effects and interactions are
necessarily needed.

e What representation to use—some choices are:
— regression splines with a relatively small number of basis func-
tions per coordinate, and their tensor products for interactions;
— a complete basis as in smoothing splines, and include appropri-

ate regularizers for each term in the expansion.

In many cases when the number of potential dimensions (features) is large,
automatic methods are more desirable. The MARS and MART procedures
(Chapters 9 and 10 respectively), both fall into this category.

5.9 Wavelet Smoothing 151

NMR Signal
8 -
3 -
3 -
o -
T T T I L) !
o 200 400 600 800 1000
Wavelet Transform - Original Signal Wavelet Transform - WaveShrunk Signal
Signal k"\L\-’\L_‘ Signal d& A
Wo -~ T Wa
W3 T J|'“r‘ e e u’s o |
Wr s i W g
We ol : Wa |
LI L i |
W ekl 2] [E—— Ws el sy
Wy T Wy "'1"||
Va 1 | [14 Vi 1 I [1,
AL TT 11 rrro TTT1
0 200 400 600 8OO 1000 0 200 400 600 BOD 1000

FIGURE 5.14. The top pancl shows a NMR signal, with the wavelet-shrunk
version superimposed in green. The lower left panel represenls the wavelel lrans-
form of the original signal, down to Vi, using the symmlet-8 basis. Fach coeffi-
cient is represented by the height (positive or negative) of the vertical bar. The
lower right panel represents the wavelet coefficients after being shrunken using
the waveshrink function in S-PLUS, which implements the SureShrink method
of wavelel adaplulion of Donolo and Johnslone.

152 5. Basis Expansions and Regularization

Haar Basis Symmlet Basis
b(x) b(x)
Y(x) Y(x)

FIGURE 5.15. The Haar and symmlet father (scaling) wavelet ¢(x) and mother
wavelet P(x).

generated by the mother wavelet ¥(x) = ¢(2x)—¢(2x—1) form an orthonor-
mal basis for W, for the Haar family. Likewise 1, 5 = 2//2¢(27z — k) form
a basis for W;.

Now Vi1 =V, @ W; = V;_1 @ W;_1 @ Wy, so besides representing a
function by its level-j detail and level-j rough components, the latter can
be broken down to level-(j — 1) detail and rough, and so on. Finally we get
a representation of the form V; = Vo Wy @ Wy --- @ W;_1. Figure 5.13
on page 149 shows particular wavelets ¥ ().

Notice that since these spaces are orthogonal, all the basis functions are
orthonormal. In fact, if the domain is discrete with N = 27 (time) points,
this is as far as we can go. There are 27 basis elements at level j, and
adding up, we have a total of 2/ — 1 elements in the W;, and one in Vj.
This structured orthonormal basis allows for a multiresolution analysis,
which we illustrate in the next section.

While helpful for understanding the construction above, the Haar basis
is often too coarse for practical purposes. Fortunately, many clever wavelet
bases have been invented. Figures 5.13 and 5.15 include the Daubechies
symmilet-8 basis. This basis has smoother elements than the corresponding
Haar basis, but there is a tradeoff:

e Each wavelet has a support covering 15 consecutive time intervals,
rather than one for the Haar basis. More generally, the symmlet-p
family has a support of 2p — 1 consecutive intervals. The wider the
support, the more time the wavelet has to die to zero, and so it can

5.9 Wavelet Smoothing 153

achieve this more smoothly. Note that the effective support seems to
be much narrower.

e The symmlet-p wavelet ¢(z) has p vanishing moments; that is,
/qb(x);cjd:rzO, F=1yves P

One implication is that any degree-p polynomial over the N = 2/
times points is reproduced exactly in Vg (I2xercise 5.17). In this sense
Vo is equivalent Lo the null space of the smoothing-spline penalty. The
Haar wavelets have one vanishing moment, and V; can reproduce any
constanl funclion.

The symmlet-p scaling functions are one of many families of wavelet,
generators. 'I'he operations are similar to those for the Haar basis:

e If V is spanned by ¢(x — k), then Vi D V4 is spanned by ¢y x(x) =
ﬁ¢(2m- k) and ¢(z) = >, z h(k)1,k(2), for some filter coefficients
h(k).

o Wy is spanned by ¥(x) = 3,z 9(k)¢1 k(2), with filter coefficients
9(k) = (~1)*h(1 -).

5.9.2 Adaptive Wavelet Filtering

Wavelets are particularly useful when the data are measured on a uniform
lattice, such as a discretized signal, image, or a time series. We will focus on
the one-dimensional case, and having N = 27 lattice-points is convenient.
Suppose y is the response vector, and W is the N x N orthonormal wavelet
basis matrix evaluated at the N uniformly spaced observations. Then y* =
W7y is called the wavelet transform of y (and is the full least squares
regression coefficient). A popular method for adaptive wavelet fitting is
known as SURE shrinkage [Stein Unbiased Risk Estimation, (Donoho and
Johnstone, 1994)]:

mgn [ly — W0||% +2X|]9)]1, (5.67)

which is the same as the lasso criterion in Chapter 3. Because W is or-
thonormal, this leads to the simple solution:

0; = sign(y;)(|y;| —)+ (5.68)

The least squares coefficients are translated toward zero, and truncated
at zero. The fitted function (vector) is then given by the inverse wavelet
transform f = W6.

154 5. Basis Expansions and Regularization

A simple choice for X is A = o/2log N, where o is an estimate of the
standard deviation of the noise. We can give some motivation for this choice.
Since W is an orthonormal transformation, if the elements of y are white
noise (independent Gaussian variates with mean 0 and variance o?), then
so are y*. Furthermore if random variables Zy, Zs, ... , Zy are white noise,
the expected maximum of |Z;|,j = 1,..., N is approximately ov/2log N.
Hence all coefficients below o4/2log N are likely to be noise and are set to
zero.

The space W could be any basis of orthonormal functions: polynomials,
natural splines or cosinusoids. What makes wavelets special is the particular
form of basis functions used, which allows for a representation localized in
time and in frequency.

Let’s look again at the NMR signal of Figure 5.14. The wavelet transform
was computed using a symmlet—8 basis. Notice that the coefficients do not
descend all the way to Vp, but stop at V4 which has 16 basis functions.
As we ascend to each level of detail, the coefficients get smaller, except in
locations where spiky behavior is present. The wavelet coefficients represent
characteristics of the signal localized in time (the basis functions at each
level are translations of each other) and localized in frequency. Each dilation
increases the detail by a factor of two, and in this sense corresponds to
doubling the frequency in a traditional Fourier representation. In fact, a
more mathematical understanding of wavelets reveals that the wavelets at
a particular scale have a Fourier transform that is restricted to a limited
range or octave of frequencies.

The shrinking/truncation in the right panel was achieved using the SURE
approach described in the introduction to this section. The orthonormal
N x N basis matrix W has columns which are the wavelet basis functions
evaluated at the N time points. In particular, in this case there will be 16
columns corresponding to the ¢4 x(x), and the remainder devoted to the
Y k(x), j =4,...,11. In practice X\ depends on the noise variance, and
has to be estimated from the data (such as the variance of the coefficients
at the highest level).

Notice the similarity between the SURE criterion (5.67) on page 153,
and the smoothing spline criterion (5.21) on page 132:

e Both are hierarchically structured from coarse to fine detail, although
wavelets are also localized in time within each resolution level.

e The splines build in a bias toward smooth functions by imposing
differential shrinking constants dj. Early versions of SURE shrinkage
treated all scales equally. The S+wavelets function waveshrink() has
many options, some of which allow for differential shrinkage.

e The spline Lo penalty cause pure shrinkage, while the SURE L,
penalty does shrinkage and selection.

Exercises 155

More generally smoothing splines achieve compression of the original signal
by imposing smoothness, while wavelets impose sparsity. Figure 5.16 com-
pares a wavelet fit (using SURE shrinkage) to a smoothing spline fit (using
cross-validation) on two examples different in nature. For the NMR data in
the upper panel, the smoothing spline introduces detail everywhere in order
to capture the detail in the isolated spikes; the wavelet fit nicely localizes
the spikes. In the lower panel, the true function is smooth, and the noise is
relatively high. The wavelet fit has let in some additional and unnecessary
wiggles—a price it pays in variance for the additional adaptivity.

The wavelet transform is not performed by matrix multiplication as in
y* = WTy. In fact, using clever pyramidal schemes y* can be obtained
in O(N) computations, which is even faster than the N log(N) of the fast
Fourier transform (FFT). While the general construction is beyond the
scope of this book, it is easy to see for the Haar basis (Exercise 5.18).
Likewise, the inverse wavelet transform W@ is also O(N).

This has been a very brief glimpse of this vast and growing field. There is
a very large mathematical and computational base built on wavelets. Mod-
ern image compression is often performed using two-dimensional wavelet
representations.

Bibliographic Notes

Splines and B-splines are discussed in detail in de Boor (1978). Green
and Silverman (1994) and Wahba (1990) give a thorough treatment of
smoothing splines and thin-plate splines; the latter also covers reproducing
kernel Hilbert spaces. See also Girosi et al. (1995) and Evgeniou et al.
(2000) for connections between many nonparametric regression techniques
using RKHS approaches. Modelling functional data, as in Section 5.2.3, is
covered in detail in Ramsay and Silverman (1997).

Daubechies (1992) is a classic and mathematical treatment of wavelets.
Other useful sources are Chui (1992) and Wickerhauser (1994). Donoho and
Johnstone (1994) developed the SURE shrinkage and selection technology
from a statistical estimation framework; see also Vidakovic (1999). Bruce
and Gao (1996) is a useful applied introduction, which also describes the
wavelet software in S-PLUS.

Exercises

Ex. 5.1 Show that the truncated power basis functions in (5.3) represent a
basis for a cubic spline with the two knots as indicated.

156 5. Basis Expansions and Regularization

T T T T T T

0 200 400 600 800 1000
NMR Signal

0.0 0.2 0.4 0.6 0.8 1.0
Smooth Function (Simulated)

FIGURE b5.16. Wavelct smoothing comparcd with smoothing splines on two
erxamples. Each panel compares the SURE-shrunk wavelet fit to the eross-validated
smaoothing spline fit.

Exercises 157

Ex. 5.2 Suppose that B; ps(z) is an order-M B-spline defined in the Ap-
pendix on page 160 through the sequence (5.76)—(5.77).

(a) Show by induction that B; ar(z) = 0 for & & [1;, 74 a]. This shows, for
example, that the support of cubic B-splines is at most 5 knots.

(b) Show by induction that B; ps(z) > 0 for € (7;, Tit-ar). The B-splines
are positive in the interior of their support.

(¢) Show by induction that ng{M B p(z) = 1Vz € [&o, Ex+1]-

(d) Show that B; a is a piecewise polynomial of order M (degree M — 1)
on [&o, k1], with breaks only at the knots &1,... ,&k.

(e) Show that an order-M B-spline basis function is the density function
of a convolution of M uniform random variables.

Ex. 5.3 Write a program to reproduce Figure 5.3 on page 121.

Ex. 5.4 Consider the truncated power series representation for cubic splines
with K interior knots. Let

3 K
FX) =D 8X7+ > 0:(X — &3 (5.69)
k=1

j=0

Prove that the natural boundary conditions for natural cubic splines (Sec-
tion 5.2.1) imply the following linear constraints on the coefficients:

Br=0, o 0:=0,
= 5.70
B3 =0, Zf:l §k0y = 0. (5.70)

Hence derive the basis (5.4) and (5.5).

Ex. 5.5 Write a program to classify the phoneme data using a quadratic dis-
criminant analysis (Section 4.3). Since there are many correlated features,
you should filter them using a smooth basis of natural cubic splines (Sec-
tion 5.2.3). Decide beforehand on a series of five different choices for the
number and position of the knots, and use tenfold cross-validation to make
the final selection. The phoneme data are available from the book website
www-stat.stanford.edu/ElemStatLearn.

Ex. 5.6 Suppose you wish to fit a periodic function, with a known period T
Describe how you could modify the truncated power series basis to achieve
this goal.

Ex. 5.7 Derivation of smoothing splines (Green and Silverman, 1994). Sup-
pose that N > 2, and that g is the natural cubic spline interpolant to the
pairs {x;, 2}, with @ < 7 < .-+ < ax < b. This is a natural spline

158 5. Basis Expansions and Regularization

with a knot at every x;; being an N-dimensional space of functions, we can
determine the coefficients such that it interpolates the sequence z; exactly.
Let g be any other differentiable function on [a,b] that interpolates the N
pairs.

(a) Let h(z) = g(z) — g(x). Use the boundary conditions on g and integra-
tion by parts to show that

N-1

[@@z == 3 " @) base) - bk (6.1

j=1

(b) Use the fact that g is a natural cubic spline to argue that this expression
is zero, and hence that

b b
/g”(t)thz/ g () dt.

(¢) Show that equality can only hold if A is identically zero in [a, b].

(d) Consider the penalized least squares problem

N b
. 2 11 (4\2
min i — flxi))"+ A / t)“dt| .
[[;(yz f(xi)) . (@) ‘|
Use (b) to argue that the minimizer must be a cubic spline with knots

at each of the z;.

Ex. 5.8 In the appendix to this chapter we show how the smoothing spline
computations could be more efficiently carried out using a (N +4) dimen-
sional basis of B-splines. Describe a slightly simpler scheme using a (N +2)
dimensional B-spline basis defined on the N — 2 interior knots.

Ex. 5.9 Derive the Reinsch form Sy = (I+AK)~! for the smoothing spline.

Ex. 5.10 Derive an expression for Var(f(zo)) and bias(fx(zo)). Using the
example (5.22), create a version of Figure 5.9 where the mean and several
(pointwise) quantiles of fy(x) are shown.

Ex. 5.11 Prove that for a smoothing spline the null space of K is spanned
by functions linear in X.

Ex. 5.12 Characterize the solution to the following problem,

N
minRSS(/.0) = Yowilys — f)} 43 [P, (57)

where the w; > 0 are observation weights.
Characterize the solution to the smoothing spline problem (5.9) when
the training data have ties in X.

Exercises 159

Ex. 5.13 You have fitted a smoothing spline f)\ to a sample of N pairs
(i,). Suppose you augment your original sample with the pair z, fa (z0),
and refit; describe the result. Use this to derive the N-fold cross-validation
formula (5.26).

Ex. 5.14 Derive the constraints on the «; in the thin-plate spline expan-
sion (5.39) to guarantee that the penalty J(f) is finite. How else could one
ensure that the penalty was finite?

Ex. 5.15 This exercise derives some of the results quoted in Section 5.8.1.
Suppose K (z,y) satisfying the conditions (5.45) and let f(z) € Hx. Show
that

(a) <K(',(Ei),f>HK = f(xz)

(b) (K (-y24), K(-y25)) 1 = K (2, x5).

(c) If g(z) = "N, i K (2, x;), then
N N
= Z Z K(.’E“ .’Ej)OéiO[j.
i=1 j=1

+ p(x)7 with p(x) € Hg, and orthogonal in Hg

Suppose that g(x) = ()
=1,...,N. Show that

to each of K (z,x;), 1

(d)
N N
> Lyi,g(x:) + M (g }: (yi, 9(xi)) + A (9) (5.73)

i=1

with equality iff p(z) = 0.

Ex. 5.16 Consider the ridge regression problem (5.53), and assume M > N.
Assume you have a kernel K that computes the inner product K(z,y) =

Z%:l hm (-T)hm (y) .

(a) Derive (5.62) on page 147 in the text. How would you compute the
matrices V and D,, given K7 Hence show that (5.63) is equivalent
o (5.53).

(b) Show that

f = HB
= KK+)y, (5.74)

where H is the N x M matrix of evaluations h,, (z;), and K = HH”
the N x N matrix of inner-products h(z;)" h(z;).

160 5. Basis Expansions and Regularization
(¢) Show that
f) =)8
= ZK(x,xi)di (5.75)

and & = (K + A\I)~ly.
(d) How would you modify your solution if M < N?

Ex. 5.17 The scaling function ¢(x) of the the symmlet-p wavelet basis has
vanishing moments up to order p. Show that this implies that polynomials
of degree p are represented exactly in V{, defined on page 150.

Ex. 5.18 Show that the Haar wavelet transform of a signal of length N = 27
can be computed in O(N) computations.

Computational Considerations for Splines

In this appendix, we describe the B-spline basis for representing polynomial
splines. We also discuss their use in the computations of smoothing splines.

Appendix: B-splines

Before we can get started, we need to augment the knot sequence defined
in Section 5.2. Let £y < &1 and £x < £k 41 be two boundary knots, which
typically define the domain over which we wish to evaluate our spline. We
now define the augmented knot sequence 7 such that

o 7 <1y <o <y < &
L4 Tj+M:§j) J:177K7
o (1 STR+M+1 S TReMm+2 X S TR4oM-

The actual values of these additional knots beyond the boundary are arbi-
trary, and it is customary to make them all the same and equal to & and
&k 41, respectively.

Denote by B;.,(x) the ith B-spline basis function of order m for the
knot-sequence 7, m < M. They are defined recursively in terms of divided
differences as follows:

1 ifr <=z < Tit+1
0 otherwise

fori=1,... , K +2M — 1. These are also known as Haar basis functions.

Computational Considerations 161

T — T
Bim(z) = —_— Bim-1(x) + ————
Titm—1 —Ti Tit+m — Ti+1
fori=1,... , K+2M —m.

T —x
m Bi+1,m71($)

(5.77)

Thus with M =4, B;4, i = 1,--- K + 4 are the K + 4 cubic B-spline
basis functions for the knot sequence . This recursion can be contin-
ued and will generate the B-spline basis for any order spline. Figure 5.17
shows the sequence of B-splines up to order four with knots at the points
0.0,0.1,...,1.0. Since we have created some duplicate knots, some care
has to be taken to avoid division by zero. If we adopt the convention
that Bi,l =0 if Ty = Ti+1, then by induction Bi,m =0 if Ty = Ti+1 =
... = Tit+m-. Note also that in the construction above, only the subset
Bim, = M—-m+1,... , M 4+ K are required for the B-spline basis
of order m < M with knots &.

To fully understand the properties of these functions, and to show that
they do indeed span the space of cubic splines for the knot sequence, re-
quires additional mathematical machinery, including the properties of di-
vided differences. Exercise 5.2 explores these issues.

The scope of B-splines is in fact bigger than advertised here, and has to
do with knot duplication. If we duplicate an interior knot in the construc-
tion of the 7 sequence above, and then generate the B-spline sequence as
before, the resulting basis spans the space of piecewise polynomials with
one less continuous derivative at the duplicated knot. In general, if in ad-
dition to the repeated boundary knots, we include the interior knot ¢;
1 < r; < M times, then the lowest-order derivative to be discontinuous
at x = §; will be order M — r;. Thus for cubic splines with no repeats,
rj =1, j=1,..., K, and at each interior knot the third derivatives (4—1)
are discontinuous. Repeating the jth knot three times leads to a discontin-
uous lst derivative; repeating it four times leads to a discontinuous zeroeth
derivative, i.e., the function is discontinuous at x = ;. This is exactly what
happens at the boundary knots; we repeat the knots M times, so the spline
becomes discontinuous at the boundary knots (i.e., undefined beyond the
boundary).

The local support of B-splines has important computational implica-
tions, especially when the number of knots K is large. Least squares com-
putations with N observations and K + M variables (basis functions) take
O(N(K + M)? + (K + M)?) flops (floating point operations.) If K is some
appreciable fraction of N, this leads to O(N?) algorithms which becomes
unacceptable for large N. If the N observations are sorted, the N x (K +M)
regression matrix consisting of the K 4+ M B-spline basis functions evalu-
ated at the N points has many zeros, which can be exploited to reduce the
computational complexity back to O(N). We take this up further in the
next section.

162 5. Basis Expansions and Regularization

B-splines of Order 1

12

o8

o0

oo 02 04 06 o8 10

B-splines of Order 2

12

o8

04

oo

o8 12

a4

B-splines of Order 4

12

o8

0

oo

FIGURE 5.17. The sequence of B-splines up to order four with ten knots evenly
spaced from 0 to 1. The B-splines have local supporl; they are nonzero on an
interval spanned by M 4+ 1 knots.

Computational Considerations 163

Computations for Smoothing Splines

Although natural splines (Section 5.2.1) provide a basis for smoothing
splines, it is computationally more convenient to operate in the larger space
of unconstrained B-splines. We write f(z) = Zf[H v;Bj(z), where -y, are
coefficients and the Bj are the cubic B-spline basis functions. The solution
looks the same as before,

4= (BTB+2p) BTy, (5.78)

except now the N x N matrix N is replaced by the N x (N + 4) matrix
B, and similarly the (N + 4) x (N + 4) penalty matrix Qp replaces the
N x N dimensional Qp. Although at face value it seems that there are
no boundary derivative constraints, it turns out that the penalty term
automatically imposes them by giving effectively infinite weight to any non
zero derivative beyond the boundary. In practice, 4 is restricted to a linear
subspace for which the penalty is always finite.

Since the columns of B are the evaluated B-splines, in order from left
to right and evaluated at the sorted values of X, and the cubic B-splines
have local support, B is lower 4-banded. Consequently the matrix M =
(BTB + Af2) is 4-banded and hence its Cholesky decomposition M = LLT
can be computed easily. One then solves LLT~v = BTy by back-substitution
to give v and hence the solution f in O(N) operations.

In practice, when N is large, it is unnecessary to use all N interior knots,
and any reasonable thinning strategy will save in computations and have
negligible effect on the fit. For example, the smooth.spline function in S-
PLUS uses an approximately logarithmic strategy: if N < 50 all knots are
included, but even at N = 5,000 only 204 knots are used.

164 5. Basis Expansions and Regularization

This is page 165
Printer: Opaque this

6

Kernel Methods

In this chapter we describe a class of regression techniques that achieve
flexibility in estimating the regression function f(X) over the domain IR”
by fitting a different but simple model separately at each query point .
This is done by using ouly Lhose observalions close Lo Lhe largel poinl zg Lo
fit the simple model, and in such a way that the resulting estimated function
f (X) is stnooth in IRP. This localization is achieved via a weighting function
or kernel K (xg, x;), which assigns a weight to z; based on its distance from
9. The kernels K are typically indexed by a parameter A that dictates
the width of the neighborhood. These memory-based methods require in
principle little or no training; all the work gets done at evaluation time.
The only parameter that needs to be determined from the training data is
A. The model, however, is the entire training data set.

We also discuss more general classes of kernel-based techniques, which
tie in with structured methods in other chapters, and are useful for density
estimation and classification.

6.1 One-Dimensional Kernel Smoothers
In Chapter 2, we motivated the k-nearest-neighbor average
f(@) = Ave(ys|z; € Ni(2)) (6.1)

as an estimate of the regression function E(Y |X = z). Here Nj(z) is the set
of k points nearest to 2 in squared distance, and Ave denotes the average

15

10

o5

oo

Mearest-Neighbor Kemel Epanechnikov Kernel

6.1 One-Dimensional Kernel Smoothers 167

with the Epanechnikov quadratic kernel

K (z0,2) = D (@) , (6.3)
with
3 2 :
=) i <L
D(t) = { 0 otherwise. (6.4)

The fitted function is now continuous, and quite smooth in the right panel
of Figure 6.1. As we move the target from left to right, points enter the
neighborhood initially with weight zero, and then their contribution slowly
increases (see Exercise 6.1).

In the right panel we used a metric window size A = 0.2 for the kernel
fit, which does not change as we move the target point zg, while the size
of the 30-nearest-neighbor smoothing window adapts to the local density
of the x;. One can, however, also use such adaptive neighborhoods with
kernels, but we need to use a more general notation. Let hy(zg) be a width
function (indexed by A) that determines the width of the neighborhood at
zg. Then more generally we have

Kx(zo,2) = D (M> . (6.5)

hA(Io)

In (6.3), ha(zo) = A is constant. For k-nearest neighborhoods, the neigh-
borhood size k replaces A, and we have hi(20) = |20 — #[)| Where 2 is
the kth closest z; to xg.

There are a number of details that one has to attend to in practice:

¢ The smoothing parameter A, which determines the width of the local
neighborhood, has to be determined. Large A implies lower variance
(averages over more observations) but higher bias (we essentially as-
sume the true function is constant within the window).

e Metric window widths (constant hy(z)) tend to keep the bias of the
estimate constant, but the variance is inversely proportional to the
local density. Nearest-neighbor window widths exhibit the opposite
behavior; the variance stays constant and the absolute bias varies
inversely with local density.

e Issues arise with nearest-neighbors when there are ties in the z;. With
most smoothing techniques one can simply reduce the data set by
averaging the y; at tied values of X, and supplementing these new
observations at the unique values of z; with an additional weight w;
(which multiples the kernel weight).

168 6. Kernel Methods

= Epanechnikov
w© — Tri-cube
. —— Gaussian
" 4
& <
« o]
4
o U
=] T T T T T T T
-3 -2 -1 0 1 2 3

FIGURE 6.2. A comparison of three popular kernels for local smoothing. Fach
has been calibrated to iniegrate to 1. The tri-cube kernel is compact and has two
conlinuous derivatives al the boundary of its support, while the Epanechnikov ker-
nel has none. The Gaussian kernel is continuously differentiable, but has infinite

support.

e This leaves a more general problem to deal with: observation weights
w;. Operationally we simply multiply them by the kernel weights be-
fore computing the weighted average. With nearest neighborhoods, it
is now natural to insist on neighborhoods with a total weight content
k (relative to Y. ;). In the event of overflow (the last observation
needed in a neighborhood has a weight w; which causes the sum of
weights to exceed the budget k), then fractional parts can be used.

e Boundary issues arise. T'he metric neighborhoods tend to contain less
points on the boundaries, while the nearest-neighborhoods get wider.

e The Epanechnikov kernel has compact support (needed when used
with nearest-neighbor window size). Another popular compact kernel
is based on the tri-cube function

Q=) i<y
D(t) = { 0 otherwise (6.6)

This is flatter on the top (like the nearest-neighbor box) and is differ-
entiable at the boundary of its support. The Gaussian density funec-
tion D(t) = #(t) is a popular noncompact kernel, with the standard-
deviation playing the role of the window size. Figure 6.2 compares
the three.

6.1.1 Local Linear Regression

We have progressed [rom the raw moving average Lo a smoothly varying
locally weighted average by using kernel weighting. The smooth kernel fit
still has problems, however, as exhibited in Figure 6.3(left panel). Locally-
weighted averages can be badly biased on the boundaries of the domain,

0

oo

15

10

05

oo

10

oS

oo

10

[

a0

172 6. Kernel Methods

0.3

Variance

0.2

0.1

0.0

SRTTTH W VA TR TR T TR T UM T T I TRTTTTT W WU AT
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 6.6. The variances functions |[I(z)||* for local constant, linear and
quadratic regression, for a melvic bandwidth (N = 0.2) tri-cube kernel.

local polynomials. To summarize some collected wisdom on this issue:

e Local linear fits can help bias dramatically at the boundaries at a
modest cost in variance. Local quadratic fits do little at the bound-
aries for bias, but increase the variance a lot.

e Local quadratic fits tend to be most helpful in reducing bias due to
curvature in the interior of the domain.

e Asymptotic analysis suggest that local polynomials of odd degree
dominate those of even degree. This is largely due to the fact that
asymptotically the MSE is dominated by boundary effects.

While it may be helpful to tinker, and move from local linear fits at the
boundary to local quadratic fits in the interior, we do not recommend such
strategies. Usually the application will dictate the degree of the fit. For
example, if we are interested in extrapolation, then the boundary is of
more interest, and local linear fits are probably more reliable.

6.2 Selecting the Width of the Kernel

In each of the kernels K'y, A is a parameter that controls its width:

e lor the Epanechnikov or tri-cube kernel with metric width, A is the
radius of the support region.

e For the Gaussian kernel, A is the standard deviation.

e A is the number & of nearest neighbors in k-nearest neighborhoods,
often expressed as a fraction or span k/N of the total training sample.

6.2 Selecting the Width of the Kernel 173

FIGURE 6.7. Equivalent kernels for a local linear regression smoother (iri-cube
kernel; red) and a smoeothing spline (green), with malehing degrees of freedom.
The vertical spikes indicates the target poinis.

There is a natural bias—variance tradeofl as we change the width of the
averaging window, which is most explicit for local averages:

o If the window is narrow, f (z9) is an average of a small number of y;
close to @, and its variance will be relatively large—close to that of
an individual y;. The bias will tend to be small, again because each
of the E(y;) = f(x;) should be close to f(x0).

e If the window is wide, the variance of f (zg) will be small relative to
the variance of any y;, because of the effects of averaging. The bias
will be higher, because we are now using observations z; further from
xp, and there is no guarantee that f(z;) will be close to f(zg).

Similar arguments apply Lo local regression eslimales, say local linear: as
the width goes to zero, the estimates approach a piecewise-linear function
that interpolates the training data; as the width gets infinitely large, the
fit approaches the global linear least-squares fit to the data.

The discussion in Chapter 5 on sclecting the regularization parameter for
smoothing splines applies here, and will not be repeated. Local regression
smoothers are linear estimators; the smoother matrix in f = S,y is built up
from the equivalent kernels (6.8), and has ijth entry {Sy},; = li(z;). Leave-
one-out cross-validation is particularly simple (Exercise 6.7), as is general-
ized cross-validation, Cp (Exercise 6.10), and k-fold cross-validation. The
effective degrees of freedom is again defined as trace(S,), and can be used
to calibrate the amount of smoothing. Figure 6.7 compares the equivalent
kernels for a smoothing spline and local linear regression. 'I'he local regres-
sion smoother has a span of 40%, which results in df = trace(Sy) = 5.86.
The smoothing spline was calibrated to have the same df, and their equiv-
alent kernels are qualitatively quite similar.

174 6. Kernel Methods
6.3 Local Regression in IR?

Kernel smoothing and local regression generalize very naturally to two or
more dimensions. The Nadaraya-Watson kernel smoother fits a constant
locally with weights supplied by a p-dimensional kernel. Local linear re-
gression will fit a hyperplane locally in X, by weighted least squares, with
weights supplied by a p-dimensional kernel. It is simple to implement and
is generally preferred to the local constant fit for its superior performance
on the boundaries.

Let b(X) be a vector of polynomial terms in X of maximum degree d.
For example, with d =1 and p = 2 we get b(X) = (1, X1, X3); with d =2
we get b(X) = (1, X1, X, Xlz,X%, X,X5); and trivially with d = 0 we get
b(X) = 1. At each xo € IR? solve

N

min > K(z0,:) (s — bla)" B(zo))* (6.12)
* i=1

to produce the fit f(zq) = b(wo)T B(20). Typically the kernel will be a radial
function, such as the radial Epanechnikov or tri-cube kernel

K =a (2521 619

where ||-]] is the [Suclidean norm. Since the Iluclidean norm depends on the
units in each coordinate, it makes most sense to standardize each predictor,
for example, to unit standard deviation, prior to smoothing.

While boundary effects are a problem in one-dimensional smoothing,
they are a much bigger problem in two or higher dimensions, since the
fraction of points on the boundary is larger. In fact, one of the manifesta-
Lions of Lhe curse of dimensionalily is Lhal the [raclion of points close Lo Lhe
boundary increases to one as the dimension grows. Directly modifying the
kernel to accommodate two-dimensional boundaries becomes very messy,
especially for irregular boundaries. Local polynomial regression seamlessly
performs boundary correction to the desired order in any dimensions. Fig-
ure 6.8 illustrates local linear regression on some measurements from an
astronomical study with an unusual predictor design (star shaped). Here
the boundary is extremely irregular, and the fitted surface must also inter-
polate over regions of increasing data sparsity as we approach the boundary.

Local regression becomes less useful in dimensions much higher than two
or three. We have discussed in some detail the problems of dimensional-
ity, for example, in Chapter 2. It is impossible to simultaneously main-
tain localness (= low bias) and a sizeable sample in the neighborhood (=
low variance) as the dimension increases, without the total sample size in-
creasing exponentially in p. Visualization of f (X) also becomes difficult in
higher dimensions, and this is often one of the primary goals of smoothing.

=
kel
3
=

Ozone

ind nd ind ind
m T Tem

6.4 Structured Local Regression Models in IR” 177

6.4.1 Structured Kernels

One line of approach is to modify the kernel. The default spherical ker-
nel (6.13) gives equal weight to each coordinate, and so a natural default
strategy is to standardize each variable to unit standard deviation. A more
general approach is to use a positive semidefinite matrix A to weigh the
different coordinates:

il ((:e —)" Al -)) |

= (6.14)

Entire coordinates or directions can be downgraded or omitted by imposing
appropriate restrictions on A. For example, if A is diagonal, then we can
increase or decrease the influence of individual predictors X; by increasing
or deercasing A,;. Often the predictors arc many and highly correlated,
such as those arising from digitized analog signals or images. The covariance
function of the predictors can be used to tailor a metric A that focuses less,
say, on high-frequency contrasts (Exercise 6.4). Proposals have been made
for learning the parameters for multidimensional kernels. For example, the
projection-pursuil regression model discussed in Chaptler 11 is of this flavor,
where low-rank versions of A imply ridge functions for f (X). More general
models for A are cumbersome, and we favor instead the structured forms
for Lhe regression [unclion discussed nexl.

6.4.2 Structured Regression Functions

We are trying to fit a regression function E(Y|X) = f(X;, X2,...,X}) in
IRP, in which every level of interaction is potentially present. It is natural
to consider analysis-of-variance (ANOVA) decompositions of the form

[(X1, Xa,o Xp) =a+ Y ;(X))+ Y gke(Xi, Xe) +--- (6.15)
I k<é

and then introduce structure by eliminating some of the higher-order terms.
Additive models assume only main effect terms: f(X) =a+ 37, 9;(X;);
second-order models will have terms with interactions of order at most
two, and so on. In Chapter 9, we describe iterative backfitiing algorithms
for fitting such low-order interaction models. In the additive model, for
example, if all but the kth term is assumed known, then we can estimate gy,
by local regressionof Y -3 7k 9 (X;) on Xy. This is done for each function
in turn, repeatedly, until convergence. The important detail is that at any
stage, one-dimensional local regression is all that is needed. The same ideas
can be used to [it low-dimensional ANOVA decompositions.

An important special case of these structured models are the class of
varying coefficient models. Suppose, for example, that we divide the p pre-
dictors in X into a set (X, Xa,..., Xq) with ¢ < p, and the remainder of

Diamete:

om oA wom

M ou 40 s 0

IR T

S =g =S == & & =

=

o 3

6.5 Local Likelihood and Other Models 179

Male Female
&
2
: .
E —
g .
o
& 2
w
2 3
o
(=]

T T T o T na

00 0.2 0.4 06 08 10 00 0.2 04 06 [1R:] 1.0

Distance Down Acrta Distance Down Aorta

FIGURE 6.11. The intercept and slope of age as a function of distance down
the aorla, separalely for males and females. The yellow bands indicale one stan-
dard error.

6.5 Local Likelihood and Other Models

The concept of local regression and varying coeflicient models is extremely
broad: any parametric model can be made local if the Atting method ac-
commodates observation weights. Here are some examples:

o Associated with each observation y; is a parameter 0; = 0(x;) = 2! 8
linear in the covariate(s) z;, and inference for & is based on the log-
likelihood I(8) = Zi\;l l(yi, 2T B). We can model #(X) more flexibly
by using the likelihood local to g for inference of #(xzg) = 27 B(ao):

N
1(B(ao)) = Y Kx(@o, @:)l(ys, x] B(xo))-

i=1

Many likelihood models, in particular the family of generalized linear
models including logistic and log-linear models, involve the covariates
in a linear fashion. Local likelihood allows a relaxation from a globally
linear model to one that is locally linear.

180 6. Kernel Methods

e As above, except different variables are associated with 6 from those
used for defining the local likelihood:

N
1(0(20)) = D K (20, 2:) (s 1w, 0(20)))-
i=1
For example, n(z,0) = 76 could be a linear model in . This will fit
a varying coefficient model 0(z) by maximizing the local likelihood.

e Autoregressive time series models of order k have the form y; =
Bo + Brys—1 + Boye—2 + -+ + BrYi—k + £¢. Denoting the lag set by
2t = (Yt—1,Yt—25--- ,Yt—k), the model looks like a standard linear
model y; = 2§ 3 + 4, and is typically fit by least squares. Fitting
by local least squares with a kernel K (zo,z:) allows the model to
vary according the short-term history of the series. This is to be
distinguished from the more traditional dynamic linear models that
vary by windowing time.

As an illustration of local likelihood, we consider the local version of the
multi-class linear logistic regression model (4.32) of Chapter 4. The data
consist of features x; and an associated categorical response g; € {1,2,...,J},
and the linear model has the form

eﬁj0+ﬁij

1+ Z}i;l eBro+BTz

Pr(G = j|X = 2) = (6.18)

The local log-likelihood for this J class model can be written

N (
> Ka(wo, xi)iﬁgiom) + By, (20) " (1 — o)

i=1

— log

J-1
1+ > exp (Bro(zo) + Br(wo)” (z: — Io))] } .

o (6.19)

Notice that

o we have used g¢; as a subscript in the first line to pick out the appro-
priate numerator;

e B350 =0 and B; = 0 by the definition of the model;

e we have centered the local regressions at zg, so that the fitted poste-
rior probabilities at z¢ are simply

eBio(@o)

Lr Tl

Pr(G = j|X =x0) = (6.20)

6.5 Local Likelihood and Other Models 181

D_ N e e T D T W
«© @
o ° a ©°
T T
© o | O o |
@ [=]] [=]
[%] Q
% T % =
E o E o
T ow T
[=) (=]
o o |
o L umsmssmsmennauig | o L luyemmemmmie)|
100 140 180 220 15 25 35 45
Systolic Blood Pressure Obesity

FIGURE 6.12. Each plot shows the binary response CHD (coronary heart dis-
ease) as a function of a risk factor for the South African heari disease data.
For each plot we have computed the fitted prevalence of CHD using a local linear
logistic regression model. The unezrpected inerease in the prevalence of CHD at
the lower ends of the ranges is because these are retrospective data, and some of
the subjects had already undergone treatment to reduce their blood pressure and
weight. The shaded region in the plot indicates an estimaled pointwise standard
error band.

This model can be used for flexible multi-class classification in moder-
ately low dimensions, although successes have been reported with the high-
dimensional ZIP-code classification problem. Generalized additive models
(Chapter 9) using kernel smoothing methods are closely related, and avoid
dimensionality problems by assuming an additive structure for the regres-
sion function.

As a simple illustration we fit a two-class local linear logistic model to
the heart disease data of Chapter 4. Figure 6.12 shows the univariate local
logistic models fit to two of the risk factors (separately). This is a useful
screening device for detecting nonlinearities, when the data themselves have
little visual information to offer. In this case an unexpected anomaly is
uncovered in the data, which may have gone unnoticed with traditional
methods.

Since CHD is a binary indicator, we could estimate the conditional preva-
lence Pr(G = j|zp) by simply smoothing this binary response directly with-
out resorting to a likelihood formulation. This amounts to fitting a locally
constant logistic regression model (Exercise 6.5). In order to enjoy the bias-
correction of local-linear smoothing, it is more natural to operate on the
unrestricted logit scale.

Typically with logistic regression, we compute parameter estimates as
well as their standard errors. This can be done locally as well, and so

182 6. Kernel Methods
=
S -
(=]
o 2
T o
E ©
E (=]
2 3 -
5 (=]
(=]
w
(=]
g 4
[=]
L B TV T T I T - - .

100 120 140 160 180 200 220
Systolic Blood Pressure (for CHD group)

FIGURE 6.13. A kernel density estimale for systolic blood pressure (for the
CHD group). The density estimate at each point is the average contribution from
each of the kernels at that point. We have scaled the kernels down by a factor of
10 to make the graph readable.

we can produce, as shown in the plot, estimated pointwise standard-error
bands about our fitted prevalence.

6.6 Kernel Density Estimation and Classification

Kernel density estimation is an unsupervised learning procedure, which
historically precedes kernel regression. It also leads naturally to a simple
family of procedures for nonparametric classification.

0.6.1 Kernel Density Estimation

Suppose we have a random sample 2,... ,2xy drawn from a probability
density fx(x), and we wish to estimate fy at a point zg. For simplicity we
assume for now that X € IR. Arguing as before, a natural local estimate
has the form

Fr(ao) = £ EN @), (6.21)

where N (o) is a small metric neighborhood around @g of width A. This
eslimale is bumpy, and the smoolh Parzen eslimale is prelerred

N
Ix(zo) = FI-)T ZKA(SDF»’-'{)‘ (6.22)
f1

6.6 Kernel Density Estimation and Classification 183

L L L TT o
¢ R | = || , 3
2 g A o
E o £ o
g i3
=] s <
2 3 5 o
g ® $
R
7 =]
o e J
(=] 18 - -. .I I:Illllll (=] r - + + r
100 140 180 220 100 140 180 220
Systolic Blood Pressure Systolic Bleod Pressure

FIGURE 6.14. The left panel shows the two separate densily estimates for
systolic blood pressure in the CHD versus no-CHD groups, using o Cuussian
kernel density estimale in each. The right panel shows the estimaled poslerior
probabilities for CHD, using (6.25).

because it counts observations close to zp with weights that decrease with
distance from . In this case a popular choice for Ky is the Gaussian kernel
K(wo, &) = ¢(|@ — @o|/A). Figure 6.13 shows a Gaussian kernel density fit
to the sample values for systolic blood pressure for the CHD group. Letting
¢y denote the Gaussian density with mean zero and standard-deviation A,
then (6.22) has the form

fx(@)

o
N) oa(a —)
=1
= (Fxpr)(z), (6.23)

the convolution of the sample empirical distribution F with ¢y. The dis-
tribution F'(x) puls mass 1./N al each of the observed z;, and is jumpy; in
f x (x) we have smoothed F by adding independent Gaussian noise to cach
observation x;.

The Parzen density estimate is the equivalent of the local average, and
improvements have been proposed along the lines of local regression (on the
log scale for densities; see Loader (1999)). We will not pursue these here.
In IR? the natural generalization of the Gaussian density estimate amounts
to using the Gaussian product kernel in (6.23),

N

g 1 —%(||zi—zo)?
Jx(xo) = WZE 3l 1727, (6.24)

i=1

184 6. Kernel Methods

0.5

0.0

FIGURE 6.156. The population class densities may have interesting structure
(left) that disappears when the posterior probabilities are formed (right).

6.6.2 Kernel Density Classification

One can use nonparametric density estimates for classification in a straight-
forward fashion using Bayes’ theorem. Suppose for a J class problem we fit
nonparametric density estimates f;(X), j = 1,...,J separately in each of
the classes, and we also have estimates of the class priors #; (usually the
sample proportions). Then

??jfj(?n) '
):}:_1 7ix fr(zo)

IFigure 6.14 uses this method to estimate the prevalence of CIID for the
heart risk factor study, and should be compared with the left panel of Fig-
ure 6.12. The main difference occurs in the region of high SBP in the right
panel of Figure 6.14. In this region the data are sparse for both classes, and
since the Gaussian kernel densily estimales use webric kernels, the density
estimates are low and of poor quality (high variance) in these regions. The
local logistic regression method (6.20) uses the tri-cube kernel with k-NN
bandwidth; this effectively widens the kernel in this region, and makes use
of the local linear assumption to smooth out the estimate (on the logit
scale).

If classification is the ultimate goal, then learning the separate class den-
sities well may be unnecessary, and can in fact be misleading. Figure 6.15
shows an example where the densities are both multimodal, bul the pos-
terior ratio is quite smooth. In learning the separate densities from data,
one might decide to settle for a rougher, high-variance fit to capture these
features, which are irrelevant for the purposes of estimating the posterior
probabilities. In fact, if classitication is the ultimate goal, then we need only
to estimate the posterior well near the decision boundary (for two classes,
this is the set {z|Pr(G = 1|X =) = 3}).

Pr(7 = j|X =m) = (6.25)

6.6.2 The Naive Bayes Classifier

This is a technique that has remained popular over the years, despite its
name (also known as “Idiot’s Bayes”!) It is especially appropriate when

6.6 Kernel Density Estimation and Classification 185

the dimension p of the feature space is high, making density estimation
unattractive. The naive Bayes model assumes that given a class G = j, the

features X}, are independent:

£5X) =TT Far(X0)- (6.26)

k=1

While this assumption is generally not true, it does simplify the estimation
dramatically:

e The individual class-conditional marginal densities f;; can each be
estimated separately using one-dimensional kernel density estimates.
This is in fact a generalization of the original naive Bayes procedures,
which used univariate Gaussians to represent these marginals.

e If a component X; of X is discrete, then an appropriate histogram
estimate can be used. This provides a seamless way of mixing variable
types in a feature vector.

Despite these rather optimistic assumptions, naive Bayes classifiers often
outperform far more sophisticated alternatives. The reasons are related to
Figure 6.15: although the individual class density estimates may be biased,
this bias might not hurt the posterior probabilities as much, especially
near the decision regions. In fact, the problem may be able to withstand
considerable bias for the savings in variance such a “naive” assumption
earns.

Starting from (6.26) we can derive the logit-transform (using class J as
the base):

Pr(G = f|X) _ log ngg(X)
PI‘(G:J|X) ﬂJfJ(X)

—log me [15—, for(Xk)
oy Foe(Xk

logit

J
= Boe + ng(Xk)-
k=1

This has the form of a generalized additive model, which is described in more
detail in Chapter 9. The models are fit in quite different ways though; their
differences are explored in Exercise 6.9. The relationship between naive
Bayes and generalized additive models is analogous to that between linear
discriminant analysis and logistic regression (Section 4.4.4).

186 6. Kernel Methods
6.7 Radial Basis Functions and Kernels

In Chapter 5, functions are represented as expansions in basis functions:
flz) = Zj\il Bjhj(x). The art of flexible modeling using basis expansions
consists of picking an appropriate family of basis functions, and then con-
trolling the complexity of the representation by selection, regularization, or
both. Some of the families of basis functions have elements that are defined
locally; for example, B-splines are defined locally in IR. If more flexibility
is desired in a particular region, then that region needs to be represented
by more basis functions (which in the case of B-splines translates to more
knots). Tensor products of IR-local basis functions deliver basis functions
local in IRP. Not all basis functions are local—for example, the truncated
power bases for splines, or the sigmoidal basis functions o(ag + ax) used
in neural-networks (see Chapter 11). The composed function f(z) can nev-
ertheless show local behavior, because of the particular signs and values
of the coefficients causing cancellations of global effects. For example, the
truncated power basis has an equivalent B-spline basis for the same space
of functions; the cancellation is exact in this case.

Kernel methods achieve flexibility by fitting simple models in a region
local to the target point z¢. Localization is achieved via a weighting kernel
K, and individual observations receive weights Ky (xg, x;).

Radial basis functions combine these ideas, by treating the kernel func-
tions K (&, z) as basis functions. This leads to the model

M
flz) = _ZKAQ_ (&, 2)B;

L (e =&l
— ZD<7MJ)ﬁj, (6.28)
j=1

where each basis element is indexed by a location or prototype parameter £;
and a scale parameter A;. A popular choice for D is the standard Gaussian
density function. There are several approaches to learning the parameters
{X;,&.8;}, j =1,..., M. For simplicity we will focus on least squares
methods for regression, and use the Gaussian kernel.

e Optimize the sum-of-squares with respect to all the parameters:

2
N

- e N\T (s _ £
min MZ yi—ﬂo—Z@eXp{_(% fg))\z(ml fg)}
j=1

{Ajrgjvﬁj 1 ;=1 V]

(6.29)

This model is commonly referred to as an RBF network, an alterna-
tive to the sigmoidal neural network discussed in Chapter 11; the §;

6.7 Radial Basis Functions and Kernels 187

o8

o4

e
(=

FIGURE 6.16. Gaussian radial basis functions in IR with fized width can leave
holes (top panel). Renormalized Gaussian radial basis functions aveid this prob-
lem, and produce basis functions similar in some respects lo B-splines.

and A; playing the role of the weights. This criterion is nonconvex
with multiple local minima, and the algorithms for optimization are
similar to those used for neural networks.

o Iistimate the {);,&;} separately from the 8;. Given the former, the
estimation of the latter is a simple least squares problem. Often the
kernel parameters A; and & are chosen in an unsupervised way using
the X distribution alone. One of the methods is to [it a Gaussian
mixture density model to the training z;, which provides both the
centers & and the scales A;. Other even more adhoc approaches use
clustering methods to locate the prototypes &;, and treat A; = A
as a hyper-parameter. The obvious drawback of these approaches is
that the conditional distribution Pr(Y[X) and in particular £(Y]X)
is having no say in where the action is concentrated. On the positive
side, they are much simpler to implement.

While it would seem attractive to reduce the parameter set and assume
a constant value for A; = A, this can have an undesirable side effect of
creating holes—regions of IRP where none of the kernels has appreciable
support, as illustrated in Figure 6.16 (upper panel). Renormalized radial
basis functions,

D(||z — &1/

h; = .
L ey D(lle — &1/2)

(6.30)

avoid this problem (lower panel).

188 6. Kernel Methods

The Nadaraya—Watson kernel regression estimator (6.2) in IR” can be
viewed as an expansion in renormalized radial basis functions,

i N ol
fl@o) =Ty Ko

=, yihi(o) (6.31)

with a basis function h; located at every observation and coefficients y;;
that is, =2y Br=fp t= 1 (NG

6.8 Mixture Models for Density Estimation and
Classification

The mixture model is a useful tool for density estimation, and can be viewed
as a kind of kernel wethod. The Gaussian mixture model has the form

M
F@) =Y am(@; pims Bem) (6.32)

m=1

with mixing proportions o, Y, a,, =1, and each Gaussian density has
a mean Ji, and covariance matrix 3. In general, mixture models can use
any component densities in place of the Gaussian in (6.32): the Gaussian
mixture model is by far the most popular.

The parameters are usually fit by maximum likelihood, using the XM
algorithm as described in Chapter 8. Some special cases arise:

e If the covariance matrices are constrained to be scalar: X,, = o,,.1,
then (6.32) has the form of a radial basis expansion.

e If in addition o, = o > 0 is fixed, and M T N, then the max-
imum likelihood estimate for (6.32) approaches the kernel density
estimate (6.22) where &y, = 1/N and fi,,, = zp,.

Using Bayes’ theorem, separate mixture densities in each class lead to fex-
ible models for Pr(G|X); this is taken up in some detail in Chapter 12.

Figure 6.17 shows an application of mixtures to the heart disease risk-
factor study. In the top row are histograms of Age for the no CHD and CHD
groups separately, and then combined on the right. Using the combined
data, we fit a two-component mixture of the form (6.32) with the (scalars)
3, and Xy not constrained to be equal. Fitting was done via the EM
algorithm (Chapter 8): note that the procedure does not use knowledge of
the cHD labels. The resulting estimates were

iy = 36.4, 1 = 157.7, &y = 0.7,
.{12 = 58.0, Ez = 15.6, &3 = 0.3.

Count

10

8

5

o

No CHD

‘ ‘ ‘ | |
bl
20 a0 40 50 60

Age

n

e |
w 4
e

C
||.||.|

bt e el - it ity

L]
20

El

Age

HD
L]
§
40 50 80

30

20

10 5

5

o

20

P
30 40 50 B0

Combined

Age

190 6. Kernel Methods

using the CHD as a response, achieves Lhe same error rate (32%) when [it to
these data using maximum-likelihood (Section 4.4).

6.9 Computational Considerations

Kernel and local regression and density estimation are memory-based meth-
ods: the model is the entire training data set, and the fitting is done at
evaluation or prediction time. For many real-time applications, this can
make this class of methods infeasible.

The computational cost to fit at a single observation zq is O(N) flops,
except in oversimplified cases (such as square kernels). By comparison,
an expansion in M basis functions costs O(M) for one evaluation, and
typically M ~ O(log N). Basis function methods have an initial cost of at
least O(NM? + M?®).

The smoothing parameter(s) A for kernel methods are typically deter-
mined off-line, for example using cross-validation, at a cost of O(N?) flops.

Popular implementations of local regression, such as the loess function
in 8-PIAUIS and the locfit procedure (Toader, 1999), use friangnlation
schemes to reduce the computations. They compute the fit exactly at M
carefully chosen locations ((J(NM)), and then use blending techniques to
interpolate the fit elsewhere (O(M) per evaluation).

Bibliographic Notes

There is a vast literature on kernel methods which we will not attempt to
summarize. Rather we will point to a few good references that themselves
have extensive bibliographies. Loader (1999) gives excellent coverage of lo-
cal regression and likelihood, and also describes state-ol-the-art software
for fitting these models. Fan and Gijbels (1996) cover these models from
a more theoretical aspect, Hastie and Tibshirani (1990) discuss local re-
gression in the context of additive modeling. Silverman (1986) gives a good
overview of density estimation, as does Scott (1992).

Exercises

Iix. 6.1 Show that the Nadaraya—Watson kernel smooth with fixed metric
bandwidth A and a Gaussian kernel is differentiable. What can be said for
the Epanechnikov kernel? What can be said for the Epanechnikov kernel
with adaptive nearest-neighbor bandwidth A(a0)?

Exercises 191

Ex. 6.2 Show that Zf;l(mif:ﬂo)li (zo) = 0 for local linear regression. Define
bj(xo) = Zf\;(@"z — 20)71;(z0). Show that by(zg) = 1 for local polynomial
regression of any degree (including local constants). Show that b;(z) = 0
for all j € {1,2,... ,k} for local polynomial regression of degree k. What
are the implications of this on the bias?

Ex. 6.3 Show that ||I(z)|| (Section 6.1.2) increases with the degree of the
local polynomial.

Ex. 6.4 Suppose that the p predictors X arise from sampling relatively
smooth analog curves at p uniformly spaced abscissa values. Denote by
Cov(X|Y) = X the conditional covariance matrix of the predictors, and
assume this does not change much with Y. Discuss the nature of Maha-
lanobis choice A = X~ for the metric in (6.14). How does this compare
with A = I? How might you construct a kernel A that (a) downweighs
high-frequency components in the distance metric; (b) ignores them com-
pletely?

Ex. 6.5 Show that fitting a locally constant multinomial logit model of
the form (6.19) amounts to smoothing the binary response indicators for
each class separately using a Nadaraya—Watson kernel smoother with kernel
weights K (xo, x;).

Ex. 6.6 Suppose that all you have is software for fitting local regression,
but you can specify exactly which monomials are included in the fit. How
could you use this software to fit a varying-coefficient model in some of the
variables?

Ex. 6.7 Derive an expression for the leave-one-out cross-validated residual
sum-of-squares for local polynomial regression.

Ex. 6.8 Suppose that for continuous response Y and predictor X, we model
the joint density of X,Y using a multivariate Gaussian kernel estimator.
Note that the kernel in this case would be the product kernel ¢ (X)px(Y).
Show that the conditional mean E(Y|X) derived from this estimate is a
Nadaraya—Watson estimator. Extend this result to classification by pro-
viding a suitable kernel for the estimation of the joint distribution of a
continuous X and discrete Y.

Ex. 6.9 Explore the differences between the naive Bayes model (6.27) and
a generalized additive logistic regression model, in terms of (a) model as-
sumptions and (b) estimation. If all the variables X} are discrete, what can
you say about the corresponding GAM?

Ex. 6.10 Suppose we have N samples generated from the model y; = f(x;)+
€i, with g; independent and identically distributed with mean zero and
variance o2, the x; assumed fixed (non random). We estimate f using a

192 6. Kernel Methods

linear smoother (local regression, smoothing spline, etc.) with smoothing
parameter A. Thus the vector of fitted values is given by f = S,y. Consider
the in-sample prediction error

N
PE()) = E%? > i — An(@))? (6.34)
i=1

[or predicling new responses al the N inpul values, Show (hal the aver-
age squared residual on the training data, ASR(A), is a biased estimate
(optimistic) for PIE(A), while

202

Cy = ASR(A) -+ Ttl‘aﬂe(s,\) (6.35)

is unbiased.

[ix. 6.11 Show that for the Gaussian mixture model (6.32) the likelihood
is maximized at +4o0, and describe how.

[4x. 6.12 Write a compuler program to perform a local linear discrimi-
nant analysis. At each query point zg, the training data receive weights
Ki(zqg, x;) from a weighting kernel, and the ingredients for the linear deci-
sion boundaries (see Section 4.3) are cotpuled by weighted averages, Try
out your program on the zipcode data. and show the training and test er-
rors for a series of five pre-chosen values of A. The zipcode data are available
from the book website www-stat.stanford.edu/ElemStatLearn.

7

Model Assessment and Selection

7.1 Introduction

The generalization performance of a learning method relates to ils predic-
tion capability on independent test data. Assessment of this performance
is extremely important in practice, since it guides the choice of learning
method or model, and gives us a measure of the quality of the ultimately
chosen model.

In this chapter we describe and illustrate the key methods for perfor-
mance assessment, and show how they are used to select models. We begin
the chapter with a discussion of the interplay between bias, variance and
model complexity.

7.2 Bias, Variance and Model Complexity

Figure 7.1 illustrates the important issue in assessing the ability of a learn-
ing method to generalize. This is the same as Figure 2.11; because it is
so important, we display it here again. Consider [irst the case ol a quan-
titative or interval scale response. We have a target variable Y, a vector
of inputs X, and a prediction model f(X) that has been estimated from
a training sample. The loss function for measuring errors between Y and

This is page 193
Printer: Opaque this

194 7. Model Assessment and Selection

High Bias Low Bias
Low Variance High Variance
- mmmm— e -

Test Sample

Prediction Error

e
7N

Training Sample T o

Low High
Model Complexity

FIGURE 7.1. Behavior of test sample and training sample error as the model
complezily is varied.

f (X) is denoted by L(Y, f (X)). Typical choices are

(Y — f(X))? squared error

A 71
Y = f(X)] absolute error. 1)

L(Y, f(X)) = {
Test error, also referred to as generalization error, is the expected predic-
tion error over an independent test sample

Err = B|L(Y, f(X))], (7.2)

where both X and Y are drawn randomly from their joint distribution
(population). Note that this expectation averages anything that is random,
including the randomness in the training sample that produced f. Training
error is the average loss over the training sample

i ;
ot = = > Liwi, f(:)- (7.3)
i=1

We would like to know the test error of our estimated model f . As the model
becomes more and more complex, it is able to adapt to more complicated
underlying structures (a decrease in bias), but the estimation error increases
(an increase in variance). In between there is an optimal model complexity
that gives minimum test error.

Unfortunately training error is not a good estimate of the test error,
as seen in Figure 7.1. Training error consistently decreases with model
complexity, typically dropping to zero if we increase the model complexity
enough. However, a model with zero training error is overfit to the training
data and will typically generalize poorly.

7.2 Bias, Variance and Model Complexity 195

The story is similar for a qualitative or categorical response G taking one
of K values in a set G, labelled for convenience as 1,2,..., K. Typically
we model the probabilities pr(X) = Pr(G = k|X) (or some monotone
transformations fi (X)), and then G(X) = arg maxy fix (X). In some cases,
such as l-nearest neighbor classification (Chapters 2 and 13) we produce
G"(X) directly. Typical loss functions are

LG, G(X)) = I(G#£G(X)) 0-1loss, (7.4)
K
LG (X)) = —2) I(G=k)logp(X)
k=1
= —2logpa(X) log-likelihood. (7.5)

The log-likelihood is sometimes referred to as cross-entropy loss or deviance.

Again, test error is given by Krr = E[L(G,G(X))], the expected mis-
classification rate, or Err = E[L(G,p(X))]. Training error is the sample
analogue, for example,

_o N
erT = F Z} log ﬁg;{-’”i)a (7.6)

the sample log-likelihood for the model.

The log-likelihood can be used as a loss-function for general response
densities, such as the Poisson, gamma, exponential, log-normal and others.
If Prgcxy (V') is the density of Y, indexed by a parameter 0(X) that depends
on the predictor X, then

L(Y, H(X)) =-2- lng Prg(x)(Y). (77)

The 2" in the definition makes the log-likelihood loss for the Gaussian
distribution match squared-error loss.

For ease of exposition, for the remainder of this chapter we will use ¥ and
f(X) to represent all of the above situations, since we focus mainly on the
quantitative response (squared-error loss) setting. For the other situations,
the appropriate translations are obvious.

In this chapter we describe a number of methods for estimating the test
error curve for a model. Typically our model will have a tuning parameter
or parameters « and so we can write our predictions as f, (). The tuning
parameter varies the complexity of our model, and we wish to find the value
of & that minimizes error, that is, produces the minimum of the test error
curve in Figure 7.1, Having said this, for brevity we will often suppress the
dependence of f(z) on a.

T is important Lo note that there are in lacl two separale goals thal, we
might have in mind:

Model selection: estimating the performance of different models in order
to choose the (approximate) best one.

196 7. Model Assessment and Selection

Model assessment: having chosen a [inal model, estimating its predic-
tion error (generalization error) on new data.

If we are in a data-rich situation, the best approach for both problems is
to randomly divide the dataset into three parts: a training set, a validation
set, and a test set. The training set is used to fit the models; the validation
set is used to estimate prediction error for model selection; the test set is
used for assessment of the generalization error of the final chosen model.
Ideally, the test set should be kept in a “vault,” and be brought out only
at the end of the data analysis. Suppose instead that we use the test set
repeatedly. choosing the model with smallest test set error. Then the test
set error of the final chosen model will underestimate the true test error,
sometimes substantially.

It is difficult to give a general rule on how to choose the number of
observations in each of the three parts, as this depends on the signal-to-
noise ratio in the data and the training sample size. A typical split might
be 50% for training, and 25% each for validation and testing:

Validation Test

The methods in this chapler are designed for siluations where there is
insufficient data to split it into three parts. Again it is too difficult to give
a general rule on how much training data is enough; among other things,
this depends on the signal-to-noise ratio of the underlying function, and
the complexity of the models being fit to the data.

The methods of this chapter approximate the validation step either an-
alytically (AIC, BIC, MDL, SRM) or by eflicient sample re-use (cross-
validation and the bootstrap). Besides their use in model selection, we also
examine Lo whal exlenl each method provides a reliable eslimale of Lesl
error of the final chosen model.

Before jumping into these topics, we first explore in more detail the
nature of test error and the bias—variance tradeoff.

7.3 The Bias-Variance Decomposition

As in Chapter 2, if we assume that Y = f(X) 4+ £ where E(s) = 0 and
Var(s) = 02, we can derive an expression for the expected prediction error

7.3 The Bias—Variance Decomposition 197

of a regression fit f (X) at an input point X = zg, using squared-error loss:

Err(es) = EI(Y — f(20)*|X = ao]
= o2 +[Bf(@0) — J(@)]? + Blf(zo) — f(zo))
02 + Bias?(f (o)) + Var(f (20))
= TIrreducible Error 4+ Bias® + Variance. (7.8)

The first term is the variance of the target around its true mean f (a;o) and
cannot be avoided no matter how well we estimate f(zo), unless o2 = 0.
The second term is the squared bias, the amount by which the average of
our estimate differs from the true mean; the last term is the variance; the
expected squared deviation of f (z0) around its mean. Typically the more

comnlex we make the model £ the lower the (sauared) hias but the hicher
complex we make the model f, the lower the (squared) bias but the higher
the variance.
Tar the konearect neiohhor roeoroacion Bt theae cxnrecciong have fhe ame
For the k-ncarcst-neighbor regression fit, these cxpressions have the sim:
ple form
_ £ 2 _
Err(zo) = E[Y — fk(xo)) |X = xo|
_ 2
- o2y [§ jf) } +o?/k. (7.9)

Here we assume for simplicity that training inputs z; are fixed, and the ran-
domness arises from the y;. The number of neighbors k is inversely related
to the model complexity. For small k, the estimate fk (z) can potentially
adapt itself better to the underlying f(z). As we increase k, the bias—the
squared difference between f(x¢) and the average of f(z) at the k-nearest
neighbors—will typically increase, while the variance decreases.

For a linear model fit fp(m) = 3Tz, where the parameter vector 3 with

p components is fit by least squares, we have

E[(Y = fp(20))?|X = 0]
o2 + [f(z0) — Efp(20)]* + [(zo)||*02. (7.10)

Err(zo)

Here h(xo) is the N-vector of linear weights that produce the fit f,(zo) =
zf(XTX)1XTy, and hence Va,r[fp(xo)] = ||h(zo)||?02. While this vari-
ance changes with xo, its average (over the sample values x;) is (p/N)o2,
and hence

N ZErr x;) =02 4 — N Z (z;) — Ef(z;)]? +]Z\J]cr?, (7.11)

the in-sample error. Here model complexity is directly related to the num-
ber of parameters p.

198 7. Model Assessment and Selection

The test error Err(zo) for a ridge regression fit fa(zq) is identical in
form to (7.10), except the linear weights in the variance term are different:
h(zg) = X(XTX + aI)~!zg. The bias term will also be different.

For a linear model family such as ridge regression, we can break down
the bias more finely. Let 3, denote the parameters of the best-fitting linear
approximation to f:

§. = argmin B (F(X)—B7X)%. (7.12)

Here the expectation is taken with respect to the distribution of the input
variables X. Then we can write the average squared bias as

7 2 T, 12 T aro 12
By, |(20) = Efa(wo)] = Euq [f(@0) = 0] + Eu, [8700 — EBT o]
= Ave[Model Bias|? + Ave[Estimation Bias|>
(7.13)

The first term on the right-hand side is the average squared model bias, the
error between the best-fitting linear approximation and the true function.
The second term is the average squared estimation bias, the error between
the average estimate E(37z() and the best fitting linear approximation.

For linear models fit by ordinary least squares, the estimation bias is zero.
For restricted fits, such as ridge regression, it is positive, and we trade it off
with the benefits of a reduced variance. The model bias can only be reduced
by enlarging the class of linear models to a richer collection of models, by
including interactions and transformations of the variables in the model.

Figure 7.2 shows the bias—variance tradeoff schematically. In the case
of linear models, the model space is the set of all linear predictions from
p inputs and the black dot labeled “closest fit” is 8Xx. The blue-shaded
region indicates the error o, with which we see the truth in the training
sample.

Also shown is the variance of the least squares fit, indicated by the large
yellow circle centered at the black dot labelled “closest fit in population’.
Now if we were to fit a model with fewer predictors, or regularize the coef-
ficients by shrinking them toward zero (say), we would get the “shrunken
fit” shown in the figure. This fit has an additional estimation bias, due to
the fact that it is not the closest fit in the model space. On the other hand,
it has smaller variance. If the decrease in variance exceeds the increase in
(squared) bias, then this is worthwhile.

7.3.1 Ezxample: Bias—Variance Tradeoff

Figure 7.3 shows the bias—variance tradeoff for two simulated examples.
There are 50 observations and 20 predictors, uniformly distributed in the
hypercube [0, 1]?°. The situations are as follows:

Closest fit in population

Realization |
N Closest fit
Truth . / MODEL
L SPACE
Model bias.— |
Estimation Bias _____ X L Shrunken fit
Estimation -~

RESTRICTED
MODEL SPACE

200 7. Model Assessment and Selection

Left panels: Y is 0if X7 < 1/2 and 1i[X; > 1/2, and we apply k-nearest
neighbors.

Right panels: Y is 1 if 2}21 X is greater than 5 and 0 otherwise, and we
use best subsel linear regression of size p.

The top row is regression with squared error loss; the bottom row is classi-
fication with 0-1 loss. The figures show the prediction error (red), squared
bias (green) and variance (blue), all computed for a large test sample.

In the regression problems, bias and variance add to produce the predic-
tion error curves, with minima at about k = 5 for k-nearest neighbors, and
p = 10 for the linear model. For classification loss (bottom figures), some
interesting phenomena can be seen. The bias and variance curves are the
same as in the top figures, and prediction error now refers to misclassifi-
cation rate. We see that prediction error is no longer the sum of squared
bias and variance. For the k-nearest neighbor classifier, prediction error
decreases or stays the same as the number of neighbors is increased to 20,
despite the fact that the squared bias is rising. For the linear model classi-
fier the minimum occurs for p > 10 as in regression, but the improvement
over the p = 1 model is more dramatic. We see that bias and variance seem
to interact in determining prediction error.

Why does this happen? There is a simple explanation for the first phe-
nomenon. Suppose at a given input point, the true probability of class 1 is
0.9 while the expected value of our estimate is 0.6. Then the squared bias—
(0.6 —0.9)?—is considerable, but the prediction error is zero since we make
the correct decision. In other words, estimation errors that leave us on the
right side of the decision boundary don’t hurt. Exercise 7.2 demonstrates
this phenomenon analytically, and also shows the interaction effect between
bias and variance.

The overall point is that the bias-variance tradeofl behaves dilferently
for 01 loss than it does for squared error loss. This in turn means that
the best choices of tuning parameters may differ substantially in the two
settings. One should base the choice of tuning parameter on an estimate of
prediction error, as described in the following sections.

7.4 Optimism of the Training Error Rate
Typically, the training error rate
1 :
o = ; Ly f(21)) (7.14)

will be less than the true error Err = E[L(Y, f (X))], because the same
data is being used to fit the method and assess its error. A fitting method

7.4 Optimism of the Training Error Rate 201

k-NN - Regression Linear Model - Regression
@ | 2 =

0.1

/
If

o ,/_’—.

o o |
o 1. ; = v r o T

50 40 30 20 0 o 5 o 15 20

Mumber of Neighbors K Subset Size p
k-NN - Classification Linear Model - Classification

0w o |
o o
3 3
L] “y
o 7 o

00
0o

40 30 20 10
Number of Nelghbers k Subset Size p

S
o
w
o
&
3

FIGURE 7.3. Prediction error (red), squared bias (green) and variance (blue)
for a simulated example. The lop row is regression with squared error loss; the
bottom row is classificalion with 0-1 loss. The models are k-nearest neighbors
(left) and best subsel regression of size p (vight). The variance and bias curves
are the same in regression and classification, but the prediction error curve is

different.

202 7. Model Assessment and Selection

typically adapts to the training data, and hence the apparent or training
error et will be an overly optimistic estimate of the generalization error
Err.

Part of the discrepancy is due to where the evaluation points occur. Err
is a kind of extra-sample error, since the test feature vectors don’t need to
coincide with the training feature vectors. The nature of the optimism in
€rT is easiest to understand when we focus not on Err but on the in-sample
error

N
1 new A
Erry = Z;EynewL(Y; ,f(@)). (7.15)
3=
The Y™V notation indicates that we observe N new response values at
each of the training points z;, i = 1,2,..., N. We define the optimism as
the expected difference between Erri, and the training error ert:

.) b S — VT3
Op = LITip — my\err). ((.10)

This is typically positive since efT is usually biased downward as an estimate
of prediction error.

For squared error, 0-1, and other loss functions, one can show quite
generally that

N
2 .
op= o Z Cov(i, i), (7.17)
i=1

where Cov indicates covariance. Thus the amount by which €ff underesti-
mates the true error depends on how strongly y; affects its own prediction.
The harder we fit the data, the greater Cov(g;,y;) will be, thereby increas-
ing the optimism. Exercise 7.4 proves this result for squared error loss where
9; is the fitted value from the regression. For 0-1 loss, ¢; € {0,1} is the
classification at z;, and for entropy loss, g; € [0,1] is the fitted probability
of class 1 at z;.
In summary, we have the important relation

N
2 .
Errin = Ey (eT) + N Z; Cov (i, yi)- (7.18)
i—

This expression simplifies if ¢; is obtained by a linear fit with d inputs
or basis functions. For example,

N

Z Cov(9s,y;) = do? (7.19)

=1

for the additive error model Y = f(X) + ¢, and so

d
Erry, = Eerr 4+ 2- Nag. (7.20)

7.5 Estimates of In-Sample Prediction Error 203

The optimism increases linearly with the number d of inputs or basis func-
tions we use, but decreases as the training sample size increases. Versions
of (7.20) hold approximately for other error models, such as binary data
and entropy loss.

An obvious way to estimate prediction error is to estimate the optimism
and then add it to the training error rate T, The methods described in the
next section—AIC, BIC and others—work in this way, for a special class
of estimates that are linear in their parameters.

In contrast, the cross-validation and bootstrap methods, described later
in the chapter, are direct estimates of the extra-sample error Err. These
general tools can be used with any loss function, and with nonlinear, adap-
tive fitting techniques.

In-sample error is not usually of direct interest since future values of the
features arc not likely to coincide with with their training set values. But for
comparison between models, in-sample error is convenient and often leads
to effective model selection. The reason is that the relative (not absolute)
size of the error is what matters.

¥

5 [Estimates of In-Sample Prediction Error

The general form of the in-sample estimates is
Brri, = &F + 0p, (7.21)

where 6p is an estimate of the optimism.
Using expression (7.20), applicable when d parameters are fit under
squared error loss, leads to the so-called C, statistic,
d .
Cp,=err+2-—62. (7.22)
N
Here 42 is an estimate of the noise variance, obtained from the mean-
squared error of a low-bias model. Using this criterion we adjust the training
error by a factor proportional to the number of basis functions used.
The Akaike information criterion is a similar but more generally appli-

cable estimate of Errj, when a log-likelihood loss function is used. It relies
on a relationship similar to (7.20) that holds asymptotically as N — oo:

2 Eflog Pry(Y)] ~ ~% . Elloglik] + 2- Iii-. (7.23)

Here Prg(Y) is a family of densitics for Y (containing the “truc” density),
6 is the maximum-likelihood estimate of 6, and “loglik” is the maximized
log-likelihood:
N
loglik = > " log Pr;(ys). (7.24)

i=1

204 7. Model Assessment and Selection

For example, for the logistic regression model, using the binomial log-
likelihood, we have
2 . d
AIC = N loglik + 2 - N (7.25)
For the Gaussian model (with variance o2 = 62 assumed known), the AIC
statistic is equivalent to C,, and so we refer to them collectively as AIC.

To use AIC for model selection, we simply choose the model giving small-
est AIC over the set of models considered. For nonlinear and other complex
models, we need to replace d by some measure of model complexity. We
discuss this in Section 7.6.

Given a set of models f,(z) indexed by a tuning parameter «, denote
by ert(«) and d(a) the training error and number of parameters for each
model. Then for this set of models we define

AIC(a) = &Fr(a) + 2 %&g. (7.26)
The function AIC(«) provides an estimate of the test error curve, and we
find the tuning parameter & that minimizes it. Our final chosen model
is fa(z). Note that if the basis functions are chosen adaptively, (7.19) no
longer holds. For example, if we have a total of p inputs, and we choose
the best-fitting linear model with d < p inputs, the optimism will exceed
(2d/N)o2. Put another way, by choosing the best-fitting model with d
inputs, the effective number of parameters fit is more than d.

Figure 7.4 shows AIC in action for the phoneme recognition example
of Section 5.2.3 on page 124. The input vector is the log-periodogram of
the spoken vowel, quantized to 256 uniformly spaced frequencies. A lin-
ear logistic regression model is used to predict the phoneme class, with
coefficient function S(f) = Zn]\le R (f)0m, an expansion in M spline ba-
sis functions. For any given M, a basis of natural cubic splines is used
for the h,,, with knots chosen uniformly over the range of frequencies (so
d(a) = d(M) = M). Using AIC to select the number of basis functions will
approximately minimize Err(M) for both entropy and 0-1 loss.

The simple formula

N
(2/N) Y Cov(gi, y:) = (2d/N)a?

=1

holds exactly for linear models with additive errors and squared error loss,
and approximately for linear models and log-likelihoods. In particular, the
formula does not hold in general for 0-1 loss (Efron, 1986), although many
authors nevertheless use it in that context (right panel of Figure 7.4).

7.6 The Effective Number of Parameters 205

Log-likelihood Loss 0-1 Loss
Ia‘? . A 3 1
o —— Tmain / =
——— Test
—— AC 8 |
o =]
S
&€ |
o
o

- -
D00

Ne=g=0
ORO\O — 0\
2 4 8 16 32 s4 128 2 4 8 16 32 64 128
Mumber of Basis Functions MNumber of Basis Functions

Log-likelihood
Misclassification Errar
020

15

1.0
7
Vi
o

|
(o]
\
o)
|
o
Q

05
0.10

FIGURE 7.4, AIC wused for model selection for the phoneme recogni-
tion erxample of Section 5.2.3. The logistic regression coefficient funetion
BN =M h(f)0m is modeled as an expansion in M spline basis functions.
In the left panel we see the AIC siatistic used to estimate Erry, using log-likelihood
loss. Included is an estimate of Err based on an independent test sample. It does
well except for the extremely over-parametrized case (M = 256 paramelers for
N = 1000 observalions). In the right panel the same is done for 0-1 loss. Al-
though the AIC' formula does not strictly apply here, il does a reasonable job in

this case.

7.6 The Effective Number of Parameters

The concept of “number of parameters” can be generalized, especially to
models where regularization is used in the fitting. Suppose we stack the

outcomes yq,y2,... ,yn into a vector y, and similarly for the predictions
y. Then a linear fitting method is one for which we can write
y =S8y, (7.27)

where 8 is an N x N matrix depending on the input vectors z; but not on
the ;. Linear fitting methods include linear regression on the original fea-
tures or on a derived basis set, and smoothing methods that use quadratic
shrinkage, such as ridge regression and cubic smoothing splines. Then the
effective number of parameters is defined as

d(S) = trace(S), (7.28)

the sum of the diagonal elements of 8. Note that if S is an orthogonal-
projection matrix onto a basis set spanned by M features, then trace(S) =

206 7. Model Assessment and Selection

M. Tt turns out that trace(S) is exactly the correct quantity to replace d as
the number of parameters in the C, statistic (7.22) (Exercise 7.4 and 7.5).
We motivate d = trace(S) in some detail in Section 5.4.1 on page 129.

For models like neural networks, in which we minimize an error function
R(w) with weight decay penalty (regularization) ad" w2, the effective
number of parameters has the form

Moy
d(a) = m_ (7.29)
mzzl O +

where the 6, are the eigenvalues of the Hessian matrix 6%R(w)/dwdw™.
Expression (7.29) follows from (7.28) if we make a quadratic approximation
to the error function at the solution (Bishop, 1995).

7.7 The Bayesian Approach and BIC

The Bayesian information criterion (BIC), like AIC, is applicable in settings
where the fitting is carried out by maximization of a log-likelihood. The
generic form of BIC is

BIC = —2 - loglik + (log N) - d. (7.30)

The BIC statistic (times 1/2) is also known as the Schwartz criterion
(Schwartz, 1979).

Under the Gaussian model, assuming the variance o2 is known, —2-loglik
equals (up to a constant) Y, (v — f(2:))? /o2, which is N -ert/o? for squared
error loss. Hence we can write

BIC = % [m + (log N) - %ag] (7.31)
Therefore BIC is proportional to AIC (C,), with the factor 2 replaced
by log N. Assuming N > e? ~ 7.4, BIC tends to penalize complex models
more heavily, giving preference to simpler models in selection. As with AIC,
o2 is typically estimated by the mean squared error of a low-bias model.
For classification problems, use of the multinomial log-likelihood leads to a
similar relationship with the AIC, using cross-entropy as the error measure.
Note however that the misclassification error measure does not arise in the
BIC context, since it does not correspond to the log-likelihood of the data
under any probability model.

Despite its similarity with AIC, BIC is motivated in quite a different
way. It arises in the Bayesian approach to model selection, which we now
describe.

Suppose we have a set of candidate models M,,,m = 1,... ,M and
corresponding model parameters 6,,, and we wish to choose a best model

7.7 The Bayesian Approach and BIC 207

from among them. Assuming we have a prior distribution Pr(6,,|M,,) for
the parameters of each model M, the posterior probability of a given

TT1 11 1T 111LY Ol a

model is
Pr(Mp|Z) « Pr(M,,) - Pr(Z|M,y,) (7.32)
x Pr(M,)- / Pr(Z{0,m, Mon PO Mon)d0,
where Z represents the training data {mz,yl}f[To compare two models
M, and My, we form the posterior odds

Pr(M,|Z) Pr(My,) Pr(Z|M,,)

Pr(M/|Z) ~ Pr(M,) Pr(ZM,)" (7.33)

If the odds are greater than one we choose model m, otherwise we choose
model £. The rightmost quantity

_ Pr(Z|M,,)

BF(Z) = Pr(Z|My)

(7.34)
is called the Bayes factor, the contribution of the data toward the posterior
odds.

Typically we assume that the prior over models is uniform, so that
Pr(M,,) is constant. We need some way of approximating Pr(Z|M,,).
A so-called Laplace approximation to the integral followed by some other
simplifications (Ripley, 1996, page 64) to (7.32) gives

log Pr(Z| My,) = 10g Pr(Z|0m, My) — dTm ‘log N4+ 0(1). (7.35)

Here ém is a maximum likelihood estimate and d,, is the number of free
parameters in model M,,. If we define our loss function to be

—21log Pr(Z|0,m, M),

this is equivalent to the BIC criterion of equation (7.30).

Therefore, choosing the model with minimum BIC is equivalent to choos-
ing the model with largest (approximate) posterior probability. But this
framework gives us more. If we compute the BIC criterion for a set of M,
models, giving BIC,,,, m =1,2,..., M, then we can estimate the posterior
probability of each model M,, as

672-BICm

W- (7.36)

Thus we can estimate not only the best model, but also assess the relative
merits of the models considered.

208 7. Model Assessment and Selection

For model selection purposes, there is no clear choice between AIC and
BIC. BIC is asymptotically consistent as a selection criterion. What this
means is that given a family of models, including the true model, the prob-
ability that BIC will select the correct model approaches one as the sample
size N — oo. This is not the case for AIC, which tends to choose models
which are too complex as N — oco. On the other hand, for finite samples,
BIC often chooses models that are too simple, because of its heavy penalty
on complexity.

7.8 Minimum Description Length

The minimum description length (MDL) approach gives a selection cri-
terion formally identical to the BIC approach, but is motivated from an
optimal coding viewpoint. We first review the theory of coding for data
compression, and then apply it to model selection.

We think of our datum z as a message that we want to encode and
send to someone else (the “receiver”). We think of our model as a way of
encoding the datum, and will choose the most parsimonious model, that is
the shortest code, for the transmission.

Suppose first that the possible messages we might want to transmit are
214294 .« 4 Zme Our code uses a finite alphabet of length A: for example, we
might use a binary code {0,1} of length A = 2. Here is an example with
four possible messages and a binary coding:

| 20 |22 |23 | = .
Code |[0 |10] 110 | 111 (7.37)

This code is known as an instantaneous prefix code: no code is the pre-
fix of any other, and the receiver (who knows all of the possible codes),
knows exactly when the message has been completely sent. We restrict our
discussion to such instantaneous prelix codes.

One could use the coding in (7.37) or we could permute the codes, for
example use codes 110,10, 111,0 for z1, 22, 23, 24. How do we decide which
to use? It depends on how often we will be sending each of the messages.
If, for example, we will be sending z; most often, it makes sense to use the
shortest code 0 for z;. Using this kind of strategy—shorter codes for more
frequent, messages—the average message length will he shorfer.

In general, if messages are sent with probabilities Pr(z;),i = 1,2,...,4,
a famous theorem due to Shannon says we should use code lengths I; =
—log, Pr(z;) and the average message length satisfies

E(length) > — Z Pr(z;)log, (Pr(z:)). (7.38)

The right-hand side above is also called the entropy of the distribution
Pr(z). The inequality is an equality when the probabilities satisfy p; =

7.8 Minimum Description Length 209

A=l In our example, if Pr(z;) = 1/2,1/4,1/8,1/8, respectively, then the

coding shown in (7.37) is optimal and achieves the entropy lower bound.
In general the lower bound cannot be achieved, but procedures like the

Huffmann coding scheme can get close to the bound. Note that with an

infinite set of messages, the entropy is replaced by — [Pr(z)log, Pr(z)dz.
From this result we glean the following:

To transmit a random variable z having probability density func-
tion Pr(z), we require about —log, Pr(z) bits of information.

We henceforth change notation from log, Pr(z) to log Pr(z) = log, Pr(z);
this is for convenience, and just introduces an unimportant multiplicative
constant.

Now we apply this result to the problem of model selection. We have
a model M with parameters 0, and data Z = (X,y) consisting of both
inputs and outputs. Let the (conditional) probability of the outputs under
the model be Pr(y|d, M,X), assume the receiver knows all of the inputs,
and we wish to transmit the outputs. Then the message length required to
transmit the outputs is

length = —log Pr(y|6, M, X) — log Pr(6| M), (7.39)

the log-probability of the target values given the inputs. The second term
is the average code length for transmitting the model parameters 6, while
the first term is the average code length for transmitting the discrepancy
between the model and actual target values. For example suppose we have
a single target y with y ~ N(6,0?), parameter § ~ N(0,1) and no input
(for simplicity). Then the message length is
2 2

length = constant + log o + % + % (7.40)
Note that the smaller o, is the shorter the message length, since y is more
concentrated around 6.

The MDL principle says that we should choose the model that mini-
mizes (7.39). We recognize (7.39) as the (negative) log-posterior distribu-
tion, and hence minimizing description length is equivalent to maximizing
posterior probability. Hence the BIC criterion, derived as approximation to
log-posterior probability, can also be viewed as a device for (approximate)
model choice by minimum description length.

Note that we have ignored the precision with which a random variable
z is coded. With a finite code length we cannot code a continuous variable
exactly. However, if we code z within a tolerance 0z, the message length
needed is the log of the probability in the interval [z, z+dz] which is well ap-
proximated by 0zPr(2) if §z is small. Since log 62Pr(z) = log §z +log Pr(2),
this means we can just ignore the constant log éz and use log Pr(z) as our
measure of message length, as we did above.

210 7. Model Assessment and Selection

o
—

sin(50 - x)
0.0

-1.0

0.0 0.2 0.4 0.6 0.8 1.0

T

FIGURE 7.5. The solid curve is the function sin(50x) for « € [0,1]. The blue
(solid) and green (hollow) points illustrate how the associated indicator function
I(sin(ax) > 0) can shatter (separate) an arbitrarily large number of points by
choosing an appropriately high frequency c.

The preceding view of MDL for model selection says that we should
choose the model with highest posterior probability. However many Bayes-
ians would instead do inference by sampling from the posterior distribution.

7.9 Vapnik—Chernovenkis Dimension

A difficulty in using estimates of in-sample error is the need to specify the
number of parameters (or the complexity) d used in the fit. Although the
effective number of parameters introduced in Section 7.6 is useful for some
nonlinear models, it is not fully general. The Vapnik—Chernovenkis (VC)
theory provides such a general measure of complexity, and gives associated
bounds on the optimism. Here we give a brief review of this theory.

Suppose we have a class of functions {f(z,«)} indexed by a parameter
vector «, with x € IRP. Assume for now that f is an indicator function,
that is, takes the values 0 or 1. If @« = (g, 1) and f is the linear indi-
cator function I(ag 4+ afx > 0), then it seems reasonable to say that the
complexity of the class f is the number of parameters p + 1. But what
about f(z,a) = I(sina - z) where « is any real number and z € IR? The
function sin(50 - z) is shown in Figure 7.5. This is a very wiggly function
that gets even rougher as the frequency « increases, but it has only one
parameter: despite this, it doesn’t seem reasonable to conclude that it has
less complexity than the linear indicator function I(ag + aqz) in p = 1
dimension.

The Vapnik—Chernovenkis dimension is a way of measuring the complex-
ity of a class of functions by assessing how wiggly its members can be.

The VC dimension of the class {f(x,a)} is defined to be the
largest number of points (in some configuration) that can be
shattered by members of {f(x,a)}.

7.9 Vapnik Chernovenkis Dimension 211

|

FIGURE 7.6. The first three panels show that the class of lines in the plane
can shatter three points. The lasl panel shows that this class cannel shatter four
points, as no line will put the hollow points on one side and the solid points on
the other. Hence the VC dimension of the class of straight lines in the plane is

three. Note that a class of nonlinear curves could shaller four points, and hence
has VC' dimension greater than three.

A set of points is said to be shattered by a class of functions il, no matter
how we we assign a binary label to each point, a member of the class can
perfectly separate them.

Figure 7.6 shows that the VC dimension of linear indicator functions
in the plane is 3 but not 4, since no four points can be shattered by a
set of lines. In general, a linear indicator function in p dimensions has VC
dimension p+ 1, which is also the number of free parameters. On the other
hand, it can be shown that the family sin(aa) has infinite VC dimension,
as Figure 7.5 suggests. By appropriate choice of a, any set of points can be
shattered by this class (Ixercise 7.7).

So far we have discussed the VC dimension only of indicator functions,
but this can be extended to real-valued functions. The VC dimension of a
class of real-valued functions {g(z, @)} is defined to be the VC dimension
of the indicator class {I(g(z, @) — 8 > 0)}, where 3 takes values over the
range of g.

One can use the VC dimension in constructing an estimate of in-sample
prediction error; different types of resulls are available. Using the concept,
of VC dimension, one can prove results about the optimism of the training
error when using a class of functions. An example of such a result is the
following. If we fit N training points using a class of functions {f(z, @)}
having VC dimension h, then with probability at least 1 — 5 over training
sets:

Err < W-I—%(l-k 1+4-err) (binary classification)
err
Err € ————~— (regression 7.41
< e (resression) (r.a1)
where ¢ = a M08 (a2N/h) ; 1] —log (n/4)

These bounds hold simultaneously for all members f(x,), and are taken
from Cherkassky and Mulier (1998), pages 108-110. They recommend the
value ¢ = 1. For regression they suggest a; = as = 1, and for classification

212 7. Model Assessment and Selection

they make no recommendation, with a; = 4 and as = 2 corresponding to
worst-case scenarios. The bounds suggest that the optimism increases with
h and decreases with IV in qualitative agreement with the AIC correction
d/N given is (7.20). However, the results in (7.41) are stronger: rather
than giving the expected optimism for each fixed function f(z,«), they
give probabilistic upper bounds for all functions f(x,«), and hence allow
for searching over the class.

Vapnik’s structural risk minimization (SRM) approach fits a nested se-
quence of models of increasing VC dimensions hy < he < ---, and then
chooses the model with the smallest value of the upper bound.

We note that upper bounds like the ones in (7.41) are often very loose,
but that doesn’t rule them out as good criteria for model selection, where
the relative (not absolute) size of the test error is important. The main
drawback of this approach is the difficulty in calculating the VC dimension
of a class of functions. Often only a crude upper bound for VC dimension
is obtainable, and this may not be adequate. An example in which the
structural risk minimization program can be successfully carried out is the
support vector classifier, discussed in Section 12.2.

7.9.1 Ezample (Continued)

Figure 7.7 shows the results when AIC, BIC and SRM are used to select
the model size for the examples of Figure 7.3. For the examples labeled XNN,
the model index « refers to neighborhood size, while for those labeled REG «
refers to subset size. Using each selection method (e.g., AIC) we estimated
the best model & and found its true prediction error Err(&) on a test set.
For the same training set we computed the prediction error of the best and
worst possible model choices: min, Err(a) and max, Err(a). The boxplots
show the distribution of the quantity

Err(&) — min, Err(a)

100 x

max,, Err(a) — min, Err(a)’

which represents the error in using the chosen model relative to the best
model. For linear regression the model complexity was measured by the
number of features; this is also the VC dimension of the linear classifier.
For k-nearest neighbors, we used the quantity N/k. This is a rough estimate
of complexity; we do not know if it corresponds to the VC dimension. We
used a; = ag = 1 for the constants in (7.41); the results for SRM changed
with different constants, and this choice gave the most favorable results.
For misclassification error we used 62 = [N/(N — d)] - ert(«) for the least
restrictive model (kK = 5 for KNN, since ¥ = 1 results in zero training
error). The AIC criterion seems to work well in all four scenarios, despite
the lack of theoretical support with 0-1 loss. BIC does nearly as well, while
the performance of SRM is mixed.

7.9 Vapnik Chernovenkis Dimension 213

AIC

i

Teg/KNN Teg/inear class/KNN class/inear

% Increase Over Bast
0 20 <0 60 80 100

BIC

% Increase Over Best
0 20 40 60 80 100

_ = —_
reg/KNN

reg/linear class/KNN classfinear

:E i

reg/KNN reg/linear class/KNN clasafinear

SRM

|

% Increase Over Best
0 20 40 60 80 100

FIGURE 7.7. Boaplots show the dislribution of Lhe relative error
100 = [Err(&) — ming Err(a)]/[max, Err{a) — min, Err(a)] over the four scenar-
ios of Figure 7..3. This is the error in using the chosen model relative lo the besi
model. There are 20 lraining sels represented in each boxplot.

214 7. Model Assessment and Selection
7.10 Cross-Validation

Probably the simplest and most widely used method for estimating pre-
diction errar is cross-validation. This method directly estimates the extra-
sample error Err = E[L(Y, f (X))]. which is the generalization error when
the method f (X) is applied to an independent test sample from the joint
distribution of X and Y.

Ideally if we had enough data, we would set aside a validation set and use
it to assess the performance of our prediction model. Since data are often
scarce, this is usually not possible. To finecsse the problem, K-fold cross-
validation uses part of the available data to fit the model, and a different
part to test it. We split the data into K roughly equal-sized parts; for
example, when K = 5, the scenario looks like this:

1 2 3 - 3

Train | Train | Test | Train | Train

For the kth part (third ahove), we fit the model to the other K — 1 parts
of the data, and calculate the prediction error of the fitted model when
predicting the kth part of the data. We do this for k = 1,2,... | K and
combine the K estimales of prediction error.

Here are more details. Let x: {1,... , N} {1,..., K} be an indexing
function that indicates the partition to which observation i is allocated by
the randomization. Denote by f *(z) the fitted function, computed with
the kth part of the data removed. Then the cross-validation estimate of
prediction error is

CcV =

2|~

N
> Ly, 9 (@3). (7.42)
i=1

Typical choices of K are 5 or 10 (see below). The case K = N is known
as leave-one-out cross-validation. In this case (i) = i, and for the ith
observation the fit is computed using all the data except the ith.

Given a set of models f(z,«) indexed by a tuning parameter «, denote
by f_k(z‘ @) the ath model fit with the kth part of the data removed. Then
for this set of models we define

N
V(@) =+ 3 iy J O, 0). (7.43)
i=1

The function CV(a) provides an estimate of the test error curve, and we
find the tuning parameter ¢& that minimizes it. Our final chosen model is
f(#, &), which we then fit to all the data.

7.10 Cross-Validation 215

Q
2] //'*
o |
o
1=
22
N
=1
o |
= T T T T
0 50 100 150 200
Size of Training Set

FIGURE 7.8. Hypothetical learning curve for a classifier on a given task; a
plot of 1 — Err versus the size of the training set N. With a dataset of 200
observations, fivefold cross-validation would use training sets of size 160, which
would behave much hike the full set. However, with a dataset of 50 observations
fivefold cross-validation would use training sels of size 40, and this would result
in a considerable overestimate of prediction error.

What value should we choose for K7 With K = N, C'V is approximately
unbiased for the true prediction error, but can have high variance because
the N “training sets” are so similar to one another. The computational bur-
den is also considerable, requiring N applicalions of Lhe learning method.
In certain special problems, this computation can be done quickly—see
Exercise 7.3 and 5.13.

On the other hand, with K = 5 say, CV has lower variance. But bias
could be a problem, depending on how the performance of the learning
method varies with the size of the training set. Figure 7.8 shows a hypo-
thetical “learning curve” for a classifier on a given task, a plot of 1 — Err
versus the size of the training set N. The performance of the classifier
improves as the training set size increases to 100 observations; increasing
the number further to 200 brings only a small benefit. If our training set
had 200 observations, fivefold cross-validation would estimate the perfor-
mance of our classifier over training sets of size 160, which from Figure 7.8
is virtually the same as the performance for training set size 200. T'hus
cross-validation would not suffer from much bias. However if the training
set had 50 observations, fivefold cross-validation would estimate the per-
formance of our classifier over training sets of size 40, and from the figure
that would be an underestimate of 1 — Err. Hence as an estimate of Err,
cross-validation would be biased upward.

To summarize, il the learning curve has a considerable slope at the given
training set size, five- or tenfold cross-validation will overestimate the true
prediction error. Whether this bias is a drawback in practice depends on
the objective. On the other hand, leave-one-out cross-validation has low

216 7. Model Assessment and Selection

0.6

05
|

0.4

Misclassilication Error
0.2 0.3
1

01

0o

5 10 15 20
Subset Size p

FIGURE 7.9. Prediction error (red) and tenfold cross-validation curve (green)
estimated from a single lraining set, from the scenario in the bottom right panel
of Figure 7.3.

bias but can have high variance. Overall, five- or tenfold cross-validation
are recommended as a good compromise.

Figure 7.9 shows the prediction error and tenfold cross-validation curve
estimated from a single training set, from the scenario in the bottom right
panel of Figure 7.3. This is a two-class classification problem, using a lin-
ear model with best subsets regression of subset size p. Standard error bars
are shown, which are the standard errors of the individual misclassification
error rates for each of the ten parts. Both curves have minima at p = 10,
although the CV curve is rather flat beyond 10. Often a “one-standard
error” rule is used with cross-validation, in which we choose the most par-
simonious model whose error is no more than one standard error above
the error of the best modcl. Here it looks like a model with about p = 9
predictors would be chosen, while the true model uses p = 10.

Generalized eross-validation provides a convenient approximation to leave-
one out cross-validation, for linear fitting under squared-error loss. As de-
fined in Section 7.6, a linear fitting method is one for which we can write

y — Sy. (7.44)
Now for many linear fitting methods,

N N .z
% Z[ye - @) = %Z [yal__iféft)]za (7.45)
1.=1 Tt

i=1

7.11 Bootstrap Methods 217

where Sj; is the ith diagonal element of S (see Exercise 7.3). The GCV
approximation is

. 1« yi — f(x:) 12

GOV = ;[W : (7.46)
The quantity trace(8) is the effective number of parameters, as defined in
Section 7.6.

GOV can have a computational advantage in some settings, where the
trace of S can be computed more easily than th individual elements S;;.
In smoothing problems, GCV can also alleviate the tendency of cross-
validation to undersmooth. The similarity between GCV and AIC can be
seen from the approximation 1/(1 — x)? ~ 1 + 2z (Kxercise 7.6).

7.11 Bootstrap Methods

The bootstrap is a general tool for assessing statistical accuracy. First we
describe the bootstrap in general, and then show how it can be used to
estimate extra-sample prediction error.

Suppose we have a model fit to a set of training data. We denote the
training set by Z = (z1, z2,...,zn5) where z; = (z;,¥;). The basic idea is
to randomly draw datasets with replacement from the training data, each
sample the same size as the original training set. This is done B times
(B = 100 say), producing B bootstrap datasets, as shown in Figure 7.10.
Then we refit the model to each of the bootstrap datasets, and examine
the behavior of the fits over the B replications.

In the figure, S(Z) is any quantity computed from the data Z, for ex-
ample, the prediction at some input point. From the bootstrap sampling
we can estimate any aspect of the distribution of S(Z), for example, its
variance,

B
Varls(2)] = = > (5(2") - 577, (7.47)
b=1

where S* = 3, S(Z**)/B. Note that \E[S(Z}] can be thought of as a
Monte-Carlo estimate of the variance of S(Z) under sampling from the
empirical distribution function I for the data (21,225 -+ 4 2N)-

How can we apply the bootstrap to estimate prediction error? One ap-
proach would be to fit the model in question on a set of bootstrap samples,
and then keep track of how well it predicts the original training set. If
f *b(:x;) is the predicted value at a;, from the model fitted to the bth boot-
strap dataset, our estimate is

o 13 &
Errpaor = Z

BN &4
b=11

N -
L(yi f*(z1))- (7.48)
:l

218 7. Model Assessment and Selection

e Hoz])_Ler;ap
e------ TEP ications
s(zY)~ s(@2) = S(zP)
‘ N]300[..—{1:3.]’)
za T Z2n . N ZB B
o
- b f
\
\ ,
I Trainjt
Z= (zls 2.4 42N) ﬂarrlllpfelg

FIGURE 7.10. Schematic of the bootstrap process. We wish to assess the sta-
tistical accuracy of a quantity S(Z) computed from our dataset. I training sets
Z b=1,...,B each of size N are drawn with replacement from the original
datasel. The quantity of interest S(Z) is computed from each bootstrap training
set, and the values S(Z‘i Yyiin g S(Z"R} are used to assess the statistical accuracy
of 8(7).

However it is casy to sce that Erboot does not provide a good estimate in
general. The reason is that the bootstrap datasets are acting as the training
samples, while the original training set is acting as the test sample, and
these two samples have observations in common. This overlap can make
overfit predictions look unrealistically good, and is the reason that cross-
validation explicitly uses non-overlapping data for the training and test
samples. Consider for example a 1-nearest neighbor classifier applied to a
two-class classification problem with the same number of observations in
cach class, in which the features and class labels are in fact independent.
Then the true error rate is 0.5. But the contributions to the bootstrap
estimate Erryqe; will be zero unless the observation i does not appear in the
bootstrap sample b. In this latter case it will have the correct expectation
0.5. Now

N
Pr{observation i € bootstrap sample b} = 1— (1 - %)
~ l—e¢!
0.632. (7.49)

Hence the expectation of ?‘}?bﬁm is about 0.5 x 0.368 = 0.184, far below
the correct error rate 0.5,

7.11 Bootstrap Methods 219

By mimicking cross-validation, a better bootstrap estimate can be ob-
tained. For each observation, we only keep track of predictions from boot-

strap samples not containing that observation. The leave-one-out bootstrap

estimate of prediction error is defined by
(1) 1 N 1
Err = — : Liys, F*2(2,)). 7.50
OIS DI (750

Here C'~% is the set of indices of the bootstrap samples b that do not contain
—(1

observation i, and |C~?| is the number of such samples. In computing Err(),
we either have to choose B large enough to ensure that all of the |C~?| are
greater than zero, or we can just leave out the terms in (7.50) corresponding
to |C~%|’s that are zero.

__The leave-one out bootstrap solves the overfitting problem suffered by
Errhoot, but has the training-set-size bias mentioned in the discussion of
cross-validation. The average number of distinct observations in each boot-
strap sample is about 0.632- N, so its bias will roughly behave like that of
twofold cross-validation. Thus if the learning curve has considerable slope
at sample size N/2, the leave-one out bootstrap will be biased upward as
an estimate of the true error.

The “.632 estimator” is designed to alleviate this bias. It is defined by

—(.632 =1

The derivation of the .632 estimator is complex; intuitively it pulls the
leave-one out bootstrap estimate down toward the training error rate, and
hence reduces its upward bias. The use of the constant, .632 relates to (7.49).

The .632 estimator works well in “light fitting” situations, but can break
down in overfit ones. Here is an example due to Breiman et al. (1984).
Suppose we have two equal-size classes, with the targets independent of

the class labels, and we apply a one-nearest neighbor rule. Then € = 0,

—(1 ——~(.632
Err() = 0.5 and so Err() = .632 x 0.5 = .316. However the true error
rate is 0.5.

One can improve the .632 estimator by taking into account the amount
of overfitting. First we define v to be the no-information error rate : this
is the error rate of our prediction rule if the inputs and class labels were
independent. An estimate of 7y is obtained by evaluating the prediction rule
on all possible combinations of targets y; and predictors z;

3= 3 30 Ll Faw). (7.5

i=14'=1

For example, consider the dichotomous classification problem: let p; be
the observed proportion of responses y; equaling 1, and let §; be the ob-

220 7. Model Assessment and Selection
served proportion of predictions / (2#) equaling 1. Then
5 =p(l— @) + (1— 1) (7.53)

With a rule like 1-nearest neighbors for which ¢; = p; the value of 4 is
2p1(1—p1). The multi-category generalization of (7.53) is ¥ = >, pe(1—qe)-

Using this, the relative overfitting rate is defined to be
B Brr) — o

— 1

A — €T

R (7.54)
— (1
a quantity that ranges from 0 if there is no overfitting (Err(Y - arT) to 1

if the overfitting equals the no-information value 4 —&rr. Finally, we define
the “.632+" estimator by

—(.632+ —(1
B = (1—w)-ar B (7.55)
o 632
withy = ———.
1—.368R
) o . —(.8324)
The weight w ranges from .632 if R = 0 to 1 if B = 1, so Err
ranges from _E_].l"l_'(lma to]ETE(]). Again, the derivation of (7.55) is compli-

cated: roughly speaking, it produces a compromise between the leave-one-
out bootstrap and the training error rate that depends on the amount of
overfitting. For the 1-nearesi-neighbor problem with class labels indepen-

. —(,632 —(1
dent of the inputs, w = R =1, so Errl o == Err(J, which has the correct
2 2 3 —(.6321)
expectation of 0,5. In other pmblem)s with less overfitting, Err will
..—--..(1

lie somewhere between &t and Err

7.11.1 Example (Continued)

Figure 7.11 shows the results of fivefold cross-validation and the .632+
bootstrap estimate in the same four problems of Figures 7.7. As in that fig-
ure, Figure 7.11 shows boxplots of 100 [Errg —ming Err(a)]/[max, Err(a)—
min, Krr(e)], the error in using the chosen model relative to the best model.
There are 20 different training sets represented in each boxplot. Both mea-
sures perform well overall, perhaps the same or slightly worse that the AIC
in Figure 7.7.

Our conclusion is that for these particular problems and fitting methods,
minimization of either AIC, cross-validation or bootstrap yields a model
[airly close Lo the best available. Note that for the purpose of model selec-
tion, any of the measures could be biased and it wouldn’t affect things, as
long as the bias did not change the relative performance of the methods.
For example, the addition of a constant to any of the measures would not

7.11 Bootstrap Methods 221

Cross-validation

NN regflinear class/KNN clagsflinear

0 20 40 60 80 100

% Increase Over Best

¢

Bootstrap

——

- —— ! i !

reg/KNN regflinear class/KNN class/linear

% Increase Over Best
0 20 40 50 80 100

FIGURE 7.11. Boxplots show the distribution of the relative error
100 - [Errs — min, Err(a)]/[max. Err(a) — ming Err(a)] over the four scenar-
ios of Figure 7.3. This is the error in using the chosen model velalive Lo the besl
model. There are 20 lraining sels represented in each boxploi.

change the resulting chosen model. However, for many adaptive, nonlinear
techniques (like trees), estimation of the effective number of parameters is
very difficult. This makes methods like AIC impractical and leaves us with
cross-validation or bootstrap as the methods of choice.

A different. question is: how well does cach method estimate test error?
On the average the AIC criterion overestimated prediction error of its cho-
sen model by 38%, 37%, 51%, and 30%, respectively, over the four scenarios,
with BIC performing similarly. In contrast, cross-validation overestimated
the error by 1%, 4%, 0%, and 4%, with the bootstrap doing about the
same. Hence the extra work involved in computing a cross-validation or
bootstrap measure is worthwhile, if an accurate estimate of test error is
required. With other fitting methods like trees, cross-validation and boot-
slrap can underestimale Lhe Lrue error by 10%, because Lhe search [or besl
tree is strongly affected by the validation set. In these situations only a
separate test set will provide an unbiased estimate of test error.

222 7. Model Assessment and Selection
Bibliographic Notes

Key references for cross-validation are Stone (1974), Stone (1977) and
Allen (1977), The AIC was proposed hy Akaike (1973), while the BIC
was introduced by Schwartz (1979). Madigan and Raftery (1994) give an
overview of Bayesian model selection. The MDL criterion is due to Rissa-
nen (1983). Cover and Thomas (1991) contains a good description of coding
theory and complexity. VC dimension is described in Vapnik (1996). Stone
(1977) showed that the AIC and leave-one out cross-validation are asymp-
totically equivalent. Generalized cross-validation is described by Golub
et al. (1979) and Wahba (1980); a further discussion of the topic may
be found in the monograph by Wahba (1990). See also Hastie and Tibshi-
rani (1990), Chapter 3. The bootstrap is due to Efron (1979); see Lifron
and Tibshirani (1993) for an overview. Efron (1983) proposcs a. number of
bootstrap estimates of prediction error, including the optimism and .632 es-
timates. Kfron (1986) compares CV, GCV and bootstrap estimates of error
rates. The use of cross-validation and the bootstrap for model selection is
studied by Breiman and Spector (1992), Breiman (1992), Shao (1996) and
Zhang (1993). The .632+ eslimator was proposed by Efron and Tibshirani
(1997).

Exercises

[, 7.1 Derive the estimate of in-sample error (7.20).
Iix. 7.2 For 0-1 loss with Pr(Y = 1l|zg) = f(z0), show that
Er(o) = Pr(Y # (o)X = o]
5 q,(SigH[(f(-To)f— 1/2}(1/2 — f(=0))]
V Var(f(20))

) (7.56)

where f(xo) is an estimate of f(z). In the above,

®(1) = ﬁ f_ exp(—2/2)d,

the cumulative distribution function of the Gaussian distribution. This is
an increasing function, with value zero at t = —oo and value 1 at t = +o0.

We can think of sign|(f(z¢) — 1/2)(1/2 — f(20))] as a kind of bias term,
and it depends only on which side of boundary (1/2) that f(wo) lies. No-
tice also that the bias and variance combine in a multiplicative rather than
additive fashion. If the f(z) is on the same side of 1/2 as f(a), then the
bias is negative and decreasing the variance will decrease the misclassifi-
cation error. On the other hand, if f(a) is on the opposite side of 1/2 to

Exercises 223

We can think of sign(1 — Fl@o))(Bf (o) — 1) as a kind of boundary-

bias term, as it depends on the true f(zo) only through which side of the
boundary (%) that it lies. Notice also that the bias and variance combine

in a multiplicative rather than additive fashion. If Ef (z0) is on the same
side of % as f(xzo), then the bias is negative, and decreasing the variance

will decrease the misclassification error. On the other hand, if Ef(zo) is
on the opposite side of % to f(zo), then the bias is positive and it pays to

increase the variance! Such an increase will improve the chance that f (z0)
falls on the correct side of 3 (Friedman, 1997).

Ex. 7.3 Let f = Sy be a linear smoothing of y.

(a) If S;; is the ith diagonal element of S, show that for S arising from least
squares projections and cubic smoothing splines, the cross-validated
residual can be written as

yi — (@) = —yil__f 5(,58) (7.58)

(b) Use this result to show that |y; — f~(x:)] > |ys — f(24)].
(c) Find general conditions on any smoother S to make result (7.58) hold.

Ex. 7.4 Consider the in-sample prediction error (7.15) and the training
error err in the case of squared-error loss:

N
1 .
Erry, = N ZEynewa(}/inew — f(x))?
i=1
1 & .

Add and subtract f(z;) and Ef(z;) in each expression and expand. Hence
establish that the optimism in the training error is

9 N
T ZCOV(Qiyyi)a
N i=1

as given in (7.17).

Ex. 7.5 For a linear smoother y = Sy, show that
N
Z Cov(§;, y;) = trace(S)o?, (7.59)
i=1

which justifies its use as the effective number of parameters.

224 7. Model Assessment and Selection

lx. 7.7 Show that the set of functions {/(sin(az) > 0)} can shatter the
following points on the line:

Zl=10"1,...,2=10"¢ (7.59)

for any £. Hence the VC dimension of the class {I(sin(cer) > 0)} is infinite.

Iix. 7.8 For the prostrate data of Chapter 3, carry out a best-subset linear
regression analysis, as in Table 3.3 (third column from left). Compute the
AIC, BIC, five- and tenfold cross-validation, and bootstrap .632 estimates
of prediction error. Discuss the results.

3

Model Inference and Averaging

8.1 Introduction

For most of this book, the fitting (learning) of models has been achieved by
minimizing a sum of squares for regression, or by minimizing cross-entropy
for classification. In fact, both of these minimizations are instances of the
maximum likelihood approach to fitting.

In this chapter we provide a general exposition of the maximum likeli-
hood approach, as well as the Bayesian method for inference. The boot-
strap, introduced in Chapter 7, is discussed in this context, and its relation
to maximum likelihood and Bayes is described. Finally, we present some
related techniques for model averaging and improvement, including com-
mittee methods, bagging, stacking and bumping.

8.2 The Bootstrap and Maximum Likelihood
Methods

8.2.1 A Smoothing Example

The bootstrap method provides a direct computalional way ol assessing
uncertainty, by sampling from the training data. Here we illustrate the
bootstrap in a simple one-dimensional smoothing problem, and show its
connection to maximum likelihood.

This is page 225
Printer: Opaque this

226 8. Model Inference and Averaging

W . e
T @
i =

o - - aTee 8}
e g «
. - m =1

LU - O

= . . £
o : 5

o b \

“se " . fas]
o i “ o
- (=]

.. .
- * e

. e
=

FIGURE 8.1, Left panel: data for smoothing example. Right panel: sel of seven
B-spline basis functions. The broken vertical lines indicate the placement of the
three knots.

Denote the training data by Z = {21, z2,..., 25}, with z; = (24, %),
i=1,2,...,N. Here z; is a one-dimensional input, and y; the outcome,
either continuous or categorical. As an example, consider the N — 50 data
points shown in the left panel of Figure 8.1.

Suppose we decide to fit a cubic spline to the data, with three knots
placed at the quartiles of the X values. This is a seven-dimensional lin-
car space of functions, and can be represented, for example, by a lincar
expansion of B-spline basis functions (see Section 5.9.2):

7
pz) = Y Bihs(@) (8.1)
=1
Here the h;(z), j = 1,2,...,7 are the seven functions shown in the right

panel of Figure 8.1. We can think of pu(x) as representing the conditional
mean E(Y|X = z).

Let H be the N x 7 matrix with ijth element h;(z;). The usual estimate
of 3, obtained by minimizing the squared error over the training set, is
given by

3= HTH) 'HTy. (8.2)
The corresponding lit ji(z) = Z:_I 55.- hj(z) is shown in the top left panel

of Figure 8.2.
The estimated covariance matrix of 3 is

Var(3) = (HTH) 162, (8.3)

where we have estimated the noise variance by 6% = Zii(yi — fi(w;))2/N.
Letting k(z)” = (hi(z), h2(z),... ,h7(2)), the standard error of a predic-

2.2 The Bootstrap and Maximum Likelihood Methods 227

FIGURE 8.2, Top left: B-spline smooth of data. Top right: B-spline smooth
plus and minus 1.96% standard ervar bands. Boltom left: ten bootstrap replicates
of the B-spline smooth. Botlom righl: B-spline smooth with 95% standard error
bands computed from the bootstrap distribution.

228 8. Model Inference and Averaging
tion ji(z) = h(m)TB is
seli@)] = [h()" (H"H) k()] fo. (8.4)

In the top right panel of Figure 8.2 we have plotted fi(z)+1.96-se[fi(z)].
Since 1.96 is the 97.5% point of the standard normal distribution, these
represent approximate 100 — 2 x 2.5% = 95% pointwise confidence bands
for p(z).

Here’s how we could apply the bootstrap in this example. We draw B
datasets each of size N = 50 with replacement from our training data, the
sampling unit being the pair z; = (z;,¥;). To each bootstrap dataset Z*
we fit a cubic spline 4*(z); the fits from ten such samples are shown in the
bottom left panel of Figure 8.2. Using B = 200 bootstrap samples, we can

form a 959, nointwise confidence band from the nercentiles at each 7 we
iorm a Y57 poimntwise conlidence bvand irom the percentiles at each z: we

find the 2.5% x 200 = fifth largest and smallest values at each z. These are

plotted in the bottom right pancl of Figure 8.2. The bands lock similar to

plotted in the bottom right pancl of Fig he bands lock similar to
those in the top right, being a little wider at the endpoints.

There is actually a close connection between the least squares estimates
(8.2) and (8.3), the bootstrap, and maximum likelihood. Suppose we further
assume that the model errors are Gaussian,

<
I

w(X) +e; e~ N(0,0°%),
7

pla) = 3 Bhyo) (55)

The bootstrap method described above, in which we sample with re-
placement from the training data, is called the nonparametric bootstrap.
This really means that the method is “model-free,” since it uses the raw
data, not a specific parametric model, to generate new datasets. Consider
a variation of the bootstrap, called the parametric bootstrap, in which we
simulate new responses by adding Gaussian noise to the predicted values:

= j(x;) +€5; e ~N(0,6%); i=1,2,...,N. (8.6)

This process is repeated B times, where B = 200 say. The resulting boot-
strap datasets have the form (z1,y7),..., (z~, yx) and we recompute the
B-spline smooth on each. The confidence bands from this method will ex-
actly equal the least squares bands in the top right panel, as the number of
bootstrap samples goes to infinity. A function estimated from a bootstrap
sample y* is given by i*(z) = h(z)T(HTH) HTy*, and has distribution

i (@) ~ N(i(e), h(z)" (HTH) h(z)5). (8.7)

Notice that the mean of this distribution is the least squares estimate, and
the standard deviation is the same as the approximate formula (8.4).

8.2 The Bootstrap and Maximum Likelihood Methods 220

8.2.2 Mazimum Likelihood Inference

Tt turns out that the parametric hootstrap agrees with least squares in the
previous example because the model (8.5) has additive Gaussian errors. In
general, the parametric bootstrap agrees not with least squares but with
maximum likelihood, which we now review.

We begin by specifying a probability density or probability mass function
for our observations

zi ~ go(z). (8.8)

In this expression f represents one or more unknown parameters that gov-
ern the distribution of Z. This is called a parametric model for Z. As an
example, if Z has a normal distribution with mean g and variance o2, then

0 = (u,0?), (8.9)
and

e HE-m/o, (8.10)

z)=
90(2) 2ro

Maximum likelihood is based on the likelihood function, given by

N
1(0;Z) = [[9o(20), (8.11)

the probahility of the ohserved data ninder the model gg. The likelihond is
defined only up to a positive multiplier, which we have taken to be one.
We think of L(#; Z) as a function of €, with our data Z fixed.

Denote the logarithm of L(#; Z) by

"
> 0(0:2)
i=1

.
Zloggo(zi)- (8.12)

0(0;Z)

Il

which we will sometimes abbreviate as £(f). This expression is called the
log-likelihood, and each value £(€; z,) = log gy(z;) is called a log-likelihood
component. The method of maximum likelihood chooses the value ¢ = 0
Lo maximize £(6;7Z).

The likelihood function can be used to assess the precision of 6. We need
a few more definitions. The score function is defined by

N
(0;Z) = i(9;), (8.13)
i=1

230 8. Model Inference and Averaging

where £(0; z;) = 90(6; z;)/06. Assuming that the likelihood takes its maxi-
mum in the interior of the parameter space, £(6;Z) = 0. The information
matric is

N 020(0; 2)

1(6) = - < 00007

(8.14)

When I(0) is evaluated at 0 = 6, it is often called the observed information.
The Fisher information (or expected information) is

i(0) = Eq[1(6))]. (8.15)

Finally, let 6y denote the true value of 6.
A standard result says that the sampling distribution of the maximum
likelihood estimator has a limiting normal distribution

0 — N(60,i(60)~1), (8.16)

as N — oo. Here we are independently sampling from g, (). This suggests
that the sampling distribution of 8 may be approximated by

N(6,i(0)7Y) or N(9,1()71), (8.17)
where 6 represents the maximum likelihood estimate from the observed
data. .

The corresponding estimates for the standard errors of §; are obtained
from

1(@)]}1 and I(é)]—j1 (8.18)

Confidence points for 6; can be constructed from either approximation
in (8.17). Such a confidence point has the form

0= i e =10

respectively, where z(!=®) is the 1 — a percentile of the standard normal
distribution. More accurate confidence intervals can be derived from the
likelihood function, by using the chi-squared approximation

2[6(0) — £(60)] ~ X3, (8.19)

where p is the number of components in €. The resulting 1 — 2o confi-
dence interval is the set of all 6y such that 2[£(6) — £(6,)] < Xg(liza),
where Xf,(l_ga) is the 1 — 2« percentile of the chi-squared distribution with

p degrees of freedom.

8.3 Bayesian Methods 231

Let’s return to our smoothing example Lo see whal maximum likelihood
yields. The parameters are @ = (3, 2). The log-likelihood is

£200) = v—% log o?2m — 2—23 i(y‘- — h(a;:) T 8)%. (3.20)
The maximum likelihood estimate is obtained by setting d//93 = 0 and
Al fda® =, giving
’é = (HTH)_]'HTy,
7= 5 Y - i),

which are the same as the usual estimates given in (8.2) and below (8.3).
‘I'he information matrix for ¢ = (4, a*) is block-diagonal, and the block
corresponding to 3 is

(8.21)

I(8) = (HTH)/o?, (8.22)

so that the estimated variance (HTH) 42 agrees with the least squares
estimate (8.3).

8.2.3 Bootstrap versus Maximum Likelihood

In essence the bootstrap is a computer implementation of nonparametric or
parametric maximum likelihood. The advantage of the bootstrap over the
maximum likelihood formula is that it allows us to compute maximum like-
lihood estimates of standard errors and other quantities in settings where
no formulas arc available.

In our example, suppose that we adaptively choose by eross-validation
the number and position of the knots that define the B-splines, rather
than fix them in advance. Denote by A the collection of knots and their
positions. Then the standard errors and confidence bands should account
for the adaptive choice of A, but there is no way to do this analytically.
With the bootstrap, we compute the D-spline smooth with an adaptive
choice of knots for each bootstrap sample. The percentiles of the resulting
curves capture the variability from both the noise in the targets as well as
that from A. In this particular example the confidence bands (not shown)
don’t look much dillerent than the lixed A bands. Bul in other problems,
where more adaptation is used, this can be an important effect to capture.

8.3 Bayesian Methods

In the Bayesian approach to inference, we specify a sampling model Pr(Z|#)
(density or probability mass function) for our data given the parameters,

232 8. Model Inference and Averaging

and a prior distribution for the parameters Pr(f) reflecting our knowledge
about 6 before we see the data. We then compute the posterior distribution

_ Pr(Z]0) - Pr(0)
Pr(0|z) = [Pr(Z[0) - Pr(6)d6’ (8:23)

which represents our updated knowledge about 6 after we see the data. To
understand this posterior distribution, one might draw samples from it or
summarize by computing its mean or mode. The Bayesian approach differs
from the standard (“frequentist”) method for inference in its use of a prior
distribution to express the uncertainty present before seeing the data, and
to allow the uncertainly remaining after seeing the data to be expressed in
the form of a posterior distribution.

The posterior distribution also provides the basis for predicting the values
of a future observation 2"V, via the predictive distribution:

Pr(z"Y|Z) = /Pr(znew|9) - Pr(0|Z)d6. (8.24)

In contrast, the maximum likelihood approach would use Pr(z"°%|d),
the data density evaluated at the maximum likelihood estimate, to predict
future data. Unlike the predictive distribution (8.24), this does not account
for the uncertainty in estimating 6.

Let’s walk through the Bayesian approach in our smoothing example.
We start with the parametric model given by equation (8.5), and assume
for the moment that o2 is known. We assume that the observed feature
values x1,xs,... ,x N are fixed, so that the randomness in the data comes
solely from y varying around its mean p(x).

The second ingredient we need is a prior distribution. Distributions on
functions are fairly complex entities: one approach is to use a Gaussian
process prior in which we specify the prior covariance between any two
function values p(z) and p(z’) (Wahba, 1990; Neal, 1996).

Here we take a simpler route: by considering a finite B-spline basis for
w(x), we can instead provide a prior for the coefficients 3, and this implicitly
defines a prior for p(z). We choose a Gaussian prior centered at zero

8~ N(0,7X) (8.25)
with the choices of the prior correlation matrix 3 and variance 7 to be

discussed below. The implicit process prior for u(x) is hence Gaussian,
with covariance kernel

K(z,2') = coviu(z),u(z")]
= 7-h(z)"Sh(z'). (8.26)

8.3 Bayesian Methods 233

0.0 0.5 1.0 15 2.0 2.5 3.0

FIGURE 8.3. Smoothing example: Ten draws from the Gaussian prior distri-
bution for the function u(x).

The posterior distribution for 3 is also Gaussian, with mean and covariance

2 —1
E(3|Z) = (HTH + ”21) Hy,
T

. (8.27)
o2
cov(B|Z) = (HTH + —21) o2,
T
with the corresponding posterior values for p(z),
o2 !
Blue)2) = ho)" (BTH - Txt) Ty,
T
(8.28)

o? -t
cov[p(z), u(z')|Z] = h(z)" (HTH + 72_1> h(z')o?.

How do we choose the prior correlation matrix X7 In some settings the
prior can be chosen from subject matter knowledge about the parameters.
Here we are willing to say the function p(z) should be smooth, and have
guaranteed this by expressing p in a smooth low-dimensional basis of B-
splines. Hence we can take the prior correlation matrix to be the identity
3 = I. When the number of basis functions is large, this might not be suf-
ficient, and additional smoothness can be enforced by imposing restrictions
on X; this is exactly the case with smoothing splines (Section 5.8.1).

Figure 8.3 shows ten draws from the corresponding prior for u(z). To
generate posterior values of the function p(z), we generate values 5’ from its
posterior (8.27), giving corresponding posterior value p'(z) = ZI Bihj(x).
Ten such posterior curves are shown in Figure 8.4. Two different values
were used for the prior variance 7, 1 and 1000. Notice how similar the
right panel looks to the bootstrap distribution in the bottom left panel

234 8. Model Inference and Averaging

=1 7= 1000

ulx)
u(x)

00 05 10 15 20 25 30 00 05 10 15 20 25 30

FIGURE 8.4, Smoothing example: Ten draws from the posterior distribution
for the function p(x), for two different values of the prior variance 7. The purple
curves are the posterior means.

of I'igure 8.2 on page 227. This similarity is no accident. As 7 — oo, the
posterior distribution (8.27) and the bootstrap distribution (8.7) coincide.
On the other hand, for 7 = 1, the posterior curves p(z) in the left panel
of Figure 8.4 are smoother than the bootstrap curves, because we have
imposed more prior weight on smoothness.

The distribution (8.25) with 7 — oo is called a noninformative prior for
#. In Gaussian models, maximum likelihood and parametric bootstrap anal-
yses tend to agree with Bayesian analyses that use a noninformative prior
for the free parameters. These tend to agree, because with a constant prior,
the posterior distribution is proportional to the likelihood. This correspon-
dence also extends to the nonparametric case, where the nonparametric
bootstrap approximates a noninformative Bayes analysis; Section 8.4 has
the details.

We have, however, done some things that are not proper from a Bayesian
point of view. We have used a noninformative (constant) prior for ¢% and
replaced it with the maximum likelihood estimate 62 in the posterior. A
more standard Bayesian analysis would also put a prior on & (typically
glo) x 1/a), calculate a joint posterior for pu(x) and o, and then integrate
out a, rather than just extract the maximum of the posterior distribution
(“MAP" estimate).

8.4 Relationship Between the Bootstrap and Bayesian Inference 235

8.4 Relationship Between the Bootstrap and
Bayesian Inference

Consider first a very simple example, in which we observe a single obser-
vation z from a normal distribution

2~ N(0,1). (8.29)

To carry out a Bayesian analysis for 6, we need to specify a prior. The
most convenient and common choice would be 6 ~ N (0,) giving posterior
distribution

z 1
9|ZNN<1+1/T’1+1/T>' (8:30)

Now the larger we take 7, the more concentrated the posterior becomes
around the maximum likelihood estimate 6 = z. In the limit as 7 — oo we
obtain a noninformative (constant) prior, and the posterior distribution is

0|z ~ N(z,1). (8.31)

This is the same as a parametric bootstrap distribution in which we gen-
erate bootstrap values z* from the maximum likelihood estimate of the
sampling density N(z,1).

There are three ingredients that make this correspondence work:

1. The choice of noninformative prior for 6.

2. The dependence of the log-likelihood £(6;Z) on the data Z only
through the maximum likelihood estimate 6. Hence we can write the
log-likelihood as £(6;6).

3. The symmetry of the log-likelihood in @ and 0, that is, £(6;6) =
£(0;0) + constant.

Properties (2) and (3) essentially only hold for the Gaussian distribu-
tion. However, they also hold approximately for the multinomial distribu-
tion, leading to a correspondence between the nonparametric bootstrap
and Bayes inference, which we outline next.

Assume that we have a discrete sample space with L categories. Let w; be
the probability that a sample point falls in category j, and w0, the observed
proportion in category j. Let w = (w1, wa, ... ,wr), w = (W1, Wa, ... ,W).
Denote our estimator by S(w); take as a prior distribution for w a sym-
metric Dirichlet distribution with parameter a:

w ~ Dig(al), (8.32)

236 8. Model Inference and Averaging
that is, the prior probability mass [unction is proportional Lo Hf___1 w?‘1
Then the posterior density of w is

w ~ Dig(al + N), (8.33)

where N is the sample size. Letting a — 0 to obtain a noninformative prior
gives

w ~ Dig (Nb). (8.34)

Now the bootstrap distribution, obtained by sampling with replacement
from the data, can be expressed as sampling the category proportions from
a, multinomial distribntion. Specifically,

Nt ~ Mult(N, b), (8.35)

where Mult(N, @) denotes a multinomial distribution, having probability

mass function (J.\,ﬁ;l_‘_"_\'_r ‘ N'D;)Hz&f‘"; . This distribution is similar to the
posterior distribution above, having the same support, same mean, and
nearly the same covariance matrix. Hence the bootstrap distribution of
S(w*) will closely approximate the posterior distribution ol S(w).

In this sense, the bootstrap distribution represents an (approximate)
nonparametric, noninformative posterior distribution for our parameter,
But this bootstrap distribution is obtained painlessly —without having to
formally specify a prior and without having to sample from the posterior
distribution. Hence we might think of the bootstrap distribution as a “poor
man’s" Bayes posterior. By perturhing the data. the haotstrap approxi-
mates the Bayesian effect of perturbing the parameters, and is typically
much simpler to carry out.

8.5 The EM Algorithm

The EM algorithm is a popular tool for simplifying difficult maximum
likelihood problems. We first describe it in the context of a simple mixture

model.

§5.1 Two-Component Mizture Model

In this section we describe a simple mixture model for density estimation,
and the associated EM algorithm for carrying out maximum likelihood
estimation. This has a natural connection to Gibbs sampling methods for
Bayesian inference. Mixture models are discussed and demonstrated in sev-
eral other parts of the book, in particular Sections 6.8, 12.7 and 13.2.3.

The left panel of Figure 8.5 shows a histogram of the 20 fictitious data
points in Table &8.1.

8.5 The EM Algorithm 237

?: i -O- | ==
w - |
o o
@ w
s s 2
2 1
I - - T '
o bl I
o, I I ° /\/\
o = .
»
. /ulunlln walluus i | il
© f T T J =] I I T i o & &8 i &
0 2 4] 0 2 " s
¥ y

FIGURE 8.5. Mizture ezample. Left panel: histogram of data. Right panel: maz-
imum likelihood fit of Gaussian densities (solid red) and responsibilily (dotted
green) of the left component density for observation vy, as a function of y.

TABLE 8.1. 20 fictitious data points used in the two-component mixture example
wn Figure 8.5.

-0.39 0.12 094 1.67 176 244 3.72 4.28 4.92 5,53
0.06 048 1.01 1.68 1.80 3.25 4.12 4.60 528 6.22

We would like to model the density of the data points, and due to the
apparent. bi-modality, a Gaussian distribution would not be appropriate.
There seems to be two separate underlying regimes, so instead we model
Y as a mixture of two normal distributions:

y—l 52 N(F’l!”?)\

Yo ~ N(u203), (R.36)

Y = (1-A)-"T+A-Y,,
where A € {0,1} with Pr(A = 1) = . This generative representation is
explicit: generate a A € {0,1} with probability 7, and then depending on
the outcome, deliver either Y7 or Y3. Let ¢g(z) denote the normal density
with parameters @ = (u, a?). Then the density of Y is

gy () = (1 — 7)o, () + 7o, (). (8.37)

Now suppose we wish to fit this model to the data in IFigure 8.5 by maxi-
mum likelihood. The parameters are

0 = (m, 0y, 0;) = (m, p],a?, p.mo-%). (8.38)
The log-likelihood based on the N training cases is

N
£(0;2) =Y logl(1 — 7)o, (i) + wba, (v:)]- (8.39)

i=1

238 8. Model Inference and Averaging

Algorithm 8.1 EM algorithm for two-component Gaussian mixture.

1. Take initial guesses for the parameters fi1, 67, iz, 53,7 (see text).

2. Ezpectation Step: compute the responsibilities

N ﬁ¢é2 (i)
Yi =

1=1,2

(1= Mg, i) + 7, (i) N. (8.42)

3. Mazimization Step: compute the weighted means and variances:

2y = s (L= Ay 2 _ Ty (1= A0 (i = in)?
AN 1 AN
o= T e S il —)
Zﬁv:f% Z 1%

and the mixing probability 7 = Zf\il 4i/N.

4. Tterate steps 2 and 3 until convergence.

Direct maximization of £(6;Z) is quite difficult numerically, because of
the sum of terms inside the logarithm. There is, however, a simpler ap-
proach. We consider unobserved latent variables A; taking values 0 or 1 as
n (8.36): if A; =1 then Y; comes from model 2, otherwise it comes from
model 1. Suppose we knew the values of the A;’s. Then the log-likelihood
would be

z

6o(0:Z,A) = > [(1—Ay)log g, (yi) + Ay log da, ()]

i=1 N
+3 (1= A logm + Aslog(1— 7)) (8.40)

and the maximum likelihood estimates of p; and o% would be the sample
mean and variance for those data with A; = 0, and similarly those for us
and 02 would be the sample mean and variance of the data with A; = 1.
Since the values of the A;’s are actually unknown, we proceed in an
iterative fashion, substituting for each A; in (8.40) its expected value

vi(0) = B(A]0, Z) = Pr(A; = 110, Z), (8.41)

also called the responsibility of model 2 for observation i. We use a proce-
dure called the EM algorithm, given in Algorithm 8.1 for the special case of
Gaussian mixtures. In the ezpectation step, we do a soft assignment of each
observation to each model: the current estimates of the parameters are used

8.5 The EM Algorithm 239

-40
|

-41
|

Observed Data Log-likelihood
-43
|

-44
|

5 10 15 20
Iteration

FIGURE 8.6. EM algorithm: observed data log-likelihood as a function of the
iteration number.

TABLE 8.2. Selected iterations of the EM algorithm for mixture example.

Iteration T
1 0.485

5 0.493

10 0.523

15 0.544

20 0.546

to assign responsibilities according to the relative density of the training
points under each model. In the mazimization step, these responsibilities
are used in weighted maximum-likelihood fits to update the estimates of
the parameters.

A good way to construct initial guesses for fi; and fio is simply to choose
two of the y; at random. Both 67 and 62 can be set equal to the overall
sample variance Zf\[:l(yz —4)?/N. The mixing proportion # can be started
at the value 0.5.

Note that the actual maximizer of the likelihood occurs when we put a
spike of infinite height at any one data point, that is, ji; = y; for some
i and 67 = 0. This gives infinite likelihood, but is not a useful solution.
Hence we are actually looking for a good local maximum of the likelihood,
one for which 62,62 > 0. To further complicate matters, there can be
more than one local maximum having 62,62 > 0. In our example, we
ran the EM algorithm with a number of different initial guesses for the
parameters, all having 67 > 0.5, and chose the run that gave us the highest
maximized likelihood. Figure 8.6 shows the progress of the EM algorithm in
maximizing the log-likelihood. Table 8.2 shows 7 = >, 4;/N, the maximum
likelihood estimate of the proportion of observations in class 2, at selected
iterations of the EM procedure.

8.6 MCMC for Sampling from the Posterior 243

Algorithm 8.3 Gilbs sampler.
1. Take some initial values U, _éu“ P N O [
2. Repeat fort=1,2,...,.:

For k =1,2,..., K gencratc U" from
PN, e (OB e s U D),

3. Continue step 2 until the joint distribution of (UI{‘), US", v, U }:})
does nol change.

8.6 MCMC for Sampling from the Posterior

Having defined a Bayesian model, one would like to draw samples from
the resulting posterior distribution, in order to make inferences about the
parameters. Except for simple models, this is often a difficult computa-
tional problem. In this section we discuss the Markov chain Monte Carlo
(MCMC) approach to posterior sampling. We will see that Gibbs sampling,
an MCMC procedure, is closely related to the EM algorithm: the main dif-
ference is that it samples from the conditional distributions rather than
maximizing over them.

Consider first the following abstract problem. We have random variables
Uy, Us, ..., Uk and we wish to draw a sample from their joint distribution.
Suppose this is difficult to do, but it is easy to simulate from the conditional
distributions Pr(U;|Uy, Us,. .. Uj—1,Uj1,... . Uk), j =1,2,... ,K. The
Gibbs sampling procedure alternatively simulates from each of these distri-
butions and when the process stabilizes, provides a sample from the desired
Jjoint distribulion. The procedure is delined Algorithim 8.3,

Under regularity conditions it can be shown that this procedure eventu-
ally stabilizes, and the resulting random variables are indeed a sample from
the joint distribution of Uy, Us, ... ,Uk. This occurs despite the fact that
the samples (U%”,l’)’éU i 1U}P) are clearly not independent for different
t. More formally, Gibbs sampling produces a Markov chain whose station-
ary distribution is the true joint distribution, and hence the term *Markov
chain Monte Carlo.” It is not surprising that the true joint distribution is
stationary under this process, as the successive steps leave the marginal
distributions of the Uy’s unchanged.

Note that we don’t need to know the explicit form of the conditional
densities, but just need to be able to sample from them. After the procedure
reaches stationarity, the marginal density of any subset of the variables
can be approximated by a density estimate applied to the sample values.
However if the explicit form of the conditional density Pr(Us,|Us, ! # k)
is available, a better estimate of say the marginal density of Uy can be

244 8. Model Inference and Averaging

Algorithm 8.4 Gibbs sampling for mixtures.

1. Take some initial values 0 = (u{”, (™).
2. Repeat fort =1,2,... .
(a) For i = 1,2,... , N generate Agt) € {0,1} with Pr(AEt) =1) =
4:(0W), from equation (8.42).
(b) Set

YN a-AD) -y
SN (-AY)
A 25\21 Az('t) “Yi

H2 = N t 5
S, Al

and generate ,ugt) ~ N(fi1,6%) and uét) ~ N(fiz,53).

3. Continue step 2 until the joint distribution of (A(t)7 ugt), uét)) doesn’t
change

obtained from (Exercise 8.4):

P = g —m v

M

! PILECLANE) (8.50)
t=m

Here we have averaged over the last M — m + 1 members of the sequence,

to allow for an initial “burn-in” period before stationarity is reached.

Now getting back to Bayesian inference, our goal is to draw a sample from
the joint posterior of the parameters given the data Z. Gibbs sampling will
be helpful if it is easy to sample from the conditional distribution of each
parameter given the other parameters and Z. An example—the Gaussian
mixture problem—is detailed next.

There is a close connection between Gibbs sampling from a posterior and
the EM algorithm in exponential family models. The key is to consider the
latent data Z™ from the EM procedure to be another parameter for the
Gibbs sampler. To make this explicit for the Gaussian mixture problem,
we take our parameters to be (6,Z™). For simplicity we fix the variances
0?,02 and mixing proportion 7 at their maximum likelihood values so that
the only unknown parameters in 6 are the means pu; and ps. The Gibbs
sampler for the mixture problem is given in Algorithm 8.4. We see that
steps 2(a) and 2(b) are the same as the E and M steps of the EM pro-
cedure, except that we sample rather than maximize. In step 2(a), rather
than compute the maximum likelihood responsibilities v; = E(A;|6,Z),

8.6 MCMC for Sampling from the Posterior 245

w
r“-
(=]
E!tD
) é‘ﬁ.
2 g °
= a ™
o g o |
nl!_l oL o
[=1]
g o £
o x T
s = ©
2 ©
9

0 50 100 150 200 0 50 100 150 200
Gibbs Iteration Gibbs Iteration

FIGURE 8.8. Mizture example. Left panel: 200 values of the two mean param-
eters from Gibbs sampling; horizontal lines are drawn at the mazimum hikelihood
estimates fiy, fiz. Right panel: proportion of values with A, = 1, for each of the
200 Gibbs sumnpling ilerations; o horizonlal line is drown al 3 5 /N.

the Gibbs sampling procedure simulates Lhe latent data A; from the distri-
butions Pr(A;|0, Z). In step 2(b), rather than compute the maximizers of
the posterior Pr(p1, pi2, A|Z) we simulate from the conditional distribution
Pr(p, pz| &, Z).

Figure 8.8 shows 200 iterations of Gibbs sampling, with the mean param-
elers gy (lower) and po (upper) shown in Lhe lell panel, and the proporlion
of class 2 observations), A; /N on the right. Horizontal broken lines have
been drawn at the maximum likelihood estimate values fiy. jiz and 3, 5; /N
in each case. The values seem to stabilize quite quickly, and are distributed
evenly around the maximum likelihood values.

The above mixture model was simplified, in order to make the clear
connection between Gibbs sampling and the EM algorithm. More realisti-
cally, one would put a prior distribution on the variances 6%, 63 and mixing
proportion m, and include separate Gibbs sampling steps in which we sam-
ple from their posterior distributions, conditional on the other parameters.
One can also incorporate proper (informative) priors for the mean param-
eters. These priors must not be improper as this will lead to a degenerate
posterior, with all the mixing weight on one component.

Gibbs sampling is just one of a number of recently developed procedures
for sampling from posterior distributions. It uses conditional sampling of
each parameter given the rest, and is useful when the structure of the prob-
lem makes this sampling easy to carry out. Other methods do not require
such structure, for example the Metropolis—Hastings algorithm. These and
other computational Bayesian methods have been applied Lo sophisticaled
learning algorithms such as Gaussian process models and neural networks.
Details may be found in the references given in the Bibliographic Notes at
the end of this chapter.

246 8. Model Inference and Averaging
8.7 DBagging

Earlier we introduced the bootstrap as a way of assessing the accuracy of a
parameter estimate or a prediction. Iere we show how to use the hootstrap
to improve the estimate or prediction itsell. In Section 8.4 we investigated
the relationship between the bootstrap and Bayes approaches, and found
that the bootstrap mean is approximately a posterior average. Bagging
further exploits this connection.

Consider first the regression problem. Suppose we fit a model to our
training data Z = {(z1, 1), (z2.92),... . (z~5,yn)}, obtaining the predic-
tion f(z) at input z. Bootstrap aggregation or bagging averages this predic-
tion over a collection of bootstrap samples, thereby reducing its variance.
For each bqotst.rap sample Z**, b = 1,2,... ., B, we fit our model, giving
prediction f*?(z). The bagging estimate is defined by

B
Foag(@) = %3- > it@). (8.51)
b=1

Denote by P the empirical distribution putting equal probability 1/N on
each of the data points (x;,;). In fact the “true” bagging estimate is
defined by Eﬁf‘(m)‘ where Z* = (z1,47), (3, 43),... . (@, ¥y) and each
(i, 97) ~ P. Expression (8.51) is a Monte Carlo estimate of the true
bagging estimate, approaching it as B — oc.)

The bagged estimate (8.51) will differ from the original estimate f(x)
only when the latter is a nonlinear or adaptive function of the data. For
example, to bag the B-spline smooth of Section 8.2.1, we average the curves
in the bottom left panel of Figure 8.2 at each value of z. The B-spline
smoother is linear in the data if we fix the inputs; hence if we sample using
the parametric bootstrap in equation (8.6), then fyug(z) — f(z) as B — o
(Exercise 8.5). Hence bagging just reproduces the original smooth in the
top left panel of Figure 8.2. The same is approximately true if we were to
bag using the nonparametric bootstrap.

A more interesting example is a regression tree, where f () denotes the
tree’s prediction at input vector o (regression trees are described in Chap-
ter 9). Itach bootstrap tree will typically involve different features than the
original, and might have a different number of terminal nodes. The bagged
estimate is the average prediction at @ from these B trees.

Now suppose our tree produces a classifier G(z) for a K-class response.
Here it is useful to consider an underlying indicator-vector function f' (z),
with value a single one and K — 1 zeroes, such that G(z) = arg max; f' (z).
Then the bagged estimate fhﬂg(:c) (8.51) is a K-vector (p1,p2,...,pK),
with pi equal to the proportion of trees predicting class k at a. Treating
these as estimates of the class probabilities, our predicted class is the one
with the most “votes” from the B trees, Gpag(®) = arg max foag(z)-

B.7 Bagging 247

For many classifiers G(x), (including trees), there is already an under-
lying function f () that estimates the class probabilities at 2. An alterna-
tive bagging strategy is to average these instead, rather than the indicator
vectors, and Lhis tends to produce bagged estimales with lower variance,
especially for small B (see Figure 8,10).

8.7.1 FExample: Trees with Simulated Data

We generated a sample of size N = 30, with two classes and p = 5 features,
each having a standard Gaussian distribution with pairwise correlation
0.95. The response Y was generated according to Pr(Y = 1|z, < 0.5) = 0.2,
Pr(Y = 1|23 > 0.5) = 0.8. The Bayes error is 0.2. A test sample of size
2000 was also generated from the same population. We fit classification
trees to the training sample and to each of 200 bootstrap samples (classifi-
cation trees are described in Chapter 9). No pruning was used. Figure 8.9
shows the original tree and five bootstrap trees. Notice how the trees are
all different,, with different splitting features an